Power10 Functional Simulator

Command Reference

Understanding and using commands in the
Power10 Functional Simulator environment

27 October 2022
Version 1.2

© Copyright IBM Corporation 2020, 2022

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other compa-
nies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

OpenPOWER, the OpenPOWER logo, and openpowerfoundation.org are trademarks or registered trademarks of Open-
POWER Foundation, Inc., registered in many jurisdictions worldwide.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was
obtained in specific environments, and is presented as an illustration. The results obtained in other operating environ-
ments may vary.

This document is intended for the development of technology products compatible with Power Architecture®. You may
use this document, for any purpose (commercial or personal) and make modifications and distribute; however, modifica-
tions to this document may violate Power Architecture and should be carefully considered. Any distribution of this docu-
ment or its derivative works shall include this Notice page including but not limited to the IBM warranty disclaimer and IBM
liability limitation. No other licenses (including patent licenses), expressed or implied, by estoppel or otherwise, to any
intellectual property rights are granted by this document.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. IBM makes no represen-
tations or warranties, either express or implied, including but not limited to, warranties of merchantability, fithess for a
particular purpose, or non-infringement, or that any practice or implementation of the IBM documentation will not infringe
any third party patents, copyrights, trade secrets, or other rights. In no event will IBM be liable for damages arising directly
or indirectly from any use of the information contained in this document.

IBM Systems
294 Route 100, Building SOM4
Somers, NY 10589-3216

The IBM home page can be found at ibm.com®.

Version 1.2
27 October 2022

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com

é;—é-??: Command Reference
Power10 Functional Simulator
Contents

= o T L] = 13
= o = o 1= 15
=TT o o T o 17
About this DOCUMENT ... s s e ammn e s 19
] (=T gTo [=To I U Lo 11T oo = SO PO PRRRR 19
USING thiS IMANUAL ..o e e e e e s e e e s e s e e e e e s nn e e e e s annnrnee s 19
Command Page OrganiZationc.coooeeeiiieiiiiee ettt sttt sb e s e e sbe e e sneeeeaeee 19

L0 0117 o1 (o] o TP 20
Related DOCUMENTSooi i e e e e e e e e e e e s s e e e e s s ann e e e e s sarnn e e e e sanrneeeenan 21

[T=1 o T=TaTo ST U o] o Yo« SRS 21

LI 141 To 10T o) 23
1.1 Understanding and Using Simulator Commandsceeeiiiiiiiii e 23

1.2 Managing a Simulated MacChineoocoi i 25

1.3 Overview of Command Structure and SYNTaXoocueeiiiiiiiiii e 26

1.4 Using the COMMEANA PAQEScoiiiiiiiiiiiiiiiiee ettt ettt e e e st e e e s sneeee e e senbeeeeeeeans 27

1.5 Accessing Help for COMMEANGSc.ueiiiiiiiiiii e e e b e 27

1.6 Top-Level Simulator COMMEANTSoiiiiiiiiiiie ettt e e ree et e e et e e e sabe e e sabee e snbeeeenees 28

LR - - T S SS 29
L B e 1 4 = SO PFPPI 29

LI 22 1Y T | o] (T o R 29

LY (o8] 4= 0 £ PP PPP PP 29

1.7.4 EXAMPIES ...ttt e e e e e e e e e e e n e e e e e anneeee s 30

1.8 ABIINE e et ennre e s 31

TG QISPIAY it e e e R e e e e e e e e e e e e e e e e na e r e e e s aanreeeeean 32
1,91 Tl SYNTAX ettt e e s b e e e bb e e e b b e e e sab e e e aae e e e e abeeesnbe e e s aneeeeneeas 32

LIRS B2 B =T Tet o) (o] o PP O TP PPPOPPI 32

T.9.3 EXAMPIES .ot e e e ne e s 33

1.10 help OF NEIPIECUISIVE ..ottt e e e e e e e ettt e e e e e e e e e e s e neneeeeees 34
1.710.7 TCI SYNTAX ettt ettt b e e e be e e eb b e e e eab e e e aae e e e e abe e e sabe e e s aneeeennneas 34

L L2 B L= Tl 4T o) 1] o ISP P OO PPPOPPI 34

L LR B = g] o] L= PSPPI 34

LIPS I o 1 3 PP PP PP PPRTRPN 35
1,717 TCI SYNTAX ittt et b e e b b e e e sab e e e eae e e e e b e e e sab e e e s aneeeenneas 35

L I 2 B L= T4 o) 1T ISP PPPOPPI 35

L I R B = 1] o] = PO PFPPTI 35

0P 211 T [T o 18 o PP PR PO PRPPOPPPRRR 36
1.12.7 TCI SYNTAX ettt ettt e e be e e e b e e e sab e e e aae e e e aabe e e s be e e s aneeeenneas 36

L P2 B L= Tl g o) 1] PP UO PP PPPOPPI 36

L P2 B Y (011 0 =T o £ PO PRI 36

LI 2 = 1 4] o] = 37
Version 1.2 Contents
27 October 2022 Page 3 of 115

Command Reference

Power10 Functional Simulator

L R I 10015 (o] o TP PPPPTPP 38
L ST B e RS = PP PPP RSP 38

L B2 B LTt 4T o] 1] ISP PP 38
R TR B = 1y] o[S S 38

L =T €] To] o PR PPPRPPPPRRPROS 39
L B e RS L = PRSP PPP PP 39

L 2 B Lo T4 o) 1T IO PPP PP 39

L B = 1] o] L= PP URPPPR 39

2. Defining, Configuring, and Instantiating a Machineccccoeemeeeeecccccssisssnsnnnnnnnnns 41
P2 e 1= 11 0 1= o] T RPN 42
b2 O R o 103 o | - USSR 42

P 2 D 1= =] 1 o o N 42

P2 IR I Y (011 0 =T o £ OO PP PPPOPPPPRPOY 42

P2 B) = g g o] L= RO SPT PSRN 42
2.1.5 Related COMMANGScviiiiiie et e s e e s ene e snn e e snn e e e annee e e 42

P2 1= 1] o 1= o o 1§ PP PRSP PPPRPI 43
P22 B o] RS o - O PP 43
P B LTl 1 o] (1] o PP PSPPI 43
2.2.3 AIQUIMENTS ..oiiiiiiiii ittt e ettt e et e e e e e e e e b e e e et e e e e e e e e s s b a b e e eeeeeeeaeeeaaaannnrnrnneeeeaaeeeaaan 43
2.2.4 EXAMPIES ..ttt et e e e e e e e e re e et e e e e e e ae e abrnreeeeeeaaaaeaaan 43
2.2.5 Related COMMEANGSooiiiiiiiiiiee ettt e e st e e e et e e e e e sabeeeeesssbeeeesesnseeeaesanseeeeeesanes 43

b2 o LY i1 = o U o TS 44
b2 T B o 103 o | - SR 44

P I B 1Tl g o] (o o I PRSPPI 44
P I N (011 0 =T o] £ PP PPUPPPOPPPPRPNY 44
2.3.4 EXAMPIES .ot e e b et e e e ah b e e e e e e aarae e e e s aanbeeee e et 44
2.3.5 Related COMMANGAScoiiiiiie e e e s ene e e snn e e snn e e e annee e 44

P o 1Y {1 = 1 USSR 45
P2 o B ot RS 0 - PP UPRTURUPR 45
P B LTl 11 o] (1] PRSPPI 45
P B = o]) = N 45
2.4.4 Related COMMANGASc..eiiiiiieeiiie ettt ettt sbe e e s be e e s abe e e snreesnneeeanneeens 45

P o LY i = o =T o1 = S 46
25,1 TCESYNTAX .etiiiiiiiiiie ettt e e et e e e s b bt e e e e e aabee e e e e s b b e e e e s e aabbee e e s aanrreeeeaaae 46

P T2 D 1= YT ¢ 1 o o TSN 46

P TR I Y {011 0 T=T o1 (= OO PRSP PPPPRRY 46
2.5.4 EXAMPIES ..ottt e e h e e e e e n e e e e e s h b e e e e s e anrre e e e s aannreeeeaane 46
2.5.5 Related COMMANASooiiiiiiieiieiiiee et e e e e s e e s ee e e e e e e e e ssesanrareeeeeeaaaeeeeean 46

2.6 {configuration_object} CONTIGiicuiiiii i e e e e s e e e e e enneeas 47
2.8.1 TCl SYNEAX .uteieiiiieitie ettt e e s e e s it e e s b et e sabe e e s nee e s ne e e s ane e e s nre e s anreeeaneeen 47

P R B LT Tl 1] o] (1] o PP P PP PPPPPPPRRPNY 47
2.8.3 ATQUIMENES ..eiiiiiiiiiie ettt ettt e e ettt e e e e b et e e e e s b b e e e e e e aabee e e e e anbeeeeeeanbbeeeesaanbeeeeeaane 47

P R =g]) = N 47
2.6.5 Related COMMANGASoiiiiiii ettt s r e e s be e e s ne e e snneesnne e s annee e e 47

2.7 {configuration_object} diSPIAYcoooiiiiiiiiie e 48
2.7 TCESYNTAX ittt et e e e ettt e e e s b b e e e e e e aab e e e e e s abbe e e e e e anbeeeeeseanreeeeeeaat 48
P 0 1= T ¢ 1 o o 48

P R I N {011] 0 T=T o] £ PP PRSP PPPRRTY 48
Contents Version 1.2

Page 4 of 115 27 October 2022

= ===F= Command Reference
Power10 Functional Simulator
2.7 4 EXAMPIES ..ottt e oottt e e e e e e e e e — e b e et e et e e e e e e e e nnnbrerreeeaaaaaeas 48
2.7.5 Related COMMANGSoiiiiiiiiiiie e eciieee ettt e e e ettt e e e s st ee e e e e sttt e e e e ssnteeeeesaseeeeessanteeeessaseneeanans 48
2.8 {configuration_ODJECE} EXItcooi i e 49
b < T B o 103 o = SRR 49
P B2 B 1Tl 4 o] (o o PP PPPPPPPPP 49
2.8 .3 EXAMPIES ..ot e e b e e e e e e R e e e e e e aanre e e e e e aanreeeeean 49
2.8.4 Related COMMANGSuuiiiiiiieiee e e e e e e e e e e e e e e e e e s e s neeterereeeeeeeaeaannnnanneeeeaaaaaeens 49
2R e R {oTolaVilo BT =V ilo] g o) o] =To1 4 o 18 =] oY AR 50
2.9.1 Tl SYNEAX ittt b e a e e b e e e s b e e e ae e e e aabe e e eab e e e aabe e e sann e e aneeeeaneeeaa 50
P B LT Tol 1] o] (1] o OSSP PP UPPPPPTRTRPPPPPPT 50
2.9.3 AFQUIMENES ..ttt ettt e e a bt e e e s ettt e e e s b et e e e e e aab et e e e e abbeeeeesanbeeeeeesanreeeeeaan 50
P IR = o]] = PR 50
2.9.5 Related COMMANGSuuiiiiiiiiiiie ettt e ettt e e e s st e e e s sbee e e e e s sateeeeeesbeeeaeesanteeeeeeanseeeeeeanns 50
2.10 {configuration_ODJECE} QUILoo i e 51
P2 L0 B e B Y] - OO ROPPUUPURPPPPPR 51
P2 B2 D 1= 1T o P 51
2.10.3 EXAMPIES ..ottt e e e e e e e e r e e e e e e e e e e e e e nna e e reeeaaaaee s 51
2.10.4 Related COMMEANGASooiiiiiiiiiee ittt e e ettt e e e et e e e s st e e e e s sassaeeeessntseeeesaasseneaesanseneeanans 51
3. Configuring and Modifying Machine Propertiescccccooocmmrmrinnssmnnninnssssennnnnns 53
3.1 {machine} boguS NEL ClEANUPeiiiiieeeie e e e 54
T I B e 1S Y] = TSP PP 54
G T 2 0 1= YT 1 o o S 54
BT3B EXAMPIES ..ttt e e e e e e e e e et e e e e e e e e nnn b e e reeeaaaaaeas 54
3.1.4 Related COMMANGSoiiiiiiiiiiieeecieiee sttt e e e et e e e s st te e e e s abaeeeeessnteeeeesabeeeeessantaeeeseanseneeesans 54
3.2 {machine} bogus NET NIooii i e 55
G T2 B o 103 o | = R 55
I B 1Tl 4 o] (o o PP PPPPPP 55
3.2.2.1 Extended Description of Bogus Network SUPPOItcooiiiriiieiiniiieiee e 55
3.2.2.2 Setting up TUN/TAP on the HOSt SyStemcooiiiiiiiiiie e 55
3.2.2.3 Configuring systemsim-p10 Support for the Bogus Networkcccooveeiiiiiiiinnninnee, 55
IR I Y (011] 0 =T o] £ PSP PPPUPPRPPPRPP 56
I o = g] o] L= TP PSP O PPPPPPPRPPPPPPT 56
3.2.5 Related COMMEANGSooiiiiieeieeiiee e e e e e e e e s e e e e e e e e e e e e e e e snnnrenaeeeeaaaaaaeens 56
3.3 {mMachine} DOGUSNAIT ... e e e e e e e e e s e e 57
TR B o[RS o1 - O O PP PP OPRPPUPPRPPPN 57
R B2 B LT 1ot 1] o] (1] o OO OPPPPPTPTRPPPPPPT 57
R e I N o 110 TT | =T TSP PP PRP 57
R TRC 2R =0]] T P 57
R I g = Ted o =Y 3 o]0 0 =T o PR TR 58
I o B ot RS o - D PRSI UURRRTRRN 58
I 2 1T Lo 1 o] (o] I TP PP PP 58
B4 3 AIQUIMENTS ittt e e e e e e e e e e e et e e e e e e e aa e s b e b ee e e e e e eeeeaeaannnnbrrreeeeeeeeens 58
Bid.4 EXAMPIES ..ottt e oot e e e e e e e e e — e b e e e e e e e e e e e e e e nnnbberreeeaaaaeeas 58
TSI {0 F=Ted a1 a1 A oo 11T o) o PR 59
T B e 1S Y] = T PP PP PRP 59
R T8 T2 D 1= YT ¢ 1 o] o 59
B.5.3 EXAMPIES ..ottt e e e e e e r e et e e e e e e e e e e e nnnr e e reeeaaaaeeas 59
3.5.4 Related COMMANTSoviiiiiiiiiiie e cciieee et e e e ettt e e e s st e e e s ataeeeeessstaeeeessseaeeessastaeeessaseeeeesans 59
Version 1.2 Contents

27 October 2022 Page 5 of 115

Command Reference = ===T=
Power10 Functional Simulator
3.6 {Machine} CONSOIE Creale ... e e e 60
B.B.1 Tl SYNEAX ettt ettt it e e s bt e st e e e s b be e s be e e s abe e e enr e e e anre e e aneeen 60
I G2 B LT Tol 1] o] 1] o PSP PP PPPOPPPPPPNY 60
N G RC I N o U0 TT o =TSRRI 60
B I B =g]) = 61
3.6.5 Related COMMEANGASooiiiiiiiiiiee ettt se e e e sttt e e e s st et e e s sbbeeeeeeanbeeeaessneeeeeesanes 61
3.7 {Maching} CONSOIE AESIIOYoeiiiiiiiiiiiie ettt e e e e e e e st e e e e e e e e ae s nnnaee e e e eeeeaaeeeaann 62
A B e 1S Y] = O PP PP PPP 62
R IR 2 0 1= YT ¢ 1 o o SN 62
IR I Y (011 0 =T o] (= PP PP PPPPRRNY 62
BL7.4 EXAMPIES .ottt ettt e e h e e e e e e e e e s e R b e e e e e e aabre e e e s aannreeeenaae 62
3.7.5 Related COMMEANGASoiiiiiiiiiiieee et e e e e e e e e e e e e e e e e e e s sasnsnrenaneeeaaaaeeeeean 62
3.8 {machine} conS0le diSADIE ... 63
381 Tl SYNEAX ittt e et e e s bt e et e e s b e e e e be e e s abe e e enne e e anre e e areeea 63
R 2 B LTl 1] o] (o] o PO P PP PPPOPPPPRPNY 63
O S e I N o U0 TT | ¢ TP PRSPPI 63
B IR TR =0]) = N 63
3.8.5 Related COMMEANGASoiiiiiiiiiiee et et e e e sttt e e e s st ee e e e s sbbeeeeessateeeeesssaeeeeesane 63
3.9 {machine} console display DUfEredo 64
T B e 1S Y] = O PP PSPPI 64
R IR B2 D 1= ¢ 1 o o TSN 64
OIS RO =100 o] [T PO PPPPPTTP 64
3.9.4 Related COMMEANGASoviiiiiiiiiiee et ee e e e e e e e e e erte e e e e s sabaeeeessstaeeeseansaeeeesansaaneeesanes 64
3.10 {maching} CONSOIE ENADIEoeeiiieieiieiie e e e e e e e e e e e e e e e snnneeneeees 65
G 70 0 T T o SV - SRR 65
T L0 T2 B T=T Yot 4T o] (o o H TSSO PPPRPTTP 65
T [RC I N o 18] 11T | £ T PO P PP RPPPPPPRRPNY 65
O O =T 0T o] [PP PPP 65
3.10.5 Related COMMEANASooiiiiiiiiee ettt ettt e e s s e e s sbb e e e e s s sateeeeessbbeeeeesane 65
3.11 {Maching} CONSOIE IStt e e e e e e e e e e e er e e e e eeas 66
T B O B e IS = TSP UPRTRUPRRUPR 66
O B B2 B 1=t o7 o] o) o] o E PP PRSPPI 66
R 20 i R BN =0]] = N 66
3.11.4 Related COMMEANGASooiiiiiiiiiiee ettt e e e s e e e st e e e e s sab e eeessbbeeeeseantaeeeessseeeeeesanes 66
3.12 {machine} console set display buffered ... 67
T 2 B e IS} o = PP PP PPPP 67
R TR 2 0 1= T] 1 o] o 67
T P2 I N o 18] 1T | T PP PRSP PPPRRY 67
BL12.4 EXAMPIES ettt ettt ettt e e e s e e e e e e h e e e e e e n e e e e e s e nber e e e e e rrr e e e s aannreeeeaann 67
3.12.5 Related COMMEANGAS ...ooiiiiiiiiiecee et e e e e e e e s e e e e e e e e e e e seensnbeeaneeeeaaaeeeeean 67
T B R 0 4 F=Ted a1 =Y Ao o 18 PP PP PP RPPPRPP 68
G T T B o 1S Y 1 - PSPPSR 68
T B2 B L= o g o] (o] IR P PP RPPPPPPPRPNY 68
O RO Rl o [0 491=T o T PP PP PPPR P 68
B34 EXAMPIES ..ottt e e e e e e e e e e e n e e e eaaeeaaaan 68
3.13.5 Related COMMEANGAScoiiiiiiiiiee ettt e e e st e e e s sab e e e s sbbeeeeeeaateeeeessneeeeeeeane 68
T 0 0 =Tl T 0T Y 03 o = PR 69
T o B o IS} 0 €= PP PSPPI 69
B.14.2 DESCHIPIION .ottt e et r et e e e e s e e e e e e et e e e e e e e rn e e e e e e e e e aaan 69
T R I N o 18] 1T | =T OO PU PSPPSR 69
Contents Version 1.2

Page 6 of 115

27 October 2022

3.15 {machine} display cycles
3.15.1 Tel Syntaxcoooveeceviiiiieeeeee e
3.15.2 Description ..o
3.15.3 EXAMPIES ..ooeviiiiiiiiiiiiiieee e

3.16 {machine} display features
3.16.1 TCl Syntax ...occcceeeiiiieiiiieiiee e
3.16.2 DescCriptionccceeeiiiiiieeiiiiieee e
3.16.3 EXampIesoccveeiiiiiiiieieee e

3.17 {machine} display fpr, fpr_as_fp, fprs
3.17.1 TCl SYNtaXx ..ceeveeeeiiiecieeeiee e
3.17.2 Descriptionccoeiiiiiiiiiiieeeeeeeee e,
3.17.3 Arguments ...
3.17.4 EXamplesoooooiiiiiiiiiiieeeee e

3.18 {machine} display gpr, gprs
3.18.1 Tcl SyntaXxccoovveeieviiiiieeeeee e
3.18.2 Descriptioncoooiiiiiiiiieiee e
3.18.3 Argumentscceeeeiiiiiiee e
3.18.4 EXamMPpIesoocceeieiiiieee e

3.19 {machine} display instruction_count
3.19.1 Tl SYNtaXx ..coeocveeeiiiiieiieeiee e
3.19.2 DescCriptioncccceeiiiiieiieiiieeeeeeeee e
3.19.3 EXamples ...oooveveeeiiiiiiiieii e

3.20 {machine} display memory_size
3.20.1 Tcl Syntaxcceeeveiiiiieieeeee e,
T2 0 I D1=Y-To7] o) 1T} o N
3.20.3 EXamplescoooiiiiiiiiiiiieeie e

3.21 {machine} display memorymap
3.21.1 Tl Syntax ...cccoovvevciieiieeeeee e
3.21.2 Descriptionoooiiiiiieiieieeee e
3.21.3 Argumentsccoeeeiiiiiieee e
3.21.4 EXaMPIES ...cooiiiiiiiiiiee e

3.22 {machine} display nfpr, ngpr, mode, name
3.22.1 TCl SYNtaX ..cevveeeeiieieiee e
3.22.2 DesCriptioncoveiiiiiiiieeiee e
3.22.3 EXamplesccoooviiiiiiiiiieeie e

3.23 {machine} display number_of_MCMs
3.23.1 Tcl Syntax ...occeeeeeiiiiieiieeee e
3.23.2 Descriptioncccccviiieieiiieee e
3.23.3 EXamplescoooviiiiiiiiiieieie e

3.14.4 EXamplesooooiiiiiiiiiiiieieiee e

3.14.5 Related Commands

3.15.4 Related Commands

3.16.4 Related Commands

3.17.5 Related Commands

3.18.5 Related Commands

3.19.4 Related Commands

3.20.4 Related Commands

3.21.5 Related Commands

3.22.4 Related Commands

3.23.4 Related Commands

Version 1.2
27 October 2022

Command Reference

Power10 Functional Simulator

Contents
Page 7 of 115

Command Reference = ===T=
Power10 Functional Simulator
3.24 {machine} display slb, Spr, tm, VIMX, VIMXI, VSXE ...cccciiiiiiiiiiiiiiieeee e e e 82
T2 o I e IS | = G PSP P PP UPPTRPURP PR 82
I B L= Lo 1 o] (o] RO PP PP PSP OPPPPRPNY 82
2 Rl o [0 40=] o T PP PSPPI 82
RO T = o]] = S 83
3.24.5 Related COMMENGAScoiiiiiiiiiee ettt e e ettt e e e st eee e s sabeeeeessbbaeeeesansaeeaessasaeeeeesanes 83
3.25 {Maching} AIraNSIALEoeeiiiiiieiiee e e e e e e e e e et ereeaaeeeeean 84
2T B o IS} 1 €= PP PSPPI 84
B T2 T2 9 1= Y=o] 1 o] o SN 84
B.25.3 ATQUIMENTS ..iiitiiieei ittt ee ettt e e et e e e s et e e e s e e e e e s s b e e e e e e aanne e e e s sanreeeeseanreneeeseanneneeenann 84
B.25.4 EXAMPIES ..ottt ettt ettt e e e e e e e e ah e e e e e e e h e e e e e s e an b e e e e e e e bre e e e s aanrreeeeaaan 84
3.25.5 Related COMMEANGAS ...oooiiiieiiieee ettt e sasnsnrenaneeeaaaaeeeeean 84
3.26 {MACKINET ©XITeeieiiiiiii et r e e e e e e e e r et e e e e e e e e e e e eeeeeas 85
2 T I e IS = G TSP P PP PRRPOPRPT 85
B.26.2 DESCIIPION .ttt et e e e e s b et e e s e aab e e e e s s b b e e e e s e anrer e e e s aannreeeeaaae 85
B.26.3 EXAMPIES ..t e e e e e e e et e e e s e e e e e e e enaeas 85
3.26.4 Related COMMENASooiiiiiiiiee ettt e et e e e s st et e e s sbbe e e e e ssateeeeessnaeeeeesane 85
R T2y o 4 F=Ted o1 =1 o o SRRSO 86
T2 A B o IS)Y/ | = G PP 86
2 - B 1=t o7]) o] PP PRSPPI 86
R T A T =0]] = S 86
3.27.4 Related COMMEANGASoiiiiiiiiiiee e eieiee et ce ettt e e e e st e e s st e e e e s sabeeeeessbbeeeeeeanseeeaesansaeeeeeeanes 86
B2 S 0 0 =Tl a1 T Y T (=4 U] o) R 87
22 T B e IS} 1 €= PP PP PPP 87
RO T2 B2 D 1=] 1 o] o SN 87
B.28.3 AIQUIMENTS ...iiiiiiiei ittt e e e st e e e et e e e e e e e e e s s e e e e e e e aaneeeee e snreeeeseanreneeessanneeeeenann 87
B.28.4 EXAMPIES ..ottt ettt e et e e e e e e n e e e e e e e e e e s e n b er e e e e e rre e e e s aannreeeeaann 88
3.28.5 Related COMMEANGAS ...ooiiiiiiiiice et e e e e st e e e e e e e e e e ae et eeaneeeeeaaeeeeean 88
3.29 {Machine} ITrANSIALE ..o e e e e e e e e as 89
2l T I e IS | = G TSRO TP PPRTR PR PPRT 89
T2 B L= o 1] {[o] RO P TP RPPPPPPPRPNY 89
2 Rl o [0 491=T o TP PP PPT 89
R T2 TR =0]] = N 89
3.29.5 Related COMMEANGASooiiiiiiiiiee ettt ce ettt e e s e e e st e e e e s sabeeeeessbbeeeessantaeeeessseeeeeeeanes 89
3.30 {Maching} 10ad €I e e e e e e e e e e e e e et ereaaaeeeaaan 90
10T B e IS} 1 €= PP PP PPP P 90
R TR {0 B2 9 1= =T] 1 o o S 90
3.30.3 AIQUIMENTS ...eiiiieiee it e ettt e e e st e e e s et e e e s e e e e s s n e e e e e e amnre e e e e snreeeesaanrnneeeseanneneeenann 90
B.30.4 EXAMPIES ettt ettt et e e e s e e e s ah e e e e e e n e e e e e s e R be et e e e e b re e e e s aannreeeeaann 90
3.30.5 Related COMMEANGAS ...ooiiiiiiiiieee e e e e e e e e e s e e e e e e e e e e e sasnsnbeeaneeeaaaaeeeeean 90
3.31 {Machine} 1080 lINUXooooeeceee e e e e e e e e e e e e e e e e e e nenreeeeeeas 91
TR I B o S 1 - SRR URR 91
RN B2 B =T o g o] (o] o IR PO P PP SPPPPPPPRPN 91
R b IR o [0 49=T o T PP PP PPPR 91
B.31.4 EXAMPIES ..ottt e e e e e e e e e e e e e e e e e eaeeeaaaan 91
3.31.5 Related COMMEANGAScoiiiiiiiiiie ettt et e e st e e e s sab e ee e s sbbeeeeesaabaeeeessnaeeeeesane 91
3.32 {Maching} 1080 VIMIINUXcoiiiiiiiiii e e e e e e e e e et ee e e e e e e e e e e s e annnenrneeeeeaaeeeeenn 92
G 2 B o IS} o €= b PP PSPPI 92
IR v B 1T T 4] o] (o T o H PP P U PP PPPTRRPPN 92
I 2 I N (o 18] 1T | =T PP PRSPPI 92
Contents Version 1.2

Page 8 of 115 27 October 2022

3.32.4 EXamPIes ...ccoooviiiiiiiiiieieee e
3.32.5 Related Commands
3.33 {machine} load xcoffccccevrririiiiieeii,
3.33.1 Tcl Syntaxcccevvevieiiiiiiieeee e
3.33.2 DescCriptionoooviiiiiiiieeeeeee e
3.33.3 Argumentscccceiiiiiiiiee e
3.33.4 EXamMPIEscoccuiieiiiiiieee e
3.33.5 Related Commands
3.34 {machine} mem ...
3.34.1 Tl SyNtaXx ...ccccoeeevieeiiieeeeeeee e
3.34.2 DescCriptioncooeiiiiiieeiiiieee e
3.34.3 Argumentscccooiiiiiiiiieee e
3.34.4 EXampPIescoooiiiiiiiiiiiiieeeeee e
3.34.5 Related Commands
3.35 {machine} memory display
3.35.1 Tcl Syntax ...cceeeeeevieciciiiieceee e
3.35.2 DescCriptionoooviiiiiiiiiiiieeieeeee e
3.35.3 Argumentscccceviiiiiiiie e
3.35.4 EXamMPpIesocceeeiiiiiiiee e
3.35.5 Related Commands
3.36 {machine} memory fread, freadcmp, freadgz
3.36.1 Tl Syntaxcccceevveeeiiiiirieeeee e
3.36.2 Descriptioncooeiiiiieiiiiiiieee e
3.36.3 Argumentsccoiiiiiiiiiiin e
3.36.4 EXamplescocoooiiiiiiiiiiiiiieeee s
3.36.5 Related Commands
3.37 {machine} memory fwrite, fwritecmp, fwritegz
3.37.1 Tcl Syntaxcccccevvviiiieeeeeee e
3.37.2 DescCriptionoooviiiiiiiiiieeeeeee s
3.37.3 Argumentsccccceiiiiiiiie e
3.37.4 EXampIesoccveeiiiiiiieeeeeee e
3.37.5 Related Commands

3.38 {machine} memory set

3.38.1 Tl Syntaxcccceevieeeiiiieieeee e
3.38.2 Descriptioncoeiiiiiiieeiiiiieee e
3.38.3 Argumentscccciiiiiiieee
3.38.4 EXamPIescoooviiiiiiiiiiiieeeeeee e
3.38.5 Related Commands
3.39 {machine} modecccccvririeriie e
3.39.1 Tcl Syntaxccccccvvvieiieeeeeee e
3.39.2 DescCriptionoooviiiiiiiiiieeeeeee s
3.39.3 Argumentscccceviiiiiiiie e
3.39.4 EXampIesoccvieiiiiiiiieeeeeee e
3.39.5 Related Commands
3.40 {machine} quIitcccoeiriiiiiiiii s
3.40.1 Tl Syntaxccccvevieeeiiiierieecee e
3.40.2 DescCriptionccoviiiiiieeiiieee e
3.40.3 Examplescccciiiiiiiiiie
3.40.4 Related Commands

Version 1.2
27 October 2022

Command Reference

Power10 Functional Simulator

Contents
Page 9 of 115

Command Reference

Power10 Functional Simulator

3.41 {machine} setargs
3.41.1 Tcl Syntax
3.41.2 Description
3.41.3 Arguments
3.41.4 Examples
3.41.5 Related Commands

3.42 {machine} stall
3.42.1 Tcl Syntax
3.42.2 Description
3.42.3 Examples
3.42.4 Related Commands

3.43 {machine} start_thread
3.43.1 Tcl Syntax
3.43.2 Description
3.43.3 Arguments
3.43.4 Related Commands

3.44 {machine} step
3.44.1 Tcl Syntax
3.44.2 Description
3.44.3 Arguments
3.44.4 Examples
3.44.5 Related Commands

3.45 {machine} stop_thread
3.45.1 Tcl Syntax
3.45.2 Description
3.45.3 Related Commands

3.46 {machine} thread
3.46.1 Tcl Syntax
3.46.2 Description
3.46.3 Arguments
3.46.4 Examples
3.46.5 Related Commands

3.47 {machine} tick
3.47.1 Tcl Syntax
3.47.2 Description
3.47.3 Arguments
3.47.4 Examples
3.47.5 Related Commands

3.48 {machine} to_cycle
3.48.1 Tcl Syntax
3.48.2 Description
3.48.3 Arguments
3.48.4 Examples
3.48.5 Related Commands

3.49 {machine} util dtranslate
3.49.1 Tcl Syntax
3.49.2 Description
3.49.3 Arguments
3.49.4 Examples
3.49.5 Related Commands

Contents
Page 10 of 115

Version 1.2
27 October 2022

= ===F= Command Reference
Power10 Functional Simulator

3.50 {machine} util dtranslate_WimMQ ... 111
T I e IS} = G TP RP R UPPP PRI 111

RS O B LT Lo g][] o [PPSR PROPRP 111

S ORI o [0 491=T o TP PPRPPPPPPR 111

R T80 IR =0]] = S 111
3.50.5 Related COMMEANGAScoiiiiiiiiiie ettt e s e st e e e e sntee e e e s ssneee e e s snseeeeesannneeens 111
3.51 {machine} Util IIANSIALEcooriiiieii e e e e e e e e e e e e e e e an 112
N I B e IS 1 = OO P PR PPPPPPR 112

R T8 o 2 D 1=] 1 o o S 112
B.5T.3 ANQUIMENTS .ottt et e e e s e e e s et e s s e e e e s an et e e e ne e e e nannreee s 112
B.5T1.4 EXAMPIES .ottt ettt e et e e et et e e e e e e b e e e e e nnr e e e e nnneee s 112
3.51.5 Related COMMEANGAScooiiiieiiieieeee e e e e e e e e e s e e e e e e ee e e e e s s nnnreaneeeeeaeeees 112
3.52 {machine} util itranslate_WiMQoooo oo 113
Y2 B e IS} | = G TP P PP UPRP PRI 113
Ry B LT Lol 1] o] o T PP OO PR PPPROPRP 113
B.52.3 AFQUMENTS ..ottt e ettt e e e b bttt e e s eab bt e e e e sb bt e e e e s aabbe e e e e anbeeeeesannbeeeeeaan 113

TN Y2 =0]] = S 113
3.52.5 Related COMMEANGASooiiiiiiiiie et e e s e e e s st e e e s s see e e e e s snseaeeessnnneeens 113
3.53 {machine} Util PPC_diSASIMeeiiiiiieie e e 114
1 T B e IS 0 = PSP P PR PPPPPPP 114

R T8 YC 202 D 1= 1 o] o S 114
B.53.3 AINQUIMENTS .ottt ettt e e e e e e e e st e e sb e e e e e e s an et e e e nnn e e e e s annneee s 114
35314 EXAMPIES ..ottt ettt ettt e et e e e e e e n e e e e nnn e e e e nnneee s 114
3.53.5 Related COMMEANGASooiiiiieeiieiiee et e s sannnreaeeeeeeaeeees 114
3.54 {Machine} ULIl STUFTooo it e e e s sb e e e s sntre e e e s snnreeeeeanns 115
T T B e IS} = G TP PP UPPP PRI 115
R T 2 B Tt Lol 1] (o] o PSP PP PP RT P OPRP 115
B.54.3 AFQUMENTS ...ttt e et e e e s s bttt e e e s aab b et e e s sbbe e e e e s aabbeeeeeanbeeeeesannrneeeeaan 115

BTN 7 =0]] = S 115
3.54.5 Related COMMEANGASoiiiiiiiiiiie et e e st e e e st e e e s s nsee e e e s sassaeeesannneeens 115
Version 1.2 Contents

27 October 2022 Page 11 of 115

Command Reference

Power10 Functional Simulator

Contents Version 1.2
Page 12 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

List of Figures

Figure 1-1. Categories of Simulator COMMANScooiiiiiiiiii e 24
Figure 1-2. Linux Boot of the Power10 Functional Simulator with Console Displaycccccoveiiniennne 25
Figure 1-3. Sample Command Page Content and FOrmatccooiiiieiiiiiiiiie e 27
Figure 3-1. Calculating Ticks in the SYSIEMoo i 108
Version 1.2 List of Figures

27 October 2022 Page 13 of 115

Command Reference

Power10 Functional Simulator

List of Figures Version 1.2
Page 14 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

List of Tables

Table 1-1. Power10 Functional Simulator Top-Level Commandscccceeiiiiiiiieiniiieeee e 28

Version 1.2 List of Tables
27 October 2022 Page 15 of 115

Command Reference

Power10 Functional Simulator

List of Tables Version 1.2
Page 16 of 115 27 October 2022

Revision Log

Command Reference

Power10 Functional Simulator

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was modified from the previous release of this document.

Revision Date

27 October 2022

13 September 2021

28 August 2020

Version 1.2
27 October 2022

Description

Version 1.2.

Revised URL link for Install and Use in Related Documents on page 21.

Revised the argument decription in Conventions on page 20.

Removed section previously known as Section 3.1 {machine} bogus disk cleanup.
Removed section previously known as Section 3.2 {machine} bogus disk display.
Removed section previously known as Section 3.3 {machine} bogus disk init.
Removed section previously known as Section 3.4 {machine} bogus disk stat.
Removed section previously known as Section 3.5 {machine} bogus disk sync.
Removed section previously known as Section 3.8.5 Related Commands.
Revised Section 3.2.5 Related Commands on page 56.

Version 1.1.

Revised About this Document on page 19.

Revised Related Documents on page 21.

Revised Section 1.1 Understanding and Using Simulator Commands on page 23.
Revised Section 1.7 alias on page 29.

Revised Section 1.10 help or helprecursive on page 34.

Revised Section 1.12 simdebug on page 36.

Revised Section 1.14 version on page 39.

Version 1.0 (initial version).

Revision Log
Page 17 of 115

Command Reference

Power10 Functional Simulator

Revision Log Version 1.2
Page 18 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

About this Document

The Power10™ Functional Simulator enables hardware and software developers to simulate a Power10
processor-based system to develop and enhance application support for this platform. The Power10 Func-
tional Simulator Command Reference User’s Manual provides information about simulator commands that
are available to configure and manage components in the simulation environment. These commands pertain
to the command-line interface that is available after the simulator is installed and started.

Intended Audience
This document is intended for designers and programmers who are developing and testing applications that
are designed to run on systems based on the Power10 processor. Potential users include:

* System and software designers

e Hardware and software tool developers

* Application and product engineers

Using this Manual

This manual first presents preliminary topics that aid in understanding and using the Power10 Functional
Simulator commands and in managing the simulated machine. It then provides a command page for each
available command.

Command Page Organization

Commands in this manual are arranged alphabetically. They typically contain the following information:
* Command Name: Provides a brief introduction to command functionality.

» Tcl Syntax: Specifies the full Tcl syntactic structure and grammar of the command statement. The syntax
statements in this guide adhere to standard Tcl command notation, as described in Conventions on
page 20. Some commands require one or more input parameters that must be passed to the command
for it to execute successfully. In cases where multiple optional parameters are supported, the default is
stated if applicable. For an explanation of how to read a synopsis statement, see Section 1.4 Using the
Command Pages on page 27.

» Description: Describes the type of operation that is performed in the simulation by this command.
e Arguments: Describes each required or optional input argument.

e Example Code and Output: Provides sample code to demonstrate how the command is called, and dis-
plays corresponding output that is generated by the executed sample command sequence.

Version 1.2 About this Document
27 October 2022 Page 19 of 115

originally Tool Command Language

Command Reference

Power10 Functional Simulator

Conventions

The following typographical components are used to define special terms and command syntax:

Convention

Bold typeface

Italics typeface

Bold monospaced typeface

Bold italics monospaced typeface

Italic monospaced typeface

?argument? (Question-mark delimited)

Monospaced typeface

{} (Braces)

| (Vertical rule)
UPPERCASE

... (Horizontal or Vertical ellipsis)

Hyperlink

Note: This is note text.

This is an inline footnote reference.

1. Descriptive footnote text.

About this Document
Page 20 of 115

Description

Represents literal information, such as:

* Information and controls displayed on screen, including menu options, application pages,
windows, dialogs, and field names.

* Commands, file names, and directories as used in general descriptions.

* In-line programming elements, such as function names and XML elements when refer-
enced in the main text.

Emphasizes new concepts and terms and to stress important ideas.

In the case of command names, this font is used to denote user-specified components when
describing command usage and functionality.

Used in Tcl command format and syntax statements to denote the command name (as pro-
vided in each command page); for example, define config.

Used in Tcl command format and syntax statements to denote the user-specified component in
a command name (if applicable.) For example, in the configuration_object config command,
the configuration_object represents the name of a configuration object on which the com-
mand action is performed.

Delimits required parameters in Tcl command format and syntax statements or in sample code
for which a value must be specified, such as in cd /users/your_name, where your_name
denotes a user-specified input.

Encloses optional parameters in format and syntax descriptions. For example, in the statement
machine pmem init devicenum imagepath accesstype ?cowpath? $hash _size?,
the ?cowpath? and ?hash_size? parameters are optional.

Used for example code, such as to represent Tcl or C/C++ code examples.

Used in general descriptions to delimit a set of mutually exclusive user-specified parameter.
Note: Braces are not used in Tcl command format and syntax statements, which follow the
conventions defined previously.

Separates items in a list of choices enclosed in { } (braces) in format and syntax descriptions.
Indicates keys or key combinations that you can use. For example, press CTRL + ALT + DEL.

In format and syntax descriptions, as well as in code examples, an ellipsis indicates that some
material has been omitted to simplify a discussion.

Web-based URLs are displayed in blue text to denote a virtual link to an external document.
For example: http://www.ibm.com

The note block denotes information that emphasizes a concept or provides critical information.

A footnote annotates an explanatory note or reference inserted at the foot of the page that
explains or expands upon a point within the text or indicates the source of a citation or periph-
eral information.

Version 1.2
27 October 2022

Extensible Markup Language

Uniform resource locator

http://www.ibm.com

Command Reference

Power10 Functional Simulator

Related Documents

The simulator's command interface is implemented as an extension of the Tool Control Language (Tcl). Infor-
mation about Tcl syntax and features can be found in:

* Practical Programming in Tcl and Tk by Brent B. Welch. Prentice Hall, Inc.

e The IBM Power10 Functional Simulator User’s Guide describes the basic structure and operation of the
Power10 Functional Simulator and its command-line user interface. It is available on the Power10 Func-
tional Simulator download site under the Install & Use tab.

Among the documents available through the IBM Portal for OpenPOWER or the OpenPOWER foundation,
the following documents are particularly helpful in understanding the operation of the Power10 Functional
Simulator.

» Power ISA User Instruction Set Architecture - Book | (version 3.1B)
e Power ISA Virtual Environment Architecture - Book Il (version 3.1B)

* Power ISA Operating Environment Architecture - Book Il (version 3.1B)

Help and Support

For questions or to request technical support:

1. Go to the IBM Portal for OpenPOWER: https://www.ibm.com/systems/power/openpower/ and select
Support — Email IBM Support for OpenPOWER.

2. For questions or to request technical support for the POWER10 Functional Simulator, contact
mambo @ us.ibm.com.

Version 1.2 About this Document
27 October 2022 Page 21 of 115

https://www.ibm.com/systems/power/openpower/
mailto:mambo@us.ibm.com
https://www.ibm.com/support/pages/node/6493433
https://www.ibm.com/systems/power/openpower/
https://openpowerfoundation.org/

Command Reference

Power10 Functional Simulator

About this Document Version 1.2
Page 22 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

1. Introduction

This chapter describes the Power10 Functional Simulator command framework and introduces the structure,
format, and usage of simulator commands. Topics in this chapter include:

¢ Understanding and Using Simulator Commands
* Managing a Simulated Machine

¢ Overview of Command Structure and Syntax

* Using the Command Pages

* Accessing Help for Commands

¢ Top-Level Simulator Commands

1.1 Understanding and Using Simulator Commands

The Power10 Functional Simulator uses Tcl/Tk to provide a simple and programmable command syntax that
is easily extended and minimizes the need for proprietary programming grammar and usage. By extending
Tcl with exported functions, data types, and numerous predefined interfaces for all inter-object communica-
tion, the simulator provides a rapid, cross-platform development environment that enables users to quickly
start working in the simulation environment.

The Power10 Functional Simulator command framework provides an extensive set of commands for
modeling, simulating, and tuning microprocessor components in a system. Each component in a micropro-
cessor system is configured through commands that not only define the component’s run-time behavior and
characteristics, but also govern its relationships and interactions with surrounding components in the system.

In addition to configuring system components, the simulator commands can be combined with programming
logic and Tcl programming constructs to gather, analyze, and visualize simulation events, run workloads on
the modeled microarchitecture, and generate performance metrics with new or revised configurations to fore-
cast performance at future workloads. The command-line interface also can be used to perform a number of
operations on the simulator itself, such as to control a simulation, start data collection, and define and load
virtual devices and disk images.

Figure 1-1 on page 24 illustrates how commands are processed in the simulation environment and describes
the different categories of commands that are available.

Version 1.2 Introduction
27 October 2022 Page 23 of 115

Command Reference

Power10 Functional Simulator

Figure 1-1. Categories of Simulator Commands

The Tcl interpreter reads command-line input and deter-
mines whether the command is pure Tcl or simulator Tcl
syntax. The interpreter executes Tcl operations and
passes simulator-specific commands to the simulation
framework.

Simulator Commands: Commands to manage
——the simulation environment or to define and
modify simulator elements.

Terminal Window POWER10 Functional Simulator

Command-Line
Input

Tcl Simulated Simulator
Interpreter Machine Tools

systemsim%

Simulator Tool commands: Commands
to set up and use the simulator’s data

Component Configuration Commands: collection and analysis utilities.

Commands to display or modify configu-
rations of a machine or configuration
object in the simulation.

After the simulator is started, commands can be entered at the simulator command line or through simulation
Tcl scripts. Figure 1-2 on page 25 illustrates the simulator command line and the simulated Linux® console
that is launched from the simulator when one of the scripts found in the run/p10/linux directory is executed;
for example, by the run/p10/power10 script.

Introduction Version 1.2

Page 24 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

Figure 1-2. Linux Boot of the Power10 Functional Simulator with Console Display

DefaultConsole

* Documentation: https:d/help,ubuntu,com
* Hanagement.: https:/#landscape,canonical ,com
* Support: https:/Aubuntu, comsadvantage

The programz included with the Debian GHUALinux system are free software:
the exact distribution termz for each program are described in the
individual files in Ausr/share/doc/*/copyright,

Debian GHUALinux comes with ABSOLUTELY MO WARRANTY. to the extent
permitted by applicable law,

rootBubuntulB0dmanbo:“# cat Aproc/cpuinfo

proceszor 10

cpu + POWERLD, altivec supported

clock 1 512, 000000MHz

revision + 1,0 (pur 0080 O100)

timebaze T B12000000

platform + Powerhy

model + Mambo,Simulated-System

machine + PowerMY Mambo,Simulated-System
firmare 1 OPAL

iU Radix

root@ubuntu1804m;mbo:”# 1

1.2 Managing a Simulated Machine

Commands to set up and start a simulated machine can be entered at the simulator command line or through
a Tcl configuration and start-up file that is loaded when the simulator starts. Each installation provides a
default lib/p10/systemsim.tcl file that specifies a general set of commands to initialize the base simulation
configurations and environment settings, create a local version of the simulator, and load and initialize one or
more disk images. At startup, the Power10 Functional Simulator interprets instructions in lib/p10/systemsim.tcl
to set up default simulation behavior. Alternatively, a custom Tcl file is commonly used to start up and
configure the simulation environment.

Version 1.2 Introduction
27 October 2022 Page 25 of 115

Command Reference

Power10 Functional Simulator

1.3 Overview of Command Structure and Syntax

Commands are organized into a hierarchy of operations based on the command function. At the top level,
commands perform general sets of operations in the simulation environment, such as:

» Defining and displaying machine properties and system configurations
* Modifying configurable parameters

¢ Managing the simulation environment
The following command notation illustrates the general syntax structure of the simulator commands:
object [action] [{parameterl . . parametern} [options]]

where:

e objectis the entity on which the command action is performed. There are three types of objects to con-
sider when specifying a command:

— Simulator. Most commands are available to perform an action on the simulator itself. In this case, the
simulator is the implied object of a command. It is not, therefore, explicitly stated in the command syn-
tax. For example, the quit command simply exits the simulation environment and returns to the host
command line. Likewise, the version list command determines and displays version and build infor-
mation for the simulator.

— Machine or configuration objects. After a machine configuration is created or a machine is instanti-
ated, simulator commands can be used to manage these objects. For example, a system parameter
can be reconfigured only after a configuration object, for example myconf, is created. Once the
object is created, the config command is used to modify a setting in this configuration object. Config-
uration options might be limited for certain model builds.

— Utility objects. The Power10 Functional Simulator includes utilities for data collection and perfor-
mance analysis that are called through commands, in which the utility is the object of the command.
For example, the simdebug command allows you to list, set, and see status of which function-spe-
cific debug messages are enabled.

* action defines the type of operation that the command is performing on an object. Extending the quit
command described earlier, quit stops the simulator and returns to the main shell. Likewise, the display
command lists information about the simulation.

e parameter1 .. parametern specifies required input parameters. For example, the display command is a
simulator command that can be used on a created machine configuration. To show the memory map of a
created machine configuration named mysim, use the following command:

mysim display memorymap

* options lists arguments that modify the action that is performed on the object. Extending the previous
simdebug example, you can list what debug message options are available and determine if they are
active (1) or not (0) by executing the following command:

simdebug 1list

Introduction Version 1.2
Page 26 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

1.4 Using the Command Pages

Commands are arranged alphabetically. Figure 1-3 on page 27 shows a sample syntax page that illustrates
the format and general contents of command pages provided in this reference guide.

Figure 1-3. Sample Command Page Content and Format

a short summary of the type of operation that is
performed.

Tcl Syntax specifies the grammar of a com-
mand. The syntactic structure includes any
input arguments.

The fmaching] stepp command advances the simulator by a specified num ber of instructions,

The command name at the top is followed by { 347 {machine} step

2471 Tel Syntax

wachine step rumber_of steps

2.47.2 Description
Description provides more detailed informa-
tion about how a command or command class
is used in the simulation environment.

Jetepr command advances the simulated machine by a specified number of instructions.
s used for quickly forwarding the simulator to a specific point in the simu-
Wne tick commands are more commonly used to acvance the system.

Arguments describe the parameters that are
passed with the command.

number_of_steps Specifies the number of instructions to advance the machine.
Examples provides sample code to show how 3.47.4 Exam ples
the command is called. If applicable, it displays
corresponding output that is generated by the
executed sample command sequence.

Advance the simulator by 10000 steps:
mysim step 10000

. 2.47.5 Related Com mands
Related Commands lists other commands

that are relevant to the operation.

+ {machine} cycleon page 73
+ {machine} tick on page 108

|
|
{
{

1.5 Accessing Help for Commands

At any time, users can type the help command at the command line to retrieve a list of command choices that
are available from that point in the syntax statement. In most cases, you can also just type a partial command
sequence and press return. For example, at the top level, help displays a list of top-level commands. An
arrow indicates that a subsequent level of command functionality is available for this command.

Version 1.2 Introduction
27 October 2022 Page 27 of 115

Command Reference

Power10 Functional Simulator

1.6 Top-Level Simulator Commands

Table 1-1 summarizes the functionality of selected top-level commands that are used to define, modify, and
use the simulator. In the remainder of this chapter, command pages provide the complete command-line
syntax and usage of each command or class of commands.

Table 1-1. Power10 Functional Simulator Top-Level Commands

Command Command Summary
alias Assigns a user-specified personal shorthand for a command string. The alias command allows
users to call a small, more familiar command or name to execute long or complex command
strings.
define Defines settings for a configuration object. The define command also provides that ability to

duplicate configurations from a predefined machine type, instantiate a machine based on a
configuration object, and enumerate a list of machines that are active in the simulation.

display Displays system-wide information about configurations, machines, instruction settings, and
warning levels. The display command is especially useful to determine properties that are
configured for machines that are currently available in a simulation.

help or helprecursive Displays a listing of simulator commands. The helprecursive command displays a compre-
hensive command tree that hierarchically lists syntax and input parameters for all available
commands.

modify Modifies configurable simulation settings or parameters. The modify command is useful for

changing various run-time parameters, such as the interval at which instructions are executed,
the checkpoint type, latency cycles, or the warning level that is set for the simulation environ-

ment.
quit Ends the current simulation and exits to the operating system command line.
simdebug Provides low-level tracing capabilities that are useful for debugging functionality or perfor-

mance issues in the simulated system.

simstop Stops the simulation and waits for an instruction at the simulator command line. The simstop
stop command stops the simulation, and the “simulation stopped (USER)” message is dis-
played. The simstop status command can be used in a tcl script to determine if the simulation
has been stopped.

version Displays the version number of simulation system components, the date and timestamp of the
installed simulator build, and compile-time flags that are enabled in the build.

Introduction Version 1.2
Page 28 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

1.7 alias

The alias command enables users to call a small, more familiar command or name to execute long or
complex command strings

1.7.1 Tcl Syntax

alias create alias_name cmdstring
alias create_unique cmdstring
alias delete alias_name

alias list

1.7.2 Description

The alias command assigns a user-specified shorthand for a command string. The alias command enables
users to call a small, more familiar command or name to execute long or complex command strings.

alias create Associates user-specified shorthand with a command string.

alias create_unique Enables you to create a unique alias for an existing command in the format AL_0,
AL_1, AL_2, and so on.

alias delete Deletes an alias that was previously associated with a command string.
alias list Generates a list of all the aliases and the command string that is associated with
each.

1.7.3 Arguments

alias_name Specifies the name of the alias that you are creating.
cmdstring Specifies the command string that you want to associate with the alias name.
Version 1.2 Introduction

27 October 2022 Page 29 of 115

Command Reference

Power10 Functional Simulator

1.7.4 Examples

1. Create an alias to display the contents of gpr8, instead of typing the entire command:

systemsim % mysim display gpr 8
0x0000000000000000

systemsim % alias create reg8 mysim display gpr 8
reg8

systemsim % reg8
0x0000000000000000

2. Create a unique alias:

systemsim % alias create_unique version
AL 0

systemsim % AL 0 1ist

Powerl0 Functional Simulator Version 1.0-0
Built: 15:10:21 Aug 1 2020

systemsim %

3. Generate a list of aliases:
systemsim % alias list

reg8 {mysim display gpr 8}
AL 0 {version}

Introduction
Page 30 of 115

Version 1.2
27 October 2022

Command Reference

Power10 Functional Simulator

1.8 define

The define command is used to define, configure, and instantiate a configuration object that is used to create
a machine for the simulation environment. The various forms of this command are described in detail in
Section 2 Defining, Configuring, and Instantiating a Machine on page 41.

For more information, see:
» Section 2.1 define config on page 42
e Section 2.2 define cpu on page 43
e Section 2.3 define dup on page 44
e Section 2.4 define list on page 45

e Section 2.5 define machine on page 46

Version 1.2 Introduction
27 October 2022 Page 31 of 115

Command Reference

Power10 Functional Simulator

1.9 display

The display command displays system-wide information about configurations, machines, instruction settings,
and warning levels.

1.9.1 Tcl Syntax

display
display
display
display
display
display
display
display
display
display
display
display

command_1line_config_options
command_1line_user_options
configures
default_configure
htm_status

kips

kips_dump_interval
machines

quiet_mode

regress_mode
standalone_mode

warning

1.9.2 Description

The display commands show the current value of specific or selected options.

display command line_config options Shows the command-line configuration options.

display command line user options Shows the command-line user options.

display configures Shows the existing, defined configurations available for use.

display default configure Shows the default configuration that is used if no other is specified.

display htm_status Shows the status of transactional memory (HTM).

display kips Shows the default instructions per second, in thousands (kips) for
this model.

display kips_dump_interval Shows a parameter that is not applicable for this model; do not alter
from the default value.

display machines Shows the machines that are currently defined.

display quiet_mode Shows the on or off status of quiet mode.

display regress_mode Shows the on or off status of regress mode.

display standalone_mode Shows the on or off status of standalone mode.

display warning Shows the current warning level.

Introduction Version 1.2

Page 32 of 115

27 October 2022

1.9.3 Examples

1. Display the current warning level:
systemsim % display warning
The following output is displayed:

Warning level is 3

2. Display the status of quiet mode:
systemsim % display quiet_mode
The following output is displayed:

of f

Version 1.2
27 October 2022

Command Reference

Power10 Functional Simulator

Introduction
Page 33 of 115

Command Reference

Power10 Functional Simulator

1.10 help or helprecursive

The help and helprecursive commands provide a built-in help function.

1.10.1 Tcl Syntax

help
helprecursive

1.10.2 Description

The help and helprecursive commands provide context-sensitive help.

help When entered at the command-line prompt, help provides top-level help. That is, it
displays a list of the next level of commands. Commands that are followed by an
arrow (->) symbol are commands that helprecursive can expand further.

When entered after a simulator command, help provides hints about how to
correctly form that command. That is, it indicates that correct syntax for the
command.

helprecursive When entered after a simulator command, helprecursive provides a list of all the
commands and subcommands available for a particular command. To see all
commands and subcommands available for mysim, type

mysim helprecursive

1.10.3 Examples

mysim thread help:: Available Commands
config_on
dtranslate
itranslate
setargs [args Tist]
stall
start_thread {PC_address}
step {number of instructions}
stop_thread
cpu {cpu-number} ->
display ->
interrupt ->
Toad ->
mcm {mcm-number} ->
memory ->
osinfo ->
set ->
thread {thread-number} ->
util ->

Introduction Version 1.2
Page 34 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

1.11 quit

The quit command ends the current simulation and exits to the operating-system command line.

1.11.1 Tcl Syntax

quit

1.11.2 Description

The quit command exits the simulator.

1.11.3 Examples

quit

Version 1.2 Introduction
27 October 2022 Page 35 of 115

Command Reference

Power10 Functional Simulator

1.12 simdebug

The simdebug command provides low-level tracing capabilities that are useful for debugging functionality or
performance issues in the simulated system.

1.12.1 Tcl Syntax

simdebug 1list

simdebug set name value

simdebug status name

simdebug filter {mcm} value {processor} value {thread} value
simdebug flight-recorder dump

simdebug turbo_kips reset

1.12.2 Description

The simdebug command controls the debug output generated by the simulator or lists the various debug
types and their output configuration. A one indicates on or enabled; a zero indicates off or disabled.

1.12.3 Arguments

name Name of the output control parameter you are modifying.

value Either 1 (enabled/on) or 0 (disabled/off).

mem Multi-chip module number.

processor Processor number.

thread Thread ID.

reset Reset turbo-kips statistics

Introduction Version 1.2

Page 36 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

1.12.4 Examples

systemsim % simdebug Tist
BRANCH 0

DCACHE 0

HELPFUL 1

MEM_REFS 0

PHB 0

PHB_REG_SUPPORT 0

systemsim % simdebug set mem_ref 1
MEM_REFS =1

systemsim % mysim step 5

DEBUG: 19084631: (36107284): MEM REFS : thread 0: I/0x000000003001A0C8/0x000000003001A0C8
w=0x0 s=4 v=0x0000000041820018 e=1

DEBUG: 19084632: (36107285): MEM_REFS : thread 0: I/0x000000003001A0CC/0x000000003001A0CC
w=0x0 s=4 v=0x000000007D23F851 e=1

DEBUG: 19084633: (36107286): MEM REFS : thread 0: I/0x000000003001A0D0/0x000000003001A0D0
w=0x0 s=4 v=0x0000000041810010 e=1

DEBUG: 19084634: (36107287): MEM_REFS : thread 0: I/0x000000003001A0E0/0x000000003001A0EQ
w=0x0 s=4 v=0x000000003D22002E e=1

DEBUG: 19084635: (36107288): MEM REFS : thread 0: I/0x000000003001A0E4/0x000000003001A0E4
w=0x0 s=4 v=0x000000008929D1D8 e=1

DEBUG: 19084635: (36107288): MEM_REFS : thread 0: R/0x00000000304036D8/0x00000000304036D8
w=0x0 s=1 v=0x0000000000000000 e=1

19084635: ** finished running 36107289 instructions **

5

Version 1.2 Introduction
27 October 2022 Page 37 of 115

Command Reference

Power10 Functional Simulator

1.13 simstop

The simstop command stops the simulation and waits for an instruction at the simulator command line. The
simstop command performs the same operation as typing CTRL+C to interrupt the simulation.

1.13.1 Tcl Syntax

simstop status

simstop stop

1.13.2 Description

The simstop command can be executed from a Tcl script to cause the simulation to stop. The simulation can
then be restarted from the simulator command line. This allows users to run a script to a certain point, then do
manual command execution.

1.13.3 Examples
puts "console line: $triginfo(linenum): string trim $triginfo(line) "\r\n"]"

puts "Stopping"
simstop

Introduction Version 1.2
Page 38 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

1.14 version

The version command displays the version number, timestamp, and repository details of simulation system

components and build.

1.14.1 Tcl Syntax

version list

version repo

1.14.2 Description

Displays the version number of simulation system components, the date and timestamp of the installed

simulator build, and the git repository details.

1.14.3 Examples

Display the version number of the simulation system components and the date and timestamps:
systemsim % version list

The following output is displayed:

POWER1IO Functional Simulator Version 1.2.0
Built: 07:59:46 Aug 17 2021

Display the version most recent commit, branch, date, and time:
systemsim % version repo

The following output is displayed:

GIT_SHA1=ed17d61816f7bcd0074d3e630f751ca31257d5ce
GIT_BRANCH=public-release-Tatest-pl0
GIT DATE=15Jun2021-11:07:04:EDT

Version 1.2 Introduction
27 October 2022 Page 39 of 115

Command Reference

Power10 Functional Simulator

Introduction Version 1.2
Page 40 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

2. Defining, Configuring, and Instantiating a Machine

This chapter describes commands that are used to define and configure a configuration object that is used to
create a machine for the simulation environment. Section 1 Introduction on page 23 presents concepts that
are helpful in understanding how to configure and use a simulated machine in the simulator environment.
Section 1.2 Managing a Simulated Machine on page 25 illustrates the process by which a configuration
object is defined, configured, and used to instantiate the simulated machine.

Version 1.2 Defining, Configuring, and Instantiating a Machine
27 October 2022 Page 41 of 115

Command Reference

Power10 Functional Simulator

2.1 define config

The define config command defines a new configuration object.

2.1.1 Tcl Syntax

define config new _configuration object

2.1.2 Description

The define config command creates a new configuration object. A configuration object is a named collection,
such as myconf, of machine properties that are used to instantiate a machine that is run in the simulator. The
define config command creates and populates a new configuration object with default properties that have
been defined for a machine type. Once an object is defined, the default properties can be reconfigured with
the {configuration_object} config command before the define machine command is used to instantiate a
machine object from this configuration.

2.1.3 Arguments

new_configuration object Specifies the name of the new configuration object.

2.1.4 Examples
define config myconf

where myconf is a configuration object that defines baseline settings for a machine that can be run in a
simulation.

2.1.5 Related Commands

* define cpu on page 43

e define dup on page 44

¢ define machine on page 46

e {configuration_object} display on page 48

Defining, Configuring, and Instantiating a Machine Version 1.2
Page 42 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

2.2 define cpu

The define cpu command defines a new CPU.

2.2.1 Tcl Syntax

define cpu config-name cpu-name

2.2.2 Description

The define cpu command defines a new CPU.

2.2.3 Arguments

config-name Specifies the name of the configuration object.

cpu-name The CPU name (cpu 0, cpu 1, and so on) you choose to associate with
your configuration.

2.2.4 Examples
define cpu myconf mycpu

where myconf is a configuration object that defines baseline settings for a machine (mycpu) that can be run
in a simulation.

2.2.5 Related Commands

e define config on page 42

¢ define dup on page 44

e define machine on page 46

e {configuration object} display on page 48

Version 1.2 Defining, Configuring, and Instantiating a Machine
27 October 2022 Page 43 of 115

Command Reference

Power10 Functional Simulator

2.3 define dup

The define dup command defines a duplicate configuration object based on an existing machine type.

2.3.1 Tcl Syntax

define dup existing configuration object new configuration object

2.3.2 Description

The define dup command duplicates a configuration object from an existing configuration. A configuration
object is a named collection, such as myconf, of machine properties that are used to instantiate a machine
that is run in the simulator. Although the define dup command provides similar functionality as the define
config command, unlike define config it requires an existing configuration object and cannot be used to
create a configuration object with different machine properties.

2.3.3 Arguments

existing configuration object Specifies the name of an existing configuration object that will be
duplicated.

new_configuration object Specifies the name of the duplicate configuration object to be created.

2.3.4 Examples

1. Define a myconf configuration object into which all properties and values of the pre-defined P10 configu-
ration object for the Power10 processor are duplicated. This myconf object can then be used to modify
one or more configurations and instantiate a custom Power10 machine based on the revised settings:

define dup P10 myconf

2. Define an anotherconf configuration object to duplicate the myconf configuration object created in
step 1:

define dup myconf anotherconf

2.3.5 Related Commands

define config on page 42

* define cpu on page 43

define machine on page 46

* {configuration_object} display on page 48

Defining, Configuring, and Instantiating a Machine Version 1.2
Page 44 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

2.4 define list

The define list command lists all machines that are active in a simulation.

2.4.1 Tcl Syntax

define list

2.4.2 Description

The define list command provides a list of machines that are active in the simulation environment.

2.4.3 Examples

Output the name of all existing machines that have been created from configurations. In the case where the
mysim and anothersim machines are defined, typing the define list command at the simulator prompt
displays the following output:

anothersim mysim

2.4.4 Related Commands

e define config on page 42
¢ define cpuon page 43

e define dup on page 44

* define machine on page 46

Version 1.2 Defining, Configuring, and Instantiating a Machine
27 October 2022 Page 45 of 115

Command Reference

Power10 Functional Simulator

2.5 define machine

The define machine command instantiates a machine from a configuration object.

2.5.1 Tcl Syntax

define machine configuration object name machine name

2.5.2 Description

The define machine command instantiates a machine that is used in a simulation. Multiple machines can be
created in the simulator based on a single configuration object.

2.5.3 Arguments

configuration _object name Specifies the name of an existing configuration object that will be
duplicated.
machine_name Specifies the name of the duplicate configuration object to be created.

2.5.4 Examples
Instantiate a mysim machine from the myconf configuration object:
define machine myconf mysim

Once created, the mysim machine can be run in a simulation to capture details about the functionality and
performance of this machine configuration.

2.5.5 Related Commands

e define config on page 42
e define cpu on page 43

e define dup on page 44

¢ define 1ist on page 45

Defining, Configuring, and Instantiating a Machine Version 1.2
Page 46 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

2.6 {configuration_object} config

The {configuration_object} config command assigns a value to a configuration property.

2.6.1 Tcl Syntax

configuration_object config property name property value

2.6.2 Description

The {configuration_object} config command assigns a new value to an existing property in a configuration
object.

2.6.3 Arguments

property name Specifies the name of an existing configuration property whose current
value is replaced with the specified value. See {configuration object}
display on page 48, which can be used to display a complete list of
properties.

property value Specifies the value that is assigned to the configuration property.

2.6.4 Examples

1. Reconfigure the default memory_size property in the myconf configuration object to be 4 GB:
myconf config memory size 4G

Note: For properties that specify a size parameter, such as memory_size, the actual size of the value
must be provided. For example, the sample code above sets the machine memory size to 4G, which the
simulator interprets as a scaled integer and sets the memory size to 4 gigabytes.

If the value 4 is specified, the memory size is set to 4 bytes.

2. Verify that the memory_size parameter for myconf has been modified:
myconf display memory_size
The following output is displayed:
myconf:

memory size = 4G (number of bytes of memory)

2.6.5 Related Commands

e {configuration_object} display on page 48
e define config on page 42

Version 1.2 Defining, Configuring, and Instantiating a Machine
27 October 2022 Page 47 of 115

Command Reference

Power10 Functional Simulator

2.7 {configuration_object} display

The {configuration object} display command displays a list of configuration properties.

2.7.1 Tcl Syntax

configuration object display $property name$

2.7.2 Description

The {configuration_object} display command outputs the name and value of all properties that correspond to
the specified search string for the given configuration object. If a property name is not specified, the entire list
of properties for the configuration object is displayed. A valid search string can include any sequence of char-
acters, based on which the simulator returns information about all properties that contain the given string.

2.7.3 Arguments

property_name (Optional) Specifies the name of an existing configuration property that is
displayed to standard output. If property_name is not specified, the entire
list of properties for the configuration object is displayed.

2.7.4 Examples

1. View all configuration properties containing the string, memory:
myconf display memory
The following output is displayed:

myconf:
memory size = 64M (number of bytes of memory)
memory_start = 0 (address of first byte of memory)

2. View all configuration properties containing the string, M:
myconf display M
The following output is displayed:

myconf:
htm/htm_os_supports_tm = FALSE (does the 0OS support TM operations)
machine_type = pl0 (type of machine: P9, P8, ...)
memory _size = 64M (number of bytes of memory)
memory start = 0 (address of first byte of memory)

2.7.5 Related Commands

e {configuration object} config on page 47

Defining, Configuring, and Instantiating a Machine Version 1.2
Page 48 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

2.8 {configuration_object} exit

The {configuration_object} exit command deletes a configuration object.

2.8.1 Tcl Syntax

configuration_object exit

2.8.2 Description

The {configuration_object} exit command removes the specified configuration object from the simulation
environment. The {configuration_object} exit command performs the same operation as the
{configuration_object} quit command.

2.8.3 Examples

1. Delete the tmpconf configuration object from the simulation environment:
tmpconf exit

Note: The {configuration_object} exit command permanently removes the object from the
system. Before removing a configuration object, ensure that you do not need the configurations specified
in this object.

2. Verify that the tmpconf object has been removed by listing all active configuration objects and machines
in the system:

display configures

2.8.4 Related Commands

* {configuration_object} display on page 48
* {configuration_object} quit on page 51

Version 1.2 Defining, Configuring, and Instantiating a Machine
27 October 2022 Page 49 of 115

Command Reference

Power10 Functional Simulator

2.9 {configuration_object} query

The {configuration_object} query command displays the value of a configuration object property.

2.9.1 Tcl Syntax

configuration_object query full property name

2.9.2 Description

The {configuration_object} query command returns the value of the specified property for the given configu-
ration object. Although the {configuration_object} display command provides similar functionality as {configu-
ration_object} query, the return value from {configuration_object} query is formatted such that it can be
conveniently used as input in a Tcl procedure.

2.9.3 Arguments

full_ property _name Specifies the complete name of an existing configuration property.

2.9.4 Examples

View the value assigned to the memory_size configuration property:
myconf query memory_size

The following output is displayed:
64M

Alternatively, using the {configuration_object} display command to view memory size results in the
following output:

myconf:

memory size = 64M (number of bytes of memory)

2.9.5 Related Commands
e {configuration_object} display on page 48

Defining, Configuring, and Instantiating a Machine Version 1.2
Page 50 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

2.10 {configuration_object} quit

The {configuration_object} quit command deletes a configuration object.

2.10.1 Tcl Syntax

configuration_object quit

2.10.2 Description

The {configuration_object} quit command removes the specified configuration object from the simulation envi-
ronment. The {configuration_object} quit command performs the same operation as the {configuration_ob-
ject} exit command.

2.10.3 Examples

1. Delete the tmpconf configuration object from the simulation environment:
tmpconf quit

Note: The {configuration_object} quit command permanently removes the object from the system.
Before removing a configuration object, ensure that you do not need the configurations specified in this
object.

2. Verify that the tmpconf object has been removed by listing all active configuration objects and machines
in the system:

display configures

2.10.4 Related Commands

* {configuration_object} display on page 48
* {configuration object} exit on page 49

Version 1.2 Defining, Configuring, and Instantiating a Machine
27 October 2022 Page 51 of 115

Command Reference

Power10 Functional Simulator

Defining, Configuring, and Instantiating a Machine Version 1.2
Page 52 of 115 27 October 2022

Command Reference
Power10 Functional Simulator
3. Configuring and Modifying Machine Properties

This chapter describes commands that are used to configure and modify machine properties in the simulation
environment.

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 53 of 115

Command Reference

Power10 Functional Simulator

3.1 {machine} bogus net cleanup

The {machine} bogus net cleanup command removes a bogus network device connection from the system.

3.1.1 Tcl Syntax

machine bogus net cleanup

3.1.2 Description

Bogus net support provides a high-performance call-through interface to simulate Ethernet connectivity
between a simulated Ethernet adapter and the Ethernet adapters that reside on the host system. The
{machine} bogus net cleanup command extends functionality provided by {machine} bogus net by cleaning
up all references to virtual net devices that have been initialized and are in use in the simulation. Although the
bogus net init command integrates this functionality into its exit routines, issuing the {machine} bogus net
cleanup command before exiting a simulation ensures that simulated network device closure is done
correctly.

3.1.3 Examples

Issue the {machine} bogus net cleanup command to correctly close the network devices configured in the
system:

mysim bogus net cleanup
The simulator prints a confirmation message:

ok

3.1.4 Related Commands

e {machine} bogus net init on page 55

Configuring and Modifying Machine Properties Version 1.2
Page 54 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.2 {machine} bogus net init

The {machine} bogus net init command loads and initializes a virtual Ethernet device.

3.2.1 Tcl Syntax

machine bogus net init devicenum MACaddr socket file IRQ IRQ offset

3.2.2 Description

The {machine} bogus net init command supports a call-through interface to an Ethernet network. This inter-
face is provided through an emulated Ethernet device (mambonet0) and a separate utility that interfaces with
a network device on the host system.

3.2.2.1 Extended Description of Bogus Network Support

There are three key components to bogus network communications:

1. A facility on the host system that provides systemsim-p10 with a path to the network. The TUN/TAP sup-
port available for Linux is a good choice for this component. TUN/TAP is assumed in the remainder of this
description.

2. The systemsim-p10 support for the bogus network. This support is not enabled by default. Simulator
commands are used to enable the bogus network support.

3. An operating system (OS) kernel with a bogus network driver.

3.2.2.2 Setting up TUN/TAP on the Host System

You must have root privileges on your system to set up bogus network operation. Execute the following
commands:

sudo tunctl -u $USER -t tap0
sudo ifconfig tap0 172.19.98.108 netmask 255.255.255.254

3.2.2.3 Configuring systemsim-p10 Support for the Bogus Network

To enable bogus network support, issue simulator commands that configure and initialize the bogus network.
These commands must be issued before booting the Linux kernel on the simulator so that Linux recognizes
the bogus network device during its boot process. The general form of the command to initialize the bogus
network is:

mysim bogus net init 0 <mac address> <interface name> <irg>

The <mac address> parameter is the media access control (MAC) hardware address that you want the
emulated Ethernet to use. It must be unique on your network (that is, not used by any other emulated hosts or
by any host network adapter). The <interface name> parameter is the name of the interface to be used, typi-
cally “tap0.” The <irg> parameter specifies the interrupt request queue ID to be used by the bogus network
device; use 0 0 for the Power10 Functional Simulator.

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 55 of 115

Command Reference

Power10 Functional Simulator

3.2.3 Arguments

devicenum Specifies a device number (starting at 0) that correlates to a device in Linux.

MACaddr Specifies the MAC hardware address that the emulated Ethernet will use. This must
be a unique address on the network (that is, one that is not used by any other
emulated hosts or by any host network adapter).

interface name The interface name parameter is the name of the interface to be used, typically
“tapo_”

IRQ and IRQ offset The IRQ and IRQ_offset parameters specify the interrupt request queue ID to be
used by the bogus network device; use 0 0 for the Power10 Functional Simulator.

3.2.4 Examples

The following {machine} bogus net init command initializes the simulated eth0 network device using the
d0:d0:d0:da:da:da MAC address and the tap0 interface:

mysim bogus net init 0 d0:d0:d0:da:da:da tap0 0 0

3.2.5 Related Commands

¢ {machine} bogus net cleanup on page 54

Configuring and Modifying Machine Properties Version 1.2
Page 56 of 115 27 October 2022

Media access control

Command Reference

Power10 Functional Simulator

3.3 {machine} bogushalt

The {machine} bogushalt command is used to configure the simulator’'s behavior when it encounters the
special bogushalt instruction.

3.3.1 Tcl Syntax

machine bogushalt delay delay in_ticks
machine bogushalt disable
machine bogushalt display
machine bogushalt enable

3.3.2 Description

The {machine} bogushalt command can be used to configure the simulator's behavior when it executes a
bogushalt instruction. bogushalt can be used to simulate a simple halt Power instruction. With Power10's
support of the stop instruction this is mostly of historical significance. The following subcommands are avail-
able in the {machine} bogushalt set of commands:

{machine} delay {integer} Specifies the number of ticks the simulator will delay.
{machine} disable Disables {machine} bogushalt support.

{machine} display Print the current status of {machine} bogushalt support.
{machine} enable Enables machine} bogushalt support.

3.3.3 Arguments

delay_in_ticks Specifies an integer amount for the number of ticks that the simulator will delay
processing instructions.
3.3.4 Examples
Set the bogushalt delay to be 2,000 ticks:
mysim bogushalt delay 2000
The following output is displayed:

Bogus halt delay is set to 2000 ticks

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 57 of 115

Command Reference

Power10 Functional Simulator

3.4 {machine} pmem

The {machine} pmem command sets up the persistent memory’s region, size, and attributes.

3.4.1 Tcl Syntax

machine pmem $pmem _start $pmem _size $pmem file $pmem _mode

3.4.2 Description
Persistent memory (pmem) disk support is included in the Power10 Linux Kernel and Skiboot packages.
From Skiboot, disks can be added by setting this ENV variable:
PMEM_DISK="/mydisks/diskl.img,/mydisks/disk2.img"
From Linux, these will show up as:
/dev/pmem0 and /dev/pmeml.
The "of_pmem.c" driver in Linux is a requirement and has been available since v4.17.

It is enabled with "powernv_defconfig + CONFIG_OF PMEM".

3.4.3 Arguments

pmem_start Specifies the pmem starting address.
pmem Ssize Specifies the pmem size.

pmem_file Specifies the pmem file name.
pmem_mode Specifies the pmem attributes.

3.4.4 Examples

The simulator's skiboot device tree sets the pmem region, size, and attributes in p10-devtree-skiboot. tcl
and can be altered by the user if desired.

For example,
mysim memory mmap $pmem start $pmem size $pmem file $pmem mode

To initialize the pmem area for simulator read/write usage, the following commands must be issued before
booting the Linux kernel on the simulator so that Linux recognizes the pmem device during its boot process.

The general commands are:

mconfig Tinux_cmdline LINUX_CMDLINE "rw raid=noautodetect panic_timeout=-1 root=/dev/pmem0
root=/dev/pmem0"
mconfig pmem disk PMEM DISK disk.img

This example is illustrated in the Linux boot script, boot-1inux-Te-skiboot-pl0.tc1, contained in the public
simulator release.

Configuring and Modifying Machine Properties Version 1.2
Page 58 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.5 {machine} config_on

The {machine} config_on command starts the processor component.

3.5.1 Tcl Syntax

machine config_on

3.5.2 Description

The {machine} config_on command performs the same operation as the {machine} cpu 0 config_on
command (see Section 3.13 {machine} cpu on page 68) to control the state of the default processor (CPU 0).
In hardware, this operation is generally implemented by moving a mode bit in the processor's Machine State
Register (MSR).

When a machine is created in the simulator, the processor is set to off by default. In a typical environment, the
processor is turned on as a side effect of loading the machine, which initializes the machine state. The
{machine} config_on command is necessary only when the machine state is not defined by any initial
processing.
3.5.3 Examples
In a machine with a single processor, start the processor:

mysim config_on

The following message is displayed to confirm that the processor is started:

CPU 0 set running

3.5.4 Related Commands

e {machine} cpu on page 68
e {machine} stall on page 103

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 59 of 115

Command Reference

Power10 Functional Simulator

3.6 {machine} console create

The {machine} console create command defines the source (or sink) of characters for the simulation
console.

3.6.1 Tcl Syntax

machine console create console_id in|inout|out file file_name
machine console create console_id in|inout|out listen port

machine console create console_id in|inout|out program program_name
machine console create console id in|inout|out socket host:port
machine console create console_id in|inout|out string input_string

3.6.2 Description

The {machine} console create command feeds characters from the specified source into the simulation and
vice versa. The simulated machine is designed to accept input from the user, which normally is typed directly
into the simulator console window. However, in the case of predefined scripts, the input can be obtained from
additional sources, such as text files or programs. The input characters are copied to the simulation as if they
are typed into the console interface. The simulation environment provides different {machine} console create
commands, each of which defines the source (or sink) of the characters for the console. These command
options are listed in the Arguments section.

3.6.3 Arguments

console_id Specifies a user-defined console name. This identifier is a unique name associated
with a console. The console_id enables the console that is being created to be iden-
tified in a list and is used with other console-related commands, such as enabling,
disabling, or deleting a console.

in|inout|out Specifies whether the console will be used for input (in), output (out), or input and
output (inout). Input consoles provide characters that are given to the machine, and
output consoles display any characters that the computer generates.

file filename Indicates that the specified file is used to read input or record output results, or both.

listen port Indicates that the simulator will create the specified port and then listen for another
program to attach to this port.

program prog_name Indicates that characters will be sent to or from a specified program. For example, an
Xterm window is an instance of the program option, because it is normally the
display for the machine console. When the program option is used, communication
occurs over pseudo-terminals. The pseudo-TTYS provide interfaces to receive
nonblocking input as well as to send terminal control characters.

socket host:port Indicates that the simulator will attempt to connect to the named host and port.

string input_string Indicates that the source input is given in the string command. Strings cannot be
used for output consoles.

Configuring and Modifying Machine Properties Version 1.2
Page 60 of 115 27 October 2022

Command Reference
Power10 Functional Simulator
3.6.4 Examples

The following sample lines of code are added in the systemsim.tcl configuration and startup file to manage
the simulation from the console window. The console callthru exit command (line 17) exits the Power10
Functional Simulator console. A simple GCC compile operation on source that is called from the host to the
simulated system (lines 22 — 25) is executed. The simulation is then started.

16: # exit console to start simulation
17: mysim console create input in string "callthru exit"

21: # invoke call-thrus to start instructions to compile C program
22: mysim console create input in string "callthru source hello.c >
hello.c"

23: mysim console create input in string "gcc -0 hello hello.c"

24: mysim console create input in string "./hello"

25: mysim console create input in string "callthru exit"

3.6.5 Related Commands

e {machine} console create on page 60
e {machine} console destroy on page 62

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 61 of 115

GNU Compiler Collection

Command Reference

Power10 Functional Simulator

3.7 {machine} console destroy

The {machine} console destroy command removes the specified console.

3.7.1 Tcl Syntax

machine console destroy console_id

3.7.2 Description
The {machine} console destroy command removes the specified console from its use in input and output,
and deletes all its supporting data structures. An EOF is generated for any output file or socket.

3.7.3 Arguments

console_id Specifies the name of the console to be removed.

3.7.4 Examples
The following sample command line removes the c0 console from the simulation:

mysim console destroy cO

3.7.5 Related Commands

e {machine} console create on page 60
e {machine} console disable on page 63
e {machine} console enable on page 65
e {machine} console 1list on page 66

Configuring and Modifying Machine Properties Version 1.2
Page 62 of 115 27 October 2022

End of file

Command Reference

Power10 Functional Simulator

3.8 {machine} console disable

The {machine} console disable command disables a simulation console.

3.8.1 Tcl Syntax

machine console disable console_id

3.8.2 Description

Once created, an input console can be disabled so that it cannot read input characters; likewise, a disabled
output console does not generate output characters from the machine. The {machine} console disable
command suspends the specified console from its use in input and output.

3.8.3 Arguments

console_id Specifies the name of the console to be disabled.

3.8.4 Examples
The following sample command line disables the cO console from the simulation:

mysim console disable c0

3.8.5 Related Commands

e {machine} console create on page 60
e {machine} console enable on page 65

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 63 of 115

Command Reference

Power10 Functional Simulator

3.9 {machine} console display buffered

The {machine} console display buffered command displays the status of console line buffering.

3.9.1 Tcl Syntax

machine console display buffered

3.9.2 Description

The {machine} console display buffered command displays whether or not line buffering is currently
enabled in the system. The simulator is able to buffer output until an end-of-line character (\n) is generated. If
two or more multichip modules (MCMs) are outputting to the same console, buffering allows the console lines
from the different MCMs to be separated. In contrast, if buffering is disabled, the characters output by the
various MCMs are interleaved by time.
3.9.3 Examples
The following command line displays whether buffering is enabled in the simulation environment:

mysim console display buffered

Displays the following output:

on

3.9.4 Related Commands

e {machine} console create on page 60
e {machine} console set display buffered on page 67

Configuring and Modifying Machine Properties Version 1.2
Page 64 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.10 {machine} console enable

The {machine} console enable command enables a simulation console.

3.10.1 Tcl Syntax

machine console enable console id

3.10.2 Description

An enabled input console provides input characters to the simulation; likewise, an enabled output console
accepts output characters from the machine. The {machine} console enable command renders the specified
console functional for input and output.

3.10.3 Arguments

console_id Specifies a name of the console to be enabled.

3.10.4 Examples
The following sample command line enables the c0 console in the simulation:

mysim console enable c0

3.10.5 Related Commands

e {machine} console create on page 60
e {machine} console disable on page 63

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 65 of 115

Command Reference

Power10 Functional Simulator

3.11 {machine} console list

The {machine} console list command lists information about currently defined consoles.

3.11.1 Tcl Syntax

machine console list

3.11.2 Description

The {machine} console list command lists all currently defined consoles by their respective console identi-
fiers. For each console, the command output indicates:

* Whether the console is enabled or disabled
* Whether it is used for inputting characters, outputting characters, or both
* The console type (file, listen, program, socket, or string)

* The parameters for the listed console

3.11.3 Examples

The following sample lines of code demonstrate command output that is generated when the following
{machine} console create commands are issued in a simulation:

mysim console create cO in program xterm

mysim console create cl in string "1s\nexit"

mysim console create outfile out file /tmp/saved_output
mysim console create input in string "callthru exit"

Once these consoles are created, enabled, and disabled, the {machine} console list command will display
the following output:

c0 :: DISABLE input program : xterm

cl :: ENABLE input string : Ts\nexit

outfile :: DISABLE output file :

/tmp/saved output input :: ENABLE input string :
callthru exit

3.11.4 Related Commands

e {machine} console create on page 60
e {machine} console destroy on page 62
e {machine} console disable on page 63
e {machine} console enable on page 65

Configuring and Modifying Machine Properties Version 1.2
Page 66 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.12 {machine} console set display buffered

The {machine} console set display buffered command turns the buffered display on or off.

3.12.1 Tcl Syntax

machine console set display buffered on | off

3.12.2 Description

The {machine} console set display buffered command turns on or off a display that indicates whether or not
line buffering is currently enabled in the system. The simulator is able to buffer output until an end-of-line
character (\n) is generated. If two or more multichip modules (MCMs) are outputting to the same console,
buffering allows the console lines from the different MCMs to be separated. In contrast, if buffering is
disabled, the characters output by the various MCMs are interleaved by time.

3.12.3 Arguments

on Turns the buffered display on.
off Turns the buffered display off.

3.12.4 Examples
1. The following command line turns the buffered display on:

mysim console set display buffered on
This command displays the following output:

on

2. The following command line turns the buffered display off:
mysim console set display buffered off
This command displays the following output:

of f

3.12.5 Related Commands

e {machine} console create on page 60
e {machine} console display buffered on page 64

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 67 of 115

Command Reference

Power10 Functional Simulator

3.13 {machine} cpu

The {machine} cpu command enables simulator commands to be called on the specified CPU.

3.13.1 Tcl Syntax

machine cpu cpu_number simulator _command

3.13.2 Description

The Power10 Functional Simulator is designed to simulate a system in which multiple, separate processors
are running on an MCM. The {machine} cpu command is a wrapper command that runs a subset of simulator
commands on the processor that is specified by cpu_number. To view a complete list of processor-related
commands, type {machine} cpu at the simulator command line.

For example, the {machine} cpu cpu_number memory fread command enables users to copy the specified
number of bytes from the specified input source into the given memory address.

3.13.3 Arguments

cpu_number Specifies the name of the processor on which the command operation (defined by
the simulator_command input) is performed.

simulator_command Specifies the command input that is run on the specified processor.

3.13.4 Examples
On CPU 0, read a specified number of bytes from a specified file to the specified location in memory:

mysim cpu 0 memory fread 0x100 1024 bootfile

3.13.5 Related Commands

e {machine} mcmon page 94
e {machine} thread on page 107

Configuring and Modifying Machine Properties Version 1.2
Page 68 of 115 27 October 2022

Multichip module

Command Reference

Power10 Functional Simulator

3.14 {machine} cycle

The {machine} cycle command advances the simulator by a specified number of cycles.

3.14.1 Tcl Syntax

machine cycle number of cycles

3.14.2 Description

The {machine} cycle command advances the simulated machine by a specified number of cycles. This
command is useful for quickly forwarding a simulation to a specific point at which relevant metrics can be
gathered for performance analysis and correlation.

3.14.3 Arguments

number_of cycles Specifies the number of cycles to advance the machine.

3.14.4 Examples

The following sample code illustrates example Tcl steps used to advance a simulation in fast mode to the
point at which the boot process is complete. At this time, the fast mode is turned off, the simulator is
advanced by a specified number of cycles, and a trace generator procedure is started to verify the flow of
logic or identify bottlenecks within an application:

run through boot instructions in turbo mode
mysim mode turbo

advance to specific point in the boot process
mysim cycle 160000000

now turn on simple mode and enable some simdebugs
mysim mode simple
simdebug set mem_refs 1

3.14.5 Related Commands

e {machine} step on page 105
e {machine} tick on page 108

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 69 of 115

Command Reference

Power10 Functional Simulator

3.15 {machine} display cycles

The {machine} display cycles command displays the current cycle count.

3.15.1 Tcl Syntax

machine display cycles

3.15.2 Description

The {machine} display cycles command displays the current cycle count. Output from this command is
easily captured and directly passed as input in Tcl scripts to track the number of cycles that an application or
process has run.
3.15.3 Examples
Display the cycle count after advancing the simulator 10 cycles with the {machine} cycle command:

mysim cycle 10

The simulator advances by the specified number of cycles, after which the {machine} display cycles
command can be used to view how many cycles have elapsed:

mysim display cycles
The simulator summarizes the count as follows:

10

3.15.4 Related Commands

e {machine} cycle on page 69

Configuring and Modifying Machine Properties Version 1.2
Page 70 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.16 {machine} display features

The {machine} display features command displays common features enabled in the simulation system.

3.16.1 Tcl Syntax

machine display features

3.16.2 Description

The {machine} display features command displays a summary of features that are enabled in the simulation
system. The following features are available:

FLOATING_POINT Indicates that floating-point instructions are enabled.

VMX Indicates that the VMX instruction set is supported.

VSX Indicates that the VSX instruction set is supported.

HTM Indicates that hardware transactional memory is supported.
RADIX_MMU Indicates that Radix address translation is supported.

3.16.3 Examples

Check which features are enabled for the mysim simulation machine:
mysim display features

The following features are displayed for this machine:

FLOATING_POINT VMX VSX HTM RADIX_MMU

3.16.4 Related Commands
e {machine} display fpr, fpr_as_fp, fprson page 72

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 71 of 115

Vector machine extensions

Command Reference

Power10 Functional Simulator

3.17 {machine} display fpr, fpr_as_fp, fprs

The {machine} display fpr, display fpr_as_fp, and display fprs commands display either the contents of a
specified floating-point register or the contents of all floating-point registers

3.17.1 Tcl Syntax

machine display fpr number
machine display fpr_as_fp number
machine display fprs

3.17.2 Description

The {machine} display fpr command displays the contents of the specified floating-point register in hexadec-
imal format. The display fprs command displays the contents of all the floating-point registers in hexadec-
imal format. The display fpr_as_fp command displays the contents of the specified floating-pint register in
scientific floating-point format. That is:

systemsim % mysim cpu 0:0 set fpr 0 0x44400000200
0x0000044400000200

0,

systemsim % mysim cpu 0:0 display fpr 0
0x0000044400000200

systemsim % mysim cpu 0:0 display fpr_as_fp 0
2.3172194E-311

3.17.3 Arguments

number Identifies the floating-point register whose contents are to be displayed.

3.17.4 Examples

1. Display the contents of FPR 1 as a hexadecimal number:
systemsim % mysim display fpr 1
The following content is displayed:

0x3FD8C076BB3180ED
2. Display the contents of FPR 1 in scientific floating-point format:
systemsim % mysim display fpr_as _fp 1
The following content is displayed:

0.38674706

Configuring and Modifying Machine Properties Version 1.2
Page 72 of 115 27 October 2022

3. Display the contents of all floating-point registers as hexadecimal numbers:

sy

The following content is displayed:

0

0O Nl WN =

o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

3.17.5 Rel

e {machine} display features on page 71
e {machine} display gpr, gprs on page 74

Version 1.2

[

stemsim % mysim display fprs

3fd0000000000000
3fd8c076bb3180ed
3fdf3326c8bebbde
0000000000000000
0000000000000000
0000000000000000
00000000100aa470
00000000100aa490
0000000000000000
0000000000000000
3fdf3326c8bebbde
bf899b26e8333640
3f8a9698c2914998
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

ated Commands

27 October 2022

Command Reference

Power10 Functional Simulator

Configuring and Modifying Machine Properties

Page 73 of 115

Command Reference

Power10 Functional Simulator

3.18 {machine} display gpr, gprs

The {machine} display gpr and display gprs commands display either the contents of a specified general-
purpose register (GPR) or the contents of all general-purpose registers. If you assigned an alias to a GPR,
you can use that alias in this command instead of the number of the register.

3.18.1 Tcl Syntax

machine display gpr number | value

machine display gprs

3.18.2 Description

The {machine} display gpr and display gprs commands display the contents of the specified general-

purpose register or the contents of all the general-purpose registers.

3.18.3 Arguments

number Identifies the general-purpose register whose contents are to be displayed.

value A previously assigned alias that identifies the general-purpose register whose
contents are to be displayed.

3.18.4 Examples
1. Display the contents of GPR 5:

systemsim % mysim display gpr 5
The following content is displayed:

0x0000000000005000

2. If you previously assigned the alias “count_reg” to GPR 5, you can also use the following command to
display the contents of GPR5:

systemsim % mysim display gpr count_reg
The following content is displayed:

0x0000000000005000

3. Display the contents of all general-purpose registers:
systemsim % mysim display gprs

The following content is displayed:
0 0000000000009 f8
1 0000000000021d80
2 00000000000280c8
3 000000000000002c
4 0000000000021df8
5 000000000000002c

Configuring and Modifying Machine Properties Version 1.2
Page 74 of 115 27 October 2022

6 0000000000031000
7 0000000000031000
8 0000000000030000
9 000000000000002c

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0000000000000000
0000000000000000
0000000000000000
0000000000055100
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000004540
0000000000000000
b000000130003002
0000000000004380
0000000000000200
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000021cf0

3.18.5 Related Commands

e {machine} display fpr, fpr_as_fp, fprs on page 72

Version 1.2

27 October 2022

Command Reference

Power10 Functional Simulator

Configuring and Modifying Machine Properties
Page 75 of 115

Command Reference

Power10 Functional Simulator

3.19 {machine} display instruction_count

The {machine} display instruction_count command displays the current instruction count.

3.19.1 Tcl Syntax

machine display instruction_count

3.19.2 Description

The {machine} display instruction_count displays the current instruction count. Output from this command
is easily captured and directly passed as input in Tcl scripts to track the number of instructions that an appli-
cation or process has run.

3.19.3 Examples

Display the instruction count after advancing the simulator 1000 cycles with the {machine} cycle command:

mysim cycle 1000

The simulator advances by the specified number of cycles, after which the {machine} display
instruction_count command can be used to view how many instructions have elapsed:

mysim display instruction_count
The simulator displays the count as follows:

1001

3.19.4 Related Commands

e {machine} cycle on page 69
e {machine} display cycles on page 70

Configuring and Modifying Machine Properties Version 1.2
Page 76 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.20 {machine} display memory_size

The {machine} display memory_size command returns the memory size used for the current configuration.

3.20.1 Tcl Syntax

machine display memory_size

3.20.2 Description
The {machine} display memory_size command returns the memory size used for the current configuration.
The default size is 0x0000000040000000.
3.20.3 Examples
Display the memory size:
mysim display memory size
The simulator returns the size as follows:

0x0000000040000000 #This equates to 1 GB of memory

3.20.4 Related Commands

e {machine} display cycles on page 70

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 77 of 115

Command Reference

Power10 Functional Simulator

3.21 {machine} display memorymap

The {machine} display memorymap command displays information about the memory map
configuration.

3.21.1 Tcl Syntax

machine display memorymap ?format_type?

3.21.2 Description

The {machine} display memorymap command displays a memory map that contains information about the
start and end addresses for the memory, ROM, and PIC components.

3.21.3 Arguments

format_type (Optional) Specifies the format type for listing memory map information. The
following format_type options are available:

active: Generates command output in tabular format where information
about the start and end addresses for memory, ROM, and PIC
resources is listed. If a format_type is not specified with the
command, the active option is the default display type.

listformat: Presents the command output in a format that can be easily
captured and directly passed as input in Tcl scripts.

3.21.4 Examples
1. View a memory map for the simulation in the default format:

mysim display memorymap

The simulator displays the mapping, as follows:

NAME : MEMORY START: 0x0000000000000000 END:0x0000000003FFFFFF
NAME: ROM START: 0x00000000F0000000 END:0x00000000F000007F
NAME PIC START: 0x00000000FFC0O0000 END:0x00000000FFC3FFFF

2. View a memory map for the simulation in list format:
mysim display memorymap listformat
The simulator displays the mapping, as follows:

{NAME {MEMORY} START 0x0000000000000000 END 0x0000000003FFFFFF} { {ROM} START
0x00000000F0000000 END 0x00000000F000007F} { {PIC} START 0x00000000FFC00000 END
0x00000000FFC3FFFF}

3.21.5 Related Commands

e {machine} memory display on page 95

Configuring and Modifying Machine Properties Version 1.2
Page 78 of 115 27 October 2022

Read-only memory

Programmable interrupt controller

Command Reference

Power10 Functional Simulator

3.22 {machine} display nfpr, ngpr, mode, name

The {machine} display nfpr, display ngpr, display mode, and display nhame commands are useful for tcl
control scripts. The information returned contains the number of floating-point (nfpr) or general-purpose
(ngpr) registers in the model, what mode (simple or turbo), and what name is in use for the configured
machine.

3.22.1 Tcl Syntax

machine display nfpr
machine display ngpr
machine display mode
machine display name

3.22.2 Description

The {machine} display nfpr command displays the number of floating-point registers. The display ngpr
command displays the number of general-purpose registers. The display mode command indicates wheter
the configured machine is operating in the simple or turbo mode. The display hame command indicates what
name is used for the configured machine.

3.22.3 Examples

1. Display the number of floating-point registers:
systemsim % mysim display nfpr
The following content is displayed:

32

2. Display the number of general-purpose registers:
systemsim % mysim display ngpr
The following content is displayed:

32

3. Display the mode of the configured machine:
systemsim % mysim display mode
The following content is displayed:

Simulator is in mode SIMPLE

4. Display the name of the configured machine:
systemsim % mysim display name
The following content is displayed:

machine name is mysim

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 79 of 115

Command Reference

Power10 Functional Simulator

3.22.4 Related Commands

e {machine} display slb, spr, tm, vmx, vmxr, vsxr on page 82

Configuring and Modifying Machine Properties Version 1.2
Page 80 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.23 {machine} display number_of MCMs

The {machine} display number_of_MCMs command displays the number of MCMs in the system.

3.23.1 Tcl Syntax

machine display number_of MCMs

3.23.2 Description
The {machine} display number_of MCMs command displays an integer that represents the number of
MCMs that are currently configured in the simulation. The output of this command can be easily captured and
directly passed as input in Tcl scripts.
3.23.3 Examples
Display the number of MCMs in the simulation system:
mysim display number_of_MCMs
The following output is displayed:

1

3.23.4 Related Commands

e {machine} display memorymap on page 78

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 81 of 115

Command Reference

Power10 Functional Simulator

3.24 {machine} display slb, spr, tm, vmx, vmxr, vsxr

The display slb, display spr, display vmx, display vmxr, and display vsxr commands can be used to
display segment-lookaside buffer (slb) translations, special purpose register (spr) values, and vector regis-
ters. For vector registers, you can display the information in vector format; you must specify the register
number and the number of bytes per vector. You can also display vector registers in the full 128-bit register
format.

3.24.1 Tcl Syntax

machine display slb number | valid | all
machine display spr name | list | values
machine display vmx reg-num size
machine display vmxr reg-num
machine display vsxr reg-num

3.24.2 Description
The {machine} display slb, display spr, display vmx, display vmxr, and display vsxr commands display
the contents of the specified slb, spr, vector registers, and vector scaler registers.

3.24.3 Arguments

number Identifies the SLB register whose contents are to be displayed.

valid Indicates that only SLB entires that contain valid virtual-to-effective address
mappings are to be displayed. An SLB entry is valid if the V bit is set.

all Indicates that all the SLB registers are to be displayed.
name Specifies the name of the SPR whose contents are to be displayed.
list Requests a list of the names of all the SPRs supported in the model. Note that there

are over 1,000 SPRs for the Power10 model.

values Requests a list of every SPR supported in the model and the current contents of
each SPR.

reg-num Specifies the register number of the vector register.

size Specifies the number of bytes per vector.

Configuring and Modifying Machine Properties Version 1.2

Page 82 of 115 27 October 2022

3.24.4 Examples

1. Display the contents of every valid SLB register.

systemsim %

mysim display s1b valid

The following content is displayed:

#
0
1
9

19

20

21

22

23

VSID
0x0000408F92C94000
0x0000F09B89AF5000
0x000050B3777B9000
0x0000B986C02FD000
0x0000C4BE37E92000
0x0000BC8479B69000
0x0000BA462E918000
0x0000272901DA2000

ESID
0xC000000000000000
0xD000000000000000
0xF000000000000000
0x0000000000000000
0x00000000F0000000
0x0000000040000000
0x0000000010000000
0x00000FFFF0000000

2. Display the SPR named “pc.”

systemsim %

[

mysim display spr pc

The following content is displayed:

0x0000000000000100

3. Display VMX vector register 0 in vector format. There are 8 bytes per register.

systemsim %

0,

mysim display vmx 0 8

The following content is displayed:

0x0000000000004500, 0x0000000000987600
4. Display VMX vector register 0 in the full 128-bit format.

systemsim %

mysim display vmxr 0

The following content is displayed:

0x00000000000045000000000000987600
5. Display VSX vector register 2.

systemsim %

0

mysim display vsxr 2

The following content is displayed:

0x00000000000000000345600001000000

3.24.5 Related Commands
e {machine} display gpr, gprs on page 74

Version 1.2

27 October 2022

~
(%]

== === O OO

~
p=]

T T (T I W S

O OO OO OoOCoOoo=

O O O OO OO I

_ _ _m R, RO 0000O

= <

o

OO O OO oOocoor-
O OO OO OO oO wW

Command Reference

Power10 Functional Simulator

Configuring and Modifying Machine Properties

Page 83 of 115

Command Reference

Power10 Functional Simulator

3.25 {machine} dtranslate

The {machine} dtranslate command translates addresses for data loads and stores.

3.25.1 Tcl Syntax

machine dtranslate address

3.25.2 Description

The {machine} dtranslate command translates an effective address to a real address for data loads and
stores. This command is only useful if address translation is active. In addition, the value used as the address
argument must be a valid EA.

3.25.3 Arguments

address Specifies the address to be translated.

3.25.4 Examples

The following {machine} dtranslate command translates the 0x00003FFFC2D476E0 effective address to the
corresponding real address:

mysim dtransTlate 0x00003FFFC2D476E0Q
The simulator displays the following result for this translation:

0x000000006EFE76E0

3.25.5 Related Commands

e {machine} itranslate on page 89

Configuring and Modifying Machine Properties Version 1.2
Page 84 of 115 27 October 2022

Effective address

Command Reference

Power10 Functional Simulator

3.26 {machine} exit

The {machine} exit command removes a machine from the simulation environment.

3.26.1 Tcl Syntax

machine exit

3.26.2 Description

The {machine} exit command permanently removes the specified simulation machine from the simulation
environment and returns to the systemsim % command-line prompt. The {machine} exit command performs
the same operation as the {machine} quit command. The define machine command can be used to create a
new simulation machine.

3.26.3 Examples

Remove the mysim machine from the simulation environment:

mysim exit

3.26.4 Related Commands

¢ define machine on page 46
e {machine} quit on page 101

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 85 of 115

Command Reference

Power10 Functional Simulator

3.27 {machine} go

The {machine} go command starts running a machine in simulation.

3.27.1 Tcl Syntax

machine go

3.27.2 Description

The {machine} go command causes the simulated machine to advance its state indefinitely. The simulation

continues until a stop condition is reached, which can include any of the following:

* Typing CTRL+C to interrupt a running simulation. The Power10 Functional Simulator halts the simulation

and returns to the systemsim % command-line prompt.
* An error condition that is encountered during simulation

* No processor activity occurs for three seconds after advancing the machine.

3.27.3 Examples

The following command starts the mysim machine:

mysim go

3.27.4 Related Commands

{machine}
{machine}
e {machine}
{machine}
{machine}

exit on page 85
interrupt on page 87
quit on page 101
stall on page 103
step on page 105

Configuring and Modifying Machine Properties

Page 86 of 115

Version 1.2
27 October 2022

Command Reference

Power10 Functional Simulator

3.28 {machine} interrupt

The {machine} interrupt command schedules an interrupt of a given interrupt type.

3.28.1 Tcl Syntax

machine interrupt interrupt type

3.28.2 Description

The {machine} interrupt command forces an exception (typically, a synchronous interrupts) of the given type
to be raised. When the simulator subsequently is run, it performs actions defined by the core architecture to
service the specified exception (that is, save machine state in appropriate registers, vector to the associated
exception handler code location, and so on). This command is intended as a convenient mechanism to raise
exceptions artificially, for the purposes of debugging exception handlers.

3.28.3 Arguments

interrupt_type Specifies the type of interrupt to be performed during a simulation. Many types of
exceptions can be scheduled, including:

AlignmentException
DataStoragePageFault
DataStorageProtection
DataStorageReservationWithiWriteThrough
DataStorageSegmentFault dar_value
Decrementer

External (msi|raise|lower)
FPUnavailable

HMI

HV_Decrementer

HV _Virtualization

HvSystemCall

Illegalinstruction

InstStorageGl

IPI

MachineCheck

MER

PerfMonitor

PreciseMachineCheck
PrivilegedInstruction

SystemCall

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 87 of 115

Command Reference

Power10 Functional Simulator

SystemError
SystemReset
TrapInstruction
VMX_Assist
VMXUnavailable

If the interrupt command is issued without the interrupt_type argument, it lists all available exception types.

3.28.4 Examples

Force a load address alignment exception. The simulator is run afterwards, in order for the exception

handling to take place:

mysim interrupt AlignmentException Load

3.28.5 Related Commands

{machine} exit on page 85
{machine} go on page 86

e {machine} quit on page 101
{machine} stall on page 103
{ }

machine} step on page 105

Configuring and Modifying Machine Properties
Page 88 of 115

Version 1.2
27 October 2022

Command Reference

Power10 Functional Simulator

3.29 {machine} itranslate

The {machine} itranslate command translates instruction addresses from an effective address to a real
address.

3.29.1 Tcl Syntax

machine itranslate address

3.29.2 Description

The {machine} itranslate command translates an effective address to a real address for instructions. This
command is only useful if address translation is active. In addition, the value used as the address argument
must be a valid EA.

3.29.3 Arguments

address Specifies the address to be translated.

3.29.4 Examples

The following {machine} itranslate command translates the 0x00000000101ECAB4 effective address to the
corresponding real address:

mysim itranslate 0x00000000101ECAB4
The simulator displays the following result for this translation:

0x000000006D00CAB4

3.29.5 Related Commands

e {machine} dtranslate on page 84

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 89 of 115

Command Reference

Power10 Functional Simulator

3.30 {machine} load elf

The {machine} load elf command loads an ELF file into simulation memory.

3.30.1 Tcl Syntax

machine load elf filename

3.30.2 Description

The {machine} load elf command loads a properly formatted Executable and Linking Format (ELF) file into
the memory of the simulated machine. Executing this command sets the initial PC and stack pointer for the
program, and turns on cpu 0.

3.30.3 Arguments

filename Specifies the name of the ELF file to load.

3.30.4 Examples
Load the myprog.elf executable into memory:

mysim load elf /tmp/myprog.elf

3.30.5 Related Commands

e {machine} Toad Tinux on page 91
e {machine} Toad vmlinux on page 92
e {machine} Toad xcoff on page 93

Configuring and Modifying Machine Properties Version 1.2
Page 90 of 115 27 October 2022

Executable and linking format

program counter

Command Reference

Power10 Functional Simulator

3.31 {machine} load linux

The {machine} load linux command loads a Linux image into simulation memory.

3.31.1 Tcl Syntax

machine load Tinux filename

3.31.2 Description

The {machine} load linux command loads a properly created Linux boot image into the memory of the simu-
lated machine. Executing this command sets the initial PC and stack pointer for the program, and turns on
cpu 0.

3.31.3 Arguments

filename Specifies the name of the Linux image to load.

3.31.4 Examples
Load the zlmage.initrd.treeboot Linux image into memory:

mysim load linux zImage.initrd.treeboot

3.31.5 Related Commands

e {machine} load elf on page 90
e {machine} Toad vmlinux on page 92
e {machine} Toad xcoff on page 93

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 91 of 115

Command Reference

Power10 Functional Simulator

3.32 {machine} load vmlinux

The {machine} load vmlinux command loads a vmlinux image into simulation memory.

3.32.1 Tcl Syntax

machine load vmlinux filename address

3.32.2 Description

The {machine} load vmlinux command loads a Linux kernel image into the memory of the machine. The
vmlinux kernel is a modified Linux kernel that has been developed to simulate the process of loading and
transferring control to the operating system kernel software. The vmlinux kernel essentially acts as a boot
loader (lilo/grub) in a regular system. The {machine} load vmlinux command loads the modified kernel
image into the memory of the simulated machine. Executing this command sets the initial PC and stack
pointer for the program, and turns on cpu 0.

3.32.3 Arguments

filename Specifies the name of the vmlinux file to load.
address Specifies the physical address in memory where the image should be loaded.

3.32.4 Examples
Load the vmlinux_2.6.7 kernel image file into memory address 0:

mysim load vmlinux $IMAGE_PATH/vmlinux_2.6.7 0

3.32.5 Related Commands

e {machine} Tload elf on page 90
e {machine} Toad linux on page 91
e {machine} load xcoff on page 93

Configuring and Modifying Machine Properties Version 1.2
Page 92 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.33 {machine} load xcoff

The {machine} load xcoff command loads the contents of an XCOFF file into simulation memory.

3.33.1 Tcl Syntax

machine load xcoff filename

3.33.2 Description
The {machine}load xcoff command loads a properly formatted XCOFF file into the memory of the simulated

machine. Executing this command sets the initial PC and stack pointer for the program, and turns on cpu 0.

3.33.3 Arguments

filename Specifies the name of the xcoff file to load.

3.33.4 Examples
Load the XCOFF file into memory:

mysim load xcoff /tmp/myobject.x

3.33.5 Related Commands

e {machine} Toad elf on page 90
e {machine} Toad Tinux on page 91
e {machine} Toad vmlinux on page 92

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 93 of 115

Extended common object file format

Command Reference

Power10 Functional Simulator

3.34 {machine} mcm

The {machine} mem command enables simulator commands to be called on the specified MCM.

3.34.1 Tcl Syntax

machine mcm mcm_number simulator _command

3.34.2 Description

The Power10 Functional Simulator is designed to simulate a system in which more than one multichip module
(MCM) can run its multiple, separate processors. The {machine} mem command is a wrapper command that
runs a subset of simulator commands on the MCM that is specified by mem_number. To view a complete list
of MCM-related commands, type {machine} mem at the simulator command line.

For example, the {machine} mem mcm_number memory fread command enables users to copy the speci-
fied number of bytes from the specified input source into the given memory address.

3.34.3 Arguments

mem_number Specifies the name of the MCM on which the command operation (defined by the
simulator_command input) is performed.

simulator_command Specifies the command input that is run on the specified MCM.

3.34.4 Examples
On mcm 0, read a specified number of bytes from a specified file to the specified location in memory.

mysim mcm 0 memory fread 0x100 1024 bootfile

3.34.5 Related Commands

e {machine} cpuon page 68
e {machine} thread on page 107

Configuring and Modifying Machine Properties Version 1.2
Page 94 of 115 27 October 2022

Multichip module

Command Reference

Power10 Functional Simulator

3.35 {machine} memory display

The {machine} memory display command displays memory addresses.

3.35.1 Tcl Syntax

machine memory display address unit_size ?repeat count?
machine memory display address STRING

3.35.2 Description

The {machine} memory display command provides two display options for viewing memory resources. The
first command displays a sequence of memory addresses starting at a given address based on a specified
unit size. The unit size can be represented in bytes, halfwords (two bytes), words (four bytes), or doublewords
(eight bytes).

The second {machine} memory display command returns the character that corresponds to a memory
address. This command is useful for verifying whether the character that occurs at a given address matches
the expected output: for example, when developing applications.

3.35.3 Arguments

address Specifies the physical address where the display will begin.

unit_size Specifies the size of each unit, where:
Displays the address as a byte.
Displays the address as a halfword.

Displays the address as a word.

o AN =

Displays the address as a doubleword.

repeat_count

—

Optional) Specifies the number of units to display. If a count is not specified, the
repeat count is 1 by default.

STRING Specifies that the command will display the character that corresponds to a memory
address. The literal STRING option (all capital letters) must be passed.

3.35.4 Examples

1. Assume that your program previously wrote data to memory location 0x00B60C - 0x00B660. Display the
sequence of memory addresses starting at 0x00B60C repeated 20 times in word format:

mysim memory display 0x00B60C 4 20

The output of this command results in the following:

0x28250000 0x40820038 0x7C7F1B78 0x7C9E238
0x4800070D 0x4801B3B5 0x3B000000 0x3€80000
0x60840000 0x788407C6 0x64840000 0x6084B60
0x7C84F214 Ox4BFFFFA9 0x4800005C 0x7C7F1B8
0x7C9E2378 0x7CBD2B78 0x7CDC3378 0x7CFB3B78
Version 1.2 Configuring and Modifying Machine Properties

27 October 2022

Page 95 of 115

Command Reference

Power10 Functional Simulator

2. Display the characters that corresponds to the memory address. Assume that the memory location
starting at 0x100 contains the hex digits 0x32333425.

mysim memory display 100 STRING
The output of this command results in the following:

234%

3. Using the same example data set that was used in example 1, display the memory address occurring
after 0x00B60C in doubleword format:

mysim memory display 0x00B60C 8
The output of this command results in the following:

0x2825000040820038

4. Using the same example data set that was used in example 1 again, display the sequence of memory
addresses starting at 0x00B60C repeated 18 times in byte format:

mysim memory display 0x00B60C 1 18
The output of this command results in the following:

0x28 0x25 0x00 0x00 0x40 0x82 0x00 0x38 0x7C O0x7F 0x1B 0x78 0x7C 0x9E 0x23 0x78 0x48 0x00

3.35.5 Related Commands

e {machine} memory fread, freadcmp, freadgz on page 97
e {machine} memory fwrite, fwritecmp, fwritegz on page 98
e {machine} memory set on page 99

Configuring and Modifying Machine Properties Version 1.2
Page 96 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.36 {machine} memory fread, freadcmp, freadgz

The {machine} memory fread, memory freadecmp, and memory freadgz commands read directly from a file
into memory.

3.36.1 Tcl Syntax

machine memory fread address number_of bytes filename
machine memory freadcmp address number_of bytes_to_read compressed-filename
machine memory freadgz address number of bytes to_read compressed-filename

3.36.2 Description

The {machine} memory fread command implements the Unix fread() function. This command reads the
specified number of bytes from the specified input source into the given memory address. See the “man”
page on your Linux system for general information about fread command functionality.

The freademp and freadgz commands allow for use of compressed files.

3.36.3 Arguments

address Specifies the physical address into which data from the input is read.
number_of bytes Specifies the number of bytes to read.
filename Specifies the name of the input file that contains the data to read into memory.

3.36.4 Examples
Read data from the saved_memory input source into the 0x0 memory address:

mysim memory fread 0x0 0x4000 saved_memory

3.36.5 Related Commands

e {machine} memory display on page 95
e {machine} memory fwrite, fwritecmp, fwritegz on page 98
e {machine} memory set on page 99

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 97 of 115

Command Reference

Power10 Functional Simulator

3.37 {machine} memory fwrite, fwritecmp, fwritegz

The {machine} memory fwrite, fwritecmp, and fwritegz commands write directly from memory into an
output file.

3.37.1 Tcl Syntax

machine memory fwrite address number_of bytes filename append
machine memory fwritecmp address number _of bytes to_read compressed-filename
machine memory fwritegz address number of bytes to read compressed-filename

3.37.2 Description

The {machine} memory fwrite command implements the Unix fwrite() function. This command writes the
specified number of bytes from the specified memory address into the output file. See the “man” page on your
Linux system for general information about fwrite command functionality.

The fwritecmp and fwritegz commands allow for use of compressed files.

3.37.3 Arguments

address Specifies the physical address from which data is read.

number_of bytes Specifies the number of bytes to read.

filename Specifies the name of the output file into which data from memory is written.
append Specifies that this write should be appended to the existing file.

3.37.4 Examples
Write data from the 0xO memory address into the saved_memory output file:

mysim memory fwrite 0x0 0x4000 saved memory

3.37.5 Related Commands

e {machine} memory display on page 95
e {machine} memory fread, freadcmp, freadgz on page 97
e {machine} memory set on page 99

Configuring and Modifying Machine Properties Version 1.2
Page 98 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.38 {machine} memory set

The {machine} memory set command sets the memory address to a specified value.

3.38.1 Tcl Syntax

machine memory set address unit _size 64-bit value

3.38.2 Description

The {machine} memory set command sets a small section of memory to the given value based on a speci-
fied size of memory (the unit size). The unit size can be represented in bytes, halfwords (two bytes), words
(four bytes), or doublewords (eight bytes).

3.38.3 Arguments

address Specifies the physical memory address to be written.
unit_size Specifies the number of bytes to be written, where:

1 Represents a byte of memory.

2 Represents a halfword of memory.

4 Represents a word of memory.

8 Represents a doubleword of memory.
64-bit_value Specifies the value to be written into the memory address.

3.38.4 Examples
Set the memory address at 0x40562 to the 0x0003C00 64-bit value:
mysim memory set 0x40562 4 0x00003C00
Set the memory address at 0x40562 to the 0x00503D6020C43D40 64-bit value:

mysim memory set 0x40562 8 0x00503D6020C43D40

3.38.5 Related Commands

e {machine} memory display on page 95
e {machine} memory fread, freadcmp, freadgz on page 97
e {machine} memory fwrite, fwritecmp, fwritegz on page 98

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 99 of 115

Command Reference

Power10 Functional Simulator

3.39 {machine} mode

The {machine} mode command sets the simulator execution mode.

3.39.1 Tcl Syntax

machine mode mode selection

3.39.2 Description

The {machine} mode command is used to switch from simple mode to turbo mode. In simple mode, one
instruction is decoded or executed at a time. Simple mode maintains architectural correctness at the register
level, which can be useful for debugging complex problems. In turbo mode, multiple instructions are decoded
and dynamically converted to host system instructions. Then, the instructions are executed in a large block.
Turbo mode is faster. It is typically used for booting an operating system and running application code or for
fast forwarding a simulation run for millions of cycles to quickly get to the area of interest.

3.39.3 Arguments

mode_selection Specifies simple or turbo mode.

3.39.4 Examples

1. Set the simulator execution mode to simple:

mysim mode simple

2. Set the simulator execution mode to turbo:

mysim mode turbo

3.39.5 Related Commands

e {machine} cycle on page 69
e {machine} tick on page 108

Configuring and Modifying Machine Properties Version 1.2
Page 100 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.40 {machine} quit

The {machine} quit command removes a machine from the simulation environment.

3.40.1 Tcl Syntax

machine quit

3.40.2 Description

The {machine} quit command permanently removes the specified simulation machine from the simulation
environment and returns to the systemsim % command-line prompt. The {machine} quit command performs
the same operation as the {machine} exit command. The define machine command can be used to create a
new simulation machine.

3.40.3 Examples

Remove the mysim machine from the simulation environment:

mysim quit

3.40.4 Related Commands

¢ define machine on page 46
e {machine} exit on page 85

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 101 of 115

Command Reference

Power10 Functional Simulator

3.41 {machine} setargs

The {machine} setargs command passes command-line arguments to standalone applications.

3.41.1 Tcl Syntax

machine setargs arguments list

3.41.2 Description

The {machine} setargs command passes command-line arguments to standalone applications. The
command determines the number of arguments that are being passed and the amount of address space that
is needed to store the arguments. It allocates this amount of space in the data segment before the first text
segment, and places the values or references in the newly allotted space. The contents of GPR[3] and
GPR[4] are modified accordingly.

3.41.3 Arguments

arguments_list Enumerates the list of arguments that are passed to the application.

3.41.4 Examples

The following sample lines of code added in a Tcl setup file pass an argument to a standalone ELF image.
The CPU number is specified with the {machine} setargs command:

load the application image and pass arguments
mysim Toad elf $IMAGES/my machine/standalone/elf_program.img
mysim cpu 0 setargs 32769

mysim go

3.41.5 Related Commands

{machine} cpu on page 68
{machine} load elf on page 90

e {machine} Toad linux on page 91
{machine} load vmlinux on page 92
{machine} load xcoff on page 93

Configuring and Modifying Machine Properties Version 1.2
Page 102 of 115 27 October 2022

General Purpose Register

Command Reference

Power10 Functional Simulator

3.42 {machine} stall

The {machine} stall command stops the processor component.

3.42.1 Tcl Syntax

machine stall

3.42.2 Description

The {machine} stall command controls the state of the default processor (CPU 0) by putting the processor in
the stall state. This command is the opposite of the {machine} config_on command operation. In hardware,
this operation is generally implemented by executing a halt instruction or by moving a mode bit in the
processor's Machine State Register (MSR). The {machine} stall command is useful for dynamically switching
off a processor. For example, it can be used when a standalone application, which has been running in a
multiprocessor environment, needs to validate functionality on a single-processor system. In this case, the
stall command can be issued for the CPU that must be stopped (that is, mysim cpu 1 stall to stop CPU 1).

3.42.3 Examples

In a machine with a single processor, stall the processor:
mysim stall

The following message is displayed to confirm that the processor has stopped:
Thread 0:0:0 stalled

CPU 0:0 stalled

3.42.4 Related Commands

* {machine} config _on on page 59
e {machine} cpuon page 68

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 103 of 115

Command Reference

Power10 Functional Simulator

3.43 {machine} start_thread

The {machine} start_thread command starts a thread.

3.43.1 Tcl Syntax

machine start_thread PC address

3.43.2 Description

The {machine} start_thread command has a single parameter that enables the user to specify the starting
address for thread execution.

3.43.3 Arguments

PC address

Specifies the starting address for thread execution.

3.43.4 Related Commands
* {machine} stop_thread on page 106

Configuring and Modifying Machine Properties

Page 104 of 115

Version 1.2
27 October 2022

Command Reference

Power10 Functional Simulator

3.44 {machine} step

The {machine} step command advances the simulator by a specified number of instructions.

3.44.1 Tcl Syntax

machine step number of steps

3.44.2 Description

The {machine} step command advances the simulated machine by a specified number of instructions.
Although this command is sometimes used for quickly forwarding the simulator to a specific point in the simu-
lation, the {machine} cycle and {machine} tick commands are more commonly used to advance the system.

3.44.3 Arguments

number_of steps Specifies the number of instructions to advance the machine.

3.44.4 Examples
Advance the simulator by 10000 steps:

mysim step 10000

3.44.5 Related Commands

* {machine} cycle on page 69
e {machine} tick on page 108

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 105 of 115

Command Reference

Power10 Functional Simulator

3.45 {machine} stop_thread

The {machine} stop_thread command stops a thread.

3.45.1 Tcl Syntax

machine stop_thread

3.45.2 Description

The {machine} stop_thread command enables the user to stop thread execution.

3.45.3 Related Commands

* {machine} start_thread on page 104

Configuring and Modifying Machine Properties

Page 106 of 115

Version 1.2
27 October 2022

Command Reference

Power10 Functional Simulator

3.46 {machine} thread

The {machine} thread command enables simulator commands to be called on the specified thread.

3.46.1 Tcl Syntax

machine thread thread number simulator _command

3.46.2 Description

The Power10 Functional Simulator is designed to simulate a system in which one or more processors can run
multiple threads on a multichip module (MCM). The {machine} thread command is a wrapper command that
runs a subset of simulator commands on the thread that is specified by thread_number. To view a complete
list of thread-related commands, type {machine} thread at the simulator command line.

For example, the {machine} mem mcm_number cpu cpu_number thread thread_number stall command
stalls the selected thread on the selected core and MCM.

3.46.3 Arguments

thread_number Specifies the name of the thread on which the command operation (defined by the
simulator_command input) is performed.

simulator_command Specifies the command input that is run on the specified thread.

3.46.4 Examples

Change the state of thread 0 running on CPU 0, located on MCM 0 to the stall state.
mysim mcm 0 cpu O thread 0 stall

The simulator prints out the following message:
Thread 0:0:0 stalled
CPU 0:0 stalled

3.46.5 Related Commands

e {machine} cpuon page 68
e {machine} mcmon page 94

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 107 of 115

Command Reference

Power10 Functional Simulator

3.47 {machine} tick

The {machine} tick command advances the simulator by a specified number of ticks.

3.47.1 Tcl Syntax

machine tick number of ticks

3.47.2 Description

The {machine} tick command advances the simulated machine by a specified number of ticks. In the simula-
tion environment, a tick is a unifying representation of time as a function of the collective frequencies in the
simulation system. In real systems, individual components probably have different perceptions of time based
on their individual time domains. A time domain defines a frequency that sets the duration of a cycle. Events
in a time domain are expressed in terms of its frequency cycles. In a simulation, time domains are encapsu-
lated and declared as rational values relative to a base frequency. In this approach, each component can
declare its own time domain to define its perception of time.

Figure 3-1 illustrates the relationship between the computation of a tick value and frequency cycles in the
system.

Figure 3-1. Calculating Ticks in the System

| |_ least commaon multlple—‘l
freq freq freq freq_ freqt
cycle, cycle, cycle, cycle tick

To calculate the value of a tick, the simulator computes the least common multiple of the frequencies in the
system. Then, for example, if a system contains n number of components whose frequencies are defined as:
freq1 = 2 GHz, freq2 = 4 GHz, freq3 = 6 GHz, and freqn = 12 GHz, then one tick in this simulated system
represents 1/12,000,000 of a second.

3.47.3 Arguments

number_of ticks Specifies the number of ticks to advance the machine.

3.47.4 Examples
Advance the simulator by 10000 ticks:

mysim tick 10000

3.47.5 Related Commands

e {machine} cycle on page 69
e {machine} step on page 105

Configuring and Modifying Machine Properties Version 1.2
Page 108 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.48 {machine} to_cycle

The {machine} to_cycle command advances the simulator to a specified point in the simulation.

3.48.1 Tcl Syntax

machine to_cycle number

3.48.2 Description

The {machine} to_cycle command advances the simulated machine to the specified point in the simulation.
This command is useful for forwarding a simulation to a specific point, such as for debugging an application
issue.

3.48.3 Arguments

number Specifies the point in the simulation to advance the machine.

3.48.4 Examples

The following sample code illustrates example Tcl steps used to advance a simulation in fast mode to a given
point in the simulation:

advance to specific point in boot process
mysim to_cycle 160000000

now enable some simdebugs
simdebug set mem_refs 1

3.48.5 Related Commands

e {machine} cycle on page 69
e {machine} step on page 105
e {machine} tick on page 108

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 109 of 115

Command Reference

Power10 Functional Simulator

3.49 {machine} util dtranslate

The {machine} util dtranslate command translates the effective address given to a real address as a data
reference.

3.49.1 Tcl Syntax

machine util dtranslate address

3.49.2 Description

The {machine} util dtranslate command translates the effective address given to a real address as a data
reference. The translation uses the DERAT (if there is one) and DTLBs (if there are both instruction and data
TLBs).

3.49.3 Arguments

address Specifies a 32-bit or 64-bit effective address to be translated.

3.49.4 Examples
Translate the 0x145772 effective address to a real address:
mysim util dtranslate 0x145772

0x00000000c04567f0

3.49.5 Related Commands

e {machine} util itranslate on page 112

Configuring and Modifying Machine Properties Version 1.2
Page 110 of 115 27 October 2022

Data effective-to-real address translation

Data translation lookaside buffers

Command Reference

Power10 Functional Simulator

3.50 {machine} util dtranslate_wimg

The {machine} util dtranslate_wimg command translates the effective address given to a real address as a
data reference. It also shows the WIMG bits associated with the address provided for translation, where:

W Write through

I Caching inhibited

M Memory coherency required
G Guarded

3.50.1 Tcl Syntax

machine util dtranslate_wimg address

3.50.2 Description

The {machine} util dtranslate_wimg command translates the effective address given to a real address as a
data reference. The translation uses the DERAT (if there is one) and DTLBs (if there are both instruction and
data TLBs). The command also shows the WIMG bits associated with the address provided for translation.

3.50.3 Arguments

address Specifies a 32-bit or 64-bit effective address to be translated.

3.50.4 Examples

Translate the 0x4328 effective address to a real address and show the WIMG bits:
mysim util dtranslate_wimg 0x4328
0x00
systemsim % mysim util dtranslate 0x4038

0x0000000000004038

3.50.5 Related Commands

e {machine} util itranslate on page 112

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 111 of 115

Command Reference

Power10 Functional Simulator

3.51 {machine} util itranslate

The {machine} util itranslate command translates the effective address given to a real address as an instruc-
tion fetch.

3.51.1 Tcl Syntax

machine util itranslate address

3.51.2 Description

The {machine} util itranslate command translates the effective address given to a real address as an instruc-
tion fetch. The translation uses the |IERAT (if there is one) and ITLBs (if there are both instruction and data
TLBs).

3.51.3 Arguments

address Specifies a 32-bit or 64-bit effective address to be translated.

3.51.4 Examples
Translate the 0x145772 effective address to a real address:
mysim util itranslate 0x145772

0x00000000028190926

3.51.5 Related Commands

e {machine} util dtranslate on page 110

Configuring and Modifying Machine Properties Version 1.2
Page 112 of 115 27 October 2022

Instruction effective-to-real address translation

Instruction translation lookaside buffers

Command Reference

Power10 Functional Simulator

3.52 {machine} util itranslate_wimg

The {machine} util itranslate_wimg command translates the effective address given to a real address as an
instruction fetch. It also shows the WIMG bits associated with the address provided for translation, where:

W Write through

I Caching inhibited

M Memory coherency required
G Guarded

3.52.1 Tcl Syntax

machine util itranslate_wimg address

3.52.2 Description

The {machine} util itranslate_wimg command translates the effective address given to a real address as an
instruction fetch. The translation uses the IERAT (if there is one) and ITLBs (if there are both instruction and
data TLBs). The command also shows the WIMG bits associated with the address provided for translation.

3.52.3 Arguments

address Specifies a 32-bit or 64-bit effective address to be translated.

3.52.4 Examples

Translate the 0x4328 effective address to a real address and show the WIMG bits:
mysim util itranslate_wimg 0x4328
0x00
systemsim % mysim util itranslate 0x4038

0x0000000000004038

3.52.5 Related Commands

e {machine} util dtranslate on page 110

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 113 of 115

Command Reference

Power10 Functional Simulator

3.53 {machine} util ppc_disasm

The {machine} util ppc_disasm command interprets an instruction as a POWER instruction executed at a
given address.

3.53.1 Tcl Syntax

machine util ppc_disasm instruction address

3.53.2 Description

The {machine} util ppc_disasm command interprets the specified instruction as a POWER instruction that
can be executed at the given address, and prints the assembly language interpretation of this instruction. The
address input is required for all instructions, but used only for the interpretation of relative addresses, such as
in branches.

3.53.3 Arguments

instruction Specifies a 32-bit number to be interpreted as an instruction.
address Specifies the address where the instruction is to be stored.

3.53.4 Examples

Interpret 074003100 as an instruction that is stored to the 0x4328 address:
mysim util ppc_disasm 0x74003100 0x4328

The simulator displays following output for this command:

andis. r0,r0,0x3100

3.53.5 Related Commands
e {machine} util itranslate on page 112

Configuring and Modifying Machine Properties Version 1.2
Page 114 of 115 27 October 2022

Command Reference

Power10 Functional Simulator

3.54 {machine} util stuff

The {machine} util stuff command is used to stuff an instruction (a 32-bit hexadecimal value) directly into the
execution stream of an active thread.

3.54.1 Tcl Syntax

machine util stuff instruction

3.54.2 Description
The {machine} util stuff command, which inserts an instruction into an execution stream, is designed to be
used by a test execution script.

3.54.3 Arguments

instruction Specifies a 32-bit number to be interpreted as an instruction.

3.54.4 Examples
Insert the instruction 0x74003100 into an active thread:

mysim util stuff 0x74003100

3.54.5 Related Commands

{machine} util dtranslate on page 110
{machine} util dtranslate_wimg on page 111
e {machine} util itranslate on page 112
{machine} util itranslate_wimg on page 113
{machine} util ppc_disasmon page 114

Version 1.2 Configuring and Modifying Machine Properties
27 October 2022 Page 115 of 115

	Title Page
	Copyright and Disclaimer
	Contents
	List of Figures
	List of Tables
	Revision Log
	About this Document
	Intended Audience
	Using this Manual
	Command Page Organization

	Conventions
	Related Documents
	Help and Support

	1. Introduction
	1.1 Understanding and Using Simulator Commands
	1.2 Managing a Simulated Machine
	1.3 Overview of Command Structure and Syntax
	1.4 Using the Command Pages
	1.5 Accessing Help for Commands

	1.6 Top-Level Simulator Commands
	1.7 alias
	1.7.1 Tcl Syntax
	1.7.2 Description
	1.7.3 Arguments
	1.7.4 Examples

	1.8 define
	1.9 display
	1.9.1 Tcl Syntax
	1.9.2 Description
	1.9.3 Examples

	1.10 help or helprecursive
	1.10.1 Tcl Syntax
	1.10.2 Description
	1.10.3 Examples

	1.11 quit
	1.11.1 Tcl Syntax
	1.11.2 Description
	1.11.3 Examples

	1.12 simdebug
	1.12.1 Tcl Syntax
	1.12.2 Description
	1.12.3 Arguments
	1.12.4 Examples

	1.13 simstop
	1.13.1 Tcl Syntax
	1.13.2 Description
	1.13.3 Examples

	1.14 version
	1.14.1 Tcl Syntax
	1.14.2 Description
	1.14.3 Examples

	2. Defining, Configuring, and Instantiating a Machine
	2.1 define config
	2.1.1 Tcl Syntax
	2.1.2 Description
	2.1.3 Arguments
	2.1.4 Examples
	2.1.5 Related Commands

	2.2 define cpu
	2.2.1 Tcl Syntax
	2.2.2 Description
	2.2.3 Arguments
	2.2.4 Examples
	2.2.5 Related Commands

	2.3 define dup
	2.3.1 Tcl Syntax
	2.3.2 Description
	2.3.3 Arguments
	2.3.4 Examples
	2.3.5 Related Commands

	2.4 define list
	2.4.1 Tcl Syntax
	2.4.2 Description
	2.4.3 Examples
	2.4.4 Related Commands

	2.5 define machine
	2.5.1 Tcl Syntax
	2.5.2 Description
	2.5.3 Arguments
	2.5.4 Examples
	2.5.5 Related Commands

	2.6 {configuration_object} config
	2.6.1 Tcl Syntax
	2.6.2 Description
	2.6.3 Arguments
	2.6.4 Examples
	2.6.5 Related Commands

	2.7 {configuration_object} display
	2.7.1 Tcl Syntax
	2.7.2 Description
	2.7.3 Arguments
	2.7.4 Examples
	2.7.5 Related Commands

	2.8 {configuration_object} exit
	2.8.1 Tcl Syntax
	2.8.2 Description
	2.8.3 Examples
	2.8.4 Related Commands

	2.9 {configuration_object} query
	2.9.1 Tcl Syntax
	2.9.2 Description
	2.9.3 Arguments
	2.9.4 Examples
	2.9.5 Related Commands

	2.10 {configuration_object} quit
	2.10.1 Tcl Syntax
	2.10.2 Description
	2.10.3 Examples
	2.10.4 Related Commands

	3. Configuring and Modifying Machine Properties
	3.1 {machine} bogus net cleanup
	3.1.1 Tcl Syntax
	3.1.2 Description
	3.1.3 Examples
	3.1.4 Related Commands

	3.2 {machine} bogus net init
	3.2.1 Tcl Syntax
	3.2.2 Description
	3.2.2.1 Extended Description of Bogus Network Support
	3.2.2.2 Setting up TUN/TAP on the Host System
	3.2.2.3 Configuring systemsim-p10 Support for the Bogus Network
	3.2.3 Arguments
	3.2.4 Examples
	3.2.5 Related Commands

	3.3 {machine} bogushalt
	3.3.1 Tcl Syntax
	3.3.2 Description
	3.3.3 Arguments
	3.3.4 Examples

	3.4 {machine} pmem
	3.4.1 Tcl Syntax
	3.4.2 Description
	3.4.3 Arguments
	3.4.4 Examples

	3.5 {machine} config_on
	3.5.1 Tcl Syntax
	3.5.2 Description
	3.5.3 Examples
	3.5.4 Related Commands

	3.6 {machine} console create
	3.6.1 Tcl Syntax
	3.6.2 Description
	3.6.3 Arguments
	3.6.4 Examples
	3.6.5 Related Commands

	3.7 {machine} console destroy
	3.7.1 Tcl Syntax
	3.7.2 Description
	3.7.3 Arguments
	3.7.4 Examples
	3.7.5 Related Commands

	3.8 {machine} console disable
	3.8.1 Tcl Syntax
	3.8.2 Description
	3.8.3 Arguments
	3.8.4 Examples
	3.8.5 Related Commands

	3.9 {machine} console display buffered
	3.9.1 Tcl Syntax
	3.9.2 Description
	3.9.3 Examples
	3.9.4 Related Commands

	3.10 {machine} console enable
	3.10.1 Tcl Syntax
	3.10.2 Description
	3.10.3 Arguments
	3.10.4 Examples
	3.10.5 Related Commands

	3.11 {machine} console list
	3.11.1 Tcl Syntax
	3.11.2 Description
	3.11.3 Examples
	3.11.4 Related Commands

	3.12 {machine} console set display buffered
	3.12.1 Tcl Syntax
	3.12.2 Description
	3.12.3 Arguments
	3.12.4 Examples
	3.12.5 Related Commands

	3.13 {machine} cpu
	3.13.1 Tcl Syntax
	3.13.2 Description
	3.13.3 Arguments
	3.13.4 Examples
	3.13.5 Related Commands

	3.14 {machine} cycle
	3.14.1 Tcl Syntax
	3.14.2 Description
	3.14.3 Arguments
	3.14.4 Examples
	3.14.5 Related Commands

	3.15 {machine} display cycles
	3.15.1 Tcl Syntax
	3.15.2 Description
	3.15.3 Examples
	3.15.4 Related Commands

	3.16 {machine} display features
	3.16.1 Tcl Syntax
	3.16.2 Description
	3.16.3 Examples
	3.16.4 Related Commands

	3.17 {machine} display fpr, fpr_as_fp, fprs
	3.17.1 Tcl Syntax
	3.17.2 Description
	3.17.3 Arguments
	3.17.4 Examples
	3.17.5 Related Commands

	3.18 {machine} display gpr, gprs
	3.18.1 Tcl Syntax
	3.18.2 Description
	3.18.3 Arguments
	3.18.4 Examples
	3.18.5 Related Commands

	3.19 {machine} display instruction_count
	3.19.1 Tcl Syntax
	3.19.2 Description
	3.19.3 Examples
	3.19.4 Related Commands

	3.20 {machine} display memory_size
	3.20.1 Tcl Syntax
	3.20.2 Description
	3.20.3 Examples
	3.20.4 Related Commands

	3.21 {machine} display memorymap
	3.21.1 Tcl Syntax
	3.21.2 Description
	3.21.3 Arguments
	3.21.4 Examples
	3.21.5 Related Commands

	3.22 {machine} display nfpr, ngpr, mode, name
	3.22.1 Tcl Syntax
	3.22.2 Description
	3.22.3 Examples
	3.22.4 Related Commands

	3.23 {machine} display number_of_MCMs
	3.23.1 Tcl Syntax
	3.23.2 Description
	3.23.3 Examples
	3.23.4 Related Commands

	3.24 {machine} display slb, spr, tm, vmx, vmxr, vsxr
	3.24.1 Tcl Syntax
	3.24.2 Description
	3.24.3 Arguments
	3.24.4 Examples
	3.24.5 Related Commands

	3.25 {machine} dtranslate
	3.25.1 Tcl Syntax
	3.25.2 Description
	3.25.3 Arguments
	3.25.4 Examples
	3.25.5 Related Commands

	3.26 {machine} exit
	3.26.1 Tcl Syntax
	3.26.2 Description
	3.26.3 Examples
	3.26.4 Related Commands

	3.27 {machine} go
	3.27.1 Tcl Syntax
	3.27.2 Description
	3.27.3 Examples
	3.27.4 Related Commands

	3.28 {machine} interrupt
	3.28.1 Tcl Syntax
	3.28.2 Description
	3.28.3 Arguments
	3.28.4 Examples
	3.28.5 Related Commands

	3.29 {machine} itranslate
	3.29.1 Tcl Syntax
	3.29.2 Description
	3.29.3 Arguments
	3.29.4 Examples
	3.29.5 Related Commands

	3.30 {machine} load elf
	3.30.1 Tcl Syntax
	3.30.2 Description
	3.30.3 Arguments
	3.30.4 Examples
	3.30.5 Related Commands

	3.31 {machine} load linux
	3.31.1 Tcl Syntax
	3.31.2 Description
	3.31.3 Arguments
	3.31.4 Examples
	3.31.5 Related Commands

	3.32 {machine} load vmlinux
	3.32.1 Tcl Syntax
	3.32.2 Description
	3.32.3 Arguments
	3.32.4 Examples
	3.32.5 Related Commands

	3.33 {machine} load xcoff
	3.33.1 Tcl Syntax
	3.33.2 Description
	3.33.3 Arguments
	3.33.4 Examples
	3.33.5 Related Commands

	3.34 {machine} mcm
	3.34.1 Tcl Syntax
	3.34.2 Description
	3.34.3 Arguments
	3.34.4 Examples
	3.34.5 Related Commands

	3.35 {machine} memory display
	3.35.1 Tcl Syntax
	3.35.2 Description
	3.35.3 Arguments
	3.35.4 Examples
	3.35.5 Related Commands

	3.36 {machine} memory fread, freadcmp, freadgz
	3.36.1 Tcl Syntax
	3.36.2 Description
	3.36.3 Arguments
	3.36.4 Examples
	3.36.5 Related Commands

	3.37 {machine} memory fwrite, fwritecmp, fwritegz
	3.37.1 Tcl Syntax
	3.37.2 Description
	3.37.3 Arguments
	3.37.4 Examples
	3.37.5 Related Commands

	3.38 {machine} memory set
	3.38.1 Tcl Syntax
	3.38.2 Description
	3.38.3 Arguments
	3.38.4 Examples
	3.38.5 Related Commands

	3.39 {machine} mode
	3.39.1 Tcl Syntax
	3.39.2 Description
	3.39.3 Arguments
	3.39.4 Examples
	3.39.5 Related Commands

	3.40 {machine} quit
	3.40.1 Tcl Syntax
	3.40.2 Description
	3.40.3 Examples
	3.40.4 Related Commands

	3.41 {machine} setargs
	3.41.1 Tcl Syntax
	3.41.2 Description
	3.41.3 Arguments
	3.41.4 Examples
	3.41.5 Related Commands

	3.42 {machine} stall
	3.42.1 Tcl Syntax
	3.42.2 Description
	3.42.3 Examples
	3.42.4 Related Commands

	3.43 {machine} start_thread
	3.43.1 Tcl Syntax
	3.43.2 Description
	3.43.3 Arguments
	3.43.4 Related Commands

	3.44 {machine} step
	3.44.1 Tcl Syntax
	3.44.2 Description
	3.44.3 Arguments
	3.44.4 Examples
	3.44.5 Related Commands

	3.45 {machine} stop_thread
	3.45.1 Tcl Syntax
	3.45.2 Description
	3.45.3 Related Commands

	3.46 {machine} thread
	3.46.1 Tcl Syntax
	3.46.2 Description
	3.46.3 Arguments
	3.46.4 Examples
	3.46.5 Related Commands

	3.47 {machine} tick
	3.47.1 Tcl Syntax
	3.47.2 Description
	3.47.3 Arguments
	3.47.4 Examples
	3.47.5 Related Commands

	3.48 {machine} to_cycle
	3.48.1 Tcl Syntax
	3.48.2 Description
	3.48.3 Arguments
	3.48.4 Examples
	3.48.5 Related Commands

	3.49 {machine} util dtranslate
	3.49.1 Tcl Syntax
	3.49.2 Description
	3.49.3 Arguments
	3.49.4 Examples
	3.49.5 Related Commands

	3.50 {machine} util dtranslate_wimg
	3.50.1 Tcl Syntax
	3.50.2 Description
	3.50.3 Arguments
	3.50.4 Examples
	3.50.5 Related Commands

	3.51 {machine} util itranslate
	3.51.1 Tcl Syntax
	3.51.2 Description
	3.51.3 Arguments
	3.51.4 Examples
	3.51.5 Related Commands

	3.52 {machine} util itranslate_wimg
	3.52.1 Tcl Syntax
	3.52.2 Description
	3.52.3 Arguments
	3.52.4 Examples
	3.52.5 Related Commands

	3.53 {machine} util ppc_disasm
	3.53.1 Tcl Syntax
	3.53.2 Description
	3.53.3 Arguments
	3.53.4 Examples
	3.53.5 Related Commands

	3.54 {machine} util stuff
	3.54.1 Tcl Syntax
	3.54.2 Description
	3.54.3 Arguments
	3.54.4 Examples
	3.54.5 Related Commands

