
Developing Symphony Applications for Cell BE
Tutorial

Platform Symphony™
Version 5.1
April 2011

Copyright © 1994-2011 Platform Computing Corporation

All rights reserved.

Although the information in this document has been carefully reviewed, Platform Computing Corporation
(“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections,
updates, revisions or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness
of the information. If you find an error, or just want to make a suggestion for improving this document, please address
your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided
that you continue to check the Platform Web site for updates and update your version of the documentation. You may
not make it available to your organization over the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.
™ ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOB
SCHEDULER, PLATFORM ISF, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the
PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the United States and
in other jurisdictions.
® UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
® Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel®, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their
respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE 5

Goal .. 5
Overview ... 5
Application development methodology ... 6
Symphony service API scope ... 7
Prerequisites ... 7
Installing Symphony .. 8
Where to find the documentation .. 8
Limitations ... 8
Review and understand the sample .. 9
Review the sample service makefiles ... 23
Build, package, deploy, and run the sample client and service 23
Cluster configuration ... 25

Appendix A: Appendix A: Symphony API Summary .. 26

Developing Symphony Applications for Cell BE Tutorial 3

4 Developing Symphony Applications for Cell BE Tutorial

Tutorial: Developing a Synchronous
Symphony Application for the IBM Cell BE
Goal

This tutorial walks you through the sample application code and guides you through the process of
building, packaging, deploying, and running the sample client and service.

You will learn the minimum amount of code that you need to create a Symphony application for the IBM
Cell Broadband Engine (BE).

Overview
This section describes the high-level interaction between a client and a Symphony service. The following
diagram shows the message flow between the client and the hosts in a Symphony cluster.

The client opens a session with the session director (not shown) on the management host. Once the client
is authenticated, the client communicates directly with the session manager assigned to the application.

The Symphony session manager (SSM), which also runs on the management host, is the workload
manager associated with a single application. The session manager routes messages from the client to the
compute hosts and from the compute hosts to the clients.The session manager obtains resources to service
its sessions and starts/manages service instance manager (SIM) processes on compute hosts.

The service instance manager starts, monitors, and manages a service instance (SI), passing inputs and
outputs between the session manager and service instance.

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 5

The service code sample, which this tutorial is based on, is designed to be run on a minimum of one Cell
blade with two BE processors. The following diagram shows the architecture of a single Cell BE processor
with Symphony installed.

The Power Processor Element (PPE) is the main processor in the Cell BE. The PPE is responsible for
overall control of the system and runs the operating system for all applications on the Cell BE. The
Symphony service runs on the PPE, and individual computational tasks are off-loaded to the SPEs. The
PPE then waits for and coordinates the results returning from the SPEs.

The Synergistic Processor Element (SPE) handles the compute-intensive tasks. Each SPE is an
independent processor, and is optimized to run SPE threads spawned by the PPE.

In this sample, the client sends a configurable amount of tasks to the Symphony service. The tasks contain
the input data for the calculation program that performs a simple addition of two integers on the SPEs.
The service, which runs on the PPE, spawns one thread on each SPE that passes the input data to the
calculation program. The calculation program is executed on each SPE concurrently. When the programs
have completed the work, the results are collected by the service and relayed back to the client.

Application development methodology
When developing Symphony applications for the Cell BE, here is the programming process model:

1. Prepare the code:

1. Write SPE calculation code
2. Write PPE code (Symphony integration service)
3. Write client code

2. Get SPE binary:

1. Compile SPE code to SPE object file

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

6 Developing Symphony Applications for Cell BE Tutorial

2. Link SPE object file to SPE executable
3. Convert SPE executable to PPE embedded object file

3. Get PPE binary:

1. Compile PPE code to PPE object file
2. Link PPE object file and PPE embedded object file to PPE executable (Symphony integration

service)

Note:
The PPE and SPE source programs use different compilers. The correct
compiler and libraries must be used for the intended processor.

Symphony service API scope
All the Symphony Service classes and methods are applicable to the PPE. Because of the memory limitation
of the SPE, none of the Symphony Service classes and methods are applicable to the SPE. For example,
the Message object cannot be passed to the SPE or instantiated in the SPE and none of its methods can
be executed in the SPE.

All basic data type objects can be passed between the PPE and SPE. For example, the integer value stored
in the Message object can be accessed in the PPE and passed to the SPE. The value can also be passed from
the SPE to PPE.

For more information about the scope of Symphony service APIs, refer to Appendix A: Symphony API
Summary on page 26.

Prerequisites

Client host
• Operating system: all platforms supported by Symphony
• Compiler: gcc 3.4, 4.0, 4.1, Intel C++ 9.1, Visual Studio C++ (version 6 and higher), .NET, Java, CC

Note:
Although the client API is accessible on a Cell BE host, it is not
recommended to run Symphony clients on this type of host. The Cell BE
is intended primarily as an accelerator to speed up calculations.

Management host
Operating system: all platforms supported by Symphony

Service host
• Operating system: RHEL 5.1
• Compiler:

• PPE

ppu-g++, g++
• SPE

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 7

spu-gcc, spu-g++
• IBM Cell BE: QS21, QS22/SDK 3.0

Installing Symphony
Since there is no standalone Developer Edition for the Cell BE that would allow development and testing
on a single host, the Cell BE requires the following components to be installed, as a minimum:

• client host
• management host
• compute host

These components form the basic building blocks of a Symphony cluster. Platform provides the following
Symphony packages for setting up the compute host and application development environment:

• symcomputehostSetup5.1.0_linux2.6-glibc2.5-ppc64_CellBE-nnnnnn.bin
• symphonySDK-linux2.6-glibc2.5-ppc64_CellBE-5.1.0-nnnnnn.tar.gz

The Symphony package for the management host is dependent on the management host platform. To
obtain the Symphony package, go to my.platform.com and select Products > Platform Symphony >
Symphony 5.1 > Product Packages. Download the appropriate package for your host.

For getting started with Symphony, go to my.platform.com and select Products > Platform Symphony
> Symphony 5.1 > Install Platform Symphony.

Important:
If you run egosh ego start/shutdown commands using sudo, you may not
be able to access Symphony environment variables that were set in a
non-root account. In this case, you must configure the /etc/sudoers file to
access the variables.

Where to find the documentation
Additional documentation is available from the Knowledge Center located at$SOAM_HOME/docs on the
compute hosts. For details on all API programming calls, refer to the Platform Symphony C++ API
Reference.

Limitations
symping5.1 and symexec5.1 applications

To run the symping5.1 or symexec5.1 application with the Cell BE on the grid, you must re-register the
latest application profile since it includes the Cell BE OS type. To re-register the application:

1. Log on to the Cell BE host.
2. Set the command-line environment.

For example, if you installed Symphony in /opt/ego:

• For csh or tcsh, use cshrc.platform:

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

8 Developing Symphony Applications for Cell BE Tutorial

source /opt/ego/cshrc.platform
• For sh, ksh, or bash, use profile.platform:

. /opt/ego/profile.platform
3. Change the current directory to the directory in which symping5.1.xmland symexec5.1.xml are

located:

cd $SOAM_HOME/5.1/linux2.6-glibc2.5-ppc64_CellBE/bin/
4. Register the application profile:

soamreg symping5.1.xml

soamreg symexec5.1.xml

Review and understand the sample
Review the sample application code to learn how you can create a simple synchronous application for the
IBM Cell BE.

Locate the code samples
Files Location of Code Sample

Client $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/SyncClient

Message object $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/Common

Service code $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/Service

Application profile The service required to compute the input data along with additional application
parameters are defined in the application profile:

$SOAM_HOME/5.1/samples/CPP/IBMCell/cell/SampleAppCell.xml

Output directory $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/Output

Makefile $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/Makefile

What the sample does
The sample allows you to enter two integers via command line when running the client. One integer is
stored in class MyMessage (MyMessage.h and MyMessage.cpp) and the other is stored in class
MyCommonData (MyCommonData.h and MyCommonData.cpp). MyMessage and MyCommonData are
passed to the service. On the service side, the two integers are fetched from MyMessage and
MyCommonData and passed to the SPE where they are added together. The result is passed back to the
PPE and then sent back to the client where it is displayed on the screen.

When you run the client, it opens a session and sends n input messages (tasks) to the service running on
the PPE of the Cell BE. The service spawns m threads that run concurrently on each SPE and perform the
simple addition. The client application is synchronous so it sends input and blocks the output until all
the results are returned.

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 9

Review the sample message code
Input and output: declare the message class

Your client application needs to handle data that it sends as input, and output data that it receives from
the service.

Tip:
Clients and services share the same message class.

In MyMessage.h:

• We declare the MyMessage class
• We declare serialization methods for input and output messages
• We declare methods to handle the data

Note:

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

10 Developing Symphony Applications for Cell BE Tutorial

For this example, we have defined the same class for input and output
messages. However, you can define separate classes for input and output
messages.

pragma once
#include "soam.h"
class MyMessage :
 public soam::Message
{
public:
 MyMessage();
 MyMessage(int taskInput, char* str, int spus, bool isSync);
 virtual ~MyMessage(void);
 void onSerialize(
 /*[in]*/ soam::OutputStreamPtr &stream) throw (soam::SoamException);
 void onDeserialize(
 /*[in]*/ soam::InputStreamPtr &stream) throw (soam::SoamException);
// accessors
public:
 int getSpus() const{return m_spus;}
 void setSpus(int _int) {m_spus = _int;}
 char* getString() const{return m_string;}
 void setString(const char* str) {freeString(m_string); m_string = copyString(str);}
 int getTaskInput(){return m_taskInput;}
 void setTaskInput(int taskInput){m_taskInput = taskInput;}
 bool getIsSync() const {return (m_isSync != 0);}
 void setIsSync(bool isSync) {m_isSync = isSync;}
private:
 char* copyString(const char* strSource);
 void freeString(char* strToFree);
private:
 int m_taskInput;
 char *m_string;
 int m_spus;
 bool m_isSync;
};

Implement the MyMessage object
Once your message class is declared, implement handlers for serialization and deserialization.

In MyMessage.cpp, we implement methods to handle the data. For data types that are supported by the
Symphony SDK, see the appropriate API reference.

Note:

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 11

If you already have an application with a message object that is serialized,
you can pass a binary blob through the DefaultBinaryMessage class.

MyMessage::MyMessage()
{
 m_taskInput = 0;
 m_string = copyString("");
 m_spus = 0;
 m_isSync = true;
}
MyMessage::MyMessage(int taskInput, char *str, int spus, bool isSync)
{
 m_taskInput = taskInput;
 m_string = copyString(str);
 m_spus = spus;
 m_isSync = isSync;
}
MyMessage::~MyMessage(void)
{
 freeString(m_string);
}
void MyMessage::onSerialize(OutputStreamPtr &stream) throw (SoamException)
{
 stream->write(m_taskInput);
 stream->write(m_string);
 stream->write(m_spus);
 stream->write(m_isSync);
}
void MyMessage::onDeserialize(InputStreamPtr &stream) throw (SoamException)
{
 stream->read(m_taskInput);
 freeString(m_string);
 stream->read(m_string);
 stream->read(m_spus);
 stream->read(m_isSync);
}
char* MyMessage::copyString(const char* strSource)
{
 SOAM_ASSERT(SOAM_NULL_PTR != strSource);
 size_t len = strlen(strSource);
 char* newString = new char[len+1];
 SOAM_ASSERT(SOAM_NULL_PTR != newString);
 strcpy(newString, strSource);
 return newString;
}
void MyMessage::freeString(char* strToFree)
{
 if (SOAM_NULL_PTR != strToFree)
 {
 delete []strToFree;
 }
}

Review the sample common data code
The MyCommonData class, which inherits from the Message class, handles the common data for the client
and service. The class declaration and definition are contained in MyCommonData.h and
MyCommonData.cpp

Declare the MyCommonData class
In MyCommonData.h:

• We declare the MyCommonData class
• We declare serialization methods for the common data object
• We declare methods (accessors) to handle the data

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

12 Developing Symphony Applications for Cell BE Tutorial

#pragma once
#include "soam.h"
/////////////////////////////////
// Common Data Object
/////////////////////////////////
class MyCommonData :
 public soam::Message
{
public:
 MyCommonData();
 MyCommonData(int i);
 virtual ~MyCommonData(void);
 void onSerialize(
 /*[in]*/ soam::OutputStreamPtr &stream) throw (soam::SoamException);
 void onDeserialize(
 /*[in]*/ soam::InputStreamPtr &stream) throw (soam::SoamException);
// accessors
public:
 int getInt() const {return m_int;}
 void setInt(int i) {m_int = i;}
private:
 int m_int;
};

Implement the MyCommonData object
Once your common data class is declared, implement handlers for serialization and deserialization.

In MyCommonData.cpp, we implement methods to handle the data. For data types that are supported by
the Symphony SDK, see the appropriate API reference.

MyCommonData::MyCommonData()
{
 m_int = 0;
}
MyCommonData::MyCommonData(int i)
{
 m_int = i;
}
MyCommonData::~MyCommonData(void)
{
}
void MyCommonData::onSerialize(OutputStreamPtr &stream) throw (SoamException)
{
 stream->write(m_int);
}
void MyCommonData::onDeserialize(InputStreamPtr &stream) throw (SoamException)
{
 // we now own the int returned from the read call
 stream->read(m_int);
}

Review the sample client code
Enable the use of command options

To add flexibility, the client program is designed to receive up to five arguments for setting parameters
or for displaying help, as follows:

Option Default Description

-c 0 Common data input value

-i 0 Task input value

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 13

Option Default Description

-s 1 Run the specified number of SPEs per task

-t 16 Perform the specified number of tasks

-h Display help for command options on the screen

In this sample, we initialize the parameters with default values so that the program can run without passing
arguments. In cases where arguments are used, a switch block parses the inputs and overwrites the default
values.

...
//value that will be stored in MyMessage
int taskInput = 0;
//value that will be stored in MyCommonData
int commonDataInput = 0;
//number of tasks that will be sent
int tasksToSend = 16;
//number of SPUs that will run for each task
int spus = 1;
//Parse command line parameters
//Set taskInput, commonDataInput, tasksToSend and spus
for (int i=1; i<argc; i++)
{
 if (*argv[i] == '-')
 {
 switch (*(argv[i]+1))
 {
 case 't':
 i++;
 if (i < argc)
 {
 tasksToSend = atoi(argv[i]);
 if (tasksToSend < 0) tasksToSend = 0;
 }
 else
 {
 printf("ERROR: Number of tasks is not specified.\n");
 print_usage(argv[0]);
 }
 break;

 case 's':
 i++;
 if (i < argc)
 {
 spus = atoi(argv[i]);
 if (spus < 0) spus = 0;
 if (spus > MAX_SPUS) spus = MAX_SPUS;
 }
 else
 {
 printf("ERROR: Number of SPUs to use is not specified.\n");
 print_usage(argv[0]);
 }
 break;

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

14 Developing Symphony Applications for Cell BE Tutorial

 case 'i':
 i++;
 if (i < argc)
 {
 taskInput = atoi(argv[i]);
 if (taskInput < 0) taskInput = 0;
 }
 else
 {
 printf("ERROR: Task input value is not specified.\n");
 print_usage(argv[0]);
 }
 break;

 case 'c':
 i++;
 if (i < argc)
 {
 commonDataInput = atoi(argv[i]);
 if (commonDataInput < 0) commonDataInput = 0;
 }
 else
 {
 printf("ERROR: Common data input value is not specified.\n");
 print_usage(argv[0]);
 }
 break;

 case 'h':
 default:
 print_usage(argv[0]);
 break;
 }
 }
 else
 {
 print_usage(argv[0]);
 }
}

Initialize the client
In SyncClient.cpp, when you initialize, you initialize the Symphony client infrastructure. You initialize
once per client.

Important:
Initialization is required. Otherwise, API calls fail.

...
 try
 {
 // Initialize the API
 SoamFactory::initialize();
...

Connect to an application
To send data to be calculated in the form of input messages, you connect to an application.

You specify an application name, a user name, and password. The application name must match that
defined in the application profile. The default security callback encapsulates the callback for the user name
and password.

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 15

Tip:
When you connect, a connection object is returned.

...
 // Set up application specific information to be supplied to Symphony
 char appName[]="SampleAppCell";
 // Set up application authentication information using the default security provider
 DefaultSecurityCallback securityCB("Guest", "Guest");
 // Connect to the specified application
 ConnectionPtr conPtr = SoamFactory::connect(appName, &securityCB);
 // Retrieve and print our connection ID
 cout << "connection ID=" << conPtr->getId() << endl;
...

Create a session to group tasks
A session is a way of logically grouping tasks that are sent to a service for execution. The tasks are sent
and received synchronously.

When creating a session, you need to specify the session attributes by using the
SessionCreationAttributes object. In this sample, we create a SessionCreationAttributes
object called attributes and set four parameters in the object.

The first parameter is the session name. This is optional. The session name can be any descriptive name
you want to assign to your session. It is for information purposes, such as in the command-line interface.

The second parameter is the session type. The session type is optional. You can leave this parameter blank
and system default values are used for your session.

The third parameter is the session flag, which we specify as ReceiveSync. You must specify it as shown.
This indicates to Symphony that this is a synchronous session.

The fourth parameter is the common data value that will be shared among tasks in the session.

We pass the attributes object to the createSession() method, which returns a pointer to the
session.

Important:
The session type must be the same session type as defined in your
application profile.

You define characteristics for the session with the session type in the
application profile.

 // Set up session creation attributes
 SessionCreationAttributes attributes;
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session::ReceiveSync);
 attributes.setCommonData(&commonData);
 // Create a synchronous session
 SessionPtr sesPtr = conPtr->createSession(attributes);

Send input data to be processed
In this step, we create n input messages to be processed by the service. When a message is sent, a task
input handle is returned. This task input handle contains the ID for the task that was created for this input
message.

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

16 Developing Symphony Applications for Cell BE Tutorial

 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 // Create a message
 MyMessage inMsg(taskInput, "", spus, true);
 // Create task attributes
 TaskSubmissionAttributes attrTask;
 attrTask.setTaskInput(&inMsg);
 // send it
 TaskInputHandlePtr input = sesPtr->sendTaskInput(attrTask);
 // Retrieve and print task ID
 cout << "task submitted with ID : " << input->getId() << endl;
 }

Retrieve output
Pass the number of tasks to the fetchTaskOutput() method to retrieve the output messages that were
produced by the service. This method blocks until the output for all tasks is retrieved. The return value
is an enumeration that contains the completed task results.Iterate through the task results and extract the
messages using the populateTaskOutput() method. Display the task ID and the results from the
output message.

 // Now get our results - will block here until all tasks retrieved
 EnumItemsPtr enumOutput = sesPtr->fetchTaskOutput(tasksToSend);
 // Inspect results
 TaskOutputHandlePtr output;
 while(enumOutput->getNext(output))
 {
 // Check for success of task
 if (true == output->isSuccessful())
 {
 // Get the message returned from the service
 MyMessage outMsg;
 output->populateTaskOutput(&outMsg);
 // Display content of reply
 cout << "Task Succeeded [" << output->getId() << "]" << endl;
 cout << outMsg.getString() << endl;
 }
 else
 {
 // Get the exception associated with this task
 SoamExceptionPtr ex = output->getException();
 cout << "Task Failed : " << ex->what() << endl;
 }
 }

Catch exceptions
Any exceptions thrown take the form of SoamException. Catch all Symphony exceptions to know about
exceptions that occurred in the client application, service, and middleware.

The following sample code catches exceptions of type SoamException.

catch(SoamException& exp)
{
 // Report exception
 cout << "exception caught ... " << exp.what() << endl;
}

Uninitialize
Always uninitialize the client API at the end of all API calls. If you do not call uninitialize, the client API
is in an undefined state, resources used by the client are held indefinitely, and there is no guarantee your
client will be stable.

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 17

Important:
Once you uninitialize, all objects become invalid. For example, you can
no longer create a session or send an input message.

 // uninitialize the API
 // This is the only means to ensure proper shutdown
 // of the interaction between the client and the system.
 SoamFactory::uninitialize();
...

Review the sample calculation code
The calculation code is contained in service_spu.c. This is the program that transfers, via DMA, the
data from the PPE to the SPEs for execution. Memory flow controller (MFC) commands are used to
transfer the data between the PPE and SPEs. You can see from this code sample that each SPE simply
calculates the addition of the task input value and the common data value. from the client.

 int main(unsigned long long speid __attribute__ ((unused)), unsigned long long
 parms_ea)
 {
 int tag = 31, tag_mask = 1<<tag;

 //Fetch the parameters from PPU
 mfc_get(&parms, (unsigned long long)parms_ea, sizeof(parms), tag, 0, 0);
 mfc_write_tag_mask(tag_mask);
 mfc_read_tag_status_any();
 //Calculate
 parms.taskOutput = parms.taskInput + parms.commonDataInput;
 //Send parameters back to PPU
 mfc_put(&parms, (unsigned long long)parms_ea, sizeof(parms), tag, 0, 0);
 mfc_write_tag_mask(tag_mask);
 mfc_read_tag_status_any();

 return (0);
 }
...

Review the sample service code
The Symphony service code provides inputs to calculation code that is executed on the SPEs. To take
advantage of the Cell BE architecture, the service creates individual threads that run concurrently on
individual SPEs. Each thread has its own context.

This sample uses the following basic algorithm to run multiple SPE contexts:

1. Create n SPE contexts (one for each SPE thread).
2. Load the SPE calculation program (executable object) into each SPE context’s local memory.
3. Run an SPE context in each thread.
4. Wait for each SPE thread to terminate.
5. Destroy the SPE thread context.

Define a service container
For a service to be managed by Symphony, it needs to be in a container object. This is the service container.

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

18 Developing Symphony Applications for Cell BE Tutorial

In SampleService.cpp, we inherited from the ServiceContainer class.

class MyServiceContainer : public ServiceContainer

Run the container
The service is implemented within an executable. At a minimum, we need to create within our main
function an instance of the service container and run it.

int main(int argc, char* argv[])
{
 // return value of our service program
 int retVal = 0;
 try
 {
 // Create the container and run it
 MyServiceContainer myContainer;
 myContainer.run();
 }

Retrieve the common data
Load the session common data into memory by implementing onSessionEnter() before the
onInvoke() call. When common data is available, Symphony invokes onSessionEnter() once after
the service is bound to your session.

Use the populateCommonData() method of the sessionContext object to load the common data.

void onSessionEnter (SessionContextPtr& sessionContext)
{
 // if common data exists now, delete it to prevent memory leak
 if (0 != m_commonData)
 {
 delete m_commonData;
 m_commonData = 0;
 }
 // populate our common data object
 m_commonData = new MyCommonData();
 sessionContext->populateCommonData(*m_commonData);
}
...

Process the input
Symphony calls onInvoke() on the service container once per task. Once you inherit from the
ServiceContainer class, implement handlers so that the service can function properly.

To gain access to the data from the client, you must present an instance of the message object to the
populateTaskInput() method on the task context. The task context contains all information and

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 19

functionality that is available to the service during an onInvoke() call in relation to the task that is being
processed.

Important:
Services are virtualized. As a result, a service should not read from stdin
or write to stdout. Services can, however, read from and write to files that
are accessible to all compute hosts.

You pass the message object, which comes from the client application, to populateTaskInput().
During this call, the data sent from the client is used to populate the message object. Task context such
as the number of SPEs to run per task and the task input value are then loaded into local variables for use
by the service code.

{
public:
virtual void onInvoke (TaskContextPtr& taskContext)
{
 // get the input that was sent from the client
 MyMessage inMsg;
 taskContext->populateTaskInput(inMsg);
 int spus = inMsg.getSpus();
 int taskInput = inMsg.getTaskInput();
 int commonDataInput = m_commonData->getInt();
...

Initialize the SPE threads
Since this service will use n SPEs concurrently, it is necessary for the service to create n threads. Each of
these threads will run a single SPE context at a time. The thread runs on the SPE and is responsible for
running the calculation program and retrieving the result.

Since we will be running tasks on n SPEs, we need to create an array to hold the parameters of each thread.

The mm_parms structure is instantiated as parms, which is used on the service side for passing messages
between the PPE and SPE. The mm_parms structure is declared and defined in params.h.

Members of the mm_params structure include:

• taskInput stores the integer that is entered on the command line when running SyncClient with the
-i parameter.

• commonDataInput stores the integer entered on the command line when running SyncClient with
the -c parameter

• taskOutput stores the addition result in the SPE, which is passed back to the PPE.

 int i;
 for (i=0; i<spus; i++)
 {
 /* Initialize the thread structure and its parameters.
 */
 threads[i].parms.taskInput = taskInput;
 threads[i].parms.commonDataInput = commonDataInput;
 threads[i].parms.taskOutput = 0;

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

20 Developing Symphony Applications for Cell BE Tutorial

typedef struct _mm_parms
{
 unsigned int taskInput __attribute__ ((aligned (16)));
 unsigned int commonDataInput __attribute__ ((aligned (16)));
 //parameter sent to SPU and assigned as taskInput + commonDataInput in SPU
 unsigned int taskOutput __attribute__ ((aligned (16)));
} mm_parms;

Start the calculation program on the SPE
The PPE starts the calculation program by creating a thread on each SPE. The PPE uses the
spe_context_create(), spe_program_load(), and spe_context_run() library calls provided
in the SPE runtime management library.

The context for the SPE thread contains the persistent data about the SPE. Before being able to use an
SPE, the SPE context data structure has to be created and initialized. This is done by calling
spe_context_create(), which returns a pointer to the newly created SPE context when it is
successfully created.

Before being able to run an SPE context, an SPE program has to be loaded into the context using the
spe_program_load() call. You must pass a valid pointer to the SPE context and the address of the SPE
program to spe_program_load().

The pthread_create() function creates a new thread of control that executes concurrently with the
calling thread. The pthread_create() function requires you to pass a variable that will hold the ID of
the newly created thread, the function (ppu_thread_function) that the thread will execute, and the
SPE context pointer. The ppu_thread_function receives the SPE context pointer as its sole argument
and calls spe_context_run(), which executes the SPE context on a physical SPE. This subroutine
causes the current PPE thread to transition to an SPE thread by passing its execution control from the
PPE to the SPE whose context it is scheduled to run on.

 //Create context for the SPU thread
 if ((threads[i].id = spe_context_create (0, NULL)) == NULL)
 {
 sprintf(errmsg,"INTERNAL ERROR: failed to create spu context %d. Error
 = %s\n", i, strerror(errno));
 throw new FatalException(errmsg);
 }
 //Load program into context
 if (spe_program_load (threads[i].id, &service_spu) != 0)
 {
 sprintf(errmsg, "INTERNAL ERROR: failed to load program %d. Error = %s
 \n", i, strerror(errno));
 throw new FatalException(errmsg);
 }
 //Execute context on SPU
 if (pthread_create (&threads[i].pthread, NULL, &ppu_pthread_function,
 &threads[i].id) != 0)
 {
 sprintf(errmsg, "INTERNAL ERROR: failed to create pthread %d. Error =
 %s\n", i, strerror(errno));
 throw new FatalException(errmsg);
 }
}
...

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 21

void *ppu_pthread_function(void *arg)
{
 struct _threads *data;
 unsigned int entry = SPE_DEFAULT_ENTRY;
 data = (struct _threads *)arg;
 //This subroutine causes the current PPE thread to transition to an SPE thread
 if (spe_context_run(data->id, &entry, 0, (void *)(&(data->parms)), NULL, NULL) < 0)
 {
 throw new FatalException("Failed running context");
 }
 pthread_exit(NULL);
}

Wait for the results
Wait for all the SPEs to complete the calculations and then return execution control to the PPE. The
pthread_join() function suspends execution of the calling thread until all the SPE threads have
terminated.

...
 for (i=0; i<spus; i++)
 {
 //Wait for the SPU to complete
 if (pthread_join (threads[i].pthread, NULL) != 0)
 {
 sprintf(errmsg, "INTERNAL ERROR: failed to join pthread %d.
 Error = %s\n", i, strerror(errno));
 throw new FatalException(errmsg);
 }

Destroy the thread contexts
As each SPE thread terminates, destroy the thread context to release the associated resources and free the
memory used by the SPE context data structures.

 //Destroy context
 if (spe_context_destroy (threads[i].id) != 0)
 {
 sprintf(errmsg, "INTERNAL ERROR: failed to destroy context %d. Error =
 %s\n", i, strerror(errno));
 throw new FatalException(errmsg);
 }

Retrieve the results
Once the computations are complete, we collect and format the results. When the results are completely
assembled, they are added to the output message object. This object is then passed to the setTaskOutput
() method, which sends the results to the client.

 //Set output
 MyMessage outMsg;
 ostringstream ostr;
 ostr<<"Task output:\n";
 //append calculation result to output
 for (i=0; i<spus; i++)
 {
 ostr<<"SPU["<<((i+1)<10?"0":"")<<(i+1)<<"]:
 "<<threads[i].parms.taskOutput<<(i==(spus-1)?"":"\n");
 }
 outMsg.setString(ostr.str().c_str());
 // set our output message
 taskContext->setTaskOutput(outMsg);
}

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

22 Developing Symphony Applications for Cell BE Tutorial

Review the sample service makefiles
During the build process for the service code, the makefiles at $SOAM_HOME/5.1/samples/CPP/
IBMCell/cell/Service/ perform the following actions:

1. Change the current directory to the directory in which the SPE code is located:

cd $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/Service/spu/
2. Compile SPE code to an SPE object file:

spu-gcc -I .. -c -o service_spu.o service_spu.c
3. Link the SPE object file to an SPE executable:

spu-gcc -o service_spu service_spu.o
4. Convert the SPE executable to a PPE-embedded object file (using ppu-embedspu):

ppu-embedspu -m32 service_spu service_spu service_spu-embed.o
5. Archive the PPU-embedded object file to a .a file:

ppu-ar -qcs lib_service_spu.a service_spu-embed.o;
6. Change the current directory to the directory in which the PPE code is located:

cd $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/Service/
7. Compile PPE code to a PPE object file:

ppu-g++ -W -Wall -Winline -Wno-unused -m32 -g -DGCC34 -DLINUX -I . -I ../../../../../include -I ../
Common -c -o SampleService.o SampleService.cpp

8. Link the PPE object file and PPE-embedded object file to a PPE executable:

g++ -m32 -o ../Output/SampleService SampleService.o -lspe2 spu/lib_service_spu.a -L ../Output
-L ../../../../../linux2.6-glibc2.5-ppc64_CellBE/lib32 -lsampleCommon -lsoambase -lsoamapi

Build, package, deploy, and run the sample client
and service

You can build client application and service samples at the same time.

1. Log on to the client host.
2. Locate ego.conf. The default location is /opt/symphonySDK/SDK51/conf/ego.conf. Set

EGO_MASTER_LIST and EGO_KD_PORT in ego.conf, as follows:

EGO_MASTER_LIST= master hostname

EGO_KD_PORT= same value as $EGO_TOP/kernel/conf/ego.conf

3. Set the environment variable:

• For csh, enter
setenv SOAM_HOME /opt/symphonySDK/SDK51/

• For bash, enter
export SOAM_HOME=/opt/symphonySDK/SDK51/

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 23

4. Change the current directory to the conf directory:

cd $SOAM_HOME/conf/
5. Source the environment:

• For csh, enter

source cshrc.symclient
• For bash, enter

. profile. Symclient
6. Change the current directory to the directory in which the samples are located:

cd $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/
7. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CPP/IBMCell/cell:

make
8. Change the current directory to the directory in which the compiled samples are located:

cd $SOAM_HOME/5.1/samples/CPP/IBMCell/cell/Output/
9. Create the service package by compressing the service executable into a tar file:

tar -cvf SampleService.tar SampleService

gzip SampleService.tar

You have now created your service package SampleService.tar.gz.
10. Deploy the service package with the soamdeploy command:

soamdeploy add SampleServiceCell -p SampleService.tar.gz -c /SampleApplications/
SOASamples

The service package is deployed.
11. Check the list of deployed services with the soamdeploy view command:

soamdeploy view -c /SampleApplications/SOASamples
12. Register the application with the soamreg command:

soamreg ../SampleAppCell.xml
13. Check the list of registered applications with the soamview app command:

soamview app
14. Run the client application:

./SyncClient -i 1 -c 1 -t 1 -s 1

Start dispatching Symphony task with following parameters:
Task number: 1
Task input: 1
Common data input: 1
Operation on SPU: Task input + Common data input
SPU number: 1
connection ID=84e4981e-ffff-ffff-c000-00145ef51544-4118186896-2324
Session ID:2301
task submitted with ID : 1
Task Succeeded [1]
Task output:
SPU[01]: 2
All Done !!
Session execution time = 8.31 seconds

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

24 Developing Symphony Applications for Cell BE Tutorial

Cluster configuration
Configure HostType and HostModel

To enable the master host to correctly identify the HostType and HostModel of a Cell BE host, the
following two lines must be added into $EGO_CONFDIR/ego.shared on the master host:

1. Add “LINUXCELLBE” between “Begin HostType” and “End HostType”.
2. Add “CELLBE 13.5 (CellBroadbandEngine)” between “Begin HostModel” and “End HostModel".

Note the spacing of the text on the line.

Example:
Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
……
PC1133 23.1 (x6_1189_PentiumIIICoppermine)
CELLBE 13.5 (CellBroadbandEngine)
PC6000 116.1 (x15_5980_IntelRPentiumR4CPU300GHz)
……
End HostModel

Configuring host slots
Symphony uses the number of CPUs to derive the default number of slots. You must configure
EGO_DEFINE_NCPUS in $EGO_CONFDIR/ego.conf on the master host to set the correct number of
CPUs for the Cell BE host.

To make full use of the SPE, the following two modes are recommended.

1. Define the number of slots based on the number of CPU cores. Use this mode when you want to
effectively share the SPEs among sessions and applications.

To define the number of slots based on CPU cores, set EGO_DEFINE_NCPUS=cores and create one
SPE thread for each task.

Since one Cell BE host has two processors and each processor has eight cores, one Cell BE host will
have 16 slots. Therefore, up to 16 tasks can run on one Cell BE host concurrently. If one task only
creates one SPE thread, the 16 tasks can make full use of the SPEs.

2. Define the number of slots based on the number of processors. Configuring one slot per multiple SPEs
is advantageous if your program is making use of advanced multi-core optimizations to speed up
calculations.

To define the number of slots based on processors, set EGO_DEFINE_NCPUS=procs and create eight
SPE threads for each task.

Since one Cell BE host has two processors, one Cell BE host will have two slots. Therefore, up to two
tasks can run on one Cell BE host concurrently. If one task creates eight SPE threads, the two tasks
can make full use of the SPEs.

Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE

Developing Symphony Applications for Cell BE Tutorial 25

A
Appendix A: Symphony API Summary

This section summarizes the scope of the service API with regard to the SPE.

Symphony API Symphony class Availability on SPE

SoamException (void) throw () SoamException Not available

virtual const char * what () const throw () SoamException pass return value to
SPE when starting SPE
thread

virtual SOAM_HRESULT getHR () const throw () SoamException pass return value to
SPE when starting SPE
thread

virtual int getErrorCode (void) const throw () SoamException pass return value to
SPE when starting SPE
thread

virtual const char * getErrorType (void) const throw () SoamException pass return value to
SPE when starting SPE
thread

SoamException * getEmbeddedException (void) const throw
()

SoamException Not available

SoamException & operator= (const SoamException &rhs) SoamException Not available

SoamException * operator-> () const SoamExceptionPtr Not available

bool isNull () const SoamExceptionPtr pass return value to
SPE when starting SPE
thread

void setNull () SoamExceptionPtr Not available

SoamExceptionPtr & operator= (SoamExceptionPtr rhs) SoamExceptionPtr Not available

SoamExceptionPtr & operator= (SoamException *rhs) SoamExceptionPtr Not available

Appendix A: Symphony API Summary

26 Developing Symphony Applications for Cell BE Tutorial

Symphony API Symphony class Availability on SPE

bool operator== (const SoamExceptionPtr &rhs) const SoamExceptionPtr pass return value to
SPE when starting SPE
thread

bool operator== (const SoamException *rhs) const SoamExceptionPtr pass return value to
SPE when starting SPE
thread

bool operator!= (const SoamExceptionPtr &rhs) const SoamExceptionPtr pass return value to
SPE when starting SPE
thread

bool operator!= (const SoamException *rhs) const SoamExceptionPtr pass return value to
SPE when starting SPE
thread

operator SoamException * () const SoamExceptionPtr Not available

FailureException (void) throw () FailureException Not available

FailureException (const char *errorDescription, int
errorCode=0) throw ()

FailureException Not available

FailureException & operator= (const FailureException &rhs) FailureException Not available

void applyCustomizedDebugAction (bool shouldApply) FailureException Not available

FailureException * operator-> () const FailureExceptionPtr Not available

FatalException (void) throw () FatalException Not available

FatalException (const char *errorDescription, int
errorCode=0) throw ()

FatalException Not available

FatalException & operator= (const FatalException &rhs) FatalException Not available

void applyCustomizedDebugAction (bool shouldApply) FatalException Not available

FatalException * operator-> () const FatalExceptionPtr Not available

T * operator-> () const SoamSmartPtr Not available

bool isNull () const SoamSmartPtr pass return value to
SPE when starting SPE
thread

void setNull () SoamSmartPtr Not available

SoamSmartPtr< T > & operator= (SoamSmartPtr< T > other) SoamSmartPtr Not available

SoamSmartPtr< T > & operator= (T *obj) SoamSmartPtr Not available

bool operator== (const SoamSmartPtr< T > &a) const SoamSmartPtr pass return value to
SPE when starting SPE
thread

Appendix A: Symphony API Summary

Developing Symphony Applications for Cell BE Tutorial 27

Symphony API Symphony class Availability on SPE

bool operator!= (const SoamSmartPtr< T > &a) const SoamSmartPtr pass return value to
SPE when starting SPE
thread

virtual void onCreateService (ServiceContextPtr
&serviceContext)

ServiceContainer Not available

virtual void onDestroyService () ServiceContainer Not available

virtual void onSessionEnter (SessionContextPtr
&sessionContext)

ServiceContainer Not available

virtual void onSessionLeave () ServiceContainer Not available

virtual void onInvoke (TaskContextPtr &taskContext)=0 ServiceContainer Not available

virtual void onServiceInterrupt (ServiceContextPtr
&serviceContext)

ServiceContainer Not available

void run (void *stack=0, size_t stackSize=0) ServiceContainer Not available

int run (int argc, char *argv[], void *stack=0, size_t
stackSize=0)

ServiceContainer Not available

const char * getServiceName () const throw (SoamException) ServiceContext pass return value to
SPE when starting SPE
thread

InterruptEvent getLastInterruptEvent (SoamULong
&gracePeriod) const throw (SoamException)

ServiceContext pass return value/OUT
parameter value to SPE
when starting SPE
thread

void setControlCode (SoamInt code) throw (SoamException) ServiceContext Not available

const char * getApplicationName () const throw
(SoamException)

ServiceContext pass return value to
SPE when starting SPE
thread

const char * getConsumerId () const throw (SoamException) ServiceContext pass return value to
SPE when starting SPE
thread

const char * getDeployDirectory () const throw
(SoamException)

ServiceContext pass return value to
SPE when starting SPE
thread

const char * getLogDirectory () const throw (SoamException) ServiceContext pass return value to
SPE when starting SPE
thread

const char * getSessionId (void) const throw
(SoamException)

SessionContext pass return value to
SPE when starting SPE
thread

Appendix A: Symphony API Summary

28 Developing Symphony Applications for Cell BE Tutorial

Symphony API Symphony class Availability on SPE

void getCommonData (Message &commonData) const throw
(SoamException)

SessionContext Not available

void populateCommonData (Message &commonData) const
throw (SoamException)

SessionContext Not available

void discardCommonData (void) throw (SoamException) SessionContext Not available

const char * getSessionId (void) const throw
(SoamException)

TaskContext pass return value to
SPE when starting SPE
thread

const char * getTaskId (void) const throw (SoamException) TaskContext pass return value to
SPE when starting SPE
thread

void getInputMessage (Message &inMsg) const throw
(SoamException)

TaskContext Not available

void populateTaskInput (Message &inputMessage) const
throw (SoamException)

TaskContext Not available

void setOutputMessage (Message &outMsg) throw
(SoamException)

TaskContext Not available

void setTaskOutput (Message &outputMessage) throw
(SoamException)

TaskContext Not available

void discardInputMessage (void) throw (SoamException) TaskContext Not available

TaskContextPtr

virtual void onSerialize (OutputStreamPtr &stream)=0 throw
(SoamException)

Message Not available

virtual void onDeserialize (InputStreamPtr &stream)=0 throw
(SoamException)

Message Not available

DefaultBinaryMessage (void) DefaultBinaryMessage Not available

DefaultBinaryMessage (const char *buffer, unsigned long
length, bool shouldCopy=false)

DefaultBinaryMessage Not available

void onSerialize (OutputStreamPtr &stream) throw
(SoamException)

DefaultBinaryMessage Not available

void onDeserialize (InputStreamPtr &stream) throw
(SoamException)

DefaultBinaryMessage Not available

void setBuffer (const char *buffer, unsigned long length, bool
shouldCopy=false)

DefaultBinaryMessage Not available

Appendix A: Symphony API Summary

Developing Symphony Applications for Cell BE Tutorial 29

Symphony API Symphony class Availability on SPE

const char * getBuffer (unsigned long &length) const DefaultBinaryMessage pass return value/OUT
parameter value to SPE
when starting SPE
thread

DefaultByteArrayMessage (void) DefaultByteArrayMessage Not available

DefaultByteArrayMessage (const void *byteArray, SoamUInt
length, SoamBool shouldCopy=false)

DefaultByteArrayMessage Not available

void onSerialize (OutputStreamPtr &stream) throw
(SoamException)

DefaultByteArrayMessage Not available

void onDeserialize (InputStreamPtr &stream) throw
(SoamException)

DefaultByteArrayMessage Not available

void setByteArray (const void *byteArray, SoamUInt length,
SoamBool shouldCopy=false)

DefaultByteArrayMessage Not available

void getByteArray (char *&byteArray, SoamUInt &length,
SoamBool shouldCopy=false) const

DefaultByteArrayMessage pass OUT parameter
value to SPE when
starting SPE thread

DefaultTextMessage (void) DefaultTextMessage Not available

DefaultTextMessage (const std::string &text) DefaultTextMessage Not available

DefaultTextMessage (const char *text) DefaultTextMessage Not available

void onSerialize (OutputStreamPtr &stream) throw
(SoamException)

DefaultTextMessage Not available

void onDeserialize (InputStreamPtr &stream) throw
(SoamException)

DefaultTextMessage Not available

void setText (const std::string &text) DefaultTextMessage Not available

void setText (const char *text) DefaultTextMessage Not available

void getText (std::string &text) const DefaultTextMessage pass OUT parameter
value to SPE when
starting SPE thread

const char * getText () const DefaultTextMessage pass return value to
SPE when starting SPE
thread

operator const char * () const DefaultTextMessage pass return value to
SPE when starting SPE
thread

bool getNext (TaskOutputHandlePtr &taskOutputHandle)
throw (SoamException)

EnumItems pass return value to
SPE when starting SPE
thread

void reset () throw (SoamException) EnumItems Not available

Appendix A: Symphony API Summary

30 Developing Symphony Applications for Cell BE Tutorial

Symphony API Symphony class Availability on SPE

void skip (SoamULong skipCount) throw (SoamException) EnumItems Not available

SoamULong getCount () throw (SoamException) EnumItems pass return value to
SPE when starting SPE
thread

EnumItemsPtr clone () throw (SoamException) EnumItems Not available

virtual void read (short &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (unsigned short &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (int &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (unsigned int &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (long &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (unsigned long &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (long long &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (unsigned long long &x) throw
(SoamException)

InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (float &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (double &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (bool &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (char &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

Appendix A: Symphony API Summary

Developing Symphony Applications for Cell BE Tutorial 31

Symphony API Symphony class Availability on SPE

virtual void read (char *&x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void read (std::string &x) throw (SoamException) InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void readBytes (void *x, unsigned long length) throw
(SoamException)

InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void readByteArray (char *&x, unsigned long &length)
throw (SoamException)

InputStream pass OUT parameter
value to SPE when
starting SPE thread

virtual void write (short x) throw (SoamException) OutputStream Not available

virtual void write (unsigned short x) throw (SoamException) OutputStream Not available

virtual void write (int x) throw (SoamException) OutputStream Not available

virtual void write (unsigned int x) throw (SoamException) OutputStream Not available

virtual void write (long x) throw (SoamException) OutputStream Not available

virtual void write (unsigned long x) throw (SoamException) OutputStream Not available

virtual void write (long long x) throw (SoamException) OutputStream Not available

virtual void write (unsigned long long x) throw
(SoamException)

OutputStream Not available

virtual void write (float x) throw (SoamException) OutputStream Not available

virtual void write (double x) throw (SoamException) OutputStream Not available

virtual void write (bool x) throw (SoamException) OutputStream Not available

virtual void write (char x) throw (SoamException) OutputStream Not available

virtual void write (const char *x) throw (SoamException) OutputStream Not available

virtual void write (const std::string &x) throw (SoamException) OutputStream Not available

virtual void writeBytes (const void *x, unsigned long length)
throw (SoamException)

OutputStream Not available

virtual void writeByteArray (const char *x, unsigned int offset,
unsigned int length) throw (SoamException)

OutputStream Not available

Appendix A: Symphony API Summary

32 Developing Symphony Applications for Cell BE Tutorial

Index
C
client

connecting to an application 15
creating a session 16
initializing 15
retrieving output from Symphony 17
sending data to Symphony 16
session name 16
session type 16
uninitializing 17

client and service
building 23
running 24

client host
requirements 7

command line arguments 13

K
Knowledge Center 8

M
message object

declaring 10

P
PPE

overview 6
programming process model 6

S

service
algorithm 18
define and run a container 18
makefiles 23
onInvoke() 19
populateTaskInput() 19
process the input 19
retrieving results 22
SetTaskOutput() 22

service host
requirements 7

service instance manager
overview 5

session manager
overview 5

SPE
overview 6

SPE threads
initializing 20

Symphony
installing 8

symping application 8

Developing Symphony Applications for Cell BE Tutorial 33

	Contents
	Copyright
	Tutorial: Developing a Synchronous Symphony Application for the IBM Cell BE
	Goal
	Overview
	Application development methodology
	Symphony service API scope
	Prerequisites
	Installing Symphony
	Where to find the documentation
	Limitations
	symping5.1 and symexec5.1 applications

	Review and understand the sample
	Review the sample message code
	Review the sample common data code
	Review the sample client code
	Review the sample calculation code
	Review the sample service code

	Review the sample service makefiles
	Build, package, deploy, and run the sample client and service
	Cluster configuration
	Configure HostType and HostModel
	Configuring host slots

	Appendix A: Symphony API Summary
	Index

