
Symphony Developer Tutorials

Platform Symphony
Version 5.1
April 2011

Copyright © 1994-2011 Platform Computing Corporation

All rights reserved.

Although the information in this document has been carefully reviewed, Platform Computing Corporation
(“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections,
updates, revisions or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness
of the information. If you find an error, or just want to make a suggestion for improving this document, please address
your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided
that you continue to check the Platform Web site for updates and update your version of the documentation. You may
not make it available to your organization over the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.
™ ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOB
SCHEDULER, PLATFORM ISF, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the
PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the United States and
in other jurisdictions.
® UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
® Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel®, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their
respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
C++ Tutorials ... 5

Tutorial: Synchronous Symphony C++ client tutorial .. 5
Tutorial: SampleApp: Developing an asynchronous Symphony C++ client 13
Tutorial: SampleApp: Your first Symphony C++ service ... 22
Tutorial: SharingData: Developing a C++ client and service to share data among
tasks .. 28

Java Tutorials .. 34
Tutorial: SampleApp: Your first synchronous Symphony Java client 34
Tutorial: SampleApp: Developing an asynchronous Symphony Java client 44
Tutorial: SampleApp: Your first Symphony Java service .. 53
Tutorial: SharingData: Developing a Java client and service to share data among
tasks .. 58

.NET Tutorials .. 67
Tutorial: SampleApp: Your first synchronous Symphony C# client and service 67
Tutorial: SampleApp: Developing an asynchronous Symphony C# client 77
Tutorial: SharingData: Developing a C# client and service to share data among
tasks .. 83

Cross-language Tutorials .. 91
Tutorial: CrossLanguage: Developing cross-language clients and services 91

COM Tutorial .. 105
Tutorial: Developing a COM API client .. 105

Eclipse Tutorial .. 117
Tutorial: Developing a Symphony application with Eclipse .. 117

Visual Studio Tutorial .. 135
Tutorial: On-boarding a Symphony application with Visual Studio 135

Symphony Developer Tutorials 3

4 Symphony Developer Tutorials

C++ Tutorials

Tutorial: Synchronous Symphony C++ client
tutorial

Goal
This tutorial guides you through the process of building, packaging, deploying, and running the hello
grid sample client and service. It also walks you through the sample client application code.

You learn the minimum amount of code that you need to create a client.

At a glance
Before you begin, ensure you have installed and started Platform Symphony DE. You complete the
following tasks:

1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows

You can build client application and service samples at the same time.

1. In %SOAM_HOME%\5.1\samples\CPP\SampleApp, locate workspace file sampleCPP_vc6.dsw,
or one of the Visual Studio solution files.

2. Load the file into Visual Studio and build it.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.

For example, if you installed Symphony DE in /opt/symphonyDE/DE51, go to /opt/symphonyDE/
DE51/conf.

2. Source the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CPP/SampleApp:

C++ Tutorials

Symphony Developer Tutorials 5

make

Package the sample service
On Windows

To deploy the service, you first need to package it.

1. Go to the directory in which the compiled samples are located.

cd %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\
2. Create the service package by compressing the service executable into a zip file.

gzip SampleServiceCPP.exe

You have now created your service package SampleServiceCPP.exe.gz.

On Linux
To deploy the service, you first need to package it.

1. Change to the directory in which the compiled samples are located:

cd $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/
2. Create the service package by archiving and compressing the service executable file:

tar -cvf SampleServiceCPP.tar SampleServiceCPP

gzip SampleServiceCPP.tar

You have now created your service package SampleServiceCPP.tar.gz.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue.

For SampleApp, you can find your profile in the following location:

• Windows—%SOAM_HOME%\5.1\samples\CPP\SampleApp\SampleApp.xml
• Linux—$SOAM_HOME/5.1/samples/CPP/SampleApp/SampleApp.xml

C++ Tutorials

6 Symphony Developer Tutorials

The Service Package location window displays.
6. Browse to the service package you created in .gz or tar.gz format and select it. Click Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

%SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\SyncClient.exe

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

On Linux
1. Run the client application:

$SOAM_HOME/5.1/samples/CPP/SampleApp/Output/SyncClient

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

Review and understand the samples
You review the sample client application code to learn how you can create a synchronous client
application.

C++ Tutorials

Symphony Developer Tutorials 7

Locate the code samples
Operating System Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\CPP\SampleApp
\SyncClient

Message object %SOAM_HOME%\5.1\samples\CPP\SampleApp\Common

Service code %SOAM_HOME%\5.1\samples\CPP\SampleApp
\Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

%SOAM_HOME%\5.1\samples\CPP\SampleApp
\SampleApp.xml

Output directory %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output
\

Linux Client $SOAM_HOME/5.1/samples/CPP/SampleApp/
SyncClient

Message object $SOAM_HOME/5.1/samples/CPP/SampleApp/Common

Service code $SOAM_HOME/5.1/samples/CPP/SampleApp/Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

$SOAM_HOME/5.1/samples/CPP/SampleApp/
SampleApp.xml

Output directory $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/

What the sample does
The client application sample opens a session and sends 10 input messages, and retrieves the results. The
client application is a synchronous client that sends input and blocks the output until all the results are
returned.

The service takes input data sent by client applications, returns the input data you have sent and replies
"Hello Client!!"

Review the sample code
Input and output: declare the message object

Your client application needs to handle data that it sends as input, and output data that it receives from
the service.

C++ Tutorials

8 Symphony Developer Tutorials

Tip:
Client applications and services share the same message class.

In MyMessage.h:

• We declare the MyMessage class
• We define serialization methods for input and output messages
• We implement methods to handle the data

Note:
For this example, we have defined the same class for input and output
messages. However, you can define separate classes for input and output
messages.

#pragma once
#include "soam.h"
class MyMessage :
 public soam::Message
{
public:
 MyMessage();
 MyMessage(int i, bool isSync, char* str);
 virtual ~MyMessage(void);
 void onSerialize(
 /*[in]*/ soam::OutputStreamPtr &stream) throw (soam::SoamException);
 void onDeserialize(
 /*[in]*/ soam::InputStreamPtr &stream) throw (soam::SoamException);
// accessors
public:
 int getInt() const{return m_int;}
 void setInt(int _int) {m_int = _int;}
 const char* getString() {return m_string;}
 void setString(const char* str) {freeString(m_string); m_string = copyString(str);}
 bool getIsSync() const{return (m_isSync != 0);}
 void setIsSync(bool isSync) {m_isSync = isSync;}
private:
 char* copyString(const char* strSource);
 void freeString(char* strToFree);
private:
 int m_int;
 bool m_isSync;
 char* m_string;
};

Implement the MyMessage object
Once your message object is declared, implement handlers for serialization and deserialization.

In MyMessage.cpp, we implement methods to handle the data. For data types that are supported by
Symphony DE, see the appropriate API reference.

C++ Tutorials

Symphony Developer Tutorials 9

Note:
If you already have an application with a message object that is serialized,
you can pass a binary blob through the DefaultBinaryMessage class.

#include "stdafx.h"
#include <string.h>
#include "MyMessage.h"
#include "soam.h"
using namespace soam;
MyMessage::MyMessage()
{
 m_int = 0;
 m_string = copyString("");
}
MyMessage::MyMessage(int i, bool isSync, char* str)
{
 m_int = i;
 m_isSync = isSync;
 m_string = copyString(str);
}
MyMessage::~MyMessage(void)
{
 freeString(m_string);
}void MyMessage::onSerialize(OutputStreamPtr &stream) throw (SoamException)
{
 stream->write(m_int);
 stream->write(m_isSync);
 stream->write(m_string);
}void MyMessage::onDeserialize(InputStreamPtr &stream) throw (SoamException)
{
 stream->read(m_int);
 stream->read(m_isSync);
 freeString(m_string);
 stream->read(m_string);
}char* MyMessage::copyString(const char* strSource)
{
 SOAM_ASSERT(0 != strSource);
 size_t len = strlen(strSource);
 char* newString = new char[len+1];
 SOAM_ASSERT(0 != newString);
 strcpy(newString, strSource);
 return newString;
}
void MyMessage::freeString(char* strToFree)
{
 if (0 != strToFree)
 {
 delete []strToFree;
 }
}

Initialize the client
In SyncClient.cpp, when you initialize, you initialize the Symphony client infrastructure. You initialize
once per client.

Important:
Initialization is required. Otherwise, API calls fail.

...
 try
 {
 // Initialize the API
 SoamFactory::initialize();
...

C++ Tutorials

10 Symphony Developer Tutorials

Connect to an application
To send data to be calculated in the form of input messages, you connect to an application.

You specify an application name, a user name, and password. The application name must match that
defined in the application profile.

For Symphony DE, there is no security checking and login credentials are ignored—you can specify any
user name and password. Security checking is done however, when your client application submits
workload to the actual grid.

The default security callback encapsulates the callback for the user name and password.

Tip:
When you connect, a connection object is returned.

...
 // Set up application specific information to be supplied to Symphony
 char appName[]="SampleAppCPP";
 // Set up application authentication information using the default security provider
 DefaultSecurityCallback securityCB("Guest", "Guest");
 // Connect to the specified application
 ConnectionPtr conPtr = SoamFactory::connect(appName, &securityCB);
 // Retrieve and print our connection ID
 cout << "connection ID=" << conPtr->getId() << endl;
...

Create a session to group tasks
A session is a way of logically grouping tasks that are sent to a service for execution. The tasks are sent
and received synchronously.

When creating a session, you need to specify the session attributes by using the SessionCreationAttributes
object. In this sample, we create a SessionCreationAttributes object called attributes and set three
parameters in the object.

The first parameter is the session name. This is optional. The session name can be any descriptive name
you want to assign to your session. It is for information purposes, such as in the command-line interface.

The second parameter is the session type. The session type is optional. If you leave this parameter blank
" " or do not set a session type, system default values are used for session attributes. If you specify a session
type in the client application, you must also configure the session type in the application profile—the
session type name in your application profile and session type you specify in the client must match. If you
use an incorrect session type in the client and the specified session type cannot be found in the applicatin
profile, an exception is thrown to the client.

The third parameter is the session flag, which we specify as ReceiveSync. You must specify it as shown.
This indicates to Symphony that this is a synchronous session.

We pass the attributes object to the createSession() method, which returns a pointer to the session.

 // Set up session creation attributes
 SessionCreationAttributes attributes;
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session::ReceiveSync);
 // Create a synchronous session
 SessionPtr sesPtr = conPtr->createSession(attributes);

C++ Tutorials

Symphony Developer Tutorials 11

Send input data to be processed
In this step, we create 10 input messages to be processed by the service. When a message is sent, a task
input handle is returned. This task input handle contains the ID for the task that was created for this input
message.

 int tasksToSend = 10;
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 // Create a message
 char hello[]="Hello Grid !!";
 MyMessage inMsg(taskCount, true, hello);
 // Create task attributes
 TaskSubmissionAttributes attrTask;
 attrTask.setTaskInput(&inMsg);
 // send it
 TaskInputHandlePtr input = sesPtr->sendTaskInput(attrTask);
 // Retrieve and print task ID
 cout << "task submitted with ID : " << input->getId() << endl;
 }
...

Retrieve output
Pass the number of tasks to the fetchTaskOutput() method to retrieve the output messages that were
produced by the service. This method blocks until the output for all tasks is retrieved. The return value
is an enumeration that contains the completed task results. Iterate through the task results and extract
the messages using the populateTaskOutput() method. Display the task ID and the results from the output
message.

 // Now get our results - will block here until all tasks retrieved
 EnumItemsPtr enumOutput = sesPtr->fetchTaskOutput(tasksToSend);
 // Inspect results
 TaskOutputHandlePtr output;
 while(enumOutput->getNext(output))
 {
 // Check for success of task
 if (true == output->isSuccessful())
 {
 // Get the message returned from the service
 MyMessage outMsg;
 output->populateTaskOutput(&outMsg);
 // Display content of reply
 cout << "Task Succeeded [" << output->getId() << "]" << endl;
 cout << outMsg.getResult() << endl;
 }
 else
 {
 // Get the exception associated with this task
 SoamExceptionPtr ex = output->getException();
 cout << "Task Failed : " << ex->what() << endl;
 }
 }

Catch exceptions
Any exceptions thrown take the form of SoamException. Catch all Symphony exceptions to know about
exceptions that occurred in the client application, service, and middleware.

The sample code above catches exceptions of type SoamException.

C++ Tutorials

12 Symphony Developer Tutorials

catch(SoamException& exp)
{
// Report exception
cout << "exception caught ... " << exp.what() << endl;
}

Uninitialize
Always uninitialize the client API at the end of all API calls. If you do not call uninitialize, the client API
is in an undefined state, resources used by the client are held indefinitely, and there is no guarantee your
client will be stable.

Important:
Once you uninitialize, all objects become invalid. For example, you can
no longer create a session or send an input message.

 // uninitialize the API
 // This is the only means to ensure proper shutdown
 // of the interaction between the client and the system.
 SoamFactory::uninitialize();
...

Tutorial: SampleApp: Developing an
asynchronous Symphony C++ client

Goal
The purpose of an asynchronous client is to get the output as soon as it is available. The client thread does
not need to be blocked once the input data is sent and can perform other actions.

In this tutorial, you learn how to convert a synchronous client into asynchronous.

At a glance
Before you begin, ensure you have installed and started Platform Symphony DE. You complete the
following tasks:

1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows

You can build client application and service samples at the same time.

1. In %SOAM_HOME%\5.1\samples\CPP\SampleApp, locate workspace file sampleCPP_vc6.dsw,
or one of the Visual Studio solution files.

C++ Tutorials

Symphony Developer Tutorials 13

2. Load the file into Visual Studio and build it.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.

For example, if you installed Symphony DE in /opt/symphonyDE/DE51, go to /opt/symphonyDE/
DE51/conf.

2. Source the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CPP/SampleApp:

make

Package the sample service
On Windows

To deploy the service, you first need to package it.

1. Go to the directory in which the compiled samples are located.

cd %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\
2. Create the service package by compressing the service executable into a zip file.

gzip SampleServiceCPP.exe

You have now created your service package SampleServiceCPP.exe.gz.

On Linux
To deploy the service, you first need to package it.

1. Change to the directory in which the compiled samples are located:

cd $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/
2. Create the service package by compressing the service executable into a tar file:

tar -cvf SampleServiceCPP.tar SampleServiceCPP

gzip SampleServiceCPP.tar

You have now created your service package SampleServiceCPP.tar.gz.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

C++ Tutorials

14 Symphony Developer Tutorials

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue.

For SampleApp, you can find your profile in the following location:

• Windows—%SOAM_HOME%\5.1\samples\CPP\SampleApp\SampleApp.xml
• Linux—$SOAM_HOME/5.1/samples/CPP/SampleApp/SampleApp.xml

The Service Package location window displays.
6. Browse to the service package you created in .gz or tar.gz format and select it, then, click Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

%SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\AsyncClient.exe

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

On Linux
1. Run the client application:

$SOAM_HOME/5.1/samples/CPP/SampleApp/Output/AsyncClient

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

C++ Tutorials

Symphony Developer Tutorials 15

Walk through the code
You review the sample client application code to learn how you can understand the differences between
a synchronous client and an asynchronous client.

Locate the code samples
Operating System Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\CPP\SampleApp
\AsyncClient

Message object %SOAM_HOME%\5.1\samples\CPP\SampleApp\Common

Service code %SOAM_HOME%\5.1\samples\CPP\SampleApp
\Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

%SOAM_HOME%\5.1\samples\CPP\SampleApp
\SampleApp.xml

Output directory %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output
\

Linux Client $SOAM_HOME/5.1/samples/CPP/SampleApp/
AsyncClient

Message object $SOAM_HOME/5.1/samples/CPP/SampleApp/Common

Service code $SOAM_HOME/5.1/samples/CPP/SampleApp/Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

$SOAM_HOME/5.1/samples/CPP/SampleApp/
SampleApp.xml

Output directory $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/

What the sample does
The client application sample sends 10 input messages with the data Hello Grid!! and retrieves the results.

Results are returned asynchronously with a callback interface provided by the client to the API. Methods
on this interface are called from threads within the API when certain events occur. In the sample, the
events are:

• When there is an error at the session level
• When results return from Symphony

C++ Tutorials

16 Symphony Developer Tutorials

Considerations for asynchronous clients
Synchronization Because results can come back at any time, it is probable that your callback code needs

synchronization between the callback thread and the controlling thread. The
controlling thread needs to know when work is complete.

Order of results Results are not sent back in order. If order of results is important, the client
application must sort the results.

Code differences between synchronous and asynchronous clients
An asynchronous client is very similar to a synchronous client. The only differences are:

• You need to specify a callback when creating a session
• You specify a different flag to indicate asynchronous when you create a session
• Retrieval of replies

Let us look at the steps to create synchronous and asynchronous clients and highlight the differences.
Steps in bold indicate differences. Everything else is the same as the synchronous client.

C++ Tutorials

Symphony Developer Tutorials 17

Declare the message object and implement
As in the synchronous client tutorial, declare the message object and implement your own message object.

If you have not done so already, take a look at the synchronous client application tutorial Your First
Synchronous Symphony C++ Client for details on the Message object, specifically:

• Input and output: declare the message object
• Implement the MyMessage object

C++ Tutorials

18 Symphony Developer Tutorials

Declare and implement your callback object
Perform this step after declaring the Message object and implementing the MyMessage object.

In MyCallback.h, we create our own callback class from the SessionCallback class, and we implemented
onResponse() to retrieve the output for each input message that we send.

Note:

• onResponse() is called every time a task completes and output is returned to the client. The task output
handle allows the client code to manipulate the output.

• isSuccessful() checks whether there is output to retrieve.
• If there is output to retrieve, populateTaskOutput() gets the output. Once results return, we print them

to standard output and return.

#include "soam.h"
using namespace soam;
using namespace std;
#ifndef WIN32
#include <pthread.h>
#else
#include <windows.h>
#endif
class MySessionCallback :
 public SessionCallback
{
 public:
 MySessionCallback()
 :m_tasksReceived(0), m_exception(false)
 {
#ifndef WIN32
 pthread_mutexattr_t attr;
 pthread_mutexattr_init(&attr);
 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
 pthread_mutex_init(&m_mutex, &attr);
 pthread_mutexattr_destroy(&attr);
#else
 InitializeCriticalSection(&m_criticalSection);
#endif
 cout << "Callback created ... " << endl;
 }
virtual ~MySessionCallback()
 {
#ifndef WIN32
 pthread_mutex_destroy(&m_mutex);
#else
 DeleteCriticalSection(&m_criticalSection);
#endif
 }

C++ Tutorials

Symphony Developer Tutorials 19

///
// This handler is called once any exception occurs
// within the scope of the session.
// ==
virtual void onException(SoamException &exception) throw()
{
cout << "An exception occured on the callback.\nDetails : " << exception.what() << endl;
#ifndef WIN32
 pthread_mutex_lock(&m_mutex);
#else
 EnterCriticalSection(&m_criticalSection);
#endif
 m_exception = true;
#ifndef WIN32
 pthread_mutex_unlock(&m_mutex);
#else
 LeaveCriticalSection(&m_criticalSection);
#endif
}
///
// This handler is called once a message is returned
// from the system when a task completes.
// ==
void onResponse(TaskOutputHandlePtr &output) throw()
 {
 try
 {
 // check for success of task
 if (true == output->isSuccessful())
 { // get the message returned from the service
 MyMessage outMsg;
 output->populateTaskOutput(&outMsg);
 // display content of reply
 cout << "Task Succeeded [" << output->getId() << "]" << endl;
 cout << "Integer Value : " << outMsg.getInt() << endl;
 cout << outMsg.getString() << endl;
 }
 else
 {
 // get the exception associated with this task
 SoamExceptionPtr ex = output->getException();
 cout << "Task Failed : " << ex->what() << endl;
 }
 }
 catch(SoamException &exception)
 {
 cout << "Exception occured in OnResponse() : " << exception.what() << endl;
 }

C++ Tutorials

20 Symphony Developer Tutorials

// Update counter used to synchronize the controlling thread
// with this callback object
#ifndef WIN32
 pthread_mutex_lock(&m_mutex);
#else
 EnterCriticalSection(&m_criticalSection);
#endif
 ++m_tasksReceived;
#ifndef WIN32
 pthread_mutex_unlock(&m_mutex);
#else
 LeaveCriticalSection(&m_criticalSection);
#endif
 }

 inline long getReceived()
 {
 return m_tasksReceived;
 }
 inline bool getDone()
 {
 return m_exception;
 }

private:
#ifndef WIN32
 pthread_mutex_t m_mutex;
#else
 CRITICAL_SECTION m_criticalSection;
#endif
 long m_tasksReceived;
 bool m_exception;
};

Create a session to group tasks
In AsyncClient.cpp, perform this step after you have connected to the application.

When creating an asynchronous session, you need to specify the session attributes by using the
SessionCreationAttributes object. In this sample, we create a SessionCreationAttributes object called
attributes and set four parameters in the object.

The first parameter is the session name. This is optional. The session name can be any descriptive name
you want to assign to your session. It is for information purposes, such as in the command line interface.

The second parameter is the session type. The session type is optional. You can leave this parameter blank
or not make the API call at all. When you do this, system default values are used for your session.

The third parameter is the session flag, which we specify as ReceiveAsync. You must specify it as shown.
This indicates to Symphony that this is an asynchronous session.

The fourth parameter is the callback object.

We pass the attributes object to the createSession() method, which returns a pointer to the session.

...
 // Create session callback
 MySessionCallback myCallback;
 // Set up session creation attributes
 SessionCreationAttributes attributes;
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session::ReceiveAsync);
 attributes.setSessionCallback(&myCallback);
 // Create an asynchronous session
 SessionPtr sesPtr = conPtr->createSession(attributes);
...

C++ Tutorials

Symphony Developer Tutorials 21

Synchronize the controlling and callback threads
Perform this step after sending the input data to be processed.

Since our client is asynchronous, we need to synchronize the controlling thread and the callback thread.
In this example, the controlling thread blocks until all replies have come back.

...
// Now wait until all replies have been received asynchronously
// by our callback ... for illustrative purposes we will poll
// until all replies are in.
while ((myCallback.getReceived() < tasksToSend) && !myCallback.getDone())
 {
 ourSleep(2);
 }
...

Tutorial: SampleApp: Your first Symphony C++
service

Goal
This tutorial guides you through the process of building and running a service, then walks you through
the sample service code.

You learn the minimum amount of code that you need to create a service.

At a glance
Before you begin, ensure you have installed and started Platform Symphony DE.

1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows

You can build client application and service samples at the same time.

1. In %SOAM_HOME%\5.1\samples\CPP\SampleApp, locate workspace file sampleCPP_vc6.dsw,
or one of the Visual Studio solution files.

2. Load the file into Visual Studio and build it.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.

C++ Tutorials

22 Symphony Developer Tutorials

For example, if you installed Symphony DE in /opt/symphonyDE/DE51, go to /opt/symphonyDE/
DE51/conf.

2. Source the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CPP/SampleApp:

make

Package the sample service
On Windows

To deploy the service, you first need to package it.

1. Go to the directory in which the compiled samples are located.

cd %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\
2. Create the service package by compressing the service executable into a zip file.

gzip SampleServiceCPP.exe

You have now created your service package SampleServiceCPP.exe.gz.

On Linux
To deploy the service, you first need to package it.

1. Change to the directory in which the compiled samples are located:

cd $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/
2. Create the service package by compressing the service executable into a tar file:

tar -cvf SampleServiceCPP.tar SampleServiceCPP

gzip SampleServiceCPP.tar

You have now created your service package SampleServiceCPP.tar.gz.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

C++ Tutorials

Symphony Developer Tutorials 23

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue.

For SampleApp, you can find your profile in the following location:

• Windows—%SOAM_HOME%\5.1\samples\CPP\SampleApp\SampleApp.xml
• Linux—$SOAM_HOME/5.1/samples/CPP/SampleApp/SampleApp.xml

The Service Package location window displays.
6. Browse to the service package you created in .gz or tar.gz format and select it, then, click Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

%SOAM_HOME%\5.1\samples\CPP\SampleApp\Output\SyncClient.exe

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

On Linux
1. Run the client application:

$SOAM_HOME/5.1/samples/CPP/SampleApp/Output/SyncClient

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

Walk through the code
You review the sample service code to learn how you can create a service.

C++ Tutorials

24 Symphony Developer Tutorials

Locate the code samples
Operating System Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\CPP\SampleApp
\SyncClient

Message object %SOAM_HOME%\5.1\samples\CPP\SampleApp\Common

Service code %SOAM_HOME%\5.1\samples\CPP\SampleApp
\Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

%SOAM_HOME%\5.1\samples\CPP\SampleApp
\SampleApp.xml

Output directory %SOAM_HOME%\5.1\samples\CPP\SampleApp\Output

Linux Client $SOAM_HOME/5.1/samples/CPP/SampleApp/
SyncClient

Message object $SOAM_HOME/5.1/samples/CPP/SampleApp/Common

Service code $SOAM_HOME/5.1/samples/CPP/SampleApp/Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the
application profile:

$SOAM_HOME/5.1/samples/CPP/SampleApp/
SampleApp.xml

Output directory $SOAM_HOME/5.1/samples/CPP/SampleApp/Output/

What the sample does
The service takes input data sent by client applications, returns the input data you have sent and replies
"Hello Client !!"

Input and output: declare and implement the Message object:
Your service needs to handle data that it receives as input, and generate output data that can be sent back
to the client application.

Note:
Client applications and services share the same message class. You do
not need to create a different message class. In our example, we have
created a common directory for code that is shared by client and service.
Use the Message object declared and implemented by the client
application.

If you have not done so already, take a look at the synchronous client application tutorial for details on
the Message object.

C++ Tutorials

Symphony Developer Tutorials 25

• Input and output: declare the message object:
• Implement the MyMessage object:

Define a service container:
For a service to be managed by Symphony, it needs to be in a container object. This is the service container.

In SampleService.cpp, we inherited from the ServiceContainer class.

#include "stdafx.h"
#include <stdio.h>
#include "soam.h"
#include "MyMessage.h"
using namespace soam;
using namespace std;
class MyServiceContainer : public ServiceContainer

Process the input:
Symphony calls onInvoke() on the service container once per task. Once you inherit from the
ServiceContainer class, implement handlers so that the service can function properly. This is where the
calculation is performed.

To gain access to the data set for the client, you must present an instance of the message object to the
populateTaskInput() method on the task context.

The task context contains all information and functionality that is available to the service during an
onInvoke() call in relation to the task that is being processed.

Important:
Services are virtualized. As a result, a service should not read from stdin
or write to stdout. Services can, however, read from and write to files that
are accessible to all compute hosts.

You present to populateTaskInput() the message object that comes from the client application. During
this call, the data sent from the client is used to populate the message object.

C++ Tutorials

26 Symphony Developer Tutorials

{
public:
 virtual void onInvoke (TaskContextPtr& taskContext)
 {
 // get the input that was sent from the client
 MyMessage inMsg;
 taskContext->populateTaskInput(inMsg);
 // We simply echo the data back to the client
 MyMessage outMsg;
 outMsg.setInt(inMsg.getInt());
 std::string str="you sent : ";
 str += inMsg.getString();
 str += "\nwe replied : Hello Client !!\n>>> ";
 if (inMsg.getIsSync())
 {
 str += "Synchronously.\n";
 }
 else
 {
 str += "Asynchronously.\n";
 }
 outMsg.setString(str.c_str());
 // set our output message
 taskContext->setTaskOutput(outMsg);
 }
};

Run the container:
The service is implemented within an executable. At a minimum, we need to create within our main
function an instance of the service container and run it.

Note that your service is started by parameters.

int main(int argc, char* argv[])
{
 // return value of our service program
 int retVal = 0;
 try
 {
 // Create the container and run it
 MyServiceContainer myContainer;
 myContainer.run();
 }

Catch exceptions:
Catch exceptions in case the container fails to start running.

catch(SoamException& exp)
 {
 // report exception to stdout
 cout << "exception caught ... " << exp.what() << endl;
retVal = -1;
 }
 // NOTE: Although our service program will return an overall
 // failure or success code it will always be ignored in the
 // current revision of the middleware.
 // The value being returned here is for consistency.
 return retVal;
}

C++ Tutorials

Symphony Developer Tutorials 27

Tutorial: SharingData: Developing a C++ client
and service to share data among tasks

Goal
This tutorial walks you through the sample common data object code, then describes how to use different
data objects for input, output, and common data. How to develop a client application and service to share
data among all tasks in a session. The data is shared by all invocations of tasks within the same session.

At a glance
Before you begin, ensure you have installed and started Platform Symphony Developer Edition. You
should also have completed the tutorial Your First Synchronous Symphony C++ Client. When you are
ready, do the following:

1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

When to use common data
Common data is data that can be made available to service instances for the duration of a session.

Use common data when you need to set up the initial state of a service, and you only want to do it once,
not on every task. Common data is useful for passing data from a client to a service. The service loads the
data when the session is created.

You can use common data, for example, to set the environment in the service that is common to all tasks
in a session. This way you only need to set the environment once, when the session is created.

Symphony attempts to use the same service instance for all tasks in a session. A service instance is made
available to other sessions only when session workload completes, a session is closed or aborted, or when
another session of higher priority is assigned the service instance.

Build the sample client and service
On Windows

You can build client application and service samples at the same time.

1. Load the workspace file sharing_data_vc6.dsw, or one of the Visual Studio solution files into
Visual Studio and build it.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.

C++ Tutorials

28 Symphony Developer Tutorials

For example, if you installed Symphony Developer Edition in /opt/symphonyDE/DE51, go to /opt/
symphonyDE/DE51/conf.

2. Source the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CPP/SharingData:

make

Package and deploy the sample service
On Windows

To deploy the service, you first need to package it.

1. Go to the directory in which the compiled samples are located:

cd %SOAM_HOME%\5.1\samples\CPP\SharingData\Output\
2. Create the service package by compressing the service executable into a zip file:

gzip DataService.exe

You have now created your service package DataService.exe.gz.

On Linux
To deploy the service, you first need to package it.

1. Change to the directory in which the compiled samples are located:
cd $SOAM_HOME/5.1/samples/CPP/SharingData/Output/

2. Create the service package by compressing the service executable into a tar file:

tar -cvf DataService.tar DataService

gzip DataService.tar

You have now created your service package DataService.tar.gz.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

C++ Tutorials

Symphony Developer Tutorials 29

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue

For SampleApp, you can find your profile in the following location:

• C++:

• Windows—%SOAM_HOME%\5.1\samples\CPP\SharingData\SharingData.xml
• Linux—$SOAM_HOME/5.1/samples/CPP/SharingData/SharingData.xml

The Service Package location window displays.
6. Browse to the service package you created in .gz or tar.gz format and select it, then, click Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:
%SOAM_HOME%\5.1\samples\CPP\SharingData\Output\DataClient.exe

You should see output on the command line as workload is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

On Linux
To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

$SOAM_HOME/5.1/samples/CPP/SharingData/Output/DataClient

You should see output on the command line as workload is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

C++ Tutorials

30 Symphony Developer Tutorials

Walk through the code
Locate the code samples
Operating System Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\CPP\SharingData\Client

Input, output and data
object declaration and
implementation

%SOAM_HOME%\5.1\samples\CPP\SharingData\Common

Service code %SOAM_HOME%\5.1\samples\CPP\SharingData\Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the application
profile:

%SOAM_HOME%\5.1\samples\CPP\SharingData
\SharingData.xml

Output directory %SOAM_HOME%\5.1\samples\CPP\SharingData\Output\

Linux Client $SOAM_HOME/5.1/samples/CPP/SharingData/Client

Input, output and data
object declaration and
implementation

$SOAM_HOME/5.1/samples/CPP/SharingData/Common

Service code $SOAM_HOME/5.1/samples/CPP/SharingData/Service

Application profile The service required to compute the input data along with
additional application parameters are defined in the application
profile:

$SOAM_HOME/5.1/samples/CPP/SharingData/
SharingData.xml

Output directory $SOAM_HOME/5.1/samples/CPP/SharingData/Output/

What the client sample does
In the samples, the output message is different from the input message object.

The client creates a session with common data. It sends 10 input messages, and retrieves the output. The
client then outputs Hello Grid!!

What the service sample does
The service takes input data sent by client applications, returns the input data you have sent and replies
"Hello Client !!". The service uses onSessionEnter() to define attributes global to the session.

Prepare common data in your client
1. Declare and implement the Message object.

In the synchronous client tutorial, input and output message objects were the same object. In this
tutorial, different objects represent input and output. In addition, we are creating an additional object
to represent common data.

C++ Tutorials

Symphony Developer Tutorials 31

2. Once your message and data objects are declared, implement handlers for serialization and
deserialization.

In MyDataObjects.cpp, we implement methods to handle the data.
3. Use the common data object when creating a session:

a) As in the synchronous client tutorial, initialize the client and connect to the application. Then,
create your session to group tasks.

b) When creating a session, use the common data object to pass data from the client application to
the service.

In Client.cpp, we create a session and pass the common data object.

...
// Set up session creation attributes
 SessionCreationAttributes attributes;
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session::ReceiveSync);
 attributes.setCommonData(&commonData);
 // Create a synchronous session
 SessionPtr sesPtr = conPtr->createSession(attributes);
...

4. Now proceed the same way as in the synchronous client tutorial:

• Send input data to be processed
• Retrieve output
• Catch exceptions
• Uninitialize

Access common data in your service
1. Define a service container and get data from the session:

a) As in the basic service tutorial, first define a service container.
b) Retrieve the common data from the session sent by the client by implementing onSessionEnter()

before your invoke call.

onSessionEnter() is called once for the duration of the sessions corresponding pair is
onSessionLeave().

In SampleService.cpp, we inherited from the ServiceContainer class, and implemented
onSessionEnter() to get common data and store it for later with the session context.

C++ Tutorials

32 Symphony Developer Tutorials

...
class MyServiceContainer : public ServiceContainer
{
public:
 void onSessionEnter (SessionContextPtr& sessionContext)
 {
 // get the current session ID (if needed)
 m_currentSID = const_cast<char*>(sessionContext->getSessionId());

 // populate our common data object
 m_commonData = new MyCommonData();
 sessionContext->populateCommonData(*m_commonData);
 }
 void onInvoke (TaskContextPtr& taskContext)
{
....
 void onSessionLeave()
 {
 // We get a chance to free the common data here
 if (SOAM_NULL_PTR != m_commonData)
 {
 delete m_commonData;
 m_commonData = SOAM_NULL_PTR;
 }
 }
...

2. Process the input.

In this example, we use the common data in our invoke call by formatting the output string. We then
set our output message as usual to send common data back with each of the replies.

...
void onInvoke (TaskContextPtr& taskContext)
 {
 ...
// setup a reply to the client
 std::string str="Client sent : ";
 str += inMsg.getString();
 str += "\nSymphony replied : Hello Client !! with common data (\"";
 str += m_commonData->getString();
 str += "\") for session(";
 str += m_currentSID;
 str += ")";
 outMsg.setString(str.c_str());
 // set our output message
 taskContext->setTaskOutput(outMsg);
 }
...

3. Perform any data cleanup: after processing the input, use the onSessionLeave() call to free the data
for the session.

The call onSessionLeave() is called once for every session that is created.

...
void onSessionLeave()
 {
 // We get a chance to free the common data here
 if (SOAM_NULL_PTR != m_commonData)
 {
 delete m_commonData;
 m_commonData = SOAM_NULL_PTR;
 }
 }
...

4. As with the basic service, run the container in the service main and catch exceptions.

C++ Tutorials

Symphony Developer Tutorials 33

Java Tutorials
Tutorial: SampleApp: Your first synchronous
Symphony Java client

Goal
This tutorial guides you through the process of building, packaging, deploying, and running the sample
client and service. It then walks you through the sample client application code.

You will learn the minimum amount of code that you need to create a synchronous client.

At a glance
1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows
Compile with the .bat file

You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\5.1\samples\Java\SampleApp directory and run the .bat file:
build.bat

Compile with the Ant build file
You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\5.1\samples\Java\SampleApp directory and run the command:
ant

Compile in Eclipse
To compile in Eclipse, see "Symphony plug-in for Eclipse" in the Application Development Guide.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.
2. Set the environment:

Java Tutorials

34 Symphony Developer Tutorials

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile with the Makefile or with the Ant build file.

• Compile with the Makefile:

Change to the $SOAM_HOME/5.1/samples/Java/SampleApp directory and run the make
command:
make

• Compile with the Ant build file:

Change to the $SOAM_HOME/5.1/samples/Java/SampleApp directory and run the build
command:
ant

Package the sample service
You must package the files required by your service to create a service package. When you built the sample,
the service package was automatically created for you.

1. Your service package SampleServiceJavaPackage.jar is in the following directory:
%SOAM_HOME%\5.1\samples\Java\SampleApp

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue

For SampleApp, you can find your profile in the following location:

• Java

• Windows—%SOAM_HOME%\5.1\samples\Java\SampleApp\SampleAppJava.xml
• Linux—$SOAM_HOME/5.1/samples/Java/SampleApp/SampleAppJava.xml

The Service Package location window displays.
6. Browse to the created service package and select it, then, click Continue.

Java Tutorials

Symphony Developer Tutorials 35

• Java

• Windows—%SOAM_HOME%\5.1\samples\Java\SampleApp
\SampleServiceJavaPackage.jar

• Linux—$SOAM_HOME/5.1/samples/Java/SampleApp/
SampleServiceJavaPackage.zip

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application.

• From the command-line:

%SOAM_HOME%\5.1\samples\Java\SampleApp\RunSyncClient.bat

You should see output as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages indicating
that it is running.

On Linux
To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

$SOAM_HOME/5.1/samples/Java/SampleApp/RunSyncClient.sh

You should see output as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages indicating
that it is running.

Walk through the code
Review the sample client application code to learn how you can create a synchronous client application.

Java Tutorials

36 Symphony Developer Tutorials

Locate the code samples
Operating
System

Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\client
\SyncClient.java

Input and output
objects

%SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\common
\MyInput.java

%SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\common
\MyOutput.java

Service code %SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\service
\MyService.java

Application profile The service required to compute the input data along with additional
application parameters are defined in the application profile:

%SOAM_HOME%\5.1\samples\Java\SampleApp
\SampleAppJava.xml

Output directory %SOAM_HOME%\5.1\samples\Java\SampleApp\

Linux Client $SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/client/
syncClient.java

Input and output
objects

$SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/common/
MyInput.java

$SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/common/
MyOutput.java

Service code $SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/service/
MyService.java

Application profile The service required to compute the input data along with additional
application parameters are defined in the application profile:

$SOAM_HOME/5.1/samples/Java/SampleApp/
SampleAppJava.xml

Output directory $SOAM_HOME/5.1/samples/Java/SampleApp/

What the sample does
The client application sample sends 10 input messages through Symphony to the service with the data
“Hello Grid!!”. The client blocks to receive messages synchronously.

The service takes the input data sent by the client and returns it with the additional data “Hello Client !!”.

Java Tutorials

Symphony Developer Tutorials 37

Synchronous client structure
Before developing your client code, implement input and output objects that implement
java.io.Serializable. Then, create your Symphony client.

Java Tutorials

38 Symphony Developer Tutorials

Java Tutorials

Symphony Developer Tutorials 39

Implement input and output objects
Implement the MyInput class

The myInput class acts as input to the service. In MyInput.java, we implement methods to set and
access the data, such as the message string and task ID.

The input object must implement java.io.Serializable. Making the object serializable means that Java
knows how to deconstruct the object so that it can be passed through the network to the service. This also
means that Java knows how to reconstruct the object when it is received by the service.

...
public class MyInput implements Serializable
{
 //===
 // Constructors
 //===
 public MyInput()
 {
 super();
 m_id = 0;
 }
 public MyInput(int id, String string)
 {
 super();
 m_id = id;
 m_string = string;
 }
 //===
 // Accessors and Mutators
 //===

 public int getId()
 {
 return m_id;
 }
 public void setId(int id)
 {
 m_id = id;
 }
 public String getString()
 {
 return m_string;
 }
 public void setString(String string)
 {
 m_string = string;
 }
...

Implement the MyOutput class
The myoutput object is the result of the computation of input to the service, and is returned to the client
by the service.

In MyOutput.java, we implement methods to set and access the output data, such as the message string,
task ID, and run time that is returned from the service. Similar to the input object, the output object must
implement java.io.Serializable.

Java Tutorials

40 Symphony Developer Tutorials

...
public class MyOutput implements Serializable{
 //===
 // Constructor
 //===
 public MyOutput()
 {
 super();
 m_id = 0;
 }
 //===
 // Accessors and Mutators
 //===
 public int getId()
 {
 return m_id;
 }
 public void setId(int id)
 {
 m_id = id;
 }
 public String getRunTime()
 {
 return m_runTime;
 }
 public void setRunTime(String runTime)
 {
 m_runTime = runTime;
 }
 public String getString()
 {
 return m_string;
 }

 public void setString(String string)
 {
 m_string = string;
 }
...

Initialize the client
In SyncClient.java, when you initialize, you initialize the Symphony client infrastructure. You
initialize once per client.

Important:
Initialization is required. Otherwise, API calls fail.

...
SoamFactory.initialize();
...

Connect to an application
A connection establishes a context for your client and workload. When you connect to an application:

• Application attributes defined in the application profile are used to provide context such as which
service to use, session type, and any additional scheduling or application parameters.

• A connection object is returned.

The application name in the connection must match that defined in the application profile.

The default security callback encapsulates the callback for the user name and password. In Symphony
DE, there is no security checking and login credentials are ignored —you can specify any user name and

Java Tutorials

Symphony Developer Tutorials 41

password. However, when using your client on the grid with Platform Symphony, you need a valid user
name and password.

...
// Set up application specific information to be supplied to Symphony
 String appName="SampleAppJava";
 // Set up application authentication information using the default security provider
 DefaultSecurityCallback securityCB = new DefaultSecurityCallback("Guest", "Guest");
 Connection connection = null;
 try
 {
 // Connect to the specified application
 connection = SoamFactory.connect(appName, securityCB);
 // Retrieve and print our connection ID
 System.out.println("connection ID=" + connection.getId());
...

finally
 {
 // Mandatory connection close
 if (connection != null)
 {
 connection.close();
 System.out.println("Connection closed");
 }
 }
...

Important:
The creation and usage of the connection object must be scoped in a try-
finally block. The finally block, with the connection.close() method,
ensures that the connection is always closed whether exceptional
behavior occurs or not. Failure to close the connection causes the
connection to continue to occupy system resources.

Create a session to group tasks
A session is a way of logically grouping tasks that are sent to a service for execution. The tasks are sent
and received synchronously.

...
 // Set up session attributes
 SessionCreationAttributes attributes = new SessionCreationAttributes();
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session.SYNC);
 // Create a synchronous session
 Session session = null;
 try
 {
 session = connection.createSession(attributes);
...
 finally
 {
 // Mandatory session close
 if (session != null)
 {
 session.close();
 System.out.println("Session closed");
 }
 }
...

Java Tutorials

42 Symphony Developer Tutorials

When creating a synchronous session, you need to specify the session attributes by using the
SessionCreationAttributes object. In this sample, we create a SessionCreationAttributes object called
attributes and set three parameters in the object.

The first parameter is the session name. This is optional. The session name can be any descriptive name
you want to assign to your session. It is for informational purposes, such as in the command line interface.

The second parameter is the session type. The session type is optional. You can leave this parameter blank
and system default values are used for your session.

The third parameter is the session flag, which we specify as Session.SYNC. This indicates to Symphony
that this is a synchronous session.

We pass the attributes object to the createSession() method, which returns the created session.

Important:
Similar to the connection object, the creation and usage of the session
(sending and receiving data) must be scoped in a try-finally block. The
finally block, with the session.close() method, ensures that the session is
always closed, whether exceptional behavior occurs or not. Failure to
close the session causes the session to continue to occupy system
resources.

Send input data to be processed
In this step, we create 10 input messages to be processed by the service. When a message is sent, a task
input handle is returned. This task input handle contains the ID for the task that was created for this input
message.

...
// Now we will send some messages to our service
 int tasksToSend = 10;
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 // Create a message
 MyInput myInput = new MyInput(taskCount, "Hello Grid !!");
 // Set task submission attributes
 TaskSubmissionAttributes taskAttr = new TaskSubmissionAttributes();
 taskAttr.setTaskInput(myInput);
 // Send it
 TaskInputHandle input = session.sendTaskInput(taskAttr);
 // Retrieve and print task ID
 System.out.println("task submitted with ID : " + input.getId());
 }
...

Retrieve output
The call fetchTaskOutput() blocks until the output for all tasks is retrieved. If there is output to retrieve,
getTaskOutput() gets the output

Important:

Java Tutorials

Symphony Developer Tutorials 43

Results are not sent back in order. If order of results is important, the client
application must sort the results.

...
// Now get our results - will block here until all tasks retrieved
 EnumItems enumOutput = session.fetchTaskOutput(tasksToSend);
 // Inspect results
 TaskOutputHandle output = enumOutput.getNext();
 while (output != null)
 {
 // Check for success of task
 if (output.isSuccessful())
 {
 // Get the message returned from the service
 MyOutput myOutput = (MyOutput)output.getTaskOutput();
 // Display content of reply
 System.out.println("\nTask Succeeded [" + output.getId() + "]");
 System.out.println("Your Internal ID was : " + myOutput.getId());
 System.out.println("Estimated runtime was recorded as : " +
myOutput.getRunTime());
 System.out.println(myOutput.getString());
 }
 else
 {
 // Get the exception associated with this task
 SoamException ex = output.getException();
 System.out.println("Task Failed : ");
 System.out.println(ex.toString());
 }
 output = enumOutput.getNext();
 }
 ...

Catch exceptions
Any exceptions thrown take the form of SoamException. Catch all Symphony exceptions that occurred
in the client application, service, and system.

The sample code in Retrieve output catches exceptions of type SoamException.

Uninitialize
Always uninitialize the client at the end of all API calls. If you do not call uninitialize, the client stays in
an undefined state and resources used by the client are held indefinitely.

Important:
Once you uninitialize, all objects become invalid. For example, you can
no longer create a session or send an input message.

...
SoamFactory.uninitialize();
...

Tutorial: SampleApp: Developing an
asynchronous Symphony Java client

Java Tutorials

44 Symphony Developer Tutorials

Goal
In this tutorial, you will learn how to convert a synchronous client into an asynchronous one.

At a glance
1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows
Compile with the .bat file

You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\5.1\samples\Java\SampleApp directory and run the .bat file:
build.bat

Compile with the Ant build file
You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\5.1\samples\Java\SampleApp directory and run the command:
ant

Compile in Eclipse
To compile in Eclipse, see "Symphony plug-in for Eclipse" in the Application Development Guide.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.
2. Set the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile with the Makefile or with the Ant build file.

• Compile with the Makefile:

Change to the $SOAM_HOME/5.1/samples/Java/SampleApp directory and run the make
command:
make

• Compile with the Ant build file:

Java Tutorials

Symphony Developer Tutorials 45

Change to the $SOAM_HOME/5.1/samples/Java/SampleApp directory and run the build
command:
ant

Package the sample service
You must package the files required by your service to create a service package. When you built the sample,
the service package was automatically created for you.

1. Your service package SampleServiceJavaPackage.jar is in the following directory:
%SOAM_HOME%\5.1\samples\Java\SampleApp

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard creates a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue

For SampleApp, you can find your profile in the following location:

• Java

• Windows—%SOAM_HOME%\5.1\samples\Java\SampleApp\SampleAppJava.xml
• Linux—$SOAM_HOME/5.1/samples/Java/SampleApp/SampleAppJava.xml

The Service Package location window displays.
6. Browse to the created service package and select it, then, select Continue.

• Java

• Windows—%SOAM_HOME%\5.1\samples\Java\SampleApp
\SampleServiceJavaPackage.jar

• Linux—$SOAM_HOME/5.1/samples/Java/SampleApp/
SampleServiceJavaPackage.zip

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

Java Tutorials

46 Symphony Developer Tutorials

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application.

• From the command line:

%SOAM_HOME%\5.1\samples\Java\SampleaApp\RunAsyncClient.bat

You should see output as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages indicating
that it is running.

On Linux
To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

$SOAM_HOME/5.1/samples/Java/SampleApp/RunAsyncClient.sh

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages indicating
that it is running.

Walk through the code
Review the sample client application code to learn how you can understand the differences between a
synchronous client and an asynchronous client.

Java Tutorials

Symphony Developer Tutorials 47

Locate the code samples
Operating
System

Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\client
\AsyncClient.java

Input and output
objects

%SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\common
\MyInput.java

%SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\common
\MyOutput.java

Service code %SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\service
\MyService.java

Application profile The service required to compute the input data along with additional
application parameters are defined in the application profile:

%SOAM_HOME%\5.1\samples\Java\SampleApp
\SampleAppJava.xml

Output directory %SOAM_HOME%\5.1\samples\Java\SampleApp\

Linux Client $SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/client/
AsyncClient.java

Input and output
objects

$SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/common/
MyInput.java

$SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/common/
MyOutput.java

Service code $SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/service/
MyService.java

Application profile The service required to compute the input data along with additional
application parameters are defined in the application profile:

$SOAM_HOME/5.1/samples/Java/SampleApp/
SampleAppJava.xml

Output directory $SOAM_HOME/5.1/samples/Java/SampleApp/

What the sample does
The client application sample sends 10 input messages through Symphony to the service with the data
“Hello Grid !!”.

The service takes the input data sent by the client and returns it with the additional data “Hello Client !!”.

Java Tutorials

48 Symphony Developer Tutorials

Results are returned asynchronously with a callback interface provided by the client to the API. Methods
in this interface are called from threads within the API when certain events occur. In the sample, the
events are:

• When there is an error at the session level
• When results return from Symphony

Considerations for asynchronous clients
The purpose of an asynchronous client is to get the output as soon as it is available. The client thread does
not need to be blocked once the input data is sent and can perform other actions.

Synchronization Because results can come back at any time, it is probable that your callback code needs
synchronization between the callback thread and the controlling thread. The
controlling thread needs to know when work is complete.

Order of results Results are not sent back in order. If order of results is important, the client
application must sort the results.

Code differences between synchronous and asynchronous clients
An asynchronous client is very similar to a synchronous client. The only differences are:

• You need to specify a callback when creating a session
• You specify a different flag to indicate asynchronous when you create a session
• Handling of replies

The following figure highlights in bold the differences between synchronous and asynchronous clients.
Everything else is the same as the synchronous client.

Java Tutorials

Symphony Developer Tutorials 49

Java Tutorials

50 Symphony Developer Tutorials

Implement input and output objects and initialize the client
As in the synchronous client tutorial, implement your own input and output objects and initialize the
client.

For more details, look at the synchronous client tutorial, specifically:

• Implement input and output objects
• Initialize the client

Declare and implement your callback object
Perform this step after implementing your own input and output objects.

In MySessionCallback.java, we create our own callback class that extends the SessionCallback class,
and we implemented onResponse() to retrieve the output for each input message that we send.

Note that:

• We handle when an exception occurs on the callback method for the session. If you do not handle the
exception, you do not have any exceptions if an error occurs on the callback.

• onResponse() is called every time a task completes and output is returned to the client. The task output
handle allows the client code to manipulate the output.

• isSuccessful() checks whether there is output to retrieve.
• If there is output to retrieve, getTaskOutput() gets the output. Once results return, we print them to

standard output and return.

public class MySessionCallback extends SessionCallback
{
 //===
 // Constructor
 //===
 public MySessionCallback(int tasksToReceive)
 {
 m_tasksReceived = 0;
 m_exception = false;
 m_tasksToReceive = tasksToReceive;
}

 //===
 // SessionCallback Interface Methods
 //===

 /**
 * Invoked when an exception occurs within the scope of the given session.
 * Must be implemented by the application developer.
 */
 public void onException(SoamException exception) throws SoamException
 {
 System.out.println("An exception occured on the callback :");
 System.out.println(exception.getMessage());
 setException(true);
 }

Java Tutorials

Symphony Developer Tutorials 51

/**
 * Invoked when a task response is ready.
 * Must be implemented by the application developer.
 */
 public void onResponse(TaskOutputHandle output) throws SoamException
 {
 try
 {
 // check for success of task
 if (output.isSuccessful())
 {
 // get the message returned from the service
 MyOutput myOutput = (MyOutput)output.getTaskOutput();
 // display content of reply
 System.out.println("\nTask Succeeded [" + output.getId() + "]");
 System.out.println("Your Internal ID was : " + myOutput.getId());
 System.out.println("Estimated runtime was recorded as : " + myOutput.getRunTime
());
 System.out.println(myOutput.getString());
 }
 else
 {
 // get the exception associated with this task
 SoamException ex = output.getException();
 System.out.println("Task Failed :");
 System.out.println(ex.getMessage());
 }
 }
 catch (Exception exception)
 {
 System.out.println("Exception occured in onResponse() : ");
 System.out.println(exception.getMessage());
 }

 // Update counter used to synchronize the controlling thread
 // with this callback object
 incrementTaskCount();
 }

Create a session to group tasks
In AsyncClient.java, perform this step after you have connected to the application.

When creating an asynchronous session:

• Specify the flag PARTIAL_ASYNC. This indicates that results are collected asynchronously.
• Provide a callback object.

...
// Create session callback
 int tasksToSend = 10;
 MySessionCallback myCallback = new MySessionCallback(tasksToSend);
 Session session = null;
 // Set up session attributes
 SessionCreationAttributes attributes = new SessionCreationAttributes();
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session.PARTIAL_ASYNC);
 attributes.setSessionCallback(myCallback);
 // Create an asynchronous session
 try
 {
 session = connection.createSession(attributes);
 // Retrieve and print session ID
 System.out.println("Session ID:" + session.getId());
...

Java Tutorials

52 Symphony Developer Tutorials

Synchronize the controlling and callback threads
Perform this step after sending the input data to be processed.

Since our client is asynchronous, we need to synchronize the controlling thread and the callback thread.
In this example, the controlling thread blocks until all replies have come back.

The callback signals when all results are received.

...
synchronized(myCallback)
 {
 while (!myCallback.isDone())
 {
 myCallback.wait();
 }
 }
...

Tutorial: SampleApp: Your first Symphony Java
service

Goal
This tutorial walks you through the sample service code, then guides you through the process of building
and running a service.

You learn the minimum amount of code that you need to create a service.

At a glance
1. Build the sample client and service
2. Package and deploy the sample service
3. Run the sample client and service
4. Walk through the code

Build the sample client and service
On Windows
Compile with the .bat file

You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\5.1\samples\Java\SampleApp directory and run the .bat file:
build.bat

Compile with the Ant build file
You can build client application and service samples at the same time.

Java Tutorials

Symphony Developer Tutorials 53

1. Change to the %SOAM_HOME%\5.1\samples\Java\SampleApp directory and run the command:
ant

Compile in Eclipse
To compile in Eclipse, see "Symphony plug-in for Eclipse" in the Application Development Guide.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.
2. Set the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile with the Makefile or with the Ant build file.

• Compile with the Makefile:

Change to the $SOAM_HOME/5.1/samples/Java/SampleApp directory and run the make
command:
make

• Compile with the Ant build file:

Change to the $SOAM_HOME/5.1/samples/Java/SampleApp directory and run the build
command:
ant

Package the sample service
You must package the files required by your service to create a service package. When you built the sample,
the service package was automatically created for you.

1. Your service package SampleServiceJavaPackage.jar is in the following directory:
%SOAM_HOME%\5.1\samples\Java\SampleApp

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the De PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

Java Tutorials

54 Symphony Developer Tutorials

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue

For SampleApp, you can find your profile in the following location:

• Java

• Windows—%SOAM_HOME%\5.1\samples\Java\SampleApp\SampleAppJava.xml
• Linux—$SOAM_HOME/5.1/samples/Java/SampleApp/SampleAppJava.xml

The Service Package location window displays.
6. Browse to the created service package and select it, then, select Continue.

• Java

• Windows—%SOAM_HOME%\5.1\samples\Java\SampleApp
\SampleServiceJavaPackage.jar

• Linux—$SOAM_HOME/5.1/samples/Java/SampleApp/
SampleServiceJavaPackage.zip

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service that a client application uses is specified in
the application profile.

1. Run the client application:

• From the command-line:

%SOAM_HOME%\5.1\samples\Java\SampleApp\RunSyncClient.bat

You should see output as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages indicating
that it is running.

On Linux
To run the service, you run the client application. The service that a client application uses is specified in
the application profile.

1. Run the client application:

$SOAM_HOME/5.1/samples/Java/SampleApp/RunSyncClient.sh

Java Tutorials

Symphony Developer Tutorials 55

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages indicating
that it is running.

Walk through the code
Review the sample service code to learn how you can create a service.

Locate the code samples
Operating
System

Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\client
\SyncClient.java

Input and output
objects

%SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\common
\MyInput.java

%SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\common
\MyOutput.java

Service code %SOAM_HOME%\5.1\samples\Java\SampleApp\src\com
\platform\symphony\samples\SampleApp\service
\MyService.java

Application profile The service required to compute the input data along with additional
application parameters are defined in the application profile:

%SOAM_HOME%\5.1\samples\Java\SampleApp
\SampleAppJava.xml

Output directory %SOAM_HOME%\5.1\samples\Java\SampleApp\

Linux Client $SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/client/
SyncClient.java

Input and output
objects

$SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/common/
MyInput.java

$SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/common/
MyOutput.java

Service code $SOAM_HOME/5.1/samples/Java/SampleApp/src/com/
platform/symphony/samples/SampleApp/service/
MyService.java

Application profile The service required to compute the input data along with additional
application parameters are defined in the application profile:

$SOAM_HOME/5.1/samples/Java/SampleApp/
SampleAppJava.xml

Java Tutorials

56 Symphony Developer Tutorials

Operating
System

Files Location of Code Sample

Output directory $SOAM_HOME/5.1/samples/Java/SampleApp/

What the sample does
The service takes input data sent by the client and returns the input data with the additional "Hello
Client !!".

Define a service container
For a service to be managed by Symphony, it needs to be in a container object. This is the service container.

In MyService.java, MyService inherits (extends) the ServiceContainer class. Once you inherit from
the ServiceContainer class, implement handlers so that the service can function properly.

...
public class MyService extends ServiceContainer
...

Process the input
Symphony calls onInvoke() on the service container once per task. This is where the calculation is
performed.

To gain access to the data set from the client, you call the getTaskInput() method on the taskContext. The
middleware is responsible for placing the input into the taskContext object.

The task context contains all information and functionality that is available to the service during an
onInvoke() call in relation to the task that is being processed.

Important:

Java Tutorials

Symphony Developer Tutorials 57

Services are virtualized. As a result, a service should not read from stdin
or write to stdout. Services can, however, read from and write to files that
are accessible to all compute hosts.

...
public void onInvoke (TaskContext taskContext) throws SoamException
 {
 // We simply echo the data back to the client
 MyOutput myOutput = new MyOutput();
 // estimate and set our runtime
 Date date = new Date();
 myOutput.setRunTime(date.toString());
 // get the input that was sent from the client
 MyInput myInput = (MyInput)taskContext.getTaskInput();
 // echo the ID
 myOutput.setId(myInput.getId());
 // setup a reply to the client
 StringBuffer sb = new StringBuffer();
 sb.append("Client sent : ");
 sb.append(myInput.getString());
 sb.append("\nSymphony replied : Hello Client !!");
 myOutput.setString(sb.toString());
 // set our output message
 taskContext.setTaskOutput(myOutput);
 }
...

Run the container
Create an instance of the service container and run it within the main function.

...
public static void main(String args[])
 {
 // Return value of our service program
 int retVal = 0;
 try
 {
 // Create the service container and run it
 MyService myContainer = new MyService();
 myContainer.run();
 }
...

Catch exceptions
Catch exceptions in case the container fails to start running.

...
catch (Exception ex)
 {
 // Report exception
 System.out.println("Exception caught:");
 System.out.println(ex.toString());
 retVal = -1;
 }
...

Tutorial: SharingData: Developing a Java client
and service to share data among tasks

Java Tutorials

58 Symphony Developer Tutorials

Goal
This tutorial walks you through how to develop a client application and service to share data among all
tasks in a session. The data is shared by all invocations of tasks within the same session.

You learn how to use different data objects for input, output, and common data.

At a glance
1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
On Windows
Compile with the .bat file

You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\4.0\samples\Java\SharingData directory and run the .bat file:
build.bat

Compile with the Ant build file
You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\4.0\samples\Java\SharingData directory and run the command:
ant

Compile in Eclipse
To compile in Eclipse, see "Symphony plug-in for Eclipse" in the Application Development Guide.

On Linux
You can build client application and service samples at the same time.

1. Change to the conf directory under the directory in which you installed Symphony DE.
2. Set the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile with the Makefile or with the Ant build file.

• Compile with the Makefile:

Java Tutorials

Symphony Developer Tutorials 59

Change to the $SOAM_HOME/4.0/samples/Java/SharingData directory and run the
make command:
make

• Compile with the Ant build file:

Change to the $SOAM_HOME/4.0/samples/Java/SharingData directory and run the build
command:
ant

Package the sample service
You must package the files required by your service to create a service package. When you built the sample,
the service package was automatically created for you.

1. Your service package SampleServiceJavaPackage.jar is in the following directory:
cd %SOAM_HOME%\5.1\samples\Java\SharingData

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue

For SampleApp, you can find your profile in the following location:

• Java

• Windows—%SOAM_HOME%\5.1\samples\Java\SharingData
\SharingDataJava.xml

• Linux—$SOAM_HOME/5.1/samples/Java/SharingData/SharingDataJava.xml

The Service Package location window displays.
6. Browse to the created service package and select it, then, select Continue.

• Java

• Windows—%SOAM_HOME%\5.1\samples\Java\SharingData
\SharingDataServiceJavaPackage.jar

• Linux—$SOAM_HOME/5.1/samples/Java/SharingData/
SharingDataServiceJavaPackage.zip

Java Tutorials

60 Symphony Developer Tutorials

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
On Windows

To run the service, you run the client application. The service that a client application uses is specified in
the application profile.

1. Run the client application:

• From the command-line:

%SOAM_HOME%\5.1\samples\Java\SharingData\RunSharingDataClient.bat

You should see output as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages indicating
that it is running.

On Linux
To run the service, you run the client application. The service a client application uses is specified in the
application profile.

1. Run the client application:

$SOAM_HOME/5.1/samples/Java/SharingData/RunSharingDataClient.sh

You should see output as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages indicating
that it is running.

Walk through the code
Review the sample code to learn how you can create a client and service that uses data.

Java Tutorials

Symphony Developer Tutorials 61

Locate the code samples
Operating
System

Files Location of Code Sample

Windows Client %SOAM_HOME%\5.1\samples\Java\SharingData\src\com\platform
\symphony\samples\SharingData\client\SharingDataClient.java

Input, output,
and data objects

%SOAM_HOME%\5.1\samples\Java\SharingData\src\com\platform
\symphony\samples\SharingData\common\MyInput.java

%SOAM_HOME%\5.1\samples\Java\SharingData\src\com\platform
\symphony\samples\SharingData\common\MyOutput.java

%SOAM_HOME%\5.1\samples\Java\SharingData\src\com\platform
\symphony\samples\SharingData\common\MyCommonData.java

Service %SOAM_HOME%\5.1\samples\Java\SharingData\src\com\platform
\symphony\samples\SharingData\service\SharingDataService.java

Application
profile

The service required to compute the input data along with additional application
parameters are defined in the application profile:

%SOAM_HOME%\5.1\samples\Java\SharingData\sharingDataJava.xml

Output directory %SOAM_HOME%\5.1\samples\Java\SharingData

Linux Client $SOAM_HOME/5.1/samples/Java/SharingData/src/com/platform/
symphony/samples/SharingData/client/SharingDataClient.java

Input, output,
and data objects

$SOAM_HOME/5.1/samples/Java/SharingData/src/com/platform/
symphony/samples/SharingData/common/MyInput.java

$SOAM_HOME/5.1/samples/Java/SharingData/src/com/platform/
symphony/samples/SharingData/common/MyOutput.java

$SOAM_HOME/5.1/samples/Java/SharingData/src/com/platform/
symphony/samples/SharingData/common/MyCommonData.java

Service $SOAM_HOME/5.1/samples/Java/SharingData/src/com/platform/
symphony/samples/SharingData/service/SharingDataService.java

Application
profile

The service required to compute the input data along with additional application
parameters are defined in the application profile:

$SOAM_HOME/5.1/samples/Java/SharingData/sharingDataJava.xml

Output directory $SOAM_HOME/5.1/samples/Java/SharingData

Prerequisites
• Ensure you have installed and started Symphony Developer Edition.
• You should also have completed the following tutorials:

• Your First Synchronous Symphony Java Client
• Your First Symphony Java Service

What the sample does
The client creates a session with common data, sends 10 input messages with "Hello Grid!!" through
Symphony to the service and retrieves the output synchronously.

Java Tutorials

62 Symphony Developer Tutorials

The service accesses the common data in onSessionEnter() and stores it in the service container to be
accessed during each task invocation. The service then takes input data sent by the client and returns the
input data along with "Hello Client !!".

When to use common data
Use common data when the same data is shared among all tasks in a session. You only need to store the
data once, and all tasks in a session can access it.

Common data is useful for passing data from a client to a service. The service loads the data when the
session is created.

Symphony attempts to use the same service instance for all tasks in a session. A service instance is made
available to other sessions only when session workload completes, a session is closed or aborted, or when
another session of higher priority is assigned the service instance.

Prepare common data in your client
Declare and implement the Message object

In this tutorial, different classes represent input and output. In addition, we are using an additional class
to represent common data.

Use the common data object when creating a session
As in the synchronous client tutorial, initialize the client and connect to the application. Then, create your
session to group tasks.

When creating a session, use the common data object to pass data from the client application to the service.

In SharingDataClient.java, we create a session and pass in the session attributes including the
common data object.

...
// Set up our common data to be shared by all task invocations within this session
 MyCommonData commonData = new MyCommonData("Common Data To Be Shared");
 // Set up session attributes
 SessionCreationAttributes attributes = new SessionCreationAttributes();
 attributes.setSessionName("mySession");
 attributes.setSessionType("ShortRunningTasks");
 attributes.setSessionFlags(Session.SYNC);
 attributes.setCommonData(commonData);
 // Create a synchronous session
 Session session = null;
 try
 {
 session = connection.createSession(attributes);
...

Java Tutorials

Symphony Developer Tutorials 63

Continue with your client as usual
Now you can proceed the same way as in the synchronous client tutorial:

• Send input data to be processed
• Retrieve output
• Close the session
• Close the connection
• Catch exceptions
• Uninitialize

Access common data in your service
Define a service container and get data from the session

As in the basic service tutorial, first define a service container. Then retrieve the common data from the
session sent by the client by implementing onSessionEnter() before your invoke call.

onSessionEnter() is called once for the duration of the session. The corresponding pair is onSessionLeave
().

In SharingDataService.java, we inherited from the ServiceContainer class, and implemented
onSessionEnter() to get common data and store it for later use with the session context.

...
public class SharingDataService extends ServiceContainer
{
 SharingDataService()
 {
 super();
 }
 /**
 * The middleware triggers the invocation of this handler to bind the Service
 * Instance to its owning session when common data is provided by the Client.
 *
 * If any common data is available for the associated session, it
 * should be accessed in the developer's implementation of this method.
 * Default implementation of this handler does nothing.
 */
 public void onSessionEnter(SessionContext sessionContext) throws SoamException
 {
 // get the current session ID (if needed)
 m_currentSID = sessionContext.getSessionId();

 // populate our common data object
 m_commonData = (MyCommonData)sessionContext.getCommonData();
 }
...

Process the input
In this example, we use the common data in our invoke call by formatting the output string. We then set
our output message as usual to send common data back with each of the replies.

Java Tutorials

64 Symphony Developer Tutorials

...
public void onInvoke (TaskContext taskContext) throws SoamException
 {
 // We simply echo the data back to the client
 MyOutput myOutput = new MyOutput();
 // estimate and set our runtime
 Date date = new Date();
 myOutput.setRunTime(date.toString());
 // get the input that was sent from the client
 MyInput myInput = (MyInput)taskContext.getTaskInput();
 // echo the ID
 myOutput.setId(myInput.getId());
 // setup a reply to the client
 StringBuffer sb = new StringBuffer();
 sb.append("Client sent : ");
 sb.append(myInput.getString());
 sb.append("\nSymphony replied : Hello Client !! with common data (\"");
 sb.append(m_commonData.getString());
 sb.append("\") for session(");
 sb.append(m_currentSID);
 sb.append(")");
 myOutput.setString(sb.toString());
 // set our output message
 taskContext.setTaskOutput(myOutput);
 }

...

Perform any data cleanup
After processing the input, use the onSessionLeave() call to free the data for the session. onSessionLeave
() is called once for every session that is created. In this example, we do not perform any operations in
onSessionLeave().

...
public void onSessionLeave() throws SoamException
 {
 // We get a chance to do any cleanup for anything we may have done
 // in the onSessionEnter() method
 }
...

Run the container and catch exceptions
As with the basic service, run the container in the service main and catch exceptions.

Java Tutorials

Symphony Developer Tutorials 65

...
 public static void main(String args[])
 {
 // Return value of our service program
 int retVal = 0;
 try
 {
 // Create the container and run it
 SharingDataService myContainer = new SharingDataService();
 myContainer.run();
 }
 catch (Exception ex)
 {
 // Report exception
 System.out.println("Exception caught:");
 System.out.println(ex.toString());
 retVal = -1;
 }
 // NOTE: Although our service program will return an overall
 // failure or success code it will always be ignored in the
 // current revision of the middleware.
 // The value being returned here is for consistency.
 System.exit(retVal);
 }
...

Java Tutorials

66 Symphony Developer Tutorials

.NET Tutorials
Tutorial: SampleApp: Your first synchronous
Symphony C# client and service

Goal
This tutorial guides you through the process of building, packaging, deploying, and running the hello
grid sample client and service. It also walks you through the sample application code.

You learn the minimum amount of code that you need to create a client and a service.

At a glance
1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Where to find the documentation
Additional documentation is included in the %SOAM_HOME%\docs directory, as follows:

Note:
%SOAM_HOME% is an environment variable that represents the
Symphony DE installation directory; for example, C:\SymphonyDE
\DE40.

• .NET API Reference: %SOAM_HOME%\docs\symphonyde\5.1\dotnet\api_reference
• Platform Symphony Reference: %SOAM_HOME%\docs\symphonyde\5.1\reference_sym
• Error Reference: %SOAM_HOME%\docs\symphonyde\5.1\error_reference
• Platform Symphony DE Knowledge Center: %SOAM_HOME%\docs\symphonyde\5.1\index.html

Build the sample client and service
1. Navigate to %SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp.
2. Open the Visual C#.NET solution file that is supported by your version of Visual Studio.
3. Build the .NET solution by pressing ctrl+shift+B.

Compiled executables and libraries are in the %SOAM_HOME%\5.1\samples\DotNet\CS
\SampleApp\output directory.

Package the sample service
You must package the files required by your service to create a service package.

Note:

.NET Tutorials

Symphony Developer Tutorials 67

Make sure the dlls are included in your service package.

1. Go to the directory that contains the files for the service package:
cd %SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\output

2. Locate the SampleServiceDotNetCS.exe and Common.dll files. Add these files to an archive
using a compression program such as gzip. Save the archive as SampleServiceDotNetCS.zip in
the current directory.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard, and browse to your application profile.
5. Select your application profile xml file, then click Continue

For SampleApp, you can find your profile in the following location:

• .NET:

• Windows—%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp
\SampleAppDotNetCS.xml

The Service Package location window displays.
6. Browse to the service package you created in .zip format and select it, then, select Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
To run the service, run the client application. The service that a client application uses is specified in the
application profile.

Before running the sample client, ensure that the SyncClient project is set as the StartUp project in Visual
C#.NET.

1. Press F5 to run the application.

.NET Tutorials

68 Symphony Developer Tutorials

The client starts and the system starts the corresponding service. The client displays messages in the
console window indicating that it is running.

Walk through the code
You review the sample client application code to learn how you can create a synchronous client
application.

.NET Tutorials

Symphony Developer Tutorials 69

Locate the code samples
Solution file (Visual Studio .NET)

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp
\sampleApplication.NET.<version>.sln

or

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp
\sampleApplication.NET64.<version>.sln

where <version> is the Visual Studio version.
Client

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\SyncClient\SyncClient.cs

Input/output object

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\Common\MyMessage.cs

Service
%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\Service\SampleService.cs

Application profile

The service required to compute the input data along with additional application
parameters are defined in the application profile:

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\SampleAppDotNetCS.xml

What the sample does
The client application sample sends 10 input messages with the data “Hello Grid !!”, and retrieves the
results. The client application is a synchronous client that sends input and blocks the output until all the
results are returned.

The service takes input data sent by client applications, returns the input data you have sent and replies
"Hello Client !!".

Step 1: Initialize the client
In SyncClient.cs, when you initialize, you initialize the Symphony client infrastructure. You initialize
once per client.

Important:
Initialization is required. Otherwise, API calls fail.

...
SoamFactory.Initialize();
...

Step 2: Implement the MyMessage class
Your client application needs to handle data that it sends as input, and output data that it receives from
the service.

.NET Tutorials

70 Symphony Developer Tutorials

In MyMessage.cs, we implement methods to set and access the data, such as the message string, task
ID, and sync flag.

The MyMessage class must be marked with the serializable attribute. The .NET Framework provides the
ability to serialize object data for the purpose of passing it by value across application domains. Making
the class serializable means that the object can be deconstructed so that it can be passed through the
network to the service. Similarly, the object can be reconstructed when it is received by the service.

[Serializable]
 public class MyMessage
 {
 public MyMessage()
 {
 m_id = 0;
 m_isSync = false;
 m_string="";
 }
 public MyMessage(int id, bool isSync, string str)
 {
 m_id = id;
 m_isSync = isSync;
 m_string = str;
 }
 public bool IsSync
 {
 get
 {
 return m_isSync;
 }
 set
 {
 m_isSync = value;
 }
 }
 public int Id
 {
 get
 {
 return m_id;
 }
 set
 {
 m_id = value;
 }
 }
 public string StringMessage
 {
 get
 {
 return m_string;
 }
 set
 {
 m_string = value;
 }
 }
...

Step 3: Connect to an application
To send data to be calculated in the form of input messages, you connect to an application.

You specify an application name, a user name, and password. The application name must match that
defined in the application profile.

For Symphony Developer Edition, there is no security checking and login credentials are ignored—you
can specify any user name and password. Security checking is done however, when your client application
submits workload to the actual grid.

.NET Tutorials

Symphony Developer Tutorials 71

The default security callback encapsulates the callback for the user name and password.

...
// Set up application specific information to be supplied to Symphony
 String applicationName="SampleAppDotNetCS";
 // Set up application authentication information using
 // the default security provider
 DefaultSecurityCallback securityCb = new
 DefaultSecurityCallback("Guest", "Guest");
 Connection connection = null;
 try
 {
 // Connect to the specified application
 connection = SoamFactory.Connect(applicationName, securityCb);
 // Retrieve and print our connection ID
 Console.WriteLine("connection ID: " + connection.Id);
...

Tip:
When you connect, a connection object is returned. You can retrieve the
connection ID from the object. Save the connection ID. Should the client
application fail, you can use the connection ID to reconnect to Symphony
Developer Edition.

Important:
It should be emphasized that the creation and usage of the connection
object be scoped in a try-finally block. The finally block, with the
connection.Close() method, ensures that the connection is always closed
whether exceptional behavior occurs or not. Failure to close the
connection causes the connection to continue to occupy middleware
resources.

...
try
{
 // Connect to the specified application
 connection = SoamFactory.Connect(applicationName, securityCb);
 ...
}
 finally
 {
 // Mandatory connection close
 if (connection != null)
 {
 connection.Close();
 Console.WriteLine("Connection closed");
 }
 }
...

Step 4: Create a session to group tasks
A session is a way of logically grouping tasks that are sent to a service for execution. The tasks are sent
and received synchronously.

When creating a synchronous session, you need to specify the session attributes by using the
SessionCreationAttributes object. In this sample, we create a SessionCreationAttributes object called
attributes and set three parameters in the object.

.NET Tutorials

72 Symphony Developer Tutorials

 ...
try
{
 // Set up session attributes
 SessionCreationAttributes attributes = new SessionCreationAttributes();
 attributes.SessionName ="mySession";
 attributes.SessionType ="ShortRunningTasks";
 attributes.SessionFlags = SessionFlags.AliasSync;
 // Create a synchronous session
 session = connection.CreateSession(attributes);
 ...

In this example, note that:

• The first parameter is the session description. This is optional. The session description can be any
descriptive name you want to assign to your session. It is for information purposes, such as in the
command-line interface.

• The second parameter is the session type. The session type is optional. You can leave this parameter
blank and system default values are used for your session.

Important:
The session type must be the same session type as defined in your
application profile.

In the application profile, with the session type, you define
characteristics for the session.

• The third parameter is the session flag. When creating a synchronous session, set the flag to
SessionFlags.AliasSync. This flag indicates to Symphony that this is a synchronous session.

Important:
As is the case with the connection object, the creation and usage of the
session object, i.e., sending and receiving data, must be scoped in a try-
finally block. The finally block, with the session.Close() method, ensures
that the session is always closed whether exceptional behavior occurs or
not. Failure to close the session causes the session to continue to occupy
middleware resources.

 ...
 try
 {
 session = connection.CreateSession(attributes);
 ...
 }
 finally
 {
 // Mandatory session close
 if (session != null)
 {
 session.Close();
 Console.WriteLine("Session closed");
 }
 }
 ...

Step 5: Send input data to be processed
In this step, we create 10 input messages to be processed by the service. We call the MyMessage constructor
and pass three input parameters: ID (taskCount), the Boolean value (true) to indicate synchronous

.NET Tutorials

Symphony Developer Tutorials 73

communication, and a message string ("Hello Grid !!"). When a message is sent, a task input handle is
returned. This task input handle contains the ID for the task that was created for this input message.

...
for (int taskCount = 0; taskCount < numTasksToSend; taskCount++)
{
 // Create a message
 MyMessage inputMessage = new MyMessage(taskCount, true, "Hello Grid !!");
 // Set task submission attributes
 TaskSubmissionAttributes taskAttr = new TaskSubmissionAttributes();
 taskAttr.SetTaskInput(inputMessage);
 // Send it
 TaskInputHandle input = session.SendTaskInput(taskAttr);
 // Retrieve and print task ID
 Console.WriteLine("task submitted with ID: " + input.Id);
}
...

Step 6: Retrieve the output
Pass the number of tasks to the FetchTaskOutput() method to retrieve the output messages that were
produced by the service instance. This method blocks until the output for all tasks is retrieved. The return
value is an enumeration that contains the completed task results.

Iterate through the task results and extract the messages using the GetTaskOutput() method. Display the
task ID, internal ID (taskCount), and the output message.

...
 EnumItems enumItems = session.FetchTaskOutput((ulong) numTasksToSend);
 // inspect results
 foreach(TaskOutputHandle output in enumItems)
 {
 // check for success of task
 if (output.IsSuccessful == true)
 {
 // get the message returned from the service
 MyMessage outputMessage = output.GetTaskOutput() as MyMessage;
 if(outputMessage == null)
 {
 throw new SoamException("Received unexpected object type for task output.");
 }
 // display content of reply
 Console.WriteLine("Task Succeeded [" + output.Id + "]");
 Console.WriteLine("Task Internal ID : " + outputMessage.Id);
 Console.WriteLine(outputMessage.StringMessage);
 }
 else
 {
 // get the exception associated with this task
 SoamException ex = output.Exception;
 Console.WriteLine(ex.ToString());
 }
 }
 ...

Step 7: Catch exceptions
Any exceptions thrown take the form of SoamException. Catch all Symphony exceptions to know about
exceptions that occurred in the client application, service, and middleware.

The sample code above catches exceptions of type SoamException.

.NET Tutorials

74 Symphony Developer Tutorials

Step 8: Uninitialize
Always uninitialize the client API at the end of all API calls. If you do not call uninitialize, the client API
remains in an undefined state and resources used by the client are held indefinitely.

Important:
Once you uninitialize, all objects become invalid. For example, you can
no longer create a session or send an input message.

...
SoamFactory.Uninitialize();
...

Step 9: Define a service container
For a service to be managed by Symphony, it needs to be in a container object. This is the service container.

In SampleService.cs, SampleServiceContainer inherits from the base class ServiceContainer.

...
class SampleServiceContainer : ServiceContainer
{
...

Step 10: Process the input
Symphony calls OnInvoke() on the service container once per task. Once you inherit from the
ServiceContainer class, implement handlers so that the service can function properly. This is where the
calculation is performed.

To gain access to the data set from the client, you call the GetTaskInput() method on the task context.
The middleware is responsible for placing the input into the taskContext object.

The task context contains all information and functionality that is available to the service during an
OnInvoke() call in relation to the task that is being processed.

In this sample, we use the StringBuilder object to build the output message, which includes the input
message that is echoed back to the client. Since we are using the same service for sync and async clients,
the if statement is used to indicate that the message was sent from a sync client. When the string in the
output message is completely assembled, pass it to the SetTaskOutput() method, which sets the task output
message that is sent to the client.

.NET Tutorials

Symphony Developer Tutorials 75

...
public override void OnInvoke(TaskContext taskContext)
{
 // get the input that was sent from the client
 MyMessage inputMsg = taskContext.GetTaskInput() as MyMessage;
 if(inputMsg == null)
 {
 throw new SoamException("Have got wrong type of outputMessage object.");
 }
 // We simply echo the data back to the client
 MyMessage outputMsg = new MyMessage();
 outputMsg.Id = inputMsg.Id;
 StringBuilder reply = new StringBuilder();
 reply.Append("you sent : ");
 reply.Append(inputMsg.StringMessage);
 reply.Append("\nwe replied : Hello Client !!\n>>> ");
 if (inputMsg.IsSync)
 {
 reply.Append("Synchronously.\n");
 }
 else
 {
 reply.Append("Asynchronously.\n");
 }
 outputMsg.StringMessage = reply.ToString();

 // set our output message
 taskContext.SetTaskOutput(outputMsg);
}
...

Step 11: Run the container
The service is implemented within an executable. As a minimum, we need to create within our main
function an instance of the service container and run it.

Note that our service is started by parameters.

...
static int Main(string[] args)
{
 // Return value of our service program
 int returnValue = 0;
 try
 {
 // Create a new service container and run it
 SampleServiceContainer myContainer = new SampleServiceContainer();
 myContainer.Run();
 }
...

Step 12: Catch exceptions
Catch exceptions in case the container fails to start running.

...
 catch(Exception ex)
 {
 // report exception
 Console.WriteLine("Exception caught ... " + ex.ToString());
 returnValue = -1;
 }
...

.NET Tutorials

76 Symphony Developer Tutorials

Tutorial: SampleApp: Developing an
asynchronous Symphony C# client

Goal
The purpose of an asynchronous client is to get the output as soon as it is available. The client thread does
not need to be blocked once the input data is sent and can perform other actions.

In this tutorial, you learn how to convert a synchronous client into asynchronous.

At a glance
1. Build the sample client and service
2. Package the sample service and add the application
3. Run the sample client and service
4. Walk through the code

Where to find the documentation
Additional documentation is included in the %SOAM_HOME%\docs directory, as follows:

Note:
%SOAM_HOME% is an environment variable that represents the
Symphony DE installation directory; for example, C:\SymphonyDE
\DE51.

• .NET API Reference: %SOAM_HOME%\docs\symphonyde\5.1\dotnet\api_reference
• Platform Symphony Reference: %SOAM_HOME%\docs\symphonyde\5.1\reference_sym
• Error Reference: %SOAM_HOME%\docs\symphonyde\5.1\error_reference
• Platform Symphony DE Knowledge Center: %SOAM_HOME%\docs\symphonyde\5.1\index.html

Build the sample client and service
1. Navigate to %SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp.
2. Open the Visual C#.NET solution file that is supported by your version of Visual Studio.
3. Build the solution files by pressing ctrl+shift+B.

Compiled executables and libraries are in the %SOAM_HOME%\5.1\samples\DotNet\CS
\SampleApp\output directory.

Package the sample service and add the application
If you have not already packaged and added the sample application, refer to the synchronous client tutorial
for more details.

Run the sample client and service
To run the service, run the client application. The service that a client application uses is specified in the
application profile. Before running the sample client, ensure that the AsyncClient project is set as the
StartUp project in Visual C#.NET.

.NET Tutorials

Symphony Developer Tutorials 77

1. Press F5 to run the application.

The client starts and the system starts the corresponding service. The client displays messages in the
console window indicating that it is running.

Walk through the code
Review the sample client application code to learn how you can understand the differences between a
synchronous client and an asynchronous client.

.NET Tutorials

78 Symphony Developer Tutorials

Locate the code samples
Solution file (Visual Studio)

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp
\sampleApplication.NET.<version>.sln

or

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp
\sampleApplication.NET64.<version>.sln

where <version> is the version of Visual Studio.
Client

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\AsyncClient\AsyncClient.cs

Input/output object

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\Common\MyMessage.cs

Service
%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\Service\SampleService.cs

Application profile

The service required to compute the input data along with additional application
parameters are defined in the application profile:

%SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp\SampleAppDotNetCS.xml

What the sample does
The client application sample sends 10 input messages with the data "Hello Grid !!" and retrieves the
results.

Results are returned asynchronously with a callback interface provided by the client to the API. Methods
on this interface are called from threads within the API when certain events occur. In the sample, the
events are:

• When there is an error at the session level
• When results return from the middleware

Code differences between synchronous and asynchronous clients
An asynchronous client is very similar to a synchronous client. The only differences are:

• You need to specify a callback when creating a session
• You specify a different flag to indicate asynchronous when you create a session
• Retrieval of replies

Step 1: Initialize the client and implement the MyMessage class
As in the synchronous client tutorial, initialize the client and implement the MyMessage class to handle
the input/output data; refer to Your First Synchronous Symphony C# Client and Service, specifically:

• Step 1: Initialize the client on page 93

.NET Tutorials

Symphony Developer Tutorials 79

• Step 2: Implement the MyMessage class on page 93

Step 2: Implement the response handler method to retrieve output
messages

With an asynchronous client, when a task is completed by the service, there must be a means of
communicating this status back to the client. The response handler is implemented for this purpose. It is
called by the middleware each time a service completes a task.

In this sample, the AsyncClientOnResponse() method is the response handler. The method accepts the
TaskOutputHandle as an input argument, which is passed to the method by the middleware whenever
the respective task has completed.

Extract the message from the task result using the GetTaskOutput() method. Display the task ID, internal
ID (taskCount), and output message.

Increment the m_numReceivedTasks variable. Use the lock keyword to ensure that another thread does
not try to increment the variable while it is being accessed.

The m_eventOccured.Set() method releases the waiting main execution thread of the client.

private void AsyncClientOnResponse(TaskOutputHandle output)
{
 // check for success of task
 if (output.IsSuccessful == true)
 {
 // get the message returned from the service
 MyMessage outputMessage = output.GetTaskOutput() as MyMessage;
 if(outputMessage == null)
 {
 throw new SoamException("Have got wrong type of outputMessage object.");
 }
 // display content of reply
 Console.WriteLine("Task Succeeded [" + output.Id + "]");
 Console.WriteLine("Task Internal ID : " + outputMessage.Id);
 Console.WriteLine(outputMessage.StringMessage);
 }
 else
 {
 // get the exception associated with this task
 SoamException ex = output.Exception;
 Console.WriteLine(ex.ToString());
 }

 lock(this)
 {
 m_numReceivedTasks++;
 }
 m_eventOccured.Set();
}

Step 3: Implement the exception handler method (callback)
The exception handler method is called by the API when an exception of type SoamException occurs
within the scope of a session.

Print out the exception message and set the Boolean error flag (m_noErrorReported) to false. Use the
lock keyword to ensure that another thread does not try to set the flag while it is being accessed.

.NET Tutorials

80 Symphony Developer Tutorials

private void AsyncClientOnException(SoamException exception)
{
 Console.WriteLine("Soam exception caught ... " + exception.ToString());
 lock(this)
 {
 m_noErrorReported = false;
 }
 m_eventOccured.Set();
}

Step 4: Connect to an application
To send data to be calculated in the form of input messages, you connect to an application; refer to Step
3: Connect to an application of the synchronous client tutorial.

Step 5: Create a session to group tasks
A session is a way of logically grouping tasks that are sent to a service for execution. The tasks are sent
and received asynchronously.

When creating a session, you need to specify the session attributes by using the SessionCreationAttributes
object. In this sample, we create a SessionCreationAttributes object called attributes and set four
parameters in the object.

In this example, we set the following parameters:

• The first parameter is the session description. This is optional. The session description can be any
descriptive name you want to assign to your session. It is for information purposes, such as in the
command-line interface.

• The second parameter is the session type. The session type is optional. You can leave this parameter
blank and system default values are used for your session.

Important:
The session type must be the same session type as defined in your
application profile.

In the application profile, with the session type, you define
characteristics for the session.

• The third parameter is the session flag. When creating an asynchronous session, set the flag to
SessionFlags.ReceiveAsync. This flag indicates to Symphony that this is an asynchronous session.

• The fourth parameter is the callback object.

...
try
{
// Set up session attributes
 SessionCreationAttributes attributes = new
 SessionCreationAttributes();
 attributes.SessionName="mySession";
 attributes.SessionType="ShortRunningTasks";
 attributes.SessionFlags = SessionFlags.ReceiveAsync;
 attributes.SessionCallback = callback;
 // Create an asynchronous session
 session = connection.CreateSession(attributes);
...
}
...

.NET Tutorials

Symphony Developer Tutorials 81

Step 6: Associate event handlers with the events
Associate the event handler method (AsyncClientOnResponse) with the OnResponse event; refer to Step
2: Implement the response handler method to retrieve output messages. This is necessary so that the
OnResponse event knows which method to execute when the event is triggered. The method is called by
the API whenever a task response is ready. Similarly, associate the AsyncClientOnException() method
with the OnException event to handle exceptions of type SoamException if they occur. This method is
called by the API when an exception occurs within the scope of the session; refer to Step 3: Implement
the exception handler method (callback).

...
 // Create a SessionCallback instance and register event handlers
 SessionCallback callback = new SessionCallback();
 callback.OnResponse += new SessionCallback.ResponseHandler(AsyncClientOnResponse);
 callback.OnException += new SessionCallback.ExceptionHandler(AsyncClientOnException);
...

Step 7: Send input data to be processed
In this step, we create 10 input messages to be processed by the service. We call the MyMessage constructor
and pass three input parameters: ID (taskCount), the Boolean value (false) to indicate asynchronous
communication, and a message string ("Hello Grid !!"). When a message is sent, a task input handle is
returned. This task input handle contains the ID for the task that was created for this input message.

...
int numTasksToSend = 10;
for (int taskCount = 0; taskCount < numTasksToSend; taskCount++)
{
 // Create a message
 MyMessage inputMessage = new MyMessage(taskCount, false, "Hello Grid !!");
 TaskSubmissionAttributes taskAttr = new TaskSubmissionAttributes();
 taskAttr.SetTaskInput(inputMessage);
 // send it
 TaskInputHandle input = session.SendTaskInput(inputMessage);
 // retrieve and print task ID
 Console.WriteLine("task submitted with ID: " + input.Id);
}
...

Step 8: Wait for replies before closing the session
After all 10 tasks (messages) have been sent to the service, the main client execution thread must wait for
all tasks to be processed before closing the session. As each task is completed by the service, the
m_numReceivedTasks variable is incremented; refer to Step 2: Implement the response handler method
to retrieve output messages. The WaitForComplete() method is used to suspend the main client execution
thread until all messages are received. The method contains a loop that checks if the number of replies
equals the total number of tasks sent; if they are not equal, the thread blocks by calling
m_eventOccured.WaitOne() until it is signalled to resume execution. The thread is released by calling
m_eventOccured.Set() each time a task is completed or if an exception occurs. When all the replies have
been received, close the session.

Important:
As is the case with the connection object, the creation and usage of the
session object, i.e., sending and receiving data, must be scoped in a try-
finally block. The finally block, with the session.Close() method, ensures
that the session is always closed whether exceptional behavior occurs or

.NET Tutorials

82 Symphony Developer Tutorials

not. Failure to close the session causes the session to continue to occupy
middleware resources.

...
private void WaitForComplete(int taskCount)
{
 while(true)
 {
 bool shouldWait;
 lock(this)
 {
 shouldWait = (m_numReceivedTasks < taskCount) && m_noErrorReported;
 }
 if (shouldWait)
 {
 m_eventOccured.WaitOne();
 }
 else
 {
 break;
 }
 }
}
...

...
}finally
{
 // mandatory session close
 if (session != null)
 {
 session.Close();
 }
...

Step 9: Uninitialize
Always uninitialize the client API at the end of all API calls. If you do not call uninitialize, the client API
remains in an undefined state and resources used by the client are held indefinitely.

Important:
Once you uninitialize, all objects become invalid. For example, you can
no longer create a session or send an input message.

...
SoamFactory.Uninitialize();
...

Tutorial: SharingData: Developing a C# client
and service to share data among tasks

Goal
This tutorial walks you through how to develop a client application and service to share data among all
tasks in a session. The data is shared by all invocations of tasks within the same session.

You lean how to use different data objects for input, output, and common data.

.NET Tutorials

Symphony Developer Tutorials 83

At a glance
Before you begin, ensure you have installed and started Platform Symphony Developer Edition.

1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Build the sample client and service
1. Navigate to %SOAM_HOME%\5.1\samples\DotNet\CS\SampleApp.
2. Open the Visual C#.NET solution file that is supported by your version of Visual Studio.
3. Build the .NET solution by pressing ctrl+shift+B.

Compiled executables and libraries are in the %SOAM_HOME%\5.1\samples\DotNet\CS
\SharingData\output directory.

Note:
%SOAM_HOME% is an environment variable that represents the
Symphony DE installation directory; for example, C:\SymphonyDE
\DE51.

Package the sample service
You must package the files required by your service to create a service package.

Note:
Make sure the dlls are included in your service package.

1. Go to the directory that contains the files for the service package:
cd %SOAM_HOME%\5.1\samples\DotNet\CS\SharingData\output

2. Locate the SharingDataServiceDotNetCS.exe and Common.dll files. Add these files to an
archive using a compression program such as gzip. Save the archive as
SharingDataServiceDotNetCS.zip in the current directory.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. Click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

.NET Tutorials

84 Symphony Developer Tutorials

The Adding an Application page displays.
4. Select Use existing profile and add application wizard, and browse to your application profile.
5. Select your application profile xml file, then click Continue

For SharingData, you can find your profile in the following location:

• .NET:

• %SOAM_HOME%\5.1\samples\DotNet\CS\SharingData
\SharingDataDotNetCS.xml

The Service Package location window displays.
6. Browse to the service package you created in .gz, .zip, or tar.gz format and select it, then, select

Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample client and service
To run the service, run the client application. The service that a client application uses is specified in the
application profile.

Before running the sample client, ensure that the Client project is set as the StartUp project in Visual
C#.NET.

1. Press F5 to run the application.

The client starts and the system starts the corresponding service. The client displays messages in the
console window indicating that it is running.

.NET Tutorials

Symphony Developer Tutorials 85

Walk through the code
Review the sample code to learn how you can create a client and service that uses common data.

Locate the code samples
Solution file (Visual Studio)

.NET Tutorials

86 Symphony Developer Tutorials

%SOAM_HOME%\5.1\samples\DotNet\CS\SharingData
\sharing_data_<version>.sln

or

sharing_data64_<version>.sln

where <version> is the version of Visual Studio.
Client

%SOAM_HOME%\5.1\samples\DotNet\CS\SharingData\Client\SyncClient.cs

Input, output, and data objects

%SOAM_HOME%\5.1\samples\DotNet\CS\SharingData\Common\

Service
%SOAM_HOME%\5.1\samples\DotNet\CS\SharingData\Service\SampleService.cs

Application profile

The service required to compute the input data along with additional application
parameters are defined in the application profile:

%SOAM_HOME%\5.1\samples\DotNet\CS\SharingData\SharingDataDotNetCS.xml

What the samples do
The client creates a session with common data. It sends 10 input messages, and retrieves the output. The
client then outputs "Hello Grid !!".

The service takes input data sent by client applications, returns the input data you have sent and replies
"Hello Client !!" followed by the common data appended to the message. The service uses OnSessionEnter
() to define attributes global to the session.

When to use common data
Common data is data that can be made available to service instances for the duration of a session.

Use common data when you need to set up the initial state of a service, and you only want to do it once,
not on every task. Common data is useful for passing data from a client to a service. The service loads the
data when the session is created.

You can use common data, for example, to set the environment in the service that is common to all tasks
in a session. This way you only need to set the environment once, when the session is created.

Symphony attempts to use the same service instance for all tasks in a session. A service instance is made
available to other sessions only when session workload completes, a session is closed or aborted, or when
another session of higher priority is assigned the service instance.

Prepare common data in your client
Declare and implement the Message objects

In the synchronous client tutorial, input and output message objects were the same object. In this tutorial,
different objects represent input and output. In addition, we are creating an additional object to represent
common data.

.NET Tutorials

Symphony Developer Tutorials 87

Remember to mark your message and data handler classes with the Serializable attribute. This allows the
objects to be serialized for transfer across the network.

Use the common data object when creating a session
As in the synchronous client tutorial, initialize the client and connect to the application. Then, create your
session to group tasks.

When creating a session, use the common data object to pass data from the client application to the service.

In SyncClient.cs, we create a session and pass the common data object via the
SessionCreationAttributes object.

...
 // Set up our common data to be shared by all task
 // invocations within this session
 MyCommonData commonData = new MyCommonData();
 commonData.StringMessage="Common Data To Be Shared";
 Session session = null;
 try
 {
 // Set up session attributes
 SessionCreationAttributes attributes = new
 SessionCreationAttributes();
 attributes.SessionName="mySession";
 attributes.SessionType="ShortRunningTasks";
 attributes.SessionFlags = SessionFlags.AliasSync;
 attributes.SetCommonData(commonData);
 // Create a synchronous Session
 session = connection.CreateSession(attributes);
...

Continue with your client as usual
Now you can proceed the same way as in the synchronous client tutorial:

• Send input data to be processed
• Retrieve output
• Close the session
• Close the connection
• Catch exceptions
• Uninitialize

Access common data in your service
Define a service container and get data from the session

As in the basic service tutorial, first define a service container. Then retrieve the common data sent by
the client by implementing OnSessionEnter(). This method is called once by the middleware for the
duration of the session to bind the service instance to the session.

In SampleService.cs, we use OnSessionEnter() to get common data and store it for later use within
the scope of the session.

.NET Tutorials

88 Symphony Developer Tutorials

...
public override void OnSessionEnter(SessionContext sessionContext)
{
 // get the current session ID (if needed)
 m_currentSID = sessionContext.SessionId;

 // populate our common data object
 m_commonData = sessionContext.GetCommonData() as MyCommonData;
 if(m_commonData == null)
 {
 throw new SoamException("Have got wrong type of CommonData object.");
 }
}
...

Process the input
In this example, each time the OnInvoke() method is called by the middleware, we append the common
data to the output string. We then set our output message as usual to send common data back with each
of the replies.

...
public override void OnInvoke(TaskContext taskContext)
{
 // estimate and set our runtime
 MyOutput outMsg = new MyOutput();
 outMsg.RunTime = DateTime.Now.ToString();
 // Get the input that was sent from the client
 MyInput inMsg = taskContext.GetTaskInput() as MyInput;

 if(inMsg == null)
 {
 throw new SoamException("The service attempted to access the wrong type
 of InputMessage object.");
 }
 // We simply echo the data back to the client
 outMsg.Id = inMsg.Id;
 StringBuilder reply = new StringBuilder();
 reply.Append("Client sent : ");
 reply.Append(inMsg.StringMessage);
 reply.Append("\nSymphony replied : Hello Client !! with common data (\"");
 reply.Append(m_commonData.StringMessage);
 reply.Append("\") for session(");
 reply.Append(String.Format("{0}", m_currentSID));
 reply.Append(")");
 outMsg.StringMessage = reply.ToString();
 // Set our output message
 taskContext.SetTaskOutput(outMsg);
}

...

Perform any data cleanup
After processing the input, use the OnSessionLeave() call to free the data for the session. The
OnSessionLeave() method is called once by the middleware for every session that is created.

...
public override void OnSessionLeave()
{
 // free our data
 m_currentSID = null;
 m_commonData = null;
}
...

.NET Tutorials

Symphony Developer Tutorials 89

Run the container and catch exceptions
As with the basic service, run the container in the service main and catch exceptions.

...
static int Main(string[] args)
{
 // Return value of our service program
 int returnValue = 0;
 try
 {
 // Create a new service container and run it
 SampleServiceContainer myContainer = new SampleServiceContainer();
 myContainer.Run();
 }
 catch(Exception ex)
 {
 // report exception
 Console.WriteLine("Exception caught ... " + ex.ToString());
 returnValue = -1;
 }
 return returnValue;
}
...

.NET Tutorials

90 Symphony Developer Tutorials

Cross-language Tutorials
Developing cross-language clients and services

Tutorial: CrossLanguage: Developing cross-
language clients and services

Goal
This tutorial walks you through using Symphony serialization when developing client applications and
services. Symphony serialization allows clients and services written in different programming languages
to communicate with each other. For example, you can use a C++ client with a Java service.

You should also use Symphony serialization if you are concerned with performance and memory usage.

In this tutorial, you build samples in C++, Java, and .NET, package and deploy the service in either
language, and use the C++, Java, COM, and .NET clients to submit work to the service.

At a glance
1. Build the samples
2. Package the service
3. Add the application
4. Run the sample clients
5. Walk through the code

Prerequisites
• Ensure that you have installed and started Symphony DE.
• You should also have completed the following tutorials in either C++, Java, or .NET:

• Your First Synchronous Symphony Client
• Your First Symphony Service

Build the samples
The following section provides instructions for building the samples in C++, Java, COM, and .NET.

You need to build all samples to have cross-language clients and services.

Build the C++ sample client and service
On Windows

You can build client application and service samples at the same time.

1. In %SOAM_HOME%\5.1\samples\CrossLanguage\CPP, locate workspace file
CrossLanguageSampleCPP_vc6.dsw, or one of the solution files supported by your version of
Visual Studio.

Cross-language Tutorials

Symphony Developer Tutorials 91

2. Load the file into Visual Studio and build it.

On Linux
You can build client application and service samples at the same time.

1. Change to the $SOAM_HOME/conf directory.
2. Set the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Compile using the Makefile located in $SOAM_HOME/5.1/samples/CrossLanguage/CPP:
make

Build the Java sample client and service
On Windows
Compile with the .bat file

You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\5.1\samples\CrossLanguage\Java\ directory and run the .bat
file:
build.bat

Compile with the Ant build file
You can build client application and service samples at the same time.

1. Change to the %SOAM_HOME%\5.1\samples\CrossLanguage\Java\ directory and run the build
command:
ant

Compile in Eclipse
To compile in Eclipse, see "Symphony plug-in for Eclipse" in the Application Development Guide.

On Linux
Compile with the Makefile

You can build client application and service samples at the same time.

1. Change to the $SOAM_HOME/conf directory.
2. Set the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

Cross-language Tutorials

92 Symphony Developer Tutorials

3. Change to the $SOAM_HOME/5.1/samples/CrossLanguage/Java directory and run the
command:
make

Compile with the Ant build file
You can build client application and service samples at the same time.

1. Change to the $SOAM_HOME/conf directory.
2. Set the environment:

• For csh, enter
source cshrc.soam

• For bash, enter
. profile.soam

3. Change to the $SOAM_HOME/5.1/samples/CrossLanguage/Java directory and run the command:
ant

Compile in Eclipse
To compile in Eclipse, see "Symphony plug-in for Eclipse" in the Application Development Guide.

Build the .NET sample client and service
1. Double-click the appropriate Visual C#.NET solution file located in the $SOAM_HOME/5.1/

samples/CrossLanguage/DotNet.
2. Build the solution.

Build the COM client
1. Double-click to open VB_Clients.vbp located in the %SOAM_HOME%\4.0\samples

\CrossLanguage\COM\Client directory.
2. In the Microsoft Visual Basic, open the SyncClient.frm code and uncomment

api.Uninitialize, which is under Form_Unload. Close the form.
3. In the Microsoft Visual Basic, build the COM client by clicking File>Make ComApiClients.exe and

create a project in the %SOAM_HOME%\4.0\samples\CrossLanguage\COM\output directory.

Package the service
Select the service in the language of your preference to deploy.

Important:
Deploy the service from only one language. This is because all services
are registered under the same application, so only one service can be
deployed at any one time.

Instructions are provided for all programming languages.

Cross-language Tutorials

Symphony Developer Tutorials 93

Package the C++ sample service
On Windows

To run the service, you first need to create a service package.

1. Go to the directory in which the compiled samples are located.

cd %SOAM_HOME%\5.1\samples\CrossLanguage\CPP\Output
2. Create the service package by compressing the service executable into a zip file.

gzip CrossLanguageServiceCPP.exe

You have now created your service package CrossLanguageServiceCPP.exe.gz.

On Linux
To run the service, you first need to create a service package, then deploy it.

1. Change to the directory in which the compiled samples are located:

cd $SOAM_HOME/5.1/samples/CrossLanguage/CPP/Output
2. Create the service package:

tar -cvf CrossLanguageServiceCPP.tar CrossLanguageServiceCPP

gzip CrossLanguageServiceCPP.tar

You have now created your service package CrossLanguageServiceCPP.tar.gz.

Package the Java sample service
You must package the files required by your service to create a service package. When you built the sample,
the service package was automatically created for you.

1. Go to the directory in which the service package is located.

• On Windows, you have CrossLanguageServiceJavaPackage.jar

cd %SOAM_HOME%\5.1\samples\CrossLanguage\Java

• On Linux, you have CrossLanguageServiceJavaPackage.zip

cd $SOAM_HOME/5.1/samples/CrossLanguage/Java

Package the .NET sample service
You must package the files required by your service to create a service package.

1. Go to the directory that contains the files for the service package:
cd %SOAM_HOME%\5.1\samples\CrossLanguage\DotNet\CS\output

2. Locate the CrossLanguageServiceDotNetCS.exe and Common.dll files and add them to an
archive using a compression program such as WinZip®.

3. Save the archive as CrossLanguageServiceDotNetCS.zip in the current directory.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and

Cross-language Tutorials

94 Symphony Developer Tutorials

registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. In the DE PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard. Click Browse and navigate to your application

profile.
5. Select your application profile xml file, then click Continue

Select the profile that matches the programming language and operating system for your service. For
example, if you want to use a C++ service with a .NET and Java client, use the C++ application profile.
• C++:

• Windows—%SOAM_HOME%\5.1\samples\CrossLanguage\CrossLanguageCpp.xml
• Linux—$SOAM_HOME/5.1/samples/CrossLanguage/CrossLanguageCpp.xml

• Java
• Windows—%SOAM_HOME%\5.1\samples\CrossLanguage\crossLanguageJava.xml
• Linux—$SOAM_HOME/5.1/samples/CrossLanguage/CrossLanguageJava.xml

• .NET:
• %SOAM_HOME%\5.1\samples\CrossLanguage\CrossLanguageDotNetCS.xml

The Service Package location window displays.
6. Browse to the service package you created in .zip, tar.gz, or .jar format and select it, then, select

Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

Run the sample clients
On Windows

To demonstrate that your cross-language clients and services work, use clients developed in different
languages, and submit workload to a service developed in a different language.

We are going to use C++, Java, COM, and .NET clients to submit work to the service.

1. Run the C++ client on the command-line.
%SOAM_HOME%\5.1\samples\CrossLanguage\CPP\Output\CrossLanguageClient

You should see output on the command line as work is submitted to the system.

Cross-language Tutorials

Symphony Developer Tutorials 95

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

2. Run the Java client on the command-line
%SOAM_HOME%\5.1\samples\CrossLanguage\Java\RunCrossLanguageClient.bat

You should see output on the command line as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

3. Run the .NET client on the command-line.
%SOAM_HOME%\5.1\samples\CrossLanguage\DotNet\CS\output\CrossLanguageClient

The client starts and the system starts the corresponding service. The client displays messages in the
text box indicating that it is running.

4. Run the COM client on the Synchronous Symphony Client window.

Note:
Make sure you have local administrator privileges to register the COM
API assembly. Register Platform.Symphony.Soam.COM.dll, which is
at the location %SOAM_HOME%\4.0\win32-vc7\lib\COM or %
SOAM_HOME%\4.0\w2k3_x64-vc7-psdk\lib\COM with regsvr32. For
example, regsvr32 Platform.Symphony.Soam.COM.dll.

%SOAM_HOME%\5.1\samples\CrossLanguage\COM\output\ComApiClients.exe

The client starts and the system starts the corresponding service. The client displays messages in the
text box indicating that it is running.

On Linux
To demonstrate that your cross-language clients and services work, use clients developed in a different
programming language from the service to submit workload.

For this example we are going to use C++ and Java clients to submit work to the service.

1. Run the C++ client application.
$SOAM_HOME/5.1/samples/CrossLanguage/CPP/output/CrossLanguageClient

You should see output as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

2. Run the Java client application.

• From the command-line:

$SOAM_HOME/5.1/samples/CrossLanguage/Java/RunCrossLanguageClient.sh

You should see output as work is submitted to the system.

The client starts and the system starts the corresponding service. The client displays messages
indicating that it is running.

Walk through the code
Review the sample code to learn how you can create cross-language clients and services.

Cross-language Tutorials

96 Symphony Developer Tutorials

Locate the code samples
Operatin
g System

Languag
e

File Location of Code Sample

Windows Java Client %SOAM_HOME%\5.1\samples\CrossLanguage\Java\src\com
\platform\symphony\samples\CrossLanguage\client
\CrossLanguageClient.java

Input, output
objects

%SOAM_HOME%\5.1\samples\CrossLanguage\Java\src\com
\platform\symphony\samples\CrossLanguage\common
\MyMessage.java

Service %SOAM_HOME%\5.1\samples\CrossLanguage\Java\src\com
\platform\symphony\samples\CrossLanguage\service
\CrossLanguageService.java

Application
profiles

The Java service and additional application parameters are specified in the
application profile:

%SOAM_HOME%\5.1\samples\CrossLanguage
\crossLanguageJava.xml

Output
directory

%SOAM_HOME%\5.1\samples\CrossLanguage\Java

C++ Client %SOAM_HOME%\5.1\samples\CrossLanguage\CPP\Client
\CrossLanguageClient.cpp

Input, output
objects

%SOAM_HOME%\5.1\samples\CrossLanguage\CPP\Common
\MyMessage.cpp

Service %SOAM_HOME%\5.1\samples\CrossLanguage\CPP\Service
\CrossLanguageService.cpp

Application
profiles

The C++ service and additional application parameters are specified in the
application profile:

%SOAM_HOME%\5.1\samples\CrossLanguage
\CrossLanguageCpp.xml

Output
directory

%SOAM_HOME%\5.1\samples\CrossLanguage\CPP\Output

Cross-language Tutorials

Symphony Developer Tutorials 97

Operatin
g System

Languag
e

File Location of Code Sample

.NET Client %SOAM_HOME%\5.1\samples\CrossLanguage\DotNet\CS\Client
\CrossLanguageClient.cs

Input, output
objects

%SOAM_HOME%\5.1\samples\CrossLanguage\DotNet\CS\Common
\MyMessage.cs

Service %SOAM_HOME%\5.1\samples\CrossLanguage\DotNet\CS\Service
\CrossLanguageService.cs

Application
profiles

The .NET service and additional application parameters are specified in the
application profile:

%SOAM_HOME%\5.1\samples\CrossLanguage
\CrossLanguageDotNetCS.xml

Output
directory

%SOAM_HOME%\5.1\samples\CrossLanguage\DotNet\CS\output

COM Client %SOAM_HOME%\5.1\samples\CrossLanguage\COM\Client
\VB_Clients.vbp

Input, output
objects

MyMessage.cls is under Class Modules in VB.

Output
directory

%SOAM_HOME%\5.1\samples\CrossLanguage\COM\output

Linux Java Client $SOAM_HOME/5.1/samples/CrossLanguage/Java/src/com/
platform/symphony/samples/CrossLanguage/client/
CrossLanguageClient.java

Input, output
objects

$SOAM_HOME/5.1/samples/CrossLanguage/Java/src/com/
platform/symphony/samples/CrossLanguage/common/
MyMessage.java

Service $SOAM_HOME/5.1/samples/CrossLanguage/Java/src/com/
platform/symphony/samples/CrossLanguage/service/
CrossLanguageService.java

Application
profiles

The Java service and additional application parameters are specified in the
application profile:

$SOAM_HOME/5.1/samples/CrossLanguage/
CrossLanguageJava.xml

Output
directory

$SOAM_HOME/5.1/samples/CrossLanguage/Java

Cross-language Tutorials

98 Symphony Developer Tutorials

Operatin
g System

Languag
e

File Location of Code Sample

C++ Client $SOAM_HOME/5.1/samples/CrossLanguage/CPP/Client/
CrossLanguageClient.cpp

Input, output
objects

$SOAM_HOME/5.1/samples/CrossLanguage/CPP/Common/
MyMessage.cpp

Service $SOAM_HOME/5.1/samples/CrossLanguage/CPP/Service/
CrossLanguageService.cpp

Application
profiles

The C++ service and additional application parameters are specified in the
application profile:

$SOAM_HOME/5.1/samples/CrossLanguage/
CrossLanguageCpp.xml

Output
directory

$SOAM_HOME/5.1/samples/CrossLanguage/CPP/Output

What the samples do
The client application sends 10 input messages with the data "Hello Grid !!" through Symphony to the
service.

The service takes input data sent by the client application and returns the input and the reply "Hello
Client !!". The client blocks to receive messages synchronously.

Differences between cross-language and same-language clients
and services

Client and service structures are the same in cross-language clients and services as those of same-language
clients and services, except for serialization.

The Java and .NET APIs support two modes of serialization: native serialization and Symphony
serialization. The same-language samples for both of these APIs demonstrate the use of native
serialization. On the other hand, the C++ and cross-language samples implement Symphony serialization.

Symphony serialization
Symphony serialization allows communication between clients and services written in different languages.
For example, Symphony serialization allows you to use a C++ client with a Java service.

Symphony serialization is achieved in all languages by deriving from the SOAM Message object and
implementing the appropriate serialization handlers.

You also use Symphony serialization if you are concerned with performance and memory usage.

Compatibility matrix
The following compatibility matrix for cross-language support shows which data types are compatible
across languages.

C++ Java .NET VB bits

short short Int16 Short 16

Cross-language Tutorials

Symphony Developer Tutorials 99

C++ Java .NET VB bits

int int Int32 Integer 32

long long long Int64 Long 64

unsigned short UInt16 UShort 16

unsigned int UInt32 UInteger 32

unsigned long long UInt64 ULong 64

float float Single Single 32

double double Double Double 64

char char Char Char -

bool boolean Boolean Boolean 8

const char* java.lang.String String String N/A

Note:

• In Java and .NET, a character may consume 1-2 bytes of memory
while in C++ a character consumes 1 byte of memory.

• Since byte arrays are represented differently across the supported
languages, you need to use a special method when serializing this
data. To write a byte array in C++ and Java, use the writeByteArray()
method on the OutputStream. To write a byte array in .NET, use the
WriteByteArray() method on the OutputStream.

• Note that the C++ “long” type and "unsigned long type" has been
removed from the Compatibility Matrix for Symphony releases 3.1 and
later due to portability issues across platforms and languages. While
the C++ long type can still be serialized/de-serialized in the API,
developers should consider using “int” for 32-bit values and “long long”
for 64-bit values to maintain platform independence. Refer to the
section on 64-bit Application Support for more information.

Use Symphony serialization in C++ to serialize input and output
There is no native serialization in C++. All C++ tutorials already use Symphony serialization. The client
and service have the same structure as samples in all C++ tutorials.

Use Symphony serialization in Java to serialize input and output
Send input to the service

In the client, in CrossLanguageClient.java, when sending input to the service,
session.sendTaskInput() takes in the message object instead of java.io.Serializable.

Cross-language Tutorials

100 Symphony Developer Tutorials

 ...
// Now we will send some messages to our service
 int tasksToSend = 10;
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 // Create a message
 MyMessage inMsg = new MyMessage(taskCount, true, "Hello Grid !!");
 // send it
 TaskInputHandle input = session.sendTaskInput(inMsg);
 ...

Serialize input
In MyMessage.java, implement the onSerialize() handler to write data to the provided OutputStream.
Symphony calls this method when you send data.

In native serialization, the Java serialization mechanisms automatically serialize your data. For Symphony
serialization, you need to specify the data you want to serialize.

Note:
Anything that you write to the stream you need to read back in the same
order that you wrote it.

...
 public void onSerialize(OutputStream stream) throws SoamException
 {
 stream.writeInt(m_int);
 stream.writeBoolean(m_isSync);
 stream.writeString(m_string);
 }
...

Retrieve input on the service
In CrossLanguageService.java, create an instance of the message object and pass your own instance
to populate the inMsg message object. The populateTaskInput() method fills in the object.

...
public void onInvoke (TaskContext taskContext) throws SoamException
 {
 // Get the input that was sent from the client
 MyMessage inMsg = new MyMessage();
 taskContext.populateTaskInput(inMsg);
...

In MyMessage.java, implement the onDeSerialize() handler to read data from the provided
InputStream. Symphony calls this method when you retrieve data.In native serialization, the Java
serialization mechanisms automatically deserialize your data. For Symphony serialization, you need to
specify the data to read from the stream.

Note:

Cross-language Tutorials

Symphony Developer Tutorials 101

Anything that you write to the stream you need to read back in the same
order that you wrote it.

...
public void onDeserialize(InputStream stream) throws SoamException
 {
 m_int = stream.readInt();
 m_isSync = stream.readBoolean();
 m_string = stream.readString();
 }
...

Send output back to the client
In CrossLanguageService.java, pass the output message object to send output back to the client.
Symphony invokes your onSerialize() handler to send the output back to the client.

...
// Set our output message
 taskContext.setTaskOutput(outMsg);
...

Retrieve output on the client
In your client, in CrossLanguageClient.java, create an instance of the message object and pass your
own instance to populate the outMsg object. The populateTaskOutput() method fills in the object.

Symphony invokes your onDeserialize() handler to retrieve the output.

...
// get the message returned from the service
 MyMessage outMsg = new MyMessage();
 output.populateTaskOutput(outMsg);
...

Use Symphony serialization in .NET to serialize input and output
Send input to the service

In your client, in CrossLanguageClient.cs, when sending input to the service, session.SendTaskInput
() takes a message object instead of a [serializable] object.

 ...
// Now we will send some messages to our service
 int numTasksToSend = 10;
 for (int taskCount = 0; taskCount < numTasksToSend; taskCount++)
 {
 // Create a message
 MyMessage inputMessage = new MyMessage(taskCount, true, "Hello Grid !!");
 // send it
 TaskInputHandle input = session.SendTaskInput(inputMessage);
 ...

Serialize input
In MyMessage.cs, implement the OnSerialize() handler to write data to the provided OutputStream.
Symphony calls this method when you send data.

In native serialization, .NET serialization mechanisms automatically serialize your data. For Symphony
serialization, you need to specify the data you want to serialize.

Cross-language Tutorials

102 Symphony Developer Tutorials

Note:
Anything that you write to the stream you need to read back in the same
order that you wrote it.

...
public override void OnSerialize(OutputStream ostream)
 {
 ostream.WriteInt32(m_id);
 ostream.WriteBoolean(m_isSync);
 ostream.WriteString(m_string);
 }
...

Retrieve input on the service
In CrossLanguageService.cs, create an instance of the message object and pass your own instance
to populate the inputMsg object. The PopulateTaskInput() method fills in the object.

...
public override void OnInvoke(TaskContext taskContext)
{
// get the input that was sent from the client
MyMessage inputMsg = new MyMessage();
taskContext.PopulateTaskInput(inputMsg);
...

In MyMessage.cs, implement the OnDeserialize() handler to read data from the provided InputStream.
Symphony calls this method when you retrieve data.

In native serialization, .NET serialization mechanisms automatically deserialize your data. For Symphony
serialization, you need to specify the data to read from the stream.

Note:
Anything that you write to the stream you need to read back in the same
order that you wrote it.

...
public override void OnDeserialize(InputStream istream)
 {
 m_id = istream.ReadInt32();
 m_isSync = istream.ReadBoolean();
 m_string = istream.ReadString();
 }
...

Send output back to the client
In CrossLanguageService.cs, pass the output message object to send output back to the client.
Symphony invokes your OnSerialize() handler to send the output back to the client.

...
// set our output message
taskContext.SetTaskOutput(outputMsg);
...

Cross-language Tutorials

Symphony Developer Tutorials 103

Retrieve output on the client
In your client, in CrossLanguageClient.cs, create an instance of the message object and pass your
own instance to populate the outputMessage object. The PopulateTaskOutput() method fills in the object.
Symphony invokes your OnDeSerialize() handler to retrieve the output.

...
 // get the message returned from the service
 MyMessage outputMessage = new MyMessage();
 output.PopulateTaskOutput(outputMessage);
...

Cross-language Tutorials

104 Symphony Developer Tutorials

COM Tutorial
Tutorial: Developing a COM API client

Scope
Symphony COM API supports synchronous message input and output.

Symphony COM API is intended for clients written with VB6.0, VB Script, or VBA, and services written
with C++, Java, or .NET.

Goal
This tutorial walks you through the sample client application code, then guides you through the process
of building, packaging, and deploying the associated service.

This tutorial is based on the VBA client code in the SoamExcelSample.xls spreadsheet. The sample
code demonstrates how to connect to an application using the COM API.

To help grasp the concepts, the spreadsheet actually contains two code samples. The first sample shows
how a simple calculation is performed locally within the spreadsheet itself. The second sample extends
the first sample to a grid-ready version by implementing the computational logic as a C++ service that
can run on compute hosts in a Symphony cluster.

At a glance
1. Build the sample client and service
2. Package the sample service
3. Add the application
4. Run the sample client and service
5. Walk through the code

Prerequisites
• Ensure you have installed and started Symphony Developer Edition.

Where to find the documentation
Note:
%SOAM_HOME% is an environment variable that represents the
Symphony DE installation directory; for example, C:\SymphonyDE
\DE51.

Additional documentation is included in the %SOAM_HOME%\docs directory, as follows:

• COM API Reference: %SOAM_HOME%\docs\symphonyde\5.1\com\api_reference
• Platform Symphony Reference: %SOAM_HOME%\docs\symphonyde\5.1\reference_sym
• Error Reference: %SOAM_HOME%\docs\symphonyde\5.1\error_reference
• Platform Symphony DE Knowledge Center: %SOAM_HOME%\docs\symphonyde\5.1\index.html

COM Tutorial

Symphony Developer Tutorials 105

Build the sample service
1. Open the Visual C++ solution file ExcelSampleService_vc71.sln from the location %

SOAM_HOME%\5.1\samples\COM\service

2. Build the solution by pressing ctrl+ shift+B.

Compiled executables and libraries are in the %SOAM_HOME%\5.1\samples\COM\output directory.

Package the sample service
You must package the files required by your service to create a service package.

1. Go to the directory that contains the file for the service package:

cd %SOAM_HOME%\5.1\samples\COM\output
2. Locate the ExcelSampleService.exe file. Add the file to an archive using a compression program such

as gzip. Save the archive as ExcelSampleService.exe.gz in the current directory.

Add the application
When you add an application through the DE PMC, you must use the Add Application wizard. This
wizard defines a consumer location to associate with your application, deploys your service package, and
registers your application. After completing the steps with the wizard, your application should be ready
to use.

1. Click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select Global Actions > Add/Remove Applications.

The Add/Remove Application page displays.
3. Select Add an application, then click Continue.

The Adding an Application page displays.
4. Select Use existing profile and add application wizard, and browse to your application profile.
5. Select your application profile xml file, then click Continue.

For ExcelSample, you can find your profile in the following location:

• Windows—%SOAM_HOME%\5.1\samples\COM\ExcelSample.xml

The Service Package location window displays.
6. Browse to the service package you created in .zip or .gz format and select it, then select Continue.

The Confirmation window displays.
7. Review your selections, then click Confirm.

The window displays indicating progress. Your application is ready to use.
8. Click Close.

The window closes and you are now back in the Platform Management Console. Your new application
is displayed as enabled.

COM Tutorial

106 Symphony Developer Tutorials

Run the sample client and service
To run the service, run the client application. The service that a client application uses is specified in the
application profile.

Note:
Make sure you have local administrator privileges to register the COM API
assembly. Before running the service, log on as local administrator to
register COM API.

1. Register Platform.Symphony.Soam.COM.dll, which is at the location %SOAM_HOME%\5.1
\win32-vc7\lib\COM or %SOAM_HOME%\5.1\w2k3_x64-vc7-psdk\lib\COM with regsvr32:

regsvr32 Platform.Symphony.Soam.COM.dll

Note:
For Windows Vista, right-click Command Prompt and select Run as
Administrator before entering the command.

2. Go to the directory that contains SoamExcelSample.xls

%SOAM_HOME%\5.1\samples\COM\client

3. In the SoamExcelSample.xls spreadsheet, click Tools>Macro>Visual Basic Editor or press Alt
+F11.

4. In the Visual Basic window, click Tools>References and select Platform.Symphony.Soam.COM 1.0
Type Library.

5. Click Browse and open Platform.Symphony.Soam.COM.dll from the location %SOAM_HOME%
\5.1\win32-vc7\lib\COM or %SOAM_HOME%\5.1\w2k3_x64-vc7-psdk\lib\COM. After
clicking OK on the References window, close the Visual Basic window.

6. On the SoamExcelSample.xls spreadsheet, click the Run Sample on Symphony button to run the
application.

Note:
If you are using Excel 2000, make sure you set the Excel Macro security
level to medium or low.

The client starts and the system starts the corresponding service. The client displays results in the
spreadsheet indicating that it is running.

COM Tutorial

Symphony Developer Tutorials 107

Walk through the code
You will review the sample client application code to learn how you can create a synchronous client
application that makes calls to the Symphony COM API.

COM Tutorial

108 Symphony Developer Tutorials

Locate the code samples
Client

%SOAM_HOME%\5.1\samples\COM\client\SoamExcelSample.xls

Input/output object

%SOAM_HOME%\5.1\samples\COM\service\MyMessage.cpp

Service

%SOAM_HOME%\5.1\samples\COM\service\ExcelSampleService_vc71.sln

Application profile

The service and application parameters are defined in the application profile:

%SOAM_HOME%\5.1\samples\COM\ExcelSample.xml

What the samples do
The first sample implements computational logic that is processed locally in the spreadsheet. It calculates
the standard deviation of 32 sets of values and populates the spreadsheet with the results.

The second sample features a synchronous client that sends 32 input messages to a Symphony service via
the COM API. The service takes the input data, performs the calculations, and returns the results.

Since both samples implement the same computational logic, the results are identical.

Local sample
This sample executes locally on the Excel spreadsheet and all the code is contained within the spreadsheet.

Step 1: Get the input data
The CommandButton2_Click event encapsulates the client logic. Follow these steps to locate the
CommandButton2_Click event code in the spreadsheet:

1. Select Tools > Macro > Visual Basic Editor.
2. In the Project Explorer, double-click Sheet1.
3. In the Object list box, select CommandButton2.

The taskToSend variable represents the number of input values for the standard deviation algorithm.

We initialize a range of cells where the results will be displayed on the spreadsheet. Next, we declare and
initialize a two-dimensional array (values) to hold the results. The array indices correspond to the rows
and columns for displaying the results on the spreadsheet.

A for loop increments the row index of the array and cycles through the inputs for the standard deviation
calculations, which are read from the spreadsheet. An amplification factor is included in the input to the
StandardDeviation() function to increase the input value, if required. The return value of the function
is assigned to the array which, in turn, is assigned to the range object that displays the results in the
spreadsheet cells.

COM Tutorial

Symphony Developer Tutorials 109

...
Private Sub CommandButton2_Click()
 Dim k As Integer
 Dim r As Range

 Dim taskToSend As Long
 taskToSend = 32

 Dim amplification As Integer
 amplification = Range("B8").Value

 Set r = Range("D11", "D42")
 Dim values(0 To 32, 0 To 1)

 'Cleanup the cells
 For k = 0 To taskToSend - 1
 values(k, 0)=""
 Next k
 r.value2 = values

 For k = 0 To taskToSend - 1
 Dim numberOfSamples As Double
 numberOfSamples = CStr(Range("A" & (k + 11)).Value)

 values(k, 0) = StandardDeviation(numberOfSamples *
 amplification)
 r.value2 = values
 Next k
End Sub
...

Step 2: Implement the computational logic
The StandardDeviation() function contains the algorithm for calculating the standard deviation. The
data set that the algorithm works on is derived from each input value. The result is passed back to the
CommandButton2_Click event code and displayed on the spreadsheet.

...
Private Function StandardDeviation(ByVal numberOfSamples As Double)
 Dim i As Long
 Dim mean As Double

 StandardDeviation = 0
 mean = 0

 For i = 0 To numberOfSamples - 1
 mean = mean + i
 Next i

 mean = mean / numberOfSamples

 For i = 0 To numberOfSamples - 1
 StandardDeviation = StandardDeviation + (i - mean) * (i -
 mean)
 Next i

 StandardDeviation = StandardDeviation / numberOfSamples
 StandardDeviation = Sqr(StandardDeviation)
End Function
...

Symphony sample
This sample invokes the COM API to access a Symphony service.

COM Tutorial

110 Symphony Developer Tutorials

Step 1: Connect to the application
The CommandButton1_Click event encapsulates the client logic. Follow these steps to locate the
CommandButton1_Click event code in the spreadsheet:

1. Select Tools > Macro > Visual Basic Editor.
2. In the Project Explorer, double-click Sheet1.
3. In the Object list box, select CommandButton1.

To send data to a service for processing, you must first connect to an application. You specify an
application name, a user name, and password. The application name must match the one defined in the
application profile. In this sample, the application name is read from the spreadsheet.

For Symphony Developer Edition, there is no security checking and login credentials are ignored—you
can specify any user name and password, such as "Guest". Security checking is done however, when your
client application submits workload to the actual grid. The default security callback encapsulates the
callback for the user name and password.

...
Private Sub CommandButton1_Click()
 On Error GoTo ReturnFailure
 Dim connection As CSoamConnection
 Range("F43").Value="Test Started...."

 'Initialize the Soam context
 Set soamApi = New CSoamAPI
 soamApi.Initialize

 'Get the Symphony application name from the spreadsheet
 Dim AppName As String
 AppName = CStr(Range("B7").Value)

 'Provide the credentials for the grid
 Dim callback As IDefaultConnectionSecurityCallback
 Set callback = New CDefaultConnectionSecurityCallback
 Call callback.Init("Guest", "Guest")

 'Connect to the grid
 Set connection = soamApi.Connect(AppName, callback)

 Range("F43").Value="Connection ID " & connection.Id
...

Step 2: Create a session to group tasks
A session is a way of logically grouping tasks that are sent to a service for execution. In this sample, the
tasks are sent and received synchronously.

When creating a session, you need to specify the session attributes by using the
CSoamSessionCreationAttributes object. We create a CSoamSessionCreationAttributes
object called attributes and set three parameters in the object.

COM Tutorial

Symphony Developer Tutorials 111

 ...
 'Set the session attributes
 Dim attributes As CSoamSessionCreationAttributes
 Set attributes = New CSoamSessionCreationAttributes
 attributes.SessionName="ShortRunningTasks"
 attributes.SessionType="ShortRunningTasks"
 attributes.SessionFlags = SessionFlags.ReceiveSync

 'Create a session on the grid
 Dim session As CSoamSession
 Set session = connection.CreateSession(attributes)
 Range("F43").Value="Session created. Session ID " & session.Id
...

In this example, note that:

• The first parameter is the session name. This is optional. It can be any descriptive name you want to
assign to your session. It is for information purposes.

• The second parameter is the session type. The session type is optional. You can leave this parameter
blank and system default values are used for your session.

Important:
The session type must be the same session type as defined in your
application profile.

In the application profile, you define characteristics for the session with
the session type.

• The third parameter is the session flag. When creating a synchronous session, set the flag to
SessionFlags.ReceiveSync. This flag indicates to Symphony that this is a synchronous session.

Step 3: Send input data to be processed
The taskToSend variable represents the number of individual data sets (messages) that will be sent to the
service. Next, we initialize a range of 32 cells where the results will be displayed on the spreadsheet. We
declare and initialize a two-dimensional array (values) to hold the results. The array indices correspond
to the rows and columns for displaying the results on the spreadsheet.

The next step is to create the input messages to be processed by the service. We call the MyMessage
constructor and pass four input parameters. Note the input parameters:

• The first parameter is the number of samples. This value is the input data for each standard deviation
calculation performed by the service.

• The second parameter is the line number. This value represents the row in the spreadsheet. As each
message is sent, the row value is incremented until all the messages are sent.

• The third parameter is the column number, which represents the column in the spreadsheet. This
value is fixed at 0 since the results will be displayed in a single column. The column value is echoed
back to the client in each output message from the service.

• The fourth parameter is an input message string. It is not used in this sample.

When a message is sent, a task input handle is returned. This task input handle contains the ID for the
task that was created for this input message.

COM Tutorial

112 Symphony Developer Tutorials

...
 Dim k As Integer
 Dim r As Range

 Dim taskToSend As Long
 taskToSend = 32

 Dim amplification As Integer
 amplification = Range("B8").Value

 Set r = Range("F11", "F42")
 Dim values(0 To 32, 0 To 1)

 'Cleanup the cells
 For k = 0 To taskToSend - 1
 values(k, 0)=""
 Next k
 r.value2 = values
 'Start calculations
 For k = 0 To taskToSend - 1
 Dim numberOfSamples As Double
 numberOfSamples = CStr(Range("A" & (k + 11)).Value)

 Dim message As MyMessage
 Set message = New MyMessage

 message.numberOfSamples = numberOfSamples * amplification
 message.line = k
 message.column = 0
 message.StringMessage=""
 Dim inputHandler As CSoamTaskInputHandle
 Set inputHandler = session.SendTaskInput(message)

 Range("F43").Value="Sent Message number " & k & "Task ID
 " & inputHandler.Id
 Next k
...

Step 4: Retrieve the output
For each message that is sent to the service, call the FetchTaskOutput() method to retrieve the output
message that was produced by the service. By passing a "1" to the method, we are retrieving only one result
at a time. Consequently, the return value is an enumeration containing only one completed task result.
This was done for demonstration purposes only. Typically, you would pass a value to the
FetchTaskOutput() method that represents the total number of tasks sent to the service.

Check that the output for each task was successful before using the PopulateTaskOutput() method
to extract the message; otherwise an exception is thrown. Load the result into the array and assign the
array to the range object so that the result can be displayed in the appropriate spreadsheet cell.

COM Tutorial

Symphony Developer Tutorials 113

...
 Range("F43").Value="Waiting for results...."
 Debug.Print "Fetching results."

 For k = 0 To taskToSend - 1
 Dim taskEnum As CSoamEnum
 Set taskEnum = session.FetchTaskOutput(1)
 Range("F43").Value="Retrieved task " & taskEnum.Count
 Dim output As CSoamTaskOutputHandle
 For Each output In taskEnum

 Range("F43").Value="Retrieved task with ID " & output.Id
 If output.IsSuccessful Then

 Dim outMessage As MyMessage
 Set outMessage = New MyMessage
 Call output.PopulateTaskOutput(outMessage)
 Debug.Print "Retrieved message " &
 outMessage.StringMessage

 Dim i, j As Integer
 i = outMessage.line
 j = outMessage.column
 values(i, j) = outMessage.StringMessage
 Else

 Debug.Print output.Id & " Task failed."
 Dim exception As CSoamCOMException
 Set exception = output.GetException()

 Dim reason As String
 reason=""
 Call exception.What(reason)
 Debug.Print output.Id & " task failed: " & reason
 Range("F43").Value = output.Id & " task failed.
 Reason for failure: " & reason
 End If
 Next output
 r.value2 = values
 Next k
 ...

Step 5: Define a service container
In this sample, calculations on input data are performed by a program that is implemented as a service.
A service can be deployed on numerous compute hosts and run as concurrent service instances. For a
service to be managed by Symphony, it needs to be in a container object. This is the service container.

In ExcelSampleService.cpp, MyServiceContainer inherits from the base class
ServiceContainer.

...
class MyServiceContainer : public ServiceContainer
{
...

Step 6: Process the input
The middleware triggers the invocation of the ServiceContainer's onInvoke() handler every time a task
input is sent to the service to be processed. You must implement the onInvoke method to process the task
input, perform your computation, and return the result of the computation to the client.

To gain access to the input message from the client, you call the populateTaskInput() method on the
task context. The middleware is responsible for placing the input into the taskContext object.

COM Tutorial

114 Symphony Developer Tutorials

The task context contains all information and functionality that is available to the service during an
onInvoke() call in relation to the task that is being processed.

Create the output message and set the following message properties. The values for these properties are
read from the input message and echoed back to the client.

• The first property is the input data for the calculation performed by the service.
• The second property is the row number for the spreadsheet.
• The third property is the column number for the spreadsheet.

Pass the input data (m_number_of_samples) to the StandardDeviation() method and format the
output message string with the result. Passing the output message to the SetTaskOutput() method
generates the task output message that is sent to the client.

...
virtual void onInvoke (TaskContextPtr& taskContext)
 {
 // get the input that was sent from the client
 MyMessage inMsg;
 taskContext->populateTaskInput(inMsg);
 // We simply echo the data back to the client
 MyMessage outMsg;
 outMsg.setnumberOfSamples(inMsg.getnumberOfSamples());
 outMsg.setLine(inMsg.getLine());
 outMsg.setColumn(inMsg.getColumn());
 m_numberOfSamples = inMsg.getnumberOfSamples();
 char buffer[128];
 sprintf(buffer, "%.2f",
 StandardDeviation(m_numberOfSamples));
 outMsg.setString(buffer);
 // set our output message
 taskContext->setTaskOutput(outMsg);
 }
...

Step 7: Run the container
The service is implemented within an executable. As a minimum, we need to create an instance of the
service container within our main function and run it.

...
int main(int argc, char* argv[])
{
 // return value of our service program
 int retVal = 0;
 try
 {
 // Create the container and run it
 MyServiceContainer myContainer;
 myContainer.run();
 }
...

Step 8: Catch exceptions
Catch exceptions in case the container fails to start running.

COM Tutorial

Symphony Developer Tutorials 115

...
 catch (SoamException& exp)
 {
 // report exception to stdout
 cout << "exception caught ... " << exp.what() << endl;
 retVal = -1;
 }
...

Step 9: Create the computational logic of the service
The computational logic of the service is implemented in the StandardDeviation() method. The
method generates a data set of integers in the range of 0 up to the numberOfSamples value and applies a
standard deviation algorithm to it.

...
 private:
 double StandardDeviation(double numberOfSamples)
 {
 double standardDeviation = 0;
 double mean = 0;

 for(int i = 0; i < numberOfSamples; i++)
 {
 mean = mean + i;
 }

 mean = mean / numberOfSamples;

 for(int i = 0; i < numberOfSamples; i++)
 {
 standardDeviation = standardDeviation + (i - mean) * (i
 - mean);
 }
 standardDeviation = standardDeviation / numberOfSamples;
 return sqrt(standardDeviation);
 }
...

COM Tutorial

116 Symphony Developer Tutorials

Eclipse Tutorial
Tutorial: Developing a Symphony application
with Eclipse

Goal
This tutorial walks you through the steps for developing application code using the Symphony plug-in
for the Eclipse IDE. It then guides you through the process of building, packaging, and deploying the
associated service. This tutorial was prepared for users that are already familiar with the Eclipse IDE.

Prerequisites
Note:
If you are running the Eclipse plug-in on a host that has a Symphony DE
pre-5.1 version and Symphony DE 5.1 installed, you must ensure that the
system environment is set up for Symphony DE 5.1. Refer to Installing
Symphony Developer Edition in the Platform Knowledge Center.

Install the Symphony plug-in for Eclipse
For instructions on installing the Symphony plug-in into Eclipse, refer to the Symphony Plug-in for
Eclipse topic in the Application Development Guide.

What the Symphony plug-in can do
The Symphony plug-in for Eclipse is an all-in-one tool package that eases the task of Symphony application
development and package deployment.

The plug-in generates a framework of code that provides a foundation for Symphony application
development. This framework of basic code is typically common to all Symphony applications. All you
need to do is add your own logic to it. One of the key components of the plug-in is the Symphony project
wizard, which guides you through the development process and prompts you for application-specific
information.

The plug-in also facilitates service package deployment and application registration. This is achieved by
combining multiple tasks into single operations through the Symphony DE Platform Management
Console, which is integrated with the plug-in.

Where to find the documentation
You can access additional documentation such as the Java API Reference, the Platform Symphony
Reference, and the Error Reference from the Symphony DE Knowledge Center.

Windows

• From the Start menu, select Programs > Platform Computing > Symphony Developer Edition
5.1.0 > Developer Knowledge Center

Linux

Eclipse Tutorial

Symphony Developer Tutorials 117

• $SOAM_HOME/docs/symphonyde/5.1/index.html

For convenience, the Java API Reference is also available via the Eclipse Help menu.

Create a new Symphony Java application
This section describes the steps for creating a new Symphony Java application (with generated code) using
the Symphony project wizard in Eclipse.

Step 1 Create a new project
1. Select File > New > Project

The New Project dialog appears.

2. Expand the Symphony wizard. Select Symphony Java Application (with Generated Code).
3. Click Next.

The Symphony Application Identification dialog appears.

Step 2: Name the application and package
The application name is what binds the client to the service and it must be unique in the cluster.

1. Enter MySymphonyApp as the Symphony application name. Click Next.
2. Verify that the Create a package for the generated Java classes box is checked and enter the following

package name:

com.platform.symphony.foo

Eclipse Tutorial

118 Symphony Developer Tutorials

Note:
(Classes that are not placed in a named package belong to the "default
package" associated with the current project directory.)

Step 3: Name the client and service classes
1. Enter AsyncClient as the client class name.
2. Select Async as the client type. An async client requires a callback class, which will be added to the

project when the project is created.
3. Enter MyService as the service class name. Click Next.

Step 4: Define the message
Your client application needs to handle data that it sends as input, and output data that it receives from
the service. You need to define message classes that implement methods to set and access the data, such
as the message string and task ID.

1. In the New Message dialog, click Add.
2. Enter MyInput as the message class name to handle input messages.
3. Double-click Edit.

The Message elements definition dialog appears.
4. Click Add. Enter Id as the name of the data element. Verify that the data type is int (integer).
5. Click Add. Enter Message as the name of the second data element. Set the data type to String.

6. Click OK.
7. In the New Message dialog, click Add.
8. Enter MyOutput as the message class name to handle output messages.
9. Repeat steps 3 to 5 for the MyOutput class..
10. Click Next.

The Create a Java project dialog appears.

Eclipse Tutorial

Symphony Developer Tutorials 119

Step 5: Create the Java project
1. The project name can be any descriptive name you choose. For this tutorial, enter

MySymphonyProj as the project name. Your project will be created in the workspace associated with
Eclipse.

2. Select Create new project in workspace.
3. Select Use default JRE. Ensure that you are using JDK version 1.5.
4. Select Use project folder as root for sources and class files.
5. Click Finish.

Eclipse creates a new Java project in your workspace with subfolders for the newly-created classes.
These classes contain generated code that can be used as a basis for Symphony application
development.

The Symphony plug-in for Eclipse also adds project-dependent files such as the JRE system library
and Symphony API to the project.

Note:
If you only see the Eclipse welcome screen and not your project with
the generated Java code, minimize the welcome screen.

To view your project in Package Explorer, select Window > Show
View > Package Explorer.

Review and understand the generated code
We will review the client, message, and service code that is generated by the Symphony plug-in for Eclipse
and discuss what you need to do to complete the application coding.

Client class
Import message class

Since you need to create an instance of the message class in your client class, you must import the message
class. Add the following import statement to the generated code for the client class:

import com.platform.symphony.foo.message.*;

Eclipse Tutorial

120 Symphony Developer Tutorials

Connect to an application
A connection establishes a context for your client and workload. When you connect to an application:
• Application attributes defined in the application profile are used to provide context such as which

service to use, session type, and any additional scheduling or application parameters.
• A connection object is returned.
The application name in the connection must match that defined in the application profile. This name
was assigned when you created the new project using the wizard.

The default security callback encapsulates the callback for the user name and password. In Symphony
DE, there is no security checking and login credentials are ignored —you can specify any user name and
password. However, when using your client on the grid with Platform Symphony, you need a valid user
name and password.

The generated code for connecting to the application is complete and does not require any additional
code to make it functional.

Here is the generated code:

...
 // Set up application specific information to be supplied to Symphony
 String appName="MySymphonyApp";
 // Set up application authentication information using the default security provider

 DefaultSecurityCallback securityCB = new DefaultSecurityCallback("Guest","Guest");
 Connection connection = null;
 try
 {
 // Connect to the specified application
 connection = SoamFactory.connect(appName, securityCB);
 // Retrieve and print our connection ID
 System.out.println("connection ID=" + connection.getId());
...

 finally
 {
 // Mandatory connection close
 if (connection != null)
 {
 connection.close();
 System.out.println("Connection closed");
 }
 }
...

Important:
The creation and usage of the connection object is scoped in a try-finally
block. The finally block, with the connection.close() method, ensures that
the connection is always closed whether exceptional behavior occurs or
not. Failure to close the connection causes the connection to continue to
occupy system resources.

Create a session to group tasks
A session is a way of logically grouping tasks that are sent to a service for execution.

When creating a session, you need to specify the session attributes by using the SessionCreationAttributes
object. The generated code sets four parameters in the SessionCreationAttributes object.

The first parameter is the session name. This is optional. The session name can be any descriptive name
you want to assign to your session. It is for informational purposes, such as in the command line interface.

Eclipse Tutorial

Symphony Developer Tutorials 121

The second parameter is the session type. The session type is optional. You can leave this parameter blank
and system default values are used for your session.

The third parameter is the session flag, which the code generator specified as Session.PARTIAL_ASYNC.
This flag setting was determined by the client type specified in the project wizard. This indicates to
Symphony that the client expects to receive messages asynchronously.

The fourth parameter is the callback object. This object is used by Symphony to call back to the client
when the results are ready to be received.

The attributes object is passed to the createSession() method, which returns the created session.

Important:
Similar to the connection object, the creation and usage of the session
(sending and receiving data) is scoped in a try-finally block. The finally
block, with the session.close() method, ensures that the session is always
closed, whether exceptional behavior occurs or not. Failure to close the
session causes the session to continue to occupy system resources.

Here is the generated code:

...
 // Set up session attributes
 SessionCreationAttributes attributes = new SessionCreationAttributes();
 attributes.setSessionName("mySession");
 attributes.setSessionType(""); // we will use the default session type
 attributes.setSessionFlags(Session.PARTIAL_ASYNC);
 attributes.setSessionCallback(sessionCallback);

 // Create a asynchronous session
 Session session = null;
 try
 {
 session = connection.createSession(attributes);
 // Retrieve and print session ID
 System.out.println("Session ID:" + session.getId());
...
 finally
 {
 // Mandatory session close
 if (session != null)
 {
 session.close();
 System.out.println("Session closed");
 }
 }
...

Send input data to be processed
In this step, you create 10 input messages to be processed by the service. When a message is sent, a task
input handle is returned. This task input handle contains the ID for the task that was created for this input
message. The part of the code that is missing is shown by the TODO comments. To make this code
functional, you must create an input message and attach it to the TaskSubmissionAttributes object, which
is subsequently sent to the Symphony middleware.

Here is the generated code:

Eclipse Tutorial

122 Symphony Developer Tutorials

...
 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 // Create a message
 //
 // TODO: Place code here to construct message object to be sent
 // eg . InputMessage myInput = new InputMessage(...)
 //
 // Set task submission attributes
 TaskSubmissionAttributes taskAttr = new TaskSubmissionAttributes();
 //
 // TODO: Place code here to set input for task submission
 // eg . taskAttr.setTaskInput(myInput);
 //
 // Send it
 TaskInputHandle input = session.sendTaskInput(taskAttr);
 // Retrieve and print task ID
 System.out.println("task submitted with ID : " + input.getId());
 }
...

The following code snippet shows an example of the completed code for creating the message and
attaching it to the TaskSubmissionAttributes object. In this case, we are inserting a simple string and task
ID into the input message.

...
 // Now we will send some messages to our service
 for (int taskCount = 0; taskCount < tasksToSend; taskCount++)
 {
 // Create a message
 MyInput myInput = new MyInput();
 myInput.setId(taskCount);
 myInput.setMessage("Hello Grid!!");
 // Set task submission attributes
 TaskSubmissionAttributes taskAttr = new TaskSubmissionAttributes();
 taskAttr.setTaskInput(myInput);
 // Send it
 TaskInputHandle input = session.sendTaskInput(taskAttr);
 // Retrieve and print task ID
 System.out.println("task submitted with ID : " + input.getId());
 }
...

Synchronize the controlling and callback threads
This step is performed after sending the input data to be processed.

Since our client is asynchronous, we need to synchronize the controlling thread and the callback thread.
In the generated code, the controlling thread blocks until all replies have come back.

The callback signals when all results are received.

Here is the generated code:

...
 synchronized(sessionCallback)
 {
 while (!sessionCallback.isDone())
 {
 sessionCallback.wait();
 }
 }
...

Eclipse Tutorial

Symphony Developer Tutorials 123

Message input/output classes
The MyInput class represents the data input to the service, and the MyOutput class represents the data
output from the service. These classes implement methods to set and access the data, such as the message
string and task ID.

The code that is generated uses Symphony’s API to serialize the MyInput and MyOutput objects.
Symphony serialization is achieved by deriving from the SOAM Message object and implementing the
appropriate serialization handlers, i.e., onSerialize() and onDeserialize().

The following code was generated for the MyInput class:

...
public class MyInput extends com.platform.symphony.soam.Message
{
 //===
 //.Constructor.
 //===
 public MyInput()
 {
 super();
 }
 //===
 //.Accessors.
 //===
 // "Id" ()
 public int getId()
 {
 return this.Id;
 }
 public void setId(int value)
 {
 this.Id = value;
 }
 // "Message" ()
 public String getMessage()
 {
 return this.Message;
 }
 public void setMessage(String value)
 {
 this.Message = value;
 }
 //===
 //.Serialization - Deserialization.
 //===
 public void onSerialize(OutputStream ostream) throws SoamException
 {
 ostream.writeLong(this.V4350FA63DBAA4f65A190EDDE29709AC6);
 ostream.writeInt(this.Id);
 ostream.writeString(this.Message);
 }
 public void onDeserialize(InputStream istream) throws SoamException
 {
 this.V4350FA63DBAA4f65A190EDDE29709AC6 = istream.readLong();
 if (this.V4350FA63DBAA4f65A190EDDE29709AC6 != 1)
 {
 String errorMessage="A version mismatch error has occured.";
 errorMessage += "The message being deserialized is verion " +
 this.V4350FA63DBAA4f65A190EDDE29709AC6;
 errorMessage += " but we were expecting verion <1>.";
 errorMessage += "Verify that all message definitions are up to date.";
 throw new FatalException(errorMessage);
 }
 this.Id = istream.readInt();
 this.Message = istream.readString();
 }
...

Eclipse Tutorial

124 Symphony Developer Tutorials

Callback class
When the client type is set to asynchronous in the project wizard, it generates a callback class that extends
the SessionCallback class.

Import message class
Since you need to create an instance of the message class in your callback class, you must import the
message class. Add the following import statement to the generated code for the callback class:

import com.platform.symphony.foo.message.*;

Retrieve the output
This class contains the onResponse() method to retrieve the output for each input message that is sent.
To make the generated code complete, you need to add code to the onResponse() method, as indicated
by the TODO comments.

Note that:

• onResponse() is called every time a task completes and output is returned to the client. The task
output handle allows the client code to manipulate the output.

• isSuccessful() checks whether there is output to retrieve.

Eclipse Tutorial

Symphony Developer Tutorials 125

public void onResponse(TaskOutputHandle output) throws SoamException
{
 try
 {
 // Check for success of task
 if (output.isSuccessful())
 {
 // Get the message returned from the service
 ///
 // TODO: Retrieve the result from the TaskOutputHandle
 // NOTE : If your output message was generated by the
 // Symphony Eclipse Pluggin
 // You must use the TaskOutputHandle.populateTaskOutput() method to
 // retrieve the output. The Symphony Eclipse
 // Pluggin generates messages inherited
 // from the "com.platform.symphony.soam.Message" class.
 // eg.
 // MyOutputMessage myOutput = new MyOutputMessage();
 // output.populateTaskOutput(myOutput);
 //
 // Display content of reply
 //
 // TODO: Display some reply
 // eg .
 // System.out.println("\nTask Succeeded [" +
 // output.getId() + "]");
 // System.out.println("Your Internal ID was : " +
 // myOutput.getId());
 // System.out.println("Estimated runtime was recorded
 // as : ");
 // System.out.println(myOutput.getRunTime());
 // System.out.println(myOutput.getString());
 //
 }
 else
 {
 // Get the exception associated with this task
 SoamException ex = output.getException();
 System.out.println("Task Failed : ");
 System.out.println(ex.toString());
 }
 }
 catch (Exception exception)
 {
 System.out.println("Exception occured in onResponse() : ");
 System.out.println(exception.getMessage());
 }
 // Update counter used to synchronize the controlling thread
 // with this callback object
 incrementTaskCount();
}

The following code example shows the completed code for the onResponse() method. If there is output
to retrieve, populateTaskOutput() gets the output. Once results return, print them to standard output
and return.

Eclipse Tutorial

126 Symphony Developer Tutorials

public void onResponse(TaskOutputHandle output) throws SoamException
{
 try
 {
 // check for success of task
 if (output.isSuccessful())
 {
 // get the message returned from the service
 MyOutput myOutput = new MyOutput();
 output.populateTaskOutput(myOutput);
 // display content of reply
 System.out.println("\nTask Succeeded [" + output.getId() + "]");
 System.out.println("Your Internal ID was : " + myOutput.getId());
 System.out.println(myOutput.getMessage());
 }
 else
 {
 // get the exception associated with this task
 SoamException ex = output.getException();
 System.out.println("Task Failed :");
 System.out.println(ex.getMessage());
 }
 }
 catch (Exception exception)
 {
 System.out.println("Exception occured in onResponse() : ");
 System.out.println(exception.getMessage());
 }
 // Update counter used to synchronize the controlling thread
 // with this callback object
 incrementTaskCount();
}

Service class
Import message class

Since you need to create an instance of the message class in your service class, you must import the message
class. Add the following import statement to the generated code for the service class:

import com.platform.symphony.foo.message.*;

Process the input
Symphony calls onInvoke() on the service container once per task. This is where the calculation is
performed.

Important:
Services are virtualized. As a result, a service should not read from stdin
or write to stdout. Services can, however, read from and write to files that
are accessible to all compute hosts.

To gain access to the data set from the client, you call the populateTaskInput() method on the
taskContext. The Symphony middleware is responsible for placing the input into the taskContext object.

The task context contains all information and functionality that is available to the service during an
onInvoke() call in relation to the task that is being processed.

The following code was generated by the Symphony plug-in. What is missing, as identified by the TODO
comment, is your service logic for the onInvoke() method.

Eclipse Tutorial

Symphony Developer Tutorials 127

...
public void onInvoke (TaskContext taskContext) throws SoamException
{
 //
 // TODO: Place your service logic here. This method will be
 // called for each task that has to be processed.
 //
 // NOTE : If your message was generated by the Symphony Eclipse Pluggin
 // You must use the TaskContext.populateTaskInput() method to retrieve
 // the input. The Symphony Eclipse Pluggin generates messages inherited
 // from the "com.platform.symphony.soam.Message" class.
 // eg.
 //
 // // get input
 // MyInputMessage myInput = new MyInputMessage();
 // taskContext.populateTaskInput(myInput);
 //
 // // do some processing of input
 // ...
 //
 // // set output (which is returned to client)
 // taskContext.setTaskOutput(myOutput);
 //
}
...

The following code example shows the onInvoke() method with the service logic. The input message
is simply echoed back to the client by creating a string in the output message and passing it to the
setTaskOutput() method.

...
public void onInvoke (TaskContext taskContext) throws SoamException
{
 // We simply echo the data back to the client
 MyOutput myOutput = new MyOutput();
 // get the input that was sent from the client
 MyInput myInput = new MyInput();
 taskContext.populateTaskInput(myInput);
 // echo the ID
 myOutput.setId(myInput.getId());
 // setup a reply to the client
 StringBuffer sb = new StringBuffer();
 sb.append("Client sent : ");
 sb.append(myInput.getMessage());
 sb.append("\nSymphony replied : Hello Client !!");
 myOutput.setMessage(sb.toString());
 // set our output message
 taskContext.setTaskOutput(myOutput);
}
...

Create a deployment package
You must package the files required by your service to create a service package.

1. In the Eclipse Package Explorer, right-click on project MySymphonyProj. Select Symphony
Operations > Create Deployment Package

2. Enter MyService.zip as the package name in the Specify the package name textbox.
3. Click Browse beside Select the package path to select the path where the service package will be stored.
4. Click Browse beside Specify Main Service Class Name. Enter MyService in the textbox. Click OK.

Eclipse Tutorial

128 Symphony Developer Tutorials

5. The JVM options can be used to configure JVM performance tuning such as memory allocation for
the service instance. In this tutorial, we are using default JVM settings so it is not necessary to specify
any JVM options.

6. Select *.message.jar and *.service.jar files in the Package name or file name list.
7. The option for Do stdout redirection from generated service script can be left unchecked. Selecting

this option will cause standard output from the JVM to be redirected to a file located in the Symphony
DE work directory. The file pattern is <main class name>_<computername>_<process ID of
script>_<timestamp>.log.

8. Click Create and Validate Service Package.

After creating and validating the service package, the following message is displayed:

Compressed package_path/MyService.zip successfully!

The service package is valid and it is ready to be deployed to DE.
9. Click Finish. The next step is to create an application profile and register your application.

Creating an application profile
The application profile defines the application behavior within Symphony and provides information that
Symphony needs to run services and manage workload. It also binds the application to a specific service.

Note:
To create an application profile via the Symphony DE PMC, your
Symphony DE cluster must be started.

Create an application profile
1. In the Package Explorer, right-click on project MySymphonyProj. Select Symphony Operations >

Add/Remove Application.
2. Select Add an application. Click Continue.
3. Select Create new profile and add application wizard. The wizard automatically populates the

application name field with MySymphonyApp.

Important:
If your development environment has more than one version of JDK
installed (for example, JDK versions 1.4 and 1.5), you should configure
the PATH environment variable to point to JDK 1.5. Similarly, if you
have 32-bit and 64-bit versions of JDK 1.5 installed, you should
configure the PATH environment variable to point to the version that
matches your 32-bit or 64-bit platform. Failure to configure the PATH
correctly may prevent your service from running. To configure the
PATH environment variable, click Specify environment variables for
this service. Enter PATH as the Name and the path to the JDK 1.5 bin
directory as the value.

4. Click Continue.
5. Click Browse and navigate to the location of the service package. Select the service package file

MyService.zip. Click Continue.
6. Select System Defaults for the session type. Click Continue.
7. Click Confirm to accept the application profile definitions.

The project wizard creates your application and registers it within Symphony.

Eclipse Tutorial

Symphony Developer Tutorials 129

Run the application
1. In the Package Explorer, right-click com.platform.symphony.foo.client class. Select Run As > Java

Application. The application runs and prints results in the console window.

Eclipse Tutorial

130 Symphony Developer Tutorials

2. To monitor the session status, right-click the project in the Package Explorer and select Symphony
Operations > Monitor Workload.

For more information about monitoring sessions and tasks, refer to the Symphony DE PMC help.

Service package re-deployment
You must update and re-deploy the service package if you have made modifications to the message or
service code in your application.

1. In the Eclipse Package Explorer, right-click on your project. Select Symphony Operations > Create
Deployment Package.

2. Verify the service information in the Symphony Service Packaging Utility dialog.
3. Click Create and Validate Service Package.

After creating and validating the service package, the following message is displayed:

Compressed package_path/MyService.zip successfully!

The service package is valid and it is ready to be deployed to DE.

4. Click Deploy the Package.

Eclipse Tutorial

Symphony Developer Tutorials 131

Note:
The Deploy the Package button is only enabled when the application
is registered. Clicking this button adds the service package to the
Symphony DE repository.

After deploying the service package, the following message is displayed:

Service package was deployed successfully to DE.
5. Click Finish.

Importing samples into Eclipse
Every sample includes a .classpath file sufficient for building the project within Eclipse. Consequently,
there is no need to import the project by importing the existing Ant build file.

Note:
Importing and execution of Java samples in Eclipse from Symphony DE
TAR packages is not supported.

Note:
Importing samples into Eclipse from previous versions of Symphony DE
(3.2 and lower) is not recommended. Older samples require
reorganization of their directory structure and editing of the application
profile.

Note:
You cannot pre-load information about message code that was generated
outside the Eclipse plug-in since the code generation wizard is not aware
of message code that has been created or modified externally. For
example, if you define new message classes for an imported project using
the code generation wizard, the existing message classes from the
imported project will not appear in the Message Definition dialog.

In this section, we will import the SampleApp sample that is included with Symphony DE and deploy its
service. The Java samples are located at:

Windows

• %SOAM_HOME%\5.1\samples\Java

Linux

• $SOAM_HOME/5.1/samples/Java

For more information about the SampleApp code sample or any other sample included with Symphony
DE, refer to the appropriate tutorial or readme in the Knowledge Center.

Import samples into Eclipse
1. From the Eclipse menu, select File > Import.

The Import dialog appears.
2. Double-click General. Double-click Existing Projects into Workspace.

Eclipse Tutorial

132 Symphony Developer Tutorials

3. Choose Select root directory. Click Browse. Browse to the SampleApp directory in Symphony DE.
Click OK.

4. Click Finish.

Create and validate the service package
1. In the Eclipse Package Explorer, right-click on the sample project SampleApp. Select Symphony

Operations > Create Deployment Package
2. Enter SampleAppService.zip as the package name in the Specify the package name textbox..
3. Click Browse to select the path where the service package will be stored.
4. Click Browse to specify the main service class name. Enter MyService in the textbox. Click OK.
5. Select *.common.jar and *.service.jar files in the Package name or file name list.
6. Click Create and Validate Service Package.

After creating and validating the service package, the following message is displayed:

Compressed package_path/SampleAppService.zip successfully!

The service package is valid and it is ready to be deployed to DE.
7. Click Finish. The next step is to create an application profile and register your application.

Add the application to Symphony DE
1. In the Package Explorer, right-click on project SampleApp. Select Symphony Operations > Add/

Remove Application.

The Configure Symphony Project Page displays.
2. Click Validate to test the port connection to the Symphony DE PMC. (The plug-in "pings" the URL

of the PMC to verify the connection.)

Note:
If the port is already in use, specify a different port number in file
vem_resource.conf and enter it in the Please specify the port
number textbox.

3. Once the PMC server replies, click OK.
4. In the Package Explorer, right-click on project SampleApp. Select Symphony Operations > Add/

Remove Application.

The DE PMC displays.
5. Select Add an application. Click Continue.
6. Select Use existing profile and add application wizard. Click Browse and navigate to the location of

the SampleAppJava.xml application profile. Click Continue.
7. Click Browse and navigate to the location of the service package. Select the service package file

SampleAppService.zip. Click Continue.
8. Click Confirm to accept the application profile definitions.

The project wizard creates your application and registers it within Symphony.
9. Click Close.
10. You can now run your client and submit workload to your Symphony application. In the Package

Explorer, right-click com.platform.symphony.samples.SampleApp.client class. Select Run As >

Eclipse Tutorial

Symphony Developer Tutorials 133

Java Application. In the Select Java Application dialog, select SyncClient -
com.platform.sysmphony.samples.SampleApp.client. Click OK.

Modifying existing applications
If you need to modify a service package or an application profile, refer to the Symphony DE PMC help
for more information.

Eclipse Tutorial

134 Symphony Developer Tutorials

Visual Studio Tutorial
Tutorial: On-boarding a Symphony application
with Visual Studio

Goal
This tutorial walks you through the steps for on-boarding a sample application using the Symphony add-
in for Visual Studio. After completing the tutorial, your sample application will be able to perform
calculations in parallel on the grid. Familiarity with the Visual Studio IDE is recommended.

Prerequisites
The prerequisites for on-boarding the sample application are:

• Visual Studio 2008 Professional/2010 Professional
• Symphony DE 5.1 or higher installed and running

Install the Symphony add-in for Visual Studio
The Symphony add-in and extensions are automatically installed in Visual Studio during installation of
the Symphony DE package when the Visual Studio add-in option is selected. Visual Studio 2008 or 2010
must be installed on the development host prior to installing Symphony DE.

Sample applications
Two on-boarding application samples are provided with the Symphony DE package. One sample is a
basic calculator program that calculates the interest for different principal amounts, interest rates, and
durations. This sample is organized into a main program and a separate class library where the calculations
are performed. In the context of Symphony, the main program and class library represent the client and
service, respectively. This sample also serves as a foundation for this tutorial as you prepare it for on-
boarding onto the grid.

The second sample reflects the same application as in the first sample, but it has already been updated
and grid-enabled. This sample shows you what your first sample should look like once you have completed
the on-boarding process. Use this sample to see how calculations are performed on the grid or as a handy
reference if you encounter any difficulty on-boarding the first sample.

Note:
The code samples are intended to be run in a 32-bit environment only.

The sample applications are located at:

%SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator.

About this tutorial
This tutorial refers to the sample applications included in the Symphony DE package at:

• %SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator\1-Before
(sample before on-boarding process)

Visual Studio Tutorial

Symphony Developer Tutorials 135

• %SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator\2-After
(sample after on-boarding process, including optimization)

This tutorial was prepared using the Visual Studio 2008 Professional version but it should equally apply
to Visual Studio 2010 Professional; any differences between the two Visual Studio versions relevant to
this tutorial will be noted.

On-board an existing C#.NET application
This section describes the steps for on-boarding an existing C#.NET application using the Symphony
project wizard in Visual Studio.

Step 1: Test the sample
Before you start the on-boarding process, run the sample application to ensure your Visual Studio
development environment is working properly.

1. Locate the sample solution folder at %SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS
\BasicCalculator\1-Before. If you are using Visual Studio 2008, double-click
BasicCalculator_2008.sln to open the solution; if you are using Visual Studio 2010, double-
click BasicCalculator_2010.sln.

2. Select Debug > Start Without Debugging.

Visual Studio builds the solution and executes the code.
3. If your command window displays the following output, your development environment is working

properly and you are all set to begin the on-boarding process. Proceed to Step 2.

Step 2: Add the .NET class library to the solution
The following steps show you how to take the .NET class library that you built during the previous step
and add it as a project to the sample solution.

Important:

Visual Studio Tutorial

136 Symphony Developer Tutorials

It is recommended that you back up the sample Visual Studio solution
before proceeding with the following steps in case you need to revert to
the original files.

1. In the Solution Explorer, right-click the solution. Select Add > New Project.

The Add New Project dialog displays.

2. Make the following selections:
a) In the Project types pane, select Symphony.
b) In the Templates pane, select Grid Enabled Library.

3. In the Name textbox, enter BasicGridCalculator.

Note:
The project name is used as a namespace in the generated code. To
avoid potential conflicts, do not choose a project name that is used as
a namespace or class in the original code.

4. Click OK.

The on-boarding wizard launches.

Visual Studio Tutorial

Symphony Developer Tutorials 137

The wizard adds the following three projects to the solution:

• BasicGridCalculatorProxy (proxy class)
• BasicGridCalculatorService (computational logic)
• BasicGridCalculatorTransport (serializes/de-serializes proxy calls to/from the service)

5. Click Add.

The Open file dialog displays.
6. Select the .NET class library BasicCalculator.dll that you built previously at BasicCalculator

\bin\Debug\.
7. Click Open.

The .NET class library is added to the list of .NET assemblies in the wizard.
8. If we had additional items such as dependent libraries or configuration files, we would select the

Library Dependencies tab and add them here. Click Next. Proceed to Step 3.

Step 3: Expose the members in the .NET class library so that you
can access them via the proxy

Exposing the methods, and properties of the .NET class library enables you to access them in the proxy
so that you can interact with the grid-enabled class library as if it was a local object. Note that the wizard
exposes all members of a selected class.

1. In the wizard’s object explorer, expand BasicCalculator.dll. Select the Calculator namespace.
Ensure BasicCalculator under Classes in namespace "Calculator" is checked.

Visual Studio Tutorial

138 Symphony Developer Tutorials

2. Click Next.
3. Fully expand BasicCalculator.dll and select BasicCalculator class.

A list of the class's properties/methods and their respective roles displays. These are the methods and
properties that will be exposed in the proxy object so that you can interact with the service; refer to
the Simplified application on-boarding with Visual Studio feature reference in the Application
Development Guide for a detailed description of property/method roles.

Visual Studio Tutorial

Symphony Developer Tutorials 139

4. Click Next.
5. In the Application Name textbox, enter BasicGridCalculatorApp. If we were connected to the grid,

we would also need to specify a valid consumer to which the application belongs.

Visual Studio Tutorial

140 Symphony Developer Tutorials

6. Click Next.

The wizard completes the code and project generation process and summarizes the generation
activities. The sample application is registered and deployed to the grid.

7. Click Next.
8. At this point, all code and project generation is complete but if you were able to run the client program

CalculateInterest.exe, it would still call the methods of the local .NET class library instead of
the library on the grid. You can either manually add the proxy reference to the client and update the
code to refer to the generated proxy class or you can let the wizard do it for you. Let’s have the wizard
do the changes for us.

In the Projects to be updated list, select CalculateInterest.NET.2008.

Note:
During this step, it is important to select only the projects where you
want the wizard to update the client code and add references to the

Visual Studio Tutorial

Symphony Developer Tutorials 141

proxy that was just generated and not select any of the other libraries
currently being on-boarded.

9. Click Next.

The wizard updates and builds the CalculateInterest.NET.2008 project.

If you were to look at the code in the Program.cs file, you would see that a reference to the
BasicGridCalculator class has been added and we are now using the BasicCalculator proxy class
in our code instead..
using BasicGridCalculator;
...
//Main program
...
calculator = new BasicGridCalculator.BasicCalculator();

10. Click Next.

We have now reached the last page of the wizard. All the activities performed by the wizard are recorded
in build.log at the following locations:

1. proxy build log

%SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator\1-
Before\BasicGridCalculator\BasicGridCalculatorProxy

2. service build log

%SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator\1-
Before\BasicGridCalculator\BasicGridCalculatorService

3. transport build log

Visual Studio Tutorial

142 Symphony Developer Tutorials

%SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator\1-
Before\BasicGridCalculator\BasicGridCalculatorTransport

11. Check that both Open the generated Readme.html after the wizard exits and Open the generated
Report.txt after the wizard exits are selected.

12. Click Finish.

The wizard closes and the Readme.html and Report.txt pages are displayed. The Readme file
provides descriptions and code samples of the properties and methods that are available through the
proxy. The Readme uses a color-coding scheme to distinguish the classes and methods, as follows:

• Blue: links to proxy classes or methods that are derived from the original user-defined classes or
methods

• Green: links to classes or methods on these proxy objects that have been added by the wizard to
make the classes or methods more grid-capable.

The Report.txt file summarizes all the activities performed by the wizard during the on-boarding
process including client code updates, creating and building projects, deploying service packages, and
registering the application.

Proceed to Step 4

Step 4: Add configuration files to handle mixed-mode assemblies
This step applies only to the Visual Studio 2010 IDE. If you are using Visual Studio 2008, proceed to Step
5.

As of .NET runtime 4.0, a change was made to no longer load mixed assemblies automatically. In order
to load mixed assemblies, the runtime must be explicitly instructed through the use of a configuration
file.Since all on-boarded applications still rely on the Symphony API (which is implemented as a mixed
assembly), both the client and the service package to be deployed to the grid must be associated with a
configuration file to instruct the runtime to load the mixed assembly.. This means that as long as a .Net
binary is being loaded by the .NET 4.0 framework, as a minimum, the startup attribute
useLegacyV2RuntimeActivationPolicy must be set to true in the configuration file. For convenience, we
will use the configuration files that are packaged with the sample.

1. To associate a ".config" file with the client, copy the file CalculateInterest.exe.config located
at %SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator\2-After
\CalculateInterest to the same location as the Calculate.exe executable.

2. To associate a ".config" file with the service that will run on the grid, add file
BasicGridCalculatorService.exe.config to the service package on the grid.
a) Right click on the BasicGridCalculatorService project.

The project context menu displays.
b) Select Platform Symphony > Application Details.

The Application Details dialog displays.
c) Under the section Files included in package, click the Add button.
d) Browse and select the configuration file BasicGridCalculatorService.exe.config located

at %SOAM_HOME%\5.1\samples\AppOnboarding\dotnet\CS\BasicCalculator\2-
After\BasicGridCalculator\BasicGridCalculatorService.

e) Click Create and Deploy Service Package.

The service package is re-deployed to the grid.
3. Proceed to Step 5.

Visual Studio Tutorial

Symphony Developer Tutorials 143

Step 5: Run the sample on the grid
Before we go any further, let’s test the application on the grid to ensure it is working properly.

1. Select Debug > Start Without Debugging.

Visual Studio builds the solution and executes the code.
2. Verify that your command window displays the same output as in Step 1.
3. You can also verify that the workload was successfully completed by accessing the Platform

Management Console (PMC) through the Symphony menu extensions for Visual Studio. Before you
can connect to the PMC, you must first select the respective service for the application. This is necessary
since each service project stores its respective application profile and service package and an on-
boarded application can generate multiple service projects.

In the Solution Explorer, select the BasicGridCalculatorService project.
4. Select Symphony > Platform Management Console > Monitor Workload.
5. In the PMC, check that the Sessions page shows 1 session with 16 tasks done. For an explanation on

how on-boarded application methods are mapped to workload, refer to Simplified application on-
boarding with Visual Studio in the Application Development Guide.

Proceed to Step 6.

Step 6: Free up Symphony resources
It is good programming practice to free up Symphony resources when they are no longer needed. For
example, the client may have used a proxy and has no intention of using it anymore but the client is
expected to run for several minutes after that. During this time, the session would remain open
unnecessarily in Symphony. To address this issue, we can call the Dispose() method on the proxy object
at a point where we no longer need the proxy and just before the reference goes out of scope.
...
 Calculate(principalAmounts, calculator);
}
catch (Exception E)
{
 Console.WriteLine("{0}\n{1}", E.Message, E.StackTrace);
}
finally
{
 if (null != calculator)
 {
 calculator.Dispose();
 }
}

Refer to Simplified application on-boarding with Visual Studio in the Application Development Guide for
more information about the Dispose() method.

Next, we will look at how to optimize the client code to maximize the benefits of running our application
on the grid.

Step 7: Optimizing the code for the grid
In the previous step where we ran our application on the grid, our client interacted with the grid-enabled
library and the calculations were actually performed on the grid. But the interaction between the client
and the service was synchronous in nature as each input task was sent to the service, one at a time, in a
blocking mode.

The following code snippet was taken from the client file Program.cs.
foreach (double amount in principalAmounts)

Visual Studio Tutorial

144 Symphony Developer Tutorials

{
 double interest = calculator.SimpleInterest(amount);
 Console.WriteLine("Principal : ${0},\t Interest: ${1}",
 amount, interest);
}

In the code, we can see that the main execution thread loops through the principal amounts, one at a time,
and waits for the result of each calculation to return before it calls the next method. Although the code
executes and results are collected, this approach does not benefit from running on the grid. Benefits can
only be realized when you execute methods in parallel across multiple computing resources available on
the grid.

Asynchronous Programming Model
One of the simple ways to run our calculations in parallel is by using the .NET Asynchronous
Programming Model (APM) convention and break our loop into two steps that use the appropriate
methods to begin and end our calculation methods. In the code snippet from the previous section, instead
of using the SimpleInterest() method on our proxy, we will use the BeginSimpleInterest()
method that will not block our execution thread. This will allow us to submit multiple calculations, wait
for each one to complete, and then collect the results from our EndSimpleInterest() method. Using
the APM model, we can use a callback to collect the results as well.

Performing calculations using APM
Now let’s review the same client code as before but this time we have updated it to use APM to perform
the calculations in parallel. (Note that this code is taken from the Visual Studio solution at %SOAM_HOME
%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator\2-After.)
public static void CalculateInParallel(List<double>
principalAmounts, BasicGridCalculator.BasicCalculator calculator)
{
 ...
 // Begin calculations in parallel
 List<IAsyncResult> results = new
 List<IAsyncResult>(principalAmounts.Count);
 foreach (double amount in principalAmounts)
 {
 IAsyncResult result =
 calculator.BeginSimpleInterest(amount, null, amount
 as Object);
 results.Add(result);
 }
 foreach (IAsyncResult result in results)
 {
 result.AsyncWaitHandle.WaitOne();
 double interest = calculator.EndSimpleInterest
 (result);
 double amount = (double)result.AsyncState;
 Console.WriteLine("Principal : ${0},\t Interest:
 ${1}", amount, interest);
 }
}

To perform the calculations in parallel, first we need to set up a list of IAsyncResult objects to hold the
results as they are collected asynchronously. The IAsyncResult objects store information about each
interest calculation to be performed in the loop.. We will use this information to help us retrieve the results
later in the second loop.

The BeginSimpleInterest() method takes three arguments: the principal amount, null (since we are
not using any callback), and the principal amount typed as an object (we are using this as a convenient
way to preserve the principal amount so we can retrieve it later when we print the output).

After calling BeginSimpleInterest(), the main thread continues execution while the asynchronous
interest calculation takes place on the grid in the service process. Once executed, the

Visual Studio Tutorial

Symphony Developer Tutorials 145

BeginSimpleInterest() immediately returns a reference that is added to the results list so that we
can keep track of the corresponding result. The main thread cycles through the loop repeating the same
sequence for each principal amount.

Once all the asynchronous interest calculations are done, a second loop retrieves the results. When we
reach result.AsyncWaitHandle.WaitOne(), the main thread is blocked until the specific result is
available. We retrieve the result by passing the result reference to the EndSimpleInterest() method.
We also retrieve the original principal amount from the AsyncState property of the result object.

Performing calculations using APM with callback
In this sample, we review how to perform the calculations in parallel but this time we collect the results
using a callback to let us know when the results are ready. The following sample code is taken from the
Visual Studio solution at %SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS
\BasicCalculator\2-After.
public static void CalculateInParallelWithCallback(List<double>
principalAmounts, BasicGridCalculator.BasicCalculator calculator)
 {
 lock (resultLock)
 {
 outstandingMethodResults = principalAmounts.Count;
 }
 // Begin calculations in parallel (with a callback)
 foreach (double amount in principalAmounts)
 {
 SimpleInterestMethodContext ctx =
 new SimpleInterestMethodContext(calculator, amount);
 calculator.BeginSimpleInterest(amount,
 SimpleInterestCompleted, ctx as Object);
 }
 outstandingMethodsCompleted.WaitOne();
 outstandingMethodsCompleted.Reset();
 }

The first step is to initialize outstandingMethodResults to the number of expected results. We will
use this variable to keep track of the number of results collected so that we know when all the work is
done.

This time we construct a context object for each call in the loop since we will be processing the result in
our callback method. As the callback will be called from a different thread, it is important to maintain a
reference to our proxy so that we can still collect the results when the SimpleInterest() method
completes later.

We pass three arguments to the BeginSimpleInterest() method: the principal amount, the delegate
of the callback method, and the context object. When the call completes it will automatically call the
callback that is supplied. At this point, the main thread waits until all the results are returned from the
service.

Now let’s take a look at the callback. With an asynchronous client, when a calculation is completed by
the service, there must be a means of communicating this status back to the client. The callback (or
response handler) is implemented for this purpose. It is called by the Middleware each time the service
completes a calculation. In the following sample, SimpleInterestCompleted() is the callback
method. It accepts the result object, which is passed to the method by the middleware whenever the
respective calculation has completed.
 private static void SimpleInterestCompleted(IAsyncResult result)
 {
 SimpleInterestMethodContext ctx =
 (SimpleInterestMethodContext)result.AsyncState;
 BasicGridCalculator.BasicCalculator calculator = ctx.obj;
 double amount = ctx.amount;
 try

Visual Studio Tutorial

146 Symphony Developer Tutorials

 {
 double interest = calculator.EndSimpleInterest(result);
 Console.WriteLine("Principal : ${0},\t Interest: ${1}",
 amount, interest);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception Occured in
 SimpleInterestCompleted Callback : {0}",
 ex.ToString());
 }
 finally
 {
 lock (resultLock)
 {
 outstandingMethodResults--;
 if (outstandingMethodResults < 1)
 {
 outstandingMethodsCompleted.Set();
 }
 }
 }
 }

First, we restore the original context for the calculation. Next, we store a reference to the proxy on our
result object so that we can make the call to calculator.EndSimpleInterest() when the callback
is triggered from another thread. The result is retrieved by passing the result reference as a token to the
EndSimpleInterest() method.

We count down the number of results outstanding. When all the results have returned, we set a flag, which
unblocks the main thread in the CalculateInParallelWithCallback() method.

Step 8: Run the optimized sample on the grid
For instructions on how to run the optimized grid sample, refer to the Basic Calculator (After on-boarding)
Readme located at %SOAM_HOME%\5.1\samples\AppOnboarding\DotNet\CS\BasicCalculator
\2-After.

Visual Studio Tutorial

Symphony Developer Tutorials 147

Index
A

asynchronous client
tutorial 13
tutorial, Java 45, 77

C

client
samples

asynchronous client 13
asynchronous client for linux 14, 45, 54
asynchronous client for Windows 13
Java, asynchronous client 45, 77
Java, synchronous client for Windows 34
synchronous client for linux 5, 22, 34, 92
synchronous client for Windows 5, 22, 91

clients
samples

sharing data 28
code samples

asynchronous client 13
Java

sharing data, client and service 59, 83, 91
Java, asynchronous client 77
sharing data, client and service 28
synchronous client 8, 16, 25, 31, 37, 48, 56, 62, 97–99

code samples, Java
asynchronous client 45

D

data
Java tutorial for sharing data among tasks 59, 83, 91
tutorial for sharing data among tasks 28

M

message object
tutorial

declare 8

S

samples
asynchronous client 13

Java
service 53

Java, asynchronous client 45, 77
service 22
sharing data, client and service 28

service
samples

asynchronous client for linux 14, 45, 54
asynchronous client for Windows 13
deploy for data sharing 29
Java, synchronous client for Windows 34
synchronous client for linux 5, 22, 34, 92
synchronous client for Windows 5, 22, 91

services
samples

sharing data 28
session description

in client code 11, 21, 43, 121
session type

in client code 11, 21, 43, 122

T

tutorial
asynchronous client 13
basic service 5, 22

Java
basic service 53
sharing data among tasks 59, 83, 91
synchronous client 34

Java, asynchronous client 45, 77
sharing data among tasks 28
synchronous client 5

148 Symphony Developer Tutorials

	Contents
	Copyright
	C++ Tutorials
	Tutorial: Synchronous Symphony C++ client tutorial
	Build the sample client and service
	On Windows
	On Linux

	Package the sample service
	On Windows
	On Linux

	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Review and understand the samples
	Review the sample code

	Tutorial: SampleApp: Developing an asynchronous Symphony C++ client
	Build the sample client and service
	On Windows
	On Linux

	Package the sample service
	On Windows
	On Linux

	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	Code differences between synchronous and asynchronous clients
	Declare the message object and implement
	Declare and implement your callback object
	Create a session to group tasks
	Synchronize the controlling and callback threads

	Tutorial: SampleApp: Your first Symphony C++ service
	Build the sample client and service
	On Windows
	On Linux

	Package the sample service
	On Windows
	On Linux

	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	Input and output: declare and implement the Message object:
	Define a service container:
	Process the input:
	Run the container:
	Catch exceptions:

	Tutorial: SharingData: Developing a C++ client and service to share data among tasks
	When to use common data
	Build the sample client and service
	On Windows
	On Linux

	Package and deploy the sample service
	On Windows
	On Linux

	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	What the client sample does
	What the service sample does
	Prepare common data in your client
	Access common data in your service

	Java Tutorials
	Tutorial: SampleApp: Your first synchronous Symphony Java client
	Build the sample client and service
	On Windows
	Compile with the .bat file
	Compile with the Ant build file
	Compile in Eclipse

	On Linux

	Package the sample service
	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	Synchronous client structure
	Implement input and output objects
	Initialize the client
	Connect to an application
	Create a session to group tasks
	Send input data to be processed
	Retrieve output
	Catch exceptions
	Uninitialize

	Tutorial: SampleApp: Developing an asynchronous Symphony Java client
	Build the sample client and service
	On Windows
	Compile with the .bat file
	Compile with the Ant build file
	Compile in Eclipse

	On Linux

	Package the sample service
	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	Code differences between synchronous and asynchronous clients
	Implement input and output objects and initialize the client
	Declare and implement your callback object
	Create a session to group tasks
	Synchronize the controlling and callback threads

	Tutorial: SampleApp: Your first Symphony Java service
	Build the sample client and service
	On Windows
	Compile with the .bat file
	Compile with the Ant build file
	Compile in Eclipse

	On Linux

	Package the sample service
	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	Define a service container
	Process the input
	Run the container
	Catch exceptions

	Tutorial: SharingData: Developing a Java client and service to share data among tasks
	Build the sample client and service
	On Windows
	Compile with the .bat file
	Compile with the Ant build file
	Compile in Eclipse

	On Linux

	Package the sample service
	Add the application
	Run the sample client and service
	On Windows
	On Linux

	Walk through the code
	When to use common data
	Prepare common data in your client
	Access common data in your service

	.NET Tutorials
	Tutorial: SampleApp: Your first synchronous Symphony C# client and service
	Where to find the documentation
	Build the sample client and service
	Package the sample service
	Add the application
	Run the sample client and service
	Walk through the code

	Tutorial: SampleApp: Developing an asynchronous Symphony C# client
	Where to find the documentation
	Build the sample client and service
	Package the sample service and add the application
	Run the sample client and service
	Walk through the code

	Tutorial: SharingData: Developing a C# client and service to share data among tasks
	Build the sample client and service
	Package the sample service
	Add the application
	Run the sample client and service
	Walk through the code
	When to use common data
	Prepare common data in your client
	Access common data in your service

	Cross-language Tutorials
	Tutorial: CrossLanguage: Developing cross-language clients and services
	Prerequisites
	Build the samples
	Build the C++ sample client and service
	On Windows
	On Linux

	Build the Java sample client and service
	On Windows
	Compile with the .bat file
	Compile with the Ant build file
	Compile in Eclipse

	On Linux
	Compile with the Makefile
	Compile with the Ant build file
	Compile in Eclipse

	Build the .NET sample client and service
	Build the COM client

	Package the service
	Package the C++ sample service
	On Windows
	On Linux

	Package the Java sample service
	Package the .NET sample service

	Add the application
	Run the sample clients
	On Windows
	On Linux

	Walk through the code
	Differences between cross-language and same-language clients and services
	Symphony serialization

	Use Symphony serialization in C++ to serialize input and output
	Use Symphony serialization in Java to serialize input and output
	Use Symphony serialization in .NET to serialize input and output

	COM Tutorial
	Tutorial: Developing a COM API client
	Where to find the documentation
	Build the sample service
	Package the sample service
	Add the application
	Run the sample client and service
	Walk through the code
	Local sample
	Symphony sample

	Eclipse Tutorial
	Tutorial: Developing a Symphony application with Eclipse
	Prerequisites
	Install the Symphony plug-in for Eclipse
	What the Symphony plug-in can do
	Where to find the documentation
	Create a new Symphony Java application
	Step 1 Create a new project
	Step 2: Name the application and package
	Step 3: Name the client and service classes
	Step 4: Define the message
	Step 5: Create the Java project

	Review and understand the generated code
	Client class
	Message input/output classes
	Callback class
	Service class

	Create a deployment package
	Creating an application profile
	Create an application profile

	Run the application
	Service package re-deployment
	Importing samples into Eclipse
	Import samples into Eclipse
	Create and validate the service package
	Add the application to Symphony DE

	Modifying existing applications

	Visual Studio Tutorial
	Tutorial: On-boarding a Symphony application with Visual Studio
	Prerequisites
	Install the Symphony add-in for Visual Studio
	Sample applications
	About this tutorial
	On-board an existing C#.NET application
	Step 1: Test the sample
	Step 2: Add the .NET class library to the solution
	Step 3: Expose the members in the .NET class library so that you can access them via the proxy
	Step 4: Add configuration files to handle mixed-mode assemblies
	Step 5: Run the sample on the grid
	Step 6: Free up Symphony resources
	Step 7: Optimizing the code for the grid
	Step 8: Run the optimized sample on the grid

	Index

