
Dynamic Service User Guide

Platform Symphony
Version 5.1
April 2011

Copyright © 1994-2011 Platform Computing Corporation

All rights reserved.

Although the information in this document has been carefully reviewed, Platform Computing Corporation
(“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections,
updates, revisions or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness
of the information. If you find an error, or just want to make a suggestion for improving this document, please address
your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided
that you continue to check the Platform Web site for updates and update your version of the documentation. You may
not make it available to your organization over the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.
™ ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOB
SCHEDULER, PLATFORM ISF, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the
PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the United States and
in other jurisdictions.
® UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.
® Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel®, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their
respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
Dynamic Service .. 5

Scope .. 5
Feature licensing ... 5
About slot usage requirements ... 5
Resource group filtering .. 6
Workload preemption .. 6
Exclusive allocation .. 7
Configuring preemption, preemption rank, service-to-slot ratio (slot usage), and
resource group filter .. 8
Overriding configured parameters via API .. 8
Best practices ... 8

Dynamic Service User Guide 3

4 Dynamic Service User Guide

Dynamic Service
Dynamic Service is a feature of the Multi-core Optimizer add-on product. The Multi-core Optimizer
reduces capital and operating expenses by improving utilization of resources in mixed environments. It
can also reduce I/O and memory contention in multi-core environments. The Dynamic Service feature
allows dynamic control of service-to-slot mapping to optimize core, memory, and I/O use. This enables
efficient running of workload made up of multi-threaded, single-threaded, I/O-intensive, and compute-
intensive tasks from a single application and/or a mix of applications in a multi-core/heterogeneous
environment.

An additional software license is required to use this feature. This feature is packaged with Symphony
and does not require separate deployment.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Limitations N/A

Feature licensing
Follow these steps when you want to add or update a license for the dynamic service feature.

1. Acquire a dynamic service license key from Platform.
2. Append the license key to $EGO_CONFDIR/license.dat. Note that all management hosts running an

SSM must have access to this license file.
3. Configure the dynamic service feature.
4. Register and enable the new application profile.

Note:
If your application was already configured and registered before you
acquired the license, you need to disable and re-enable the application
so that the license is verified and the feature is enabled.

About slot usage requirements
Some workload within the same application may be more compute-intensive than others. The dynamic
service feature allows you to run each type of workload on resources according to its own resource
requirements. In this manner, the workload consumes slots according to its own slot usage requirement.

SSM resource scheduling
The SSM assigns idle resources to sessions in the following manner:

Dynamic Service

Dynamic Service User Guide 5

• The SSM calculates each session's deserved share according to its scheduling policy, i.e., proportional,
minimum services, etc.

• Every scheduling cycle, the scheduling policy tries to assign any idle resources to under-allocated
sessions in accordance with proportion, as best it can, where:

1. The resources taken must match the session's slot usage requirements.
2. The resources taken must also be the best fit from among the remaining idle resources. For example,

if the SSM is scheduling a session with a 1-slot requirement, it will try to choose 1-slot hosts first,
then 2-slot hosts, and so on.

• If the under-allocated sessions cannot make use of all of the resources (for example, the remaining
resources do not match the slot usage requirements for the under-allocated sessions), the policy tries
to assign the resources to sessions that have already met or exceeded their deserved share. This means
that the resources do not remain idle.

Resource group filtering
If resource groups are specified at the application level, it means that any sessions serving the application
can be allocated resources from the specified resource groups. When a session with multi-slot usage
requirements needs resources, it is possible that there are only hosts with an insufficient number of slots
available since the required multi-slot hosts may have already been allocated to single-slot sessions. The
multi-slot session would have to wait until suitable resources were available. If resource groups could be
specified at the session level, you could request multi-slot hosts for the multi-slot sessions and, at the same
time, prevent single-slot sessions from taking multi-slots hosts. The resource group filter can be used for
this purpose. Each session can use a resource group filter to narrow down the choices of resource groups
specified at the application level.

When clients submit workload for sessions with unique slot usage and resource group filter requirements,
the SSM makes an allocation request to EGO based on the specified requirements. EGO goes through the
resource groups and tries to satisfy the demand. (The order in which EGO goes through the resource
groups is defined by the order that the resource groups appear in the resource plan in the
ConsumerTrees.xml file.) After receiving resources from EGO, the SSM assigns resources to its sessions
according to the configured policy, the slot usage requirement for each session, and the resource group
filter for each session.

Workload preemption
If a session requires multiple slots to run its tasks and there are not enough idle resources to satisfy the
session, the session must wait. In a busy cluster, this session may starve if other sessions occupy the slots.
This situation may also apply to partial-slot tasks that are waiting to get slots from tasks with even smaller
slot requirements. To resolve this problem, you can employ session-level preemption.

You can configure a session to be preemptive so that when the session is under-allocated, it can preempt
workload of other sessions instead of waiting for other sessions to voluntarily release slots. For example,
when a single-slot session finishes, the multi-slot session cannot immediately use the slot. In the meantime,
another session may take the slot causing the multi-slot session to wait for other resources.

A session can be defined as preemptive or non-preemptive, the default being non-preemptive. A non-
preemptive session does not trigger preemption and waits until the next resource is freed up. For example,
if a 4-slot task from a non-preemptive session is to run, it must wait for 4 slots on the same host to free
up at the same time.

The following criteria is used to identify preemption candidates in the given order:

Dynamic Service

6 Dynamic Service User Guide

1. Select all over-allocated sessions.
2. Order preemption candidates by preemption rank and choose the sessions with lowest rank. If there

are multiple sessions in the lowest rank, choose the session according to the preemptionCriteria
configuration, i.e., either a session with the most recently started task or the most over-allocated session
(default).

In cases where a few tasks must be preempted at the same time, the tasks with the smallest sum of
elapsed computation times are chosen.

Session preemption characteristics:

• Preemption can only be triggered by under-allocated sessions.
• An under-allocated session that is configured to be preemptive can preempt over-allocated sessions

if the under-allocated session has any unsatisfied demand.

• Workload preemption only happens if the under-allocated session's rank is higher than or equal to
the rank of the over-allocated session. Whether a session preempts another session of lower or equal
rank or only preempts a session of lower rank is determined by the setting of the preemptionScope
attribute in the application profile. Sessions cannot preempt other sessions with higher rank.

• Only over-allocated slots will be preempted from a session. Preemption will not cause any session to
become under-allocated.

• If multiple slots are shared by more than one session, the session with the highest session rank is taken
into consideration. In this case, the lower rank session is "protected" by the higher rank session and
will not be preempted. Similarly, if multiple sessions on one host share the same slot, the session with
the highest preemption rank is taken into consideration.

• If multiple slots on the same host are shared by more than one session where some slots belong to an
over-allocated session and some slots belong to an under-allocated session, these slots will not be
preempted. In this case, the over-allocated session is "protected" by the under-allocated session.
Similarly, if multiple sessions on one host share the same slot where one session is over-allocated and
ther other is under-allocated, the slot will not be preempted.

• If the SSM cannot find any slots in the lowest rank sessions to preempt, either because these slots
cannot be used by the session or these slots are "protected" by higher ranked sessions or under-allocated
sessions, the SSM will consider the next higher ranked sessions.

• Preemption takes effect immediately. The service instance manager and service instance are restarted
and assigned to under-allocated sessions.

Exclusive allocation
One of the main benefits of the dynamic service feature is to enable sessions with multi-core requirements
to run workload. In a cluster made up of multi-core hosts, it is possible that, over time, a host’s usage can
become fragmented. This can happen when a single-thread task is allocated a multi-core host. In this case,
the task occupies one core but the remaining cores are not used. This problem can extend to many hosts
in the cluster to the point where there are a lot of free slots but there are no hosts that are totally free.

Here is an example:

Suppose we have two 8-core hosts and two applications: one with 1-core sessions and one with 4-core
sessions. If there are five 1-core tasks from App1 occupying 5 of 8 slots on HostA and then a 4-core task
is submitted by App2, then it may get the remaining 3 slots on HostA and another 1 slot on HostB.
However, this configuration of slots is not usable by the 4-core task in App2.

Exclusive host allocation, which is configured through the Platform Management Console for each
resource group in the resource plan, can be used to resolve the resource fragmentation problem.

Dynamic Service

Dynamic Service User Guide 7

When Exclusive is set, all the slots of each host in the resource group are assigned to only one consumer
at a time. So if there is one slot on a host allocated to one consumer, remaining slots on the same host will
not be allocated to other consumers; these slots will only be allocated to this consumer when it has demand.
When a consumer reclaims resources from another consumer, EGO enforces the reclaiming of all slots
on a host. Note that this behavior may cause a consumer to be allocated less slots than it deserves since a
consumer can only be allocated slots on a host when it deserves the whole host. The same principle applies
to a consumer that wants to reclaim slots.

When Exclusive is set, if the number of slots on a host is increased, EGO does not allocate the extra slots
to the application until existing allocations on the host are released.

Configuring preemption, preemption rank,
service-to-slot ratio (slot usage), and resource
group filter

Preemption, service-to-slot ratio, resource group filter, and preemption rank are all configured in the
SessionType > Type element of the application profile.

Preemption scope is configured in the Consumer element of the application profile. The default value for
preemptionScope is LowerOrEqualRankedSessions.

If preemptive is set to true for a session type, the under-allocated sessions of this session type can preempt
other over-allocated sessions. The default value for preemptive is false.

The preemptionRank attribute defines the session’s rank in relation to other sessions. (Sessions with a
lower preemption rank will get preempted before sessions with a higher rank.) The default value for
preemptionRank is 1.

The serviceToSlotRatio attribute defines the number of slots required to run a service instance. The default
ratio is 1:1.

The resourceGroupFilter is a list of resource groups from which the session can use resources. The default
value is empty, which means resource groups specified at the application level will be used.

Here is an example of the attributes configuration in the application profile:
<Consumer preemptionScope="LowerRankedSessions"/>
<SessionTypes><Type name="type1" … serviceToSlotRatio="1:4" resourceGroupFilter="RG1
RG2" preemptive="true" preemptionRank="2"/>

Overriding configured parameters via API
At session creation time, a client can override the session type’s serviceToSlotRatio,
resourceGroupFilter, preemptive, or preemptionRank via the API. Once the session is created, these
parameters cannot be changed. Refer to the API Reference in the Knowledge Center for more information.

Best practices

Slot usage requirements
These guidelines apply when one slot is configured to equal one core.

Dynamic Service

8 Dynamic Service User Guide

Set the serviceToSlotRatio to 1:N for multi-threaded, CPU-intensive workload, where N = the number
of threads.

Set the serviceToSlotRatio to N:1 for lightweight services such as services that perform a lot of I/O.

Resource groups and filters
Organize hosts into resource groups according to the number of cores on each host and create a resource
plan for each resource group. For example, all 1-core hosts should be in one resource group, all 4-core
hosts should be in another resource group, etc.

For serviceToSlotRatio of 1:N, only specify resource groups with >= N-core hosts. For
serviceToSlotRatio of N:1, specify any resource groups.

Preemption
Configure sessions with high slot requirements to be preemptive and to have higher preemption ranks;
this enables those sessions to preempt sessions with lower slot requirements to avoid starvation. This also
prevents sessions with equal slot requirements from preempting each another.

Here are some additional preemption guidelines for other types of workload. Note that the preemption
rank values are provided as an example.

Type of Workload Preemption Rank

For workload that you do not want preempted, set the preemption rank to the highest level. 20

For normal workload that can be preempted without consequence, set the preemption rank
to the lowest level.

10

Exclusive allocation
1. Configure Exclusive for resource groups made up of multi-core hosts to prevent fragmentation of host

slots.
2. Do not set Exclusive for resource groups containing management hosts. In one case, setting

Exclusive may cause all the SSMs on a host to be restarted when an application associated with one of
the SSMs is disabled. Similarly, stopping a system service on a management host running other system
services, may cause the other services on that host to be restarted.

3. Do not configure Exclusive if the resource group contains heterogeneous hosts, especially if the
ownership policy is configured. In such cases, it is difficult to configure consumer ownership properly
to ensure the consumer can always get a host, since the consumer cannot get a host if the number of
slots in the host is more than the consumer owns. For example, if there are two hosts left in the resource
group (host1 has 2 slots and host2 has 4 slots) and consumer A owns 4 slots. Suppose consumer A has
a demand for two slots and gets host1 first. Then, even if consumer A has more demand it cannot use
host2 because its ownership does not allow it to use both host1 and host2.

4. Configure ownership to be a multiple of the number of slots per host in a homogeneous resource
group.

5. Do not configure the exclusive slot policy in conjunction with the rusage feature that limits the number
of service instances an application can run on a host; refer to Limit the number of service instances that
can run on a host in the Cluster and Application Management Guide.

Dynamic Service

Dynamic Service User Guide 9

Index
E

exclusive host allocation 7

P

preempting workload 6
preemption

configuring 8
preemption configuration

best practices 9
preemptionRank

configuring 8
preemptionScope

configuring 7, 8

R

resourceGroupFilter
configuring 8

resourceGroupFilter configuration
best practices 9

S

serviceToSlotRatio
configuring 8

serviceToSlotRatio configuration
best practices 9

10 Dynamic Service User Guide

	Contents
	Copyright
	Dynamic Service
	Scope
	Feature licensing
	About slot usage requirements
	Resource group filtering
	Workload preemption
	Exclusive allocation
	Configuring preemption, preemption rank, service-to-slot ratio (slot usage), and resource group filter
	Overriding configured parameters via API
	Best practices

	Index

