
Integrating LSF's blaunch with MPI Applications

Platform LSF
Version 7.0 Update 6

Release date: August 2009
Last modified: August 21, 2009

Copyright © 1994-2009 Platform Computing Inc.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not
warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING
OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information.
If you find an error, or just want to make a suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue
to check the Platform Web site for updates and update your version of the documentation. You may not make it available to your
organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER,
PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the PLATFORM and PLATFORM LSF logos are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their respective owners.

Third-party license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
Open MPI .. 5
HP MPI .. 6
MVAPICH .. 7
Intel MPI and mpich2 ... 8

Integrating LSF's blaunch with MPI Applications 3

4 Integrating LSF's blaunch with MPI Applications

Open MPI
LSF must be installed and running. You must build Open MPI according to the Open MPI documentation for
implement Open MPI with LSF.

Open MPI 1.3.2 and up is tightly integrated with LSF’s blaunch functionality.

1. Run Open MPI jobs in LSF.

bsub -n2 -o %J.out -e %J.err mpiexec mympi.out

Open MPI

Integrating LSF's blaunch with MPI Applications 5

HP MPI
HP MPI is partially integrated with LSF.

1. Set the MPI_REMSH environment variable.

MPI_REMSH=blaunch;export MPI_REMSH

2. Run your job. For example:

bsub -n 16 -R "span[ptile=4]" /opt/hp/bin/mpirun -lsb_mcpu_hosts a.out

Using HP MPI with Infiniband:

bsub -n 16 -R "span[ptile=4]" /opt/hp/bin/mpirun -lsb_mcpu_hosts -IBV a.out

HP MPI

6 Integrating LSF's blaunch with MPI Applications

MVAPICH
MVAPICH can be integrated with LSF.

1. Choose from two options:
a) Change the MVAPICH source code (if you only want to run MVAPICH with LSF).

Modify the MVAPICH source code: RSH_CMD = 'blaunch' and build the package.
b) Write a wrapper script.

Wrap /usr/bin/rsh on the first execution host or all candidate execution hosts for blaunch as follows:

Example wrapper script:
cat /usr/bin/rsh
#!/bin/sh
#
wrapper /usr/bin/rsh
blaunch is used when applicable
#
if [-z "$LSF_BINDIR" \
 -o -z "$LSB_JOBID" \
 -o -z "$LSB_JOBINDEX" \
 -o -z "$LSB_JOBRES_CALLBACK" \
 -o -z "$LSB_DJOB_HOSTFILE"]; then
 RSH="/usr/bin/rsh.bin"
else
 RSH=$LSF_BINDIR/blaunch
fi
$RSH $*

c) If you wrote a wrapper script, specify host file with a script.

Example:
cat run.mvapich
#! /bin/sh
#BSUB -n 2
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -R 'span[ptile=1]'
mpirun_rsh -rsh -np $LSB_DJOB_NUMPROC -hostfile $LSB_DJOB_HOSTFILE mympi

2. Run bsub.

For example, bsub < run.mvapich.

MVAPICH

Integrating LSF's blaunch with MPI Applications 7

Intel MPI and mpich2
Intel MPI is a variation of MPICH2.This solution applies to either integration.

1. Create a wrapper script around mpdboot, without the daemonize option.

It should:
• loop all hosts and blaunch mpd without -d option in background
• at the end, check whether the mpd ring is constructed correctly
• exit 0 if correctly constructed, otherwise print out error

Example:
#!/usr/bin/env python2.3
"""
mpdboot for LSF
 [-f | --hostfile hostfile]
 [-i | --ifhn=alternate_interface_hostname_of_ip_address
 -f | --hostfile hostfile]
 [-h]
"""
import re
import string
import time
import sys
import getopt
from time import ctime
from os import environ, path
from sys import argv, exit, stdout
from popen2 import Popen4
from socket import gethostname, gethostbyname
def mpdboot():
 # change me
 MPI_ROOTDIR="/opt/mpich2"
 #
 mpdCmd="%s/bin/mpd" % MPI_ROOTDIR
 mpdtraceCmd="%s/bin/mpdtrace" % MPI_ROOTDIR
 mpdtraceCmd2="%s/bin/mpdtrace -l" % MPI_ROOTDIR
 nHosts = 1
 host=""
 ip=""
 localHost=""
 localIp=""
 found = False
 MAX_WAIT = 5
 t1 = 0
 hostList=""
 hostTab = {}
 cols = []
 hostArr = []
 hostfile = environ.get('LSB_DJOB_HOSTFILE')
 binDir = environ.get('LSF_BINDIR')
 if environ.get('LSB_MCPU_HOSTS') == None \
 or hostfile == None \
 or binDir == None:
 print "not running in LSF"
 exit (-1)
 rshCmd = binDir + "/blaunch"
 p = re.compile("\w+_\d+\s+\(\d+\.\d+\.\d+\.\d+")
#
 try:
 opts, args = getopt.getopt(sys.argv[1:], "hf:i:", ["help", "hostfile=", "ifhn="])
 except getopt.GetoptError, err:
 print str(err)
 usage()
 sys.exit(-1)
 fileName = None
 ifhn = None

Intel MPI and mpich2

8 Integrating LSF's blaunch with MPI Applications

 for o, a in opts:
 if o == "-v":
 version();
 sys.exit()
 elif o in ("-h", "--help"):
 usage()
 sys.exit()
 elif o in ("-f", "--hostfile"):
 fileName = a
 elif o in ("-i", "--ifhn"):
 ifhn = a
 else:
 print "option %s unrecognized" % o
 usage()
 sys.exit(-1)
 if fileName == None:
 if ifhn != None:
 print "--ifhn requires a host file containing 'hostname
ifhn=alternate_interface_hostname_of_ip_address'\n"
 sys.exit(-1)
 # use LSB_DJOB_HOSTFILE
 fileName = hostfile
 localHost = gethostname()
 localIp = gethostbyname(localHost)
 pifhn = re.compile("\w+\s+\ifhn=\d+\.\d+\.\d+\.\d+")
 try:
 # check the hostfile
 machinefile = open(fileName, "r")
 for line in machinefile:
 if not line or line[0] == '#':
 continue
 line = re.split('#', line)[0]
 line = line.strip()
 if not line:
 continue
 if not pifhn.match (line):
 # should not have --ifhn option
 if ifhn != None:
 print "host file %s not valid for --ifhn" % (fileName)
 print "host file should contain 'hostname ifhn=ip_address'"
 sys.exit(-1)
 host = re.split(r'\s+',line)[0]
 if cmp (localHost, host) == 0 \
 or cmp(localIp, gethostbyname(host))== 0:
 continue
 hostTab[host] = None
 else:
 # multiple blaunch-es
 cols = re.split(r'\s+\ifhn=',line)
 host = cols[0]
 ip = cols[1]
 if cmp (localHost, host) == 0 \
 or cmp(localIp, gethostbyname(host))== 0:
 continue
 hostTab[host] = ip
 nHosts += 1
 #print "line: %s" % (line)
 machinefile.close()
 except IOError, err:
 print str(err)
 exit (-1)
 # launch an mpd on localhost
 if ifhn != None:
 cmd = mpdCmd + " --ifhn=%s " % (ifhn)
 else:
 cmd = mpdCmd
 print "Starting an mpd on localhost:", cmd
 Popen4(cmd, 0)
 # wait til 5 seconds at max
 while t1 < MAX_WAIT:
 time.sleep (1)
 trace = Popen4(mpdtraceCmd2, 0)
 # hostname_portnumber (IP address)

Intel MPI and mpich2

Integrating LSF's blaunch with MPI Applications 9

 line = trace.fromchild.readline()
 if not p.match (line):
 t1 += 1
 continue
 strings = re.split('\s+', line)
 (basehost, baseport) = re.split('_', strings[0])
 #print "host:", basehost, "port:", baseport
 found = True
 host=""
 break
 if not found:
 print "Cannot start mpd on localhost"
 sys.exit(-1)
 else:
 print "Done starting an mpd on localhost"
 # launch mpd on the rest of hosts
 if nHosts < 2:
 sys.exit(0)
 print "Constructing an mpd ring ..."
 if ifhn != None:
 for host, ip in hostTab.items():
 #print "host : %s ifhn %s\n" % (host, ip)
 cmd="%s %s %s -h %s -p %s --ifhn=%s" % (rshCmd, host, mpdCmd, basehost, baseport, ip)
 #print "cmd:", cmd
 Popen4(cmd, 0)
 else:
 for host, ip in hostTab.items():
 #print "host : %s ifhn %s\n" % (host, ip)
 hostArr.append(host + " ")
 hostList = string.join(hostArr)
 #print "hostList: %s" % (hostList)
 cmd="%s -z \'%s\' %s -h %s -p %s" % (rshCmd, hostList, mpdCmd, basehost, baseport)
 #print "cmd:", cmd
 Popen4(cmd, 0)
 # wait till all mpds are started
 MAX_TIMEOUT = 300 + 0.1 * (nHosts)
 t1 = 0
 started = False
 while t1 < MAX_TIMEOUT:
 time.sleep (1)
 trace = Popen4(mpdtraceCmd, 0)
 if len(trace.fromchild.readlines()) < nHosts:
 t1 += 1
 continue
 started = True
 break
 if not started:
 print "Failed to construct an mpd ring"
 exit (-1)
 print "Done constructing an mpd ring at ", ctime()
def usage():
 print __doc__
if __name__ == '__main__':
 mpdboot()

cat run.intelmpi
#! /bin/sh
#BSUB -n 2
#BSUB -o %J.out
#BSUB -e %J.err
mpdboot.lsf
mpiexec -np $NUMPROC mympi.out
mpdallexit

2. Run bsub.

For example, bsub < run.intelmpi.

Intel MPI and mpich2

10 Integrating LSF's blaunch with MPI Applications

Index
H
HP MPI 6

I
Intel MPI 8

M

mpich2 8
MVAPICH 7

O

Open MPI 5

Integrating LSF's blaunch with MPI Applications 11

	Contents
	Copyright
	Open MPI
	HP MPI
	MVAPICH
	Intel MPI and mpich2
	Index

