
Platform LSF Foundations

Platform LSF™
Version 7.0 Update 6

Release date: August 2009
Last modified: August 17, 2009

Copyright © 1994-2009 Platform Computing Inc.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not
warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING
OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information.
If you find an error, or just want to make a suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue
to check the Platform Web site for updates and update your version of the documentation. You may not make it available to your
organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER,
PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the PLATFORM and PLATFORM LSF logos are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their respective owners.

Third-party license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
1 Platform LSF: An Overview .. 5

Introduction to Platform LSF ... 6
LSF cluster components ... 8

2 Inside an LSF Cluster ... 11
LSF processes .. 12
LSF cluster communications paths ... 15
Fault tolerance .. 16
Security ... 18
Inside PERF .. 20

3 Inside Workload Management .. 23
Job life cycle ... 24
Job submission ... 26
Job scheduling and dispatch ... 27
Host selection ... 29
Job execution environment ... 30

4 LSF with EGO Enabled .. 31
EGO component overview .. 32
Resources ... 33
Sharing of LSF resources ... 35

Platform LSF Foundations 3

4 Platform LSF Foundations

1
Platform LSF: An Overview

C H A P T E R

Platform LSF Foundations 5

Introduction to Platform LSF
The Platform LSF ("LSF", short for load sharing facility) software is leading enterprise-class software that distributes
work across existing heterogeneous IT resources creating a shared, scalable, and fault-tolerant infrastructure, delivering
faster, more reliable workload performance while reducing cost. LSF balances load and allocates resources, while
providing access to those resources.

LSF provides a resource management framework that takes your job requirements, finds the best resources to run the
job, and monitors its progress. Jobs always run according to host load and site policies.

Cluster
A group of computers (hosts) running LSF that work together as a single unit, combining
computing power, workload, and resources. A cluster provides a single-system image for a
network of computing resources.

Hosts can be grouped into a cluster in a number of ways. A cluster could contain:

• All the hosts in a single administrative group
• All the hosts on a sub-network
• Hosts that have required hardware

Platform LSF: An Overview

6 Platform LSF Foundations

Hosts
Your cluster’s hosts perform different functions.

• Master host: An LSF server host that acts as the overall coordinator for the cluster, doing
all job scheduling and dispatch.

• Server host: A host that submits and executes jobs.
• Client host: A host that only submits jobs and tasks.
• Execution host: A host that executes jobs and tasks.
• Submission host: A host from which jobs and tasks are submitted.

Job
A unit of work run in the LSF system. A job is a command submitted to LSF for execution.
LSF schedules, controls, and tracks the job according to configured policies.

Jobs can be complex problems, simulation scenarios, extensive calculations, or anything that
needs compute power.

Job slot
A job slot is a bucket into which a single unit of work is assigned in the LSF system.

Hosts can be configured with multiple job slots and you can dispatch jobs from queues until
all the job slots are filled. You can correlate job slots with the total number of CPUs in the
cluster.

Queue
A cluster-wide container for jobs. All jobs wait in queues until they are scheduled and
dispatched to hosts.

Queues do not correspond to individual hosts; each queue can use all server hosts in the cluster,
or a configured subset of the server hosts.

When you submit a job to a queue, you do not need to specify an execution host. LSF dispatches
the job to the best available execution host in the cluster to run that job.

Queues implement different job scheduling and control policies.

Resources
Resources are the objects in your cluster that are available to run work. For example, resources
include but are not limited to machines, CPU slots, and licenses.

Platform LSF: An Overview

Platform LSF Foundations 7

LSF cluster components
An LSF cluster manages resources, accepts and schedules workload, and monitors all events. LSF can be accessed by
users and administrators by a command-line interface, an API, or through the HPC Portal.

LSF
• Core: The core of LSF includes daemons and functionality that schedules and runs jobs, as well as managing

resources.
• License Scheduler: Platform LSF License Scheduler allows you to make policies that control the way software licenses

are shared among different users in your organization. Platform LSF License Scheduler works with FLEXnet™

products to control and monitor license usage.
• Session Scheduler: While traditional Platform LSF job submission, scheduling, and dispatch methods such as job

arrays or job chunking are well suited to a mix of long and short running jobs, or jobs with dependencies on each
other, Session Scheduler is ideal for large volumes of independent jobs with short run times.

Platform LSF: An Overview

8 Platform LSF Foundations

Knowledge Center

The Knowledge Center is your access point to LSF documentation. It is provided with the LSF
installation files and once extracted it can be accessed from any web browser. It can also be
linked to directly from the Platform Management Console.

The Knowledge Center provides an overview of the organization of the product
documentation. It also provides quick access to each document and links to some key
resources, such as my.platform.com, your eSupport site.

In addition to links to all documents, the Knowledge Center provides full search capabilities
within the documentation. You can perform keyword searches within a document or across
the full documentation set.

Overview of reporting
An efficient cluster maximizes the usage of resources while minimizing the average wait time
of a workload. To ensure your cluster is running efficiently at all times, you can analyze the
activity within your cluster to find areas for improvement.

The reporting feature collects data from the cluster and maintains this data in a relational
database system. Cluster data is extracted from the database and displayed in reports either
graphically or in tables. You can use these reports to analyze and improve the performance of
your cluster, to perform capacity planning, and for troubleshooting.

The reporting feature depends on the Platform Enterprise Reporting Framework (PERF)
architecture. This architecture defines the communication between your cluster, relational
database, and data sources.

LSF collects various types of data, which can be reported using the standard, out-of-the box
reports. In addition, LSF can be configured to collect customer-specific data, which can be
reported using custom reports.

Platform LSF: An Overview

Platform LSF Foundations 9

Platform LSF: An Overview

10 Platform LSF Foundations

2
Inside an LSF Cluster

C H A P T E R

Platform LSF Foundations 11

LSF processes
There are multiple LSF processes running on each host in the cluster. The type and number of processes running
depends on whether the host is a master host or a compute host.

Master host processes
LSF hosts run various processes, depending on their role in the cluster.

LSF daemon Role

mbatchd Job requests and dispatch

mbschd Job scheduling

sbatchd Job execution

res Job execution

lim Host information

pim Job process information

elim Dynamic load indices

webgui wsm Platform Console

plc Reports

Inside an LSF Cluster

12 Platform LSF Foundations

LSF daemon Role

purger Reports

mbatchd
Master Batch Daemon running on the master host. Responsible for the overall state of jobs in
the system.

Receives job submission, and information query requests. Manages jobs held in queues.
Dispatches jobs to hosts as determined by mbschd.

mbschd
Master Batch Scheduler Daemon running on the master host. Works with mbatchd.

Makes scheduling decisions based on job requirements, policies, and resource availability.
Sends scheduling decisions to the mbatchd.

sbatchd
Slave Batch Daemon running on each server host including the master host. Receives the
request to run the job from mbatchd and manages local execution of the job. Responsible for
enforcing local policies and maintaining the state of jobs on the host.

sbatchd forks a child sbatchd for every job. The child sbatchd runs an instance of res to
create the execution environment in which the job runs. The child sbatchd exits when the
job is complete.

res
Remote Execution Server (RES) running on each server host. Accepts remote execution
requests to provide transparent and secure remote execution of jobs and tasks.

lim
Load Information Manager (LIM) running on each server host. Collects host load and
configuration information and forwards it to the master LIM running on the master host.
Reports the information displayed by lsload and lshosts.

Static indices are reported when the LIM starts up or when the number of CPUs (ncpus)
change.

Master lim
The LIM running on the master host. Receives load information from the LIMs running on
hosts in the cluster.

Forwards load information to mbatchd, which forwards this information to mbschd to
support scheduling decisions. If the master LIM becomes unavailable, a LIM on a master
candidate automatically takes over.

pim
Process Information Manager (PIM) running on each server host. Started by LIM, which
periodically checks on PIM and restarts it if it dies.

Inside an LSF Cluster

Platform LSF Foundations 13

Collects information about job processes running on the host such as CPU and memory used
by the job, and reports the information to sbatchd.

ELIM
External LIM (ELIM) is a site-definable executable that collects and tracks custom dynamic
load indices. An ELIM can be a shell script or a compiled binary program, which returns the
values of the dynamic resources you define. The ELIM executable must be named
elim.anything and located in LSF_SERVERDIR.

Inside an LSF Cluster

14 Platform LSF Foundations

LSF cluster communications paths
The communication paths between the daemons in the cluster are as shown below:

Inside an LSF Cluster

Platform LSF Foundations 15

Fault tolerance
LSF has a robust architecture designed with fault tolerance in mind. Every component in the system has a recovery
operation—vital components are monitored by another component and can automatically recover from a failure.

LSF is designed to continue operating even if some of the hosts in the cluster are unavailable. One host in the cluster
acts as the master, but if the master host becomes unavailable another master host candidate takes over. LSF is available
as long as there is one available master host candidate in the cluster.

LSF can tolerate the failure of any host or group of hosts in the cluster. When a host becomes unavailable, all jobs
running on that host are either requeued or lost, depending on whether the job was marked as rerunnable. No other
pending or running jobs are affected.

How failover works
Fault tolerance in LSF depends on the event log file, lsb.events, which is kept on the primary file server. Every event
in the system is logged in this file, including all job submissions and job and host status changes. If the master host
becomes unavailable, a new master is chosen from the master candidate list, and sbatchd on the new master starts a
new mbatchd. The new mbatchd reads the lsb.events file to recover the state of the system.

For sites not wanting to rely solely on a central file server for recovery information, LSF can be configured to maintain
a duplicate event log by keeping a replica of lsb.events. The replica is stored on the file server, and used if the primary
copy is unavailable. When using LSF’s duplicate event log function, the primary event log is stored locally on the first
master host, and re-synchronized with the replicated copy when the host recovers.

Host failover
The LSF master host is chosen dynamically. If the current master host becomes unavailable, another host takes over
automatically. The failover master host is selected from the list defined in LSF_MASTER_LIST in lsf.conf (specified
in install.config at installation). The first available host in the list acts as the master.

Running jobs are managed by sbatchd on each server host. When the new mbatchd starts, it polls the sbatchd on
each host and finds the current status of its jobs. If sbatchd fails but the host is still running, jobs running on the host
are not lost. When sbatchd is restarted it regains control of all jobs running on the host.

Job failover
Jobs can be submitted as rerunnable, so that they automatically run again from the beginning or as checkpointable, so
that they start again from a checkpoint on another host if they are lost because of a host failure.

If all of the hosts in a cluster go down, all running jobs are lost. When a master candidate host comes back up and takes
over as master, it reads the lsb.events file to get the state of all batch jobs. Jobs that were running when the systems
went down are assumed to have exited unless they were marked as rerunnable, and email is sent to the submitting user.
Pending jobs remain in their queues, and are scheduled as hosts become available.

Partitioned cluster
If the cluster is partitioned by a network failure, a master LIM takes over on each side of the partition as long as there
is a master host candidate on each side of the partition. Interactive load-sharing remains available as long as each host
still has access to the LSF executables.

Partitioned network
If the network is partitioned, only one of the partitions can access lsb.events, so batch services are only available on
one side of the partition. A lock file is used to make sure that only one mbatchd is running in the cluster.

Inside an LSF Cluster

16 Platform LSF Foundations

Job exception handling
You can configure hosts and queues so that LSF detects exceptional conditions while jobs are running, and takes
appropriate action automatically. You can customize what exceptions are detected and the corresponding actions. For
example, you can set LSF to restart a job automatically if it exits with a specific error code.

Inside an LSF Cluster

Platform LSF Foundations 17

Security
LSF security model

Out of the box, the LSF security model keeps track of user accounts internally. A user account defined in LSF includes
a password to provide authentication and an assigned role to provide authorization, such as administrator.

LSF user roles
LSF, without EGO enabled, supports the following roles:

• LSF user: Has permission to submit jobs to the LSF cluster and view the states of jobs and the cluster.
• Primary LSF administrator: Has permission to perform clusterwide operations, change configuration files,

reconfigure the cluster, and control jobs submitted by all users.

Configuration files such as lsb.params and lsb.hosts configure all aspects of LSF.
• LSF administrator: Has permission to perform operations that affect other LSF users.

• Cluster administrator: Can perform administrative operations on all jobs and queues in the cluster. May not
have permission to change LSF configuration files.

Inside an LSF Cluster

18 Platform LSF Foundations

• Queue administrator: Has administrative permissions limited to a specified queue.
• Hostgroup administrator: Has administrative permissions limited to a specified host group.
• Usergroup administrator: Has administrative permissions limited to a specified user group.

LSF user roles with EGO enabled
LSF, with EGO enabled, supports the following roles:

• Cluster Administrator: Can administer any objects and workload in the cluster
• Consumer Administrator: Can administer any objects and workload in consumers to which they have access
• Consumer User: Can run workload in consumers to which they have access

User accounts are created and managed in EGO. EGO authorizes users from its user database.

LSF and UNIX user groups
LSF allows you to use any existing UNIX user groups directly by specifying a UNIX user group anywhere an LSF user
group can be specified.

External authentication
LSF provides a security plug in for sites that prefer to use external or third-party security mechanisms, such as Kerberos,
LDAP, ActiveDirectory, and so on.

You can create a customized eauth executable to provide external authentication of users, hosts, and daemons.
Credentials are passed from an external security system. The eauth executable can also be customized to obtain
credentials from an operating system or from an authentication protocol such as Kerberos.

Inside an LSF Cluster

Platform LSF Foundations 19

Inside PERF

Database
Platform product includes the Apache Derby database, a JDBC-based relational database system, for use with the
reporting feature. The Derby database is a small-footprint, open-source database, and is only appropriate for demo
clusters. If you want to use the reporting feature to produce regular reports for a production cluster, you must use a
supported commercial database such as Oracle or MySQL.

Data sources
Data sources are files that store cluster operation and workload information such as host status changes, session, and
task status, and so on. product uses several files as data sources. These include daemon status files, and event files.

Data loaders
Data loaders collect the operational data from the data sources and load the data into tables in a relational database.
The data loaders connect to the database using a JDBC driver.

Loader controller
The loader controller service (plc) controls the data loaders that collect data from the system, and writes the data into
the database.

Data purger
The data purger service (purger) maintains the size of the database by purging old records from the database and
archiving them. By default, the data purger purges all data that is older than 14 days, and purges data every day at 12:30
a.m.

Inside an LSF Cluster

20 Platform LSF Foundations

Reports
Platform provides a set of out-of-box report templates, called standard reports. These report templates allow you to
produce a report to analyze your cluster. The standard reports capture the most common and useful data to analyze
your cluster.

You can also create custom reports to perform advanced queries and reports beyond the data produced in the standard
reports.

Inside an LSF Cluster

Platform LSF Foundations 21

Inside an LSF Cluster

22 Platform LSF Foundations

3
Inside Workload Management

C H A P T E R

Platform LSF Foundations 23

Job life cycle

1. Submit a job
You submit a job from an LSF client or server with the bsub command.

If you do not specify a queue when submitting the job, the job is submitted to the default queue.

Jobs are held in a queue waiting to be scheduled and have the PEND state. The job is held in a job file in the
LSF_SHAREDIR/cluster_name/logdir/info/ directory, or in one of its subdirectories if MAX_INFO_DIRS is
defined in the configuration file lsb.params.

• Job ID: LSF assigns each job a unique job ID when you submit the job.
• Job name: You can also assign a name to the job with the -J option of bsub. Unlike the job ID, the job name is not

necessarily unique.

2. Schedule the job
1. The master batch daemon (mbatchd) looks at jobs in the queue and sends the jobs for scheduling to the master

batch scheduler (mbschd) at a preset time interval (defined by the parameter JOB_SCHEDULING_INTERVAL in
the configuration file lsb.params).

2. mbschd evaluates jobs and makes scheduling decisions based on:

• Job priority
• Scheduling policies
• Available resources

3. mbschd selects the best hosts where the job can run and sends its decisions back to mbatchd.

Resource information is collected at preset time intervals by the master load information manager (LIM) from LIMs
on server hosts. The master LIM communicates this information to mbatchd, which in turn communicates it to
mbschd to support scheduling decisions.

3. Dispatch the job
As soon as mbatchd receives scheduling decisions, it immediately dispatches the jobs to hosts.

4. Run the job
The slave batch daemon (sbatchd):

Inside Workload Management

24 Platform LSF Foundations

1. Receives the request from mbatchd.
2. Creates a child sbatchd for the job.
3. Creates the execution environment.
4. Starts the job using a remote execution server (res).

LSF copies the execution environment from the submission host to the execution host and includes the following:

• Environment variables needed by the job
• Working directory where the job begins running
• Other system-dependent environment settings, for example:

• On UNIX and Linux, resource limits and umask
• On Windows, desktop and Windows root directory

The job runs under the user account that submitted the job and has the status RUN.

5. Return output
When a job is completed, it is assigned the DONE status if the job was completed without any problems. The job is
assigned the EXIT status if errors prevented the job from completing.

sbatchd communicates job information including errors and output to mbatchd.

6. Send email to client
mbatchd returns the job output, job error, and job information to the submission host through email. Use the -o and
-e options of bsub to send job output and errors to a file.

• Job report: A job report is sent by email to the LSF client and includes:

• Job information:

• CPU use
• Memory use
• Name of the account that submitted the job

• Job output
• Errors

Inside Workload Management

Platform LSF Foundations 25

Job submission
On the command line, bsub is used to submit jobs and you can specify many options with bsub to modify the default
behavior. Jobs must be submitted to a queue.

You can also use the Platform Management Console to submit jobs.

Queues
Queues represent a set of pending jobs, lined up in a defined order and waiting for their
opportunity to use resources. Queues implement different job scheduling and control policies.

Jobs enter the queue via the bsub command. Queues have the following attributes associated
with them:

• Priority
• Name
• Queue limits (restrictions on hosts, number of jobs, users, groups, or processors)
• Standard UNIX limits: memory, swap, process, CPU
• Scheduling policies
• Administrators
• Run conditions
• Load-sharing threshold conditions
• UNIX nice(1) value, (sets the UNIX scheduler priority)

Queue priority
Defines the order in which queues are searched to determine which job will be processed.
Queues are assigned a priority by the LSF administrator, where a higher number has a higher
priority. Queues are serviced by LSF in order of priority from the highest to the lowest. If
multiple queues have the same priority, LSF schedules all the jobs from these queues in first-
come, first-served order.

Automatic queue selection
When you submit a job, LSF considers the requirements of the job and automatically chooses
a suitable queue from a list of candidate default queues.

LSF selects a suitable queue according to:

• User access restriction: Queues that do not allow this user to submit jobs are not
considered.

• Host restriction: If the job explicitly specifies a list of hosts on which the job can be run,
then the selected queue must be configured to send jobs to hosts in the list.

• Queue status: Closed queues are not considered.
• Exclusive execution restriction: If the job requires exclusive execution, then queues that

are not configured to accept exclusive jobs are not considered.
• Job’s requested resources: These must be within the resource allocation limits of the

selected queue.

If multiple queues satisfy the above requirements, then the first queue listed in the candidate
queues that satisfies the requirements is selected.

Inside Workload Management

26 Platform LSF Foundations

Job scheduling and dispatch
Submitted jobs wait in queues until they are scheduled and dispatched to a host for execution. When a job is submitted
to LSF, many factors control when and where the job starts to run:

• Active time window of the queue or hosts
• Resource requirements of the job
• Availability of eligible hosts
• Various job slot limits
• Job dependency conditions
• Fairshare constraints (configured user share policies)
• Load conditions

Scheduling policies
To solve diverse problems, LSF allows multiple scheduling policies in the same cluster. LSF
has several queue scheduling policies such as exclusive, preemptive, fairshare, and hierarchical
fairshare.

• First-come, first-served (FCFS) scheduling: By default, jobs in a queue are dispatched in
FCFS order. This means that jobs are dispatched according to their order in the queue.

• Service level agreement (SLA) scheduling: An SLA in LSF is a “just-in-time” scheduling
policy that schedules the services agreed to between LSF administrators and LSF users. The
SLA scheduling policy defines how many jobs should be run from each SLA to meet the
configured goals.

• Fairshare scheduling: If you specify a fairshare scheduling policy for the queue or if host
partitions have been configured, LSF dispatches jobs between users based on assigned user
shares, resource usage, or other factors.

• Preemption: You can specify desired behavior so that when two or more jobs compete for
the same resources, one job preempts the other. Preemption can apply to not only job slots,
but also to advance reservation (reserving hosts for particular jobs) and licenses (using
Platform License Scheduler).

• Backfill: Allows small jobs to run on job slots reserved for other jobs, provided the
backfilling job completes before the reservation time expires and resource usage is due.

Scheduling and dispatch
Jobs are scheduled at regular intervals (5 seconds by default). Once jobs are scheduled, they
can be immediately dispatched to hosts.

To prevent overloading any host, by default LSF waits a short time between dispatching jobs
to the same host.

Dispatch order
Jobs are not necessarily dispatched in order of submission.

Each queue has a priority number set by an LSF Administrator when the queue is defined. LSF
tries to start jobs from the highest priority queue first.

By default, LSF considers jobs for dispatch in the following order:

Inside Workload Management

Platform LSF Foundations 27

• For each queue, from highest to lowest priority. If multiple queues have the same priority,
LSF schedules all the jobs from these queues in first-come, first-served order.

• For each job in the queue, according to FCFS order.
• If any host is eligible to run this job, start the job on the best eligible host, and mark that

host ineligible to start any other job until JOB_ACCEPT_INTERVAL has passed.

Inside Workload Management

28 Platform LSF Foundations

Host selection
Each time LSF attempts to dispatch a job, it checks to see which hosts are eligible to run the job. A number of conditions
determine whether a host is eligible:

• Host dispatch windows
• Resource requirements of the job
• Resource requirements of the queue
• Host list of the queue
• Host load levels
• Job slot limits of the host
• User quota and user limits

A host is only eligible to run a job if all the conditions are met. If a job is queued and there is an eligible host for that
job, the job is placed on that host. If more than one host is eligible, the job is started on the best host based on both the
job and the queue resource requirements.

Host load levels
A host is available if the values of the load indices (such as r1m, pg, mem) of the host are within the configured scheduling
thresholds. There are two sets of scheduling thresholds: host and queue. If any load index on the host exceeds the
corresponding host threshold or queue threshold, the host is not eligible to run any job.

Eligible hosts
When LSF tries to place a job, it obtains current load information for all hosts.

The load levels on each host are compared to the scheduling thresholds configured for that host in the Host section of
lsb.hosts, as well as the per-queue scheduling thresholds configured in lsb.queues.

If any load index exceeds either its per-queue or its per-host scheduling threshold, no new job is started on that host.

Inside Workload Management

Platform LSF Foundations 29

Job execution environment
When LSF runs your jobs, it tries to make it as transparent to the user as possible. LSF copies the environment from
the submission host to the execution host. The execution environment includes the following:

• Environment variables needed by the job
• Working directory where the job begins running
• Other system-dependent environment settings; for example, resource usage limits

Shared user directories
To provide transparent remote execution, LSF commands determine the user’s current working directory and use that
directory on the remote host.

Executables and the PATH environment variable
Search paths for executables (the PATH environment variable) are passed to the remote execution host unchanged.

Note:
In mixed clusters, LSF works best when the user binary directories have the same
path names on different host types. This makes the PATH variable valid on all hosts.

For easy administration, LSF configuration files are stored in a shared directory.

Inside Workload Management

30 Platform LSF Foundations

4
LSF with EGO Enabled

C H A P T E R

Platform LSF Foundations 31

EGO component overview
EGO can be enabled with LSF to provide a system infrastructure to control and manage cluster resources.

Just as an operating system running on a single machine aggregates and virtualizes physical resources and allocates
them to applications, EGO performs similar functions, but across a distributed environment.

EGO manages both logical and physical resources and supports all forms of applications. EGO manages the supply of
resources, making them available to applications.

Hosts can be divided into two groups: management hosts and compute hosts. Management hosts provide specialized
services to the cluster, while compute hosts run user workload.

Management hosts
Management hosts provide both cluster and workload management services within the cluster, and are not expected
to run workload for users. The master host, all master candidate hosts, and session manager hosts must be management
hosts. Other management hosts include the Web server host and the host running the data loaders and data purger for
the reporting feature.

Management hosts all run on the same operating system: all Windows or all UNIX.

Master host The master host is the first host installed in the cluster. The resource manager (vemkd) for the
cluster resides on this host. The master host controls the rest of the hosts in the cluster and is the
interface to the clients of the cluster.

Master
candidates

There is only one master host at a time. If the master host should fail, another host automatically
takes over the master host role. Hosts that can act as the master are called master candidates.

Session manager
host

One or more management hosts run session managers. There is one session manager per available
slot on a management host. There is one session manager per application.

Web server host The Web server host runs the Platform Management Console. Only one management host is
elected as the Web server host.

Compute hosts
Compute hosts are those hosts in the cluster that provide computing resources to consumers. A cluster may contain
any number of compute hosts, but must have at least one compute host.

CPU slots A CPU slot is the unit used to measure compute resources. A single CPU slot can run one service instance
on a compute host, or one session manager on a management host.

Daemons
• VEMKD: The VEM kernel daemon that runs on the master host. It starts other daemons and responds to allocation

requests
• EGOSC: The EGO service controller requests appropriate resources from the VEMKD and controls service

instances.
• PEM: Process execution manager works for the VEMKD, starting, controlling, and monitoring activities, as well as

collecting and sending run time resource usage.

LSF with EGO Enabled

32 Platform LSF Foundations

Resources
Resources are physical and logical entities that are used by applications in order to run. While resource is a generic
term, and can include low-level things such as shared memory segments or semaphores, in LSF, EGO manages CPU
slots.

A resource of a particular type has attributes. For example, a compute host has the attributes of memory, CPU utilization,
operating system type, and so on.

Resource groups
Resources may be grouped together into logical groups to simplify identification, resource allocation, or for
administration and monitoring purposes. These resource groups are used to provide a consumer with a like group of
hosts to run workload—any host in a resource group should be able to run the same workload.

As shown in Figure 1, there are two resource groups out of the box:

• ManagementHosts
• ComputeHosts

LSF with EGO Enabled

Platform LSF Foundations 33

If all of your hosts are identical, these resource groups may suffice. If your application requires a specific type of hosts
(for example, with a minimum processor speed), and not all hosts meet these criteria, you likely need to create resource
groups to group like hosts together.

For example, a simple way to group resources may be to group your hosts by operating system type.

EGO provides a common grouping mechanism for resources. Resources may come and go from the system, so EGO
supports dynamic membership in a resource group. Hosts can be placed explicitly into individual resource groups, or
the resource groups can be defined to have a dynamic membership based on specific criteria. These criteria include
operating system type, CPU speed, total memory, or swap configuration, or custom attributes.

LSF with EGO Enabled

34 Platform LSF Foundations

Sharing of LSF resources
LSF resources are shared as defined in the resource distribution plan.

LSF requests resources from EGO’s resource manager. Based on the values specified in the resource distribution plan,
the resource manager returns the number of available slots (m) and the names of the hosts on which the slots reside.

LSF with EGO Enabled

Platform LSF Foundations 35

LSF with EGO Enabled

36 Platform LSF Foundations

Index
A
automatic

queue selection 26

B
backfill scheduling policy 27
batch queues. See queues

C
cluster

communication 15
components of 8

communication flow 15
compute hosts 32
CPU slots 32

D
data loaders 20
data purger 20, 21
data sources 20
database

for reports 20
dispatch turn

description 27
dynamic

master host 16

E
EGO

components 32
overview 32

eligible hosts, viewing 29
environment of a job 30
event logs

lsb.events file 16
events

logging 16

exception handling
description 17

execution
environment 30

F

failover 16
failover hosts 32
fault tolerance

description 16
overview 16

FCFS(first-come, first-served)scheduling 27
first-come, first-served (FCFS) scheduling 27

H

host load levels 29
hosts

compute 32
failover 32
master 32
master candidates 32
processes running on 12
session manager 32
Web server 32

J

job execution environment 30
jobs

dispatch order 27

K

knowledge center
introduction to 9

L

loader controller 20

Platform LSF Foundations 37

lsb.events file
event logging 16

M

management hosts
overview 32

ManagementHosts resource group 33
master candidates 32
master host 32
master lim 12

N

network
failure 16

P

partitioned networks 16
PATH environment variable

shared user directories 30
PERF 9

data loaders 20
data sources 20
overview 20

plc 20
policies

for sharing resources 35
preemption scheduling policy 27
processes

hosts 12
master host 12

Q

queue priority 26
queues

automatic selection 26
overview 26

R

redundancy 16
reports 9

data purger 20, 21
database 20
introduction to 9
loader controller 20

resource distribution plan
overview 32

resource groups
ComputeHosts 33
introduction to 33
ManagementHosts 33

resources
CPU slots 32
distributing 32
introduction to 33
policies 35
sharing of 35

S

scheduling
threshold

host selection 29
scheduling policies

backfill 27
FCFS 27
preemption 27
service level agreement (SLA) 27

security
in LSF 19
model 18
user accounts 19

session manager
overview 32

session manager host 32
SLA scheduling policy 27

U

user roles 18

W

Web server
overview 32

Web server host 32

38 Platform LSF Foundations

	Contents
	Copyright
	Platform LSF: An Overview
	Introduction to Platform LSF
	Cluster
	Job
	Job slot
	Queue
	Resources

	LSF cluster components
	Knowledge Center
	Overview of reporting

	Inside an LSF Cluster
	LSF processes
	Master host processes

	LSF cluster communications paths
	Fault tolerance
	Security
	Inside PERF

	Inside Workload Management
	Job life cycle
	Job submission
	Queues
	Automatic queue selection

	Job scheduling and dispatch
	Scheduling policies
	Scheduling and dispatch

	Host selection
	Job execution environment

	LSF with EGO Enabled
	EGO component overview
	Resources
	Sharing of LSF resources

	Index

