
Using Platform LSF License Scheduler

Platform LSF License Scheduler
Version 7.0 Update 6

Release date: August 2009
Last modified: August 17, 2009

Copyright © 1994-2009 Platform Computing Inc.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not
warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING
OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information.
If you find an error, or just want to make a suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue
to check the Platform Web site for updates and update your version of the documentation. You may not make it available to your
organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER,
PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the PLATFORM and PLATFORM LSF logos are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Contents
1 Introduction ... 5

About Platform LSF License Scheduler .. 6
Terms .. 7
Architecture ... 10
LSF License Scheduler policies .. 14
License data example output .. 15

2 Installing and Configuring Platform LSF License Scheduler .. 19
Install Platform LSF License Scheduler .. 20
Configure LSF License Scheduler .. 25
Example basic configuration ... 27
Start LSF License Scheduler .. 32
Submit jobs ... 34
Add a cluster to License Scheduler .. 36
Install License Schedule client on Windows ... 37
Upgrade License Scheduler .. 39

3 Controlling License Distribution .. 41
Understanding distribution policies ... 42
Configuring distribution policies .. 48
Viewing available licenses .. 52
Configure feature groups .. 59

4 Failover Provisioning .. 61
Failover provisioning for LANs .. 62
Failover provisioning for WANs ... 64
Other failover provisioning .. 69

5 Advanced Topics .. 71
Distributing license collection .. 72
Managing licenses for different application versions .. 74
Group license ownership .. 75
Hierarchical fairshare among project groups .. 77
Configuring multiple administrators ... 84
Allocating license shares to clusters and interactive jobs ... 85
Application integrations ... 89
License usage enforcement with FLEXnet ... 91
Using license feature locality .. 94

Using Platform LSF License Scheduler 3

User authentication ... 102
Time syntax and configuration .. 103
Managing error logs .. 107
Setting bld daemon message log to debug level .. 108
License maximization .. 110
Add project description ... 111

6 Frequently Asked Questions .. 113
FAQs ... 114

4 Using Platform LSF License Scheduler

1
Introduction

C H A P T E R

Using Platform LSF License Scheduler 5

About Platform LSF License Scheduler
Platform LSF License Scheduler allows you to make policies that control the way software licenses are shared among
different users in your organization. Platform LSF License Scheduler works with FLEXnet™ products to control and
monitor license usage.

Distribute licenses intelligently
LSF License Scheduler intelligently distributes application licenses based on configurable policies to support

• Fairshare of licenses
• License preemption when license ownership is defined
• Awareness of LAN and WAN service domains for fault tolerance and failover
• Geographically distributed license servers
• Interactive and batch jobs running in LSF clusters

Complete projects faster
LSF License Scheduler enables faster project completion by

• Guaranteeing license availability for different projects and groups across physical locations
• Ensuring access to licenses so that license owners get their fair share of usage

Maximize your investment
LSF License Scheduler maximizes your investment in expensive application licenses by

• Optimizing usage of existing licenses
• Easing the configuration of a dynamic shared pool of licenses. Instead of assigning arbitrary shares of licenses to

everyone, you can give more licenses to larger or more important projects
• Guaranteeing access to a minimum portion of licenses, no matter how heavily loaded the system is
• Controlling the distribution and scheduling of licenses among jobs it manages, without preventing users from

checking out licenses directly
• Treating application licenses as another compute resource to be scheduled and managed

Introduction

6 Using Platform LSF License Scheduler

Terms
The following list provides brief descriptions of LSF License Scheduler terms that we use in this guide.

• allocation
• blcollect
• bld
• collector
• default license project
• failover host
• failover provision
• group ownership
• interactive job
• license project
• license server
• lmgrd
• non-shared license
• ownership
• preemption
• service domain
• shared license
• token

allocation
The distribution of license tokens between different LSF clusters.

Allocation takes place before you share the tokens. Allocation is a superset of project-based distribution policies. You
allocate license tokens across clusters or between interactive and LSF jobs.

blcollect
The LSF License Scheduler daemon that queries FLEXnet licensing software for license usage. blcollect can collect
information from lmstat.

By default, license information is collected from FLEXnet licensing on one host. You can distribute the license collection
on multiple hosts by running the license information collection daemon, blcollect.

If the data from all your license servers is collected in one central location, mbatchd has to wait for the license usage
information of all your license servers from the output of lmstat. With LSF License Scheduler, you can distribute the
query to collect the information in parallel from each license server.

bld
The LSF License Scheduler batch daemon.

collector
The term used to describe the LSF License Scheduler daemon blcollect that queries FLEXnet for license usage
information.

With LSF License Scheduler, you can distribute the query to collect the information in parallel from each license server.
Run the license collectors on any machines you want. Each collector can query one or more license servers.

Introduction

Using Platform LSF License Scheduler 7

default license project
A license project that is not specified in job submissions, but uses license features that are managed by LSF License
Scheduler.

All jobs requiring a license feature that is managed by LSF License Scheduler, and which are not submitted to a
configured project for the feature, are treated as jobs submitted to the default project. However, if
LSF_LIC_SCHED_STRICT_PROJECT_NAME=y in lsf.conf and you have not configured a default project in
DISTRIBUTION parameter, the job is rejected rather than submitted to the default project.

failover host
A candidate LSF License Scheduler host that runs the LSF License Scheduler daemon (bld), and can take over license
management if the LSF License Scheduler host fails or loses its connection to the network.

You can configure LSF License Scheduler for failover in a LAN or a WAN configuration by listing the hosts in order
of their preferred candidacy.

failover provision
The configuration of LSF License Scheduler hosts to take over license management in case of a host failure or network
breakdown.

LSF License Scheduler can be configured for failover provision in both LANs and WANs:

• In LSF, the LSF LIM daemon runs the LSF License Scheduler daemon (bld) on hosts you specify in an LSF host list.
• In LSF License Scheduler, you specify a candidate host list— hosts that can take over license management if the LSF

License Scheduler host fails.

group ownership
An extra level of hierarchy added to the distribution of license tokens among license projects.

Optionally group your projects, then grant license ownership and shares to the whole group. Preemption between
license projects only occurs if the whole group has used more licenses than it owns.

interactive job
A non-LSF job that is run by the LSF Task Manager (taskman) tool outside of LSF, but is scheduled by LSF License
Scheduler.

You can allocate licenses for interactive jobs.

license project
A project you configure in LSF License Scheduler and which you associate with your job submissions.

You submit jobs to license projects. LSF License Scheduler then distributes tokens among the license projects based on
the shares you define for each license project in distribution policies.

Use the bsub -Lp option to submit jobs to license projects.

Tip:
Although license projects are not the same as LSF projects, you can map your
license project names to LSF project names for easier monitoring.

Introduction

8 Using Platform LSF License Scheduler

license server
Serves licenses to jobs requiring license features.

License Scheduler works with the FLEXnet license server. FLEXnet serves licenses—it does not schedule licenses. License
Scheduler reserves licenses for you by distributing license tokens that you can use to check out your licenses from
FLEXnet.

lmgrd
The main FLEXnet licensing daemon. Usually denoted by port@host_name and grouped into service domains inside
License Scheduler.

non-shared license
A license that cannot be shared with other projects.

ownership
The right of a license project to use its licenses on demand, while still allowing License Scheduler to distribute the
licenses to other license projects when the project is not using them.

preemption
Occurs when a project has to release a license it is using to a project that demands that license because it owns it.

Preemption only occurs when there are no free licenses.

Jobs using licenses that support job suspension release their tokens and automatically resume from where they were
suspended. Jobs using licenses that do not support suspension are killed and restarted from the beginning.

service domain
A group of one or more FLEXnet license server hosts that serve licenses to LSF jobs.

You configure the service domain with the names and port numbers of the license server hosts that serve licenses to a
network. For example, you can configure one service domain for Design Center A, and another service Domain for
Design Center B. Both service domains can contain multiple license servers.

shared license
A license that, when free, can be distributed fairly among license projects.

You create distribution policies to share licenses among projects. Each license project is entitled to a minimum portion
of the available licenses.

token
A license reservation that determines which job is dispatched next.

License Scheduler manages license tokens instead of controlling the licenses directly. After reserving licenses, jobs are
dispatched, then the application that needs the license is started. The number of tokens available from LSF corresponds
to the number of licenses available from FLEXnet, so if a token is not available, the job is not dispatched.

Introduction

Using Platform LSF License Scheduler 9

Architecture
LSF License Scheduler manages license tokens instead of controlling the licenses directly. Using LSF License Scheduler,
jobs receive a license token before starting the application. The number of tokens available from LSF corresponds to
the number of licenses available from FLEXnet, so if a token is not available, the job does not start. In this way, the
number of licenses requested by running jobs does not exceed the number of available licenses.

When a job starts, the application is not aware of LSF License Scheduler. The application checks out licenses from
FLEXnet in the usual manner.

Non-LSF jobs
Jobs that start outside of LSF do not receive a license token, but they can still check out a license. LSF automatically
adjusts the total number of licenses managed to compensate for the licenses that have been taken by non-LSF jobs.

LSF ELIM not needed
Using License Scheduler, you do not need to configure custom resources or write an ELIM. LSF automatically sets up
license tokens as LSF resources and makes ELIM redundant.

No lsf.shared setup
You do not need to define the license as a shared LSF resource in lsf.shared.

No lsf.cluster.cluster_name setup
You do not need to define the license as a shared LSF resource in lsf.cluster.cluster_name; just configure license
projects, which you include in the distribution policy for that license.

No ELIM
Do not write an ELIM to monitor the license. With License Scheduler configured, LSF is aware of the actual license
availability. If the job can receive a license token, it is guaranteed to receive an actual license when required.

LSF License Scheduler and host reliability
You can define a list of candidate hosts for LSF License Scheduler in case of a host failure. The LSF License Scheduler
daemon (bld) runs on the candidate hosts and maintains a connection between each candidate and the LSF License
Scheduler host.

Failover in a LAN
If the LSF License Scheduler host fails, the first candidate host listed in the License Scheduler host list takes over the
license scheduling until the master host restarts. It must be running the LSF License Scheduler daemon.

Failover in a WAN
If License Scheduler is managing licenses in a WAN configuration, and the connection between sites breaks, a candidate
LSF License Scheduler host manages license scheduling locally until the WAN connection returns.

Introduction

10 Using Platform LSF License Scheduler

Using License Scheduler in a WAN
The following examples illustrate the benefits of using License Scheduler to manage license tokens in a WAN. In these
examples, the license server in Design Center A can only serve licenses to jobs from Design Center A. The license server
in Design Center B, however, can serve licenses to jobs from both centers.

Figure 1: Two design centers without LSF License Scheduler

In this example
The elim collects license information from the FLEXnet license server host (LAN or WAN) and reports back to the
LSF cluster master batch daemon (mbatchd) through LIM. When the LSF cluster starts jobs, the decision is based on
license availability. The jobs check out the licenses directly from the server.

Interactive jobs check out licenses directly from the server without any scheduling controls.

This example shows two potential problems:

• Uncontrolled competition for license checkout can lead to a race condition that can result in job failure for some
users.

• There is no way to balance license usage among multiple projects or multiple sites.

Introduction

Using Platform LSF License Scheduler 11

Figure 2: Two design centers with LSF License Scheduler

In this example
LSF License Scheduler collects license information from the FLEXnet license server host (LAN or WAN). The LSF
cluster daemon (mbatchd) receives tokens from License Scheduler and starts jobs. The jobs check out the license
directly from the server.

1. LSF License Scheduler collects the information related to licenses:

• License availability and license usage from the FLEXnet license server hosts
• License demand and license usage from LSF clusters and interactive users

2. Based on the information it collects, and on its scheduling and distribution policies, License Scheduler makes license
distribution and preemption decisions.

Because License Scheduler distributes each license to only one license project, there is no race condition among multiple
users. Because License Scheduler is a central point of control, scheduling policies can include multiple LSF clusters and
non-LSF users.

LSF scheduling policies
With LSF License Scheduler, LSF gathers information about the licensing requirements of pending jobs to efficiently
distribute available licenses. Other LSF scheduling policies are independent from LSF License Scheduler policies.

When starting a job, the basic LSF scheduling comes first.

• Assign a suitable LSF host before considering the requirements of any other resources, like licenses.

For example, a job must have a candidate LSF host on which to start before the LSF License Scheduler fairshare policy
(for the license project this job belongs to) will apply.

• Other LSF fairshare policies are based on CPU time, run time, and usage. If LSF fairshare scheduling is configured,
LSF determines which user or queue has the highest priority, then considers other resources. In this way, the other
LSF fairshare policies have priority over LSF License Scheduler.

Introduction

12 Using Platform LSF License Scheduler

Offline behavior
• mbatchd

If mbatchd is offline while reconfiguring LSF or because of an unexpected failure of LSF software, tokens distributed
to license projects in the unavailable cluster will be redistributed to other projects. When mbatchd comes back online,
it immediately receives updated information about the number of tokens currently distributed to its projects in its
cluster.

When LSF is reconfigured (badmin reconfig) the bld restarts. (Platform LSF Version 7 Update 5 onwards.)

• LSF License Scheduler

If mbatchd cannot contact LSF License Scheduler, it does not receive any updated information about the number of
tokens dynamically distributed to the projects in its cluster, so it continues to run using the most recent data available.

Introduction

Using Platform LSF License Scheduler 13

LSF License Scheduler policies
LSF License Scheduler policies distribute license tokens among license projects, which you create and configure in the
lsf.licensescheduler configuration file. The following cases describe how LSF License Scheduler policies can
help license projects to share licenses.

Fair sharing
The License Scheduler distribution policy guarantees that each license project is entitled to a minimum portion of the
available licenses.

Example
Create three LSF License Scheduler projects, and share the licenses equally. If one project does not need a license,
another project can use it. In this case, dynamic redistribution of licenses maximizes utilization while enforcing the fair
share policy.

Not all license projects in a cluster have a full workload at all times. Free licenses can be shared across projects, so that
idle licenses for one project are available to other projects.

Round robin sharing
This example shows how to configure round robin sharing. Round robin sharing is required when there are fewer
licenses than the number required by license projects. The policy can be configured in the same way as the fair sharing
policy.

If the total number of licenses is smaller than the number required by license projects, and all projects need more
licenses, then the projects take turns using the licenses.

Example
Create three LSF License Scheduler projects, and share the licenses equally. The projects take turns to use the license.
The three license projects share one license.

Jobs having a run time of 5 to 10 minutes are pending for each of the three projects. The projects share the license based
on round robin policy.

Preemption
This example shows how license ownership and preemption work.

License ownership gives license projects the right to use their licenses on demand, while still allowing LSF License
Scheduler to distribute the licenses to other license projects when the owner is not using them.

Example
Create two LSF License Scheduler projects, Lp1 and Lp2, and share the licenses, but grant ownership of the licenses to
one of the projects (Lp2).

When Lp2 has no work to be done, Lp1. can use the licenses. When Lp2 has work to do, Lp1 must return the license
immediately to Lp2. The license utilization is always at the maximum, showing that all licenses are in use even while
the license distribution policies are being enforced.

Introduction

14 Using Platform LSF License Scheduler

License data example output

Figure 3: 50:50 fairshare between two license projects

Introduction

Using Platform LSF License Scheduler 15

Figure 4: Round robin sharing of one license among three license projects

Introduction

16 Using Platform LSF License Scheduler

Figure 5: Round robin sharing of one license among three license projects

Introduction

Using Platform LSF License Scheduler 17

Figure 6: Load inversion

Introduction

18 Using Platform LSF License Scheduler

2
Installing and Configuring Platform LSF

License Scheduler

C H A P T E R

Using Platform LSF License Scheduler 19

Install Platform LSF License Scheduler
1. Perform the pre-installation steps.
2. Choose an installation method:

• Install LSF License Scheduler with LSF (UNIX)
• Install LSF License Scheduler with LSF (Windows)
• Install LSF License Scheduler standalone (UNIX)
• Install LSF License Scheduler standalone (Windows)

Before you install
Platform LSF must be installed and running before installing LSF License Scheduler.

If you are installing LSF License Scheduler as a standalone product without Platform LSF, you
do not need to modify LSF in preparation for License Scheduler. However, you still need to
get an LSF License Scheduler license before installation.

1. Get an LSF License Scheduler license from Platform Computing:
a) Send the host name and host identifier of the license server host to Platform at

license@platform.com or to your LSF vendor.
b) Check the LSF_LICENSE_FILE parameter in lsf.conf to locate the LSF license file.
c) Add the LSF License Scheduler (lsf_license_scheduler) feature line to your existing LSF

license file. For example:
FEATURE lsf_license_scheduler lsf_ld 7.000 1-jun-0003 1
3C0733892E1683812345 "Platform"

d) For a permanent license, restart the LSF lmgrd.
2. Log on to any LSF host as root and use lsid to make sure the cluster is running. If you

see the message "Cannot open lsf.conf file", the LSF_ENVDIR environment variable is
probably not set correctly.

To set your LSF environment:

• For csh or tcsh:

% source LSF_TOP/conf/cshrc.lsf
• For sh, ksh, or bash:

$. LSF_TOP/conf/profile.lsf

What the LSF License Scheduler setup script does
• Finds the appropriate lsf.conf for the running cluster
• Copies the LSF License Scheduler files to your LSF directories:
• $LSF_ENVDIR
• $LSF_SERVERDIR
• $LSF_BINDIR
• LSF_MANDIR
• Finds the appropriate lsf.cluster.cluster_name file for the running cluster
• Creates the following additional directories:
• LSB_SHAREDIR/cluster_name/db

Installing and Configuring Platform LSF License Scheduler

20 Using Platform LSF License Scheduler

• LSB_SHAREDIR/cluster_name/data
• Sets your LSF License Scheduler administrators list in the lsf.licensescheduler file.
• Configures LSF to use License Scheduler

Install LSF License Scheduler with LSF (UNIX)
1. Log on as root to the installation file server host.

You need to be able to write into the LSF_TOP directories.
2. Download, uncompress, and extract the LSF License Scheduler packages for the platforms

you need from the directory /license_scheduler_ls7_update5/.

For example, for x86 systems running Linux Kernel 2.4.x and compiled with glibc 2.3.x:
ftp> get lsf7update6_licsched_linux2.4-glibc2.3-x86.tar.Z

Make sure that you download the LSF License Scheduler distribution files to the same
directory where you downloaded the LSF product distribution tar files.

3. Extract the distribution file.

For example:
zcat lsf7update6_licsched_linux2.4-glibc2.3-x86.tar.Z | tar xvf -

4. Change to the extracted distribution directory.

For example:
cd lsf7update6_licsched_linux2.4-glibc2.3-x86

5. Run the setup script as root:
./setup

6. Enter y (yes) to confirm that the path to lsf.conf is correct.

To enter a path to a different lsf.conf, type n (no) and specify the full path to the
lsf.conf file you want to use.

7. Enter y to confirm that the path to lsf.cluster.cluster_name is correct.

To enter a path to a different lsf.cluster.cluster_name file, type n (no) and specify the
full path to the lsf.cluster.cluster_name file you want to use.

8. Enter y to confirm that you want to use the LSF Administrators list for License Scheduler
with LSF.

To enter a different list of administrators for License Scheduler, enter a space-separated
list of administrator user names. You can change your License Scheduler administrators
list later, if desired.

Install LSF License Scheduler with LSF (Windows)
1. Log on as an OS administrator to the Windows client.

You need to be able to write into the LSF_TOP directories.
2. Download the Platform License Scheduler Windows Client distribution package for the

platforms you need from the directory /license_scheduler_ls7_update5/.
3. Extract the distribution file.

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 21

The distribution package contains binary files for the Platform License Scheduler user
commands (*.exe) and the LSF License Scheduler configuration file
(lsf.licensescheduler).

4. Copy all user command binary files to the %LSF_BINDIR% directory in your Windows
host.

5. Copy the LSF License Scheduler configuration file (lsf.licensescheduler) to the %
LSF_ENVDIR% directory in your Windows host and edit the file to match your LSF License
Scheduler master host configuration.

Install LSF License Scheduler standalone (UNIX)
1. Log on as root to the installation file server host.

You need to be able to write into the LSF_TOP directories.
2. Download, uncompress, and extract the LSF License Scheduler packages for the platforms

you need from the directory /license_scheduler_ls7_update5/.

For example, for x86 systems running Linux Kernel 2.4.x and compiled with glibc 2.3.x:
ftp> get lsf7update6_licsched_linux2.4-glibc2.3-x86.tar.Z

Make sure that you download the LSF License Scheduler distribution files to the same
directory where you downloaded the LSF product distribution tar files.

3. Extract the distribution file.

For example:
zcat lsf7update6_licsched_linux2.4-glibc2.3-x86.tar.Z | tar xvf -

4. Change to the extracted distribution directory.

For example:
cd lsf7update6_licsched_linux2.4-glibc2.3-x86

5. Edit the setup.config file and set the parameters you need for installation. You must
specify LS_TOP and LS_ADMIN.

Do not edit setup.config if you are installing LSF License Scheduler to work with
Platform LSF.

6. Run the setup script as root:
./setup

7. Enter y to confirm that you want to use the administrator list in setup.config for a
standalone License Scheduler installation.

To enter a different list of administrators for License Scheduler, enter a space-separated
list of administrator user names. You can change your License Scheduler administrators
list later, if desired.

Install LSF License Scheduler standalone (Windows)
1. Log on as an OS administrator to the Windows client.
2. Create a new top-level directory for LSF License Scheduler with a directory structure that

is similar to the LSF_TOP directory structure, including bin, conf, and etc
subdirectories.

Installing and Configuring Platform LSF License Scheduler

22 Using Platform LSF License Scheduler

For example, create C:\LS7.0 as your top-level LSF License Scheduler directory with the
following subdirectories:
C:\LS7.0\bin
C:\LS7.0\conf
C:\LS7.0\etc

3. Download the Platform License Scheduler Windows Client distribution package for the
platforms you need from the directory /license_scheduler_ls7_update5/.

4. Extract the distribution file.

The distribution package contains binary files for the Platform License Scheduler user
commands (*.exe files) and the LSF License Scheduler configuration file
(lsf.licensescheduler file).

5. Copy all user command binary files to the bin subdirectory in your Windows client.

For example, copy all user command binary files to the C:\LS7.0\bin directory.
6. Copy the lsf.licensescheduler and lsf.conf files to the conf subdirectory in your

Windows client.

For example, copy the lsf.licensescheduler and lsf.conf files to the C:\LS7.0
\conf directory.

7. Set the %LSF_BINDIR% environment variable to the bin subdirectroy in your Windows
client.

For example, set %LSF_BINDIR% to C:\LS7.0\bin.
8. Set the %LSF_ENVDIR% environment variable to the conf subdirectroy in your Windows

client.

For example, set %LSF_ENVDIR% to C:\LS7.0\conf.
9. Set the %LSF_SERVERDIR% environment variable to the etc subdirectroy in your

Windows client.

For example, set %LSF_SERVERDIR% to C:\LS7.0\etc..

Install License Schedule client on Windows
You can install just the License Scheduler client on Windows hosts.

The Platform LSF License Scheduler Windows Client Package includes:

• README
• Commands:

• blstat.exe
• blinfo.exe
• blusers.exe
• bladmin.exe
• blhosts.exe
• blkill.exe
• bltasks.exe
• blparams.exe

• lsf.licensescheduler: LSF License Scheduler configuration file
• lsf.conf: LSF configuration file

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 23

Install with LSF
You must have LSF installed on all Windows hosts you intend to install the License Scheduler
client on.

Install the License Scheduler client on Windows hosts only when your LSF cluster includes
both UNIX and Windows hosts.

1. Download the License Scheduler Client for Windows package from the FTP site.
2. Copy all commands to $LSF_BINDIR (the bin subdirectory in your LSF installation

directory) on your Windows hosts.
3. Copy lsf.licensescheduler to $LSF_ENVDIR.
4. Edit lsf.licensescheduler to suit your LSF License Scheduler Master host

configuration.

Install without LSF
You can choose to install License Scheduler client for Windows without LSF running on those
hosts. This task applies if you use License Scheduler in standalone mode.

1. Create the following directory structure (called LSF_TOP):

2. Copy all commands from the package to the bin directory.
3. Copy lsf.conf from the package to the conf directory and edit it to suit your installation.
4. Copy lsf.licensescheduler from the package to the conf directory and edit it to suit

your installation.
5. Set the LSF_BINDIR environment variable to LSF_TOP\bin.

For example, C:\LS7.0\bin.
6. Set LSF_ENVDIR environment variable to LSF_TOP\conf.

For example, C:\LS7.0\conf.
7. Set LSF_SERVERDIR environment variable to LSF_TOP\etc.

For example, C:\LS7.0\etc.

Troubleshoot
1. If you receive the following message, configure your Windows host name and IP address

in the /etc/hosts file on the master host:

Failed in an LSF library call: Failed in sending/receiving a
message: error 0: The operation completed successfully.

2. To enable the blhosts command, make sure your Windows client can resolve the master
host IP address correctly.

Installing and Configuring Platform LSF License Scheduler

24 Using Platform LSF License Scheduler

Configure LSF License Scheduler
LSF License Scheduler automatically distributes unused licenses to the projects that need them. Your configured
distribution policies take effect when the system is fully loaded and there is competition for resources. You can update
the license distribution policies and change the share allocations at any time. You can also update the configuration to
add new licenses or new projects.

Configuration files
The LSF License Scheduler configuration files are located in $LSF_ENVDIR.

Tip:
See the Platform LSF Reference for details about the LSF License Scheduler
configuration parameters.

lsf.licensescheduler
The lsf.licensescheduler file contains the LSF License Scheduler configuration information, including the license
distribution policies, which describe how many license features are controlled by LSF and how the licenses are to be
shared or owned in the event of competition among projects.

The following sections are required:

• Parameters — License Scheduler configuration parameters
• Projects — lists the License Scheduler projects
• Clusters — lists the clusters that can use License Scheduler
• ServiceDomain — defines License Scheduler service domains as groups of physical license server hosts that serve a

specific network
• Feature — defines license distribution policies for application license features

The ProjectGroup section is optional — defines hierarchical relationships among projects.

Use a line continuation character “\” to continue a line

lsf.conf
Parameters in lsf.conf that start with LSF_LIC_SCHED are relevant to both LSF and License Scheduler:

• LSF_LIC_SCHED_HOSTS — LIM starts the License Scheduler daemon (bld) on candidate License Scheduler
hosts.

Caution:
You cannot use LSF_LIC_SCHED_HOSTS if your cluster was installed with
UNIFORM_DIRECTORY_PATH or UNIFORM_DIRECTORY_PATH_EGO. Do
not set UNIFORM_DIRECTORY_PATH or UNIFORM_DIRECTORY_PATH_EGO
for new or upgrade installations. They are for backwards compatibility only.

• LSF_LIC_SCHED_PREEMPT_REQUEUE — requeues a job whose license is preempted by License Scheduler. The
job will be killed and requeued instead of suspended.

• LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE — releases the slot of a job that is suspended when the its license
is preempted by License Scheduler.

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 25

• LSF_LIC_SCHED_PREEMPT_STOP — uses job controls to stop a job that is preempted. When this parameter is
set, a UNIX SIGSTOP signal is sent to suspend a job instead of a UNIX SIGTSTP.

• LSF_LIC_SCHED_STRICT_PROJECT_NAME—enforces strict checking of the License Scheduler project name
upon job submission. If the project named is misspelled (case sensitivity applies), the job is rejected.

License Scheduler uses the following LSF parameters:

• LSB_SHAREDIR — directory where the job history and accounting logs are kept for each cluster
• LSF_LICENSE_FILE — one or more demo or FLEXnet-based permanent license files used by LSF
• LSF_LICENSE_ACCT_PATH — location for the license accounting files, including the license accounting files for

LSF Family products
• LSF_LOG_MASK — logging level of error messages for LSF daemons
• LSF_LOGDIR — LSF system log file directory

When you change your configuration
After making any change to lsf.licensescheduler:

1. Use bld -C to test for configuration errors.
2. Run bladmin reconfig all to reconfigure LSF License Scheduler and make the changes take effect.

After making any change to lsf.conf or other LSF configuration files:

1. Use bld -C to test for configuration errors.
2. Run bladmin reconfig all to reconfigure LSF License Scheduler and make the changes take effect.
3. Run badmin mbdrestart to restart mbatchd.

Note:
When LSF is reconfigured (badmin reconfig) bld a restarts. (Platform LSF
Version 7 Update 5 onwards.)

Installing and Configuring Platform LSF License Scheduler

26 Using Platform LSF License Scheduler

Example basic configuration
The following example configures one cluster with two license servers. The policy schedules licenses for one application
feature using a fairshare distribution for two projects.

Log on as the primary License Scheduler administrator and edit the License Scheduler configuration in LSF_CONFDIR/
lsf.licensescheduler to

• Configure parameters
• Configure projects
• Configure clusters
• Configure service domains
• Configure license features
• Configure hierarchical project groups (optional)

Configure parameters
HOSTS

HOSTS=host_name_1 ... host_name_n ...

List the License Scheduler hosts, including License Scheduler candidate hosts.

• hostname_1 is the most preferred host for running LSF License Scheduler.
• hostname_n is the least preferred host for running LSF License Scheduler.

By default, the HOSTS parameter is set to the LSF_MASTER_LIST during installation with
LSF. The License scheduler daemon (bld) can only start on the hosts listed in the HOSTS
parameter. The first host is the primary license scheduler, and the other hosts are failover
backups.

Specify a fully qualified host name such as hostX.mycompany.com. You can omit the domain
name if all your License Scheduler clients run in the same DNS domain.

LM_STAT_INTERVAL
LM_STAT_INTERVAL=seconds

Specify the frequency in seconds to collect data from FLEXnet servers.

LM_STAT_INTERVAL defines a time interval between calls that License Scheduler makes to
collect license usage information from FLEXnet.

During License Scheduler installation, the interval is set to 60 seconds.

LMSTAT_PATH
LMSTAT_PATH=path

Specify the full path to the location of the FLEXnet command lmstat.

For example, if lmstat is located in /etc/flexlm/bin:
LMSTAT_PATH=/etc/flexlm/bin

Tip:

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 27

If the lmstat command is not included in the flexlm/bin directory,
you will find it packaged with your LSF distribution in
LSF_SERVERDIR.

Example
Begin Parameters
HOSTS=hostA hostB hostC
LMSTAT_PATH=/etc/flexlm/bin
LMSTAT_INTERVAL=30
End Parameters

Configure projects
The Projects section in the lsf.licensescheduler file lists the names of all license projects.

If you want to specify a distribution policy for a feature, you must define the associated license
projects in the Projects section. For example, define license projects Lp1 and Lp2 in the
Projects section:
Begin Projects
PROJECTS
Lp1
Lp2
End Projects

Use the defined projects to specify a distribution policy in the Feature section:
Begin Feature
NAME = AppY
DISTRIBUTION = LanServer1(Lp1 10/10 Lp2 5/5)
End Feature

Projects without priority
The following Projects section in lsf.licensescheduler defines three license project
names without an associated priority:
Begin Projects PROJECTS Lp1 Lp2 Lp3 End Projects

Projects with priority
If you want to use the project priority feature with license ownership policies, add a PRIORITY
column and assign a priority to each project (a higher value represents a higher priority). This
overrides the default behavior; instead of preempting in order the projects are listed under
PROJECTS based on the accumulative usage of each project, the projects are preempted
according to the specified priority from lowest to highest.
Begin Projects
PROJECTS PRIORITY
Lp1 3
Lp2 1
Lp3 2
default 0
End Projects

When 2 projects have the same priority number configured, the first listed project has higher
priority, like LSF queues.

Priority of default project
If not explicitly configured, the default project has the priority of 0. You can override this value
by explicitly configuring the default project in Projects section with the chosen priority value.

Installing and Configuring Platform LSF License Scheduler

28 Using Platform LSF License Scheduler

Configure clusters
If you run LSF License Scheduler in a WAN configuration, you must configure the Clusters
section of the lsf.licensescheduler file. You do not need to configure the Clusters section
when you run License Scheduler in a single cluster.

After installing License Scheduler and starting bld on all your candidate hosts in each cluster,
configure the Clusters section in the cluster that contains the WAN license server. The
following example describes a WAN with two clusters named cluster1 and cluster2.

Example

Begin Clusters
CLUSTERS
cluster1
cluster2
End Clusters

Configure service domains
You must configure a service domain for LSF License Scheduler. The service domain is a group
of one or more FLEXnet license server hosts that serve licenses to LSF jobs. The service domain
is used when you define a policy for sharing software licenses among your projects.

You can configure multiple service domains for LSF license Scheduler. The
lsf.licensescheduler file comes with example configurations.

Keep the following requirements in mind:

• If a FLEXnet license server host is not part of an LSF License Scheduler service domain,
its licenses are not managed by License Scheduler (the license distribution policies you
configure in LSF do not apply to these licenses and usage of these licenses does not influence
LSF scheduling decisions).

• License Scheduler assumes that any license in the service domain is available to any user
who can receive a token from License Scheduler. Therefore, every user associated with a
project specified in the distribution policy must meet the following requirements:

• The user is able to make a network connection to every FLEXnet license server host in the
service domain.

• The user environment is configured with permissions to check out the license from every
FLEXnet license server host in the service domain.

• To use LSF License Scheduler tokens, a job submission must specify the -Lp (license
project) option. The project must be defined for the requested feature in
lsf.licensescheduler.

The ServiceDomain section in lsf.licensescheduler defines the LSF License Scheduler
service domain.

In the simplest case, the service domain consists of one FLEXnet license server host. In this
example, the service domain is named DesignCenterA, and consists of one FLEXnet license
server host, hostA. FLEXnet uses port number 1700 on this host.

Example
Begin ServiceDomain
NAME=DesignCenterA
LIC_SERVERS=((1700@hostA))
End ServiceDomain

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 29

NAME
Choose a name for the service domain. You will use this name when you configure the
distribution policies.

LIC_SERVERS
Specify all the FLEXnet license server hosts that make up the service domain. Specify the host
name of each host and its FLEXnet port number.

Use one set of parentheses to enclose the entire list, and one more set around each host:
LIC_SERVERS=((1700@hostA)(1700@hostB))

If you have only one host, use a double set of parentheses:
LIC_SERVERS=((1700@hostA))

If you have redundant FLEXnet license server hosts, the parentheses are used to group the
three hosts that share the same license.dat file:
LIC_SERVERS=((1700@hostD 1700@hostE 1700@hostF))

If FLEXnet uses a port from the default range, you can specify the host name only:
LIC_SERVERS=((@hostA))

LIC_COLLECTOR
Specify a name for the license collector daemon. You can use any name, but you must specify
the same name when you start the license collector daemon.

Specify one LIC_COLLECTOR for each service domain:
Begin ServiceDomain
NAME=DesignCenterA
LIC_SERVERS=((1700@hostA 1700@hostB 1700@hostC))
LIC_COLLECTOR=CenterA
End ServiceDomain

Begin ServiceDomain
NAME=DesignCenterB
LIC_SERVERS=((1888@hostD)(1888@hostE))
LIC_COLLECTOR=CenterB
End ServiceDomain

Configure license features
Define a feature section to create a distribution policy for each licensed feature managed by
License Scheduler:

FLEX_NAME
Optional. Defines the feature name—the name used by FLEXnet to identify the type of license.
You only need to specify this parameter if the License Scheduler token name is not identical
to the FLEXnet feature name.

FLEX_NAME allows the NAME parameter to be an alias of the FLEXnet feature name.

default
A reserved keyword that represents the default License Scheduler project if the job submission
does not specify a project (bsub -Lp) (does not apply if

Installing and Configuring Platform LSF License Scheduler

30 Using Platform LSF License Scheduler

LSF_LIC_SCHED_STRICT_PROJECT_NAME=y in lsf.conf and you have not
configured a default project for the required feature).

Example
Begin Feature
FLEX_NAME=201-AppZ
NAME=AppZ201
DISTRIBUTION=LanServer1(Lp1 1 Lp2 1 default 1)
End Feature

Configure hierarchical project groups (optional)
For detailed instructions on configuring a project group hierarchy, see Hierarchical Fairshare
among Project Groups.

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 31

Start LSF License Scheduler
You can configure LSF to start the License Scheduler daemon (bld) on the License Scheduler host as well as on candidate
License Scheduler hosts that can take over license distribution in the case of a network failure. The LSF LIM daemon
starts bld automatically.

1. Log on as the primary LSF administrator.
2. Set your LSF environment:

• For csh or tcsh:

% source LSF_TOP/conf/cshrc.lsf

• For sh, ksh, or bash:

$. LSF_TOP/conf/profile.lsf
3. In LSF_CONFDIR/lsf.conf, specify a space-separated list of hosts for the LSF_LIC_SCHED_HOSTS parameters:

LSF_LIC_SCHED_HOSTS="hostname_1 hostname_2 ... hostname_n"

Where:

hostname_1, hostname_2, ..., hostname_n are hosts on which the LSF LIM daemon starts the LSF License Scheduler
daemon. The order of the host names is ignored.

Note:
Set the LSF_LIC_SCHED_HOSTS parameter to the same list of candidate hosts
you used in the lsf.licensescheduler HOSTS parameter. The
LSF_LIC_SCHED_HOSTS parameter is not used in any other function.

4. Run lsadmin reconfig to reconfigure the LIM.
5. Use ps -ef to make sure that bld is running on the candidate hosts.
6. Run badmin mbdrestart to restart mbatchd.

Start LSF License Scheduler standalone
To start LSF License Scheduler standalone, run blstartup.

1. Verify your configuration.
a) Use blinfo -D to see the FLEXnet license server hosts in the service domains:

blinfo -D

SERVICE_DOMAIN LIC_SERVERS

DesignCenterA (1700@hostA)
b) Use blstat to make sure License Scheduler is collecting data from FLEXnet, and to

see license usage and distribution information. Check the TOTAL line for non zero
values:

blstat

FEATURE: vcsruntime

SERVICE_DOMAIN: DesignCenterA

TOTAL_INUSE: 2 TOTAL_RESERVE: 1 TOTAL_FREE: 13 OTHERS:1

Installing and Configuring Platform LSF License Scheduler

32 Using Platform LSF License Scheduler

PROJECT SHARE INUSE RESERVE FREE DEMAND

projectA 60.0 % 0 1 9 n

projectB 40.0 % 2 0 4 y
c) Use bhosts -s to verify that LSF and License Scheduler are communicating. The

bhosts -s output shows the features configured in License Scheduler as LSF
resources:

bhosts -s

RESOURCE TOTAL RESERVED LOCATION

p1_f1 4.0 0.0 hostA

hostB

hostF

p1_f2 4.0 0.0 hostA

hostB

hostG

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 33

Submit jobs
Run jobs using LSF
When you submit an LSF job, you must:

• Reserve the license using the resource requirement usage section (bsub -R "rusage..." option)

Tip:
You cannot successfully reserve a license using bsub -R "select".

• Specify the license token name (same as specifying a shared resource)
• Specify a license project name with the bsub -Lp option

Projects
The project must be a valid license project configured in the lsf.licensescheduler file. If your usage section specifies
a feature that you configured in the lsf.licensescheduler file, and you do not submit your job to a license project,
the job is submitted to the default license project unless LSF_LIC_SCHED_STRICT_PROJECT_NAME=y in
lsf.conf and you have not configured a default project for the required feature.

Tip:
Use the blstat command to view information about the default license project.

Example 1:
% bsub -R "rusage[AppB=1]" -Lp Lp1 myjob

This submits a job called myjob to license project Lp1 and requests one AppB license.

Example 2:
% bsub -R "rusage[AppB=1]" myjob

This submits a job called myjob to the default license project (unless
LSF_LIC_SCHED_STRICT_PROJECT_NAME=y in lsf.conf and you have not configured a default project for the
required feature) and requests one AppB license.

Update resource requirements
If your queue or job starter scripts request a license that is managed by an LSF ELIM, you need to update the job
submission scripts to request that license using the license token name.

Optimize expensive licenses
You can optimize the usage of expensive licenses in two ways:

• Configure the resource requirements order string for sorting selection at job submission
• Configure a host list at the queue level

Tip:
If the resource requirement string is configured both at the queue level and at job
submission, the queue level configuration is ignored.

Installing and Configuring Platform LSF License Scheduler

34 Using Platform LSF License Scheduler

Configuration of order string
bsub -R "select[type==any] order[resource_name] rusage[token_name=1]" -Lp license_project_name
job_name

For example:

bsub -R "select[type==any] order[cpuf] rusage[feature1=1]" -Lp Lp1 my_jobname

You can sort by other factors such as swp, ut, and r1m in your order string.

Configuration at the queue level
Configure the resource requirement string and host list in lsb.queues:
Begin Queue

QUEUE_NAME = fastqueue

PRIORITY = 10

HOSTS = hostA+1 hostB+2 hostC hostD+1

RES_REQ = select[type==any] rusage[feature1=1]

End Queue

Configure your host list based on desirability. This depends on your own knowledge of the capability of each host. In
this example, you decide that:

• hostB is the fastest
• hostA and hostD are the second fastest
• hostC is the slowest

After configuring lsb.queues, use badmin reconfig, then submit jobs:
% bsub -q fastqueue -Lp Lp1 my_jobname

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 35

Add a cluster to License Scheduler
You must be an LSF cluster administrator.

You can add a new cluster to an existing License Scheduler implementation.

1. Download License Scheduler package from Platform's ftp site.

Platform suggests you acquire the same version of master bld binaries and other architectures used in existing
member clusters.

2. Install the License Scheduler package on the new cluster.
3. Use an existing lsf.licensescheduler from $LSF_ENVDIR of another cluster using the same bld master.
4. Add new cluster name to the Clusters section of lsf.licensescheduler.
5. If allocation is defined, add new cluster name to ALLOCATION specifications in each Feature section of

lsf.licensescheduler.
6. Maintain one central lsf.licensescheduler file and have all the clusters access it.

Remember:
It is essential that lsf.licensescheduler file in each cluster is identical.

• Create a symbolic link to each cluster’s $LSF_ENVDIR.
• Use a CRON-based synchronization script.

7. Check that there is no firewall or network issue with communication using the PORT in the
lsf.licensescheduler file

8. Run bladmin reconfig on all hosts where bld is running.
9. On the newly added cluster, run lsadmin limrestart and then badmin mbdrestart.

Installing and Configuring Platform LSF License Scheduler

36 Using Platform LSF License Scheduler

Install License Schedule client on Windows
You can install just the License Scheduler client on Windows hosts.

The Platform LSF License Scheduler Windows Client Package includes:

• README
• Commands:

• blstat.exe
• blinfo.exe
• blusers.exe
• bladmin.exe
• blhosts.exe
• blkill.exe
• bltasks.exe
• blparams.exe

• lsf.licensescheduler: LSF License Scheduler configuration file
• lsf.conf: LSF configuration file

Install with LSF
You must have LSF installed on all Windows hosts you intend to install the License Scheduler
client on.

Install the License Scheduler client on Windows hosts only when your LSF cluster includes
both UNIX and Windows hosts.

1. Download the License Scheduler Client for Windows package from the FTP site.
2. Copy all commands to $LSF_BINDIR (the bin subdirectory in your LSF installation

directory) on your Windows hosts.
3. Copy lsf.licensescheduler to $LSF_ENVDIR.
4. Edit lsf.licensescheduler to suit your LSF License Scheduler Master host

configuration.

Install without LSF
You can choose to install License Scheduler client for Windows without LSF running on those
hosts. This task applies if you use License Scheduler in standalone mode.

1. Create the following directory structure (called LSF_TOP):

2. Copy all commands from the package to the bin directory.
3. Copy lsf.conf from the package to the conf directory and edit it to suit your installation.
4. Copy lsf.licensescheduler from the package to the conf directory and edit it to suit

your installation.

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 37

5. Set the LSF_BINDIR environment variable to LSF_TOP\bin.

For example, C:\LS7.0\bin.
6. Set LSF_ENVDIR environment variable to LSF_TOP\conf.

For example, C:\LS7.0\conf.
7. Set LSF_SERVERDIR environment variable to LSF_TOP\etc.

For example, C:\LS7.0\etc.

Troubleshoot
1. If you receive the following message, configure your Windows host name and IP address

in the /etc/hosts file on the master host:

Failed in an LSF library call: Failed in sending/receiving a
message: error 0: The operation completed successfully.

2. To enable the blhosts command, make sure your Windows client can resolve the master
host IP address correctly.

Installing and Configuring Platform LSF License Scheduler

38 Using Platform LSF License Scheduler

Upgrade License Scheduler
You must have License Scheduler installed before you can upgrade it. You must be a cluster administrator.

You can upgrade to a new version of License Scheduler without uninstalling and re-installing.

1. Download the new version of the License Scheduler distribution tar files from the ftp site.
2. Get a license for the upgraded version of License Scheduler.
3. Deactivate all queues.

This pends any running jobs and prevents new jobs from being dispatched.

badmin qinact all
4. Shut down License Scheduler.

bladmin shutdown all

If you have LIC_COLLECTOR defined, shut down each blcollect manually.
5. If you have the Platform Management Console installed, shut it down.

pmcadmin stop
6. Back up your existing LSF_CONFDIR, LSB_CONFDIR, and LSB_SHAREDIR according to the procedures at your

site.
7. Use the setup script to upgrade License Scheduler.

a) Source cshrc.lsf or profile.lsf in old LSF cluster.
b) Navigate to the location of your tar files and extract.
c) Run the setup script.

8. Start License Scheduler.
a) Source cshrc.lsf or profile.lsf.
b) Run lsadmin reconfig.
c) Run ps -ef to make sure the bld is running on the candidate hosts.
d) Run badmin mbdrestart.
e) Activate the queues.

badmin qact all

Installing and Configuring Platform LSF License Scheduler

Using Platform LSF License Scheduler 39

Installing and Configuring Platform LSF License Scheduler

40 Using Platform LSF License Scheduler

3
Controlling License Distribution

C H A P T E R

Using Platform LSF License Scheduler 41

Understanding distribution policies
The most important part of LSF License Scheduler is license distribution. The license distribution policy determines
how licenses are shared among projects. Whenever there is competition, the configured share assignment determines
the portion of licenses each project is entitled to.

You can use different methods of distribution of License Scheduler policies:

• Fairshare helps you ensure that all projects receive the share of license tokens they are entitled to.
• Ownership lets high priority projects preempt licenses on demand, but share them when not required.
• Non-shared licenses are not shared with other projects. When not in use by the project, they are always only available

to that project.

Share assignments
Whenever there are licenses to spare, license projects can get as many tokens as they need. The share assignment is
defined in the policy, but is ignored.

Whenever a project is using all its licenses and needs more, License Scheduler attempts to assign additional licenses to
it. This is possible if another project is not using all its assigned licenses.

The total number of licenses managed by License Scheduler depends on the following:

• The number of active license servers in the service domain
• The number of licenses checked out by non-License Scheduler users
• The number of new licenses that are added
• The number of licenses that expired

The License Scheduler distribution policy entitles each license project to a minimum portion of the available licenses.

The share assignment in the License Scheduler distribution policy determines what portion of the total licenses is
assigned to each project.

For example, create three License Scheduler projects, and share the licenses equally. If one project does not need a
license, another project can use it.
(projectA 1 projectB 1 projectC 1)

License Scheduler distributes the licenses evenly to each project. If you have 264 licenses, each project gets 88 licenses.

Not all license projects in a cluster have a full workload at all times. Free licenses can be shared across projects, so that
idle licenses for one project are available to other projects.

Example of share assignments with demand
The following illustrates how licenses are shared according to the share assignment ratio when there is demand.

The AppZ feature has a total of 120 tokens.

AppZ has the following configuration:
Begin Feature
NAME = AppZ
DISTRIBUTION = LanServer(A 1 B 1)
End Feature

Initially, before demand is introduced, the projects have the following token distribution:

Controlling License Distribution

42 Using Platform LSF License Scheduler

Project Used, Reserved, and Free Demand

A 70 0

B 0 0

Because this feature controls 120 tokens and only 70 are used, 50 tokens are free.

If both projects A and B demand 100 tokens:

Project Used, Reserved, and Free Demand

A 70 100

B 0 100

The total number of shared tokens is calculated as the number of shared tokens consumed by P1 + shared tokens
consumed by P2 + free tokens.

70 + 0 + 50 = 120 shared tokens

Both A and B have a share assignment of 1 configured, which means they each deserve the same number of tokens. In
this case, they each deserve 60 (half of 120) tokens.

Because project A is already using 70 shared tokens, it is allocated no additional free tokens.

Because project B is using 0 shared tokens and it deserve 60 shared tokens, all 50 free tokens are allocated to project B.

After token distribution, the token usage and demand situation is as follows:

Project Used, Reserved, and Free Demand

A 70 100

B 50 50

License ownership
License ownership gives license projects the right to use their licenses on demand, while still allowing License Scheduler
to distribute the licenses to other projects when the owner is not using them.

Whenever there is competition, the configured share assignment determines the portion of licenses each license project
is entitled to. Whenever there are licenses to spare, the license distribution policy still defines which projects can receive
tokens, but the share assignment is ignored (the specified projects can receive as many tokens as they need).

How license ownership and preemption work
In some cases, licenses can be shared among license projects, but one project has priority. This project is the owner of
the licenses. When there is competition between the owner and other projects, the licenses should become available to
the owner immediately.

License Scheduler only distributes tokens for free licenses. By default, if all licenses are in use, a license has to be released
before License Scheduler can provide a license token to another license project. Therefore, a project that is entitled to
a license may have to wait for another project’s running job to finish. There is no way to predict how long this takes.

If license ownership is configured, the owner should never have to wait to use the owned licenses. If a license project
requires a license and is entitled to it by right of ownership, but there are no licenses free, License Scheduler preempts
a running job in order to take a license away from another project.

Controlling License Distribution

Using Platform LSF License Scheduler 43

License projects that own some licenses can participate in license sharing with projects that do not own any. A service
domain can include both owned and unowned licenses.

When a license project’s share assignment is more than the number of licenses it owns, and there is competition, the
project is entitled to use its configured ownership entitlement. Preemption can occur only while the project is not yet
using the specified number of owned licenses and no free licenses are available. Once the project is using the number
of licenses it owns, License Scheduler waits for licenses to become free and then distributes additional tokens until the
project is using its fair share.

The jobs that are preempted by LSF are automatically resumed by LSF as licenses become available.

You can enable LSF to release the job slot of a suspended job when License Scheduler preempts the license from the
job.

Note:
For License Scheduler to give a license token to another license project, the
applications must be able to release their licenses upon job suspension.

Preemption when JOB_CONTROLS are defined
If the LSF administrator has defined JOB_CONTROLS in lsb.queues so that preemption uses the signal SIGTSTP,
they must also define LIC_SCHED_PREEMPT_STOP=Y in lsf.conf for License Scheduler preemption to work.

How LSF License Scheduler selects projects for preemption
When a project needs to preempt a license token currently in use by other projects, License Scheduler determines which
license token to preempt and which project gets the preempted token. It is possible for a project to use more licenses
than it owns—this is an overfed project. It is also possible for a project to use fewer licenses than it owns—this is an
underfed project. License Scheduler typically preempts license tokens from the overfed projects and gives these
preempted tokens to the underfed projects.

License Scheduler determines the order in which overfed and underfed projects are selected for preemption by looking
at the accumulative inuse of each project—the time in which the project has been overfed or underfed.

You can manually override this behavior by adding a PRIORITY column to the Projects section of
lsf.licensescheduler and assigning a priority to each project. This enables License Scheduler to look at the project
priority along with the hierarchical fairshare. All the projects in the hierarchy are assigned a priority for preemption
ordering.

If no hierarchical project groups are defined, the default project configuration is flat. The priority of a project has
nothing to do with its position in the hierarchy. Project priority values can be compared between all leaf nodes.

You can also minimize the overall number of preempted jobs by enabling job list optimization. When you set the
parameter ENABLE_MINJOB_PREEMPTION=Y in the Feature section of lsf.licensescheduler, License
Scheduler preempts the minimum number of jobs needed to obtain the required licenses. For example, for a job that
requires 10 licenses, License Scheduler preempts one job that uses 10 or more licenses rather than 10 jobs that each use
one license.

Overfed projects by priority
If there is more than one overfed project, License Scheduler preempts tokens from these projects in the following order:

• If there are fewer license tokens than the project owns, License Scheduler preempts license tokens from the lowest
priority project.

• If there are more licenses than the project owns, License Scheduler preempts license tokens from projects according
to the order projects are listed in the Projects section.

Controlling License Distribution

44 Using Platform LSF License Scheduler

Underfed projects by priority
If there is more than one underfed project, License Scheduler assigns the preempted tokens to these projects in the
following order:

• If there are fewer licenses than the project owns, License Scheduler gives the preempted license tokens to the highest
priority project

• If there are more licenses than the project owns, License Scheduler gives the preempted license tokens to projects
according to the order projects are listed in the Projects section.

How LSF preemption and License Scheduler preemption coexist
Jobs belonging to a license project that has ownership in License Scheduler can trigger preemption even when no more
slots are available in LSF. Configured together with LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE, license job
preemption works together with LSF slot-based preemption.

Example
Project proj1 has ownership of 3 of the license AppX.

MXJ = 5, and LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE=Y is configured in lsf.conf.

5 jobs are submitted and started using AppX, in proj2. Then 2 jobs are submitted to proj1, and pend waiting for a
AppX license token. Although the slots are full, the request is sent to License Scheduler, which recognizes the ownership
and preempts 2 jobs in proj2. The jobs are suspended, both their licenses and slots are released, and the 2 jobs in
proj1 can run.

Maximum preemption limits
Both LSF jobs and taskman jobs using licenses managed by License Scheduler can be preempted. To ensure lower
priority jobs are not preempted too many times, maximum preemption time limits can be enabled with
LS_ENABLE_MAX_PREEMPT.

For LSF jobs the parameter MAX_JOB_PREEMPT sets the maximum number of times a job can be preempted.
MAX_JOB_PREEMPT can be defined in lsb.params, lsb.queues, or lsb.applications, with the application
setting overriding the queue setting and the queue setting overriding the cluster-wide lsb.params definition.

License Scheduler taskman job preemption limits are controlled by the parameter LS_MAX_TASKMAN_PREEMPT
in lsf.licensescheduler.

How LSF License Scheduler calculates shares and owned licenses
To configure license ownership, edit the DISTRIBUTION parameter in the Feature section of
lsf.licensescheduler. Each license project’s share assignment is defined by specifying the project name followed
by its share:

license_project_name number_shares

To indicate ownership, the share assignment is followed by a slash and the number of licenses owned by that license
project. The two numbers cannot be compared because they are different units—the ownership figure is always a fixed
number of licenses, while share assignment can represent a ratio or percentage of the total instead of an actual number
of licenses.

license_project_name number_shares/number_licenses_owned F

Example
DISTRIBUTION=LanServer1(Lp1 1 Lp2 2/6)

Controlling License Distribution

Using Platform LSF License Scheduler 45

This example allows Lp1 to use one third of the available licenses and Lp2 to use two thirds of the licenses. However,
Lp2 is always entitled to six licenses, and can preempt other license projects to obtain the licenses immediately if they
are needed. If the projects are competing for a total of 12 licenses, Lp2 is entitled to eight (six on demand, and two more
as soon as they are free). If the projects are competing for only six licenses in total, Lp2 is entitled to all of them, and
Lp1 can only use licenses when Lp2 does not need them.

Total licenses
The total number of licenses managed by License Scheduler depends on whether all license servers in the domain are
active, and whether licenses have been checked out by non-LSF users. The number of licenses available to LSF changes
when licenses are added to any license server in the domain and when licenses expire.

Share assignment
The share assignment determines what fraction of the total licenses is assigned to each license project.

The formula for converting a number of shares to a number of licenses is:
(shares assigned to a project) x (total number of licenses)
-- (sum of all shares assigned to
all projects)

The number of shares assigned to a license project is only meaningful when you compare it to the number assigned to
other projects, or to the total number of shares.

Example
• (Lp1 1 Lp2 1)

In this example, you configure a 1:1 ratio. No matter how many licenses you have, LSF assigns half to each license
project. If you have 264 licenses, LSF assigns 132 licenses to each.
• (Lp1 1 Lp2 1 Lp3 1)

In this example, you add another license project, and assign it one share. Now LSF evenly distributes one third of the
available licenses to each project. If you have 264 licenses, each project receives 88 licenses.

Percentage of share
If you set LS_FEATURE_PERCENTAGE=Y in lsf.licensescheduler, you configure license ownership in percentages
instead of absolute numbers. When not combined with hierarchical projects, affects DISTRIBUTED and
NON_SHARED_DISTRIBUTION values only. When using hierarchical projects, percentage is applied to
OWNERSHIP, LIMITS, and NON_SHARED values.

Example 1
Begin Feature
LS_FEATURE_PERCENTAGE = Y
DISTRIBUTION = LanServer (p1 1 p2 1 p3 1/20)
...
End Feature

The service domain LanServer shares licenses equally among three License Scheduler projects. P3 is always entitled to
20% of the total licenses, and can preempt another project to get the licenses immediately if they are needed.

Example 2
Hierarchical project groups:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(R (A p4)) (1 1) () () ()

Controlling License Distribution

46 Using Platform LSF License Scheduler

(A (B p3)) (1 1) (- 10) (- 20) ()
(B (p1 p2)) (1 1) (30 -) () (- 5)
End ProjectGroup

Project p1 owns 30% of the total licenses, and project p3 owns 10% of total licenses. P3's LIMITS is 20% of total licenses,
and p2's NON_SHARED is 5%.

Non-shared licenses
If you have a project that is so important that you must always guarantee the availability of a license token to the project,
you can distribute non-shared licenses to a project. These licenses cannot be shared with other projects.

Some license agreements do not allow license sharing. These can be distributed to license projects as non-shared licenses.

Default projects
Default projects are projects that are not specified in job submission (for example, with bsub -Lp), but use license
tokens that are managed by License Scheduler.

If you do not want the default project to get shares of license tokens, you do not need to define a default project in the
distribution policy for a feature. If you do configure the default project in a policy, it receives its assigned share of the
license tokens. All jobs requiring a license feature that is managed by License Scheduler, and are not submitted to a
configured project for the feature, are treated as jobs submitted to the default project unless
LSF_LIC_SCHED_STRICT_PROJECT_NAME=y in lsf.conf and you have not configured a default project in
DISTRIBUTION parameter, in which case the job is rejected.

If a job is submitted to a license project that is not defined in the DISTRIBUTION in lsf.licensescheduler, it
does not run. You have two options to ensure your job does not pend:

1. Define a default project in DISTRIBUTION and do not submit job to a license project (the job uses tokens from
the default project).

2. Define the license project and share in DISTRIBUTION.

Controlling License Distribution

Using Platform LSF License Scheduler 47

Configuring distribution policies
Configure all LSF License Scheduler distribution policies in the lsf.licensescheduler file.

Configure a separate Feature section for each license feature. For each license feature, specify the service domain and
the distribution policy. Distribution is indicated by specifying the license project name and share assignment.

Checking configuration
To see the distribution policies configured by the License Scheduler administrator, run blinfo with no options.

Ownership and sharing
When you configure the ownership and sharing of the licenses for a feature in lsf.licensescheduler, specify the
following for each project:

• The number of license tokens that are owned and can be shared with other projects
• The number of license tokens that are owned and not shared with other projects
• The number of shares of the license feature that are assigned to each project

Tip:
Shared licenses can be borrowed while they are not required by their owners. Non-
shared licenses cannot be borrowed from their owners.

Configure shared licenses without ownership
In lsf.licensescheduler, configure the feature with two license projects.

In the following example, each project is entitled to 50% of the total number of license tokens.
Begin Feature

NAME=AppZ

DISTRIBUTION=LanServer1(Lp1 1 Lp2 1)

End Feature

Initially, one project may be using most of the tokens. Later the other project may require tokens. As tokens become
available, License Scheduler distributes them according to the ratio of the shares.

Configure shared licenses with ownership
In lsf.licensescheduler, configure the feature with two license projects.

• Lp1 owns 5 licenses.
• Lp1 is entitled to three quarters of the total number of license tokens.
• Lp2 is entitled to one quarter of the total number of license tokens.
Begin Feature

NAME=AppZ

DISTRIBUTION=LanServer1(Lp1 3/5 Lp2 1)

End Feature

Lp1 is guaranteed 5 tokens and can preempt them from Lp2 if necessary. As tokens become available, License Scheduler
distributes them according to their shares (3:1).

Controlling License Distribution

48 Using Platform LSF License Scheduler

Configure non-shared licenses
In lsf.licensescheduler, configure the feature with two license projects.

• Lp1 owns five licenses:
• Three licenses that can be shared
• Two licenses that cannot be shared
• Lp1 is entitled to three quarters of the total number of license tokens.
• Lp2 is entitled to one quarter of the total number of license tokens.

Do this by adding a non-shared distribution parameter to the Feature section.
Begin Feature

NAME=AppZ

DISTRIBUTION=LanServer1(Lp1 3/5 Lp2 1)

NON_SHARED_DISTRIBUTION=LanServer1(Lp1 2)

End Feature

Lp1 can receive five tokens on demand.

• The two non-shared licenses it owns are always available to or being used by Lp1.
• If necessary, Lp1 can preempt the three shared licenses it owns from Lp2.

As tokens become available, License Scheduler distributes them by their shares. For example, if the total number of
licenses is 60, and Lp1 is guaranteed five owned licenses (three shared and preemptable, two not shared), it is entitled
to another 40 licenses according to its share (3:1).

Use blinfo -a to display NON_SHARED_DISTRIBUTION information:

Configure default projects
You can optionally configure default projects for a feature.

Default includes all projects that have not been defined in the PROJECTS section of lsf.licensescheduler. Jobs
that belong to projects that are defined in lsf.licensescheduler do not get a share of the tokens when the project
is not explicitly defined in the distribution.

Use blinfo to display license usage information about jobs that you submit without specifying a project. They can be
viewed under the default project.

Default projects behavior
• You submit a job requiring a feature that is managed by License Scheduler, but you do not submit it to any projects

configured in lsf.licenseschduler (and you have LSF_LIC_SCHED_STRICT_PROJECT_NAME=n in
lsf.conf).

For example, you configure your Feature section as follows:
Begin Feature

NAME=AppZ

DISTRIBUTION=LanServer1(Lp1 2 Lp2 1)

End Feature

If you submit a job that requires a license for AppZ without specifying a project, your job will pend, even if projects
Lp1 and Lp2 are not using or waiting for licenses.

Controlling License Distribution

Using Platform LSF License Scheduler 49

• You configure a default project for a feature in a policy that also has other projects defined. For example:
Begin Feature

NAME=AppZ

DISTRIBUTION=LanServer1(Lp1 2 Lp2 1 default 1)

End Feature

If you submit a job that requires a license for AppZ without specifying a project, your job runs if there are free licenses,
which are distributed according to the shares specified in the policy. In this example, jobs that do not specify a project
receive a quarter of the license tokens.

• You can only configure a default project for a feature that has no other projects defined in the policy. For example:
Begin Feature

NAME=AppZ

DISTRIBUTION=LanServer1(default 1)

End Feature

If you submit a job that requires a license for AppZ without specifying a project, your job runs if there are free licenses.
The only advantage of using this configuration is the ability to view usage information.

Configure reserved license preemption
In lsf.licensescheduler, you can configure a feature so that its license is preemptable when reserved or already
in use by other projects. Do this by adding PREEMPT_RESERVE=Y to the Feature section.

For example,
Begin Feature

NAME=AppZ

DISTRIBUTION=LanServer1(Lp1 1/5 Lp2 1)

PREEMPT_RESERVE=Y

End Feature

If no licenses are available and project Lp1 is using fewer than 5 licenses, project Lp1 preempts a reserved license from
project Lp2 and checks out the license from the license server.

Tip:
When PREEMPT_RESERVE is set, the project preempts either a reserved license
or a license that is in use by another project. By default, reserved licenses are not
preemptable.

Preempting reserved licenses
With License Scheduler, licenses are reserved before it is actually necessary to check them out from the license server.

When you submit a job that requires a license feature at the conclusion of its run, it could take a long time before the
license actually is checked out by the application requiring it. While the job runs, the license is reserved even though
it is not in use. The job has reserved this license.

At the same time, you may want to submit a shorter job that requires the same license. You can preempt the reserved
license if all of the following criteria are true:

• No licenses are available for the job
• You submit the job to a project that owns a minimum number of licenses

Controlling License Distribution

50 Using Platform LSF License Scheduler

• The project is using fewer licenses than the number of licenses it owns
• You have configured License Scheduler to allow preemption of reserved licenses

Aliasing license token names (FLEX_NAME)
Normally, license token names should be the same as the FLEXnet feature names, as they represent the same license.
However, LSF does not support names that start with a number, or names containing a dash or hyphen character (-),
which may be used in the FLEXnet feature name.

For these feature names, you must set both NAME and FLEX_NAME in the Features section of
lsf.licensescheduler. FLEX_NAME is the actual FLEXnet feature name, and NAME is an arbitrary license token
name you choose.

Example
Begin Feature
FLEX_NAME=201-AppZ
NAME=AppZ201
DISTRIBUTION=LanServer1(Lp1 1 Lp2 1)
End Feature

Controlling License Distribution

Using Platform LSF License Scheduler 51

Viewing available licenses
License Server collects license feature information from physical servers and merges this data together into a service
domain. After the merging, the individual license server information is retained, and you can view this information
together with the physical server information.

Use the blstat command to display dynamic system status, and to display information about the actual license
distribution and use for each project.

The licenses in use have been checked out from FLEXnet by your projects. Free licenses and licenses reserved by a
project have not yet been checked out from FLEXnet.

The total number of licenses could change as licenses expire, or are added. As non-LSF users check out licenses, the
OTHERS count in blstat should increase and the TOTAL_FREE count will decrease. The number of licenses for
each project changes whenever LSF redistributes license tokens among competing projects.

Viewing license server and license feature information passed to
jobs
To view the license server associated with the license features, use blstat -S. This displays the license servers used
by each service domain allocated to the license features.

The license server information for each license feature is stored in the LS_LICENSE_SERVER_feature environment
variable.
blstat -S
FEATURE: feature1
SERVICE_DOMAIN: domain1
SERVERS INUSE FREE
 server1 1 0
 server2 0 1
 TOTAL 1 1
SERVICE_DOMAIN: domain2
SERVERS INUSE FREE
 server3 1 0
 TOTAL 1 0

This shows that the license feature feature1 is assigned to server1 and server2 in the domain1 service domain and
server3 in the domain2 service domain. A job uses the feature1 license feature when the job is submitted with "rusage
[feature1=1]" as the rusage string.

Viewing workload distribution information
Use blstat -s to display license usage. Workload distributions are defined by WORKLOAD_DISTRIBUTION in
lsf.licensescheduler. If there are any distribution policy violations, blstat marks these with an asterisk (*) at
the beginning of the line.
blstat -s
FEATURE: p1_f2
SERVICE_DOMAIN: app_1 TOTAL_LICENSE: 10
LSF_USE LSF_DESERVE LSF_FREE NON_LSF_USE NON_LSF_DESERVE NON_LSF_FREE
 0 10 10 0 0 0
FEATURE: p1_f1
SERVICE_DOMAIN: app_1 TOTAL_LICENSE: 5
LSF_USE LSF_DESERVE LSF_FREE NON_LSF_USE NON_LSF_DESERVE NON_LSF_FREE
 0 5 5 0 0 0

Controlling License Distribution

52 Using Platform LSF License Scheduler

blinfo -a
Use blinfo -a to display WORKLOAD_DISTRIBUTION information:
% blinfo -a
FEATURE SERVICE_DOMAIN TOTAL DISTRIBUTION
g1 LS 0 [p1, 50.0%] [p2, 50.0%]
 WORKLOAD_DISTRIBUTION
 [LSF 66.7%, NON_LSF 33.3%]

Viewing workload distribution information
View sorted license feature information (blinfo -o and blstat -o)

Use the -o option of blinfo and blstat to sort license feature information alphabetically, by
total licenses, or by available licenses.

Use -o blstat alone or with options -Lp, -t, -D, -G, -s, -S. The values of "total licenses"
and "licenses available" are calculated differently when blstat -o is used with different
options:

• Options -Lp, -t, -D, -G: Total licenses means the sum of licenses that are allocated to LSF
workload from all the service domains configured to supply licenses to the feature. Licenses
borrowed by non-LSF workload are subtracted from this sum.

• Options-s, -S: All the licenses (supplied by the license vendor daemon) from all the service
domains configured to supply licenses to that feature.

Use -o with blinfo alone or with options -a and -t. You can only sort alphabetically (-o
alpha) or by total licenses (-o total), because blinfo does not display information about
available licenses. The command blinfo -o is not supported in combination with -Lp, -p,
-D, -G.

The value of total licenses is calculated using the number of licenses LSF workload deserves
from all service domains that supply licenses to the feature, regardless of whether non-LSF
workload has borrowed licenses from LSF workload.

Controlling License Distribution

Using Platform LSF License Scheduler 53

Examples
The blstat -o alpha
FEATURE: p1_5

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 6 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 B 50.0 % 0 0 3 n

 p1 25.0 % 0 0 1 n

 p2 25.0 % 0 0 2 n

FEATURE: p1_12

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 7 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 default 33.3 % 0 0 3 n

 p1 33.3 % 0 0 2 n

 p2 33.3 % 0 0 2 n

 SERVICE_DOMAIN: LanServer1

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 10 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 p1 50.0 % 0 0 5 n

 p2 50.0 % 0 0 5 n

FEATURE: myjob10

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 9 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 p4 50.0 % 0 0 5 n

 p3 25.0 % 0 0 2 n

 p1 12.5 % 0 0 1 n

 p2 12.5 % 0 0 1 n

Sorting with -o total is based on the total number of licenses. In the following example, the
total licenses for p1_12, myjob10, p1_5 are 17(7+10), 9, and 6. p1_12 which is the feature with
largest number of "total licenses" comes first.

The the total licenses value for p1_5 in this example is 6 not 10 (6+4), because the '4' in the
OTHERS field shows that non-LSF workload has borrowed 4 licenses from the LSF allocation.

Controlling License Distribution

54 Using Platform LSF License Scheduler

blstat -o total

FEATURE: p1_12

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 7 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 default 33.3 % 0 0 3 n

 p1 33.3 % 0 0 2 n

 p2 33.3 % 0 0 2 n

 SERVICE_DOMAIN: LanServer1

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 10 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 p1 50.0 % 0 0 5 n

 p2 50.0 % 0 0 5 n

FEATURE: myjob10

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 9 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 p4 50.0 % 0 0 5 n

 p3 25.0 % 0 0 2 n

 p1 12.5 % 0 0 1 n

 p2 12.5 % 0 0 1 n

FEATURE: p1_5

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 6 OTHERS: 4

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 B 50.0 % 0 0 3 n

 p1 25.0 % 0 0 1 n

 p2 25.0 % 0 0 2 n

The following example specifies service domains using the -D option. The values of total
licenses for myjob10, p1_12, p1_5 are 9, 7, 6, so myjob10 is listed first.

Controlling License Distribution

Using Platform LSF License Scheduler 55

blstat -o total -D LanServer

FEATURE: myjob10

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 9 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 p4 50.0 % 0 0 5 n

 p3 25.0 % 0 0 2 n

 p1 12.5 % 0 0 1 n

 p2 12.5 % 0 0 1 n

FEATURE: p1_12

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 7 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 default 33.3 % 0 0 3 n

 p1 33.3 % 0 0 2 n

 p2 33.3 % 0 0 2 n

 FEATURE: p1_5

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 6 OTHERS: 4

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 B 50.0 % 0 0 3 n

 p1 25.0 % 0 0 1 n

 p2 25.0 % 0 0 2 n

In the following example, the number of licenses available for p1_5, p1_12 and myjob10 are
6, 5(0+5),4. p1_5 is the feature with largest number of available licenses, so it is listed first.

Controlling License Distribution

56 Using Platform LSF License Scheduler

blstat -o avail

FEATURE: p1_5

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 6 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 B 50.0 % 0 0 3 n

 p1 25.0 % 0 0 1 n

 p2 25.0 % 0 0 2 n

FEATURE: p1_12

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 7 TOTAL_RESERVE: 0 TOTAL_FREE: 0 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 default 33.3 % 0 0 0 n

 p1 33.3 % 7 0 0 n

 p2 33.3 % 0 0 0 n

 SERVICE_DOMAIN: LanServer1

 TOTAL_INUSE: 5 TOTAL_RESERVE: 0 TOTAL_FREE: 5 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 p1 50.0 % 5 0 0 n

 p2 50.0 % 0 0 5 n

FEATURE: myjob10

 SERVICE_DOMAIN: LanServer

 TOTAL_INUSE: 5 TOTAL_RESERVE: 0 TOTAL_FREE: 4 OTHERS: 0

 PROJECT SHARE INUSE RESERVE FREE DEMAND

 p4 50.0 % 0 0 4 n

 p3 25.0 % 0 0 0 n

 p1 12.5 % 5 0 0 n

 p2 12.5 % 0 0 0 n

blinfo shows the following feature configuration and workload distribution:

blinfo

FEATURE SERVICE_DOMAIN TOTAL DISTRIBUTION

p1_5 LanServer 6 [B, 50.0%] [p1, 25.0%] [p2, 25.0% / 1]

p1_12 LanServer 7 [default, 33.3%] [p1, 33.3%] [p2, 33.3%]

p1_12 LanServer1 10 [p1, 50.0% / 1] [p2, 50.0% / 6]

myjob10 LanServer 9 [B, 50.0%] [p1, 25.0%] [p2, 25.0% / 1]

In the following example, the value for the TOTAL column is always the number of licenses
the feature should get from the service domain, no matter if some of the licenses have been
borrowed by non-LSF workload.

Controlling License Distribution

Using Platform LSF License Scheduler 57

blinfo -o "total"

FEATURE SERVICE_DOMAIN TOTAL DISTRIBUTION

p1_12 LanServer 7 [default, 33.3%] [p1, 33.3%] [p2, 33.3%]

p1_12 LanServer1 10 [p1, 50.0% / 1] [p2, 50.0% / 6]

myjob10 LanServer 9 [B, 50.0%] [p1, 25.0%] [p2, 25.0% / 1]

p1_5 LanServer 6 [B, 50.0%] [p1, 25.0%] [p2, 25.0% / 1]

The blinfo options '-A' and '-C' do not supply information about "total licenses" and "licenses
available", so only '-o alpha' is supported with blinfo -A and -C. -o "total" is ignored
with '-A' and '-C' and the output is the same as using -o "alpha".

Controlling License Distribution

58 Using Platform LSF License Scheduler

Configure feature groups
Feature groups view, list, and control groups of features instead of each individual feature.

In lsf.licensescheduler, configure a FeatureGroup section, listing the license features associated with that
license. For example:

Begin FeatureGroup

NAME = Synposys

FEATURE_LIST = ASTRO VCS_Runtime_Net Hsim Hspice

End FeatureGroup

Begin FeatureGroup

NAME = Cadence

FEATURE_LIST = Encounter NCSim NCVerilog

End FeatureGroup

Note:
• Each feature group must have a unique name.
• The feature names in FEATURE_LIST must already be defined in Feature

sections.
• Feature names cannot be repeated in the FEATURE_LIST of one feature group.
• The FEATURE_LIST cannot be empty.
• Different feature groups can have the same features in their FEATURE_LIST.

View license feature group information (blinfo -g and blstat -g)
When FEATURE_LIST is configured for a group of license features in lsf.licensescheduler, you can run blinfo
-g and blstat -g to see information about the features configured for the specified feature groups.

When you specify feature names with -t, features in the feature list defined by -t and features in feature list of feature
groups are both displayed.

Feature groups listed with -g but not defined in lsf.licensescheduler are ignored.

The command blstat -g can be used alone or with options -Lp, -t, -D ,-G', -s. The option -g is not supported
together with -S, since blstat -S displays information for all the features.

The command blinfo '-g' can be used alone or with options -a, -t, -C, and -A.

Examples:
For the following feature group configurations in lsf.licensescheduler:
 Begin Feature

 NAME = feature1

 DISTRIBUTION = LanServer(default 1 p1 1 p2 1/10)

 End Feature

Controlling License Distribution

Using Platform LSF License Scheduler 59

 Begin Feature

 NAME = feature2

 DISTRIBUTION = LanServer(p1 2 p2 1/5)

 End Feature

 Begin Feature

 NAME = feature3

 DISTRIBUTION = LanServer(p1 1 p2 1/5)

 End Feature

 Begin Feature

 NAME = feature4

 DISTRIBUTION = LanServer(p1 1 p2 1)

 End Feature

 Begin FeatureGroup

 NAME = myFeatureGroup1

 FEATURE_LIST = feature1 feature2

 End FeatureGroup

 Begin FeatureGroup

 NAME = myFeatureGroup2

 FEATURE_LIST = feature2 feature3

 End FeatureGroup

blstat-g "myFeatureGroup1"

Shows information for feature1 and feature2 in descending alphabetic order.

blstat-g "myFeatureGroup2"

Shows information for feature3 and feature3 in descending alphabetic order.

blstat -t "feature3 feature4" -g "myFeatureGroup1 myFeatureGroup2 FeatureGroup3"

Shows information for feature1, feature2, feature3, feature4 in descending alphabetic order. Information for each
feature is displayed only once. Feature group "FeatureGroup3" is ignored because it is not defined in
lsf.licensescheduler.

Controlling License Distribution

60 Using Platform LSF License Scheduler

4
Failover Provisioning

C H A P T E R

Using Platform LSF License Scheduler 61

Failover provisioning for LANs
You can configure LSF License Scheduler for enhanced performance, easy organization, and reliable license distribution.

You only need one host to run LSF License Scheduler, but you can configure your site for a failover mechanism with
multiple candidate hosts to take over the scheduling in case of a failure. This configuration can be used in a local network
or across multiple sites in a wider network.

LAN example
A design center contains the following hosts configuration in a LAN:

• lsf.conf in Design Center A
LSF_LIC_SCHED_HOSTS="hostA.designcenter_a.com hostB.designcenter_a.com hostC.designcenter_a.com"

• lsf.licensescheduler in Design Center A
HOSTS=hostA.designcenter_a.com hostB.designcenter_a.com hostC.designcenter_a.com

The LSF LIM daemon starts the LSF License Scheduler daemon (bld) on each host in the LSF_LIC_SCHED_HOSTS
list.

Each host in the LSF_LIC_SCHED_HOSTS list is a potential LSF License Scheduler candidate in Design Center A and
is running the bld daemon, but only one host becomes the LSF License Scheduler host.

In this example
• hostA.designcenter_a.com is the LSF License Scheduler host, and the remaining hosts are candidate hosts running

the bld daemon, ready to take over the management of the licenses in case of a network failure
• Each host contains the list of candidate hosts in memory

Failover Provisioning

62 Using Platform LSF License Scheduler

• Each candidate License Scheduler host communicates with the LSF License Scheduler host, License Scheduler
(hostA)

• If the LSF License Scheduler host fails, each candidate host checks to see if a more eligible host is running the LSF
License Scheduler daemon. If not, it becomes the failover host and inherits the communication links that existed
between the original LSF License Scheduler host and each candidate host. In this example, if License Scheduler on
hostA fails, Candidate License Scheduler hostB is the next most eligible host, and takes over the license scheduling.

Failover Provisioning

Using Platform LSF License Scheduler 63

Failover provisioning for WANs
Similar to LANs, you can configure your site for a failover mechanism across multiple sites in a wide network.

You only need one host to run the LSF License Scheduler, but you can configure your site for a failover mechanism
with multiple candidate hosts to take over the scheduling in case of a failure.

License scheduling across sites can be streamlined because LSF License Scheduler supports service provisioning during
breaks in wide area network connections. This allows you to run LSF License Scheduler from one host that controls
license scheduling across multiple sites.

Configure and start LSF License Scheduler in a WAN
In a WAN configuration:

1. As the root user, install LSF License Scheduler on each cluster in the WAN configuration and select one cluster to
be the cluster.

2. In the cluster that contains the WAN license server, log on as the primary License Scheduler administrator.
3. Edit the following items in LSF_CONFDIR/lsf.licensescheduler:
4. Specify a space-separated list of hosts for the HOSTS parameter:

HOSTS=hostname_1 hostname_2 ... hostname_n

Where:

hostname_1 is the most preferred host for running LSF License Scheduler.

hostname_n is the least preferred host for running LSF License Scheduler.
5. In the Clusters section, specify the names of the clusters in the WAN.

For example:
Begin Clusters
CLUSTERS
design_SJ
design_BOS
End Clusters

6. In the cluster that contains the WAN license server, as the LSF primary administrator, edit LSF_CONFDIR/
lsf.conf. Lines that begin with # are comments:

Specify a space-separated list of hosts for the LSF_LIC_SCHED_HOSTS parameter:

LSF_LIC_SCHED_HOSTS="hostname_1 hostname_2 ... hostname_n"

Where:

hostname_1, hostname_2, ..., hostname_n are hosts on which the LSF LIM daemon starts the LSF License Scheduler
daemon (bld).

The first host listed in the HOSTS list will be the default master License Scheduler host for the WAN.

The order of the host names in LSF_LIC_SCHED_HOSTS is ignored.
7. In the other clusters in the WAN:
8. Configure the LSF_LIC_SCHED_HOSTS parameter in lsf.conf with a local list of candidate hosts.
9. Configure the HOSTS parameter in the Parameters section lsf.licensescheduler with the following list of hosts:

• Start the list with the same list of candidate hosts as the HOSTS parameter in the cluster that contains the WAN
license server.

Failover Provisioning

64 Using Platform LSF License Scheduler

• Continue the list with the local cluster’s list of hosts from the LSF_LIC_SCHED_HOSTS parameter in
lsf.conf.

10. In the cluster that contains the WAN license server and the other clusters in the WAN, run the following commands:

1. Run bld -C to test for configuration errors.
2. Run bladmin reconfig to configure LSF License Scheduler.
3. Run lsadmin reconfig to reconfigure LIM.
4. Use ps -ef to make sure that bld is running on the candidate hosts.
5. Run badmin reconfig to reconfigure mbatchd.

Tip:
Although the bld daemon is started by LIM, bld runs under the account of the
primary License Scheduler administrator. If you did not configure the LIM to
automatically start the bld daemon on your License Scheduler hosts, run
LSF_BINDIR/blstartup on each host to start the bld daemon.

WAN example
A design center contains the following hosts configuration in a WAN:

LIM starts bld on the following hosts:

• lsf.conf in Design Center A
LSF_LIC_SCHED_HOSTS="hostA1.designcenter_a.com hostA2.designcenter_a.com
hostA3.designcenter_a.com"

• lsf.conf in Design Center B
LSF_LIC_SCHED_HOSTS="hostB1.designcenter_b.com hostB2.designcenter_b.com
hostB3.designcenter_b.com"

License Scheduler candidate hosts are listed in the following order of preference:

• lsf.licensescheduler in Design Center A
HOSTS=hostB1.designcenter_b.com hostB2.designcenter_b.com hostA1.designcenter_a.com
hostA2.designcenter_a.com hostA3.designcenter_a.com

• lsf.licensescheduler in Design Center B
HOSTS=hostB1.designcenter_b.com hostB2.designcenter_b.com hostB3.designcenter_b.com

The following diagram shows hostB1.designcenter_b.com, the License Scheduler host for the WAN containing Design
Center A and Design Center B.

Failover Provisioning

Using Platform LSF License Scheduler 65

How it works
The LSF LIM daemon starts the LSF License Scheduler daemon (bld) on each host listed in LSF_LIC_SCHED_HOSTS
in Design Center A and Design Center B.

Each host in the HOSTS list in Design Center A is a potential LSF License Scheduler candidate in Design Center A and
is running the bld daemon, but only one host becomes the LSF License Scheduler host—the first host in the HOSTS
list that is up and that is running the bld daemon. Similarly, the License Scheduler host in Design Center B is the first
host in the HOSTS list that is up and that is running the bld daemon.

License Scheduler manages the licenses in Design Center A and Design Center B as follows:

Both design centers list hostB1.designcenter_b.com at the top of their HOSTS lists. hostB1.designcenter_b.com is the
License Scheduler host for Design Center A and for Design Center B. The rest of the hosts in both design centers remain
on standby as candidate License Scheduler hosts. License Scheduler manages the license scheduling across the WAN
connection.

Service provisioning at the host and network levels
In the above example configuration, there are two potential points of failure:

• Host failure:

If hostB1.designcenter_b.com fails, and bld stops running, a candidate License Scheduler host must take over the license
management. The next host on the HOSTS list in both Design Center A and Design Center B is
hostEB2designcenter_b.com. License Scheduler fails over to this host if it is up and running.

Failover Provisioning

66 Using Platform LSF License Scheduler

• Network failure:

If the network connection between Design Center A and Design Center B breaks, Design Center A can no longer
communicate with the hosts in Design Center B, so hostB1.designcenter_b.com and hostB2.designcenter_b.com are
no longer candidate license scheduling hosts for Design Center A. The next candidate host for Design Center A is
hostA1.designcenter_a.com. License management then runs locally in Design Center A on hostA1.designcenter_a.com.
In Design Center B, hostB1.designcenter_b.com continues to run License Scheduler, but only manages the local network
as long as the wide area network connection is down.

The local License Scheduler host, hostA1.designcenter_a.com, checks for a heartbeat from hostB1.designcenter_b.com
at regular intervals, then returns license management back to hostB1.designcenter_b.com when the network connection
returns.

Failover Provisioning

Using Platform LSF License Scheduler 67

Failover Provisioning

68 Using Platform LSF License Scheduler

Other failover provisioning
blcollect failover
It is possible for the host running the blcollect daemon to fail in such a way that information from a license server
could stop flowing to License Scheduler. Platform Computing offers a method for allowing blcollect daemons to
be restarted on the collector host if they die, and starting additional blcollect daemons on remote hosts if the primary
collector host dies. Contact your Platform Computing account representative to learn more.

Use BLC_HEARTBEAT_FACTOR in the Parameters section of lsf.licensescheduler to enable bld to detect
blcollect failure. Define the number of times that bld receives no response from a license collector daemon
(blcollect) before bld resets the values for that collector to zero. Each license usage reported to bld by the collector
is treated as a heartbeat. The default is 3.

FLEXnet integration failover
Though LSF and License Scheduler are designed to failover and failback gracefully, and Platform Computing provides
a tool for reconfiguring the FLEXnet options file and restarting the license server automatically on failover or failback
to preserve the integrity of the License Scheduler solution. Contact your Platform Computing account representative
to learn more.

Failover Provisioning

Using Platform LSF License Scheduler 69

Failover Provisioning

70 Using Platform LSF License Scheduler

5
Advanced Topics

C H A P T E R

Using Platform LSF License Scheduler 71

Distributing license collection
You can improve performance by distributing license collection across your site.

If the lmstat data from all your license servers is collected in one central location, mbatchd has to wait for the license
usage information to come in from all your license servers, and this can result in poor performance in the flow of
information.

With License Scheduler, you can distribute the query to collect the information in parallel from each license server.
Run the license collectors on any machines you want. Each collector can query one or more license servers. You can
also set the time interval between queries for each collector.

Caution:
Do not run more than one license collector per service domain. License Scheduler
closes connections to multiple collectors in one service domain.

To distribute license collection, run the command blcollect to manually launch the license information collection
daemon.

To distribute your license information collection
1. Log on as the primary License Scheduler administrator.
2. In lsf.licensescheduler, specify the name of the license information collector in the

ServiceDomain section:

Specify one LIC_COLLECTOR for each service domain:
Begin ServiceDomain

NAME=DesignCenterA

LIC_SERVERS=((1700@hostA)(1700@hostB))

LIC_COLLECTOR=lic_collector_name

LM_STAT_INTERVAL=seconds

End ServiceDomain

Where:
• lic_collector_name is the name you specify for license information collection for a

service domain. You can use any name, but you must use the same name when you
start the license information collector daemon.

• seconds is the time interval between queries made by the collector. The collector for
this service domain will use the specified value rather than the global
LM_STAT_INTERVAL value defined in the Parameters section.

3. Log on to any host.
4. If the host is not in the shared file system used by LSF, make sure you set your environment

to the directory containing lsf.licensescheduler.

For example:
setenv LSF_ENVDIR "/mydir/conf"

5. Run the following command for each service domain you define in
lsf.licensescheduler:

blcollect -m "host_list" -p lic_scheduler_port -c lic_collector_name

Where:

Advanced Topics

72 Using Platform LSF License Scheduler

• host_list

Specifies a space-separated list of License Scheduler candidate hosts to which license
information is sent. Use fully qualified host names.

• lice_scheduler_port

Corresponds to the License Scheduler listening port, which is set in
lsf.licensescheduler.

• lic_collector_name

Specifies the name of the license collector you set for LIC_COLLECTOR in the service
domain section of lsf.licensescheduler.

For example:

blcollect -m "hostD.designcenter_b.com hostA.designcenter_a.com" -p 9581 -
c CenterB

A file named collectors/CenterB is created in your LSF_WORKDIR.

Note:
If you do not specify a license collector name in an LSF
License Scheduler service domain, the master bld host
starts a default blcollect.

Advanced Topics

Using Platform LSF License Scheduler 73

Managing licenses for different application
versions
If you use more than one version of an application, you can specify the version you prefer together with a legacy version
if the preferred version is not available. Use the OR (||) expression to reserve your license with an alternative license
choice in the rusage string of your resource requirement.

• Only use the OR expression when both versions of the license will work with the application.
• Configure the resource requirements usage string with the licenses in descending order of preference.

Configuration of usage string
bsub -R "rusage[token_name1=1||token_name2=1]" -Lp license_project_name job_name

Examples:

You are running appA version 1.5 and appA version 2.0.1. The license key for version 2.0.1 is backward compatible
with version 1.5, but the license key for version 1.5 does not work with version 2.0.1.

• If you can run your job using either version of the application, try to reserve appAv201 for your job. If it is not
available, you can use appAv15.
bsub -R "rusage[appAv201=1||appAv15=1]" -Lp Lp1 myjob

• Do not use the OR expression if your job can only run on one version of the application:
bsub -R "rusage[appAv201=1]" -Lp Lp1 myjob

• If different versions of an application require different system resources, you can specify other resources in your
rusage string.

bsub -R "rusage[mem=20:appAv201=1||mem=20:swap=50:appAv15=1]" -Lp Lp1 myjob

Advanced Topics

74 Using Platform LSF License Scheduler

Group license ownership
Group license ownership lets you distribute license features to license projects. Defining groups is optional. A license
project should only belong to one group.

License Scheduler first balances license distribution at the group level based on group license ownership. The total
number of licenses owned by all group members is the number of licenses owned by the group. License Scheduler then
balances license distribution among license projects.

With group license ownership, projects can trigger preemption either when the project is using fewer licenses than it
owns (the project is underfed) or when the group to which the project belongs is using fewer licenses than the group
owns (the group is underfed).

Examples of preemption with group license ownership
The following tables show changes in preemption behavior based on group license ownership of a total of 20 licenses.

Project license ownership only
License project Licenses owned Licenses used

Lp1 5 6

Lp2 5 0

Lp3 5 7

Group license ownership
Group License projects Project licenses owned

GroupA Lp1

Lp2

5

5

GroupB Lp3

Lp4

5

5

Group License projects Project licenses owned

Project license ownership within a group
Group License projects Project licenses owned

GroupA Lp1

Lp2

5

5

GroupB Lp3

Lp4

5

5

Group License projects Project licenses owned

Advanced Topics

Using Platform LSF License Scheduler 75

Configuration
Use the GROUP parameter in the Feature section of the lsf.licensescheduler file to define groups and their
members.

Example
Begin Feature NAME = AppY DISTRIBUTION = LanServer1(Lp1 5/5 Lp2 5/5 Lp3 5/5 Lp4 5/5) GROUP = GroupA
(Lp1 Lp2) GroupB (Lp3 Lp4) End Feature

In this example, Lp1 and Lp2 belong to the group GroupA. Lp3 and Lp4 belong to the GroupB group.

Advanced Topics

76 Using Platform LSF License Scheduler

Hierarchical fairshare among project groups
Project groups pool multiple service domains together and treat them as one source for licenses, and distribute them
in a hierarchical fairshare tree. The leaves of the policy tree are the license projects that jobs can belong to. Each project
group in the tree has a set of values, including shares and limits.

License ownership can only be configured at the leaf level; that is, on individual license projects. Ownership of a given
internal node equals to sum of the ownership of all of its direct children.

The grouping of projects is per feature. Each feature has its own hierarchical group, but features can share the same
hierarchy. The hierarchical scheduling is done per feature across service domains. This is the difference between
hierarchical and non-hierarchical scheduling, which is done per feature and per service domain. With a hierarchical
grouping of projects defined, service domains become license containers, free or in use.

Example project group configuration

The following project group configuration in lsf.licensescheduler implements this hierarchy:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(topgrp (g1 g2)) (1 1) (4 4) (10 10) (4 4)
(g1 (g3 g4)) (1 1) (0 4) (10 10) (0 4)
(g2 (g5 g6)) (1 1) (2 2) (- 5) (2 2)
(g3 (p1 p2 p3)) (1 1 2) () (3 4 5) ()
(g4 (p4 p5 p6)) (1 1 1) (1 1 1) () (- 3 0)
(g5 (p7 p8 p9)) (1 1 1) (2 - 2) () (1 - 1)
(g6 (p10 p11 p12)) (1 1 1) (2 2 2) (4 4 4) (1 0 1)
End ProjectGroup

Begin Feature
NAME = AppZ
GROUP_DISTRIBUTION = topgrp
SERVICE_DOMAINS = LanServer WanServer
End Feature

In this example a dash (-) denotes the default value, as in LSF. This default value depends on the column, for example
by default OWNERSHIP should be 0, whereas LIMITS should be infinity (unlimited). A dash is not allowed in the
SHARES column.

Since the service domains are no longer used in the distribution policies, they only need to be listed under the
SERVICE_DOMAINS parameter in each Feature section.

Advanced Topics

Using Platform LSF License Scheduler 77

Maximum token limit in project groups
By default, License Scheduler distributes all available tokens if possible. Project group configuration enables you to set
hard limits on available tokens so that some tokens may not be distributed even if they are available.

In the following example, a total of 6 licenses are available:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(Root(A B)) (1 1) () () ()
(A (c d)) (1 1) () (1 1) ()
(B (e f)) (1 1) () () ()
End ProjectGroup

When there is no demand for license tokens, License Scheduler only allocates 5 tokens according to the distribution.
License Scheduler gives 3 tokens to group A and 3 tokens to group B, but project c and project d are limited to 1 token
each, so 1 token will not be allocated within group A. As more demand comes in for project e and project f, the
unallocated tokens are distributed to group B.

Shared and non-shared licenses
Normally, the total number of non-shared licenses should be less than the total number of license tokens available.
License tokens may not be available to project groups if the total non-shared licenses for all groups is greater than the
number of shared tokens available.

For example, feature p4_4 is configured as follows, with a total of 4 tokens:
Begin Feature
NAME =p4_4
total token value is 4
GROUP_DISTRIBUTION=final
SERVICE_DOMAINS=LanServer
End Feature

The correct configuration is:
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(final (G2 G1)) (1 1) (2 0) () (2 0)
(G1 (AP2 AP1)) (1 1) (1 1) () (1 1)

Project group configuration like the following is valid, but could cause tokens not to be available for the leaf-level
projects of group G1.
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(final(G1 G2)) (1 1) (2 2) () (2 2)
(G1(AP2 AP1)) (1 1) (1 1) () (1 1)
End ProjectGroup

The total non-shared tokens is 6, but the total available is 4, which can cause non-shared license tokens not to be
available. License scheduler satisfies the non-shared configuration first, so it gives 2 tokens to group G2 and 2 tokens
to group G1. No tokens are left, and the non-shared configuration for projects AP2 and AP1 is not satisfied.

For projects defined with NON_SHARED_DISTRIBUTION, you must assign the project OWNERSHIP an equal or
greater number of tokens defined in the DISTRIBUTION line.

Viewing information about project groups
Use blstat -G to view the hierarchical dynamic license information:
blstat -G
FEATURE: p1_f1
SERVICE_DOMAINS:
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 5 OTHERS: 0
SHARE_INFO_FOR: /topgrp
GROUP/PROJECT SHARE OWN INUSE RESERVE FREE DEMAND

Advanced Topics

78 Using Platform LSF License Scheduler

g2 100.0 % 4 0 0 4 0
SHARE_INFO_FOR: /topgrp/g2
GROUP/PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
p3 50.0 % 0 0 0 2 0
p4 50.0 % 0 0 0 2 0
FEATURE: p1_f2
SERVICE_DOMAINS:
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 10 OTHERS: 0
SHARE_INFO_FOR: /topgrp
GROUP/PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
g2 100.0 % 4 0 0 4 0
SHARE_INFO_FOR: /topgrp/g2
GROUP/PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
p3 50.0 % 0 0 0 2 0
p4 50.0 % 0 0 0 2 0

blinfo -G
Use blinfo -G to view the hierarchical configuration:
blinfo -G
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(topgrp (g1 g2)) (1 1) (4 4) (10 10) (4 4)
(g1 (g3 g4)) (1 1) (2 4) (10 10) (0 4)
(g2 (g5 g6)) (1 1) (2 2) (- 5) (2 2)
(g3 (p1 p2 p3)) (1 1 2) () (3 4 5) ()
(g4 (p4 p5 p6)) (1 1 1) (1 3 1) () (- 3 0)
(g5 (p7 p8 p9)) (1 1 1) (2 - 2) () (1 - 1)
(g6 (p10 p11 p12)) (1 1 1) (2 2 2) (4 4 4) (1 0 1)

Use blinfo -G to view hierarchical project group priority information.
blinfo -G
GROUP SHARES OWNERSHIP LIMITS NON_SHARED PRIORITY
(root (A B C)) (1 1 1) () () () (3 2 0)
(A (P1 D)) (1 1) () () () (3 5)
(B (P4 P5)) (1 1) () () () ()
(C (P6 P7 P8)) (1 1 1) () () () (8 3 0)
(D (P2 P3)) (1 1) () () () (2 1)

Defining flat project priority
If no hierarchical project groups are defined, the default project configuration is flat. The priority of a project has
nothing to do with its position in the hierarchy. Project priority values can be compared between all leaf nodes.

To configure flat project priority in lsf.licensescheduler, set the PRIORITY column in the Project section. For
example:
Begin Projects
PROJECTS PRIORITY
P1 2
P2 3
P3 5
P4 1
… …
P8 7
End Projects

Configure tree priority to define priorities for all nodes in the
hierarchy
To configure tree priority in lsf.licensescheduler, specifiy PRIORITY in the ProjectGroup configuration section.
For example:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED PRIORITY
(root(A B C)) (1 1 1) () () () (3 2 -)

Advanced Topics

Using Platform LSF License Scheduler 79

(A (P1 D)) (1 1) () () () (3 5)
(B (P4 P5)) (1 1) () () () ()
(C (P6 P7 P8)) (1 1 1) () () () (8 3 0)
(D (P2 P3)) (1 1) () () () (2 1)
End ProjectGroup

By default, priorities are evaluated from top to bottom. The priority of a given node is first decided by the priorities of
its parent nodes. The values are only comparable between siblings.

The following figure illustrates the example configuration:

The priority of each node is shown beside the node name. If priority is not defined, by default is set to 0 (nodes P4 and
P5 under node B).

To find the highest priority leaf node in the tree License Scheduler traverses the tree from root to node A to node D to
project P2.

To find the lowest priority leaf node in the tree, License Scheduler traverses the tree from root to node C to project P8.

When two nodes have the same priority, for example, projects P4 and P5, priority is determined by accumulated
inuse usage at the time the priorities are evaluated.

When a leaf node in branch A wants to preempt a token from branch B or C, branch C is picked because it has a lower
priority than branch B.

How preemption happens in a project group hierarchy
License preemption in License Scheduler takes place when no more free tokens are available, and there is at least one
underfed project and at least one overfed project. When PRIORITY is configured in the project group, License scheduler
can preempt license tokens at leaf nodes across the branches in the group hierarchy configuration.

By default, when no PRIORITY is configured in the project group, License Scheduler only preempts within a particular
branch for tokens to preempt. This approach works like a flat project configuration—projects are underfed only when
they have need and their inuse tokens are less than their owned tokens. Projects are overfed when their inuse tokens
are greater than their owned tokens.

Configure hierarchical project group preemption
Configure hierarchical project group preemption two ways:
• Top-down—License Scheduler always tries to preempt tokens from the projects that are furthest away in the

hierarchy first. This balances the token ownership from top to bottom. Top-down preemption does not support
ENABLE_MINJOB_PREEMPTION.

To enable top-down preemption, configure priorities for projects in the project group hierarchy. Top-down preemption
is the default when priorities are configured in a project group hierarchy.

Advanced Topics

80 Using Platform LSF License Scheduler

• Bottom-up—License Scheduler always tries to preempt tokens from the closest projects in the hierarchy first. This
balances token ownership from bottom to top. Bottom-up preemption does not conform to GROUP preemption
in a flat project group configuration. Bottom-up preemption does not support
ENABLE_MINJOB_PREEMPTION.

To enable bottom-up preemption, configure priorities for projects in the project group hierarchy, and specify
LS_PREEMPT_PEER=Y in the Parameters section of lsf.licensescheduler.

Hierarchical project group preemption examples
The following configuration examples use the ownership configuration illustrated in the following figure:

Top-down configuration
• Needs from a leaf node with ownership not satisfied:

P1: inuse=0

P2: inuse=2

P3: inuse=0

P4: inuse=2

If P1 needs one token, it will preempt one token from P4 instead of P2.

• Needs from a leaf node without ownership or ownership are already satisfied:

P1: inuse=2

P2: inuse=0

P3: inuse=0

P4: inuse=2

If P2 needs one token, it can trigger preemption and get one token from P4. Because the ownership of its grandparent
node (group A owns 3) is not satisfied.

• Add limits to the tree. Assume limits defined on the internal nodes are same as ownership: group B limits=2, group
A limits=3. Needs from a leaf node with ownership not satisfied:

P1: inuse=0

P2: inuse=2

P3: inuse=0

Advanced Topics

Using Platform LSF License Scheduler 81

P4: inuse=2

When P1 needs one token, it can only preempt from P2 because the limit of group B is 2 to satisfy the total limits in
that branch.

• Add limits to the tree. Assume limits defined on the internal nodes are same as ownership: group B limits=2, group
A limits=3. Needs from a leaf node without ownership or ownership are already satisfied:

P1: inuse=2

P2: inuse=0

P3: inuse=0

P4: inuse=2

If P2 needs one token, now because of limits, P2 can no longer preempt any tokens.

Bottom-up configuration
• Needs from a leaf node with ownership not satisfied:

P1: inuse=0

P2: inuse=2

P3: inuse=0

P4: inuse=2

If P1 needs one token, it will preempt from P2 (instead of P4 as in the top-down configuration). This balances token
preemption within its own sub-tree first.

• Needs from a leaf node without ownership or ownership are already satisfied:

P1: inuse=2

P2: inuse=0

P3: inuse=0

P4: inuse=2

If P2 needs one token, it can preempt a token form P4 because the ownership of its grandparent (group A) has not been
satisfied yet.

• Add limits to the tree. Assume limits defined on the internal nodes are same as ownership: group B limits=2, group
A limits=3. Needs from a leaf node with ownership not satisfied:

P1: inuse=0;

P2: inuse=2;

P3: inuse=0;

P4: inuse=2;

If P1 needs one token, it will preempt from P2, the closest leaf node, where the limits of this subtree have already been
met.

• Add limits to the tree. Assume limits defined on the internal nodes are same as ownership: group B limits=2, group
A limits=3. Needs from a leaf node without ownership or ownership are already satisfied:

P1: inuse=2

P2: inuse=0

Advanced Topics

82 Using Platform LSF License Scheduler

P3: inuse=0

P4: inuse=2

If P2 needs one token, it can no longer get tokens from the other branches because the limits of its parent node B have
already been reached.

Advanced Topics

Using Platform LSF License Scheduler 83

Configuring multiple administrators
The primary License Scheduler admin account must have write permissions in the LSF working directory of the primary
LSF admin account.

The administrator account uses a list of users that you specified when you installed LSF License Scheduler. Edit this
parameter if you want to add or change administrators. The first user name in the list is the primary License Scheduler
administrator. By default, all the working files and directories created by License Scheduler are owned by the primary
License Scheduler account.

1. Log on as the primary License Scheduler administrator.
2. In lsf.licensescheduler, edit the ADMIN parameter if you want to change the License Scheduler

administrator. You can specify multiple administrators separated by spaces.

For example:
ADMIN = lsfadmin user1 user2 root

3. Run bld -C to test for configuration errors.
4. Run bladmin reconfig all to make the changes take effect.

Advanced Topics

84 Using Platform LSF License Scheduler

Allocating license shares to clusters and
interactive jobs
With License Scheduler, you can allocate shares of license features across clusters and between LSF jobs and interactive
jobs run through the LSF Task Manager (taskman).
• You can globally enable a share of all license features for interactive tasks.
• You can configure the allocation of license shares to:

Change the share number between clusters for a feature

Limit the scope of license usage and change the share number between LSF jobs and interactive tasks for a feature

Enabling a share of licenses for interactive tasks
To globally enable one share of the licenses for interactive tasks, you must set the ENABLE_INTERACTIVE parameter
in lsf.licensescheduler.

In lsf.licensescheduler, edit the Parameters section:
Begin Parameters
...
ENABLE_INTERACTIVE = y
...
End Parameters

Tip:
By default, ENABLE_INTERACTIVE is not set. License Scheduler allocates
licenses equally to each cluster and does not distribute licenses for interactive
tasks.

Configuring allocation for specific features
To specify ALLOCATION for a specific feature, you set the ALLOCATION keyword in the Features section of
lsf.licensescheduler. This feature ignores the global setting of the ENABLE_INTERACTIVE parameter because
ALLOCATION is configured for the feature.

In lsf.licensescheduler, edit the Features section:
Begin Feature
NAME = AppX
DISTRIBUTION = LanServer1 (Lp1 1)
ALLOCATION = Lp1 (Cluster1 1 Cluster2 1 interactive 1)
End Feature

Default ALLOCATION setting
ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is not set.

Each cluster receives one share. Interactive tasks receive no shares.

Example
For two clusters and 12 licenses,
Begin Feature
NAME = AppX
DISTRIBUTION = LanServer (Lp1 1)
End Feature

Advanced Topics

Using Platform LSF License Scheduler 85

Six licenses are allocated to each cluster. No licenses are allocated to interactive tasks.

Changing the ALLOCATION configuration
You can edit the default ALLOCATION configuration, resulting in the following scenarios. Each example contains two
clusters and 12 licenses of a specific feature.

Example 1
ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is not set.
Begin Parameters
...
ENABLE_INTERACTIVE = n
...
End Parameters
Begin Feature
NAME = AppX
DISTRIBUTION = LanServer (Lp1 1)
End Feature

Six licenses are allocated to each cluster. No licenses are allocated to interactive tasks.

Example 2
ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is set.
Begin Parameters
...
ENABLE_INTERACTIVE = y
...
End Parameters

Begin Feature
NAME = AppX
DISTRIBUTION = LanServer (Lp1 1)
End Feature

Four licenses are allocated to each cluster. Four licenses are allocated to interactive tasks.

Example 3
In the following example, the ENABLE_INTERACTIVE parameter does not affect the ALLOCATION configuration
of the feature.

ALLOCATION is configured. The ENABLE_INTERACTIVE parameter is set.
Begin Parameters
...
ENABLE_INTERACTIVE = y
...
End Parameters
Begin Feature
NAME = AppY
DISTRIBUTION = LanServer (Lp1 1)
ALLOCATION = Lp1(cluster1 1 cluster2 0 interactive 1)
End Feature

The ENABLE_INTERACTIVE setting is overridden for feature AppY. Licenses are shared equally between cluster1
and interactive tasks. Six licenses of AppY are allocated to cluster1. Six licenses are allocated to interactive tasks.

Example 4
In the following example, the ENABLE_INTERACTIVE parameter does not affect the ALLOCATION configuration
of the feature.

Advanced Topics

86 Using Platform LSF License Scheduler

ALLOCATION is configured. The ENABLE_INTERACTIVE parameter is not set.
Begin Parameters
...
ENABLE_INTERACTIVE = n
...
End Parameters

Begin Feature
NAME = AppZ
DISTRIBUTION = LanServer (Lp1 1)
ALLOCATION = Lp1(cluster1 0 cluster2 1 interactive 2)
End Feature

The ENABLE_INTERACTIVE setting is ignored for feature AppZ. Four licenses of AppZ are allocated to cluster2.
Eight licenses are allocated to interactive tasks.

Enable a share of licenses for interactive tasks
1. To globally enable one share of the licenses for interactive tasks, you must set the

ENABLE_INTERACTIVE parameter in lsf.licensescheduler.

In lsf.licensescheduler, edit the Parameters section:
Begin Parameters

...

ENABLE_INTERACTIVE = y

...

End Parameters

By default, ENABLE_INTERACTIVE is not set. License Scheduler allocates licenses
equally to each cluster and does not distribute licenses for interactive tasks.

Configure allocation for specific features
1. To specify ALLOCATION for a specific feature, you set the ALLOCATION keyword in

the Features section of lsf.licensescheduler. This feature ignores the global setting of the
ENABLE_INTERACTIVE parameter because ALLOCATION is configured for the
feature.

In lsf.licensescheduler, edit the Features section:
Begin Feature

NAME = AppX

DISTRIBUTION = LanServer1 (Lp1 1)

ALLOCATION = Lp1 (Cluster1 1 Cluster2 1 interactive 1)

End Feature

Default ALLOCATION setting
ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is not set.

Each cluster receives one share. Interactive tasks receive no shares.

Advanced Topics

Using Platform LSF License Scheduler 87

Example
For two clusters and 12 licenses,
Begin Feature

NAME = AppX

DISTRIBUTION = LanServer (Lp1 1)

End Feature

Six licenses are allocated to each cluster. No licenses are allocated to interactive tasks.

Advanced Topics

88 Using Platform LSF License Scheduler

Application integrations
The examples described in this section demonstrate how you can integrate LSF License Scheduler with your applications.
Contact Platform Computing Professional Services for specific integration projects.

When should integration be considered?
Applications with licenses that come with several features require some configuration and are candidates for integration
with LSF License Scheduler. The application users may not know which license features they must check out. A script
is used to determine which license features require LSF License Scheduler tokens.

Integration requirements
• The applications must work with Platform LSF or LSF Task Manager (taskman)
• The applications should be able to release their licenses upon job suspension
• LSF License Scheduler is configured to preempt low priority jobs with higher priority jobs
• For job submission, the -Lp and -R options are required
• License projects must be defined in the lsf.licensescheduler file

Integration steps
1. Write a script that determines which license features are needed for a job. The script receives the license requirements

from application options or input files, where available, and outputs the information to the bsub command using
the following format:
AppLicense=1:Feature=1

2. Configure the application features and policy rules in the lsf.licensescheduler file.
3. Update wrapper scripts to call the script that outputs the feature information to the bsub command. Alternatively,

show application users how to submit their jobs with their required features in the bsub command.

Integration example: Synopsys Design Compiler licenses
Synopsys® Design Compiler® users run the Perl script with a .scr input file.

The Perl script, dc_features.pl is added to the LSF_BINDIR.

To use the Perl script in bash shell:
features=`dc_features.pl [optional parameters] -f synthesis.scr [optional parameters]`

if [$? = 0] ; then

Project="Lp1"

bsub -Lp $Project -R "rusage[$features]" dc_shell ... -f synthesis.scr ...

fi

Contact Platform Professional Services for usage in other shells or in Windows.

Job submission example:
bsub -Lp Lp1 -R "rusage[$features]" dc_shell -f afile.scr ...

Integration example: MSC Nastran licenses
MSC Nastran users run the Perl script with a .bdf input file.

The Perl script, nastran_features.pl is added to the LSF_BINDIR.

Advanced Topics

Using Platform LSF License Scheduler 89

To use the Perl script in C-shell:
set features=`nastran_features.pl [optional parameters] input.bdf batch=no

...

`

if ($status == 0) then

Project="Lp2"

 bsub -Lp $Project -R "rusage[$features]" nastran ... input.bdf batch=no ...

endif

Contact Platform Professional Services for usage in other shells or in Windows.

Job submission example:
bsub -Lp Lp2 -R "rusage[$features]" nastran -f afile.bdf batch=no ...

Advanced Topics

90 Using Platform LSF License Scheduler

License usage enforcement with FLEXnet
Depending on how each application uses the licenses, License Scheduler manages and enforces license usage in different
ways. License Scheduler has two levels of classifications for applications depending on how the application uses the
license features and whether these license features are known at the start of the job.

License Scheduler and FLEXnet work with both classes of applications.

Class A and B applications
Class A applications are those where all license features needed to run its jobs are known before the start of the job,
and these features are used for the entire job.

Class B applications are those where all license features needed to run the job are known before the start of the job, but
not all of these features are used all the time. The period of time that the license features are not in use are known to
License Scheduler, so additional requests for the unused license features can be handled appropriately using the Class
A request process.

Class A and B license requests
1. The user application makes a license usage request to the Platform LSF cluster.
2. LSF sends a query to License Scheduler to see if the license token can be given to the application.
3. When License Scheduler grants permission, LSF gives authorization to the user application.
4. The user application sends a request to FLEXnet to check out a license.

License resource duration
If you specify DYNAMIC=Y in the lsf.licensescheduler Feature section, you must specify a duration in an rusage
resource requirement for the feature. This enables License Scheduler to treat the license as a dynamic resource and
prevents License Scheduler from scheduling tokens for the feature when they are not available, or reserving license
tokens when they should actually be free.

For example, feature p1_2 is configured with DYNAMIC=Y:
Begin Feature
NAME = p1_2
DISTRIBUTION= Lan1 (a 1 b 1 c 1 default 1)
DYNAMIC=Y
End Feature

A job is submitted requesting license feature p1_2 with a duration of 2 minutes:
taskman -R "rusage[p1_2=1:duration=2]" myjob [1] 7141

myjob is granted the license token it requests:
blstat -t p1_2
FEATURE: p1_2
SERVICE_DOMAIN: Lan1
TOTAL_INUSE: 1 TOTAL_RESERVE: 0 TOTAL_FREE: 1 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
a 25.0 % 0 0 0 0 0
b 25.0 % 0 0 0 0 0
c 25.0 % 0 0 0 1 0
default 25.0 % 0 1 0 0 0

After the duration expires, myjob checks in the license, and the token for p1_2 is available again:
bltasks
TID USER STAT HOST PROJECT FEATURES CONNECT TIME
41 user1 RUN hostA default p1_2 Oct 27 07:15:10 %
blstat -t p1_2

Advanced Topics

Using Platform LSF License Scheduler 91

FEATURE: p1_2
SERVICE_DOMAIN: Lan1
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 2 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
a 25.0 % 0 0 0 0 0
b 25.0 % 0 0 0 1 0
c 25.0 % 0 0 0 1 0
default 25.0 % 0 0 0 0 0

Class C applications
Class C applications require an initial feature license to start a job and additional feature or sub-feature licenses during
job execution. The user who submits the job knows the main license feature needed to start the job, but might not know
the additional feature names or the number of additional features required. At any time, the user application can either
make a request to LSF without requesting verification from License Scheduler, or it can bypass LSF entirely by sending
the license request directly to the FLEXnet license servers.

Managed Class C license requests
1. The user application makes a request to LSF without requesting verification from License Scheduler.
2. LSF gives authorization to the user application because the request did not specify the need for License Scheduler

verification.
3. The user application sends a request to FLEXnet to check out a license.

Managing class C license checkout
To enforce license distribution policies for class C license features, configure ENABLE_DYNAMIC_RUSAGE=Y in
the feature section of lsf.licensescheduler

Example: managed class C workload
License feature feat2 is configured as a managed class C feature:
Begin Feature
NAME = feat2
DISTRIBUTION = LanServer(proj1 1 default 1)
ENABLE_DYNAMIC_RUSAGE = y
End Feature

User user1 submits a job to run app1, which specifies license feature feat1:
bsub -R "rusage[feat1=1]" -Lp proj1 app1

The job runs and license feat1 is checked out:
blstat FEATURE: feat1 SERVICE_DOMAIN: LanServer TOTAL_INUSE: 1 TOTAL_RESERVE: 0 TOTAL_FREE:
4 OTHERS: 0
 PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
 proj1 50.0 % 0 1 0 2 0
 default 50.0 % 0 0 0 3 0
FEATURE: feat2
SERVICE_DOMAIN: LanServer TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 10 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
 proj1 50.0 % 0 0 0 5 0
 default 50.0 % 0 0 0 5 0

blusers -l
FEATURE SERVICE_DOMAIN USER HOST NLICS NTASKS OTHERS DISPLAYS PIDS
feat1 LanServer user1 hostA 1 1 0 (/dev/tty) (16326)

% blusers -J
JOBID USER HOST PROJECT CLUSTER START_TIME
1896 user1 hostA proj1 cluster1 Aug 9 10:01:25
RESOURCE RUSAGE SERVICE_DOMAIN
feat1 1 LanServer

Advanced Topics

92 Using Platform LSF License Scheduler

Later, app1 checks out feature feat2. Since it was not specified at job submission, feat2 is a class C license checkout. But
since it is configured with ENABLE_DYNAMIC_RUSAGE=Y, jobs that require feat2 are considered managed
workload, and subject to the distribution policies of project proj1:
blstat
FEATURE: feat1
SERVICE_DOMAIN: LanServer
TOTAL_INUSE: 1 TOTAL_RESERVE: 0 TOTAL_FREE: 4 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
 proj1 50.0 % 0 1 0 2 0
 default 50.0 % 0 0 0 2 0

FEATURE: feat2
SERVICE_DOMAIN: LanServer
TOTAL_INUSE: 1 TOTAL_RESERVE: 0 TOTAL_FREE: 9 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
 proj1 50.0 % 0 1 0 4 0
 default 50.0 % 0 0 0 5 0

 blusers -l
FEATURE SERVICE_DOMAIN USER HOST NLICS NTASKS OTHERS DISPLAYS PIDS
feat1 LanServer user1 hostA 1 1 0 (/dev/tty) (16326)
feat2 LanServer user1 hostA 1 1 0 (/dev/tty) (16344)

blusers -J
JOBID USER HOST PROJECT CLUSTER START_TIME
1896 user1 hostA proj1 cluser1 Aug 9 10:01:25
RESOURCE RUSAGE SERVICE_DOMAIN
feat1 1 LanServer
feat2 1 (class-C) LanServer

Advanced Topics

Using Platform LSF License Scheduler 93

Using license feature locality
License feature locality allows you to limit features from different service domains to a specific cluster, so that License
Scheduler does not grant tokens to jobs from license that legally cannot be used on the cluster requesting the token.

Example configuration: 2 sites and 4 service domains
Some of your service domains may have geographical restrictions when serving licenses. In this example, two clusters
in one location can run hspice jobs. and 4 service domains are defined for the hpsice feature:

• SD1 is a local license file for clusterA with 25 hspice licenses
• SD2 is a local license file for clusterB with 65 hspice licenses
• SD3 is a WANable license with 15 hspice licenses
• SD4 is a globally WANable license with 7 hspice licenses

The geographical license checkout restrictions are:

• Jobs in clusterA can check out licenses from SD1 SD3 and SD4 but not SD2
• Jobs in clusterB can check out licenses from SD2 SD3 and SD4 but not SD1

Configuring license feature locality (LOCAL_TO)
Use LOCAL_TO in the feature configuration in lsf.licensescheduler to configure token locality for the license
feature. You must configure different feature sections for same feature based on their locality.

LOCAL_TO allows you to limit features from different service domains to specific clusters, so License Scheduler only
grants tokens of a feature to jobs from clusters that are entitled to them.

By default, if LOCAL_TO is not defined, the feature is available to all clients and is not restricted by geographical
location. When LOCAL_TO is configured, for a feature, License Scheduler treats license features served to different
locations as different token names, and distributes the tokens to projects according the distribution and allocation
policies for the feature.

For example, if your license servers restrict the serving of license tokens to specific geographical locations, use
LOCAL_TO to specify the locality of a license token if any feature cannot be shared across all the locations. This avoids
having to define different distribution and allocation policies for different service domains, and allows hierarchical
group configurations.

License Scheduler manages features with different localities are different resources. Use blinfo, blusers, and
blstat to see the different resource information for the features depending on their cluster locality.

License features with different localities must be defined in different feature sections. The same Service Domain can
appear only once in the configuration for a given license feature.

A configuration like LOCAL_TO=Site1(clusterA clusterB) configures the feature for more than one cluster.

A configuration like LOCAL_TO=clusterA configures locality for only one cluster. This is the same as
LOCAL_TO=clusterA(clusterA).

Cluster names must be the names of clusters defined in the Clusters section of lsf.licensescheduler.

Advanced Topics

94 Using Platform LSF License Scheduler

Examples:
Begin Feature

NAME = hspice

DISTRIBUTION = SD1 (Lp1 1 Lp2 1)

LOCAL_TO = siteUS(clusterA clusterB)

End Feature

Begin Feature

NAME = hspice

DISTRIBUTION = SD2 (Lp1 1 Lp2 1)

LOCAL_TO = clusterA

End Feature

Begin Feature

NAME = hspice

DISTRIBUTION = SD3 (Lp1 1 Lp2 1) SD4 (Lp1 1 Lp2 1)

End Feature

Or use the hierarchical group configuration (GROUP_DISTRIBUTION):
Begin Feature

NAME = hspice

GROUP_DISTRIBUTION = group1

SERVICE_DOMAINS = SD1

LOCAL_TO = siteUS(clusterA clusterB)

End Feature

Begin Feature

NAME = hspice

GROUP_DISTRIBUTION = group1

SERVICE_DOMAINS = SD2

LOCAL_TO = clusterA

End Feature

Begin Feature

NAME = hspice

GROUP_DISTRIBUTION = group1

SERVICE_DOMAINS = SD3 SD4

End Feature

How locality works
When LOCAL_TO is specified in the feature definition in lsf.licensescheduler, license resources requested from
different clusters are mapped to different tokens in License Scheduler

You must make sure that your features are configured so that the applications always first tries to checkout licenses
locally.

Advanced Topics

Using Platform LSF License Scheduler 95

Features with different locality are treated a different tokens by License Scheduler. You must configure separate feature
sections for same feature with different localities. For example, feature hspice, because of locality, comprises three
different tokens, hspice@clusterA, hspice@clusterB, and hspice (without locality).

How job license demand is passed to License Scheduler
When License Scheduler receives license requests from LSF, it knows where the request is from, and it will interpret
the request into demands for tokens usable by that cluster. For example, if clusterA sends a request to bld asking for
1 hspice license, License Scheduler marks the demand for both hspice@clusterA and hspice. When the job gets either
token to run, the demand will be cleaned up for both tokens.

Submitting jobs to use license feature locality
When LOCAL_TO is specified for a feature, job submission is simplified. To request a particular license, specify the
resource usage string with the same resource name you see in bhosts -s. No OR rusage string is needed. For example:
bsub -Lp Lp1 -R "rusage[hspice=1]" myjob

Viewing feature locality information
When LOCAL_TO is configured for a feature in lsf.licensescheduler, blinfo shows general cluster locality
information and distribution for the features.
blinfo
FEATURE SERVICE_DOMAIN TOTAL DISTRIBUTION

hspice SD3 15 [Lp1, 50.0%] [Lp2, 50.0%]

hspice SD4 7 [Lp1, 50.0%] [Lp2, 50.0%]

hspice@clusterA SD1 25 [Lp1, 50.0%] [Lp2, 50.0%]

hspice@siteB SD2 65 [Lp1, 50.0%] [Lp2, 50.0%]

Advanced Topics

96 Using Platform LSF License Scheduler

When LOCAL_TO is configured for a feature in lsf.licensescheduler, blinfo -A shows the feature allocation
by cluster locality.
blinfo -A
FEATURE PROJECT ALLOCATION

hspice Lp1 [clusterA, 25.0%] [clusterB, 25.0%]

 [clusterC, 25.0%] [interactive, 25.0%])

 Lp2 [clusterA, 50.0%] [clusterB, 50.0%])

hspice@clusterA Lp1 [clusterA, 100.0%])

 Lp2 [clusterA, 100.0%])

hspice@siteB Lp1 [clusterB, 80.0%] [clusterC, 20%])

 Lp2 [clusterB, 80.0%] [clusterC, 20%])

hspice@clusterC Lp1 [clusterC, 60.0%] [interactive, 40.0%)

 Lp2 [clusterC, 60.0%] [interactive, 40.0%)

 Lp3 [clusterC, 60.0%] [interactive, 40.0%)

vcs Lp1 [clusterA, 33.0%] [clusterB, 33.0%]

 [interactive, 33.0%])

 Lp2 [clusterA, 50.0%] [clusterB, 50.0%])

vcs@clusterA Lp1 [clusterA, 100.0%])

 Lp2 [clusterA, 100.0%])

vcs@siteB Lp1 [clusterB, 80.0%] [clusterC, 20%])

 Lp2 [clusterB, 80.0%] [clusterC, 20%])

vcs@clusterC Lp1 [clusterC, 60.0%] [interactive, 40.0%)

 Lp2 [clusterC, 60.0%] [interactive, 40.0%)

 Lp3 [clusterC, 60.0%] [interactive, 40.0%)

Advanced Topics

Using Platform LSF License Scheduler 97

When LOCAL_TO is configured for a feature, blinfo -C shows the cluster locality information for the features.
blinfo -C
NAME: hspice FLEX_NAME: hspice

 CLUSTER_NAME FEATURE SERVICE_DOMAINS

 clusterA hspice SD3 SD4

 hspice@clusterA SD1

 clusterB hspice SD3 SD4

 hspice@siteB SD3

 clusterC hspice SD3 SD4

 hspice@siteB SD3

 hspice@clusterC SD5

NAME: vcs FLEX_NAME: VCS_Runtime

 CLUSTER_NAME FEATURE SERVICE_DOMAINS

 clusterA vcs SD3 SD4

 vcs@clusterA SD1

 clusterB vcs SD3 SD4

 vcs@siteB SD3

 clusterC vcs SD3 SD4

 vcs@siteB SD3

 vcs@clusterC SD5

blusers
When LOCAL_TO is configured for a feature in lsf.licensescheduler, blusers shows the cluster locality
information for the features.
blusers
FEATURE SERVICE_DOMAIN USER HOST NLICS NTASKS

hspice@clusterA SD1 user1 host1 1 1

hspice@siteB SD2 user2 host2 1 1

blstat
When LOCAL_TO is configured for a feature in lsf.licensescheduler, blstat shows the cluster locality information
for the features.

With the group distribution configuration:
blstat
FEATURE: hspice

 SERVICE_DOMAIN: SD3 SD4

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 22 OTHERS: 0

PROJECT SHARE OWN INUSE RESERVE FREE DEMAND

Lp1 50.0 % 0 0 0 11 0

Advanced Topics

98 Using Platform LSF License Scheduler

Lp2 50.0 % 0 0 0 11 0

FEATURE: hspice@clusterA

 SERVICE_DOMAIN: SD1

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 25 OTHERS: 0

PROJECT SHARE OWN INUSE RESERVE FREE DEMAND

Lp1 50.0 % 0 0 0 12 0

Lp2 50.0 % 0 0 0 13 0

FEATURE: hspice@siteB

 SERVICE_DOMAIN: SD2

 TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 65 OTHERS: 0

PROJECT SHARE OWN INUSE RESERVE FREE DEMAND

Lp1 50.0 % 0 0 0 32 0

Lp2 50.0 % 0 0 0 33 0

bhosts -s
When LOCAL_TO is configured for a feature in lsf.licensescheduler, bhosts -s shows different resource
information depending on the cluster locality of the features.

From clusterA:
bhosts -s
RESOURCE TOTAL RESERVED LOCATION

hspice 36.0 0.0 host1

From clusterB in siteB:
bhosts -s
RESOURCE TOTAL RESERVED LOCATION

hspice 76.0 0.0 host2

How LOCAL_TO works with the other feature section parameters
The following table shows various combinations of LOCAL_TO and other feature section parameters:

NAME FLEX_NAME

1 AppX -

2 AppZ201 201-AppZ

3 AppB_v1 AppB

1. The feature name is same as the real FLEXnet name. Without LOCAL_TO, the feature name AppX cannot be
duplicated in feature section. Only one feature section can contain the NAME=AppX.

2. LSF does not support names that start with a number, or names containing a dash or hyphen character (-), even
though they are valid FLEXnet feature names. For these feature names, you must set both NAME and FLEX_NAME
in the Features section of lsf.licensescheduler. FLEX_NAME is the actual FLEXnet feature name, and NAME

Advanced Topics

Using Platform LSF License Scheduler 99

is an arbitrary license token name you choose. Without LOCAL_TO, NAME and FLEX_NAME cannot be in more
than one feature section.

3. You can define different License Scheduler tokens for the same FLEXnet feature. The the service domain names (in
either the DISTRIBUTIONS line or the SERVICE_DOMAINS for group configurations) of the same FLEXnet
feature in different feature sections must be exclusive. They cannot overlap.

4. When LOCAL_TO is configured for a feature, you can define different License Scheduler tokens for the same
FLEXnet feature with different localities. The constraints are:

• For the same FLEXnet feature, service domains must be exclusive.
• The location name of LOCAL_TO defines the locality of that feature, so the name must be unique for all tokens

with same FLEXnet feature.
• You should use same location name for different FLEXnet features with the same pattern of locality, but License

Scheduler will not check whether the same location name of a different feature contains the same list of clusters.

1. Features must either have a different NAME or have LOCAL_TO defined. The service domains for each LS token
of same FLEXnet feature must be exclusive.

How LOCAL_TO works with ALLOCATION and
ENABLE_INTERACTIVE
The LOCAL_TO parameter simplifies the ALLOCATION configuration. Most of the time you are only interested in
who can participate to share a particular token. LOCAL_TO gives the equal share for all the clusters defined in
LOCAL_TO and applies to all the projects. Use ALLOCATION to fine tune the shares for individual projects between
different clusters:

• Except for the keyword interactive, all the cluster names defined in ALLOCATION must also be defined in the
LOCAL_TO parameter.

• The global parameter ENABLE_INTERACTIVE and ALLOCATION with interactive share defined works same as
before. If ALLOCATION is configured, it ignores the global setting of the ENABLE_INTERACTIVE parameter.

• If ALLOCATION is not defined, but LOCAL_TO is defined, the default value for ALLOCATION will be equal
shares for all the clusters defined in LOCAL_TO parameter. This applies to all license projects defined in
DISTRIBUTION or GROUP_DISTRIBUTION.

• If both ALLOCATION and LOCAL_TO are defined, ALLOCATION parameter can be used to fine tune the shares
between the clusters for different projects.

The following table shows example configurations with two clusters and 12 hspice licenses distributed as follows:
DISTRIBUTION = LanServer (Lp1 1 Lp2 1)

ENABLE_INTERACTIVE LOCAL_TO ALLOCATION

No SiteA(clusterA interactive) —

No clusterA Lp1(clusterA 0 clusterB 1)

No clusterA Lp1(clusterA 1)\

Lp2(clusterA 1)

About interactive taskman jobs
The License Scheduler command taskman is a job starter for interactive jobs to use License Scheduler without bsub.
taskman checks out a license token and manages interactive UNIX applications. If LOCAL_TO is specified for a feature,

Advanced Topics

100 Using Platform LSF License Scheduler

taskman jobs need to specify feature names with locality information similar to submission with bsub. You need to
know which token can be used from the location where task is going to run. For example:
taskman -Lp P1 -R "rusage[hspice@siteB=1]" myjob

taskman -Lp P1 -R "rusage[hspice=1]" myjob

taskman -Lp P1 -R "rusage[hspice@clusterA=1]" myjob

Advanced Topics

Using Platform LSF License Scheduler 101

User authentication
When a user claims a job belongs a project, License Scheduler checks if this user belongs to this project, since projects
assign fairshare priority, and preemption is based on ownership. When users submit jobs to license projects they do
not belong to, the request is refused, or the job gets put in a "default" bucket with a low number of shares or no shares
at all.

Administrators can control who can run what project. By default, such authentication is not enabled for compatibility
with the previous versions of License Scheduler.

When enabled, user authentication has the following behavior:

• If the user belongs to the project, allow the license request
• If the user does not belong to the project or the project does not match any projects in the configuration, reject the

request
• If a default project is configured in the LS user authentication configuration file ls.users, change the project to

default and allow the license request
• If the project equals default, no authentication is needed, allow the request

Enable user authentication
• For LSF jobs, configure LSF to use the authentication esub (esub.ls_auth). In lsf.conf, add the line:
LSB_ESUB_METHOD=ls_auth

• For taskman jobs, define AUTH=Y in lsf.licensescheduler.
• Configure users and their associated projects in the LSF_CONFDIR/ls.users file.

Users must make sure projects configured in ls.users, including the default project, conform to
lsf.licensescheduler configuration.

Sample ls.users file
The format is same as /etc/group

#

client_name1:::user1,user2,user3

Each line represents client, the client name is followed by

a colon.

Project1:::user1,user2

Project2:::user1,user2,user3

default:::

Advanced Topics

102 Using Platform LSF License Scheduler

Time syntax and configuration
Using automatic time-based configuration

Variable time-based configuration is used to automatically change LSF License Scheduler
configuration in lsf.licensescheduler based on time windows. For example, if you have
design centers in remote locations, one use of time-based configuration is to switch ownership
of license tokens based on local time of day.

You define automatic configuration changes in lsf.licensescheduler by using if-else
constructs and time expressions. After you change the files, reconfigure the cluster with the
bladmin reconfig command.

The expressions are evaluated by LSF License Scheduler every 10 minutes based on bld start
time. When an expression evaluates true, License Scheduler dynamically changes the
configuration based on the associated configuration statements and restarts bld

In the following examples, the #if, #else, #endif keywords are not interpreted as comments by
License Scheduler, but as if-else constructs.

Specifying time values
To specify a time value, a specific point in time, specify at least the hour. Day and minutes are
optional.

Time value syntax
time = hour | hour:minute | day:hour:minute

hour
integer from 0 to 23, representing the hour of the day.

minute
integer from 0 to 59, representing the minute of the hour.

If you do not specify the minute, License Scheduler assumes the first minute of the hour (:00).

day
integer from 0 to 7, representing the day of the week, where 0 represents every day, 1 represents
Monday, and 7 represents Sunday.

If you do not specify the day, License Scheduler assumes every day. If you do specify the day,
you must also specify the minute.

Specifying time windows
To specify a time window, specify two time values separated by a hyphen (-), with no space in
between.
time_window = time1-time2

time1 is the start of the window and time2 is the end of the window. Both time values must
use the same syntax. Use one of the following ways to specify a time window:

Advanced Topics

Using Platform LSF License Scheduler 103

• hour-hour
• hour:minute-hour:minute
• day:hour:minute-day:hour:minute

Examples of time windows
Daily window

To specify a daily window omit the day field from the time window. Use either the hour-
hour or hour:minute-hour:minute format. For example, to specify a daily 8:30 a.m. to 6:30
p.m window:
8:30-18:30

Overnight window
To specify an overnight window make time1 greater than time2. For example, to specify 6:30
p.m. to 8:30 a.m. the following day:
18:30-8:30

Weekend window
To specify a weekend window use the day field. For example, to specify Friday at 6:30 p.m to
Monday at 8:30 a.m.:
5:18:30-1:8:30

Specifying time expressions
Time expressions use time windows to specify when to change configurations.

Time expression syntax
A time expression is made up of the time keyword followed by one or more space-separated
time windows enclosed in parenthesis. Time expressions can be combined using the &&, ||,
and ! logical operators.

The syntax for a time expression is:
expression = time(time_window[time_window ...])
 | expression && expression
 | expression || expression
 | !expression

Example
Both of the following expressions specify weekends (Friday evening at 6:30 p.m. until Monday
morning at 8:30 a.m.) and nights (8:00 p.m. to 8:30 a.m. daily).
time(5:18:30-1:8:30 20:00-8:30)

time(5:18:30-1:8:30) || time(20:00-8:30)

Creating if-else constructs
The if-else construct can express single decisions and multi-way decisions by including elif
statements in the construct.

Advanced Topics

104 Using Platform LSF License Scheduler

If-else
The syntax for constructing if-else expressions is:
#if time(expression) statement #else statement #endif

The #endif part is mandatory and the #else part is optional.

elif
The #elif expressions are evaluated in order. If any expression is true, the associated statement
is used, and this terminates the whole chain.

The #else part handles the default case where no other conditions are satisfied.

When you use #elif, the #else and #endif parts are required.
#if time(expression)
statement
#elif time(expression)
statement
#elif time(expression)
statement
#else
statement
#endif

Verify configuration
Use the following LSF commands to verify configuration:

• bladmin ckconfig
• blinfo
• blstat

Examples
Flat project configuration

Begin Feature

NAME = f1

#if time(5:16:30-1:8:30 20:00-8:30)

DISTRIBUTION=Lan(P1 2/5 P2 1)

#elif time(3:8:30-3:18:30)

DISTRIBUTION=Lan(P3 1)

#else

DISTRIBUTION=Lan(P1 1 P2 2/5)

#endif

End Feature

Advanced Topics

Using Platform LSF License Scheduler 105

Hierarchical project configuration
#

ProjectGroup section

#

Begin ProjectGroup

GROUP SHARES OWNERSHIP LIMITS NON_SHARED

(group1 (A B)) (1 1) (5 -) () ()

End ProjectGroup

Begin ProjectGroup

GROUP SHARES OWNERSHIP LIMITS NON_SHARED

(group2 (A B)) (1 1) (- 5) () ()

End ProjectGroup

#

Feature section

#

Begin Feature

NAME = f1

#if time(5:16:30-1:8:30 20:00-8:30)

GROUP_DISTRIBUTION=group1

#elif time(3:8:30-3:18:30)

GROUP_DISTRIBUTION=group2

#else

GROUP_DISTRIBUTION=group2

#endif

SERVICE_DOMAINS=Lan1 Lan2

End Feature

Advanced Topics

106 Using Platform LSF License Scheduler

Managing error logs
Error logs maintain important information about LSF License Scheduler operations. When you see any abnormal
behavior in License Scheduler, you should first check the appropriate error logs to find out the cause of the problem.

Log files grow over time. These files should occasionally be cleared, either by hand or using automatic scripts.

Daemon error logs
Log files are reopened each time a message is logged, so if you rename or remove a daemon log file, the daemons will
automatically create a new log file.

The License Scheduler daemons log messages when they detect problems or unusual situations. The daemons can be
configured to put these messages into files. The error log file names for the LSF License Scheduler system daemons are:

• bld.log.host_name
• blcollect.log.host_name

License Scheduler daemons log error messages in different levels so that you can choose to log all messages, or only log
messages that are deemed critical.

Controlling error message logging level
License Scheduler logs error messages in different levels so that you can choose to log all messages, or only log messages
that are deemed critical.

Set LS_LOG_MASK in lsf.licensescheduler to control message logging for License Scheduler daemons.
LS_LOG_MASK Specifies the logging level of error messages for LSF License Scheduler daemons.

The level specified by LS_LOG_MASK determines which messages are recorded and which are discarded. All messages
logged at the specified level or higher are recorded, while lower level messages are discarded.

If LS_LOG_MASK is not defined, the value of LSF_LOG_MASK in lsf.conf is used. If neither LS_LOG_MASK nor
LSF_LOG_MASK is defined, the default is LOG_WARNING.

The log levels in order from highest to lowest are:

• LOG_WARNING
• LOG_DEBUG
• LOG_DEBUG1
• LOG_DEBUG2
• LOG_DEBUG3

The most important License Scheduler log messages are at the LOG_WARNING level. Messages at the LOG_DEBUG
level are useful for debugging.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for
basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log files to grow very large;
it is not often used. Most debugging is done at the level LOG_DEBUG2.

Advanced Topics

Using Platform LSF License Scheduler 107

Setting bld daemon message log to debug
level
The message log level for LSF daemons is set in lsf.licensescheduler with the parameter LS_LOG_MASK. To
include debugging messages, set LS_LOG_MASK to one of:

• LOG_DEBUG
• LOG_DEBUG1
• LOG_DEBUG2
• LOG_DEBUG3

By default, LS_LOG_MASK=LOG_WARNING, and debugging messages are not displayed.

The debugging log classes for License Scheduler daemons is set in lsf.licensescheduler with the parameter
LS_DEBUG_BLD.

The location of log files is specified with the parameter LSF_LOGDIR in lsf.conf.

You can use the and bladmin command to temporarily change the class, log file, or message log level for the bld
daemon without changing lsf.licensescheduler.

How the message log level takes effect
The message log level you set will only be in effect from the time you set it until you turn it off or the daemon stops
running, whichever is sooner. If the daemon is restarted, its message log level is reset back to the value of LS_LOG_MASK
and the log file is stored in the directory specified by LSF_LOGDIR.

Debug command for daemons
The following command sets temporary message log level options for bld:
bladmin blbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o]

If bladmin blddebug is used without any options, the following default values are used:

• class_name=0 (no additional classes are logged)
• debug_level=0 (LOG_DEBUG level in parameter LS_LOG_MASK)
• logfile_name=current LSF system log file in the LSF system log file directory, in the format

daemon_name.log.host_name

For a detailed description of bladmin blddebug, see the Platform LSF Command Reference.

Debug command for blcollect
The following command sets temporary message log level options for blcollect:
bladmin blcdebug [-l debug_level] [-f logfile_name] [-o] collector_name ... | all

If bladmin blcdebug is used without any options, the following default values are used:

• debug_level=0 (LOG_DEBUG level in parameter LS_LOG_MASK)
• logfile_name=current LSF system log file in the LSF system log file directory, in the format

daemon_name.log.host_name
• collector_name=default

For a detailed description of bladmin blcdebug, see the Platform LSF Command Reference.

Advanced Topics

108 Using Platform LSF License Scheduler

Examples
bladmin blddebug -o

Turn off temporary debug settings for bld on the local host (host from which the command was submitted) and reset
them to the daemon starting state. The message log level is reset back to the value of LS_LOG_MASK and classes are
reset to the value of LS_DEBUG_BLD. The log file is reset to the LSF system log file in the directory specified by
LSF_LOGDIR in the format bld.log.host_name.
bladmin blddebug -l 1 -c "LC_TRACE LC_FLEX"

Log messages for bld running on the local host and set the log message level to LOG_DEBUG1. This command must
be submitted from the host on which bld is running. The log class is LC_TRACE LC_FLEX.
bladmin blddebug -f hostB/myfolder/myfile

Log messages for bld to the folder myfolder on the server hostB, with the file name myfile.bld.log.hostA. The
debug level is the default value, LOG_DEBUG level in parameter LS_LOG_MASK.

bladmin blcdebug -l 2

The log mask of the default collector will be changed to LOG_DEBUG2..

bladmin blcdebug -l 3 all

The log mask of all collectors is changed to LOG_DEBUG3.

blcollect log messages
Messages logged by blcollect include the following information:

• Time—The message log time.
• blcollect name—The service domain name, which is the license server host name , accessed by blcollect as defined

in lsf.licensescheduler
• Status report for feature collection—blcollect information gathered successfully or not
• Detailed information—the number of tokens, the name of tokens, the license server name for license tokens collected

by blcollect.

Advanced Topics

Using Platform LSF License Scheduler 109

License maximization
The built-in functionality of License Scheduler helps ensure that your licenses are always being used efficiently. For
example, if the sbatchd encounters any problems, the job acquires the state UNKNOWN. However, License Scheduler
ensures that any in use licenses continue to be allocated, but charges them to the OTHERS category until the
sbatchd recovers and the job state is known again.

Advanced Topics

110 Using Platform LSF License Scheduler

Add project description
You can add a project description of up to 64 characters to your projects or project groups to help identify them.

1. In the Project section of lsf.licensescheduler, find the project you want to add a description for..
2. Add descriptions in the appropriate locations.
3. Save and close the file.
4. Run badmin reconfig.

When running blinfo -Lp or blinfo -G, any existing project descriptions display.

Advanced Topics

Using Platform LSF License Scheduler 111

Advanced Topics

112 Using Platform LSF License Scheduler

6
Frequently Asked Questions

C H A P T E R

Using Platform LSF License Scheduler 113

FAQs
Why does the license not become available after I suspend the job
that is using it?
1. You submit a job to a license project that requires a specific license.
2. You submit a second higher priority job that requires this license. No licenses are free.
3. You suspend the first job to release the license it is using.
4. The second job starts but fails because it cannot obtain the required license.

Solution: Suspend the job with bkill -s TSTP. This sends a SIGTSTP signal to the job, suspends the job, and releases
the license that the job was using.

Why does lsf not recognize the names of features I configured in
lsf.licensescheduler?
1. You installed LSF License Scheduler.
2. You configured new license features in the License Scheduler configuration file, lsf.licensescheduler.
3. You reconfigured the License Scheduler daemon (bld) with bladmin reconfig all.
4. You submit a job that requires the new feature you configured. For example:

bsub -R "rusage[feature_name=1]" ...
5. LSF does not recognize the feature name and you receive the following error:

Bad resource requirement syntax. Job not submitted.

Solution: Run badmin reconfig to reconfigure mbatchd if you have added new features to lsf.licensescheduler. You
must reconfigure mbatchd after you install License Scheduler and configure your license features. You must also
reconfigure mbatchd each time you add a new license feature. LSF treats license tokens as LSF resources, and
mbatchd must be reconfigured to recognize the resources if they change.

Note:
If you increase the number of tokens for a license feature, you do not need to
reconfigure mbatchd. You only reconfigure mbatchd if you add a new license
feature.

Why does blhosts -s display license tokens after you shut down the
LSF License Scheduler daemon (bld)?
The License Scheduler daemon (bld) keeps a local backup database of all the license tokens in LSB_SHAREDIR/
cluster_name/log_dir/lsb.tokens. This backup file provides redundancy for License Scheduler when it runs in a
WAN configuration.

mbatchd can still read this file after you shut down bld.

If you do not want mbatchd to recognize the license token names, you can remove the backup file and reconfigure
mbatchd by running badmin reconfig.

Frequently Asked Questions

114 Using Platform LSF License Scheduler

Why does my job submission fail when the license feature name
includes numbers?
Normally, license token names should be the same as the FLEXnet feature names, as they represent the same license.
However, LSF does not support names that start with a number, or names containing a dash or hyphen character (-),
which may be used in the FLEXnet feature name.

Solution: Set both NAME and FLEX_NAME in the Features section of lsf.licensescheduler. FLEX_NAME is
the actual FLEXnet feature name, and NAME is an arbitrary license token name you choose that does not start with a
number or contain a dash.

Example:
Begin Feature
FLEX_NAME=201-AppZ
NAME=AppZ201
DISTRIBUTION=LanServer1(Lp1 1 Lp2 1)
End Feature

I see the following error in the bld.log: server_name file: globInit():
cannot initialize the listening TCP - 2 channel Address already in
use.
1. You edit the LSF_CONFDIR/lsf.conf file to include a list of hosts for the LSF_LIC_SCHED_HOSTS parameter.
2. You run lsadmin reconfig to reconfigure the LIM.
3. You use ps -efl | grep bld to make sure that bld is running on the candidate hosts, but find that bld is not

running on the server_name host.
4. You view the bld.log.server_name file and see the following error message:

globInit(): cannot initialize the listening TCP -2 channel Address already in use

Explanation: Normally, the LSF LIM daemon starts the License Scheduler daemon (bld) automatically on startup. If
you already started bld manually, the LSF LIM daemon still tries to start bld, but the port used by bld is already open.

Solution: Run bladmin shutdown to shut down License Scheduler. The LSF LIM starts bld automatically. Run badmin
reconfig to reconfigure mbatchd.

Why does the job pending reason show the wrong license feature?
1. You have two License Scheduler resources: feat2 and feat3, both with value 10.
2. Submit a job with rusage[feat2=11:feat3=1]"
3. bjobs pending reason shows (feat3) not satisfied when it should be (feat2) not satisfied.

Reason: When scheduling a job that requests license resources, mbatchd sends a request to bld to reserve the requested
licenses for the job. This will take some time. During this time, the requested license resources are not available and
mbschd sets the pending reason.

Solution: Wait a few moments for mbatchd to get the license resource and passed it to mbschd, and run bjobs again
to see the correct pending reason.

I see the following error when running LSF License Scheduler
commands: Network I/O error with the License Scheduler server
1. You are running LSF License Scheduler on a Windows client.
2. You run an LSF License Scheduler command and see the following error message:

Frequently Asked Questions

Using Platform LSF License Scheduler 115

Network I/O error with the License Scheduler Server.
3. You see the following message in the mbatchd log file:

callglb(): cc -1Failed in an LSF library call: Failed in sending/receiving a message: error 0: The operation completed
successfully

Reason: The master host does not recognise your Windows client when you try to issue LSF License Scheduler
commands to bld because you did not specify your Windows client host name and IP address in the /etc/hosts file
on the master host.

Solution: Add your Windows client host name and IP address to the /etc/hosts file on the master host.

Frequently Asked Questions

116 Using Platform LSF License Scheduler

Index
A
ADMIN

lsf.licensescheduler file Parameters section
configuring 84

administrators
configuring multiple 84

ALLOCATION
lsf.licensescheduler file Feature section

configuring 85
ALLOCATION configuration

changing 86
applications

integrating License Scheduler with 89
automatic time-based configuration

description 103

B
badmin reconfig 65
bladmin chkconfig command

checking time-based configuration 105
bladmin reconfig

after changing configuration 26
LSF License Scheduler in a WAN 65
multiple LSF License Scheduler administrators 84

BLC_HEARBEAT_FACTOR
lsf.licensescheduler file Parameters section 69

blcdebug command 108
blcollect failover 69
blcollect.log.host_name file 107
bld -C

after administrator configuration 84
after WAN configuration 65
testing configuration changes 26

bld.log.host_name file 107
blddebug command 108
blinfo command

checking time-based configuration 105
blstat command 52

checking time-based configuration 105

C

cannot initialize the listening TCP 115
Class A applications 91
Class B applications 91
Class C applications 92
CLUSTERS

lsf.licensescheduler file 29
Clusters section

lsf.licensescheduler file
configuring 29

D

daemons
debug commands 108
error logs 107
starting 32

data collection
distributing 72

debug level
commands for daemons 108
setting temporarily 108

default
lsf.licensescheduler file Feature section 30

default projects
configuring 49
priority 28

design center use cases 11
DISTRIBUTION

lsf.licensescheduler file Feature section
license ownership 45

distribution policies
configuring 48

DYNAMIC
lsf.licensescheduler file Feature section 91

E

ENABLE_DYNAMIC_RUSAGE

Using Platform LSF License Scheduler 117

lsf.licensescheduler file Feature section
using 92

ENABLE_INTERACTIVE
lsf.licensescheduler file Parameters section

license shares for interactive tasks 85, 87
error logs

License Scheduler daemons 107
log files 107
LS_LOG_MASK parameter 107
managing log files 107

examples
configuration 27
failover in a LAN 62
failover in a WAN 65

F
failover

blcollect 69
FLEXnet integration 69
in a WAN 64

fairshare policies
example 14

feature names not recognized 114
Feature section

lsf.licensescheduler file
configuring 30

feature wrong
job pending reason 115

files
lsf.conf

LSF License Scheduler parameters 25
lsf.licensescheduler 25
setup.config 22

FLEX_NAME
lsf.licensescheduler file Feature section

aliasing license token names 51
configuring 30

FLEXnet integration failover 69

G
GROUP

lsf.licensescheduler file Feature section
configuring 76

H
HOSTS

lsf.licensescheduler file Parameters section
configuring 27

I

if-else constructs
creating 104

installation
as a standalone product

UNIX 22
with LSF

Windows 21, 22
installation requirements 20
integrations

with License Scheduler 89
interactive jobs

license shares for LSF Task Manager (taskman) jobs 85
LSF Task Manager (taskman) 8

J

job pending reason
wrong license feature 115

job submission fails 115
jobs

submitting 34

L

LIC_COLLECTOR
lsf.licensescheduler file ServiceDomain section

configuring 30
lsf.licensescheduler ServiceDomain section

configuring 72
LIC_SERVERS

lsf.licensescheduler file ServiceDomain section
configuring 30

license not available 114
license ownership and sharing

configuring 48
License Scheduler

installing
UNIX 22
Windows 21, 22

starting 32
License Scheduler daemon error logs 107
License Scheduler server

network I/O error 115
license server hosts

redundant 30
licenses

118 Using Platform LSF License Scheduler

allocating shares 85
calculating shares and owned 45
configuring distribution of 48
configuring owned non-shared 49
configuring owned shared 48
different versions 74
distributing 42
distributing data collection 72
group ownership 75
obtaining from Platform Computing 20
optimizing 34
ownership and preemption 43
reserving for a job 34
sharing 42
tracking 52
viewing available 52

LM_STAT_INTERVAL
lsf.licensescheduler file Parameters section

configuring 27
lsf.licensescheduler ServiceDomain section

configuring 72
LMSTAT_PATH

lsf.licensescheduler file Parameters section
configuring 27

log files
blcollect.log.host_name 107
bld.log.host_name 107
maintaining 107
managing 107

logical operators
in time expesssions 104

LS_ADMIN option
setup.config file 22

LS_ENABLE_MAX_PREEMPT
lsf.licensescheduler file 45

LS_LICENSE_SERVER_feature environment variable 52
LS_LOG_MASK parameter in llsf.licensescheduler 108
LS_LOG_MASK parameter in lsf.licensescheduler 107
LS_MAX_TASKMAN_PREEMPT

lsf.licensescheduler 45
LS_TOP option

setup.config file 22
lsadmin reconfig 65
LSF Task Manager (taskman)

interactive jobs 8
license shares for interactive jobs 85

LSF_ENVDIR environment variable 20
LSF_LIC_SCHED_HOSTS

lsf.conf file 32
LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE

lsf.conf file 45
LSF_LICENSE_FILE

lsf.conf file 20
lsf.conf file

LSF License Scheduler parameters 25
LSF_LICENSE_FILE

LSF license 20
lsf.licensescheduler file

configuring for wide-area network 29
description 25
LS_LOG_MASK parameter 107
managing error logs 107
setting message log to debug level 108

M

MAX_JOB_PREEMPT
lsf.params, lsf.queues, lsf.applications 45

multiple administrators
configuring 84

N

NAME
lsf.licensescheduler file Feature section

aliasing license token names 51
lsf.licensescheduler file ServiceDomain section

configuring 30
network I/O error 115
NON_SHARED_DISTRIBUTION

lsf.licensescheduler file Feature section
configuring 49

non-shared licenses
configuring 49

O

operators
logical in time expressions 104

order string
configuration 35

OWNERSHIP
lsf.licensescheduler file ProjectGroup section

configuring 77
ownership and sharing

configuring 48

Using Platform LSF License Scheduler 119

P

Parameters section
lsf.licensescheduler file

configuring 27
periodic tasks 107
PREEMPT_RESERVE

lsf.licensescheduler file Feature section
configuring reserved license preemption 50

preemption use case 14
prerequisites 20
priority

default project 28
PRIORITY

lsf.licensescheduler file Projects section
configuring 28

ProjectGroup section
lsf.licensescheduler file

configuring 77
projects

configuring 28
default priority 28

Projects section
lsf.licensescheduler file

configuring 28

Q

queue-level configuration
license resource requirement strings 35

R

redundant license server hosts 30
reserved license preemption

configuring 50
resource requirements in LSF 34
round robin scheduling 14

S

service domains
configuring 29

SERVICE_DOMAINS
lsf.licensescheduler file Feature section

configuring 77
ServiceDomain section

lsf.licensescheduler file
configuring 29

setup script
description 20

setup.config file 22
share assignment 46
shared licenses

with and without ownership 48
shares

allocating 85
SHARES

lsf.licensescheduler file ProjectGroup section
configuring 77

T

taskman (LSF Task Manager)
interactive jobs 8
license shares for interactive jobs 85

time expressions
creating for automatic configuration 104
logical operators 104

time values
specifying 103

time windows
syntax 103

time-based configuration
description 103

token names 51
tokens

displayed after shut down 114
total licenses 46

U

upgrading 39

W

windows
time 103

wrong license feature
job pending reason 115

120 Using Platform LSF License Scheduler

	Contents
	Copyright
	Introduction
	About Platform LSF License Scheduler
	Terms
	Architecture
	LSF License Scheduler policies
	License data example output

	Installing and Configuring Platform LSF License Scheduler
	Install Platform LSF License Scheduler
	Before you install
	What the LSF License Scheduler setup script does
	Install LSF License Scheduler with LSF (UNIX)
	Install LSF License Scheduler with LSF (Windows)
	Install LSF License Scheduler standalone (UNIX)
	Install LSF License Scheduler standalone (Windows)
	Install License Schedule client on Windows
	Install with LSF
	Install without LSF
	Troubleshoot

	Configure LSF License Scheduler
	Example basic configuration
	Configure parameters
	Configure projects
	Configure clusters
	Configure service domains
	Configure license features
	Configure hierarchical project groups (optional)

	Start LSF License Scheduler
	Start LSF License Scheduler standalone

	Submit jobs
	Add a cluster to License Scheduler
	Install License Schedule client on Windows
	Install with LSF
	Install without LSF
	Troubleshoot

	Upgrade License Scheduler

	Controlling License Distribution
	Understanding distribution policies
	Configuring distribution policies
	Viewing available licenses
	Viewing workload distribution information

	Configure feature groups

	Failover Provisioning
	Failover provisioning for LANs
	Failover provisioning for WANs
	Other failover provisioning

	Advanced Topics
	Distributing license collection
	To distribute your license information collection

	Managing licenses for different application versions
	Group license ownership
	Hierarchical fairshare among project groups
	Configuring multiple administrators
	Allocating license shares to clusters and interactive jobs
	Enable a share of licenses for interactive tasks
	Configure allocation for specific features
	Default ALLOCATION setting

	Application integrations
	License usage enforcement with FLEXnet
	Using license feature locality
	User authentication
	Time syntax and configuration
	Using automatic time-based configuration
	Examples of time windows
	Examples

	Managing error logs
	Setting bld daemon message log to debug level
	License maximization
	Add project description

	Frequently Asked Questions
	FAQs

	Index

