
Using Platform LSF Make
March 13 2009
Platform Computing

Comments to: doc@platform.com
LSF Make is a load-sharing, parallel version of GNU Make. It uses the same makefiles 
as GNU Make and behaves similarly, except that additional command line options 
control parallel execution.
LSF Make allows you to use your Platform LSF cluster to run parts of your make in 
parallel. Tasks are started on multiple hosts simultaneously to reduce the execution time.

Platform LSF Make is only supported on UNIX.

Platform LSF is a prerequisite for LSF Make. The Platform LSF Make product is sold, 
licensed, distributed, and installed separately. For more information, contact Platform 
Computing.
The LSF Make executable, lsmake, is covered by the Free Software Foundation 
General Public License. Read the file LSF_MISC/lsmake/COPYING in the Platform 
LSF software distribution for details.

Contents ◆ �About Platform LSF Make� on page 2
◆ �How Platform LSF Make Works� on page 3
◆ �Performance Issues� on page 6

mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback


About Platform LSF Make

2

About Platform LSF Make
Tasks often consist of many subtasks, with some dependencies between the subtasks. 
For example, to compile a software package, you compile each file in the package, then 
link all the compiled files together.
In many cases, most of the subtasks do not depend on each other. For a software 
package, the individual files in the package can be compiled at the same time; only the 
linking step needs to wait for all the other tasks to complete.
LSF Make allows you to use your Platform LSF cluster to run parts of your make in 
parallel. Tasks are started on multiple hosts simultaneously to reduce the execution time.
LSF Make is a load-sharing, parallel version of GNU Make. It uses the same makefiles 
as GNU Make and behaves similarly, except that additional command line options 
control parallel execution.

GNU Make compatibility

LSF Make is based on GNU Make and supports all GNU Make features. GNU Make is 
upwardly compatible with the make programs supplied by most UNIX vendors. LSF 
Make is compatible with makefiles for most versions of GNU Make.
LSF Make is fully compatible with GNU Make version 3.81. There are some 
incompatibilities between GNU Make and some other versions of make; these are 
beyond the scope of this document.
Using Platform LSF Make



Using Platform LSF Make
How Platform LSF Make Works
LSF Make is invoked using the lsmake command.
For command syntax and complete information about command line options that 
control load sharing, see the lsmake(1) man page.

lsmake command
The following examples show how to build your software in parallel and control the 
execution hosts used, the number of processors used, and the number of tasks run 
simultaneously on one processor.
% lsmake -f mymakefile

lsmake uses one processor on the submission host, and runs one task at a time (one 
task per processor). This is the default behavior.
% lsmake -R "swp > 50 && mem > 100" -f mymakefile

lsmake uses one processor, on the best available host that satisfies the specified 
resource requirements, and runs one task at a time. If there are no eligible hosts, the job 
fails.
By default, LSF Make selects the same host type as the submitting host. This is necessary 
for most compilation jobs. All components must be compiled on the same host type and 
operating system version to run correctly. If your make task requires other resources, 
override the default resource requirements with -R.
% lsmake -V -j 3 -f mymakefile

[hostA] [hostD] [hostK]
<< Execute on local host >>
cc -O -c arg.c -o arg.o
<< Execute on remote host hostA >>
cc -O -c dev.c -o dev.o
<< Execute on remote host hostK >>
cc -O -c main.c -o main.o
<< Execute on remote host hostD >>
cc -O arg.o dev.o main.o

lsmake uses 3 processors, on hosts that are the same host type as the submission host. 
Use -V to return output as shown, including the names of the execution hosts. Use -j 
to specify a maximum number of processors.
If 5 processors are eligible, LSF Make automatically selects the best 3.
If only 2 processors are eligible, LSF Make uses only 2 processors. At least one processor 
is always eligible because the submission host always meets the default requirement.
% lsmake -R "swp > 50 && mem > 100" -j 3 -c 2 -f mymakefile

lsmake uses up to 3 processors, on the best available hosts that satisfy the specified 
resource requirements, and starts 2 tasks on each processor. If there are no eligible hosts, 
the job fails.
Use -c to take advantage of parallelism between the CPU and I/O on a powerful host 
and specify the number of concurrent jobs for each processor.
% lsmake -m "hostA hostA hostB" -f mymakefile
Using Platform LSF Make 3



How Platform LSF Make Works

4

lsmake uses 2 processors on hostA and one processor on hostB, and runs one task 
per processor. Use -m to specify exactly which hosts to use.

Using GNU make options

LSF Make supports all the GNU Make command line options. See the gmake(1) man 
page.

Resetting environment variables
By default, LSF Make sets the environment variables on the execution hosts once, when 
you run lsmake. If your tasks overwrite files or environment variables during 
execution, use -E to automatically reset the environment variables for every task that 
executes on a remote host.

Running interactive tasks

When LSF Make is running processes on more than one host, it does not send standard 
input to the remote processes. Most makefiles do not require any user interaction 
through standard I/O. If you have makefile steps that require user interaction, put the 
commands that require interaction into your local task list. Commands in the local task 
list always run on the local host, where they can read from standard input and write to 
standard output.

Running lsmake under LSF

Make jobs often require a lot of resources, but no user interaction. Such jobs can be 
submitted to LSF so that they are processed when the needed resources are available. 
The command lsmake includes extensions to run as a parallel batch job under LSF:
% bsub -n 10 lsmake

This command queues an LSF Make job that needs 10 hosts. When all 10 hosts are 
available, LSF starts LSF Make on the first host, and passes the names of all hosts in an 
environment variable. LSF Make gets the host names from the environment variable and 
uses RES to run tasks.
You can also specify a minimum and maximum number of processors to dedicate to 
your make job:
% bsub -n 6,18 lsmake

Because LSF Make passes the suspend signal (SIGTSTP) to all its remote processes, the 
entire parallel make job can be suspended and resumed by the user or by LSF.

Output tagging

You can enable output tagging to prefix the sender�s task ID to the parallel task data of 
the lsmake command. The following examples show the differences between the 
standard output and the tagged output of the lsmake command.
The following is the standard output from an lsmake session running in parallel:
% lsmake -j 3
Using Platform LSF Make



Using Platform LSF Make
echo sub1 ; sleep 1000
sub1
echo sub2 ; sleep 1000
echo sub3 ; sleep 1000
sub2
sub3

The following is the tagged output from an lsmake session running in parallel:
% lsmake -T -j 3

T1<local>: echo sub1 ; sleep 1000
T1<local>: sub1
T2<hostD>: echo sub2 ; sleep 1000
T3<hostA>: echo sub3 ; sleep 1000
T2<hostD>: sub2
T3<hostA>: sub3

The following is the tagged output from an lsmake session that includes the names of 
the hosts used:
% lsmake -T -V -j 3

<hostA> <hostD>

<< Execute T1 on host hostA >>
T1<local>: echo sub1 ; sleep 1000
T1<local>: sub1
<< Execute T2 on remote host hostD >>
T2<hostD>: echo sub2 ; sleep 1000
<< Execute T3 on host hostA >>
T3<hostA>: echo sub3 ; sleep 1000
T2<hostD>: sub2
T3<hostA>: sub3
Using Platform LSF Make 5



Performance Issues

6

Performance Issues
Ways to improve the performance of LSF Make:
◆ Tune your makefile and increase parallelism
◆ Process subdirectories in parallel
◆ Adjust the number of tasks run depending on the file server load
◆ Ensure tasks always run on the best processors available at the time

Reorganizing your makefile

You do not need to modify your makefile to use LSF Make, but reorganizing the 
contents of the makefile to increase the parallelism might reduce the running time.
The smallest unit that LSF Make runs in parallel is a single make rule. If your makefile 
has rules that include many steps, or rules that contain shell loops to build sub-parts of 
your project, LSF Make runs the steps serially.
Increase the parallelism in your makefile by breaking up complex rules into groups of 
simpler rules. Steps that must run in sequence can use make dependencies to enforce 
the order. LSF Make can then find more subtasks to run in parallel.

Building recursive makes
LSF Make includes control over parallelism for recursive makes, which are often used 
for source code trees that are organized into subdirectories.
If your make job is divided into subdirectories, -M allows you to process the 
subdirectories in parallel. The total number of parallel tasks is shared over all the 
subdirectories. Without -M , LSF Make processes subdirectories sequentially, although 
tasks within each subdirectory can be run in parallel.
To process subdirectories in parallel they must be built as separate targets in your 
makefile. You must specify the make command for each subdirectory with the built-in 
$(MAKE) macro so that LSF Make can substitute the correct lsmake command for the 
subdirectory.
Some makefiles may work correctly when run on a single machine, but may not work 
correctly when run in parallel through LSF Make.
Below is a makefile rule that uses a shell loop to process subdirectories.
DIRS = lib misc main
prog:

for subdir in $(DIRS) ; do \
cd $${subdir} ; $(MAKE) ; cd .. ; done

When this makefile is run on a single machine, the directories are processed sequentially; 
in other words, lib is built before misc and main. However, when run using 
lsmake -M, all directories can be built in parallel. Therefore, it is possible for the misc 
and main directories to be built before lib, which is not correct.
Below is a set of makefile rules to perform the same tasks and allows the subdirectories 
to be built in parallel in the correct order. An extra rule is added so that the lib and 
misc subdirectories are built before the main directory:
Using Platform LSF Make



Using Platform LSF Make
DIRS = lib misc main
prog: $(DIRS)
$(DIRS):

cd $@ ; $(MAKE)

Dynamic parallelism

LSF Make can significantly reduce the response time of your make; however, it may also 
overload your file server or network if the tasks you are running are I/O intensive.
Parallelism can be controlled by the load on the NFS file server, so that parallel makes 
do not overload the server and slow everyone else down.
You can specify a threshold load so that parallelism is automatically reduced, when the 
file server load is above a threshold, and expanded, when the file server load is below 
the threshold.
% lsmake -j 10 -F "r15s < 5 && pg < 20"

lsmake uses up to 10 processors, and reduces the parallelism if the file server CPU load 
r15s goes beyond 5, or if the file server paging rate goes beyond 20 pages per second.
LSF Make automatically determines the file server for the current working directory.

Processor reselection

LSF Make selects the best available hosts to run tasks. Over time, the values of dynamic 
resources change, so the original best host does not neccessarily remain the best host for 
the entire duration of a long-running task.
To ensure that your tasks always run on the best available hosts, use -P to automatically 
reselect the execution hosts.
%lsmake -j 3 -P 90 -f mymakefile

lsmake uses 3 processors and then evaluates eligible hosts at regular 90-minute 
intervals, until the make is finished. If a processor currently in use can be replaced with 
a better one, LSF Make stops using the original processor and starts using the better 
processor.
Using Platform LSF Make 7



Getting Technical Support

8

Getting Technical Support

Contacting Platform
Contact Platform Computing or your LSF vendor for technical support. Use one of the 
following to contact Platform technical support:

Email support@platform.com

World Wide Web www.platform.com

Mail Platform Support
Platform Computing Corporation
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7
When contacting Platform, please include the full name of your company.
See the Platform Web site at www.platform.com/company/contact-us for other 
contact information.

We’d like to hear from you
If you find an error in any Platform documentation, or you have a suggestion for 
improving it, please let us know:

Email doc@platform.com

Mail Information Development
Platform Computing Corporation
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7
Be sure to tell us:
◆ The title of the manual you are commenting on
◆ The version of the product you are using
◆ The format of the manual (HTML or PDF)
Using Platform LSF Make

mailto:support@platform.com
http://www.platform.com
http://www.platform.com/company/contact-us
mailto:doc@platform.com


Using Platform LSF Make
Copyright
© 1994-2009, Platform Computing Corporation

Although the information in this document has been carefully reviewed, Platform Computing 

Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform 

reserves the right to make corrections, updates, revisions or changes to the information in this 

document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS 

DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED 

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM 

COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR 

CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR 

SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear

from you

You can help us make this document better by telling us what you think of the content, 

organization, and usefulness of the information. If you find an error, or just want to make a 

suggestion for improving this document, please address your comments to 

doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact 

support@platform.com.

Document

redistribution and

translation

This document is protected by copyright and you may not redistribute or translate it into 

another language, in part or in whole.

Internal

redistribution

You may only redistribute this document internally within your organization (for example, on 

an intranet) provided that you continue to check the Platform Web site for updates and update 

your version of the documentation. You may not make it available to your organization over 

the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in 

other jurisdictions.

POWERING HIGH PERFORMANCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM 

JOBSCHEDULER, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the 

PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the 

United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other 

jurisdictions.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the 

United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other 

countries.

Other products or services mentioned in this document are identified by the trademarks or 

service marks of their respective owners.
Using Platform LSF Make 9



Copyright

10
 Using Platform LSF Make


	Using Platform LSF Make
	About Platform LSF Make
	GNU Make compatibility

	How Platform LSF Make Works
	lsmake command
	Using GNU make options
	Resetting environment variables
	Running interactive tasks
	Running lsmake under LSF
	Output tagging

	Performance Issues
	Reorganizing your makefile
	Building recursive makes
	Dynamic parallelism
	Processor reselection

	Getting Technical Support
	Contacting Platform
	We’d like to hear from you

	Copyright


