Vertica® Analytic Database 5.0

SQL Reference Manual

Copyright© 2006-2011 Vertica, An HP Company

Date of Publication: June 20, 2011

CONFIDENTIAL

Contents

Technical Support 1
About the Documentation 2
Where to Find the VertiCa DOCUMENTATIONc.oovierieeiee et eeeeeee e se st se st eseeesessesssassaseseesessessessessessessesseeessreareaneanes 2

Reading the Online Documentation
PPINTING FUIT BOOKS ...ttt bbb bbbt bbbttt
Suggested Reading Paths...........ccccocovvecvenne.

Where to Find Additional Information
Typographical Conventions

Preface 9
SQL Overview 10
System Limits 11
SQL Language Elements 12

Keywords and Reserved Words
KEYWOIASoeereeerreerrieneereeceeenne
Reserved Words.............

Identifiers

LiteralS......ccoooveernicenneccne
Number-type Literals
String Literals
Date/Time Literals.........

OpPErators........coevvvversriresesisnrens
Binary Operators............
Boolean Operatorsc.ccccceeevrercennnns
Comparison OPEratorsccoveevevirvierereesesseesssneeas
Data Type Coercion Operators (CAST)
Date/Time OPEeratorsccocvevevecesrereeeesseseeseenens
Mathematical Operators........cccccvvvneee
NULL Operatorscocvvvvvrererenininens
String Concatenation Operators

EXDIESSIONSvviceceeiriecee st
Aggregate EXpressions.........ooeevvenees
CASE EXPIressions......ooueeverereeniniens
Column References
Commentsccccovreeeenne
Date/Time Expressions
NULL Valueooovvrverrceereeeeeens
Numeric Expressions.....

Contents

PPEAICALES ...vuvveeieeescies sttt et bbb bbb bbb 51
BETW EEN-PIEAICALE.......ccveviiiicieieisicte sttt sttt bbbttt a s b 51
BOOIBAN-PIEAICALEcvcvveeeceeirie ettt sttt bttt st n et 52
COIUMN-VAIUE-PIEAICALEcveveeieceeieiicieis sttt s st enaen
IN-Predicateccovevreeereneeensreenns
INTERPOLATE
join-predicate........c.........
LIKE-predicate...............
NULL-predicate

SQL Data Types 64

BINANY DALA TYPES ...ttt et
BOOIBAN DALA TYPE ...ttt se e b E £ et s b b £t e sttt
CRAraCTEr DALA TYPES. ...vveireeeirieerreee ettt s bbb bbb
Date/Time Data Types

TIMESTAMP
Numeric Data Types
DOUBLE PRECISION (FLOAT) wotuttriirtistisereeseeeiseesstsssssssssessessssssssssssssssssesssssessssssssssssssssassssessessssnssnes 97
INTEGER
NUM ERIC ..ottt sb st s8££ 888t 100
[;B Y7 0TI O o T (o} o] oI TR 104
D B Y7 0TI O oL of To g IK O T U SRR 107

SQL Functions 109

AGGIEYALE FUNCLIONSouviteitisei e
AVG [AGGIEYALE] ..eveeiieeeriet e

COUNT [Aggregate]
COVAR POP ...ttt et s e ettt ettt annns
COVAR _SAMP ...ttt st e st sttt e st enns
MAX [Aggregate]
IMIN [AGGIEIALE] ..eevieictier e bbb
REGR_AVGX
REGR_AVGY
REGR _COUNT ..ottt sess e ess s see e es et s bbbttt
REGR_INTERCEPT
REGR_R?2
REGR _SLOPE ...ttt es bbb bbb bbbt
REGR_SXX
REGR_SXY
REGR_SYY
I Y 1o [(=10 T L= TP
STDDEV_POP [Aggregate]
STDDEV_SAMP [Aggregate]
LY N0 T | =T - (- T
SUM_FLOAT [AQGIEGALE] ... veeeureereeeiririreesisissesseessessssesssssassssssssssssssesssssssssssssssssesssssssssssssssssesessssssssesssens

SQL Reference Manual

VAR _POP [AQOIEGALE] .vcveviiieereiriciete st isetetstseess ettt s st s e s bt tessss st s s sasesesasns

VAR_SAMP [Aggregate]

VARIANCE [Aggregate]
Analytic FUNCLIONScevveccecce e

window_partition_clause.........c...........

window_order_clausecccoceevrnnnae

window_frame_clausec.cccceecvvinnee

named_windows

AVG [ANAIYHIC] .o

CONDITIONAL_CHANGE_EVENT [Analytic]

CONDITIONAL_TRUE_EVENT [Analytic] ..o

COUNT [ANAIYEICT oovreeviereieireer e

CUME_DIST [Analytic]cccoccenivinnee

DENSE_RANK [Analytic]

EXPONENTIAL MOVING_AVERAGE [Analytic]ccccoveene.

FIRST_VALUE [ANAIYEIC] ..oeevverieericreeireere e ereeseseeeeeeseneenenns

LAG [ANAIYLIC] .ocvercrcrccrccene

LAST_VALUE [Analytic]ccccceuneeee.

LEAD [AnalytiC] ..ccccovvvvveernciniiinnnns

MAX [Analytic]

MEDIAN [Analytic]

MIN [Analytic]......c........

NTILE [Analytic] ..o

PERCENT_RANK [Analytic]............

PERCENTILE_CONT [Analytic]

PERCENTILE_DISC [Analytic]

RANK [Analytic].......cccoevrreerrecrnnnns

ROW_NUM BER [Analytic]...............

STDDEV [AnalytiC]....cccoovevrecrnrnnnn.

STDDEV_POP [Analytic]cccc.......

STDDEV_SAMP [Analytic]

SUM [ARNaIYLiC..covvvrrerrrreeeceeine

VAR_POP [Analytic]......ccooomvrvrnnnen.

VAR_SAMP [Analytic].....cccovrvrnnnnn.

VARIANCE [ANAIYLIC] .vveeeereierisecs e eseesssesseeens

Performance Optimization for Analytic Sort Computation
Boolean Functions

ADD_MONTHS
AGE_IN_IMONTHS coooeseeeeeeeeeeeeeeeeseeessssesesesessseesses s esess s esesesssssseeess e esss st sesss e eese s
Y = IR T
CLOCK_TIMESTAMP
(0181121 g Y- 1 =
(0182121 N gl 1Y 1 =S

DATE TRUNC
DATEDIFF .o b bbb

Contents

DAYOFRWEEK ...t bbb
DAYOFWEEK_ISO
DAYOFYEAR..............

JULIAN_DAY ..ococn....
LAST DAY oo

LOCALTIME oo
LOCALTIMESTAMP w.oooorerrre
MICROSECOND ..o
MIDNIGHT_SECONDS.....ovooorrre
MINUTE oo seeessrneseersssens

MONTHS_BETWEENccccocoeunenee.
NEXT_DAY oo
NOW [Date/Time]cccoovvevrernicrnieenn.
OVERLAPS. ...t
QUARTER.....coiricriereereeneieereiee
ROUND [Date/Time]....ccoovvrrrrirrinnns
SECOND ..ot
STATEMENT_TIMESTAMP
SYSDATE ...ttt
TIME_SLICE........c.......

TIMEOFDAYcccovenee.

TIMESTAMPADD
TIMESTAMPDIFF
TIMESTAMP_ROUND.........ccceeeunee
TIMESTAMP_TRUNC.......ccccovverrenee.
TRANSACTION_TIMESTAMP
TRUNC [Date/Time]

7N = 1T O
Formatting Functions
B IO = 11 IS 141
TO _CHAR ettt ettt ettt

TO_NUMBER
Temp late Patterns for Date/Time Formatting
Temp late Patterns for NUMEric FOrMattiNgcccocvccieieenncseiesss e ssens
Geospatial Package SQL Functions
Geospatial SQL FUNCLIONScccviiceicce e be bbbt bbbt
BB_WITHIN
BEARING.......cccovreuninnen.
CHORD_TO _ARC ... ittt sttt st bbb bbb bbbttt
DWW ITHIN Lttt bbb bbbttt
ECEF_CHORD ...ttt s b bbb bbbt

SQL Reference Manual

KM2MILES.......cccooueuuee
LAT _WITHIN................
LL WITHIN.....cccvvrnee.
LLD WITHIN................
LON_WITHIN................
MILES2KMccoevvennee
RADIUS LON...............
RADIUS M.....cccovvnee
RADIUS N.....ccoeernrnes
(=T [[VEST G
RADIUS Ra.....cccooevuuee
RADIUS RC....ccoeoeunnnnes
RADIUS Rv.....ne.
RADIUS Sl......ccoeuvnuee
RAYCROSSING
WGS84 a....cevecrreae,
WGS84 b
WGS84 e2......ueveenee.
WGS84 f..oeeeerirecre,
WGS84 if ...,
WGS84 1lcveeereree.
IP Conversion Functions
INET_ATON......cceeuuee.
INET_NTOAcccco...
V6 _ATON....ccooevrrerrne.
V6 _NTOA....cooiverrne,
V6_SUBNETA...............
V6_SUBNETN...............
V6 TYPE.....ierinne.
Mathematical Functions............

DISTANCE
DISTANCEV ..o bbb

Contents

WIDTH_BUCKET
NULL-handling Functions
COALESCE.....cccocvuvunn.

IFNULL o
ISNULL o
NULLIF o

CURRVAL ...cccovvvrrrin,
LAST_INSERT_ID
String FUNCLIONS ...

BIT_LENGTH
BITCOUNTcccovernnnen.

(o70) N[N P
DECODE.......ooooossceeesseeesssoeesssoe
GREATEST ..oovvveree

GREATESTB
HEX_TO_BINARY
INET_ATON
INET_NTOA
INTT CAP oo seeeesseese s eeee s eees e ese e s eeee s st esee s e
TN = S

SQL Reference Manual

OCTET_LENGTH
OVERLAY ..o
OVERLAYB ..o
POSITIONcccccovvverinnnn.
POSITIONB.ccvvuee.
QUOTE_IDENT
QUOTE_LITERAL

SPLIT_PARTccccoeveee.
SPLIT_PARTB
STRPOS ..o
STRPOSB ...
SUBSTR...cooviiiririn
SUBSTRB......ccccovirin

UPPERB......ccovirererenrns e

V6_ATON...coovrrrrirrenes

V6_NTOA ...

V6_SUBNETA...............

V6_SUBNETN...............

V6 _TYPE. ..o
System Information Functions

CURRENT_DATABASE........cccouuu...

CURRENT_SCHEMAccccovevuen.

CURRENT_USERcccoooovnrnrrrireinene

VERSION
URI ENCOAE/DECOUE FUNCHIONS......cocueieirieeieirisisieieiseresete st sssesesese e s sss s essessss s sssesesssessesnsssessesssssssnses
URI_PERCENT_DECODE
URI_PERCENT_ENCODE
V=] R ToF T BT g Tox o PO TOUTTRTN
Alphabetical List of Vertica Functions
Catalog Management Functions
CluSter SCAlING FUNCLIONS.c.cuiiiieecieireieicte sttt bbb
Constraint Management FUNCLIONSccuiiiiiiiiieiniesesi et sesssssenas
Data Collector Functions
Database Management FUNCLIONSc.cccriirieiice sttt st bbb
Epoch Management FUNCLIONS ..ottt
License Management Functions
Partition Management FUNCLIONScccericer s se st
Pattern MatChing FUNCLIONSccciiiieercce sttt
Projection Management FUNCLIONScccovviiueiriiciissseeie ettt

Contents

PUIGE FUNCLIONS. ...ttt st st sttt st b
Regular Expression Functions............
Session Management Functions.........
Statistic Management Functions.........
Storage Management Functions.........
Timeseries FUNCLioNS........cccovvcvvieuninee
Tuple Mover Functions
Workload Management FUNCLIONS ..ot es st ssssssesessssssssssans 573

SQL Statements 578

ALTER FUNGCTION .ottt sttt st sttt b e s b et st e st e b e b s saeae st e seabe st esesbeseebe st e e enssbeseabesean
ALTER PROJECTION RENAME
ALTER PROFILE ...ttt sttt ettt sttt sttt sttt se st st ess et st b e s et st et e st st st ebess st et e as st st eba e sees
ALTER PROFILE RENAME ...ttt sttt sttt st s et sttt s sttt s sttt st et sbesens
ALTER RESOURCE POOL
ALTER ROLE RENAME ...ttt sttt sttt st st et sttt sttt bt sttt s e bt e b e st be s s stans
ALTER SCHEMA ..ottt ettt ettt sttt ettt e e et e b e ae st st e b e et s bt e b et st et e bt st bebess st et e ss st st eba e staes
ALTER SEQUENCE
G I I 1 = N R
L1 0] (SR 70 153 U1 L SOOI
ALTER USER......ccooeviiereene
COMMENT ON COLUMN
COMMENT ON CONSTRAINT ..ottt ettt ettt st s sa bbbt st b et s b et e bs st beasse st ebess st stabaseas
COMMENT ON FUNCTION
COMMENT ON LIBRARY .ottt sttt ettt ettt st st b s st st b e s sttt st sbeb s s st bens e st et ese s stabene s
COMMENT ON NODE ...ttt ettt ettt ettt b st et b e e st b e e st st et eassesbebe e st et ebestetereanas
COMMENT ON PROJECTION
COMMENT ON SCHEMA ..ottt sttt ettt et sttt sa st b e e s et e s et st eb et stabens e stetese s staseseas
COMMENT ON SEQUENGCE ...ttt ettt bbb bbb bbbt nene
COMMENT ON TABLE
COMMENT ON VIEW .ottt ettt sttt st sttt sttt st st e bt st st st e st e bt sbe st e b e st et abe st esesbestebesbesearnabens

EXAIMPIES ...t e
See Also
COPY FROM VERTICA ...ttt ettt ss bbb
CREATE FUNCTION (SQL IMECIOS) .. vuvreereereeeeeeeseeseesetseesessesssssssessessessesssssssssssssessessssssssesnessssssssssessssnssnesnees 629
CREATE FUNCTION (UDF)
CREATE LIBRARY .ttt bbb
CREATE PROCEDUREcotttttttitieiieisees ittt ss bbb
CREATE PROFILE
CREATE PROJECTION ...iotiitieieeeieeseesees st ssssssess s et es s s bbb

LR ToTo o TT T T Y o OO PR RRTTREPTRRRN

hash-segmentation-clause

range-SegMENTAtION-CIAUSE........cc.cveviiicce e 647
CREATE RESOURCE POOL ...ttt sttt st st ssssssssssassassessessons 649

Built-in Pools

BUilt-in POOI CONFIGUIALIONcviviiceciiicce ettt 653

e

SQL Reference Manual

CREATE ROLE ...ttt sttt bbb

CREATE SCHEMAcc.......

CREATE SEQUENCE

CREATETABLE.......cccoeununn.
column-definition (table)ccc.........
column-name-list (table)......c...ccc.......
column-constraint
table-constraint..........cccocovvevncnicinnnen,
hash-segmentation-clause (table).......
range-segmentation-clause (table)

CREATETEMPORARY TABLE.
column-definition (temp table)
column-name-list (temp table)............
hash-segmentation-clause (temp table)
range-segmentation-clause (temp table)

Contents

CREATETRANSFORM FUNCTION
CREATE USER.....cccoiininineeees
CREATE VIEW ..o

DISCONNECT ...ocevieriieriinnne
DROP FUNCTION.........cccovuunnee
DROP LIBRARYccceovvvnirnnnne
DROP PROCEDURE.................
DROP PROFILEcccovivniinnne
DROP PROJECTION.......ccoccevne.
DROP RESOURCE POOL
DROP ROLEccoovovviverirririennnns
DROP SCHEMAcccooovvrinenee
DROP TRANSFORM FUNCTION...............
DROP SEQUENCEccocoonrrrrereeireeenenns
DROP TABLE ...
DROP USER......coooirrreenereneeinesesesesessesenes
DROP VIEWoiirtinieineinieeieiseeeseeesenes
EXPLAIN oo
EXPORT ..ovieriereeireeireieeseiees
GRANT (Database)........c.c........
GRANT (Function)ccccoevuee.
GRANT (Procedure).......cc......
GRANT (Resource Pool)
GRANT (ROIE) ..o
GRANT (Schema)ccccevvenenee.
GRANT (Sequence)
GRANT (Table) ..o
GRANT (Transform Function)cccceun...

PROFILE ...
RELEASE SAVEPOINT
REVOKE (Database).................
REVOKE (Function)c.cc.e...
REVOKE (PIOCEAUIE) ..ovuiitieiieiet ettt bbb
REVOKE (RESOUICE POOI) ..ottt
REVOKE (Role)
REVOKE (SCHEMA) ..ttt
REVOKE (SEOUBNCE) ...uvvrtieireieeeieesetsees s ese sttt
REVOKE (Table)
REVOKE (Transform FUNCTION) ..ottt ssssssans
REVOKE (VIBW) ..ottt bbbttt
ROLLBACK
ROLLBACK TO SAVEPOINT ...ttt sesst st s s sesesssessseses st st essessessssssessesessssesssessssessssesnssssans
SAVEPOINT
5] = I =104
INT IO CIAUSE ...ttt s bbb E bbb bbbttt
FROM CIAUSE ...ttt es bbb b b bbb bbbt
WHERE Clause
GROUP BY CIAUSE ..viuiiiieieireisisei ittt sess et sttt bbbttt
HANVING CIAUSE...... ettt e b bbb bbb
ORDER BY CIAUSE ..ttiuiieireieireieiseie sttt e sebs ettt ettt anaes

SQL Reference Manual

LY A =T E
OFFSET CIlausSecccocvevveveeeeeieiene
TIMESERIES Clause.......c.cccoovevevnneee.
MATCH CIlauSecoocovvereivceiceeenne
SET DATESTYLE ..o
SET ESCAPE_STRING_ WARNING
SET INTERVALSTYLE
SET LOCALE ...
SET ROLE... e
SET SEARCH_PATH
SET SESSION CHARACTERISTICS
SET SESSION MEMORYCAP.......ccoovvvnnne
SET SESSION RESOURCE POOL
SET SESSION RUNTIMECAPccooeverneee
SET SESSION TEMPSPACECAP ...
SET STANDARD_CONFORMING_STRINGS
SET TIMEZONE ..ottt ettt
Time Zone Names for Setting TIME ZONE

SHOW

SQL System Tables (Monitoring APIs) 794

O I N O T Yol T 1 PP TTRTN 795
COLUMNS ...ttt e85 Rt
COMMENTS
DATABASES ...ttt bbb s s8R 798

PRIMARY _KEYS et e
PROFILE_PARAMETERS
PROFILES ...ttt
PROJECTION_COLUMNS ..ot
PROJECTION_DELETE_CONCERNS
PROJECTIONS

SEQUENGCES ... e
SYSTEM_TABLES ...
TABLE_CONSTRAINTS
TABLES ..o s

USER_AUDITS
USER _FUNCTIONS ..ot bbb
USER_PROCEDURES ...ttt bbb

Contents

V_MONITOR Schema..............
ACTIVE_EVENTS.......
COLUMN_STORAGE
CONFIGURATION_PARAMETERSccccvuunen.
CRITICAL_NODES ...t
CURRENT_SESSION
DATA_COLLECTOR
DATABASE_CONNECTIONS
DATABASE_SNAPSHOTS
DELETE_VECTORSccooeviereeneeeereeneseeessessenenns
DISK_RESOURCE_REJECTIONS
DISK_STORAGE ... irereeneenseeresesseeessesesenenns
EVENT_CONFIGURATIONSccocovivrrrrereeenenns
EXECUTION_ENGINE_PROFILES..........ccccouunne.

NODE_RESOURCEScccooccorrrree.
PARTITIONSocoovooeeeocceeesesssceeeeseee
PROJECTION_REFRESHES.............
PROJECTION_STORAGE ...
QUERY_METRICS ...ooooeoooeeeeeeeeessseceeeeeseseeeeesese
QUERY_PROFILES
RESOURCE_ACQUISITIONSocooooreeereesese
RESOURCE_ACQUISITIONS_HISTORY
RESOURCE_POOL_STATUS
RESOURCE_QUEUES...................

RESOURCE_REJECTIONS...........

RESOURCE_USAGE ...oooooeeeeeeeeeceeeseeseceeessesroen
SESSION_PROFILES ...covvoooeeeeeeseseceeeseseseeeessse
2S5 (0] NET

STRATA_STRUCTURES..................

SYSTEM et
TUNING_RECOMMENDATIONS ..o
TUPLE_MOVER_OPERATIONS
USER_LIBRARIES ..o s
USER_LIBRARY_MANIFEST ..ottt
WOS_CONTAINER_STORAGE ...t

Appendix: Compatibility with Other RDBMS 907

Data Type Mappings Between Vertica and OFaCIe ... sesenes 907

Index 911

Copyright Notice 921

-Xiii-

Technical Support

To submit problem reports, questions, comments, and suggestions, use the Technical Support
page on the Vertica Web site.

Notes:

e You must be a registered user in order to access the MyVertica Portal
http://myvertica.vertica.com/v-zone/overview.

e If you are not a registered user, you can request access at the Technical Support
Web page http://www.vertica.com/support.

Before you report a problem, run the Diagnostics Utility described in the Troubleshooting Guide
and attach the resulting . z1ip file to your ticket.

http://myvertica.vertica.com/v-zone/overview
http://www.vertica.com/support

About the Documentation

This section describes how to access and print Vertica documentation. It also includes suggested
reading paths (page 4).

Where to Find the Vertica Documentation

You can read or download the Vertica documentation for the current release of Vertica® Analytic
Database from the Product Documentation Page
http://www.vertica.com/v-zone/product_documentation. You must be a registered user to
access this page.

The documentation is available as a compressed tarball (. tar) or azip archive (. zip) file. When
you extract the file on the database server system or locally on the client, contents are placed in a
/vertica50 doc/ directory.

Notes:

e The documentation on the Vertica Web site is updated each time a new release is issued.

e A more recent version of the product documentation might be available online. To check for
critical product or document information added after the product release, see the Vertica
Product Documentation downloads site. You can download the PDF version or browse
books online

e If you are using an older version of the software, refer to the documentation on your
database server or client systems.

See Installing Vertica Documentation in the Installation Guide.

Reading the Online Documentation

Reading the HTML documentation files

The Vertica documentation files are provided in HT ML browser format for platform independence.
The HTML files require only a browser that displays frames properly with JavaScript enabled. The
HTML files do not require a Web (HTTP) server.

The Vertica documentation is supported on the following browsers:

e Mozilla FireFox

e Internet Explorer

o Apple Safari

e Opera

e Google Chrome (server-side installations only)

http://www.vertica.com/v-zone/product_documentation

About the Documentation

The instructions that follow assume you have installed the documentation on a client or server
machine.

Mozilla Firefox

1 Open a browser window.

2 Choose one of the following methods to access the documentation:
= Select File > Open File, navigate to . . \HTML-WEBHELP\index.htm, and click Open.
» ORdrag and drop index.htm into a browser window.
= OR press CTRL+O, navigate to index.htm, and click Open.

Internet Explorer
Use one of the following methods:

1 Open a browser window.
2 Choose one of the following methods to access the documentation:

= Select File > Open > Browse, navigate to . . \HTML-WEBHELP\ index .htm, click Open,
and click OK.

* ORdrag and drop index.htm into the browser window.
= OR press CTRL+O, Browse to the file, click Open, and click OK.

Note: If a message warns you that Internet Explorer has restricted the web page from running
scripts or ActiveX controls, right-click anywhere within the message and select Allow Blocked
Content.

Apple Safari

1 Open a browser window.

2 Choose one of the following methods to access the documentation:
= Select File > Open File, navigate to . . \HTML-WEBHELP\index.htm, and click Open.
* ORdrag and drop index.htm into the browser window.
= OR press CTRL+O, navigate to index.htm, and click Open.

Opera

1 Open a browser window.

2 Position your cursor in the title bar and right click > Customize > Appearance, click the
Toolbar tab and select Main Bar.

3 Choose one of the following methods to access the documentation:

= Open a browser window and click Open, navigate to . . \HTML-WEBHELP\index.htm,
and click Open.

» ORdrag and drop index.htm into the browser window.
= OR press CTRL+O, navigate to index.htm, and click Open.
Google Chrome

Google does not support access to client-side installations of the documentation. You'll have to
point to the documentation installed on a server system.

-3-

SQL Reference Manual

1 Open a browser window.
2 Choose one of the following methods to access the documentation:

In the address bar, type the location of the index . htm file on the server. For example:
file://<servername>//vertica50 doc//HTML/Master/index.htm

» ORdrag and drop index.htm into the browser window.
= OR press CTRL+O, navigate to index.htm, and click Open.

Notes

The .tar or . zip file you download contains a complete documentation set.

The documentation page of the Downloads Web site
http://www.vertica.com/v-zone/download_vertica is updated as new versions of Vertica are
released. When the version you download is no longer the most recent release, refer only to the
documentation included in your RP M.

The Vertica documentation contains links to Web sites of other companies or organizations that
Vertica does not own or control. If you find broken links, please let us know.

Report any script, image rendering, or text formatting problems to Technical Support (on page
1).

Printing Full Books

Vertica also publishes books as Adobe Acrobat™ PDF. The books are designed to be printed on
standard 8% x 11 paper using full duplex (two-sided) printing.

Note: Vertica manuals are topic driven and not meant to be read in a linear fashion. Therefore,
the PDFs do not resemble the format of typical books.

Open and print the PDF documents using Acrobat Acrobat Reader. You can download the latest
version of the free Reader from the Adobe Web site
(http://www.adobe.com/products/acrobat/readstep2.html).

The following list provides links to the PDFs.

e Concepts Guide

e Installation Guide

e Getting Started Guide
e Administrator's Guide

e Programmer's Guide

e SQL Reference Manual
e Troubleshooting Guide

Suggested Reading Paths

This section provides a suggested reading path for various users. Vertica recommends that you
read the manuals listed under All Users first.

http://www.vertica.com/v-zone/download_vertica
http://www.adobe.com/products/acrobat/readstep2.html

About the Documentation

All Users

o New Features — Release-specific information, including new features and behavior changes
to the product and documentation

e Concepts Guide — Basic concepts critical to understanding Vertica

e Getting Started Guide — A tutorial that takes you through the process of configuring a Vertica
database and running example queries

e Troubleshooting Guide — General troubleshooting information

System Administrators

e New Features — Release-specific information, including new features and behavior changes
to the product and documentation

¢ Installation Guide — Platform configuration and software installation

Database Administrators

¢ Installation Guide — Platform configuration and software installation
¢ Administrator's Guide — Database configuration, loading, security, and maintenance

Application Developers

e Programmer's Guide — Connecting to a database, queries, transactions, and so on
e SQL Reference Manual — SQL and Vertica-specific language information

Where to Find Additional Information
Visit the Vertica Web site (http://www.vertica.com) to keep up to date with:

e Downloads

e Frequently Asked Questions (FAQS)
e Discussion forums

e News, tips, and techniques

e Training

http://www.vertica.com/

Typographical Conventions
The following are the typographical and syntax conventions used in the Vertica documentation.

Typographical Convention

Description

Bold

Button
Code

Database objects

Emphasis

monospace

monospace italics

UPPERCASE

User input

—

Right-angle bracket >
Click

Press

Syntax Convention

Indicates areas of emphasis, such as a special menu command.

Indicates the word is a button on the window or screen.
SQL and program code displays in a monospaced (fixed-width) font.

Names of database objects, such as tables, are shown in san-serif
type.
Indicates emphasis and the titles of other documents or system files.

Indicates literal interactive or program matic input/output.
Indicates user-supplied information in interactive or programmatic

input/out put.

Indicates the name of a SQL command or keyword. SQL keywords
are case insensitive; SELECT is the same as Select, which is the
same as select.

Text entered by the user is shown in bold san serif type.

indicates the Return/Enter key; implicit on all user input that includes
text

Indicates a flow of events, usually from a drop-down menu.

Indicates that the reader clicks options, such as menu command
buttons, radio buttons, and mouse selections; for example, "Click OK
to proceed.”

Indicates that the reader perform some action on the keyboard,; for
example, "Press Enter."

Description

Text without brackets/braces

< Text inside angle brackets >

[Text inside brackets]

{ Text inside braces }

Indicates content you type as shown.

Placeholder for which you must supply a value. The variable is usually
shown in italics. See Placeholders below.

Indicates optional items; for example, CREATE TABLE
[schema_name.]table_name

The brackets indicate that the schema_name is optional. Do not type
the square brackets.

Indicates a set of options from which you choose one; for example:
QUOTES { ON | OFF } indicates that exactly one of ON or OFF must

-7-

SQL Reference Manual

Backslash \

Ellipses . ..

Indentation

Placeholders

Vertical bar |

be provided.You do not type the braces: QUOTES ON

Continuation character used to indicate text that is too long to fit on a
single line.

Indicate a repetition of the previous parameter. For example,
option[, ...] means that you can enter multiple,
comma-separated options.

Note: Showing an ellipses in code examples might also mean that
part of the text has been omitted for readability, such as in multi-row
result sets.

Is an attempt to maximize readability; SQL is a free-form language.

Items that must be replaced with appropriate identifiers or
expressions are shown in italics.

Is a separator for mutually exclusive items. For example: [ASC |
DESC]

Choose one or neither. You do not type the square brackets.

Preface

This guide provides a reference description of the Vertica SQL database language.

Audience

This document is intended for anyone who uses Vertica. It assumes that you are familiar with the
basic concepts and terminology of the SQL language and relational database management

systems.

SQL Overview

An abbreviation for Structured Query Language, SQL is a widely-used, industry standard data
definition and data manipulation language for relational databases.

Note: In Vertica, use a semicolon to end a statement or to combine multiple statements on one
line.

Vertica Support for ANSI SQL Standards
Vertica SQL supports a subset of ANSI SQL-99.

See BNF Grammar for SQL-99 (http://savage.net.au/SQL/sql-99.bnf.nhtml)

Support for Historical Queries

Unlike most databases, the DELETE (page 699) command in Vertica does not delete data; it
marks records as deleted. The UPDATE (page 792) command performs an INSERT and a
DELETE. This behavior is necessary for historical queries. See Historical (Snapshot) Queries in
the Programmer's Guide.

Joins

Vertica supports typical data warehousing query joins. For details, see Joins in the Programmer's
Guide.

Vertica also provides the INTERPOLATE (page 54) predicate, which allows for a special type of
join. The event series join is a Vertica SQL extension that lets you analyze two event series when
their measurement intervals don't align precisely—such as when timestamps don't match. These
joins provide a natural and efficient way to query misaligned event data directly, rather than having
to normalize the series to the same measurement interval. See Event Series Joins in the
Programmer's Guide for detalils.

Transactions

Session-scoped isolation levels determine transaction characteristics for transactions within a
specific user session. You set them through the SET SESSION CHARACTERISTICS (page 776)
command. Specifically, they determine what data a transaction can access when other
transactions are running concurrently. See Transactions in the Concepts Guide.

-10-

http://savage.net.au/SQL/sql-99.bnf.html

System Limits

This section describes system limits on the size and number of objects in a Vertica database. In

most cases, computer memory and disk drive are the limiting factors.

Item

Limit

Database size

Approximates the number of files times the file size on a
platform, depending on the maximum disk configuration.

Table size 2764 rows per node, or 263 bytes per column,
whichever is smaller.

Row size 8MB. The row size is approximately the sum of its
maximum column sizes, where, for example a
varchar(80) has a maximum size of 80 bytes.

Key size 1600 x 4000

Number of tables/projections per
database

Limited by physical RAM, as the catalog must fit in
memory.

Number of concurrent connections per
node

Default of 50, limited by physical RAM (or threads per
process), typically 1024.

Number of concurrent connections per
cluster

Limited by physical RAM of a single node (or threads per
process), typically 1024.

Number of columns per table 1600.
Number of rows per load 2763.
Number of partitions 256.

Note: The maximum number of partitions varies with
the number of columns in the table, as well as system
RAM. Vertica recommends a maximum of 20 partitions.
Ideally, create no more than 12.

Length for a fixed-length column

65000 bytes.

Length for a variable-length column

65000 bytes.

Length of basic names 128 bytes. Basic names include table names, column
names, etc.
Query length No limit.

Depth of nesting subqueries

Unlimited in FROM or WHE RE or HAVING clause.

-11-

SQL Language Elements

This chapter presents detailed descriptions of the language elements and conventions of Vertica
SQL.

Keywords and Reserved Words

Keywords are words that have a specific meaning in the SQL language. Although SQL is not
case-sensitive with respect to keywords, they are generally shown in uppercase letters throughout
this documentation for readability purposes.

Some SQL keywords are also reserved words that cannot be used in an identifier unless enclosed
in double quote (") characters.

Keywords

Keyword are words that are specially handled by the grammar. Every SQL statement contains one
or more keywords.

Begins with Keyword

A ABORT, ABSOLUTE, ACCESS, ACCESRANK, ACCOUNT, ACTION, ADD,
ADMIN, AFTER, AGGREGATE, ALL, ALSO, ALTER, ANALYSE, ANALYZE, AND,
ANY, ARRAY, AS, ASC, ASSERTION, ASSIGNMENT, AT, AUTHORIZATION,
AUTO, AUTO_INCREMENT, AVAILABLE

B BACKWARD, BEFORE, BEGIN, BETWEEN, BIGINT, BINARY, BIT,
BLOCK_DICT, BLOCKDICT_COMP, BOOLEAN, BOTH, BY, BYTEA, BZIP
C CACHE, CALLED, CASCADE, CASE, CAST, CATALOGPATH, CHAIN, CHAR,

CHAR_LENGTH, CHARACTER, CHARACTER_LENGTH, CHARACTERISTICS,
CHARACTERS, CHECK, CHECKPOINT, CLASS, CLOSE, CLUSTER, COLLATE,
COLUMN, COLUMNS_COUNT, COMMENT, COMMIT, COMMITTED,
COMMONDELTA_COMP, CONNECT, CONSTRAINT, CONSTRAINTS, COPY,
CORRELATION, CREATE, CREATEDB, CREATEUSER, CROSS, CSV,
CURRENT, CURRENT_DATABASE, CURRENT_DATE, CURRENT_S CHEMA,
CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER, CURSOR,
CYCLE

D DATA, DATABASE, DATAPATH, DATE, DATEDIFF, DATETIME, DAY,
DEALLOCATE, DEC, DECIMAL, DECLARE, DECODE, DEFAULT, DEFAULTS,
DEFERRABLE, DEFERRED, DEFINE, DEFINER, DELETE, DELIMITER,
DELIMITERS, DELTARANGE_COMP, DELTARANGE_COMP_SP, DELTAVAL,
DESC, DETERMINES, DIRECT, DIRECTCOLS, DIRECTGROUPED,
DIRECTPROJ, DISABLE, DISCONNECT, DISTINCT, DISTVALINDEX, DO,
DOMAIN, DOUBLE, DROP, DURABLE

E EACH, ELSE, ENABLE, ENABLED, ENCLOSED, ENCODED, ENCODING,
ENCRYPTED, END, ENFORCELENGTH, EPHEMERAL, EPOCH, ERROR,
ESCAPE, EVENT, EVENTS, EXCEPT, EXCEPTIONS, EXCLUDE, EXCLUDING,
EXCLUSIVE, EXECUTE, EXISTS, EXPIRE, EXPLAIN, EXPORT, EXTERNAL,
EXTRACT

-12-

SQL Language Elements

FAILED_LOGIN_ATTEMPTS, FALSE, FETCH, FILLER, FIRST, FLOAT,
FOLLOWING, FOR, FORCE, FOREIGN, FORMAT, FORWARD, FREEZE, FROM,
FULL, FUNCTION

GCDDELTA, GLOBAL, GRANT, GROUP, GROUPED, GZIP

HANDLER, HASH, HAVING, HOLD, HOSTNAME, HOUR, HOURS

IDENTIFIED, IDENTITY, IF, IGNORE, ILIKE, ILIKEB, IMMEDIATE, IMMUTABLE,
IMPLICIT, IN, INCLUDING, INCREMENT, INDEX, INHERITS, INITIALLY, INNER,
INOUT, INPUT, INSENSITIVE, INSERT, INSTEAD, INT, INTEGER,
INTERPOLATE, INTERSECT, INTERVAL, INTERVALYM, INTO, INVOKER, IS,
ISNULL, ISOLATION

JOIN

KEY, KSAFE

LANCOMPILER, LANGUAGE, LARGE, LAST, LATEST, LEADING, LEFT, LESS,
LEVEL, LIBRARY, LIKE, LIKEB, LIMIT, LISTEN, LOAD, LOCAL, LOCALTIME,
LOCALTIMESTAMP, LOCATION, LOCK

MANAGED, MATCH, MAXCONCURRENCY, MAXMEMORYSIZE, MAXVALUE,
MEMORY CAP, MEMORYSIZE, MERGEOUT, MICROSECONDS,
MILLISECONDS, MINUTE, MINUTES, MINVALUE, MODE, MONEY, MONTH,
MOVE, MOVEOUT

NAME, NATIONAL, NATIVE, NATURAL, NCHAR, NEW, NEXT, NO,
NOCREATEDB, NOCREATEUSER, NODE, NODES, NONE, NOT, NOTHING,
NOTIFY, NOTNULL, NOWAIT, NULL, NULLCOLS, NULLS, NULLSEQUAL,
NULLIF, NUMBER, NUMERIC

OBJECT, OCTETS, OF, OFF, OFFSET, OIDS, OLD, ON, ONLY, OPERATOR,
OPTION, OR, ORDER, OTHERS, OUT, OUTER, OVER, OVERLAPS, OVERLAY,
OWNER

PARTIAL, PARTITION, PASSWORD, PASSWORD_GRACE_TIME,
PASSWORD_LIFE_TIME, PASSWORD_LOCK_TIME,
PASSWORD_MAX_LENGTH, PASSWORD_MIN_DIGITS,
PASSWORD_MIN_LENGTH, PASSWORD_MIN_LETTERS,
PASSWORD_MIN_LOWERCASE_LETTERS, PASSWORD_MIN_SYMBOLS,
PASSWORD_MIN_UPPERCASE_LETTERS,PASSWORD_REUSE_MAX,
PASSWORD_REUSE_TIME, PATTERN, PERCENT, PERMANENT, PINNED,
PLACING, PLANNEDCONCURRENCY, POOL, POSITION, PRECEDING,
PRECISION, PREPARE, PRESERVE, PREVIOUS, PRIMARY, PRIOR,
PRIORITY, PRIVILEGES, PROCEDURAL, PROCEDURE, PROFILE,
PROJECTION

QUEUETIMEOUT, QUOTE

RANGE, RAW, READ, REAL, RECHECK, RECORD, RECOVER, REFERENCES,
REFRESH, REINDEX, REJECTED, REJECTMAX, RELATIVE, RELEASE,
RENAME, REPEATABLE, REPLACE, RESET, RESOURCE, RESTART,
RESTRICT, RESULTS, RETURN, RETURNREJECTED, REVOKE, RIGHT, RLE,
ROLE, ROLES, ROLLBACK, ROW, ROWS, RULE, RUNTIMECAP

SAMPLE, SAVEPOINT, SCHEMA, SCROLL, SECOND, SECONDS, SECURITY,
SEGMENTED, SELECT, SEQUENCE, SERIALIZABLE, SESSION,
SESSION_USER, SET, SETOF, SHARE, SHOW, SIMILAR, SIMPLE,
SINGLEINITIATOR, SITE, SITES, SKIP, SMALLDATETIME, SMALLINT, SOME,

13-

SQL Reference Manual

SPLIT, STABLE, START, STATEMENT, STATISTICS, STDERR, STDIN,
STDOUT, STORAGE, STREAM, STRICT, SUBSTRING, SYSDATE, SYSID

T TABLE, TABLESPACE, TEMP, TEMPLATE, TEMPORARY, TEMPSPACECAP,
TERMINATOR, THAN, THEN, TIES, TIME, TIMESERIES, TIMESTAMP,
TIMESTAMPADD, TIMESTAMPDIFF, TIMESTAMPTZ, TIMETZ, TIMEZONE,
TINYINT, TO, TOAST, TRAILING, TRANSACTION, TRANSFORM, TREAT,
TRICKLE, TRIGGER, TRIM, TRUE, TRUNCATE, TRUSTED, TUNING, TYPE

U UNBOUNDED, UNCOMMITTED, UNCOMPRESSED, UNENCRYPTED, UNION,
UNIQUE, UNKNOWN, UNLIMITED, UNLISTEN, UNLOCK, UNSEGMENTED,
UNTIL, UPDATE, USAGE, USER, USING

\% VACUUM, VALIDATOR, VALINDEX VALUE, VALUES, VARBINARY, VARCHAR,
VARCHARZ2, VARYING, VERBOSE, VERTICA, VIEW, VOLATILE

WAIT, WHEN, WHERE, WINDOW, WITH, WITHIN, WITHOUT, WORK, WRITE

<

YEAR

Z ZONE

Reserved Words

Many SQL keywords are also reserved words, but a reserved word is not necessarily a keyword.
For example, a reserved word might be reserved for other/future use. In Vertica, reserved words
can be used anywhere an identifier is used, as long as you double-quote it.

Begins with Reserved Word

A ALL, ANALYSE, ANALY ZE, AND, ANY, ARRAY, AS, ASC

B BINARY, BOTH

C CASE, CAST, CHECK, COLUMN, CONSTRAINT, CORRELATION, CREATE,
CURRENT_DATABASE, CURRENT_DATE, CURRENT_SCHEMA,
CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER

DEFAULT, DEFERRABLE, DESC, DISTINCT, DO

ELSE, ENCODED, END, EXCEPT

FALSE, FOR, FOREIGN, FROM

GRANT, GROUP, GROUPED

I|({®|TM|(m|O

HAVING

IN, INITIALLY, INTERSECT, INTERVAL, INTERVALYM, INTO

JOIN

KSAFE

LEADING, LIMIT, LOCALTIME, LOCALTIMESTAMP

MATCH

Z|IZ|r | x|«

NEW, NOT, NULL, NULLSEQUAL

-14-

SQL Language Elements

(e} OFF, OFFSET, OLD, ON, ONLY, OR, ORDER

P PINNED, PLACING, PRIMARY, PROJECTION

R REFERENCES

S SCHEMA, SEGMENTED, SELECT, SESSION_USER, SOME, SYSDATE
T TABLE, THEN, TIMESERIES, TO, TRAILING, TRUE

U UNBOUNDED, UNION, UNIQUE, UNSEGMENTED, USER, USING

W WHEN, WHERE, WINDOW, WITH, WITHIN

Identifiers

Identifiers (names) of objects such as schema, table, projection, column names, and so on, can be
up to 128 bytes in length.

Unquoted Identifiers

Unquoted SQL identifiers must begin with one of the following:

¢ An alphabetic character (A-Z or a-z, including letters with diacritical marks and non-Latin
letters)

e Underscore ()
Subsequent characters in an identifier can be:

e Alphabetic

¢ Digits(0-9)

e Dollar sign ($). Dollar sign is not allowed in identifiers according to the SQL standard and could
cause application portability problems.

Quoted ldentifiers

Identifiers enclosed in double quote (") characters can contain any character. If you want to
include a double quote, you need a pair of them; for example """ ". You can use names that
would otherwise be invalid, such as names that include only numeric characters ("123") or

contain space characters, punctuation marks, keywords, and so on; for example, CREATE
SEQUENCE "my sequence!";

Double quotes are required for non-alphanumerics and SQL keywords such as "1time", "Next
week" and "Select".

Note: Identifiers are not case-sensitive. Thus, identifiers "ABC", "ABc", and "aBc" are
synonymous, as are ABC, ABc, and aBc.

-15-

SQL Reference Manual

Identifiers Are Stored As Created

SQL identifiers, such as table and column names, are no longer converted to lowercase. They are
stored as created, and references to them are resolved using case-insensitive compares. It is not
necessary to double quote mixed-case identifiers. For example, The following statement creates
table ALL.CAPS.

=> CREATE TABLE ALLCAPS(cl wvarchar (30));
=> INSERT INTO ALLCAPS values ('upper case');

The following statements are variations of the same query and all return identical results:

=> SELECT * FROM ALLCAPS;
=> SELECT * FROM allcaps;
=> SELECT * FROM "allcaps";

All three commands return the same result;

upper case
(1 row)

Note that the system returns an error if you try to create table A11Caps:

=> CREATE TABLE allcaps(cl varchar (30));
ROLLBACK: table "AllCaps" already exists

See QUOTE IDENT (page 344) for additional information.

-16-

SQL Language Elements

Special note about Case-sensitive System Tables

The V_CATALOG.TABLES (page 820) .TABLE SCHEMA and TABLE NAME columns
are case sensitive when used with an equality (=) predicate in queries. For example, given
the following sample schema, if you execute a query using the = predicate, Vertica returns
0 rows:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (cl int);

=> INSERT INTO ss.tt VALUES (1);

=> SELECT table schema, table name FROM v_catalog.tables WHERE table schema
='ss';

table schema | table name

TIP: Use the case-insensitive ILIKE predicate to return the expected results.

=> SELECT table schema, table name FROM v catalog.tables WHERE table schema
ILIKE 'ss';

table schema | table name
______________ +____________
SS | TT

(1 row)

Literals

Literals are numbers or strings used in SQL as constants. Literals are included in the select-list,
along with expressions and built-in functions and can also be constants.

Vertica provides support for number-type literals (integers, numerics, and floating points) string
literals, and date/time literals. The various string literal formats are discussed in this section.

Number-type Literals
There are three types of numbers in Vertica: Integers, numerics, and floats.

e Integers (page 100) are whole numbers less than 2763 and must be digits.

e Numerics (page 100) are very large integers or include a decimal point with a precision and a
scale.

Note: Whole numbers that are larger than 2763 are treated as numerics. Numbers with a
decimal point but no exponent are treated as numerics with default precision and scale.
¢ Floating point (page 97) literals are like numerics with the addition of an exponent.

Numeric-type values can also be generated using casts from character strings. This is a more
general syntax. See the Examples section below, as well as Data Type Coercion Operators
(CAST) (page 38).

-17-

SQL Reference Manual

Syntax

digits

digits.[digits] | [digits].digits

digits e[+-]1digits | [digits].digits e[+-]1digits | digits.[digits] e[+-]1digits
Parameters

digits represents one or more numeric characters (0 through 9).

Notes

At least one digit must follow the exponent marker (e), if e is present.
There cannot be any spaces or other characters embedded in the constant.

Leading plus (+) or minus (-) signs are not considered part of the constant; they are unary
operators applied to the constant.

A numeric constant that contains neither a decimal point nor an exponent is initially presumed
to be type INTEGER if its value fits; otherwise it is presumed to be NUMERIC.

In most cases a numeric-type constant is automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a
specific data type by casting it as described in Data Type Coercion Operators (CAST) (page

38).

e \Vertica follows the IEEE specification for floating point, including NaN (not a number) and
Infinity (Inf).

e ANaN is not greater than and at the same time not less than anything, even itself. In other
words, comparisons always return false whenever a NaN is involved. See Numeric
Expressions (page 50) for examples.

Examples
The following are examples of number-type literals:

42

3.5

4.,

.001

5e2
1.925e-3

Scientific notation :

=> SELECT NUMERIC 'lelO';
?column?

10000000000
(1 row)

BINARY scaling:

=> SELECT NUMERIC 'lplQO';
?column?

-18-

SQL Language Elements

=> SELECT FLOAT 'Infinity';
?column?

Infinity
(1 row)

See Also
Data Type Coercion (page 104)

String Literals

String literals are string values surrounded by single or double quotes. Double-quoted strings are
subject to the backslash, but single-quoted strings do not require a backslash, except for \' and \\.

You can embed single quotes and backslashes into single-quoted strings.

To include other backslash (escape) sequences, such as \t (tab), you must use the double-quoted
form.

Single quoted strings require a preceding space between them and the preceding word because
single quotes are allowed in identifiers.

Standard Conforming Strings and Escape Characters

When interpreting commands, such as those entered in vsgl or in queries passed via JDBC or
ODBC, Vertica uses standard conforming strings as specified in the SQL standard. In standard
conforming strings, backslashes are treated as string literals (ordinary characters), not escape
characters.

Note: Text read in from files or streams (such as the data inserted using the COPY (page 607)
statement) are not treated as literal strings. The COPY command defines its own escape
characters for the data it reads. See the COPY (page 607) statement documentation for details.

In Vertica databases prior to 4.0, the standard conforming strings was not on by default, and
backslashes were considered escape sequences. After 4.0, escape sequences, including
Windows path names, did not work as they had previously. For example, the TAB character '\t
is two characters: '\'and 't"'.

E'..." s the Extended character string literal (page 23) format, so to treat backslashes as
escape characters, use E' \t'.

The following options are available, but Vertica recommends that you migrate your application to
use standard conforming strings at your earliest convenience, after warnings have been
addressed.

e Torevertto pre 4.0 behavior, set the StandardConformingStrings parameter to '0', as
described in Configuration Parameters in the Administrator's Guide.

e To enable standard conforming strings permanently, set the StandardConformingStrings
parameter to '1', as described in the procedure in the section, "Identifying Strings that are not
Standard Conforming," below.

-10-

SQL Reference Manual

e To enable standard conforming strings per session, use SET
STANDARD_CONFORMING_STRING TO ON (page 781), which treats backslashes as
escape characters for the current session only.

The two sections that follow help you identify issues between Vertica 3.5 and 4.0.

Identifying Strings that are not Standard Conforming

The following procedure can be used to identify non-standard conforming strings in your
application so that you can convert them into standard conforming strings:

1 Be sure the StandardConformingStrings parameter is off, as described in Internationalization
Parameters in the Administrator's Guide.

=> SELECT SET CONFIG PARAMETER ('StandardConformingStrings' ,'0"');
Note: Vertica recommends that you migrate your application to use Standard Conforming
Strings at your earliest convenience.

2 Turn on the EscapeStringWarning parameter. (ON is the default in <DBMS_SHORT 4.0.)
=> SELECT SET CONFIG PARAMETER ('EscapeStringWarning','l');
Vertica now returns a warning each time it encounters an escape string within a string literal.
For example, Vertica interprets the \n in the following example as a new line:

=> SELECT 'a\nb';
WARNING: nonstandard use of escape in a string literal at character
8
HINT: Use the escape string syntax for escapes, e.g., E'\r\n'.
?column?

(1 row)
When StandardConformingStrings is ON, the string is interpreted as four characters: a \ n b.
Modify each string that Vertica flags by extending it as in the following example:
E'a\nb'
Or if the string has quoted single quotes, double them; for example, 'one'' double'.
3 Turn on the StandardConformingStrings parameter for all sessions:
SELECT SET CONFIG PARAMETER ('StandardConformingStrings' ,'l");

Doubled Single Quotes
This section discusses vsql inputs that are not passed on to the server.

Vertica recognizes two consecutive single quotes within a string literal as one single quote
character. For example, the following inputs, 'You''re here!' ignored the second
consecutive quote and returns the following:

=> SELECT 'You''re here!';
?column?

You're here!
(1 row)

-20-

SQL Language Elements

This is the SQL standard representation and is preferred over the form, 'You\'re here!’',
because backslashes are not parsed as before. You need to escape the backslash:

=> SELECT (E'You\'re here!');
?2column?

You're here!
(1 row)

This behavior change introduces a potential incompatibility in the use of the vsgl \set command,
which automatically concatenates its arguments. For example, the following works in both Vertica
3.5and 4.0:

\set file '\'' ‘pwd® '/file.txt' '"\"'
\echo :file

vsql takes the four arguments and outputs the following:
'/home/vertica/file.txt"

In Vertica 3.5 the above \set file command could be written all with the arguments run
together, but in 4.0 the adjacent single quotes are now parsed differently:

\set file '"\'"'‘pwd '/file.txt''\'"'
\echo :file
'/home/vertica/file.txt'"

Note the extra single quote at the end. This is due to the pair of adjacent single quotes together
with the backslash-quoted single quote.

The extra quote can be resolved either as in the first example above, or by combining the literals
as follows:

\set file '"\''‘pwd '/file.txt'"'
\echo :file
'/home/vertica/file.txt"

In either case the backslash-quoted single quotes should be changed to doubled single quotes as
follows:

\set file '''' “pwd' '/file.txt'"'

See Also

STANDARD_CONFORMING_STRINGS (page 781)
ESCAPE_STRING_WARNING (page 768)

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

String Literals (Character)

Character string literals are a sequence of characters from a predefined character set and are
enclosed by single quotes. If the single quote is part of the sequence, it mustbe doubledas "' ' .

Syntax

'characters'

-21-

SQL Reference Manual

Parameters
characters is an arbitrary sequence of characters bounded by single quotes (').

Single Quotes in a String

The SQL standard way of writing a single-quote character within a string literal is to write two
adjacent single quotes. for example:

=> SELECT 'Chester''s gorilla';
?column?

Chester's gorilla
(1 row)

Standard Conforming Strings and Escape Characters

Vertica uses standard conforming strings as specified in the SQL standard, which means that
backslashes are treated as string literals, not escape characters.

Note: Earlier versions of Vertica did not use standard conforming strings, and backslashes
were always considered escape sequences. To revert to this older behavior, set the
StandardConformingStrings parameterto'0’, as described in Configuration Parameters
in the Administrator's Guide.

Examples

=> SELECT 'This is a string';
?column?
This is a string
(1 row)

=> SELECT 'This \is a string';
WARNING: nonstandard use of escape in a string literal at character 8
HINT: Use the escape string syntax for escapes, e.g., E'\r\n'.
?column?
This is a string
(1 row)

vmartdb=> SELECT E'This \is a string';
?column?
This is a string
=> SELECT E'This is a \n new line';
?column?

This is a
new line
(1 row)

=> SELECT 'String''s characters';
?column?

-22-

SQL Language Elements

String's characters
(1 row)

See Also

STANDARD_CONFORMING_STRINGS (page 781) and ESCAPE_STRING_WARNING (page
768) in the SQL Reference Manual

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

Extended String Literals

Syntax

E'characters'

Parameters
characters is an arbitrary sequence of characters bounded by single quotes (').

You can use C-style backslash sequence in extended string literals, which are an extension to the
SQL standard. You specify an extended string literal by writing the letter E as a prefix (before the
opening single quote); for example:

E'extended character string\n'

Within an extended string, the backslash character (\) starts a C-style backslash sequence, in
which the combination of backslash and following character or numbers represent a special byte
value, as shown in the following list. Any other character following a backslash is taken literally; for
example, to include a backslash character, write two backslashes (\\).

e \\ is abackslash

e \bis abackspace

e \fisaform feed

e \nis anewline

e \ris acarriage return

e \tisatab

e \x##is atabwhere ## is a1l or 2-digit hexadecimal number

o \##4#, where ##4# is a 1, 2, or 3-digit octal number representing a byte with the corresponding
code.

When an extended string literal is concatenated across lines, write only E before the first opening

quote:

=> SELECT E'first part o'
-> 'f a long line';
?column?

first part of a long line
(1 row)

Two adjacent single quotes are used as one single quote:

=> SELECT 'Aren''t string literals fun?';

-23-

SQL Reference Manual

?column?

Aren't string literals fun?
(1 row)

Standard Conforming Strings and Escape Characters

When interpreting commands, such as those entered in vsqgl or in queries passed via JDBC or

ODBC, Vertica uses standard conforming strings as specified in the SQL standard. In standard
conforming strings, backslashes are treated as string literals (ordinary characters), not escape
characters.

Note: Text read in from files or streams (such as the data inserted using the COPY (page 607)
statement) are not treated as literal strings. The COPY command defines its own escape
characters for the data it reads. See the COPY (page 607) statement documentation for details.

In Vertica databases prior to 4.0, the standard conforming strings was not on by default, and
backslashes were considered escape sequences. After 4.0, escape sequences, including
Windows path names, did not work as they had previously. For example, the TAB character '\t'
is two characters: "\' and 't"'.

E'..."'isthe Extended character string literal (page 23) format, so to treat backslashes as
escape characters, use E'\t'.

The following options are available, but Vertica recommends that you migrate your application to
use standard conforming strings at your earliest convenience, after warnings have been
addressed.

e Torevert to pre 4.0 behavior, set the StandardConformingStrings parameter to ‘0, as
described in Configuration Parameters in the Administrator's Guide.

e To enable standard conforming strings permanently, set the StandardConformingStrings
parameter to '1', as described in the procedure in the section, "Identifying Strings that are not
Standard Conforming," below.

e To enable standard conforming strings per session, use SET
STANDARD_CONFORMING_STRING TO ON (page 781), which treats backslashes as
escape characters for the current session only.

The two sections that follow help you identify issues between Vertica 3.5 and 4.0.

Identifying Strings that are not Standard Conforming

The following procedure can be used to identify non-standard conforming strings in your
application so that you can convert them into standard conforming strings:

1 Be sure the StandardConformingStrings parameter is off, as described in Internationalization
Parameters in the Administrator's Guide.

=> SELECT SET CONFIG PARAMETER ('StandardConformingStrings' ,'0'");

Note: Vertica recommends that you migrate your application to use Standard Conforming
Strings at your earliest convenience.

2 Turn on the EscapeStringWarning parameter. (ON is the default in <DBMS_SHORT 4.0.)
=> SELECT SET CONFIG PARAMETER ('EscapeStringWarning','l');

-24-

SQL Language Elements

Vertica now returns a warning each time it encounters an escape string within a string literal.
For example, Vertica interprets the \n in the following example as a new line:
=> SELECT 'a\nb';

WARNING: nonstandard use of escape in a string literal at character
8

HINT: Use the escape string syntax for escapes, e.g., E'\r\n'.
?column?

(1 row)
When StandardConformingStrings is ON, the string is interpreted as four characters: a \ n b.
Modify each string that Vertica flags by extending it as in the following example:
E'a\nb'
Or if the string has quoted single quotes, double them; for example, 'one'' double'.
3 Turn on the StandardConformingStrings parameter for all sessions:
SELECT SET CONFIG PARAMETER ('StandardConformingStrings' ,'l");

Doubled Single Quotes
This section discusses vsql inputs that are not passed on to the server.

Vertica recognizes two consecutive single quotes within a string literal as one single quote
character. For example, the following inputs, 'You''re here!' ignored the second
consecutive quote and returns the following:

=> SELECT 'You''re here!';
?column?

You're here!
(1 row)

This is the SQL standard representation and is preferred over the form, 'You\'re here!"',
because backslashes are not parsed as before. You need to escape the backslash:

=> SELECT (E'You\'re here!');
?column?

You're here!
(1 row)

This behavior change introduces a potential incompatibility in the use of the vsgl \set command,
which automatically concatenates its arguments. For example, the following works in both Vertica
3.5and 4.0:

\set file '\'' ‘pwd® '/file.txt' '"\"'
\echo :file

vsql takes the four arguments and outputs the following:
'/home/vertica/file.txt'

In Vertica 3.5 the above \set file command could be written all with the arguments run
together, but in 4.0 the adjacent single quotes are now parsed differently:

-25-

SQL Reference Manual

\set file '\''‘pwd '/file.txt''\"'
\echo :file
'/home/vertica/file.txt!'"'

Note the extra single quote at the end. This is due to the pair of adjacent single quotes together
with the backslash-quoted single quote.

The extra quote can be resolved either as in the first example above, or by combining the literals
as follows:

\set file '\'''pwd '/file.txt'"'
\echo :file
'/home/vertica/file.txt"

In either case the backslash-quoted single quotes should be changed to doubled single quotes as
follows:

\set file "" "pwd" 'ffile.txt™

Additional Examples

=> SELECT 'This \is a string';
?column?

This \is a string
(1 row)

=> SELECT E'This \is a string';
?column?

This is a string
=> SELECT E'This is a \n new line';
?column?

This is a
new line
(1 row)

=> SELECT 'String''s characters';
?column?

String's characters
(1 row)

Unicode String Literals

Syntax

U&'characters' [UESCAPE '<Unicode escape character>']

Parameters
characters is an arbitrary sequence of UTF-8 characters bounded by single quotes ().

-26-

SQL Language Elements

Unicode escape character is a single character from the source language character set other than
a hexit, plus sign (+), quote (), double quote ("), or white space.

When StandardConformingStrings is enabled, Vertica supports SQL standard Unicode character
string literals (the character set is UTF-8 only).

Before entering a Unicode character string literal, enable standard conforming strings in one of the
following ways.

e Toenable for all sessions, update the StandardConformingStrings configuration parameter.
See Configuration Parameters in the Administrator's Guide.

e To treats backslashes as escape characters for the current session, use the SET
STANDARD_CONFORMING_STRINGS (page 781) statement.

Examples
To enter a Unicode character in hexadecimal, use the following syntax:

=> SET STANDARD CONFORMING STRINGS TO ONj;
To enter, for example, the Russian phrase for "thank you™:

=> SELECT U&'\0441\043F\0430\0441\0438\0431\043E"' as 'thank you';
thank you

cnacubo
(1 row)

To enter in hexadecimal, for example, the German word 'mude’ (where u is really u-umlaut):

=> SELECT U&'m\0Ofcde’;
?column?

=> SELECT 'u';
?column?

See Also

STANDARD_CONFORMING_STRINGS (page 781) and ESCAPE_STRING_WARNING (page
768) in the SQL Reference Manual

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

String Literals (Dollar-Quoted)

Dollar-quoted string literals are rarely used but are provided here for your convenience.
The standard syntax for specifying string literals can be difficult to understand. To allow more
readable queries in such situations, Vertica SQL provides "dollar quoting.” Dollar quoting is not

part of the SQL standard, but it is often a more convenient way to write complicated string literals
than the standard-compliant single quote syntax.

-27-

SQL Reference Manual

Syntax

$Scharacters$s

Parameters
characters is an arbitrary sequence of characters bounded by paired dollar signs ($$).

Dollar-quoted string content is treated as a literal. Single quote, backslash, and dollar sign
characters have no special meaning within a dollar-quoted string.

Notes

A dollar-quoted string that follows a keyword or identifier must be separated from the preceding
word by whitespace; otherwise the dollar quoting delimiter would be taken as part of the preceding
identifier.

Examples

=> SELECT SSFred's\n car$s;
?2column?

Fred's\n car
(1 row)

=> SELECT 'SELECT 'fact';';
ERROR: syntax error at or near "';'" at character 21
LINE 1: SELECT 'SELECT 'fact';';

=> SELECT 'SELECT SSfact';$$;
?column?

SELECT Sfact
(1 row)

=> SELECT 'SELECT ''fact'';"';
?2column?

SELECT 'fact';
(1 row)

Date/Time Literals

Date or time literal input must be enclosed in single quotes. Input is accepted in almost any
reasonable format, including ISO 8601, SQL-compatible, traditional POSTGRES, and others.

Vertica is more flexible in handling date/time input than the SQL standard requires.The exact
parsing rules of date/time input and for the recognized text fields including months, days of the
week, and time zones are described in Date/Time Expressions (page 48).

Time Zone Values

Vertica attempts to be compatible with the SQL standard definitions for time zones. However, the
SQL standard has an odd mix of date and time types and capabilities. Obvious problems are:

-28-

SQL Language Elements

e Althoughthe DATE (page 73) type does not have an associated time zone, the TIME (page 88)
type can. Time zones in the real world have little meaning unless associated with a date as
well as a time, since the offset can vary through the year with daylight-saving time boundaries.

e Vertica assumes your local time zone for any data type containing only date or time.

e The default time zone is specified as a constant numeric offset from UTC. It is therefore not
possible to adapt to daylight-saving time when doing date/time arithmetic across DST
boundaries.

To address these difficulties, Vertica recommends using Date/Time types that contain both date
and time when you use time zones. Vertica recommends that you do not use the type TIME WITH
TIME ZONE, even though it is supported it for legacy applications and for compliance with the
SQL standard.

Time zones and time-zone conventions are influenced by political decisions, not just earth
geometry. Time zones around the world became somewhat standardized during the 1900's, but
continue to be prone to arbitrary changes, particularly with respect to daylight-savings rules.

Vertica currently supports daylight-savings rules over the time period 1902 through 2038,
corresponding to the full range of conventional UNIX system time. Times outside that range are
taken to be in "standard time" for the selected time zone, no matter what part of the year in which
they occur.

Example Description

PST Pacific Standard Time
-8:00 ISO-8601 offset for PST
-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST
zulu Military abbreviation for UTC
z Short form of zulu

Day of the Week Names
The following tokens are recognized as names of days of the week:

Day Abbreviations
SUNDAY SUN
MONDAY MON
TUESDAY TUE, TUES

WEDNESDAY [WED, WEDS

THURSDAY THU, THUR, THURS

FRIDAY FRI

SATURDAY SAT

-20-

SQL Reference Manual

Month Names
The following tokens are recognized as names of months:

Month Abbreviations

JANUARY JAN

FEBRUARY |FEB

MARCH MAR
APRIL APR
MAY MAY
JUNE JUN
JULY JUL

AUGUST AUG

SEPTEMBER | SEP, SEPT

OCTOBER OCT

NOVEMBER | NOV

DECEMBER |DEC

Interval Values
An interval value represents the duration between two points in time.

Syntax
[@] quantity unit [quantity unit...] [AGO]
Parameters
¢ (at sign) is optional and ignored
quantity Is an integer numeric constant (page 17)
unit Is one of the following units or abbreviations or plurals of the
following units:
MILLISECOND DAY DECADE
SECOND WEEK CENTURY
MINUTE MONTH MILLENNIUM
HOUR YEAR
AGO [Optional] specifies a negative interval value (an interval going back
in time). '"AGO" is a synonym for '-".

The amounts of different units are implicitly added up with appropriate sign accounting.

-30-

SQL Language Elements

Notes

¢ Quantities of days, hours, minutes, and seconds can be specified without explicit unit
markings. For example:

'l 12:59:10" isreadthesameas 'l day 12 hours 59 min 10 sec'
e The boundaries of an interval constant are:

= '0223372036854775807 usec' to '9223372036854775807 usec ago'

= 296533 years 3 mons 21 days 04:00:54.775807 to -296533 years -3 mons -21 days
-04:00:54.775807

e The range of an interval constant is +/- 2% - 1 (plus or minus two to the sixty-third minus one)
microseconds.

e In Vertica, the interval fields are additive and accept large floating point numbers.

Examples

SELECT INTERVAL 'l 12:59:10';
?column?
1 12:59:10
(1 row)
SELECT INTERVAL '9223372036854775807 usec';
?column?
106751991 04:00:54.775807
(1 row)
SELECT INTERVAL '-9223372036854775807 usec';
?column?
-106751991 04:00:54.775807
(1 row)
SELECT INTERVAL '-1 day 48.5 hours';
?column?

SELECT TIMESTAMP 'Apr 1, 07' - TIMESTAMP 'Mar 1, 07';
?column?
31
(1 row)
SELECT TIMESTAMP 'Mar 1, 07' - TIMESTAMP 'Feb 1, 07';
?column?

28

(1 row)

SELECT TIMESTAMP 'Feb 1, 07' 4+ INTERVAL '29 days';
?column?

03/02/2007 00:00:00
(1 row)

-31-

SQL Reference Manual

SELECT TIMESTAMP WITHOUT TIME ZONE '1999-10-01' + INTERVAL

second'
AS "Oct 31";
Oct 31

10/30/1999 23:59:59
(1 row)

intervaliteral

The following table lists the units allowed for an interval-literal parameter.

Unit Description

a Julian year, 365.25 days exactly

ago Indicates negative time offset

c, cent, century Centwy

centuries Centuries

d, day Day

days Days

dec, decade Decade

decades, decs Decades

h, hour, hr Hour

hours, hrs Hours

ka Julian kilo-year, 365250 days exactly

m Minute or month for year/month, depending
on context. See Notes below this table.

microsecond Microsecond

microseconds Microseconds

mil, millennium Millennium

millennia, mils Millennia

millisecond Millisecond

milliseconds Milliseconds

min, minute, mm Minute

mins, minutes Minutes

mon, month Month

mons, months Months

ms, msec, millisecond Millisecond

mseconds, msecs Milliseconds

-32-

'l month -

SQL Language Elements

g, gtr, quarter Quarter
gtrs, quarters Quarters
s, sec, second Second
seconds, secs Seconds
us, usec Microsecond

microseconds, useconds, usecs |Microseconds

w, week Week
weeks Weeks
y, year, yr Year
years, yrs Years
Notes

The input unit 'm' can represent either 'months' or ‘'minutes,’ depending on context. To illustrate,
the following command creates a one-column table with some interval vales:

=> CREATE TABLE int test (i INTERVAL YEAR TO MONTH) ;
In the first INSERT statement, the values are inserted as 1 year, six months:

=> INSERT INTO int test VALUES ('l year 6 months');

In the second INSERT statement, the minutes value is ignored, as the DAY TO SECOND part is
truncated:

=> INSERT INTO int test VALUES('l year 6 minutes');

In the third INSERT statement, the 'm' counts as minutes value is ignored, as the DAY TO SECOND
part is truncated:

=> INSERT INTO int_test VALUES('1 year 6 m'); -- the m counts as months Query the table and
you will notice that the second row does not contain the minutes input:

=> SELECT * FROM int test;

TrOws)

In the following command, the the 'm' counts as minutes, because the DAY TO SECOND
interval-qualifier extracts day/time values from the input:

=> SELECT INTERVAL 'lyé6m' DAY TO SECOND;
?column?

365 00:06
(1 row)

-33-

SQL Reference Manual

interval-qualifier

The following table lists the optional interval qualifiers. Values in INTERVAL fields, other than

SECOND, are integers with a default precision of 2 when they are not the first field.

Interval Type

Units

Valid interval-literal entries

Day/time intervals

DAY

Unconstrained.

DAY TO HOUR

An interval that represents a span of days and hours.

DAY TO MINUTE

An interval that represents a span of days and
minutes.

DAY TO SECOND

(Default) interval that represents a span of days,
hours, minutes, seconds, and fractions of a second if
subtype unspecified.

HOUR

Hours within days.

HOUR TO MINUTE

An interval that represents a span of hours and
minutes.

HOUR TO SECOND

An interval that represents a span of hours and
seconds.

MINUTE

Minutes within hours.

MINUTE TO SECOND

An interval that represents a span of minutes and
seconds.

SECOND Seconds within minutes.
Note: The seconND field can have an interval
fractional seconds precision, which indicates the
number of decimal digits maintained following the
decimal point in the SECONDS value. When SECOND is
not the first field, it has a precision of 2 places before
the decimal point.

Year/month intervals | MONTH Months within year.
YEAR Unconstrained.

YEAR TO MONTH

An interval that represents a span of years and
months.

Notes

You cannot combine day/time and year/month qualifiers. For example, the following intervals are

not allowed:

e DAY TO YEAR

-34-

SQL Language Elements

e HOUR TO MONTH

Operators

Operators are logical, mathematical, and equality symbols used in SQL to evaluate, compare, or
calculate values.

Binary Operators
Each of the functions in the following table works with binary and varbinary data types.

Operator ~ Function Description
T binary eq Equal to
Py binary ne Not equal to
T binary 1t Less than
re=" binary le Less than or equal to
B binary gt Greater than
T>=1 binary_ge Greater than or equal to
T binary and And
[N binary not Not
v binary or Or
FE binary xor Either or
K binary_cat Concatenate
Notes

If the arguments vary in length binary operators treat the values as though they are all equal in
length by right-extending the smaller values with the zero byte to the full width of the column
(except when using the binary cat function). For example, given the values '££' and '£', the
value 'f' istreatedas 'f0"'.

Operators are strict with respect to nulls. The result is null if any argument is null. For example,
null <> 'a'::binary returns null.

To apply the OR (' | ') operator to a varbinary type, explicitly cast the arguments; for example:

=> SELECT '1'::VARBINARY | '2'::VARBINARY;
?column?

(1 row)

Similarly, to apply the LENGTH (page 335), REPEAT (page 345), TO_HEX (page 244), and
SUBSTRING (page 355) functions to a binary type, explicitly cast the argument; for example:

=> SELECT LENGTH ('\\001\\002\\003\\004"'::varbinary(4));

-35-

SQL Reference Manual

LENGTH

(1 row)

When applying an operator or function to a column, the operator's or function's argument type is
derived from the column type.

Examples

In the following example, the zero byte is not removed from column catl when values are
concatenated:

=> SELECT 'ab'::BINARY(3) || 'cd'::BINARY(2) AS catl, 'ab'::VARBINARY (3) ||
'cd': :VARBINARY (2) AS cat2;
catl | catz2

__________ +______

ab\000cd | abcd

(1 row)

When the binary value 'ab'::binary (3) is translated to varbinary, the result is equivalent to
'ab\\000"': :varbinary (3) ; for example:

=> SELECT 'ab'::binary(3);
binary

ab\000
(1 row)

The following example performs a bitwise AND operation on the two input values (see also
BIT_AND (page 181)):

=> SELECT '10001'" & '0O11' as AND;
AND

(1 row)

The following example performs a bitwise OR operation on the two input values (see also BIT_OR
(page 182)):

=> SELECT '10001" | '0ll' as OR;
OR

The following example concatenates the two input values:

=> SELECT '10001" || '011' as CAT;
CAT

10001011
(1 row)

-36-

37

Boolean Operators

Syntax

[AND | OR | NOT]

Parameters

SQL uses a three-valued Boolean logic where the null value represents "unknown."

a b aAND Db aORb

TRUE TRUE TRUE TRUE

TRUE FALSE |FALSE TRUE

TRUE NULL NULL TRUE

FALSE |FALSE [FALSE FALSE

FALSE [NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE |TRUE

NULL NULL

Notes

e The operators AND and OR are commutative, that is, you can switch the left and right operand
without affecting the result. However, the order of evaluation of subexpressions is not defined.
When it is essential to force evaluation order, use a CASE (page 45) construct.

¢ Do not confuse Boolean operators with the Boolean-predicate (page 52) or the Boolean
(page 69) data type, which can have only two values: true and false.

Comparison Operators

Comparison operators are available for all data types where comparison makes sense. All
comparison operators are binary operators that return values of True, False, or NULL.

Syntax and Parameters

< less than

> greater than

<= less than or equal to
>= greater than or equal to

-37-

SQL Reference Manual

= or <=> equa|

<> or != |notequal

Notes

e The != operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

e The comparison operators return NULL (signifying "unknown") when either operand is null.

e The <=> operator performs an equality comparison like the = operator, but it returns true,
instead of NULL, if both operands are NULL, and false, instead of NULL, if one operand is
NULL.

Data Type Coercion Operators (CAST)

Data type coercion (casting) passes an expression value to an input conversion routine for a
specified data type, resulting in a constant of the indicated type.

Syntax

CAST (expression AS data-type)
expression::data-type
data-type 'string'

Parameters
expression Is an expression of any type
data-type Converts the value of expression to one of the following data types:
BINARY (page 65)
BOOLEAN (page 69)
CHARACTER (page 70)
DATE/TIME (page 72)
NUMERIC (page 95)
Notes

e In Vertica, data type coercion (casting) can be invoked only by an explicit cast request. It must
use, for example, one of the following constructs:
CAST (x AS data-type-name)
or
x::data-type-name

e Type coercion format of data-type 'string' can be used only to specify the data type of a quoted
string constant.

e The explicit type cast can be omitted if there is no ambiguity as to the type the constant must
be. For example, when a constant is assigned directly to a column, it is automatically coerced
to the column's data type.

e [f a binary value is cast (implicitly or explicitly) to a binary type with a smaller length, the value
is silently truncated. For example:

-38-

SQL Language Elements

=> SELECT 'abcd'::BINARY (2);
binary

ab

(1 row)
No casts other than BINARY to and from VARBINARY and resize operations are currently
supported.
On binary data that contains a value with fewer bytes than the target column, values are
right-extended with the zero byte '\ 0" to the full width of the column. Trailing zeros on
variable length binary values are not right-extended:
=> SELECT 'ab'::BINARY (4), 'ab'::VARBINARY (4);

binary | varbinary

____________ _|____________

ab\000\000 | ab

(1 row)

Examples

=>

SELECT CAST((2 + 2) AS VARCHAR) ;

varchar

(1
=>

row)
SELECT (2 + 2)::VARCHAR;

varchar

?

row)

SELECT '2.2' + 2;

ERROR: invalid input syntax for integer: "2.2"
SELECT FLOAT '2.2' + 2;

column?

See Also

Data Type Coercion (page 104)

Date/Time Operators

Syntax

[

S e B IRV

Parameters

~ ¥ I +

Addition
Subtraction
Multiplication
Division

-39-

SQL Reference Manual

Notes

The operators described below that take TIME or TIMESTAMP inputs actually come in two

variants: one that takes TIME WITH TIME ZONE or TIMESTAMP WITH TIME ZONE, and one
that takes TIME WITHOUT TIME ZONE Or TIMESTAMP WITHOUT TIME ZONE. For brevity,

these variants are not shown separately.

The + and * operators come in commutative pairs (for example both DATE + INTEGER and

INTEGER + DATE); only one of each such pair is shown.

Example Result Type Result
DATE '2001-09-28'"' + INTEGER '7' DATE '2001-10-05"
DATE '2001-09-28' + INTERVAL 'l HOUR' TIMESTAMP '2001-09-28 01:00:00"
DATE '2001-09-28' + TIME '03:00° TIMESTAMP "2001-09-28 03:00:00"
INTERVAL 'l DAY' + INTERVAL 'l HOUR' INTERVAL 'l DAY 01:00:00"
TIMESTAMP '2001-09-28 01:00' + INTERVAL '23 HOURS' TIMESTAMP '2001-09-29 00:00:00"
TIME '01:00' + INTERVAL '3 HOURS' TIME '04:00:00"
— INTERVAL '23 HOURS' INTERVAL '-23:00:00'
DATE '2001-10-01' - DATE '2001-09-28" INTEGER ER
DATE '2001-10-01' - INTEGER '7' DATE "2001-09-24"
DATE '2001-09-28' - INTERVAL 'l HOUR' TIMESTAMP '2001-09-27 23:00:00"
TIME '05:00' - TIME '03:00' INTERVAL '02:00:00"
TIME '05:00' - INTERVAL '2 HOURS' TIME '03:00:00"
TIMESTAMP '2001-09-28 23:00' - INTERVAL '23 HOURS' TIMESTAMP '2001-09-28 00:00:00"
INTERVAL 'l DAY' - INTERVAL 'l HOUR' INTERVAL 'l DAY -01:00:00"
TIMESTAMP '2001-09-29 03:00' - TIMESTAMP '2001-09-27 INTERVAL "1 DAY 15:00:00"
12:00"
900 * INTERVAL 'l SECOND' INTERVAL '00:15:00"
21 * INTERVAL 'l DAY' INTERVAL '21 DAYS'
DOUBLE PRECISION '3.5' * INTERVAL 'l HOUR' INTERVAL '03:30:00"
INTERVAL 'l HOUR' / DOUBLE PRECISION '1.5' INTERVAL '00:40:00"
Mathematical Operators
Mathematical operators are provided for many data types.
Operator Description Example Result
! Factorial 5 1 120
+ Addition 2+ 3 5
- Subtraction 2 -3 -1
* Multiplication 2 *3 6
/ Division (integer division truncates results) 4/ 2 2
s Modulo (remainder) 5% 4 1
i Exponentiation 2.0 ~ 3.0 8
I/ Square root |/ 25.0 5
1/ Cube root [/ 27.0 3

-40-

SQL Language Elements

H Factorial (prefix operator) 15 120
€ Absolute value @ -5.0 5

& Bitwise AND 91 & 15 11

\ Bitwise OR 32 | 3 35
Bitwise XOR 17 # 5 20
~ Bitwise NOT ~1 -2
<< Bitwise shift left 1 << 4 16
>> Bitwise shift right 8 >> 2 2

Notes

The bitwise operators work only on integer data types, whereas the others are available for all
numeric data types.

Vertica supports the use of the factorial operators on positive and negative floating point
(DOUBLE PRECISION (page 97)) numbers as well as integers. For example:

=> SELECT 4.98!;
?column?

115.978600750905
(1 row)

Factorial is defined in term of the gamma function, where (-1) = Infinity and the other negative
integers are undefined. For example

(-4)! = NaN

-4 = -(4) = -24.

Factorial is defined as z! = gamma(z+1) for all complex numbers z. See the Handbook of
Mathematical Functions http://www.math.sfu.ca/~cbm/aands/ (1964) Section 6.1.5.
See MOD () (page 289) for details about the behavior of %.

NULL Operators

To check whether a value is or is not NULL, use the constructs:

expression IS NULL expression IS NOT NULL
Alternatively, use equivalent, but nonstandard, constructs:

expression ISNULL expression NOTNULL

Do not write expression = NULL because NULL is not "equal to" NULL. (The null value represents
an unknown value, and it is not known whether two unknown values are equal.) This behavior
conforms to the SQL standard.

Note: Some applications might expect that expression = NULL returns true if expression
evaluates to the null value. Vertica strongly recommends that these applications be modified to
comply with the SQL standard.

-41-

http://www.math.sfu.ca/~cbm/aands/

SQL Reference Manual

String Concatenation Operators

To concatenate two strings on a single line, use the concatenation operator (two consecutive
vertical bars).

Syntax

string || string

Parameters

string Is an expression of type CHAR or VARCHAR
Notes

e || is used to concatenate expressions and constants. The expressions are cast to VARCHAR if
possible, otherwise to VARBINARY, and must both be one or the other.

e Two consecutive strings within a single SQL statement on separate lines are automatically
concatenated

Examples
The following example is a single string written on two lines:

=> SELECT E'xx'
-> "\\';
?column?

(1 row)

This example shows two strings concatenated:

=> SELECT E'xx' ||
-> "\\';
?column?

=> SELECT 'auto' || 'mobile';
?column?
automobile

(1 row)

=> SELECT 'auto'
-> 'mobile';
?column?
automobile

(1 row)

=> SELECT 1 || 2;
?column?

-42-

SQL Language Elements

(1 row)
=> SELECT '1' || '2"';
?column?

12
(1 row)
=> SELECT '1'
-> |2| ;
?column?

Expressions

SQL expressions are the components of a query that compare a value or values against other
values. They can also perform calculations. Expressions found inside any SQL command are
usually in the form of a conditional statement.

Operator Precedence
The following table shows operator precedence in decreasing (high to low) order.

Note: When an expression includes more than one operator, Vertica recommends that you
specify the order of operation using parentheses, rather than relying on operator precedence.

Operator/Element Associativity Description
left table/column name separator
left typecast

[] left array element selection

- right unary minus

» left exponentiation

/% left multiplication, division, modulo

+ - left addition, subtraction

Is IS TRUE, IS FALSE, IS UNKNOWN, IS NULL

IN set members hip

BETWEEN range containment

OVERLAPS time interval overlap

LIKE string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

-43-

SQL Reference Manual

AND left logical conjunction

OR left logical disjunction

Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order. To force evaluation
in a specific order, use a CASE (page 45) construct. For example, this is an untrustworthy way of
trying to avoid division by zero in a WHERE clause:

=> SELECT x, y WHERE x <> 0 AND y/x > 1.5;
But this is safe:

=> SELECT x, y
WHERE
CASE
WHEN x <> 0 THEN y/x > 1.5
ELSE false
END;
A CASE construct used in this fashion defeats optimization attempts, so use it only when
necessary. (In this particular example, it would be best to avoid the issue by writing vy > 1.5*x
instead.)

Aggregate Expressions

An aggregate expression represents the application of an aggregate function (page 110) across
the rows or groups of rows selected by a query.

Using AVG () as an example, the syntax of an aggregate expression is one of the following:

¢ Invokes the aggregate across all input rows for which the given expression yields a non-null
value:
AVG (expression)

e Is the same as AVG (expression) , because ALL is the default:
AVG (ALL expression)

e Invokes the AVG () function across all input rows for all distinct, non-null values of the
expression, where expression is any value expression that does not itself contain an
aggregate expression.

AVG (DISTINCT expression)

An aggregate expression only can appear in the select list or HAVING clause of a SELECT
statement. It is forbidden in other clauses, such as WHERE, because those clauses are evaluated
before the results of aggregates are formed.

-44-

CASE Expressions

The CASE expression is a generic conditional expression that can be used wherever an
expression is valid. It is similar to case and if/then/else statements in other languages.

Syntax (form 1)

CASE
WHEN condition THEN result
[WHEN condition THEN result]...
[ELSE result |

END

Parameters

condition Is an expression that returns a boolean (true/false) result. If
the result is false, subsequent WHEN clauses are
evaluated in the same manner.

result Specifies the value to return when the associated condition
is true.

ELSE result If no condition is true then the value of the CASE
expression is the result in the ELSE clause. If the ELSE
clause is omitted and no condition matches, the result is
null.

Syntax (form 2)

CASE expression

WHEN value THEN result

[WHEN value THEN result]...
[ELSE result]

END

Parameters

expression Is an expression that is evaluated and compared to all the
value specifications in the WHEN clauses until one is found
that is equal.

value Specifies a value to compare to the expression.

result Specifies the value to return when the expression is equal
to the specified value.

ELSE result Specifies the value to return when the expression is not
equal to any value; if no ELSE clause is specified, the value
returned is null.

Notes

The data types of all the result expressions must be convertible to a single output type.

-45-

SQL Reference Manual

Examples

=> SELECT * FROM test;

=> SELECT a,
CASE WHEN a=1 THEN 'one'
WHEN a=2 THEN 'two'
ELSE 'other'
END
FROM test;

\
+
1 |
2 | two
3
SELECT a,
CASE a WHEN 1 THEN 'one'
WHEN 2 THEN 'two'
ELSE 'other'

END
FROM test;

Special Example

ACASE expression does not evaluate subexpressions that are not needed to determine the result.
You can use this behavior to avoid division-by-zero errors:

=> SELECT x FROM T1 WHERE
CASE WHEN x <> 0 THEN y/x > 1.5
ELSE false
END;

Column References

Syntax

[[schemaname.] tablename.] columnname
Parameters

schemaname Is the name of the schema
tablename Is one of:

-46-

SQL Language Elements

= The name of a table
= An alias for a table defined by means of a FROM clause in a query

columnname Is the name of a column that must be unique across all the tables being used
in a query

Notes
There are no space characters in a column reference.

If you do not specify a schemaname, Vertica searches the existing schemas according to the
order defined in the SET SEARCH PATH (page 774) command.

Example
This example uses the schema from the VMart Example Database.

In the following command, transaction type and transaction time are the unique
column references, store is the name of the schema, and store sales fact is the table
name:

=> SELECT transaction type, transaction time
FROM store.store sales fact
ORDER BY transaction time;

transaction type | transaction time
__________________ +__________________
purchase | 00:00:23
purchase | 00:00:32
purchase | 00:00:54
purchase | 00:00:54
purchase | 00:01:15
purchase | 00:01:30
purchase | 00:01:50
return | 00:03:34
return | 00:03:35
purchase | 00:03:39
purchase | 00:05:13
purchase | 00:05:20
purchase | 00:05:23
purchase | 00:05:27
purchase | 00:05:30
purchase | 00:05:35
purchase | 00:05:35
purchase | 00:05:42
return | 00:06:36
purchase | 00:06:39
(20 rows)
Comments

A comment is an arbitrary sequence of characters beginning with two consecutive hyphen
characters and extending to the end of the line. For example:

-— This is a standard SQL comment

A comment is removed from the input stream before further syntax analysis and is effectively
replaced by white space.

-47-

SQL Reference Manual

Alternatively, C-style block comments can be used where the comment begins with /* and
extends to the matching occurrence of * /.

/* multiline comment
* with nesting: /* nested block comment */

*/

These block comments nest, as specified in the SQL standard. Unlike C, you can comment out
larger blocks of code that might contain existing block comments.

Date/Time Expressions

Vertica uses an internal heuristic parser for all date/time input support. Dates and times are input
as strings, and are broken up into distinct fields with a preliminary determination of what kind of
information might be in the field. Each field is interpreted and either assigned a numeric value,
ignored, or rejected. The parser contains internal lookup tables for all textual fields, including
months, days of the week, and time zones.

The date/time type inputs are decoded using the following procedure.

e Break the input string into tokens and categorize each token as a string, time, time zone, or
number.

e If the numeric token contains a colon (:), this is a time string. Include all subsequent digits and
colons.

¢ If the numeric token contains a dash (-), slash (/), or two or more dots (.), this is a date string
which might have a text month.

e If the token is numeric only, then it is either a single field or an ISO 8601 concatenated date (for
example, 19990113 for January 13, 1999) or time (for example, 141516 for 14:15:16).

e If the token starts with a plus (+) or minus (-), then it is either a time zone or a special field.

e Ifthe token is a text string, match up with possible strings.

e Do a binary-search table lookup for the token as either a special string (for example, today),
day (for example, Thursday), month (for example, January), or noise word (for example, at,
on).

e Set field values and bit mask for fields. For example, set year, month, day for today, and
additionally hour, minute, second for now.

e If not found, do a similar binary-search table lookup to match the token with a time zone.

e [f still not found, throw an error.

e When the token is a number or number field:

e If there are eight or six digits, and if no other date fields have been previously read, then
interpret as a "concatenated date" (for example, 19990118 or 990118). The interpretation is
YYYYMMDD Of YYMMDD.

e Ifthe token is three digits and a year has already been read, then interpret as day of year.

e If four or six digits and a year has already been read, then interpret as a time (HHMM or
HHMMSS).

e If three or more digits and no date fields have yet been found, interpret as a year (this forces
yy-mm-dd ordering of the remaining date fields).

-48-

SQL Language Elements

e Otherwise the date field ordering is assumed to follow the DateStyle setting: mm-dd-yy,
dd-mme-yy, or yy-mm-dd. Throw an error if a month or day field is found to be out of range.

e If BC has been specified, negate the year and add one for internal storage. (There is no year
zero in the Gregorian calendar, so numerically 1 BC becomes year zero.)

e [fBC was not specified, and if the year field was two digits in length, then adjust the year to four
digits. If the field is less than 70, then add 2000, otherwise add 1900.

Tip: Gregorian years AD 1-99 can be entered by using 4 digits with leading zeros (for example,
0099 is AD 99).

Month Day Year Ordering

For some formats, ordering of month, day, and year in date input is ambiguous and there is
support for specifying the expected ordering of these fields. See Date/Time Run-Time Parameters
for information about output styles.

Special Date/Time Values

Vertica supports several special date/time values for convenience, as shown below. All of these
values need to be written in single quotes when used as constants in SQL statements.

The values INFINITY and -INFINITY are specially represented inside the system and are
displayed the same way. The others are simply notational shorthands that are converted to
ordinary date/time values when read. (In particular, NOw and related strings are converted to a
specific time value as soon as they are read.)

String Valid Data Types Description
epoch DATE, TIMESTAMP 1970-01-01 00:00:00+00 (UNIXSYSTEM TIME
ZERO)
INFINITY TIMESTAMP Later than all other time stamps
-INFINITY TIMESTAMP Earlier than all other time stamps
NOW DATE, TIME, Current transaction's start time
TIMESTAMP

Note: NOw is not the same as the NOW (see "NOW
[Date/Time]" on page 220) function.

TODAY DATE, TIMESTAMP Midnight today
TOMORROW DATE, TIMESTAMP Midnig ht tomorrow
YESTERDAY DATE, TIMESTAMP Midnig ht yesterday
ALLBALLS TIME 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type:

e CURRENT _DATE (page 190)

e CURRENT_TIME (page 190)

e CURRENT_TIMESTAMP (page 191)

e LOCALTIME (page 213)

-49-

SQL Reference Manual

e LOCALTIMESTAMP (page 214)

The latter four accept an optional precision specification. (See Date/Time Functions.) Note
however that these are SQL functions and are not recognized as data input strings.

NULL Value

NULL is areserved keyword used to indicate that a data value is unknown.

Be very careful when using NULL in expressions. NULL is not greater than, less than, equal to, or
not equal to any other expression. Use the Boolean-predicate (on page 52) for determining
whether an expression value is NULL.

Notes

e \ertica stores data in projections, which are sorted in a specific way. All columns are stored in
ASC (ascending) order. For columns of data type NUMERIC, INTEGER, DATE, TIME,
TIMESTAMP, and INTERVAL, NULL Values are placed at the beginning of sorted projections
(NULLS FIRST), while for columns of data type FLOAT, STRING, and BOOLEAN, NULL values
are placed at the end (NULLS LAST). For details, see Null Placement in the Programmer's
Guide.

e Vertica also accepts NUL characters ('\0') in constant strings and no longer removes null
characters from VARCHAR fields on input or output. NUL is the ASCII abbreviation for the NULL
character.

e You can write queries with expressions that contain the <=> operator for NULL=NULL joins.
See Equi-joins and Non Equi-Joins in the Programmer's Guide.

See Also
NULL-handling Functions (page 299)

Numeric Expressions
Vertica follows the IEEE specification for floating point, including NaN.

A NaN is not greater than and at the same time not less than anything, even itself. In other words,
comparisons always return false whenever a NaN is involved.

Examples

=> SELECT CBRT('Nan'); -- cube root
cbrt

NaN

(1 row)

=> SELECT 'Nan' > 1.0;
?column?

-50-

SQL Language Elements

Predicates

In general, predicates are truth-valued functions; that is, when invoked, they return a truth value.
Predicates have a set of parameters and arguments. For example, in the following example
WHERE clause:

WHERE name = 'Smith';
e name = 'Smith' is the predicate
e 'Smith' is anexpression

BETWEEN-predicate

The special BETWEEN predicate is available as a convenience.

Syntax

a BETWEEN x AND y

Notes
a BETWEEN x AND y
Is equivalent to:

a >>= x AND a <=y
Similarly:

a NOT BETWEEN x AND y
is equivalent to:

a< xOR a>y

-51-

52

Boolean-predicate
Retrieves rows where the value of an expression is true, false, or unknown (null).

Syntax

expression IS [NOT] TRUE
expression IS [NOT] FALSE
expression IS [NOT] UNKNOWN

Notes

e Anullinputis treated as the value UNKNOWN.

e IS UNKNOWN and IS NOT UNKNOWN are effectively the same as the NULL-predicate (page

63), except that the input expression does not have to be a single column value. To check a
single column value for NULL, use the NULL-predicate.

e Do not confuse the boolean-predicate with Boolean Operators (on page 37) or the Boolean
(page 69) data type, which can have only two values: true and false.

-52-

column-value-predicate

Syntax

column-name comparison-op constant-expression

Parameters

column-name Is a single column of one the tables specified in the FROM clause
(page 750).

comparison-op Is one of the comparison operators (on page 37).

constant-expression Is a constant value of the same data type as the column-name.

Notes

To check a column value for NULL, use the NULL-predicate (page 63).

Examples

table.columnl = 2
table.column2 = 'Seafood'
table.column3 IS NULL

-53-

54

IN-predicate

Syntax

column-expression [NOT] IN (list-expression)

Parameters

column-expression One or more columns from the tables specified in the FROM clause (page
750).

list-expression A comma-separated list of constant values matching the data type of the
column-expression

Examples

x, y IN ((1,2), (3, 4)), OR x, y IN (SELECT a, b FROM table)
x IN (5, 6, 7)

INTERPOLATE

Used to join two event series together using some ordered attribute, event series joins let you
compare values from two series directly, rather than having to normalize the series to the same
measurement interval.

Syntax

expressionl INTERPOLATE PREVIOUS VALUE expressionZ2

Parameters

expressionl Is the column-reference (see "Column References" on page 46)

expression2 from one the tables specified in the FROM clause (page 750).
The column-reference can be any data type, but DATE/TIME types are
the most useful, especially TIMES TAMP,since you are joining data
that represents an event series.

PREVIOUS VALUE Pads the non-preserved side with the previous values from relation
when there is no match.
Input rows are sorted in ascending logical order of the join column.
Note: An ORDER BY clause, if used, does not determine the input
order but only determines query output order.

Notes

e Anevent series join is an extension of a regular outer join. Instead of padding the
non-preserved side with null values when there is no match, the event series join pads the
non-preserved side with the previous values from the table.

e The difference between expressing a regular outer join and an event series join is the
INTERPOLATE predicate, which is used in the ON clause. See the Examples section below
Notes and Restrictions. See also Event Series Joins in the Programmer's Guide.

-54-

SQL Language Elements

e Datais logically partitioned on the table in which it resides, based on other ON clause equality
predicates.

e Interpolated values come from the table that contains the null, not from the other table.
e Vertica does not guarantee that there will be no null values in the output. If there is no previous
value for a mismatched row, that row will be padded with nulls.

e Event series join requires that both tables be sorted on columns in equality predicates, in any
order, followed by the INTERPOLATED column. If data is already sorted in this order, then an
explicit sort is avoided, which can improve query performance. For example, given the
following tables:
ask: exchange, stock, ts, price
bid: exchange, stock, ts, price
In the query that follows

* ask issorted on exchange, stock (orthereverse), ts

= bidis sorted on exchange, stock (orthe reverse), ts

SELECT ask.price - bid.price, ask.ts, ask.stock, ask.exchange
FROM ask FULL OUTER JOIN bid
ON ask.stock = bid.stock AND ask.exchange = bid.exchange
AND ask.ts INTERPOLATE PREVIOUS VALUE bid.ts;

Restrictions

e Only one INTERPOLATE expression is allowed per join.

e INTERPOLATE expressions are used only with ANSI SQL-99 syntax (the ON clause), which is
already true for full outer joins.

e INTERPOLATE can be used with equality predicates only.
e The AND operator is supported but not the OR and NOT operators.
e Expressions and implicit or explicit casts are not supported, but subqueries are allowed.

Example
The examples that follow use this simple schema.

CREATE TABLE t(x TIME);

CREATE TABLE tl(y TIME);

INSERT INTO t VALUES('12:40:23'");

INSERT INTO t VALUES('14:40:25");

INSERT INTO t VALUES('14:45:00");

INSERT INTO t VALUES('14:49:55'");

INSERT INTO tl VALUES('12:40:23");
INSERT INTO tl VALUES ('14:00:00");
COMMIT;

Normal full outer join
=> SELECT * FROM t FULL OUTER JOIN tl ON t.x = tl.y;
Notice the null rows from the non-preserved table:

12:40:23
14:40:25

-55-

SQL Reference Manual

14:45:00 |
14:49:55 |

| 14:00:00
(5 rows)

Full outer join with interpolation
=> SELECT * FROM t FULL OUTER JOIN tl ON t.x INTERPOLATE PREVIOUS VALUE tl.y;
In this case, the rows with no entry point are padded with values from the previous row.

X | y
__________ +__________
12:40:23 | 12:40:23
12:40:23 | 14:00:00
14:40:25 | 14:00:00
14:45:00 | 14:00:00
14:49:55 | 14:00:00

(5 rows)

Normal Left Outer Join
=> SELECT * FROM t LEFT OUTER JOIN tl ON t.x = tl.y;
Again, there are nulls in the non-preserved table

X | y
__________ +__________
12:40:23 | 12:40:23
14:40:25 |
14:45:00 |
14:49:55 |

(4 rows)

Left Outer Join with Interpolation
=> SELECT * FROM t LEFT OUTER JOIN tl ON t.x INTERPOLATE PREVIOUS VALUE tl.y;
Nulls padded with interpolated values.

X \ y
__________ +__________
12:40:23 | 12:40:23
14:40:25 | 14:00:00
14:45:00 | 14:00:00
14:49:55 | 14:00:00
(4 rows)
Inner joins

For inner joins, there is no difference between a regular inner join and an event series inner join.
Since null values are eliminated from the result set, there is nothing to interpolate.

A regular inner join returns only the single matching row at 12:40:23:

=> SELECT * FROM t INNER JOIN tl1 ON t.x = tl.y;

__________ +__________
12:40:23 | 12:40:23

-56-

SQL Language Elements

(1 row)

An event series inner join finds the same single-matching row at 12:40:23:

=> SELECT * FROM t INNER JOIN tl ON t.x INTERPOLATE PREVIOUS VALUE tl.y;

x \ Yy

________ +__________
12:40:23 | 12:40:23

(1 row)

Semantics

When you write an event series join in place of normal join, values are evaluated as follows (using
the schema in the above examples):

t is the outer, preserved table

t1 is the inner, non-preserved table

For each row in outer table t, the ON clause predicates are evaluated for each combination of
each row in the inner table t1.

If the ON clause predicates evaluate to true for any combination of rows, those combination
rows are produced at the output.

If the ON clause is false for all combinations, a single output row is produced with the values of
the row from t along with the columns of t1 chosen from the row in t1 with the greatest t1.y
value suchthat t1.y < t.x; If nosuch row is found, pad with nulls.

Note: t LEFT OUTER JOIN t1 is equivalentto t1 RIGHT OUTER JOIN t.

In the case of a full outer join, all values from both tables are preserved.

See Also

Event Series Joins in the Programmer's Guide

-57-

join-predicate
Combines records from two or more tables in a database.

Syntax

column-reference (see "Column References" on page 46) column-reference

Parameters

column-reference Refers to a column of one the tables specified in the FROM clause

(page 750).

-58-

59

LIKE-predicate

Retrieves rows where the string value of a column matches a specified pattern. The pattern can
contain one or more wildcard characters. ILIKE is equivalent to LIKE except that the match is
case-insensitive (non-standard extension).

Syntax

string [NOT]{ LIKE | ILIKE | LIKEB | ILIKEB }
. pattern [ESCAPE 'escape-character']

Parameters
string (CHAR, VARCHAR, BINARY, VARBINARY) is the column value to be
compared to the pattern.
NOT Returns true if LIKE returns false, and the reverse; equivalent to NOT
string LIKE pattern.
pattern Specifies a string containing wildcard characters.
= Underscore (_) matches any single character.
= Percent sign (%) matches any string of zero or more characters.
ESCAPE Specifies an escape-character. An ESCAPE character can be used to

escape itself, underscore (_), and % only. This is enforced only for
non-default collations.

To match the ESCAPE character itself, use two consecutive escape
characters. The default ESCAPE character is the backslash (\) character,

although standard SQL specifies no default ESCAPE character. ESCAPE
works for char and varchar strings only.

escape-character Causes character to be treated as a literal, rather than a wildcard, when
preceding an underscore or percent sign character in the pattern.

Notes

e The LIKE predicate is compliant with the SQL standard.

e Inthe default locale, LIKE and ILIKE handle UTF-8 character-at-a-time, locale-insensitive
comparisons. ILIKE handles language-independent case-folding.

Note: In non-default locales, LTKE and ILIKE do locale-sensitive string comparisons,
including some automatic normalization, using the same algorithm as the "=" operator on
VARCHAR types.

e TheLIKEB and ILIKEB predicates do byte-at-a-time ASCIl comparisons, providing access to
Vertica 4.0 functionality.

e LIKE and ILIKE are stable for character strings, but immutable for binary strings, while
LIKEB and ILIKEB are both immutable

e Forcollation=binary settings, the behavior is similar to Vertica 4.0. For other collations,
LIKE operates on UTF-8 character strings, with the exact behavior dependent on collation

parameters, such as strength. In particular, ILIKE works by setting S=2 (ignore case) in the
current session locale. See Locale Specification in the Administrator's Guide.

-59-

SQL Reference Manual

e Although the SQL standard specifies no default ESCAPE character, in Vertica the default is the
backslash (\) and works for CHAR and VARCHAR strings only.

Tip: Vertica recommends that you specify an explicit escape character in all cases, to avoid
problems should this behavior change. To use a backslash character as aliteral, either specify
a different escape character or use two backslashes.

e ESCAPE expressions evaluate to exactly one octet — or one UTF-8 character for non-defau lt
locales.

e ANnESCAPE character can be used only to escape itself, ,and %. This is enforced only for
non-default collations.

e LIKE requires that the entire string expression match the pattern. To match a sequence of
characters anywhere within a string, the pattern must start and end with a percent sign.

e The LIKE predicate does not ignore trailing "white space" characters. If the data values that

you want to match have unknown numbers of trailing spaces, tabs, etc., terminate each LIKE
predicate pattern with the percent sign wildcard character.

e Touse binary data types, you must use a valid binary character as the escape character, since
backslash is not a valid BINARY character.

e The following symbols are substitutes for the actual keywords:

~~ LIKE

~4 LIKEB
~nk ILIKE
~f* ILIKEB
[[ENR NOT LIKE

I~ NOT LIKEB
!~~* NOT ILIKE
I~#* NOT IILIKEB

The ESCAPE keyword is not valid for the above symbols.

e Vertica extends support for single-row subqueries as the pattern argument for LIKEB and
ILIKEB; for example:
SELECT * FROM tl WHERE tl.x LIKEB (SELECT MAX (t2.a) FROM t2);

Querying Case-sensitive data in System Tables

TheV;CATALOG.TABLES (page 820).TABLE_SCHEMAandTABLE_NAME columns are case

sensitive when used with an equality (=) predicate in queries. For example, given the following
sample schema, if you execute a query using the = predicate, Vertica returns 0 rows:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (cl int);

=> INSERT INTO ss.tt VALUES (1);

=> SELECT table schema, table name FROMv catalog.tables WHERE table schema ='ss';

table schema | table name
______________ +____________
(0 rows)

TIP: Use the case-insensitive ILIKE predicate to return the expected results.

=> SELECT table schema, table name FROM v_catalog.tables WHERE table schema ILIKE
'SS',’

-60-

SQL Language Elements

table schema | table name
______________ +____________
SS | TT

(1 row)

Examples

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE ' b ' true
'abc' LIKE 'c' false

'abc' LIKE 'ABC' false
'abc' ILIKE 'ABC' true
'abc' not like 'abc' false
not 'abc' like 'abc' false

The following example illustrates pattern matching in locales.

\locale default

=> CREATE TABLE src(cl VARCHAR(100));

=> INSERT INTO src VALUES (U&'\OODF'); --The beta (B)
=> INSERT INTO src VALUES ('ss');

=> COMMIT;

Querying the src table in the default locale returns both ss and beta.

=> SELECT * FROM src;
cl

B
ss
(2 rows)

The following query combines pattern-matching predicates to return the results from column c1:

=> SELECT cl, cl = 'ss' AS equality, c¢l LIKE 'ss' AS LIKE, cl
ILIKE 'ss' AS ILIKE FROM src;
cl | equality | LIKE | ILIKE

e T e to—m = fomm -
B | f | £ | £

ss | t | t | t

(2 rows)

The next query specifies unicode format for c1:

=> SELECT cl, cl = U&'\OODF' AS equality, cl LIKE U&'\OODF' AS LIKE,
cl ILIKE U&'\OODF' AS ILIKE from src;
cl | equality | LIKE | ILIKE

e F————— f—————
B |t | t | t

ss | £ | £ | £

(2 rows)

Now change the locale to German with a strength of 1 (ignore case and accents):

\locale LDE_S1
=> SELECT cl, cl = 'ss' AS equality, cl LIKE 'ss' as LIKE,
cl ILIKE 'ss' AS ILIKE from src;
cl | equality | LIKE | ILIKE

-61-

SQL Reference Manual

————tm e —— +————— o
B |t | t | £

ss | t | t | t

(2 rows)

The following query fails because ILIKE forces collation into S2. Because the locale is S1, the
ignore-accents part is lost and the beta is considered an accent:

=> SELECT cl, cl = U&'\OODF' AS equality, cl LIKE U&'\OODF' AS LIKE,
cl ILIKE U&'\OODF' AS ILIKE from src;
cl | equality | LIKE | ILIKE

————te - - -
ss | t | t | £

B | t | t | t

(2 rows)

This example illustrates binary data types with pattern-matching predicates:

=> CREATE TABLE t (c BINARY (1))
=> INSERT INTO t values(HEX_TO_BINARY('OXOO'));
=> INSERT INTO t values(HEX_TO_BINARY('OXFF'));
=> SELECT TO HEX(c) from t;

TO_ HEX

00

ff

(2 rows)

select * from t;

\000
\377
(2 rows)
=> SELECT ¢, c¢ = '\000', ¢ LIKE '\00O', ¢ ILIKE '\0OOO' from t;
c | ?column? | ?column? | ?column?
—————— R e
\000 | t | € | t
\377 | £ | £ | £
(2 rows)
=> SELECT ¢, ¢ = '\377', ¢ LIKE '\377', ¢ ILIKE '\377' from t;
c | ?column? | ?column? | ?column?
—————— ettt
\000 | £ | £ | £
\377 | t | t | t
(2 rows)

-62-

NULL-predicate

Tests for null values.

Syntax

column-name IS [NOT] NULL

Parameters

column-name Is a single column of one the tables specified inthe FROM clause
(page 750).

Examples

a IS NULL

b IS NOT NULL

See Also
NULL Value (page 50)

-63-

SQL Data Types

The following tables summarizes the data types supported by Vertica, as well as the default
placement of null values in projections. The Size column is shown in uncompressed bytes.

Type Size Description NULL Sorting

Binary types

BINARY 1 to 65000 | Fixed-length binary string NULLS LAST

VARBINARY 1 to 65000 | Variable-length binary string NULLS LAST

BYTEA 1 to 65000 | Variable-length binary string (synonym |NULLS LAST
for VARBINARY)

RAW 1 to 65000 | Variable-length binary string (synonym |NULLS LAST

for VARBINARY)

Boolean types

BOOLEAN 1 True or False or NULL NULLS LAST

Character types

CHAR 1 to 65000 | Fixed-length character string NULLS LAST

VARCHAR 1 to 65000 | Variable-length character string NULLS LAST

Date/time types

DATE 8 Represents a month, day, and year NULLS FIRST

DATETIME 8 Represents a date and time with or NULLS FIRST
without timezone (synonym for
TIMESTAMP)

SMALLDATETIME 8 Represents a date and time with or NULLS FIRST
without timezone (synonym for
TIMESTAMP)

TIME 8 Represents a time of day without NULLS FIRST
timezone

TIME WITH 8 Represents a time of day with timezone | NULLS FIRST

TIMEZONE

TIMESTAMP 8 Represents a date and time without NULLS FIRST
timezone

TIMESTAMP WITH 8 Represents a date and time with NULLS FIRST

TIMEZONE timezone

INTERVAL 8 Measures the difference between two |NULLS FIRST

points in time

-64-

SQL Data Types

Approximate numeric types

DOUBLE PRECISION |8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

FLOAT 8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

FLOAT (n) 8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

FLOATS8 8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

REAL 8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

Exact numeric types

INTEGER 8 Signed 64-bit integer, requiring 8 bytes [NULLS FIRST
of storage

INT 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

BIGINT 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

INT8 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

SMALLINT 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

TINYINT 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

DECIMAL 8+ 8 bytes for the first 18 digits of NULLS FIRST
precision, plus 8 bytes for each
additional 19 digits

NUMERIC 8+ 8 bytes for the first 18 digits of NULLS FIRST
precision, plus 8 bytes for each
additional 19 digits

NUMBER 8+ 8 bytes for the first 18 digits of NULLS FIRST
precision, plus 8 bytes for each
additional 19 digits

MONEY 8+ 8 bytes for the first 18 digits of NULLS FIRST

precision, plus 8 bytes for each
additional 19 digits

Binary Data Types

Store raw-byte data, such as IP addresses, up to 65000 bytes.

-65-

SQL Reference Manual

Syntax

BINARY (Ilength)

{ VARBINARY | BINARY VARYING | BYTEA | RAW } (max-length)
Parameters

length | max-length Specifies the length of the string.

Notes

e The datatypes BINARY and BINARY VARYING (VARBINARY) are collectively referred to as
binary string types and the values of binary string types are referred to as binary strings.

e Abinary string is a sequence of octets, or bytes. Binary strings store raw-byte data, while
character strings store text.

e The binary data types, BINARY and VARBINARY, are similar to the character data types
(page 70), CHAR and VARCHAR, respectively, except that binary data types contain byte
strings, rather than character strings. The allowable maximum length is the same for binary
data types as it is for character data types, except that the length for BINARY and
VARBINARY is a length in bytes, rather than in characters.

e BINARY — A fixed-width string of length bytes, where the number of bytes is declared as an
optional specifier to the type. If length is omitted, the default is 1. Where necessary, values are
right-extended to the full width of the column with the zero byte. For example:
=> SELECT TO HEX('ab'::BINARY (4));

to hex B

61620000

e VARBINARY — A variable-width string up to a length of max-length bytes, where the maximum

number of bytes is declared as an optional specifier to the type. The default is the default
attribute size, which is 80, and the maximum length is 65000 bytes. Varbinary values are not
extended to the full width of the column. For example:

=> SELECT TO_HEX('ab'::VARBINARY(4));
to hex

6162
e BYTEA and RAW are synonyms for VARBINARY.

e You can use several formats when working with binary values, but the hexadecimal format is
generally the most straightforward and is emphasized in Vertica documentation.

e The g, ~, | and # binary operands have special behavior for binary data types, as described
in Binary Operators (page 35).

e Oninput, strings are translated from hexadecimal representation to a binary value using the
HEX TO BINARY (page 324) function. Strings are translated from bitstring representation to

binary values using the BITSTRING TO BINARY (page 316) function. Both functions take a
VARCHAR argument and return a VARBINARY value. See the Examples section below.

Binary values can also be represented in octal format by prefixing the value with a backslash
] \] .

-66-

SQL Data Types

Note: If you use vsqgl, you must use the escape character (\) when inserting another backslash
on input; for example, input '\141' as "\\141".

You can also input values represented by printable characters. For example, the hexadecimal
value '0x61"' can also be represented by the symbo1l .

See Loading Binary Data in the Administrator's Guide.

e Like the input format the output format is a hybrid of octal codes and printable ASCII
characters. A byte in the range of printable ASClII characters (the range [0x20, 0x7e])Is
represented by the corresponding ASCII character, with the exception of the backslash ('\ '),
which is escaped as '\ \ '. All other byte values are represented by their corresponding octal

values. For example, the bytes {97,92,98,99}, which in ASCllare {a, \, b, c}, are translated
totextas 'a\\bc'.

e The following aggregate functions are supported for binary data types:
= BIT AND (page 181)
= BIT_OR (page 182)
= BIT_XOR (page 183)
* MAX (page 116)
= MIN (page 117)
BIT AND,BIT OR,andBIT XOR are bitwise operations that are applied to each non-null
value in a group, while MAX and MIN are bytewise comparisons of binary values.

e Like their binary operator (page 35) counterparts, if the values in a group vary in length, the
aggregate functions treat the values as though they are all equal in length by extending shorter
values with zero bytes to the full width of the column. For example, given a group containing
thevalues 'ff', null, and 'f', a binary aggregate ignores the null value and treats the
value 'f' as 'f0'. Also, like their binary operator counterparts, these aggregate functions
operate on VARBINARY types explicitly and operate on BINARY types implicitly through casts.
See Data Type Coercion Operators (CAST) (page 38).

Examples

The following example shows VARBINARY HEX TO BINARY (page 324) (VARCHAR) and
VARCHAR TO HEX (page 244) (VARBINARY) usage.

Table t and and its projection are created with binary columns:

=> CREATE TABLE t (c BINARY(1l));
=> CREATE PROJECTION t p (c) AS SELECT c FROM t;

Insert minimum byte and maximum byte values:

=> INSERT INTO t values (HEX TO BINARY ('0x00'"));
=> INSERT INTO t values (HEX TO BINARY ('OxFF'));

Binary values can then be formatted in hex on output using the TO_HE X function:

=> SELECT TO_HEX(C) FROM t;
to hex

-67-

SQL Reference Manual

The BIT AND, BIT OR,and BIT XOR functions are interesting when operating on a group of
values. For example, create a sample table and projections with binary columns:

This examples uses the following schema, which creates table t with a single column of
VARBINARY data type:

=> CREATE TABLE t (

c VARBINARY (2));
=> INSERT INTO t values (HEX TO BINARY ('OxFF00'));
=> INSERT INTO t values (HEX TO BINARY ('OxFFFF'));
=> INSERT INTO t values (HEX TO BINARY ('OxFOOF'));

Query table t to see column c output:

=> SELECT TO_HEX (c) FROM t;
TO_HEX

Now issue the bitwise AND operation. Because these are aggregate functions, an implicit GROUP
BY operation is performed on results using (£ff00& (ffff) &f00f):

=> SELECT TO_HEX(BIT_AND(C)) FROM t;
to _hex

Issue the bitwise OR operationon (££f00| (f££f) | £f00f):

=> SELECT TO_HEX(BIT_OR(C)) FROM t;
to _hex

Issue the bitwise XOR operationon (£f£f00# (f£f£f) #£00f):

=> SELECT TO HEX(BIT XOR(c)) FROM t;
to _hex

See Also

Aggregate functions BIT_AND (page 181), BIT_OR (page 182), BIT_XOR (page 183), MAX
(page 116), and MIN (page 117)

Binary Operators (page 35)
COPY (page 607)

-68-

SQL Data Types

Data Type Coercion Operators (CAST) (page 38)

IP conversion function INET_ATON (page 272), INET_NTOA (page 273), V6_ATON (page 273),
V6_NTOA (page 275), V6_SUBNETA (page 275), V6_SUBNETN (page 276), V6_TYPE (page
277)

String functions BITCOUNT (page 316), BITSTRING_TO_BINARY (page 316),
HEX_TO_BINARY (page 324), LENGTH (page 335), REPEAT (page 345), SUBSTRING (page
355), TO_HEX (page 244), and TO_BITSTRING (page 241)

Loading Binary Data in the Administrator's Guide

Boolean Data Type

Vertica provides the standard SQL type BOOLEAN, which has two states: true and false. The third
state in SQL boolean logic is unknown, which is represented by the NULL value.

Syntax

BOOLEAN

Parameters

Valid literal data values for input are:

TRUE 't'] "true' 'y! 'yes' ['1"
FALSE 'f']'false' | 'n’ 'no’ '’
Notes

e Do not confuse the BOOLEAN data type with Boolean Operators (on page 37) or the
Boolean-predicate (on page 52).

e The keywords TRUE and FALSE are preferred and are SQL-compliant.
e All other values must be enclosed in single quotes.

e Boolean values are output using the letters t and f.

See Also

NULL Value (page 50)

-69-

SQL Reference Manual

Character Data Types

Stores strings of letters, numbers and symbols. Character data can be stored as fixed-length or
variable-length strings; the difference is that fixed-length strings are right-extended with spaces on
output, and variable-length strings are not extended.

Syntax

[CHARACTER | CHAR] (length)

[VARCHAR | CHARACTER VARYING] (length)
Parameters

length Specifies the length of the string in octets.
Notes

e Acharacter is a Unicode codepoint represented as UTF-8.

e The data types CHARACTER (CHAR) and CHARACTER VARYING (VARCHAR) are collectively
referred to as character string types, and the values of character string types are known as
character strings.

e CHAR is conceptually a fixed-length, blank padded string. Any trailing blanks (spaces) are
removed on input, and only restored on output. The default length is 1 and the maximum
length is 65000 octets (bytes).

e VARCHAR IS a variable-length character data type. The default length is 80 and the maximum
length is 65000 octets. Values can include trailing spaces.

e When you define character columns, you specify the maximum size of any string to be stored
in the column. For example, if you want to store strings up to 24 octets in length, you could use
either of the following definitions:

CHAR (24) /* fixed-length */
VARCHAR (24) /* variable-length */

e The maximum length parameter for VARCHAR and CHAR data type refers to the number of
octets that can be stored in that field and not number of characters. When using multibyte
UTF-8 characters, the fields must be sized to accommodate from 1 to 4 octets per character,
depending on the data. If the data being loaded into a VARCHAR/CHAR column exceeds the
specified maximum size for that column, data is truncated on UTF-8 character boundaries to fit
within the specified size. See COPY (page 607).

Note: Remember to include the extra octets required for multibyte characters in the
column-width declaration, keeping in mind the 65000 octet column-width limit.

e String literals in SQL statements must be enclosed in single quotes.

e Duetocompressionin Vertica, the cost of over-estimating the length of these fields is incurred
primarily at load time and during sorts.

e NULL appears last (largest) in ascending order. See also GROUP BY Clause (page 754) for
additional information about null ordering.

-70-

SQL Data Types

NULL vs NUL
NUL represents a character whose ASCIl/Unicode code is zero, sometimes qualified "ASCII NUL".

NULL means no value, and is true of a field (column) or constant, not of a character.
VARCHAR string data types accept ASCII NULs.

The following example casts the input string containing NUL values to VARCHAR:

=> SELECT E'vert\Oica'::CHARACTER VARYING AS varchar;
varchar

vertica
(1 row)

The following example casts the input string containing NUL values to VARBINARY:

=> SELECT E'vert\Oica'::BINARY VARYING as varbinary;
varbinary

vert\000ica
(1 row)

In both cases, the result contains 8 characters, but in the VARCHAR case, the "\000' is not visible:

=> SELECT LENGTH ('vert\Oica'::CHARACTER VARYING) ;
length

(1 row)
=> SELECT LENGTH('vert\Oica'::BINARY VARYING) ;
length

See Also
Data Type Coercion (page 104)

-71-

72

Date/Time Data Types

Vertica supports the full set of SQL date and time data types. In most cases, a combination of
DATE, DATETIME, SMALLDATETIME, TIME, TIMESTAMP WITHOUT TIME ZONE, and TIMESTAMP
WITH TIME ZONE, and INTERVAL provides a complete range of date/time functionality required
by any application.

In compliance with the SQL standard, Vertica also supports the TIME WITH TIME ZONE data type.
The following table lists the date/time data types, their sizes, values, and resolution.

Date/Time Data Types

Name Size Description Low Value High Value Resolution

DATE 8 bytes | Dates only (notime |4713 BC 5874897 AD |1 day
of day)

DATETIME 8 bytes | Both date and time, |4713 BC 5874897 AD |1 microsecond/14
with [w/o] time zone digits

INTERVAL [(p)] 8 bytes | Time intervals -178000000 yrs | 178000000 yrs | 1 microsecond/14

digits

SHMALLDATETLME 8 bytes | Both date and time, |4713 BC 5874897 AD |1 microsecond/14
with [w/o] time zone digits

e zommy o OPT | 8 bytes | Times of day only | 00:00:00.00 |23:59:59.99 |1 microsecond/14
(no date) digits

TIME [(p)] WITH - H

TIME ZONE 8 bytes T|_me$ of day only, 00:00:00.00+12 | 23:59:59.99-1 1_rr_1|crosecond/14
with time zone 2 digits

CSrra | wistoyr) |8 bytes |Both date and time, |4713 BC 5874897 AD | 1 microsecond/14

TIME ZONE] | with [w/0] time zone digits

TIMESTAMPTZ

Time Zone Abbreviations for Input

The files in /opt/vertica/share/timezonesets are recognized by Vertica as date/time
input values and define the default list of strings accepted in the AT TIME ZONE zone parameter.
The names are not necessarily used for date/time output — output is driven by the official time
zone abbreviations associated with the currently selected time zone parameter setting.

Notes

e In Vertica, TIME ZONE is a synonym for TIMEZONE.

e \ertica uses Julian dates for all date/time calculations. They can correctly predict and
calculate any date more recent than 4713 BC to far into the future, based on the assumption
that the length of the year is 365.2425 days.

e All date/time types are stored in eight bytes.
o Adate/time value of NULL appears first (smallest) in ascending order.

-72-

SQL Data Types

All the date/time data types accept the special literal value NOW to specify the current date and
time. For example:

=> SELECT TIMESTAMP 'NOW';
?2column?

2010-10-04 11:18:15.227544
(1 row)

In Vertica, The INTERVALS (page 74) datatypeis SQL-2008 compliant and allows
modifiers, called interval qualifiers (page 34), that divide the INTERVAL type into two primary
subtypes, DAY TO SECOND (the default) and YEAR TO MONTH. You use the SET
INTERVALSTYLE (page 768) command to change the run-time parameter for the current
session.

Intervals are represented internally as some number of microseconds and printed as up to 60
seconds, 60 minutes, 24 hours, 30 days, 12 months, and as many years as necessary. Fields
can be positive or negative.

See Also

Set the Default Time Zone and Using Time Zones with Vertica in the Installation Guide

Sources for Time Zone and Daylight Saving Time Data

http://www.twinsun.com/tz/tz-link.htm

DATE

Consists of a month, day, and year.

Syntax
DATE

Parameters

Low Value

High Value

Resolution

4713 BC

32767 AD

1 DAY

See SET DATESTYLE (page 767) for information about ordering.

Example Description
January 8, 1999 |Unambiguous in any datestyle input mode
1999-01-08 ISO 8601; January 8 in any mode (recommended format)
1/8/1999 January 8 in MDY mode; August 1 in DMY mode
1/18/1999 January 18 in MDY mode; rejected in other modes
01/02/03 January 2, 2003 in MDY mode

February 1, 2003 in DMY mode

February 3, 2001 in YMD mode
1999-Jan-08 January 8 in any mode

-73-

http://www.twinsun.com/tz/tz-link.htm

SQL Reference Manual

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YMD mode
19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 Year and day of year

J2451187 Julian day

January 8, 99 BC|Year 99 before the Common Era

DATETIME
DATETIME is an alias for TIMESTAMP (page 90).

INTERVAL

Measures the difference between two points in time. The INTERVAL data type is divided into two
major subtypes: DAY TO SECOND (day/time, kept in microseconds) and YEAR TO MONTH
(year/month, kept in months). A day/time interval represents a span of days, hours, minutes,
seconds, and fractional seconds. A year/month interval represents a span of years and months.
The default interval-qualifier, if not specified, is INTERVAL DAY TO SECOND (6) . Intervals
can be positive or negative.

You can specify optional date/time units on interval input and output. The sections that follow
describe each of the three methods available to you:

e The SQL-compliant implementation: no units on output (the default)
e The Vertica extension: optional units on output
e Optional units on input

You change the INTER VAL style withthe SET INTERVALSTYLE (page 768) command. If you get
unexpected results, issue the SHOW (page 785) command to display the run-time parameters.

Syntax
INTERVAL [(p) 1 [- 'interval-literal (on page 32)'] [interval-qualifier (on
page 34)]
Parameters
p (Precision) can specify the number of fractional digits retained in the
seconds field, in the range 0 to 6. The default is 6.
interval-literal [Optional] A literal character string expressing a specific interval.

-74-

SQL Data Types

Sometimes referred to as data in this topic.

interval-qualifier Specifies a range of interval subtypes with optional precision
specifications. If omitted, the default is DAY TO SECOND (6) . Sometimes
referred to as subtype in this topic.

No units on output
The default style is PLAIN (no units on output) and follows the SQL-2008 standard:

=> SELECT INTERVAL '3 2';
?column?

Note that the following command returns the same result, even though units are specified inside
the interval-literal. Those units are omitted from the result:

=> SELECT INTERVAL '3 days 2 hours';
?2column?

The same interval (3 days, 2 hours) can be expressed in several ways in SQL-2008. For example,
if you issue the command SET DATESTYLE to SQL the output matches INTERVALSTYLE PLAIN
(no units); thus, all of the following commands return 3 02:

=> SELECT INTERVAL '3' DAY + INTERVAL '2' HOUR;
=> SELECT INTERVAL '3 2' DAY TO HOUR;

=> SELECT INTERVAL '3 days 2 hours' DAY TO HOUR;
=> SELECT INTERVAL '3 days 2' DAY TO HOUR;

The following example extracts the HOUR value from the input string:

=> SELECT INTERVAL '28 days 3 hours' HOUR;
?column?

(1 row)

In the next example, HOUR(2) instructs Vertica to use up to 2 places to output hours, but note that
Vertica uses as many entries as needed, so the (2) specification is ignored. Note also that Vertica
ignores spaces; for example HOUR(2) is processed the same as HOUR (2).

=> SELECT INTERVAL '28 days 3 hours' HOUR (2);
?column?

(1 row)

If seconds contain decimal places, they are rounded on output to the precision you specify; for
example INTERVAL (3) in the following command:

=> SELECT INTERVAL(3) '28 days 3 hours 1.234567 sec';
?column?

-75-

SQL Reference Manual

28 03:00:01.235
(1 row)

Vertica ignores a precision placed on a unit specified inside an interval-literal:

=> SELECT INTERVAL '28 days 3 hours 1.234567 sec(3)"';
?column?

28 03:03:01.234567
(1 row)

If you move the precision outside of the interval-literal, Vertica honors it:

=> SELECT INTERVAL '28 days 3 hours 1.234567)' second(3);
?column?

2430001.235
(1 row)

If there are two different specifiers, Vertica picks the lesser of the two for seconds. For example, in
the following command, Vertica picks (1):

=> SELECT INTERVAL (1) '1.2467' SECOND(2);
?column?

1.2
(1 row)

Intervals can be cast within the day/time or the year/month subtypes but not between them. For
example, the following command converts to DAY TO SECOND (the default):

=> SELECT CAST (INTERVAL '4440' MINUTE as INTERVAL) ;
?column?

=> SELECT CAST (INTERVAL -'01:15'" as INTERVAL MINUTE) ;
?column?

=75
(1 row)

The following query, however, returns an error:

=> SELECT INTERVAL 'l 02:03:04.56' HOUR TO SECOND;
ERROR: invalid input syntax for type interval hour to second: "1 02:03:04.56"

The error is legitimate. For standalone fields without units, such as the first ‘1" in an interval-literal
'1 02:03:04.56', the units are determined as the first not-already-matched subtype field. Thus, if
the subtype range is HOUR TO SECOND, the first'1"is '1 hour' and conflicts with the '02" in the
example, which is also an hour.

Units on output
To enable interval units on output, issue the following command:

=> SET INTERVALSTYLE TO UNITS;

-76-

SQL Data Types

Units are now returned with the interval value 'days":

=> SELECT INTERVAL '3 days 2 hours';
?column?

3 days 02:00
(1 row)

INTERVALSTYLE (page 768) and DATESTYLE (page 767) settings affect the interval output
format only, not the interval input format. All interval output formats are accepted as input,
independent of the current output format.

When units are enabled, their format is controlled by DATESTYLE (page 767). If you are
expecting units on output but not seeing them, issue the SHOW DATESTYLE command.
DATESTYLE must be set to ISO for INTERVAL to display units on output.

Units on input

A Vertica extension lets you include units within the interval-literal (page 32). These units do not
control or affect the declared subtype range, which is declared by the interval-qualifier (on page
34).

=> SELECT INTERVAL '3 days 2 hours';
?2column?

3 days 02:00
(1 row)

Using the same interval-literal from the previous example, the following command still specifies
units as days and hours, but the interval-qualifier extracts minutes values from the inputs:

=> SELECT INTERVAL '3 days 2 hours' MINUTE;
?2column?

4440 mins
(1 row)

Note: Inside the single quotes of an interval-literal, units can be plural, but outside the quotes,
the interval-qualifier must take the singular form.

Vertica allows combinations of units, such as second and millisecond together in an INTERVAL
DAY TO SECOND (or HOUR TO SECOND) subtype; however, each unit can be used one time only
in the interval-literal string. The follow commands shows some of the combinations of units that
are allowed:

=> SELECT INTERVAL 'l second 1 millisecond' DAY TO SECOND;
?column?

00:00:01.001
(1 row)

=> SELECT INTERVAL '12:13:14 15 microseconds' DAY TO SECOND;
?column?

12:13:14.000015
(1 row)

-77-

SQL Reference Manual

=> SELECT INTERVAL '12:13:14.123 15 microseconds' DAY TO SECOND;
?column?

12:13:14.123015
(1 row)

The following command, however, is rejected because there are two seconds fields:

=> SELECT INTERVAL '12:13:14 15 seconds' DAY TO SECOND;
ERROR: invalid input syntax for type interval: "12:13:14 15 seconds"

If you remove the seconds unit, the command returns the expected result of 15 days, 12 hours,
13 minutes, and 14 seconds:

=> SELECT INTERVAL '12:13:14 15' DAY TO SECOND;
?column?

15 12:13:14
(1 row)

There are cases where the data (interval-literal) looks like a year/month type, but the type is
day/second, and the reverse. Vertica reads interval-literal data from left to right, where
number-number is years-months, and number <space> <signed number> is whatever the units

specify.
The following command is processed as follows: (-) 1 year 1 month as (-) 365 + 30 = -395 days:

=> SELECT INTERVAL '-1-1' DAY TO HOUR;
?column?

The next command is processed as follows: (-) 1 day - 1 hour as (-) 24 - 1 = -23 hours:

=> SELECT INTERVAL '-1 -1' DAY TO HOUR;
?column?

-23
(1 row)

The next command is processed as follows: (-) 1 year - 1 month as (-) 365 - 30 = -335 days

=> SELECT INTERVAL '-1--1' DAY TO HOUR;
?column?

The next command is processed as follows: 1 year 0 month -1 day as 365 + 0 - 1 = -364 days

=> SELECT INTERVAL 'l- -1' DAY TO HOUR;
?column?

(1 row)

In the following example, the inputs '1 4 5 6' returns 1 day, 4 hours, 5 minutes, 6 seconds:

=> SELECT INTERVAL 'l 4 5 6';

-78-

SQL Data Types

?column?

1 04:05:06
(1 row)

The following example shows the previous command with units turned on:

=> SELECT INTERVAL 'l 4 5 6';
?column?

1 day 04:05:06
(1 row)

In this example, the system recognizes the colon as being part of the timestamp and outputs 4
hours, 5 minutes, 6 seconds appropriately. When it reaches the 1, it knows it has already
processed hours, minutes, and seconds and assigns the 1 value to the day field:

=> SELECT INTERVAL '4:5:6 1';
?column?

1 04:05:06
(1 row)

You get the same results if you rewrite the command as follows:

=> SELECT INTERVAL 'l 4:5:6';

In the next example, Vertica recognizes the 4:5 combination as hour/minute, so input value 1 is
assigned to day and the final value 2 is assigned to seconds:

SELECT INTERVAL '4:5 1 2';
?column?

1 04:05:02
(1 row)

You get the same results if you rewrite the command as follows:

=> SELECT INTERVAL 'l 4:5 2';

If you reverse the 1 and the 2. the results change because of how Vertica processes the
command:

=> SELECT INTERVAL '2 4:5 1°';
?2column?

2 04:05:01
(1 row)

Units less than a month are invalid for YEAR TO MONTH intervals

=> SELECT INTERVAL 'l y 30 days' YEAR TO MONTH;

ERROR: 1invalid input syntax for type interval year to month: "1 y 30 days"
If you replace the days interval-literal with an appropriate unit, for example one that represents
months, Vertica returns the correct information of 1 year, 3 months:

=> SELECT INTERVAL 'l y 3 m' YEAR TO MONTH;
?2column?

-79-

SQL Reference Manual

(1 row)

Notice that m was used as the interval-literal in the previous example, representing months. If you
specify a DAY TO SECOND interval-qualifier, Vertica knows that m represents minutes. The
following command, for example, returns 1 day, O hours, and three minutes:

=> SELECT INTERVAL 'l d 3 m' DAY TO SECOND;
?column?

The following series of examples use units in the input to return microseconds:

=> SELECT INTERVAL '4:5 1 2 34us';
?column?

1 04:05:02.000034
(1 row)
=> SELECT INTERVAL '4:5 1d 2 34us' HOUR TO SECOND;
?column?

28:05:02.000034
(1 row)

In the following example, 4.5 represents min:sec.

=> SELECT INTERVAL '4:5 1d 34us' MINUTE TO SECOND;
?column?

1444:05.000034
(1 row)

The input unit 'm' can represent either 'months' or 'minutes,' depending on context. To illustrate,
the following command creates a one-column table with some interval vales:

=> CREATE TABLE int test (i INTERVAL YEAR TO MONTH) ;

In the first INSERT statement, the values are inserted as 1 year, six months:

=> INSERT INTO int test VALUES('l year 6 months');

In the second INSERT statement, the minutes value is ignored, as the DAY TO SECOND part is
truncated:

=> INSERT INTO int test VALUES ('l year 6 minutes');

In the third INSERT statement, the ‘'m' counts as minutes value is ignored, as the DAY TO SECOND
part is truncated:

=> INSERT INTO int_test VALUES('1 year 6 m'); -- the m counts as months Query the table and
you will notice that the second row does not contain the minutes input:

=> SELECT * FROM int test;

-80-

SQL Data Types

(3 rows)

In the following command, the the 'm' counts as minutes, because the DAY TO SECOND
interval-qualifier extracts day/time values from the input:

=> SELECT INTERVAL 'lyém' DAY TO SECOND;

?2column?

365 00:06

(1 row)

Notes

The Vertica INTERVAL data type is SQL-2008 compliant, with extensions. It maintains
compatibility with existing interval data. On Vertica databases created prior to version 4.0, all
INTERVAL columns are interpreted as INTERVAL DAY TO SECOND, as in the previous
release.

On input, day/time intervals can be expressed as a combination of fields. Vertica converts
these to microseconds, adds them together, and operates on the sum.

An INTERVAL can include only the subset of units that you need; however, year/month
intervals represent calendar years and months with no fixed fixed number of days, so
year/month interval values cannot include days, hours, minutes. Similarly, day/time intervals
cannot include year, month, and so on..

Day/time and year/month intervals are logically independent and cannot be combined with or
compared to one another. In the following example, data that contains days cannot be
combined with the YEAR TO MONTH type.

The primary day/time (DAY TO SECOND) and year/month (YEAR TO MONTH) subtype ranges
can be restricted to more specific range of types by an interval-qualifier. For example, HOUR
TO MINUTE is a limited form of day/time interval, which can be used to express time zone
offsets.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit
markings. For example, '1 12:59:10'" is read the same as '1 day 12 hours 59 minutes 10
seconds'.

Vertica accepts intervals up to 2763 — 1 microseconds or months (about 18 digits).

If an interval-qualifier is not specified, the default type is DAY TO SECOND (6) , no matter what
data goes inside the quotes. For example, as an extension to SQL-2008, both of the following
commands return 910 (days):

=> SELECT INTERVAL '2-6';

=> SELECT INTERVAL '2 years 6 months';

However, if you change the interval-qualifier to YEAR TO MONTH, as in the following command,
the returned value is 2-6 for 2 years 6 months:

=> SELECT INTERVAL '2 years 6 months' YEAR TO MONTH;

SQL-2008 allows both the leftmost units field and the SECOND units field to include a precision

specification of up to 6 fractional second places, with rounding, if fewer digits are wanted.
When SECOND is not the first field, it has a precision of 2 places before the decimal point.

The following command specifies that the day field can hold 4 digits, the hour field 2 digits, the
minutes field 2 digits, the seconds field 2 digits, and the fractional seconds field 6 digits:

-81-

SQL Reference Manual

=> SELECT INTERVAL '1000 12:00:01.123456' DAY (4) TO SECOND (6) ;
?column?

1000 days 12:00:01.123456
A Vertica extension also lets you specify the seconds precision in the leftmost field. The result
is the same:
=> SELECT INTERVAL(6) '1000 12:00:01.123456' DAY(4) TO SECOND;
1000 12:00:01.123456
If you specify the seconds precision in both places, Vertica chooses the lesser value, rounding
down:
=> SELECT INTERVAL(4) '1000 12:00:01.123456' DAY(4) TO SECOND(6);
1000 12:00:01.1235
Notice that the placement of the seconds precision does not matter; Vertica chooses the lesser
value, rounding down:
=> SELECT INTERVAL(6) '1000 12:00:01.123456' DAY (4) TO SECOND(4);
1000 12:00:01.1235
An interval-qualifier subtype can extracts other values from the input parameters. For
example, the following commands extracts the HOUR value from the input parameters:

=> SELECT INTERVAL '3 days 2 hours' HOUR;
?column?

74

When specifying intervals that use subtype YEAR TO MONTH, the returned value is kept as
months. For example, in SQL format, SELECT INTERVAL '2 years 6 months' YEAR TO
MONTH; returns 2-6, for two years and six months. If you use interval-qualifier month, you force
the system to extract months from the input parameter; for example:
=> SELECT INTERVAL '2 years 6 months' MONTH;

?column?

30
INTERVAL YEAR TO MONTH can be used in an analytic RANGE window when the ORDER BY
column type is TIMESTAMP/TIMESTAMP WITH TIMEZONE, Of DATE; TIME/TIME WITH
TIMEZONE are not supported. INTERVAL DAY TO SECOND can be used when the ORDER BY
column type is TIMESTAMP/TIMESTAMP WITH TIMEZONE, DATE, and TIME/TIME WITH
TIMEZONE.
When months or years are specified for day/time intervals, the intervals extension assumes 30
days per month and 365 days per year.
Since the length of a given month or year varies, day/time intervals are never output as months
or years, only as days, hours, minutes, and so on.

If you divide an interval by aninterval, you get a pure number. For example, an interval divided
by an interval returns FLOAT:

=> SELECT INTERVAL '28 days 3 hours' HOUR(4) / INTERVAL '27 days 3 hours'
HOUR (4) ;
1.036866359447

INTERVAL divided by FLOAT is INTERVAL:

-82-

SQL Data Types

=> SELECT INTERVAL '3' MINUTE / 1.5;
2

INTERVAL MODULO (remainder) INTERVAL returns an INTERVAL:

=> SELECT INTERVAL '28 days 3 hours' HOUR(4) % INTERVAL '27 days 3 hours'
HOUR (4) ;
24

You can add INTERVAL and TIME. TIME implicitly converts to INTERVAL, if necessary.

=> SELECT INTERVAL 'l' HOUR + TIME '1:30';
02:30:00

Vertica supports intervals in milliseconds (hh:mm:ss:ms), where 01:02:03:25 represents 1
hour, 2 minutes, 3 seconds, and 025 milliseconds.

Milliseconds are converted to fractional seconds; for example, the following command returns
1 day, 2 hours, 3 minutes, 4 seconds, and 25.5 milliseconds:

=> SELECT INTERVAL 'l 02:03:04:25.5";
1 02:03:04.0255

In the SQL-2008 standard, the placement of a minus sign either before an INTERVAL literal or
as the first character of the literal negates the entire literal, not just the first component.

In Vertica a leading minus sign negates the entire interval, not just the first component. For
example, both of the following commands return -29 23:59:59:

=> SELECT INTERVAL '-1 month - 1 second';
=> SELECT INTERVAL -'1l month - 1 second';

Use one of the following commands instead, which return the intended -30 00:00:01:

=> SELECT INTERVAL -'l month 1 second';
=> SELECT INTERVAL -'30 00:00:01";

Note that two negatives together return a positive:

=> SELECT INTERVAL -'-1 month - 1 second';
29 23:59:59

=> SELECT INTERVAL -'-1 month 1 second';
30 00:00:01

Vertica allows the input of negative months but requires two negatives when paired with years.
Note that the year-hyphen-month syntax allows no spaces:
=> SELECT INTERVAL '3-3' YEAR TO MONTH;

3-3
=> SELECT INTERVAL '3--3' YEAR TO MONTH;

2-9
Vertica allows fractional minutes. If the number comes out uneven enough it goes into the
seconds field. In the following example, the command returns a value of O hours and 10
minutes:
=> SELECT INTERVAL '10 minutes';

00:10
Now specify an interval of 10.5 minutes:
=> SELECT INTERVAL '10.5 minutes';

00:10:30
INTERVALYM is an alias for the INTERVAL YEAR TO MONTH subtypes and is used only on
input. For example, the following command returns 1 year:

-83-

SQL Reference Manual

=> SELECT INTERVALYM 'l' year;
1

However, you cannot use day as the input:

=> SELECT INTERVALYM '1l' day;
ERROR: Conflicting INTERVAL subtypes

Examples

The table that follows shows additional interval examples. The INTERVALSTYLE is set to plain
(omitting units on output) for brevity.

Note: Remember that if you omit the interval-qualifier (page 34), the type defaults to DAY TO
SECOND(6).

Command Result

select interval '00:2500:00'; 1 17:40

select interval '2500' minute to second; 2500

select interval '2500' minute; 2500

select interval '28 days 3 hours' hour to second; 675.00

select interval(3) '28 days 3 hours'; 28 03:00

select interval(3) '28 days 3 hours 1.234567'; 28 03:01:14.074
select interval(3) '28 days 3 hours 1.234567 sec'; 28 03:00:01.235
select interval(3) '28 days 3.3 hours' hour to second; 675.18

select interval(3) '28 days 3.35 hours' hour to second; 675.21

select interval(3) '28 days 3.37 hours' hour to second; 675:22:12
select interval '1.234567 days' hour to second; 29:37:46.5888
select interval '1.23456789 days' hour to second; 29:37:46.665696
select interval(3) '1.23456789 days' hour to second; 29:37:46.666
select interval(3) '1.23456789 days' hour to second(2); 29:37:46.67
select interval(3) '01:00:01.234567' as "one hour+"; 01:00:01.235
select interval(3) '01:00:01.234567' = interval(3) '01:00:01.234567"; t

select interval(3) '01:00:01.234567' = interval '01:00:01.234567"'; f

select interval(3) '01:00:01.234567' = interval '01:00:01.234567"' t

hour to second(3);

select interval(3) '01:00:01.234567' = interval '01:00:01.234567"' t

minute to second (3);

select interval '255 1.1111' minute to second (3) ; 255:01.111
select interval '@ - 5 ago'; 5

select interval '@ - 5 minutes ago'; 00:05

select interval '@ 5 minutes ago'; -00:05

select interval '@ ago -5 minutes'; 00:05

select date part ('month', interval '2-3' year to month) ; 3

SELECT FLOOR((TIMESTAMP '2005-01-17 10:00' - TIMESTAMP '2005-01-01") 2

/ INTERVAL '7"');

See Also

Interval Values (page 30) for a description of the values that can be represented in an INTERVAL
type

INTERVALSTYLE (page 768) and DATESTYLE (page 767)
AGE_IN_MONTHS (page 187) and AGE_IN_YEARS (page 188)

-84-

interval-literal

The following table lists the units allowed for an interval-literal parameter.

Unit Description

a Julian year, 365.25 days exactly
ago Indicates negative time offset
c, cent, century Century

centuries Centuries

d, day Day

days Days

dec, decade Decade

decades, decs Decades

h, hour, hr Hour

hours, hrs Hours

ka Julian kilo-year, 365250 days exactly

m Minute or month for year/month, depending
on context. See Notes below this table.

microsecond Microsecond

microseconds Microseconds

mil, millennium Millennium

millennia, mils Millennia

millisecond Millisecond

milliseconds Milliseconds

min, minute, mm Minute

mins, minutes Minutes

mon, month Month

mons, months Months

ms, msec, millisecond Millisecond

mseconds, msecs Milliseconds

q, gtr, quarter Quarter

gtrs, quarters Quarters

s, sec, second Second

seconds, secs Seconds

us, usec

Microsecond

-85-

SQL Data Types

SQL Reference Manual

microseconds, useconds, usecs |Microseconds
w, week Week

weeks Weeks

y, year, yr Year

years, yrs Years
Notes

The input unit 'm' can represent either 'months’ or 'minutes,' depending on context. To illustrate,
the following command creates a one-column table with some interval vales:

=> CREATE TABLE int test (i INTERVAL YEAR TO MONTH) ;
In the first INSERT statement, the values are inserted as 1 year, six months:

=> INSERT INTO int test VALUES('l year 6 months');

In the second INSERT statement, the minutes value is ignored, as the DAY TO SECOND part is
truncated:

=> INSERT INTO int test VALUES('l year 6 minutes');
In the third INSERT statement, the 'm’ counts as minutes value is ignored, as the DAY TO SECOND
part is truncated:

=> INSERT INTO int_test VALUES('1 year 6 m'); -- the m counts as months Query the table and
you will notice that the second row does not contain the minutes input:

=> SELECT * FROM int test;

rows)

In the following command, the the 'm' counts as minutes, because the DAY TO SECOND
interval-qualifier extracts day/time values from the input:

=> SELECT INTERVAL 'lyém' DAY TO SECOND;
?column?

365 00:06
(1 row)

-86-

SQL Data Types

interval-qualifier

The following table lists the optional interval qualifiers. Values in INTERVAL fields, other than
SECOND, are integers with a default precision of 2 when they are not the first field.

Interval Type

Units

Valid interval-literal entries

Day/time intervals

DAY

Unconstrained.

DAY TO HOUR

An interval that represents a span of days and hours.

DAY TO MINUTE

An interval that represents a span of days and
minutes.

DAY TO SECOND

(Default) interval that represents a span of days,
hours, minutes, seconds, and fractions of a second if
subtype unspecified.

HOUR

Hours within days.

HOUR TO MINUTE

An interval that represents a span of hours and
minutes.

HOUR TO SECOND

An interval that represents a span of hours and
seconds.

MINUTE

Minutes within hours.

MINUTE TO SECOND

An interval that represents a span of minutes and
seconds.

SECOND Seconds within minutes.
Note: The seconND field can have an interval
fractional seconds precision, which indicates the
number of decimal digits maintained following the
decimal point in the SECONDS value. When SECOND is
not the first field, it has a precision of 2 places before
the decimal point.

Year/month intervals | MONTH Months within year.
YEAR Unconstrained.

YEAR TO MONTH

An interval that represents a span of years and
months.

Notes

You cannot combine day/time and year/month qualifiers. For example, the following intervals are
not allowed:

e DAY TO YEAR
e HOUR TO MONTH

-87-

SQL Reference Manual

SMALLDATETIME
SMALLDATETIME is an alias for TIMESTAMP (page 90).

TIME

Consists of a time of day with or without a time zone.

Syntax

TIME [(p) 1 [{ WITH | WITHOUT } TIME ZONE] | TIMETZ

[AT TIME ZONE (see "TIME AT TIME ZONE" on page 89) 1]

Parameters

P (Precision) specifies the number of fractional digits retained in the seconds

field. By default, there is no explicit bound on precision. The allowed range

0to 6.

WITH TIME ZONE

Specifies that valid values must include a time zone

WITHOUT TIME ZONE

Specifies that valid values do not include a time zone (default). If a time

zone is specified in the input it is silently ignored.

TIMETZ Is the same as TIME WITH TIME ZONE with no precision
Limits

Data Type Low Value High Value Resolution

TIME [p] 00:00:00.00 23:59:59.99 1 MS / 14 digits
TIME [p] WITH TIME ZONE go:oo:oo.oou 23:59:59.99-12 |1 ms / 14 digits
Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <= 12

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

-88-

SQL Data Types

04:05:06 PST Time zone specified by name

Notes

e TIME is purely a time-of-day, so you cannot ADD_MONTHS (page 185) to it or castitto a
TIMESTAMP; both of these need a date-part.
e Vertica supports adding milliseconds to a TIME or TIMETZ value.
=> CREATE TABLE temp (datecol TIME);
=> INSERT INTO temp VALUES (TIME '12:47:32.62'");
=> INSERT INTO temp VALUES (TIME '12:55:49.123456"'");
=> INSERT INTO temp VALUES (TIME '01:08:15.12374578"');
=> SELECT * FROM temp;
datecol

12:47:32.62
12:55:49.123456
01:08:15.123746
(3 rows)

TIME AT TIME ZONE

The TIME AT TIME ZONE constructconverts TIMESTAMP and TIMESTAMP WITH ZONE types
to different time zones.

TIME ZONE is a synonym for TIMEZONE. Both are allowed in Vertica syntax.

Syntax

timestamp AT TIME ZONE zone

Parameters

timestamp TIMESTAMP Converts UTC to local time in given time zone
TIMESTAMP WITH TIME ZONE Converts local time in given time zone to UTC
TIME WITH TIME ZONE Converts local time across time zones

zone Is the desired time zone specified either as a text string (for example: 'PST') or as an
interval (for example: INTERVAL '-08:00"). In the text case, the available zone
names are abbreviations.
The files in /opt/vertica/share/timezonesets define the default list of strings
accepted in the zone parameter

Examples

The local time zone is PST8PDT. The first example takes a zone-less timestamp and interprets it
as MST time (UTC- 7) to produce a UTC timestamp, which is then rotated to PST (UTC-8) for
display:

=> SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'MST';
timezone

-89-

SQL Reference Manual

2001-02-16 22:38:40-05
(1 row)

The second example takes a timestamp specified in EST (UTC-5) and converts it to local time in
MST (UTC-7):

=> SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05'" AT TIME ZONE 'MST';
timezone

2001-02-16 18:38:40
(1 row)

TIMESTAMP

Consists of a date and a time with or without a time zone and with or without a historical epoch (D
or BC).

Syntax

TIMESTAMP [(p) 1 [{ WITH | WITHOUT } TIME ZONE] | TIMESTAMPTZ

[AT TIME ZONE (see "TIME AT TIME ZONE" on page 89) 1]

Parameters

p Optional precision value that specifies the number of fractional digits
retained in the seconds field. By default, there is no explicit bound on
precision. The allowed range of pis 0 to 6.

WITH TIME ZONE Specifies that valid values must include a time zone. All TIMESTAMP WITH
TIME ZONE values are stored internally in UTC.
They are converted to local time in the zone specified by the time zone
configuration parameter before being displayed to the client.

WITHOUT TIME ZONE Specifies that valid values do not include a time zone (default). If a time
zone is specified in the input it is silently ignored.

TIMESTAMPTZ Is the same as TIMESTAMP WITH TIME ZONE.

Limits

In the following table, values are rounded.

Data Type Low Value High Value Resolution
TIMESTAMP [(p)] [WITHOUT TIME ZONE] |290279 BC 294277 AD 1 US / 14 digits
TIMESTAMP [(p)] WITH TIME ZONE 290279 BC 294277 AD 1 US / 14 digits
Notes

e TIMESTAMP is an alias for DATETIME and SMALLDATETIME.

e Valid input for TIMESTAMP types consists of a concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC.

e AD/BC can appear before the time zone, but this is not the preferred ordering.

-90-

SQL Data Types

The SQL standard differentiates TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH
TIME ZONE literals by the existence of a "+"; or "-". Hence, according to the standard:

TIMESTAMP '2004-10-19 10:23:54'isa TIMESTAMP WITHOUT TIME ZONE.
TIMESTAMP '2004-10-19 10:23:54+02'isa TIMESTAMP WITH TIME ZONE.

Note: Vertica differs from the standard by requiring that TIMESTAMP WITH TIME ZONE literals
be explicitly typed:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'

If a literal is not explicitly indicated as being of TIMESTAMP WITH TIME ZONE, Vertica silently
ignores any time zone indication in the literal. That is, the resulting date/time value is derived
from the date/time fields in the input value, and is not adjusted for time zone.

For TIMESTAMP WITH TIME ZONE, the internally stored value is always in UTC. An input
value that has an explicit time zone specified is converted to UTC using the appropriate offset
for that time zone. If no time zone is stated in the input string, then it is assumed to be in the
time zone indicated by the system's TIME ZONE parameter, and is converted to UTC using the
offset for the TIME ZONE zone.

When a TIMESTAMP WITH TIME ZONE value is output, it is always converted from UTC to the
current TIME ZONE zone and displayed as local time in that zone. To see the time in another
time zone, either change TIME ZONE or use the AT TIME ZONE construct.

Conversions between TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH TIME ZONE
normally assume thatthe TIMESTAMP WITHOUT TIME ZONE value are taken or given as TIME
ZONE local time. A different zone reference can be specified for the conversion using AT TIME
ZONE.

TIMESTAMPTZ and TIMETZ are not parallel SQL constructs. TIMESTAMPTZ records a time
and date in GMT, converting from the specified TIME ZONE. TIMETZ records the specified

time and the specified time zone, in minutes, from GMT.timezone

The following list represents typical date/time input variations:

= 1999-01-08 04:05:06

= 1999-01-08 04:05:06 -8:00

= January 8 04:05:06 1999 PST

Vertica supports adding a floating-point (in days) to a TIMESTAMP or TIMESTAMPTZ value.

Vertica supports adding milliseconds to a TIMESTAMP or TIMESTAMPTZ value.

In Vertica, intervals (page 74) are represented internally as some number of microseconds
and printed as up to 60 seconds, 60 minutes, 24 hours, 30 days, 12 months, and as many
years as necessary. Fields are either positive or negative.

Examples

You can return infinity by specifying ‘infinity':

=> SELECT TIMESTAMP 'infinity';
timestamp

infinity
(1 row)

To use the minimum TIMESTAMP value lower than the minimum rounded value:

-91-

SQL Reference Manual

=> SELECT '-infinity'::timestamp;
timestamp

—-infinity
(1 row)

TIMESTAMP/TIMESTAMPTZ has +/-infinity values.

AD/BC can be placed almost anywhere within the input string; for example:

SELECT TIMESTAMPTZ 'June BC 1, 2000 03:20 PDT';
timestamptz

2000-06-01 05:20:00-05 BC
(1 row)

Notice the results are the same if you move the BC after the 1.

SELECT TIMESTAMPTZ 'June 1 BC, 2000 03:20 PDT';
timestamptz

2000-06-01 05:20:00-05 BC
(1 row)

And the same if you place the BC in front of the year:

SELECT TIMESTAMPTZ 'June 1, BC 2000 03:20 PDT';
timestamptz

2000-06-01 05:20:00-05 BC
(1 row):;

The following example returns the year 45 before the Common Era:

=> SELECT TIMESTAMP 'April 1, 45 BC';
timestamp

0045-04-01 00:00:00 BC
(1 row)

If you omit the BC from the date input string, the system assumes you want the year 45 in the
current century:

=> SELECT TIMESTAMP 'April 1, 45';
timestamp

2045-04-01 00:00:00
(1 row)

In the following example, Vertica returns results in years, months, and days, whereas other
RDBMS might return results in days only:

=> SELECT TIMESTAMP WITH TIME ZONE '02/02/294276'- TIMESTAMP WITHOUT TIME ZONE
'02/20/2009"'" AS result;
result

292266 years 11 mons 12 days
(1 row)

-92-

SQL Data Types

To specify a specific time zone, add it to the statement, such as the use of 'ACST" in the following
example:

=> SELECT T1 AT TIME ZONE 'ACST', t2 FROM test;

timezone | t2
_____________________ +_____________
2009-01-01 04:00:00 | 02:00:00-07
2009-01-01 01:00:00 | 02:00:00-04
2009-01-01 04:00:00 | 02:00:00-06

You can specify a floating point in days:

=> SELECT 'NOW'::TIMESTAMPTZ + INTERVAL 'l.5 day' AS 'l.5 days from now';
1.5 days from now

2009-03-18 21:35:23.633-04
(1 row)

The following example illustrates the difference between TIMESTAMPT Z with and without a
precision specified:

=> SELECT TIMESTAMPTZ (3) 'now', TIMESTAMPTZ 'now';
timestamptz | timestamptz
____________________________ +_______________________________
2009-02-24 11:40:26.177-05 | 2009-02-24 11:40:26.177368-05
(1 row)

The following statement returns an error because the TIMESTAMP is out of range:

=> SELECT TIMESTAMP '294277-01-09 04:00:54.775808";
ERROR: date/time field value out of range: "294277-01-09 04:00:54.775808™"

There is no 0 AD, so be careful when you subtract BC years from AD years:

=> SELECT EXTRACT (YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
date part

The following commands create a table with a TIMESTAMP column that contains milliseconds:

CREATE TABLE temp (datecol TIMESTAMP) ;
INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 12:47:32.62"');
INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 12:55:49.123456");
INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 01:08:15.12374578");
SELECT * FROM temp;
datecol

2010-03-25 12:47:32.62

2010-03-25 12:55:49.12345¢6

2010-03-25 01:08:15.123746

(3 rows)

Additional Examples

Command Result

|select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01"'"); |16 10:10

-03-

SQL Reference Manual

select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01"') / 7; 2 08:17:08.571429

select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01"') day; 16

select cast ((timestamp '2005-01-17 10:00' - timestamp 2

'2005-01-01") day as integer) / 7;

select floor((timestamp '2005-01-17 10:00' - timestamp 2

'2005-01-01") / interval '7'");

select timestamptz '2009-05-29 15:21:00.456789'; 2009-05-29
15:21:00.456789-04

select timestamptz '2009-05-28"; 2009-05-28
00:00:00-04

select timestamptz '2009-05-29 15:21:00.456789'-timestamptz 1 15:21:00.456789

'2009-05-28";

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 1 15:21:00.456789

'2009-05-28") ;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 1 15:21:00.457

'2009-05-28") (3) ;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 141660.456789

'2009-05-28") second;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 0

'2009-05-28") year;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 28

'2007-01-01") month;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 2

'2007-01-01") year;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 2-4

'2007-01-01") year to month;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 141660.457

'2009-05-28") second(3);

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 2361

'2009-05-28") minute(3);

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 2361

'2009-05-28") minute;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 2361:00.457

'2009-05-28") minute to second (3) ;

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 2361:00.456789

'2009-05-28") minute to second;

TIMESTAMP AT TIME ZONE

The TIMESTAMP AT TIME ZONE construct converts TIMESTAMP and TIMESTAMP WITH ZONE
types to different time zones.

TIME ZONE is a synonym for TIMEZONE. Both are allowed in Vertica syntax.

Syntax

timestamp AT TIME ZONE zone

Parameters

timestamp TIMESTAMP Converts UTC to local time in given time zone
TIMESTAMP WITH TIME ZONE Converts local time in given time zone to UTC
TIME WITH TIME ZONE Converts local time across time zones

zone Is the desired time zone specified either as a text string (for example: 'PST') or as an
interval (for example: INTERVAL '-08:00"). In the text case, the available zone
names are abbreviations.
The files in /opt/vertica/share/timezonesets define the default list of strings

-94-

SQL Data Types

| accepted in the zone parameter. |

Examples

The local time zone is PST8PDT. The first example takes a zone-less timestamp and interprets it
as MST time (UTC- 7) to produce a UTC timestamp, which is then rotated to PST (UTC-8) for
display:
=> SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'MST';

timezone

2001-02-16 22:38:40-05
(1 row)

The second example takes a timestamp specified in EST (UTC-5) and converts it to local time in
MST (UTC-7):

=> SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05'" AT TIME ZONE 'MST';
timezone

2001-02-16 18:38:40
(1 row)

Numeric Data Types

Numeric data types are numbers stored in database columns. These data types are typically

grouped by:

e Exact numeric types , values where the precision and scale need to be preserved. The exact
numeric types are BIGINT, DECIMAL, INTEGER, NUMERIC, NUMBER, and MONEY.

e Approximate numeric types, values where the precision needs to be preserved and the scale
can be floating. The approximate numeric types are DOUBLE PRECISION, FLOAT, and REAL.

Implicit casts from INTEGER, FLOAT, and NUMERIC to VARCHAR are not supported. If you need
that functionality, write an explicit cast using one of the following forms:

CAST (x AS data-type-name) Or x: :data-type—-name

The following example casts a float to an integer:

=> SELECT (FLOAT '123.5") ::INT;
?2column?

(1 row)

String-to-numeric data type conversions accept formats of quoted constants for scientific notation,
binary scaling, hexadecimal, and combinations of numeric-type literals:

e Scientific notation :

=> SELECT FLOAT 'lelOQO';
?column?

10000000000
(1 row)

-05-

SQL Reference Manual

BINARY scaling:

=> SELECT NUMERIC 'lplO';
?column?

Hexadecimal :

=> SELECT NUMERIC 'OxQOabc';
?column?

Combinations :

=> SELECT NUMERIC 'Oxlpe3';
?column?

Note: The p (which defaults to p0) is required for hexadecimal, because SELECT
'Ox1e3': :NUMERIC = 483

-96-

SQL Data Types

DOUBLE PRECISION (FLOAT)

Vertica supports the numeric data type DOUBLE PRECISION, which is the IEEE-754 8-byte
floating point type, along with most of the usual floating point operations.

Syntax
[DOUBLE PRECISION | FLOAT | FLOAT(n) | FLOAT8 | REAL]

Parameters

Note: On a machine whose floating-point arithmetic does not follow IEEE-754, these values
probably do not work as expected.

Double precision is an inexact, variable-precision numeric type. In other words, some values
cannot be represented exactly and are stored as approximations. Thus, input and output
operations involving double precision might show slight discrepancies.

e All of the DOUBLE PRECISION data types are synonyms for 64-bit IEEE FLOAT.

e Thenin FLOAT (n) must be between 1 and 53, inclusive, but a 53-bit fraction is always used.
See the IEEE-754 standard for details.

e For exact numeric storage and calculations (money for example), use NUMERIC.

e Floating point calculations depend on the behavior of the underlying processor, operating
system, and compiler.

¢ Comparing two floating-point values for equality might not work as expected.

Values
COPY (page 607) accepts floating-point data in the following format:

1 Optional leading white space
2 An optional plus ("+") or minus sign ("-")
3 Adecimal number, a hexadecimal number, an infinity, a NAN, or a null value

A decimal number consists of a non-empty sequence of decimal digits possibly containing a radix
character (decimal point "."), optionally followed by a decimal exponent. A decimal exponent
consists of an "E" or "e", followed by an optional plus or minus sign, followed by a non-empty
sequence of decimal digits, and indicates multiplication by a power of 10.

A hexadecimal number consists of a "0x" or "0X" followed by a non-empty sequence of
hexadecimal digits possibly containing a radix character, optionally followed by a binary exponent.
A binary exponent consists of a "P" or "p", followed by an optional plus or minus sign, followed by
a non-empty sequence of decimal digits, and indicates multiplication by a power of 2. At least one
of radix character and binary exponent must be present.

An infinity is either INF or INFINITY, disregarding case.

A NaN (Not A Number) is NAN (disregarding case) optionally followed by a sequence of characters

enclosed in parentheses. The character string specifies the value of NAN in an
implementation-dependent manner. (The Vertica internal representation of NAN is
O0xfff8B0O00000000000LL on x86 machines.)

-97-

SQL Reference Manual

When writing infinity or NAN values as constants in a SQL statement, enclose them in single
quotes. For example:

=> UPDATE table SET x = 'Infinity'

Note: Vertica follows the IEEE definition of NaNs (IEEE 754). The SQL standards do not specify
how floating point works in detail.

IEEE defines NaNs as a set of floating point values where each one is not equal to anything, even
toitself. A NaN is not greater than and at the same time not less than anything, evenitself. In other
words, comparisons always return false whenever a NaN is involved.

However, for the purpose of sorting data, NaN values must be placed somewhere in the result.
The value generated 'NaN' appears in the context of a floating point number matches the NaN
value generated by the hardware. For example, Intel hardware generates
(Oxfff8000000000000LL), which is technically a Negative, Quiet, Non-signaling NaN.

Vertica uses a different NaN value to represent floating point NULL (Ox 7ffffffffffffffeLL). This is a
Positive, Quiet, Non-signaling NaN and is reserved by Vertica

The load file format of a null value is user defined, as described inthe cOPY (page 607) command.
The Vertica internal representation of a null value is OX7fffffffffffffffLL. The interactive format is
controlled by the vsql printing option null. For example:

\pset null ' (null)'

The default option is not to print anything.

Rules

e -0==40

e 1/0 = Infinity
e (0/0==Nan

e NaN != anything (even NaN)
To search for NaN column values, use the following predicate:

. WHERE column != column

This is necessary because WHERE column = 'Nan' cannot be true by definition.

Sort Order (Ascending)

e NaN

e -Inf

e numbers
e +Inf

e NULL
Notes

e \ertica does not support REAL (FLOAT4) or NUMERIC.

-08-

SQL Data Types

e NULL appears last (largest) in ascending order.
e All overflows in floats generate +/-infinity or NaN, per the IEEE floating point standard.

-99-

SQL Reference Manual

INTEGER
A signed 8-byte (64-bit) data type.

Syntax
[INTEGER | INT | BIGINT | INT8 | SMALLINT | TINYINT]

Parameters

INT, INTEGER, INT8, and BIGINT are all synonyms for the same signed 64-bit integer data

type. Automatic compression technigues are used to conserve disk space in cases where the full
64 bits are not required.

Notes

e The range of values is -2763+1 to 2763-1.

e 2/63= 9,223,372,036,854,775,808 (19 digits).

e The value -2763 is reserved to represent NULL.

e NULL appears first (smallest) in ascending order.

e \Vertica does not have an explicit 4-byte (32-bit integer) or smaller types. Vertica's encoding
and compression automatically eliminate the storage overhead of values that fit in less than 64
bits.

Restrictions

e The JDBC type INTEGER is 4 bytes and is not supported by Vertica. Use BIGINT instead.
e \ertica does not support the SQL/IJDBC types NUMERIC, SMALLINT, or TINYINT.

e \erticadoes not check for overflow (positive or negative) except in the aggregate function SUM
(page 124) (). If you encounter overflow when using SUM, use SUM_FLOAT (page 125) ()
which converts to floating point.

NUMERIC

Numeric data types store numeric data. For example, a money value of $123.45 could be stored in
a NUMERIC (5, 2) field.

Syntax

NUMERIC | DECIMAL | NUMBER | MONEY [(precision [, scale]) 1

Parameters

precision The number of significant decimal digits, or the number of digits
that the data type stores. Precision p must be positive and <=
1024.

scale Expressed in decimal digits and can be any integer
representable in a 16-bit field. The default scale s is 0 <=scale
<= precision; omitting scale is the same as s=0.

-100-

SQL Data Types

Notes

NUMERIC, DECIMAL, NUMBER, and MONEY are all synonyms that return NUMERIC types. Note,
however, that the default values for NUMBER and MONEY are implemented a bit differently:

Type Precision Scale
NUMERIC 37 15
DECIMAL 37 15
NUMBER 38 0
MONEY 18 4

NUMERIC data types support exact representations of numbers that can be expressed with a
number of digits before and after a decimal point. This contrasts slightly with existing Vertica
data types:

* DOUBLE PRECISION (page 97) (FLOAT) types support ~15 digits, variable exponent, and
represent numeric values approximately.

» INTEGER (page 100) (and similar) types support ~18 digits, whole numbers only.

NUMERIC data types are generally called exact numeric data types because they store
numbers of a specified precision and scale. The approximate numeric data types, such as
DOUBLE PRECISION, use floating points and are less precise.

Supported numeric operations include the following:

= Basic math; for example, +, -, *, /

= Aggregation; for example, SUM, MIN, MAX, COUNT

= Comparison operators; for example, <=, =, <=>, <>, >, >=

NUMERIC divide operates directly on numeric values, without converting to floating point. The
result has at least 18 decimal places and is rounded.

NUMERIC mod (including %) operates directly on numeric values, without converting to floating
point. The result has the same scale as the numerator and never needs rounding.

COPY (page 607) accepts DECIMAL number with a decimal point (*."), prefixed by - or
+(optional).

LZO, RLE, and BLOCK_DICT are supported encoding types. Anything that can be used on an
INTEGER can also be used on a NUMERIC, as long as the precision is <= 18.

NUMERIC is preferred for non-integer constants, as this typically improves precision. For
example:
=> SELECT 1.1 + 2.2 = 3.3;

?column?

(1 row)
=> SELECT 1.1::float + 2.2::float = 3.3::float;
?column?

(1 row)

Performance of the NUMERIC data type has been fine tuned for the common case of 18 digits
of precision.

-101-

SQL Reference Manual

e Some of the more complex operations used with NUMERIC data types result in an implicit cast
to FLOAT. When using SQRT, STDDEV, transcendental functions such as L0OG, and
TO_CHAR/TO NUMBER formatting, the result is always FLOAT.

Examples

The following series of commands creates a table that contains a NUMERIC data type and then
performs some mathematical operations on the data:

=> CREATE TABLE numl (id INTEGER, amount NUMERIC (8,2));
Now insert some values into the table:

=> INSERT INTO numl VALUES (1, 123456.78);
Query the table:

=> SELECT * FROM numl;
id \ amount

The following example returns the NUMERIC column, amount, from table num1:

=> SELECT amount FROM numl;
amount

123456.78
(1 row)

The following syntax adds one (1) to the amount:

=> SELECT amount+l AS 'amount' FROM numl;
amount

123457.78
(1 row)

The following syntax multiplies the amount column by 2:

=> SELECT amount*2 AS 'amount' FROM numl;
amount

246913.56
(1 row)

The following syntax returns a negative number for the amount column:

=> SELECT -amount FROM numl;
?column?

-123456.78
(1 row)

The following syntax returns the absolute value of the amount argument:

=> SELECT ABS (amount) FROM numl;
ABS

-102-

SQL Data Types

123456.78
(1 row)

The following syntax casts the NUMERIC amount as a FLOAT data type:

=> SELECT amount::float FROM numl;
amount

123456.78
(1 row)

See Also
Mathematical Functions (page 279)

Numeric Data Type Overflow

Vertica does not check for overflow (positive or negative) except in the aggregate function suM
(page 124) (). If you encounter overflow when using SUM, use SUM_FLOAT (page 125) ()
which converts to floating point.

For INTEGER data types, dividing zero by zero returns zero:

=> SELECT 0/0;
?2column?

(1 row)

Dividing anything else by zero returns a run-time error.

=> SELECT 1/0;
ERROR: division by zero
=> SELECT 0.0/0;
ERROR: numeric division by zero

Add, subtract, and multiply operations ignore overflow. Sum and average operations use 128-bit
arithmetic internally. SUM (page 124) () reports an error if the final result overflows, suggesting
the use of SUM_FLOAT (page 125) (INT),which converts the 128-bit sum to a FLOATS8. For
example:

=> CREATE TEMP TABLE t (i INT);
=> INSERT INTO t VALUES (1<<62);
=> INSERT INTO t VALUES (1<<62);
=> INSERT INTO t VALUES (1<<62);
=> INSERT INTO t VALUES (1<<62);
=> INSERT INTO t VALUES (1<<62);
=> SELECT SUM(i) FROM t;

ERROR: sum() overflowed
HINT: try sum float () instead
=> SELECT SUM FLOAT (i) FROM t;
sum_float

2.30584300921369%9e+19

-103-

SQL Reference Manual

Data Type Coercion

Vertica currently has two types of cast, implicit and explicit. Vertica implicitly casts (coerces)
expressions from one type to another under certain circumstances.

To illustrate, first get today's date:

=> SELECT DATE 'now';
?column?

2010-10-19
(1 row)

The following command converts DATE to a TIMESTAMP and adds a day and a half to the results
by using INTERVAL:

=> SELECT DATE 'now' + INTERVAL 'l 12:00:00°"';
?2column?

2010-10-20 12:00:00
(1 row)

When there is no ambiguity as to the data type of an expression value, it is implicitly coerced to
match the expected data type. In the following command,the quoted string constant '2" is implicitly
coerced into an INTEGER value so that it can be the operand of an arithmetic operator (addition):

=> SELECT 2 + '2"';
?column?

(1 row)
The result of the following arithmetic expression 2 + 2 and the INTEGER constant 2 are implicitly
coerced into VARCHAR values so that they can be concatenated.

=> SELECT 2 + 2 || 2;
?column?

42
(1 row)

Most implicit casts stay within their relational family and go in one direction, from less detailed to
more detailed. For example:

e DATE tOo TIMESTAMP/TZ

e INTEGER tONUMERIC tO FLOAT

e CHAR to FLOAT

e CHAR tO VARCHAR

CHAR and/or VARCHAR to FLOAT More specifically, data type coercion works in this manner in
Vertica:

e INT8 -> FLOAT8—implicit, can lose significance
e FLOATS8 -> INT8—explicit, rounds

-104-

SQL Data Types

VARCHAR <-> CHAR—implicit, adjusts trailing spaces
VARBINARY <-> BINAR Y—implicit, adjusts trailing NULs

No other types cast to or from varbinary or binary. In the following list, <any> means one these
types: INT8, FLOATS, DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ, INTERVAL

<any> -> VARCHAR—implicit

VARCHAR -> <any>—explicit, except that VARCHAR->FLOAT is implicit
<any> <-> CHAR—explicit

DATE -> TIMESTAMP/T Z—implicit

TIMESTAMP/TZ -> DATE—explicit, loses time-of-day

TIME -> TIMET Z—implicit, adds local timezone

TIMET Z -> TIME—explicit, loses timezone

TIME -> INTERVAL—implicit, day to second with days=0

INTERVAL -> TIME—eXxplicit, truncates non-time parts

TIMESTAMP <-> TIMESTAMPT Z—implicit, adjusts to local timezone
TIMESTAMP/TZ -> TIME—explicit, truncates non-time parts
TIMESTAMPTZ -> TIMET Z—explicit

IMPORTANT: Implicit casts from INTEGER, FLOAT, and NUMERIC to VARCHAR are not supported.
If you need that functionality, write an explicit cast:

CAST (x AS data-type-name)

or

x::data-type—-name

The following example casts a FLOAT to an INTEGER:

=> SELECT (FLOAT '123.5") ::INT;
?2column?

String-to-numeric data type conversions accept formats of quoted constants for scientific notation,
binary scaling, hexadecimal, and combinations of numeric-type literals:

Scientific notation :

=> SELECT FILOAT 'lelOQO';
?column?

10000000000
(1 row)
BINARY scaling:

=> SELECT NUMERIC '1lplO';
?2column?

-105-

SQL Reference Manual

(1 row)

e Hexadecimal:
=> SELECT NUMERIC 'OxOabc';
?2column?

e Combinations :

=> SELECT NUMERIC 'Oxlpe3';
?column?

Note: The p (which defaults to p0) is required for hexadecimal, because SELECT
'Ox1e3': :NUMERIC = 483
Examples

=> SELECT NUMERIC '12.3e3', '12.3pl10'::NUMERIC, CAST('0x12.3p-10e3' AS NUMERIC) ;
?column? | ?2column? | ?column?

__________ +__________+___________________
12300 | 12595.2 | 17.76123046875000
(1 row)
=> SELECT (18. + 3./16)/1024*1000;
?2column?

17.761230468750000000000000000000000000
(1 row)

Note: In SQL expressions, pure numbers between -(2763-1) and (2763-1) are INTEGERS;
numbers with decimal points are NUMERIC, and do not support the above notation. Numbers
using e notation are FLOAT.

The following two examples show queries that once work but now fail; below the failed query is a
rewrite with the cast to VARCHAR to make such queries work again:

=> SELECT TO_ NUMBER(1) ;
ERROR: function to number (int) does not exist
HINT: No function matches the given name and argument types. You may need to add
explicit type casts.
=> SELECT TO NUMBER (1::VARCHAR) ;
to_number

(1 row)
=> SELECT TO_DATE(20100302, 'YYYYMMDD') ;
ERROR: function to_date(int, "unknown") does not exist
HINT: No function matches the given name and argument types. You may need to add
explicit type casts.
=> SELECT TO DATE (20100302::VARCHAR, 'YYYYMMDD');
to _date

-106-

SQL Data Types

2010-03-02
(1 row)

See Also

Data Type Coercion Chart (page 107)

Data Type Coercion Operators (CAST) (page 38)

Data Type Coercion Chart

Conversion Types

The following table defines all possible type conversions that Vertica supports. The values across
the top row are the data types you want, and the values down the first column on the left are the
data types that you have.

Want
>
Have
BOOL
INT
FLT
CHR
VCHR
DTM
™
TS
TSTZ
INVL
TTZ
NUM
VBIN
BIN
INTYM

BOOL INT FLT

N/A

N/A i

a N/A
e

e

a

a i

CHR

a‘k‘k

Yes

[URRE VIR RN RN OB OR S8

VCHR DTM
a

a**

a

i @
Yes e

a N/A
a

a

a a

a

a

a

™ TS TSTZ

e e
e e e

a
Yes
a Yes i
a i Yes
a
a

-107-

INVL TTZ
a
e
e e
i i

a
Yes

Yes

NUM VBIN

® ® o K-

Yes

Yes

BIN INTYM

Yes

Yes

SQL Reference Manual

KEY

Type:
(i)mplicit,
(a) ssignment,
(e) xplicit

Matrix:
** means that the numeric meaning is lost, and the
value is subject to (VAR) CHAR compares

Abbreviation:
BOOL = Boolean
INT = Integer
FLT = Float

CHR = Char

VCHR = Varchar

DTM = Date

™ = Time

TS = Timestamp

TSTZ = Timestamp with Time Zone

INVL = Interval Day to Second
TTZ = Time with time zone

NUM = Numeric

VBIN = Varbinary

BIN = Binary

INTYM = Interval Year to Month

See Also
Data Type Coercion Operators (CAST) (page 38)

-108-

SQL Functions

Functions return information from the database and are allowed anywhere an expression is
allowed. The exception is Vertica-specific functions (page 374), which are not allowed
everywhere.

Some functions could produce different results on different invocations with the same set of
arguments. The following three categories of functions are defined based on their behavior:

Immutable (invariant): When run with a given set of arguments, immutable functions always
produces the same result. The function is independent on any environment or session
settings, such as locale. For example, 2+2 always equals 4. Another immutable function is
AVG(). Some immutable functions can take an optional stable argument; in this case they are
treated as stable functions.

Stable: When run with a given set of arguments, stable functions produce the same result
within a single query or scan operation. However, a stable function could produce different
results when issued under a different environment, such as a change of locale and time zone.
Expressions that could give different results in the future are also stable, for example
SYSDATE () or 'today"'.

Volatile: Regardless of the arguments or environment, volatile functions can return different
results on multiple invocations. RANDOM() is one example.

This chapter describes the functions that Vertica supports.

Each function is annotated with behavior type as immutable, stable or volatile.
All Vertica-specific functions can be assumed to be volatile and are not annotated individually.

-109-

110

Aggregate Functions

Note: All functions in this section that have an analytic (page 128) function counterpart are
appended with [Aggregate] to avoid confusion between the two.

Aggregate functions summarize data over groups of rows from a query result set. The groups are
specified using the GROUP BY (page 754) clause. They are allowed only in the select list and in
the HAVING (page 756) and ORDER BY (page 757) clauses of a SELECT (page 747) statement
(as described in Aggregate Expressions (page 44)).

Notes
e Except for COUNT, these functions return a null value when no rows are selected. In
particular, SUM of no rows returns NULL, not zero.

e Insome cases you can replace an expression that includes multiple aggregates with an single
aggregate of an expression. For example SUM(x) + SUM(y) can be expressed as as
SUM(x+y) (where x and y are NOT NULL).

e Vertica does not support nested aggregate functions.

You can also use some of the simple aggregate functions as analytic (window) functions. See
Analytic Functions (page 128) for details. See also Using SQL Analytics in the Programmer's
Guide.

AVG [Aggregate]
Computes the average (arithmetic mean) of an expression over a group of rows. It returns a

DOUBLE PRECISION value for a floating-point expression. Otherwise, the return value is the same
as the expression data type.

Behavior Type

Immutable

Syntax

AVG ([ALL | DISTINCT] expression)

Parameters

ALL Invokes the aggregate function for all rows in the group (default).

DISTINCT Invokes the aggregate function for all distinct non-null values of the expression
found in the group

expression The value whose average is calculated over a set of rows. Can be any
expression resulting in DOUBLE PRECISION.

Notes

The AVG () aggregate function is different from the AVG () analytic function, which computes an
average of an expression over a group of rows within a window.

-110-

SQL Functions

Examples
The following example returns the average income from the customer table:

=> SELECT AVG(annual income) FROM customer dimension;
avg

2104270.6485
(1 row)

See Also

AVG (page 136) analytic function
COUNT (page 111) and SUM (page 124)
Numeric Data Types (page 95)

CORR

Returns the coefficient of correlation of a set of expression pairs (expressionl and expression2).
The return value is of type DOUBLE PRECISION. The function eliminates expression pairs
where either expression in the pair is NULL. If no rows remain, the function returns NULL.Syntax

SELECT CORR (expressionl,expressionZ2)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT CORR (Annual salary, Employee age) FROM employee dimension;
CORR

-0.00719153413192422
(1 row)

COUNT [Aggregate]

Returns the number of rows in each group of the result set for which the expression is not NULL.
The return value is a BIGINT.

Behavior Type
Immutable

Syntax

COUNT ([*] [ALL | DISTINCT] expression)

Parameters

*

Indicates that the count does not apply to any specific column or expression in

-111-

SQL Reference Manual

the select list. Requires a FROM clause (page 750).

ALL Invokes the aggregate function for all rows in the group (default).

DISTINCT Invokes the aggregate function for all distinct non-null values of the expression
found in the group.

expression Returns the number of rows in each group for which the expression is not null.
Can be any expression resulting in BIGINT.

Notes

The COUNT () aggregate function is different from the COUNT () analytic function, which returns
the number over a group of rows within a window.

Examples

The following query returns the number of distinct values in the primary key column of the
date dimension table:

=> SELECT COUNT (DISTINCT date key) FROM date dimension;
count

The next example returns all distinct values of evaluating the expression x+y for all records of fact.

=> SELECT COUNT (DISTINCT date key + product key) FROM inventory fact;
count

An equivalent query is as follows (using the LIMIT key to restrict the number of rows returned):

=> SELECT COUNT (date key + product key) FROM inventory fact
GROUP BY date key LIMIT 10;
count

Each distinct product_key value in table inventory fact and returns the number of distinct
values of date key in all records with the specific distinct product key value.

=> SELECT product key, COUNT (DISTINCT date key) FROM inventory fact

-112-

SQL Functions

GROUP BY product key LIMIT 10;
product key | count

O W oo Jo Ul b WN R

=

(10 rows)
This query counts each distinct product _key valueintable inventory fact withthe constant
"1".

=> SELECT product key, COUNT (DISTINCT product key) FROM inventory fact
GROUP BY product key LIMIT 10;

product key | count
_____________ +_______
1| 1
2 | 1
31 1
4 | 1
5 | 1
6 | 1
7 1
8 | 1
9 | 1
10 | 1
(10 rows)

This query selects each distinct date key value and counts the number of distinct
product_ key values for all records with the specific product _key value. It then sums the
gty in stock values in all records with the specific product key value and groups the
results by date key.

=> SELECT date_ key, COUNT (DISTINCT product key), SUM(gty in stock) FROM
inventory fact
GROUP BY date key LIMIT 10;

date key | count | sum
_____ t____+_______+________
1] 173 | 88953
2 31 | 16315
3 318 | 156003
4 | 113 | 53341
5 285 | 148380
6 | 84 | 42421
7 241 | 119315
8 | 238 | 122380
9 | 142 | 70151
10 | 202 | 95274
(10 rows)

-113-

SQL Reference Manual

This query selects each distinct product key value and then counts the number of distinct

date key values for all records with the specific product key value and counts the number of
distinct warehouse key values in all records with the specific product key value.

=> SELECT product_ key, COUNT (DISTINCT date key), COUNT (DISTINCT warehouse key)
FROM inventory fact GROUP BY product key LIMIT 15;

product key | count | count
________ t____+_______+_______
1] 12 | 12
2 18 | 18
3 13 | 12
4 | 17 | 18
5 | 11 | 9
6 | 14 | 13
7 13 | 13
8 | 17 | 15
9 | 15 | 14
10 | 12 | 12
11 | 11 | 11
12 | 13 | 12
13 | 9 | 7
14 | 13 | 13
15 | 18 | 17
(15 rows)

This query selects each distinct product key value, counts the number of distinct date key and
warehouse key values for all records with the specific product key value, and then sums all

gty in stock values in records with the specific product key value. It then returns the number of
product version values in records with the specific product key value.

=> SELECT product_ key, COUNT (DISTINCT date key), COUNT (DISTINCT warehouse key),

SUM (gty in stock), COUNT (product version)
FROM inventory fact GROUP BY product key LIMIT 15;

product key | count | count | sum | count
———————— e
1] 12 | 12 | 5530 | 12
2 18 | 18 | 9605 | 18
3] 13 | 12 | 8404 | 13
4 | 17 | 18 | 10006 | 18
5 | 11 | 9 | 4794 | 11
6 | 14 | 13 | 7359 | 14
7 13 | 13 | 7828 | 13
8 | 17 | 15 | 9074 | 17
9 | 15 | 14 | 7032 | 15
10 | 12 | 12 | 5359 | 12
11 | 11 | 11 | 6049 | 11
12 | 13 | 12 | 6075 | 13
13 | 9 | 7 3470 | 9
14 | 13 | 13 | 5125 | 13
15 | 18 | 17 | 9277 | 18
(15 rows)

The following example returns the number of warehouses from the warehouse dimension table:

=> SELECT COUNT (warehouse name) FROM warehouse dimension;
count

-114-

SQL Functions

(1 row)

The next example returns the total number of vendors:

=> SELECT COUNT (*) FROM vendor dimension;
count

50
(1 row)

See Also

Analytic Functions (page 128)

AVG (page 110)

SUM (page 124)

Using SQL Analytics in the Programmer's Guide

COVAR_POP

Returns the population covariance for a set of expression pairs (expressionl and expression2).
The return value is of type DOUBLE PRECISION. The function eliminates expression pairs
where either expression in the pair is NULL. If no rows remain, the function returns NULL.

Syntax

SELECT COVAR POP (expressionl,expressionZ2)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT COVAR POP (Annual salary, Employee age) FROM employee dimension;
COVAR_POP

-9032.34810730019
(1 row)

COVAR_SAMP

Returns the sample covariance for a set of expression pairs (expressionl and expression2). The
return value is of type DOUBLE PRECISION. The function eliminates expression pairs where
either expression in the pair is NULL. If no rows remain, the function returns NULL.

Syntax

COVAR SAMP (expressionl,expression2)

-115-

SQL Reference Manual

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT COVAR SAMP (Annual salary, Employee age) FROM employee dimension;
COVAR SAMP

-9033.25143244343
(1 row)

MAX [Aggregate]

Returns the greatest value of an expression over a group of rows. The return value is the same as
the expression data type.

Behavior Type

Immutable

Syntax

MAX ([ALL | DISTINCT] expression)

Parameters

ALL | DISTINCT Are meaningless in this context.

expression Can be any expression for which the maximum value is calculated,
typically a column reference (see "Column References" on page 46).

Notes

The MAX () aggregate function is different from the MAX () analytic function, which returns the
maximum value of an expression over a group of rows within a window.

Example
This example returns the largest value (dollar amount) of the sales dollar amount column.

=> SELECT MAX (sales dollar amount) AS highest sale FROM store.store sales fact;
highest sale

(1 row)

See Also
Analytic Functions (page 128)

MIN (page 117)

-116-

SQL Functions

MIN [Aggregate]

Returns the smallest value of an expression over a group of rows. The return value is the same as
the expression data type.

Behavior Type

Immutable

Syntax

MIN ([ALL | DISTINCT] expression)

Parameters

ALL | DISTINCT Are meaningless in this context.

expression Can be any expression for which the minimum value is calculated, typically
a column reference (see "Column References" on page 46).

Notes

The MIN () aggregate function is different from the MIN () analytic function, which returns the
minimum value of an expression over a group of rows within a window.

Example
This example returns the lowest salary from the employee dimension table.

=> SELECT MIN (annual salary) AS lowest paid FROM employee dimension;
lowest paid

(1 row)

See Also

Analytic Functions (page 128)

MAX (page 116)

Using SQL Analytics in the Programmer’s Guide

REGR_AVGX

Returns the average of the independent expression in an expression pair (expressionl and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax

SELECT REGR _AVGX (expressionl,expressionZ2)

-117-

SQL Reference Manual

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=>=> SELECT REGR_AVGX (Annual_ salary, Employee age) FROM employee dimension;
REGR_AVGX

39.321
(1 row)
REGR_AVGY

Returns the average of the dependent expression in an expression pair (expressionl and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax

REGR_AVGY (expressionl,expressionZ2)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT REGR_AVGY (Annual salary, Employee age) FROM employee dimension;
REGR_AVGY

58354.4913

(1 row)

(1 row)
REGR_COUNT

Returns the number of expression pairs (expressionl and expression2). The return value is of
type INTEGER. The function eliminates expression pairs where either expression in the pair is
NULL. If no rows remain, the function returns 0.

Syntax

SELECT REGR COUNT (expressionl, expressionZ)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.

-118-

SQL Functions

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example

=> SELECT REGR_COUNT (Annual salary, Employee age) FROM employee dimension;
REGR_COUNT

REGR_INTERCEPT

Returns the y-intercept of the regression line determined by a set of expression pairs
(expressionl and expression2). The return value is of type DOUBLE PRECISION. The function
eliminates expression pairs where either expression in the pair is NULL. If no rows remain, the
function returns NULL.

Syntax

SELECT REGR_INTERCEPT (expressionl,expressionZ)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

b=> SELECT REGR_INTERCEPT (Annual salary, Employee age) FROM employee dimension;
REGR_INTERCEPT

59929.5490163437
(1 row)

REGR_R2

Returns the square of the correlation coefficient of a set of expression pairs (expressionl and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax

SELECT REGR R2 (expressionl,expressionZ)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT REGR_R2 (Annual salary, Employee age) FROM employee dimension;

-119-

SQL Reference Manual

REGR_R2

5.17181631706311e-05
(1 row)

REGR_SLOPE

Returns the slope of the regression line, determined by a set of expression pairs (expressionl and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax

SELECT REGR_SLOPE (expressionl,expression2)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT REGR_SLOPE (Annual salary, Employee age) FROM employee dimension;
REGR_SLOPE

-40.056400303749
(1 row)

REGR_SXX

Returns the sum of squares of the independent expression in an expression pair (expressionl and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.,

Syntax

SELECT REGR _SXX (expressionl,expression2)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT REGR_SXX (Annual salary, Employee age) FROM employee dimension;

-120-

SQL Functions

REGR_SXX

2254907.59
(1 row)

REGR_SXY

Returns the sum of products of the independent expression multiplied by the dependent
expression in an expression pair (expressionl and expression2). The return value is of type
DOUBLE PRECISION. The function eliminates expression pairs where either expression in the
pair is NULL. If no rows remain, the function returns NULL.

Syntax
SELECT REGR_SXY (expressionl,expressionZ)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT REGR_SXY (Annual salary, Employee age) FROM employee dimension;
REGR_SXY

-90323481.0730019
(1 row)

REGR_SYY

Returns the sum of squares of the dependent expression in an expression pair (expressionl and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax

SELECT REGR _SYY (expressionl,expression2)

Parameters

expressionl The dependent expression. Is of type DOUBLE PRECISION.
expression2 The independent expression. Is of type DOUBLE PRECISION.
Example

=> SELECT REGR_SYY (Annual salary, Employee age) FROM employee dimension;
REGR_SYY

69956728794707.2
(1 row)

-121-

SQL Reference Manual

STDDEYV [Aggregate]

Note: The non-standard function STDDEV () is provided for compatibility with other databases.
It is semantically identical to STDDEV_SAMP () (page 123).

Evaluates the statistical sample standard deviation for each member of the group. The
STDDEV_SAMP () return value is the same as the square root of the VAR SAMP () function:

STDDEV (expression) = SQRT (VAR SAMP (expression))
When VAR SAMP () returns null, this function returns null.

Behavior Type

Immutable

Syntax

STDDEV (expression)

Parameters

expression Any NUMERIC data type (page 95) or any hon-numeric data
type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument.

Notes

The STDDEV () aggregate function is different from the STDDEV () analytic function, which
computes the statistical sample standard deviation of the current row with respect to the group of
rows within a window.

Examples

The following example returns the statistical sample standard deviation for each household ID
from the customer dimension table.

=> SELECT STDDEV_SAMP (household id) FROM customer dimension;
stddev_samp

8651.50842400771
(1 row)

See Also

Analytic Functions (page 128)
STDDEV_SAMP (page 123)

Using SQL Analytics in the Programmer's Guide

-122-

SQL Functions

STDDEV_POP [Aggregate]

Evaluates the statistical population standard deviation for each member of the group. The
STDDEV_POP () return value is the same as the square root of the VAR _POP () function

STDDEV_POP (expression) = SQRT (VAR POP (expression))

When VAR SAMP () returns null, this function returns null.

Behavior Type

Immutable

Syntax

STDDEV_POP (expression)

Parameters

expression Any NUMERIC data type (page 95) or any hon-numeric data
type that can be implicitly converted to a numeric datatype. The
function returns the same data type as the numeric data type of
the argument.

Notes

The STDDEV_POP () aggregate function is different from the STDDEV_POP () analytic function,
which evaluates the statistical population standard deviation for each member of the group of rows
within a window.

Examples

The following example returns the statistical population standard deviation for each household ID
inthe customer table.

=> SELECT STDDEV_ POP (household id) FROM customer dimension;
stddev_samp

8651.41895973367
(1 row)

See Also
Analytic Functions (page 128)

Using SQL for Analytics in the Programmer's Guide

STDDEV_SAMP [Aggregate]

Evaluates the statistical sample standard deviation for each member of the group. The
STDDEV_SAMP () return value is the same as the square root of the VAR _SAMP () function:

STDDEV_SAMP (expression) = SQRT (VAR SAMP (expression))

When VAR SAMP () returns null, this function returns null.

-123-

SQL Reference Manual

Behavior Type:
Immutable

Syntax

STDDEV_SAMP (expression)

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric data
type that can be implicitly converted to a numeric datatype. The
function returns the same data type as the numeric data type of
the argument.

Notes

e STDDEV_SAMP () is semantically identical to the non-standard function, STDDEV () (page
122), which is provided for compatibility with other databases.

e The STDDEV_SAMP () aggregate function is different from the STDDEV_SAMP () analytic
function, which computes the statistical sample standard deviation of the current row with
respect to the group of rows within a window.

Examples

The following example returns the statistical sample standard deviation for each household ID
from the customer dimension table.

=> SELECT STDDEV_SAMP (household id) FROM customer dimension;
stddev_samp

8651.50842400771
(1 row)

See Also

Analytic Functions (page 128)

STDDEYV (page 122)

Using SQL Analytics in the Programmer's Guide

SUM [Aggregate]

Computes the sum of an expression over a group of rows. It returns a DOUBLE PRECISION value
for a floating-point expression. Otherwise, the return value is the same as the expression data

type.
Behavior Type

Immutable
Syntax
SUM ([ALL | DISTINCT] expression)

-124-

SQL Functions

Parameters

ALL Invokes the aggregate function for all rows in the group (default)

DISTINCT Invokes the aggregate function for all distinct non-null values of
the expression found in the group

expression Any NUMERIC datatype (page 95) or any non-numeric data type
that can be implicitly converted to a numeric data type. The
function returns the same data type as the numeric data type of
the argument.

Notes

e The suM () aggregate function is different from the SUM () analytic function, which computes
the sum of an expression over a group of rows within a window.

e If you encounter data overflow when using SUM () , use SUM FLOAT () (page 125) which
converts the data to a floating point.

Example
This example returns the total sum of the product cost column.

=> SELECT SUM(product cost) AS cost FROM product dimension;
cost

9042850
(1 row)

See Also

AVG (page 110)

COUNT (page 111)

Numeric Data Types (page 95)

Using SQL Analytics in the Programmer's Guide

SUM_FLOAT [Aggregate]

Computes the sum of an expression over a group of rows. It returns a DOUBLE PRECISION value
for the expression, regardless of the expression type.

Behavior Type

Immutable

Syntax

SUM FLOAT ([ALL | DISTINCT] expression)

Parameters

ALL Invokes the aggregate function for all rows in the group (default).
DISTINCT Invokes the aggregate function for all distinct non-null values of the

-125-

SQL Reference Manual

expression found in the group.

expression Can be any expression resulting in DOUBLE PRECISION.

Example
The following example returns the floating point sum of the average price from the product table:

=> SELECT SUM FLOAT (average_competitor price) AS cost FROM product dimension;
cost

18181102
(1 row)

VAR _POP [Aggregate]

Evaluates the population variance for each member of the group. This is defined as the sum of
squares of the difference of expression from the mean of expression, divided by the number of
rows remaining.

(SUM (expression*expression) — SUM(expression)*SUM(expression) /
COUNT (expression)) / COUNT (expression)

Behavior Type
Immutable

Syntax

VAR POP (expression)

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric data type
that can be implicitly converted to a numeric data type. The
function returns the same data type as the numeric data type of
the argument.

Notes

The VAR _POP () aggregate function is different from the VAR POP () analytic function, which
computes the population variance of the current row with respect to the group of rows within a
window.

Examples

The following example returns the population variance for each household ID in the customer
table.

=> SELECT VAR POP (household id) FROM customer dimension;
var_pop

74847050.0168393
(1 row)

-126-

SQL Functions

VAR_SAMP [Aggregate]

Evaluates the sample variance for each row of the group. This is defined as the sum of squares of
the difference of expression from the mean of expression, divided by the number of rows
remaining minus 1 (one).

(SUM (expression*expression) - SUM(expression) *SUM(expression) /
COUNT (expression)) / (COUNT (expression) -1)

Behavior Type

Immutable

Syntax

VAR SAMP (expression)

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric data
type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument.

Notes

e VAR SAMP () is semantically identical to the non-standard function, VARIANCE (page
127) (), which is provided for compatibility with other databases.

e The VAR SAMP () aggregate function is different from the VAR SAMP () analytic function,
which computes the sample variance of the current row with respect to the group of rows within
a window.

Examples
The following example returns the sample variance for each household ID inthe customer table.

=> SELECT VAR SAMP (household id) FROM customer dimension;
var_samp

74848598.0106764
(1 row)

See Also

Analytic Functions (page 128)

VARIANCE (page 127)

Using SQL Analytics in the Programmer's Guide

VARIANCE [Aggregate]

Note: The non-standard function VARIANCE () is provided for compatibility with other
databases. It is semantically identical to VAR SAMP () (page 127).

-127-

SQL Reference Manual

Evaluates the sample variance for each row of the group. This is defined as the sum of squares of
the difference of expression from the mean of expression, divided by the number of rows
remaining minus 1 (one).

(SUM (expression*expression) — SUM(expression) *SUM(expression) /
COUNT (expression)) / (COUNT (expression) -1)

Behavior Type
Immutable

Syntax

VARIANCE (expression)

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric data type
that can be implicitly conwverted to a numeric data type. The
function returns the same data type as the numeric data type of the
argument.

Notes

The VARIANCE () aggregate function is different from the VARIANCE () analytic function, which
computes the sample variance of the current row with respect to the group of rows within a
window.

Examples
The following example returns the sample variance for each household ID inthe customer table.

=> SELECT VARIANCDE (household id) FROM customer dimension;
variance

74848598.0106764
(1 row)

See Also

Analytic Functions (page 128)

VAR_SAMP (page 127)

Using SQL Analytics in the Programmer's Guide

Analytic Functions

Note: All analytic functions in this section that have an aggregate counterpart are appended
with [Analytics] in the heading to avoid confusion between the two.

The ANSI SQL 99 standard introduced a set of functionality, called SQL analytic functions, that
handle complex analysis and reporting, for example, a moving average of retail volume over a
specified time frame or a running total.

-128-

SQL Functions

Analytic aggregate functions differ from standard aggregate functions in that, rather than return a
single summary value, they return the same number of rows as the input. Moreover, unlike
standard aggregate functions, the groups of rows on which the analytic aggregate function
operates are not defined by a GROUP BY clause, but by window partitioning and frame clauses.
You can sort these partitions using a window ORDER BY clause, but the order affects only the
function result set, not the entire query result set. This ordering concept is described more fully
later.

The windowing components (partitioning, ordering, and framing) are specified in the analytic
OVER () clause. For example, window framing defines the unique construct of a moving window,
whose size is based on either logical intervals (such as time) or on a physical number of rows. For
each row, a window is computed in relation to the current row. As the current row advances, the
window moves along with it.

Analytic Function Syntax

ANALYTIC FUNCTION(argument-1, ..., argument-n)
OVER([window partition clause (on page 130)]

[window_order clause (on page 131)]

[window_frame clause (on page 133)])

Analytic Syntactic Construct

OVER (.. .) Specifies partitioning, ordering, and window framing for the
function—important elements that determine what data the analytic function
takes as input with respect to the current row. The OVER () clause is
evaluated after the FROM, WHERE, GROUP BY, and HAVING clauses. The
SQL OVER () clause must follow the analytic function.

window_partition_clause |Divides the rows in the input table by a given list of columns or expressions.
If the window partition clause is omitted, all input rows are treated
as a single partition. See window partition clause (page 130).

window_order_clause Sorts the rows specified by the window partition clause and

supplies an ordered set of rows to the analytic function. See
window order clause (page 131).

window_frame_clause Allowed for some analytic function, the window_frame_clause represents a
moving window, defined in the analytic OVER () clause, and specifies the
beginning and end of the window relative to the current row. See

window frame clause. (page 133)

Notes
Analytic functions:

e Require the OVER () clause. However, depending on the analytic function, the
window frame clause andwindow order clause might not apply.

Note: When used with analytic aggregate functions, OVER () may be used without supplying
any of the windowing clauses; in this case, the aggregate returns the same aggregated value
for each row of the result set.

e Are allowed only inthe SELECT and ORDER BY clauses.

-129-

SQL Reference Manual

e Can be used in a subquery or in the parent query.

e Cannot be nested; for example, the following is not allowed:
=> SELECT MEDIAN (RANK () OVER(ORDER BY sal) OVER() .

See Also
Performance Optimization for Analytic Sort Computation (page 178)
Using SQL Analytics in the Programmer's Guide

Named Windows

window_partition_clause

The window partition clause isan optional clause that, when specified, divides the rows in
the input by a given list of columns or expressions. If the clause is omitted, all input rows are
treated as a single partition. Window partitioning is similar to a GROUP BY operation, except the
function returns only one result row per input row.

The analytic function is computed per partition and starts over again (resets) at the beginning of
each subsequent partition. The window partition clause 1is specified withinthe OVER ()
clause.

Syntax

PARTITION BY expression [, ...]

Parameters

expression Expression to sort the partition on. May involve columns,

constants or an arbitrary expression formed on columns.

Sample schema

The examples in this topic use the following schema:

=> CREATE TABLE allsales(
state VARCHAR(20),
name VARCHAR(20),

sales INT);

=> INSERT INTO allsales VALUES('MA', 'A', 60);
=> INSERT INTO allsales VALUES('NY', 'B', 20);
=> INSERT INTO allsales VALUES('NY', 'C', 15);
=> INSERT INTO allsales VALUES('MA', 'D', 20);
=> INSERT INTO allsales VALUES('MA', 'E', 50);
=> INSERT INTO allsales VALUES('NY', 'F', 40);
=> INSERT INTO allsales VALUES('MA', 'G', 10);
=> COMMIT;

-130-

SQL Functions

Create the example allsales table, insert the data, and query the table:
=> SELECT * FROM allsales;
state | name | sales
_______ +______+_______

MA | A \ 60

NY | B \ 20

NY | C \ 15

MA | D \ 20

MA | E \ 50

NY | F \ 40

MA | G \ 10

(7 rows)

Examples

The first example uses the analytic function MEDIAN to partition the results by state and then
calculate the median of sales:

=> SELECT state, name, sales, MEDIAN (sales)
OVER (PARTITION BY state) AS MEDIAN from allsales;
state | name | sales | MEDIAN

——————— B S ittt
NY | C \ 15 | 20
NY | B | 20 | 20
NY | F \ 40 | 20
MA | G \ 10 | 35
MA | D \ 20 | 35
MA | E \ 50 | 35
MA | A \ 60 | 35
(7 rows)

Note: In the above results, notice the two partitions for MA and NY under the state column.

The next example calculates the median of total sales among states. Note that when you use
OVER () with no parameters, there is one partition, the entire input:

=> SELECT state, SUM(sales), MEDIAN(SUM(sales))

OVER () AS MEDIAN FROM allsales GROUP BY state;
state | SUM | MEDIAN
_______ +_____+________
NY \ 75 | 107.5
MA | 140 | 107.5
(2 rows)

window_order_clause

Sorts the rows specified by the window partition clause (on page 130) and supplies an
ordered set of rows to the window frame clause (if present), to the analytic function, or to
both. The window order clause specifies whether data is returned in ascending or
descending order and specifies where null values appear in the sorted result as either first or last.
The ordering of the data affects the results.

Using ORDER BY in an OVER clause changes the default window to RANGE UNBOUNDED
PRECEDING AND CURRENT ROW.

-131-

SQL Reference Manual

The window order clause does not guarantee the order of the SQL result. Use the SQL
ORDER BY clause (page 757) to guarantee the ordering of the final result set.

The window order clause is part of the OVER() clause.

Syntax

ORDER BY expression
[{ ASC | DESC }]

[NULLS { FIRST | LAST | AUTO }] [,expression ...]
Parameters
expression Expression to sort the partition on. May involve columns, constants

or an arbitrary expression formed on columns.

ASC | DESC Specifies the ordering sequence as ascending (default) or
descending.
NULLS { FIRST | LAST | AUTO } [Indicates the position of nulls in the ordered sequence as either first

or last. The order makes nulls compare either high or low with
respect to non-null values.

If the sequence is specified as ascending order, ASC NULLS FIRST
implies that nulls are smaller than other non-null values. ASC NULLS
LAST implies that nulls are larger than non-null values. The opposite
is true for descending order. If you specify NULLS AUTO, Vertica
chooses the most efficient placement of nulls (for example, either
NULLS FIRST or NULLS LAST) based on your query. The default is
ASC NULLS LAST and DESC NULLS FIRST. See also Performance
Optimization for Analytic Sort Computation (page 178).

The following list shows the default ordering, with bold clauses to indicate what is implicit:

e ORDER BY columnl = ORDER BY a ASC NULLS LAST
e ORDER BY columnl ASC = ORDER BY a ASC NULLS LAST
e ORDER BY columnl DESC = ORDER BY a DESC NULLS FIRST

The placement of the ORDER BY clause might not guarantee the final result order. For example,
the window order clause is different from the final ORDER BY in that the

window order clause specifies the order within each partition and affects the result of the
analytic calculation; it does not guarantee the order of the SQL result. Use the SQL ORDER BY
clause (page 757) to guarantee the ordering of the final result set. See also Null Placement.

The following examples continue with the sample schema introduced in the
window_partition_clause (page 130) topic.

Example 1 Example 2

In this example, the query orders the sales inside In this example, the final ORDER BY clause sorts

each sales partition: the results by name:

=> SELECT state, sales, name, RANK() => SELECT state, sales, name, RANK()
OVER (PARTITION BY state OVER (PARTITION by state

-132-

SQL Functions

ORDER BY sales) AS RANK ORDER BY sales) AS RANK

FROM allsales; FROM allsales ORDER BY name;
state | sales | name | RANK state | sales | name | RANK
——————— B s s e e e s s
MA \ 10 | G \ 1 MA | 60 | A | 4
MA \ 20 | D \ 2 NY | 20 | B | 2
MA \ 50 | E \ 3 NY | 15 | C | 1
MA \ 60 | A \ 4 MA | 20 | D | 2
NY \ 15 | C \ 1 MA | 50 | E | 3
NY \ 20 | B \ 2 NY | 40 | F | 3
NY | 40 | F | 3 MA | 10 | G | 1
(7 rows) (7 rows)

window_frame clause

Allowed for some analytic functions, the window frame clause specifies the beginning and
end of the window relative to the current row. Each analytic function is computed based on the
data within the window frame boundaries. As Vertica computes an analytic function for each row,
the window slides according the the window frame clause, androws are excluded or included
based on the position (ROWS) or value (RANGE) relative to the current row. The CURRENT ROW IS
the next row for which the analytic function computes results.

Note: If you omit the window frame clause, the default window is RANGE UNBOUNDED
PRECEDING AND CURRENT ROW.

Syntax

{ ROWS | RANGE }
{

{
BETWEEN

{ UNBOUNDED PRECEDING

| CURRENT ROW

| constant-value { PRECEDING | FOLLOWING }
}

AND

{ UNBOUNDED FOLLOWING

| CURRENT ROW

| constant-value { PRECEDING | FOLLOWING }
}

UNBOUNDED PRECEDING
CURRENT ROW
constant-value PRECEDING

— — — o~

-133-

SQL Reference Manual

Parameters

ROWS | RANGE

The rROWS and RANGE keywords define the window frame type.

ROWS specifies a window as a physical offset and defines the
window's start and end point by the number of rows before or after the
current row. The value can be INTEGER data type only.

RANGE specifies the window as a logical offset, such as time. The
range value must match the window _order clause data type,
which can be NUMERIC, DATE/TIME, FLOAT Or INTEGER.

Note: The value returned by an analytic function with a logical offset
is always deterministic. However, the value returned by an analytic
function with a physical offset could produce nondeterministic results
unless the ordering expression results in a unique ordering. You
might have to specify multiple columns in the

window order clause to achieve this unique ordering.

BETWEEN ... AND

Specifies a start point and end point for the window. The first
expression (before AND) defines the start point and the second
expression (after AND) defines the end point.

Note: If you use the keyword BETWEEN, you must also use AND.

UNBOUNDED PRECEDING

Indicates that the window starts at the first row of the partition. This
start-point specification cannot be used as an end-point specification.

UNBOUNDED FOLLOWING

Indicates that the window ends at the last row of the partition. This
end-point specification cannot be used as a start-point specification.

CURRENT ROW

As a start point, CURRENT ROW specifies that the window begins at the
current row or value, depending on whether you have specified ROw
or RANGE, respectively. In this case, the end point cannot be
constant-value PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at the
current row or value, depending on whether you have specified ROW
or RANGE, respectively. In this case the start point cannot be
constant-value FOLLOWING.

constant-value {

PRECEDING | FOLLOWING }

For RANGE Or ROW:
= [f constant-value FOLLOWING is the start point, the end point
must be constant-value FOLLOWING.

= [fconstant-value PRECEDING is the end point, the start point
must be constant-value PRECEDING.

= Ifyou specify a logical window that is defined by a time
interval in NUMERIC format, you might need to use
conversion functions.

If you specified ROWS:

= constant-value is a physical offset. It must be a constant or
expression and must evaluate to an INTEGER data type
value.

= [f constant-value is part of the start point, it must evaluate to a

-134-

SQL Functions

row before the end point.

If you specified RANGE:

= constant-value is a logical offset. It must be a constant or
expression that evaluates to a positive numeric value or an
INTERVAL literal.

= If constant-value evaluates to a NUMERIC value, the ORDER
BY column type must be a NUMERIC data type..

= [fthe constant-value evaluates to an INTERVAL DAY TO
SECOND subtype, the ORDER BY column type can only be
TIMESTAMP, TIME, DATE, of INTERVAL DAY TO SECOND.

= [f the constant-value evaluates to an INTERVAL YEAR TO
MONTH, the ORDER BY column type can only be TIMESTAMP,
DATE, or INTERVAL YEAR TO MONTH.

= You can specify only one expression in the
window order clause.

named_windows

You can avoid typing long OVER () clause syntax by naming a window using the WINDOW clause,
which takes the following form:

WINDOW window name AS (window definition clause);

In the following example, RANK () and DENSE RANK () use the partitioning and ordering
specifications in the window definition for w:

=> SELECT RANK() OVER w , DENSE RANK() OVER w

FROM employee dimension

WINDOW w AS (PARTITION BY employee_region ORDER by annual_salary);
Though analytic functions can reference a named window to inherit the

window partition clause (page 130), you can define your own window order clause
(page 131); for example:

=> SELECT RANK() OVER(w ORDER BY annual_salary ASC) ,
DENSE RANK () OVER(w ORDER BY annual_ salary DESC)
FROM employee dimension
WINDOW w AS (PARTITION BY employee region);

Notes:

e Thewindow partition clause is defined in the named window specification, not in the
OVER () clause.

e The OVER () clause can specify its own window order clause only if the
window definition clause did not already define it. For example, if the second example
above is rewritten as follows, the system returns an error:

=> SELECT RANK () OVER(w ORDER BY annual salary ASC) ,

-135-

SQL Reference Manual

DENSE RANK () OVER(w ORDER BY annual salary DESC)
FROM employee dimension
WINDOW w AS (PARTITION BY employee region ORDER BY annual_salary) ;
ERROR: cannot override ORDER BY clause of window "w"
e Awindow definition cannot contain a window frame clause.
e Each window defined in the window_definition clause must have a uniqgue name.
You can reference window names within their scope only. For example, because named
window w1 below is defined before w2, w2 is within the scope of w1:

=> SELECT RANK() OVER(wl ORDER BY sal DESC)
RANK () OVER w2

FROM EMP AS
WINDOW wl AS (PARTITION BY deptno), w2 AS (wl ORDER BY sal);

AVG [Analytic]

Computes an average of an expression in a group within a window.

Behavior Type
Immutable

Syntax

AVG (expression) OVER (

[window partition_clause (page 130)]
[window_order clause (page 131)]
[

window_frame_ clause (page 133)])

Parameters

expression The value whose average is calculated over a set of rows. Can
be any expression resulting in DOUBLE PRECISION.

OVER (.. .) See Analytic Functions. (page 128)

Notes

AVG () takes as an argument any numeric data type or any non-numeric data type that can be
implicitly converted to a numeric data type. The function returns the same data type as the
argument's numeric data type.

Examples

The following query finds the sales for that calendar month and returns a running/cumulative
average (sometimes called a moving average) using the default window of RANGE UNBOUNDED
PRECEDING AND CURRENT ROW:

=> SELECT calendar month number in year, SUM(product price) AS sales,
AVG (SUM (product _price)) OVER (ORDER BY calendar month number in year)
FROM product dimension, date dimension, inventory fact
WHERE date dimension.date key = inventory fact.date key
AND product dimension.product key = inventory fact.product key
GROUP BY calendar month number in year;

-136-

SQL Functions

calendar month number in year | sales \ ?column?
_________ e
1 | 23869547 | 23869547
2 | 19604661 | 21737104
3 | 22877913 | 22117373.6666667
4 | 22901263 | 22313346
5 | 23670676 | 22584812
6 | 22507600 | 22571943.3333333
7 | 21514089 | 22420821.2857143
8 | 24860684 | 22725804.125
9 | 21687795 | 22610469.7777778
10 | 23648921 | 22714314.9
11 | 21115910 | 22569005.3636364
12 | 24708317 | 22747281.3333333

(12 rows)

To return a moving average that is not a running (cumulative) average, the window should specify
ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING:

=> SELECT calendar month number in year, SUM(product price) AS sales,
AVG (SUM (product price)) OVER (ORDER BY calendar month number in year
ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
FROM product dimension, date dimension, inventory fact
WHERE date dimension.date key = inventory fact.date key
AND product dimension.product key = inventory fact.product key
GROUP BY calendar month number in year;

See Also

AVG (page 110) aggregate function

COUNT (page 139) and SUM (page 173) analytic functions
Using SQL Analytics in the Programmer's Guide

CONDITIONAL_CHANGE_EVENT [Analytic]

Assigns an event window number to each row, starting from 0, and increments by 1 when the
result of evaluating the argument expression on the current row differs from that on the previous
row.

Behavior Type
Immutable

Syntax

CONDITIONAL CHANGE EVENT (expression) OVER (
[window partition clause (page 130)]
window_order clause (page 131))

Parameters

expression Is a SQL scalar expression that is evaluated on an input record.
The result of expression can be of any data type.

-137-

SQL Reference Manual

OVER(. . .) See Analytic Functions. (page 128)

Notes

The analytic window order clause is required butthe window partition clause is
optional.
Example

=> SELECT CONDITIONAL_CHANGE_EVENT(bid)
OVER (PARTITION BY symbol ORDER BY ts) AS cce
FROM TickStore;

The system returns an error when no ORDER BY is present:

=> SELECT CONDITIONAL_CHANGE_EVENT(bid)
OVER (PARTITION BY symbol) AS cce
FROM TickStore;

ERROR: conditional change event must contain an ORDER BY clause within
its analytic clause

For more examples, see Event-based Windows in the Programmer's Guide.
See Also

CONDITIONAL_TRUE_EVENT (page 138)

ROW_NUMBER (page 168)

Using Time Series Analytics and Event-based Windows in the Programmer's Guide

CONDITIONAL_TRUE_EVENT [Analytic]

Assigns an event window number to each row, starting from 0, and increments the number by 1
when the result of the boolean argument expression evaluates true. For example, given a
sequence of values for column a:

(1, 2, 3, 4, 5, 6)

CONDITIONAL TRUE EVENT (a > 3) returns 0, 0, 0, 1, 2, 3.
Behavior Type:

Immutable

Syntax

CONDITIONAL TRUE EVENT (boolean-expression) OVER
([window partition clause (page 130)]
window_order clause (page 131))

Parameters

boolean-expression Is a SQL scalar expression that is evaluated on an input
record. The result of boolean-expression is boolean type.

-138-

SQL Functions

OVER (.. .) See Analytic Functions (page 128).

Notes

The analytic window order clause is required butthe window partition clause is
optional.
Example

=> SELECT CONDITIONAL_TRUE_EVENT(bid > 10.6)
OVER (PARTITION BY bid ORDER BY ts) AS cte
FROM Tickstore;

The system returns an error if the ORDER BY clause is omitted:

=> SELECT CONDITIONAL TRUE EVENT (bid > 10.6)
OVER (PARTITION BY bid) AS cte
FROM Tickstore;
ERROR: conditional true event must contain an ORDER BY clause within its
analytic clause

For more examples, see Event-based Windows in the Programmer's Guide.
See Also
CONDITIONAL_CHANGE_EVENT (page 137)

Using Time Series Analytics and Event-based Windows in the Programmer's Guide

COUNT [Analytic]

Counts occurrences within a group within a window. If you specify * or some non-null constant,
COUNT () counts all rows.

Behavior Type

Immutable

Syntax

COUNT (expression) OVER (
[window partition clause (page 130)]
[window_order clause (page 131)]
[window_frame clause (page 133)])

Parameters

expression Returns the number of rows in each group for which the expression
is not null. Can be any expression resulting in BIGINT.

OVER(...) See Analytic Functions. (page 128)

-139-

SQL Reference Manual

Example

The following query finds the number of employees who make less than or equivalent to the hourly
rate of the current employee. The query returns a running/cumulative average (sometimes called
a moving average) using the default window of RANGE UNBOUNDED PRECEDING AND CURRENT
ROW:

=> SELECT employee last name AS "last name", hourly rate, COUNT (*)
OVER (ORDER BY hourly rate) AS moving count from employee dimension;

last name | hourly rate | moving count
_____ e
Gauthier \ 6 | 4
Taylor \ 6 | 4
Jefferson \ 6 | 4
Nielson | 6 | 4
McNulty \ 6.01 | 11
Robinson \ 6.01 | 11
Dobisz \ 6.01 | 11
Williams | 6.01 | 11
Kramer | 6.01 | 11
Miller \ 6.01 | 11
Wilson | 6.01 | 11
Vogel | 6.02 | 14
Moore \ 6.02 | 14
Vogel | 6.02 | 14
Carcetti \ 6.03 | 19

To return a moving average that is not also a running (cumulative) average, the window should
specify ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING:

=> SELECT employee last name AS "last name", hourly rate, COUNT (*)
OVER (ORDER BY hourly rate ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
AS moving count from employee dimension;

See Also

COUNT (page 111) aggregate function

AVG (page 136) and SUM (page 173) analytic functions
Using SQL Analytics in the Programmer's Guide

CUME_DIST [Analytic]

Calculates the cumulative distribution, or relative rank, of the current row with regard to other rows
in the same partition within a window.

CUME_DIST () returns a number greater then 0 and less then or equal to 1, where the number
represents the relative position of the specified row within a group of N rows. For a row x
(assuming AsSC ordering), the CUME DIST of x is the number of rows with values lower than or
eqgual to the value of x, divided by the number of rows in the partition. In a group of three rows, for
example, the cumulative distribution values returned would be 1/3, 2/3, and 3/3.

-140-

SQL Functions

Note: Because the result for a given row depends on the number of rows preceding that row in

the same partition, Vertica recommends that you always specify a window order clause
when you call this function.

Behavior Type
Immutable

Syntax

CUME DIST () OVER (
[window partition clause (page 130)]
window_order clause (page 131))

Parameters

OVER(...) See Analytic Functions. (page 128)

Notes

The analytic window order clause is required butthe window partition clause is
optional.

Examples

The following example returns the cumulative distribution of sales for different transaction types
within each month of the first quarter.

=> SELECT calendar month name AS month, tender type, SUM(sales quantity),
CUME_DIST ()
OVER (PARTITION BY calendar month name ORDER BY SUM(sales quantity)) AS
CUME_DIST
FROM store.store sales fact JOIN date dimension
USING (date key) WHERE calendar month name IN ('January', 'February', 'March')
AND tender type NOT LIKE 'Other'
GROUP BY calendar month name, tender type;

month | tender type | SUM | CUME DIST
__________ +_______t_____+________+_____j_____
March | Credit | 469858 | 0.25
March | Cash | 470449 | 0.5
March | Check | 473033 | 0.75
March | Debit | 475103 | 1
January | Cash | 441730 | 0.25
January | Debit | 443922 | 0.5
January | Check | 446297 | 0.75
January | Credit | 450994 | 1
February | Check | 425665 | 0.25
February | Debit | 426726 | 0.5
February | Credit | 430010 | 0.75
February | Cash | 430767 | 1
(12 rows)

-141-

SQL Reference Manual

See Also
PERCENT_RANK (page 160)

PERCENTILE_DISC (page 164)
Using SQL Analytics in the Programmer's Guide

DENSE_RANK [Analytic]

Computes the relative rank of each row returned from a query with respect to the other rows,
based on the values of the expressions in the window ORDER BY clause.

The data within a group is sorted by the ORDER BY clause and then a numeric ranking is assigned
to each row in turn starting with 1 and continuing from there. The rank is incremented every time
the values of the ORDER BY expressions change. Rows with equal values receive the same rank
(nulls are considered equal in this comparison). A DENSE_RANK () function returns a ranking
number without any gaps, which is why it is called "DENSE."

Behavior Type
Immutable

Syntax

DENSE RANK () OVER (
[window partition clause (page 130)]
. window_order clause (page 131))

Parameters

OVER(...) See Analytic Functions. (page 128)

Notes

e The analytic window order clause is required butthe window partition clause is
optional.

e The ranks are consecutive integers beginning with 1. The largest rank value is the number of
unique values returned by the query.

e The primary difference between DENSE RANK () and RANK () (page 166) is that RANK leaves
gaps when ranking records whereas DENSE RANK leaves no gaps. For example, N records
occupy a particular position (say, a tie for rank X), RANK assigns all those records with rank X
and skips the next N ranks, therefore the next assigned rank is X+N. DENSE RANK places all
the records in that position only—it does not skip any ranks. B

If there is a tie at the third position with two records having the same value, RANK and
DENSE_ RANK place both the records in the third position, but RANK places the next record at
the fifth position, while DENSE RANK places the next record at the fourth position.

-142-

SQL Functions

e If youomit NULLS FIRST | LAST | AUTO, the ordering of the NULL values depends on the
ASC or DESC arguments. NULL values are considered larger than any other value. If the
ordering sequence is ASC, then nulls appear last; nulls appear first otherwise. Nulls are
considered equal to other nulls and, therefore, the order in which nulls are presented is
non-deterministic.

Examples

The following example shows the difference between RANK and DENSE RANK when ranking
customers by their annual income. Notice that RANK has a tie at 10 and skips 11, while
DENSE RANK leaves no gaps in the ranking sequence:

=> SELECT customer name, SUM(annual income),
RANK () OVER (ORDER BY TO CHAR(SUM(annual income), '100000') DESC) rank,
DENSE RANK () OVER (ORDER BY TO CHAR(SUM(annual income), '100000") DESC)
dense rank
FROM customer dimension GROUP BY customer name LIMIT 15;

customer name | sum | rank | dense rank
____________ :________+_______+______+______:_____
Brian M. Garnett | 99838 | 1 | 1
Tanya A. Brown | 99834 | 2 | 2
Tiffany P. Farmer | 99826 | 3 | 3
Jose V. Sanchez | 99673 | 4 | 4
Marcus D. Rodriguez | 99631 | 5 | 5
Alexander T. Nguyen | 99604 | 6 | 6
Sarah G. Lewis | 99556 | 7 | 7
Ruth Q. Vu | 99542 | 8 | 8
Theodore T. Farmer | 99532 | 9 | 9
Daniel P. Li | 99497 | 10 | 10
Seth E. Brown | 99497 | 10 | 10
Matt X. Gauthier | 99402 | 12 | 11
Rebecca W. Lewis | 99296 | 13 | 12
Dean L. Wilson | 99276 | 14 | 13
Tiffany A. Smith | 99257 | 15 | 14
(15 rows)
See Also

RANK (page 166)
Using SQL Analytics in the Programmer's Guide

EXPONENTIAL_MOVING AVERAGE [Analytic]

Calculates the exponential moving average of expression E with smoothing factor X.

The exponential moving average (EMA) is calculated by adding the previous EMA value to the
current data point scaled by the smoothing factor, as in the following formula, where EMAQ is the
previous row's EMA value, X is the smoothing factor, and E is the current data point: EMA=EMAQ
+ (X* (E - EMAQ)).

Behavior Type

Immutable

-143-

SQL Reference Manual

Syntax

EXPONENTIAL MOVING AVERAGE (E , X) OVER (
[window partition clause (page 130)]
window_order clause (page 131))

Parameters

E The value whose average is calculated over a set of rows. Can
be INTEGER, FLOAT or NUMERIC type and must be a constant.

X A positive FLOAT value between 0 and 1 that is used as the
smoothing factor.

OVER (.. .) See Analytic Functions. (page 128)

Notes

e The analytic window order clause is required butthe window partition clause is
optional.

e There is no [Aggregate] equivalent of this function because of its unique semantics.

e EXPONENTIAL MOVING AVERAGE () is different from a simple moving average in that it
provides a more stable picture of changes to data over time.

e TheEXPONENTIAL MOVING AVERAGE () functionalsoworks atthe row level; for example, it
assumes the data in a given column is sampled at uniform intervals. If the users' data points
are sampled at non-uniform intervals, they should run the time series gap filling and
interpolation (GFI) operations before EMA(). See the Example section below.

Examples

The following example uses time series gap filling and interpolation (GFI) first in a subquery, and
then performs an EXPONENTIAL MOVING AVERAGE operation on the subquery result.

Create a simple 4-column table:

=> CREATE TABLE ticker(
time TIMESTAMP,
symbol VARCHAR(8),
bidl FLOAT,
bid2 FLOAT) ;

Now insert some data, including nulls, so GFI can do its interpolation and gap filling:
=> INSERT INTO ticker VALUES

=> INSERT INTO ticker VALUES
=> INSERT INTO ticker VALUES

'2009-07-12 03:00:00"', 'ABC', 60.45, 60.44);
'2009-07-12 03:00:01', 'ABC', 60.49, 65.12);
'2009-07-12 03:00:02"', 'ABC', 57.78, 59.25)
=> INSERT INTO ticker VALUES ('2009-07-12 03:00:03', 'ABC', null, 65.12);
=> INSERT INTO ticker VALUES ('2009-07-12 03:00:04', 'ABC', 67.88, null);

(
(
(
(
(
=> INSERT INTO ticker VALUES ('2009-07-12 03:00:00', 'XYz', 47.55, 40.
(
(
(
(

’

’

’

15)

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:01', 'XYzZ', 44.35, 46.78)

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:02', 'Xyz', 71.56, 75.78);
21)
65)

’

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:03', 'Xyz', 85.55, 70.
'2009-07-12 03:00:04"', 'Xyz', 45.55, 58.

’

=> INSERT INTO ticker VALUES
=> COMMIT;

-144-

SQL Functions

Note: During gap filling and interpolation, Vertica takes the closest non null value on either side
of the time slice and uses that value. For example, if you use a linear interpolation scheme and
you do not specify TGNORE NULLS, and your data has one real value and one null, the result is
null. If the value on either side is null, the result is null. See When Time Series Data Contains
Nulls in the Programmer's Guide for details.

Query the table you just created to you can see the output:

=> SELECT * FROM ticker;

time | symbol | bidl | bid2

————————————————————— B it e
2009-07-12 03:00:00 | ABC | 60.45 | 60.44
2009-07-12 03:00:01 | ABC | 60.49 | 65.12
2009-07-12 03:00:02 | ABC | 57.78 | 59.25
2009-07-12 03:00:03 | ABC | | 65.12
2009-07-12 03:00:04 | ABC | 67.88 |
2009-07-12 03:00:00 | XYZ | 47.55 | 40.15
2009-07-12 03:00:01 | XYZ | 44.35 | 46.78
2009-07-12 03:00:02 | XYZ | 71.56 | 75.78
2009-07-12 03:00:03 | XYZ | 85.55 | 70.21
2009-07-12 03:00:04 | XYZ | 45.55 | 58.65

(10 rows)

The following query processes the first and last values that belong to each 2-second time slice in
table trades' column a. The query then calculates the exponential moving average of expression
fv and Iv with a smoothing factor of 5%:

=> SELECT symbol, slice time, fv, lv,
EXPONENTIAL_MOVING_AVERAGE(fv, 0.5)
OVER (PARTITION BY symbol ORDER BY slice time)
EXPONENTIAL_MOVING_AVERAGE(lv, 0.5)
OVER (PARTITION BY symbol ORDER BY Slice_time)
FROM (
SELECT symbol, slice time,
TS_FIRST_VALUE(bidl IGNORE NULLS)
TS_LAST_VALUE(bidZ IGNORE NULLS)

AS ema first,

AS ema_ last

as fv,
AS 1v

FROM ticker TIMESERIES slice time AS '2 seconds'

OVER (PARTITION BY symbol ORDER BY time)) AS sqg;
symbol | slice time | fv | 1v | ema first | ema last
———————— B et i ettt e e
ABC | 2009-07-12 03:00:00 | ©0.45 | 65.12 | 60.45 | 65.12
ABC | 2009-07-12 03:00:02 | 57.78 | 65.12 | 59.115 | 65.12
ABC | 2009-07-12 03:00:04 | 67.88 | 65.12 | 63.4975 | 65.12
XYZ | 2009-07-12 03:00:00 | 47.55 | 46.78 | 47.55 | 46.78
XYZ | 2009-07-12 03:00:02 | 71.56 | 70.21 | 59.555 | 58.495
XYZ | 2009-07-12 03:00:04 | 45.55 | 58.65 | 52.5525 | 58.5725
(6 rows)
See Also

TIMESERIES Clause (page 761)
Using Time Series Analytics and Using SQL Analytics in the Programmer's Guide

-145-

SQL Reference Manual

FIRST VALUE [Analytic]

Returns values of the expression from the first row of a window for the current row. If no window is
specified for the current row, the default window is UNBOUNDED PRECEDING AND CURRENT ROW.
Behavior Type

Immutable

Syntax

FIRST VALUE (expression [IGNORE NULLS]) OVER (
[window partition clause (page 130)]
[window_order clause (page 131)]
[window_frame clause (page 133)])

Parameters

expression Is the expression to evaluate; for example, a constant,
column, nonanalytic function, function expression, or
expressions inwlving any of these.

IGNORE NULLS Returns the first non-null value in the set, or NULL if all values
are NULL.

OVER(...) See Analytic Functions. (page 128)

Notes

e The FIRST VALUE () function lets you select a table's first value (determined by the
window order clause) without having to use a self join. This function is useful when you
want to use the first value as a baseline in calculations.

e \ertica recommends that you use FIRST VALUE with the window order clause to
produce deterministic results.

e If the first value in the set is null, then the function returns NULL unless you specify IGNORE
NULLS. If you specify IGNORE NULLS, FIRST VALUE returns the first non-null value in the
set, or NULL if all values are null.

Examples

The following query, which asks for the first value in the partitioned day of week, illustrates the
potential nondeterministic nature of the FIRST VALUE function:

=> SELECT calendar year, date key, day of week, full date description,
FIRST VALUE (full date description)
OVER (PARTITION BY calendar month number in year ORDER BY day of week) AS "first value"
FROM date dimension
WHERE calendar year=2003 AND calendar month number in year=l;

-146-

SQL Functions

The first value returned is January 31, 2003; however, the next time the same query is run, the first
value could be January 24 or January 3, or the 10th or 17th. The reason is because the analytic
ORDER BY column (day of week) returns rows that contain ties (multiple Fridays). These
repeated values make the ORDER BY evaluation result nondeterministic, because rows that
contain ties can be ordered in any way, and any one of those rows qualifies as being the first value
of day of week.

calendar year | date key | day of week | full date description | first value

——————————————— it et
2003 | 31 | Friday | January 31, 2003 | January 31, 2003
2003 | 24 | Friday | January 24, 2003 | January 31, 2003
2003 | 3 | Friday | January 3, 2003 | January 31, 2003
2003 | 10 | Friday | January 10, 2003 | January 31, 2003
2003 | 17 | Friday | January 17, 2003 | January 31, 2003
2003 | 6 | Monday | January 6, 2003 | January 31, 2003
2003 | 27 | Monday | January 27, 2003 | January 31, 2003
2003 | 13 | Monday | January 13, 2003 | January 31, 2003
2003 | 20 | Monday | January 20, 2003 | January 31, 2003
2003 | 11 | Saturday | January 11, 2003 | January 31, 2003
2003 | 18 | Saturday | January 18, 2003 | January 31, 2003
2003 | 25 | Saturday | January 25, 2003 | January 31, 2003
2003 | 4 | Saturday | January 4, 2003 | January 31, 2003
2003 | 12 | Sunday | January 12, 2003 | January 31, 2003
2003 | 26 | Sunday | January 26, 2003 | January 31, 2003
2003 | 5 | Sunday | January 5, 2003 | January 31, 2003
2003 | 19 | Sunday | January 19, 2003 | January 31, 2003
2003 | 23 | Thursday | January 23, 2003 | January 31, 2003
2003 | 2 | Thursday | January 2, 2003 | January 31, 2003
2003 | 9 | Thursday | January 9, 2003 | January 31, 2003
2003 | 16 | Thursday | January 16, 2003 | January 31, 2003
2003 | 30 | Thursday | January 30, 2003 | January 31, 2003
2003 | 21 | Tuesday | January 21, 2003 | January 31, 2003
2003 | 14 | Tuesday | January 14, 2003 | January 31, 2003
2003 | 7 | Tuesday | January 7, 2003 | January 31, 2003
2003 | 28 | Tuesday | January 28, 2003 | January 31, 2003
2003 | 22 | Wednesday | January 22, 2003 | January 31, 2003
2003 | 29 | Wednesday | January 29, 2003 | January 31, 2003
2003 | 15 | Wednesday | January 15, 2003 | January 31, 2003
2003 | 1 | Wednesday | January 1, 2003 | January 31, 2003
2003 | 8 | Wednesday | January 8, 2003 | January 31, 2003

(31 rows)

Note: The day of week results are returned in alphabetical order because of lexical rules.
The fact that each day does not appear ordered by the 7-day week cycle (for example, starting
with Sunday followed by Monday, Tuesday, and so on) has no affect on results.

To return deterministic results, modify the query so that it performs its analytic ORDER BY
operations on a unique field, such as date key:
=> SELECT calendar_ year, date key, day of week, full date description,

FIRST VALUE(full date description) OVER

(PARTITION BY calendar _month number_in_year ORDER BY date_key) As "first_value"
FROM date dimension WHERE calendar year=2003;

-147-

SQL Reference Manual

Notice that the results return a first value of January 1 for the January partition and the first value of
February 1 for the February partition. Also, there are no ties inthe full date description
column:

calendar year | date key | day of week | full date description | first value

_________ j_____+_____i____+_____________+_______________________+_____________
2003 | 1 | Wednesday | January 1, 2003 | January 1, 2003
2003 | 2 | Thursday | January 2, 2003 | January 1, 2003
2003 | 3 | Friday | January 3, 2003 | January 1, 2003
2003 | 4 | Saturday | January 4, 2003 | January 1, 2003
2003 | 5 | Sunday | January 5, 2003 | January 1, 2003
2003 | 6 | Monday | January 6, 2003 | January 1, 2003
2003 | 7 | Tuesday | January 7, 2003 | January 1, 2003
2003 | 8 | Wednesday | January 8, 2003 | January 1, 2003
2003 | 9 | Thursday | January 9, 2003 | January 1, 2003
2003 | 10 | Friday | January 10, 2003 | January 1, 2003
2003 | 11 | Saturday | January 11, 2003 | January 1, 2003
2003 | 12 | Sunday | January 12, 2003 | January 1, 2003
2003 | 13 | Monday | January 13, 2003 | January 1, 2003
2003 | 14 | Tuesday | January 14, 2003 | January 1, 2003
2003 | 15 | Wednesday | January 15, 2003 | January 1, 2003
2003 | 16 | Thursday | January 16, 2003 | January 1, 2003
2003 | 17 | Friday | January 17, 2003 | January 1, 2003
2003 | 18 | Saturday | January 18, 2003 | January 1, 2003
2003 | 19 | Sunday | January 19, 2003 | January 1, 2003
2003 | 20 | Monday | January 20, 2003 | January 1, 2003
2003 | 21 | Tuesday | January 21, 2003 | January 1, 2003
2003 | 22 | Wednesday | January 22, 2003 | January 1, 2003
2003 | 23 | Thursday | January 23, 2003 | January 1, 2003
2003 | 24 | Friday | January 24, 2003 | January 1, 2003
2003 | 25 | Saturday | January 25, 2003 | January 1, 2003
2003 | 26 | Sunday | January 26, 2003 | January 1, 2003
2003 | 27 | Monday | January 27, 2003 | January 1, 2003
2003 | 28 | Tuesday | January 28, 2003 | January 1, 2003
2003 | 29 | Wednesday | January 29, 2003 | January 1, 2003
2003 | 30 | Thursday | January 30, 2003 | January 1, 2003
2003 | 31 | Friday | January 31, 2003 | January 1, 2003
2003 | 32 | Saturday | February 1, 2003 | February 1, 2003
2003 | 33 | Sunday | February 2, 2003 | February 1, 2003

(365 rows)

See Also

LAST_VALUE (page 152)
TIME_SLICE (page 225)
Using SQL Analytics in the Programmer's Guide

-148-

SQL Functions

LAG [Analytic]
Returns the value of the input expression at the given offset before the current row within a
window.

Behavior Type
Immutable

Syntax

LAG (expression [, offset] [, default]) OVER (
[window partition clause (page 130)]
window_order clause (page 131))

Parameters

expression Is the expression to evaluate; for example, a constant, column,
nonanalytic function, function expression, or expressions involving
any of these.

offset Is an optional parameter that defaults to 1 (the previous row). The
offset parameter must be (or can be evaluated to) a constant positive
integer.

default Is NULL. This optional parameter is the value returned if offset falls
outside the bounds of the table or partition.
Note: The third input argument must be a constant value or an
expression that can be evaluated to a constant; its data type is
coercible to that of the first argument.

OVER(. . .) See Analytic Functions. (page 128)

Notes

e The analytic window order clause is required but the window partition clause is

optional.

e The LAG () function returns values from the row before the current row, letting you access
more than one row in a table at the same time. This is useful for comparing values when the

relative positions of rows can be reliably known. It also lets you avoid the more costly self join,

which enhances query processing speed.
e See LEAD() (page 153) for how to get the next rows.
¢ Analytic functions, such as LAG (), cannot be nested within aggregate functions.
Examples

This example sums the current balance by date in a table and also sums the previous balance
from the last day. Given the inputs that follow, the data satisfies the following conditions:

e Foreach some id, thereis exactly 1 row for each date represented by month date.

e Foreach some id,the setofdates is consecutive;that is, if there is arow for February 24 and

a row for February 26, there would also be a row for February 25.
e Each some id has the same set of dates.

-149-

SQL Reference Manual

=> CREATE TABLE balances (
month date DATE,
current bal INT,
some_id INT);

=> INSERT INTO balances values (1
=> INSERT INTO balances values (1
=> INSERT INTO balances values ('2009-02-26', 10, 1
=> INSERT INTO balances values ('2009-02-24', 20, 2
=> INSERT INTO balances values ('2009-02-25', 20, 2
(2
(3
(3
(3

’

'2009-02-24"', 10,
'2009-02-25"', 10,

’

’

’

’

’

=> INSERT INTO balances values ('2009-02-26', 20,
=> INSERT INTO balances values '2009-02-24"', 30,
=> INSERT INTO balances values '2009-02-25", 20,
=> INSERT INTO balances values '2009-02-26"', 30,

’

’

’

Now run the LAG () function to sum the current balance for each date and sum the previous
balance from the last day:

=> SELECT month date,
SUM (current bal) as current bal sum,
SUM (previous bal) as previous bal sum FROM
(SELECT month date, current bal,
LAG (current bal, 1, 0) OVER
(PARTITION BY some id ORDER BY month date)
AS previous bal FROM balances) AS subQ
GROUP BY month date ORDER BY month date;

month date | current bal sum | previous bal sum
o __ o __ o I e ____
2009-02-24 | 60 | 0
2009-02-25 | 50 | 60
2009-02-26 | 60 | 50
(3 rows)

Using the same example data, the following query would not be allowed because LAG () is nested
inside an aggregate function:

=> SELECT month date,
SUM(current bal) as current bal sum,
SUM (LAG (current bal, 1, 0) OVER
(PARTITION BY some id ORDER BY month date)) AS previous bal sum
FROM some table GROUP BY month date ORDER BY month date;

In the next example, which uses the VMart example database, the LAG () function first returns the
annual income from the previous row, and then it calculates the difference between the income in
the current row from the income in the previous row. Note: The vmart example database returns
over 50,000 rows, so we'll limit the results to 20 records:
=> SELECT occupation, customer key, customer name, annual income,

LAG (annual income, 1, 0) OVER (PARTITION BY occupation ORDER BY annual income) AS prev_income,
annual income -

LAG (annual income, 1, 0) OVER (PARTITION BY occupation ORDER BY annual income) AS difference
FROM customer dimension ORDER BY occupation, customer key LIMIT 20;

occupation | customer key | customer name | annual income | prev income | difference
T T T T
Accountant | 15 | Midori V. Peterson | 692610 | 692535 | 75
Accountant | 43 | Midori S. Rodriguez | 282359 | 280976 | 1383
Accountant | 93 | Robert P. Campbell | 471722 | 471355 367
Accountant | 102 | Sam T. McNulty | 901636 | 901561 | 75

-150-

SQL Functions

Accountant | 134 | Martha B. Overstreet | 705146 | 704335 | 811
Accountant | 165 | James C. Kramer | 376841 | 376474 | 367
Accountant | 225 | Ben W. Farmer | 70574 | 70449 | 125
Accountant | 270 | Jessica S. Lang | 684204 | 682274 | 1930
Accountant | 273 | Mark X. Lampert | 723294 | 722737 | 557
Accountant | 295 | Sharon K. Gauthier | 29033 | 28412 | 621
Accountant | 338 | Anna S. Jackson | 816858 | 815557 | 1301
Accountant | 377 | William I. Jones | 915149 | 914872 | 277
Accountant | 438 | Joanna A. McCabe | 147396 | 144482 | 2914
Accountant | 452 | Kim P. Brown | 126023 | 124797 | 1226
Accountant | 467 | Meghan K. Carcetti | 810528 | 810284 | 244
Accountant | 478 | Tanya E. Greenwood | 639649 | 639029 | 620
Accountant | 511 | Midori P. Vogel | 187246 | 185539 | 1707
Accountant | 525 | Alexander K. Moore | 677433 | 677050 | 383
Accountant | 550 | Sam P. Reyes | 735691 | 735355 | 336
Accountant | 577 | Robert U. Vu | 616101 | 615439 | 662
(20 rows)

Continuing with the Vmart database, the next example uses both LEAD () and LAG () toreturnthe

third row after the salary in the current row and fifth salary before the salary in the current row.
=> SELECT hire date, employee key, employee last name,

LEAD (hire date, 1) OVER (ORDER BY hire date) AS "next hired" ,
LAG (hire date, 1) OVER (ORDER BY hire date) AS "last hired"
FROM employee dimension ORDER BY hire date, employee key;

hire date | employee key | employee last name |

next hired | last hired

———————————— e A T
1956-04-11 | 2694 | Farmer | 1956-05-12 |
1956-05-12 | 5486 | Winkler | 1956-09-18 | 1956-04-11
1956-09-18 | 5525 | McCabe | 1957-01-15 | 1956-05-12
1957-01-15 | 560 | Greenwood | 1957-02-06 | 1956-09-18
1957-02-06 | 9781 | Bauer | 1957-05-25 | 1957-01-15
1957-05-25 | 9506 | Webber | 1957-07-04 | 1957-02-06
1957-07-04 | 6723 | Kramer | 1957-07-07 | 1957-05-25
1957-07-07 | 5827 | Garnett | 1957-11-11 | 1957-07-04
1957-11-11 | 373 | Reyes | 1957-11-21 | 1957-07-07
1957-11-21 | 3874 | Martin | 1958-02-06 | 1957-11-11

(10 rows)

The following example specifies arguments that use different data types; for example
annual income (INT) and occupation(VARCHAR).ThequayrenﬂnsaneNOE

=> SELECT customer key,
(annual income,
(PARTITION BY occupation ORDER BY customer key)

LAG

1,

customer name,
occupation)

FROM customer dimension ORDER BY 3,

ERROR:
type int8
HINT:

to

See Also
LEAD (page 153)

Using SQL Analytics in the Programmer's Guide

occupation,

OVER

1;

You may need to add explicit type cast.

-151-

annual income,

LAGL

Third argument of lag could not be converted from type character varying

SQL Reference Manual

LAST_VALUE [Analytic]

Returns values of the expression from the last row of a window for the current row. If no window is
specified for the current row, the default window is UNBOUNDED PRECEDING AND CURRENT ROW.
Behavior Type

Immutable

Syntax

LAST VALUE (expression [IGNORE NULLS]) OVER (
[window partition clause (page 130)]
. [window_order clause (page 131)]
[window_frame clause (page 133)])

Parameters

expression Is the expression to evaluate; for example, a constant,
column, nonanalytic function, function expression, or
expressions inwlving any of these.

IGNORE NULLS Returns the last non-null value in the set, or NULL if all
values are NULL.

OVER(...) See Analytic Functions. (page 128)

Notes

e The LAST VALUE () function lets you select a window's last value (determined by the
window order clause), without having to use a self join. This function is useful when you
want to use the last value as a baseline in calculations.

e LAST VALUE () takes the last record from the partition after the analytic
window order clause. The expression is then computed against the last record, and
results are returned.

e Vertica recommends that you use LAST VALUE Wwith the window order clause to
produce deterministic results.
Note: Due to default window semantics, LAST VALUE does not always return the last value of
a partition. If the window_frame_clause is omitted from the analytic clause, LAST VALUE
operates on this default window. Results, therefore, can seem non-intuitive because the

function does not return the bottom of the current partition. It returns the bottom of the window,
which continues to change along with the current input row being processed. If you want to

return the last value of a partition, use UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING.

e Ifthe last value in the set is null, then the function returns NULL unless you specify TGNORE
NULLS. If you specify IGNORE NULLS, LAST VALUE returns the fist non-null value in the set,
or NULL if all values are null.

e For examples, see FIRST VALUE () (page 146).

-152-

SQL Functions

See Also

FIRST VALUE (page 146)

TIME_SLICE (page 225)

Using SQL for Analytics in the Programmer's Guide

LEAD [Analytic]

Returns the value of the input expression at the given offset after the current row within a window.
Behavior Type

Immutable

Syntax

LEAD (expression [, offset 1 [, default]) OVER (
[window partition clause (page 130)]
window_order clause (page 131))

Parameters

expression Is the expression to evaluate; for example, a constant, column,
nonanalytic function, function expression, or expressions
inwlving any of these.

offset Is an optional parameter that defaults to 1 (the next row). The
offset parameter must be (or can be evaluated to) a constant
positive integer.

default Is NULL. This optional parameter is the value returned if offset
falls outside the bounds of the table or partition.
Note: The third input argument must be a constant value or an
expression that can be evaluated to a constant; its data type is
coercible to that of the first argument.

OVER(. . .) See Analytic Functions. (page 128)

Notes

e The analytic window order clause is required butthe window partition clause is
optional.

e The LEAD () function returns values from the row after the current row, letting you access
more than one row in a table at the same time. This is useful for comparing values when the
relative positions of rows can be reliably known. It also lets you avoid the more costly self join,
which enhances query processing speed.

e Analytic functions, such as LEAD (), cannot be nested within aggregate functions.

Examples

In this example, the LEAD () function finds the hire date of the employee hired just after the current
row:

-153-

SQL Reference Manual

=> SELECT employee region, hire date, employee key, employee last name,

LEAD (hire date, 1)

OVER (PARTITION BY employee region ORDER BY hire date) AS "next hired"

FROM employee dimension ORDER BY employee region, hire date, employee key;

employee region

East
East
East
East
East
Fast
Fast
Fast
Fast

| hire date

__________________ +_________
| Harris | 1957-02-06
| Stein | 1957-05-25
| Farmer | 1957-06-26
| Bauer | 1957-08-18
| Jefferson | 1957-08-24
| Wilson | 1958-02-17
| McCabe | 1958-06-26
| Li | 1958-07-16
| Harris | 1958-09-18
| Sanchez [1958-11-10

e it fomm - Fomm +-=
| 1956-04-08 | 9218
| 1957-02-06 | 7799
| 1957-05-25 | 3687
| 1957-06-26 | 9474
| 1957-08-18 | 570
| 1957-08-24 | 4363
| 1958-02-17 | 6457
| 1958-06-26 | 6196
| 1958-07-16 | 7749
| 1958-09-18 | 9678

Fast
(10 rows)

| employee key | employee last name | next hired

The next example uses both LEAD () and LAG () to return the third row after the salary in the
current row and fifth salary before the salary in the current row.

=>

SELECT hire date,

employee key,

employee last name,

LEAD(hire_dgte, 1) OVER (ORDER BY hire date) AS "next hired" ,

LAG (hire date,

hire date

1956-04-11
1956-05-12
1956-09-18
1957-01-15
1957-02-06
1957-05-25
1957-07-04
1957-07-07
1957-11-11
1957-11-21
(10 rows)

The following example returns employee name and salary, along with the next highest and lowest

salaries.

=> SELECT employee last name,
NVL (LEAD (annual salary)

1) OVER

employee key
2694
5486
5525
560
9781
9506
6723
5827
373
3874

MIN (annual salary)

NVL (LAG (annual_ salary)

MAX (annual salary)
FROM employee dimension;

employee last name |

Nielson
Lewis
Harris
Robinson

(ORDER BY hire date)
FROM employee dimension ORDER BY hire date,

AS "last hired"

emp

employee last name |

Farmer
Winkler
McCabe
Greenwood
Bauer
Webber
Kramer
Garnett
Reyes
Martin

OVER
OVER ())

OVER ())

annual salary |

annual salary,
(ORDER BY annual salary),
"Next Highest",

OVER (ORDER BY annual salary),
"Next Lowest"

Next Highest

loyee key;
next hired

1956-05-12
1956-09-18
1957-01-15
1957-02-06
1957-05-25
1957-07-04
1957-07-07
1957-11-11
1957-11-21
1958-02-06

last hired

1956-04-11
1956-05-12
1956-09-18
1957-01-15
1957-02-06
1957-05-25
1957-07-04
1957-07-07
1957-11-11

| Next Lowest

———————————————————— ittt e
\ 1200 1200 995533
\ 1200 | 1200 | 1200
\ 1200 | 1202 | 1200
\ 1202 | 1202 | 1200

-154-

SQL Functions

Garnett \ 1202 | 1202 | 1202
Weaver \ 1202 | 1202 | 1202
Nielson \ 1202 | 1202 | 1202
McNulty \ 1202 | 1204 | 1202
Farmer \ 1204 | 1204 | 1202
Martin \ 1204 | 1204 | 1204
(10 rows)

The next example returns, for each assistant director in the employees table, the hire date of the
director hired just after the director on the current row. For example, Jackson was hired on
2007-12-28, and the next director hired was Bauer:

=> SELECT employee last name, hire date,
LEAD (hire date, 1) OVER (ORDER BY hire date DESC) as "NextHired"

FROM employee dimension WHERE job title = 'Assistant Director';
employee last name | hire date | NextHired
_________ g
Jackson | 2007-12-28 | 2007-12-26
Bauer | 2007-12-26 | 2007-12-11
Miller | 2007-12-11 | 2007-12-07
Fortin | 2007-12-07 | 2007-11-27
Harris | 2007-11-27 | 2007-11-15
Goldberg | 2007-11-15 |

(5 rows)
See Also

LAG (page 149)
Using SQL for Analytics in the Programmer's Guide
MAX [Analytic]

Returns the maximum value of an expression within a window. The return value is the same as the
expression data type.

Behavior Type

Immutable
Syntax
MAX [DISTINCT] expression) OVER (

window_order clause (page 131)]

(
[window partition clause (page 130)]
[
[window_frame clause (page 133)])

Parameters

DISTINCT Is meaningless in this context.

expression Can be any expression for which the maximum value is
calculated, typically a column reference (see "Column
References" on page 46).

OVER(...) See Analytic Functions. (page 128)

-155-

SQL Reference Manual

Example

The following query computes the deviation between the employees' annual salary and the
maximum annual salary in Massachusetts:

=> SELECT employee state, annual salary,
MAX (annual salary)
OVER (PARTITION BY employee state ORDER BY employee key) max,
annual salary- MAX (annual salary)
OVER (PARTITION BY employee state ORDER BY employee key) diff
FROM employee dimension

WHERE employee state = 'MA';
employee state | annual salary | max | diff
_________ t______+_______t_______+________+_________
MA \ 1918 | 995533 | -993615
MA \ 2058 | 995533 | -993475
MA \ 2586 | 995533 | -992947
MA \ 2500 | 995533 | -993033
MA \ 1318 | 995533 | -994215
MA \ 2072 | 995533 | -993461
MA \ 2656 | 995533 | -992877
MA \ 2148 | 995533 | -993385
MA \ 2366 | 995533 | -993167
MA \ 2664 | 995533 | -992869
(10 rows)
See Also

MAX (page 116) aggregate function
MIN (page 158) analytic function
Using SQL Analytics in the Programmer's Guide

MEDIAN [Analytic]

Returns the middle value of an expression in a result set within a window. A median value has the
same number of records below it as above it. If there are an even number of elements, MEDIAN ()
returns the average of the two.

MEDIAN () is an alias for 50% PERCENTILE ():

PERCENTILE CONT (0.5) WITHIN GROUP (ORDER BY expression)

Behavior Type
Immutable

Syntax

MEDIAN (expression) OVER ([window partition_clause (page 130)])

-156-

SQL Functions

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric data
type that can be implicitly converted to a numeric data type.
The function returns the middle value or an interpolated value
that would be the middle value once the values are sorted.
Null values are ignored in the calculation.

OVER (.. .) See Analytic Functions. (page 128)

Notes

e For eachrow, MEDIAN() returns the value that would fall in the middle of a value set within
each patrtition.

e \ertica determines the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that data type, and returns that data type.

e MEDIAN () does notallow the window order clause Or window frame clause.

Examples

The following query computes the median annual income for first 500 customers in Wisconsin and
in the District of Columbia. Note that median is reported for every row in the result set:

=> SELECT customer_ state, annual_income,
MEDIAN (annual income) OVER (PARTITION BY customer state) AS MEDIAN
FROM customer dimension
WHERE customer state IN ('DC','WI'")
ORDER BY customer state;

customer state | customer key | annual income | MEDIAN
_________ t______.l__________t____+_______j________l___________
DC \ 120 | 299768 | 535413
DC \ 113 | 535413 | 535413
DC \ 130 | 848360 | 535413
WI | 372 | 34962 | 668147
WI \ 437 | 47128 | 668147
WI \ 435 | 67770 | 668147
WI \ 282 | 638054 | 668147
WI \ 314 | 668147 | 668147
WI \ 128 | 675608 | 668147
WI | 179 | 825304 | 668147
WI \ 302 | 827618 | 668147
WI | 29 | 922760 | 668147
(12 rows)

See Also

PERCENTILE_CONT (page 162)
Using SQL Analytics in the Programmer's Guide

-157-

SQL Reference Manual

MIN [Analytic]
Returns the minimum value of an expression within a window. The return value is the same as the
expression data type.

Behavior Type

Immutable
Syntax
MIN [DISTINCT] expression) OVER (

window_order clause (page 131)]

(
[window partition clause (page 130)]
[
[window_frame clause (page 133)])

Parameters

DISTINCT Is meaningless in this context.

expression Can be any expression for which the minimum value is
calculated, typically a column reference (see "Column
References" on page 46).

OVER(...) See Analytic Functions. (page 128)

Examples

The following query computes the deviation between the employees' annual salary and the
minimum annual salary in Massachusetts:

=> SELECT employee state, annual salary,
MIN (annual salary)
OVER (PARTITION BY employee state ORDER BY employee key) min,
annual salary- MIN(annual salary)
OVER (PARTITION BY employee state ORDER BY employee key) diff
FROM employee dimension

WHERE employee state = 'MA';

employee state | annual salary | min | diff
———————————————— i e
MA \ 1918 | 1204 | 714
MA \ 2058 | 1204 | 854
MA \ 2586 | 1204 | 1382
MA \ 2500 | 1204 | 1296
MA \ 1318 | 1204 | 114
MA \ 2072 | 1204 | 868
MA \ 2656 | 1204 | 1452
MA \ 2148 | 1204 | 944
MA \ 2366 | 1204 | 1162
MA \ 2664 | 1204 | 1460
(10 rows)

-158-

SQL Functions

See Also
MIN (page 117) aggregate function

MAX (page 155) analytic function
Using SQL Analytics in the Programmer's Guide

NTILE [Analytic]

Divides an ordered data set (partition) into buckets within a window, with the buckets numbered 1
through constant-value. For example, if constant-value = 4, then each row in the partition is
assigned a number from 1 to 4. If the partition contains 20 rows, the first 5 would be assigned 1,
the next 5 would be assigned 2, and so on.

Behavior Type

Immutable

Syntax

NTILE (constant-value) OVER (
[window partition clause (page 130)]
window_order clause (page 131))

Parameters

constant-value Represents the number of buckets and must resolve to a
positive constant for each partition.

OVER(. . .) See Analytic Functions. (page 128)

Notes

e The analytic window order clause is required but the window partition clause is
optional.

e If the number of buckets is greater than the number of rows, then a number of buckets equal to
the number of rows is filled, and the remaining buckets are empty.

¢ Inthe event the cardinality of the partition is not evenly divisible by the number of buckets, the
rows are distributed so no bucket has more than 1 row more then any other bucket, and the
lowest buckets are the ones that have extra rows. For example, using constant-value = 4 again
and the number of rows = 21, bucket = 1 has 6 rows, bucket = 2 has 5, and so on.

e Analytic functions, such as NTILE (), cannot be nested within aggregate functions.
Examples

The following query assigns each month's sales total into one of four buckets:

=> SELECT calendar month name AS MONTH, SUM(sales quantity),
NTILE (4) OVER (ORDER BY SUM(sales quantity)) AS NTILE
FROM store.store sales fact JOIN date dimension
USING (date_ key)

-159-

SQL Reference Manual

GROUP BY calendar month name
ORDER BY NTILE;

MONTH | SUM | NTILE
___________ +______+_______
February | 755 | 1
June \ 842 | 1
September | 849 | 1
January \ 881 | 2
May \ 882 | 2
July \ 894 | 2
August \ 921 | 3
April \ 952 | 3
March \ 987 | 3
October | 1010 | 4
November | 1026 | 4
December | 1094 | 4
(12 rows)
See Also

PERCENTILE_CONT (page 162)
WIDTH_BUCKET (page 298)
Using SQL Analytics in the Programmer's Guide

PERCENT_RANK [Analytic]

Calculates the relative rank of a row for a given row in a group within a window by dividing that
row’s rank less 1 by the number of rows in the partition, also less 1. This function always returns
values from O to 1 inclusive. The first row in any set has a PERCENT RANK () of 0. The return
value is NUMBER.

(rank = 1) / ([rows] - 1)

In the above formula, rank is the rank position of a row in the group and rows is the total number
of rows in the partition defined by the OVER () clause.

Behavior Type
Immutable

Syntax

PERCENT RANK () OVER (
[window _partition clause (page 130)]
window_order clause (page 131))

Parameters

OVER(...) See Analytic Functions. (page 128)

-160-

SQL Functions

Notes

The window order clause is required but the window partition clause IS
optional.

Examples

The following example finds the percent rank of gross profit for different states within each month
of the first quarter:

=> SELECT calendar month name AS MONTH, store state ,
SUM (gross_profit dollar amount),
PERCENT RANK () OVER (PARTITION BY calendar month name
ORDER BY SUM(gross profit dollar amount)) AS PERCENT_ RANK
FROM store.store sales fact JOIN date dimension
USING (date_ key)
JOIN store.store dimension
USING (store_ key)
WHERE calendar month name IN ('January', 'February', '"March')
AND store state IN ('OR','IA','DC',6 'NV',6 'WI")
GROUP BY calendar month name, store state
ORDER BY calendar month name, PERCENT RANK;

MONTH | store state | SUM \ PERCENT RANK
—————————— B it e ittt
February | OR | 16 | 0
February | IA \ 47 | 0.25
February | DC \ 94 | 0.5
February | NV [113 | 0.75
February | WI | 119 | 1
January | IA | =263 | 0
January | OR \ 91 | 0.333333333333333
January | NV | 372 | 0.666666666666667
January | DC \ 497 | 1
March | NV | =141 | 0
March | OR | 224 | 1

(11 rows)

The following example calculates, for each employee, the percent rank of the employee's salary
by their job title:

=> SELECT job_title, employee last name, annual salary,
PERCENT_ RANK ()
OVER (PARTITION BY job title ORDER BY annual salary DESC) AS percent rank
FROM employee dimension
ORDER BY percent rank, annual salary;

job title | employee last name | annual salary | PERCENT RANK
———————————————————— e
CEO | Campbell \ 963914 | 0
Co-Founder | Nguyen \ 968625 | 0
Founder | Overstreet | 995533 | 0
Greeter | Peterson \ 3192 | 0.00113895216400911
Greeter | Greenwood \ 3192 | 0.00113895216400911

SQL Reference Manual

Customer Service | Peterson \ 3190 | 0.00121065375302663
Delivery Person | Rodriguez \ 3192 | 0.00121065375302663
Shelf Stocker | Martin \ 3194 | 0.00125786163522013
Shelf Stocker | Vu \ 3194 | 0.00125786163522013
Marketing | Li \ 99711 | 0.00190114068441065
Assistant Director | Sanchez | 99913 | 0.00190839694656489
Branch Manager | Perkins \ 99901 | 0.00192307692307692
Advertising | Lampert \ 99809 | 0.00204918032786885
Sales | Miller \ 99727 | 0.00211416490486258
Shift Manager | King \ 99904 | 0.00215982721382289
Custodian | Bauer | 3196 | 0.00235849056603774
Custodian | Goldberg \ 3196 | 0.00235849056603774
Customer Service | Fortin \ 3184 | 0.00242130750605327
Delivery Person | Greenwood | 3186 | 0.00242130750605327
Cashier | Overstreet \ 3178 | 0.00243605359317905
Regional Manager | McCabe \ 199688 | 0.00306748466257669
VP of Sales | Li \ 199309 | 0.00313479623824451
Director of HR | Goldberg | 199592 | 0.00316455696202532
Head of Marketing | Stein \ 199941 | 0.00317460317460317
VP of Advertising | Goldberg \ 199036 | 0.003236245954692506
Head of PR | Stein \ 199767 | 0.003236245954692506
Customer Service | Rodriguez \ 3180 | 0.0036319612590799
Delivery Person | King \ 3184 | 0.0036319612590799
Cashier | Dobisz | 3174 | 0.00365408038976857
Cashier | Miller \ 3174 | 0.00365408038976857
Marketing | Dobisz \ 99655 | 0.00380228136882129
Branch Manager | Gauthier | 99082 | 0.025
Branch Manager | Moore \ 98415 | 0.05

See Also

CUME_DIST (page 140)
Using SQL Analytics in the Programmer's Guide

PERCENTILE_CONT [Analytic]

An inverse distribution function where, for each row, PERCENTILE CONT () returns the value that
would fall into the specified percentile among a set of values in each partition within a window. For
example, if the argument to the function is 0.5, the result of the function is the median of the data
set (the 50th percentile). PERCENTILE CONT () assumes acontinuous distribution data model.
Nulls are ignored.

Behavior Type
Immutable

Syntax

PERCENTILE CONT (% number) WITHIN GROUP (
ORDER BY expression [ASC | DESC]) OVER (

[window partition clause (page 130)])

-162-

SQL Functions

Parameters

§_number Is the percentile value, which must be a FLOAT constant ranging
from 0 to 1 (inclusive).

WITHIN GROUP (ORDER BY Specifies how the data is sorted within each group. ORDER BY takes

expression) only one column/expression that must be INTEGER, FLOAT
INTERVAL, Oof NUMERIC data type. Nulls are discarded.
Note: The WITHIN GROUP (ORDER BY) clause does not guarantee
the order of the SQL result. Use the SQL ORDER BY clause (page
757) to guarantee the ordering of the final result set.

ASC | DESC Specifies the ordering sequence as ascending (default) or
descending.

OVER(...) See Analytic Functions. (page 128)

Notes

e \ertica computes the percentile by first computing the row number where the percentile row
would exist; for example:
ROW NUMBER = 1 + PERCENTILE VALUE * (NUMBER OF ROWS IN PARTITION -1)

If the CEILING (ROW_NUMBER) = FLOOR (ROW_NUMBER), then the percentile is the value at
the ROW_NUMBER. Otherwise there was an even number of rows, and Vertica interpolates the
value between the rows. In this case, the percentile CEILING VAL = get the value at the
CEILING(ROW NUMBER). FLOOR VAL = get the value at the FLOOR (ROW_NUMBER) would
be (CEILING (ROW NUMBER) - ROW NUMBER) * CEILING VAL + (ROW NUMBER -
FLOOR (ROW_NUMBER) * FLOOR+VAL.

If CEIL (num) = FLOOR (num) = num, then retrieve the value in that row. Otherwise compute
values at [CEIL (num) + FLOOR (num)] / 2

e Specifying ASC or DESC inthe WITHIN GROUP clause affects results as long as the percentile
parameter is not .5.

e The MEDIAN () function is a specific case of PERCENTILE CONT () where the percentile
value defaults to 0.5. For more information, see MEDIAN () (page 156).

Examples

This query computes the median annual income per group for the first 500 customers in Wisconsin
and the District of Columbia.

=> SELECT customer state, customer key, annual income,
PERCENTILE_CONT(.5) WITHIN GROUP (ORDER BY annual_income)
OVER (PARTITION BY Customer_state) AS PERCENTILE CONT
FROM customer dimension
WHERE customer state IN ('DC','WI'")
AND customer key < 300
ORDER BY customer state, customer key;

customer state | customer key | annual income | PERCENTILE CONT

———————————————— e i
DC | 104 | 658383 | 658383

-163-

SQL Reference Manual

DC | 168 | 417092 | 658383
DC \ 245 | 670205 | 658383
WI \ 106 | 227279 | 458607
WI | 127 | 703889 | 458607
WI \ 209 | 458607 | 458607
(6 rows)

The median value for DC is 65838, and the median value for W1 is 458607. Note that with a
%_number of . 5 in the above query, PERCENTILE CONT () returns the same result as
MEDIAN () in the following query:

=> SELECT customer state, customer key, annual income,
MEDIAN (annual income)
OVER (PARTITION BY customer_state) AS MEDIAN
FROM customer dimension
WHERE customer state IN ('DC','WI'")
AND customer key < 300
ORDER BY customer state, customer key;

customer state | customer key | annual income | MEDIAN

_________ t______+_________t____+_______j_______+________
DC \ 104 | 658383 | 658383

DC | 168 | 417092 | 658383

DC \ 245 | 670205 | 658383

WI | 106 | 227279 | 458607

WI \ 127 | 703889 | 458607

WI \ 209 | 458607 | 458607

(6 rows)

See Also

MEDIAN (page 156)
Using SQL Analytics in the Programmer's Guide

PERCENTILE_DISC [Analytic]

An inverse distribution function where, for each row, PERCENTILE DISC() returns the value that
would fall into the specified percentile among a set of values in each partition within a window.
PERCENTILE DISC () assumes a discrete distribution data model. Nulls are ignored.

Behavior Type
Immutable

Syntax

PERCENTILE DISC (% number) WITHIN GROUP (

ORDER BY expression [ASC | DESC]) OVER (
[window partition clause (page 130)])

Parameters

8_number Is the percentile value, which must be a FLOAT constant ranging
from 0 to 1 (inclusive).

-164-

SQL Functions

WITHIN GROUP (ORDER BY Specifies how the data is sorted within each group. ORDER BY
expression) takes only one column/expression that must be INTEGER,

FLOAT, INTERVAL, or NUMERIC data type. Nulls are discarded.

Note: The WITHIN GROUP (ORDER BY) clause does not
guarantee the order of the SQL result. Use the SQL ORDER BY
clause (page 757) to guarantee the ordering of the final result set.

ASC | DESC Specifies the ordering sequence as ascending (default) or
descending.

OVER(...) See Analytic Functions. (page 128)

Notes

PERCENTILE DISC (% number) examines the cumulative distribution values in each group

until it finds one that is greater than or equal to %_number.

Vertica computes the percentile where, for each row, PERCENTILE DISC outputs the first

value of the WITHIN GROUP (ORDER BY) columnwhose CUME DIST (cumulative distribution)

value is >= the argument FLOAT value (for example, .4). Specifically:

PERCENTILE DIST(.4) WITHIN GROUP (ORDER BY salary) OVER(PARTITION By
deptno)

If you write, for example, SELECT CUME DIST() OVER (ORDER BY salary) FROM table;

you notice that the smallest CUME_DIST value that is greater than .4 is also the
PERCENTILE DISC.

Examples

This query computes the 20th percentile annual income by group for first 500 customers in
Wisconsin and the District of Columbia.

=> SELECT customer state, customer key, annual income,

PERCENTILE DISC(.2) WITHIN GROUP (ORDER BY annual income)
OVER (PARTITION BY customer state) AS PERCENTILE DISC
FROM customer dimension
WHERE customer state IN ('DC','WI'")
AND customer key < 300
ORDER BY customer state, customer key;

\ | |

———————————————— BT B e e T
DC \ 104 | 658383 | 417092

DC \ 168 | 417092 | 417092

DC | 245 | 670205 | 417092

WI | 106 | 227279 | 227279

WI | 127 | 703889 | 227279

WI | 209 | 458607 | 227279

(6 rows)

See Also

CUME_DIST (page 140)
PERCENTILE_CONT (page 162)

-165-

SQL Reference Manual

Using SQL Analytics in the Programmer's Guide

RANK [Analytic]

Assigns a rank to each row returned from a query with respect to the other rows, based on the
values of the expressions in the window ORDER BY clause. The data within a group is sorted by the
ORDER BY clause and then a numeric ranking is assigned to each row in turn, starting with 1, and
continuing up. Rows with the same values of the ORDER BY expressions receive the same rank;
however, if two rows receive the same rank (atie), RANK () skips the ties. If, for example, two rows
are numbered 1, RANK () skips number 2 and assigns 3 to the next row in the group. This is in
contrast to DENSE RANK () (page 142), which does not skip values.

Behavior Type
Immutable

Syntax

RANK () OVER (
[window partition clause (page 130)]
. window_order clause (page 131))

Parameters

OVER(...) See Analytic Functions. (page 128)

Notes

e Ranking functions return a rank value for each row in a result set based on the order specified
in the query. For example, a territory sales manager might want to identify the top or bottom
ranking sales associates in a department or the highest/lowest-performing sales offices by
region.

e RANK () requires an OVER() clause. The window partition clause is optional.

e Inranking functions, OVER () specifies the measures expression on which ranking is done and
defines the order in which rows are sorted in each group (or partition). Once the data is sorted
within each partition, ranks are given to each row starting from 1.

e The primary difference between RANK and DENSE_ RANK is that RANK leaves gaps when
ranking records; DENSE RANK leaves no gaps. For example, if more than one record occupies
a particular position (a tie), RANK places all those records in that position and it places the
next record after a gap of the additional records (it skips one). DENSE RANK places all the
records in that position only—it does not leave a gap for the next rank.

If there is a tie at the third position with two records having the same value, RANK and
DENSE_ RANK place both the records in the third position only, but RANK has the next record at
the fifth position — leaving a gap of 1 position—while DENSE RANK places the next record at
the forth position (no gap). B

-166-

SQL Functions

e If you omit NULLS FIRST | LAST | AUTO, the ordering of the null values depends on the ASC
or DESC arguments. Null values are considered larger than any other values. If the ordering
sequence is ASC, then nulls appear last; nulls appear first otherwise. Nulls are considered
equal to other nulls and, therefore, the order in which nulls are presented is non-deterministic.

Examples

This example ranks the longest-standing customers in Massachusetts. The query first computes
the customer since column by region, and then partitions the results by customers with
businesses in MA. Then within each region, the query ranks customers over the age of 70.

=> SELECT customer_ type, customer name,
RANK () OVER (PARTITION BY customer region ORDER BY customer since) as rank
FROM customer dimension
WHERE customer state = 'MA'
AND customer age > '70';

customer type | customer name | rank
_________ t_____+_________t_____+______
Company | Virtadata | 1
Company | Evergen \ 2
Company | Infocore \ 3
Company | Goldtech \ 4
Company | Veritech \ 5
Company | Inishop \ 6
Company | Intracom \ 7
Company | Virtacom \ 8
Company | Goldcom \ 9
Company | Infostar \ 10
Company | Golddata | 11
Company | Everdata \ 12
Company | Goldcorp \ 13
(13 rows)

The following example shows the difference between RANK and DENSE RANK when ranking

customers by their annual income. Notice that RANK has a tie at 10 and skips 11, while
DENSE RANK leaves no gaps in the ranking sequence:

=> SELECT customer name, SUM(annual income),
RANK () OVER (ORDER BY TO CHAR(SUM(annual income), '100000') DESC) rank,
DENSE RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC)
dense_ rank
FROM customer dimension
GROUP BY customer name
LIMIT 15;

customer name | sum | rank | dense rank
————————————————————— e
Brian M. Garnett | 99838 | 1 | 1
Tanya A. Brown | 99834 | 2 | 2
Tiffany P. Farmer | 99826 | 3 | 3
Jose V. Sanchez | 99673 | 4 | 4
Marcus D. Rodriguez | 99631 | 5 | 5
Alexander T. Nguyen | 99604 | 6 | 6
Sarah G. Lewis | 99556 | 7 7
Ruth Q. Vu | 99542 | 8 | 8

SQL Reference Manual

Theodore T. Farmer | 99532 | 9 | 9
Daniel P. Li | 99497 | 10 | 10
Seth E. Brown | 99497 | 10 | 10
Matt X. Gauthier | 99402 | 12 | 11
Rebecca W. Lewis | 99296 | 13 | 12
Dean L. Wilson | 99276 | 14 | 13
Tiffany A. Smith | 99257 | 15 | 14
(15 rows)
See Also

DENSE_RANK (page 142)
Using SQL Analytics in the Programmer's Guide

ROW_NUMBER [Analytic]

Assigns a unigue number, sequentially, starting from 1, to each row in a partition within a window.
Behavior Type

Immutable

Syntax

ROW _NUMBER () OVER (
[window partition clause (page 130)]
window_order clause (page 131))

Parameters

OVER(...) See Analytic Functions. (page 128)

Notes

e ROW _NUMBER () is aVertica extension, not part of the SQL-99 standard. It requires an OVER()
clause. The window partition clause is optional.

e You can use the optional partition clause to group data into partitions before operating on it; for
example:
SUM OVER (PARTITION BY coll, col2, ...)

e You can substitute any RANK () example for ROW NUMBER () . The difference is that
ROW_ NUMBER assigns a unique ordinal number, starting with 1, to each row in the ordered set.

Examples

The following query first partitions customers in the customer_dimension table by occupation and
then ranks those customers based on the ordered set specified by the analytic partition_clause.

=> SELECT occupation, customer key, customer since, annual income,
ROW NUMBER () OVER (PARTITION BY occupation) AS customer since row num
FROM public.customer dimension
ORDER BY occupation, customer since row_num;

occupation | customer key | customer since | annual income | customer since row num

-168-

SQL Functions

e e e
Accountant | 19453 | 1973-11-06 | 602460 |
Accountant 42989 1967-07-09 850814 |
Accountant 24587 1995-05-18 180295 |
Accountant 26421 2001-10-08 126490 |
Accountant 37783 1993-03-16 790282 |
Accountant 39170 1980-12-21 823917 |
Banker 13882 1998-04-10 15134 |
Banker 14054 1989-03-16 961850 |
Banker 15850 1996-01-19 262267 |
Banker 29611 2004-07-14 739016 |
Doctor 261 1969-05-11 933692 |
Doctor 1264 1981-07-19 593656 |
Psychologist 5189 1999-05-04 397431 |
Psychologist 5729 1965-03-26 339319 |
Software Developer 2513 1996-09-22 920003 |
Software Developer 5927 2001-03-12 633294 |
Software Developer 9125 1971-10-06 198953 |
Software Developer 16097 1968-09-02 748371 |

\

DA WNRPRPODWONRPERFRPOOVWOIOOD™WNENRERENREREDWONREREyOSWN -

| I |
| I |
| \ |
| | |
| I |
| | |
| I |
I	
\	
I	
Software Developer	23137
I	
I	
I	
\	
I	
I	
I	
I	
I	

Software Developer 24495 1989-04-16 149371 |

Software Developer 24548 1994-09-21 743788 |

Software Developer 33744 2005-12-07 735003 |

Software Developer 9684 1970-05-20 246000 |

Software Developer 24278 2001-11-14 122882 | 1
Software Developer 27122 1994-02-05 810044 | 1
Stock Broker 5950 1965-01-20 752120 |

Stock Broker 12517 2003-06-13 380102 |

Stock Broker 33010 1984-05-07 384463 |

Stock Broker 46196 1972-11-28 497049 |

Stock Broker 8710 2005-02-11 79387 |

Writer 3149 1998-11-17 643972 |

Writer 17124 1965-01-18 444747 |

Writer 20100 1994-08-13 106097 |

Writer 23317 2003-05-27 511750 |

Writer 42845 1967-10-23 433483 |

Writer 47560 1997-04-23 515647 |

(39 rows)
See Also

RANK (page 166)
Using SQL for Analytics in the Programmer's Guide

STDDEV [Analytic]

Note: The non-standard function STDDEV () is provided for compatibility with other databases.
It is semantically identical to STDDEV_SAMP () (page 171).

Computes the statistical sample standard deviation of the current row with respect to the group
withinawindow. The STDDEV_SAMP () return value is the same as the square root of the variance
defined for the VAR SAMP () function:

STDDEV (expression) = SQRT (VAR SAMP (expression))
When VAR SAMP () returns null, this function returns null.

Behavior Type
Immutable

Syntax

STDDEV (expression) OVER (

-169-

SQL Reference Manual

[window partition clause (page 130)]
[window_order clause (page 131)]
[window_frame clause (page 133)])

Parameters

expression Any NUMERIC data type (page 95) or any non-numetric data
type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument.

OVER(. . .) See Analytic Functions. (page 128)

Example

The following example returns the standard deviations of salaries in the employee dimension table
by job title Assistant Director:

=> SELECT employee last name, annual salary,
STDDEV (annual salary) OVER (ORDER BY hire date) as "stddev"
FROM employee dimension

WHERE job title = 'Assistant Director';
employee last name | annual salary | stddev
_________ e
Goldberg \ 61859 | NaN
Miller \ 79582 | 12532.0534829692
Goldberg \ 74236 | 9090.97147357388
Campbell \ 66426 | 7909.9541665339
Moore | 66630 | 7068.30282316761
Nguyen \ 53530 | 9154.14713486005
Harris \ 74115 | 8773.54346886142
Lang \ 59981 | 8609.60471031374
Farmer \ 60597 | 8335.41158418579
Nguyen \ 78941 | 8812.87941405456
Smith \ 55018 | 9179.7672390773
See Also

STDDEV (page 122) and STDDEV_SAMP (page 123) aggregate functions
STDDEV_SAMP (page 171) analytic function
Using SQL Analytics in the Programmer's Guide

STDDEV_POP [Analytic]

Computes the statistical population standard deviation and returns the square root of the
population variance within a window. The STDDEV_POP () return value is the same as the square
root of the VAR POP () function:

STDDEV_POP (expression) = SQRT (VAR POP (expression))
When VAR POP returns null, this function returns null.

-170-

SQL Functions

Behavior Type
Immutable

Syntax

STDDEV_POP (expression) OVER (
[window partition clause (page 130)]
[window_order clause (page 131)]
[window_frame clause (page 133)])

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric
data type that can be implicitly converted to a numeric
data type. The function returns the same data type as
the numeric data type of the argument.

OVER(...) See Analytic Functions. (page 128)

Examples

The following example returns the population standard deviations of salaries in the employee
dimension table by job title Assistant Director:

=> SELECT employee last name, annual salary,
STDDEV_POP (annual_ salary) OVER (ORDER BY hire date) as "stddev_pop"

FROM employee dimension WHERE job title = 'Assistant Director';
employee last name | annual salary stddev_pop
Goldberg 61859 0
Miller 79582 8861.5
Goldberg 74236 7422.74712548456

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
—_—— - ————— — 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_——— e — — — 1

Campbell 66426 6850.22125098891
Moore 66630 6322.08223926257
Nguyen 53530 8356.55480080699
Harris 74115 8122.72288970008
Lang 59981 8053.54776538731
Farmer 60597 7858.70140687825
Nguyen 78941 8360.63150784682
See Also

STDDEV_POP (page 123) aggregate functions
Using SQL Analytics in the Programmer's Guide

STDDEV_SAMP [Analytic]

Computes the statistical sample standard deviation of the current row with respect to the group
within awindow. The STDDEV_SAMP () return value is the same as the square root of the variance
defined for the VAR SAMP () function:

STDDEV (expression) = SQRT (VAR SAMP (expression))
When VAR SAMP () returns null, this function returns null.

-171-

SQL Reference Manual

Behavior Type

Immutable

Syntax

STDDEV_SAMP (expression) OVER (
[window partition clause (page 130)]
[window_order clause (page 131)]
[window_frame clause (page 133)])

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric data
type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument..

OVER(...) See Analytic Functions. (page 128)

Notes

STDDEV_SAMP () is semantically identical to the non-standard function, STDDEV () (page 122).

Examples

The following example returns the sample standard deviations of salaries in the employee
dimension table by job title Assistant Director:

=> SELECT employee last name, annual salary,
STDDEV (annual salary) OVER (ORDER BY hire date) as "stddev_samp"

FROM employee dimension WHERE job title = 'Assistant Director';

employee last name | annual salary | stddev samp
_________ S
Goldberg | 61859 | NaN
Miller \ 79582 | 12532.0534829692
Goldberg \ 74236 | 9090.97147357388
Campbell \ 66426 | 7909.9541665339
Moore \ 66630 | 7068.30282316761
Nguyen \ 53530 | 9154.14713486005
Harris \ 74115 | 8773.54346886142
Lang \ 59981 | 8609.60471031374
Farmer \ 60597 | 8335.41158418579
Nguyen \ 78941 | 8812.87941405456
See Also

Analytic Functions (page 128)

STDDEV (page 169) analytic function

STDDEV (page 122) and STDDEV_SAMP (page 123) aggregate functions
Using SQL Analytics in the Programmer's Guide

-172-

SQL Functions

SUM [Analytic]

Computes the sum of an expression over a group of rows within a window. It returns a DOUBLE
PRECISION value for a floating-point expression. Otherwise, the return value is the same as the
expression data type.

Behavior Type

Immutable

Syntax

SUM (expression) OVER (

[window partition clause (page 130)]
[window_order clause (page 131)]

(

window_frame clause (page 133)])

Parameters
expression Any NUMERIC data type (page 95) or any non-numeric data
type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument.
OVER(...) See Analytic Functions. (page 128)
Notes

e If you encounter data overflow when using SUM (), use SUM_FLOAT () (page 125) which
converts data to a floating point.

e SUM/() returns the sum of values of an expression.

Examples
The following query returns the cumulative sum all of the returns made to stores in January:

=> SELECT calendar month name AS month, transaction type, sales quantity,
SUM (sales_quantity)
OVER (PARTITION BY calendar month name ORDER BY date dimension.date key) AS
SUM
FROM store.store sales fact JOIN date dimension
USING (date_ key) WHERE calendar month name IN ('January')

AND transaction type= 'return';

month | transaction type | sales quantity | SUM
————————— e e
January | return \ 4 | 2338
January | return \ 3 | 2338
January | return | 1 | 2338
January | return | 5 | 2338
January | return | 8 | 2338
January | return \ 3 | 2338
January | return | 5 | 2338

-173-

SQL Reference Manual

January | return \ 10 | 2338
January | return \ 9 | 2338
January | return \ 10 | 2338
(10 rows)
See Also

SUM (page 124) aggregate function
Numeric Data Types (page 95)
Using SQL Analytics in the Programmer's Guide

VAR_POP [Analytic]

Returns the statistical population variance of a non-null set of numbers (nulls are ignored) in a
group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining:

(SUM (expression*expression) — SUM(expression)*SUM(expression) /
COUNT (expression)) / COUNT (expression)
Behavior Type

Immutable

Syntax

VAR POP (expression) OVER (
[window _partition_clause (page 130)]
[window_order clause (page 131)]
[window_frame clause (page 133)])

Parameters

expression Any NUMERIC data type (page 95) or any non-numetric data
type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument

OVER (.. .) See Analytic Functions. (page 128)

Examples

The following example calculates the cumulative population in the store orders fact table of sales
in December 2007:

=> SELECT date ordered,
VAR POP (SUM(total order cost))
OVER (ORDER BY date ordered) "var pop"
FROM store.store orders fact s
WHERE date ordered BETWEEN '2007-12-01' AND '2007-12-31"
GROUP BY s.date_ ordered;

date ordered | var_pop

-174-

SQL Functions

+
2007-12-01 | 0
2007-12-02 | 1129564881
2007-12-03 | 1206008121.55542
2007-12-04 | 26353624176.1875
2007-12-05 | 21315288023.4402
2007-12-06 | 21619271028.3333
2007-12-07 | 19867030477.6328
2007-12-08 | 19197735288.5
2007-12-09 | 19100157155.2097
2007-12-10 | 19369222968.0896
(10 rows)
See Also

VAR_POP (page 126) aggregate function
Using SQL Analytics in the Programmer's Guide

VAR_SAMP [Analytic]

Returns the sample variance of a non-null set of numbers (nulls in the set are ignored) for each
row of the group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining minus 1:

(SUM (expression*expression) - SUM(expression) *SUM(expression) /
COUNT (expression)) / (COUNT (expression) - 1)

Behavior Type
Immutable

Syntax

VAR SAMP (expression) OVER (
[window _partition_clause (page 130)]
[window_order clause (page 131)]
[window_frame clause (page 133)])

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric data
type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument

OVER (.. .) See Analytic Functions. (page 128)

Notes

e VAR SAMP () returns the sample variance of a set of numbers after it discards the nulls in the
set.

e If the function is applied to an empty set, then it returns null.

e This function is similar to VARIANCE (), except that given an input set of one element,
VARIANCE () returns O and VAR SAMP () returns null.

-175-

SQL Reference Manual

Examples

The following example calculates the sample variance in the store orders fact table of sales in

December 2007:

=> SELECT date ordered,
VAR SAMP (SUM(total order cost))

OVER (ORDER BY date ordered) "var_ samp"
FROM store.store orders fact s
WHERE date ordered BETWEEN '2007-12-01' AND '2007-12-31"
GROUP BY s.date ordered;
date ordered | var_ samp
______________ +__________________
2007-12-01 | NaN
2007-12-02 | 2259129762
2007-12-03 | 1809012182.33301
2007-12-04 | 35138165568.25
2007-12-05 | 26644110029.3003
2007-12-06 | 25943125234
2007-12-07 | 23178202223.9048
2007-12-08 | 21940268901.1431
2007-12-09 | 21487676799.6108
2007-12-10 | 21521358853.4331
(10 rows)
See Also

VARIANCE (page 176) analytic function
VAR_SAMP (page 127) aggregate function
Using SQL Analytics in the Programmer's Guide

VARIANCE [Analytic]

Note: The non-standard function VARIANCE () is provided for compatibility with other
databases. It is semantically identical to VAR _SAMP () (page 175).

Returns the sample variance of a non-null set of numbers (nulls in the set are ignored) for each
row of the group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining minus 1:

(SUM (expression*expression)
COUNT (expression)) /

- SUM (expression) *SUM (expression) /
(COUNT (expression) - 1)

Behavior Type
Immutable
Syntax

VAR SAMP (expression) OVER (
[window partition clause (page 130)]
[window_order clause (page 131)]
[window_frame clause (page 133)])

-176-

SQL Functions

Parameters

expression Any NUMERIC data type (page 95) or any non-numeric
data type that can be implicitly converted to a numeric data
type. The function returns the same data type as the
numeric data type of the argument.

OVER(. . .) See Analytic Functions. (page 128)

Notes

e VARIANCE () returns the variance of expression.
e The variance of expression is calculated as follows:
= 0 if the number of rows in expression = 1
= VAR SAMP () if the number of rows in expression > 1

Examples

The following example calculates the cumulative variance in the store orders fact table of sales in
December 2007:

=> SELECT date ordered,
VARIANCE (SUM(total order cost))
OVER (ORDER BY date ordered) "variance"
FROM store.store orders fact s
WHERE date ordered BETWEEN '2007-12-01' AND '2007-12-31"
GROUP BY s.date ordered;

date ordered variance
2007-12-01 NaN
2259129762

\
+
|
2007-12-02 |
2007-12-03 | 1809012182.33301
2007-12-04 | 35138165568.25
2007-12-05 | 26644110029.3003
2007-12-06 | 25943125234
2007-12-07 | 23178202223.9048
2007-12-08 | 21940268901.1431
2007-12-09 | 21487676799.6108
2007-12-10 | 21521358853.4331
(10 rows)
See Also

VAR_SAMP (page 175) analytic function
VARIANCE (page 127) and VAR_SAMP (page 127) aggregate functions

Using SQL Analytics in the Programmer's Guide

-177-

SQL Reference Manual

Performance Optimization for Analytic Sort Computation

Vertica stores data in projections that is sorted in a specific way. All columns are stored in ASC
(ascending) order, but the placement of nulls depends on the column's data type.

The analytic ORDER BY (window order clause) and the SQL ORDER BY clause also perform
slightly different sort operations:

e Theanalytic window order clause sorts datathat is used by the analytic function as either
ascending (Asc) or descending (DESC) and specifies where null values appear in the sorted
result as either NULLS FIRST or NULLS LAST. The following is the default sort order:

= ASC + NULLS LAST. Null values are placed at the end of the sorted result
» DESC + NULLS FIRST. Nullvalues are placed at the beginning of the sorted result

e The SQL ORDER BY clause specifies only ascending or descending order; however, the
following is the default for null placement in Vertica:
* NUMERIC, INTEGER, DATE, TIME, TIMESTAMP,and INTERVAL columns. NULLS
FIRST (null values are stored at the beginning of a sorted projection).

* FLOAT, STRING, and BOOLEAN columns. NULLS LAST (null values are stored at the end
of a sorted projection).

* No matter what the data type, if you specify NULLS AUTO, Vertica chooses the most
efficient placement of nulls (for example, either NULLS FIRST or NULLS LAST) based on
your query.

If you do not care about null placement in queries that involve analytics computation, or if you
know that columns contain no null values, specify NULLS AUTO, and Vertica chooses the
placement that gives the fastest performance. Otherwise you can specify NULLS FIRST or NULLS
LAST.

You can also carefully formulate queries so Vertica can avoid sorting the data and can process the
query more quickly, as illustrated by the following example.

Example

In the following example, Vertica sorts inputs from table t on column x, as specified in the
OVER (ORDER BY) clause. Then it evaluates RANK () :

=> CREATE TABLE t (
x FLOAT,
y FLOAT);

=> CREATE PROJECTION t p (x, y) AS SELECT * FROM t
ORDER BY x, y UNSEGMENTED ALL NODES;

=> SELECT x, RANK() OVER (ORDER BY x) FROM t;

In the above SELECT statement, Vertica can eliminate the ORDER BY clause and run the query
quickly because column x is a FLOAT data type; thus, the projection sort order matches the
analytic default ordering (ASC + NULLS LAST). Vertica can also avoid having to sort the data when
the underlying projection is already sorted.

-178-

SQL Functions

Assume, however, that column x had been defined as INTEGER. Vertica cannot avoid sorting the
data because the projection sort order for INTEGER data types (ASC + NULLS FIRST) does not
match default analytic ordering (ASC + NULLS LAST). To help Vertica eliminate the sort, specify
the placement of nulls to match default ordering:

=> SELECT x, RANK() OVER (ORDER BY x NULLS FIRST) FROM t;
If column x is defined as a STRING, the following query would eliminate the sort:
=> SELECT x, RANK() OVER (ORDER BY x NULLS LAST) FROM t;

Note that omitting NULLS LAST in the above query still eliminates the sort because ASC + NULLS

LAST is the default sort specification for both the analytic ORDER BY clause and for string-related
columns in Vertica.

Data Types and their Default Sorting

The following tables summarizes the data types supported by Vertica, as well as the default
placement of null values in projections. The Size column is shown in uncompressed bytes.

Type Size Description NULL Sorting

Binary types

BINARY 1 to 65000 | Fixed-length binary string NULLS LAST

VARBINARY 1 to 65000 | Variable-length binary string NULLS LAST

BYTEA 1 to 65000 | Variable-length binary string (synonym |NULLS LAST
for VARBINARY)

RAW 1 to 65000 | Variable-length binary string (synonym |NULLS LAST

for VARBINARY)

Boolean types

BOOLEAN 1 True or False or NULL NULLS LAST

Character types

CHAR 1 to 65000 | Fixed-length character string NULLS LAST

VARCHAR 1 to 65000 | Variable-length character string NULLS LAST

Date/time types

DATE 8 Represents a month, day, and year NULLS FIRST

DATETIME 8 Represents a date and time with or NULLS FIRST
without timezone (synonym for
TIMESTAMP)

SMALLDATETIME 8 Represents a date and time with or NULLS FIRST
without timezone (synonym for
TIMESTAMP)

TIME 8 Represents a time of day without NULLS FIRST
timezone

-179-

SQL Reference Manual

TIME WITH 8 Represents a time of day with timezone | NULLS FIRST

TIMEZONE

TIMESTAMP 8 Represents a date and time without NULLS FIRST
timezone

TIMESTAMP WITH 8 Represents a date and time with NULLS FIRST

TIMEZONE timezone

INTERVAL 8 Measures the difference between two |NULLS FIRST
points in time

Approximate numeric types

DOUBLE PRECISION |8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

FLOAT 8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

FLOAT (n) 8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

FLOATS 8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

REAL 8 Signed 64-bit IEEE floating point NULLS LAST
number, requiring 8 bytes of storage

Exact numeric types

INTEGER 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

INT 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

BIGINT 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

INT8 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

SMALLINT 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

TINYINT 8 Signed 64-bit integer, requiring 8 bytes | NULLS FIRST
of storage

DECIMAL 8+ 8 bytes for the first 18 digits of NULLS FIRST
precision, plus 8 bytes for each
additional 19 digits

NUMERIC 8+ 8 bytes for the first 18 digits of NULLS FIRST
precision, plus 8 bytes for each
additional 19 digits

NUMBER 8+ 8 bytes for the first 18 digits of NULLS FIRST

precision, plus 8 bytes for each
additional 19 digits

-180-

SQL Functions

MONEY 8+ 8 bytes for the first 18 digits of NULLS FIRST
precision, plus 8 bytes for each
additional 19 digits

See Also
Using SQL Analytics in the Programmer's Guide

Boolean Functions

BIT_AND

Takes the bitwise AND of all non-null input values. If the input parameter is NULL, the return value
is also NULL.

Behavior Type

Immutable

Syntax

BIT AND (expression)

Parameters

expression The [BINARY |VARBINARY] input value to be evaluated.
BIT AND () operates on VARBINARY types explicitly and
on BINARY types implicitly through casts (page 107).

Notes

e The function returns the same value as the argument data type.

e For each bit compared, if all bits are 1, the function returns 1; otherwise it returns 0.

e Ifthe columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex

values 'ff', null, and 'f"', the function ignores the null value and extends the value ' £
to 'fo'..

Example

This examples uses the following schema, which creates table t with a single column of
VARBINARY data type:

=> CREATE TABLE t (

c VARBINARY (2));
=> INSERT INTO t values (HEX TO BINARY ('OxFFO00'));
=> INSERT INTO t values (HEX TO BINARY ('OxFFFF'));
=> INSERT INTO t values (HEX TO BINARY ('OxFOOF'));

Query table t to see column ¢ output:

=> SELECT TO HEX(c) FROM t;
TO_HEX

-181-

SQL Reference Manual

££00
ffff
f00f
(3 rows)

Query table t to get the AND value for column c:

SELECT TO HEX (BIT_AND(c)) FROM t;
TO_HEX

The function is applied pairwise to all values in the group, resulting in £000, which is determined
as follows:

1 ££00 (record 1) is compared with £££f (record 2), which results in ££00.

2 The result from the previous comparison is compared with £00f (record 3), which results in
£000.

See Also
Binary Data Types (page 65)

BIT_OR

Takes the bitwise OR of all non-null input values. If the input parameter is NULL, the return value is
also NULL.

Behavior Type

Immutable

Syntax

BIT OR (expression)

Parameters

expression The [BINARY |VARBINARY] input value to be evaluated. BIT OR ()
operates on VARBINARY types explicitly and on BINARY types implicitly
through casts (page 107).

Notes

e The function returns the same value as the argument data type.
e For each bit compared, if any bit is 1, the function returns 1; otherwise it returns O.

e Ifthe columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex
values 'ff', null, and 'f', the function ignores the null value and extends the value 't
to "f0"'.

-182-

SQL Functions

Example

This examples uses the following schema, which creates table t with a single column of
VARBINARY data type:

=> CREATE TABLE t (

c VARBINARY (2));
=> INSERT INTO t values (HEX TO BINARY ('OxFF00'));
=> INSERT INTO t values (HEX TO BINARY ('OxFFFF'));
=> INSERT INTO t values (HEX TO BINARY ('OxFOOF'));

Query table t to see column c output:

=> SELECT TO_HEX (c) FROM t;
TO_HEX

Query table t to get the OR value for column c:

SELECT TO_HEX (BIT OR(c)) FROM t;
TO_HEX

The function is applied pairwise to all values in the group, resulting in £fff, which is determined
as follows:

1 ££00 (record 1) is compared with £££f, which results in £££¢f.

2 The ££00 result from the previous comparison is compared with £00 £ (record 3), which results
in ffff.

See Also
Binary Data Types (page 65)

BIT_XOR

Takes the bitwise XOR of all non-null input values. If the input parameter is NULL, the return value
iS also NULL.

Behavior Type

Immutable

Syntax

BIT XOR (expression)

Parameters

expression The [BINARY |VARBINARY] input value to be evaluated.
BIT XOR () operates on VARBINARY types explicitly and on

-183-

SQL Reference Manual

BINARY types implicitly through casts (page 107).

Notes

e The function returns the same value as the argument data type.

e For each bit compared, if there are an odd number of arguments with set bits, the function
returns 1; otherwise it returns 0.

e Ifthe columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex
values 'ff', null, and 'f', the function ignores the null value and extends the value ' £
to'f0".

Example

First create a sample table and projections with binary columns:

This examples uses the following schema, which creates table t with a single column of
VARBINARY data type:

=> CREATE TABLE t (

c VARBINARY (2));
=> INSERT INTO t values (HEX TO BINARY ('OxFF00'));
=> INSERT INTO t values (HEX TO BINARY ('OxFFFF'));
=> INSERT INTO t values (HEX TO BINARY ('OxFO00F'));

Query table t to see column c output:

=> SELECT TO_HEX (c) FROM t;
TO_HEX

Query table t to get the XOR value for column c:

SELECT TO_HEX (BIT XOR(c)) FROM t;
TO_HEX

See Also

Binary Data Types (page 65)

Date/Time Functions

Date and time functions perform conversion, extraction, or manipulation operations on date and
time data types and can return date and time information.

-184-

SQL Functions

Usage
Functions that take TIME or TIMESTAMP inputs come in two variants:

e TIME WITH TIME ZONE or TIMESTAMP WITH TIME ZONE
e TIME WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME ZONE

For brevity, these variants are not shown separately.

The + and * operators come in commutative pairs; for example, both DATE + INTEGER and
INTEGER + DATE.We show only one of each such pair.

Daylight Savings Time Considerations

When adding an INTERVAL value to (or subtracting an INTERVAL value from) a TIMESTAMP
WITH TIME ZONE value, the days component advances (or decrements) the date of the
TIMESTAMP WITH TIME ZONE by the indicated number of days. Across daylight saving time
changes (with the session time zone set to a time zone that recognizes DST), this means
INTERVAL '1l day' does not necessarily equal INTERVAL '24 hours'.

For example, with the session time zone set to CST7CDT:

TIMESTAMP WITH TIME ZONE '2005-04-02 12:00-07' + INTERVAL 'l day'

produces

TIMESTAMP WITH TIME ZONE '2005-04-03 12:00-06"

Adding INTERVAL '24 hours' tothe same initial TIMESTAMP WITH TIME ZONE produces

TIMESTAMP WITH TIME ZONE '2005-04-03 13:00-06',
as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

Date/Time Functions in Transactions

CURRENT TIMESTAMP () and related functions return the start time of the current transaction;
their values do not change during the transaction. The intent is to allow a single transaction to
have a consistent notion of the "current" time, so that multiple modifications within the same
transaction bear the same timestamp. However, TIMEOFDAY () returns the wall-clock time and
advances during transactions.

See Also

Template Patterns for Date/Time Formatting (page 248)

ADD_MONTHS

Takes a DATE, TIMESTAMP, or TIMESTAMPT Z argument and a number of months and returns a
date. TIMESTAMPTZ arguments are implicitly cast to TIMESTAMP.

Behavior Type

Immutable if called with DATE or TIMESTAMP but stable with TIMESTAMPTZ in that its results
can change based on TIMEZONE settings

-185-

SQL Reference Manual

Syntax

ADD MONTHS (d , n);

Parameters

d Is the incoming DATE, TIMESTAMP, or TIMESTAMP Z. If the start date
falls on the last day of the month, or if the resulting month has fewer days
than the given day of the month, then the result is the last day of the
resulting month. Otherwise, the result has the same start day.

n Can be any INTEGER.

Examples
The following example's results include a leap year:

SELECT ADDiMONTHS('31—Jan—08', 1) "Months";
Months

2008-02-29
(1 row)

The next example adds four months to January and returns a date in May:

SELECT ADD_MONTHS('31—Jan—08', 4) "Months";
Months

2008-05-31
(1 row)

This example subtracts 4 months from January, returning a date in September:

SELECT ADD_MONTHS('31—Jan—08', -4) "Months";
Months

2007-09-30
(1 row)

Because the following example specifies NULL, the result set is empty:

SELECT ADD_MONTHS('31—Jan—O3', NULL) "Months";
Months

(1 row)
This example provides no date argument, so even though the number of months specified is 1, the
result set is empty:

SELECT ADD_MONTHS(NULL, 1) "Months";
Months

-186-

SQL Functions

In this example, the date field defaults to a timestamp, so the PST is ignored. Notice that even
though it is already the next day in Pacific time, the result falls on the same date in New York (two
years later):

SET TIME ZONE 'America/New York';
SELECT ADD MONTHS ('2008-02-29 23:30 PST', 24);
add _months

2010-02-28
(1 row)

This example specifies a timestamp with time zone, so the PST is taken into account:

SET TIME ZONE 'America/New York';
SELECT ADD_MONTHS('2008—02—29 23:30 PST'::TIMESTAMPTZ, 24);
add_months

2010-03-01
(1 row)

AGE_IN_MONTHS

Returns an INTEGER value representing the difference in months between two TIMESTAMP,
DATE or TIMESTAMPTZ values.

Behavior Type

Stable if second argument is omitted or if either argument is TIMESTAMPTZ. Immutable
otherwise.

Syntax

AGE IN MONTHS (expressionl [, expression2])

Parameters

expressionl specifies the beginning of the period.

expression2 specifies the end of the period. The default is the CURRENT_DATE
(page 190).

Notes

The inputs can be TIMESTAMP, TIMESTAMPTZ, or DATE.

Examples

The following example returns the age in months of a person born on March 2, 1972 on the date
June 21, 1990, with a time elapse of 18 years, 3 months, and 19 days:

SELECT AGE IN MONTHS (TIMESTAMP '1990-06-21', TIMESTAMP '1972-03-02');
AGE_IN MONTHS

(1 row)

The next example shows the age in months of the same person (born March 2, 1972) as of March
16, 2010:

-187-

SQL Reference Manual

SELECT AGE_IN MONTHS (TIMESTAMP 'March 16, 2010', TIMESTAMP '1972-03-02');
AGE_IN_MONTHS

(1 row)

This example returns the age in months of a person born on November 21, 1939:

SELECT AGE_IN MONTHS (TIMESTAMP '1939-11-21");
AGE_IN_MONTHS

(1 row)
In the above form, the result changes as time goes by.
See Also

AGE_IN_YEARS (page 188)

INTERVAL (page 74)

AGE_IN_YEARS

Returns an INTEGER value representing the difference in years between two TIMESTAMP,
DATE or TIMESTAMPTZ values.

Behavior Type

Stable if second argument is omitted or if either argument is TIMESTAMPTZ. Immutable
otherwise.

Syntax

AGE IN YEARS (expressionl [, expression2])

Parameters

expressionl specifies the beginning of the period.

expression2 specifies the end of the period. The default is the CURRENT_DATE
(page 190).

Notes

e The AGE_IN_YEARS() function was previously called AGE. AGE() is not supported.
e Inputs can be TIMESTAMP, TIMESTAMPTZ, or DATE.
Examples

The following example returns the age in years of a person born on March 2, 1972 on the date
June 21, 1990, with a time elapse of 18 years, 3 months, and 19 days:

SELECT AGE_IN YEARS (TIMESTAMP '1990-06-21', TIMESTAMP '1972-03-02');
AGE_IN_YEARS

-188-

SQL Functions

18
(1 row)

The next example shows the age in years of the same person (born March 2, 1972) as of February
24, 20009:

SELECT AGE_IN_ YEARS (TIMESTAMP '2009-02-24', TIMESTAMP '1972-03-02");
AGE_IN YEARS

(1 row)

This example returns the age in years of a person born on November 21, 1939:

SELECT AGE_IN YEARS (TIMESTAMP '1939-11-21");
AGE_IN_YEARS

(1 row)

See Also
AGE_IN_MONTHS (page 187)
INTERVAL (page 74)

CLOCK_TIMESTAMP
Returns a value of type TIMESTAMP WITH TIMEZONE representing the current system-clock

time.
Behavior Type
Volatile

Syntax
CLOCK_TIMESTAMP ()

Notes

This function uses the date and time supplied by the operating system on the server to which you
are connected, which should be the same across all servers. The value changes each time you
call it.

Examples
The following command returns the current time on your system:

SELECT CLOCK_TIMESTAMP () "Current Time";
Current Time

2010-09-23 11:41:23.33772-04
(1 row)

Each time you call the function, you get a different result. The difference in this example is in
microseconds:

SELECT CLOCK TIMESTAMP () "Time 1", CLOCK TIMESTAMP () "Time 2";
Time 1 | Time 2

-189-

SQL Reference Manual

_______________________________ +_______________________________
2010-09-23 11:41:55.369201-04 | 2010-09-23 11:41:55.369202-04
(1 row)

See Also
STATEMENT_TIMESTAMP (page 223)

TRANSACTION_TIMESTAMP (page 235)

CURRENT_DATE

Returns the date (date-type value) on which the current transaction started.
Behavior Type

Stable

Syntax

CURRENT DATE

Notes

The CURRENT_DATE function does not require parentheses.

Examples

SELECT CURRENT_DATE ;
?column?

2010-09-23
(1 row)

CURRENT_TIME
Returns a value of type TIME WITH TIMEZONE representing the time of day.

Behavior Type

Stable

Syntax

CURRENT TIME [(precision)]

Parameters

precision (INTEGER) causes the result to be rounded to the specified number
of fractional digits in the seconds field.

Notes

e This function returns the start time of the current transaction; the value does not change during
the transaction. The intent is to allow a single transaction to have a consistent notion of the
current time, so that multiple modifications within the same transaction bear the same
timestamp.

-190-

SQL Functions

e The CURRENT_TIME function does not require parentheses.

Examples

SELECT CURRENT_TIME "Current Time";
Current Time

12:45:12.186089-05
(1 row)

CURRENT_TIMESTAMP

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction.

Behavior Type

Stable

Syntax

CURRENT TIMESTAMP [(precision)]

Parameters

precision (INTEGER) causes the result to be rounded to the specified number
of fractional digits in the seconds field. Range of INTEGER is 0-6.

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current”
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT CURRENT_ TIMESTAMP;
?2column?

2010-09-23 11:37:22.354823-04

(1 row)

SELECT CURRENT_TIMESTAMP(Z);
?column?

2010-09-23 11:37:22.35-04
(1 row)

DATE_PART

Is modeled on the traditional Ingres equivalent to the SQL-standard function EXTRACT. Internally
DATE_PART is used by the EXTRACT function.

Behavior Type
Stable when source is of type TIMESTAMPTZ, Immutable otherwise.

-191-

SQL Reference Manual

Syntax

DATE PART (field ,

Parameters

source)

field Is a single

Note: The field parameter values are the same for the EXTRA CT (page 207) function.

-quoted string value that specifies the field to extract.

source Is a date/time (page 72) expression

Field Values

CENTURY

The century number.

SELECT EXTRACT (CENTURY FROM TIMESTAMP '2000-12-16 12:21:13"'");
Result: 20

SELECT EXTRACT (CENTURY FROM TIMESTAMP '2001-02-16 20:38:40");

Result: 21

The first century starts at 0001-01-01 00:00:00 AD. This definition applies to all
Gregorian calendar countries. There is no century number O, you go from -1 to
1.

DAY

The day (of the month) field (1 - 31).
SELECT EXTRACT (DAY FROM TIMESTAMP '2001-02-16 20:38:40'");
Result: 16

SELECT EXTRACT (DAY FROM DATE '2001-02-16");
Result: 16

DECADE

The year field divided by 10.

SELECT EXTRACT (DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

SELECT EXTRACT (DECADE FROM DATE '2001-02-16");

Result: 200

DOQ

The day within the current quarter.

SELECT EXTRACT (DOQ FROM CURRENT_DATE);
Result: 89

The result is calculated as follows: Current date = June 28, current quarter = 2
(April, May, June). 30 (April) + 31 (May) + 28 (June current day) = 89.

DOQ recognizes leap year days.

DOW

The day of the week (0 - 6; Sunday is 0).

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 5

SELECT EXTRACT(DOW FROM DATE '2001-02-16");

Result: 5

Note that EXTRACT's day of the week numbering is different from that of the
TO_CHAR function.

DOY

The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 47

SELECT EXTRACT (DOY FROM DATE '2001-02-16");

Result: 5

EPOCH

For DATE and TIMESTAMP values, the number of seconds since 1970-01-01
00:00: 00-00 (can be negative); for INTERVAL values, the total number of
seconds in the interval.

-192-

SQL Functions

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16
20:38:40-08") ;
Result: 982384720

SELECT EXTRACT (EPOCH FROM INTERVAL 'S5 days 3 hours');
Result: 442800

Here is how you can convert an epoch value back to a timestamp:
SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720 * INTERVAL 'l second';

HOUR The hour field (0 - 23).
SELECT EXTRACT (HOUR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 20
SELECT EXTRACT (HOUR FROM TIME '13:45:59'");
Result: 13
Isopow The ISO day of the week (1 - 7; Monday is 1).
SELECT EXTRACT(ISODOW FROM DATE '2010-09-27");
Result: 1
ISOYEAR The ISO year, which is 52 or 53 weeks (Monday - Sunday).
SELECT EXTRACT (ISOYEAR FROM DATE '2006-01-01");
Result: 2005
SELECT EXTRACT (ISOYEAR FROM DATE '2006-01-02");
Result: 2006
SELECT EXTRACT (ISOYEAR FROM TIMESTAMP '2001-02-16 20:38:40"'");
Result: 2001
MICROSECONDS The seconds field, including fractional parts, multiplied by 1,000,000. This
includes full seconds.
SELECT EXTRACT (MICROSECONDS FROM TIME '17:12:28.5'");
Result: 28500000
MILLENNIUM The millennium number.
SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40'");
Result: 3
Years in the 1900s are in the second millennium. The third millennium starts
January 1, 2001.
MILLISECONDS The seconds field, including fractional parts, multiplied by 1000. Note that this
includes full seconds.
SELECT EXTRACT (MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500
MINUTE The minutes field (O - 59).
SELECT EXTRACT (MINUTE FROM TIMESTAMP '2001-02-16 20:38:40"');
Result: 38
SELECT EXTRACT(MINUTE FROM TIME '13:45:59");
Result: 45
MONTH For timestamp values, the number of the month within the year (1 - 12) ; for
interval values the number of months, modulo 12 (0 - 11).
SELECT EXTRACT (MONTH FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2
SELECT EXTRACT (MONTH FROM INTERVAL '2 years 3 months');
Result: 3
SELECT EXTRACT (MONTH FROM INTERVAL '2 years 13 months');
Result: 1
QUARTER The quarter of the year (1 - 4) that the day is in (for timestamp values only).
SELECT EXTRACT (QUARTER FROM TIMESTAMP '2001-02-16 20:38:40") ;
Result: 1
SECOND The seconds field, including fractional parts (0 - 59) (60 if leap seconds are

implemented by the operating system).

SELECT EXTRACT (SECOND FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 40

-193-

SQL Reference Manual

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5"');
Result: 28.5

TIME ZONE

The time zone offset from UTC, measured in seconds. Positive values
correspond to time zones east of UTC, negative values to zones west of UTC.

TIMEZONE HOUR

The hour component of the time zone offset.

TIMEZONE MINUTE

The minute component of the time zone offset.

WEEK The number of the week of the year that the day is in. By definition, the
ISO-8601 week starts on Monday, and the first week of a year contains
January 4 of that year. In other words, the first Thursday of a year is in week 1
of that year.
Because of this, it is possible for early January dates to be part of the 52nd or
53rd week of the previous year. For example, 2005-01-01 is part of the 53rd
week of year 2004, and 2006-01-01 is part of the 52nd week of year 2005.
SELECT EXTRACT (WEEK FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 7
SELECT EXTRACT (WEEK FROM DATE '2001-02-16");
Result: 7

YEAR The year field. Keep in mind there is no 0 AD, so subtract BC years from AD
years with care.
SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2001

Examples

The following example extracts the day value from the input parameters:

SELECT DATE PART ('day', TIMESTAMP '2009-02-24 20:38:40') "Day";

Day

24
(1 row)

The following example extracts the month value from the input parameters:

SELECT DATE PART ('month', TIMESTAMP '2009-02-24 20:38:40') "Month";

Month

(1 row)

The following example extracts the year value from the input parameters:

SELECT DATE PART ('year', TIMESTAMP '2009-02-24 20:38:40'") "Year";

Year

The following example extracts the hours from the input parameters:

SELECT DATE PART ('hour', TIMESTAMP '2009-02-24 20:38:40") "Hour";

Hour

-194-

SQL Functions

The following example extracts the minutes from the input parameters:

SELECT DATE_PART('minutes', TIMESTAMP '2009-02-24 20:38:40') "Minutes";
Minutes

(1 row)

The following example extracts the seconds from the input parameters:

SELECT DATE PART ('seconds', TIMESTAMP '2009-02-24 20:38:40'") "Seconds";
Seconds

(1 row)

The following example extracts the day of quarter (DOQ) from the input parameters:

SELECT DATE PART ('DOQ', TIMESTAMP '2009-02-24 20:38:40"') "DOQ";
DOQ

55
(1 row)

SELECT DATE PART('day', INTERVAL '29 days 23 hours');
date part

(1 row)

Notice what happens to the above query if you add an hour:

SELECT DATE PART('day', INTERVAL '29 days 24 hours');
date part

(1 row)

The following example returns 0 because an interval in hours is up to 24 only:

SELECT DATE PART ('hour', INTERVAL '24 hours 45 minutes');
date part

(1 row)

See Also
EXTRACT (page 207)

DATE

Converts a TIMESTAMP, TIMESTAMPTZ, DATE, or VARCHAR to a DATE. You can also use this
function to convert an INTEGER to a DATE. In this case, the resulting date reflects the int number
of days after 0001 AD. (Day 1 is January 1, 0001.)

Syntax
DATE (d | n)

-195-

SQL Reference Manual

Behavior type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Parameters
d Is the TIMESTAMP, TIMESTAMPTZ, VARCHAR, or DATE input value.
n Is the integer you want to convert to a DATE.
Example
=> SELECT DATE (1);
DATE
0001-01-01
(1 row)

=> SELECT DATE (734260);

DATE

2011-05-03

(1 row)

=> SELECT DATE ('TODAY')
DATE

2011-05-31

(1 row)

DATE_TRUNC

Is conceptually similar to the TRUNC (page 297) function for numbers. The return value is of type
TIMESTAMP or INTER VAL with all fields that are less significant than the selected one setto zero
(or one, for day and month).

Behavior Type

Stable when source is of type TIMESTAMPTZ, Imnmutable otherwise.

Syntax
DATE TRUNC (field , source)

Parameters
field Is a string constant that selects the precision to which truncate the
input value. Valid values for field are:
century milliseconds
day minute
decade month

-196-

SQL Functions

hour second
microseconds week

millennium year

source Is a value expression of type TIMESTAMP Or INTERVAL.

Values of type DATE and TIME are cast automatically, to
TIMESTAMP or INTERVAL, respectively.

Examples
The following example returns the hour and truncates the minutes and seconds:

SELECT DATEiTRUNC('hOur', TIMESTAMP '2009-02-24 13:38:40') AS hour;
hour

2009-02-24 13:00:00
(1 row)

The following example returns the year and defaults month and day to January 1, truncating the
rest of the string:

SELECT DATE TRUNC ('year', TIMESTAMP '2009-02-24 13:38:40') AS year;

2009-01-01 00:00:00
(1 row)

The following example returns the year and month and defaults day of month to 1, truncating the
rest of the string:

SELECT DATE TRUNC ('month', TIMESTAMP '2009-02-24 13:38:40') AS year;

2009-02-01 00:00:00
(1 row)

DATEDIFF

Returns the difference between two date or time values, based on the specified start and end
arguments.

Behavior Type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax 1

DATEDIFF (datepart , startdate , enddate);

Syntax 2

DATEDIFF (datepart , starttime , endtime);

-197-

SQL Reference Manual

Parameters
datepart Returns the number of specified datepart boundaries between the
specified startdate and enddate.
Can be an unquoted identifier, a quoted string, or an expression in
parentheses, which evaluates to the datepart as a character string.
The following table lists the valid datepart arguments.
datepart abbreviation
year YYr YYVY
quarter adq, g
month mm, m
day dd, d, dy, dayofyear, y
week wk, ww
hour hh
minute mi, n
second ss, S
millisecond ms
microsecond mcs, us
startdate Is the start date for the calculation and is an expression that returns a
TIMESTAMP (page 90), DATE (page 73), or TIMESTAMPTZ value.
The startdate value is not included in the count.
enddate Is the end date for the calculation and is an expression that returns a
TIMESTAMP (page 90), DATE (page 73), or TIMESTAMPTZ value.
The enddate value is included in the count.
starttime Is the start time for the calculation and is an expression that returns
an INTERVAL (page 74) or TIME (page 88) data type.
= The starttime value is not included in the count.
= Year, quarter, or month dateparts are not allowed.
endtime Is the end time for the calculation and is an expression that returns
an INTERVAL (page 74) or TIME (page 88) data type.
= The endtime value is included in the count.
= Year, quarter, or month dateparts are not allowed.
Notes

e DATEDIFF() is an immutable function with a default type of TIMESTAMP. It also takes DATE.
If TIMESTAMPTZ is specified, the function is stable.

e Vertica accepts statements written in any of the following forms:

DATEDIFF (year, s, e);
DATEDIFF ('year', s, e);

-198-

SQL Functions

If you use an expression, the expression must be enclosed in parentheses:
DATEDIFF ((expression), s, €);

e Starting arguments are not included in the count, but end arguments are included.

The datepart boundaries

DATEDIFF calculates results according to ticks—or boundaries—within the date range or time
range. Results are calculated based on the specified datepart. Let's examine the following
statement and its results:

SELECT DATEDIFF ('year', TO_DATE('Ol—Ol—ZOOS','MM—DD—YYYY'),
TOiDATE('12—31—2008‘,'MM—DD—YYYY'));
datediff

(1 row)

In the above example, we specified a datepart of year, a startdate of January 1, 2005 and an
enddate of December 31, 2008. DATEDIFF returns 3 by counting the year intervals as follows:

[1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 = 3

The function returns 3, and not 4, because startdate (January 1, 2005) is not counted in the
calculation. DATEDIFF also ignores the months between January 1, 2008 and December 31,
2008 because the datepart specified is year and only the start of each year is counted.

Sometimes the enddate occurs earlier in the ending year than the startdate in the starting year.
For example, assume a datepart of year, a startdate of August 15, 2005, and an enddate of
January 1, 2009. In this scenario, less than three years have elapsed, but DATEDIFF counts the
same way it did in the previous example, returning 3 because it returns the number of January 1s
between the limits:

[1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 = 3

In the following query, Vertica recognizes the full year 2005 as the starting year and 2009 as the
ending year.

SELECT DATEDIFF ('year', TO DATE('08-15-2005', 'MM-DD-YYYY'),
TO DATE ('01-01-2009"', 'MM-DD-YYYY')) ;
The count occurs as follows:

[1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 + [4] January 1,
2009 = 4

Even though August 15 has not yet occurred in the enddate, the function counts the entire enddate
year as one tick or boundary because of the year datepart.

Examples

Year: In this example, the startdate and enddate are adjacent. The difference between the dates
is one time boundary (second) of its datepart, so the result set is 1.

SELECT DATEDIFF ('year', TIMESTAMP '2008-12-31 23:59:59°',
'2009-01-01 00:00:00") ;
datediff

1
(1 row)

-199-

SQL Reference Manual

Quarters start on January, April, July, and October.

In the following example, the result is 0 because the difference from January to February in the
same calendar year does not span a quarter:

SELECT DATEDIFF('qgq', TO_DATE('Ol—Ol—l995','MM—DD—YYYY‘),
TO_DATE('02—02—1995‘,‘MM—DD—YYYY'));
datediff

(1 row)

The next example, however, returns 8 quarters because the difference spans two full years. The
extra month is ignored:

SELECT DATEDIFF ('quarter', TO_DATE('Ol—Ol—1993','MM—DD—YYYY'),
TO_DATE('02—02—1995','MM—DD—YYYY'));
datediff

(1 row)
Months are based on real calendar months.

The following statement returns 1 because there is month difference between January and
February in the same calendar year:

SELECT DATEDIFF ('mm', TO_DATE('01—01—2005','MM—DD—YYYY‘),
TO_DATE('02—02—2005','MM—DD—YYYY'));
datediff

(1 row)

The next example returns a negative value of 1:

SELECT DATEDIFF ('month', TO DATE('02-02-1995', 'MM-DD-YYYY'),
TO DATE ('01-01-1995', '"MM-DD-YYYY'));
datediff

(1 row)

And this third example returns 23 because there are 23 months difference between
SELECT DATEDIFF ('m', TO DATE ('02-02-1993', 'MM-DD-YYYY'),

TO DATE ('01-01-1995', 'MM-DD-YYYY'));

datediff

(1 row)
Weeks start on Sunday at midnight.

The first example returns 0 because, even though the week starts on a Sunday, itis not a full
calendar week:

SELECT DATEDIFF('ww', TO DATE('02-22-2009', 'MM-DD-YYYY'),

-200-

SQL Functions

TO_DATE('02—28—2009‘,'MM—DD—YYYY'));
datediff

(1 row)

The following example returns 1 (week); January 1, 2000 fell on a Saturday.
SELECT DATEDIFF ('week', TO DATE('01-01-2000','MM-DD-YYYY'),
TO DATE ('01-02-2000', '"MM-DD-YYYY'));

datediff

(1 row)
In the next example, DATEDIFF() counts the weeks between January 1, 1995 and February 2,

1995 and returns 4 (weeks):
SELECT DATEDIFF ('wk', TO DATE('01-01-1995', 'MM-DD-YYYY'),
TO_DATE ('02-02-1995"', '"MM-DD-YYYY')) ;

datediff

(1 row)

The next example returns a difference of 100 weeks:
SELECT DATEDIFF ('ww', TO DATE('02-02-2006', 'MM-DD-YYYY'),
TO DATE ('01-01-2008"', 'MM-DD-YYYY')) ;

datediff

(1 row)
Days are based on real calendar days.

The first example returns 31, the full number of days in the month of July 2008.
SELECT DATEDIFF('day', 'July 1, 2008', 'Aug 1, 2008'::date);

datediff

(1 row)

Just over two years of days:
TO_TIMESTAMP ('01-01-1993', 'MM-DD-YYYY'),

SELECT DATEDIFF('d',
TO TIMESTAMP ('02-02-1995', '"MM-DD-YYYY')) ;

datediff

(1 row)
Hours, minutes, and seconds are based on clock time.

The first example counts backwards from March 2 to February 14 and returns -384 hours
SELECT DATEDIFF ('hour', TO_DATE('03—02—2009','MM—DD—YYYY'),
TO_DATE('02—14—2009','MM—DD—YYYY'));
datediff

-201-

SQL Reference Manual

-384
(1 row)

Another hours example:
SELECT DATEDIFF ('hh', TO TIMESTAMP('01-01-1993', 'MM-DD-YYYY'),

TO_TIMESTAMP('02—02—1995','MM—DD—YYYY'));
datediff

This example counts the minutes backwards:

SELECT DATEDIFF('mi', TO_TIMESTAMP('01—01—1993 03:00:45"'", "MM-DD-YYYY HH:MI:SS'"),
TO_TIMESTAMP('01—01—1993 01:30:21',"'" MM-DD-YYYY HH:MI:SS'));
datediff

(1 row)

And this example counts the minutes forward:

SELECT DATEDIFF ('minute', TOiDATE('Ol—Ol—1993','MM—DD—YYYY'),
TOiDATE('02—02—1995‘,'MM—DD—YYYY'));
datediff

1097280
(1 row)

In the following example, the query counts the difference in seconds, beginning at a start time of
4:44 and ending at 5:55 with an interval of 2 days:

SELECT DATEDIFF('ss', TIME '04:44:42.315786"',
INTERVAL '2 05:55:52.963558");
datediff

177070
(1 row)

See Also

Date/Time Expressions (page 48)

DAY

Extracts the day of the month from a TIMESTAMP, TIMESTAMPTZ, INTEGER, VARCHAR or
INTERVAL input value. The return value is of type INTEGER.

Syntax

DAY (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

-202-

SQL Functions

Parameters

d Is the TIMESTAMP, TIMESTAMPTZ, INTERVAL, VARCHAR, or
INTEGER input value.

Examples

=> SELECT DAY (6);
DAY

(1 row)
=> SELECT DAY (TIMESTAMP 'sep 22, 2011 12:34"'");
DAY
22
(1 row)
=> SELECT DAY ('sep 22, 2011 12:34");
DAY
22
(1 row)
=> SELECT DAY (INTERVAL '35 12:34"');
DAY
35
(1 row)

DAYOFMONTH

Returns an integer representing the day of the month based on a VARCHAR, DATE,

TIMESTAMP, OR TIMESTAMPTZ input value.
Syntax

DAYOFMONTH (d)

Behavior type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ input value.

Example

=> SELECT DAYOFMONTH (TIMESTAMP 'sep 22, 2011 12:34"');
DAYOFMONTH

-203-

SQL Reference Manual

DAYOFWEEK

Returns an INTEGER representing the day of the week based on a TIMESTAMP,
TIMESTAMPTZ, VARCHAR, or DATE input value. Valid return values are:

Integer Week Day

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

N|o|loa|lb~|[W]IDN|EF

Saturday

Syntax

DAYOFWEEK (d)

Behavior type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Parameters
d Is the TIMESTAMP, TIMESTAMPTZ, VARCHAR, or DATE input value.
Example
=> SELECT DAYOFWEEK (TIMESTAMP 'sep 17, 2011 12:34');
DAYOFWEEK
.
(1 row)

DAYOFWEEK_ISO

Returns an INTEGER representing the ISO 8061 day of the week basedona VARCHAR, DATE,
TIMESTAMP or TIMESTAMPT Z input value. Valid return values are:

Integer Week Day

1 Monday

2 Tuesday

3 Wednesday

-204-

SQL Functions

Thursday

Saturday

4
5 Friday
6
7

Sunday

Syntax

DAYOFWEEK ISO (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ input value.

Example

=> SELECT DAYOFWEEK ISO(TIMESTAMP 'Sep 22, 2011 12:34");
DAYOFWEEK ISO

(1 row)

The following example shows how to combine the DAYOFWEEK ISO, WEEK ISO, and
YEAR_ISO functions to find the ISO day of the week, week, and year:

=> SELECT DAYOFWEEK ISO('Jan 1, 2000'), WEEK ISO('Jan 1,
2000') ,YEAR ISO('Janl,2000");
DAYOFWEEK ISO | WEEK ISO | YEAR ISO

See Also
WEEK _ISO (page 238)

DAYOFWEEK _ISO (page 204)
http://en.wikipedia.org/wiki/ISO 8601 (http://en.wikipedia.org/wiki/ISO_8601)

DAYOFYEAR

Returns an INTEGER representing the day of the year based on a TIMESTAMP, TIMESTAMPTZ
, VARCHAR, or DATE input value. (January 1 is day 1.)

Syntax
DAYOFYEAR (d)

-205-

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

SQL Reference Manual

Behavior type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Parameters

d Is the TIMESTAMP, TIMESTAMPTZ, VARCHAR, OR DATE input value.

Example

=> SELECT DAYOFYEAR (TIMESTAMP 'SEPT 22,2011 12:34"'");
DAYOFYEAR

DAYS

Converts a DATE, VARCHAR, TIMESTAMP, or TIMESTAMPTZ to an INTEGER, reflecting the
number of days after 0001 AD.

Syntax

DAYS (DATE d)

Behavior type

Immutable

Parameters

DATE d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMP TZ input value.

Example

=> SELECT DAYS (DATE '2011-01-22");
DAYS

734159
(1 row)

=> SELECT DAYS ('1999-12-31");
DAYS

730119
(1 row)

-206-

SQL Functions

EXTRACT

Retrieves subfields such as year or hour from date/time values and returns values of type
DOUBLE PRECISION (page 97). EXTRACT is primarily intended for computational processing,
rather than for formatting date/time values for display.

Internally EXTRACT uses the DATE_PART function.

Behavior Type
Stable when source is of type TIMESTAMPTZ, Inmutable otherwise.

Syntax

EXTRACT (field FROM source)

Parameters

field Is an identifier or string that selects what field to extract from the source value.
Note: The field parameter is the same for the DATE PART () (page 191)
function.

source Is an expression of type DATE, TIMESTAMP, TIME, Of INTERVAL.
Note: Expressions of type DATE are cast to TIMESTAMP.

Field Values

CENTURY The century number.

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13");
Result: 20

SELECT EXTRACT (CENTURY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 21

The first century starts at 0001-01-01 00:00:00 AD. This definition applies to all

Gregorian calendar countries. There is no century number 0, you go from -1 to
1.

DAY The day (of the month) field (1 - 31).
SELECT EXTRACT (DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16

SELECT EXTRACT (DAY FROM DATE '2001-02-16");
Result: 16

DECADE The year field divided by 10.
SELECT EXTRACT (DECADE FROM TIMESTAMP '2001-02-16 20:38:40"');
Result: 200

SELECT EXTRACT (DECADE FROM DATE '2001-02-16") ;
Result: 200

DOQ The day within the current quarter.

SELECT EXTRACT (DOQ FROM CURRENT DATE) ;
Result: 89

The result is calculated as follows: Current date = June 28, current quarter = 2
(April, May, June). 30 (April) + 31 (May) + 28 (June current day) = 89.

DOQ recognizes leap year days.

DOW The day of the week (0 - 6; Sunday is 0).

-207-

SQL Reference Manual

SELECT EXTRACT (DOW FROM TIMESTAMP '2001-02-16 20:38:40'");
Result: 5

SELECT EXTRACT (DOW FROM DATE '2001-02-16");
Result: 5

Note that EXTRACT's day of the week numbering is different from that of the
TO_CHAR function.

DOY The day of the year (1 - 365/366)
SELECT EXTRACT (DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47
SELECT EXTRACT (DOY FROM DATE '2001-02-16");
Result: 5
EPOCH For DATE and TIMESTAMP values, the number of seconds since 1970-01-01
00:00: 00-00 (can be negative); for INTERVAL values, the total number of
seconds in the interval.
SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16
20:38:40-08") ;
Result: 982384720
SELECT EXTRACT (EPOCH FROM INTERVAL 'S5 days 3 hours');
Result: 442800
Here is how you can convert an epoch value back to a timestamp:
SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720 * INTERVAL 'l second';
HOUR The hour field (0 - 23).
SELECT EXTRACT (HOUR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 20
SELECT EXTRACT (HOUR FROM TIME '13:45:59'");
Result: 13
Isobow The ISO day of the week (1 - 7; Monday is 1).
SELECT EXTRACT(ISODOW FROM DATE '2010-09-27");
Result: 1
ISOYEAR The ISO year, which is 52 or 53 weeks (Monday - Sunday).
SELECT EXTRACT (ISOYEAR FROM DATE '2006-01-01");
Result: 2005
SELECT EXTRACT (ISOYEAR FROM DATE '2006-01-02");
Result: 2006
SELECT EXTRACT (ISOYEAR FROM TIMESTAMP '2001-02-16 20:38:40"'");
Result: 2001
MICROSECONDS The seconds field, including fractional parts, multiplied by 1,000,000. This
includes full seconds.
SELECT EXTRACT (MICROSECONDS FROM TIME '17:12:28.5'");
Result: 28500000
MILLENNIUM The millennium number.
SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40'");
Result: 3
Years in the 1900s are in the second millennium. The third millennium starts
January 1, 2001.
MILLISECONDS The seconds field, including fractional parts, multiplied by 1000. Note that this
includes full seconds.
SELECT EXTRACT (MILLISECONDS FROM TIME '17:12:28.5'");
Result: 28500
MINUTE The minutes field (0 - 59).

SELECT EXTRACT (MINUTE FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 38

SELECT EXTRACT (MINUTE FROM TIME '13:45:59'");

-208-

SQL Functions

Result: 45
MONTH For timestamp values, the number of the month within the year (1 - 12) ; for
interval values the number of months, modulo 12 (0 - 11).
SELECT EXTRACT (MONTH FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2
SELECT EXTRACT (MONTH FROM INTERVAL '2 years 3 months');
Result: 3
SELECT EXTRACT (MONTH FROM INTERVAL '2 years 13 months');
Result: 1
QUARTER The quarter of the year (1 - 4) that the day is in (for timestamp values only).
SELECT EXTRACT (QUARTER FROM TIMESTAMP '2001-02-16 20:38:40"'");
Result: 1
SECOND The seconds field, including fractional parts (0 - 59) (60 if leap seconds are
implemented by the operating system).
SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40"');
Result: 40
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5"'");
Result: 28.5
TIME ZONE The time zone offset from UTC, measured in seconds. Positive values

correspond to time zones east of UTC, negative values to zones west of UTC.

TIMEZONE HOUR

The hour component of the time zone offset.

TIMEZONE MINUTE

The minute component of the time zone offset.

WEEK The number of the week of the year that the day is in. By definition, the
ISO-8601 week starts on Monday, and the first week of a year contains
January 4 of that year. In other words, the first Thursday of a year is in week 1
of that year.
Because of this, it is possible for early January dates to be part of the 52nd or
53rd week of the previous year. For example, 2005-01-01 is part of the 53rd
week of year 2004, and 2006-01-01 is part of the 52nd week of year 2005.
SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40"'");
Result: 7
SELECT EXTRACT(WEEK FROM DATE '2001-02-16");
Result: 7
YEAR The year field. Keep in mind there is no 0 AD, so subtract BC years from AD
years with care.
SELECT EXTRACT (YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2001
Examples
=> SELECT EXTRACT (DAY FROM DATE '2008-12-25");
date part
25
(1 row)
=> SELECT EXTRACT (MONTH FROM DATE '2008-12-25");
date part
12
(1 row
SELECT EXTRACT (DOQ FROM CURRENT DATE) ;
date part
89

-209-

SQL Reference Manual

(1 row)

Remember that internally EXTRACT () uses the DATE PART () function:

=> SELECT EXTRACT (EPOCH FROM AGE IN YEARS (TIMESTAMP '2009-02-24",
TIMESTAMP '1972-03-02'") :: INTERVAL year);

date part

1136073600
(1 row)

In the above example, AGE IN YEARS is 36. The UNIX epoch uses 365.25 days per year:

=> SELECT 1136073600.0/36/(24*60*60) ;
?column?

See Also
DATE_PART (page 191)

GETDATE

Returns the current system date and time as a TIMESTAMP value.

Behavior Type
Stable

Syntax

GETDATE () ;

Notes

e GETDATE is a stable function that requires parentheses but accepts no arguments.

e This function uses the date and time supplied by the operating system on the server to which
you are connected, which is the same across all servers.

o GETDATE internally converts STATEMENT_TIMESTAMP() (page 223) from TIMESTAMPTZ
to TIMESTAMP.

e This function is identical to SYSDATE() (page 224).
Example

=> SELECT GETDATE () ;
GETDATE

2011-03-07 13:21:29.497742
(1 row)

See Also

Date/Time Expressions (page 48)

-210-

SQL Functions

GETUTCDATE

Returns the current system date and time as a TIMESTAMP value relative to UTC.

Behavior Type
Stable

Syntax
GETUTCDATE () ;
Notes

e GETUTCDATE is a stable function that requires parentheses but accepts no arguments.

e This function uses the date and time supplied by the operating system on the server to which
you are connected, which is the same across all servers.

e GETUTCDATE is internally converted to STATEMENT_TIMESTAMP() at TIME ZONE 'UTC'".
Example

=> SELECT GETUTCDATE () ;
GETUTCDATE

2011-03-07 20:20:26.193052
(1 row)

See Also

Date/Time Expressions (page 48)

HOUR

Extracts the hour from a DATE, TIMESTAMP, TIMESTAMPTZ, VARCHAR, or INTERVAL value.
The return value is of type INTEGER. (Hour 0 is midnight to 1 a.m.)

Syntax

HOUR (d)

Behavior type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Parameters

d Is the incoming DATE, TIMESTAMP, TIMESTAMPTZ, VARCHAR, or
INTERVAL value.

Example

=> SELECT HOUR (TIMESTAMP 'sep 22, 2011 12:34"');
HOUR

-211-

SQL Reference Manual

=> SELECT HOUR (INTERVAL '35 12:34");
HOUR

12
(1 row)
=> SELECT HOUR ('12:34");
HOUR

ISFINITE
Tests for the special TIMESTAMP constant INFINITY and returns a value of type BOOLEAN.

Behavior Type

Immutable

Syntax

ISFINITE (timestamp)

Parameters

timestamp Is an expression of type TIMES TAMP

Examples
SELECT ISFINITE (TIMESTAMP '2009-02-16 21:28:30'");
isfinite

(1 row)
SELECT ISFINITE (TIMESTAMP 'INFINITY');
isfinite

JULIAN_DAY

Returns an INTEGER representing the Julian day based on an input TIMESTAMP,
TIMESTAMPTZ, VARCHAR, or DATE value.

Syntax
JULIAN DAY (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

-212-

SQL Functions

Parameters

d Is the TIMESTAMP, TIMESTAMPTZ, VARCHAR, or DATE input value.

Example

=> SELECT JULIAN DAY (TIMESTAMP 'sep 22, 2011 12:34"');
JULIAN DAY

2455827
(1 row)

LAST_DAY

Returns the last day of the month based on a TIMESTAMP. The TIMESTAMP can be supplied as
a DATE or a TIMESTAMPTZ data type.

Behavior Type
Immutable, unless called with TIMESTAMPTZ, in which case it is Stable.

Syntax

LAST DAY (date);

Examples

The following example returns the last day of the month, February, as 29 because 2008 was a
leap year:

SELECT LAST DAY ('2008-02-28 23:30 PST') "Last";
Last

2008-02-29
(1 row)

The following example returns the last day of the month in March, after converting the string value
to the specified DATE type:

SELECT LAST DAY ('2003/03/15') "Last";
Last

2003-03-31
(1 row)

The following example returns the last day of February in the specified year (not a leap year):

SELECT LAST DAY ('2003/02/03') "Last";
Last

2003-02-28
(1 row)

LOCALTIME

Returns a value of type TIME representing the time of day.

-213-

SQL Reference Manual

Behavior Type

Stable

Syntax

LOCALTIME [(precision)]

Parameters

precision Causes the result to be rounded to the specified number
of fractional digits in the seconds field.

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT LOCALTIME;
time

16:16:06.790771
(1 row)

LOCALTIMESTAMP

Returns a value of type TIMESTAMP representing today's date and time of day.
Behavior Type

Stable

Syntax

LOCALTIMESTAMP [(precision)]

Parameters

precision Causes the result to be rounded to the specified number of fractional
digits in the seconds field.

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the “current”
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT LOCALTIMESTAMP;
timestamp

2009-02-24 14:47:48.5951

-214-

SQL Functions

(1 row)

MICROSECOND

Returns an INTEGER representing the microsecond portion of an input DATE, VARCHAR,
TIMESTAMP, TIMESTAMPTZ, or INTERVAL value.

Syntax
MICROSECOND (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the DATE, VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL
input value.

Example

=> SELECT MICROSECOND (TIMESTAMP 'Sep 22, 2011 12:34:01.123456");
MICROSECOND

123456
(1 row)

MIDNIGHT_SECONDS

Returns an INTEGER representing the number of seconds between midnight and the input value.
The input value can be of type VARCHAR, TIME, TIMESTAMP, or TIMESTAMPTZ

Syntax

MIDNIGHT SECONDS (d)

Behavior type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Parameters

d Is the VARCHAR, TIME, TIMESTAMP, or TIMESTAMP TZ input value.

Example

=> SELECT MIDNIGHT SECONDS ('12:34:00.987654");
MIDNIGHT SECONDS

(1 row)
=> SELECT MIDNIGHT_SECONDS(TIME '12:34:00.987654");

-215-

SQL Reference Manual

MIDNIGHT SECONDS

(1 row)
=> SELECT MIDNIGHT_SECONDS (TIMESTAMP 'sep 22, 2011 12:34");
MIDNIGHT_SECONDS

(1 row)

MINUTE

Returns an INTEGER representing the minute value of the input value. The input value can be of
type VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ, or INTERVAL.

Syntax

MINUTE (d)

Behavior type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ, or INTERVAL
input value.

Example

=> SELECT MINUTE ('12:34:03.456789");
MINUTE
34
(1 row)
=>SELECT MINUTE (TIMESTAMP 'sep 22, 2011 12:34");
MINUTE
34
(1 row)
=> SELECT MINUTE (INTERVAL '35 12:34:03.456789");
MINUTE

MONTH

Returns an INTEGER representing the month portion of the input value. The input value can be of
type VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ, or INTERVAL.

-216-

SQL Functions

Syntax
MONTH (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the incoming VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ, or
INTERVAL value.

Examples

=> SELECT MONTH('6-9"'");
MONTH

(1 row)
=> SELECT MONTH (TIMESTAMP 'sep 22, 2011 12:34");
MONTH

(1 row)
=> SELECT MONTH (INTERVAL '2-35' year to month);
MONTH

MONTHS_BETWEEN

Returns the number of months between datel and date2 as a FLOAT8. where the input
arguments can be of TIMESTAMP, DATE, or TIMESTAMPT Z type.

Behavior Type
Immutable for TIMESTAMP and Date, Stable for TIMESTAMPTZ

Syntax

MONTHS BETWEEN (datel , dateZ2);

Parameters

datel, dateZ ||fdatelis laterthan date2, thenthe resultis positive. If datel is earlier
than date2, then the result is negative.

If datel and date?2 are either the same days of the month or both are
the last days of their respective month, then the result is always an
integer. Otherwise MONTHS_BETWEEN returns a FLOATS result
based on a 31-day month, which considers the difference between
datel and date2.

-217-

SQL Reference Manual

Examples

Note the following result is an integral number of days because the dates are on the same day of
the month:

SELECT MONTHS BETWEEN ('2009-03-07 16:00'::TIMESTAMP, '2009-04-07
15:00"': :TIMESTAMP) ;
months between

(1 row)

The result from the following example returns an integral number of days because the days fall on
the last day of their respective months:

SELECT MONTHS BETWEEN ('29Feb2000', '30Sep2000') "Months";
Months

(1 row)

In this example, and in the example that immediately follows it, MONTHS BETWEEN () returns the
number of months between datel and date2 as a fraction because the days do not fall on the
same day or on the last day of their respective months:

SELECT MONTHS BETWEEN (TO DATE ('02-02-1995', 'MM-DD-YYYY'),

TO_DATE('Ol—Ol—l995','MM—DD—YYYY')) "Months";
Months
1.03225806451613
(1 row)
SELECT MONTHS BETWEEN (TO_DATE ('2003/01/01', 'yyyy/mm/dd'),
TO _DATE ('2003/03/14', 'yyyy/mm/dd')) "Months";
Months

-2.41935483870968
(1 row)

The following two examples use the same datel and date2 strings, but they are cast to a different
data types (TIMESTAMP and TIMESTAMPTZ). The result set is the same for both statements:

SELECT MONTHS BETWEEN ('2008-04-01'"::timestamp, '2008-02-29'::timestamp);
months between

1.09677419354839

(1 row)

SELECT MONTHS BETWEEN ('2008-04-01'::timestamptz, '2008-02-29'::timestamptz);
months between

1.09677419354839
(1 row)

The following two examples show alternate inputs:

SELECT MONTHS BETWEEN ('2008-04-01'::date, '2008-02-29'::timestamp);
months between

-218-

SQL Functions

1.09677419354839

(1 row)

SELECT MONTHS BETWEEN ('2008-02-29'::timestamptz, '2008-04-01'::date);
months between

-1.09677419354839
(1 row)

NEXT_DAY

Returns the date of the first instance of a particular day of the week that follows the specified date.

Behavior Type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Syntax

NEXT DAY ('date', 'DOW')

Parameters

date Can be VARCHAR, TIMESTAMP, TIMESTAMPTZ, or DATE. Only

standard English day-names and day-name abbreviations are accepted.

Dow Day of week can be a CHAR/VARCHAR string or a character constant.
DOW is not case sensitive and trailing spaces are ignored.

Examples

The following example returns the date of the next Friday following the specified date. All are
variations on the same query, and all return the same result:

=> SELECT NEXT DAY ('28-MAR-2011"', 'FRIDAY') "NEXT DAY" FROM DUAL;
NEXT DAY

2011-04-01

(1 row)

=> SELECT NEXT DAY ('March 28 2011','FRI') "NEXT DAY" FROM DUAL;
NEXT DAY

2011-04-01

(1 row)

=> SELECT NEXT_DAY ('3-29-11",'"FRI') "NEXT DAY" FROM DUAL;
NEXT DAY

2011-04-01

(1 row)

-219-

SQL Reference Manual

NOW [Date/Time]

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction. NOW is equivalent to CURRENT_TIMESTAMP (page 191) except that it does not
accept a precision parameter.

Behavior Type
Stable

Syntax

NOW ()

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current”
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT NOW() ;

2010-04-01 15:31:12.144584-04
(1 row)

See Also
CURRENT_TIMESTAMP (page 191)

OVERLAPS

Returns true when two time periods overlap, false when they do not overlap.

Behavior Type

Stable when TIMESTAMP and TIMESTAMPTZ are both used, or when TIMESTAMPTZ is used
with INTERVAL, Immutable otherwise.

Syntax

(start, end) OVERLAPS (start, end)
(start, interval) OVERLAPS (start, interval)

Parameters

start Is a DATE, TIME, or TIME STAMP value that specifies the
beginning of a time period.

end Is a DATE, TIME, or TIME STAMP value that specifies the end of a
time period.

interval Is a value that specifies the length of the time period.

-220-

SQL Functions

Examples

The first command returns true for an overlap in date range of 2007-02-16 — 2007-12-21 with
2007-10-30 — 2008-10-30.

SELECT (DATE '2007-02-16', DATE '2007-12-21")
OVERLAPS (DATE '2007-10-30', DATE '2008-10-30"'");
overlaps

(1 row)

The next command returns false for an overlap in date range of 2007-02-16 — 2007-12-21 with
2008-10-30 — 2008-10-30.

SELECT (DATE '2007-02-16', DATE '2007-12-21")
OVERLAPS (DATE '2008-10-30', DATE '2008-10-30");
overlaps

(1 row)

The next command returns false for an overlap in date range of 2007-02-16, 22 hours ago with
2007-10-30, 22 hours ago.

SELECT (DATE '2007-02-16', INTERVAL 'l 12:59:10")
OVERLAPS (DATE '2007-10-30', INTERVAL 'l 12:59:10"');
overlaps

QUARTER

Returns an INTEGER representing calendar quarter into which the input value falls. The input
value can be of type VARCHAR, DATE, TIMESTAMP or TIMESTAMPTZ.

Syntax
QUARTER (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters
d Is the DATE, VARCHAR, TIMESTAMP, or TIMESTAMP TZ input value.
Example
=> SELECT QUARTER (TIMESTAMP 'sep 22, 2011 12:34");
QUARTER
3

-221-

SQL Reference Manual

(1 row)

ROUND [Date/Time]
Rounds a TIMESTAMP, TIMESTAMPTZ, or DATE. The return value is of type TIMESTAMP.

Behavior Type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax

ROUND ([TIMESTAMP | DATE] , format)

Parameters

TIMESTAMP | DATE |[[s the TIMESTAMP or DATE input value.

format Is a string constant that selects the precision to which
truncate the input value. Valid values for format are:

Precision Valid values

Century CC, SCcC

Year SYYY, YYYY, YEAR, YYY, YY,Y
ISO Year IYYY, IYY, IY, |

Quarter Q

Month MONTH, MON, MM, RM

Same day of the WW
week as the first
day of the year

Same day of the W
week as the first

day of the ISO

year

Same day ofthe W
week as the first
day of the month

Day DDD, DD, J
Starting day of DAY, DY, D

the week

Hour HH, HH12, HH24
Minute MI

Second SS

Examples

-222-

SQL Functions

=> SELECT ROUND (TIMESTAMP 'sep 22, 2011 12:34:00', 'dy'):;
ROUND

2011-09-18 00:00:00
(1 row)

SECOND

Returns an INTEGER representing the second portion of the input value. The input value can be of
type VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL.

Syntax
SECOND (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters
d Is the VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL input
value.
Examples
=> SELECT SECOND ('23:34:03.456789");
SECOND
3
(1 row)
=> SELECT SECOND (TIMESTAMP 'sep 22, 2011 12:34'");
SECOND
0
(1 row)
=> SELECT SECOND (INTERVAL '35 12:34:03.456789"');
SECOND
3
(1 row)

STATEMENT _TIMESTAMP

Is similar to TRANSACTION_TIMESTAMP (page 235). It returns a value of type TIMESTAMP
WITH TIME ZONE representing the start of the current statement

Behavior Type
Stable

-223-

SQL Reference Manual

Syntax

STATEMENT TIMESTAMP ()

Notes

This function returns the start time of the current statement; the value does not change during the
statement. The intent is to allow a single statement to have a consistent notion of the "current”
time, so that multiple modifications within the same statement bear the same timestamp.
Examples

SELECT STATEMENT TIMESTAMP () ;
STATEMENT TIMESTAMP

2010-04-01 15:40:42.223736-04
(1 row)

See Also
CLOCK_TIMESTAMP (page 189)
TRANSACTION_TIMESTAMP (page 235)

SYSDATE

Returns the current system date and time as a TIMESTAMP value.

Behavior Type
Stable

Syntax

SYSDATE () ;

Notes

e SYSDATE is a stable function (called once per statement) that requires no arguments.
Parentheses are optional.

e This function uses the date and time supplied by the operating system on the server to which
you are connected, which must be the same across all servers.

e In implementation, SYSDATE converts STATEMENT_TIMESTAMP (page 223) from
TIMESTAMPTZto TIMESTAMP.
e This function is identical to GETDATE() (page 210).

Examples

=> SELECT SYSDATE () ;
sysdate

2011-03-07 13:22:28.295802
(1 row)

-224-

SQL Functions

See Also
Date/Time Expressions (page 48)

TIME_SLICE

Aggregates data by different fixed-time intervals and returns a rounded-up input TIMESTAMP
value to a value that corresponds with the start or end of the time slice interval.

Given an input TIMESTAMP value, such as '2000-10-28 00:00:01', the start time of a 3-second
time slice interval is '2000-10-28 00:00:00', and the end time of the same time slice is '2000-10-28
00:00:03'.

Behavior Type

Immutable
Syntax
TIME SLICE (expression, slice length,
[time unit = 'SECOND'],
[start or end = 'START'])
Parameters
expression Is evaluated on each row.

Can be either a column of type TIMESTAMP or a (string) constant that can
be parsed into a TIMESTAMP value, such as '2004-10-19 10:23:54".

slice length Is the length of the slice specified in integers. Input must be a positive integer.

time unit Is the time unit of the slice with a default of SECOND.

Domain of possible values: { HOUR, MINUTE, SECOND, MILLISECOND,
MICROSECOND }.

start or_end Indicates whether the returned value corresponds to the start or end time of
the time slice interval. The default is START.

Domain of possible values: { START, END }.

Notes

e The returned value's data type is TIMESTAMP.

e The corresponding SQL data type for TIMESTAMP is TIMESTAMP WITHOUT TIME ZONE.
Vertica supports TIMESTAMP for TIME_SLICE instead of DATE and TIME data types.

e TIME_SLICE exhibits the following behavior around nulls:

= The system returns an error when any one of slice_length, time_unit, or start_or_end
parameters is null.

= When slice_length, time_unit, and start_or_end contain legal values, and expression is
null, the system returns a NULL value, instead of an error.

Usage

The following command returns the (default) start time of a 3-second time slice:

-225-

SQL Reference Manual

SELECT TIME_SLICE('2009—O9—19 00:00:01", 3);
time slice

2009-09-19 00:00:00
(1 row)

The following command returns the end time of a 3-second time slice:

SELECT TIME_SLICE('2009—O9—19 00:00:01', 3, 'SECOND', 'END');
time slice

2009-09-19 00:00:03
(1 row)

This command returns results in milliseconds, using a 3-second time slice:

SELECT TIME SLICE('2009-09-19 00:00:01', 3, 'ms');
time slice

2009-09-19 00:00:00.999

(1 row)
This command returns results in microseconds, using a 9-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3, 'us');
time slice

2009-09-19 00:00:00.999999
(1 row)

The next example uses a 3-second interval with an input value of '00:00:01'. To focus specifically
on seconds, the example omits date, though all values are implied as being part of the timestamp
with a given input of '00:00:01":

e '00:00:00' is the start of the 3-second time slice
e '00:00:03'is the end of the 3-second time slice.

e '00:00:03'is also the start of the second 3-second time slice. In time slice boundaries, the end
value of a time slice does not belong to that time slice; it starts the next one.

aa 03 06

| | | .
| 00, 01, 02 | 03, 04, 05 |

|] | I
T |

First slice of Second slice of

F-zeC. interval I-zeC. interval

When the time slice interval is not a factor of 60 seconds, such as a given slice length of 9 in the
following example, the slice does not always start or end on 00 seconds:

SELECT TIME SLICE('2009-02-14 20:13:01', 9);
time slice

2009-02-14 20:12:54
(1 row)

-226-

SQL Functions

This is expected behavior, as the following properties are true for all time slices:

e Equalinlength
e Consecutive (no gaps between them)
e Non-overlapping

Time slice Time slice

| 60 =ec |

o0 09 18 27 36 45 54

L N
\—Y—/I R — |_H]

S-zeC. imterval end of slice

To force the above example ('2009-02-14 20:13:01") to start at '2009-02-14 20:13:00', adjust the
output timestamp values so that the remainder of 54 counts up to 60:

SELECT TIME SLICE('2009-02-14 20:13:01', 9)+'6 seconds'::INTERVAL AS time;
time

2009-02-14 20:13:00
(1 row)

Alternatively, you could use a different slice length, which is divisible by 60, such as 5:

SELECT TIME SLICE('2009-02-14 20:13:01', 5);
time slice

2009-02-14 20:13:00
(1 row)

ATIMESTAMPZ value is implicitly cast to TIMESTAMP. For example, the following two
statements have the same effect.

SELECT TIME SLICE('2009-09-23 11:12:01'::timestamptz, 3);
TIME SLICE

2009-09-23 11:12:00

(1 row)

SELECT TIME SLICE('2009-09-23 11:12:01'::timestamptz::timestamp, 3);
TIME SLICE

2009-09-23 11:12:00
(1 row)

Examples

You can use the SQL analytic functions FIRST_VALUE and LAST _VALUE to find the first/last
price within each time slice group (set of rows belonging to the same time slice). This structure
could be useful if you want to sample input data by choosing one row from each time slice group.

SELECT date key, transaction time, sales dollar amount,
TIME SLICE(DATE '2000-01-01' + date key + transaction time, 3),
FIRST VALUE (sales dollar amount)

-227-

SQL Reference Manual

OVER (PARTITION BY TIME SLICE(DATE '2000-01-01' + date key + transaction_ time, 3)
ORDER BY DATE '2000-01-01' + date key + transaction time) AS first value
FROM store.store sales fact

LIMIT 20;
date key | transaction time | sales dollar amount | time slice | first value
e e
1| 00:41:16 \ 164 | 2000-01-02 00:41:15 | 164
1] 00:41:33 \ 310 | 2000-01-02 00:41:33 | 310
1 | 15:32:51 | 271 | 2000-01-02 15:32:51 | 271
1 | 15:33:15 | 419 | 2000-01-02 15:33:15 | 419
1 | 15:33:44 \ 193 | 2000-01-02 15:33:42 | 193
1] 16:36:29 \ 466 | 2000-01-02 16:36:27 | 466
1| 16:36:44 \ 250 | 2000-01-02 16:36:42 | 250
2] 03:11:28 \ 39 | 2000-01-03 03:11:27 | 39
3] 03:55:15 \ 375 | 2000-01-04 03:55:15 | 375
3] 11:58:05 \ 369 | 2000-01-04 11:58:03 | 369
3 | 11:58:24 | 174 | 2000-01-04 11:58:24 | 174
3] 11:58:52 \ 449 | 2000-01-04 11:58:51 | 449
3] 19:01:21 \ 201 | 2000-01-04 19:01:21 | 201
3] 22:15:05 \ 156 | 2000-01-04 22:15:03 | 156
4 | 13:36:57 | -125 | 2000-01-05 13:36:57 | -125
4 | 13:37:24 | -251 | 2000-01-05 13:37:24 | -251
4 | 13:37:54 | 353 | 2000-01-05 13:37:54 | 353
4 | 13:38:04 \ 426 | 2000-01-05 13:38:03 | 426
4] 13:38:31 \ 209 | 2000-01-05 13:38:30 | 209
5] 10:21:24 \ 488 | 2000-01-06 10:21:24 | 488
)

(20 rows

Notice how TIME_SLICE rounds the transaction time to the 3-second slice length.

The following example returns the last trading price (the last row ordered by TickTime) in each
3-second time slice partition:

SELECT DISTINCT TIME SLICE(TickTime, 3), LAST VALUE (price)
OVER (PARTITION BY TIME SLICE (TickTime, 3)
ORDER BY TickTime ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) ;

While the above example is the most intuitive way to express the query, Vertica does not currently
support the windowing clause and ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING.

Note: If you omit the windowing clause from an analytic clause, LAST_VALUE defaults to
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. Results can seem
non-intuitive, because instead of returning the value from the bottom of the current partition, the
function returns the bottom of the window, which continues to change along with the current
input row that is being processed.

You can rewrite the query so Vertica supports it. For example, below FIRST_VALUE is evaluated
once for each input record and the data is sorted by ascending values. Use SELECT DISTINCT to
remove the duplicates and return only one output record per TIME_SLICE:

SELECT DISTINCT TIME SLICE(TickTime, 3), FIRST VALUE (price)
OVER (PARTITION BY TIME SLICE (TickTime, 3)

ORDER BY TickTime ASC)

FROM tick store;

TIME SLICE | ?column?
_____________________ +__________
2009-09-21 00:00:06 | 20.00
2009-09-21 00:00:09 | 30.00
2009-09-21 00:00:00 | 10.00

-228-

SQL Functions

(3 rows)

The information output by the above query can also return MIN, MAX, and AVG of the trading
prices within each time slice. Note that the following example is shown for illustration purposes
only, as Vertica currently supports simple SQL aggregates only.

SELECT DISTINCT TIMEisLICE(TickTime, 3),
FIRST7VALUE(Price) OVER (PARTITION BY TIMEisLICE(TickTime, 3)
ORDER BY TickTime ASC),
MIN (price) OVER (PARTITION BY TIME_SLICE(TickTime, 3)),
MAX (price) OVER (PARTITION BY TIME_SLICE(TiCkTime, 3)),
AVG (price) OVER (PARTITION BY TIME_SLICE(TiCkTime, 3))
FROM tick store;

Rewrite query as follows:

SELECT fact.ts, fstvalP, minP, maxP, avgP

FROM
(SELECT DISTINCT TIME_SLICE(TiCkTime, 3) ts,
FIRST_VALUE(Price) OVER (PARTITION BY TIME_SLICE(TiCkTime, 3)
ORDER BY TickTime ASC) fstwvalP
FROM tick store) fact

JOIN
(SELECT TIME_SLICE(TiCkTime, 3) ts,
MIN (Price) minP, MAX (Price) maxP, AVG(Price) avgP
FROM tick store

GROUP BY TIMEisLICE(TickTime, 3)) dim

ON fact.ts=dim.ts;

ts | fstvalP | minP | maxP | avgP
————————————————————— e it e
2009-09-21 00:00:00 | 10.00 | 10.00 | 11.10 | 10.55
2009-09-21 00:00:06 | 20.00 | 20.00 | 21.10 | 20.55
2009-09-21 00:00:09 | 30.00 | 30.00 | 31.10 | 30.55

(3 rows)

The query first sort the records within each time slice by TickTime. It next picks the subset of
records with the largest TickTime value in that slice, and then it evaluates the minimum price on

that subset. If no multiple records exist with the same ts value in the input, the output is
deterministic. Otherwise, "finding the last value within each slice" is inherently nondeterministic.

See Also
Aggregate Functions (page 110)

FIRST_VALUE (page 146), LAST_VALUE (page 152), TIMESERIES Clause (page 761),
TS_FIRST_VALUE (page 471), and TS_LAST_VALUE (page 472)

Using Time Series Analytics and Using SQL Analytics in the Programmer's Guide

Using Time Zones with Vertica in the Administrator's Guide

-229-

SQL Reference Manual

TIMEOFDAY

Returns a text string representing the time of day.

Behavior Type
Volatile

Syntax
TIMEOFDAY ()
Notes

TIMEOFDAY () returns the wall-clock time and advances during transactions.

Examples

SELECT TIMEOFDAY () ;
TIMEOFDAY

Thu Apr 01 15:42:04.483766 2010 EDT
(1 row)

TIMESTAMPADD

Adds a specified number of intervals to a TIMESTAMP or TIMESTAMPTZ. The return value
depends on the input, as follows:

o [f starttimestamp is of TIMESTAMP, the return value is of type TIMESTAMP.
e If starttimestamp is of TIMESTAMPZ | the return value is of type TIMESTAMPTZ

Behavior Type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Syntax 1

TIMESTAMPADD (datepart ,interval, starttimestamp);

-230-

SQL Functions

Parameters

datepart (VARCHAR) Returns the number of specified datepart boundaries

between the specified startdate and enddate.

Can be an unquoted identifier, a quoted string, or an expression in
parentheses, which evaluates to the datepart as a character string.

The following table lists the valid datepart arguments.

datepart* abbreviation

YEAR YYr YYYY

QUARTER ad, 4

MONTH mm, m

DAY dd, d, dy,
dayofyear, vy

WEEK wk, ww

HOUR hh

MINUTE mi, n

SECOND ss, s

MILLISECOND ms

MICROSECOND mcs, us

* Each of these dateparts can be prefixed with SQL_TSI_ (i.e.
SQL_TSI_YEAR, SQL_TSI_DAY, and so forth.)

starttimestamp ||s the start TIMESTAMP or TIMESTAMPTZ for the calculation.

endtimestamp Is the end TIMESTAMP for the calculation.

Notes

TIMESTAMPDIFF() is an immutable function with a default type of TIMESTAMP. If
TIMESTAMPTZ is specified, the function is stable.

Vertica accepts statements written in any of the following forms:
TIMESTAMPDIFF (year, s, e);
TIMESTAMPDIFF ('year', s, e);

If you use an expression, the expression must be enclosed in parentheses:
DATEDIFF ((expression), s, €);

Starting arguments are not included in the count, but end arguments are included.

Example

=> SELECT TIMESTAMPADD (SQL TSI MONTH, 2, ('jan 1, 2006'));

timestampadd

-231-

SQL Reference Manual

2006-03-01 00:00:00-05
(1 row)

See Also
Date/Time Expressions (page 48)

TIMESTAMPDIFF

Returns the difference between two TIMESTAMP or TIMESTAMPT Z values, based on the
specified start and end arguments.

Behavior Type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax 1

TIMESTAMPDIFF (datepart , starttimestamp , endtimestamp);
Parameters

datepart (VARCHAR) Returns the number of specified datepart boundaries

between the specified startdate and enddate.

Can be an unquoted identifier, a quoted string, or an expression in
parentheses, which evaluates to the datepart as a character string.

The following table lists the valid datepart arguments.

datepart abbreviation
year YYr YYVY
quarter qa, g

month mm, m

day dd, d, dy, dayofyear, y
week wk, ww

hour hh

minute mi, n

second sSs, S
millisecond ms
microsecond mcs, us

starttimestamp ||s the start TIMES TAMP for the calculation.

endtimestamp Is the end TIMESTAMP for the calculation.

-232-

SQL Functions

Notes

e TIMESTAMPDIFF() is an immutable function with a default type of TIMESTAMP. If
TIMESTAMPT Z is specified, the function is stable.

e \ertica accepts statements written in any of the following forms:

TIMESTAMPDIFF (year, s, €);
TIMESTAMPDIFF ('year', s, e);

If you use an expression, the expression must be enclosed in parentheses:
TIMESTAMPDIFF ((expression), s, e);

e Starting arguments are not included in the count, but end arguments are included.

Example

=> SELECT TIMESTAMPDIFF ('YEAR', ('jan 1, 2006 12:34:00'), ('jan 1, 2008
12:34:00"));
timestampdiff

(1 row)

See Also
Date/Time Expressions (page 48)

TIMESTAMP_ROUND
Rounds a TIMESTAMP to a specified format. The return value is of type TIMESTAMP.

Behavior Type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax
TIMESTAMP ROUND (timestamp, format)

Parameters

timestamp Is the TIMESTAMP or TIMESTAMP TZ input value.

format Is a string constant that selects the precision to which truncate the
input value. Valid values for format are:

Precision Valid values

Century CC, SCC

Year SYYY, YYYY, YEAR, YYY, YY,Y
ISO Year IYYY, IYY, IY, |

Quarter Q

Month MONTH, MON, MM, RM

-233-

SQL Reference Manual

Same day of the ww
week as the first
day of the year

Same day of the w
week as the first
day of the ISO year

Same day of the w
week as the first
day of the month

Day DDD, DD, J
Starting day of the DAY, DY, D
week

Hour HH, HH12, HH24
Minute MI

Second SS

Examples

b=> SELECT TIMESTAMP ROUND ('sep 22, 2011 12:34:00', 'dy');
TIMESTAMP ROUND

2011-09-18 00:00:00
(1 row)

TIMESTAMP_TRUNC
Truncates a TIMESTAMP. The return value is of type TIMESTAMP.

Behavior Type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax

TIMESTAMP TRUNC (timestamp, format)

Parameters

timestamp Is the TIMESTAMP or TIMESTAMP TZ input value.

format Is a string constant that selects the precision to which truncate the
input value. Valid values for format are:

Precision Valid values

Century CC, SCC

Year SYYY, YYYY, YEAR, YYY, YY,Y
ISO Year IYYY, IYY, IY, |

-234-

SQL Functions

Quarter Q
Month MONTH, MON, MM, RM

Same day of the ww
week as the first
day of the year

Same day of the w
week as the first
day of the ISO year

Same day of the w
week as the first
day of the month

Day DDD, DD, J
Starting day of the DAY, DY, D
week

Hour HH, HH12, HH24
Minute MI

Second SS

Examples

=> SELECT TIMESTAMP TRUNC ('sep 22, 2011 12:34:00");
TIMESTAMP TRUNC

2011-09-22 00:00:00
(1 row)
=> SELECT TIMESTAMP TRUNC('sep 22, 2011 12:34:00', 'dy');
TIMESTAMP_TRUNC

2011-09-18 00:00:00
(1 row)

TRANSACTION_TIMESTAMP

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction. TRANSACTION_TIMESTAMP is equivalent to CURRENT_TIMESTAMP (page 191)
except that it does not accept a precision parameter.

Behavior Type
Stable

Syntax

TRANSACTION TIMESTAMP ()

-235-

SQL Reference Manual

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current”
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT TRANSACTION TIMESTAMP () ;
TRANSACTION TIMESTAMP

2010-04-01 15:31:12.144584-04
(1 row)

See Also
CLOCK_TIMESTAMP (page 189) and STATEMENT_TIMESTAMP (page 223)

TRUNC [Date/Time]
Truncates a TIMESTAMP, TIMESTAMPTZ, or DATE. The return value is of type TIMESTAMP.

Behavior Type
Immutable, except for TIMESTAMPT Z arguments where it is Stable.

Syntax

TRUNC ([TIMESTAMP | DATE] , format)

Parameters

TIMESTAMP | DATE |[|s the TIMESTAMP or DATE input value.

format Is a string constant that selects the precision to which
truncate the input value. Valid values for format are:

Precision Valid values

Century CC, SCC

Year SYYY, YYYY, YEAR, YYY, YY,Y
ISO Year IYYY, IYY, IY, |

Quarter Q

Month MONTH, MON, MM, RM

Same day of the WW
week as the first
day of the year

Same day of the W
week as the first

day of the ISO

year

-236-

SQL Functions

Same day ofthe W
week as the first
day of the month
Day DDD, DD, J
Starting day of DAY, DY, D
the week
Hour HH, HH12, HH24
Minute M
Second SS
Examples
=> SELECT TRUNC (TIMESTAMP 'sep 22, 2011 12:34:00', 'dy');
TRUNC

2011-09-18 00:00:00
(1 row)

WEEK

Returns an INTEGER representing the week of the year into which the input value falls. A week
starts on Sunday. January 1 is always in the first week of the year.

The input is of type VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ

Syntax
WEEK (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, TIMESTAMP TZ input value.

Example

=> SELECT WEEK (TIMESTAMP 'sep 22, 2011 12:34"');
WEEK

-237-

SQL Reference Manual

WEEK_ISO

Returns an INTEGER from 1 - 53 representing the week of the year into which the input value falls.
The return value is based on the ISO 8061 standard. The input is of VARCHAR, DATE,
TIMESTAMP, or TIMESTAMPTZ

The ISO week consists of 7 days starting on Monday and ending on Sunday. The first week of the
year is the week that contains January 4.

Syntax
WEEK ISO (d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ input value.

Example

The following examples illustrate the different results returned by WEEK_ISO. The first shows that
December 28, 2011 falls within week 52 of the ISO calendar:

=> SELECT WEEK ISO (TIMESTAMP 'Dec 28, 2011 10:00:00');
WEEK ISO

(1 row)

The second example shows WEEK_ISO results for January 1, 2012. Note that, since this date
falls on a Sunday, it falls within week 52 of the ISO year:

=> SELECT WEEK ISO (TIMESTAMP 'Jan 1, 2012 10:00:00");
WEEK ISO

(1 row)

The third example shows WEEK_ISO results for January 2, 2012, which occurs on a Monday. This
is the first week of the year that contains a Thursday and contains January 4. The function returns
week 1.

=> SELECT WEEK ISO (TIMESTAMP 'Jan 2, 2012 10:00:00");
WEEK ISO

The last example shows how to combine the DAYOFWEEK_ISO, WEEK_ISO, and YEAR_ISO
functions to find the ISO day of the week, week, and year:

-238-

SQL Functions

=> SELECT DAYOFWEEK ISO('Jan 1, 2000'), WEEK ISO('Jan 1,
2000') ,YEAR ISO('Janl,2000");
DAYOFWEEK ISO | WEEK ISO | YEAR ISO

(1 row)

See Also
YEAR_ISO (page 240)
DAYOFWEEK _ISO (page 204)

http://en.wikipedia.org/wiki/ISO 8601 (http://en.wikipedia.org/wiki/ISO_8601)

YEAR

Returns an INTEGER representing the year portion of the input value. The input value can be of
type VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL.

Syntax

YEAR(d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL input
value.

Example

=> SELECT YEAR ('6-9");
YEAR

(1 row)
=> SELECT YEAR (TIMESTAMP 'sep 22, 2011 12:34");
YEAR

=> SELECT YEAR (INTERVAL '2-35' year to month);
YEAR

-239-

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

SQL Reference Manual

YEAR_ISO

Returns an INTEGER representing the year portion of the input value. The return value is based
on the ISO 8061 standard. The input value can be of type VARCHAR, DATE, TIMESTAMP, or
TIMESTAMPTZ

The first week of the ISO year is the week that contains January 4.

Syntax

YEAR ISO(d)

Behavior type
Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters
d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMP TZ input value
Example
=> SELECT YEAR ISO (TIMESTAMP 'sep 22, 2011 12:34');
YEAR ISO
2011
(1 row)

The following example shows how to combine the DAYOFWEEK_ISO, WEEK_ISO, and
YEAR_ISO functions to find the ISO day of the week, week, and year:

=> SELECT DAYOFWEEK ISO('Jan 1, 2000'), WEEK ISO('Jan 1,
2000') ,YEAR ISO('Janl,2000");
DAYOFWEEK ISO | WEEK ISO | YEAR ISO

(1 row)

See also
WEEK _ISO (page 238)

DAYOFWEEK _ISO (page 204)
http://en.wikipedia.org/wiki/ISO 8601 (http://en.wikipedia.org/wiki/ISO_8601)

-240-

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

241

Formatting Functions

Formatting functions provide a powerful tool set for converting various data types (DATE/TIME,
INTEGER, FLOATING POINT) to formatted strings and for converting from formatted strings to
specific data types.

These functions all follow a common calling convention:

e The first argument is the value to be formatted.
e The second argument is a template that defines the output or input format.

Exception: The TO TIMESTAMP function can take a single double precision argument.
TO_BITSTRING
Returns a VARCHAR that represents the given VARBINARY value in bitstring format

Behavior Type

Immutable

Syntax

TO BITSTRING (expression)

Parameters

expression (VARCHAR) is the string to return.

Notes

VARCHAR TO_BITSTRING(VARBINARY) converts data from binary type to character type
(where the character representation is the bitstring format). This function is the inverse of
BITSTRING_TO_BINARY:

TO_BITSTRING (BITSTRING TO BINARY (x))
BITSTRING TO BINARY (TO BITSTRING (x))

X)
X)

Examples

SELECT TO BITSTRING('ab'::BINARY (2));
to bitstring

0110000101100010

(1 row)
SELECT TO BITSTRING(HEX TO BINARY ('0x10"));
to bitstring
00010000

(1 row)

-241-

SQL Reference Manual

SELECT TO_BITSTRING (HEX TO BINARY ('OxFO0'"));
to bitstring

11110000
(1 row)

See Also
BITCOUNT (page 316) and BITSTRING_TO_BINARY (page 316)

TO_CHAR

Converts various date/time and numeric values into text strings.

Behavior Type

Stable

Syntax

TO CHAR (expression [, pattern])

Parameters

expression (TIMESTAMP, INTERVAL, INTEGER, DOUBLE PRECISION)
specifies the value to convert.

pattern [Optional] (CHAR or VARCHAR) specifies an output pattern string
using the Template Patterns for Date/Time Formatting (page
248) and and/or Template Patterns for Numeric Formatting
(page 250).

Notes

e TO_CHAR(any) casts any type, except BINARY/VARBINARY, to VARCHAR.

The following example returns an error if you attempt to cast TO_CHAR to a binary data type:
=> SELECT TO CHAR('abc'::VARBINARY) ;
ERROR: cannot cast type varbinary to varchar

e Ordinary text is allowed in to_char templates and is output literally. You can put a substring in
double quotes to force it to be interpreted as literal text even if it contains pattern key words.
For example,in '"Hello Year "YYYY',the YYYY is replaced by the year data, but the
single Y in Year is not.

e The TO CHAR function's day-of-the-week numbering (see the 'D' template pattern (page
248)) is different from that of the EXTRACT (page 207) function.

e Given an INTERVAL type, TO_CHAR formats HH and HH12 as hours in a single day, while
HH24 can output hours exceeding a single day, for example, >24.

e To use a double guote character in the output, precede it with a double backslash. This is

necessary because the backslash already has a special meaning in a string constant. For
example: "\\"YYYY Month\\"'

e TO CHAR does not supportthe use of Vcombined with a decimal point. For example: 99.9V99
is not allowed.

-242-

SQL Functions

Examples

Expression Result

SELECT TO CHAR(CURRENT TIMESTAMP, 'Tuesday , 06 05:39:
'Day, DD HH12:MI:SS'); 18"

SELECT TO CHAR(CURRENT TIMESTAMP, 'Tuesday, 6 05:39:18"
'FMDay, FMDD HHlZ'MI:SS');

SELECT TO_CHAR(-0 '99.99"); ' -.10"

SELECT TO_ CHAR(-0 'FM9.99"); -1

SELECT TO CHAR(O. l, '0.9"); 0.1

SELECT TO_CHAR(lZ, '9990999.9"); ' 0012.0"

SELECT TO_CHAR(12, 'FM9990999.9'"); '0012."

SELECT TO_CHAR(485 '999"); ' 485"

SELECT TO_CHAR(-485, '999"); -485"

SELECT TO_CHAR (485, '9 9 9'); ''4 8 5!

SELECT TO CHAR(1485, '9,999'"); ' 1,485"

SELECT TO_CHAR (1485, '9G999'"); ''1 485"

SELECT TO_CHAR(148.5, '999.999"); ' 148.500'

SELECT TO_ CHAR(148.5, 'FM999.999'"); '148.5"

SELECT TO CHAR(148.5, 'FM3999.990'"); '148.500"

SELECT TO CHAR(148.5, '999D999'); ' 148,500'"

SELECT TO CHAR(3148.5, '9G999D999'"); ' 3 148,500

SELECT TO CHAR(-485, '999S"); '485-"

SELECT TO CHAR(-485, '999MI'); '485-"

SELECT TO CHAR (485, '999MI'); '485 !

SELECT TO CHAR(485, 'FM99SMI'); '485'"

SELECT TO_CHAR (485, 'PL999'"); '+485"

SELECT TO_CHAR (485, 'SG999'"); '+485"

SELECT TO_CHAR(-485, 'SG999"); '-485"

SELECT TO_CHAR(-485, '9SG99"); '4-85"

SELECT TO_CHAR(-485, '999PR'"); '<485>"

SELECT TO_CHAR (485, 'L999'); 'DM 485

SELECT TO_CHAR (485, 'RN'); ! CDLXXXV'
SELECT TO_CHAR(485 '"FMRN') ; 'CDLXXXV'

SELECT TO_CHAR(5 '"FMRN'") ; 'V

SELECT TO_CHAR(482 '999th"); ' 482nd’

SELECT TO_CHAR (485, '"Good number:"999'); 'Good number: 485
SELECT T07CHAR(485 8, '""Pre:"999" Post:" .999"); '"Pre: 485 Post: .800'
SELECT TO_CHAR(12, '99V999'); ' 12000°"

SELECT TO_CHAR(lZ 4, '99v999"); ' 12400'

SELECT TO_CHAR(12.45, '99V9'"); ' 125"

SELECT TO_CHAR(-1234.567); -1234.567

SELECT TO_CHAR('1999-12-25"'::DATE); 1999-12-25

SELECT TO_CHAR('1999-12-25 11:31'::TIMESTAMP) ; 1999-12-25 11:31:00
SELECT TO_CHAR('1999-12-25 11:31 EST'::TIMESTAMPTZ); 1999-12-25 11:31:00-05
SELECT TO_CHAR('3 days 1000.333 secs'::INTERVAL); 3 days 00:16:40.333
TO DATE

Converts a string value to a DATE type.

-243-

SQL Reference Manual

Behavior Type
Stable
Syntax

TO DATE (expression , pattern)

Parameters

expression (CHAR or VARCHAR) specifies the value to convert

pattern (CHAR or VARCHAR) specifies an output pattern string using the
Template Patterns for Date/Time Formatting (page 248) and/or
Template Patterns for Numeric Formatting (page 250).

Notes

e To use a double guote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For
example: "\\"YYYY Month\\"'

e TO_TIMESTAMP and TO_DATE skip multiple blank spaces in the input string if the FX option
is not used. FX must be specified as the first item in the template. For example:

* For example TO TIMESTAMP ('2000 JUN', 'YYYY MON') iscorrect.

* TO TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because
TO_TIMESTAMP expects one space only.

e The YYYY conversion from string to TIMESTAMP or DATE has a restriction if you use a year
with more than four digits. You must use a non-digit character or template after YYYY,
otherwise the year is always interpreted as four digits. For example (with the year 20000):

TO DATE('200001131', 'YYYYMMDD') is interpreted as a four-digit year

Instead, use a non-digit separator after the year, such as TO DATE('20000-1131",
'YYYY-MMDD') or TO_ DATE ('20000Nov31', 'YYYYMonDD').

¢ In conversions from string to TIMESTAMP or DATE, the CC field is ignored if there is a YYY,
YYYY or Y,YYY field. If CCis used with YY or Y thenthe year is computed as (CC-1)*100+YY.
Examples

SELECT TO_DATE('1l3 Feb 2000', 'DD Mon YYYY');
to _date

2000-02-13
(1 row)

See Also
Template Pattern Modifiers for Date/Time Formatting (page 249)

TO_HEX
Returns a VARCHAR or VARBINARY representing the hexadecimal equivalent of a number.

-244-

SQL Functions

Behavior Type

Immutable

Syntax

TO_HEX (number)

Parameters
number (INTEGER) is the number to convert to hexadecimal
Notes

VARCHAR TO_HEX(INTEGER) and VARCHAR TO_HEX(VARBINARY) are similar. The function
converts data from binary type to character type (where the character representation is in
hexadecimal format). This function is the inverse of HEX_TO_BINARY.

TO HEX (HEX TO BINARY (x)) = x).
HEX_ TO BINARY (TO HEX (x)) = x).
Examples

SELECT TO_HEX(123456789);
to _hex

75bcdl5
(1 row)

For VARBINARY inputs, the returned value is not preceded by "0x". For example:

SELECT TO_HEX('ab'::binary(2));
to hex

TO_TIMESTAMP
Converts a string value or a UNIX/POSIX epoch value to a TIMESTAMP WITH TIME ZONE type.

Behavior Type
Immutable if single argument form, Stable otherwise.

Syntax

TO TIMESTAMP (expression, pattern)
TO TIMESTAMP (unix-epoch)

Parameters

expression (CHAR or VARCHAR) is the string to convert

pattern (CHAR or VARCHAR) specifies an output pattern string using the
Template Patterns for Date/Time Formatting (page 248) and/or

-245-

SQL Reference Manual

Template Patterns for Numeric Formatting (page 250).

unix-epoch (DOUBLE PRECISION) specifies some number of seconds

elapsed since midnight UTC of January 1, 1970, not counting leap
seconds. INTEGER Vvalues are implicitly castto DOUBLE

PRECISION.

Notes

For more information about UNIX/POSIX time, see Wikipedia
http://en.wikipedia.org/wiki/Unix_time.
Millisecond (MS) and microsecond (US) values in a conversion from string to TIMESTAMP are
used as part of the seconds after the decimal point. For example TO_TIMESTAMP('12:3',
'SS:MS') is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds.
This means for the format SS:MS, the input values 12:3, 12:30, and 12:300 specify the same
number of milliseconds. To get three milliseconds, use 12:003, which the conversion counts as
12 + 0.003 = 12.003 seconds.
Here is a more complex example: TO_TIMESTAMP('15:12:02.020.001230",
'HH:MI:SS.MS.US") is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.
To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For
example: "\\"YYYY Month\\"'
TZ/tz are not supported patterns for the TO_TIMESTAMP function; for example, the following
command returns an error:
SELECT TO TIMESTAMP ('01-01-01 01:01:01+03:00', 'DD-MM-YY

HH24 :MI:SSTZ');
ERROR: "TZ"/"tz" not supported
TO_TIMESTAMP and TO_DATE skip multiple blank spaces in the input string if the FX option
is not used. FX must be specified as the first item in the template. For example:

* For example TO TIMESTAMP ('2000 JUN', 'YYYY MON') iscorrect.
* TO TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because
TO_TIMESTAMP expects one space only.

The YYYY conversion from string to TIMESTAMP or DATE has a restriction if you use a year
with more than four digits. You must use a non-digit character or template after YYYY,
otherwise the year is always interpreted as four digits. For example (with the year 20000):

TO DATE('200001131', 'YYYYMMDD') is interpreted as a four-digit year
Instead, use a non-digit separator after the year, such as TO DATE('20000-1131",
"YYYY-MMDD') or TO DATE('20000Nov31', 'YYYYMonDD').

In conversions from string to TIMESTAMP or DATE, the CC field is ignored if there is a YYY,
YYYY or Y,YYY field. If CCis used with YY or Y then the year is computed as (CC-1)*100+YY.

Examples

=> SELECT TO TIMESTAMP('l3 Feb 2009', 'DD Mon YYYY');

2009-02-13 00:00:00-05

to timestamp

-246-

http://en.wikipedia.org/wiki/Unix_time

SQL Functions

(1 row)
=> SELECT TO TIMESTAMP (200120400);
to timestamp

1976-05-05 01:00:00-04
(1 row)

See Also
Template Pattern Modifiers for Date/Time Formatting (page 249)

TO _NUMBER
Converts a string value to DOUBLE PRECISION.

Behavior Type
Stable

Syntax

TO NUMBER (expression, [pattern])

Parameters

expression (CHAR or VARCHAR) specifies the string to convert.

pattern (CHAR or VARCHAR) Optional parameter specifies an output
pattern string using the Template Patterns for Date/Time
Formatting (page 248) and/or Template Patterns for Numeric
Formatting (page 250). If omitted, function returns a floating point.

Notes

To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For

example: "\\"YYYY Month\\"'

Examples
SELECT TO_CHAR (2009, 'rn'), TO NUMBER('mmix', 'rn');
to char | to number
_______ e
mmix | 2009
(1 row)

It the pattern parameter is omitted, the function returns a floating point.

SELECT TO_NUMBER('—123.456e—01');
to number

-12.3456

-247-

SQL Reference Manual

Template Patterns for Date/Time Formatting

In an output template string (for TO CHAR), there are certain patterns that are recognized and
replaced with appropriately-formatted data from the value to be formatted. Any text that is not a
template pattern is copied verbatim. Similarly, in an input template string (for anything other than
TO CHAR), template patterns identify the parts of the input data string to be looked at and the
values to be found there.

Note: Vertica uses the ISO 8601:2004 style for date/time fields in Vertica * . 1og files. For
example,
2008-09-16 14:40:59.123 TM Moveout:0x2aaaac002180 [Txn] <INFO>

Certain modifiers can be applied to any template pattern to alter its behavior as described in
Template Pattern Modifiers for Date/Time Formatting (page 249).

Pattern Description

HH Hour of day (00-23)

HH12 Hour of day (01-12)

HH24 Hour of day (00-23)

MI Minute (00-59)

SS Second (00-59)

MS Millisecond (000-999)

us Microsecond (000000-999999)
SSSS Seconds past midnight (0-86399)

AM or A.M. or PM or P.M. |Meridian indicator (uppercase)

am or a.m. or pm or p.m. |Meridian indicator (lowercase)

Y, YYY Year (4 and more digits) with comma
YYYY Year (4 and more digits)

YYYy Last 3 digits of year

YY Last 2 digits of year

Y Last digit of year

IYyy ISO year (4 and more digits)

Iyy Last 3 digits of ISO year

Iy Last 2 digits of ISO year

I Last digits of ISO year

BC or B.C. or AD or A.D. [Eraindicator (uppercase)

bc or b.c. or ad or a.d. |Eraindicator (lowercase)

MONTH Full uppercase month name (blank-padded to 9 chars)

-248-

SQL Functions

Month Full mixed-case month name (blank-padded to 9 chars)
month Full lowercase month name (blank -padded to 9 chars)
MON Abbreviated uppercase month name (3 chars)

Mon Abbreviated mixed-case month name (3 chars)

mon Abbreviated lowercase month name (3 chars)

MM Month number (01-12)

DAY Full uppercase day name (blank-padded to 9 chars)
Day Full mixed-case day name (blank-padded to 9 chars)
day full lowercase day name (blank-padded to 9 chars)

DY Abbreviated uppercase day name (3 chars)

Dy Abbreviated mixed-case day name (3 chars)

dy Abbreviated lowercase day name (3 chars)

DDD Day of year (001-366)

DD Day of month (01-31) for TIMES TAMP

Note: For INTERVAL, DD is day of year (001-366) because day of
month is undefined.

D Day of week (1-7; Sunday is 1)

W Week of month (1-5) (The first week starts on the first day of the
month.)

W Week number of year (1-53) (The first week starts on the first day of
the year.)

Iw ISO week number of year (The first Thursday of the new year is in
week 1.)

cC Century (2 digits)

J Julian Day (days since January 1, 4712 BC)

o) Quarter

RM Month in Roman numerals (I-XII; I=January) (uppercase)

rm Month in Roman numerals (i-xii; i=January) (lowercase)

TZ Time-zone name (uppercase)

tz Time-zone name (lowercase)

Template Pattern Modifiers for Date/Time Formatting

Certain modifiers can be applied to any template pattern to alter its behavior. For example,
FMMonth is the Month pattern with the FM modifier.

-249-

SQL Reference Manual

Modifier Description

AM Time is before 12:00

AT Ignored

JULIAN, JD, J Next field is Julian Day

FM prefix Fill mode (suppress padding blanks and zeros)

For example: FMMonth

Note: The FM modifier suppresses leading zeros and trailing blanks

that would otherwise be added to make the output of a pattern fixed
width.

FX prefix Fixed format global option
For example: FX Month DD Day

ON Ignored

PM Time is on or after 12:00

T Next field is time

TH suffix Uppercase ordinal number suffix

For example: DDTH

th suffix Lowercase ordinal number suffix
For example: DDth

TM prefix Translation mode (print localized day and month names based on
Ic_messages). For example: TMMonth

Template Patterns for Numeric Formatting

Pattern Description

9 Value with the specified number of digits
0 Value with leading zeros

. (period) Decimal point

, (comma) | Group (thousand) separator

PR Negative value in angle brackets

S Sign anchored to number (uses locale)

L Currency symbol (uses locale)

D Decimal point (uses locale)

G Group separator (uses locale)

MI Minus sign in specified position (if number < 0)

-250-

SQL Functions

PL Plus sign in specified position (if number > 0)
SG Plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)
TH Or th Ordinal number suffix

\Y Shift specified number of digits (see notes)
EEEE Scientific notation (not implemented yet)
Usage

e Asign formatted using SG, PL, or Mlis not anchored to the number; for example:
» TO_CHAR(-12,'S9999') produces ' -12'
» TO_CHAR(-12, 'MI9999') produces '- 12'

e Oresults in a value with the same number of digits as there are 9s. If a digit is not available it
outputs a space.
e TH does not convert values less than zero and does not convert fractional numbers.

o V effectively multiplies the input values by 10”n, where n is the number of digits following V.
TO_CHAR does not support the use of V combined with a decimal point. For example:
99.9V99 is not allowed.

Geospatial Package SQL Functions

The Vertica Geospatial package contains a suite of geospatial SQL functions you can install to
report on and analyze geographic location data.

Contents of the Geospatial package
When you installed Vertica, the RPM placed the Geospatial package files here:
/opt/vertica/packages/geospatial

This directory contains these files:

install.sh Installs the Geospatial package.

readme. txt Contains instructions for installing the package.

This directory also contains these directories:

/src Contains this files

= geospatial.sqgl—This file contains all of the
functions that will be installed with the package.The file
describes the calculations used for each, and provides
examples. This file also contains links to helpful sites
you can visit for more information about standards and
calculations.

/examples Contains this file:

-251-

SQL Reference Manual

= regions_demo.sql--This file is a demo, intended to

illustrate a simple use case: determine the New England
state in which a given point lies.

Using Geospatial Package SQL Functions

For high-level descriptions of all of the functions included in the package, see Geospatial SQL
Functions (page 252). For more detailed information about each function and for links to other
useful information, see /opt/vertica/packages/geospatial/src/geospatial.sql.

Using built-in Vertica functions for Geospatial analysis

Four mathematical functions, automatically installed with Vertica, let you perform geospatial
operations:

o DEGREES (page 283)

e DISTANCE (page 284)
e DISTANCEYV (page 285)
e RADIANS (page 292)

These functions are not part of the Geospatial package, but are built-in with Vertica.

Geospatial SQL Functions

With the Geospatial package, Vertica provides SQL functions that let you find geographic
constants you can use in your calculations and analysis. These functions appear in the file
/opt/vertica/packages/geospatial/src/geospatial.sql.

You can use these functions as they are supplied; you can also edit the geospatial.sql file to
change the calculations according to your needs. If you do modify these, be sure to save a copy of
your changes in a private location so that your changes are not lost if you upgrade your Vertica
installation. Note that an upgrade will not overwrite any functions already loaded in your database;
only the .sql file containing the function definitions will be overwritten.

These functions measure distances in kilometers and angles in fractional degrees, unless stated
otherwise.

Of the several possible definitions of latitude, the geodetic latitude is most commonly used, and
this is what is used in the Vertica Geospatial package. Latitude goes from +90 degrees at the
North Pole to -90 at the South Pole. Longitude O is near Greenwich, England. It increases going
east to +180 degrees, and decreases going west to -180 degrees. True bearings are measured
clockwise from north. For more information, see: http://en.wikipedia.org/wiki/L atitude
(http://fen.wikipedia.org/wiki/Latitude)

WGS-84 SQL Functions

The following functions return constants determined by the World Geodetic System (WGS)
standard, WGS-84.

e WGS84 a() (page 269)
e WGS84 b() (page 269)

-252-

http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Latitude

SQL Functions

e WGS84 _e2() (page 270)
o WGS84 f() (page 270)
e WGS84_if() (page 271)

Earth Radius, Radius of Curvature, and Bearing SQL Functions

These functions return the earth's radius, radius of curvature, and bearing values.

e RADIUS r(lat) (page 265)

o WGS84 ri() (page 271)

e RADIUS_SI() (page 268)

e RADIUS_M(lat) (page 264)

e RADIUS N(lat) (page 265)

e RADIUS_Ra(lat)

e RADIUS_Rv(lat) (page 267)

e RADIUS Rc(lat, bearing) (page 266)

e BEARING (latl,lonl,lat2,lon2) (page 255)
e RADIUS_ LON(lat) (page 264)

ECEF Conversion SQL Functions

The following functions convert values to Earth-Centered, Earth Fixed (ECEF) values. The ECEF
system represents positions on X, Y, and Z axes in meters. (0,0,0) is the center of the earth; X
is toward latitude O, longitude O; Y is toward latitude O, longitude 90 degrees; Z is toward the North
Pole. The height above mean sea level (h) is also in meters.

e ECEF_x(lat,lon,h) (page 257)

e ECEF _y(lat,lon,h) (page 258)

e ECEF_z(lat,lon,h) (page 258)

e ECEF_chord(latl,lon1,hl,lat2,lon2,h2) (page 257)
e CHORD_TO_ARC(chord) (page 255)

Bounding Box SQL Functions

These functions determine whether points are within a bounding box, a rectangular area whose
edges are latitude and longitude lines. Bounding box methods allow you to narrow your focus, and
work best on Vertica projections that are sorted by latitude, or by region (such as State) and then
by latitude. These methods also work on projections sorted by longitude.

e BB_WITHIN (lat,lon, llat, llon,ulat, rlon) (page 254)
e LAT_WITHIN (lat,lat0,d) (page 260)

e LON_WITHIN (lon,lat0,lon0,d) (page 262)

e LL_WITHIN (lat,lon, latO, lon0,d) (page 261)

e DWITHIN (lat,lon,lat0,lon0, d) (page 256)

e LLD WITHINN(lat,lon,lat0,lon0, d) (page 262)

e ISLEFT (x0,y0, x1,y1,x2,y2) (page 259)

¢ RAYCROSSING (x0y0, x1y1, x2,y2) (page 268)

-253-

SQL Reference Manual

Miles/Kilometer Conversion SQL Functions

These functions convert miles to kilometers and kilometers to miles.

e MILES2KM (miles) (page 263)
e KM2MILES (km) (page 260)

BB_WITHIN

Determines whether a point (lat, lon) falls within a bounding box defined by its lower-left and

upper-right corners. The return value has the type BOOLEAN.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

BB WITHIN (Ilat,lon, 1llat, llon,ulat, rlon)

Parameters

lat A value of type DOUBLE PRECISION indicating the latitude of a
given point.

lon A value of type DOUBLE PRECISION indicating the longitude of a
given point.

llat A value of type DOUBLE PRECISION indicating the latitude used
in defining the lower left corner of the bounding box.

1lon A value of type DOUBLE PRECISION indicating the longitude
used in defining the lower left corner of the bounding box.

ulat A value of type DOUBLE PRECISION indicating the latitude used
in defining the upper right corner of the bounding box.

rlon A value of type DOUBLE PRECISION indicating the longitude
used in defining the upper right corner of the bounding box.

Example

=> SELECT BB WITHIN(14,30,23.0,45,13,37);

BB WITHIN
f
(1 row)

-254-

SQL Functions

BEARING

Returns the approximate bearing from a starting point to an ending point, in degrees. It assumes a
flat earth and is useful only for short distances. The return value has the type DOUBLE
PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type
Immutable

Syntax

BEARING (latl,lonl,lat2,l1onZ2)

Parameters
latl A value of type DOUBLE PRECISION indicating latitude of the
starting point.
lonl A value of type DOUBLE PRECISION indicating longitude of the
starting point.
lat2 A value of type DOUBLE PRECISION indicating latitude of the
ending point.
lon2 A value of type DOUBLE PRECISION indicating longitude of the
ending point.
Example
=>SELECT BEARING(90,0,0,0);
BEARING
180
(1 row)

CHORD_TO_ARC

Returns the length of the arc (shortest flying distance) between the two points The return value
has the type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

CHORD_ TO_ARC (chord)

-255-

SQL Reference Manual

Parameters

chord A value of type DOUBLE PRECISION indicating chord length (in
meters)

Example

=>SELECT CHORD TO ARC (12000) ;
CHORD_TO_ARC

12000.0017738474
(1 row)

DWITHIN

Determines whether a point (lat,lon) is within a circle of radius d kilometers centered at a given
point (lat0,lon0). The return value has the type BOOLEAN.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable
Syntax
DWITHIN (lat, lon, 1at0, 1on0, d)
Parameters
lat A value of type DOUBLE PRECISION indicating a given latitude.
lon A value of type DOUBLE PRECISION indicating a given longitude.
lat0 A value of type DOUBLE PRECISION indicating the latitude of the
center point of a circle.
lon0 A value of type DOUBLE PRECISION indicating the longitude of
the center point of a circle.
d A value of type DOUBLE PRECISION indicating the radius of the
circle (in kilometers).
Example
=>SELECT DWITHIN(13.6,43.5,48.5,45.5,1500);
DWITHIN
f
(1 row)

-256-

SQL Functions

ECEF_CHORD

Converts the specified latitude, longitude, and height into an ECEF chord, measured in meters.
The return value has the type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

ECEF CHORD (latl,lonl,hl, latz, lonz, hZ2)

Parameters

lat A value oftype DOUBLE PRECISION indicating the latitude of one
end point of the line.

lonl A value of type DOUBLE PRECISION indicating the longitude of
one end point of the line.

hl A value of type DOUBLE PRECISION indicating the height above
sea level (in meters) of one end point of the line.

lat2 A value of type DOUBLE PRECISION indicating the latitude of one
end point of the line.

Ionz A value of type DOUBLE PRECISION indicating the longitude of
one end point of the line.

h2 A value of type DOUBLE PRECISION indicating the height of one
end point of the line.

Example

=> SELECT ECEF_ chord (-12,10.0,14,12,-10,17);
ECEF chord

3411479.93992789
(1 row)

ECEF x

Converts a specified latitude, longitude, and height into the ECEF x coordinate. The return value
has the type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

-257-

SQL Reference Manual

Syntax

ECEF x (lat,lon,h)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude.
lon A value of type DOUBLE PRECISION indicating longitude.
h A value of type DOUBLE PRECISION indicating height.
Example

=> SELECT ECEF x(-12,13.2,0);
ECEF x

6074803.56179976
(1 row)

ECEF y

Converts a specified latitude, longitude, and height into the ECEF y coordinate. The return value
has the type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

ECEF X (lat,lon,h)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude.
lon A value of type DOUBLE PRECISION indicating longitude.
h A value of type DOUBLE PRECISION indicating height.
Example

=> SELECT ECEF y(12.0,-14.2,12);
ECEF vy

-1530638.12327962
(1 row)

ECEF z

Converts a specified latitude, longitude, and height into the ECEF z coordinate. The return value
has the type DOUBLE PRECISION.

-258-

SQL Functions

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type
Immutable

Syntax

ECEF_Z (lat,lon,h)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude.
lon A value of type DOUBLE PRECISION indicating longitude.
h A value of type DOUBLE PRECISION indicating height.
Example

=> SELECT ECEF Z(12.0,-14.2,12);
ECEF 7

1317405.02616989
(1 row)

ISLEFT

Determines whether a point (X2, y2) is anywhere to the left of a directed line which goes though
point (x0,y0), then though point (x1,y1).The return value has the type BOOLEAN.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

ISLEFT (x0,y0, x1,yl1,x2,y2)

Parameters

x0 A value of type DOUBLE PRECISION indicating the latitude of the
first point through which the directed line passes.

v0 A value of type DOUBLE PRECISION indicating the longitude of
the the first point through which the directed line passes.

x1 A value of type DOUBLE PRECISION indicating the latitude of the
second point through which the directed line passes.

vl A value of type DOUBLE PRECISION indicating the longitude of
the the second point through which the directed line passes.

x2 A value of type DOUBLE PRECISION indicating the latitude of the

-259-

SQL Reference Manual

point whose position you are evaluating.

y2 A value of type DOUBLE PRECISION indicating the longitude of a
whos e position you are evaluating.

Example
=> SELECT ISLEFT(1,1,2,3,0,0);

ISLEFT

1

(1 row)

KM2MILES

Converts a value from kilometers to miles. The return value is of type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

KM2MILES (km)

Parameters

km A value of type DOUBLE PRECISION indicating the number of
kilometers you want to convert.

Example

=>SELECT KM2MILES (1.0);
KM2MILES

0.621371192237334
(1 row)

LAT_WITHIN

Determines whether a latitude (lat) is within d kilometers of a given latitude point (lat0),
independent of longitude. The return value has the type BOOLEAN.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

LAT WITHIN (l1at,lat0,d);

-260-

SQL Functions

Parameters

lat A value of type DOUBLE PRECISION indicating a given latitude.

lat0 A value of type DOUBLE PRECISION indicating the latitude of the
point to which you are comparing the first latitude.

d A value of type DOUBLE PRECISION indicating the number of
kilometers that determines the range you are evaluating.

Example

=>SELECT LAT WITHIN(12,14.0,1000);
LAT WITHIN

t
(1 row)
LL WITHIN

Determines whether a point (lat, lon) is within a bounding box whose sides are 2d kilometers long,
centered at a given point (lat0, lon0). The return value has the type BOOLEAN.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable
Syntax
LL WITHIN (Ilat,lon, latO, lon0,d);
Parameters
lat A value of type DOUBLE PRECISION indicating a given latitude.
lon A value of type DOUBLE PRECISION indicating a given longitude.
lat0 A value of type DOUBLE PRECISION indicating the latitude of the
center point of the bounding box.
lon0 A value of type DOUBLE PRECISION indicating the longitude of
the center point of the bounding box.
d A value of type DOUBLE PRECISION indicating the length of half
the side of the box.
Example
=> SELECT LL WITHIN(16,15,12,13.0,16);
LL WITHIN
f
(1 row)

-261-

SQL Reference Manual

LLD_WITHIN

Determines whether a point (lat,lon) is within a circle of radius d kilometers centered at a given
point (lat0,lon0). LLD_WITHIN is a faster, but less accurate version of DWITHIN (page 256). The
return value has the type BOOLEAN.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

DWITHIN (lat, lon, 1at0, 1on0, d)

Parameters

lat A value of type DOUBLE PRECISION indicating a given latitude.

lon A value of type DOUBLE PRECISION indicating a given longitude.

lat0 A value of type DOUBLE PRECISION indicating the latitude of the
center point of a circle.

lon0 A value of type DOUBLE PRECISION indicating the longitude of
the center point of a circle.

d A value of type DOUBLE PRECISION indicating the radius of the
circle (in kilometers).

Example

=>SELECT LLD WITHIN(13.6,43.5,48.5,45.5,1500);
LLD WITHIN

LON_WITHIN

Determines whether a longitude (lon) is within d kilometers of a given point (lat0, lon0). The
return value has the type BOOLEAN.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

-262-

SQL Functions

Behavior Type

Immutable

Syntax
lon within(lon,lat0,lon0, d)

Parameters

lon A value of type DOUBLE PRECISION indicating a given longitude.

lat0 A value of type DOUBLE PRECISION indicating the latitude of the
point to which you want to compare the lon value.

Ion0 A value of type DOUBLE PRECISION indicating the longitude of
the point to which you want to compare the lon value.

d A value of type DOUBLE PRECISION indicating the distance, in
kilometers, that defines your range.

Example

=> SELECT LON WITHIN(15,16,0,10);
LON WITHIN

MILES2KM
Converts a value from miles to kilometers. The return value is of type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

MILES2KM (miles)

Parameters

miles A value of type DOUBLE PRECISION indicating the number of
miles you want to convert.

Example

=> SELECT MILES2KM(1.0);
MILES2KM

1.609344
(1 row)

-263-

SQL Reference Manual

RADIUS_LON

Returns the radius of the circle of longitude at the given latitude. The return value has the type
DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

RADIUS LON (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the radius.

Example

=> SELECT RADIUS LON(-90);
RADIUS LON

3.9053535478748e-13
(1 row)

RADIUS_M

Returns the earth's radius of curvature along the meridian. The return value has the type DOUBLE
PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type
Immutable

Syntax
RADIUS M (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the radius of curvature.

Example

=> SELECT RADIUS M(-90);

-264-

SQL Functions

RADIUS M

6399.5936257585
(1 row)

RADIUS_N

Returns the earth's radius of curvature normal to the meridian. The return value has the type
DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

RADIUS N (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the radius of curvature.

Example

=> SELECT RADIUS N(-90);
RADIUS N

6399.59362575849
(1 row)

radius_r

Returns the WGS-84 radius of the earth (to the center of mass) at a given latitude. The return
value has the type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_R(lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the earth's radius.

-265-

SQL Reference Manual

Example

=> SELECT RADIUS_R(-90);
radius_R

6356.75231424518

RADIUS Ra

Returns the earth's average radius of curvature at the given latitude. This function is the geometric
mean of radius_M and radius_N. (RADIUS_Rv (page 267) is a faster approximation of this
function.)

The return value has the type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type
Immutable

Syntax

RADIUS Ra (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the radius of curvature.

Example

=> SELECT RADIUS Ra(-90);
RADIUS Ra

6399.59362575849
(1 row)

RADIUS_Rc

Returns the radius of curvature at a given bearing measured clockwise from north. The return
value has the type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

-266-

SQL Functions

Behavior Type
Immutable

Syntax
RADIUS_Rc(lat, bearing)

Parameters
lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the radius of curvature.
bearing A value of type DOUBLE PRECISION indicating a given bearing.
Example
=> SELECT RADIUS Rc(45,45);
RADIUS Rc

6378.09200754445
(1 row)

RADIUS_Rv

Returns the earth's average radius of curvature at the given latitude. This function is the geometric
mean of radius_M and radius_N. This function is a fast approximation of RADIUS_Ra. The
return value has the type DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type
Immutable

Syntax

RADIUS Rv (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the radius of curvature.

Example

=> SELECT RADIUS Rv (-90);
RADIUS Rv

6399.59362575849
(1 row)

-267-

SQL Reference Manual

RADIUS_SI

Returns the International System of Units (SI) radius based on the nautical mile. The return value
has the type NUMERIC.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.
Behavior Type

Immutable

Syntax

RADIUS SI ()

Example

=> SELECT RADIUS SI();
RADIUS SI

6366.70701949370750
(1 row)

RAYCROSSING

Determines whether a ray traveling to the right from point (x2,y2) intersects the directed line
segment that starts at point (x0,y0) and ends at point (x1,y1). If not, this function returns O; if so,
the function returns 1 if y1 is above yO0, but -1 if y1 is below y0.The return value has the type
DOUBLE PRECISION.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

Syntax

RAYCROSSING (x0,y0, x1,y1, x2,y2)

Parameters

x0 A value of type DOUBLE PRECISION indicating the latitude of the
starting point of the line segment.

y0 A value of type DOUBLE PRECISION indicating the longitude of
the starting point of the line segment

x1 A value of type DOUBLE PRECISION indicating the latitude of the
ending point of the line segment.

vl A value of type DOUBLE PRECISION indicating the longitude of

-268-

SQL Functions

the the ending point of the line segment.

x2 A value of type DOUBLE PRECISION indicating the latitude of the
point whose position you are evaluating.
y2 A value of type DOUBLE PRECISION indicating the longitude of
the point whose position you are evaluating.
Example
=> SELECT RAYCROSSING(1,1,2,3,0,0);
RAYCROSSING
0
(1 row)
=> SELECT RAYCROSSING(1,1,2,3,0,2);
RAYCROSSING
1
(1 row)
WGS84_a

Returns the length, in kilometers, of the earth's semi-major axis. The return value is of type
NUMERIC.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type
Immutable

Syntax
WGS84_a()

Example

=>SELECT WGS84 a();
wgs84 a

6378.137000
(1 row)

WGS84 b

Returns the WGS-84 semi-minor axis length value in kilometers. The return value is of type
NUMERIC.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type

Immutable

-269-

SQL Reference Manual

Syntax
WGS84 _b()

Example

=> SELECT WGS84 b();
WGS84 b

6356.75231424517950
(1 row)

WGS84 e2
Returns the WGS-84 eccentricity squared value. The return value is of type NUMERIC.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type
Immutable
Syntax
WGS84 e2 ()

Example

=> SELECT WGS84 e2();
WGS84 e2

.00669437999014131700
(1 row)

WGS84_f
Returns the WGS-84 flattening value. The return value is of type NUMERIC.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.

Behavior Type
Immutable

Syntax

WGS84_ £ ()

Example

=> SELECT WGS84 f();
WGS84 f

-270-

SQL Functions

.00335281066474748072
(1 row)
WGS84_if

Returns the WGS-84 inverse flattening value. The return value is of type NUMERIC.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.
Behavior Type

Immutable

Syntax
WGS84 _if()

Example

=> SELECT WGS84 if();
WGS84 if

298.257223563
(1 row)

WGS84 r1

Returns the International Union of Geodesy and Geophysics (IUGG) mean radius of the earth, in
kilometers. The return value is of type NUMERIC.

This function is available only if you install the Vertica Geospatial Package package. See
Geospatial Package SQL Functions (page 252) for information on installing the package.
Behavior Type

Immutable

Syntax
WGS84 rl ()

P\Example

=> SELECT WGS84 rl();
WGS84 rl

6371.00877141505983
(1 row)

IP Conversion Functions

IP functions perform conversion, calculation, and manipulation operations on IP, network, and
subnet addresses.

-271-

SQL Reference Manual

INET_ATON

Returns an integer that re presents the value of the address in host byte order, given the
dotted-quad representation of a network address as a string.

Behavior Type

Immutable

Syntax

INET ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes
The following syntax converts an IPv4 address represented as the string Ato an integer |.

INET_ATON trims any spaces from the right of A, calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html, and converts
the result from network byte order to host byte order using ntohl
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html.

INET ATON (VARCHAR A) -> INT8 I
If Ais NULL, too long, or inet_pton returns an error, the result is NULL.

Examples

The generated number is always in host byte order. In the following example, the number is
calculated as 209x256”3 + 207x256"2 + 224x256 + 40.

SELECT INET_ATON('209.207.224.40');
inet aton

3520061480

(1 row)

SELECT INET ATON('1.2.3.4"');
inet aton

16909060
(1 row)
SELECT TOiHEX(INETiATON('1.2.3.4'));
to _hex

1020304
(1 row)

See Also
INET_NTOA (page 273)

-272-

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html

SQL Functions

INET_NTOA

Returns the dotted-quad representation of the address as a VARCHAR, given a network address
as an integer in network byte order.

Behavior Type

Immutable

Syntax

INET NTOA (expression)

Parameters

expression (INTEGER) is the network address to convert.

Notes
The following syntax converts an IPv4 address represented as integer | to a string A.

INET_NTOA converts | from host byte order to network byte order using htonl
http://opengroup.org/onlinepubs/007908775/xns/htonl.html, and calls the Linux function
inet_ntop http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

INET NTOA (INT8 I) -> VARCHAR A

If 1is NULL, greater than 2732 or negative, the result is NULL.

Examples

SELECT INET_NTOA(16909060);
inet ntoa

SELECT INET NTOA (03021962);
inet ntoa

0.46.28.138
(1 row)

See Also
INET_ATON (page 272)

V6_ATON
Converts an IPv6 address represented as a character string to a binary string.

Behavior Type
Immutable

Syntax
V6 ATON (expression)

-273-

http://opengroup.org/onlinepubs/007908775/xns/htonl.html
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

SQL Reference Manual

Parameters

expression (VARCHAR) is the string to convert.

Notes

The following syntax converts an IPv6 address represented as the character string A to a binary
string B.

V6_ATON trims any spaces from the right of A and calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6 ATON (VARCHAR A) -> VARBINARY (16) B

If A has no colons it is prepended with "::ffff.". If Ais NULL, too long, or if inet_pton returns an error,
the result is NULL.

Examples

SELECT V6 ATON('2001:DB8::8:800:200C:417A");
v6 _aton

\N001\015\270\000\000\000\000\N0O00O\N010\010\000 \014Az
(1 row)
SELECT TO HEX (V6 ATON('2001:DB8::8:800:200C:417A"));
to_hex

20010db80000000000080800200c417a
(1 row)
SELECT V6 ATON('1.2.3.4");

\000\000\000\000N\N000N\NO0O0ONOOONOOONOOONOOON377\377\001\002\003\004
(1 row)
SELECT V6_ATON('::1.2.3.4');
v6_aton

\000\000\N000\N000N\N000NO0O0ONOOONOOONOOONOOONOOONOOONOOLI\O0O2\003\004
(1 row)

See Also
V6_NTOA (page 275)

-274-

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

SQL Functions

V6_NTOA

Converts an IPv6 address represented as varbinary to a character string.

Behavior Type

Immutable

Syntax

V6 NTOA (expression)

Parameters

expression (VARBINARY) is the binary string to convert

Notes
The following syntax converts an IPv6 address represented as VARBINARY B to a string A.

V6_NTOAT ight-pads B to 16 bytes with zeros, if necessary, and calls the Linux function inet_ntop
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6_NTOA(VARBINARY B) -> VARCHAR A
If B is NULL or longer than 16 bytes, the result is NULL.
Vertica automatically converts the form "::ffff:1.2.3.4' to '1.2.3.4".

Examples

SELECT V6 NTOA (' \001\015\270\000\000\000\000\000\010\010\000 \014Az");
v6 ntoa

2001:db8::8:800:200c:417a

(1 row)

SELECT V6_NTOA(V6_ATON('1.2.3.4'));
v6 ntoa

(1 row)

v6 ntoa

See Also
N6_ATON (page 273)

V6_SUBNETA

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a binary or
alphanumeric IPv6 address.

-275-

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

SQL Reference Manual

Behavior Type

Immutable

Syntax

V6 SUBNETA (expressionl, expressionZ2)

Parameters

expressionl (VARBINARY or VARCHAR) is the string to calculate.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax calculates a subnet address in CIDR format from a binary or varchar IPv6
address.

V6_SUBNETA masks a binary IPv6 address B so that the N leftmost bits form a subnet address,
while the remaining rightmost bits are cleared. It then converts to an alphanumeric IPv6 address,
appending a slash and N.

V6 SUBNETA (BINARY B, INT8 N) -> VARCHAR C

The following syntax calculates a subnet address in CIDR format from an alphanumeric IPv6
address.

V6 SUBNETA (VARCHAR A, INT8 N) -> V6 SUBNETA (V6 ATON(A), N) -> VARCHAR C

Examples

SELECT V6 _SUBNETA (V6 ATON('2001:db8::8:800:200c:417a'), 28);
v6_ subneta

2001:db0::/28
(1 row)

See Also
V6_SUBNETN (page 276)

V6_SUBNETN

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a varbinary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax

V6 SUBNETN (expressionl, expressionZ2)

-276-

SQL Functions

Parameters

expressionl (VARBINARY or VARCHAR or INTEGER) is the string
to calculate.

expressionZ (INTEGER) is the size of the subnet.

Notes

The following syntax masks a BINARY IPv6 address B so that the N left-most bits of S form a
subnet address, while the remaining right-most bits are cleared.

V6_SUBNETN right-pads B to 16 bytes with zeros, if necessary and masks B, preserving its N-bit
subnet prefix.

V6 SUBNETN (VARBINARY B, INT8 N) -> VARBINARY (16) S
If B is NULL or longer than 16 bytes, or if N is not between 0 and 128 inclusive, the result is NULL.

S = [B]/Nin Classless Inter-Domain Routing
http://len.wikipedia.org/wiki/Classless_Inter-Domain_Routing notation (CIDR notation).

The following syntax masks an alphanumeric IPv6 address A so that the N leftmost bits form a
subnet address, while the remaining rightmost bits are cleared.

V6 SUBNETN (VARCHAR A, INT8 N) -> V6 SUBNETN (V6 ATON(A), N) -> VARBINARY(16) S

Example

SELECT V6_SUBNETN (V6_ATON('2001:db8::8:800:200c:417a"'), 28);
v6_subnetn

\N001\015\260\000\000\000\000\000\000\000\000\0O00\000\000\00O

See Also
V6_SUBNETA (page 275)

V6_TYPE
Characterizes a binary or alphanumeric IPv6 address B as an integer type.

Behavior Type

Immutable

Syntax

V6 TYPE (expression)

Parameters

expression (VARBINARY or VARCHAR) is the type to convert.

-277-

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

SQL Reference Manual

Notes
V6_TYPE(VARBINARY B) returns INT8 T.
V6_TYPE(VARCHAR A) -> V6_TYPE(V6_ATON(A)) -> INT8 T

The IPVv6 types are defined in the Network Working Group's IP Version 6 Addressing
Architecture memo http://www.ietf.org/rfc/rfc4291.txt.

GLOBAL = 0 Global unicast addresses

LINKLOCAL = 1 Link-Local unicast (and Private-Use) addresses
LOOPBACK = 2 Loopback

UNSPECIFIED 3 Unspecified

MULTICAST 4 Multicast

IPv4-mapped and IPv4-compatible IPv6 addresses are also interpreted, as specified in IPv4
Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space.

e For IPv4, Private-Use is grouped with Link-Local.
e IfBis VARBINARY, itis right-padded to 16 bytes with zeros, if necessary.
e If Bis NULL or longer than 16 bytes, the result is NULL.

Details
IPv4 (either kind):
0.0.0.0/8 UNSPECIFIED
10.0.0.0/8 LINKLOCAL
127.0.0.0/8 LOOPBACK
169.254.0.0/16 LINKLOCAL
172.16.0.0/12 LINKLOCAL
192.168.0.0/16 LINKLOCAL
224.0.0.0/4 MULTICAST
others GLOBAL
IPV6:

::0/128 UNSPECIFIED
::1/128 LOOPBACK
fe80::/10 LINKLOCAL
£f£f00::/8 MULTICAST
others GLOBAL

Examples

SELECT V6 TYPE (V6 ATON('192.168.2.10'"));

v6_type

1

(1 row)

SELECT V6 TYPE (V6 ATON('2001:db8::8:800:200c:417a'));

v6_ type

0
(1 row)

-278-

http://www.ietf.org/rfc/rfc4291.txt
http://www.iana.org/assignments/ipv4-address-space

SQL Functions

See Also
INET_ATON (page 272)
IP Version 6 Addressing Architecture http://www.ietf.org/rfc/rfc4291.txt

IPv4 Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space

Mathematical Functions

Some of these functions are provided in multiple forms with different argument types. Except
where noted, any given form of a function returns the same data type as its argument. The

functions working with DOUBLE PRECISION (page 97) data could vary in accuracy and behavior in
boundary cases depending on the host system.

See Also

Template Patterns for Numeric Formatting (page 249)

ABS

Returns the absolute value of the argument. The return value has the same data type as the
argument..

Behavior Type
Immutable
Syntax

ABS (expression)

Parameters

expression Is a value of type INTEGER or DOUBLE PRECISION

Examples

SELECT ABS (-28.7);
abs

ACOS

Returns a DOUBLE PRECISION value representing the trigonometric inverse cosine of the
argument.

Behavior Type
Immutable

-279-

http://www.ietf.org/rfc/rfc4291.txt
http://www.iana.org/assignments/ipv4-address-space

SQL Reference Manual

Syntax

ACOS (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT ACOS (1);
acos

ASIN

Returns a DOUBLE PRECISION value representing the trigopnometric inverse sine of the
argument.

Behavior Type

Immutable

Syntax

ASIN (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT ASIN(1);
asin

1.5707963267949
(1 row)

ATAN

Returns a DOUBLE PRECISION value representing the trigonometric inverse tangent of the
argument.

Behavior Type

Immutable

Syntax

ATAN (expression)

-280-

SQL Functions

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT ATAN(1);
atan

0.785398163397448
(1 row)

ATANZ2

Returns a DOUBLE PRECISION value representing the trigonometric inverse tangent of the
arithmetic dividend of the arguments.

Behavior Type

Immutable

Syntax

ATAN2 (quotient, divisor)

Parameters
quotient Is an expression of type DOUBLE PRECISION representing the quotient
divisor Is an expression of type DOUBLE PRECISION representing the divisor
Example
SELECT ATAN2(2,1);

atan2

1.10714871779409
(1 row)

CBRT
Returns the cube root of the argument. The return value has the type DOUBLE PRECISION.

Behavior Type

Immutable

Syntax

CBRT (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

-281-

SQL Reference Manual

Examples

SELECT CBRT (27.0);
cbrt

CEILING (CEIL)

Rounds the returned value up to the next whole number. Any expression that contains even a
slight decimal is rounded up.

Behavior Type
Immutable

Syntax

CEILING (expression)
CEIL (expression)

Parameters

expression Is a value of type INTEGER or DOUBLE PRECISION

Notes
CEILING is the opposite of FLOOR (page 286), which rounds the returned value down:

=> SELECT CEIL(48.01) AS ceiling, FLOOR(48.01]) AS floor;
ceiling | floor

Examples

=> SELECT CEIL(-42.8);
CEIL

-42
(1 row)
SELECT CEIL(48.01);
CEIL

COS

Returns a DOUBLE PRECISION value representing the trigonometric cosine of the argument.

-282-

SQL Functions

Behavior Type

Immutable

Syntax

COS (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT COS(-1);
cos

0.54030230586814
(1 row)

COT

Returns a DOUBLE PRECISION value representing the trigonometric cotangent of the argument.

Behavior Type

Immutable

Syntax

COT (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT COT (1) ;
cot

0.642092615934331
(1 row)

DEGREES

Converts an expression from radians (page 292) to fractional degrees, or from degrees, minutes,
and seconds to fractional degrees. The return value has the type DOUBLE PRECISION.

Behavior Type
Immutable

Syntax

DEGREES (radians)

-283-

SQL Reference Manual

Syntax2

DEGREES (degrees, minutes, seconds)

Parameters

radians A unit of angular measure, 217 radians is equal to a full rotation.
degrees A unit of angular measure, equal to 1/360 of a full rotation.
minutes A unit of angular measurement, representing 1/60 of a degree.
seconds A unit of angular measurement, representing 1/60 of a minute.
Examples

SELECT DEGREES (0.5);
DEGREES

28.6478897565412
(1 row)

SELECT DEGREES(1,2,3);
DEGREES

1.03416666666667
(1 row)

DISTANCE

Returns the distance (in kilometers) between two points. You specify the latitude and longitude of
both the starting point and the ending point. You can also specify the radius of curvature for
greater accuracy when using an ellipsoidal model.

Behavior type
Immutable

Syntax

DISTANCE (latO, lonO, latl, lonl, radius of curvature)

Parameters

lat0 Specifies the latitude of the starting point.

Ion0 Specifies the longitude of the starting point.

latl Specifies the latitude of the ending point

lonl Specifies the longitude of the ending point.

radius_of Specifies the radius of the curvature of the earth at the midpoint

curvature between the starting and ending points. This parameter allows
for greater accuracy when using an ellipsoidal earth model. If
you do not specify this parameter, it defaults to the W GS-84
average rl radius, about 6371.009 km.

-284-

SQL Functions

Examples

This example finds the distance in kilometers for 1 degree of longitude at latitude 45 degrees,
assuming earth is spherical.

SELECT DISTANCE (45,0, 45,1);
distance

78.6262959272162
(1 row)

DISTANCEV

Returns the distance (in kilometers) between two points using the Vincenty formula. Because the
Vincenty formula includes the parameters of the WGS-84 ellipsoid model, you need not specify a
radius of curvature. You specify the latitude and longitude of both the starting point and the
ending point. This function is more accurate, but will be slower, than the DISTANCE function.

Behavior type

Immutable

Syntax

DISTANCEV (lat0, lon0O, latl, lonl);

Parameter

latO Specifies the latitude of the starting point.
lon0 Specifies the longitude of the starting point.
latl Specifies the latitude of the ending point
lonl Specifies the longitude of the ending point.
Examples

This example finds the distance in kilometers for 1 degree of longitude at latitude 45 degrees,
assuming earth is ellipsoidal.

SELECT DISTANCEV (45,0, 45,1);
distanceV

78.8463347095916
(1 row)

EXP

Returns the exponential function, e to the power of a number. The return value has the same data
type as the argument.

-285-

SQL Reference Manual

Behavior Type

Immutable

Syntax

EXP (exponent)

Parameters

exponent Is an expression of type INTEGER or DOUBLE PRECISION

Example

SELECT EXP(1.0);
exp

2.71828182845905
(1 row)

FLOOR

Rounds the returned value down to the next whole number. Any expression that contains even a
slight decimal is rounded down.

Behavior Type

Immutable

Syntax

FLOOR (expression)

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION.

Notes
FLOOR is the opposite of CEILING (page 282), which rounds the returned value up:

=> SELECT FLOOR(48.01) AS floor, CEIL(48.01) AS ceiling;

floor | ceiling
_______ +_________
48 | 49
(1 row)
Examples

=> SELECT FLOOR ((TIMESTAMP '2005-01-17 10:00' - TIMESTAMP '2005-01-01"') / INTERVAL '7');
floor

(1 row)
=> SELECT FLOOR(-42.8);

-286-

SQL Functions

(1 row)
=> SELECT FLOOR(42.8);
floor

42
(1 row)

Although the following example looks like an INTEGER, the number on the left is 249 as an
INTEGER, but the number on the right is a FLOAT:

=> SELECT 1<<49, FLOOR(1l << 49);
?column? \ floor
_________________ +_________________
562949953421312 | 562949953421312
(1 row)

Compare the above example to:
=> SELECT 1<<50, FLOOR(1 << 50);

?column? \ floor
__________________ +______________________

1125899906842624 | 1.12589990684262e+15
(1 row)

HASH

Calculates a hash value over its arguments, producing a value in the range 0 <= x < 2% (two to the
sixty-third power or 2763).

Behavior Type

Immutable

Syntax

HASH (expression [,... 1)

Parameters

expression Is an expression of any data type. For the purpose of hash segmentation,
each expression is a column reference (see "Column References" on
page 46).

Notes

e The HASH() function is used to provide projection segmentation over a set of nodes in a
cluster and takes up to 32 arguments, usually column names, and selects a specific node for
each row based on the values of the columns for that row. HASH (Col1, Col2).

e If your data is fairly regular and you want more even distribution than you get with HASH,
consider using MODULARHASH (page 290)() for project segmentation.

Examples

SELECT HASH (product price, product cost)

-287-

SQL Reference Manual

FROM product dimension
WHERE product price = 'I1l1';
hash

4157497907121511878
1799398249227328285
3250220637492749639
(3 rows)

See Also
MODULARHASH (page 290)

LN

Returns the natural logarithm of the argument. The return data type is the same as the argument.

Behavior Type
Immutable
Syntax

LN (expression)

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION

Examples

SELECT LN (2);
1n

0.693147180559945
(1 row)

LOG

Returns the logarithm to the specified base of the argument. The return data type is the same as
the argument.

Behavior Type

Immutable

Syntax

LOG ([base,] expression)

Parameters

base Specifies the base (default is base 10)

expression Is an expression of type INTEGER or DOUBLE PRECISION

-288-

SQL Functions

Examples

SELECT LOG (2.0, 64);
log

(1 row)
SELECT LOG(100) ;
log

MOD

Returns the remainder of a division operation. MOD is also called modulo.

Behavior Type

Immutable

Syntax

MOD (expressionl, expressionZ)

Parameters

expressionl Specifies the dividend (INTEGER, NUMERIC, or FLOAT)
expression2 Specifies the divisor (type same as dividend)

Notes

When computing mod(N, M), the following rules apply:

e Ifeither N or Mis the null value, then the result is the null value.
e If Mis zero, then an exception condition is raised: data exception — division by zero.

e Otherwise, the result is the unique exact numeric value R with scale O (zero) such that all of the
following are true:

* R has the same sign as N.
* The absolute value of R is less than the absolute value of M.
= N=M*K+ R for some exact numeric value K with scale 0 (zero).

Examples

SELECT MOD(9,4);
mod

(1 row)
SELECT MOD(10,3);
mod

-289-

SQL Reference Manual

(1 row)
SELECT MOD(-10,3);
mod

-1
(1 row)
SELECT MOD(-10,-3);
mod

(1 row)
SELECT MOD(10,-3);
mod

(1 row)

MOD (<float>, 0) gives an error:

=> SELECT MOD(6.2,0);
ERROR: numeric division by zero

MODULARHASH

Calculates a hash value over its arguments for the purpose of projection segmentation. In all other
uses, returns 0.

If you can hash segment your data using a column with a regular pattern, such as a sequential
unique identifier, MODULARHASH distributes the data more evenly than HASH, which distributes
data using a normal statistical distribution.

Behavior Type

Immutable

Syntax

MODULARHASH (expression [,... 1)

Parameters

expression Is acolumn reference (see "Column References" on page 46) of any
data type.

Notes

The MODULARHASH() function takes up to 32 arguments, usually column names, and selects a
specific node for each row based on the values of the columns for that row.

Examples

CREATE PROJECTION fact ts 2 (f price, f cid, £ tid, f cost, f date)
AS (SELECT price, cid, tid, cost, dwdate

FROM fact)

SEGMENTED BY MODULARHASH (dwdate)

ALL NODES OFFSET 2;

-290-

SQL Functions

See Also
HASH (page 287)

Pl

Returns the constant pi (IT), the ratio of any circle's circumference to its diameter in Euclidean
geometry The return type is DOUBLE PRECISION.

Behavior Type

Immutable

Syntax

PI()

Examples

SELECT PI();

3.14159265358979
(1 row)

POWER

Returns a DOUBLE PRECISION value representing one number raised to the power of another
number.

Behavior Type

Immutable

Syntax

POWER (expressionl, expressionZ2)

Parameters

expressionl Is an expression of type DOUBLE PRECISION that represents the
base

expression2 Is an expression of type DOUBLE PRECISION that represents the
exponent

Examples

SELECT POWER (9.0, 3.0);

power

729
(1 row)

-291-

SQL Reference Manual

RADIANS

Returns a DOUBLE PRECISION value representing an angle expressed in radians. You can
express the input angle in degrees (page 283), and optionally include minutes and seconds.

Behavior Type
Immutable

Syntax

RADIANS (degrees [, minutes, seconds])

Parameters

degrees A unit of angular measurement, representing 1/360 of a full
rotation.

minutes A unit of angular measurement, representing 1/60 of a degree.

seconds A unit of angular measurement, representing 1/60 of a minute.

Examples

SELECT RADIANS (45);
RADIANS

0.785398163397448
(1 row)

SELECT RADIANS (1,2,3);
RADIANS

0.018049613347708
(1 row)

RANDOM

Returns a uniformly-distributed random number x, where 0 <= x < 1.

Behavior Type

Volatile

Syntax
RANDOM ()

-292-

SQL Functions

Parameters

RANDOM has no arguments. Its result is a FLOATS data type (also called DOUBLE
PRECISION (page 97)).

Notes

Typical pseudo-random generators accept a seed, which is set to generate a reproducible
pseudo-random sequence. Vertica, however, distributes SQL processing over a cluster of nodes,
where each node generates its own independent random sequence.

Results depending on RANDOM are not reproducible because the work might be divided
differently across nodes. Therefore, Vertica automatically generates truly random seeds for each
node each time a request is executed and does not provide a mechanism for forcing a specific
seed.

Examples
In the following example, the result is a float, which is >= 0 and < 1.0:

SELECT RANDOM () ;
random

0.211625560652465
(1 row)

RANDOMINT

Returns a uniformly-distributed integer |, where 0 <= | < N, where N <= MAX_INT8. That is,
RANDOMINT(N) returns one of the N integers from O through N-1.

Behavior Type
Volatile

Syntax
RANDOMINT (N)
Example

In the following example, the result is an INT8, which is >= 0 and < N. In this case, INT8 is
randomly chosen from the set {0,1,2,3,4}.

SELECT RANDOMINT (5) ;
randomint

(1 row)

ROUND

Rounds avalue to a specified number of decimal places, retaining the original scale and precision.
Fractions greater than or equal to .5 are rounded up. Fractions less than .5 are rounded down
(truncated).

-293-

SQL Reference Manual

Behavior Type

Immutable

Syntax

ROUND (expression [, decimal-places])
Parameters

expression Is an expression of type NUMERIC.

decimal-places

If positive, specifies the number of decimal places to display to the right of the
decimal point; if negative, specifies the number of decimal places to display to the
left of the decimal point.

Notes

NUMERIC ROUND() returns NUMERIC, retaining the original scale and precision:

=> SELECT ROUND(3.5);

ROUND

4.0
(1 row)

The internal floating point representation used to compute the ROUND function causes the
fraction to be evaluated as 3.5, which is rounded up.

Examples

SELECT ROUND (2.0,
round

(1 row)

1.

0) FROM dual;

SELECT ROUND(12.345, 2.0);

round

SELECT ROUND(3.444444444444444);

ROUND

3.000000000000000
(1 row)

SELECT ROUND (3.14159, 3);

ROUND

3.14200
(1 row)

SELECT ROUND (1234567, -3);

round

1235000
(1 row)

-294-

SQL Functions

SELECT ROUND(3.4999, -1);
ROUND

(1 row)

SELECT employee last name, ROUND (annual salary,4) FROM
employee dimension;

employee last name | ROUND

Li \ 1880
Rodriguez \ 1704
Goldberg \ 2282
Meyer \ 1628
Pavlov \ 3168
McNulty \ 1516
Dobisz \ 3006
Pavlov \ 2142
Goldberg \ 2268
Pavlov | 1918
Robinson | 2366
SIGN

Returns a DOUBLE PRECISION value of -1, O, or 1 representing the arithmetic sign of the
argument.

Behavior Type
Immutable
Syntax

SIGN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Examples
SELECT SIGN(-8.4);

SIN

Returns a DOUBLE PRECISION value representing the trigonometric sine of the argument.

Behavior Type

Immutable

-295-

SQL Reference Manual

Syntax

SIN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Example

SELECT SIN(30 * 2 * 3.14159 / 360);
sin

0.499999616987256
(1 row)

SQRT

Returns a DOUBLE PRECISION value representing the arithmetic square root of the argument.

Behavior Type

Immutable

Syntax

SORT (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Examples

SELECT SOQRT (2) ;
sgrt

1.4142135623731
(1 row)

TAN

Returns a DOUBLE PRECISION value representing the trigonometric tangent of the argument.
Behavior Type

Immutable

Syntax

TAN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

-296-

SQL Functions

Example

SELECT TAN (30) ;
tan

-6.40533119664628
(1 row)

TRUNC

Returns a value representing the argument fully truncated (toward zero) or truncated to a specific
number of decimal places, retaining the original scale and precision.

Behavior Type

Immutable

Syntax

TRUNC (expression [, places]

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION that
represents the number to truncate

places Is an expression of type INTEGER that specifies the number of
decimal places to return

Notes

NUMERIC TRUNC() returns NUMERIC, retaining the original scale and precision:

=> SELECT TRUNC(3.5);
TRUNC

3.0
(1 row)

Examples

=>SELECT TRUNC (42.8) ;
TRUNC

(1 row)

=>SELECT TRUNC (42.4382, 2);
TRUNC

42.4300
(1 row)

-297-

SQL Reference Manual

WIDTH_BUCKET

Constructs equiwidth histograms, in which the histogram range is divided into intervals (buckets)
of identical sizes. In addition, values below the low bucket return 0, and values above the high
bucket return bucket_count +1. Returns an integer value.

Behavior Type

Immutable

Syntax

WIDTH BUCKET (expression, hist min, hist max, bucket count)

Parameters

expression Is the expression for which the histogram is created. This
expression must evaluate to a numeric or datetime value or to
a value that can be implicitly converted to a numeric or
datetime value. If expression evaluates to null, then the
expression returns null.

hist _min Is an expression that resolves to the low boundary of bucket 1.
Must also evaluate to numeric or datetime values and cannot
evaluate to null.

hist_max Is an expression that resolves to the high boundary of bucket
bucket_count. Must also evaluate to a numeric or datetime
value and cannot evaluate to null.

bucket count Is an expression that resolves to a constant, indicating the
number of buckets. This expression always evaluates to a
positive INTEGER.

Notes

e WIDTH_BUCKET divides a data set into buckets of equal width. For example, Age = 0-20,
20-40, 40-60, 60-80. This is known as an equiwidth histogram.

e When using WIDTH_BUCKET pay attention to the minimum and maximum boundary values.
Each bucket contains values equal to or greater than the base value of that bucket, so that age
ranges of 0-20, 20-40, and so on, are actually 0-19.99 and 20-39.999.

e WIDTH_BUCKET accepts the following data types: (FLOAT and/or INT), (TIMESTAMP and/or
DATE and/or TIMESTAMPTZ), or (INTERVAL and/or TIME).

Examples

The following example returns five possible values and has three buckets: 0 [Up to 100), 1
[100-300), 2 [300-500), 3 [500-700), and 4 [700 and up):

SELECT product description, product cost,
WIDTH BUCKET (product cost, 100, 700, 3);

-298-

SQL Functions

The following example creates a nine-bucket histogram on the annual_income column for
customers in Connecticut who are female doctors. The results return the bucket number to an
“Income” column, divided into eleven buckets, including an underflow and an overflow. Note that if
customers had an annual incomes greater than the maximum value, they would be assigned to an
overflow bucket, 10:

SELECT customer name, annual_income,

WIDTH BUCKET (annual income, 100000, 1000000, 9) AS "Income"

FROM public.customer dimension WHERE customer state='CT'

AND title='Dr.' AND customer gender='Female' AND household id < '1000'
ORDER BY "Income";

In the following result set, the reason there is a bucket O is because buckets are numbered from 1
to bucket_count. Anything less than the given value of hist min goes in bucket 0, and anything
greater than the given value of hist max goes in the bucket bucket count+1. Inthis
example, bucket 9 is empty, and there is no overflow. The value 12,283 is less than 100,000, so it
goes into the underflow bucket.

customer name | annual income | Income
___________ t________+_______j_______+________
Joanna A. Nguyen | 12283 | 0
Amy I. Nguyen \ 109806 | 1
Juanita L. Taylor | 219002 | 2
Carla E. Brown | 240872 | 2
Kim U. Overstreet \ 284011 | 2
Tiffany N. Reyes \ 323213 | 3
Rebecca V. Martin \ 324493 | 3
Betty . Roy \ 476055 | 4
Midori B. Young \ 462587 | 4
Martha T. Brown | 687810 | 9
Julie D. Miller \ 616509 | 6
Julie Y. Nielson | 894910 | 8
Sarah B. Weaver | 896260 | 8
Jessica C. Nielson | 861066 | 8
(14 rows)
See Also

NTILE (page 159)

NULL-handling Functions

NUL L-handling functions take arguments of any type, and their return type is based on their
argument types.

COALESCE

Returns the value of the first non-null expression in the list. If all expressions evaluate to null, then
the COALESCE function returns null.

Behavior Type

Immutable

-299-

SQL Reference Manual

Syntax

COALESCE (expressionl, expression?);

COALESCE (expressionl, expression2, ... expression-n);
Parameters

e COALESCE (expressionl, expression2) is equivalentto the following CASE
expression:
CASE WHEN expressionl IS NOT NULL THEN expressionl ELSE expression2 END;
e COALESCE (expressionl, expression2, ... expression-n),forn>=3,is
equivalent to the following CASE expression:
CASE WHEN expressionl IS NOT NULL THEN expressionl

ELSE COALESCE (expression?2, . . . , expression-n) END;
Notes
COALESCE is an ANSI standard function (SQL-92).

Example

SELECT product description, COALESCE (lowest competitor price,
highest competitor price, average competitor price) AS price
FROM product dimension;

product description | price
____________________________________ +_______
Brand #54109 kidney beans \ 264
Brand #53364 veal \ 139
Brand #50720 ice cream sandwiches | 127
Brand #48820 coffee cake | 174
Brand #48151 halibut \ 353
Brand #47165 canned olives \ 250
Brand #39509 lamb \ 306
Brand #36228 tuna \ 245
Brand #34156 blueberry muffins | 183
Brand #31207 clams \ 163
(10 rows)
See Also

Case Expressions (page 45)

ISNULL (page 301)

IFNULL

Returns the value of the first non-null expression in the list.
IFNULL is an alias of NVL (page 304).
Behavior Type

Immutable

-300-

SQL Functions

Syntax
IFNULL (expressionl , expressionZ2);
Parameters

e If expressionl is null, then IFNULL returns expression2.
e If expressionl is not null, then IFNULL returns expressionl.

Notes

e COALESCE (page 299) is the more standard, more general function.

e |IFNULL is equivalent to ISNULL.

e IFNULL is equivalent to COALESCE except that IFNULL is called with only two arguments.
e ISNULL (a,b) is differentfrom x IS NULL.

e The arguments can have any data type supported by Vertica.

e Implementation is equivalent to the CASE expression. For example:
CASE WHEN expressionl IS NULL THEN expression2 ELSE expressionl END;

e The following statement returns the value 140:
SELECT IFNULL (NULL, 140) FROM employee_dimension;

e The following statement returns the value 60:
SELECT IFNULL (60, 90) FROM employee dimension;

Examples

=> SELECT IFNULL (SCORE, 0.0) FROM TESTING;
IFNULL

See Also
Case Expressions (page 45)

COALESCE (page 299)
NVL (page 304)
ISNULL (page 301)

ISNUL L

Returns the value of the first non-null expression in the list.
ISNULL is an alias of NVL (page 304).

-301-

SQL Reference Manual

Behavior Type

Immutable

Syntax

ISNULL (expressionl , expressionZ2);

Parameters

e If expressionl is null, then ISNULL returns expression2.
e If expressionl is not null, then ISNULL returns expressionl.

Notes

e COALESCE (page 299) is the more standard, more general function.

e ISNULL is equivalent to COALESCE except that ISNULL is called with only two arguments.
e TISNULL (a,b) is differentfrom x IS NULL.

e The arguments can have any data type supported by Vertica.

e Implementation is equivalent to the CASE expression. For example:
CASE WHEN expressionl IS NULL THEN expression2 ELSE expressionl END;

e The following statement returns the value 140:
SELECT ISNULL(NULL, 140) FROM employee dimension;

e The following statement returns the value 60:
SELECT ISNULL (60, 90) FROM employee dimension;

Examples

SELECT product description, product price, ISNULL (product cost, 0.0) AS cost FROM
product dimension;

product description | product price | cost
________________________________ +_______________+______
Brand #59957 wheat bread | 405 | 207
Brand #59052 blueberry muffins | 211 | 140
Brand #59004 english muffins \ 399 | 240
Brand #53222 wheat bread \ 323 | 94
Brand #52951 croissants \ 367 | 121
Brand #50658 croissants \ 100 | 94
Brand #49398 white bread \ 318 | 25
Brand #46099 wheat bread \ 242 | 3
Brand #45283 wheat bread \ 111 | 105
Brand #43503 jelly donuts \ 259 | 19
(10 rows)
See Also

Case Expressions (page 45)
COALESCE (page 299)
NVL (page 304)

-302-

SQL Functions

NULLIF

Compares two expressions. If the expressions are not equal, the function returns the first
expression (expressionl). If the expressions are equal, the function returns null.

Behavior Type

Immutable

Syntax

NULLIF(expressionl, expressionZ2)

Parameters

expressionl Is a value of any data type.

expression2 Must have the same data type as exprl or a type that can be
implicitly cast to match expressionl. The result has the same
type as expressionl.

Examples

The following series of statements illustrates one simple use of the NULLIF function.
Creates a single-column table t and insert some values:

CREATE TABLE t (x TIMESTAMPTZ) ;
INSERT INTO t VALUES('2009-09-04 09:14:00-04");
INSERT INTO t VALUES('2010-09-04 09:14:00-04");

Issue a select statement:

SELECT x, NULLIF(x, '2009-09-04 09:14:00 EDT') FROM t;
X | nullif

2009-09-04 09:14:00-04
2010-09-04 09:14:00-04 2010-09-04 09:14:00-04
SELECT NULLIF (1, 2);

NULLIF

(1 row)
SELECT NULLIF (1, 1);
NULLIF

(1 row)
SELECT NULLIF (20.45, 50.80);
NULLIF

-303-

SQL Reference Manual

NULLIFZERO

Evaluates to NULL if the value in the column is 0.

Syntax

NULLIFZERO (expression)

Parameters

expression |(INTEGER, DOUBLE PRECISION, INTERVAL, or
NUMERIC) Is the string to evaluate for O values.

Example

The TESTING table below shows the test scores for 5 students. Note that test scores are missing
for S. Robinson and K. Johnson (NULL values appear in the Score column.)

=> select * from TESTING;
Name Score

Johnson
rows)

The SELECT statement below specifies that Vertica should return any 0 values in the Score
column as Null. In the results, you can see that Vertica returns L. White's 0 score as Null.

=> SELECT Name, NULLIFZERO (Score) FROM TESTING;

Robinson
Johnson
rows)

NVL

Returns the value of the first non-null expression in the list.

Behavior Type
Immutable

-304-

SQL Functions

Syntax

NVL (expressionl , expression?);

Parameters

e If expressionl is null, then NVL returns expression2.
e If expressionl is not null, then NVL returns expressionl.

Notes

e COALESCE (page 299) is the more standard, more general function.
e NVL is equivalent to COALESCE except that NVL is called with only two arguments.
e The arguments can have any data type supported by Vertica.

e Implementation is equivalent to the CASE expression:
CASE WHEN expressionl IS NULL THEN expressionZ ELSE expressionl END;

Examples
expressionl is not null, so NVL returns expressionl:

SELECT NVL('fast', 'database');
nvl

expressionl is null, so NVL returns expression2:

SELECT NVL(null, 'database');
nvl

database
(1 row)

expression2 is null, so NVL returns expressionl:

SELECT NVL('fast', null);
nvl

In the following example, expressionl (title) contains nulls, so NVL returns expression2 and
substitutes 'Withheld' for the unknown values:

SELECT customer name,

NVL (title, 'Withheld') as title
FROM customer dimension
ORDER BY title;

customer name | title
_____________ I
Alexander I. Lang | Dr
Steve S. Harris | Dr
Daniel R. King | Dr
Luigi I. Sanchez | Dr
Duncan U. Carcetti | Dr

-305-

SQL Reference Manual

Meghan K. Li Dr.
Laura B. Perkins Dr.
Samantha V. Robinson Dr.
Joseph P. Wilson Mr.
Kevin R. Miller Mr.

\
\
\
\
\
Lauren D. Nguyen | Mrs.
\
\
\
|

Emily E. Goldberg Mrs.
Darlene K. Harris Ms.
Meghan J. Farmer Ms.
Bettercare Withheld
Ameristar | Withheld
Initech | Withheld
(17 rows)
See Also

Case Expressions (page 45)
COALESCE (page 299)
ISNULL (page 301)

NVL2 (page 306)

NVL2

Takes three arguments. If the first argument is not NULL, it returns the second argument,
otherwise it returns the third argument. The data types of the second and third arguments are
implicitly cast to a common type if they don't agree, similar to COALESCE (page 299).

Behavior Type

Immutable

Syntax

NVL2 (expressionl , expressionZ , expression3);
Parameters

e If expressionl is not null, then NVL2 returns expression2.
e If expressionl is null, then NVL2 returns expression3.

Notes
Arguments two and three can have any data type supported by Vertica.
Implementation is equivalent to the CASE expression:
CASE WHEN expressionl IS NOT NULL THEN expression2 ELSE expression3 END;
Examples
In this example, expressionl is not null, so NVL2 returns expression2:

SELECT NVLZ2 ('very', 'fast', 'database');
nvl2

-306-

SQL Functions

In this example, expressionl is null, so NVL2 returns expression3:

SELECT NVL2 (null, 'fast', 'database');
nvl2

database

(1 row)

In the following example, expressionl (title) contains nulls, so NVL2 returns expression3
('Withheld') and also substitutes the non-null values with the expression 'Known':

SELECT customer name,
NVL2 (title, 'Known', 'Withheld') as title
FROM customer dimension
ORDER BY title;
customer name

Alexander I. Lang
Steve S. Harris

\

+

\

\
Daniel R. King | Known
Luigi I. Sanchez | Known
Duncan U. Carcetti | Known
Meghan K. Li | Known
Laura B. Perkins | Known
Samantha V. Robinson | Known
Joseph P. Wilson | Known
Kevin R. Miller | Known
Lauren D. Nguyen | Known
Emily E. Goldberg | Known
Darlene K. Harris | Known
Meghan J. Farmer | Known
Bettercare | Withheld
Ameristar | Withheld
Initech | Withheld
(17 rows)
See Also

Case Expressions (page 45)
COALESCE (page 299)
NVL (page 299)

ZEROIFNULL

Evaluates to O if the column is NULL.

Syntax

ZEROIFNULL (expression)

-307-

SQL Reference Manual

Parameters

expression | (INTEGER, DOUBLE PRECISION, INTERVAL, or
NUMERIC) Is the string to evaluate for NULL
values.

Example

The TESTING table below shows the test scores for 5 students. Note that L. White's score is 0O,
and that scores are missing for S. Robinson and K. Johnson.

=> gselect * from TESTING;

Name Score
_____________ +_______
J. Doe \ 100
R. Smith \ 87
L. White \ 0
S. Robinson |
K. Johnson \

(5 rows)

The SELECT statement below specifies that Vertica should return any Null values in the Score
column as 0s. In the results, you can see that Vertica returns a 0 score for S. Robinson and K.

Johnson.

=> SELECT Name, ZEROIFNULL (Score) FROM TESTING;

Name ZEROIFNULL

. Robinson
Johnson

J
R.
L. White
S
K
5 rows)

Sequence Functions

The sequence functions provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

NEXTVAL

Advances the return of a new sequence value. A positive value is incremented for ascending
sequences and a negative value is decremented for descending sequences.

Behavior Type
Volatile

-308-

SQL Functions

Syntax

<sequence name>.NEXTVAL
NEXTVAL (' sequence name')

Parameters

sequence name Identifies the sequence for which to determine the next value.

Notes

e NEXTVAL is used in INSERT, COPY, and SELECT statements to create unique values.

e The first time NEXTVAL is called, it generates the starting number for the sequence.
Thereafter, it increments this number.

o While executing a SQL statement, if NEXTVAL is called on two different nodes, each node
creates and maintains its own cache of values per session. Thus, you need a Global Catalog
Lock (X) to obtain a cache of values from a sequence.

e NEXTVAL is evaluated on a per-row basis. Thus, in the following example, both calls to
NEXT VAL yield same result:
SELECT NEXTVAL ('segl'), NEXTVAL('seql') FROM vendor key;

Examples

The following example creates an ascending sequence called my_seq, starting at 101:
CREATE SEQUENCE sequential START 101;

The following command generates the first number in the sequence:

SELECT NEXTVAL('my seq');
nextval

(1 row)

The following command generates the next number in the sequence:

SELECT NEXTVAL('my seq');
nextval

(1 row)

The following example shows how to use NEXTVAL in a table SELECT statement. Notice that the
nextval column incremented by (1) again:

SELECT NEXTVAL('my seq'), lname FROM customer;
nextval | lname
_________ +_______
103 | Carr
(1 row)
See Also

ALTER SEQUENCE (page 586)

-309-

SQL Reference Manual

CREATE SEQUENCE (page 658)
CURRVAL (page 310)
DROP SEQUENCE (page 708)

Using Sequences and Sequence Privileges in the Administrator's Guide

CURRVAL

For a sequence generator, returns the LAST value across all nodes returned by a previous
invocation of NEXTVAL (page 308) in the same session. If there were no calls to NEXTVAL, an
error is returned.

Behavior Type
Volatile

Syntax

<sequence name>.CURRVAL

Parameters

sequence name Identifies the sequence for which to return the current value.

Notes

NEXTVAL is executed before anything else. Therefore, the following statement succeeds even
though CURRVAL appears before NEXTVAL in the statement:

SELECT CURRVAL('seqgl'), NEXTVAL('seql') FROM vendor key;

Examples
The following example creates an ascending sequence called sequential, starting at 101:
CREATE SEQUENCE seq2 START 101;

You cannot call CURRVAL until after you have initiated the sequence with NEXTVAL or the
system returns an error:

SELECT CURRVAL('seqg2');
ERROR: Sequence seqg2 has not been accessed in the session
Use the NEXTVAL function to generate the first number for this sequence:

SELECT NEXTVAL('seg2');
nextval

(1 row)

Now you can use CURRVAL to return the current number from this sequence:

SELECT CURRVAL ('seg2');
currval

-310-

SQL Functions

(1 row)

The following command shows how to use CURRVAL in a SELECT statement:

CREATE TABLE customer3 (
lname VARCHAR (25),
fname VARCHAR (25),
membership card INTEGER,

ID INTEGER
) 7
INSERT INTO customer3 VALUES ('Brown' ,'Sabra', 072753, CURRVAL('my seq'));
SELECT CURRVAL('seg2'), lname FROM customer3;

CURRVAL | lname
_________ +_______

101 | Brown
(1 row)

See Also

ALTER SEQUENCE (page 586)
CREATE SEQUENCE (page 658)
DROP SEQUENCE (page 708)
NEXTVAL (page 308)

Using Sequences and Sequence Privileges in the Administrator's Guide

LAST_INSERT_ID

Returns the last value of a column whose value is automatically incremented through the
AUTO_INCREMENT or IDENTITY column-constraint (page 674). If multiple sessions
concurrently load the same table, the returned value is the last value generated for an
AUTO_INCREMENT column by an insert in that session.

Behavior Type
Volatile

Syntax

LAST INSERT ID()
Notes

e This function works only with AUTO_INCREMENT and IDENTITY columns. See
column-constraints (page 674) for the CREATE TABLE (page 664) statement.

e LAST INSERT_ID does not work with sequence generators created through the CREATE
SEQUENCE (page 658) statement.

Examples
Create a sample table called customer4.

=> CREATE TABLE customerid (
ID IDENTITY(2,2),
lname VARCHAR (25),

-311-

SQL Reference Manual

fname VARCHAR (25),
membership card INTEGER
) 7
=> INSERT INTO customer4 (lname, fname, membership card)
VALUES ('Gupta', 'Saleem', 475987);

Notice that the IDENTITY column has a seed of 2, which specifies the value for the first row loaded
into the table, and an increment of 2, which specifies the value that is added to the IDENTITY
value of the previous row.

Query the table you just created:

=> SELECT * FROM customeri4;

ID | lname | fname | membership card
____+ _______ + ________ + ___________ : _____
2 | Gupta | Saleem | 475987

(1 row)

Insert some additional values:

=> INSERT INTO customerd (lname, fname, membership card)
VALUES ('Lee', 'Chen', 598742);

Call the LAST_INSERT_ID function:

=> SELECT LAST INSERT ID();
last insert id

(1 row)

Query the table again:

=> SELECT * FROM customer4;

ID | lname | fname | membership card
——— - e fom
2 | Gupta | Saleem | 475987
4 | Lee | Chen \ 598742

(2 rows)

Add another row:

=> INSERT INTO customerd (lname, fname, membership card)
VALUES ('Davis', 'Bill', 469543);

Call the LAST_INSERT _ID function:

=> SELECT LAST_ INSERT ID();
LAST INSERT ID

(1 row)

Query the table again:

=> SELECT * FROM customerd;

ID | lname | fname | membership card
____+ _______ + ________ + ___________ : _____
2 | Gupta | Saleem | 475987
4 | Lee | Chen \ 598742

-312-

SQL Functions

6 | Davis | Bill 469543

(3 rows)

See Also
ALTER SEQUENCE (page 586)

CREATE SEQUENCE (page 658)
DROP SEQUENCE (page 708)
V_CATALOG.SEQUENCES (page 815)

Using Sequences and Sequence Privileges in the Administrator's Guide

-313-

314

String Functions

String functions perform conversion, extraction, or manipulation operations on strings, or return
information about strings.

This section describes functions and operators for examining and manipulating string values.
Strings in this context include values of the types CHAR, VARCHAR, BINARY, and VARBINARY.

Unless otherwise noted, all of the functions listed in this section work on all four data types. As
opposed to some other SQL implementations, Vertica keeps CHAR strings unpadded internally,
padding them only on final output. So converting a CHAR(3) 'ab' to VARCHAR(5) results in a
VARCHAR of length 2, not one with length 3 including a trailing space.

Some of the functions described here also work on data of non-string types by converting that data
to a string representation first. Some functions work only on character strings, while others work
only on binary strings. Many work for both. BINARY and VARBINARY functions ignore multibyte
UTF-8 character boundaries.

Non-binary character string functions handle normalized multibyte UTF-8 characters, as specified
by the Unicode Consortium. Unless otherwise specified, those character string functions for which
it matters can optionally specify whether VARCHAR arguments should be interpreted as octet
(byte) sequences, or as (locale-aware) sequences of UTF-8 characters. This is accomplished by
adding "USING OCTETS" or "USING CHARACTERS" (default) as a parameter to the function.

Some character string functions are stable because in general UTF-8 case-conversion, searching
and sorting can be locale dependent. Thus, LOWER is stable, while LOWERB is immutable. The
USING OCTETS clause converts these functions into their "B" forms, so they become immutable.
If the locale is set to collation=binary, which is the default, all string functions — except
CHAR_LENGTH/CHARACTER_LENGTH, LENGTH, SUBSTR, and OVERLAY — are converted
to their "B" forms and so are immutable.

BINARY implicitly converts to VARBINARY, so functions that take VARBINARY arguments work
with BINARY.

ASCII
Converts the first octet of a VARCHAR to an INTEGER.

Behavior Type

Immutable

Syntax

ASCII (expression)

Parameters

expression (VARCHAR) is the string to convert.

-314-

SQL Functions

Notes

e ASCIl is the opposite of the CHR (page 318) function.

e ASClIl operates on UTF-8 characters, not only on single-byte ASCII characters. It continues to
get the same results for the ASCII subset of UTF-8.

Examples

Expression Result
SELECT ASCII('A'); 65
SELECT ASCII('ab'); 97

SELECT ASCII (null);
SELECT ASCII(''");

BIT_LENGTH
Returns the length of the string expression in bits (bytes * 8) as an INTEGER.

Behavior Type
Immutable

Syntax

BIT LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is
the string to convert.

Notes

BIT_LENGTH applies to the contents of VARCHAR and VARBINARY fields.

Examples

Expression Result
SELECT BIT LENGTH('abc'::varbinary):; 24
SELECT BIT LENGTH('abc'::binary):; 8
SELECT BIT LENGTH(''::varbinary):; 0
SELECT BIT_LENGTH("::binary); 8
SELECT BIT LENGTH(null::varbinary);

SELECT BIT LENGTH (null::binary);

SELECT BIT_ LENGTH (VARCHAR 'abc'); 24
SELECT BIT LENGTH(CHAR 'abc'); 24
SELECT BIT_LENGTH(CHAR(6) 'abc') ; 48
SELECT BIT_LENGTH(VARCHAR(6) 'abc') ; 24

-315-

SQL Reference Manual

SELECT BIT LENGTH (BINARY (6) 'abc'); 48
SELECT BIT LENGTH (BINARY 'abc'); 24

SELECT BIT_LENGTH(VARBINARY ‘abec') ; 24

SELECT BIT LENGTH (VARBINARY (6) 'abc'); 24

See Also

CHARACTER_LENGTH (page 318), LENGTH (page 335), OCTET_LENGTH (page 339)
BITCOUNT

Returns the number of one-bits (sometimes referred to as set-bits) in the given VARBINARY
value. This is also referred to as the population count.

Behavior Type

Immutable

Syntax

BITCOUNT (expression)

Parameters

expression (BINARY or VARBINARY) is the string to return.

Examples

SELECT BITCOUNT(HEX_TO_BINARY('OXlO'));
bitcount

(1 row)
SELECT BITCOUNT(HEX_TO_BINARY('OXFO'));
bitcount

(1 row)
SELECT BITCOUNT(HEX_TO_BINARY('OXAB'))
bitcount

BITSTRING_TO_BINARY
Translates the given VARCHAR bitstring representation into a VARBINARY value.

Behavior Type

Immutable

-316-

SQL Functions

Syntax

BITSTRING TO BINARY (expression)

Parameters

expression (VARCHAR) is the string to return.

Notes

VARBINARY BITSTRING_TO_BINARY(VARCHAR) converts data from character type (in
bitstring format) to binary type. This function is the inverse of TO_BITSTRING.

BITSTRING TO BINARY (TO BITSTRING(x)) = x
TO _BITSTRING (BITSTRING TO BINARY (X)) = X
Examples

If there are an odd number of characters in the hex value, then the first character is treated as the
low nibble of the first (furthest to the left) byte.

SELECT BITSTRING TO BINARY ('0110000101100010");
bitstring to binary

ab
(1 row)

If an invalid bitstring is supplied, the system returns an error:

SELECT BITSTRING TO BINARY ('010102010");
ERROR: invalid bitstring "010102010"

BTRIM

Removes the longest string consisting only of specified characters from the start and end of a
string.

Behavior Type

Immutable
Syntax
BTRIM (expression [, characters-to-remove])
Parameters
expression (CHAR or VARCHAR) is the string to modify
characters-to-remove (CHAR or VARCHAR) specifies the characters to
remove. The default is the space character.

Examples
SELECT BTRIM('xyxtrimyyx', 'xy');

btrim

trim

-317-

SQL Reference Manual

(1 row)

See Also
LTRIM (page 338), RTRIM (page 348), TRIM (page 358)

CHARACTER_LENGTH

Returns an INTEGER value representing the number of characters or octets in a string. It strips
the padding from CHAR expressions but not from VARCHAR expressions.

Behavior Type
Immutable if USING OCTETS, stable otherwise.

Syntax

[CHAR_LENGTH | CHARACTER LENGTH] (expression ,
[USING { CHARACTERS | OCTETS } 1)

Parameters

expression (CHAR or VARCHAR) is the string to measure

USING CHARACTERS | OCTETS Determines whether the character length is expressed in
characters (the default) or octets.

Notes

CHARACTER_LENGTH is identical to LENGTH (page 335). See BIT_LENGTH (page 315) and
OCTET_LENGTH (page 339) for similar functions.

Examples

SELECT CHAR LENGTH('1234 '::CHAR(10), USING OCTETS);
char length

(1 row)
SELECT CHAR LENGTH('1234 '::VARCHAR(10));
char length

(1 row)
SELECT CHAR_LENGTH(NULL::CHAR(lO)) IS NULL;
?column?

CHR
Converts the first octet of an INTEGER to a VARCHAR.

-318-

SQL Functions

Behavior Type

Immutable

Syntax

CHR (expression)

Parameters

expression (INTEGER) is the string to convert and is masked to a single
octet.

Notes

e CHR is the opposite of the ASCII (page 314) function.

¢ CHR operates on UTF-8 characters, not only on single-byte ASCII characters. It continues to
get the same results for the ASCII subset of UTF-8.

Examples

Expression Result
SELECT CHR(65); A
SELECT CHR (65+32); a

SELECT CHR(null);

CONCAT
Used to concatenate two or more VARBINARY strings. The return value is of type VARBINARY.

Syntax
CONCAT ('a','b'")
Behavior type

Immutable

Parameters

a Is the first VARBINARY string.

b Is the second VARBINARY string.

Examples

=> SELECT CONCAT ('A','B');
CONCAT

-319-

SQL Reference Manual

DECODE

Compares expression to each search value one by one. If expression is equal to a search, the
function returns the corresponding result. If no match is found, the function returns default. If
default is omitted, the function returns null.

Behavior Type

Immutable

Syntax

DECODE (expression, search, result [, search, result]

. [, default 1);

Parameters

expression Is the value to compare.

search Is the value compared against expression.

result Is the value returned, if expression is equal to search.

default Is optional. If no matches are found, DE CODE returns default. If
default is omitted, then DE CODE returns NULL (if no matches are
found).

Notes

DECODE is similar to the IF-THEN-ELSE and CASE (page 45) expression:

CASE expression

WHEN search THEN result
[WHEN search THEN result]
[ELSE default];

The arguments can have any data type supported by Vertica. The result types of individual results
are promoted to the least common type that can be used to represent all of them. This leads to a
character string type, an exact numeric type, an approximate numeric type, or a DATETIME type,
where all the various result arguments must be of the same type grouping.

Examples

The following example converts numeric values in the weight column from the product_dimension
table to descriptive values in the output.

SELECT product description, DECODE (weight,
2, 'Light',
50, 'Medium',
71, 'Heavy',
99, 'Call for help',

IN/AI)
FROM product dimension
WHERE category description = 'Food'
AND department description = 'Canned Goods'

AND sku number BETWEEN 'SKU-#49750' AND 'SKU-#49999'

-320-

SQL Functions

LIMIT 15;

product description | case
___________________________________ +_______________
Brand #499 canned corn | N/A
Brand #49900 fruit cocktail | Medium
Brand #49837 canned tomatoes | Heavy
Brand #49782 canned peaches | N/A
Brand #49805 chicken noodle soup | N/A
Brand #49944 canned chicken broth | N/A
Brand #49819 canned chili | N/A
Brand #49848 baked beans | N/A
Brand #49989 minestrone soup | N/A

Brand #49778 canned peaches | N/A
Brand #49770 canned peaches \
Brand #4977 fruit cocktail

Brand #49933 canned olives | N/A
Brand #49750 canned olives | Call for help
Brand #49777 canned tomatoes | N/A

(15 rows)

GREATEST
Returns the largest value in a list of expressions.

Behavior Type
Stable

Syntax

GREATEST (expressionl, expression2, ... expression-n);

Parameters

expressionl, expression2, and expression-n are the expressions to be evaluated.

Notes

e Works for all data types, and implicitly casts similar types. See Examples.
e ANULL value in any one of the expressions returns NULL.

e Depends on the collation setting of the locale.

Examples

This example returns 9 as the greatest in the list of expressions:

SELECT GREATEST (7, 5, 9):
greatest

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first

example:

SELECT GREATEST('7', '5', '9");
greatest

-321-

SQL Reference Manual

(1 row)

The next example returns FLOAT 1.5 as the greatest because the integer is implicitly cast to float:

SELECT GREATEST (1, 1.5);
greatest

(1 row)

The following example returns 'vertica' as the greatest:

SELECT GREATEST ('vertica', 'analytic', 'database');
greatest

vertica
(1 row)

Notice this next command returns NULL:

SELECT GREATEST ('vertica', 'analytic', 'database', null);
greatest

(1 row)

And one more:

SELECT GREATEST ('sit', 'site', 'sight');
greatest

site
(1 row)

See Also
LEAST (page 332)

GREATESTB
Returns its greatest argument, using binary ordering, not UTF-8 character ordering.

Behavior Type

Immutable

Syntax

GREATESTB (expressionl, expressionZ2, ... expression-n);

Parameters

expressionl, expression2, and expression-n are the expressions to be evaluated.

Notes

o Works for all data types, and implicitly casts similar types. See Examples.

-322-

SQL Functions

e ANULL value in any one of the expressions returns NULL.
¢ Depends on the collation setting of the locale.

Examples
The following command selects stral3e as the greatest in the series of inputs:

SELECT GREATESTB('straBe', 'strasse');
GREATESTB

This example returns 9 as the greatest in the list of expressions:

SELECT GREATESTB(7, 5, 9);
GREATESTB

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

GREATESTB

(1 row)

The next example returns FLOAT 1.5 as the greatest because the integer is implicitly cast to float:

SELECT GREATESTB(1, 1.5);
GREATESTB

(1 row)

The following example returns 'vertica' as the greatest:

SELECT GREATESTB('vertica', 'analytic', 'database');
GREATESTB

vertica
(1 row)

Notice this next command returns NULL:

SELECT GREATESTB('vertica', 'analytic', 'database', null);
GREATESTB

(1 row)

And one more:

SELECT GREATESTB('sit', 'site', 'sight');
GREATESTB

-323-

SQL Reference Manual

See Also
LEASTB (page 333)

HEX_TO_BINARY
Translates the given VARCHAR hexadecimal representation into a VARBINARY value.

Behavior Type
Immutable

Syntax

HEX TO BINARY ([Ox] expression)

Parameters

expression (BINARY or VARBINARY) is the string to translate.

0x Is optional prefix

Notes

VARBINARY HEX TO_BINARY(VARCHAR) converts data from character type in hexadecimal
format to binary type. This function is the inverse of TO_HEX (page 244).

X)
X)

HEX_TO BINARY (TO_HEX (x))
TO_HEX (HEX_TO_BINARY (x))

If there are an odd number of characters in the hexadecimal value, the first character is treated as
the low nibble of the first (furthest to the left) byte.

Examples
If the given string begins with "0Ox" the prefix is ignored. For example:

SELECT HEX_TO_BINARY('OX6162') AS hexl1, HEX_TO_BINARY('6162') AS hex2;
hexl | hex2

If an invalid hex value is given, Vertica returns an “invalid binary representation" error; for
example:

SELECT HEX TO BINARY ('Oxffgf');
ERROR: invalid hex string "Oxffgf"

See Also
TO_HEX (page 244)

INET_ATON

Returns an integer that represents the value of the address in host byte order, given the
dotted-quad representation of a network address as a string.

-324-

SQL Functions

Behavior Type

Immutable

Syntax

INET ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes
The following syntax converts an IPv4 address represented as the string A to an integer 1.

INET_ATON trims any spaces from the right of A, calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html, and converts
the result from network byte order to host byte order using ntohl
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html.

INET ATON (VARCHAR A) -> INT8 I
If Ais NULL, too long, or inet_pton returns an error, the result is NULL.

Examples

The generated number is always in host byte order. In the following example, the number is
calculated as 209x256”3 + 207x256"2 + 224x256 + 40.

SELECT INET_ATON('209.207.224.40');
inet aton

3520061480

(1 row)

SELECT INET ATON('1.2.3.4"');
inet aton

16909060
(1 row)
SELECT TO_HEX(INET_ATON('1.2.3.4'));
to _hex

1020304
(1 row)

See Also
INET_NTOA (page 273)

INET_NTOA

Returns the dotted-quad representation of the address as a VARCHAR, given a network address
as an integer in network byte order.

-325-

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html

SQL Reference Manual

Behavior Type

Immutable

Syntax

INET NTOA (expression)

Parameters

expression (INTEGER) is the network address to conwert.

Notes

The following syntax converts an IPv4 address represented as integer | to a string A.

INET_NTOA converts | from host byte order to network byte order using htonl
http://opengroup.org/onlinepubs/007908775/xns/htonl.html, and calls the Linux function
inet_ntop http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.
INET NTOA (INT8 I) -> VARCHAR A

If 1is NULL, greater than 2732 or negative, the result is NULL.

Examples

SELECT INET NTOA(16909060) ;

inet ntoa

1.2.3.4
(1 row)

SELECT INET NTOA(03021962);

inet ntoa

0.46.28.138
(1 row)

See Also
INET_ATON (page 272)

INITCAP

Capitalizes first letter of each alphanumeric word and puts the rest in lowercase.

Behavior Type

Stable

Syntax

INITCAP (expression)

Parameters

expression (VARCHAR) is the string to format.

-326-

http://opengroup.org/onlinepubs/007908775/xns/htonl.html
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

SQL Functions

Notes

e Depends on collation setting of the locale.

o INITCAP is restricted to 32750 octet inputs, since it is possible for the UTF-8 representation of
result to double in size.

Examples

Expression Result

SELECT INITCAP('high speed database'); High Speed Database

SELECT INITCAP('LINUX TUTORIAL'); Linux Tutorial

SELECT INITCAP('abc DEF 123aVC 124Btd,lAsT'); Abc Def 123Avc
124Btd, Last

SELECT INITCAP('");

SELECT

INITCAP (null);

INITCAPB

Capitalizes first letter of each alphanumeric word and puts the rest in lowercase.

Behavior Type

Immutable

Syntax

INITCAPB (expression)

Parameters

expression (VARCHAR) is the string to format.

Notes

Depends on collation setting of the locale.

Examples

Expression Result

SELECT INITCAPB('étudiant'); éTudiant

SELECT INITCAPB('high speed database'); High Speed Database

SELECT INITCAPB ('LINUX TUTORIAL'); Linux Tutorial

SELECT INITCAPB ('abc DEF 123aVC 124Btd,1AsT'); Abc Def 123Avc
124Btd, Last

SELECT INITCAPB(''");

SELECT INITCAPB (null);

-327-

SQL Reference Manual

INSERT

Inserts a character string into a specified location in another character string.

Syntax

INSERT('stringl', n, m, 'string2');

Behavior type

Immutable

Parameters

stringl (VARCHAR) Is the string in which to insert the new string.

n A character of type INTEGER that represents the starting point
for the insertion within stringl. You specify the number of
characters from the first character in stringl as the starting point
for the insertion. For example, to insert characters before "c", in
the string "abcdef," enter 3.

m A character of type INTEGER that represents the the number of
characters in stringl (if any) that should be replaced by the
insertion. For example,if you want the insertion to replace the
letters "cd" in the string "abcdef, " enter 2.

string2 (VARCHAR) Is the string to be inserted.

Example

The following example changes the string Warehouse to Storehouse using the INSERT function:

=> SELECT INSERT ('Warehouse',1l,3,'Stor'");
INSERT

Storehouse
(1 row)

INSTR

Searches string for substring and returns an integer indicating the position of the character in
string that is the first character of this occurrence. The return value is based on the character
position of the identified character.

Behavior Type
Stable

Syntax

INSTR (string , substring [, position [, occurrence] 1)

-328-

SQL Functions

Parameters

string (CHAR or VARCHAR, or BINARY or VARBINARY) Is the text
expression to search.

substring (CHAR or VARCHAR, or BINARY or VARBINARY) Is the string to
search for.

position Is a nonzero integer indicating the character of string where Vertica
begins the search. If position is negative, then Vertica counts
backward from the end of string and then searches backward from
the resulting position. The first character of string occupies the
default position 1, and position cannot be 0.

occurrence Is an integer indicating which occurrence of string Vertica searches.
The value of occurrence must be positive (greater than 0), and the
default is 1.

Notes

Both position and occurrence must be of types that can resolve to an integer. The default values of
both parameters are 1, meaning Vertica begins searching at the first character of string for the first
occurrence of substring. The return value is relative to the beginning of string, regardless of the
value of position, and is expressed in characters.

If the search is unsuccessful (that is, if substring does not appear occurrence times after the
position character of string, then the return value is 0.

Examples

The first example searches forward in string ‘abc’ for substring ‘b’. The search returns the position
in ‘abc’ where ‘b’ occurs, or position 2. Because no position parameters are given, the default
search starts at ‘a’, position 1.

SELECT INSTR('abc', 'b'):;
INSTR

(1 row)

The following three examples use character position to search backward to find the position of a
substring.

Note: Although it seems intuitive that the function returns a negative integer, the position of n
occurrence is read left to right in the sting, even though the search happens in reverse (from the
end — or right side — of the string).

In the first example, the function counts backward one character from the end of the string, starting
with character ‘c’. The function then searches backward for the first occurrence of ‘a’, which it finds
it in the first position in the search string.

SELECT INSTR('abc', 'a', -1);
INSTR

-329-

SQL Reference Manual

In the second example, the function counts backward one byte from the end of the string, starting
with character ‘c’. The function then searches backward for the first occurrence of ‘a’, whichit finds
it in the first position in the search string.

SELECT INSTR (VARBINARY 'abc', VARBINARY 'a', -1);
INSTR

(1 row)

In the third example, the function counts backward one character from the end of the string,
starting with character ‘b’, and searches backward for substring ‘bc’, which it finds in the second
position of the search string.

SELECT INSTR('abcb', 'bc', -1);
INSTR

(1 row)

In the fourth example, the function counts backward one character from the end of the string,
starting with character ‘b’, and searches backward for substring ‘bcef, which it does not find. The
result is 0.

SELECT INSTR('abcb', 'bcef', -1);
INSTR

(1 row)

In the fifth example, the function counts backward one byte from the end of the string, starting with
character ‘b’, and searches backward for substring ‘bcef’, which it does not find. The result is 0.

SELECT INSTR(VARBINARY 'abcb’, VARBINARY 'bcef', -1);

INSTRB

Searches string for substring and returns an integer indicating the octet position within string that
is the first occurrence. The return value is based on the octet position of the identified byte.

Behavior Type

Immutable

Syntax

INSTRB (string , substring [, position [, occurrence]])
Parameters

string Is the text expression to search.

-330-

SQL Functions

substring Is the string to search for.

position Is a nonzero integer indicating the character of string where Vertica
begins the search. If position is negative, then Vertica counts
backward from the end of string and then searches backward from
the resulting position. The first byte of string occupies the default
position 1, and position cannot be 0.

occurrence Is an integer indicating which occurrence of string Vertica searches.
The value of occurrence must be positive (greater than 0), and the
default is 1.

Notes

Both position and occurrence must be of types that can resolve to an integer. The default values of
both parameters are 1, meaning Vertica begins searching at the first byte of string for the first
occurrence of substring. The return value is relative to the beginning of string, regardless of the
value of position, and is expressed in octets.

If the search is unsuccessful (that is, if substring does not appear occurrence times after the
position character of string, then the return value is 0.
Examples

SELECT INSTRB('straBe', 'R'");
INSTRB

See Also
INSTR (page 328)

ISUTF8

Tests whether a string is a valid UTF-8 string. Returns true if the string conforms to UTF-8
standards, and false otherwise. This function is useful to test strings for UTF-8 compliance before
passing them to one of the regular expression functions, such as REGEXP_LIKE (page 452),
which expect UTF-8 characters by default.

Syntax

ISUTF8(string);

Parameters

string The string to test for UTF-8 compliance.

Examples

=> SELECT ISUTF8(E'\xC2\xBF'); -- UTF-8 INVERTED QUESTION MARK
ISUTFES8

-331-

SQL Reference Manual

=> SELECT ISUTF8(E'\xC2\xC0'); -- UNDEFINED UTF-8 CHARACTER
ISUTFS8

LEAST

Returns the smallest value in a list of expressions.

Behavior Type

Stable

Syntax

LEAST (expressionl, expression2, ... expression-n);
Parameters

expressionl, expression2, and expression-n are the expressions to be evaluated.

Notes

o Works for all data types, and implicitly casts similar types. See Examples below.
e ANULL value in any one of the expressions returns NULL.

Examples
This example returns 5 as the least:

SELECT LEAST (7, 5, 9);
least

(1 row)
Note that putting quotes around the integer expressions returns the same result as the first
example:

SELECT LEAST('7', '5', '9'");
least

(1 row)

In the above example, the values are being compared as strings, so '10" would be less than '2".

The next example returns 1.5, as INTEGER 2 is implicitly cast to FLOAT:

SELECT LEAST (2, 1.5);
least

-332-

SQL Functions

The following example returns ‘analytic' as the least:

SELECT LEAST ('vertica', 'analytic', 'database');
least

analytic
(1 row)

Notice this next command returns NULL:

SELECT LEAST ('vertica', 'analytic', 'database', null);
least

(1 row)
And one more:
SELECT LEAST ('sit', 'site', 'sight');

least

See Also
GREATEST (page 321)

LEASTB

Returns the function's least argument, using binary ordering, not UTF-8 character ordering.
Behavior Type

Immutable

Syntax

LEASTB (expressionl, expressionZ2, ... expression-n);

Parameters

expressionl, expression2, and expression-n are the expressions to be evaluated.

Notes

e Works for all data types, and implicitly casts similar types. See Examples below.
e ANULL value in any one of the expressions returns NULL.

Examples
The following command selects strasse as the least in the series of inputs:

SELECT LEASTB('straBe', 'strasse');
LEASTB

strasse
(1 row)

This example returns 5 as the least:

-333-

SQL Reference Manual

SELECT LEASTB(7, 5, 9);
LEASTB

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

SELECT LEASTB('7', '5', '9');
LEASTB

(1 row)

In the above example, the values are being compared as strings, so '10' would be less than '2'.

The next example returns 1.5, as INTEGER 2 is implicitly cast to FLOAT:

SELECT LEASTB (2, 1.5);
LEASTB

1.5
(1 row)

The following example returns ‘analytic' as the least in the series of inputs:

SELECT LEASTB('vertica', 'analytic', 'database');
LEASTB

analytic
(1 row)

Notice this next command returns NULL:

SELECT LEASTB('vertica', 'analytic', 'database', null);
LEASTB

(1 row)

See Also
GREATESTB (page 322)

LEFT
Returns the specified characters from the left side of a string.

Behavior Type

Immutable

Syntax

LEFT (string , length)

-334-

SQL Functions

Parameters
string (CHAR or VARCHAR) is the string to return.
length Is an INTEGER value that specifies the count of characters to
return.
Examples
SELECT LEFT ('vertica', 3);
left
ver
(1 row)

SELECT LEFT('straBe', 5);
LEFT

See Also
SUBSTR (page 353)

LENGTH

Takes one argument as an input and returns returns an INTEGER value representing the number
of characters in a string.

Behavior Type
Immutable

Syntax

LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is the string to
measure

Notes

e LENGTH strips the padding from CHAR expressions but not from VARCHAR expressions.

e LENGTH is identical to CHARACTER_LENGTH (page 318) for CHAR and VARCHAR. For
binary types, it is identical to octet length. See BIT_LENGTH (page 315) and
OCTET_LENGTH (page 339) for similar functions.

Examples
Expression Result
SELECT LENGTH('1234 '::CHAR(10)); 4

-335-

SQL Reference Manual

SELECT LENGTH('1234 '::VARCHAR(10)); 6
SELECT LENGTH('1234 '::BINARY (10)); 10
SELECT LENGTH('1234 '::VARBINARY (10)); 6
SELECT LENGTH (NULL::CHAR(10)) IS NULL; t

LOWER

Returns a VARCHAR value containing the argument converted to lowercase letters.

Behavior Type

Stable

Syntax

LOWER (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert
Notes

LOWER is restricted to 32750 octet inputs, since it is possible for the UTF-8 representation of
result to double in size.

Examples

SELECT LOWER ('AbCdEfG') ;
lower

SELECT LOWER ('The Cat In The Hat');
lower

the cat in the hat

(1 row)

SELECT LOWER ('ETUDIANT') ;
LOWER

Etudiant
(1 row)

LOWERB

Returns a character string with each ASCII character converted to lowercase; multibyte UTF-8
characters are not converted.

Behavior Type

Immutable

-336-

SQL Functions

Syntax

LOWERB (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

Examples

In the following example, the multibyte UTF-8 character E is not converted to
lowercase:

SELECT LOWERB ('ETUDIANT') ;
LOWERB

Etudiant

(1 row)

SELECT LOWERB ('AbCdEfG'") ;
LOWERB

abcdefg

(1 row)

SELECT LOWERB ('The Vertica Database');
LOWERB

the vertica database
(1 row)

LPAD

Returns a VARCHAR value representing a string of a specific length filled on the left with specific
characters.

Behavior Type

Immutable

Syntax

LPAD (expression , length [, fill])

Parameters

expression (CHAR OR VARCHAR) specifies the string to fill

length (INTEGER) specifies the number of characters to return

fill (CHAR OR VARCHAR) specifies the repeating string of characters with
which to fill the output string. The default is the space character.

Examples

SELECT LPAD('database', 15, 'xzy');
lpad

-337-

SQL Reference Manual

xzyxzyxdatabase
(1 row)

If the string is already longer than the specified length it is truncated on the right:

SELECT LPAD('establishment', 10, 'abc');
lpad

establishm
(1 row)

LTRIM

Returns a VARCHAR value representing a string with leading blanks removed from the left side
(beginning).

Behavior Type

Immutable

Syntax

LTRIM (expression [, characters])

Parameters

expression (CHAR or VARCHAR) is the string to trim

Characters (CHAR or VARCHAR) specifies the characters to remove from
the left side of expression. The default is the space character.

Examples

SELECT LTRIM('zzzyyyyyyxxxxxxxxtrim', 'xyz');
ltrim

See Also
BTRIM (page 317), RTRIM (page 348), TRIM (page 358)

MD5
Calculates the MD5 hash of string, returning the result as a VARCHAR string in hexadecimal.

Behavior Type
Immutable

Syntax

MD5 (string)

-338-

SQL Functions

Parameters

string Is the argument string.

Examples

SELECT MD5('123"'");
md5

202cb962ac59075b964b07152d234b70
(1 row)

SELECT MD5('Vertica'::bytea);
md5

fcd5b815747d8236f9f6fdb9c2c3f676
(1 row)

OCTET_LENGTH
Returns the length of the input string expression in octets.

Behavior Type
Immutable

Syntax

OCTET LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is the
string to measure.

Notes

o [f the data type of expression is a CHAR, VARCHAR or VARBINARY, the result is the same as
the actual length of expression in octets. For CHAR, the length does not include any trailing
spaces.

o [f the data type of expression is BINARY, the result is the same as the fixed-length of
expression.

e If the value of expression is NULL, the result is NULL.

Examples

Expression Result
SELECT OCTET LENGTH (CHAR(10) '1234 '), 4
SELECT OCTET LENGTH (CHAR(10) '1234"'); 4
SELECT OCTET LENGTH (CHAR(10) ' 1234"); 6
SELECT OCTET LENGTH (VARCHAR(10) '1234 ') 6

-339-

SQL Reference Manual

SELECT OCTET LENGTH (null::VARBINARY) ;
SELECT OCTET LENGTH (null::BINARY);

SELECT OCTET_ LENGTH (VARCHAR (10) '1234 '"); 5
SELECT OCTET LENGTH (VARCHAR (10) '1234"'); 4
SELECT OCTET LENGTH (VARCHAR (10) ' 1234"); 7
SELECT OCTET_ LENGTH('abc'::VARBINARY) ; 3
SELECT OCTET_ LENGTH (VARBINARY 'abc'); 3
SELECT OCTET LENGTH (VARBINARY 'abc '); 5
SELECT OCTET LENGTH (BINARY (6) 'abc'); 6
SELECT OCTET LENGTH (VARBINARY ''); 0
SELECT OCTET LENGTH(''::BINARY); 1

(

(

See Also
BIT_LENGTH (page 315), CHARACTER_LENGTH (page 318), LENGTH (page 335)

OVERLAY

Returns a VARCHAR value representing a string having had a substring replaced by another
string.

Behavior Type

Immutable if using OCTETS, Stable otherwise

Syntax

OVERLAY (expressionl PLACING expression?2 FROM position
[FOR extent]
[USING { CHARACTERS | OCTETS }])

Parameters
expressionl (CHAR or VARCHAR) is the string to process
expression2 (CHAR or VARCHAR) is the substring to overlay
position (INTEGER) is the character or octet position (counting from one)
at which to begin the overlay
extent (INTEGER) specifies the number of characters or octets to
replace with the overlay
USING CHARACTERS | OCTETS Determines whether OVERLAY uses characters (the default) or
octets
Examples
SELECT OVERLAY ('123456789' PLACING 'xxx' FROM 2);
overlay
1xxx56789
(1 row)

SELECT OVERLAY ('123456789' PLACING 'XXX' FROM 2 USING OCTETS) ;
overlay

-340-

SQL Functions

1XXX56789

(1 row)
SELECT OVERLAY ('123456789' PLACING 'xxx' FROM 2 FOR 4);
overlay

1xxx6789

(1 row)

SELECT OVERLAY ('123456789' PLACING 'xxx' FROM 2 FOR 5);
overlay

1xxx789

(1 row)

SELECT OVERLAY ('123456789' PLACING 'xxx' FROM 2 FOR 6);
overlay

1xxx89
(1 row)

OVERLAYB

Returns an octet value representing a string having had a substring replaced by another string.

Behavior Type

Immutable

Syntax

OVERLAYB (expressionl, expression?2, position [, extent])

Parameters

expressionl (CHAR or VARCHAR) is the string to process

expression2 (CHAR or VARCHAR) is the substring to overlay

position (INTEGER) is the octet position (counting from one) at which to begin the
overlay

extent (INTEGER) specifies the number of octets to replace with the overlay

Notes

This function treats the multibyte character string as a string of octets (bytes) and use octet
numbers as incoming and outgoing position specifiers and lengths. The strings themselves are
type VARCHAR, but they treated as if each byte was a separate character.

Examples

SELECT OVERLAYB ('123456789"', 'ééé', 2);
OVERLAYB

1€éé89

(1 row)
SELECT OVERLAYB ('123456789', 'BRBRR', 2);
OVERLAYB

-341-

SQL Reference Manual

1RRR8Y

(1 row)

SELECT OVERLAYB('123456789"', 'xxx', 2);
OVERLAYB

1xxx56789

(1 row)
SELECT OVERLAYB('123456789"', 'xxx', 2, 4);
OVERLAYB

1xxx6789

(1 row)
SELECT OVERLAYB ('123456789', 'xxx', 2, 5);
OVERLAYB

SELECT OVERLAYB('123456789', 'xxx', 2, 6);
OVERLAYB

1xxx89
(1 row)

POSITION

Returns an INTEGER value representing the character location of a specified substring with a
string (counting from one).

Behavior Type
Immutable if USING OCTETS, stable otherwise

Syntax 1

POSITION (substring IN string [USING { CHARACTERS | OCTETS }])
Parameters

substring (CHAR or VARCHAR) is the substring to locate

string (CHAR or VARCHAR) is the string in which to locate the

substring

USING CHARACTERS | OCTETS |Determines whether the position is reported by using
characters (the default) or octets.

Syntax 2

POSITION (substring IN string)

Parameters

substring (VARBINARY) is the substring to locate

-342-

SQL Functions

string (VARBINARY) is the string in which to locate the substring

Notes

e Whenthe string and substring are CHAR or VARCHAR, the return value is based on either the
character or octet position of the substring.

e When the string and substring are VARBINARY, the return value is always based on the octet
position of the substring.

e The string and substring must be consistent. Do not mix VARBINARY with CHAR or
VARCHAR.

Examples

SELECT POSITION('é' IN 'étudiant' USING CHARACTERS) ;
position

(1 row)
SELECT POSITION('R' IN 'straRe' USING OCTETS) ;
position

(1 row)
SELECT POSITION('c' IN 'abcd' USING CHARACTERS) ;
position

(1 row)
SELECT POSITION (VARBINARY '456' IN VARBINARY '123456789"');
position

(1 row)

POSITIONB

Returns an INTEGER value representing the octet location of a specified substring with a string
(counting from one).

Behavior Type
Immutable

Syntax

POSITIONB (string, substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring
substring (CHAR or VARCHAR) is the substring to locate

Examples

-343-

SQL Reference Manual

SELECT POSITIONB('straBe', 'Be');
POSITIONB

(1 row)
SELECT POSITIONB('étudiant', 'é');
position

(1 row)

QUOTE_IDENT

Returns the given string, suitably quoted, to be used as an identifier (page 15) in a SQL statement
string. Quotes are added only if necessary; that is, if the string contains non-identifier characters,
is a SQL keyword (page 12), suchas '1time"', 'Next week' and 'Select'. Embedded
double quotes are doubled.

Behavior Type

Immutable

Syntax
QUOTE_IDENT (string)

Parameters

string Is the argument string.

Notes

e SQL identifiers, such as table and column names, are stored as created, and references to
them are resolved using case-insensitive compares. Thus, you do not need to double-quote
mixed-case identifiers.

e \ertica quotes all currently-reserved keywords, even those not currently being used.

Examples
Quoted identifiers are case-insensitive, and Vertica does not supply the quotes:

SELECT QUOTE IDENT ('VErtIcA');
QUOTE IDENT

VErtIcA
(1 row)

SELECT QUOTE IDENT ('Vertica database');
QUOTE_ IDENT

"Vertica database"
(1 row)

Embedded double quotes are doubled:

-344-

SQL Functions

SELECT QUOTE IDENT ('Vertica "!" database');
QUOTE IDENT

"Vertica ""!"" database"
(1 row)

The following example uses the SQL keyword, SELECT; results are double quoted:

SELECT QUOTE IDENT ('select');
QUOTE IDENT

"select"
(1 row)

QUOTE_LITERAL

Returns the given string, suitably quoted, to be used as a string literal in a SQL statement string.
Embedded single quotes and backslashes are doubled.

Behavior Type

Immutable

Syntax
QUOTE LITERAL (string)

Parameters

string Is the argument string.

Notes

Vertica recognizes two consecutive single quotes within a string literal as one single quote
character. For example, 'You''re here!'. This is the SQL standard representation and is
preferred over the form, 'You\'re here!', as backslashes are not parsed as before.

Examples

SELECT QUOTE LITERAL('You''re here!');
QUOTE_LITERAL

'You''re here!'!
(1 row)

SELECT QUOTE_LITERAL('YOu\'re here!');
WARNING: nonstandard use of \' in a string literal at character 22
HINT: Use '' to write quotes in strings, or use the escape string syntax (E'\'").

See Also
String Literals (Character) (page 21)

REPEAT

Returns a VARCHAR or VARBINARY value that repeats the given value COUNT times, given a
value and a count this function.

-345.

SQL Reference Manual

If the return value is truncated the given value might not be repeated count times, and the last
occurrence of the given value might be truncated.

Behavior Type

Immutable

Syntax

REPEAT (string , repetitions)

Parameters

string (CHAR or VARCHAR or BINARY or VARBINARY) is the string
to repeat

repetitions (INTEGER) is the number of times to repeat the string

Notes

If the repetitions field depends on the contents of a column (is not a constant), then the repeat
operator maximum length is 65000 bytes. You can add a cast of the repeat to cast the result
down to a size big enough for your purposes (reflects the actual maximum size) so you can do
other things with the result.

REPEAT () and || check for result strings longer than 65000. REPEAT () silently truncates to
65000 octets, and || reports an error (including the octet length).

Examples
The following example repeats ‘'vmart' three times:

SELECT REPEAT ('vmart', 3);
repeat

vmartvmartvmart
(1 row)

If you run the following example, you get an error message:

SELECT '123456' || REPEAT('a', colx);
ERROR: Operator || may give a 65006-byte Varchar result; the limit is 65000 bytes.

If you know that colx can never be greater than 3, the solution is to add a cast (::VARCHAR(3)):

SELECT '123456'" || REPEAT('a', colx) ::VARCHAR(3);
If colx is greater than 3, the repeat is truncated to exactly three (3) a's.

REPLACE

Replaces all occurrences of characters in a string with another set of characters.

Behavior Type

Immutable

-346-

SQL Functions

Syntax

REPLACE (string , target , replacement)

Parameters
string (CHAR OR VARCHAR) is the string to which to perform the replacement
target (CHAR OR VARCHAR) is the string to replace
replacement (CHAR OR VARCHAR) is the string with which to replace the target
Examples
SELECT REPLACE ('Documentation%20Library', '%20', ' '");

replace

Documentation Library

(1 row)

SELECT REPLACE ('This & That', '&', 'and');
replace

This and That

(1 row)

SELECT REPLACE ('strabke', 'B', 'ss');

REPLACE

strasse

(1 row)

RIGHT

Returns the specified characters from the right side of a string.

Behavior Type

Immutable

Syntax

RIGHT (string , length)

Parameters

string (CHAR or VARCHAR) is the string to return.

length Is an INTEGER value that specifies the count of characters to
return.

Examples

The following command returns the last three characters of the string 'vertica':

SELECT RIGHT ('vertica', 3);
right

-347-

SQL Reference Manual

(1 row)

The following command returns the last two characters of the string 'straf3e':

SELECT RIGHT ('straBe', 2);
RIGHT

Re
(1 row)

See Also
SUBSTR (page 353)

RPAD

Returns a VARCHAR value representing a string of a specific length filled on the right with specific
characters.

Behavior Type

Immutable

Syntax

RPAD (expression , length [, fill])

Parameters
expression (CHAR OR VARCHAR) specifies the string to fill
length (INTEGER) specifies the number of characters to return
fill (CHAR OR VARCHAR) specifies the repeating string of characters with
which to fill the output string. The default is the space character.
Examples
SELECT RPAD('database', 15, 'xzvy');
rpad
databasexzyxzyx
(1 row)

If the string is already longer than the specified length it is truncated on the right:

SELECT RPAD('database', 6, 'xzy');
rpad

databa
(1 row)

RTRIM

Returns a VARCHAR value representing a string with trailing blanks removed from the right side
(end).

-348-

SQL Functions

Behavior Type

Immutable

Syntax

RTRIM (expression [, characters])

Parameters

expression (CHAR or VARCHAR) is the string to trim

characters (CHAR or VARCHAR) specifies the characters to remove from
the right side of expression. The default is the space character.

Examples

SELECT RTRIM('trimzzzyyyyyyxxxxxxxx', 'xyz');
ltrim

See Also
BTRIM (page 317), LTRIM (page 338), TRIM (page 358)

SPACE

Inserts blank spaces into a specified location within a character string.

Syntax

SELECT INSERT('stringl', || SPACE (n) || 'string2');

Parameters

stringl (VARCHAR) Is the string after which to insert the space.

n A character of type INTEGER that represents the number of
spaces to insert.

string2 (VARCHAR) Is the remainder of the string that appears after the
inserted spaces

Example

The following example inserts 10 spaces between the strings X' and 'y':

SELECT 'x' || SPACE(10) || 'y';
?2column?

X Yy

(1 row)

-349-

SQL Reference Manual

SPLIT_PART

Splits string on the delimiter and returns the location of the beginning of the given field (counting
from one).

Behavior Type
Stable
Syntax

SPLIT PART (string , delimiter , field)

Parameters

string Is the argument string.

delimiter Is the given delimiter.

field (INTEGER) is the number of the part to return.
Note

Use this with the character form of the subfield.

Examples
The specified integer of 2 returns the second string, or de f.

SELECT SPLIT PART ('abc~@~def~@~ghi', '~@~', 2);
split part

def
(1 row)

Here, we specify 3, which returns the third string, or 789.

SELECT SPLIT_PART('123~|~456~|~789', Y~ 3);
split part

(1 row)

Note that the tildes are for readability only. Omitting them returns the same results:

SELECT SPLIT PART('123[456]789', '|', 3);
split part

789
(1 row)

See what happens if you specify an integer that exceeds the number of strings: No results.

SELECT SPLIT PART('123[456(789', '|', 4);
split part

-350-

SQL Functions

(1 row)

The above result is not null, it is the empty string.

SELECT SPLIT_PART('123|456|789', '|'', 4) IS NULL;
?column?

(1 row)

If SPLIT_PART had returned NULL, LENGTH would have returned null.

SELECT LENGTH (SPLIT PART('123[456|789', '[', 4));
length
0
(1 row)
SPLIT _PARTB

Splits string on the delimiter and returns the location of the beginning of the given field (counting
from one).

Behavior Type
Immutable

Syntax

SPLIT PARTB (string , delimiter , field)

Parameters

string Is the argument string.

delimiter Is the given delimiter.

field (INTEGER) is the number of the part to return.
Note

Use this function with the character form of the subfield.

Examples

The specified integer of 3 returns the third string, or soupcon.

SELECT SPLIT PARTB('straBe~@~café~@~soupcon', '~@~', 3);
SPLIT PARTB

soupgon
(1 row)

Note that the tildes are for readability only. Omitting them returns the same results:

SELECT SPLIT PARTB('strabe @ café @ soupcon', 'Q@', 3);
SPLIT PARTB

soupcon

-351-

SQL Reference Manual

(1 row)

See what happens if you specify an integer that exceeds the number of strings: No results.

SELECT SPLIT PARTB('straBe @ café @ soupcon', 'Q', 4);
SPLIT PARTB

(1 row)

The above result is not null, it is the empty string.

SELECT SPLIT PARTB('straBe @ café @ soupcon', '@', 4) IS NULL;
?column?

STRPOS

Returns an INTEGER value representing the character location of a specified substring within a
string (counting from one).

Behavior Type
Stable

Syntax
STRPOS (string , substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring
substring (CHAR or VARCHAR) is the substring to locate

Notes

STRPOS is identical to POSITION (page 342) except for the order of the arguments.

Examples

SELECT STRPOS ('abcd','c'):;
strpos

STRPOSB

Returns an INTEGER value representing the character location of a specified substring within a
string (counting from one).

Behavior Type

Immutable

-352-

SQL Functions

Syntax
STRPOSB (string , substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring
substring (CHAR or VARCHAR) is the substring to locate

Notes

STRPOSB is identical to POSITIONB (page 343) except for the order of the arguments.

Examples

SELECT STRPOSB('strabe', 'Be');
STRPOSB

(1 row)
SELECT STRPOSB('étudiant', 'é');
position

SUBSTR

Returns a VARCHAR value representing a substring of a specified string.

Behavior Type

Immutable

Syntax

SUBSTR (string , position [, extent])

Parameters

string (CHAR or VARCHAR or BINARY or VARBINARY) s the string from
which to extract a substring.

position (INTEGER or DOUBLE PRECISION) is the starting position of the

substring (counting from one by characters). Note that this function
truncates DOUBLE PRECISION input values.

extent (INTEGER or DOUBLE PRECISION) is the length of the substring to
extract (in characters). The default is the end of the string. Note that
this function truncates DOUBLE PRECISION input values.

Notes

SUBSTR performs the same function as SUBSTRING (page 355). The only difference is the
syntax allowed.

-353-

SQL Reference Manual

Examples

SELECT SUBSTR('123456789', 3, 2);
substr

34

(1 row)

SELECT SUBSTR('123456789', 3);
substr

3456789
(1 row)

SELECT SUBSTR(TOiBITSTRING(HEXiToiBINARY('OxlO')), 2, 2);
substr

00
(1 row)

SELECT SUBSTR(TOiHEX(loolo), 2, 2);
substr

SUBSTRB

Returns an octet value representing the substring of a specified string.

Behavior Type

Immutable

Syntax

SUBSTRB (string , position [, extent])

Parameters

string (CHAR or VARCHAR or BINARY or VARBINARY) is the string from
which to extract a substring.

position (INTEGER or DOUBLE PRECISION) is the starting position of the

substring (counting from one in octets). Note that this function
truncates DOUBLE PRECISION input values.

extent (INTEGER or DOUBLE PRECISIO