Memcached Java API

Simon Johnston

September 10, 2008

This document outlines a Java API for memcached|[1] that tries to faithfully
reflect the API and protocol|2] of memcached itself while providing a set of
additional capabilities that provide value to the user. The package is fairly
low-level, as in [3] rather than try and provide any additional level of abstrac-
tion such as the package by Sallings [4].

Introduction
The memcached package is described in [1] as follows:

memcached is a high-performance, distributed memory object caching system,
generic in nature, but intended for use in speeding up dynamic web applica-
tions by alleviating database load.

The API package described in this document provides a relatively faithful Java API over
the memcached protocol. It should be noted that the memcached developers do not provide
any language bindings or API themselves, they publish the protocol between client and
server and allow others to develop such bindings. For Java a number of bindings exist
(|4, 3]), however for different reasons it was decided that th Jazz Foundation Services
needed a low-level API on which to build, but that had the minimum possible pre-
requisites and also partitioned non-protocol capabilities into a set of extensions thus
making them both configurable and optional.

This document describes the design, implementation and use of the package such that
clients can be developed that use memcached from Java (specifically the Jazz Foundation -
see [5]) and additional extensions could be developed to provide functionality beyond that
provided by memcached itself. The Jazz Foundation uses this API to provide a common
cache service for multiple storage services and thus providing distributed, load balancing
access to repository resources. The cache services within the Jazz Foundation provide
their own interface and abstraction allowing different distributed cache implementations
to be used - including IBM WebSphere eXtreme Scale|6]. It was decided that rather than
building the memcached interface directly into the corresponding Jazz Foundation cache
service these were separated allowing this Java API to be used in other places if required.

W N =

Design and Implementation

The design of the Java API was guided by two goals, one at least has been mentioned
above:

1. Provide an API that faithfully reflects the underlying memcached protocol rather
than provide any new abstraction over the protocol.

2. Make the API very Java-friendly, use Java collections, interfaces and common pat-
terns in the development of the API to make it easy to understand for the Java
developer.

The design therefore started with a Java interface, IMemcachedConnection that represented
the connection to one or more memcached process(es). The interface has methods that
correspond almost one to one with the capabilities of the protocol, set, add, update,
delete, etc. The idea of providing this as an interface allows the distinct implementation
of the ASCII (think telnet protocol) and binary specifications of the memcached protocol.
Now there is a requirement for a client to be able to get an instance of this interface and so
a factory class is provided that can provide the client an instance of either protocol. This
convention would also allow the provision of other implementations, so if the protocol
changes in an incompatible manner the new protocol could be supported with a new
object with the same API.

The API as specified allows a number of methods to take a list of parameters, as
demonstrated in the snippet from the protocol specification below.

<command name> <key> <flags> <exptime> <bytes> [noreply]l\r\n

This might suggest the Java API should take a similar list of parameters, however the
protocol when retrieving items a similar list of values is returned (see listing below). This
implies that the API will need to package the response data into an object and this is
exactly what we do with the MemcachedItem class. Once we had used this as the return
type from the get () method it actually became easier and more symmetrical to have the
update commands take an instance of this class as a parameter rather than the list of
individual parameters suggested above. Note that while the flags property is available
on the MemcachedItem class clients should beware of using this as it is used as a bit field
by the implementation; clients should use the flags field in the same way using bit values
above the SAFE_BIT_MIN property value specified.

VALUE <key> <flags> <bytes> [<cas unique>]\r\n
<data block>\r\n

The upshot of this is that the corresponding update/retrieval methods on the APT are
specified in the following manner:

public MemcachedItemStatus set(MemcachedItem item, long expiration)
throws MemcachedException;

public List<MemcachedItem> get(List<String> keys, boolean cas)
throws MemcachedException;

Protocol command name Java api method name

add, append, get, prepend, the same
replace, set, stats, version
cas checkAndSet
decr decrement
flush _all flush
gets folded into the get method
incr increment

Table 1: Protocol commands to API methods

In terms of the mapping from the protocol to API mapping the decision was to try and
retain all the names from the protocol itself, however some were made more readable.
Table 1 maps the names from the protocol specification to the Java API method names.
The only interesting exception where the API was changed somewhat is the separation
on the protocol of get and gets commands. In the protocol gets returns CAS values
whereas get does not. In the Java API the decision was to provide a single get () method
that has a boolean flag to denote whether CAS values are to be provided in the response.

Again, coming back to the goals above you’ll see that the Java API provides nothing
more than just the protocol client, additional capabilities such as serialization of Java
objects, compression and security of cache data and so on are all provided as extensions
to this API.

Key/Cache Hashing

One unique aspect of the memcached design is that the protocol does not implement ev-
erything required to build an application client, one key piece is left to the client in all
cases - the mapping of keys to cache process(es).

The implementation is again based on an interface, ICacheHashFunction, that hashes a
key and returns the actual socket connection to the correct cache process. Currently the
API has a single implementation of this interface that uses the following hash function
where C is the set of connections and k is the provided key. Also note that the current
implementation uses the CRC-32 function whereas a number of other known cyclic re-
dundency or checksum functions (Adler-32, Fletcher-32) are either faster or more reliable
the CRC-32 algorithm is reliable enough and provided by the Java SDK.

1. f(C,k) = crc(k) mod |C|

What this provides is a relatively random and even spread of keys to servers, however as
with most such k£ — ¢ hash functions it is important that each cache client sharing the
set of connections must have the same set of connections and the set be ordered in the
same way.

—

UL W N

Client Usage

The first step in using the API is to get an instance of the connection interface, this
interface is the main method by which a client interacts with the memcached process(es).
To get such an instance the API provides a connection factory class with two static
methods, one retrieves a default implementation, the other allows the client to pick
either an implementation of the memcached ASCII or binary protocol'. The following
listing demonstrates how the client can use the factory methods to retrieve an instance
of a connection.

IMemcachedConnection connection = null;
connection= MemcachedConnectionFactory.getDefaultConnection();
connection = MemcachedConnectionFactory.getConnection(MemcachedProtocol.ASCII);

The next step is to connect to the list of memcached server process(es). This idea of a
server list is important and so in effect the connection object is really a connection pool
but rather than the traditional connection pool that is used to serve

List<ServerAddress> addresses = new ArraylList<ServerAddress>();
addresses.add (new ServerAddress("127.0.0.1"));
connection.connect (addresses);

Now, to use the API to cache data you need to use at least the set() and get() methods.
The listing below shows how to create an item for storage, it needs only really a key and
a data object (the constructor for MemcachedItem can take a string or byte array) although
other options are available for more complex operations. Then you can call the API and
set the item providing a cache timeout value, note that the API uses the memcached
convention for specifying cache expiration times (see |2]). The protocol specifies a number
of update commands (add, cas, replace, set, append, prepend) these are all reflected in
the Java API but not all are demonstrated here.

The corresponding retrieval method, get(), takes a list of keys and returns a list of
retrieved items. Note that any item in the original list that was not found on the server
is not reported, so if three keys were provided but the server only found one item then
the list contains only a single item.

MemcachedItem item = new MemcachedItem("key", "My Data Item");
MemcachedItemStatus status = connection.set(item, 2);

List<String> keys = new ArrayList<String>();
keys.add ("key");
List<MemcachedItem> retrieved = connection.get (keys, false);
The MemcachedItemStatus response is an enumeration that once more maps relevant pro-
tocol responses to Java values and these are used in a number of the API methods.

Of course it’s important to consider error handling when calling the API and the
API provides three distinct exception classes, as demonstrated in the listing below. It
is also possible for Java I1legalArgumentException Or I1legalStateException exceptions to be
thrown by the extensions, although the main API should map errors to MemcachedClientException.
The JavaDoc for the API interface documents common cases for these exceptions.

! As of this time only the ASCII protocol is supported by the API.

© 00~ Uk WN -~

UL W N

—_
= O ©O0oo 0 Utk Wi

=

0~ O Ut W

try {

String version = connection.version();
} catch (MemcachedClientException e) {

; // a badly formed request, or out-of-bounds arguments
} catch (MemcachedServerException e) {

; // an error in communicating with the server, or returned by the server
} catch (MemcachedException e) {

; // an invalid or unknown command or response from the server
}
Now we have managed to add items to the cache and retrieve them we may also need
to explicitly remove something from the cache. The delete() method on the Java API
allows for removal of items from the cache, and allows for the cache to not allow reuse
of the key for a period of time (see the protocol specification). The API also provides a
flush() method that removes all items from the cache. The time parameter in this case
denotes a period for the server after which the flush occurs; the protocol specification
recommends not having all cache process(es) flush at the same time, so the Java API has

a parameter which if true will stagger the delay between servers.

connection.delete("keyl", IMemcachedConnection.IMMEDIATE);

retrieved = connection.get(keys, false);
// retrieved.size() == 0

connection.flush(IMemcachedConnection.IMMEDIATE, false);

One capability built into the protocol is a special use of cache items to provide distributed
counters, these are cache items that are treated as integer values and the protocol allows
for increment /decrement operators to operate on these counters. These operations are
also provided on the Java API in an identical fashion.

MemcachedItem item = new MemcachedItem("counteril", "O0");
connection.set(item, 60);

Long value = connection.increment ("counterl", 2);
// value == 2

value = connection.increment ("counterl", 2);

// value ==

value = connection.decrement ("counterl", 1);

// wvalue == 3

Finally, to gather statistics from the connected cache process(es) the stats() method
returns a map with statistics from all servers as a simple map of (key, value) string pairs.

Map<ServerAddress, Map<String, String>> stats = connection.stats();
for (Iterator<ServerAddress> serverlterator = stats.keySet().iterator();
serverIterator.hasNext ();) {
ServerAddress serverKey = (ServerAddress) serverIterator.next();
System.out.println("server->" + serverKey.toString());
for (Iterator<String> statlterator = stats.get(serverKey).keySet().iterator();
statIterator.hasNext ();) {
String statKey = (String) statIterator.next();

System.out.println("+ " + statKey + "->" + stats.get(serverKey).get(statKey));

N O U W N

Serializing Java Objects to the Cache

One common requirement will be to cache Java objects, not just byte arrays and so
rather than have all clients work out how to do this themselves it’s possible to use the
SerializationItem class which extends MemcachedItem with the ability to get/set a Java
object which gets serializer/deserialized into a byte form. In the following example you
can see how we set a static serializer (the most common case) and are now able to use
the item class in much the same way as we did in the examples above. The difference is
that we pass an object into the item constructor instead of a string or byte array, and
we use the getObject() method to retrieve the object from the item once it’s retrieved.

SerializationItem.setSerializer (new JavaSerializationSerializer ());
SerializationItem item = new SerializationItem("urn:ticker:ibm", new Customer ());
connection.set(item, 60);

List<MemcachedItem> retrieved = connection.get (keys, false);

item = new SerializationItem(retrieved.get(0));

System.out.println(item.getObject ().toString());

Importantly the client now has to know that the data returned is likely to have been
serialized and the response from get() methods will be basic MemcachedItem objects and
will have to be copied into a SerializationItem before it can be used.

Connection Extensions

One key method on the connection object is the getExtension() method that allows a
client to retrieve an instance of an extension object. As mentioned above the API parti-
tions extensions over and above the protocol implementation into extension objects that
provide additional functionality that clients may frequently require. Currently the API
provides two extension interfaces:

IConnectionCompression the capability to compress and decompress data as it is trans-
mitted in and out of the memcached process(es). This reduces the amount of data
transmitted and therefore improves performance, especially when communicating
with processes not running on the local server. This extension is turned on by
default.

IConnectionEncryption the capability to encrypt and descrypt the data as it is trans-
mitted in and out of the memcached process(es). This provides a level of both privacy
and tamper-proofing for resources as they become stored in processes outside of the
Jazz Foundation repository itself. This extension is turned off by default as it must
be supplied with an encryption key before it can be used.

Note that the use of these extensions does have an impact on the API, for example if
either compression or encryption is being used the methods append() and prepend() are
not available. This is because the concatenation of the data is performed by the memcached
process(es) which are unaware of the fact that the original and the requested additional
data are compressed. The result of appending one block of compressed data onto another
block of compressed data would not be possible to then decompress.

W N =

00~ Uk WN

The following listing demonstrates the use of the compression extension, as mentioned
above the extension is on by default. Applications using this API should not turn on
and off compression on the fly, the API does use the flags on an item to denote whether
an item was compressed or encrypted a client could overwrite these flags or confuse the
API in other ways. Note that the extension does have one configurable property, the
minimum size of a resource before compression is used, so small resources will not be
compressed as this is often inefficient.

IConnectionCompression compression = null;
compression = (IConnectionCompression)connection.getExtension(IConnectionCompression.class);
System.out.println("compressed? " + compression.isCompressed());

compression.setCompressionMinimumSize (4 * 1024);

The encryption extension is somewhat more complex as the capability cannot be enabled
without first providing a key that is then used by the cryptographic process. These APIs
do use Java exceptions to report particular errors in configuration, as shown in the listing
below. Note that all clients sharing the memcached process(es) must be using the same
key and so some mechanism for storing, distributing and configuring the key must be
provided. Once the key has been set and the extension enabled all resources added to
the cache will be encrypted. Note that the same comment above on compression applies,
applications should not turn encryption on/off on the fly.

IConnectionEncryption encryption = null;
encryption = (IConnectionEncryption)connection.getExtension(IConnectionEncryption.class);
System.out.println("encrypted? " + encryption.isEncrypted());

KeyGenerator keygen = KeyGenerator.getInstance ("DES");
SecretKey key = keygen.generateKey();

try {
encryption.setCryptoKey (key);
} catch (IllegalArgumentException e) {
s // if the key contains invalid parameters, including cases where
// key parameters clash with the cryptographic algoritm omnes, set
// with setCipherdlgorithm.
}

try {

encryption.setEncrypted(true);
} catch (IllegalStateException e) {

; // thrown when set to true before the cryptographic key is set.
}
It is expected that client applications will configure and enable extensions during start
up and the leave these settings alone as the applications run. In the case of the Jazz
Foundation cache services these details are exposed as configuration properties that the

cache service sets during initialization.

References

[1] [Online|. Available: http://www.danga.com/memcached/

[2] B. Fitzpatrick, “Memcached protocol,” sixapart.com, Tech. Rep., 2008. [Online].
Available: http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt

[3] (2008, 3). [Online]. Available: http://whalin.com/memcached/
[4] (2008). [Online|. Available: http://code.google.com/p/spymemcached/

[5] J. Wiegand, “The ibm rational jazz strategy for collaborative application lifecycle
management,” IBM, Tech. Rep., 2008.

[6] |Online|. Available: http://www.ibm.com/software/webservers/appserv/extremescale/

