

SMARTdata UTILITIES IBM

VSAM Application Programming
Interface Reference

 SC26-7133-00

SMARTdata UTILITIES IBM

VSAM Application Programming
Interface Reference

 SC26-7133-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xi.

First Edition (April 1997)

This edition applies to all platforms supported by SMARTdata UTILITIES Version 2 Release 1, and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product.

Publications are not stocked at the address below. Requests for IBM publications should be made to your IBM repre-
sentative or the IBM branch office serving your locality.

You can order by calling IBM Software Manufacturing Solutions at 1-800-879-2755.

A form for reader comments is provided at the back of this publication. If the form has been removed, address your
comments to:

International Business Machines Corporation
RCF Processing Department

 G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

 U.S.A.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

 Contents

Notices . xi
Programming Interface Information . xi
Trademarks and service marks . xii

About This Book . xiii
Who Should Read This Publication . xiii
What You Should Know Before Reading This Publication xiii

Bibliography . xv

Using This Reference . xvii
Notation Conventions . xvii
Function Descriptions . xvii
DDMExample (Example) . xviii

Syntax . xviii
Parameters . xviii
Returns . xviii
Remarks . xviii
Examples . xix

Chapter 1. Introduction to VSAM as a DDM Implementation 1
Distributed Data Management Overview . 1
DDM Record Types . 4

RECORD formats . 4
RECINA formats . 4

Record Attribute Lists (RECALs) . 5
Extended Attributes . 5
Record Files . 6
Record File and Record Length Classes . 7

Sequential Files . 8
Direct Files . 10
Keyed Files . 13
Alternate Index File . 16
File Naming Conventions . 17

Performance Considerations . 17
Sequential and Direct Files . 18
Keyed and Alternate Index Files . 18

Access Methods . 18
Promoting Access Methods . 20

DDM Cursor . 21
DDM Lock Management . 22

Concurrency Protection . 22
File Locking . 23

| Record Locking (Implementation is Dependent on the Server) 25
Promoting Locks (Implementation is Dependent on the Server) 27

 Copyright IBM Corp. 1993, 1997 iii

DDM Architecture Promotions and Exceptions 28
Technical Considerations . 29

Chapter 2. Function Lists . 31
VSAM Function Descriptions . 31
Parameters Used in Function Descriptions . 34
Access Functions Applicable to Each File Class 34
Cursor-Positioning Functions Applicable to Each File Class 35
Record File Attributes by File Class . 37
Modifiable Record File Attributes by File Class 38
Private File Attributes by File Class . 39
Access Functions Applicable to Each Access Method 40
Access Functions Applicable to Each Access Method Continued 42

Chapter 3. VSAM API Functions . 43
DDMClose (Close File) . 44
DDMCopyFile (Copy File) . 46
DDMCreateAltIndex (Create Alternate Index File) 50
DDMCreateRecFile (Create Record File) . 57
DDMDelete (Delete File) . 64
DDMDeleteRec (Delete Record) . 66
DDMForceBuffer (Commit a File's Cached Information) 70
DDMGetRec (Get Record) . 72
DDMGetReplyMessage (Get Reply Message) 81
DDMInsertRecEOF (Insert Records at EOF) . 83
DDMInsertRecKey (Insert Records by Key Value) 93
DDMInsertRecNum (Insert by Record Number) 98
DDMLoadFileFirst (Load Records into File) . 106
DDMLoadFileNext (Load Records into File) 115
DDMModifyRec (Modify Record) . 122
DDMOpen (Open File) . 127
DDMQueryFileInfo (Get a File's Information) 133
DDMQueryPathInfo (Get File or Subdirectory Information) 135
DDMRename (Rename File) . 138
DDMSetBOF (Set Cursor to Beginning of File) 141
DDMSetEOF (Set Cursor to End of File) . 144
DDMSetFileInfo (Set File Information) . 146
DDMSetFirst (Set Cursor to First Record) . 148
DDMSetKey (Set Cursor by Key) . 159
DDMSetKeyFirst (Set Cursor to First Record in Key Sequence) 177
DDMSetKeyLast (Set Cursor to Last Record in Key Sequence) 186
DDMSetKeyLimits (Set Key Limits) . 195
DDMSetKeyNext (Set Cursor to Next Record in Key Sequence) 202
DDMSetKeyPrevious (Set Cursor to Previous Record in Key Sequence) 220
DDMSetLast (Set Cursor to Last Record) . 233
DDMSetMinus (Set Cursor Minus) . 243
DDMSetNextKeyEqual (Set Cursor to Next Record with Equal Key) 253
DDMSetNextRec (Set Cursor to Next Record) 269

iv SdU VSAM API Reference

DDMSetPathInfo (Set File or Directory Information) 288
DDMSetPlus (Set Cursor Plus) . 291
DDMSetPrevious (Set Cursor to Previous Record) 301
DDMSetRecNum (Set Cursor to Record Number) 314
DDMSetUpdateKey (Set Update Intent by Key Value) 321
DDMSetUpdateNum (Set Update Intent by Record Number) 330
DDMTruncFile (Move EOF to Current Cursor Position) 337
DDMUnLoadFileFirst (Unload Records from File) 339
DDMUnLoadFileNext (Unload Records from File) 349
DDMUnLockRec (Unlock Implicit Record Lock) 358

Chapter 4. VSAM API Common Parameters 361
ACCINTLS (Access Intent List) . 361
ACCMTHCL (Access Method Class) . 362
ACCMTHLS (Access Method List) . 362

| ALCINISZ (Allocate Initial Extent)—DFM Only 363
ALTINDLS (Alternate Index List) . 364
BASFILNM (Base File) . 365
BASMGMNM (Base Management Class Name) 365
BASSTGNM (Base Storage Class Name) . 366
CODPNT (Code Point Attribute) . 366
CSRPOSST (Cursor Position Status) . 366
DATE (Date and Time) . 367
DELCP (Record Deletion Capability) . 369
DFTREC (Default Record) . 369
DTACLSNM (Data Class Name) . 370
DTALCKST (Data Lock Status) . 371
EOFNBR (End of File Record Number) . 372
ERRFILNM (Error File Name) . 372
FILBYTCN (File Byte Count) . 373

| FILCHGDT (File Change Date)—DFM Only 373
FILCLS (File Class) . 374
FILCRTDT (File Creation Date) . 374
FILHDD (File Hidden) . 375
FILINISZ (Initial File Size) . 375
FILNAM (File Name) . 376
FILPRT (File Protected) . 377
FILSIZ (File Size) . 377
FILSYS (System File) . 378
GETCP (File Get Capability) . 378
INSCP (File Insert Capability) . 379
KEYDEF (Key Definition) . 379
KEYDEFCD (Key Definition Error Code) . 380
KEYDUPCP (Duplicate Keys Capability) . 381
KEYFLDDF (Key Field Definition) . 382
KEYVAL (Key Value) . 383

| LSTACCDT (Last Access Date)—DFM Only 383
| LSTARCDT (Last Archived Date)—DFM Only 384

 Contents v

MAXARNB (Maximum Active Record Number) 384
MAXOPN (Maximum Number of Files Opened) 384
MGMCLSNM (Management Class Name) . 385
MODCP (File Modify Capability) . 385
NEWFILNM (New File Name) . 386
RECAL (Record Attribute List) . 386
RECCNT (Record Count) . 388
RECINA (Inactive Record) . 389
RECLEN (Record Length) . 389
RECLENCL (Record Length Class) . 390
RECNBR (Record Number) . 391
RECORD (Record) . 391
RTNCLS (File Retention Class) . 392
SRVDGN (Server Diagnostic Information) . 392
STGCLSNM (Storage Class Name) . 393
SVRCOD (Severity Code) . 393
SYNERRCD (Syntax Error Code) . 396
TITLE (A Brief Description) . 397

Chapter 5. VSAM API Flags . 399
AccessFlags (Access Flags) . 399

DDM_HLDUPD (Hold Update Intent) . 400
DDM_UPDCSR (Update Cursor) . 400
DDM_INHMODKY (Inhibit Modified Keys) 400
DDM_ALWINA (Allow Cursor to Be Set to Inactive Record) 401
DDM_HLDCSR (Hold Cursor Position) . 401
DDM_BYPDMG (Bypass Damaged Records) 401
DDM_NODATA (No Record Data Returned) 402
DDM_ALLREC (All Records, Active and Inactive) 402
DDM_RTNINA (Return Inactive Record) . 402
DDM_KEYVALFB (Key Value Feedback) 402
DDM_RECNBRFB (Record Number Feedback) 403
DDM_UPDINT (Update Intent) . 403

CopyFlags (Copy Flags) . 404
DDM_BYPINA (Bypass Inactive Records) 405
DDM_BYPDMG (Bypass Damaged Records) 405
DDM_ACCORD (Access Order) . 405

CreateFlags (Create Flags) . 405
DDM_FILPRT (Protected File) . 406
DDM_FILSYS (System File) . 406
DDM_FILHDD (Hidden File) . 407
DDM_MODCP (Allow Modify Record Capability) 407
DDM_INSCP (Allow Insert Record Capability) 407
DDM_GETCP (Allow Get Record Capability) 407
DDM_INIEX (Inhibit Initial Extent) . 408
DDM_DELCP (Allow Record Deletion) . 408
DDM_TMPFIL (Temporary File) . 408
DDM_ALDUPKEY (Allow Duplicate Keys) 409

vi SdU VSAM API Reference

Chapter 6. VSAM API Reply Messages . 411
Reply Message Interface . 411
Reply Message Structure . 411
Reply Messages . 412
ACCATHRM (Not Authorized to Use Access Method) 415
ACCINTRM (Access Intent List Error) . 415
ACCMTHRM (Invalid Access Method) . 416
ADDRRM (Address Error) . 417
AGNPRMRM (Permanent Agent Error) . 418
BASNAMRM (Invalid Base File Name) . 418
CLSDMGRM (File Closed with Damage) . 419
CMDCHKRM (Command Check) . 419

| COMMRM (Communications Error) . 421
CSRNSARM (Cursor Not Selecting a Record Position) 424

| CVTNFNRM (Conversion Table Not Found) 425
| DDFNFNRM (Data Description File Not Found) 425

DFTRECRM (Default Record Error) . 426
DRCATHRM (Not Authorized to Directory) . 426
DRCFULRM (Directory Full) . 427
DTARECRM (Invalid Data Record) . 427
DUPFILRM (Duplicate File Name) . 429
DUPKDIRM (Duplicate Key Different Index) 429
DUPKSIRM (Duplicate Key Same Index) . 430
DUPRNBRM (Duplicate Record Number) . 432
ENDFILRM (End of File) . 433
EXSCNDRM (Existing Condition) . 435
FILATHRM (Not Authorized to File) . 435
FILDMGRM (File Damaged) . 436
FILFULRM (File Is Full) . 438
FILIUSRM (File in Use) . 439
FILNAMRM (Invalid File Name) . 440
FILNFNRM (File Not Found) . 440
FILSNARM (File Space Not Available) . 441
FILTNARM (File Temporarily Not Available) 442
FUNATHRM (Not Authorized to Function) . 442
FUNNSPRM (Function Not Supported) . 443
HDLNFNRM (File Handle Not Found) . 443
INTATHRM (Not Authorized to Open Intent for Named File) 444
INVFLGRM (Invalid Flag) . 444
INVRQSRM (Invalid Request) . 445
KEYDEFRM (Invalid Key Definition) . 446
KEYLENRM (Invalid Key Length) . 447
KEYUDIRM (Key Update Not Allowed by Different Index) 448
KEYUSIRM (Key Update Not Allowed by Same Index) 449
KEYVALRM (Invalid Key Value) . 450
LENGTHRM (Field Length Error) . 451
NEWNAMRM (Invalid New File Name) . 452
OBJNSPRM (Object Not Supported) . 452

 Contents vii

OPNMAXRM (Concurrent Opens Exceeds Maximum) 453
| PRCCNVRM (Conversational Protocol Error) 454

PRMNSPRM (Parameter Not Supported) . 455
RECDMGRM (Record Damaged) . 455
RECINARM (Record Inactive) . 457
RECIUSRM (Record in Use) . 457
RECLENRM (Record Length Mismatch) . 458
RECNAVRM (Record Not Available) . 459
RECNBRRM (Record Number Out of Bounds) 460
RECNFNRM (Record Not Found) . 461
RSCLMTRM (Resource Limits Reached on Target System) 462
SRCLMTRM (Resource Limit Reached in Source System) 463
SYNTAXRM (Data Stream Syntax Error) . 463
TRGNSPRM (Parameter Not Supported on Target System) 464
UPDCSRRM (Update Cursor Error) . 465
UPDINTRM (No Update Intent on Record) . 466
VALNSPRM (Parameter Value Not Supported) 466

| XLATERM (Translation Error) . 467

| Appendix A. Programming Extended Attributes in VSAM APIs 469

Glossary . 481

Index . 483

viii SdU VSAM API Reference

 Figures

1. Overview of DDM Processing . 3
2. Local VSAM File Component Parts . 8
3. Sequential File with Variable-Length Records 9
4. Quasi Byte Stream Record File . 10
5. Direct File with Inactive Fixed-Length Records 12
6. Direct / Sequential File Format . 13
7. Keyed File . 14
8. Keyed File of Fixed-Length Records . 16
9. Lost Update Concurrency Problem . 23

10. DDMDeleteRec Function . 69
11. DDMInsertRecEOF . 85
12. DDMInsertRecEOF . 86
13. DDMInsertRecEOF Function . 90
14. DDMInsertRecEOF Function with DDM_UPDCSR 91
15. DDMInsertRecKey Function with DDM_UPDCSR 97
16. DDMInsertRecNum Function . 104
17. DDMInsertRecNum Function with Multiple Records 105
18. DDMLoadFileFirst Function to a New File 112
19. DDMLoadFileFirst Function to Append to a File 113
20. DDMLoadFileFirst Function to Random Load a Direct File 114
21. DDMLoadFileNext Function to Append to a File 121
22. DDMModifyRec Function . 126
23. DDMSetBOF Function . 143
24. DDMSetEOF Function . 145
25. DDMSetFirst Function with DDM_ALLREC Set 153
26. DDMSetFirst Function with DDM_ALLREC Not Set 154
27. DDMSetKey Function with RelOpr Set to KEYEQ 165
28. DDMSetKey Function with RelOpr Set to KEYAE 166
29. DDMSetKey Function with RelOpr Set to KEYAF 167
30. DDMSetKey Function with RelOpr Set to KEYBE 168
31. DDMSetKey Function with RelOpr Set to KEYAE 169
32. DDMSetKey Function with RelOpr Set to KEYBE 170
33. DDMSetKey Function with RelOpr Set to KEYBE 171
34. DDMSetKey Function with RelOpr Set to KEYBF 172
35. DDMSetKeyFirst Function for Ascending Sequence 180
36. DDMSetKeyFirst Function for Descending Sequence 181
37. DDMSetKeyLast Function for Ascending Sequence 189
38. DDMSetKeyLast Function for Descending Sequence 190
39. DDMSetKeyLimits Function . 199
40. DDMSetKeyNext Function with Key Limits Set 200
41. Resetting Limits with DDMSetKey Function 201
42. DDMSetKeyNext Function with Duplicate Key Values 207
43. DDMSetKeyNext Function for Ascending Sequence 208
44. DDMSetKeyNext Function for Descending Sequence 209
45. DDMSetKeyNext Function with Key Limits Set 210

 Copyright IBM Corp. 1993, 1997 ix

46. DDMSetKeyNext Function with Hold Cursor Initially On 211
47. DDMSetKeyNext Function with Hold Cursor Initially On 212
48. DDMSetKeyNext Function with Hold Cursor Initially Off 213
49. DDMSetKeyPrevious Function with Duplicate Key Values 224
50. DDMSetKeyPrevious Function for Ascending Sequence 225
51. DDMSetKeyPrevious Function for Descending Sequence 226
52. DDMSetLast DDM_ALLREC Set Off for Sequential File 237
53. DDMSetLast DDM_ALLREC Set On for Sequential File 238
54. DDMSetMinus Function . 247
55. DDMSetNextKeyEqual to Access First Duplicate Key 257
56. DDMSetNextKeyEqual to Access the Next Duplicate Key 258
57. DDMSetNextKeyEqual to Access Past the Last Duplicate Key 259
58. DDMSetNextKeyEqual Function with Key Limits Set 260
59. DDMSetNextKeyEqual Function with Hold Cursor Initially On 261
60. DDMSetNextKeyEqual function with Hold Cursor Initially On 262
61. DDMSetNextKeyEqual function with Hold Cursor Initially Off 263
62. DDMSetNextRec Function with DDM_ALLREC Set 276
63. DDMSetNextRec Function with DDM_ALLREC Not Set 277
64. DDMSetNextRec Function with Hold Cursor Initially On 278
65. DDMSetNextRec Function with Hold Cursor Initially On 279
66. DDMSetNextRec Function with Hold Cursor Initially On 280
67. DDMSetNextRec Function with Hold Cursor Initially Off 281
68. DDMSetPlus Function . 295
69. DDMSetPrevious Function with DDM_ALLREC Set to On 306
70. DDMSetPrevious Function with DDM_ALLREC Not Set 307
71. DDMSetRecNum Function . 318
72. DDMSetUpdateKey Function . 325
73. DDMSetUpdateNum Function . 334
74. DDMTruncFile Function . 338
75. DDMUnLoadFileFirst Function When Returning Active or Inactive Records 345
76. DDMUnLoadFileFirst Function Skipping Inactive Records 346
77. DDMUnLoadFileFirst Function Skipping Damaged Records 347
78. DDMUnLoadFileFirst Function Unloading in Key Order 348
79. DDMUnLoadFileNext Function . 354
80. DDMUnLoadFileNext Function Skipping Inactive Records 355
81. DDMUnLoadFileNext Function Skipping Damaged Records 356
82. DDMUnLoadFileNext Function Unloading in Key Order 357
83. Record Length Class Promotion . 390
84. DDMSetNextRec ENDFILRM . 434
85. DDMSetKeyNext ENDFILRM . 434

| 86. Example of C Program using Extended Attributes 469

x SdU VSAM API Reference

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Subject to IBM's valid intellectual
property or other legally protectable rights, any functionally equivalent product, program,
or service may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to :

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information that has
been exchanged, should contact:

 IBM Corporation
Information Enabling Requests

 Dept. M13
5600 Cottle Road
San Jose, CA 95193

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This publication documents General-use Programming Interface provided by
SMARTdata UTILITIES.

General-use programming interfaces allow the customer to write programs that obtain
the services of SMARTdata UTILITIES.

General-use Programming Interface is identified where it occurs with an introductory
statement to a section.

 Copyright IBM Corp. 1993, 1997 xi

Trademarks and service marks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the
IBM Corporation in the United States or other countries or both:

 AIX
 DFSMSdfp
 DFSMS/MVS
 IBM
 MVS/ESA
 Operating System/2
 Operating System/400
 OS/2
 OS/400
 VisualAge
 VM/ESA

The following terms are trademarks of other companies:

Windows Microsoft Corp.
Windows NT Microsoft Corp.
Windows 95 Microsoft Corp.

xii SdU VSAM API Reference

About This Book

This publication introduces the VSAM Application Programming Interfaces (APIs) for the
C programmer developing applications in a distributed environment. This publication
discusses the capabilities of the VSAM APIs and how they are used to access remote
and local data organized in various file types. This access conforms to a set of proto-
cols defined in the Distributed Data Management (DDM) architecture.

As you will learn, VSAM is an implementation of the DDM Architecture. The first
chapter describes the subset of the DDM architecture supported by the VSAM APIs.
This chapter describes local and remote file access, and the supported record files and
file types.

This book describes the VSAM APIs (also referred to as functions) in detail. It tells you
how to code the APIs, gives information about API parameters, and information about
the API flags. The last chapter describes the API reply messages.

For information on how to use the Distributed FileManager (DFM) for remote record
access, see the appropriate platform User's Guide.

Who Should Read This Publication
This book is for you if you are a C application programmer who wants to write applica-
tions that open, access, modify, and close record files on local or remote systems.

What You Should Know Before Reading This Publication
You should have an understanding of Distributed Data Management (DDM) architecture
level 4.0 and C programming language. A good starting point for learning about DDM
architecture is IBM Distributed Data Management: General Information. Some higher
level programming language products, such as COBOL and PL/I, might provide trans-
parent VSAM API support through their runtime libraries.

 Copyright IBM Corp. 1993, 1997 xiii

xiv SdU VSAM API Reference

 Bibliography

You can order books by calling IBM Software Manufacturing Solutions at
1-800-879-2755.

Table 1. SMARTdata UTILITIES for Windows Publications

Publication Title Order Number

SMARTdata UTILITIES for Windows Set SBOF-6135

SMARTdata UTILITIES for Windows Distributed FileManager User's Guide SC26-7134

SMARTdata UTILITIES Data Description and Conversion SC26-7091

SMARTdata UTILITIES VSAM Application Programming Interface Reference SC26-7133

SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
version

SC26-7092

Table 2. SMARTdata UTILITIES for OS/2 Publications

Publication Title Order Number

SMARTdata UTILITIES for OS/2 Set SBOF-6131

SMARTdata UTILITIES for OS/2 VSAM in a Distributed Environment SC26-7063

SMARTdata UTILITIES SMARTsort for OS/2 and AIX SC26-7099

SMARTdata UTILITIES Data Description and Conversion SC26-7091

SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
version

SC26-7092

Table 3. SMARTdata UTILITIES for AIX Publications

Publication Title Order Number

SMARTdata UTILITIES for AIX Set SBOF-6132

SMARTdata UTILITIES for AIX: VSAM in a Distributed Environment SC26-7064

SMARTdata UTILITIES SMARTsort for OS/2 and AIX SC26-7099

SMARTdata UTILITIES Data Description and Conversion SC26-7091

SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
version

SC26-7092

 Copyright IBM Corp. 1993, 1997 xv

Table 4. Other Publications

Publication Title Order Number

IBM Distributed Data Management: General Information GC21-9527

DDM Architecture: Specifications for ADL SC21-8286

Character Data Representation Architecture, Level 2 SC09-1390

IBM Systems Journal: Volume 31, No. 3, 1992 G321-5483

IBM Dictionary of Computing SC20-1699

Compilers–Principles, Techniques, and Tools: by the Addison-Wesley Publishing
Company

IEEE Standard for Binary Floating–Point Arithmetic: ANSI/IEEE STANDARD 754-1985

INTEL 387 DX User

IBM Distributed Data Management: General Information GC21-9527

IBM Distributed Data Management: Reference Guide SC21-9526

Using Distributed Data Management for the IBM Personal Computer SC21-9643

AS/400 Communications: Distributed Data Management Guide SC21-9600

CICS/Distributed Data Management: User's Guide SC33-0695

IBM 4680 Store Systems: Distributed Data Management: User's Guide SC30-4915

DFSMS/MVS Version 1 Release 2 Distributed FileManager/MVS Guide and Refer-
ence

SC26-4915

DFSMS/MVS Version 1 Release 3 DFSMSdfp Diagnosis Reference LY27-9606

AIX SNA Server/6000: Configuration Reference SC31-7002

AIX SNA Server/6000: User's Guide SC31-7002

AIX DCE Administration Guide SC23-2475

Encina Server Administration: System Administrator's Guide and Reference for AIX SC23-2461

SFS Administrator's Guide and Reference Version 2 Release 2 SC33-1609

SFS Programmer's Guide and Reference Version 2 Release 2 SC33-1610

VM/ESA R2.2 SFS and CRR Plan, Administration and Operations SC24-5649

Distributed Data Management Architecture, Architecture Reference SC21-9526

OS/2 WARP (Version 3) Control Program Programming Reference G25H-7102

xvi SdU VSAM API Reference

Using This Reference

Before you begin using this reference, read the following sections to understand the
format and access functions for VSAM APIs.

 Notation Conventions
The function descriptions and examples are shown in C language. Lengths, code
points, bit flag masks, and other values are shown in the following hexadecimal nota-
tion:

X'hex value'

with the hexadecimal value enclosed in single quotes following a capital X.

Bit constants appear in the following format:

B'bit value'

with the bit value enclosed in single quotes following a capital B.

Severity codes are shown in decimal and hexadecimal notation.

Note: See the file DUBCODPT.H in the installation directory for an example of the
code point notation.

 Function Descriptions
The functions in this book follow a pseudo-C high-level language format. The following
example outlines the template used for VSAM API descriptions.

 Copyright IBM Corp. 1993, 1997 xvii

DDMExample

 DDMExample
(Example)

This is the purpose of the function.

 Syntax
This is the invocation format (Call Interface) for the function and describes all the
parameters of the function.

#include dub.h

APIRET DDMExample (ULONG Parm 1,

 PULONG Parm 2,

);

 Parameters
This section contains the parameters that apply to the function.

Parm1
The first parameter (ULONG) of the function.

Parm2
The second parameter (PULONG) of the function.

There are four types of parameters:

Function specific Used only by the function, such as FileName.
Common Described in Chapter 4, “VSAM API Common Parameters”

on page 361
AccessFlags Described in “AccessFlags (Access Flags)” on page 399
CreateFlags Described in “CreateFlags (Create Flags)” on page 405

 Returns
This section lists possible reply messages that can be returned in response to invoking
this API.

In addition, each function returns a return-code value of the type APIRET.

 Remarks
This section contains general comments about the function.

Effect on Cursor Position
This section describes the effect the function has on the position of the cursor.

Locking (for Local VSAM File System Only)
This section describes the kind of locking that occurs for each function on the
local VSAM file system.

Exceptions
This section contains tables that list the reply messages you will normally receive
and provide detailed information about what causes the reply messages.

xviii SdU VSAM API Reference

DDMExample

 Examples
This section contains examples to illustrate what changes may be caused by the func-
tion invocation, such as cursor movement and limit resetting.

 Using This Reference xix

DDMExample

xx SdU VSAM API Reference

Chapter 1. Introduction to VSAM as a DDM Implementation

This chapter describes the subset of the Distributed Data Management (DDM) architec-
ture supported by the VSAM APIs. It discusses the API parameters, flags, and mes-
sages.

This chapter describes:

� Distributed Data Management Concepts
� Record types and attributes

 � Access Methods
� Record file types

 � VSAM cursor
 � Lock management

Distributed Data Management Overview
SMARTdata UTILITIES implements two components that manage access to files: the
local VSAM file system and Distributed FileManager (DFM). The local VSAM file
system provides record-type access on the workstation. The Distributed FileManager
provides client remote record access to other DDM server implementations. The avail-
ability of these SMARTdata UTILITIES components is platform dependent. See the
appropriate SMARTdata UTILITIES publication for your platform.

The Distributed Data Management architecture is a methodology used to store,
organize, and access data. The architecture defines the protocol for data connectivity
between computer systems, regardless of their individual application programs, user
applications, hardware, or software.

Using the VSAM APIs, C application programmers can retrieve, add, update, and delete
data records from files that reside on the same system or other systems,

The DDM architecture is based on a client/server model. The system that initiates a
request for access to data is called the source system, or client . The system that
contains the requested data is called the target system, or server .

Note: In conformance with this model, the local VSAM file system behaves like a
server, though the data is local.

The following terms are used in describing how DDM works.

Local File If data is requested from a file that is located on the system that initi-
ated the request, that file is called a local file.

Remote File If data is requested from a file that is not located on the system that
initiated the request, that file is called a remote file.

Note: The definition of local or remote is always from the point of
view of the system requesting the data.

 Copyright IBM Corp. 1993, 1997 1

Source System The system that initiates requests for access to data is called the
source system. The source system can request data from its own
local files or from the remote files of another system. A component
of the source system is the DDM client. It translates the source
system’s request for data from a remote system into a standardized
DDM request. The DDM client routes the request to the network
access software of the source system, which sends the request to
the corresponding network access software of the system that con-
tains the requested data.

Target System The system that contains the requested data is called the target
system. A component of the target system is the DDM server, which
receives the DDM client’s request and translates it into a data man-
agement request that the target system understands. Once the
target system has processed the request, it returns the results of the
request to the DDM server. The DDM server routes the results of
the request to the network access software which sends the results
to the source system.

The Distributed Data Management architecture is represented in Figure 1. The text
that follows describes the steps involved in record file access.

2 SdU VSAM API Reference

Application Program

Source System Target System

Local Data
Management

Interface

Local Data
Management

Interface

Local Data
Manager

Local Data
Manager

DDM
Client

Network
Access
Software

Network
Access
Software

Local
File

Remote
File

DDM Server

Figure 1. Overview of DDM Processing

� An Application Program initiates processing by requesting data.

� The Local Data Management Interface (LDMI) determines whether the data
requested by the application is on a local (source) or a remote (target) system. If
the data is on the local system, the Local Data Manager (LDM) of the source
system retrieves the requested data from storage. If the data is on the remote
system, LDMI invokes the DDM Client.

� The Distributed Data Management Client translates the local command into one
or more Distributed Data Management commands.

� The network access software on the Source System transmits the commands to
the network access software on the Target System .

� The network access software on the Target System directs the Distributed Data
Management command to the Distributed Data Management Server, which handles
the request.

� The Distributed Data Management Server interprets the Distributed Data Man-
agement commands and builds the calls for LDMI on the Target system. The Dis-

 Chapter 1. Introduction to VSAM as a DDM Implementation 3

tributed Data Management Server builds a data stream with the retrieved data. It
then inserts a reply into the data stream and transmits it back to the source
system.

Starting with the following section, the rest of this chapter discusses how the DDM
architecture is implemented in SMARTdata UTILITIES and supported by the VSAM
APIs.

DDM Record Types
Every record-oriented file consists of a set of records. Records are the basic unit of
data stored in record-oriented files and are transferred between requesters and files.
The record length can be either fixed or variable. The record number indicates the
record's position in the file in which it is stored. The first position for a record in a file
has a record number of one.

The VSAM APIs support two DDM record formats: RECORD and RECINA.

 RECORD formats
These are active records and can have fixed or variable lengths. When you create a
file, specify a RECLEN (Record Length) attribute as either the length of the fixed
records or the maximum length of the variable records. See 389. for a description of
the record length parameter.

Fixed-length record (RECFIX)
A record whose length is specified as an attribute (RECLEN) of the file in which it
is stored and cannot be changed.

Variable-length record (RECVAR)
A record whose length can be changed after it has been written to a file. The
length of individual records in the file varies from record to record, but it cannot
exceed the maximum length specified by the file's RECLEN attribute.

Initially-variable-length record (RECIVL)
A record whose length is specified the first time it is written to a file. Once a file
position in a file has been assigned a record length, the length of the record posi-
tion is fixed and cannot be changed. The length of individual records in the file
varies from record to record, but it cannot exceed the maximum length specified
by the file's RECLEN attribute.

 RECINA formats
These are inactive records used to represent record positions where a record has never
been inserted or where a previously active record has been deleted. The RECINA
parameter specifies the required length of any record to be inserted at that record posi-
tion.

4 SdU VSAM API Reference

Record Attribute Lists (RECALs)
A record attribute list (RECAL) is used to transmit more than one attribute of a record
as a single unit. For example, the record number or key value and the record itself can
be returned in a RECAL. A RECAL can also return duplicate records using the
RECCNT parameter and DATA fields. The record is returned as DATA and the number
of duplicate records is returned in RECCNT.

See “RECAL (Record Attribute List)” on page 386 for a description of the RECAL
parameter.

 Extended Attributes
The VSAM APIs support Extended Attributes (EAs) to associate DDM attributes with a
file. The set of VSAM API file attributes is a superset of the standard set of file attri-
butes. This allows programs using the VSAM APIs to access both DDM and operating
system dependent attributes without opening the file.

The DDM file attributes supported by the local VSAM file system are listed in Table 13
on page 37 and Table 14 on page 38. Table 13 on page 37 lists the EAs that can
only be viewed, and Table 14 on page 38 lists the EAs that can be modified.

The VSAM APIs assume each DDM file attribute is described in a DDM format. These
formats are described in Chapter 4, “VSAM API Common Parameters” on page 361.

The EAs reflecting DDM file attributes are coded in C with a prefix of “.DDM_.” The
VSAM APIs use the OS/2 DOS-like “EAOP2” structures to read and write EA lists.

The following example is an overview of how to request two EAs (.DDM_DELCP and
.DDM_FILCLS) when issuing DDMQueryFileInfo for a sequential, delete-capable file in
the current directory. For examples of C code to set up the “GEA2List” and “FEA2List,”
see Appendix A, “Programming Extended Attributes in VSAM APIs” on page 469 .

 Chapter 1. Introduction to VSAM as a DDM Implementation 5

DDMQueryFileInfo("\SAMPLE.SEQ",

 1L,

pointer to an EAOP2 structure,

size of EAOP2 structure);

Input Data Structures

struct _EAOP2 {

(4)pointer to GEA2List structure

(4)pointer to FEA2List structure

(4)offset to error if any

}; /\ end of EAOP2 structure \/

struct _GEA2List {

----- (4)length of structure = 25

| (4)nextentry offset = 1ð /\ each entry must be on a 4 byte boundary \/

| (1)length of name 1 = A

----- (B)name 1 = .DDM_DELCP

----- (4)next entry offset = ð /\ no entry after this one \/

| (1)length of name 2 = B

----- (C)name 2 = .DDM_FILCLS

 }; /\ end of GEA2List structure \/

 Structure _FEA2List {

(4)Length of structure = 3C /\ total length of data expected \/

/\ each entry is on an 4 byte boundary \/

}; /\ end of FEA2List structure \/

Output Data Structures

Structure _FEA2List {

-----(4)length of structure = 3C

| (4)next entry offset = 1C /\note: each entry must be on a 4 byte

 | boundary \/

| (1)flag byte = ð

| (1)length of name 1 = A

| (2)length of value for name 1 = 7

| (B)name 1 = .DDM_DELCP

| (7)value 1 = ððððððð7 /\ length of value \/

| 111B /\ DDM code point for DELCP \/

----- F1 /\ DDM Value for TRUE \/

(2) /\ 2 bytes of padding to force \/

/\ next entry to a 4 byte \/

 /\ boundary \/

-----(4)next entry offset = ð /\ there is no next entry \/

| (1)flag byte = ð

| (1)length of name 2 = B

| (2)length of value for name 2 = 8

| (C)name 2 = .DDM_FILCLS

| (8)value 2 = ððððððð8 /\ length of value \/

| 111ð /\ code point for FILCLS \/

----- 143B /\ sequential file \/

/\ end FEA2List structure \/

 };

 Record Files
A record file is a file in which data is stored as a set of discretely addressable struc-
tures called records. A record file class describes a method of organizing, accessing,
and managing a set of records. The VSAM APIs support sequential, direct, keyed, and
alternate index file classes.

6 SdU VSAM API Reference

All files have the following major components:

� File attributes that are stored as Extended Attributes (EAs), such as record length
and file class.

� File record extents that store the record data.

 � Special objects:

– The index of a keyed file is stored in a separate file that is given an internal
VSAM name, .DDMEA (AIX local VSAM file system only).

– Alternate index files related to a base key file.

The length of the records of a file can be either fixed or variable. Once a variable-
length record is inserted into a record position of the file, the length of the record at that
position remains fixed if the record class is initially variable. It remains variable if the
record class is variable.

A file is created with either delete-capable or non-delete-capable status. If a file is
delete-capable, you can issue the DDMDeleteRec function to delete records from that
file. If a file is non-delete-capable, the DDMDeleteRec function is rejected when issued
for the file. You specify delete status when creating the file.

An access method is used to process records in a record file. The VSAM APIs support
methods that access records by number and by key value. When the DDMOpen (Open
File) function opens the file, the access method is bound to a file and remains bound to
the file until the DDMClose (Close File) function closes the file or the function is termi-
nated. The access method maintains a cursor for each file to which it is bound. The
cursor is set to the beginning of the file when the access method is used to open a file.
Access methods are described in “Access Methods” on page 18. The DDM cursor and
cursor movement is described in “DDM Cursor” on page 21.

Records can be inserted into a file when it is created, or the application can insert the
records later. In order to update or delete a record in a file, you must place an update
intent on the record by using the appropriate VSAM API.

 Important Note

The local VSAM file system cannot prevent non-DDM access to local VSAM
managed files. If these files are processed by non-DDM functions (such as other
APIs or user functions), information about the files can be lost and the local VSAM
file system will not be able to process the files. Therefore, users MUST NOT
access local VSAM-managed files using non-DDM functions.

Record File and Record Length Classes
The VSAM APIs support the following record classes:

 � Sequential
 � Direct

 Chapter 1. Introduction to VSAM as a DDM Implementation 7

 � Keyed
 � Alternate index

The VSAM APIs support three logical record length classes:

 � Fixed
 � Variable
 � Initially Variable

For the local VSAM file system, each of the file classes supported is implemented as a
meta-file on top of a standard file. Each file (see Figure 2) consists of two parts.

Directory Entry

File Data Extended Attribute

Attribute Data

Data Records

.

.

.

Figure 2. Local VSAM File Component Parts. This figure illustrates the two component parts of a
Record File within a Byte Stream file: the Data Records and the Attribute Data.

1. Data and Control Structures (Records)

This is the user file data along with an architected set of control data structures.
These structures are defined in a way that allows the DDM file model semantics to
be implemented on top of a standard file. From the file system perspective, this is
simply the data portion of the file.

 2. Attribute Data

The Attribute Data is additional descriptive information required to describe a
record-oriented file. This information is called the DDM Attributes. For the AIX
local VSAM file system, all of the DDM Attributes are kept in .DDMEA files.

 Sequential Files
A sequential file contains records that are arranged in exactly the same order they were
placed in the file.

After the initial loading of records, additional records can be added at End-of File (EOF)
or inserted into existing inactive record positions. There is no relationship between the
contents of a record and its record number.

When a sequential file is created, its allocated record positions can be either:

8 SdU VSAM API Reference

� initialized to a specified default value,
� initialized as inactive records, or

 � uninitialized.

When a file is opened, the cursor is positioned at the Beginning-of-File (BOF). The
BOF position for a sequential file is always the position before any record position. The
first record position of a sequential file is always the first record in the file, whether the
record is active or inactive. The EOF position for a sequential file is one position past
the last record position at which an active or inactive record exists. The last record
position of a sequential file is always the last active or inactive record in the file.

Figure 3 gives a logical view of a sequential file with variable-length records.

BOF

Record
Number

Cursor
Positions

0

1

2

3

4

Record Slot

Record Slot

Record Slot

First

Last

EOF

Sequential File
Variable Length

Figure 3. Sequential File with Variable-Length Records

Quasi Byte Stream Files
There is a special requirement that a certain type of local VSAM file also look like a
byte stream file. A quasi byte stream file is a sequential record file that is created with
non-delete-capable status and with fixed-length records. It does not have any record
headers or separators. A quasi byte stream file can be read as a pure byte stream file
through local byte stream I/O with no change to byte stream applications. There can
be no inactive records in a quasi byte stream record file.

Since the file has the same format as a byte stream file, byte stream applications are
able to do byte stream read operations on this type of sequential record file.

 Important Note

Non-VSAM API applications can read, but not modify, local quasi-byte stream files.
If these files are modified by non-VSAM functions, such as user functions, the file
attributes will not be updated and information about the files can be lost.

 Chapter 1. Introduction to VSAM as a DDM Implementation 9

The format of quasi byte stream record files is shown in Figure 4 on page 10

NOTE: RL = Max Record Length (4K default)

0

RL

RL*2

RL*3

R
e
c
o
r
d

1

R
e
c
o
r
d

2

R
e
c
o
r
d

3

Data

Data

Data

.

.

.

Byte Stream

Figure 4. Quasi Byte Stream Record File

 Direct Files
A direct file contains records that have a relationship between the record contents and
the position at which the record is stored. An application program inserting a record
into a direct file uses the record number to find the place to insert the record. The
application uses the value of one of the record fields as the record number, or calcu-
lates a record number value.

10 SdU VSAM API Reference

When you open the file, the cursor points to the BOF position. For direct files:

The BOF position is always one position before the first record position.

The first record position is the first active record position of the file.

Do not confuse this with record number one, which
can contain an active record, but not necessarily so.

The last record position is always the last active record in the file.

The EOF position is one position past the last active record position.

You can insert a record at EOF or past EOF in a direct file. If you insert a record past
EOF, VSAM will insert inactive records (if they don't already exist) starting at EOF up to
the record position where the desired record is to be inserted. For direct files with
delete-capable status, you can move the EOF position toward the beginning of the file
by deleting the last active record in the file.

The physical boundary for a direct file is defined by the requester when the file is
created.

When you create a direct file, you can specify allocated positions as either:

� Initialized to a specified default active record. If you initialize a file with default
records, all allocated record positions are active.

� Initialized as inactive records. If you initialize a direct file with inactive records,
each record position in the file is inactive until a record is inserted into it. Records
can be inserted at any inactive record position within the physical boundaries of the
file as long as space is available in the file.

� Uninitialized and treated as inactive records because they are beyond the EOF.

See Figure 5 for a logical view of the BOF, EOF, first record position, and last record
position.

 Chapter 1. Introduction to VSAM as a DDM Implementation 11

BOF

Record
Number

Cursor
Positions

First

Last

EOF

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Active

Active

Active

0

1

2

3

4

5

6

7

8

9

Direct File
Fixed Length Records

Figure 5. Direct File with Inactive Fixed-Length Records. Note that the EOF is one position past
the last active record, even though there is another inactive record in the file.

Media Formats for Direct and Sequential Files
The media formats, or data and control structures, for direct and sequential files are
identical. However, a number of semantic differences between them are found in the
descriptions of the access functions. Some differences are:

� The EOF positioning is different when you delete records from the end of the file:
EOF for direct files retreats, while EOF for sequential files does not.

� In direct files, records can be inserted beyond EOF, and EOF gets moved after the
last active inserted record. For sequential files, records can be inserted at, but not
beyond, EOF.

� Cursor positioning differs: in DDMSetFirst, DDM_ALLREC must always be False
for direct files.

Direct and sequential files have the format shown in Figure 6 on page 13.

12 SdU VSAM API Reference

0

RL

RL*2

RL*3

R
e
c
o
r
d

1

R
e
c
o
r
d

2

R
e
c
o
r
d

3

Data

Data

Data

.

.

.

NOTE: RL = Max Record Length

Length 1 (L1)

Length 2 (L2)

Length 3 (L3)

CODEPOINT

CODEPOINT

CODEPOINT

Field Lengths
[Bytes]

[4]

[2]

[L1-6]

[4]

[2]

[L2-6]

[RL-L2]

[4]

[2]

[L3-6]

[RL-L3]

[RL-L1]

Byte Stream

Figure 6. Direct / Sequential File Format. This figure shows the format of a direct or sequential
file superimposed on a byte stream file. The same format applies to fixed-, variable-, and initially-
variable-length records.

 Keyed Files
A keyed file is implemented as two files: a DDM sequential file (called the base file or
keyed file) and an index file that maps keys to record numbers.

When a keyed file is created, the file name specified in the function is used for the base
file. A name is generated by the file system for the index file. The index file is always
placed in the same subdirectory as the base file. The name (not including path) of the

 Chapter 1. Introduction to VSAM as a DDM Implementation 13

base file is placed in the attribute information of the index file and vice versa for the
name of the index file.

When the base file is later opened, the name and path information given in DDMOpen
is used to locate the base file. The attribute information in the base file is used to get
the index file name. Then the same path specified in the function is used to locate the
index file. The base and its index must always be in the same subdirectory.

Keyed sequential files contain an overlying B-Tree Indexing structure. Figure 7 illus-
trates the basic keyed file concepts. Note that the data field of the index file contains a
base-file record number.

Data
3 C 5 F 4 H 1 K 7

A F H

(index file)
KEYED SEQUENTIAL

KEYED
SEQUENTIAL
(base file)

Key
A

1 2 3 4 5 6 7

Pointer Records

Data
Records

File
Records

Figure 7. Keyed File. Example of the structure of a local VSAM file system keyed file. Note that a "keyed file" really
consists of two files: an index file and a base file.

A keyed file supports keyed access to the records in the file. Each keyed file has a file
index that contains an entry for each active record in the file. The index allows an
application to process records by referring to the key of the record.

The key, also called the key field or record key is the portion of the record containing
information that identifies the record. Index entries identify a record by the value of its
key and the position of the record in the file. The index is ordered as specified by the
file attribute, KEYDEF, which you defined when the file is created.

14 SdU VSAM API Reference

A keyed file has a primary index and can have multiple alternate index files. Any
update to a keyed file causes automatic updates to all alternate index files built on that
file.

A variable-length record in a keyed file must be large enough for all the key field values
in the file index and any alternate index files that use the keyed file as a base file.

When they are created, keyed files can be either:

� initialized with inactive records,
� initialized with active records that have a specified default value, or

 � uninitialized.

The BOF for a keyed file is the position before any record positions. When the file is
opened, the cursor is positioned at the BOF. The first record position is the first active
or inactive record position of the file. This may not be the first record in key sequence.

The EOF position for a keyed file is one past the last record position at which an active
or inactive record exists. The last record position is the last active or inactive position
of the file. This may not be the last record in key sequence.

Cursor Positioning Functions: Different VSAM APIs have different cursor positioning
characteristics:

1. DDMSetNextRec and DDMSetPrevious, set the cursor position relative to record
positions in the file.

2. DDMSetKeyNext, DDMSetKeyPrevious, and DDMSetNextKeyEqual, set the cursor
position relative to key sequence .

In Figure 8 on page 16, for example, if the cursor is initially positioned at EOF,
DDMSetKeyPrevious moves the cursor to the record whose key is BBB, the last key by
key sequence.

 Chapter 1. Introduction to VSAM as a DDM Implementation 15

BOF

Record
Number

Cursor
Positions

Record Slot

Record Slot

Record Slot

First

Last

EOF

Record Slot

Last Key

First Key
BOF

EOF

Index

Keyed File
Fixed Length Records

Key

AAA
ABC
BBB

Record

0
2
4
1
5

0

1

2

3

4

5

Key=BBB

Key=AAA

Inactive

Key=ABC

Figure 8. Keyed File of Fixed-Length Records

Alternate Index File
Physically, an alternate index file is identical to the index portion of a keyed file. An
alternate index file allows the user to view the base file from a different perspective.
Typically, an alternate index file will key off a different portion of the base records, thus
allowing the user to retrieve records in a different sequence from that provided by the
normal keyed file processing. VSAM APIs only support alternate indexes for keyed
files. The index file is built from the base portion of the keyed file.

A base file is an existing keyed file upon which an alternate index is built. Base file
records are the same as the alternate index file records, however the record contents of
the base file do not appear in the alternate index file. The base key file has one
primary index, and can have multiple alternate index files. Each alternate index file
contains an entry for each active record in the file. Updates to a base file result in
automatic updates to all of its alternate index files. Every alternate index file has a
separate set of attributes.

The BOF and EOF positions in an alternate index file are the same as those of its base
file. When you open the file the cursor is positioned at BOF.

16 SdU VSAM API Reference

If the file has variable record lengths, the lengths must be large enough to include all of
the key field values for the alternate index file.

The key, which is also called the key field or record key, is the portion of the record
containing information that identifies the record. Index entries use the value of a record
key and the position of the record in the file to identify the record. You use the
KEYDEF attribute when creating the file to specify the ordering of the records.

Figure 7 on page 14 illustrates index files.

Fixed-, Variable-, and Initially-Variable-Length Records
The media formats for fixed-, variable-, and initially-variable-length records are identical.
However, there are a number of semantic differences between them, found in the
descriptions of the access functions.

Some semantic differences between the three classes of record lengths are:

� Fixed-length records must all be the same length.

� Variable-length records can be overwritten with either smaller or larger records as
long as the maximum record size is not exceeded.

� Initially-variable-length records can be any size up to the maximum record length
when first inserted. Only a record of the same size can overwrite the original
record at that location.

File Naming Conventions
The VSAM APIs do not enforce any specific file naming syntax. A file name provided
by the application must conform to the naming syntax of the local installed byte stream
file system (such as Fat or HPFS) or the target remote DDM system. However, conver-
sion of mixed-case file names to upper-case file names can occur. Thus, any reply
messages that contain a file name may not reflect the case that was used as input to
the API.

The local VSAM system on OS/2 supports the double backslash naming convention for
files located on remote nodes of a Local Area Network (LAN). Note that this conven-
tion (known as UNC, for Universal Naming Convention) is only supported for LANs
administered by the OS/2 LAN Server product. UNC is used to represent remote file
names that were never qualified with a drive letter, for example: DosOpen
(\\servername\dir1\a.dat).

 Performance Considerations
The following sections recommend which access method to use to optimize perform-
ance.

 Chapter 1. Introduction to VSAM as a DDM Implementation 17

Sequential and Direct Files
For sequential or direct files use the following access methods.

� Specify RELRNDAM on DDMOpen if the predominant order of reading records will
be sequential.

� Specify RNDRNDAM on DDMOpen if the predominant order of reading records will
be random.

� Specify CMBRNAM if you do not expect a sequential or random access bias.

Keyed and Alternate Index Files
For keyed and alternate files use the following access methods.

� Specify RELKEYAM on DDMOpen if:

1. the predominant order of reading records will be in key sequence,
2. the file was loaded in key sequence,
3. you expect new records to be added in key sequence, and
4. the file was created without delete capability (DDM_DELCP).

� Specify RNDKEYAN on DDMopen If the predominant order of reading records will
be random.

� Specify CMBKEYAM on DDMOpen

1. if you do not expect a key sequence or random access bias, or

2. if the predominant order of reading records will be in key sequence but the file
is or has become "disorganized" because it was not loaded sequentially, or
because it was created with delete capability (DDM_DELCP).

If a keyed file becomes disorganized (less sequential) after many delete and insert
operations, you may be able to improve performance by reorganizing the file using
DDMUnLoadFile UnloadOrder=KEYORD and DDMLoadFile.

 Access Methods
The VSAM APIs have a series of access methods that provide consistent ways to
access the records in a file. To understand how your choice of access method can
also affect performance, see Performance Considerations.

For all access methods, the file indexes are updated when keys are updated or when
records are inserted or deleted. The following list describes the access methods that
the VSAM APIs use when opening files with DDMOpen:

� RELRNBAM (Relative by Record Number Access Method)

Use this access method to process records according to the current cursor position
in the record number sequence. The record number is not specified to identify the
record; all positioning is relative to the current cursor position. For keyed and alter-
nate index files, records are processed as though the file were sequential. The
indexes over the file are maintained when keys are updated or when records are
inserted or deleted.

18 SdU VSAM API Reference

You can use this access method with sequential, direct, keyed, or alternate index
files.

� RNDRNBAM (Random by Record Number Access Method)

Use this access method to process records in a random sequence as determined
by the requester. Record numbers (the positions of records in the file) are used to
identify the records. For keyed and alternate index files, records are processed as
though the file were sequential. The indexes over the file are maintained when
keys are updated or when records are inserted or deleted.

You can use this access method for sequential, direct, keyed, or alternate index
files.

� CMBRNBAM (Combined Record Number Access Method)

This access method combines the functional capabilities of the RELRNBAM and
the RNDRNBAM access methods. The cursor can be set to point to any record by
specifying its record number. Relative requests for neighboring records can then
be made without specifying record numbers. For keyed and alternate index files,
records are processed as though the file were sequential. The indexes over the
file are maintained when keys are updated or when records are inserted or deleted.

You can use this access method for sequential, direct, keyed, or alternate index
files.

� RELKEYAM (Relative by Key Access Method)

Use this access method to process records of keyed or alternate index files in key
value sequence. Records can be accessed by moving forward or backward from
the current record according to the key sequence. If duplicate keys are present in
the file, they are processed in First-In-First-Out (FIFO) order. If a record's key
value is modified, its record number is not changed. The indexes over the file are
maintained when keys are updated or when records are inserted or deleted.

You can use this access mothod for keyed or alternate index files only.

� RNDKEYAM (Random by Key Access Method)

Use this access method to process records in keyed or alternate index files in a
random sequence as determined by the requester. Records are selected by their
key values, not by their relative positions. If a record's key value is modified, its
record number is not changed. The indexes over the file are maintained when
keys are updated or when records are inserted or deleted.

You can use this access method for keyed or alternate index files only.

� CMBKEYAM (Combined Key Access Method)

This access method combines the functional capabilities of the RELKEYAM and
the RNDKEYAM access methods. The cursor can be set to point to any record by
specifying its key. Relative requests for neighboring records can then be made
without specifying keys. If duplicate keys are present in the file, they are proc-
essed in FIFO order. If a record's key value is modified, its record number is not
changed. The indexes over the file are maintained when keys are updated or
when records are inserted or deleted.

 Chapter 1. Introduction to VSAM as a DDM Implementation 19

This access method is valid for keyed or alternate index files only.

� CMBACCAM (Combined Access Method)

This access method combines the functional capabilities of the CMBKEYAM and
the CMBRNBAM access methods. The cursor can be set to a record with a key or
to a record number. Then, from that position, the cursor can be set relatively by
key value or by record number. If duplicate keys are present in the file, they are
processed in FIFO order. If a record's key value is modified, its record number is
not changed. The indexes over the file are maintained when keys are updated or
when records are inserted or deleted.

Table 5 shows the access methods you can use with each file class.

Table 5. Access Method by File Class

Access Method Access Description SF DF KF AIF

RELRNBAM Relative by record
number

X X X X

RNDRNBAM Random by record
number

X X X X

CMBRNBAM Combined by record
number

X X X X

RELKEYAM Relative by key X X

RNDKEYAM Random by key X X

CMBKEYAM Combined by key X X

CMBACCAM Combined access X X X X

X The access method supports the file class.

Blank The access method does not support the file class.

SF Sequential file.

DF Direct file.

KF Keyed File

AIF Alternate Index File

Promoting Access Methods
The DDM architecture permits the promotion of user-specified access methods. For
remote data access, see your DDM server implementation documentation. The fol-
lowing promotions and exceptions pertain to the local VSAM file system.

To open a file, an application program issues the DDMOpen (Open File) function. The
local VSAM file system verifies whether the type of file specified by the function can be
opened by DDMOpen and notifies the application. If the file can be opened, then:

1. The specified access method is promoted to the appropriate CMBxxxAM.

2. The file is opened under that access method.

20 SdU VSAM API Reference

3. The access method is bound to the file. The access method remains bound to the
file until an application program issues a DDMClose function or the application
program is terminated.

If the access method cannot be applied to the file class, the attempt to open the file is
rejected with the INVRQSRM reply message. The local VSAM file system also issues
the INVRQSRM reply message when a keyed file class function is issued for a non-
keyed file.

Each access method defines the VSAM APIs it supports under its instance commands
list. These instance commands are also called the access method commands. For
more information on the commands, see Chapter 2, “Function Lists” on page 31,
“Access Functions Applicable to Each File Class” on page 34, and “Cursor-Positioning
Functions Applicable to Each File Class” on page 35.

Access method commands are processed by the local VSAM file system and applied
against the access method to which the file is bound. If a command is issued and is
not supported by the file class, unpredictable results may occur.

The local VSAM file system uses the following promotion rules:

� Promote RELRNBAM and RNDRNBAM access methods to CMBRNBAM to allow
any direct or sequential file to be accessed by any of the record number cursor
positioning functions.

� Promote RELKEYAM, RNDKEYAM, and CMBKEYAM access methods to
CMBACCAM to allow any keyed file to be accessed by any of the cursor posi-
tioning functions.

 DDM Cursor
Each open file in the DDM architecture has a logical structure associated with it called
a cursor. The cursor points to a particular position within the file and also maintains
certain information about the file. The DDM cursor has the following logical elements:

� The current position in the file. This can be BOF, an individual record number in
the file, or EOF. When the file is opened, the cursor is initially set to BOF.

� The access intent specified for the file when it was opened.

� The level of file sharing specified when the file was opened.

� A hold cursor indicator that specifies if hold cursor position has been requested or
not. This indicator is set (or remains set) if the DDM_HLDCSR bit in the
AccessFlags parameter of the DDMSetxxx functions is true and is reset if the
DDM_HLDCSR bit is false.

� The most recent update intent placed on a record in the file. The update intent is
set by the DDMSetUpdatexxx functions. It may also be set by the DDMGetRec
function and by most of the DDMSetxxx functions by setting Bit 0 in the
AccessFlags parameter.

Note that the update intent can only be specified for a single record.

 Chapter 1. Introduction to VSAM as a DDM Implementation 21

� The position of the record with this update intent. This record position can be dif-
ferent from the current record if a DDMSetUpdatexxx function was issued or a
DDMInsertRecEOF or DDMInsertRecKey function is issued with the
DDM_HLDUPD bit of the AccessFlags parameter set.

� A locked record indicator that specifies whether the update intent record is locked.

� The high key limit for the file that is set with the DDMSetKeyLimits function.

The cursor position can be adjusted explicitly by issuing the appropriate DDMSetxxx
function. The effect each function has on the cursor position is described for each
function in the “Effect on Cursor Position” section.

The hold cursor indicator is checked by the DDMSetNextRec, DDMSetKeyNext, and
DDMSetNextKeyEqual functions to determine if the cursor should remain at its current
position. If the hold cursor indicator has been set on by a previous function and the
DDM_HLDCSR bit in the AccessFlags parameter of the current function is false, the
cursor remains at its current position when:

� The function is DDMSetNextRec and one of the following conditions is true.

– The record is active.

– The record is inactive and the DDM_ALLREC bit in the AccessFlags param-
eter of this function is true.

� The function is DDMSetKeyNext and the record is active.

� The function is DDMSetNextKeyEqual, the specified key is equal to the key of the
current record, and the record is active.

In all other cases, the cursor position is updated.

In the case of errors, the cursor position can be determined from the CSRPOSST
(Cursor Position Status) parameter returned in the reply message. (The value of
CSRPOSST is always X'F1'.) The CSRPOSST (Cursor Position Status) parameter is
described in Chapter 4, “VSAM API Common Parameters” on page 361.

DDM Lock Management
DDM lock management supervises the file and record locks of one or more users on a
set of files. The responsibilities of lock management are to:

� Accept lock requests and determine whether the lock request can be granted.
� Keep track of all the file locks held by each user.
� Update the correct cursor to track the granting and releasing of record locks.

 Concurrency Protection
File and record locks provide concurrency protection in a multi-user, shared data envi-
ronment. An example of a typical concurrency problem occurs when an update to a
record is lost because of simultaneous updating of the file by two or more users.
Figure 9 on page 23 illustrates this problem.

22 SdU VSAM API Reference

Time Program A

Get record 4
from file PAYROLL

Get record 4
from file PAYROLL

Write modified
record 4 in
file PAYROLL

Write modified
record 4 in
file PAYROLL

Program B

Figure 9. Lost Update Concurrency Problem

Another concurrency problem occurs when a user does not have exclusive rights to a
file after it has been accessed. This means that a user cannot read and retrieve the
same data from a file accessed before because another user has modified it in the
interim. This is called a repeatable read problem.

To avoid these and other concurrency problems, lock protection is needed for files and
records. DDM provides file and record locking functions.

The following pages describe the requesting and granting of file and record locks and
the level of protection available with locks. The responsibilities of lock management are
also summarized.

 File Locking
DDM file locks require a requester to obtain an appropriate level of access to a file
before allowing any operations to be performed on any record in the file. A requester
obtains the appropriate level of access by acquiring a lock that indicates the requester's
processing intentions for the file and the degree to which the requester is willing to
share the file with concurrent users.

DDM allows the requester to declare processing intentions as follows (the DDM abbre-
viation for the processing intent is given in parentheses):

� Reference Only (GET)

The requester intends to read or use the data in the specified file, but does not
intend to modify, delete, or insert any data in the file.

 � Change (MOD)

The requester intends to update the file by modifying, deleting, or inserting data.

 Chapter 1. Introduction to VSAM as a DDM Implementation 23

The requester can declare the tolerable level of file sharing with concurrent users. The
possible sharing levels are as follows (the DDM abbreviation for the sharing level is
given in parentheses):

� No Sharing (NON)

The requester wants exclusive control of the file and is not willing to share the file
with any concurrent users.

� Reference Only (GET)

The requester is only willing to share the file with concurrent users that have Refer-
ence Only (GET) intention.

 � Change (MOD)

The requester is willing to share the file with concurrent users that intend to get,
modify, delete, or insert data in the file.

Concurrent users are defined as threads of the same process or threads from different
processes.

These processing intentions and file sharing levels produce the combinations listed in
Table 6. These combinations are the basis for the different types of DDM-specified file
locks.

A requester can acquire many locks on a single file as long as there are no lock con-
flicts. A lock conflict is a request by any process to obtain a file lock for a file that is
already locked exclusively by another process. The locks can all be of the same lock
type or different types. The operating system defines the maximum number of file locks
a single requester can have on a single file. If a file lock is requested for a file that
already has the maximum number of file locks on it, the RSCLMTRM (Resource Limit
Error) reply message is returned.

If the file to be locked is an alternate index file, both the base file and the alternate
index file are locked.

Table 6. File Locking Combinations

Processing Intent

Sharing Level

NON GET MOD

GET GETNONLK GETGETLK GETMODLK

MOD MODNONLK MODGETLK MODMODLK

Requesting and Releasing File Locks
File locks are requested and released implicitly by the following functions:

24 SdU VSAM API Reference

Function Action

DDMOpen Open file

DDMCreateAltIndex Create alternate index file

DDMDelete* Delete file

DDMLoadFileFirst Load records into file

DDMLoadFileNext Load next record into the file

DDMUnLoadFileFirst Unload records from file

DDMUnLoadFileNext Unload next record from the file

DDMRename Rename file

* DDMDelete does not implicitly release a file lock. The file no longer exists after a
DDMDelete.

| Record Locking (Implementation is Dependent on the Server)
| The local VSAM file system supports record locking only for files on the client OS/2
| system. This section describes this support.

| The local VSAM file system supports record locks so that a requester can perform
| intended operations on a record without interference from concurrent users. Record
| locks are used only when the requester opens a file with an intent to update the file and
| specifies that the file is to be shared with another updater. This is called opened for
| multiple updaters.

| The local VSAM file system obtains only exclusive record locks. This means that only
| the requester can update the record. Concurrent users are unable to read the record.
| Record locks requested for an alternate index file are obtained on the records of the
| base file. Each process can lock one record in a file. Thus, multiple records in a file
| can be locked if the file was opened for multiple updaters.

| The local VSAM file system does not prevent more than one process from updating a
| record concurrently; it does not prevent multiple threads within a process from
| accessing and updating the same record. When threads from the same process are
| accessing a file using the same file handle, they should use a semaphore to provide
| mutual exclusion on the file.

Requesting and Releasing Record Locks
Record locks can be implicitly obtained by the following functions:

Function Action

DDMGetRec Get record function

DDMDeleteRec Delete record function

DDMInsertRecxxx Any insert record function

DDMModifyRec Modify record function

DDMSetxxx Any set function

 Chapter 1. Introduction to VSAM as a DDM Implementation 25

Record locks can be explicitly obtained by the following functions:

The DDMClose function implicitly releases all record locks. Table 7 summarizes which
functions lock records and when these record locks are released. DDMUnLockRec
explicitly removes a record lock.

Function Action

DDMSetUpdateNum Set update intent by record number

DDMSetUpdateKey Set update intent by key value

Table 7. Releasing Record Locks

Implicit Lock Com-
mands

Release Lock When

Function
Completed

Record
Updated Cursor Moved File Closed See Note

DDMGetRec X X X X

DDMSetxxx X X X X

DDMSetUpdateKey X X X X

DDMSetUpdateNum X X X X

DDMModifyRec X

DDMDeleteRec X

DDMInsertRecxxx X

Note: DDMUnLockRec, or any function that references a record other than the one currently pointed to by the cursor.

26 SdU VSAM API Reference

Promoting Locks (Implementation is Dependent on the Server)
| Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation.

The local VSAM file system uses the following locking rules:

� Only exclusive record locks are obtained. This means that only the requester can
update the record. Concurrent users are unable to read the record. For more
information, see “Record Locking (Implementation is Dependent on the Server)” on
page 25.

� DDMLoadFileFirst/Next file locks are promoted to MODNONLK.

� DDMCopyFile promotes “copy-from file” parameter to GETNONLK and the “copy-to
file” parameter to MODNONLK.

� Only one exclusive file lock can be held on a file.

A requester can request a GETMODLK, MODGETLK, or MODMODLK lock on a file
that is on a redirected drive of a LAN server. To prevent an application from reading a
file that another application (on a different system) is modifying, the local VSAM file
system promotes the lock as follows:

� GETMODLK to GETGETLK
� MODGETLK to MODNONLK
� MODMODLK to MODNONLK

Granting File and Record Locks
All requests for a lock are made to the operating system by the local VSAM file system.
For file locks, the operating system examines all of the file locks held by concurrent
users on a file, determines whether a conflict would occur, and decides whether the
requested lock can be granted.

Table 8 is a summary of the rules for granting file locks. The left column lists the
requested lock types with the strongest lock at the top. Across the top of the table are
all of the concurrent user-held locks, from the strongest to the weakest. To read the
table, locate the requested lock type in the left column. Then, locate the strongest of
the locks held by concurrent users across the top of the table. The intersection of the
selected row and column indicates whether the lock request can be granted or whether
a lock conflict occurs.

Table 8 (Page 1 of 2). Table for Granting File Locks

Requested
Lock

Concurrent User Held File Lock

MODNONLK GETNONLK MODGETLK MODMODLK GETGETLK GETMODLK None

MODNONLK * * * * * * GT

GETNONLK * * * * * * GT

MODGETLK * * * * * GT GT

MODMODLK * * * GT * GT GT

GETGETLK * * * * GT GT GT

 Chapter 1. Introduction to VSAM as a DDM Implementation 27

Table 8 (Page 2 of 2). Table for Granting File Locks

Requested
Lock

Concurrent User Held File Lock

MODNONLK GETNONLK MODGETLK MODMODLK GETGETLK GETMODLK None

GETMODLK * * GT GT GT GT GT

Notes:

GT Lock request is granted.

* Lock conflict occurs.

The local VSAM file system only attempts to get the lock once and then the lock
request is refused with one of the following reply messages:

� File in use reply message (FILIUSRM) if the request is for a file lock.
� Record in use reply message (RECIUSRM) if the request is for a record lock.

DDM Architecture Promotions and Exceptions
All promotions and exceptions described below are allowed by the DDM architecture
and by the SAA subset definitions.

The following promotions and exceptions are made by the local VSAM file system:

� Promote the RELRNBAM and RNDRNBAM access methods to the CMBRNBAM
access method.

This allows any direct or sequential file to be accessed by any of the record
number cursor positioning commands.

� Promote the RELKEYAM, RNDKEYAM, and CMBKEYAM access methods to the
CMBACCAM access method.

This allows any keyed file to be accessed by any of the cursor positioning com-
mands.

| � This item is for OS/2 local VSAM files on the client OS/2 workstation only:

The local VSAM file system obtains only exclusive record locks. This means that
only the requester can update the record. Concurrent users are unable to read the
record.

� DDMLoadFileFirst/Next file locks are promoted to MODNONLK.

� DDMCopyFile promotes "copy from file" parameter to GETNONLK and the "copy to
file" parameter to MODNONLK.

� Only one exclusive file lock can be held on a file.

� DDMLoadFileFirst returns FILIUSRM instead of INVRQSRM when a file has
already been opened by DDMOpen, DDMLoadFileFirst (DDM_CHAIN flag on), or
DDMUnLoadFileFirst (More Data flag on).

� DDMUnLoadFileFirst returns FILIUSRM instead of INVRQSRM when a file has
already been opened by DDMOpen, DDMLoadFileFirst (DDM_CHAIN flag on).

28 SdU VSAM API Reference

� DDMDelete and DDMRename returns FILIUSRM instead of INVRQSRM when a
file has already been opened by DDMOpen, DDMLoadFileFirst (DDM_CHAIN flag
on), or DDMUnLoadFileFirst (More Data flag on).

 Technical Considerations
This section contains a list of implementation considerations:

� As part of its internal processing, when the local VSAM file system is instructed to
open (DDMOpen) a member of a keyed file set, all members are opened, using the
same access and file share values as specified for the explicitly opened file. If a
subsequent DDMOpen function is issued for a different member of that file set
using different access and file share specifications, a conflict will occur.

For example, assuming base file X.BAS and alternate index file X.ALT. If X.BAS is
opened for Insert Access Intent with FileShare NONE, VSAM issues a DosOpen
for X.BAS and X.ALT, using the same access and share specification. Any subse-
quent attempts to open X.ALT with Get Access Intent will fail because X.ALT was
already opened with FileShare NONE.

� Attempting to issue a name-based VSAM API for a file not belonging to the local
VSAM file system will result in the function being rejected with the FILATHRM reply
message and a server diagnostic code of 1 (for local VSAM file systems only).

� When processing multiple records, it is faster to request multiple records with
DDMSetNextRec than to request a single record multiple times. The same applies
for DDMSetPrevious and the key file equivalents.

� The local VSAM file system can control access to the same file from multiple proc-
esses. It does not control access to the same file from multiple threads in the
same process. The process is responsible for synchronization of its threads.

� Exercise caution in defining the record length for a variable-length file. Variable-
record-length files are implemented as fixed-record-length files with each record
being the maximum length variable record allowed. If small records are used in a
variable-length file with a large record length, there can be an excessive amount of
unused space within the file. (For local VSAM file systems only.)

 Chapter 1. Introduction to VSAM as a DDM Implementation 29

30 SdU VSAM API Reference

 Chapter 2. Function Lists

The tables in this chapter group the VSAM APIs according to their capabilities. The
VSAM APIs are called VSAM API functions, VSAM functions, or simply functions. The
tables describe:

1. VSAM Function Parameters
 2. VSAM Functions

3. Access Functions Applicable to Each File Class
4. Cursor–Positioning Functions Applicable to Each File Class
5. Record File Attributes by File Class
6. Modifiable Record File Attributes by File Class
7. Access Functions Applicable to Each Access Method

The server support of these APIs is implementation specific. In general, the details in
this chapter is specific to the local VSAM file system.

VSAM Function Descriptions
Table 9 lists and briefly describes each VSAM function.

Table 9 (Page 1 of 3). VSAM Functions

Function Description of Function

DDMClose Terminates the logical connection that DDMOpen establishes between the requester
and a file.

DDMCopyFile Copies a record-oriented file to the target system.

DDMCreateAltIndex Creates an alternate index file on the target system. The alternate index file provides
a key-field access sequence to the records in an existing base target system file. In
VSAM, the base file must be a keyed file.

DDMCreateRecFile Creates a record file on the target system.

DDMDelete Deletes a file from the target system, releases all locks held on the file, and releases
the space it occupied.

DDMDeleteRec Deletes the record that has an update intent placed on it.

DDMForceBuffer Commits a file's cached information to non-volatile storage.

DDMGetRec Gets and returns the record indicated by the current cursor position.

DDMGetReplyMessage Gets and returns a reply message issued from the previously requested function.

DDMInsertRecEOF Inserts a record at the end of the file.

DDMInsertRecKey Inserts one or more records, according to their key values, wherever there is available
space in the file.

DDMInsertRecNum Inserts one or more records at the position specified by the record number parameter.

DDMLoadFileFirst Loads one or more records into a file.

DDMLoadFileNext Continues the load of one or more records into a file. Issue DDMLoadFileFirst before
DDMLoadFileNext.

 Copyright IBM Corp. 1993, 1997 31

Table 9 (Page 2 of 3). VSAM Functions

Function Description of Function

DDMModifyRec Modifies the record that has an update intent placed upon it.

DDMOpen Establishes a logical connection between the using program on the source system
and the file on the target system.

DDMQueryFileInfo Returns the information for a specific file.

DDMQueryPathInfo Returns information for a specific file or subdirectory.

DDMRename Renames an existing file.

DDMSetBOF Sets the cursor to the beginning of file (that is, to the position ahead of the first record
on the file).

DDMSetEOF Sets the cursor to the end of file (that is, to the position following the last record of the
file).

DDMSetFileInfo Specifies information for a file or a directory.

DDMSetFirst Sets the cursor to the first record of the file.

DDMSetKey Positions the cursor based on the key value supplied and the relational operator spec-
ified for the relational operator parameter.

DDMSetKeyFirst Sets the cursor to the first record of the file in key sequence.

DDMSetKeyLast Sets the cursor to the last record of the file in key sequence order.

DDMSetKeyLimits Sets the limits of the key values for subsequent DDMSetKeyNext or
DDMSetNextKeyEqual functions.

DDMSetKeyNext Sets the cursor to the next record of the file in the key sequence order that follows
the record currently indicated by the cursor.

DDMSetKeyPrevious Sets the cursor to the previous record of the file in the key sequence order that pre-
cedes the record currently indicated by the cursor.

DDMSetLast Sets the cursor to the last record of the file.

DDMSetMinus Sets the cursor to the record number of the file indicated by the cursor minus the
number of record positions specified by the CsrDisp parameter.

DDMSetNextKeyEqual Sets the cursor to the next record in the key sequence if the key field of that record
has a value specified in the KeyValBuf parameter.

DDMSetNextRec Sets the cursor to the next record of the file that has a record number one greater
than the current record position.

DDMSetPathInfo Specifies information for a file or a directory.

DDMSetPlus Sets the cursor to the record number of the file indicated by the cursor plus the
integer number of records specified by the CsrDisp parameter.

DDMSetPrevious Sets the cursor to the record of the file that has a record number one less than the
current cursor position.

DDMSetRecNum Sets the cursor to the record of the file indicated by the RecordNumber parameter.

DDMSetUpdateKey Places an update intent on the record that has a key value equal to the KeyValBuf
parameter. The cursor position is not changed.

DDMSetUpdateNum Places an update intent on the record at the position specified by the RecordNumber
parameter. The cursor position is not changed.

32 SdU VSAM API Reference

Table 9 (Page 3 of 3). VSAM Functions

Function Description of Function

DDMTruncFile Moves EOF to current cursor position.

DDMUnLoadFileFirst Transfers one or more records of a source file to a target system.

DDMUnLoadFileNext Continues the transfer of one or more source file records to a target system. Issue
DDMUnLoadFileFirst before DDMUnLoadFileNext.

DDMUnLockRec Releases all implicit record locks on records.

 Chapter 2. Function Lists 33

Parameters Used in Function Descriptions
Table 10 lists and describes the parameters used with VSAM functions.

Table 10. Parameters Used with VSAM Functions

Parameter Data Type Description

USHORT 2 bytes.

ULONG 4 bytes. This is the natural word size of the system. It may be passed by value or
reference as a parameter.

PBYTE Pointer to a byte.

PULONG Pointer to a ULONG.

szNAME Null (0) terminated ASCII character string. This parameter is passed only by refer-
ence.

PSZ Pointer to a null-terminated string.

HDDMLOAD 4 bytes. Contains a handle to a DDM file being loaded with DDMLoadFileNext.

PHDDMLOAD Pointer to a handle to a DDM file being loaded with DDMLoadFileNext.

HDDMFILE 4 bytes. Contains a handle to a DDM file.

PHDDMFILE Pointer to a handle to a DDM file.

PDDMRECORD Pointer to a DDM record structure.

PDDMOBJECT Pointer to a DDM object structure.

PKEYDEFBUF Pointer to a DDM key buffer structure.

PDDMDFTREC Pointer to a DDM default record initialization buffer.

PRECNUM Pointer to a DDM record number structure.

RECNUM DDM record number structure.

CODEPOINT 2 bytes

PEAOP2 Pointer to an EAOP2 structure.

PRESULTSCODES Pointer to a structure used in DosExecPgm.

OTHER Any other structure. This parameter is passed only by reference.

Access Functions Applicable to Each File Class
Table 11 on page 35 lists the functions that can be used with each file class.

34 SdU VSAM API Reference

Table 11. Access Functions Applicable to Each File Class

Functions Description SF DF KF AIF

DDMClose Close file X X X X

DDMCopyFile Copy file X X X

DDMCreateAltIndex Create alternate index file X

DDMCreateRecFile Create record file X X X

DDMDelete Delete file X X X X

DDMDeleteRec Delete record X X X X

DDMGetRec Get record X X X X

DDMInsertRecEOF Insert record at EOF X X X X

DDMInsertRecKey Insert record by key X X

DDMInsertRecNum Insert record by number X X X X

DDMLoadFileFirst Load first file X X X

DDMLoadFileNext Load next file X X X

DDMModifyRec Modify record X X X X

DDMOpen Open file X X X X

DDMRename Rename file X X X X

DDMSetUpdateKey Set update intent by key X X

DDMSetUpdateNum Set update intent by record
number

X X X X

DDMTruncFile Move EOF to current cursor
position

X

DDMUnLoadFileFirst Unload first file X X X X

DDMUnLoadFileNext Unload next file X X X X

DDMUnLockRec Unload implicit record lock X X X X

X The function is supported by the file class.

Blank The function is not supported by the file class and may cause unpredictable results.

SF Sequential file.

DF Direct file.

KF Keyed file.

AIF Alternate index file.

Cursor-Positioning Functions Applicable to Each File Class
Table 12 on page 36 lists the cursor-positioning functions that can be used with each
file class.

 Chapter 2. Function Lists 35

Table 12. Cursor Positioning Functions Applicable to Each File Class

Functions Description SF DF KF AIF

DDMSetBOF Set cursor to BOF X X X X

DDMSetEOF Set cursor to EOF X X X X

DDMSetFirst Set cursor to first record X X X X

DDMSetKey Set cursor by key X X

DDMSetKeyFirst Set cursor to first record by key X X

DDMSetKeyLast Set cursor to last record by key X X

DDMSetKeyLimits Set key limits X X

DDMSetKeyNext Set cursor to next record by key X X

DDMSetKeyPrevious Set cursor to previous record by
key

X X

DDMSetLast Set cursor to last record X X X X

DDMSetMinus Set cursor minus X X X X

DDMSetNextKeyEqual Set cursor to next record with
equal key

X X

DDMSetNextRec Set cursor to next record X X X X

DDMSetPlus Set cursor plus X X X X

DDMSetPrevious Set cursor to previous record X X X X

DDMSetRecNum Set cursor to record number X X X X

X The function is supported by the file class.

Blank The function is not supported by the file class and unpredictable results may occur.

SF Sequential file.

DF Direct file.

KF Keyed file.

AIF Alternate index file.

36 SdU VSAM API Reference

Record File Attributes by File Class
These EAs can be viewed by using DDMQueryPathInfo or DDMQueryFileInfo functions
on the local VSAM file system.

Table 13 (Page 1 of 2). Record File Attributes by File Class

Record File Attributes
Name EA Description

File Class

Sequential File Direct File
Keyed

File
Alternate
Index File

ACCMTHLS Access Method List X X X X

ALTINDLS Alternate Index File List X

BASFILNM Base File Name X

DELCP Record Deletion Capa-
bility

X X X X

DFTREC Default Record X X X X

DTACLSNM Data Class Name X X X X

EOFNBR End of File Record
Number

X X X X

FILBYTCN File Byte Count Number X X X X

FILCLS File Class X X X X

FILCRTDT File Creation Date X X X X

FILHDD Hidden File X X X X

FILINISZ Initial File Size X X X X

FILPRT File Is protected. X X X X

FILSIZ Number of active and
inactive record positions.
Not applicable to files
with variable-length
records.

X X X X

FILSYS System File X X X X

GETCP Record Get Capability X X X X

INSCP Record Insert Capability X X X X

KEYDEF Key Definition X X

KEYDUPCP Duplicate Keys Capa-
bility

X X

MAXARNB Maximum Active Record
Number

X X X X

MGMCLSNM Management Class
Name

X X X X

MODCP Record Modify Capa-
bility

X X X X

RECLEN Record Length X X X X

RECLENCL Record Length Class X X X X

RTNCLS Retention Class X X X X

STGCLSNM Storage Class Name X X X X

TITLE Title X X X X

 Chapter 2. Function Lists 37

Table 13 (Page 2 of 2). Record File Attributes by File Class

Record File Attributes
Name EA Description

File Class

Sequential File Direct File
Keyed

File
Alternate
Index File

X The file EA is supported by the file class.

Blank The file EA is not supported by the file class.

Modifiable Record File Attributes by File Class
These EAs can be modified using DDMSetPathInfo or DDMSetFileInfo functions on the
local VSAM file system.

Table 14. Modifiable Record File Attributes by File Class

Record File Attributes
Name EA Description

File Class

Sequential File Direct File
Keyed

File
Alternate
Index File

DELCP Record Deletion Capa-
bility

X (see note) X X X

FILHDD Hidden File X X X X

FILINISZ Initial File Size X X X X

FILPRT File Is Protected X X X X

FILSYS System File X X X X

GETCP Record Get Capability X X X X

INSCP Record Insert Capability X X X X

MGMCLSNM Management Class
Name

X X X X

MODCP Record Modify Capa-
bility

X X X X

STGCLSNM Storage Class Name X X X X

TITLE Title X X X X

X The file EA is supported by the file class.

Note The file EA is not modifiable if the record length class is “fixed.”

38 SdU VSAM API Reference

Private File Attributes by File Class
These EAs are private to the local VSAM file system and cannot be viewed or modified
with VSAM functions and should not be changed by the native workstation commands.

Table 15. Private File Attributes by Class

Record File Attributes
Name EA Description

File Class

Sequential File Direct File
Keyed

File
Alternate
Index File

MINARNB Minimum Active Record
Number

X X X X

VERSION RLIO version that
created this file

X X X X

PRMINDEX Name of Primary Index
File

X

BASCHGDT Base file change date X

BASEFILE Name of Base File (see
note)

X

MAXFILESIZE Maximum File Size X X X X

FILCHGDT File Change Date X X X X

LSTACCDT Last Access Date X X X X

PHYEOF Physical End of File X X X X

X The file EA is supported by the file class.

Blank The file EA is not supported by the file class.

Note Used for Primary Index File Only.

 Chapter 2. Function Lists 39

Access Functions Applicable to Each Access Method

Table 16 (Page 1 of 2). Access Functions Applicable to Each Access Method

Functions RELRNBAM RNDRNBAM CMBRNBAM

DDMClose 1 1 X

DDMDeleteRec 1 1 X

DDMGetRec 1 1 X

DDMInsertRecEOF 1 1 X

DDMInsertRecKey

DDMInsertRecNum 2 1 X

DDMModifyRec 1 1 X

DDMOpen 1 1 X

DDMSetBOF 1 1 X

DDMSetEOF 1 1 X

DDMSetFirst 1 1 X

DDMSetKey

DDMSetKeyFirst

DDMSetKeyLast

DDMSetKeyLimits

DDMSetKeyNext

DDMSetKeyPrevious

DDMSetLast 1 1 X

DDMSetMinus 1 2 X

DDMSetNextKeyEqual

DDMSetNextRec 1 2 X

DDMSetPlus 1 2 X

DDMSetPrevious 1 2 X

DDMSetRecNum 2 1 X

DDMSetUpdateKey

DDMSetUpdateNum 2 1 X

DDMTruncFile 1 1 X

DDMUnLockRec 1 1 X

40 SdU VSAM API Reference

Table 16 (Page 2 of 2). Access Functions Applicable to Each Access Method

Functions RELRNBAM RNDRNBAM CMBRNBAM

X The function is supported by the CMBRNBAM access method.

1 RELRNBAM and RNDRNBAM are promoted to CMBRNBAM.

2 The function is processed without regard to the restrictions associated with this
access method because the access method is promoted to CMBRNBAM access
method (local VSAM file system only).

Blank The function is not supported by the access method and may cause unpredictable
results.

 Chapter 2. Function Lists 41

Access Functions Applicable to Each Access Method Continued

Table 17. Access Functions Applicable to Each Access Method Continued

Functions RELKEYAM RNDKEYAM CMBKEYAM CMBACCAM

DDMClose 1 1 1 X

DDMDeleteRec 1 1 1 X

DDMGetRec 1 1 1 X

DDMInsertRecEOF 2 2 2 X

DDMInsertRecKey 1 1 1 X

DDMInsertRecNum 2 2 2 X

DDMModifyRec 1 1 1 X

DDMOpen 1 1 1 X

DDMSetBOF 1 1 1 X

DDMSetEOF 1 1 1 X

DDMSetFirst 2 2 2 X

DDMSetKey 2 1 1 X

DDMSetKeyFirst 1 1 1 X

DDMSetKeyLast 1 1 1 X

DDMSetKeyLimits 1 2 1 X

DDMSetKeyNext 1 2 1 X

DDMSetKeyPrevious 1 1 1 X

DDMSetLast 2 2 2 X

DDMSetMinus 2 2 2 X

DDMSetNextKeyEqual 1 2 1 X

DDMSetNextRec 2 2 2 X

DDMSetPlus 2 2 2 X

DDMSetPrevious 2 2 2 X

DDMSetRecNum 2 2 2 X

DDMSetUpdateKey 2 1 1 X

DDMSetUpdateNum 2 2 2 X

DDMTruncFile 2 2 2 X

DDMUnLockRec 1 1 1 X

X The function is supported by the CMBACCAM access method.

1 RELKEYAM, RNDKEYAM, and CMBKEYAM are promoted to CMBACCAM.

2 The function is processed without regard to the restrictions associated with this access method because the
access method is promoted to CMBACCAM access method (local VSAM file system only).

42 SdU VSAM API Reference

Chapter 3. VSAM API Functions

This chapter describes the VSAM API functions, their formats and characteristics.

The functions are in alphabetical order and are presented in the structure described in
“DDMExample (Example)” on page xviii.

This section describes the General-Use Programming Interface you can use to obtain
the services of SMARTdata UTILITIES.

 Copyright IBM Corp. 1993, 1997 43

DDMClose

 DDMClose
(Close File)

This function ends the logical connection that DDMOpen establishes between the
requester and a file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMClose (HDDMFILE FileHandle

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

CLSDMGRM X'125E' File Closed with Damage
HDLNFNRM X'1257' File Handle Not Found

 Remarks
The DDMClose function considers the file closed unless the reply message indicates
that an error was detected before starting the DDMClose function. For example, if you
receive a SYNTAXRM, PRCCNVRM, or FUNNSPRM reply message. This is true even
if the reply message has a severity code greater than 4.

The DDMClose function also works on byte stream files.

In order to reflect changes in file attributes from open-file activities, DDMClose updates
the following EAs if the file was opened with other than just GETAI. Examples of
changes in file attributes from open-file activities are: update, insert, delete, or truncate.

 � EOFNBR
 � FILSIZ
 � MAXARNB

These EAs are updated not only for a base file, but for all associated index files when
DDMClose is issued.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

This function destroys the cursor. there is no cursor position.

Error Termination (SVRCOD of 8)
The cursor position is the same as it was before the function was called. If the
error termination occurs after starting DDMClose, this function destroys the
cursor. Therefore, there is no cursor position. The value of the CSRPOSST

44 SdU VSAM API Reference

DDMClose

(Cursor Position Status) parameter on the reply message indicates the state of
the cursor.

Severe Termination (SVRCOD of 16 or higher)
CSRPOSST on the reply message. indicates the cursor position. If the severe
termination occurs after starting DDMClose, this function destroys the cursor.
Therefore, there is no cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

This function releases all locks that are held by the VSAM file system on records in the
file. All file locks that were acquired implicitly by the DDMOpen function are released.

If DDMClose ends with a reply message that has a severity code value of ERROR or
higher, then:

� For error termination (SVRCOD of 8): Record locks and file locks are the same as
before DDMClose was issued. If the error termination occurs after starting
DDMClose, this function releases all record locks. The file lock that is obtained by
DDMOpen is released.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record locks.
If the severe termination occurs after starting the DDMClose function, this function
releases all record locks. The file lock that is obtained by DDMOpen is released.

Even if an error occurs after starting DDMClose, this function releases all record locks,
and the file lock that is obtained by DDMOpen is released.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file is not open (the file handle is not valid). HDLNFNRM

The file is closed, but it is not possible to complete all oper-
ations on the file.

CLSDMGRM

 Chapter 3. VSAM API Functions 45

DDMCopyFile

 DDMCopyFile
(Copy File)

This function copies a file to the target system. (You cannot use DDMCopyFile to copy
an alternate index file.)

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMCopyFile (PSZ FromFileName,

 PSZ ToFileName,

 ULONG CopyFlags,

 PBYTE SubsetDefBuf,

 CODEPOINT ToFileOld,

 CODEPOINT ToFileNew

);

 Parameters
FromFileName

The pointer (PSZ) to the name of the record-oriented file to be copied. This file is
the source of the DDMCopyFile function.

ToFileName
The pointer (PSZ) to the name of the record-oriented file to copy to. This file is the
target of the DDMCopyFile function.

CopyFlags
CopyFlags must be set to 0. The bit flags are:

Bit Meaning
0–31 Reserved flags.

SubsetDefBuf
The pointer (PBYTE) to the subset definition buffer. This pointer must be set to
null.

ToFileOld
The code point (CODEPOINT) that specifies the action to take if the file name that
is pointed to by ToFileName already exists. The only valid value is:

CPYERR Return Duplicate File Name (X'1483').

The function is rejected with DUPFILRM, and the option returns an
error condition (SVRCOD=X'0008'). You must specify CPYERR.

ToFileNew
The code point (CODEPOINT) that specifies the action to take if the file name that
is pointed to by ToFileName does not exist. The only valid value is:

46 SdU VSAM API Reference

DDMCopyFile

CPYDTA Copy with Data Option (X'1466').

You should create a new file and copy the data to it. The new file is
created with the same file attribute values as the copy-from file for the
following file EAs:

DELCP File Deletion Capability
DFTREC Default Record
DTACLSNM Data Class Name
FILCLS File Class
FILINISZ Initial File Size
FILPRT File Protected
GETCP File Get Capability
INSCP File Insert Capability
KEYDEF Key Definition
KEYDUPCP Duplicate Keys Capability
MODCP File Modify Capability
MGMCLSNM Management Class Name
RECLEN Record Length
RECLENCL Record Length Class
RTNCLS File Retention Class
STGCLSNM Storage Class Name
TITLE A Brief Description

For the definition of these EAs, see Chapter 4, “VSAM API Common
Parameters” on page 361.

The other file attributes are set as appropriate for a newly created file.
The data content of the Fromfile is copied to the Tofile. CPYDTA must
be specified.

 Returns
Message ID Code Point Message Title

DUPFILRM X'1207' Duplicate File Name
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RSCLMTRM X'1233' Resource Limits Reached on Target System
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
For remote files, Distributed FileManager requires that the path information for both the
FromFile name and the ToFile name must be specified, and it must be the same (for
OS/2 only).

 Chapter 3. VSAM API Functions 47

DDMCopyFile

Since alternate index files cannot be copied:

� An alternate index file cannot be specified as the FromFile name.

� An alternate index file cannot be copied as an indirect result of copying the base
file.

DDMCopyFile does not return the count of the number of records that are copied.

When the FromFile contains damaged records, DDMCopyFile ends without creating a
new ToFile copy.

When the FromFile contains inactive records, the inactive records are copied to the
ToFile.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
DDMCopyFile does the following:

If the FromFile exists:

1. Attempts to obtain a GETNONLK on the FromFile.

If the GETNONLK lock is obtained, the function is processed (successfully or
unsuccessfully). If the GETNONLK lock is not obtained, the function is rejected
with a FILIUSRM reply message.

2. The function releases the GETNONLK lock it obtained on the file.

If DDMCopyFile ends with a reply message that has a severity code value of ERROR
or higher:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

48 SdU VSAM API Reference

DDMCopyFile

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The ToFile exists and CPYERR is specified.

The FromFile name is the same as the ToFile name.

DUPFILRM

The EAs described for ToFileNew are required, but cannot
be found in the FromFile EA buffer when creating the
ToFile.

FILDMGRM

The FromFile is open. FILIUSRM

The ToFile name is invalid. FILNAMRM

CopyFlags contains a value other than zero. INVFLGRM

The FromFile is an alternate index file.

The file class is invalid or is not found.

INVRQSRM

SubsetDefBuf contains a value other than null.

ToFileOld contains a value other than CPYERR (X'1483').

ToFileNew contains a value other than CPYDTA
(X'1466').

PRMNSPRM

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object and the Function Continues With This Reply Message

For the FromFile, if the file-change date and time recorded
by the VSAM API is not the same as that recorded by the
file system, either an aborted DDM application has left the
file in an inconsistent state or a non-DDM application has
changed the file. DDMCopyFile does not re-synchronize
the file-change date and time of the FromFile.

FILDMGRM

 Chapter 3. VSAM API Functions 49

DDMCreateAltIndex

 DDMCreateAltIndex
(Create Alternate Index File)

This function creates an alternate index file on the target system.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMCreateAltIndex (PSZ FileName,

 PSZ BaseFileName,

 ULONG CreateFlags,

 PKEYDEFBUF KeyDefBuf,

 CODEPOINT DupFilOpt,

 PEAOP2 EABuf

);

 Parameters
FileName

The pointer (PSZ) to the name of the file to be created. This file must be in the
same directory as the base file. If a path is not specified, the current path of the
base file will be used.

BaseFileName
The pointer (PSZ) to the name of the record-oriented file on which the created file
is to be based.

CreateFlags
The CreateFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
10–31 Reserved flags
9 DDM_FILPRT (Protected File)
2–8 Reserved flags
1 DDM_TMPFIL (Temporary File)
0 DDM_ALDUPKEY (Allow Duplicate Keys)

For detailed information on the create flags, see Chapter 5, “VSAM API Flags” on
page 399.

KeyDefBuf
The pointer to the key definition buffer (PKEYDEFBUF). The format of the key
definition buffer when the function is called:

LL X'1114' X'0..10' X'140F' KeySeq X'0044'

KeyLen KeyDisp

50 SdU VSAM API Reference

DDMCreateAltIndex

Field Description

LL The length (ULONG) from the beginning of LL to the end of the
last Key Displacement field.

X'1114' The value (CODEPOINT) indicating the following field is a key defi-
nition.

X'00000010' The length (ULONG) of the key definition. This length includes the
length field and the Key Displacement field.

X'140F' The value (CODEPOINT) indicating the following data is a key field
definition.

KeySeq Either X'1420' for Ascending Key Sequence field or X'1421' for
Descending Key Sequence field.

X'0044' The value (CODEPOINT) indicating the key field is a byte string.

KeyLen The length (USHORT) of the key field.

KeyDisp The offset (ULONG) from the beginning of the key field in the
record. If multiple Key Field Definitions are provided, the fields are
concatenated to form a combined key. The maximum length of the
key is 255 bytes.

Multiple key field definitions are allowed in the Key Definition Buffer. The following
example shows two key definitions:

The following structures define the key definition buffer:

X'0..26' X'1114' X'0..10' X'140F' X'1420' X'0044'

... X'0013' X'00000010' ...

X'0..12' X'140F' X'1420' X'0044' X'0003' X'0..04'

 Chapter 3. VSAM API Functions 51

DDMCreateAltIndex

/\ Define the following key definition buffer structure, \/

/\ modeling it after the _DDMOBJECT structure defined in DUBDEFS.H \/

typedef struct _MYKEYDEFBUF

{

 ULONG cbKeyDefBuf;

 CODEPOINT cpKeyDefBuf;

 KEYFLDDEF KeyFldDef[1];

} MYKEYDEFBUF, \PMYKEYDEFBUF;

/\ Use the following structure to map each key field definition. \/

/\ It is defined in DUBDEFS.H. \/

typedef struct _KEYFLDDEF

{

 ULONG cbKeyFldDef;

 CODEPOINT cpKeyFldDef;

 CODEPOINT cpSequence;

 CODEPOINT cpKeyClass;

 USHORT cbKeyField;

 ULONG oKeyField;

} KEYFLDDEF, \PKEYFLDDEF;

where:

cbKeyDefBuf The length (ULONG) of the key definition buffer from the begin-
ning of cbKeyDefBuf to the end of oKeyField in the last key field
definition.

cpKeyDefBuf The code point value (KEYDEF) indicating that this is a key defi-
nition buffer object.

KeyFldDef One or more contiguous key field definition structures
(KEYFLDDEF). Specify an index value that indicates the
number of key fields to be defined.

cbKeyFldDef The length (ULONG) of the key field definition
structure from the beginning of cbKeyFldDef
to the end of oKeyField.

cpKeyFldDef The code point value (KEYFLDDF) indicating
that this is a key field definition object.

cpSequence The code point value that indicates the key
order:

SEQASC Ascending key sequence field

SEQDSC Descending key sequence field

cpKeyClass The code point value (BYTSTRDR) indicating
that the key field is a byte string.

cbKeyField The length (USHORT) of the key field.

52 SdU VSAM API Reference

DDMCreateAltIndex

oKeyField The offset (ULONG) from the beginning of the
key field in the record. If multiple key field
definitions are provided, the fields are concat-
enated to form a combined key. The
maximum length of the key is 255 bytes.

DupFilOpt
Indicates the value (CODEPOINT) for the action to be taken if a file with the same
name already exists. The valid values are:

DUPFILDO Return Duplicate File Name (X'1459').

The function is rejected with DUPFILRM, and this option returns an
error condition (SVRCOD=X'0008').

EXSCNDDO Return Existing Condition (X'145A'). The function is rejected with
EXSCNDRM, and this option returns a warning condition
(SVRCOD=X'0004').

EABuf
The pointer (PEAOP2) to the address of the file's EA data to be set by
DDMCreateAltIndex. This is NULL if no additional DDM file attributes are to be set
at create time. Refer to “Extended Attributes” on page 5 for more information on
the format of this buffer.

Only the following DDM file attributes can be specified in the EA Buffer that is pointed
to by this parameter:

 TITLE
 MGMCLSNM
 DTACLSNM
 STGCLSNM

For the definition of these EAs, see Chapter 4, “VSAM API Common Parameters” on
page 361.

If any other file attributes are specified in this buffer, the function is rejected and a
PRMNSPRM reply message is given.

The MGMCLSNM or STGCLSNM file attributes for an alternate index can be specified
as different from the base file. However, the target system may not support the differ-
ence.

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
ADDRRM X'F212' Address Error
BASNAMRM X'1234' Invalid Base File Name
DRCATHRM X'1237' Not Authorized to Directory
DRCFULRM X'1258' Directory Full
DUPFILRM X'1207' Duplicate File Name
EXSCNDRM X'123A' Existing Condition

 Chapter 3. VSAM API Functions 53

DDMCreateAltIndex

Message ID Code Point Message Title

FILDMGRM X'125A' File Damaged
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYDEFRM X'123D' Invalid Key Definition
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RECIUSRM X'124A' Record in Use
RSCLMTRM X'1233' Target Resource Limits Reached
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
The alternate index file provides an alternate key field access to the records in an
existing keyed file.

This function does not require the base file to have any access capabilities. If,
however, the base file is created without any access capabilities, DDMSetPathInfo must
be used to set the access capabilities that are required for further processing.

This function requires exclusive access to the keyed file, which must be closed.

Certain attributes are derived from the base file EAs when creating an alternate index.
Derived EAs have the same values as the base file. The following EAs are derived
from the base file for the alternate index file:

 � DELCP
 � EOFNBR
 � FILINISZ
 � GETCP
 � INSCP
 � MAXARNB
 � MODCP
 � RECLEN
 � RECLENCL

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
No locks are obtained on the alternate index file as the result of this function.

DDMCreateAltIndex does the following:

1. Attempts to obtain a MODGETLK lock on the base file.

54 SdU VSAM API Reference

DDMCreateAltIndex

If the MODGETLK lock is obtained, DDMCreateAltIndex is processed (successfully
or unsuccessfully). If the MODGETLK lock is not obtained, DDMCreateAltIndex is
rejected with the FILIUSRM reply message.

2. Releases the MODGETLK lock it obtained on the base file.

If DDMCreateAltIndex ends with a reply message that has a severity code of ERROR
or higher, then:

� For error termination (SVRCOD of 8): The base file locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the base file locks
may not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file specified by BaseFileName is the name of a direct
or sequential file.

BASNAMRM

The new file cannot be entered into the directory because
the directory is full.

DRCFULRM

The FileName is equal to the BaseFileName, regardless of
whether the file exists or the specification of the DupFilOpt
parameter.

Note: If a file exists with the same name, the DupFilOpt
parameter specifies the action to take for this condition.

DUPFILRM

The alternate index files that exist for the specified base file
have a last-change date/time for that base file that is dif-
ferent than the current system last-change date/time
(System Object Attribute).

FILDMGRM

The base file is open (regardless of the sharing mode
specified).

FILIUSRM

The file specified by BaseFileName is an alternate index
file.

The FileName specified has a path qualifier that is different
than the path qualifier specified for BaseFileName.

INVRQSRM

The KeyDefBuf parameter specifies a key length of zero or
a value greater than 255.

The KeyDefBuf parameter specifies a key that does not fall
within the boundaries of the record.

KEYDEFRM

Invalid file attributes specified in the EA buffer. PRMNSPRM

 Chapter 3. VSAM API Functions 55

DDMCreateAltIndex

This Causes a Reply Message to be Generated with
SRVCOD = X'04' and the Function Continues With This Reply Message

For the base file only, if the file-change date and time
recorded by the VSAM API is not the same as that
recorded by the file system, either an aborted DDM appli-
cation has left the file in an inconsistent state or a
non-DDM application has changed the file.
DDMCreateAltIndex re-synchronizes the file-change date
and time of all files in the keyed file object, unless a higher
severity condition prevents it from doing so.

FILDMGRM

56 SdU VSAM API Reference

DDMCreateRecFile

 DDMCreateRecFile
(Create Record File)

This function creates a record-oriented file on the target system.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMCreateRecFile (PSZ FileName,

 ULONG CreateFlags,

 ULONG RecLen,

 CODEPOINT RecLenCls,

 PKEYDEFBUF KeyDefBuf,

 ULONG InitFileSiz,

 LONG MaxFileSiz,

 CODEPOINT DupFilOpt,

 CODEPOINT DftRecOp,

 ULONG RecCnt,

 PEAOP2 EABuf,

 CODEPOINT FileClass,

 PDDMDFTREC DftRecBuf

);

 Parameters
FileName

A pointer (PSZ) to the name of the record-oriented file to be created.

CreateFlags
The CreateFlags (ULONG) specify the action to be taken depending on whether
the flag bit is set. The bit flags are:

Bit Meaning
10–31 Reserved flags
9 DDM_FILPRT (Protected File)
8 DDM_FILSYS (System File)
7 DDM_FILHDD (Hidden File)
6 DDM_MODCP (Allow Modify Record Capability)
5 DDM_INSCP (Allow Insert Record Capability)
4 DDM_GETCP (Allow Get Record Capability)
3 DDM_INIEX (Inhibit Initial Extent)
2 DDM_DELCP (Allow Record Deletion Capability)
1 DDM_TMPFIL (Temporary File)
0 DDM_ALDUPKEY (Allow Duplicate Keys)

For detailed information on the create flags, see “CreateFlags (Create Flags)” on
page 405.

 Chapter 3. VSAM API Functions 57

DDMCreateRecFile

RecLen
Specifies the maximum length (ULONG) of the user data in the DDM record object.
For information on the maximum and minimum record lengths, see “RECLEN
(Record Length)” on page 389.

RecLenCls
Indicates the value (CODEPOINT) for the type of record length that the record on
the file can have. Valid values are:

RECFIX Fixed Length Record (X'142E')

RECIVL Initially-Variable-Length Record (X'142F')

RECVAR Variable-Length Record (X'1431')

KeyDefBuf
The pointer to the key definition buffer (PKEYDEFBUF) or NULL. This parameter
is ignored if the create is not being done for a keyed file. When the function is
called, the format of the key definition buffer is:

LL X'1114' X'0..10' X'140F' KeySeq X'0044'

KeyLen KeyDisp ...

Field Description

LL The length (ULONG) from the beginning of LL to the end of the
last Key Displacement field.

X'1114' The value (CODEPOINT) indicating the following field is a key defi-
nition.

X'0..10' The length (ULONG) of the key definition. This length includes
length field through the Key Displacement field.

X'140F' The value (CODEPOINT) indicating the following data is a key field
definition.

KeySeq The value (CODEPOINT) to indicate ascending or descending key
sequence field:

X'1420' Ascending Key Sequence field
X'1421' Descending Key Sequence field

Key Sequence always assumes the sorting order of the target
system.

X'0044' The value (CODEPOINT) indicating the key field is a byte string.

KeyLen The length (USHORT) of the key field.

58 SdU VSAM API Reference

DDMCreateRecFile

KeyDisp The offset (ULONG) from the beginning of the key field in the
record. If multiple Key Field Definitions are provided, the fields are
concatenated to form a combined key. The maximum length of the
key is 255 bytes.

Multiple key field definitions are allowed in the Key Definition
Buffer. The following example shows two key definitions:

The following structures define the key definition buffer:

/\ Define the following key definition buffer structure, \/

/\ modeling it after the _DDMOBJECT structure defined in DUBDEFS.H \/

typedef struct _MYKEYDEFBUF

{

 ULONG cbKeyDefBuf;

 CODEPOINT cpKeyDefBuf;

 KEYFLDDEF KeyFldDef[1];

} MYKEYDEFBUF, \PMYKEYDEFBUF;

/\ Use the following structure to map each key field definition. \/

/\ It is defined in DUBDEFS.H. \/

typedef struct _KEYFLDDEF

{

 ULONG cbKeyFldDef;

 CODEPOINT cpKeyFldDef;

 CODEPOINT cpSequence;

 CODEPOINT cpKeyClass;

 USHORT cbKeyField;

 ULONG oKeyField;

} KEYFLDDEF, \PKEYFLDDEF;

where:

cbKeyDefBuf The length (ULONG) of the key definition buffer from the begin-
ning of cbKeyDefBuf to the end of oKeyField in the last key field
definition.

cpKeyDefBuf The code point value (KEYDEF) indicating that this is a key defi-
nition buffer object.

X'0..26' X'1114' X'0..10' X'140F' X'1420' X'0044'

X'0..13' X'0..12' X'0..10' X'140F' X'1420' X'0044'

X'0..08' X'0..04'

 Chapter 3. VSAM API Functions 59

DDMCreateRecFile

KeyFldDef One or more contiguous key field definition structures
(KEYFLDDEF). Specify an index value that indicates the
number of key fields that are defined.

cbKeyFldDef The length (ULONG) of the key field definition
structure from the beginning of cbKeyFldDef
to the end of oKeyField.

cpKeyFldDef The code point value (KEYFLDDF) indicating
that this is a key field definition object.

cpSequence The code point value that indicates the key
order:

SEQASC Ascending key sequence field

SEQDSC Descending key sequence field

cpKeyClass The code point value (BYTSTRDR) indicating
that the key field is a byte string.

cbKeyField The length (USHORT) of the key field.

oKeyField The offset (ULONG) from the beginning of the
key field in the record. If multiple key field
definitions are provided, the fields are concat-
enated to form a combined key. The
maximum length of the key is 255 bytes.

InitFileSiz
The first time space is allocated for records, specifies the initial number (ULONG)
of records to allocate. A value of 0 indicates that the file exists but has no allo-
cated space. A nonzero value for this parameter causes space to be allocated, but
the contents of the space is undefined. Use RecCnt to initialize the space.
InitFileSiz can be used to reduce the fragmentation of a file if you know the approx-
imate size it will grow to. Reducing fragmentation can improve product perform-
ance. A remote target system might ignore this information.

MaxFileSiz
Specifies the maximum number (LONG) of records that can be allocated to the file.
A value of -1 indicates that the file size is unlimited.

DupFilOpt
The value (CODEPOINT) indicating the action to take if a file with the same name
already exists. The valid values are:

DUPFILDO Return Duplicate File Name (X'1459').

The function is rejected with DUPFILRM, and the option returns an
error condition (SVRCOD=X'0008').

EXSCNDDO Return Existing Condition (X'145A').

The function is rejected with EXSCNDRM, and the option returns a
warning condition (SVRCOD=X'0004').

60 SdU VSAM API Reference

DDMCreateRecFile

DftRecOp
The value (CODEPOINT) indicating the action a create file function should take to
initialize the data contents of the file.

If the value is specified as NIL, the file is not initialized with default records.

If a value other than NIL is specified, the file is initialized with at least the number
of records that are specified. The number of records that are specified is through
the RecCnt variable that is related to this parameter. This function ignores the
value of the DDM_INIEX parameter flag.

The valid values are:

DFTINAIN Default inactive record initialization (X'1460'). Specifies that the file
is to be initialized with inactive records.

If the file is created with initially-varying-length records or with
variable-length records, the initialized records have a length equal to
RecLen.

If the file is not delete-capable and is not a direct file, DFTRECRM
is returned.

DFTTRGIN Default target initialization (X'145F').

Specifies that the file is to be initialized with active records whose
contents are determined by the target server. All records have the
same initial contents that is defined by the target server. the local
VSAM file system initializes records with the '!' character.

If the file is created with initially-varying-length records or with
variable-length records, the initialized records have a length equal to
RecLen.

DFTSRCIN Default source initialization (X'1449').

Specifies that the file is to be initialized with active records whose
contents are defined by the DftRecBuf parameter. The contents of
DftRecBuf are replicated or truncated to match the record length of
the file. This means that DftRecBuf(X'00') causes the file to be
initialized with records that consist of all zeros. A DftRecBuf(‘ABC’)
would initialize a file with 10-byte records with ‘ABCABCABCA’ as
the initialization record.

If the file is created with initially-varying-length records or with
variable-length records, the initialized records have a length equal to
RecLen.

NIL Do not initialize the data content of the file (X'002A').

RecCnt
Specifies the number (ULONG) of records to initialize. This parameter works in
conjunction with the DftRecOp parameter. If the DftRecOp parameter is specified
as NIL, RecCnt is ignored. Records are initialized in the space that is allocated by
InitFileSiz with additional space that is allocated as needed.

 Chapter 3. VSAM API Functions 61

DDMCreateRecFile

EABuf
The pointer (PEAOP2) to the file's EA data to be set by DDMCreateRecFile, or
NULL if no additional DDM file attributes are to be set at create time. Refer to
“Extended Attributes” on page 5 for more information on the format of this buffer.

The following DDM file attributes can be specified in EABuf:

 TITLE
 MGMCLSNM
 DTACLSNM
 STGCLSNM

For the definition of these EAs, see Chapter 4, “VSAM API Common Parameters”
on page 361.

FileClass
Indicates the value (CODEPOINT) for the class or type of record file to create.
Valid values are:

DIRFIL Direct File (X'140C')
KEYFIL Keyed File (X'141E')
SEQFIL Sequential File (X'143B')

DftRecBuf
The pointer (PDDMDFTREC) to the default record initialization buffer or NULL.
When this function is called, the format of the buffer is:

Field Description

LL The length (ULONG) of the default initialization record from the
beginning of LL to the end of the Initialization Record.

X'142B' The value (CODEPOINT) indicating that the following content is the
default initialization record.

Data The default initialization record information.

See “DFTREC (Default Record)” on page 369 for more information.

LL X'142B' Initialization Record

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
ADDRRM X'F212' Address Error
DFTRECRM X'1204' Default Record Error
DRCATHRM X'1237' Not Authorized to Directory
DUPFILRM X'1207' Duplicate File Name
EXSCNDRM X'123A' Existing Condition
FILATHRM X'123B' Not Authorized to File
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found

62 SdU VSAM API Reference

DDMCreateRecFile

Message ID Code Point Message Title

FILSNARM X'120F' File Space Not Available
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RSCLMTRM X'1233' Target Resource Limits Reached
SYNTAXRM X'124C' Data Stream Syntax Error
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
DDMCreateRecFile does not require the file to have any access capabilities. If
however, the base file is created without any access capabilities, DDMSetPathInfo must
be used to set the access capabilities that are required for further processing.

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
No locks are obtained and held on the file by this function.

 Exceptions
If a file exists on the target system with the same name, the DupFilOpt parameter spec-
ifies the action to take for this condition.

This Causes the Function to Be Rejected With This Reply Message

The new file cannot be entered into the directory because
the directory is full.

DRCFULRM

The file is not delete-capable and is not a direct file. DFTRECRM

The KeyDefBuf parameter specifies a key length of zero or
a value greater than the maximum allowed by the target
system.

The KeyDefBuf parameter defines a key that cannot be
mapped to the key-field capabilities of the target server.

KEYDEFRM

The DDM_ALDUPKEY is false and DftRecOp is not NIL. SYNTAXRM

DftRecOp (with a value other than NIL) is specified and
RecCnt exceeds the maximum number of record positions
that the target system allocates to the file.

VALNSPRM

 Chapter 3. VSAM API Functions 63

DDMDelete

 DDMDelete
(Delete File)

This function deletes a file from the target system, releases all locks that are held on
the file, and releases the space the file occupied.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMDelete (PSZ FileName,

 ULONG Flags

);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be deleted.

Flags
The Flags (ULONG) specify the action to be taken depending on whether the bit
flag is set. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 DDM_OVRDTA (Overwrite Data)

Specifies that the data being deleted is to be overwritten with binary zeros.
This prevents the data from being read by subsequent users of the allo-
cated file space.

If the file is a keyed file or alternate index file, this flag specifies whether
the indexes for the file are also overwritten.

 Returns
Message ID Code Point Message Title

EXSCNDRM X'123A' Existing Condition
ADDRRM X'F212' Address Error
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File In Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request

64 SdU VSAM API Reference

DDMDelete

 Remarks
For an alternate index file, only the index is deleted. The base file of an alternate index
file is not deleted.

The primary index file for the specified keyed file is also deleted.

Any alternate index files, using the specified file as a base file, must be deleted before
the specified file can be deleted.

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
DDMDelete does the following:

1. Attempts to obtain a MODNONLK lock on the file.

If the MODNONLK lock is obtained, the function is processed (successfully or
unsuccessfully). If the MODNONLK lock is not obtained, the function is rejected
with FILIUSRM.

2. Releases the MODNONLK lock it obtained on the file.

If DDMDelete ends with a reply message that has a severity code value of: ERROR or
higher, then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to Terminate Normally With This Reply Message

The file specified by FileName cannot be found. FILNFNRM

This Causes the Function to be Rejected With This Reply Message

The file specified by FileName is the base file for one or
more alternate index files.

The file specified by FileName is a protected file.

INVRQSRM

The requester has the file open. FILIUSRM

 Chapter 3. VSAM API Functions 65

DDMDeleteRec

 DDMDeleteRec
(Delete Record)

This function deletes a record that has an update intent on it.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMDeleteRec (HDDMFILE FileHandle,

 ULONG Flags

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

Flags
The Flags (ULONG) specify the action to be taken depending on whether the bit
flag is set. The bit flags are:

Bit Meaning

1-31 Reserved flags

0 DDM_OVRDTA (Overwrite Data)

Specifies whether the record being deleted is to be overwritten with binary
zeros to prevent the data from being read by non-DDM applications.

Note: This flag is obsolete, but supported for compatibility with earlier
releases. The deleted record space is always overwritten with binary
zeros.

 Returns
Message ID Code Point Message Title

EXSCNDRM X'123A' Existing Condition
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
RECIUSRM X'124A' Record in Use
RECDMGRM X'1249' Record Damaged
UPDINTRM X'124E' No Update Intent on Record

 Remarks
DDMDeleteRec has the following effects:

� The data content of the record is no longer available.

� The record position becomes inactive and its length is preserved if it is initially vari-
able or fixed.

66 SdU VSAM API Reference

DDMDeleteRec

� If the file contains variable-length records, the length of the record position goes to
the maximum record length for the file. See “RECINA (Inactive Record)” on
page 389 for a detailed description.

� If the file is a keyed file or an alternate index file, the associated indexes are
updated to show that the record has been deleted.

� If the record's position is overwritten, it is overwritten with binary zeros.

� Update intent is removed.

Before this function can be used, an update intent must be placed on a record in the
file. A DDMSetxxx or DDMGetRec function can be used to place an update intent on a
record.

If the record that is deleted was the last active record in a direct file, EOF is backed up
to the previous active record.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply message deter-
mines the state of the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

DDMDeleteRec does the following:

If the file was opened for multiple updates, the access method attempts to acquire an
EXCRECLK lock on the record that has an update intent placed on it. If the
EXCRECLK lock cannot be obtained because of a lock conflict, the DDMDeleteRec is
rejected with the RECIUSRM reply message.

If the EXCRECLK lock is obtained:

1. DDMDeleteRec is processed.

2. Because all record modifications are committed at the time of modification, the
EXCRECLK lock is released from the record.

3. Even if DDMDeleteRec is rejected with an error reply, the obtained EXCRECLK
lock is released from the record.

If DDMDeleteRec ends with a reply message that has a severity code value of ERROR
or higher, then:

 Chapter 3. VSAM API Functions 67

DDMDeleteRec

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record locks.

 Exceptions
This Causes the Function to Terminate Normally With This Reply Message

The file handle is not valid. HDLNFNRM

Any reserved bits in Flags are active. INVFLGRM

The DELAI access intent was not specified when the file
was opened.

The file is not delete-capable.

The file is direct and the file is empty.

INVRQSRM

A damaged record (not an active or inactive record) is
encountered.

RECDMGRM

There is not a record with update intent placed on it in the
file.

UPDINTRM

This Causes the Function to be Rejected With This Reply Message

The record is already inactive. EXSCNDRM

An EXCRECLK lock cannot be obtained. RECIUSRM

68 SdU VSAM API Reference

DDMDeleteRec

 Example

BOF BOF

Record
Number

Record
Number

BEFORE AFTER

Assume the following:

Update
Intent

Cursor

EOF

0

1

2

3

4

5

6

Cursor

EOF

DDMDeleteRec (FileHandle, Flags)

AAAAAAAA

BBBBBBBB

CCCCCCCC

DDDDDDDD

EEEEEEEE

AAAAAAAA

CCCCCCCC

DDDDDDDD

EEEEEEEE

Inactive

0

1

2

3

4

5

6

Figure 10. DDMDeleteRec Function

 Chapter 3. VSAM API Functions 69

DDMForceBuffer

 DDMForceBuffer
(Commit a File's Cached Information)

This function commits a file's cached information to non-volatile storage. The file's
directory entry and EAs are updated (as if the file had been closed with a DDMClose),
but the file remains in the open state.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMForceBuffer (HDDMFILE FileHandle

);

 Parameters
FileHandle

The handle (HDDMFILE) of the open file whose cached information is to be com-
mitted to non-volatile storage. A value of X'FFFFFFFF' for this parameter causes
all open files for this process to have their caches written to non-volatile storage.

 Returns
Message ID Code Point Message Title

HDLNFNRM X'1257' File Handle Not Found

 Remarks
This function is analogous to the DosResetBuffer command.

To obtain the current EA values while a file is being used, you must issue a
DDMForceBuffer and request the EA values to be returned. The EA values are returned
through DDMQueryFileInfo or DDMOpen.

When a file is being used in the local VSAM file system, the file system maintains
certain extended attributes in memory for each I/O operation that affects the file. When
an alternate index file is being used, the local VSAM file system maintains only the
base file EAs in memory. These changed EAs are permanently updated for the file as
well as for all associated index files when a DDMForceBuffer or DDMClose function is
issued.

Effect on Cursor Position
If the file is opened without GETAI access intent, there is no effect on the cursor posi-
tion.

If the file was opened with GETAI access intent, the cursor is positioned to EOF.

70 SdU VSAM API Reference

DDMForceBuffer

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

The locks on the requester's files are the same before and after the DDMForceBuffer
function. All record locks that are held by the requester are released.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not valid. HDLNFNRM

 Chapter 3. VSAM API Functions 71

DDMGetRec

 DDMGetRec
(Get Record)

This function gets and returns the record that is indicated by the current cursor position.
This function also optionally returns the record number and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMGetRec (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) that is obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
4–31 Reserved flags
3 DDM_RTNINA (Return Inactive Records)
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

Note: DDM_KEYVALFB is ignored for nonkeyed files.

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer to the record buffer (PDDMRECORD) for the returned record. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples of
RecordBuf Data Formats” on page 75.

RecordBufLen
The length (ULONG) of the Record Buffer.

72 SdU VSAM API Reference

DDMGetRec

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CSRNSARM X'1205' Cursor Not Selecting a Record Position
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYMODRM X'1260' Key value was modified since cursor was last set
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use

 Remarks
As an option, DDMGetRec can:

� Specify whether inactive records should be returned (DDM_RTNINA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply message deter-
mines the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file is opened for multiple updates, the
access method acquires an implicit SHRRECLK on the record. This occurs if the
requester does not lock the record with a SHRRECLK. If a different record is already
locked, the lock on that record is released before the SHRRECLK on the current record
is obtained.

The SHRRECLK is released when one of the following occurs:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The DDMUnLockRec function is issued.

� Any function is issued that references a record other than the one currently pointed
to by the cursor. Examples of these functions are DDMInsertRecEOF,

 Chapter 3. VSAM API Functions 73

DDMGetRec

DDMInsertRecKey, DDMInsertRecNum, DDMSetUpdateKey, and
DDMSetUpdateNum.

� The file is closed.

If none of these conditions are met, the record remains locked.

If the record lock is not obtained, the function is rejected with RECIUSRM.

If DDM_UPDINT(TRUE) is specified and the file is not opened for multiple updates, an
update intent is placed on the record. However, the access method does not acquire
any record locks.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message. determines the state of the record locks.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set or
DDM_NODATA is not set and RecordBuf does not contain
an address.

ADDRRM

The cursor is positioned to outside the bounds of the file.

The cursor position is unknown.

CSRNSARM

The file handle is not valid. HDLNFNRM

Any of the reserved bits in AccessFlags are set. INVFLGRM

The file was opened without GETAI specified.

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The file is a keyed or alternate index file, the cursor was
last positioned by key value, and the key value has
changed or the record has become inactive since the
cursor was positioned to its current location.

KEYMODRM

The RecordBuf is not large enough to hold the returned
record.

LENGTHRM

The record returned is damaged (not an active or inactive
record).

RECDMGRM

The DDM_RTNINA parameter specifies that inactive
records are not to be returned and the current record is
inactive.

RECINARM

A record lock cannot be obtained. RECIUSRM

74 SdU VSAM API Reference

DDMGetRec

Examples of RecordBuf Data Formats
AccessFlags

DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_RTNINA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the buffer from the beginning of LL to
the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_RTNINA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the buffer from the beginning of LL to
the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is an ULONG
length of an inactive record.

Data Either the record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_RTNINA(FALSE)

RecordBuf
DATA FORMAT

LL X'144A' Data

LL CP Data

 Chapter 3. VSAM API Functions 75

DDMGetRec

Field Description

LL The length (ULONG) of the record attribute list from the begin-
ning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_RTNINA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the begin-
ning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
CP.

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'1430' L1 X'111D' RN L2 CP Data

76 SdU VSAM API Reference

DDMGetRec

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is an ULONG
length of an inactive record.

Data Either the record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_RTNINA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the begin-
ning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is a
key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_RTNINA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 77

DDMGetRec

Field Description

LL The length (ULONG) of the record attribute list from the begin-
ning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) of the field from the beginning of L1 to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is a
key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is an ULONG
length of an inactive record.

Data Either the record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_RTNINA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the begin-
ning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) of the field from the beginning of L1 to
the end of RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

78 SdU VSAM API Reference

DDMGetRec

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) of the field from the beginning of L2 to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is a
key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) of the field from the beginning of L3 to
the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_RTNINA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the begin-
ning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) of the field from the beginning of L1 to
the end of RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number.

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) of the field from the beginning of L2 to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is a
key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 CP Data

 Chapter 3. VSAM API Functions 79

DDMGetRec

L3 The length (ULONG) of the field from the beginning of L3 to
the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is an ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

80 SdU VSAM API Reference

DDMGetReplyMessage

 DDMGetReplyMessage
(Get Reply Message)

This function gets and returns a reply message that is issued from the previously
requested function in the current thread of execution.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMGetReplyMessage (PBYTE RpyMsgBuf,

 ULONG RpyMsgBufLen,

 ULONG RpyMsgFlags

);

 Parameters
RpyMsgBuf

The pointer (PBYTE) to the reply message buffer for the returned reply message.
For information on how to interpret the reply message data, see Chapter 6, “VSAM
API Reply Messages” on page 411.

RpyMsgBufLen
The length (ULONG) of the reply message buffer. The length of the reply message
buffer should be the same as the largest reply message plus four bytes for the
length and four bytes for the code point fields.

RpyMsgFlags
The RpyMsgFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 Full Error Reply Message

If this flag is set, at least one full error reply message is returned. If this
flag is not set, only the USHORT code point that identifies the error reply
message is returned. A subsequent repeat invocation of
DDMGetReplyMessage with this flag that is not set causes the code point
of the next reply message to be returned. The previous error reply
message is lost.

 Chapter 3. VSAM API Functions 81

DDMGetReplyMessage

 Returns
On return, APIRET contains one of the SVRCOD error codes. For a detailed
description of the severity code values, see “SVRCOD (Severity Code)” on page 393.

APIRET Description

X'00000000' All reply messages for last requested function have been
received.

X'00000004' There are more reply messages to be received. Call the
DDMGetReplyMessage function again to get the next
message. The reply messages are put in a process thread-
based FIFO (first-in first-out) queue. Each call of
DDMGetReplyMessage gets the next reply message from
the queue.

If the currently executing thread issues a function other than
DDMGetReplyMessage, before all of the reply messages
have been received, the remaining reply messages are dis-
carded. The process thread-based queue is filled with the
reply messages from the requested function.

X'00000008' Reply buffer is too small. The reply message buffer is not
large enough to hold the reply message. If the buffer length
is at least 1 ULONG, the first ULONG of the reply message
buffer contains the length of the reply message.

X'00000010' Warning error. A reply message was requested but there
are no reply messages available.

X'00000020' Error. An invalid reply message buffer address was speci-
fied.

X'00000040' Severe error. An un-architected reply message object was
encountered. One or more additional reply messages are
available. The cause may be a target problem.

X'00000080' Severe error. A reserved bit was set on in the
RpyMsgFlags parameter.

82 SdU VSAM API Reference

DDMInsertRecEOF

 DDMInsertRecEOF
(Insert Records at EOF)

This function inserts records at the end of the file and optionally returns the record
number and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMInsertRecEOF (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecCount,

 PDDMOBJECT FdbkBuf,

 ULONG FdbkBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
12–31 Reserved flags
11 DDM_HLDUPD (Hold Update Intent)
10 DDM_UPDCSR (Update Cursor)
3–9 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 Reserved flag

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the records to be inserted.
When DDMInsertRecEOF is called, the format of RecordBuf is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following data is either
Record Data or an Inactive Record Length.

LL CP Data ...

 Chapter 3. VSAM API Functions 83

DDMInsertRecEOF

X'144A' Indicates that the following data is Record Data.

X'142D' Indicates that the following data is an ULONG Inac-
tive Record Length. The number of record
descriptions (Record Data or Inactive Record
Lengths) should be the same as the number indi-
cated in RecCount.

Data The record data.

Examples of the DDMInsertRecEOF function are shown in “Examples” on page 90.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

FdbkBuf
The pointer (PDDMOBJECT) to the Feedback Buffer for the requested returned
feedback data, or NULL if no information has been requested. The format of the
returned data in the buffer depends on the bit settings in AccessFlags. Examples
of the returned feedback data formats are shown in “Remarks.”

FdbkBufLen
The length (ULONG) of the feedback buffer or 0.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
FILFULRM X'120C' File is Full
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
RECIUSRM X'124A' Record in Use
RECLENRM X'1215' Record Length Mismatch
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
For files with variable-length records, new record positions that have the same length
as the inserted records are created. Records to be inserted are contained in the record
buffer.

After successful completion of this command, EOF points to the record position after
the last inserted record.

84 SdU VSAM API Reference

DDMInsertRecEOF

This function processes the records in a Record Buffer as a group. This function treats
inactive records in the group as place holders between the active records, as the group
is inserted into the file. How the EOF is updated depends on the type of the file.

� If the file is a direct file, the EOF is only updated when an active record in the
group is inserted. Therefore, inactive records that follow the last active record in a
group are located at or beyond the EOF and are subject to overlay by other func-
tions. The method of inserting records into a direct file can affect the file contents;
for example:

– When multiple records are inserted at a time, both active and inactive records
can occur before the EOF (see Figure 11).

– When individual records are inserted one at a time, only the active records will
occur before the EOF (see Figure 12 on page 86).

� If the file is not a direct file, the EOF is updated as each record in the group is
inserted. If all the records in the group are inserted successfully, the EOF is posi-
tioned after the last record in the group. This is true whether the record is an
active or inactive record. The method of inserting records into these files does not
affect the file contents.

BOF BOF

EOF

BEFORE AFTER

Record
Number

0

1

0

1

2

3

4

In this example,

Record
Number

(RECORD n) indicates active record number n
(RECINA n) indicates inactive record number n

Assume the following operating on a direct file:

RecordBuf = (RECINA 1)(RECORD 2)(RECINA 3)(RECINA 4);
RecCount = 4;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount , FdbkBuf, FdbkBufLen);

RECINA1

RECORD2

RECINA3

RECINA4

EOF

Figure 11. DDMInsertRecEOF. Insert Multiple Records at the Same Time into a Direct File

 Chapter 3. VSAM API Functions 85

DDMInsertRecEOF

BOF BOF

BEFORE AFTER

Record
Number

0

1

In this example,

Record
Number

(RECORD n) indicates active record number n
(RECINA n) indicates inactive record number n

0

1

2

Assume the following operating on a direct file:

RecordBuf = (RECINA 1);
RecCount = 1;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount , FdbkBuf, FdbkBufLen);

RecordBuf = (RECORD 2);
RecCount = 1;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount , FdbkBuf, FdbkBufLen);

RecordBuf = (RECINA 3);
RecCount = 1;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount , FdbkBuf, FdbkBufLen);

RecordBuf = (RECINA 4);
RecCount = 1;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount , FdbkBuf, FdbkBufLen);

EOF RECORD2

RECINA4EOF

Figure 12. DDMInsertRecEOF. Insert One Record into a Direct File

RecCount specifies the number of records to be inserted at EOF. An instance of a
record or an inactive record length must be set for each record to be inserted.

Depending on the value of the DDM_UPDCSR flag, this function sets the cursor to the
inserted record or keeps its current setting. If RecCount specifies a value greater than
1 and the DDM_UPDCSR flag is set, the cursor is updated after each record is suc-
cessfully inserted at the end of file.

86 SdU VSAM API Reference

DDMInsertRecEOF

If the DDM_RECNBRFB flag is set, the record number of the last inserted record is
returned in FdbkBuf.

If the DDM_KEYVALFB flag is set, the key value of the last inserted record is returned
in FdbkBuf.

If the DDM_HLDUPD flag is not set, the update intent on any record in the file is
released. If the DDM_HLDUPD flag is set, the update intent on any record in the file
remains in place.

When inserting records into a keyed or alternate index file, this function updates the file
index and all associated indexes.

Inactive records can only be inserted if the file is delete-capable.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

This function positions the cursor that is based on the DDM_UPDCSR
flag. If DDM_UPDCSR is set, this function moves the cursor to the
inserted record. If DDM_UPDCSR is not set, the cursor position is not
changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was called. If
the RecCount is greater than 1, the cursor position is the same as it
was before the last iteration of the function.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message indicates the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

DDMInsertRecEOF does the following:

1. If DDM_HLDUPD(FALSE) is specified and the requester has a SHRRECLK lock on
a record in the file, the SHRRECLK lock is released.

2. If the file is opened for multiple updates, DDM_HLDUPD(TRUE) is specified, and
the requester has a SHRRECLK lock on a record in the file. The SHRRECLK lock
is not released.

3. In all cases, the access method attempts to acquire an EXCRECLK lock on the
record. If the EXCRECLK lock cannot be obtained due to a lock conflict, the func-
tion is rejected with RECIUSRM.

If the EXCRECLK lock is obtained:

a. The record insert function is performed.

 Chapter 3. VSAM API Functions 87

DDMInsertRecEOF

b. The EXCRECLK lock is released from the record, because all record modifica-
tions are committed at the time of modification.

c. The obtained EXCRECLK lock is released from the record, even if the function
is rejected with an error reply.

4. If the function ends with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as
before the function was issued. If RecCount is greater than 1, the record locks
are the same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data
Lock Status) parameter on the reply message determines the record locks.

 Exceptions
This Causes the Function to be Terminated With This Reply Message

The data in the RecordBuf is not a valid record type. OBJNSPRM

This Causes the Function to be Rejected With This Reply Message

The DDM_KEYVALFB or DDM_RECNBRFB access flags
are set and a pointer is not supplied to the FdbkBuf.

ADDRRM

The file is not delete-capable and the record to be inserted
is RECINA.

DTARECRM

One of the following sets of conditions exists:

� The file is the base file for an alternate index file.
� The alternate index file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the alternate index.

or

� The file is an alternate index file.
� The file's base file does not allow duplicate keys, or

another alternate index file with the same base file
does not allow duplicate keys.

� The inserted record would result in a duplicate key
value in the file's base file or in another alternate index
file with the same base file.

DUPKDIRM

The following conditions exist:

� The file is a keyed file or alternate index file.
� The file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the file index.

DUPKSIRM

Inserting the record would cause the file to become full. FILFULRM

The file handle is invalid. HDLNFNRM

Any of the reserved bits are set in the access flags. INVFLGRM

88 SdU VSAM API Reference

DDMInsertRecEOF

This Causes the Function to be Rejected With This Reply Message

The file was opened without INSAI (Insert Record) access
intent.

INVRQSRM

The file supports variable-length records, the file is a keyed
file or an alternate index file, and the record to be inserted
does not contain all of the fields for the specified file key.

KEYVALRM

The FdbkBuf is not large enough to hold the returned infor-
mation.

LENGTHRM

An EXCRECLK lock cannot be obtained on the file. RECIUSRM

If the following are not true:

1. If the record class is fixed and the record to be
inserted is an active record, the length of the record
must be equal to the length of the header plus the
record length. (See “RECORD (Record)” on page 391
for more information.)

2. If the record to be inserted is an inactive record, the
record length represented by the inactive record must
be the same as the length defined for a record in the
file. (See “RECINA (Inactive Record)” on page 389 for
more information.)

RECLENRM

RecCount is not greater than zero. VALNSPRM

 Chapter 3. VSAM API Functions 89

DDMInsertRecEOF

 Examples

BOF BOF

BEFORE AFTER
Record
Number

Record
Number

Assume the following:

Cursor

EOF

0

1

2

3

4

5

6

RecCount = 0x00000003 ;
AccessFlags = 0x00000000 ;

DDMInsertRecEOF (FileHandle, AccessFlags, RecordBuf,
RecCount , FdbkBuf, FdbkBufLen)

0

1

2

3EOF

Cursor

/* DDM UPDCSR=OFF */

Figure 13. DDMInsertRecEOF Function

90 SdU VSAM API Reference

DDMInsertRecEOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

EOF

0

1

2

3

4

5

Assume the following:

RecCount = 0x00000001

Cursor

Cursor

EOF

AccessFlags = 0x00000400 ; /* DDM UPDCSR=ON */

DDMInsertRecEOF (FileHandle, AccessFlags, RecordBuf,
RecCount , FdbkBuf, FdbkBufLen)

Figure 14. DDMInsertRecEOF Function with DDM_UPDCSR

Examples of FdbkBuf returned data formats are:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE)

FdbkBuf
This parameter returns nothing.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE)

FdbkBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the buffer from the beginning of LL to
the end of RN.

LL X'111D' RN

 Chapter 3. VSAM API Functions 91

DDMInsertRecEOF

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE)

FdbkBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the field from the beginning of LL to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE)

FdbkBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

92 SdU VSAM API Reference

DDMInsertRecKey

 DDMInsertRecKey
(Insert Records by Key Value)

This function inserts records according to their key values and optionally returns the
record number of the last record that is inserted.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMInsertRecKey (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 PRECNUM RecordNumber,

 ULONG RecCount

);

 Parameters
FileHandle

The file handle (HDDMFILE) that is obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
12–31 Reserved flags
11 DDM_HLDUPD (Hold Update Intent)
10 DDM_UPDCSR (Update Cursor)
2–9 Reserved flags
1 DDM_RECNBRFB (Record Number Feedback)
0 Reserved flag

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the record descriptions and
the records to be inserted by key. The format of the record buffer on when
DDMInsertRecKey is called:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
Record Data. The number of record descriptions (record data's)
should be the same as the number indicated in RecCount.

LL X'144A' Data ...

 Chapter 3. VSAM API Functions 93

DDMInsertRecKey

Data Record data.

RecordNumber
The pointer (PRECNUM) to an output variable of type RECNUM for the Record
Number Feedback from the last record inserted. If the Record Number Feedback
flag of AccessFlags has not been set, this parameter is ignored.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
FILFULRM X'120C' File is Full
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYVALRM X'1240' Invalid Key Value
RECLENRM X'1215' Record Length Mismatch
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
For files with a RECLENCL (record length class) of variable-length record, either:

� A new record position having the same length as the record to be inserted is
created, or

� An existing record position containing an inactive record the same length as the
record to be inserted is used.

The record structure must be consistent with the key definition on DDMCreateRecFile
and DDMCreateAltIndex.

If the file supports variable-length records whose lengths are changeable, the length of
the record position is changed to equal the length of the inserted record.

If RecCount specifies a value greater than 1, multiple records are inserted into the file.
RecCount specifies the number of times the DDMInsertRecKey function will be per-
formed. If the DDM_UPDCSR flag is set, the cursor position is updated after each
iteration of the DDMInsertRecKey.

Depending on the setting of the DDM_UPDCSR flag, the cursor can be set to the
inserted record or can retain its current setting.

If the DDM_RECNBRFB flag specifies that the record number of the inserted record is
to be returned, RecordNumber is returned with the record number of the last record
inserted.

94 SdU VSAM API Reference

DDMInsertRecKey

At the completion of the function, any existing update intent is released unless the
DDM_HLDUPD flag is set. In this case, the existing update intent remains in effect.

The file index and all other indexes that are associated with the file are updated to
show the inserted records.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is based on the DDM_UPDCSR flag. If
DDM_UPDCSR is set, the cursor is moved to the last inserted record.
If DDM_UPDCSR is not set, the cursor position is not changed.

Error Termination (SVRCOD of 8)
 The cursor position is the same If RecCount is greater than 1, the
cursor position is the same as before the last iteration of the function.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message indicates the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

DDMInsertRecKey does the following:

1. If the file was opened for multiple updaters for each record to be inserted:

a. If DDM_HLDUPD(FALSE) was specified and the requester currently has a
SHRRECLK on a record in the file, the SHRRECLK is released.

b. If DDM_HLDUPD(TRUE) was specified and the requester currently has a
SHRRECLK on a record in the file, the SHRRECLK is not released.

In all cases, the local VSAM file system attempts to acquire an EXCRECLK. If the
EXCRECLK cannot be obtained due to a lock conflict, the function is rejected with
RECIUSRM. If the EXCRECLK is obtained, the record insert function is performed.
Since all record modifications are committed at the time of modification, the
EXCRECLK is released from the record. Even if the function is rejected with an
error reply, the obtained EXCRECLK is released from the record.

2. If the function ends with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as
before the function was issued. If RECCNT is greater than 1, the record locks
are the same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data
Lock Status) parameter on the reply message determines the state of the
record locks.

 Chapter 3. VSAM API Functions 95

DDMInsertRecKey

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file is not delete-capable and the record to be inserted
is RECINA.

DTARECRM

One of the following sets of conditions exists:

� The file is the base file for an alternate index file.
� The alternate index file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the alternate index.

or

� The file is an alternate index file.
� The file's base file does not allow duplicate keys, or

another alternate index file with the same base file
does not allow duplicate keys.

� The inserted record would result in a duplicate key
value in the file's base file or in another alternate index
file with the same base file.

DUPKDIRM

The following conditions exist:

� The file is a keyed file or alternate index file.
� The file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the file index.

DUPKSIRM

The file handle is invalid. HDLNFNRM

The following conditions exist:

� The file supports variable-length records.
� The file is a keyed file or an alternate index file.
� The record to be inserted does not contain all of the

fields for the specified file key.

KEYVALRM

An EXCRECLK record lock cannot be obtained. RECIUSRM

The RECLENCL (Record Length Class) is fixed, and the
length of the record to be inserted (LL) is not equal to the
record length (RECLEN) of the file plus the length of the
record header (see “RECORD (Record)” on page 391 for
more information).

The record length of the record to be inserted exceeds the
maximum record length of the file.

RECLENRM

96 SdU VSAM API Reference

DDMInsertRecKey

 Example

EOF

BOF BOF

BEFORE AFTER
Record
Key

Assume the following:

RecCount = 0x00000001 ;

A

B

C

B

Cursor

EOF

A

B

C

B

XCursor

Record
Key

DDMInsertRecKey (FileHandle, AccessFlags, RecordBuf,
RecordNumber, RecCount)

AccessFlags = 0x00000400 ; /* DDM UPDCSR=ON */

Figure 15. DDMInsertRecKey Function with DDM_UPDCSR

 Chapter 3. VSAM API Functions 97

DDMInsertRecNum

 DDMInsertRecNum
(Insert by Record Number)

This function inserts records at the position that is specified by the RecordNumber
parameter and optionally returns the record key.

 Syntax
APIRET DDMInsertRecNum (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 PDDMOBJECT KeyFdbk,

 ULONG KeyFdbkLen,

 RECNUM RecordNumber,

 ULONG RecCount

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
11–31 Reserved flags
10 DDM_UPDCSR (Update Cursor)
3–9 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
0–1 Reserved flags

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the records to be inserted at
the specified record number. When this function is called, the format of the record
buffer is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following data is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

LL CP Data ...

98 SdU VSAM API Reference

DDMInsertRecNum

X'142D' Indicates that the following data is an ULONG
inactive record length. The number of record
descriptions (record Data or inactive record
lengths) should be the same as the number indi-
cated in the RecCount.

Data The data associated with this code point.

KeyFdbk
The pointer (PDDMOBJECT) to the key value feedback buffer of the last record
inserted. If the DDM_KEYVALFB flag of AccessFlags has not been set, this
parameter is ignored. The format of the key value feedback buffer on return from
the function is:

Field Description

LL The length (ULONG) of the response from the beginning of LL to
the end of the Key Value.

X'1115' The value (CODEPOINT) indicating that the following data is a key
value.

Key Value The key value.

KeyFdbkLen
The length (ULONG) of the key value feedback buffer. The key value feedback
buffer should be the same length as a key value, with an additional six bytes for
the length and code point fields. If the DDM_KEYVALFB flag of AccessFlags has
not been set, this parameter is ignored.

RecordNumber
The length (RECNUM) of the record number for the first record to be inserted. All
other records are placed in consecutive record positions.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

LL X'1115' Key Value

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DUPRNBRM X'120A' Duplicate Record Number
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYVALRM X'1240' Invalid Key Value
OBJNSPRM X'1253' Object Not Supported
RECDMGRM X'1249' Record Damaged

 Chapter 3. VSAM API Functions 99

DDMInsertRecNum

Message ID Code Point Message Title

RECIUSRM X'124A' Record in Use
RECLENRM X'1215' Record Length Mismatch
RECNBRRM X'1224' Record Number Out of Bounds
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
Records can only be inserted within the bounds of the file and only in inactive record
positions:

� For sequential and keyed files, the bounds are record number 1 (inclusive) and the
current EOF (exclusive).

� For direct files, the bounds are record number 1 For direct files, the bounds are:

– Record number 1 (inclusive), and
– The physical boundaries of the file (inclusive)

as defined by the application when the file was created (this can be beyond the
EOF position of the file).

� An alternate index file has the same bounds as its base file.

Depending on the value of the DDM_UPDCSR flag, the cursor can be set to the
inserted record position or can retain its current setting.

The records in a Record Buffer are processed as a group. Inactive records in the
group are treated as place holders between the active records as the group is inserted
into the file. How the EOF is updated depends on the type of file. For example, if the
file is a direct file and records are added at or beyond the current EOF, the EOF is only
updated when an active record is inserted. Inactive records that follow the last active
record will be located in the file at or beyond the EOF and are subject to overlay by
other functions. See “DDMInsertRecEOF (Insert Records at EOF)” on page 83 for
additional information and examples.

The RecCount parameter specifies the number of records to be inserted. The insertion
of records begins at RecordNumber.

If RecCount specifies a value other than 1, the record number is increased after each
record is inserted. The new record number must meet the same validity criteria as the
original (previous) record number before the next record can be inserted. The validity
criteria for record number refers to the file boundary rules for record insertion.

If RecCount specifies a value greater than 1 and the DDM_UPDCSR flag is set, the
cursor is updated after each record is successfully inserted.

If Key Value Feedback is requested (DDM_KEYVALFB), the key value of the last
record inserted is returned.

If the DDM_KEYVALFB flag is set and the file is not keyed, the flag is ignored.

100 SdU VSAM API Reference

DDMInsertRecNum

The file index is updated when inserting records into a keyed or alternate index file or
into the base file of an alternate index file.

If the file supports variable-length records whose lengths are changeable, the length of
the record position is changed to match the length of the inserted record.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is based on the DDM_UPDCSR flag. If the
DDM_UPDCSR flag is set, the cursor is moved to the inserted record.
If the DDM_UPDCSR flag is not set, the cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was called. If
RecCount is greater than 1, the cursor position is the same as before
the last iteration of the function.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message determines the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters, then:

1. If the requester currently has a SHRRECLK on a record in the file, the SHRRECLK
is released.

2. The access method attempts to acquire an EXCRECLK on the record.

If the EXCRECLK cannot be obtained because of a lock conflict, the function is
rejected with RECIUSRM. If the EXCRECLK is obtained, then:

a. The record insert function is performed, and because all record modifications
are committed at the time of modification, the EXCRECLK is released from the
record.

b. The obtained EXCRECLK is released from the record, even if the function is
rejected with an error reply.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued. If RecCount is greater than 1, the record locks are the
same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record locks.

 Chapter 3. VSAM API Functions 101

DDMInsertRecNum

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The record buffer address is not greater than zero.

DDM_KEYVALFB access flag is specified and KeyFdbk is
not specified.

ADDRRM

The file is not delete-capable and the record to be inserted
is RECINA.

DTARECRM

One of the following sets of conditions exists:

� The file is the base file for an alternate index file.
� The alternate index file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the alternate index.

or

� The file is an alternate index file.
� The file's base file does not allow duplicate keys, or

another alternate index file with the same base file
does not allow duplicate keys.

� The inserted record would result in a duplicate key
value in the file's base file or in another alternate index
file with the same base file.

DUPKDIRM

The following are true:

� The file is a keyed file or an alternate index file.
� The file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the file index.

DUPKSIRM

The RecordNumber parameter specifies a record position
that contains an active record.

DUPRNBRM

The file handle is invalid. HDLNFNRM

Any of the reserved bits are set in the access flags. INVFLGRM

The file was opened without INSAI (Insert Record) access
intent.

INVRQSRM

The following are true:

� The file supports variable-length records.
� The file is a keyed file or an alternate index file.
� The record to be inserted does not contain all of the

fields for the specified file key.

KEYVALRM

The Keyfdbk is not large enough to hold the returned key. LENGTHRM

The data in the record is not a valid record. OBJNSPRM

The record is to be inserted at a position that does not
contain an active or inactive record.

RECDMGRM

An EXCRECLK lock cannot be obtained on the file. RECIUSRM

102 SdU VSAM API Reference

DDMInsertRecNum

This Causes the Function to be Rejected With This Reply Message

The combination of the following two are true:

� The file supports variable-length records whose
lengths are not changeable (RECIVL).

� The record length of the record to be inserted is not
equal to the record position length.

The record length of the record to be inserted exceeds the
maximum record length of the file or is less than the
minimum record length.

The following conditions are not true:

� If the record length class (RECLENCL) is fixed and the
record to be inserted is an active record, the length of
the record to be inserted (LL) must be equal to the
record length (RECLEN) plus the length of the record
header. (See “RECORD (Record)” on page 391 for
more information.)

� If the record to be inserted is an inactive record, the
record length specified in the inactive record (Data)
must be equal to the record length (RECLEN) for the
file. (See “RECINA (Inactive Record)” on page 389 for
more information.)

RECLENRM

The RecordNumber parameter specifies a value that is
outside the bounds of the file, for example:

� The record is outside the bounds for a direct file.

� The record would be inserted past the EOF for nondi-
rect files.

� RecordNumber is not greater than zero.

RECNBRRM

RecCount is not greater than zero. VALNSPRM

 Chapter 3. VSAM API Functions 103

DDMInsertRecNum

 Examples

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Number

Record
Number

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Assume the following:

/* DDM UPDCSR=OFF */

DDMInsertRecNum (FileHandle, AccessFlags, RecordBuf,
KeyFdbk, KeyFdbkLen, RecordNumber,
RecCount)

Inactive

Cursor Cursor

RecCount = 0x00000001 ;
RecordNumber = 0x00000002 ;
AccessFlags = 0x00000000 ;

Figure 16. DDMInsertRecNum Function

104 SdU VSAM API Reference

DDMInsertRecNum

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Number

Record
Number

Assume the following:

DDMInsertRecNum (FileHandle, AccessFlags, RecordBuf,
KeyFdbk, KeyFdbkLen, RecordNumber,
RecCount)

AccessFlags = 0x00000400 ;
RecordNumber = 0x00000002
RecCount = 0x00000002

/* DDM UPDCSR=ON */

Inactive

Inactive

Cursor

Cursor

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Figure 17. DDMInsertRecNum Function with Multiple Records

 Chapter 3. VSAM API Functions 105

DDMLoadFileFirst

 DDMLoadFileFirst
(Load Records into File)

This function loads a file with one or more records that are contained in the record
buffer.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMLoadFileFirst (PSZ FileName,

 PHDDMLOAD LoadHandle,

 ULONG Flags,

 PDDMRECORD RecordBuf,

 ULONG RecCount,

);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be loaded.

LoadHandle
The pointer (PHDDMLOAD) to the location where the system returns a handle
value that is to be used with a subsequent corresponding DDMLoadFileNext func-
tion.

Flags
The Flags (ULONG) specify the action to be taken depending on whether the bit
flag is set. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 DDM_CHAIN

This bit notifies the system to keep system resources allocated on
behalf of this LoadFile. When the chaining bit is on, any unwritten
chained (related) buffers are to be written out or sent to the target
system. This occurs on the completion of a DDMLoadFileNext func-
tion that has the DDM_CLOSE flag bit set to a value of 1.

When the chaining bit is off:

� The DDM server is allowed to deallocate resources on com-
pletion of the DDMLoadFileFirst function.

� A NULL value is returned for LoadHandle.

RecordBuf
The pointer (PDDMRECORD) to the record buffer. The record buffer can contain
the following objects:

 RECORD
 RECINA

106 SdU VSAM API Reference

DDMLoadFileFirst

 RECAL

These objects can be in mixed order, and they can be repeated.

The format of the record buffer when calling DDMLoadFileFirst is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is record
data, an inactive record length, or a record attribute list containing
a record number and record data.

X'144A' Indicates that the following data is record data
(RECORD).

X'142D' Indicates that the following data is an inactive
record (RECINA).

X'1430' Indicates that the following data is a Record Attri-
bute List (RECAL) and can contain RECCNT,
RECNBR, or both:

If CP is a record attribute list, the format of DATA
is:

Field Description

L2 The length (ULONG) from the beginning of L2 to the end of RC.

X'111A' The value (CODEPOINT) indicating that the following data is a
record count (RECCNT). The RECCNT (Record Count) parameter
is used to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N≥0, without
replicating the contents of the record.

RC The number (ULONG) of duplicate records in the record attribute
list.

L3 The length (ULONG) from the beginning of L3 to the end of RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

LL CP Data ...

L2 X'111A' RC L3 X'111D' RN

L4 CP Data

 Chapter 3. VSAM API Functions 107

DDMLoadFileFirst

RN The record number (ULONG) of the record in the record attribute
list. When RC and RN are both specified, the record number
specified by RN applies to the first occurrence of the record. Each
subsequent record has a record number one greater than the pre-
vious record.

L4 The length (ULONG) of the record description from beginning of L4
to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is a length
(ULONG) of an inactive record.

Data The record data or the length (ULONG) of an inactive record.

If CP is a record or inactive record description, the format of Data is the record
data or the length (ULONG) of an inactive record.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

The number of record descriptions (record data and inactive record lengths) should
be the same number as indicated in the record count. When a RECAL (Record
Attribute List) is specified in RecordBuf and RECCNT of N is specified within the
RECAL, the RecCount parameter reflects the N duplicate records. Therefore if
RecordBuf contained 10 data records and a RECAL, with RECCNT having a value
of 100, the value of RecCount would be 110.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DUPRNBRM X'120A' Duplicate Record Number
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILFULRM X'120C' File is Full
FILIUSRM X'120D' File In Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
RECDMGRM X'1249' Record Damaged
RECLENRM X'1215' Record Length Mismatch
RECNBRRM X'1224' Record Number Out of Bounds
VALNSPRM X'1252' Parameter Value Not Supported

108 SdU VSAM API Reference

DDMLoadFileFirst

 Remarks
A set of records can be transferred to a target server and:

� Placed in an empty, existing file.
� Appended to the records in an existing file.
� Distributed into record positions of an existing file.

The record buffer can contain any of the following items and any combination of these
items:

� One or more inactive records.

� One or more records.

� One or more RECAL (Record Attribute List) parameters that contains a record and
record number. If the record attribute list contains a key value attribute, the key
value attribute is ignored.

The DDMLoadFileFirst function begins to load records into a file that is based on the
following:

� If the first object is a record or an inactive record, the records are loaded at the
EOF position for the file. In this case, the operation of DDMLoadFileFirst is similar
to the DDMInsertRecEOF function.

� If the first object is a record attribute list, the records are loaded at the record posi-
tion that is specified by the record number attribute. In this case, the operation of
DDMLoadFileFirst is similar to the DDMInsertRecNum function.

Subsequent records are loaded in the next higher record position until a RECAL
(Record Attribute List) is found or until the entire RecordBuf has been processed. If a
RECAL parameter is found, the records that follow are loaded starting with the record
position that is specified by the record number value (RN). This allows nonsequential
loading of the file.

The records in RecordBuf are processed as a group. Inactive records in the group are
treated as place holders between the active records as the group is inserted into the
file. How the EOF is updated depends on the type of file. For example, if the file is a
direct file and records are added at or beyond the current EOF. The EOF is only
updated when an active record is inserted. Inactive records that follow the last active
record will be located in the file at or beyond the EOF and are subject to overlay by
other functions. See “DDMInsertRecEOF (Insert Records at EOF)” on page 83 for
additional information and examples.

If the target file is a keyed file or the base file for an alternate index file, the appropriate
indexes are updated as the records are loaded.

An inactive record can be loaded to an inactive record position of a delete-capable file
that causes the record position to remain inactive.

If an error condition is encountered, do not use the file handle in a DDMLoadFileNext.

 Chapter 3. VSAM API Functions 109

DDMLoadFileFirst

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
DDMLoadFileFirst does the following:

1. Attempts to obtain a MODNONLK on the file.

If the MODNONLK is obtained, the function is processed (successfully or unsuc-
cessfully). If the MODNONLK is not obtained, the function is rejected with
FILIUSRM.

2. Releases the MODNONLK it obtained on the file if the DDM_CHAIN bit is not
active. If the DDM_CHAIN bit is active, the lock is released by DDMLoadFileNext
with the DDM_CLOSE bit active.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Terminated With This Reply Message

The file gets full when loading. FILFULRM

The MODNONLK cannot be obtained on the file. FILIUSRM

The function tried to load the records outside the bounds of
the file.

Note: This can occur if the RecCount parameter did not
include the actual number of records that was specified in
the RECAL descriptor.

RECNBRRM

This Causes the Function to be Rejected With This Reply Message

The record buffer address is not greater than zero. ADDRRM

The file is not delete-capable and the record to be inserted
is RECINA.

DTARECRM

The following are true:

� The file is a keyed file.
� An associated alternate index file does not allow dupli-

cate keys.
� The loading of records would result in a duplicate key

value.

DUPKDIRM

110 SdU VSAM API Reference

DDMLoadFileFirst

This Causes the Function to be Rejected With This Reply Message

The following are true:

� The file is a keyed file.
� The file does not allow duplicate keys.
� The loaded record would result in a duplicate key

value.

DUPKSIRM

An attempt is made to load a record at an active record
position.

DUPRNBRM

The file that the records are loaded into is a non-DDM file. FILATHRM

The file has already been opened by DDMOpen,
DDMLoadFileFirst (DDM_CHAIN flag on), or
DDMUnLoadFileFirst (More Data flag on).

FILIUSRM

Any of the reserved bits are set in the access flags. INVFLGRM

DDM_CHAIN is specified and LoadHandle is not specified.

The file does not have insert or modify capability.

INVRQSRM

The following are true:

� The file supports variable-length records.
� The file is a keyed file or the base file of an alternate

index file.
� The record to be loaded does not contain all of the

fields for the specified file key.

KEYVALRM

The records to be loaded are not active or inactive. OBJNSPRM

The active or inactive records to be loaded are too long or
too short for the record positions in the file.

RECLENRM

A RECAL specifies a RECNBR that is outside the bounda-
ries of the file (see “DDMInsertRecNum (Insert by Record
Number)” on page 98 for definition of file boundaries).

RECNBRRM

RecCount is not greater than zero. VALNSPRM

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object. The Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an incon-
sistent state or a non-DDM application has changed the
file.

DDMLoadFileFirst or DDMLoadFileNext re-synchronizes
the file-change date and time during close processing
unless a higher severity condition prevents it from doing so.

FILDMGRM

 Chapter 3. VSAM API Functions 111

DDMLoadFileFirst

 Examples

EOF

BOF BOF

BEFORE AFTER
Record
Number

Record
Number

0

1

0

1

2

3

EOF XXXX

YYYY

Assume the following:

Has the following effect:

DDMLoadFileFirst (FileName, LoadHandle, Flags,
RecordBuf, RecCount)

RecordBuf = { 0x0000000A, 0x144A, ’XXXX’,
0x0000000A, 0x144A, ’YYYY’ } ;

Flags = 0x00000000 ;
RecCount = 0x00000002 ;

Figure 18. DDMLoadFileFirst Function to a New File

112 SdU VSAM API Reference

DDMLoadFileFirst

Record
Number

Record
Number

EOF

BOF BOF 0

1

2

3

4

5

6

0

1

2

3

4EOF

Assume the following:

YYYY

XXXX

Has the following effect:

BEFORE AFTER

DDMLoadFileFirst (FileName, LoadHandle, Flags,
RecordBuf, RecCount)

RecordBuf = { 0x0000000A, 0x144A, ’XXXX’,
0x0000000A, 0x144A, ’YYYY’ } ;

Flags = 0x00000000 ;
RecCount = 0x00000002 ;

Figure 19. DDMLoadFileFirst Function to Append to a File

 Chapter 3. VSAM API Functions 113

DDMLoadFileFirst

BEFORE AFTER

BOF BOF

DDMLoadFileFirst (FileName, LoadHandle, Flags,

Record
Number

Record
Number

RecordBuf = {{ 0x0000001A, 0x1430, 0x000A, 0x111D,

Assume the following:

EOF

EOF

Flags = 0x00000000 ;
RecCount = 0x00000003 ;

RecordBuf, RecCount)

0x00000002, 0x0000000A, 0x144A, ’XXXX’ },
{ 0x0000000A, 0x144A, ’YYYY’ },
{ 0x0000001A, 0x1430, 0x000A, 0x111D,
0x00000001, 0x0000000A, 0x144A, ’ZZZZ’ }} ;

0

1

2

3

0

1

2

3

4

Inactive

Inactive

Inactive

ZZZZ

XXXX

YYYY

Figure 20. DDMLoadFileFirst Function to Random Load a Direct File

114 SdU VSAM API Reference

DDMLoadFileNext

 DDMLoadFileNext
(Load Records into File)

This function continues the load of a file with the records that are contained in the
record buffer.

Note: This function should be called after the DDMLoadFileFirst function.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMLoadFileNext (HDDMLOAD LoadHandle,

 ULONG Flags,

 PDDMRECORD RecordBuf,

 ULONG RecCount

);

 Parameters
LoadHandle

The handle value (HDDMLOAD) previously returned to the caller with
DDMLoadFileFirst.

Flags
The Flags (ULONG) specify the action to be taken depending on whether the bit
flag is set. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 DDM_CLOSE (Close LoadFile Requests).

A value of 1 for this bit flag notifies the system to end
LoadHandle-based chaining and to deallocate LoadHandle-based
system resources for this function. Any unwritten chained (related)
buffers are written out or sent to the target system on the com-
pletion of the DDMLoadFileNext function.

RecordBuf
The pointer (PDDMRECORD) to the record buffer. The record buffer can contain
the following objects:

 RECORD
 RECINA
 RECAL

These objects can be in mixed order, and they can be repeated. It is not an error
for the record buffer to be null when the DDM_CLOSE flag is set to 1. The format
of the record buffer when calling DDMLoadFileNext is:

LL CP Data ...

 Chapter 3. VSAM API Functions 115

DDMLoadFileNext

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is record
data, an inactive record length, or a record attribute list containing
a record number and record data.

X'144A' Indicates that the following data is record data
(RECORD).

X'142D' Indicates that the following data is an ULONG
length of an inactive record (RECINA).

X'1430' Indicates that the following data is a RECAL
(Record Attribute List), and can contain RECCNT,
RECNBR, or both.

If CP is a record attribute list, the format of the DATA is:

Field Description

L2 The length (ULONG) from the beginning of L2 to
the end of RC.

X'111A' The value (CODEPOINT) indicating that the fol-
lowing data is a RECCNT (Record Count). The
RECCNT parameter is used to indicate the number
of duplicate records. RECCNT provides a short-
hand way of specifying N records, where N≥0,
without replicating the record's contents.

RC The number (ULONG) of duplicate records in the
record attribute list.

L3 The length (ULONG) from the beginning of L3 to
the end of RN.

X'111D' The value (CODEPOINT) indicating that the fol-
lowing data is a record number (RECNBR).

RN The record number (ULONG) of the record in the
record attribute list. When RC and RN are both
specified, the record number specified by RN
applies to the first occurrence of the record. Each
subsequent record has a record number one
greater than the previous record.

L4 The length (ULONG) of the record description from
beginning of L4 to the end of Data.

L2 X'111A' RC L3 X'111D' RN L4 CP Data

116 SdU VSAM API Reference

DDMLoadFileNext

CP The value (CODEPOINT) indicating that the fol-
lowing is either record data or an inactive record
length.

X'144A' Indicates that the following data is
record data.

X'142D' Indicates that the following data is
an ULONG length of an inactive
record.

Data The record data or the length (ULONG) of an inac-
tive record.

If CP is a record or inactive record description, the format of DATA
is the record data or the length (ULONG) of an inactive record.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

The number of record descriptions (record data and inactive record lengths) should
be the same number as indicated in the record count. When a RECAL (Record
Attribute List) is specified in RecordBuf and RECCNT of N is specified within the
RECAL, the RecCount parameter reflects the N duplicate records. Therefore if
RecordBuf contained 10 data records and a RECAL, with RECCNT having a value
of 100, the value of RecCount would be 110.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DUPRNBRM X'120A' Duplicate Record Number
FILFULRM X'120C' File is Full
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
RECDMGRM X'1249' Record Damaged
RECLENRM X'1215' Record Length Mismatch
RECNBRRM X'1224' Record Number Out of Bounds
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
A set of records can be transferred to a target server and either:

� Appended to the records in an existing file, or
� Distributed into record positions of an existing file.

The record buffer can contain any of the following items and any combination of these
items:

 Chapter 3. VSAM API Functions 117

DDMLoadFileNext

� One or more inactive records.

� One or more records.

� One or more RECAL (Record Attribute List) parameters that contains a record and
record number. If the record attribute list contains a key value attribute, the key
value attribute is ignored.

DDMLoadFileNext begins to load records into a file that is based on the following:

� If the first object is a record or an inactive record, the records are loaded at the
EOF position for the file. In this case, the operation of DDMLoadFileNext is similar
to the DDMInsertRecEOF function.

� If the first object is a record attribute list, the records are loaded at the record posi-
tion that is specified by the record number attribute. In this case, the operation of
DDMLoadFileNext is similar to the DDMInsertRecNum function.

Subsequent records are loaded in the next higher record position until a RECAL
(Record Attribute List) is found or until the entire RecordBuf has been processed. If a
record attribute list is found, the records that follow are loaded starting with the record
position that is specified by the record number value (RN). This allows nonsequential
loading of the file.

The records in a Record Buffer are processed as a group. Inactive records in the
group are treated as place holders between the active records as the group is inserted
into the file. How the EOF is updated depends on the type of file. For example, if the
file is a direct file and records are added at or beyond the current EOF, the EOF is only
updated when an active record is inserted. Inactive records that follow the last active
record will be located in the file at or beyond the EOF and are subject to overlay by
other functions. See “DDMInsertRecEOF (Insert Records at EOF)” on page 83 for
additional information and examples.

If the target file is a keyed file or the base file for an alternate index file, the appropriate
indexes are updated as the records are loaded.

An inactive record can be loaded to an inactive record position of a delete-capable file
causing the record position to remain inactive.

If an error condition is encountered, do not use the file handle in a DDMLoadFileNext.

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
DDMLoadFileNext releases the MODNONLK that was obtained by DDMLoadFileFirst
on the file, provided the DDM_CLOSE bit is active.

If this function ends with a reply message that has a severity code of ERROR or higher,
then:

118 SdU VSAM API Reference

DDMLoadFileNext

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The record buffer address is not greater than zero. ADDRRM

The file is not delete-capable and the record to be inserted
is RECINA.

Note: An inactive record can be loaded to an inactive
record position of a delete-capable file causing the record
position to remain inactive. DTARECRM is not returned in
this case.

DTARECRM

The following are true:

� The file is the base file for an alternate index file.
� The alternate index file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value.

DUPKDIRM

The following are true:

� The file is a keyed file.
� The file does not allow duplicate keys.
� The loaded record would result in a duplicate key

value.

DUPKSIRM

An attempt is made to load an active or inactive record at
an active record position.

DUPRNBRM

The handle from DDMLoadFileFirst is not used as the
handle for a DDMLoadFileNext.

HDLNFNRM

The file gets full when loading. FILFULRM

Any of the reserved bits are set in Flags. INVFLGRM

The following are true:

� The file supports variable-length records.
� The file is a keyed file or the base file of an alternate

index file.
� The record to be loaded does not contain all of the

fields for the specified file key.

KEYVALRM

The records to be loaded were not valid records. OBJNSPRM

The active or inactive records to be loaded are too long or
too short for the record positions in the file.

RECLENRM

 Chapter 3. VSAM API Functions 119

DDMLoadFileNext

This Causes the Function to be Rejected With This Reply Message

A RECAL specifies a RECNBR that is outside the bounda-
ries of the file (see “DDMInsertRecNum (Insert by Record
Number)” on page 98 for definitions of file boundaries).

The function tried to load records outside the bounds of the
file.

Note: This can occur if the record count parameter did not
include the actual number of records that was specified in
the RECAL descriptor.

RECNBRRM

RecCount is not greater than zero. VALNSPRM

120 SdU VSAM API Reference

DDMLoadFileNext

 Examples

BEFORE AFTER
Record
Number

Record
Number

BOF BOF 0

1

2

3

4

5

6

0

1

2

3

4

Assume the following:

DDMLoadFileNext (LoadHandle, Flags, RecordBuf, RecCount)

EOF

YYYY

XXXXEOF

Has the following effect:

RecordBuf = { 0x0000000A, 0x144A, ’XXXX’,
0x0000000A, 0x144A, ’YYYY’ } ;

Flags = 0x00000000 ;
RecCount = 0x00000002 ;

Figure 21. DDMLoadFileNext Function to Append to a File

 Chapter 3. VSAM API Functions 121

DDMModifyRec

 DDMModifyRec
(Modify Record)

This function modifies a record that has an update intent placed on it.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMModifyRec (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
10–31 Reserved flags
9 DDM_INHMODKY (Inhibit Modified Keys)
0–8 Reserved flag

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the record. The format of the
record buffer when calling the function is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of record data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
HDLNFNRM X'1257' File Handle Not Found

122 SdU VSAM API Reference

DDMModifyRec

Message ID Code Point Message Title

INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYUDIRM X'1201' Key Update Not Allowed by Different Index
KEYUSIRM X'123F' Key Update Not Allowed by Same Index
KEYVALRM X'1240' Invalid Key Value
OBJNSPRM X'1253' Object Not Supported
RECLENRM X'1215' Record Length Mismatch
UPDINTRM X'124E' No Update Intent on Record

 Remarks
DDMModifyRec has the following effects:

� For a sequential or direct file, the contents of the record with the update intent are
replaced with the supplied record.

� If the modification affects the key field (or fields) and DDM_INHMODKY is set, the
function fails with a Key Update Not Allowed (KEYUDIRM or KEYUSIRM)
message. Otherwise, the contents of the record with the update intent are
replaced with the replacement record.

� For keyed and alternate index files, the associated indexes are updated.

� The record position becomes active if it was not active before.

� The cursor position does not change; it points to the same record position at the
completion of the function.

� If the file supports variable-length records whose length is changeable, the length
of the record position is changed to match the length of the modified record.

� Update intent is removed.

Before DDMModifyRec can be used, an update intent must be placed on a record in
the file. A DDMSetxxxx or DDMGetRec function can be used to place an update intent
on a record.

For direct files, EOF may change if the modified record was an inactive record that was
past the current EOF.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message determines the cursor position.

 Chapter 3. VSAM API Functions 123

DDMModifyRec

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters:

1. The access method attempts to acquire an EXCRECLK lock on the record that has
an update intent placed on it. If the EXCRECLK lock cannot be obtained because
of a lock conflict, the function is rejected with the RECIUSRM reply message.

2. If the EXCRECLK lock is obtained, the DDMModifyRec function is performed.
Because all record modifications are committed at the time of modification, the
EXCRECLK lock is released from the record. Even if the function is rejected with
an error reply, the obtained EXCRECLK lock is released from the record.

If DDMModifyRec ends with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record lock.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

RecordBuf address is not supplied. ADDRRM

Modification would result in duplicate keys in associated
index file.

DUPKDIRM

Modification would result in duplicate keys in current index
file.

DUPKSIRM

The file handle is invalid. HDLNFNRM

Any reserved bits are set in the access flags. INVFLGRM

The MODAI access intent was not specified when the file
was opened.

INVRQSRM

KEYUDIRM Modification would cause key
in associated index file to be
modified.

Modification would cause key in current index file to be
modified.

KEYUSIRM

The file supports variable-length records; the file is a keyed
file or an alternate index file; and the modified record does
not contain all of the fields for the specified file key.

KEYVALRM

A record other than an active record is sent as the modified
record.

OBJNSPRM

124 SdU VSAM API Reference

DDMModifyRec

This Causes the Function to be Rejected With This Reply Message

The following are true:

� The file supports variable-length records whose length
is not changeable (initially variable).

� The record length of the modified record is not equal
to the record position length.

The record in the RecordBuf is not the correct length.

RECLENRM

The EXCRECLK lock cannot be obtained on the file. RECIUSRM

No record in the file has an update intent placed on it. UPDINTRM

 Chapter 3. VSAM API Functions 125

DDMModifyRec

 Example

BOF

BEFORE

EOF

Record
Number

0

1

2

3

4

5

6

BOF

EOF

Record
Number

0

1

2

3

4

5

6

Cursor

AFTER

Assume the following:

DDMModifyRec (FileHandle, AccessFlags, RecordBuf)

AAAAAAAA

XXXXXXXX

CCCCCCCC

DDDDDDDD

EEEEEEEE

AAAAAAAA

BBBBBBBB

CCCCCCCC

DDDDDDDD

EEEEEEEE

Update
Intent

Cursor

RecordBuf LL: 000Eh
CP: 144Ah

VALUE: ’XXXXXXXX’

AccessFlags = 0x00000000 ;

Figure 22. DDMModifyRec Function. The BEFORE state illustrates a case where the cursor and the update intent
are on different records. This occurs when a function like DDMSetUpdateNum or DDMSetRecNum is issued using the
DDM_HLDCSR and DDM_UPDINT flags.

126 SdU VSAM API Reference

DDMOpen

 DDMOpen
(Open File)

This function establishes a logical connection between the using program on the source
system and the accessed file on the target system.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMOpen (PSZ FileName,

 PHDDMFILE FileHandle,

 CODEPOINT AccessMethod,

 ULONG AccIntList,

 USHORT FileShare,

 PBYTE EABuf,

 PBYTE (reserved)

);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be opened.

FileHandle
The pointer (PHDDMFILE) to the file handle returned for use on all subsequent file
access and close requests for the file that is being opened.

AccessMethod
The value (CODEPOINT) indicating the requested access method for the file.
Specifying the appropriate value identifies the requested access method. Valid
values are:

Value Description
X'1433' RELRNBAM (Relative by Record Number)
X'1435' RNDRNBAM (Random by Record Number)
X'1407' CMBRNBAM (Combined Record Number)
X'1432' RELKEYAM (Relative by Key)
X'1434' RNDKEYAM (Random by Key)
X'1406' CMBKEYAM (Combined Keyed)
X'1405' CMBACCAM (Combined Access)

The choice of access method can affect read performance. For more information
about access methods, see “Access Methods” on page 18.

AccIntList
The value (ULONG) that specifies the access functions that will be used based on
whether the bit flag is set. The bit flags are:

Bit Meaning

7-31 Reserved flags

 Chapter 3. VSAM API Functions 127

DDMOpen

6 DDM_FAILONERROR (Fail-Errors)

Specifies the handling of media I/O errors.

This bit is the same as DosOpen with OpenMode bit
FAIL_ON_ERROR.

5 Reserved For Future Use

4 DDM_WRITETHRU (File Write-Through)

The file is opened as follows:

� 0 — any data that is written to the file may be cached in
memory and written to the media at a later time.

� 1 — any data that is written to the file may be cached in
memory. However, the data is immediately written to the media
synchronously with the request.

This bit is the same as DosOpen with OpenMode bit
OPEN_FLAGS_WRITE_THROUGH.

3 DDM_DELAI (Delete Record)

Specifies that the requester intends to delete records from the file.
If DDM_DELAI is not specified, the DDMDeleteRec function is
rejected with the INVRQSRM reply message.

This bit is the same as DosOpen with OpenMode bit
OPEN_ACCESS_READWRITE.

2 DDM_MODAI (Modify Record)

Specifies that the requester intends to modify existing records in the
file. If the DDM_MODAI intent is not specified, the following func-
tions are rejected with the INVRQSRM reply message.

 � DDMTruncFile
 � DDMModifyRec

This bit is the same as DosOpen with OpenMode bit
OPEN_ACCESS_READWRITE.

1 DDM_INSAI (Insert Record)

Specifies that the requester intends to insert records into the file. If
the DDM_INSAI intent is not specified, the following functions are
rejected with the INVRQSRM reply message.

 � DDMInsertRecNum
 � DDMInsertRecEOF
 � DDMInsertRecKey

This bit is the same as DosOpen with OpenMode bit
OPEN_ACCESS_READWRITE.

128 SdU VSAM API Reference

DDMOpen

0 DDM_GETAI (Get Record)

Specifies that the requester intends to retrieve records from the file.
If DDM_GETAI is not specified, the DDMGetRec function is rejected
with the INVRQSRM reply message.

If DDM_GETAI is not specified and DDM_NODATA is not set, the
following functions are rejected with the INVRQSRM reply message.

 � DDMGetRec
 � DDMSetFirst
 � DDMSetKey
 � DDMSetKeyFirst
 � DDMSetKeyLast
 � DDMSetKeyNext
 � DDMSetKeyPrevious
 � DDMSetLast
 � DDMSetMinus
 � DDMSetRecNum
 � DDMSetNextRec
 � DDMSetNextKeyEqual
 � DDMSetPlus
 � DDMSetPrevious
 � DDMSetUpdateKey
 � DDMSetUpdateNum.

This bit is the same as DosOpen with OpenMode bit
OPEN_ACCESS_READONLY (if no other access intent is specified
along with GETAI).

FileShare
Specifies the value (USHORT) for the concurrent users with which the requester is
willing to share the file. The valid values are:

X'0001' DDM_NOSHARE (None). This value allows no concurrent users.

This bit is the same as DosOpen with OpenMode bit
OPEN_SHARE_DENYREADWRITE.

X'0002' DDM_READERS (Readers). This value allows sharing with con-
current users who only intend to read records from the file.

This bit is the same as DosOpen with OpenMode bit
OPEN_SHARE_DENYWRITE.

X'0003' DDM_UPDATERS (Updaters). This value allows sharing with con-
current users who intend to update records in the file.

This bit is the same as DosOpen with OpenMode bit
OPEN_SHARE_DENYNONE.

Note: The combination of the AccIntList and the FileShare value that are specified
determines what implicit lock is obtained on the file.

 Chapter 3. VSAM API Functions 129

DDMOpen

EABuf
The pointer (PBYTE) to the file's EA data to be returned by DDMOpen or NULL.
See “Extended Attributes” on page 5 for more information on the format of this
buffer.

(reserved)
This pointer (PBYTE) is reserved for future use and must be specified as NULL.

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
ACCINTRM X'1266' Access Intent List Error
ACCMTHRM X'1231' Invalid Access Method
ADDRRM X'F212' Address Error
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available
HDLNFNRM X'1257' File Handle Not Found
INTATHRM X'125C' Not Authorized to Open Intent for Named File
INVFLGRM X'F205' Invalid Flags
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RSCLMTRM X'1233' Target Resource Limits Reached

 Remarks
Once the connection is established, access method commands can flow between the
source and target systems.

The target server uses both AccessMethod and AccIntList to determine the access
method that is required by the user. If the required support is not available in the target
server, the function is rejected with the ACCMTHRM reply message.

The DDM architecture permits the DDM server to promote a user-specified lower-level
access method class to a file to a higher-level access method class. All subsequent
access to this file are processed as though the promoted access method class has
been specified by the user. The promotion values for record-oriented access methods
are described in “Access Methods” on page 18.

The AccIntList is used to limit the use of valid functions in an access method.

The FileShare value indicates the type of concurrent users with which the requester is
willing to share the file while processing the file. This permits the requester to ensure
that concurrency problems do not occur.

In the local VSAM file system, to process a keyed file via an associated alternate index
file, it is only necessary for the user to issue a DDMOpen for the alternate index file.
Issuing a subsequent DDMOpen for another alternate index (of the same keyed file) or

130 SdU VSAM API Reference

DDMOpen

for the keyed file itself, is considered concurrent use by the local VSAM file system.
Concurrent use requires that the AccIntList and FileShare parameters of the DDMOpen
functions be compatible. For example, if an alternate index file is opened with
AccIntList=MODAI and FileShare=Readers, any subsequent DDMOpen function issued
for another alternate index of the same keyed file requires AccIntList=GETAI and
FileShare=Updaters. Otherwise, the subsequent DDMOpen will fail. (See “Locking (for
Local VSAM File System Only)” for more information.)

When the file is opened, the cursor is set to the BOF position.

An example of requesting Extended Attributes (EAs) is provided on page 5.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is created and moved to the beginning of the file.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message determines the cursor position.

Locking (for Local VSAM File System Only)
DDMOpen does the following:

1. Acquires a file lock on the file. For keyed and alternate index files, an equivalent
file lock is placed on the keyed file and each of its associated index files. This
occurs when the command is issued for the keyed file or for any of its associated
alternate index files. The type of lock that is acquired is dependent on the values
of the AccIntList and FileShare parameters. Table 18 on page 132 specifies the
type of file lock the DDMOpen function acquires.

For keyed and alternate index files, an equivalent file lock is placed on the keyed
file and each of its associated index files. This occurs when the function is issued
for the keyed file or any of its associated alternate index files.

2. Acquires only one file lock on the file. This file lock is not released until the file is
closed.

For keyed and alternate index files, only one lock per file is acquired. The file
locks are not released until the file is closed.

3. If the function ends with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The file locks are the same as before
the function was issued.

� Severe Termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Chapter 3. VSAM API Functions 131

DDMOpen

Table 18. File Locks Obtained by DDMOpen for Record Files

File Sharing (FileShare)

File Access Intents (AccIntList)

GETAI Only MODAI, DELAI, INSAI

None GETNONLK MODNONLK

Reader GETGETLK MODGETLK

Updater GETMODLK (See Note)

Note: In this case, the file is being opened so that both the requester and concurrent users
can update the file. (This is referred to as “opened for multiple updaters” elsewhere in this
document.) For the files where the local VSAM file system supports implicit record locks, a
MODMODLK lock is acquired. Otherwise, a MODGETLK file lock is acquired.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

If the user attempts to open a file without setting at least
one of the following bits in AccIntList:

 � GETAI
 � INSAI
 � MODAI
 � DELAI

ACCINTRM

The target server does not support the access method
specified by AccessMethod and AccIntList.

ACCMTHRM

DDMOpen is issued against a keyed file or any of its asso-
ciated indexes and the associated indexes have recorded,
in DDM_BASCHGDT, the last-change date/time for the
base file that is different from the current system last-
change date/time (System Object Attribute).

FILDMGRM

The file lock cannot be acquired because of a lock conflict. FILIUSRM

The user attempts to open a file with an access intent
(specified in AccIntList) for which the file is not allowed.

INTATHRM

The file lock cannot be acquired because of insufficient
lock manager resources or because of an implementation
file lock maximum.

RSCLMTRM

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object and the Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an incon-
sistent state or a non-DDM application has changed the
file.

If the file was opened for write access, DDMClose will re-
synchronize the file-change date and time unless a higher
severity condition prevents it from doing so.

FILDMGRM

132 SdU VSAM API Reference

DDMQueryFileInfo

 DDMQueryFileInfo
(Get a File's Information)

This function returns information for a specific file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMQueryFileInfo (HDDMFILE FileHandle,

 ULONG FileInfoLevel,

 PBYTE FileInfoBuf,

 ULONG FileInfoBufSize

);

 Parameters
FileHandle

The handle (HDDMFILE) of the open file.

FileInfoLevel
The level (ULONG) of file information that is required.

Level 0x00000001 is the only defined level. This is the same as DosQueryFileInfo,
ulFileInfoLevel bit (FILE_STANDARD).

Level 0x00000001 returns a subset of the EA information for the file. On input,
FileInfoBuf maps to an EAOP2 structure. fpGEA2List points to a GEA2 list defining
the attribute names whose values are returned. fpFEA2List points to a data area
where the relevant FEA2 list is returned. The length field of this FEA2 list is valid,
giving the size of the FEA2 list buffer. oError is ignored.

On output, FileInfoBuf is unchanged because the buffer pointed to by fpFEA2List is
the one that is filled in with the returned information.

FileInfoBuf
The pointer (PBYTE) to the storage area where the system returns the requested
level of file information. Refer to “Extended Attributes” on page 5 for more infor-
mation on the format of this buffer.

FileInfoBufSize
The length (ULONG) of the FileInfoBuf.

 Chapter 3. VSAM API Functions 133

DDMQueryFileInfo

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CMDCHKRM X'1254' Command Check
FILIUSRM X'120D' File in Use
HDLNFNRM X'1257' File Handle Not Found
LENGTHRM X'F211' Field Length Error
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
This function is similar to the OS/2 DosQueryFileInfo command.

An example of requesting Extended Attributes (EAs) is provided on page 5.

When requesting information on the variable-length EAs (ALTINDLS and KEYDEF), it is
possible for the user to provide inadequate buffer space in the FileInfoBuf parameter. If
this is the case, the function is rejected with the LENGTHRM reply message and a
server diagnostic code of 0004 (Extended Attribute reply buffer too small). If the buffer
that is provided was at least 4 bytes long, it contains the required buffer length. This
buffer length should be used to create a FileInfoBuf of FileInfoBufSize that is large
enough to contain the requested list of EAs.

File information, where applicable, is at least as accurate as the most recent
DDMClose, DDMForceBuffer, or DDMSetFileInfo.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
For the local VSAM file system on AIX, the file needs to be opened for
DDMQueryFileInfo. The level of locking in effect is the same as what was specified in
the DDMOpen call for the file.

For the local VSAM file system on OS/2, the locking behaviour is the same as that for
DOSQueryFileInfo. See OS/2 WARP Control Program Programming Reference.

Record File Attributes by File Class
Refer to Table 13 on page 37.

134 SdU VSAM API Reference

DDMQueryPathInfo

 DDMQueryPathInfo
(Get File or Subdirectory Information)

This function returns information for a specific file or subdirectory.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMQueryPathInfo (PSZ PathName,

 ULONG PathInfoLevel,

 PBYTE PathInfoBuf,

 ULONG PathInfoBufSize

);

 Parameters
PathName

The pointer (PSZ) to the full path name of the file or subdirectory.

PathInfoLevel
The level (ULONG) of path information that is required.

Level 0x00000001 is the only defined level. This is the same as
DosQueryPathInfo, ulFileInfoLevel bit (FILE_STANDARD).

Level 0x00000001 returns a subset of the EA information for the file. On input,
PathInfoBuf maps to an EAOP2 structure. fpGEA2List points to a GEA2 list
defining the attribute names whose values are returned. fpFEA2List points to a
data area where the relevant FEA2 list is returned. The length field of this FEA2
list is valid, giving the size of the FEA2 list buffer. oError is ignored.

On output, PathInfoBuf is unchanged since the buffer pointed to by fpFEA2List is
the one that is filled in with the returned information.

PathInfoBuf
The pointer (PBYTE) to the storage area where the system returns the requested
level of path information. Refer to “Extended Attributes” on page 5 for more infor-
mation on the format of this buffer.

PathInfoBufSize
The length (ULONG) of PathInfoBuf.

 Chapter 3. VSAM API Functions 135

DDMQueryPathInfo

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CMDCHKRM X'1254' Command Check
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
LENGTHRM X'F211' Field Length Error
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
This function is similar to the OS/2 DosQueryPathInfo command.

An example of requesting Extended Attributes (EAs) is provided on page 5.

When requesting information on the variable-length EAs (.DDM_ALTINDLS and
.DDM_KEYDEF), it is possible for the user to provide inadequate buffer space in the
PathInfoBuf parameter. If this is the case, the function is rejected with the LENGTHRM
reply message and a server diagnostic code of 0004 (Extended Attribute reply buffer
too small). If the buffer that is provided was at least 4 bytes long, it contains the
required buffer length. This buffer length should be used to create a PathInfoBuf of
PathInfoBufSize that is large enough to contain the requested list of EAs.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
For the OS/2 local VSAM file system, the file locking rules are the same as for
DOSFindFirst. These rules do not permit access to the file attributes if the file is
already opened by another process. See OS/2 WARP Control Program Programming
Reference.

For the AIX local VSAM file system, two processes can call this API concurrently.

 Exceptions
This Causes a Reply Message to be Generated with
SRVCOD = X'04'. The Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an incon-
sistent state or a non-DDM application has changed the
file.

DDMQueryPathInfo re-synchronizes the file-change date
and time if the file is not open to another process unless a
higher severity condition prevents it from doing so.

FILDMGRM

136 SdU VSAM API Reference

DDMQueryPathInfo

Record File Attributes by File Class
Refer to Table 13 on page 37.

 Chapter 3. VSAM API Functions 137

DDMRename

 DDMRename
(Rename File)

This function changes the name of an existing file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMRename (PSZ FileName,

 PSZ NewFileName

);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be renamed.

NewFileName
The pointer (PSZ) to the new file name.

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
DRCATHRM X'1237' Not Authorized to Directory
DRCFULRM X'1258' Directory Full
EXSCNDRM X'123A' Existing Condition
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available
HDLNFNRM X'1257' File Handle Not Found
INVRQSRM X'123C' Invalid Request
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RSCLMTRM X'1233' Target Resource Limits Reached

138 SdU VSAM API Reference

DDMRename

 Remarks
Naming that directory as part of the new file name (NewFileName) can move a file to a
different directory.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
The DDMRename function:

1. Attempts to obtain a MODNONLK lock on the file.

If the MODNONLK lock is obtained, the function is processed (successfully or
unsuccessfully). If the MODNONLK lock is not obtained, the function is rejected
with the FILIUSRM reply message.

2. Releases the MODNONLK lock it obtained on the file.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions

This Causes
This Reply Message to be
Returned

The new name for the file is the same as the existing name
for the file.

EXSCNDRM

This Causes the Function to be Rejected With This Reply Message

The new file cannot be entered into the directory because
the directory is full.

DRCFULRM

The requester has the named file open. FILIUSRM

 Chapter 3. VSAM API Functions 139

DDMRename

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object. The Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an incon-
sistent state or a non-DDM application has changed the
file.

DDMRename re-synchronizes the file-change date and
time unless a higher severity condition prevents it from
doing so.

FILDMGRM

140 SdU VSAM API Reference

DDMSetBOF

 DDMSetBOF
(Set Cursor to Beginning of File)

This function sets the cursor to the beginning-of-file (BOF) position of the file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetBOF (HDDMFILE FileHandle

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

HDLNFNRM X'1257' File Handle Not Found

 Remarks
DDMSetBOF sets the cursor to the BOF position in the file to allow relative accesses
(for example, DDMSetNextRec, DDMSetPlus, and DDMSetKeyNext) to be performed.
Any attempt to retrieve, insert, or modify a record at this file position is rejected.

If the hold cursor indicator of the cursor is on, it is set off by this function.

Resets any key limits that were set on a keyed file.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the BOF position of the file.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message determines the cursor position.

 Chapter 3. VSAM API Functions 141

DDMSetBOF

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters and the requester currently has a
SHRRECLK lock on a record in the file, the SHRRECLK lock is released.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record locks.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is invalid. HDLNFNRM

142 SdU VSAM API Reference

DDMSetBOF

 Example

BOF

EOF

0

1

2

3

4

5

6

BEFORE

BOF 0

1

2

3

4

5

6

AFTER

EOF

DDMSetBOF (FileHandle)

Record
Number

Record
Number

Cursor

Assume the following:

Cursor

Hold Cursor
Indicator is on

Hold Cursor
Indicator is off

Figure 23. DDMSetBOF Function

 Chapter 3. VSAM API Functions 143

DDMSetEOF

 DDMSetEOF
(Set Cursor to End of File)

This function sets the cursor to the end-of-file (EOF) position of the file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetEOF (HDDMFILE FileHandle

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

HDLNFNRM X'1257' File Handle Not Found

 Remarks
The cursor position is defined by each file class.

The cursor is placed at the EOF position to allow relative accesses (for example
DDMSetPrevious, DDMSetMinus, and DDMSetKeyPrevious) to be performed.

If the hold cursor indicator of the cursor is turned on, it is set off by this function.

Resets any key limits that were set on a keyed file.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the EOF position of the file.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters and the requester currently has a
SHRRECLK lock on a record in the file, the SHRRECLK lock is released.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

144 SdU VSAM API Reference

DDMSetEOF

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

 Example

BOF

EOF

Record
Number

0

1

2

3

4

5

6

BEFORE

BOF

Record
Number

0

1

2

3

4

5

6

AFTER

EOF

Cursor

Assume the following:

Has the following effect:

DDMSetEOF (FileHandle)

Cursor

Hold Cursor
Indicator is on

Hold Cursor
Indicator is off

Figure 24. DDMSetEOF Function

 Chapter 3. VSAM API Functions 145

DDMSetFileInfo

 DDMSetFileInfo
(Set File Information)

This function specifies information for a file or a directory. File information support is
specific to the DDM server implementation and is dependent on the operating system.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetFileInfo (HDDMFILE FileHandle,

 ULONG FileInfoLevel,

 PBYTE FileInfoBuf,

 ULONG FileInfoBufSize

);

 Parameters
FileHandle

The handle (HDDMFILE) of the open file.

FileInfoLevel
The level (ULONG) of file/directory information being defined.

Level 0x00000001 information is the only defined level. This is the same as
DosSetFileInfo, ulFileInfoLevel bit (FILE_STANDARD).

Level 0x00000001 file information sets a series of EA name/value pairs. On input,
FileInfoBuf maps to an EAOP2 structure. fpGEA2List is ignored. fpFEA2List
points to a data area where the relevant FEA2 list is to be found. oError is
ignored.

On output, fpGEA2List is unchanged. fpFEA2List is unchanged as is the area
pointed to by fpFEA2List. If an error occurred during the set, oError is the offset of
the FEA2 where the error occurred. The return code is the error code corre-
sponding to the condition generating the error. If no error occurred, oError is unde-
fined.

FileInfoBuf
The pointer (PBYTE) to the storage area where the system gets the file informa-
tion. Refer to “Extended Attributes” on page 5 for more information on the format
of this buffer.

FileInfoBufSize
The length (ULONG) of FileInfoBuf.

146 SdU VSAM API Reference

DDMSetFileInfo

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CMDCHKRM X'1254' Command Check
HDLNFNRM X'1257' File Handle Not Found
LENGTHRM X'F211' Field Length Error
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
This function is similar to the DosSetFileInfo command.

An example of requesting Extended Attributes (EAs) is provided on page 5.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
For the OS/2 local VSAM file system, the locking behaviour is the same as for
DOSSetFileInfo. See OS/2 WARP Control Program Programming Reference.

For the AIX local VSAM file system, an exclusive lock is requested for the file.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

Record File Attributes by File Class
These are modifiable record file attributes.

Refer to Table 14 on page 38.

When the FILINISZ EA is changed, it has no effect on the current space already allo-
cated to the file.

When the DELCP EA of an alternate index file is changed, the DELCP of the base file
and all other indexes is also changed.

When the GETCP EA of an alternate index file is changed, the GETCP of the base file
and all other indexes are also changed.

When the INSCP EA of an alternate index file is changed, the INSCP of the base file
and all other indexes are also changed.

When the MODCP EA of an alternate index file is changed, the MODCP of the base file
and all other indexes are also changed.

 Chapter 3. VSAM API Functions 147

DDMSetFirst

 DDMSetFirst
(Set Cursor to First Record)

This function sets the cursor to the first record of the file and optionally returns the
record, record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetFirst (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 DDM_ALLREC (All Records, Active and Inactive)
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats are found in “Examples” on
page 153.

RecordBufLen
The length (ULONG) of the record buffer.

148 SdU VSAM API Reference

DDMSetFirst

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record In Use
RECNFNRM X'1225' Record Not Found

 Remarks
The DDM_ALLREC bit flag is used to determine the first record of a file. If
DDM_ALLREC is not set, the cursor is set to the first active record in the file. Other-
wise the cursor is set to record 1 in the file. For direct files, DDM_ALLREC must be set
off.

As an option, DDMSetFirst can:

� Set the hold cursor indicator (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Key limits are reset after completion of function.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

 Chapter 3. VSAM API Functions 149

DDMSetFirst

Table 19. DDMSetFirst (DDM_NODATA or DDM_ALLREC) Decision Table

If the DDMSetFirst function is issued:

When initial system states are:

Record State I I I A A

DDM_ALLREC F T T * *

DDM_NODATA * F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F F T4 F F

RECINA (returned) F T F F F

RECORD (returned) F F F T F

CURSOR (returned) F T T T T

Repeat table after bypassing record T F F F F

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to record number 1 if DDM_ALLREC is set. The
cursor is moved to the first active record in the file if DDM_ALLREC is
not set.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

150 SdU VSAM API Reference

DDMSetFirst

� The record is updated (DDMModifyRec, DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, DDMInsertRecEOF, DDMInsertRecKey, DDMInsertRecNum,
DDMSetUpdateKey, or DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with the RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes a Reply Message to be Generated and the
Function Continues With This Reply Message

DDM_ALLREC and DDM_NODATA are active and an inac-
tive record is read.

RECINARM

This Causes the Function to be Terminated With This Reply Message

Access flag DDM_NODATA is not set and the file was
opened without GETAI.

INVRQSRM

The RecordBuf is not large enough to hold the returned
record.

LENGTHRM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set or
DDM_NODATA is not set and RecordBuf doesn't contain
an address.

ADDRRM

The file handle is not valid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

 Chapter 3. VSAM API Functions 151

DDMSetFirst

This Causes the Function to be Rejected With This Reply Message

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

DDM_ALLREC is set and the file is a direct file.

INVRQSRM

The record is damaged (not an active or inactive record). RECDMGRM

A record lock cannot be obtained. RECIUSRM

Bypassing inactive records is requested (DDM_ALLREC is
off) and the file only contains inactive records.

The file does not contain any records.

Note: The cursor position is not changed.

RECNFNRM

152 SdU VSAM API Reference

DDMSetFirst

 Examples

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

DDMSetFirst (FileHandle, AccessFlags, RecordBuf, RecordBufLen)

Inactive

Inactive

Cursor

Inactive

InactiveCursor

/* DDM__ALLREC=ON */AccessFlags = 0x00000010 ;

Figure 25. DDMSetFirst Function with DDM_ALLREC Set

 Chapter 3. VSAM API Functions 153

DDMSetFirst

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Inactive

Inactive

Inactive

Inactive

Has the following effect:

DDMSetFirst (FileHandle, AccessFlags, RecordBuf, RecordBufLen)

/* DDM__ ALLREC=OFF */

Cursor

Cursor

AccessFlags = 0x00000000 ;

Figure 26. DDMSetFirst Function with DDM_ALLREC Not Set

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

LL CP Data

154 SdU VSAM API Reference

DDMSetFirst

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

LL X'1430' L1 X'111D' RN L2 CP Data

 Chapter 3. VSAM API Functions 155

DDMSetFirst

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 CP Data

156 SdU VSAM API Reference

DDMSetFirst

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 CP Data

 Chapter 3. VSAM API Functions 157

DDMSetFirst

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
date (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

158 SdU VSAM API Reference

DDMSetKey

 DDMSetKey
(Set Cursor by Key)

This function positions the cursor based on the key value and relational operator speci-
fied, and optionally returns the record, record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKey (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMOBJECT KeyValBuf,

 CODEPOINT RelOpr,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen,

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
Specify the action to be taken depending on whether the bit flag is set. The bit
flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 399.

KeyValBuf
Pointer to the buffer which contains the key to which the cursor should be moved.
The format of the key value buffer upon invocation of the function is:

Field Description

LL The length (ULONG) of the key value description (from the begin-
ning of LL to the end of Key Value).

LL X'1115' Key Value

 Chapter 3. VSAM API Functions 159

DDMSetKey

X'1115' The value (CODEPOINT) indicating that the following data is a key
value (KEYVAL).

RelOpr
Specifies the relational test that should be used to test the specified key value
against the file index key values. Valid values are:

X'1445' KEYAE (Key After or Equal)

Specifies that the relational test between the specified key value
and the index key values is after or equal to. After is towards the
end of file in the key sequence.

X'1446' KEYAF (Key After)

Specifies that the relational test between the specified key value
and the index key values is after. After is towards the end of file in
the key sequence.

X'1447' KEYEQ (Key Equal)

Specifies that the relational test between the specified key value
and the index key values is equal to.

X'144B' KEYBE (Key Before or Equal)

Specifies that the relational test between the specified key value
and the index key values is before or equal to. Before is towards
the beginning of file in the key sequence.

X'144C' KEYBF (Key Before)

Specifies that the relational test between the specified key value
and the index key values is before. Before is towards the begin-
ning of file in the key sequence.

These values are described in detail on page 161.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 165.

RecordBufLen
The length (ULONG) of the record buffer.

160 SdU VSAM API Reference

DDMSetKey

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DRCATHRM X'1237' Not Authorized to Directory
FILATHRM X'123B' Not Authorized to File
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYLENRM X'122D' Invalid Key Length
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RECDMGRM X'1249' Record Damaged
RECNFNRM X'1225' Record Not Found
RSCLMTRM X'1233' Target Resource Limits Reached

 Remarks
The cursor can be moved to the key value that is equal to, after, after or equal to,
before, or before or equal to the specified key value. This function is only valid for
keyed and alternate index files. The following list describes how this function sets the
cursor for specific values for the RelOpr parameter.

Value The Cursor Is Set by Key Sequence to:

KEYEQ The first record in the file that has a key equal to the key specified in
the key value buffer.

KEYAE The first record in the file that has a key after or the last record in the
file that has a key equal to the key specified in the key value buffer. If
there is more than one record that has a key equal to the specified key,
the cursor is set to the last record with an equal key. If there is no
record with an equal key and there are multiple records that have a key
equal to the next key in sequence, the cursor is set to the first of these
records.

KEYAF The first record in the file that has a key after the key specified in key
value buffer.

KEYBE The first record of the file that has a key equal to the key specified in
key value buffer. If no equal key is found, the cursor, by key sequence,
is set to the last record of the file with a key before the key specified in
key value buffer.

KEYBF The last record in the file with a key before the key specified in key
value buffer.

 Chapter 3. VSAM API Functions 161

DDMSetKey

If the key value specified in key value buffer is shorter than the file record keys, a
generic search is performed. Only the first record of all records satisfying the generic
search can be accessed with this function. DDMSetKeyNext can be used to access
additional records that satisfied the generic search.

If the key value specified in key value buffer has duplicate entries in the file (duplicate
keys), only the first or last record, depending upon the value of RelOpr, of all records
having the duplicate key value can be accessed with this function. See
“DDMSetKeyNext (Set Cursor to Next Record in Key Sequence)” on page 202 or
“DDMSetKeyPrevious (Set Cursor to Previous Record in Key Sequence)” on page 220
for accessing additional records with the same key value.

As an option, DDMSetKey can:

� Set the hold cursor indicator (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to the record that satisfies the relational operator
specification.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

162 SdU VSAM API Reference

DDMSetKey

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, or DDMSetUpdateNum functions).

If the record lock is not obtained, the DDMSetKey function is rejected with the
RECIUSRM reply message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Chapter 3. VSAM API Functions 163

DDMSetKey

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The key length specified for KEYVAL is larger than the key
length used to build the index.

Note: The cursor position is not changed.

KEYLENRM

The file does not contain any records or a record does not
exist that satisfies RelOpr.

Note: The cursor position is not changed.

RECNFNRM

164 SdU VSAM API Reference

DDMSetKey

 Examples

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,
RecordBufLen)

With the following Key Value Buffer:

Assume the following:

Has the following effect:

RelOpr = 0x1447 ; /* KEYEQ */

AccessFlags = 0x00000000 ;

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

Figure 27. DDMSetKey Function with RelOpr Set to KEYEQ

 Chapter 3. VSAM API Functions 165

DDMSetKey

EOF

BEFORE AFTER

EOF

With the following Key Value Buffer:

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,
RecordBufLen)

Has the following effect:

Cursor

Cursor

BOF BOF

RelOpr = 0x1445 ; /* KEYAE */

AccessFlags = 0x00000000 ;

KeyValBuf LL: 8
CP: 0x1115

Value: ’AD’

Figure 28. DDMSetKey Function with RelOpr Set to KEYAE

166 SdU VSAM API Reference

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Assume the following:

With the following Key Value Buffer:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,
RecordBufLen)

BEFORE AFTER

Cursor

Cursor

Has the following effect:

KeyValBuf LL: 8
CP: 0x1115

Value: ’CA’

RelOpr = 0x1446 ; /* KEYAF */

AccessFlags = 0x00000000 ;

Figure 29. DDMSetKey Function with RelOpr Set to KEYAF

 Chapter 3. VSAM API Functions 167

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

With the following Key Value Buffer:

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,
RecordBufLen)

Has the following effect:
BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’DB’

RelOpr = 0x144B ; /* KEYBE */

AccessFlags = 0x00000000 ;

Figure 30. DDMSetKey Function with RelOpr Set to KEYBE

168 SdU VSAM API Reference

DDMSetKey

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Has the following effect:

With the following Key Value Buffer:

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,
RecordBufLen)

Cursor

Record
Key(seq)

Record
Key(seq)

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

RelOpr = 0x1446 ; /* KEYAE */

AccessFlags = 0x00000000 ;

Figure 31. DDMSetKey Function with RelOpr Set to KEYAE

 Chapter 3. VSAM API Functions 169

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

With the following Key Value Buffer:

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,
RecordBufLen)

Has the following effect:
BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’CA’

RelOpr = 0x144B ; /* KEYBE */

AccessFlags = 0x00000000 ;

Figure 32. DDMSetKey Function with RelOpr Set to KEYBE

170 SdU VSAM API Reference

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

With the following Key Value Buffer:

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,
RecordBufLen)

Has the following effect:
BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

RelOpr = 0x144B ; /* KEYBE */

AccessFlags = 0x00000000 ;

Figure 33. DDMSetKey Function with RelOpr Set to KEYBE

 Chapter 3. VSAM API Functions 171

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

With the following Key Value Buffer:

Assume the following:

Has the following effect:
BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’CC’

RelOpr = 0x144C ; /* KEYBF */

AccessFlags = 0x00000000 ;
DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,

RecordBufLen)

Figure 34. DDMSetKey Function with RelOpr Set to KEYBF

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

172 SdU VSAM API Reference

DDMSetKey

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list. A value of X'FFFFFFFF' for RN indicates that the
record number of the first record in the record attribute list is
not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'111D' RN

 Chapter 3. VSAM API Functions 173

DDMSetKey

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1115' KEY

174 SdU VSAM API Reference

DDMSetKey

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

 Chapter 3. VSAM API Functions 175

DDMSetKey

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

176 SdU VSAM API Reference

DDMSetKeyFirst

 DDMSetKeyFirst
(Set Cursor to First Record in Key Sequence)

This function sets the cursor to the first record in key sequence and optionally returns
the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyFirst (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
6–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 179.

RecordBufLen
The length (ULONG) of the record buffer.

 Chapter 3. VSAM API Functions 177

DDMSetKeyFirst

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
FILATHRM X'123B' Not Authorized to File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYLENRM X'122D' Invalid Key Length
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
RECDMGRM X'1249' Record Damaged
RECIUSRM X'124A' Record in Use
RECNFNRM X'1225' Record Not Found

 Remarks
As an option, DDMSetKeyFirst can:

� Set the hold cursor indicator (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the first record according to the index key
sequence.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

DDMSetKeyFirst does the following:

� If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters,
the access method acquires an implicit SHRRECLK on the record if the record is
not already locked by the requester with a SHRRECLK lock. The SHRRECLK
record lock is released when:

– The record is updated (DDMModifyRec or DDMDeleteRec).

– The cursor is moved to a different record.

178 SdU VSAM API Reference

DDMSetKeyFirst

– The file is closed.

– The DDMForceBuffer function is issued.

– The DDMUnLockRec function is issued.

– Any function is issued that references a record other than the one currently
pointed to by the cursor (for example, the DDMInsertRecEOF,
DDMInsertRecKey, DDMInsertRecNum, DDMSetUpdateKey, and
DDMSetUpdateNum functions).

� If the record lock is not obtained, the function is rejected with the RECIUSRM reply
message.

� If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple
updaters, an update intent is placed on the record, but the access method does not
acquire any record locks.

� If the function terminates with a reply message that has a severity code of ERROR
or higher, then:

– For error termination (SVRCOD of 8): The record locks are the same as
before the function was issued.

– For severe termination (SVRCOD of 16 or higher): The state of the record
locks is determined by the DTALCKST (Data Lock Status) parameter on the
reply message.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

The file does not contain any records.

Note: The cursor position is not changed.

RECNFNRM

 Examples

 Chapter 3. VSAM API Functions 179

DDMSetKeyFirst

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Assume the following:

DDMSetKeyFirst (FileHandle, AccessFlags, RecordBuf, RecordBufLen)

Has the following effect:

Cursor

Cursor

AccessFlags = 0x00000000 ;

Figure 35. DDMSetKeyFirst Function for Ascending Sequence

180 SdU VSAM API Reference

DDMSetKeyFirst

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

Assume the following:

DDMSetKeyFirst (FileHandle, AccessFlags, RecordBuf, RecordBufLen)

Has the following effect:

AccessFlags = 0x00000000 ;

Cursor

Cursor

Figure 36. DDMSetKeyFirst Function for Descending Sequence

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

 Chapter 3. VSAM API Functions 181

DDMSetKeyFirst

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list. A value of X'FFFFFFFF' for RN indicates that the
record number of the first record in the record attribute list is
not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'111D' RN

182 SdU VSAM API Reference

DDMSetKeyFirst

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1115' KEY

 Chapter 3. VSAM API Functions 183

DDMSetKeyFirst

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

Field Description

LL The length (ULONG) of the record attribute list (from the
beginning of LL to the end of Data).

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

184 SdU VSAM API Reference

DDMSetKeyFirst

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list (from the
beginning of LL to the end of KEY).

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 185

DDMSetKeyLast

 DDMSetKeyLast
(Set Cursor to Last Record in Key Sequence)

This function sets the cursor to the last record of the file in key sequence order and
optionally returns the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyLast (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
3–4 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 189.

RecordBufLen
The length (ULONG) of the record buffer.

186 SdU VSAM API Reference

DDMSetKeyLast

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' address error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
FILATHRM X'123B' Not Authorized to File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECIUSRM X'124A' Record in Use
RECNFNRM X'1225' Record Not Found

 Remarks
If the file permits duplicate keys and the last record in the file has a duplicate key, the
cursor is set to the last record of the duplicates in key sequence.

As an option, DDMSetKeyLast can:

� Set the hold cursor indicator on (DDM_HLDCSR).
� Return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the last record in the index key sequence.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record, if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (for example, DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

 Chapter 3. VSAM API Functions 187

DDMSetKeyLast

� Any function is issued that references a record other than the one currently pointed
to by the cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with the RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

The file does not contain any records.

Note: The cursor position is not changed.

RECNFNRM

188 SdU VSAM API Reference

DDMSetKeyLast

 Examples

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Assume the following:

Has the following effect:

DDMSetKeyLast (FileHandle, AccessFlags, RecordBuf, RecordBufLen)

Cursor

Cursor

AccessFlags = 0 ;

Figure 37. DDMSetKeyLast Function for Ascending Sequence

 Chapter 3. VSAM API Functions 189

DDMSetKeyLast

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

Assume the following:

Has the following effect:

DDMSetKeyLast (FileHandle, AccessFlags, RecordBuf, RecordBufLen)

Cursor

Cursor

AccessFlags = 0 ;

Figure 38. DDMSetKeyLast Function for Descending Sequence

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

190 SdU VSAM API Reference

DDMSetKeyLast

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list. A value of X'FFFFFFFF' for RN indicates that the
record number of the first record in the record attribute list is
not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'111D' RN

 Chapter 3. VSAM API Functions 191

DDMSetKeyLast

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1115' KEY

192 SdU VSAM API Reference

DDMSetKeyLast

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

 Chapter 3. VSAM API Functions 193

DDMSetKeyLast

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

194 SdU VSAM API Reference

DDMSetKeyLimits

 DDMSetKeyLimits
(Set Key Limits)

This function sets the limits of the key values for subsequent DDMSetKeyNext and
DDMSetNextKeyEqual functions.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyLimits (HDDMFILE FileHandle,

 PDDMOBJECT LowKeyLim,

 PDDMOBJECT HiKeyLim

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

LowKeyLim
The pointer (PDDMOBJECT) to the key buffer for the lower key value limit. The
format of the low key limit buffer upon invocation of the function is:

Field Description

LL The length (ULONG) of the key value description from the begin-
ning of LL to the end of the key value. This field may be set to 6
and no key value need be provided. This has the special meaning
of first key value of the file.

X'1130' The value (CODEPOINT) indicating that the following data is a key
value, representing a low key limit.

Data The key value (BYTE) for a record. The key value can be a
maximum of 255 bytes.

HiKeyLim
The pointer (PDDMOBJECT) to the key buffer for the higher key value limit. The
format of the high key limit buffer upon invocation of the function is:

Field Description

LL The length (ULONG) of the key value description from the begin-
ning of LL to the end of the key value. This field may be set to 6
and no key value need be provided. This has the special meaning
of last key value of the file.

LL X'1130' Data

LL X'112F' Data

 Chapter 3. VSAM API Functions 195

DDMSetKeyLimits

X'112F' The value (CODEPOINT) indicating that the following data is a key
value, representing a high key limit.

Data The key value (BYTE) for a record. The key value can be a
maximum of 255 bytes.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVRQSRM X'123C' Invalid Request
KEYLENRM X'122D' Invalid Key Length
OBJNSPRM X'1253' Object Not Supported

 Remarks
The DDMSetKeyLimits function is only valid for files with ascending keys.

The DDMSetKeyLimits function:

� Establishes the key limits and associates them with the active cursor.

� Sets the cursor to the record position of the lower limit or the first key after the low
key limit if it is not in the file.

� Sets the hold cursor indicator to the on value so the first DDMSetKeyNext or
DDMSetNextKeyEqual function remains at the first record within the limits.

When key limits have been established, the DDMSetKeyNext or DDMSetNextKeyEqual
function only operates within the defined limits.

DDMSetKeyNext or DDMSetNextKeyEqual sets the cursor, in key sequence, to the
next record that is within the bounds of the key limits. If the cursor is already posi-
tioned at the highest key limit, the function is terminated with the ENDFILRM reply
message, the key limits are reset, and the cursor is set to the EOF position.

The key limits remain in effect until one of the following occurs:

� The file is closed by a DDMClose function or termination of communications.

� A cursor positioning function other than DDMSetKeyNext or DDMSetNextKeyEqual
is performed. This includes the following functions:

 DDMSetBOF
 DDMSetEOF
 DDMSetFirst
 DDMSetKey
 DDMSetKeyFirst
 DDMSetKeyLast
 DDMSetKeyPrevious
 DDMSetLast
 DDMSetMinus

196 SdU VSAM API Reference

DDMSetKeyLimits

 DDMSetRecNum
 DDMSetNextRec
 DDMSetPrevious

� A DDMInsertRecxxx function with the DDM_UPDCSR bit in the AccessFlags set on
is performed.

� An ENDFILRM reply message is returned from a DDMSetKeyNext or
DDMSetNextKeyEqual function.

� A DDMSetKeyLimits function specifies new limits.

When the key limits are reset, they are logically reset with a low key limit value of
beginning of file and high key limit value of end of file. The cursor is not directly
affected by resetting the key limits, but its position may be changed by the function that
resets the key limits.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the first record in the file with a key value equal
to or greater than the low key limit (LowKeyLim) in the index key
sequence. If an ENDFILRM reply message results, the cursor is set to
the end of file.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters and the requester currently has a
SHRRECLK lock on a record in the file, the SHRRECLK lock is released.

If the DDMSetKeyLimits function terminates with a reply message that has a severity
code of ERROR or higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Chapter 3. VSAM API Functions 197

DDMSetKeyLimits

 Exceptions

This Causes
This Reply Message to be
Returned

The LowKeyLim specified is after the last key.

The HiKeyLim specified is before the first key.

ENDFILRM

This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

The HiKeyLim specifies a key value that is before the
LowKeyLim.

The file was created with a key (or composite key) whose
parts are not all ascending.

INVRQSRM

Either the HiKeyLim or LowKeyLim parameter specifies a
partial key.

KEYLENRM

198 SdU VSAM API Reference

DDMSetKeyLimits

 Examples

BEFORE AFTER

EOF

BOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)
EOF

BOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

LowKeyLim=BOF
HiKeyLim =EOF

LowKeyLim=BB
HiKeyLim =DD

Given the following key limits:

DDMSetKeyL imits (FileHandle, LowKeyLim, HiKeyL im)

LowKeyLim LL: 8
CP: 0x1130

Value:’BB’

HIKeyLim LL: 8
CP: 0x112F

Value:’DD’

Cursor

Cursor

Assume the following:

Figure 39. DDMSetKeyLimits Function

 Chapter 3. VSAM API Functions 199

DDMSetKeyLimits

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

LowKeyLim=BB LowKeyLim=BB

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

HiKeyLim =CC HiKeyLim =CC

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle, AccessFlags, RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

AccessFlags = 0 ;
RecCount = 1 ;

Cursor

Cursor

Figure 40. DDMSetKeyNext Function with Key Limits Set

200 SdU VSAM API Reference

DDMSetKeyLimits

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

HiKeyLim =CC
LowKeyLim=AA

Key limits are no longer in effect.

LowKeyLim=BOF
HiKeyLim =EOF

Given the following key value buffer:

Assume the following:
DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr, RecordBuf,

RecordBufLen)

BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value:’AA’

RelOpr = 0x1447 ; */ KEYEQ */
AccessFlags = 0 ;

Figure 41. Resetting Limits with DDMSetKey Function

 Chapter 3. VSAM API Functions 201

DDMSetKeyNext

 DDMSetKeyNext
(Set Cursor to Next Record in Key Sequence)

This function moves the cursor to the next record of the file in key sequence order and
optionally returns the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyNext (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen,

 ULONG RecCount,

 PULONG RecRtnCnt

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 DDM_BYPDMG (Bypass Damaged Record)
5 DDM_NODATA (No Record Data Returned)
3–4 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 207.

RecordBufLen
The length (ULONG) of the record buffer.

RecCount
Specifies the number (ULONG) of records requested.

202 SdU VSAM API Reference

DDMSetKeyNext

RecRtnCnt
The pointer (PULONG) to the count of the records actually returned. When
RECAL (Record Attribute List) parameters are specified in RecordBuf and
RECCNT is specified within the RECAL, the RecRtnCnt parameter (ULONG)
reflects the RECCNT number of duplicate records. Therefore, if RecordBuf con-
tained 25 data records, one of which included a RECAL with RECCNT having a
value of 150, the value of RecRtnCnt would be 175.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
The cursor is set to the next record in key sequence even if that record has a key equal
to the key of the current record.

If key limits have been established (see “DDMSetKeyLimits (Set Key Limits)” on
page 195), DDMSetKeyNext sets the cursor to the next record in key sequence, as
long as that record has a key value which is before or equal to the value specified by
the high key limit parameter on the DDMSetKeyLimits function. If the cursor is currently
at the high key limit, the function is terminated with the ENDFILRM reply message, the
cursor is set to EOF, and the key limits are reset (unspecified value).

As an option, DDMSetKeyNext can:

� Specify whether more than one record is being requested (RecCount).
� Set the hold cursor indicator to on (DDM_HLDCSR).
� Specify whether damaged records should be bypassed (DDM_BYPDMG).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

If the hold cursor indicator in the cursor is set to on, the DDM_HLDCSR bit in
AccessFlags is FALSE, and the record is active, the cursor remains at its current posi-
tion. For all other conditions, the cursor is updated.

If RecCount specifies a value greater than 1, multiple records are sent to the source
agent. RecCount specifies the number of times the DDMSetKeyNext function is to be
performed. This moves the cursor to the last record processed by the DDMSetKeyNext

 Chapter 3. VSAM API Functions 203

DDMSetKeyNext

function. If RecCount specifies a number and DDM_NODATA is set, the cursor is still
updated but no records are sent; this is not an error.

If RecCount specifies a number greater than the remaining records in the file, the
remaining records are sent to the source agent, the cursor position is changed to EOF,
and an ENDFILRM reply message is sent.

If the DDM_BYPDMG bit of AccessFlags is set, any damaged record encountered by
the DDMSetKeyNext function sends a RECDMGRM reply message, updates the cursor,
and decreases RecCount by one. This allows the maximum number of undamaged
records to be sent to the source system.

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to the next record in the index key sequence or
remains in the same position in the current record based on:

� The hold cursor indicator in the cursor
� The DDM_HLDCSR flag
� Whether the record is active.

If the ENDFILRM reply message results, the cursor is set to the end of
file.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued. If
RecCount is greater than 1, the cursor position is the same as before
the last iteration of the function.

Severe termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, then
the access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (for example, DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

204 SdU VSAM API Reference

DDMSetKeyNext

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued, or if RecCount is greater than 1, the record locks are the
same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Chapter 3. VSAM API Functions 205

DDMSetKeyNext

 Exceptions
This Causes the Function to be Rejected With this Reply Message

The file does not contain any records initially after a
DDMCreateRecFile.

The file does not contain any records beyond the current
cursor position.

The cursor had previously been set to an inactive record.

The file does not contain any records beyond the current
cursor position, within the limits set by the
DDMSetKeyLimits function.

RecCount specifies a number greater than the number of
records remaining in the file.

ENDFILRM

The file handle is invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

206 SdU VSAM API Reference

DDMSetKeyNext

 Examples

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Hold Cursor
indicator is off

Hold Cursor
indicator is off

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle, AccessFlags, RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Cursor

Cursor

AccessFlags = 0 ;
RecCount = 1 ;

/* DDM_HLDCSR = OFF */

Figure 42. DDMSetKeyNext Function with Duplicate Key Values

 Chapter 3. VSAM API Functions 207

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Hold Cursor
indicator is off

Hold Cursor
indicator is off

Assume the following:

DDMSetKeyNext (FileHandle, AccessFlags, RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

/* DDM_HLDCSR = OFF */

Has the following effect:

Cursor

Cursor

AccessFlags = 0 ;
RecCount = 1 ;

Figure 43. DDMSetKeyNext Function for Ascending Sequence

208 SdU VSAM API Reference

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

Hold Cursor
indicator is off

Hold Cursor
indicator is off

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle, AccessFlags, RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

/* DDM_HLDCSR = OFF */AccessFlags = 0 ;
RecCount = 1 ;

Cursor

Cursor

Figure 44. DDMSetKeyNext Function for Descending Sequence

 Chapter 3. VSAM API Functions 209

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

LowKeyLim=BB

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

HiKeyLim =CC

RESULTS: Command rejected with ENDFILRM
Key limits are no longer in effect

Assume the following:

LowKeyLim=BOF
HiKeyLim =EOF

DDMSetKeyNext (FileHandle, AccessFlags, RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Has the following effect:

Cursor

Cursor

/* DDM HLDCSR = OFF */AccessFlags = 0 ;
RecCount = 1 ;

Figure 45. DDMSetKeyNext Function with Key Limits Set

210 SdU VSAM API Reference

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

Hold Cursor
indicator is on

Hold Cursor
indicator is off

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle, AccessFlags, RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Cursor Cursor

/* DDM_HLDCSR = OFF */AccessFlags = 0 ;
RecCount = 1 ;

Figure 46. DDMSetKeyNext Function with Hold Cursor Initially On

 Chapter 3. VSAM API Functions 211

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

Hold Cursor
indicator is on

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

Hold Cursor
indicator is on

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle, AccessFlags, RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Cursor

Cursor

AccessFlags = 0x00000080 ;

RecCount = 1 ;

/* DDM_HLDCSR = ON */

Figure 47. DDMSetKeyNext Function with Hold Cursor Initially On

212 SdU VSAM API Reference

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

Hold Cursor
indicator is on

Hold Cursor
indicator is off

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle, AccessFlags, RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Cursor

Cursor

/* DDM_HLDCSR = ON */AccessFlags = 0x00000080 ;

RecCount = 1 ;

Figure 48. DDMSetKeyNext Function with Hold Cursor Initially Off

 Chapter 3. VSAM API Functions 213

DDMSetKeyNext

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count. The RC parameter is used to indicate the
number of duplicate records. It provides a shorthand way of
specifying N records, where N>1, without replicating the
record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

Note: RC is not included unless identical, consecutive
records are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

LL X'1430' L1 X'111A' RC L2 X'144A' Data

214 SdU VSAM API Reference

DDMSetKeyNext

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

When RC and RN are both specified, the record number
specified by RN applies to the first occurrence of the record
and each subsequent record has a record number one
greater than the previous record.

A value of X'FFFFFFFF' for RN indicates that the record
number of the first record in the record attribute list is not
known.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'144A' Data

 Chapter 3. VSAM API Functions 215

DDMSetKeyNext

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

LL X'111D' RN

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

L3 X'144A' Data

216 SdU VSAM API Reference

DDMSetKeyNext

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record key value.

X'1430' The value (CODEPOINT) indicating that the following key is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following key is a
key count. The RC parameter is used to indicate the number
of duplicate keys. It provides a shorthand way of specifying
N keys, where N>1, without replicating the key's contents.

Note: RC is not included unless identical, consecutive keys
are being returned.

RC The number (ULONG) of duplicate keys in the record attribute
list.

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

 Chapter 3. VSAM API Functions 217

DDMSetKeyNext

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L3 The length (ULONG) from the beginning of L3 to the end of
the key value.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'1115' KEY L4 X'144A' Data

218 SdU VSAM API Reference

DDMSetKeyNext

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L4 The length (ULONG) from the beginning of L4 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 219

DDMSetKeyPrevious

 DDMSetKeyPrevious
(Set Cursor to Previous Record in Key Sequence)

This function moves the cursor to the previous record of the file in key sequence and
optionally returns the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyPrevious (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen,

 ULONG RecCount,

 PULONG RecRtnCnt

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
3–4 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 224.

RecordBufLen
The length (ULONG) of the record buffer.

RecCount
Specifies the number (ULONG) of records requested.

220 SdU VSAM API Reference

DDMSetKeyPrevious

RecRtnCnt
The pointer (PULONG) to the count of the records actually returned. When
RECAL (Record Attribute List) parameters are specified in RecordBuf and
RECCNT is specified within the RECAL, the RecRtnCnt parameter (ULONG)
reflects the RECCNT number of duplicate records. Therefore, if RecordBuf con-
tained 25 data records, one of which included a RECAL with RECCNT having a
value of 150, the value of RecRtnCnt would be 175.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
FILATHRM X'123B' Not Authorized to File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECIUSRM X'124A' Record in Use
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
If the file contains records with duplicate keys, the cursor is set to the previous record
with the same or next key in the key sequence.

As an option, DDMSetKeyPrevious can:

� Set the hold cursor indicator to on (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

If RecCount gives a value greater than 1, multiple records are sent to the source agent.
RecCount requests that the DDMSetKeyPrevious function be performed the number of
times specified by RecCount. This moves the cursor to the last record processed by
the DDMSetKeyPrevious function.

If RecCount gives a number greater than the remaining records in the file, the
remaining records are sent to the source agent, the cursor position is changed to BOF,
and an ENDFILRM reply message is sent.

 Chapter 3. VSAM API Functions 221

DDMSetKeyPrevious

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to the previous record in the index key sequence.
If an ENDFILRM reply message results, the cursor is moved to the
beginning of file.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (for example, DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function issued references a record other than the one currently pointed to by
the cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

222 SdU VSAM API Reference

DDMSetKeyPrevious

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is invalid. HDLNFNRM

The file does not contain any records initially after a
DDMCreateRecFile.

Note: The cursor position is set to BOF.

The file does not contain any records before the current
cursor position.

Note: The cursor position is set to BOF.

RecCount specifies a number greater than the number of
records remaining in the file.

ENDFILRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

 Chapter 3. VSAM API Functions 223

DDMSetKeyPrevious

 Examples

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Assume the following:

Has the following effect:

DDMSetKeyPrevious (FileHandle, AccessFlags, RecordBuf,
RecordBufLen RecCount , RecRtnCnt)

Cursor

Cursor

AccessFlags = 0 ;
RecCount = 1 ;

Figure 49. DDMSetKeyPrevious Function with Duplicate Key Values

224 SdU VSAM API Reference

DDMSetKeyPrevious

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Assume the following:

Has the following effect:

DDMSetKeyPrevious (FileHandle, AccessFlags, RecordBuf,
RecordBufLen RecCount , RecRtnCnt)

Cursor

Cursor

AccessFlags = 0 ;
RecCount = 1 ;

Figure 50. DDMSetKeyPrevious Function for Ascending Sequence

 Chapter 3. VSAM API Functions 225

DDMSetKeyPrevious

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

DDMSetKeyPrevious (FileHandle, AccessFlags, RecordBuf,
RecordBufLen RecCount, RecRtnCnt)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

Assume the following:

Has the following effect:

AccessFlags = 0 ;
RecCount = 1 ;

Cursor

Cursor

Figure 51. DDMSetKeyPrevious Function for Descending Sequence

226 SdU VSAM API Reference

DDMSetKeyPrevious

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count. The RC parameter is used to indicate the
number of duplicate records. It provides a shorthand way of
specifying N records, where N>1, without replicating the
record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

Note: RC is not included unless identical, consecutive
records are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
data.

X'144A' The value (CODEPOINT) indicating that the following data is
a record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

LL X'1430' L1 X'111A' RC L2 X'144A' Data

 Chapter 3. VSAM API Functions 227

DDMSetKeyPrevious

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

When RC and RN are both specified, the record number
specified by RN applies to the first occurrence of the record
and each subsequent record has a record number one
greater than the previous record.

A value of X'FFFFFFFF' for RN indicates that the record
number of the first record in the record attribute list is not
known.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'144A' Data

228 SdU VSAM API Reference

DDMSetKeyPrevious

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

LL X'111D' RN

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

L3 X'144A' Data

 Chapter 3. VSAM API Functions 229

DDMSetKeyPrevious

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record key value.

X'1430' The value (CODEPOINT) indicating that the following key is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following key is a
key count. The RC parameter is used to indicate the number
of duplicate keys. The RC parameter provides a shorthand
way of specifying N keys, where N>1, without replicating the
key's contents.

Note: RC is not included unless identical, consecutive keys
are being returned.

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

230 SdU VSAM API Reference

DDMSetKeyPrevious

RC The number (ULONG) of duplicate keys in the record attribute
list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'1115' KEY L4 X'144A' Data

 Chapter 3. VSAM API Functions 231

DDMSetKeyPrevious

L3 The length (ULONG) from the beginning of L3 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L4 The length (ULONG) from the beginning of L4 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

232 SdU VSAM API Reference

DDMSetLast

 DDMSetLast
(Set Cursor to Last Record)

This function sets the cursor to the last record of the file and optionally returns the
record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetLast (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 DDM_ALLREC (All Records, Active or Inactive)
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 237.

RecordBufLen
The length (ULONG) of the record buffer.

 Chapter 3. VSAM API Functions 233

DDMSetLast

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNFNRM X'1225' Record Not Found

 Remarks
The DDM_ALLREC bit flag is used to determine the last record of the file. If
DDM_ALLREC is not set, the cursor is set to the last active record in the file. Other-
wise, the cursor is set to the last record in the file (the record preceding EOF). For
direct files, DDM_ALLREC must be set off.

As an option, DDMSetLast can:

� Set the hold cursor indicator to on (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Any key limits set are reset when the function completes.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

234 SdU VSAM API Reference

DDMSetLast

Table 20. DDMSetLast (DDM_NODATA or DDM_ALLREC) Decision Table

If the DDMSetLast function is issued:

When initial system states are:

Record State I I I A A

DDM_ALLREC F T T * *

DDM_NODATA * F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F F T4 F F

RECINA (returned) F T F F F

RECORD (returned) F F F T F

CURSOR (returned) F T T T T

Repeat table after bypassing record T F F F F

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the last record position in the file if
DDM_ALLREC is set on. The cursor is moved to the last active record
in the file if DDM_ALLREC is set to off.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

 Chapter 3. VSAM API Functions 235

DDMSetLast

� The record is updated (for example, DDMModifyRec or DDMDeleteRec.)

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes a Reply Message to be Generated and the
Function Continues With This Reply Message

DDM_ALLREC and DDM_NODATA are active and an inac-
tive record is read.

RECINARM

This Causes the Function to be Terminated With This Reply Message

Accessflag DDM_NODATA is not set and the file was
opened without GETAI.

INVRQSRM

The RecordBuf is not large enough to hold the returned
record.

LENGTHRM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set or
DDM_NODATA is not set and RecordBuf doesn't contain
an address.

ADDRRM

The file handle is not valid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

236 SdU VSAM API Reference

DDMSetLast

This Causes the Function to be Rejected With This Reply Message

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

DDM_ALLREC is set and the file is a direct file.

INVRQSRM

The record is damaged (not an active or inactive record). RECDMGRM

A record lock cannot be obtained. RECIUSRM

Bypassing inactive records is requested (DDM_ALLREC is
off) and the file only contains inactive records.

The file does not contain any records initially after a
DDMCreateRecFile.

Note: The cursor position is not changed.

RECNFNRM

 Examples

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

AccessFlags = 0x00000000 ; /* DDM ALLREC = OFF */

Cursor

Cursor

inactive inactive

Has the following effect:

DDMSetLast (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Figure 52. DDMSetLast DDM_ALLREC Set Off for Sequential File

 Chapter 3. VSAM API Functions 237

DDMSetLast

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Cursor

Cursor inactiveinactive

AccessFlags = 0x00000010 ; /* DDM ALLREC = ON */

Has the following effect:

DDMSetLast (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Figure 53. DDMSetLast DDM_ALLREC Set On for Sequential File

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

LL CP Data

238 SdU VSAM API Reference

DDMSetLast

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

LL X'1430' L1 X'111D' RN L2 CP Data

 Chapter 3. VSAM API Functions 239

DDMSetLast

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

Data Either record data or the length (ULONG) of the inactive
record.

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 CP Data

240 SdU VSAM API Reference

DDMSetLast

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY L3 CP Data

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

 Chapter 3. VSAM API Functions 241

DDMSetLast

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

242 SdU VSAM API Reference

DDMSetMinus

 DDMSetMinus
(Set Cursor Minus)

This function sets the cursor to the record number of the file indicated by the cursor,
minus the number of record positions specified by the CsrDisp (Cursor Displacement)
parameter. This function can also return the record, the record number, and record
key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetMinus (HDDMFILE FileHandle,

 ULONG AccessFlags,

 ULONG CsrDisp,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
9–31 Reserved flags
8 DDM_ALWINA (Allow Cursor on Inactive Record)
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 DDM_RTNINA (Return Inactive Record)
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

CsrDisp
Specifies the cursor displacement (ULONG) in the negative direction.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 247.

 Chapter 3. VSAM API Functions 243

DDMSetMinus

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNBRRM X'1224' Record Number Out of Bounds

 Remarks
The type of the records in the file (active or inactive) bypassed by DDMSetMinus has
no effect on the cursor positioning.

As an option, DDMSetMinus can:

� Specify whether the cursor can be set to an inactive record position
(DDM_ALWINA).

� Set the hold cursor indicator on (DDM_HLDCSR).

� Not return the requested record (DDM_NODATA).

� Specify whether inactive records should be returned (DDM_RTNINA).

� Specify whether the record key value should be returned (DDM_KEYVALFB).

� Specify whether the record number should be returned (DDM_RECNBRFB).

� Place an update intent on the record (DDM_UPDINT).

Any key limits set are reset when the function completes.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

244 SdU VSAM API Reference

DDMSetMinus

Table 21. DDMSetMinus (DDM_ALWINA, DDM_RTNINA, or DDM_NODATA) Decision Table

If the DDMSetMinus function is issued:

When initial system states are:

Record State I I I I I A A

DDM_ALWINA T T T F F * *

DDM_RTNINA T * F * * * *

DDM_NODATA F T F F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F T4 T4 T8 T8 F F

RECINA (returned) T F F F F F F

RECORD (returned) F F F F F T F

CURSOR (changed) T T T F F T T

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
T8 TRUE with SVRCOD (Error)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is positioned to the record position CsrDisp records prior to
where the cursor was positioned before the DDMSetMinus function was
issued.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

 Chapter 3. VSAM API Functions 245

DDMSetMinus

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to Continue and Return This Reply Message

An inactive record is read and DDM_ALWINA is active, and
DDM_RTNINA is not set or DDM_NODATA is set.

RECINARM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set, or
DDM_NODATA is not set, and RecordBuf doesn't contain
an address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

Access flag DDM_NODATA is not set and the file was
opened without GETAI.

INVRQSRM

RecordBuf is not large enough to hold the returned record. LENGTHRM

The record is damaged (not an active or inactive record). RECDMGRM

246 SdU VSAM API Reference

DDMSetMinus

This Causes the Function to be Rejected With This Reply Message

The record is inactive and the cursor is not allowed to be
set to an inactive record position (DDM_ALWINA is not
set).

Note: The cursor is not changed.

RECINARM

The record lock cannot be obtained. RECIUSRM

The CsrDisp value places the cursor prior to the first record
in the file.

Note: The cursor position does not change.

The file contains no records after a DDMCreateRecFile.

Note: The cursor position does not change.

The cursor is placed outside the bounds of the file; before
BOF in a sequential file, and past the physical boundary in
a direct file.

RECNBRRM

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

AccessFlags = 0 ;
CsrDisp = 2 ;

Cursor

Cursor

DDMSetMinus (FileHandle, AccessFlags, CsrDisp,
RecordBuf, RecordBufLen)

Figure 54. DDMSetMinus Function

 Chapter 3. VSAM API Functions 247

DDMSetMinus

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

LL CP Data

LL X'1430' L1 X'111D' RN L2 CP Data

248 SdU VSAM API Reference

DDMSetMinus

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 249

DDMSetMinus

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

LL X'1115' KEY

250 SdU VSAM API Reference

DDMSetMinus

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'1115' KEY L3 CP Data

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

 Chapter 3. VSAM API Functions 251

DDMSetMinus

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

252 SdU VSAM API Reference

DDMSetNextKeyEqual

 DDMSetNextKeyEqual
(Set Cursor to Next Record with Equal Key)

The DDMSetNextKeyEqual function moves the cursor to the next record in the key
sequence. This happens only if the key field of that record has a value that equals the
value specified in KeyValBuf (Key Value Buffer) parameter. This function can also
return the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetNextKeyEqual (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMOBJECT KeyValBuf,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
3–4 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

KeyValBuf
Pointer to the buffer which contains the key to which the cursor should be moved.
The format of the key value buffer upon invocation of the function is:

Field Description

LL The length (ULONG) of the key value description from the begin-
ning of LL to the end of Key Value.

LL X'1115' Key Value

 Chapter 3. VSAM API Functions 253

DDMSetNextKeyEqual

X'1115' The value (CODEPOINT) indicating that the following data is a key
value (KEYVAL).

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 257.

RecordBufLen
The length (ULONG) of the record buffer. The record buffer length should be the
same size as the largest possible record plus the number of bytes required for the
RECAL (Record Attribute List).

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECNFNRM X'1225' Record Not Found
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
Generic keys can be specified in KeyValBuf.

If the key value of the next key in the key sequence is not equal to the value specified
by KeyValBuf, an ENDFILRM reply message is returned and the cursor is moved to
EOF. The requester must reposition the cursor before another DDMSetNextKeyEqual
function can be requested.

The cursor remains at its current position if the key value of the current record in key
sequence is equal to the value specified by the key value buffer and:

� The hold cursor indicator in the cursor is set to on.
� The DDM_HLDCSR bit in AccessFlags is FALSE.
� The record is active.

For all other conditions, the cursor is updated.

As an option, DDMSetNextKeyEqual can:

� Set the hold cursor indicator to on (DDM_HLDCSR).
� Return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

254 SdU VSAM API Reference

DDMSetNextKeyEqual

If key limits have been established DDMSetNextKeyEqual sets the cursor to the next
record if it equals the specified key value, and the key value of the record is before or
equal to the value specified by high key limit on DDMSetKeyLimits. If the next record is
after the high key limit, the function is rejected with an ENDFILRM reply message and
the cursor is set to the EOF position of file. See “DDMSetKeyLimits (Set Key Limits)”
on page 195.

If the hold cursor indicator in the cursor is set to on, the DDM_HLDCSR bit in
AccessFlags is FALSE, and the record is active, the cursor remains at its current posi-
tion. For all other conditions, the cursor is updated.

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to the selected record, or remains in the current
record based on the hold cursor indicator in the cursor, DDM_HLDCSR
bit in AccessFlags, and whether the record is active. If an ENDFILRM
reply message results, the cursor is moved EOF.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if it is not already locked
by the requester with a SHRRECLK lock. The SHRRECLK record lock is released
when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

 Chapter 3. VSAM API Functions 255

DDMSetNextKeyEqual

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions

This Causes
This Reply Message to be
Returned

The key field of the next record in key sequence is not
equal to the key value specified by the KeyValBuf param-
eter.

ENDFILRM

This Causes the Function to be Rejected With This Reply Message

The file does not contain any records beyond the current
cursor position, within the limits set by the
DDMSetKeyLimits function.

The cursor had previously been set to an inactive record.

Note: The cursor is positioned to EOF.

ENDFILRM

The file handle is invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

The file does not contain any records initially after a
DDMCreateRecFile.

Note: The cursor position is not changed.

RECNFNRM

256 SdU VSAM API Reference

DDMSetNextKeyEqual

 Examples

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

For the following Key Value Buffer:

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Assume the following:

Has the following effect:

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Figure 55. DDMSetNextKeyEqual to Access First Duplicate Key. From the current cursor position, the next record in
the key sequence is examined for a key value of BB. The cursor is moved to that record and the record is returned.

 Chapter 3. VSAM API Functions 257

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

For the following Key Value Buffer:

Assume the following:
AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Cursor

Cursor

Has the following effect:

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

Figure 56. DDMSetNextKeyEqual to Access the Next Duplicate Key. From the current cursor position, within a set of
records with duplicate keys, the next record in key sequence is examined for a key value of BB. The cursor is posi-
tioned at that record and the record is returned.

258 SdU VSAM API Reference

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Cursor

For the following Key Value Buffer:

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Cursor

Assume the following:

Has the following effect:

Figure 57. DDMSetNextKeyEqual to Access Past the Last Duplicate Key. From the current cursor position, at the last
record in a set of records with duplicate keys, the next record in the key sequence is examined for a key value of BB.
This record does not contain a key field of BB. The cursor is set to EOF, and ENDFILRM is returned.

 Chapter 3. VSAM API Functions 259

DDMSetNextKeyEqual

For the following Key Value Buffer:
KeyValBuf LL: 8

CP: 0x1115
Value: ’CC’

Assume the following:
AccessFlags = 0 ;

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)Has the following effect:

LowKeyLim = BB
HiKeyLim = CC

Record
Key(seq)

Record
Key(seq)

BOF BOF
AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

EOF

Key limits are no longer in effect
RESULT: Command rejected with ENDFILRM

BEFORE AFTER

Cursor

Cursor

LowKeyLim = BOF
HiKeyLim = EOF

EOF

Figure 58. DDMSetNextKeyEqual Function with Key Limits Set. If key limits have been established (see
DDMSetKeyLimits), the DDMSetNextKeyEqual command sets the cursor to the next record if it equals the specified
key value, and the key value of the record is before or equal to the value specified by High Key Limit on
DDMSetKeyLimits. If the next record is after the High Key Limit limit, the command is rejected with ENDFILRM and
the cursor is set to the end of file.

260 SdU VSAM API Reference

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is off

Hold Cursor
Indicator is on

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

For the following Key Value Buffer:

Assume the following:

Has the following effect:

KeyValBuf LL: 8
CP: 0x1115

Value: ’CC’

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

Cursor Cursor

AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Figure 59. DDMSetNextKeyEqual Function with Hold Cursor Initially On. If the hold cursor indicator in the cursor is
set to on, the HLDCSR bit in the Access Flags is FALSE, and the record is active, the cursor remains at its current
position. For all other conditions, the cursor is updated.

 Chapter 3. VSAM API Functions 261

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is on

Hold Cursor
Indicator is on

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

For the following Key Value Buffer:

Assume the following:

Has the following effect:

AccessFlags = 0x00000080 ; /* DDM HLDCSR = ON */

Cursor

Cursor

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

KeyValBuf LL: 8
CP: 0x1115

Value: ’DD’

Figure 60. DDMSetNextKeyEqual function with Hold Cursor Initially On

262 SdU VSAM API Reference

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is on

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

Hold Cursor
Indicator is off

For the following Key Value Buffer:

Assume the following:

Has the following effect:

KeyValBuf LL: 8
CP: 0x1115

Value: ’DD’

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

Cursor

Cursor

AccessFlags = 0x00000080 ; /* DDM HLDCSR = ON */

Figure 61. DDMSetNextKeyEqual function with Hold Cursor Initially Off

 Chapter 3. VSAM API Functions 263

DDMSetNextKeyEqual

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

LL X'144A' Data

LL X'1430' L1 X'111D' RN L2 X'144A' Data

264 SdU VSAM API Reference

DDMSetNextKeyEqual

RN The record number (ULONG) of the record in the record attri-
bute list. A value of X'FFFFFFFF' for RN indicates that the
record number of the first record in the record attribute list is
not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

 Chapter 3. VSAM API Functions 265

DDMSetNextKeyEqual

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

266 SdU VSAM API Reference

DDMSetNextKeyEqual

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

 Chapter 3. VSAM API Functions 267

DDMSetNextKeyEqual

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

268 SdU VSAM API Reference

DDMSetNextRec

 DDMSetNextRec
(Set Cursor to Next Record)

This function sets the cursor to the record that has a record number one greater than
the current cursor position and optionally returns the record, the record number, and
record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetNextRec (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen,

 ULONG RecCount,

 PULONG RecRtnCnt

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 DDM_BYPDMG (Bypass Damaged Records)
5 DDM_NODATA (No Record Data Returned)
4 DDM_ALLREC (All Records, Active and Inactive)
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 276.

RecordBufLen
The length (ULONG) of the record buffer.

 Chapter 3. VSAM API Functions 269

DDMSetNextRec

RecCount
Specifies the number (ULONG) of records requested.

RecRtnCnt
The pointer (PULONG) to the count of the records actually returned. When
RECAL (Record Attribute List) parameters are specified in RecordBuf and
RECCNT is specified within the RECAL, the RecRtnCnt parameter (ULONG)
reflects the RECCNT number of duplicate records. Therefore, if RecordBuf con-
tained 25 data records, one of which included a RECAL with RECCNT having a
value of 150, the value of RecRtnCnt would be 175.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
If inactive records are to be bypassed (DDM_ALLREC not set), the cursor is set to the
next active record that has a record number greater than the current cursor position.
For direct files, the only valid specification for DDM_ALLREC is DDM_ALLREC not set.

As an option, DDMSetNextRec can:

� Specify whether more than one record should be returned (RecCount).
� Set the hold cursor indicator on (DDM_HLDCSR).
� Specify whether damaged records should be bypassed (DDM_BYPDMG).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

If DDM_HLDCSR in AccessFlags is FALSE, the cursor remains at its current position
when the hold cursor indicator in the cursor was previously set and either the record is
active, or the record is inactive and DDM_ALLREC in AccessFlags is TRUE. Under all
other conditions, the cursor is updated. This decision process is illustrated in Table 22
on page 272.

If RecCount specifies a value greater than 1, multiple records are sent to the requestor.
RecCount specifies the number of times that the DDMSetNextRec function be per-
formed, with the following exceptions:

270 SdU VSAM API Reference

DDMSetNextRec

� For all iterations of the function except the last iteration, the RECINARM is not
sent. All other reply messages resulting from the iteration of the function are sent.

� For the last iteration of the function, any reply message resulting from the last iter-
ation of the function, including RECINARM, is sent.

This moves the cursor to the last record processed by the DDMSetNextRec function.
Bypassed records (as a result of DDM_ALLREC not being set) are not counted to
satisfy RecCount. If RecCount specifies a number and DDM_NODATA is set, no
records are sent.

If the RecCount specifies a number greater than the remaining records in the file:

� The remaining records are sent to the source agent.
� The cursor position is changed.
� A ENDFILRM reply message is sent.

If DDM_BYPDMG is set, any damaged record encountered by the DDMSetNextRec
function:

� Sends a RECDMGRM reply message.
� Updates the cursor.
� Is counted to satisfy RecCount.

This allows the maximum number of undamaged records to be sent to the source
system.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

 Chapter 3. VSAM API Functions 271

DDMSetNextRec

Table 22. DDMSetNextRec (DDM_ALLREC or DDM_NODATA) Decision Table (Part 1 of 2)

If the DDMSetNextRec function is issued, two decision tables are processed sequen-
tially starting with Decision Table 1:

Decision Table 1: DDM_HLDCSR / DDM_ALLREC

When initial system states are:

hldcsr indicator in cursor T T T T F F

DDM_HLDCSR T F F F T F

Record State * A I I * *

DDM_ALLREC * * F T * *

The next system states are: ↓ ↓ ↓ ↓ ↓ ↓

hldcsr indicator in cursor set T F F F T F

move cursor to next record Y N Y N Y Y

go to Table 23 on page 273 Y Y Y Y Y Y

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE
Y YES
N NO

272 SdU VSAM API Reference

DDMSetNextRec

Table 23. DDMSetNextRec (DDM_ALLREC or DDM_NODATA) Decision Table (Part 2 of 2)

Decision Table 2: DDM_ALLREC / DDM_NODATA

When the system states are:

Record State I I I A A

DDM_ALLREC F T T * *

DDM_NODATA * F T F T

The next system states are: ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F F T4 F F

RECINA (returned) F T F F F

RECORD (returned) F F F T F

cursor position saved F T T T T

move cursor to next record and repeat Table 2 T F F F F

DDMSetNextRec complete N Y Y Y Y

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE
Y YES
N NO

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is determined in two steps: step 1 determines the
first record to be considered, step 2 determines if the contents of the
record are acceptable to the user.

Step 1. The cursor remains at the current record if:

� The hold indicator in the cursor is on, DDM_HLDCSR is
off, and the record is active.

� The hold indicator in the cursor is on, DDM_HLDCSR is
off, the record is inactive, and DDM_ALLREC is on.

Otherwise, the cursor is advanced to the next record.
The cursor may be advanced more than one record.
See Table 22 on page 272 for an illustration of this step.

Step 2. If DDM_ALLREC is off, and the record is inactive, the cursor
is advanced until it points to an active record.

 Chapter 3. VSAM API Functions 273

DDMSetNextRec

Otherwise, the cursor is pointing to the correct record.

Step 3. If an ENDFILRM results from the advancing of the cursor, the
cursor is moved to EOF.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued. If
RecCount is greater than 1, the cursor position is the same as before
the last iteration of the function.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, then
the access method acquires an implicit SHRRECLK on the record if it is not already
locked by the requester with a SHRRECLK lock. The SHRRECLK record lock is
released when:

� The record is updated (for example, DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, or DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued. If RecCount is greater than 1, the record locks are the
same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

274 SdU VSAM API Reference

DDMSetNextRec

 Exceptions
This Causes the Function to Continue and Returns This Reply Message

DDM_ALLREC is not set and the cursor is at the last active
record.

ENDFILRM

The record is damaged and DDM_BYPDMG flag is set. RECDMGRM

This Causes the Function to be Rejected With This Reply Message

Any data is to be returned and RecRtnCnt has not been
specified.

DDM_RECNBRFB or DDM_KEYVALFB is set, or
DDM_NODATA is not set, and RecordBuf doesn't contain
an address.

ADDRRM

The cursor is already positioned at EOF.

If one of the following conditions is true about the file:

� It does not contain any records initially after a
DDMCreateRecFile.

� It does not contain any records beyond the current
cursor position.

� It does not contain any active records beyond the
current cursor position when DDM_ALLREC is not set.

Note: The cursor position is changed to EOF.

ENDFILRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

DDM_ALLREC(TRUE) is specified for a direct file.

The DDM_NODATA flag is not set and the file was opened
without GETAI.

INVRQSRM

The RecordBuf is not large enough to hold the returned
record.

LENGTHRM

The record is damaged (record not active or inactive). RECDMGRM

The record is inactive and DDM_NODATA is set. RECINARM

The record lock cannot be obtained. RECIUSRM

The RecCount is not greater than 0. VALNSPRM

 Chapter 3. VSAM API Functions 275

DDMSetNextRec

 Examples

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor

Cursor Inactive

/* DDM ALLREC = ON */
AccessFlags = 0x00000010 ; /* DDM HLDCSR = OFF */

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Inactive

Figure 62. DDMSetNextRec Function with DDM_ALLREC Set

276 SdU VSAM API Reference

DDMSetNextRec

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor

Cursor

Inactive Inactive

/* DDM ALLREC = OFF */
AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Figure 63. DDMSetNextRec Function with DDM_ALLREC Not Set

 Chapter 3. VSAM API Functions 277

DDMSetNextRec

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor Cursor

AccessFlags = 0 ; /* DDM HLDCSR = OFF */
/* DDM ALLREC = OFF */

Hold Cursor
Indicator is on

Hold Cursor
Indicator is on

Figure 64. DDMSetNextRec Function with Hold Cursor Initially On

278 SdU VSAM API Reference

DDMSetNextRec

EOF

BOF BOF 0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

Inactive

InactiveInactive

Inactive

BEFORE AFTER

Cursor

Cursor

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

/* DDM ALLREC = OFF */
AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Hold Cursor
Indicator is on

Hold Cursor
Indicator is on

Figure 65. DDMSetNextRec Function with Hold Cursor Initially On

 Chapter 3. VSAM API Functions 279

DDMSetNextRec

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor

Cursor

/* DDM ALLREC = OFF */
AccessFlags = 0x00000080 ; /* DDM HLDCSR = ON */

Hold Cursor
Indicator is on

Hold Cursor
Indicator is on

Figure 66. DDMSetNextRec Function with Hold Cursor Initially On

280 SdU VSAM API Reference

DDMSetNextRec

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor

Cursor

AccessFlags = 0x00000080 ; /* DDM HLDCSR = ON */
/* DDM ALLREC = OFF */

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Figure 67. DDMSetNextRec Function with Hold Cursor Initially Off

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

LL X'1430' L1 X'111A' RC L2 CP Data

 Chapter 3. VSAM API Functions 281

DDMSetNextRec

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count. The RC parameter is used to indicate the
number of duplicate records. It provides a shorthand way of
specifying N record where N>1, without replicating the
record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

Note: RC is not included unless identical, consecutive
records are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111A' RC L2 X'111D' RN L3 CP Data

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

282 SdU VSAM API Reference

DDMSetNextRec

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list. When RC and RN are both specified, the record
number specified by RN applies to the first occurrence of the
record and each subsequent record has a record number one
greater than the previous record.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

LL X'111D' RN

 Chapter 3. VSAM API Functions 283

DDMSetNextRec

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111A' RC L2 X'1115' KEY L3 CP Data

Field Description

LL The length (ULONG) of the record attribute list (from the
beginning of LL to the end of Data).

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

284 SdU VSAM API Reference

DDMSetNextRec

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record key value.

X'1430' The value (CODEPOINT) indicating that the following key is a
record attribute list (RECAL).

L1 The length (ULONG)from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following key is a
key count. The RC parameter is used to indicate the number
of duplicate keys. It provides a shorthand way of specifying
N keys, where N>1, without replicating the key's contents.

Note: RC is not included unless identical, consecutive keys
are being returned.

RC The number (ULONG) of duplicate keys in the record attribute
list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'1115' KEY L4 CP Data

 Chapter 3. VSAM API Functions 285

DDMSetNextRec

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records (where N>1)
without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L3 The length (ULONG) from the beginning of L3 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L4 The length (ULONG) from the beginning of L4 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

286 SdU VSAM API Reference

DDMSetNextRec

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 287

DDMSetPathInfo

 DDMSetPathInfo
(Set File or Directory Information)

This function specifies information for a file or a directory.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetPathInfo (PSZ PathName,

 ULONG PathInfoLevel,

 PBYTE PathInfoBuf,

 ULONG PathInfoBufSize

);

 Parameters
PathName

The pointer (PSZ) to the full path name of the file or subdirectory.

PathInfoLevel
The level (ULONG) of the file or directory information being defined.

Level 0x00000001 information is the only defined level. This is the same as
DosSetPathInfo, ulFileInfoLevel bit (FILE_STANDARD).

Level 0x00000001 file information sets a series of EA name/value pairs. On input,
PathInfoBuf maps to an EAOP2 structure. fpGEA2List is ignored. fpFEA2List
points to a data area where the relevant FEA2 list is to be found. oError is
ignored.

On output, fpGEA2List is unchanged. fpFEA2List is unchanged as is the area
pointed to by fpFEA2List. If an error occurred during the set, oError is the offset of
the FEA2 where the error occurred. The API return code is the error code corre-
sponding to the condition generating the error. If no error occurred, oError is unde-
fined.

PathInfoBuf
The pointer (PBYTE) to the storage area where the system gets the file informa-
tion. Refer to “Extended Attributes” on page 5 for more information on the format
of this buffer.

PathInfoBufSize
The length (ULONG) of PathInfoBuf.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CMDCHKRM X'1254' Command Check
FILIUSRM X'120D' File In Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
LENGTHRM X'F211' Field Length Error

288 SdU VSAM API Reference

DDMSetPathInfo

Message ID Code Point Message Title

VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
This function is similar to the DosSetPathInfo command.

An example of requesting Extended Attributes (EAs) is provided on page 5.

Effect on Cursor Position
There is no effect on the cursor position, because the file is not open.

Locking (for Local VSAM File System Only)
For theOS/2 local VSAM file system, the locking behaviour is the same as that of
DOSSetPathInfo. See OS/2 WARP Control Program Programming Reference.

For the AIX local VSAM file system, an exclusive lock is requested for the file.

 Exceptions
This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object and the Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an incon-
sistent state or a non-DDM application has changed the
file.

DDMSetPathInfo re-synchronizes the file-change date and
time if the file is not open to another process unless a
higher severity condition prevents it from doing so.

FILDMGRM

Record File Attributes by File Class
These are modifiable record file attributes.

Refer to Table 14 on page 38.

When the FILINISZ EA is changed, it has no effect on the current space already allo-
cated to the file.

When the DELCP EA of an alternate index file is changed, the DELCP of the base file
and all other indexes is also changed.

When the GETCP EA of an alternate index file is changed, the GETCP of the base file
and all other indexes is also changed.

When the INSCP EA of an alternate index file is changed, the INSCP of the base file
and all other indexes is also changed.

 Chapter 3. VSAM API Functions 289

DDMSetPathInfo

When the MODCP EA of an alternate index file is changed, the MODCP of the base file
and all other indexes is also changed.

290 SdU VSAM API Reference

DDMSetPlus

 DDMSetPlus
(Set Cursor Plus)

This function sets the cursor to the record number of the file indicated by the cursor,
plus the number of record positions specified by the CsrDisp (Cursor Displacement)
parameter. This function can also return the record, the record number, and record
key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetPlus (HDDMFILE FileHandle,

 ULONG AccessFlags,

 ULONG CsrDisp,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
9–31 Reserved flags
8 DDM_ALWINA (Allow Cursor on Inactive Record)
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 DDM_RTNINA (Return Inactive Record)
2 DDM_KEYVALFB (Key Value Feedback)
1 !DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

CsrDisp
Specifies the cursor displacement (ULONG) in the positive direction.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 295.

 Chapter 3. VSAM API Functions 291

DDMSetPlus

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNBRRM X'1224' Record Number Out of Bounds

 Remarks
The type of the records in the file (active or inactive) bypassed by DDMSetPlus has no
effect on the cursor positioning.

As an option, DDMSetPlus can:

� Specify whether the cursor can be set to an inactive record position
(DDM_ALWINA).

� Set the hold cursor indicator on (DDM_HLDCSR).

� Not return the requested record (DDM_NODATA).

� Specify whether inactive records should be returned (DDM_RTNINA).

� Specify whether the record key value should be returned (DDM_KEYVALFB).

� Specify whether the record number should be returned (DDM_RECNBRFB).

� Place an update intent on the record (DDM_UPDINT).

Any key limits set are reset when function completes.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

292 SdU VSAM API Reference

DDMSetPlus

Table 24. DDMSetPlus (DDM_ALWINA, DDM_RTNINA, or DDM_NODATA) Decision Table

If the DDMSetPlus function is issued:

When initial system states are:

Record State I I I I I A A

DDM_ALWINA T T T F F * *

DDM_RTNINA T * F * * * *

DDM_NODATA F T F F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F T4 T4 T8 T8 F F

RECINA (returned) T F F F F F F

RECORD (returned) F F F F F T F

CURSOR (changed) T T T F F T T

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
T8 TRUE with SVRCOD (Error)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is positioned to the record position that is beyond its original
position by the number of records specified by CsrDisp.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if it is not already locked
by the requester with a SHRRECLK lock. The SHRRECLK record lock is released
when:

 Chapter 3. VSAM API Functions 293

DDMSetPlus

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to Return and Continue With This Reply Message

An inactive record is read and DDM_ALWINA is active,
when DDM_RTNINA is not set or DDM_NODATA is set.

RECINARM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set, or
DDM_NODATA is not set and RecordBuf doesn't contain
an address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

Access flag DDM_NODATA is not set and the file was
opened without GETAI.

INVRQSRM

RecordBuf is not large enough to hold the returned record. LENGTHRM

The record is damaged (not an active or inactive record). RECDMGRM

294 SdU VSAM API Reference

DDMSetPlus

This Causes the Function to be Rejected With This Reply Message

The record is inactive and the cursor is not allowed to be
set to an inactive record position (DDM_ALWINA is not
set).

Note: The cursor is not changed.

RECINARM

The record lock cannot be obtained. RECIUSRM

The CsrDisp would cause the cursor to be placed outside
the bounds of the file.

Note: The cursor position is not changed.

The file does not contain any records initially after a
DDMCreateRecFile.

Note: The cursor position is not changed.

RECNBRRM

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

DDMSetPlus (FileHandle,AccessFlags,CsrDisp, RecordBuf,
RecordBufLen)

AccessFlags = 0 ;
CsrDisp = 3 ;

Cursor

Cursor

Figure 68. DDMSetPlus Function

These are examples of RecordBuf data formats:

 Chapter 3. VSAM API Functions 295

DDMSetPlus

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

LL CP Data

LL X'1430' L1 X'111D' RN L2 CP Data

296 SdU VSAM API Reference

DDMSetPlus

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 297

DDMSetPlus

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

298 SdU VSAM API Reference

DDMSetPlus

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

L3 CP Data

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 299

DDMSetPlus

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

300 SdU VSAM API Reference

DDMSetPrevious

 DDMSetPrevious
(Set Cursor to Previous Record)

This function sets the cursor to the record that has a record number 1 less than the
current cursor position and optionally returns the record, the record number, and record
key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetPrevious (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen,

 ULONG RecCount,

 PULONG RecRtnCnt

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 DDM_ALLREC (All Records, Active and Inactive)
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. See “Examples” on page 306.

RecordBufLen
The length (ULONG) of the record buffer.

RecCount
Specifies the number (ULONG) of records requested.

 Chapter 3. VSAM API Functions 301

DDMSetPrevious

RecRtnCnt
The pointer (PULONG) to the count of the records actually returned. When Record
Attribute List (RECAL) parameters are specified in RecordBub and RECCNT is
specified within the RECAL, the RecRtnCnt parameter (ULONG) reflects the
RECCNT number of duplicate records. Therefore, if RecordBuf contained 25 data
records, one of which included a RECAL with RECCNT having a value of 150, the
value of RecRtnCnt would be 175.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
If inactive records are bypassed (DDM_ALLREC not set), the cursor is set to the next
active record whose record number is less than the current cursor position. For direct
files, DDM_ALLREC must be false or a INVRQSRM reply will be sent.

As an option, DDMSetPrevious can:

� Set the hold cursor indicator to on (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

If RecCount specifies a value greater than 1, multiple records are sent to the requester.
RecCount
specifies the number of times DDMSetPrevious is to be performed, with the following
exceptions:

� For all iterations of the function except the last iteration, the RECINARM is not
sent. All other reply messages resulting from the iteration of the function are sent.

� For the last iteration of the function, any reply message resulting from the last iter-
ation of the function, including RECINARM, is sent.

This moves the cursor to the last record processed by DDMSetPrevious. Bypassed
records (as a result of the DDM_ALLREC bit not being set) are not counted in
RecCount. If RecCount specifies a number and DDM_NODATA is set, no records are
returned.

If RecCount specifies a number greater than the remaining records in the file:

302 SdU VSAM API Reference

DDMSetPrevious

� The remaining records are sent to the requestor.
� The cursor position is changed.
� A ENDFILRM reply message is sent.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

Table 25. DDMSetPrevious (DDM_ALLREC or DDM_NODATA) Decision Table

If the DDMSetPrevious function is issued:

When initial system states are:

Record State I I I A A

DDM_ALLREC F T T * *

DDM_NODATA * F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F F T4 F F

RECINA (returned) F T F F F

RECORD (returned) F F F T F

CURSOR (changed) F T T T T

Repeat table after bypassing record T F F F F

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

One of the following occurs:

� If DDM_ALLREC is set, the cursor is moved to the previous record
in the file.

� If DDM_ALLREC is not set, the cursor is moved to the previous
active record in the file

� If an ENDFILRM reply message results, the cursor is moved to
BOF.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

 Chapter 3. VSAM API Functions 303

DDMSetPrevious

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if it is not already locked
by the requester with a SHRRECLK lock. The SHRRECLK record lock is released
when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions)

If the record lock is not obtained, the function is rejected with RECIUSRM.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

304 SdU VSAM API Reference

DDMSetPrevious

 Exceptions
This Causes the Function to Return and Continue With This Reply Message

The following are true:

� The record is inactive.
� The DDM_NODATA flag is set.
� The DDM_ALLREC flag is set.

Note: If DDM_ALLREC is not set, this record is bypassed
and the cursor is set to the previous record, as shown in
Figure 70 on page 307.

RECINARM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set, or
DDM_NODATA is not set, and RecordBuf doesn't contain
an address.

Any data is to be returned and RecRtnCnt does not contain
an address.

ADDRRM

The cursor is set to BOF in the following cases:

� The file does not contain any records initially after a
DDMCreateRecFile.

� The file does not contain any records before the
current cursor position (or any inactive records when
DDM_ALLREC is set).

Note: Any time the ENDFILRM is returned, the hold
cursor indicator is set to OFF in the cursor regardless of
the value specified for the DDM_HLDCSR flag.

ENDFILRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

DDM_ALLREC(TRUE) is specified for a direct file.

DDM_NODATA is not set and the file was opened without
GETAI.

INVRQSRM

The RecordBufLen value is not large enough to contain the
number of records that are returned.

LENGTHRM

The record is damaged (record not active or inactive). RECDMGRM

The record lock cannot be obtained. RECIUSRM

The RecCount is not greater than 0. VALNSPRM

 Chapter 3. VSAM API Functions 305

DDMSetPrevious

 Examples

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetPrevious (FileHandle,AccessFlags,RecordBuf, RecordBufLen,
RecCount, RecRtnCnt)

Cursor

CursorInactive Inactive

AccessFlags = 0x00000010 ; /* DDM ALLREC = ON */
RecCount = 1 ;

Figure 69. DDMSetPrevious Function with DDM_ALLREC Set to On

306 SdU VSAM API Reference

DDMSetPrevious

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Has the following effect:

DDMSetPrevious (FileHandle,AccessFlags,RecordBuf, RecordBufLen,
RecCount, RecRtnCnt)

Assume the following:

Inactive Inactive

Cursor

Cursor

AccessFlags = 0 ; /* DDM ALLREC = OFF */
RecCount = 1 ;

Figure 70. DDMSetPrevious Function with DDM_ALLREC Not Set

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

LL X'1430' L1 X'111A' RC L2 CP Data

 Chapter 3. VSAM API Functions 307

DDMSetPrevious

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count. The RC parameter is used to indicate the
number of duplicate records. It provides a shorthand way of
specifying N records, where N>1, without replicating the
record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

Note: RC is not included unless identical, consecutive
records are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 CP Data

308 SdU VSAM API Reference

DDMSetPrevious

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list. When RC and RN are both specified, the record
number specified by RN applies to the first occurrence of the
record and each subsequent record has a record number one
greater than the previous record.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

LL X'111D' RN

 Chapter 3. VSAM API Functions 309

DDMSetPrevious

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

L3 CP Data

310 SdU VSAM API Reference

DDMSetPrevious

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record key value.

X'1430' The value (CODEPOINT) indicating that the following key is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following key is a
key count. The RC parameter is used to indicate the number
of duplicate keys. It provides a shorthand way of specifying
N keys, where N>1, without replicating the key's contents.

RC The number (ULONG) of duplicate keys in the record attribute
list.

Note: RC is not included unless identical, consecutive keys
are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

LL X'1430' L1 X'111A' RC L2 X'111D' RN

 Chapter 3. VSAM API Functions 311

DDMSetPrevious

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT pro-
vides a shorthand way of specifying N records, where N>1,
without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L3 The length (ULONG) from the beginning of L3 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L4 The length (ULONG) from the beginning of L4 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

L3 X'1115' KEY L4 CP Data

312 SdU VSAM API Reference

DDMSetPrevious

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 313

DDMSetRecNum

 DDMSetRecNum
(Set Cursor to Record Number)

This function sets the cursor to the record of the file specified by RecordNumber and
optionally returns the record and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetRecNum (HDDMFILE FileHandle,

 ULONG AccessFlags,

 RECNUM RecordNumber,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
9–31 Reserved flags
8 DDM_ALWINA (Allow Cursor on Inactive Record)
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 DDM_RTNINA (Return Inactive Record)
2 DDM_KEYVALFB (Key Value Feedback)
1 Reserved flag
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

RecordNumber
Specifies the record number (ULONG) of the record to which the cursor should be
moved.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 318.

314 SdU VSAM API Reference

DDMSetRecNum

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNBRRM X'1224' Record Number Out of Bounds
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
As an option, DDMSetRecNum can:

� Specify whether the cursor can be set to an inactive record position
(DDM_ALWINA).

� Set the hold cursor indicator on (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether inactive records should be returned (DDM_RTNINA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Place an update intent on the record (DDM_UPDINT).

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

 Chapter 3. VSAM API Functions 315

DDMSetRecNum

Table 26. DDMSetRecNum (DDM_ALWINA, DDM_RTNINA, or DDM_NODATA) Decision
Table

If the DDMSetRecNum function is issued:

When initial system states are:

Record State I I I I I A A

DDM_ALWINA T T T F F * *

DDM_RTNINA T * F * * * *

DDM_NODATA F T F F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F T4 T4 T8 T8 F F

RECINA (returned) T F F F F F F

RECORD (returned) F F F F F T F

CURSOR (changed) T T T F F T T

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
T8 TRUE with SVRCOD (Error)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the record specified by RecordNumber.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

316 SdU VSAM API Reference

DDMSetRecNum

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with the RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to Return and Continue With This Reply Message

The record is inactive and the DDM_ALWINA flag is set on,
and either DDM_RTNINA is set off or DDM_NODATA is
set on.

RECINARM

This Causes the Function to be Rejected With This Reply Message

If DDM_KEYVALFB is set or DDM_NODATA not set,
RecordBuf does not contain a valid address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI.

DDM_NODATA is not set and the file was opened without
GETAI.

INVRQSRM

The record is damaged (not an active or inactive record). RECDMGRM

The record is inactive and the DDM_ALWINA flag is set off.

Note: The cursor position is not changed.

RECINARM

The record lock cannot be obtained. RECIUSRM

 Chapter 3. VSAM API Functions 317

DDMSetRecNum

This Causes the Function to be Rejected With This Reply Message

The specified record number (RecordNumber) is outside
the bounds of the file.

Note: File boundaries are discussed in
DDMInsertRecNum on page 100.

Note: The cursor position is not changed.

RECNBRRM

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

DDMSetRecNum (FileHandle, AccessFlags, RecordNumber, RecordBuf,
RecordBufLen)

Assume the following:

Has the following effect:

Cursor

Cursor

AccessFlags = 0 ;
RecordNumber = 2 ;

Figure 71. DDMSetRecNum Function

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) and & DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL CP Data

318 SdU VSAM API Reference

DDMSetRecNum

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) and DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(TRUE) and DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) of the field from the beginning of L1 to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) of the field from the beginning of L2 to
the end of the key value.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 319

DDMSetRecNum

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) and DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1115' KEY

320 SdU VSAM API Reference

DDMSetUpdateKey

 DDMSetUpdateKey
(Set Update Intent by Key Value)

This function places an update intent on the record having a key value equal to the key
value specified in KeyValBuf (Key Value Buffer). This function can also return the
record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetUpdateKey (HDDMFILE FileHandle,

 ULONG AccessFlags,

 PDDMOBJECT KeyValBuf,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
6–31 Reserved flags
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 Reserved flag

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

KeyValBuf
The pointer (PDDMOBJECT) to the key value buffer for the key of the record on
which update intent is placed. The format of the key value buffer upon invocation
of the function is:

Field Description

LL The length (ULONG) of the key value description from the begin-
ning of LL to the end of Key Value.

LL X'1115' Key Value

 Chapter 3. VSAM API Functions 321

DDMSetUpdateKey

X'1115' The value (CODEPOINT) indicating that the following data is a key
value (KEYVAL).

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 325.

Field Description

LL The length (ULONG) of the response from the beginning of LL to
the end of record data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
KEYLENRM X'122D' Invalid Key Length
KEYVALRM X'1240' Invalid Key Value
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECIUSRM X'124A' Record in Use
RECNFNRM X'1225' Record Not Found
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
Partial key values are valid for the DDMSetUpdateKey function. The first record
selected receives the update intent.

If the key value specified in key value buffer has duplicate entries in the file (duplicate
keys), the first record, in key sequence, of all records with the duplicate key value will
have the update intent placed on it.

As an option, DDMSetUpdateKey can:

� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).

322 SdU VSAM API Reference

DDMSetUpdateKey

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is the same as before the function was issued.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters, the access method acquires an implicit
SHRRECLK on the record if it is not already locked by the requester with a SHRRECLK
lock. The SHRRECLK record lock is released when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� A DDMGetRec with DDM_UPDINT(TRUE) is issued.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function issued references a record other than the one currently pointed to by
the cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If the file was not opened for multiple updaters, an update intent is placed on the
record, but the access method does not acquire any record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Chapter 3. VSAM API Functions 323

DDMSetUpdateKey

 Exceptions
This Causes the Function to be Rejected With This Reply Message

If DDM_KEYVALFB or DDM_RECNBRFB is set, or
DDM_NODATA not set, and RecordBuf does not contain a
valid address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

The file was opened without DELAI or MODAI specified.

The access method is not valid for this function.

DDM_NODATA is not set and the file was opened without
GETAI.

INVRQSRM

The key length specified for the key value is larger than the
key length used to build the index.

KEYLENRM

The record lock cannot be obtained. RECIUSRM

The file does not contain any records initially after a
DDMCreateRecFile

A record does not exist with a key value equal to the value
contained in KeyValBuf.

RECNFNRM

RecordNumber is invalid. VALNSPRM

324 SdU VSAM API Reference

DDMSetUpdateKey

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

Cursor

Update
Intent

Cursor

AccessFlags = 0 ;
RecordNumber = 2 ;

DDMSetUpdateNum (FileHandle, AccessFlags, RecordNumber,
RecordBuf, RecordBufLen)

Figure 72. DDMSetUpdateKey Function

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

 Chapter 3. VSAM API Functions 325

DDMSetUpdateKey

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list. A value of X'FFFFFFFF' for RN indicates that the
record number of the first record in the record attribute list is
not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'111D' RN

326 SdU VSAM API Reference

DDMSetUpdateKey

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1115' KEY

 Chapter 3. VSAM API Functions 327

DDMSetUpdateKey

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

328 SdU VSAM API Reference

DDMSetUpdateKey

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record attri-
bute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 329

DDMSetUpdateNum

 DDMSetUpdateNum
(Set Update Intent by Record Number)

This function places an update intent on the record of the file that is indicated by the
RecordNumber parameter and optionally returns the record and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetUpdateNum (HDDMFILE FileHandle,

 ULONG AccessFlags,

 RECNUM RecordNumber,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
9–31 Reserved flags
8 !DDM_ALWINA (Allow Update Intent on Inactive Record)
7 Reserved flag
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 DDM_RTNINA (Return Inactive Record)
2 DDM_KEYVALFB (Key Value Feedback)
0–1 Reserved flags

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

330 SdU VSAM API Reference

DDMSetUpdateNum

RecordNumber
Specifies the record number (ULONG) of the record on which update intent is
placed.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 334.

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flag
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNBRRM X'1224' Record Number Out of Bounds

 Remarks
As an option, DDMSetUpdateNum can:

� Specify whether an update intent can be placed on an inactive record position
(DDM_ALWINA).

� Not return the requested record (DDM_NODATA).

� Specify whether inactive records should be returned (DDM_RTNINA).

� Specify whether the record key value should be returned (DDM_KEYVALFB).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is the same as before the function was issued.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

 Chapter 3. VSAM API Functions 331

DDMSetUpdateNum

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters, the access method acquires an implicit
SHRRECLK on the record if it is not already locked by the requester with a SHRRECLK
lock. The SHRRECLK record lock is released when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� A DDMGetRec with DDM_UPDINT(TRUE) is issued.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function issued references a record other than the one currently pointed to by
the cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If the file was not opened for multiple updaters, an update intent is placed on the
record, but the access method does not acquire any record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

If DDM_KEYVALFB or DDM_RECNBRFB is set, or
DDM_NODATA is not set, and RecordBuf does not contain
a valid address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

The file was opened without DELAI or MODAI specified.

The file was opened with a GETAI access intent and
DDM_NODATA(FALSE) was specified.

INVRQSRM

332 SdU VSAM API Reference

DDMSetUpdateNum

This Causes the Function to be Rejected With This Reply Message

The RecordBufLen value is not large enough to contain the
number of records that are returned.

LENGTHRM

The record position is inactive and an update intent is not
allowed to be set to an inactive record position
(DDM_ALWINA not set).

RECINARM

The record lock cannot be obtained. RECIUSRM

The specified record number (RecordNumber) is outside
the bounds of the file.

Note: The cursor position is not changed.

RECNBRRM

Table 27. DDMSetUpdateNum (DDM_ALWINA, DDM_RTNINA, or DDM_NODATA) Decision
Table

If the DDMSetUpdateNum function is issued:

When initial system states are:

Record State I I I I I A A

DDM_ALWINA T T T F F * *

DDM_RTNINA T * F * * * *

DDM_NODATA F T F F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F T4 T4 T8 T8 F F

RECINA (returned) T F F F F F F

RECORD (returned) F F F F F T F

CURSOR (changed, see note) F F F F F F F

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
T8 TRUE with SVRCOD (Error)
* Either TRUE or FALSE

Note: The cursor position does not change.

 Chapter 3. VSAM API Functions 333

DDMSetUpdateNum

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

Cursor

Update
Intent

Cursor

AccessFlags = 0 ;
RecordNumber = 2 ;

DDMSetUpdateNum (FileHandle, AccessFlags, RecordNumber,
RecordBuf, RecordBufLen)

Figure 73. DDMSetUpdateNum Function

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer (from the beginning
of LL to the end of Data).

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

LL CP Data

334 SdU VSAM API Reference

DDMSetUpdateNum

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 335

DDMSetUpdateNum

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the Key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1115' KEY

336 SdU VSAM API Reference

DDMTruncFile

 DDMTruncFile
(Move EOF to Current Cursor Position)

This function moves EOF to the current cursor position.

The records starting at the current cursor position and ending at the old EOF are elimi-
nated.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMTruncFile (HDDMFILE FileHandle

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

FILIUSRM X'120D' File in Use
HDLNFNRM X'1257' File Handle Not Found
INVRQSRM X'123C' Invalid Request

 Remarks
This function is only valid for sequential files.

This function physically shortens the file by the number of records eliminated. Any data
in these records is permanently lost.

Effect on Cursor Position
After this function is successfully completed, the cursor is set to the new EOF.

Locking (for Local VSAM File System Only)
The file must be opened with MODNONLK.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file was not opened with MODNONLK. FILIUSRM

The file handle is invalid. HDLNFNRM

A direct, keyed, or alternate index file is accessed.

MODAI access intent was not specified when the file was
opened.

INVRQSRM

 Chapter 3. VSAM API Functions 337

DDMTruncFile

 Example

BOF BOF

BEFORE AFTER

EOF

Cursor
Cursor
EOF

Assume the following is executed at cursor position 27:

DDMTruncFile (FileHandle)

Has the following effect:

Record 38

Record 27

Record 26

Record 2

Record 1

Record 26

Record 2

Record 1

Figure 74. DDMTruncFile Function

338 SdU VSAM API Reference

DDMUnLoadFileFirst

 DDMUnLoadFileFirst
(Unload Records from File)

This function unloads records from a file and transfers them to the requester's buffers.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMUnLoadFileFirst (PSZ FileName,

 PHDDMLOAD UnLoadHandle,

 ULONG AccessFlags,

 PULONG Flags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen,

 CODEPOINT UnloadOrder,

 PULONG RecCount

);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be unloaded to the
requester's buffers.

UnLoadHandle
The pointer (PHDDMLOAD) to the location where the system returns a handle
value that is to be used with a subsequent corresponding DDMUnLoadFileNext
function.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
7–31 Reserved flags
6 DDM_BYPDMG (Bypass Damaged Records)
4–5 Reserved flags
3 DDM_RTNINA (Return Inactive Record)
0–2 Reserved flags

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 399.

Flags
The pointer (PULONG) to the bit flags parameter. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 DDM_MOREDATA flag.

The system sets this bit upon return from DDMUnLoadFileFirst if the
record buffer is not large enough to hold all of the target file's

 Chapter 3. VSAM API Functions 339

DDMUnLoadFileFirst

existing records. This flag bit notifies the user to issue a subse-
quent DDMUnLoadFileNext in order to continue the unload function.
When the DDM_MOREDATA flag bit is off, the system has com-
pleted the unload of the entire file and a NULL value is returned for
UnLoadHandle.

RecordBuf
The pointer (PDDMRECORD) to the record buffer. The returned record buffer can
contain the following objects:

 RECORD
 RECAL

These objects can be in mixed order and can be repeated. The format of the
record buffer upon return of the function is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following data is either
record data or a RECAL (Record Attribute List) containing a record
number and record data.

X'144A' Indicates that the following data is record data.

X'1430' Indicates that the following data is a RECAL
(Record Attribute List). A RECAL object is
returned when inactive records have been
encountered. This is not used when unloading in
key order.

If CP is a record attribute list, the format of Data is:

Field Description

L2 The length (ULONG) from the beginning of L2 to the end of RC.

X'111A' The value (CODEPOINT) indicating that the following data is a
record count (RECCNT). The RECCNT parameter is used to indi-
cate the number of duplicate inactive records, where N≥1.

RC The number (ULONG) of duplicate records in the record attribute
list.

L3 The length (ULONG) from the beginning of L3 to the end of RN.

LL CP Data

LL X'111A' RC L3 X'111D' RN L4 CP Data

340 SdU VSAM API Reference

DDMUnLoadFileFirst

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

RN The record number (ULONG) of the record in the record attribute
list.

L4 The length (ULONG) from the beginning of L4 to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of an inactive record.

If CP is record data, the format is RECORD.

RecordBufLen
The length (ULONG) of the record buffer.

UnloadOrder
(CODEPOINT) Specifies the order in which the function processes the records in
the file. The valid values are:

RNBORD Record Number Order (X'145E')

KEYORD Key Order Processing (X'145D')

RecCount
The count (ULONG) of the record descriptions in the record buffer.

The number of record descriptions (record data and inactive record lengths) should
be the same number as indicated in the record count. When a RECAL (Record
Attribute List) is specified in RecordBuf and RECCNT of N is specified within the
RECAL, the RecCount parameter reflects the N duplicate records. Therefore, if
RecordBuf contained 10 data records and a RECAL, and RECCNT had a value of
100, the value of RecCount would be 110.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
VALNSPRM X'1252' Parameter Value Not Supported

 Chapter 3. VSAM API Functions 341

DDMUnLoadFileFirst

 Remarks
The DDMUnLoadFileFirst function unloads the records of the file in the order specified
by UnloadOrder. If the file is not an alternate index or keyed file, then the specified
value of UnloadOrder is ignored and the records are unloaded in record number order.

� To unload in record number order:

1. The DDMUnLoadFileFirst function unloads records from a file in a sequence
order that begins with the first record and proceeds through the remainder of
the file.

2. If the DDM_RTNINA flag is not set, inactive records are not returned. A
Record Attribute List (RECAL) is placed in the RecordBuf that includes the
record number (RECNBR) of the next active record in the file. The RECAL
also includes the active record.

3. If inactive records are to be returned, a RECAL object that includes a
RECCNT object is placed in the RecordBuf. RECCNT contains the number of
duplicate inactive records. RECAL also includes the inactive records.

� To unload in key order:

1. The DDMUnLoadFileFirst function unloads records from a file beginning with
the first record in the key sequence and proceeding sequentially through the
file in key order.

2. If the DDM_RTNINA flag is set, then it is ignored for this unload order.

� For all unload orders:

The RecCount is the actual number of records sent on each request; it does not
include inactive records that are not returned. The RecCount permits the requester
to verify that the total number of records sent is correct. If the total RecCount does
not match, the requester can re-issue the DDMUnLoadFileFirst function. Before
issuing DDMUnloadFileFirst, the requester must first close UnLoadHandle by
issuing a DDMUnLoadFileNext function with the DDM_CLOSEUNLOAD bit set.

The user can specify that damaged records be bypassed. For each record bypassed, a
RECDMGRM reply message with a warning (SVRCOD of 4) is returned. Bypassed
damaged records are not counted as part of the RecCount.

Multiple DDMUnLoadFileFirst functions may be issued on the same file without issuing
the corresponding DDMUnLoadFileNext close functions. Each DDMUnLoadFileFirst
function returns a unique unload handle. This allows more than one unload cursor to
be active at the same time on the same file.

If an error condition is encountered, do not use the file handle in a
DDMUnLoadFileNext.

Effect on Cursor Position
There is no effect on the cursor position.

342 SdU VSAM API Reference

DDMUnLoadFileFirst

Locking (for Local VSAM File System Only)
DDMUnLoadFileFirst attempts to:

1. Obtain a GETGETLK lock on the file.

If the GETGETLK lock is obtained, the DDMUnLoadFileFirst is processed (suc-
cessfully or unsuccessfully).

If the GETGETLK lock is not obtained, the DDMUnLoadFileFirst is rejected with a
FILIUSRM reply message.

2. Release the GETGETLK it obtained on the file if the DDM_MOREDATA flag is not
active. If the DDM_MOREDATA flag is active, the lock is released by the
DDMUnLoadFileNext function, provided the Close UnloadFile flag is set.

If the function terminates with a reply message that has a severity code of ERROR or
higher then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file that the records are loaded into is a non-VSAM file. ACCATHRM

The RecordBuf address is NULL.

The address for the Flags is not valid.

ADDRRM

The file to be unloaded is empty. ENDFILRM

The file has already been opened by DDMOpen or
DDMLoadFileFirst (DDM_CHAIN flag on).

FILIUSRM

Any of the reserved bits are set in AccessFlags. INVFLGRM

UnLoadHandle is not specified. INVRQSRM

The RecordBufLen value is not large enough for at least 1
record.

LENGTHRM

UnloadOrder parameter does not contain a correct value. VALNSPRM

 Chapter 3. VSAM API Functions 343

DDMUnLoadFileFirst

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object. The Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an incon-
sistent state or a non-DDM application has changed the
file.

DDMUnLoadFileFirst and DDMUnLoadFileNext will not re-
synchronize the file-change date and time during close
processing.

FILDMGRM

344 SdU VSAM API Reference

DDMUnLoadFileFirst

 Examples

BOF

EOF

0

1

2

3

4

5

XXXX

(inactive)

(inactive)

YYYY

x 0..0A x 144A XXXX x 0..1A x 1430 x 0..0A x 111A x 0..02

x 0..0A x 142D x 0..04 x 0..0A x 144A YYYY

UnloadOrder = 0x145E ;

DDMUnLoadFileFirst (FileName, UnLoadHandle, AccessFlags,
Flags, RecordBuf, RecordBufLen,

Record
Number

Assume the following:

Upon return, the value of RecCount is 4, and the RecordBuf contains:

AccessFlags = 0x00000008 ; /* DDM RTNINA = TRUE */

UnloadOrder, RecCount)

Figure 75. DDMUnLoadFileFirst Function When Returning Active or Inactive Records

 Chapter 3. VSAM API Functions 345

DDMUnLoadFileFirst

BOF

(inactive)

(inactive)

AAAA

CCCC

0

1

2

3

4

5

6EOF

ZZZZ

AccessFlags = 0 ; /* DDM RTNINA = FALSE */

x 0..0A x 144A AAAA x 0..1A x 1430 x 0..0A x 111D x 0..04

x 0..0A x 144A CCCC x 0..0A x 144A ZZZZ

UnloadOrder = 0x145E ;
DDMUnLoadFileFirst (FileName,UnLoadHandle,AccessFlags,Flags,

RecordBuf, RecordBufLen,UnloadOrder, RecCount)

Assume the following:

Record
Number

Upon return, the value of RecCount is 3, and the RecordBuf contains:

Figure 76. DDMUnLoadFileFirst Function Skipping Inactive Records

346 SdU VSAM API Reference

DDMUnLoadFileFirst

BOF

AAAA

CCCC

0

1

2

3

4

5

6EOF

ZZZZ

(Damaged)

(Damaged)

x 0..0A x 144A AAAA x 0..0A x 144A CCCC x 0...0A x 144A ZZZZ

AccessFlags = 0x00000040 ; /* DDM BYPDMG = TRUE */

DDMUnLoadFileFirst (FileName,UnLoadHandle,AccessFlags,Flags,
RecordBuf, RecordBufLen,UnloadOrder, RecCount)

In addition, two reply messages are sent, one for each damaged record encountered.
The reply message is RECDMGRM. The reply messages contain the record numbers
of the damaged records.

Assume the following:

Record
Number

Upon return, the RecCount value is 3, and the RecordBuf contains:

Figure 77. DDMUnLoadFileFirst Function Skipping Damaged Records

 Chapter 3. VSAM API Functions 347

DDMUnLoadFileFirst

EOF

DDMUnLoadFileFirst (FileName,UnLoadHandle,AccessFlags,Flags,
RecordBuf, RecordBufLen,UnloadOrder, RecCount)
Key Value

XXXXXXXX

(inactive)

(inactive)

AAAAAAAA

KKKKKKKK

BOF

XXX

AAA

KKK

UnloadOrder = 0x145D ; /* Key Order Processing */
AccessFlags = 0 ; /* DDM RTNINA = False */

x 0..0E x 144A AAAAAAAA x 0..0E x 144A

KKKKKKKK x 0...0E x 144A XXXXXXXX

Assume the following:

Upon return, the value of RecCount is 3, and the RecordBuf contains:

Figure 78. DDMUnLoadFileFirst Function Unloading in Key Order

348 SdU VSAM API Reference

DDMUnLoadFileNext

 DDMUnLoadFileNext
(Unload Records from File)

This function unloads records from a target server file and transfers them to the
requester.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMUnLoadFileNext (HDDMLOAD UnLoadHandle,

 ULONG Flags,

 PULONG UnloadFlags,

 PDDMRECORD RecordBuf,

 ULONG RecordBufLen,

 PULONG RecCount

);

 Parameters
UnLoadHandle

The handle value (HDDMLOAD) returned previously to the requester in a corre-
sponding DDMUnLoadFileFirst function.

Flags
The bit flags (ULONG) parameter. The bit flags are:

Bit Meaning

2–31 Reserved flags

1 DDM_CLOSEUNLOAD flag.

The user has the option of setting this flag bit and notifying the
system to terminate UnLoadHandle based chaining (for the
DDM_MOREDATA flag) and de-allocate UnLoadHandle based
system resources for this UnLoadFile function. This flag provides
the user with a way of prematurely terminating the unload file opera-
tion quickly without having to wait until the entire file has been
unloaded.

When this flag is set, no records will be unloaded and the
UnloadFlags and RecCount will not be set.

0 Reserved flag.

UnloadFlags
The pointer (PULONG) to the bit unload flags parameter. The bit flags are:

Bit Meaning

1–31 Reserved flags

 Chapter 3. VSAM API Functions 349

DDMUnLoadFileNext

0 DDM_MOREDATA flag.

The system sets this bit upon return from DDMUnLoadFileNext, if
the record buffer is not large enough to hold all of the target file's
existing records. This flag bit notifies the user to issue a subse-
quent DDMUnLoadFileNext in order to continue the unload file func-
tion. When the DDM_MOREDATA flag bit is off, the system has
completed the unload of the entire file and has de-allocated all pre-
viously allocated system resources based on UnLoadHandle. No
user-initiated action is required to terminate this function.

RecordBuf
The pointer (PDDMRECORD) to the record buffer. The returned record buffer can
contain the following objects:

 RECORD
 RECAL

These objects can be in mixed order and can be repeated. The format of the
record buffer upon return of the function is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following data is either
record data or a record attribute list containing a record number
and record data.

X'144A' Indicates that the following data is record data.

X'1430' Indicates that the following data is a record attri-
bute list.

A RECAL object is returned when inactive records have been
encountered. This is not used when unloading in key order.

� If CP is a record attribute list, the format of DATA is:

Field Description

L2 The length (ULONG) from the beginning of L2
to the end of RC.

X'111A' The value (CODEPOINT) indicating that the
following data is a record count (RECCNT).
The RECCNT parameter is used to indicate
the number of duplicate inactive records,
where N≥1.

LL CP Data

LL X'111A' RC L3 X'111D' RN L4 CP Data

350 SdU VSAM API Reference

DDMUnLoadFileNext

RC The number (ULONG) of duplicate records in
the record attribute list.

L3 The length (ULONG) from the beginning of L3
to the end of RN.

X'111D' The value (CODEPOINT) indicating that the
following data is a record number (RECNBR).

RN The record number (ULONG) of the record in
the record attribute list.

L4 The length (ULONG) from the beginning of L4
to the end of Data.

CP The value (CODEPOINT) indicating that the
following is either record data or an inactive
record length.

X'144A' Indicates that the following
data is record data.

X'142D' Indicates that the following
data is a ULONG length of an
inactive record.

Data The record data or the length (ULONG) of an
inactive record.

� If CP is record data, the format is record.

The number of record descriptions (record data and inactive record lengths) should
be the same as the number indicated in the record count.

RecordBufLen
The length (ULONG) of the record buffer.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

The number of record descriptions (record data and inactive record lengths) should
be the same number as indicated in the record count. When a RECAL (Record
Attribute List) is specified in RecordBuf and RECCNT of N is specified within the
RECAL, the RecCount parameter reflects the N duplicate records. Therefore if
RecordBuf contained 10 data records and a RECAL, with RECCNT having a value
of 100, the value of RecCount would be 110.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged

 Chapter 3. VSAM API Functions 351

DDMUnLoadFileNext

Message ID Code Point Message Title

VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
DDMUnLoadFileNext starts unloading records for the position in the file that was
current from a previous DDMUnLoadFileNext or DDMUnLoadFileFirst function.

DDMUnLoadFileNext unloads the records of the file in the order specified by the
UnloadOrder parameter of the originating DDMUnLoadFileFirst function. If the file is
not an alternate index or keyed file, the specified value of the originating
DDMUnLoadFileFirst UnloadOrder parameter is ignored and the records are unloaded
in record number order. DDM_RTNINA and DDM_BYPDMG flags that were set in
DDMUnLoadFileFirst are saved and used in the function.

� To load in record number order:

1. DDMUnLoadFileNext unloads records from a file in sequence order specified
by the originating DDMUnLoadFileFirst.

2. If the originating access flag DDM_RTNINA was not set, inactive records are
not returned. A RECAL (Record Attribute List) is placed in the RecordBuf that
includes the record number (RECNBR) of the next active record in the file.
The RECAL also includes the active record.

3. If inactive records are to be returned, a RECAL object that includes a
RECCNT object is placed in the RecordBuf. RECCNT contains the number of
duplicate inactive records. RECAL also includes the inactive records.

� To unload in key order:

1. DDMUnLoadFileNext unloads records from a file beginning with the first record
in the key sequence and proceeding sequentially through the file in key order.

2. If the originating access flag DDM_RTNINA was set, then it is ignored for this
unload order.

� For all unload orders:

1. RecCount is the actual number of records transferred for each request; it does
not include inactive records that are not returned. RecCount lets the requester
verify that the total number of records transferred is correct.

2. If the total record count does not match, the requester can optionally close the
UnLoadHandle by issuing a DDMUnLoadFileNext function with the
DDM_CLOSEUNLOAD flag set and start a new unload file operation by
issuing a DDMUnLoadFileFirst function.

If an error condition is encountered, do not use the file handle in a
DDMUnLoadFileNext.

352 SdU VSAM API Reference

DDMUnLoadFileNext

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
DDMUnLoadFileNext releases the GETGETLK lock that was obtained by
DDMUnLoadFileFirst on the file if no more data is to be unloaded or the
DDM_CLOSEUNLOAD flag is set.

If DDMUnLoadFileNext terminates with a reply message that has a severity code of
ERROR or higher then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The RecordBuf address is NULL.

The address for the Flags is not valid.

ADDRRM

The handle from DDMUnLoadFileFirst is not used as the
handle for a DDMUnLoadFileNext.

HDLNFNRM

Any of the reserved bits in AccessFlags are set. INVFLGRM

This Causes the Function to be Terminated With This Reply Message

The RecordBufLen value is not large enough for at least 1
record.

LENGTHRM

 Chapter 3. VSAM API Functions 353

DDMUnLoadFileNext

 Examples

BOF

EOF

XXXX

(inactive)

(inactive)

YYYY

x 0..0A x 144A XXXX x 0..1A x 1430 x 0..0A x 111A x 0..02

x 0..0A x 142D x 0..04 x 0..0A x 144A YYYY

0

21

22

23

24

25

Originating UnloadOrder = 0x145E ;

Assume the following:

Upon return, the value of RecCount is 4, and the RecordBuf contains:

Originating AccessFlags = 0x00000008 ; /* DDM RTNINA = TRUE */

DDMUnLoadFileNext (UnLoadHandle,Flags,RecordBuf,
RecordBufLen,RecCount)

Record
Number

Figure 79. DDMUnLoadFileNext Function

354 SdU VSAM API Reference

DDMUnLoadFileNext

BOF

(inactive)

(inactive)

AAAA

CCCC

EOF

ZZZZ

DDMUnLoadFileNext (UnLoadHandle,Flags,RecordBuf,
RecordBufLen,RecCount)

0

5

6

7

8

9

10

Originating UnloadOrder = 0x145E ;

x 0..0A x 144A AAAA x 0..1A x 1430 x 0..0A x 111D x 0..08

x 0..0A x 144A CCCC x 000A x 144A ZZZZ

Originating AccessFlags = 0x00000000 ; /* DDM RTNINA = FALSE */
Assume the following:

Record
Number

Upon return, the value of RecCount is 3, and the RecordBuf contains:

Figure 80. DDMUnLoadFileNext Function Skipping Inactive Records

 Chapter 3. VSAM API Functions 355

DDMUnLoadFileNext

BOF

AAAA

CCCC

EOF

ZZZZ

(Damaged)

(Damaged)

x 0..0A x 144A AAAA x 0..0A x 144A CCCC x 0...0A x 144A ZZZZ

0

21

22

23

24

25

26

Originating AccessFlags = 0x00000040 ; /* DDM BYPDMG = TRUE */

DDMUnLoadFileNext (UnLoadHandle,Flags,RecordBuf,
RecordBufLen,RecCount)

Record
Number

Upon return, the RecCount value is 3, and the RecordBuf contains:

Assume the following:

In addition, two reply messages are sent, one for each damaged record encountered.
The reply message is RECDMGRM. The reply messages contain the record numbers
of the damaged records.

Figure 81. DDMUnLoadFileNext Function Skipping Damaged Records

356 SdU VSAM API Reference

DDMUnLoadFileNext

EOF

Key Value

XXXXXXXX

(inactive)

(inactive)

AAAAAAAA

KKKKKKKK

BOF

XXX

AAA

KKK

x 0..0E x 144A AAAAAAAA x 0..0E x 144A

KKKKKKKK x 0...0E x 144A XXXXXXXX

DDMUnLoadFileNext (UnLoadHandle,Flags,RecordBuf,
RecordBufLen,RecCount)

Originating AccessFlags = 0x00000000 ; /* DDM RTNINA = False */
Originating Unloader = 0x145D ; /* Key Order Processing */

Assume the following:

Upon return, the value of RecCount is 3, and the RecordBuf contains:

Figure 82. DDMUnLoadFileNext Function Unloading in Key Order

 Chapter 3. VSAM API Functions 357

DDMUnlockRec

 DDMUnLockRec
(Unlock Implicit Record Lock)

This function releases any implicit record lock (that is, an update intent) currently held
by the cursor.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMUnLockRec (HDDMFILE FileHandle

);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

EXSCNDRM X'123A' Existing Condition
HDLNFNRM X'1257' File Handle Not Found

 Remarks
| The DDM architecture requires that an "update intent" be set for a record before the
| record can be deleted or modified.

| For the AIX local VSAM file system, DDMUnLockRec releases the update intent (if any)
| currently in place. However, concurrent data access control is done at the file level
| (that is, record locking is not supported).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

 Exceptions
This Causes the Function to Terminate Normally With This Reply Message

The user requests to release the implicit record lock and
the cursor does not hold a record lock.

Note: If this condition cannot be detected, the function ter-
minates normally.

EXSCNDRM

358 SdU VSAM API Reference

DDMUnlockRec

This Causes the Function to be Rejected With This Reply Message

The file handle is invalid. HDLNFNRM

 Chapter 3. VSAM API Functions 359

DDMUnlockRec

360 SdU VSAM API Reference

Chapter 4. VSAM API Common Parameters

This chapter provides detailed information about the common parameters of reply mes-
sages, data buffers, and EAs.

The parameters are listed in alphabetical order. Each parameter is described in three
parts: purpose, code point, and structure. A code point is a hexadecimal value that
uniquely identifies the class of a DDM object. The parameter name is also the name of
the pre-defined constant for the code point of the parameter. Each common parameter
is a DDM object whose generic structure is defined by the DDMOBJECT type:

LL Indicates the total length (ULONG) of the data description from the
beginning of the length field to the end of Data.

CP Indicates the code point of the parameter.

Data Indicates the objects contained in the parameter.

LL CP Data

ACCINTLS (Access Intent List)
Purpose Specifies the file access intentions of the requester. One or more file

access intents may be returned. The same value should not be
returned more than once in the list.

Code Point The code point for this parameter is X'1134'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'1134' The value (code point) indicating that the following
data is an access intent list.

Data A list of access intent values (code point):

X'140B' DELAI (Delete Record Access
Intent)

X'1416' GETAI (Get Record Access
Intent)

X'1417' INSAI (Insert Record Access
Intent)

LL X'1134' Data

 Copyright IBM Corp. 1993, 1997 361

X'1428' MODAI (Modify Record Access
Intent)

ACCMTHCL (Access Method Class)
Purpose Specifies the class of the access method to be opened for file

access.

Code Point The code point for this parameter is X'114E'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'114E' The value (code point) indicating that the following
data names the class of the access method.

Data The value (code point) specifying the access
method class: dl tsize=15.

X'140B' DELAI (Delete Record Access Intent)

X'1416' GETAI (Get Record Access Intent)

X'1417' INSAI (Insert Record Access Intent)

X'1428' MODAI (Modify Record Access Intent)

LL X'114E' Data

ACCMTHLS (Access Method List)
Purpose Specifies the access methods that can be used to access the

records of a file.

When returned by DDMQueryFileInfo or DDMQueryPathInfo, only
those access methods supported are listed. If no access method
classes are specified, the records of the file cannot be accessed.

Code Point The code point for this parameter is X'1402'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

LL X'1402' Data

362 SdU VSAM API Reference

X'1402' The value (code point) indicating that the following
data is a list of the access methods.

Data The values (code point) specifying the access
methods:

X'1433' RELRNBAM (Relative by
Record Number Access
Method)

X'1435' RNDRNBAM (Random by
Record Number Access
Method)

X'1407' CMBRNBAM (Combined
Record Number Access
Method)

X'1432' RELKEYAM (Relative by Key
Access Method)

X'1434' RNDKEYAM (Random by Key
Access Method)

X'1406' CMBKEYAM (Combined Keyed
Access Method)

X'1405' CMBACCAM (Combined
Access Access Method)

| ALCINISZ (Allocate Initial Extent)—DFM Only
| Purpose Specifies whether storage is to be allocated for the initial extent of a
| file at the time the file is created. The value can be:

| TRUE Indicates the initial extent should be allocated.

| FALSE Indicates the initial extent should NOT be allo-
| cated.

| Note: The value specified in the ALCINISZ parameter is considered
| a preference. The target system can choose to ignore this
| parameter.

| Code Point The code point for this parameter is X'1154'.

| Structure

| Field Description

| X'00000007' The length (ULONG) of the attribute description
| (from the beginning of this length field to the end
| of data).

| X'00000007'| X'1154'| Status

 Chapter 4. VSAM API Common Parameters 363

| X'1154' The value (code point) indicating that the following
| data is the initial file size.

| Status The 1-byte status of ALCINISZ. The value can
| be:

| X'F1' Indicates a value of TRUE.

| X'F0' Indicates a value of FALSE.

ALTINDLS (Alternate Index List)
Purpose Specifies a list of alternate index file names associated for a base

file. The base file can only be a keyed file.

Code Point The code point for this parameter is X'144E'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'144E' The value (code point) indicating that the following
data is a list of alternate index file names.

Data A list of alternate index file names. The maximum
file name length is defined by the underlying file
system driver.

LL The length (ULONG) from the
beginning of LL to the end of
the file name.

X'110E' The value (code point) indi-
cating that the following data is
a file name.

Filename An ASCII string containing the
file name and ending with a null
character.

LL X'144E' Data

LL X'1103' Filename LL X'1103' Filename

... LL X'1103' Filename

364 SdU VSAM API Reference

BASFILNM (Base File)
Purpose Specifies the name of the file upon which an alternate index file is

based.

The base file cannot be an alternate index file. The base file can
only be a keyed file.

A DDM file name is an unarchitected string of characters. DDM
assumes that a name provided by the user to the source system
DDM is in the format required by the target system data manager for
locating the file. The named string can contain qualifiers for libraries,
catalogs, members, instances, or other levels of identification for the
file.

Code Point The code point for this parameter is X'1103'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'1103' The value (code point) indicating that the following
data is a base file name.

Data The base file name.

LL X'1103' Data

BASMGMNM (Base Management Class Name)
Purpose Specifies the name of the management class for the base file in a

reply message.

Code Point The code point for this parameter is X'11D3'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of Name.

X'11D3' The value (code point) indicating that the following
information is the base management class name.

Name The character string of up to 16 characters.

LL X'11D3' Name

 Chapter 4. VSAM API Common Parameters 365

BASSTGNM (Base Storage Class Name)
Purpose Specifies the name of the storage class for the base file in a reply

message.

Code Point The code point for this parameter is X'11D4'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of Name.

X'11D4' The value (code point) indicating that the following
information is the base storage class name.

Name The character string of up to 16 characters.

LL X'11D4' Name

CODPNT (Code Point Attribute)
Purpose Specifies a value that is a DDM-architected code point.

Code Point The code point for this parameter is X'000C'.

Structure

Field Description

X'0008' The length (ULONG) of the code point description
(from the beginning of this length field to the end
of the code point).

X'000C' The value (code point) indicating that the following
information is a code point.

Code Point The code point.

X'0008' X'000C' Code Point

CSRPOSST (Cursor Position Status)
Purpose Specifies the status of the cursor in a reply message.

If the severity code is at least ERROR:

� The cursor position is the same as before the function that
caused the reply message that carried this parameter.

� If the function was DDMInsertRecNum, DDMInsertRecEOF,
DDMInsertRecKey, DDMSetNextRec, or DDMSetKeyNext with

366 SdU VSAM API Reference

RecCount greater than 1, the cursor position is the same as
before the function iteration that caused the reply message.

A value of TRUE (X'F1') indicates that the cursor position is the
same as before the function was issued or before the function iter-
ation in error. TRUE is the only valid value if the severity code is
ERROR.

A value of FALSE (X'F0') indicates that the cursor position may not
be the same as before the function was issued, or before the func-
tion iteration in error, or that the current cursor position is unknown.

If the severity code is SC_NO_ERROR or SC_WARNING, the value
of this parameter is ignored. The cursor status is as specified for the
function that returned the reply message with a severity code of
SC_NO_ERROR or SC_WARNING.

Code Point The code point for this parameter is X'115B'.

Structure

Field Description

X'0007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'115B' The value (code point) for cursor position status.

Status The 1-byte cursor position status:

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

Note: This value is always X'F1'.

X'0007' X'115B' Status

DATE (Date and Time)
Purpose A date and time can be specified for the required level of resolution.

The optional data terms (for example, seconds) can be specified only
if the preceding terms (for example, minutes) are also specified.

Dates and times are determined by the calendar and clock of the
originator of the date/time stamp. Dates are specified according to
the Gregorian calendar. Times are specified according to the military
clock.

Code Point The code point of this term is X'000F'.

Structure

LL X'000F' Data

 Chapter 4. VSAM API Common Parameters 367

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'000F' The value (code point) indicating that the following
is date and time data.

Data The date and time data.

Field Description

Year The year:

� Character digit string
 � LENGTH 4
� Minimum value is 0000
� Maximum value is 9999.

Month The month in the year:

� Character digit string
 � LENGTH 2
� Enumerated values for this parameter:

00 (Month is unknown or special meaning
is being conveyed that is server
dependent.)

01 (Month of January)
02 (Month of February)
03 (Month of March)
04 (Month of April)
05 (Month of May)
06 (Month of June)
07 (Month of July)
08 (Month of August)
09 (Month of September)
10 (Month of October)
11 (Month of November)
12 (Month of December)

Day The day of the month:

� Character digit string
 � LENGTH 2
� Minimum value is 00
� Maximum value is 31.
� A value of 00 means the day is unknown or

special meaning is being conveyed that is
server dependent.

Hour The hour of the day:

� Character digit string
 � LENGTH 2
� Minimum value is 00

368 SdU VSAM API Reference

� Maximum value is 23
� 00 is midnight, 06 is 6 a.m., 12 is noon, and

18 is 6 p.m.

Minute The minute of the hour:

� Character digit string
 � LENGTH 2
� Minimum value is 00
� Maximum value is 59.

Second The second of the minute:

� Character digit string
� LENGTH 2
� Minimum value is 00
� Maximum value is 59.

DELCP (Record Deletion Capability)
Purpose Specifies whether records can be deleted from the file.

Code Point The code point for this parameter is X'111B'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'111B' The value (code point) indicating that the following
data is the record deletion capability.

Status The 1-byte status of DELCP.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'111B' Status

DFTREC (Default Record)
Purpose The default record is used to initialize a file when it is created. The

length of the record data must be at least 1 and not greater than
4096.

Code Point The code point for this parameter is X'142B'.

Structure

LL X'142B' Default Record Data

 Chapter 4. VSAM API Common Parameters 369

Field Description

LL The length (ULONG) of the buffer
from the beginning of this length field
to the end of Default Record Data.

X'142B' The value (code point) indicating that
the following data is the default record
data.

Default Record Data The contents of the default record
data are replicated or truncated to
match the record length of the file.
This means that a value of X'00'
causes the file to be initialized with
records consisting of all zeroes. A
value of ‘ABC’ would initialize a file
with 10-byte records with
‘ABCABCABCA’ as the initialization
record.

If the file is created with initially-
varying-length records or with
variable-length records, the initialized
records have a length equal to
RecLen.

If DFTINAIN record initialization was
requested when the file was created,
the Default Record Data field will be
null, and the LL field will be
X'00000006'.

DTACLSNM (Data Class Name)
Purpose Specifies the name of the data class that applies to a file or direc-

tory. For the target system, a data class specifies a set of allocation
attributes to create a file or directory.

Code Point The code point for this parameter is X'1121'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of Name.

X'1121' The value (code point) indicating that the following
information is the data class name.

LL X'1121' Name

370 SdU VSAM API Reference

Name The character string of up to 16 characters.

DTALCKST (Data Lock Status)
Purpose Specifies the status of the locks held on the records of a file.

If the severity code is ERROR or higher, this parameter indicates
whether the locks are:

� the same as before the function that caused the reply message
which carried this parameter, or

� the same as before the function iteration that caused the reply
message, if the function was:

 DDMInsertRecNum
 DDMInsertRecEOF
 DDMInsertRecKey
 DDMSetNextRec

DDNSetKeyNext with RecCount greater than 1.

A value of TRUE indicates that the locks are the same as before the
function was issued, or before the function iteration in error. TRUE
is the only valid value if the severity code is ERROR.

A value of FALSE indicates either:

The record locks are not the same as they were before the func-
tion was issued,
The record locks are not the same as they were before function
iteration in error, or
The current lock status in unknown.

If the severity code is SC_NO_ERROR or SC_WARNING, the value
of this parameter is ignored. The data locks are as specified for the
function that returned the reply message with a severity code of
SC_NO_ERROR or SC_WARNING.

Code Point The code point for this parameter is X'115C'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'115C' The value (code point) indicating that the following
data is the data lock status.

Status The 1-byte status of the data locks on the file.

X'00000007' X'115C' Status

 Chapter 4. VSAM API Common Parameters 371

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

Note: This value is always
X'F1'.

EOFNBR (End of File Record Number)
Purpose The record number of the EOF position of the file.

Code Point The code point of this term is X'110B'.

Field Description

X'0000000A' The length (ULONG) of the reply message object
from the beginning of this length field to the end of
EOF Number.

X'110B' The value (code point) for the EOF record number
object.

EOF Number The ULONG EOF number.

X'0000000A' X'110B' EOF Number

ERRFILNM (Error File Name)
Purpose The error file name is the name of a file, other than the one the func-

tion is directly accessing, that caused the error. For example, modifi-
cation of a record of a file may fail because an alternate index file
built over the file does not allow keys to be updated. In this case,
the name of the alternate index file would be specified as the error
file name.

Code Point The code point for this parameter is X'1126'.

Structure

Field Description

LL The length (ULONG) of this data description
from the beginning of LL to the end of the Error
File Name.

X'1126' The value (code point) indicating the following
data is the error file name.

Error File Name The file name.

LL X'1126' Error File Name

372 SdU VSAM API Reference

FILBYTCN (File Byte Count)
Purpose The file byte count is the total number of bytes currently allocated to

a file. The bytes are counted in 1K (1024) byte units. The byte
count is rounded to the next higher 1K byte value (for example, 1027
bytes requires a 2K byte value). The minimum value for this param-
eter is 0.

Code Point The code point for this parameter is X'1139'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute description
(from the beginning of this length field to the end
of Count).

X'1139' The value (code point) indicating that the following
data is the file byte count.

Count The total number of bytes currently allocated to
the file. The value of Count is specified in a
ULONG.

X'0000000A' X'1139' Count

| FILCHGDT (File Change Date)—DFM Only
| Purpose The change date of a file is the target system date on which certain
| operations occurred, such as:

| � The file was created

| � A record was processed by a DDMModifyRec, DDMInsertRec, or
| DDMDeleteRec command

| � The file was renamed

| � The attributes were changed

| The file change date can be updated either as each change occurs
| to the file, or when the file is closed following such a change. This is
| dependent on the DDM server implementation.

| Code Point The code point of this term is X'113A'.

| Structure

| LL| X'113A'| Data

 Chapter 4. VSAM API Common Parameters 373

| Field Description

| LL The length (ULONG) of the attribute description
| from the beginning of LL to the end of Data.

| X'113A' The value (code point) indicating that the following
| data is the file change date.

| Data Date and time data, rounded down to the even
| second. See “DATE (Date and Time)” on
| page 367 for the format of date and time data.

FILCLS (File Class)
Purpose Specifies the class of a file.

Code Point The code point for this parameter is X'1110'.

Structure

Field Description

X'00000008' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'1110' The value (code point) indicating that the following
data is the file class value.

Data A file class value (USHORT) that can have the fol-
lowing values:

ALTINDF Alternative Index File (X'1423')
DIRFIL Direct File (X'140C')
KEYFIL Keyed File (X'141E')
SEQFIL Sequential File (X'143B')

X'00000008' X'1110' Data

FILCRTDT (File Creation Date)
Purpose The creation date of a file is the date on which a DDMCreatexxx

function created the file.

Code Point The code point of this term is X'1108'.

Structure

LL X'1108' Data

374 SdU VSAM API Reference

Field Description

LL The length (ULONG) of the attribute description
from the beginning of LL to the end of Data.

X'1108' The value (code point) indicating that the following
data is the file creation date.

Data Date and time data, rounded down to the even
second. See “DATE (Date and Time)” on
page 367 for the format of date and time data.

FILHDD (File Hidden)
Purpose Specifies whether the file was created with the FILE_HIDDEN attri-

bute.

FALSE Files or subdirectories with an attribute of
FILHDD(TRUE) are not considered a match.

TRUE Files or subdirectories with an FILHDD attribute
value of TRUE or FALSE are considered a match.

Code Point The code point for this parameter is X'1132'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'1132' The value (code point) indicating that the following
data is the hidden file attribute.

Status The 1-byte status of FILHDD.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'1132' Status

FILINISZ (Initial File Size)
Purpose Specifies the preferred initial file size in records. The maximum

initial size is determined by the target system, and the value speci-
fied can be rounded up or down to the next unit of allocation.

The value is expressed in the number of record positions preferred
for the initial file size. The RecLen (Record Length) parameter on
the DDMCreateRecFile function is used to compute the amount of
storage requested.

 Chapter 4. VSAM API Common Parameters 375

Note that the value specified in the FILINISZ parameter is considered
a preference. The target system can choose to implement another
value.

Code Point The code point for this parameter is X'113C'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute description
(from the beginning of this length field to the end
of Data).

X'113C' The value (code point) indicating that the following
data is the initial file size.

Size The initial file size in records:

� The value is specified in a ULONG.

� Minimum value is 0, which means that the file
exists but has no space allocated to it.

� The value of X'FFFFFFFF' means that the
file is of unlimited size.

X'0000000A' X'113C' Size

FILNAM (File Name)
Purpose A VSAM API file name is an unarchitected string. A VSAM API

assumes that a name provided by the user to the DDM source
server is in the format required by the target server for creating or
locating the file. The named string can contain qualifiers for directo-
ries, libraries, catalogs, members, instances, or other levels of iden-
tification of the file.

The target agent validates the file name according to its own rules
for naming. This can be done before or after attempting to use the
specified file name.

No semantic meaning is assigned to file names.

Code Point The code point for this parameter is X'110E'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of File Name.

LL X'110E' File Name

376 SdU VSAM API Reference

X'110E' The value (code point) indicating that the following
information is the file name.

File Name The file name. The maximum file name length is
defined by the underlying file system driver.

FILPRT (File Protected)
Purpose Specifies whether the file is protected. DDMDelete cannot be used

on a protected file.

Having a protected file attribute does not prevent a file from being
opened with access intents of MODAI, DELAI, or INSAI. Nor does
this attribute prevent DDMModifyRec, DDMDeleteRec, or
DDMInsertRecxxx function from being performed. These functions
are controlled by the file capabilities attributes: MODAI, DELAI, or
INSAI.

The value of TRUE indicates that the file is protected from file man-
agement functions that would change the entire contents of the file.

The value of FALSE indicates that the file is not protected from file
management functions that would change the entire contents of the
file.

Code Point The code point for this parameter is X'112A'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'112A' The value (code point) indicating that the following
data is the file protect attribute.

Status The 1-byte status of FILPRT.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE. (This is the

default value.)

X'00000007' X'112A' Status

FILSIZ (File Size)
Purpose The size of a file is determined by the total number of record posi-

tions allocated to the file. This includes all active and inactive
records between the BOF and the EOF plus all allocated record posi-
tions between the EOF and the end of the last allocated extent. This
attribute does not apply to files with variable-length records.

 Chapter 4. VSAM API Common Parameters 377

Code Point The code point for this parameter is X'110F'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute description
from the beginning of this length field to the end of
Data.

X'110F' The value (code point) for this attribute.

Data A ULONG binary number:

� The value is specified in a ULONG.
� Minimum value is 0.

X'0000000A' X'110F' Data

FILSYS (System File)
Purpose Specifies whether the file was created with the FILE_SYSTEM attri-

bute.

Code Point The code point for this parameter is X'1133'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'1133' The value (code point) indicating that the following
data is the system file attribute.

Status The 1-byte status of FILSYS.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'1133' Status

GETCP (File Get Capability)
Purpose Specifies whether the contents of a file can be read by DDMGetRec,

DDMSETxxx with NODATA(FALSE), or DDMUnLoadFilexxxx.

If the file is not get-capable, a DDMGetRec, DDMSETxxx with
NODATA(FALSE), or DDMUnLoadFilexxxx is rejected with an
INVRQSRM reply message.

Code Point The code point for this parameter is X'1191'.

378 SdU VSAM API Reference

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'1191' The value (code point) indicating that the following
data is the file get capability

Status The 1-byte status of GETCP.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'1191' Status

INSCP (File Insert Capability)
Purpose Specifies whether data records can be inserted into the file by a

DDMInsertRECxxx or DDMLoadFilexxxx function.

If the file is not insert-capable, an insert function DDMInsertRecxxx
(an insert function) or DDMLoadFilexxxx is rejected with an
INVRQSRM reply message.

Code Point The code point for this parameter is X'1192'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description (from
the beginning of this length field to the end of
Status).

X'1192' The value (code point) indicating that the following
data is the file insert capability.

Status The 1-byte status of INSCP.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'1192' Status

KEYDEF (Key Definition)
Purpose The key of a record consists of one or more fields that define an

ordering of the records for relative or random access. Key fields are
defined in terms of their length and displacement in the record.

 Chapter 4. VSAM API Common Parameters 379

Composite keys can be expressed by repeating the KEYFLDDF (Key
Field Definition) parameter as many times as necessary. The first
KEYFLDDF specifies the most significant part of the key and the last
KEYFLDDF specifies the least significant part of the key. The total
of all key lengths in a composite key cannot exceed 255 bytes, which
is the maximum length key definition.

For a description of the errors that can be detected by target
systems in a definition of the keys of a file, see “KEYDEFRM (Invalid
Key Definition)” on page 446 and “KEYDEFCD (Key Definition Error
Code).”

Code Point The code point for this parameter is X'1114'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'1114' The value (code point) indicating that the following
data is a key definition.

Data A list of one or more key field definitions
(KEYFLDDF).

LL X'1114' Data

KEYDEFCD (Key Definition Error Code)
Purpose Specifies the condition for which the KEYDEFRM reply message was

returned.

Code Point The code point for this parameter is X'1164'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the start of this length field to the end of Data.

X'1164' The value (code point) indicating that the following
data is a key definition error code.

Data A 1-byte value specifying the key definition error
code:

X'01' The specified key does not fall within
the record boundaries.

X'00000007' X'1164' Data

380 SdU VSAM API Reference

X'02' The target system does not support
composite keys or the number of com-
posite keys specified.

X'03' The total length of the specified key or
composite key exceeds the maximum
key length supported by the target
system. The maximum length key
supported in the local VSAM file
system is 255 bytes.

X'04' The target system does not support
overlapping fields. For example, if key
field A begins in position 10 for a key
length of 10, it is not possible to
specify a key field B that overlaps
positions 10 through 19.

X'05' The target system does not allow a
key field to be defined over multiple
record fields when the record fields
are defined in a target system data
dictionary.

X'06' The target system does not allow a
key field to be defined for a part of a
record field.

X'07' The target does not allow a key field
to be specified for non-character
record fields, such as an encoded
integer or floating point field.

X'08' The target system does not support
the specified key sequence for the
specified key data class.

X'09' The target system does not support
the specified key data class.

KEYDUPCP (Duplicate Keys Capability)
Purpose Specifies whether or not duplicate keys are allowed in a file.

Code Point The code point for this parameter is X'113D'.

Structure

X'00000007' X'113D' Data

 Chapter 4. VSAM API Common Parameters 381

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'113D' The value (code point) that indicates whether
duplicate keys are allowed.

Data A 1-byte value:

X'F0' Duplicate keys are not allowed.
X'F1' Duplicate keys are allowed.

KEYFLDDF (Key Field Definition)
Purpose The key field defines the location, length, data class, and ordering of

a single record key.

Code Point The code point for this parameter is X'140F'.

Structure

Field Description

X'00000010' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'140F' The value (code point) indicating that the following
data is a key field definition.

Keyseq A value (USHORT) specifying the key sequence:

X'1420' Ascending Key Sequence
X'1421' Descending Key Sequence

Keycls A value (USHORT) specifying the key class:

X'0044' The key field is a byte string.

Keylen A value (USHORT) specifying the key length.

Keydsp The displacement (ULONG) of the start of the key
field in the record. If multiple KEYFLDDF (Key
Field Definitions) are provided, the fields are con-
catenated to form a combined key. The maximum
length key is 255 bytes.

X'00000010' X'140F' Keyseq Keycls Keylen Keydsp

KeyLen KeyDisp

382 SdU VSAM API Reference

KEYVAL (Key Value)
Purpose Specifies the value of a record key.

Code Point The code point for this parameter is X'1115'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'1115' The value (code point) that indicates the following
is a key value.

Data The key value (BYTE) for a record. The key value
can be up to 255 bytes. If the record is inactive,
the key value is set to X'00'.

LL X'1115' Data

| LSTACCDT (Last Access Date)—DFM Only
| Purpose The last access date is the target system date on which the file was
| last accessed by operations such as a record DDMDeleteRec,
| DDMModifyRec, or DDMInsertRec command.

| The last access date can be updated either as these commands are
| performed or when the file is closed following one of these com-
| mands. This is dependent on the DDM server implementation.

| Code Point The code point of this term is X'1113'.

| Structure

| Field Description

| LL The length (ULONG) of the attribute description
| from the beginning of LL to the end of Data.

| X'1113' The value (code point) indicating that the following
| data is the last access date of the file.

| Data Date and time data, rounded down to the even
| second. See “DATE (Date and Time)” on
| page 367 for the format of date and time data.

| LL| X'1113'| Data

 Chapter 4. VSAM API Common Parameters 383

| LSTARCDT (Last Archived Date)—DFM Only
| Purpose The last archive date is the date on which the file was last archived
| by the target system.

| Code Point The code point of this term is X'118A'.

| Structure

| Field Description

| LL The length (ULONG) of the attribute description
| from the beginning of LL to the end of Data.

| X'118A' The value (code point) indicating that the following
| data is the last archive date of the file.

| Data Date and time data, rounded down to the even
| second. See “DATE (Date and Time)” on
| page 367 for the format of date and time data.

| LL| X'118A'| Data

MAXARNB (Maximum Active Record Number)
Purpose The maximum active record number is the highest record number at

which an active record is stored in a file.

Code Point The code point of this term is X'1159'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute reply data.

X'1159' The value (code point) indicating that the fol-
lowing data is the maximum active record
number.

RecordNumber The ULONG maximum active record number.

X'0000000A' X'1159' RecordNumber

MAXOPN (Maximum Number of Files Opened)
Purpose Specifies the maximum number of times the same file can be

opened concurrently by the same agent.

Code Point The code point of this term is X'1157'.

Structure

384 SdU VSAM API Reference

Field Description

X'00000008' The length (ULONG) of the reply message object
(for OPNMAXRM).

X'1157' The value (code point) indicating that the following
data is the MAXOPN object.

MaxNumOpn The maximum number (USHORT) of concurrent
opens allowed.

X'00000008' X'1157' MaxNumOpn

MGMCLSNM (Management Class Name)
Purpose Specifies the name of the management class that applies to a file or

directory. The format of a management class is unarchitected. A
management class specifies the target system policies related to
when and how often the file or directory is to be backed up, saved,
or archived.

Code Point The code point for this parameter is X'1140'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of name.

X'1140' The value (code point) indicating that the following
is a management class name.

Name Character string up to 16 bytes.

LL X'1140' Name

MODCP (File Modify Capability)
Purpose Specifies whether the contents of a file can be modified by a

DDMModifyRec or DDMTruncFile function.

If the file is not modify-capable, a DDMModifyRec or DDMTruncFile
function is rejected with an INVRQSRM reply message.

Code Point The code point for this parameter is X'1166'.

Structure

X'00000007' X'1166' Status

 Chapter 4. VSAM API Common Parameters 385

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'1166' The value (code point) indicating that the following
data is the file modify capability.

Status The 1-byte status of MODCP.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

NEWFILNM (New File Name)
Purpose Specifies the new name to be assigned to a file that was invalid.

The names of files in the VSAM APIs are unarchitected strings of
characters with no semantic meaning. A VSAM API assumes that a
name provided by the user to the source DDM server is in the format
required by the target system data manager for creating or locating
the file. The name string can contain qualifiers for libraries, catalogs,
members, instances, or other levels of identification for the file.

Code Point The code point of this parameter is X'114F'.

Structure

Field Description

LL The length (ULONG) of the reply message object
for NEWNAMRM (Invalid New File Name) reply
message from the beginning of this length field to
the end of NewFilNam.

X'114F' The value (code point) indicating that the following
data is the new file name object.

NewFilNam The name of the new file. The maximum file
length is determined by the underlying file system.

LL X'114F' NewFilNam

RECAL (Record Attribute List)
Purpose Specifies a list of attributes of a record as an ordered collection.

A Record Attribute List is used when transmitting more than one attri-
bute of the record (for example, record number or key value and the
record itself) as a single unit.

The RECCNT parameter is used to indicate the number of duplicate
records.

386 SdU VSAM API Reference

The elements of a RECAL must be specified in the order in which
they are listed in the format of this parameter. If an optional param-
eter is not included, the order of the remaining variables must be
maintained.

If RECNBR and RECCNT are both specified, the record number
specified by RECNBR applies to the first occurrence of the record,
and each subsequent record has a record number of 1 greater than
the previous record.

Note: The returned Record Attribute List structure is contiguous.

Code Point The code point for this parameter is X'1430'.

Structure

LL X'1430' L1 X'111A' RC L2 X'111D' RN

Field Description

LL The length (ULONG) of the record attribute list
from the beginning of LL to the end of Data. This
field is not checked.

X'1430' The value (code point) indicating that the following
data is a RECAL.

L1 The length (ULONG) from the beginning of L1 to
the end of RC. This field is not checked.

X'111A' The value (code point) indicating that the following
data is a record count. The RECCNT parameter
is used to indicate the number of duplicate
records. RECCNT provides a shorthand way of
specifying N records, where N>1, and not repli-
cating the record's contents.

RC The number (ULONG) of duplicate records in the
RECAL (RECCNT).

L2 The length (ULONG) from the beginning of L2 to
the end of RN. This field is not checked.

X'111D' The value (code point) indicating that the following
data is a record number.

RN The record number (ULONG) of the record in the
RECAL (RECNBR).

L3 The length (ULONG) from the beginning of L3 to
the end of the key value.

L3 X'1115' KEY L4 CP Data

 Chapter 4. VSAM API Common Parameters 387

X'1115' The value (code point) indicating that the following
data is a key value.

KEY The record key value (KEYVAL).

L4 The length (ULONG) from the beginning of L4 to
the end of Data.

CP The value (code point) indicating that the following
is either record data or an inactive record length.

X'144A' Indicates that the following data is
record data (RECORD).

X'142D' Indicates that the following data is
a ULONG of an inactive record
(RECINA).

Data The record data or the length (ULONG) of the
inactive record.

RECCNT (Record Count)
Purpose Specifies the number of records:

� Loaded by a DDMLoadFilexxxx function.

� Unloaded by a DDMUnLoadFilexxxx function.

� Initialized when creating a record-oriented file with the
DFTRECOP parameter specified on the DDMCreateRecFile
function.

� Retrieved by a DDMSETxxx function.

When specified in a reply message, RECCNT specifies the number
of records successfully inserted in a file by an DDMInsertRecxxx
function with a Record Count parameter value greater than 1 or by a
DDMLoadFilexxxx function.

When used with a RECAL, RECCNT specifies the number of times
the contents of the record attribute list is repeated. This provides an
efficient way to send multiple copies of the same records.

Code Point The code point for this parameter is X'111A'.

Structure

Field Description

X'0000000A' The length (ULONG) of the data description from
the beginning of this length field to the end of
Count.

X'0000000A' X'111A' Count

388 SdU VSAM API Reference

X'111A' The value (code point) indicating the following
data is the record count.

Count The number of records successfully returned or
inserted:

� The value in count is specified in a ULONG.
� Minimum value is 0.

RECINA (Inactive Record)
Purpose Represents file record positions at which a record has never been

inserted or at which a previously active record has been deleted.
The data value of an inactive record is the required length of any
record to be inserted at the record position.

Code Point The code point of this term is X'142D'.

Structure

Field Description

X'0000000A' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'142D' The value (code point) indicating that the following
data is the inactive record length.

Data The required length of any record to be inserted at
the record position. The value of an inactive
record is specified in a ULONG.

If the special value of -1 is present, this variable-
length record has not had a previous value and it
can store any length record up to the maximum
allowed by the file.

X'0000000A' X'142D' Data

RECLEN (Record Length)
Purpose The length of the user data in all of the records in files of fixed-length

records.

The maximum length of the user data in the records in files of
variable-length records or initially-variable-length records.

Code Point The code point of this term is X'111C'.

Structure

X'0000000A' X'111C' Data

 Chapter 4. VSAM API Common Parameters 389

Field Description

X'0000000A' The length (ULONG) of the attribute description
from the beginning of this length field to the end of
Data.

X'111C' The value (code point) indicating that the following
data is the record length.

Data The record length:

� The value of Data is specified in a ULONG.
� Minimum value is 1.
� Maximum value is 64,000.

RECLENCL (Record Length Class)
Purpose Specifies the type of record length that records in a file can have.

If a record length class that is not supported is specified, the record
length class can be promoted to a record class that is supported.
The record length class cannot be demoted. The promotion scheme
for record length classes is:

fixed
length

variable
length

initially
variable length

Figure 83. Record Length Class Promotion

Code Point The code point of this term is X'1142'.

Structure

Field Description

X'0000008' The length (ULONG) of the attribute description
from the beginning of this length field to the end of
record length class (RLC).

X'1142' The value (code point) indicating that the following
is a record length class.

X'00000008' X'1142' RLC

390 SdU VSAM API Reference

RLC A value (code point) specifying the record length
class. Valid code points are:

Code Point Description

X'142E' Fixed-length record (This is the
default value.)

X'142F' Initially-variable-length record

X'1431' Variable-length record

RECNBR (Record Number)
Purpose A record number identifies a record at a specific position of the file.

Record positions are numbered starting with 1.

Code Point The code point of this term is X'111D'.

Structure

Field Description

X'0000000A' The length (ULONG) of the data description
from the start of length field to the end of
RecordNumber.

X'111D' The value (code point) indicating that the fol-
lowing data is a record number.

RecordNumber The record number that is being returned:

� The value is specified in a ULONG.

� Minimum value is 1.

� The maximum value is target system
dependent.

� The value of X'FFFFFFFF' means the
actual record number is not known.

X'0000000A' X'111D' RecordNumber

 RECORD (Record)
Purpose Records are the basic unit of data stored in a record-oriented file.

They are the basic unit of transfer between requesters and files. A
record consists of a record header followed by the record data. This
type of record object is also known as an active record.

Code Point The code point of this parameter is X'144A'.

Structure

 Chapter 4. VSAM API Common Parameters 391

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'144A' The value (code point) indicating that the following
is record data.

Data Encoded information.

LL X'144A' Data

RTNCLS (File Retention Class)
Purpose Specifies the file retention as temporary or permanent.

Code Point The code point for this parameter is X'1148'.

Structure

Field Description

X'00000008' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'1148' The value (code point) indicating that the following
data is the file retention class.

Data A value (code point) specifying the retention class:

X'143E' A temporary file.
X'142A' A permanent file.

X'00000008' X'1148' Data

SRVDGN (Server Diagnostic Information)
Purpose Specifies diagnostic information in reply messages that is defined by

the responding server. This information can be logged or otherwise
used to support problem determination. The contents of this param-
eter are unarchitected. A maximum of 255 bytes can be sent, but
only a server-determined minimum amount of information should be
returned.

Code Point The code point for this parameter is X'1153'.

Structure

LL X'1153' Data

392 SdU VSAM API Reference

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of Data.

X'1153' The value (code point) indicating that the following
is server diagnostic information.

Data The diagnostic information. This data is in the
format of the server system that generated the
reply message.

STGCLSNM (Storage Class Name)
Purpose Specifies the name of a storage class that applies to a file or direc-

tory. The format of a storage class is unarchitected. A storage class
specifies the target system policies related to the types and speeds
of the storage devices that the file or directory can be allocated to.

Code Point The code point for this parameter is X'1141'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of name.

X'1141' The value (code point) indicating that the following
is a storage class name.

Name Character string up to 16 bytes.

LL X'1141' Name

SVRCOD (Severity Code)
Purpose Indicates the severity of a condition detected during the execution of

a function.

In addition to being in the reply message data, the value is returned
in the EAX register after every function.

Code Point The code point of this term is X'1149'.

Structure

X'00000008' X'1149' Severity

 Chapter 4. VSAM API Common Parameters 393

Field Description

X'00000008' The length (ULONG) of this data description from
the beginning of this length field to the end of
Severity.

X'1149' The value (code point) indicating the following is
the severity class.

Severity A ULONG value specifying the severity code.

X'0000' SC_NO_ERROR (Information Only
Severity Code)

Specifies that a reply message con-
tains information only and does not
describe any problem condition.

X'0004' SC_WARNING (Warning Severity
Code)

Specifies that a reply message consti-
tutes the warning of a potential
problem in the processing of a
request.

Further processing of a function
depends on the specifications of the
specific function, the error condition,
and the environment in which it is
being executed.

X'0008' SC_ERROR (Error Severity Code)

Specifies that an error condition was
detected in the processing of a func-
tion. All effects of the condition have
been reversed or prevented. For
example, any effects on cursor posi-
tioning or locks obtained or released
have been reversed.

Further processing of a function
depends on the architected specifica-
tions of that function, the error condi-
tion, and the environment in which it
is being executed. For example, a
FILE NOT FOUND error always
causes a function to be terminated,
but a DUPLICATE FILE error termi-
nates processing of a
DDMCreateRecFile function only if
specified by the duplicate file option
parameter.

394 SdU VSAM API Reference

X'0010' SC_SEVERE (Severe Error Severity
Code)

Specifies that a severe error has
occurred during the execution of the
function. It was not possible to
prevent or reverse all changes to
objects affected by the function. For
example, record locks or cursor posi-
tion may have been lost.

It is possible to send further functions
to the affected objects.

X'0020' SC_ACCESSDAMAGE (Access
Damage Severity Code)

Specifies that damage has occurred
to the target agent's ability to access
a file as it is currently opened. It is
not possible to make further use of
that access path, but it may be pos-
sible to access other opened files or
other objects.

To recover from access damage, it is
necessary to close and reopen the
file.

X'0040' SC_PERMDAMAGE (Permanent
Damage Severity Code)

Specifies that damage has occurred
to the state or value of permanent
objects of the server. Recovery from
permanent damage may require
special action that cannot be called
through DDM functions; for example,
loading a backup file.

Further processing of the function
depends on the architected specifica-
tions of that request, the permanent
damage condition, and the environ-
ment in which it is being executed.
For example, it may be possible to
continue processing with other
undamaged resources.

X'0080' SC_SESSIONDAMAGE (Session
Damage Severity Code)

Specifies that damage has occurred
to the target server's ability to con-

 Chapter 4. VSAM API Common Parameters 395

tinue the communication session. It is
not possible to make further use of
the current session, but it may be
possible to use other available com-
munication sessions.

To recover from session damage, it is
necessary to terminate the current
session and establish a new session.

SYNERRCD (Syntax Error Code)
Purpose Specifies the condition that caused termination of data stream parsing.

The following code points might be returned:

X'01' Data Stream Structure (DSS) header length less than or
equal to 6.

X'02' DSS header length does not match the number of bytes of
data found.

X'03' DSS header C-byte not X'D0'.
X'04' DSS header f-bytes not recognized or not supported.
X'05' DSS continuation specified but not found.
X'06' DSS chaining specified but no DSS found.
X'07' Object length less than 4.
X'08' Object length does not match the number of bytes of data

found.
X'09' Object length greater than maximum allowed.
X'0A' Object length less than minimum required.
X'0B' Object length not allowed (for example, if a value must be a

multiple of 1 word long but an odd number of bytes is sent).
X'0C' Incorrect large object length field (see DSS).
X'0D' Object code point index not supported.
X'0E' Required object not found.
X'0F' Too many function data objects sent.
X'10' Mutually exclusive objects present.
X'11' Too few function data objects sent.
X'12' Duplicate object present.
X'13' Invalid request correlator specified.
X'14' Required value not found.
X'15' Reserved value not allowed.
X'16' DSS continuation less than or equal to 2.
X'17' Objects not in required order.
X'18' DSS chaining bit not b'1' but DSSFMT bit3 set to b'1'.
X'19' Previous DSS indicated current DSS has the same request

correlator but the request correlators are not the same.
X'1A' DSS chaining bit not b'1' but error continuation requested.
X'1B' Mutually exclusive parameter values specified.
X'1D' Code point is not a valid function.

Code Point The code point of this term is X'114A'.

396 SdU VSAM API Reference

Structure

Field Description

X'0007' The length (ULONG) of the reply message object
(from the start of this length field to the end of Byte).

X'114A' The value (code point) for the syntax error code
object.

Byte The syntax error code as listed above (1-byte).

X'0007' X'114A' Byte

TITLE (A Brief Description)
Purpose A brief description of the file stored in EAs.

Code Point The code point of this parameter is X'0045'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of this length field to Title.

X'0045' The value (code point) indicating the following is
the title.

Title Character string up to 255 bytes.

LL X'0045' Title

 Chapter 4. VSAM API Common Parameters 397

398 SdU VSAM API Reference

Chapter 5. VSAM API Flags

This chapter provides information about each bit flag in each of the ULONG parame-
ters: AccessFlags and CreateFlags.

Each flag parameter section provides three basic kinds of information about bits:

1. A description of what the flag parameter does

2. An overview of all ULONG bit masks associated with the flag parameter

3. A detailed description of each bit associated with the flag parameter, which
includes:

� A brief explanation of each bit
� The bit number

 � Bit values.

The bit flags may be set individually or in appropriate combinations by using the bitwise
inclusive OR operator (|).

Throughout this publication, these bits are referred to by their bit mask names as
defined in DUBCALLS.H.

For more detailed information on each of these bits, see the individual bit names. The
individual bit names in the following section are arranged in bit number order.

Bit value:

TRUE, set to 1, ON, or B'1', all have the same meaning.

FALSE, set to 0, OFF, and B'0', all have the same meaning.

AccessFlags (Access Flags)
Purpose Access Flags specify the action to be taken depending on whether

the bit flag is set. Not all of the flags are valid on all functions.
Flags that are not valid on a particular function are marked as
reserved when describing that function. Reserved bits must be set
to zero (B'0') or an invalid parameter error occurs.

Bit Mask Names and Descriptions
The total list of bit flags is:

Bit Mask Name Description
Reserved (Bits 12–31)
DDM_HLDUPD Hold Update Intent (Bit 11)
DDM_UPDCSR Update Cursor (Bit 10)
DDM_INHMODKY Inhibit Modified Key (Bit 9)
DDM_ALWINA Allow Cursor on Inactive Record (Bit 8)
DDM_HLDCSR Hold Cursor Position (Bit 7)
DDM_BYPDMG Bypass Damaged Record (Bit 6)

 Copyright IBM Corp. 1993, 1997 399

DDM_NODATA No Record Data Returned (Bit 5)
DDM_ALLREC All Records, Active and Inactive (Bit 4)
DDM_RTNINA Return Inactive Record (Bit 3)
DDM_KEYVALFB Key Value Feedback (Bit 2)
DDM_RECNBRFB Record Number Feedback (Bit 1)
DDM_UPDINT Update Intent (Bit 0)

DDM_HLDUPD (Hold Update Intent)
Purpose Specifies whether the currently held update intent and record lock, if

any, should be released.

Bit number Bit 11 of the AccessFlags word.

Bit value A bit value of TRUE indicates that the update intent should not be
released.

A bit value of FALSE indicates that the update intent is released. In
this case, systems that cannot hold locks on two records can reject
the function with a VALNSPRM reply message.

DDM_UPDCSR (Update Cursor)
Purpose Specifies whether the cursor is to be updated to point to the record

inserted in the file by the function.

When multiple records are being inserted in a file, the cursor points
to the last record inserted when DDM_UPDCSR is set.

Bit number Bit 10 of the AccessFlags word.

Bit value A bit value of TRUE allows the cursor to be updated.

A bit value of FALSE does not allow the cursor to be updated.

DDM_INHMODKY (Inhibit Modified Keys)
Purpose Specifies whether the key value of an existing record can be modi-

fied by the DDMModifyRec function.

The inhibit modified keys bit is only effective when the file is opened
with the RELKEYAM, RNDKEYAM, CMBKEYAM, or CMBACCAM
access methods. This bit is ignored if the file is opened with any
other access method.

Bit number Bit 9 of the AccessFlags word.

Bit value A bit value of FALSE permits key fields to be modified if the file
permits key fields to be modified.

A bit value of TRUE indicates that key fields cannot be modified. An
attempt to modify a key field results in the DDMModifyRec function
being rejected with a KEYUSIRM reply message.

400 SdU VSAM API Reference

DDM_ALWINA (Allow Cursor to Be Set to Inactive Record)
Purpose Specifies whether the cursor can be set to point to an inactive record

or whether the DDMSetUpdateNum function can set an update intent
on an inactive record.

Bit number Bit 8 of the AccessFlags word.

Bit value A bit value of TRUE allows the cursor to point to an inactive record
and specifies that the DDMSetUpdateNum function can set an
update intent on an inactive record.

A bit value of FALSE specifies that the cursor is not allowed to point
to an inactive record and that the DDMSetUpdateNum function is not
allowed to set an update intent on an inactive record.

DDM_HLDCSR (Hold Cursor Position)
Purpose Causes the hold cursor indicator to be set ON or OFF for the cursor.

The hold cursor indicator is used by the following functions to deter-
mine whether the cursor should be moved to the next record or
remain at the current record position:

Bit number Bit 7 of the AccessFlags word.

Bit value A bit value of TRUE means that the hold cursor indicator in the
cursor is set on. If the hold cursor indicator is already on, it remains
on.

A bit value of FALSE means that the hold cursor indicator in the
cursor is set off. If the hold cursor indicator is already off, it remains
off.

Function Described on page:

DDMSetKey 159
DDMSetKeyFirst 177
DDMSetKeyLast 186
DDMSetKeyNext 202
DDMSetKeyPrevious 220
DDMSetLast 233
DDMSetMinus 243
DDMSetNextKeyEqual 253
DDMSetNextRec 269
DDMSetPlus 291
DDMSetPrevious 301
DDMSetRecNum 314

DDM_BYPDMG (Bypass Damaged Records)
Purpose The bypass damaged records bit specifies whether processing is to

continue if damaged records are detected for the DDMSetKeyNext,
DDMSetNextRec, and DDMUnLoadFilexxxx functions.

Bit number Bit 6 of the AccessFlags word.

 Chapter 5. VSAM API Flags 401

Bit value A bit value of TRUE bypasses damaged records.

A bit value of FALSE does not bypass damaged records.

DDM_NODATA (No Record Data Returned)
Purpose Indicates whether the record, where the cursor is set, is to be

returned.

Bit number Bit 5 of the AccessFlags word.

Bit value A bit value of TRUE indicates that the record, where the cursor is
set, is not to be returned.

A bit value of FALSE indicates that the record, where the cursor is
set, is to be returned. This is the default value.

DDM_ALLREC (All Records, Active and Inactive)
Purpose Specifies whether inactive records are to be bypassed when using

one of the DDMSetxxx functions to set the cursor.

Bit number Bit 4 of the AccessFlags word.

Bit value A bit value of TRUE does not bypass inactive records.

A bit value of FALSE bypasses inactive records.

DDM_RTNINA (Return Inactive Record)
Purpose Specifies whether an inactive record can be returned if the cursor is

set to an inactive record and the record selected by the cursor is to
be returned.

Bit number Bit 3 of the AccessFlags word.

Bit value A bit value of TRUE indicates that an inactive record can be
returned.

A bit value of FALSE indicates that an inactive record cannot be
returned. This is the default value.

DDM_KEYVALFB (Key Value Feedback)
Purpose Specifies whether the key value of the record is to be returned to the

requester. If the record is inactive, a null key value (length = 4) is
returned.

The local VSAM file system ignores this parameter when the file is
opened with the RELRNBAM, RNDRNBAM, or CMBRNBAM access
method or the file is not keyed.

Bit number Bit 2 of the AccessFlags word.

Bit value A bit value of TRUE indicates the key value of the record is returned.

A bit value of FALSE indicates the key value of the record is not
returned.

402 SdU VSAM API Reference

DDM_RECNBRFB (Record Number Feedback)
Purpose Specifies whether the record number of the record is to be returned

to the requester.

Bit number Bit 1 of the AccessFlags word.

Bit value A bit value of TRUE indicates the record number is returned.

A bit value of FALSE indicates the record number is not returned.

DDM_UPDINT (Update Intent)
Purpose Allows a requester to indicate that the user intends to modify the

record. This can be specified when the cursor is moved to the
record (DDMSetxxx) or when the record at the current cursor position
is read (DDMGetRec). An update intent must be placed on a record
before a DDMModifyRec or DDMDeleteRec function can be per-
formed for the record. An update intent can also be placed on a
record by the DDMSetUpdateKey and DDMSetUpdateNum functions.

Update intent is necessary so that a requester can perform oper-
ations on a record without interference from concurrent users. For
information about the interaction of update intent and sharing and
locking files, see “Record Locking (Implementation is Dependent on
the Server)” on page 25.

The update intent for the record lasts until one of the following
occurs:

� The record is modified (DDMModifyRec).

� The record is deleted (DDMDeleteRec).

� The cursor is moved to a different record. All cursor movement
DDMSetxxx functions are considered to have moved the cursor
even if the result of normal completion of the DDMSetxxx func-
tion leaves the cursor position the same as before the
DDMSetxxx function was called.

� A DDMInsertRecNum, DDMSetUpdateKey, or
DDMSetUpdateNum function for a
different record is issued.

� A DDMInsertRecEOF or DDMInsertRecKey function with
DDM_HLDUPD (FALSE) specified for a different record is
issued.

� A DDMUnLockRec function is issued.

� A DDMGetRec function with update intent is issued.

� The file is closed.

Once the update intent for a record is removed, a new update intent
must be placed on the record before a DDMModifyRec or
DDMDeleteRec function can be performed for the record. Two con-
secutively issued DDMModifyRec functions result in the rejection of

 Chapter 5. VSAM API Flags 403

the second DDMModifyRec function with UPDINTRM because the
first DDMModifyRec function removed the update intent for the
record.

Bit number Bit 0 of the AccessFlags word.

Bit value A bit value of 1 (TRUE) indicates that the requester intends to
modify or delete the record and, therefore, an update intent is to be
placed on the record. If the file was opened for multiple modifica-
tions, an implicit (exclusive access) lock is placed on the record.

| Record locking is dependent on the remote server. See the appro-
| priate documentation.

| For the local VSAM file system, record locks apply only to OS/2 local
| VSAM files on the client OS/2 workstation.

A bit value of 0 (FALSE) indicates that the requester does not intend
to modify or delete the record.

CopyFlags (Copy Flags)
Purpose Copy Flags specify the action to be taken depending

on whether the bit flag is set. Not all of the flags are
valid on all functions. Flags that are not valid on a
particular function are marked as reserved when
describing that function. Reserved bits must be set
to zero (B'0') or an invalid parameter error occurs.

Bit Names and Descriptions The total list of bit flags is:

Bit Name Description

Reserved (bits 13-31)
DDM_ACCORD Access Order (Key versus

record order processing) (bit
12)

Reserved (bits 7-11)
DDM_BYPDMG Bypass Damaged Records

(bit 6)
Reserved (bit 5)
DDM_BYPINA Bypass Inactive Records

(Not applicable to direct
files) (bit 4)

Reserved (bits 0-3)

Throughout this document, these bits are referred to
by name.

For more detailed information on each of these bits,
see the individual bit names. The individual bit
names in the following section are arranged in bit
number order.

404 SdU VSAM API Reference

Bit value An individual bit is referred to as TRUE, set to 1,
ON, or B'1', all of which have the same meaning.

An individual bit can also be referred to as FALSE,
set to 0, OFF, and B'0', all of which have the same
meaning.

DDM_BYPINA (Bypass Inactive Records)
Purpose Specifies whether inactive records are to be bypassed.

Bit number Bit 4 of the CopyFlags word.

Bit value A bit value of TRUE indicates inactive records are to be bypassed.

A bit value of FALSE indicates inactive records are not to be
bypassed.

DDM_BYPDMG (Bypass Damaged Records)
Purpose Specifies whether damaged records are to be bypassed.

Bit number Bit 6 of the CopyFlags word.

Bit value A bit value of TRUE indicates damaged records are to be bypassed
and that processing continues when the data record is damaged.

A bit value of FALSE indicates damaged records are not to be
bypassed and that processing does not continue when a data record
is damaged.

DDM_ACCORD (Access Order)
Purpose Specifies the order in which the records of the file are processed.

Bit number Bit 12 of the CopyFlags word.

Bit value A bit value of TRUE specifies key order processing.

A bit value of FALSE specifies record number order processing.

CreateFlags (Create Flags)
Purpose Create Flags specify the action to be taken depending on whether

the bit flag is set. Not all of the flags are valid on all functions.
Those flags not valid on a particular function are marked as reserved
in the section describing that function. Reserved bits must be set to
0 (B'0') or an invalid parameter error occurs.

Bit Mask Names and Descriptions
The total list of bit flags is:

Bit Mask Name Description

Reserved (Bits 10–31)
DDM_FILPRT Specifies Protected File (Bit 9)
DDM_FILSYS Specifies System File (Bit 8)

 Chapter 5. VSAM API Flags 405

DDM_FILHDD Specifies Hidden File (Bit 7)
DDM_MODCP Allows Modify Record Capability (Bit 6)
DDM_INSCP Allows Insert Record Capability (Bit 5)
DDM_GETCP Allows Get Record Capability (Bit 4)
DDM_INIEX Inhibit Initial Extent (Bit 3)
DDM_DELCP Allows Record Deletion (Bit 2)
DDM_TMPFIL Temporary File (Bit 1)
DDM_ALDUPKEY Allows Duplicate Keys (Bit 0)

DDM_FILPRT (Protected File)
Purpose Specifies whether the file is protected. A protected file is protected

from the DDMDelete function.

If the DDMDelete function is attempted against a protected file, the
function is rejected with an INVRQSRM reply message.

A protected file does not prevent a file from being opened with
access intents of MODAI, DELAI, or INSAI. Nor does a protected file
prevent DDMModifyRec, DDMDeleteRec, or DDMInsertRecxxx func-
tions from being performed. These functions are controlled by the
file capabilities attributes: DDM_MODCP, DDM_DELCP, and
DDM_INSCP.

Bit number Bit 9 of the CreateFlags word.

Bit value A value of TRUE indicates that the file is protected from file manage-
ment functions that would change the entire contents of the file.

A value of FALSE indicates that the file is not protected from file
management functions that would change the entire contents of the
file. This is the default value.

DDM_FILSYS (System File)
Purpose

DDM_FILSYS(TRUE) indicates that the file was created with the
FILE_SYSTEM attribute. A system file is the same as a non-system
file in all respects except for the processing done during a directory
search or scan in which the FILE_SYSTEM attribute is used to deter-
mine whether a file or subdirectory should be considered a match.

Bit number Bit 8 of the CreateFlags word.

Bit value A value of TRUE indicates that the file was created with the
FILE_SYSTEM attribute.

A value of FALSE indicates that the file was not created with the
FILE_SYSTEM attribute.

406 SdU VSAM API Reference

DDM_FILHDD (Hidden File)
Purpose DDM_FILHDD(TRUE) indicates that the file was created with the

FILE_HIDDEN attribute. A hidden file is the same as a non-hidden
file in all respects except for the processing done during a directory
search or scan in which the FILE_HIDDEN attribute is used to deter-
mine whether a file or subdirectory should be considered a match.

Bit number Bit 7 of the CreateFlags word.

Bit value A value of TRUE indicates that the file is hidden.

A value of FALSE indicates that the file is not hidden.

DDM_MODCP (Allow Modify Record Capability)
Purpose The allow modify record capability bit specifies whether the data

records of a file can be modified by a DDMModifyRec or
DDMTruncFile function. If the file is not modify-capable, a
DDMModifyRec function is rejected with an INVRQSRM reply
message.

Bit number Bit 6 of the CreateFlags word.

Bit value A value of TRUE indicates that the data records of a file can be
modified.

A value of FALSE indicates that the data records of a file cannot be
modified and that requests to modify the file are rejected.

DDM_INSCP (Allow Insert Record Capability)
Purpose The allow insert record capability bit specifies whether the data

records can be inserted into the file by either:

 DDMInsertRecxxx, or
 DDMLoadFilexxx

If the file is not insert-capable these functions are rejected with an
INVRQSRM reply message.

Bit number Bit 5 of the CreateFlags word.

Bit value A value of TRUE indicates that data records can be inserted into the
file.

A value of FALSE indicates that data records cannot be inserted into
the file and that the request is rejected.

DDM_GETCP (Allow Get Record Capability)
Purpose The get record capability bit specifies whether the contents of a file

can be read by either:

 DDMGetRec,
DDMSetxxx with DDM_NODATA(FALSE), or

 DDMUnloadFilexxx.

 Chapter 5. VSAM API Flags 407

If the file is not get-capable, these functions are rejected with an
INVRQSRM reply message.

Bit number Bit 4 of the CreateFlags word.

Bit value A value of TRUE indicates that the contents of a file can be read by
the requester.

A value of FALSE indicates that the contents of a file cannot be read
by the requester and the request is rejected.

DDM_INIEX (Inhibit Initial Extent)
Purpose Specifies whether storage is to be allocated for the initial extent of a

file when the file is created.

Bit number Bit 3 of the CreateFlags word.

Bit value A bit value of TRUE indicates that storage is not allocated for the
initial extent of the file when the file is created.

A bit value of FALSE indicates that storage is allocated for the initial
extent of the file when the file is created.

DDM_DELCP (Allow Record Deletion)
Purpose Specifies whether records may be deleted from the file being

created.

Bit number Bit 2 of the CreateFlags word.

Bit value A bit value of TRUE indicates that records may be deleted from the
file.

A bit value of FALSE indicates that records may not be deleted from
the file.

DDM_TMPFIL (Temporary File)
Purpose Specifies whether the file being created is a permanent or temporary

file.

Bit number Bit 1 of the CreateFlags word.

Bit value A bit value of TRUE indicates that the file being created is a tempo-
rary file. A temporary file only exists until:

1. The file is deleted.
2. Communications with the target are terminated.

Temporary files operate exactly like permanent files while they exist.

A bit value of FALSE indicates that the file being created is a perma-
nent file. A permanent file exists until it is explicitly deleted. Termi-
nation of communications does not affect the existence of a
permanent file.

408 SdU VSAM API Reference

DDM_ALDUPKEY (Allow Duplicate Keys)
Purpose specifies whether duplicate keys are allowed for a file at the time the

file is created.

Bit number Bit 0 in the Create Flags word.

Bit value A bit value of TRUE indicates that duplicate keys are allowed for the
file being created.

A bit value of FALSE indicates that duplicate keys are not allowed.

 Chapter 5. VSAM API Flags 409

410 SdU VSAM API Reference

Reply Messages

Chapter 6. VSAM API Reply Messages

This chapter provides detailed information about reply messages. Each reply message
is accompanied by a brief explanation of the message, its code point, and its structure,
which is defined by parameters.

For information about the parameters returned by the reply messages, see Chapter 4,
“VSAM API Common Parameters” on page 361.

Reply Message Interface
A reply message is returned to the sender of a function to provide the sender with infor-
mation about some condition that occurred during the processing of the function. A
single function can generate several reply messages.

When a VSAM API function returns a non-zero return code, a DDMGetReplyMessage
function should be issued immediately to obtain the reply messages. The Reply
Message queue for a thread is cleared every time a new VSAM API function is issued.
Therefore, the DDMGetReplyMessage must be issued before making any other VSAM
API function call under this thread to avoid losing the reply messages corresponding to
the function that returned the non-zero code.

All reply messages contain a severity code parameter that characterizes the severity of
the condition reported. In addition, each reply message may define specific additional
parameters to be returned with the message.

Reply Message Structure

The first length field (4 bytes) indicates the total length of the reply message, and the
first code point (2 bytes) is the code point of the reply message which follows.

Subsequent length fields (4 bytes) are for the objects contained in the reply message.
The code point words (2 bytes) indicate what data follows.

All length fields represent the length of the data, the code point, and the length field
itself.

For information on how to get access to the reply message, see the
“DDMGetReplyMessage (Get Reply Message)” on page 81.

Each reply message has a list of the data that may accompany it. Each data item is
tagged with one of two possible return conditions:

� Distributed FileManager returns this information.
� The target server decides whether this information is returned.

LL CP LL CP DATA LL CP DATA LL CP DATA

 Copyright IBM Corp. 1993, 1997 411

Reply Messages

The DDM server is responsible for translating file system exceptions to the
DDM-architected reply messages as described in this chapter.

If there is no reply message to which the condition can be translated, the DDM server
replies with a CMDCHKRM reply message, which might contain the file system return
code.

Mixed-case file names might be converted to upper-case file names. Therefore, any
reply messages that contain a filename may not reflect the case that was used as input
to the API.

 Reply Messages
These VSAM API reply messages are returned by the local VSAM file system. There
might be other reply messages returned by other DDM server implementations. See
the documentation for your DDM server.

The VSAM reply messages are listed alphabetically in the following table:

Table 28 (Page 1 of 2). VSAM Reply Messages Listed Alphabetically

Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Use Access Method
ACCINTRM X'1266' Access Intent List Error
ACCMTHRM X'1231' Invalid Access Method
ADDRRM X'F212' Address Error
AGNPRMRM X'1232' Permanent Agent Error
BASNAMRM X'1234' Invalid Base File Name
CLSDMGRM X'125E' File Closed with Damage
CMDCHKRM X'1254' Command Check
COMMRM X'F207' Communications Error
CSRNSARM X'1205' Cursor Not Selecting a Record Position
CVTNFNRM X'F202' Conversion Table Not Found
DDFNFNRM X'F201' Data Description File Not Found
DFTRECRM X'1204' Default Record Error
DRCATHRM X'1237' Not Authorized to Directory
DRCFULRM X'1258' Directory Full
DTARECRM X'1206' Invalid Data Record
DUPFILRM X'1207' Duplicate File Name
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DUPRNBRM X'120A' Duplicate Record Number
ENDFILRM X'120B' End of File Condition
EXSCNDRM X'123A' Existing Condition
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILERRRM X'F216' File Error
FILFULRM X'120C' File Is Full
FILIUSRM X'120D' File In Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available

412 SdU VSAM API Reference

Reply Messages

The VSAM reply messages are listed in code point order in the following table:

Table 28 (Page 2 of 2). VSAM Reply Messages Listed Alphabetically

Message ID Code Point Message Title

FILTNARM X'121E' File Temporarily Not Available
FUNATHRM X'121C' Not Authorized to Function
FUNNSPRM X'1250' Function Not Supported
HDLNFNRM X'1257' File Handle Not Found
INTATHRM X'125C' Not Authorized to Open Intent for Named File
INVFLGRM X'F205' Invalid Flag
INVRQSRM X'123C' Invalid Request
KEYDEFRM X'123D' Invalid Key Definition
KEYLENRM X'122D' Invalid Key Length
KEYUDIRM X'1201' Key Update Not Allowed by Different Index
KEYUSIRM X'123F' Key Update Not Allowed by Same Index
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
NEWNAMRM X'124F' Invalid New File Name
OBJNSPRM X'1253' Object Not Supported
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRCCNVRM X'1245' Conversational Protocol Error
PRMNSPRM X'1251' Parameter Not Supported
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record In Use
RECLENRM X'1215' Record Length Mismatch
RECNAVRM X'126F' Record Not Available
RECNBRRM X'1224' Record Number Out Of Bounds
RECNFNRM X'1225' Record Not Found
RSCLMTRM X'1233' Resource Limits Reached on Target System
SRCLMTRM X'F210' Resource Limits Reached in Source System
SYNTAXRM X'124C' Data Stream Syntax Error
TRGNSPRM X'125F' Target Not Supported on Target System
UPDCSRRM X'124D' Update Cursor Error
UPDINTRM X'124E' No Update Intent on Record
VALNSPRM X'1252' Parameter Value Not Supported
XLATERM X'F203' Translation Error

Table 29 (Page 1 of 2). VSAM Reply Messages Listed in Code Point Order

Code Point Message ID Message Title

X'1201' KEYUDIRM Key Update Not Allowed by Different Index
X'1204' DFTRECRM Default Record Error
X'1205' CSRNSARM Cursor Not Selecting a Record Position
X'1206' DTARECRM Invalid Data Record
X'1207' DUPFILRM Duplicate File Name
X'1208' DUPKDIRM Duplicate Key Different Index
X'1209' DUPKSIRM Duplicate Key Same Index
X'120A' DUPRNBRM Duplicate Record Number
X'120B' ENDFILRM End of File Condition
X'120C' FILFULRM File Is Full
X'120D' FILIUSRM File In Use
X'120E' FILNFNRM File Not Found

 Chapter 6. VSAM API Reply Messages 413

Reply Messages

Table 29 (Page 2 of 2). VSAM Reply Messages Listed in Code Point Order

Code Point Message ID Message Title

X'120F' FILSNARM File Space Not Available
X'1212' FILNAMRM Invalid File Name
X'1215' RECLENRM Record Length Mismatch
X'121C' FUNATHRM Not Authorized to Function
X'121E' FILTNARM File Temporarily Not Available
X'1224' RECNBRRM Record Number Out Of Bounds
X'1225' RECNFNRM Record Not Found
X'122D' KEYLENRM Invalid Key Length
X'1230' ACCATHRM Not Authorized to Use Access Method
X'1231' ACCMTHRM Invalid Access Method
X'1232' AGNPRMRM Permanent Agent Error
X'1233' RSCLMTRM Resource Limits Reached on Target System
X'1234' BASNAMRM Invalid Base File Name
X'1237' DRCATHRM Not Authorized to Directory
X'123A' EXSCNDRM Existing Condition
X'123B' FILATHRM Not Authorized to File
X'123C' INVRQSRM Invalid Request
X'123D' KEYDEFRM Invalid Key Definition
X'123F' KEYUSIRM Key Update Not Allowed by Same Index
X'1240' KEYVALRM Invalid Key Value
X'1244' OPNMAXRM Concurrent Opens Exceeds Maximum
X'1245' PRCCNVRM Conversational Protocol Error
X'1249' RECDMGRM Record Damaged
X'124A' RECIUSRM Record In Use
X'124C' SYNTAXRM Data Stream Syntax Error
X'124D' UPDCSRRM Update Cursor Error
X'124E' UPDINTRM No Update Intent on Record
X'124F' NEWNAMRM Invalid New File Name
X'1250' FUNNSPRM Function Not Supported
X'1251' PRMNSPRM Parameter Not Supported
X'1252' VALNSPRM Parameter Value Not Supported
X'1253' OBJNSPRM Object Not Supported
X'1254' CMDCHKRM Command Check
X'1257' HDLNFNRM File Handle Not Found
X'1258' DRCFULRM Directory Full
X'1259' RECINARM Record Inactive
X'125A' FILDMGRM File Damaged
X'125C' INTATHRM Not Authorized to Open Intent for Named File
X'125E' CLSDMGRM File Closed with Damage
X'125F' TRGNSPRM Parameter Not Supported on Target System
X'1266' ACCINTRM Access Intent List Error
X'126F' RECNAVRM Record Not Available
X'F201' DDFNFNRM Data Description File Not Found
X'F202' CVTNFNRM Conversion Table Not Found
X'F203' XLATERM Translation Error
X'F205' INVFLGRM Invalid Flag
X'F207' COMMRM Communications Error
X'F210' SRCLMTRM Resource Limits Reached in Source System
X'F211' LENGTHRM Field Length Error
X'F212' ADDRRM Address Error
X'F216' FILERRRM File Error

414 SdU VSAM API Reference

Reply Messages

ACCATHRM (Not Authorized to Use Access Method)
Purpose The requester is not authorized to use the specified access

method.

Code Point The code point for this term is X'1230'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

ACCMTHCL Access method class

� Code point is X'114E'.
� Enumerated values for this parameter are:

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

X'1433' RELRNBAM (Relative by record number access

method)
X'1435' RNDRNBAM (Random by record number access

method)
X'1407' CMBRNBAM (Combined record number access

method)
X'1432' RELKEYAM (Relative by key access method)
X'1434' RNDKEYAM (Random by key access method)
X'1406' CMBKEYAM (Combined keyed access method)
X'1405' CMBACCAM (Combined access access method)

ACCINTRM (Access Intent List Error)
Purpose Indicates that the access-intent-list parameter in the DDMOpen

function is in error for one of the following reasons:

� The file does not support the requested access intent.
� The file access capability specified on DDMCreateRecFile

does not support the requested access intent.

For more information, see “DDMOpen (Open File)” on page 127.

Code Point The code point for this term is X'1266'.

 Chapter 6. VSAM API Reply Messages 415

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

ACCMTHRM (Invalid Access Method)
Purpose Indicates that the function failed because the specified access

method was in error. This can happen because:

� The specified access method class is not supported.
� The access method class specified is not a defined access

method class.

Code Point The code point for this term is X'1231'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

ACCMTHCL Access method class

� Code point is X'114E'.
� Enumerated values for this parameter are:

X'1433' RELRNBAM (Relative by record number access

method)
X'1435' RNDRNBAM (Random by record number access

method)
X'1407' CMBRNBAM (Combined record number access

method)
X'1432' RELKEYAM (Relative by key access method)
X'1434' RNDKEYAM (Random by key access method)
X'1406' CMBKEYAM (Combined keyed access method)

416 SdU VSAM API Reference

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

X'1405' CMBACCAM (Combined access access method)

ADDRRM (Address Error)
Purpose A buffer address of zero was specified when a non-zero value

was expected.

Code Point The code point for this term is X'F212'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
 � Returned.
� Enumerated value(s) for this parameter:

0001 Record Buffer
0002 Key Buffer
0003 GEA (Get Extended Attribute

Buffer)
0004 Record Number Buffer
0005 Get Extended Attribute Reply or

Set Extended Attribute Buffer
0006 Record Count Buffer or Returned

Record Count Buffer
0007 File Name or Title
0008 File Handle
0009 Flags Buffer
0010 Default Record Buffer
0011 Feedback Buffer

 Chapter 6. VSAM API Reply Messages 417

Reply Messages

AGNPRMRM (Permanent Agent Error)
Purpose The function requested could not be completed because of a per-

manent error condition detected at the target system.

Code Point The code point for this term is X'1232'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

BASNAMRM (Invalid Base File Name)
Purpose The base file name is not a valid target system file name.

Code Point The code point for this term is X'1234'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

BASFILNM Base file

� Code point is X'1103'.
� VSAM returns this information.

418 SdU VSAM API Reference

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

CLSDMGRM (File Closed with Damage)
Purpose The file was closed as requested by the DDMClose function, but

the file was damaged. That is, the file does not contain all the
data of the file in the state required by DDM architecture.

If the target system blocks data for storage, the damage can
result from failing to write the last block of data being processed
to permanent storage.

Other reasons for this condition may also exist, as defined by the
target system.

Code Point The code point for this term is X'125E'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

64 Permanent Damage Severity Code

FILNAM File name

� Code Point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

CMDCHKRM (Command Check)
Purpose An error occurred in a non-DDM related operating system

support function that could not be mapped to an existing DDM
error reply message.

Code Point The code point for this term is X'1254'.

 Chapter 6. VSAM API Reply Messages 419

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

0 Information Only Severity Code
4 Warning Severity Code
8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code
128 Session Damage Severity Code

SVRCOD can also contain an operating system
error code. If the error code is from the oper-
ating system, SRVDGN is 2.

DTALCKST Data lock status

� Code point is X'115C'.

� Value is X'F1' (TRUE) if the data locks are
the same as before the failure.

� Value is X'F0' (FALSE) if the data locks are
not the same as before the failure.

CSRPOSST Cursor position status

� Code point is X'115B'.

� Value is X'F1' (TRUE) if the cursor position
is the same as before the function iteration
that caused the reply message. TRUE is
the only valid value if the severity code is
ERROR.

� Value is X'F0' (FALSE) if the cursor posi-
tion is not the same as before the function
iteration that caused the reply message or is
that the current cursor position is unknown.

� The target server determines whether this
information is returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.
� Required for requests to insert multiple

records in a file.

420 SdU VSAM API Reference

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
 � Returned.
� The target server determines whether this

information is returned.
� Enumerated value(s) for this parameter are:

1 FileShare parameter on the DDMOpen
was promoted to NON because the file
is remote over the LAN (for local
VSAM file system only).

2 An operating system error occurred
and cannot be mapped to a reply
message. The SVRCOD contains the
value for the condition the operating
system detected.

| COMMRM (Communications Error)
| Purpose A problem was encountered communicating with a target system.
| The requestor is not authorized to use the specified access
| method.

| Code Point The code point for this term is X'F207'.

| Structure See “Reply Message Structure” on page 411 for the general
| structure of reply message data.

| Parameter Description

| SVRCOD Severity code

| � Code point is X'1149'.
| � Returned.
| � Enumerated value(s) for this parameter:

| 16 Severe Error Severity Code

| SVRDGN Server diagnostic information

| � Code point is X'1153'.
| � Returned.
| � SOURCE DDM network enumerated value(s) for this param-
| eter. See Table 30 on page 422.

| The table below shows the hexadecimal (Hex) and decimal (Dec) values for COMMRM.

 Chapter 6. VSAM API Reply Messages 421

Reply Messages

| Table 30 (Page 1 of 3). SRVDGN Values for COMMRM

| Dec| Hex| Mnemonic| Possible Causes

| 1| 1| APPC_NOT_ACTIVE| DFM cannot access the remote system.
| The possible causes are:

| � The network services have not been
| started.
| � The network link has not been started.
| � The specified APPC LU is not an LU
| accessible on the network.

| 2| 2| COMM_ENV_NOT_STARTED| STRTDFMC has not been successfully
| executed (OS/2 only).

| 3| 3| CONV_UNEXP_ENDED| A conversation with a target system has
| ended unexpectedly. Possible causes:

| � A problem on the network
| � A problem in the target system
| � A problem in the network access soft-
| ware
| � A problem in the operating system

| 4| 4| INSUFF_LOCAL_RESOURCES| Local resources are not sufficient.

| Most likely, the stack size of the application
| is too small.

| 5| 5| INTERNAL_ERROR_IN_DFMCM| An internal error has occurred in the record
| access communications manager compo-
| nent of DFM. Contact your service repre-
| sentative.

| 6| 6| NO_SESSION_AVAILABLE| DFM tried to allocate a conversation with
| the remote system, but no session was
| available. Possible causes:

| � The network access software config-
| uration conflicts with the DFM config-
| uration data.
| � The network access link is not active.
| � A cable problem exists.
| � The target system is not active.
| � The session limit is exceeded.

| 7| 7| PCS_ROUTER_ERROR| An internal error has occurred in the
| stream access communication manager
| component of DFM (OS/2 only). Contact
| your service representative.

| 8| 8| TDDM_NOT_FOUND| An application requested record access to
| a file on a target system, but CONFIG.DFM
| contains no DFM_TARGET entry for that
| target system.

422 SdU VSAM API Reference

Reply Messages

| Table 30 (Page 2 of 3). SRVDGN Values for COMMRM

| Dec| Hex| Mnemonic| Possible Causes

| 9| 9| TDDM_UNEXP_ENDED| The DFM target server has unexpectedly
| terminated the conversation. The most
| likely cause is the program that implements
| the DDM target server contains an error.
| Contact the supplier of the DDM target
| server.

| 10| A| TGT_ISSUED_SEND_ERROR| The DFM target server has issued the
| SEND_ERROR verb when it was not
| expected by DFM.

| 11| B| UNKNOWN_COMM_ERROR| DFM tried to communicate with a target
| system, but an unknown return code from
| the network access software occurred.
| Contact your service representative.

| 12| C| SRVDGN_DFMINIT_FAILURE| Unable to initialize the DFM control blocks
| from the binary configuration file
| dfmcfg.dfm. Ensure that the dfmcfg.dfm file
| is accessible and valid by issuing dfmcfg
| -c from the session where the application
| was started (for Windows only).

| 13| D| SRVDGN_INVALID_SECURITY_MODE| An unknown security mode was assigned
| to a server system. The DFM binary config-
| uration file has most likely been corrupted.
| Recreate the DFM configuration file with
| the dfmcfg command (for Windows only).

| 14| E| SRVDGN_INVALID_SECURITY_NONE| A security mode violation was detected for
| the remote system. The security mode,
| either specified explicitly in the DFM config-
| uration or by default if not explicitly speci-
| fied is PROGRAM. The dfmlogon
| command was not issued for the server
| system. Remember if you do not explicitly
| specify the security mode for a server
| system in the DFM configuration file, the
| default is PROGRAM. Issue the dfmlogon
| command to define logon information for
| the server system (for Windows only).

| 15| F| SRVDGN_INVALID_SECURITY_
| PROGRAM
| A security mode violation was detected.
| The dfmlogon command was issued for
| the server system. However, either the
| password or the user ID, or both, were not
| specified (for Windows only).

| 17| 11| SRVDGN_INVALID_UNC_PATHNAME| The specification of a remote file for DFM
| to access has an not valid UNC format (for
| Windows only).

 Chapter 6. VSAM API Reply Messages 423

Reply Messages

| Table 30 (Page 3 of 3). SRVDGN Values for COMMRM

| Dec| Hex| Mnemonic| Possible Causes

| 18| 12| BAD_ENV| A problem with the runtime environment
| has caused a fatal error. One or both of
| the following files cannot be loaded or is
| corrupted: dfmmain.dll and dfmext.dll (for
| Windows only).

| 19| 13| SRVDGN_INVALID_SECURITY_ SERVER| The remote server determined that security
| information is not valid. The possible
| causes are (for Windows only):

| � The specified type of security access
| is not acceptable.
| � The user ID is invalid.
| � The user ID and password combina-
| tion is not valid.

| 20| 14| SRVDGN_INVALID_TPN_SERVER| The remote system does not support the
| SNA registered DDM server transaction
| program, or the DDM server is not active.

| 21| 15| SRVDGN_INVALID_PARAMETER| The remote system LU name is not valid
| (cannot be found on the network), or the
| mode name is not valid for the remote
| system, or the LU name/mode name com-
| bination is not valid. Note, some network
| access software requires specification of
| LU name/mode name combinations at con-
| figuration time.

CSRNSARM (Cursor Not Selecting a Record Position)
Purpose The function failed because the cursor is not presently selecting

a record position. The cursor is either at the BOF or EOF posi-
tion, or its position is unknown.

Code Point The code point for this term is X'1205'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

424 SdU VSAM API Reference

Reply Messages

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

| CVTNFNRM (Conversion Table Not Found)
| Purpose The specified character conversion table was not found. No
| character translation is performed. This reply message is
| returned when DFM/2 tries to access a conversion table for a
| character-to-character field conversion. The conversion table to
| be loaded depends on the code page IDs related to the from-
| character field and the to-character field (OS/2 only).

| Code Point The code point for this term is X'F202'.

| Structure See “Reply Message Structure” on page 411 for the general
| structure of reply message data.

| Parameter Description

| SVRCOD Severity code

| � Code point is X'1149'.
| � Returned.
| � Enumerated value(s) for this parameter:
| 8 Error Severity Code

| FILNAM Conversion Table File name

| � Code point is X'110E'.
| � Returned.

| DDFNFNRM (Data Description File Not Found)
| Purpose The named Data Description File was not found. No translation
| is performed during the current function request. This reply
| message is returned when DFM/2 tries to load the data
| description information for a remote file and it could not find the
| related DDF file, as specified in the MAPFMT entry of the DFM/2
| configuration file (OS/2 only).

 Chapter 6. VSAM API Reply Messages 425

Reply Messages

| Code Point The code point for this term is X'F201'

| Structure See “Reply Message Structure” on page 411 for the general
| structure of reply message data. the general structure of reply
| message data.

| Parameter Description

| SVRCOD Severity code

| � Code point is X'1149'.
| � Returned.
| � Enumerated value(s) for this parameter:
| 8 Error Severity Code

| FILNAM Data Description File Name

| � Code point is X'110E'.
| � Returned.

DFTRECRM (Default Record Error)
Purpose The request to initialize a file could not be completed because

the default record does not meet the target server's criteria. For
example, default inactive record initialization cannot be done on
sequential files that do not have delete capability.

Code Point The code point for this term is X'1204'.

Structure See the description at the beginning of this section for the
general structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

FILNAM File name

� Code point is X'110E'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

DRCATHRM (Not Authorized to Directory)
Purpose The user is not authorized to access or update the directory that

is specified or implied by a file name.

426 SdU VSAM API Reference

Reply Messages

Code Point The code point for this term is X'1237'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

DRCFULRM (Directory Full)
Purpose The directory specified or implied by a file name is full and does

not have space for the file being created or renamed.

Code Point The code point for this term is X'1258'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

DTARECRM (Invalid Data Record)
Purpose A record to be inserted in a file cannot contain a data value that

specifies an inactive record to the local data management on the
target system.

 Chapter 6. VSAM API Reply Messages 427

Reply Messages

An inactive record can not be inserted into a non-delete-capable
file.

If it is necessary to insert an inactive record into a delete-capable
file, send RECINA.

Code Point The code point for this term is X'1206'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.
� For alternate index files, this is the base file

name.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.
� Required for requests to insert multiple

records in a file.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.
� This is the record number of the record

being operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

428 SdU VSAM API Reference

Reply Messages

DUPFILRM (Duplicate File Name)
Purpose An attempt to create or rename a file failed because it duplicates

an existing file name. The target system does not allow dupli-
cates.

Code Point The code point for this term is X'1207'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code Point is X'1153'.
� No information is returned.

DUPKDIRM (Duplicate Key Different Index)
Purpose The function was not completed because the record sent con-

tains a field that duplicates a key in an index different than the
one being used to access the file. The other index does not
allow duplicate key records.

The target returns the name of the file(s) in which the duplicate
key would occur (ERRFILNM).

Code Point The code point for this term is X'1208'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

 Chapter 6. VSAM API Reply Messages 429

Reply Messages

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

ERRFILNM Error file name

� Code point is X'1126'.
 � Returned.
� Only one Error File Name is required. Addi-

tional Error File Names may be specified if
they are known.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file. In other cases, the DDM
server determines whether this information is
returned.

RECNBR Record number

� Code point is X'111D'.
� The DDM server determines whether this

information is returned.
� This is the record number of the record

being operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

DUPKSIRM (Duplicate Key Same Index)
Purpose The function was not completed because the record duplicates a

key in the index being used to access the file. This index does
not allow duplicate key records.

Code Point The code point for this term is X'1209'.

430 SdU VSAM API Reference

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

4 Warning (duplicate record found).
Indicates that the API access com-
pleted successfully and notifies the
caller that the record being returned
has a duplicate key. This condition
was previously flagged as an error.

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file. In other cases, the DDM
server determines whether this information is
returned.

RECNBR Record number

� Code point is X'111D'.
� This is the record number of the record

being operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 431

Reply Messages

DUPRNBRM (Duplicate Record Number)
Purpose A record cannot be inserted at a record position that is occupied

by an active record.

Code Point The code point for this term is X'120A'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file. In other cases, the DDM
server determines whether this information is
returned.

RECNBR Record number

� Code point is X'111D'.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

432 SdU VSAM API Reference

Reply Messages

ENDFILRM (End of File)
Purpose It is not possible to retrieve a record that is outside the BOF,

EOF, or some specified file limit with the following functions:

Function Limits

DDMSetNextRec Always the last and first record
positions, respectively, in the file.

DDMSetPrevious Always the last and first record
positions, respectively, in the file.

DDMSetKeyPrevious The first record, in key sequence,
of the file.

DDMSetKeyNext The last record, in key sequence,
of the file, or the high key limit
established by a
DDMSetKeyLimits function.

DDMSetNextKeyEqual The last record (in key sequence)
of the file, the high key limit estab-
lished by a DDMSetKeyLimits
function, or the key value specified
by the KEYVAL parameter on the
DDMSetNextKeyEqual function.

Code Point The code point for this term is X'120B'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

4 Warning Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 433

Reply Messages

Examples:

Cursor

EOF

A DDMSetNextRec with NODATA not set would result in an ENDFILRM.

Figure 84. DDMSetNextRec ENDFILRM

Cursor

Key Limits = (AAA JJJ)

Key = AAA

Key = GGG

Key = CCC

Key = ZZZ

Key = LLL

EOF

A DDMSetKeyNext command with NODATA parameter not set
would result in an ENDFILRM.

Figure 85. DDMSetKeyNext ENDFILRM

434 SdU VSAM API Reference

Reply Messages

EXSCNDRM (Existing Condition)
Purpose A request was made that would have resulted in a condition that

already exists.

For example:

� A request to create a file when a file by that name already
exists.

� A request to unlock a record that is not locked.

� A request to delete a file that cannot be found.

� A request to delete a record that is already deleted.

� A request to rename a file to the same name.

Code Point The code point for this term is X'123A'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

4 Warning Severity Code

FILNAM File name

� Code point is X'110E'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILATHRM (Not Authorized to File)
Purpose The user is not authorized to perform the requested function on

the file being accessed.

Code Point The code point for this term is X'123B'.

 Chapter 6. VSAM API Reply Messages 435

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� Enumerated value(s) for this parameter:

0 The operating system denied access
to the file.

1 Access attempt to byte stream file with
VSAM API. Byte stream is not a sup-
ported record type.

FILDMGRM (File Damaged)
Purpose The file may be damaged. Some of the indications of a

damaged file in the local VSAM file system are:

� The file-change date and time recorded by a VSAM API is
not the same as the file-change date and time recorded by
the file system. The function continues processing
(SVRCOD=4).

Either an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has changed the
file. The local VSAM file system resynchronizes the file-
change date and time if it can get write access to the file,
unless a higher severity condition prevents it from doing so.
Re-synchronizing the date and time corrects only this partic-
ular file-damaged condition, but the file may still be
damaged. To verify that the file is not damaged, use
DDMCopyFile or DDMUnLoadFileFirst with

436 SdU VSAM API Reference

Reply Messages

AccessFlags=DDM_BYPDMG|DDM_RTNINA and inspect the
result.

� An index file is not consistent with its base file. The function
is rejected (SVRCOD=16).

The file-change date and time recorded by the VSAM API for
the base file is not the same as the base file's file-change
date and time that was recorded as an attribute of the index
file. Either an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has replaced a
base file or an index file without replacing all of the files in
the file object. The local VSAM file system does not resyn-
chronize the file-change date and time.

Both of the above conditions can exist at the same time for the
same index file, causing two FILDMGRM reply messages to be
returned, one for SVRCOD=4 followed by one for SVRCOD=16.

Code Point The code point for this term is X'125A'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 4 Warning Severity Code
 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.

 Chapter 6. VSAM API Reply Messages 437

Reply Messages

RECNBR Record number

� Code point is X'111D'.
� This is the record number of the record

being operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.
� Enumerated value for this parameter:

1 Either an aborted DDM application has
left the file in an inconsistent state or a
non-DDM application has changed the
file.

FILFULRM (File Is Full)
Purpose A file is full when a record cannot be added to the end of the file

because:

� All record positions in the file have been filled and the file is
not extendable.

� All record positions in the file have been filled and the file
has been extended the maximum number of times.

� There are not enough bytes available in the file to insert the
record and the file is not extendable, or the maximum
number of extents have already been made. For example, if
there are 45 bytes of space available in the file and an
attempt is made to insert a record of 150 bytes, a FILFULRM
reply message results.

Code Point The code point for this term is X'120C'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

438 SdU VSAM API Reference

Reply Messages

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

RECNBR Record number

� Code point is X'111D'.
� This is the number of the record being oper-

ated on by the function.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILIUSRM (File in Use)
Purpose The named file is locked by another user at a level that prevents

the requested function from obtaining the locks it requires.

Code Point The code point for this term is X'120D'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

 Chapter 6. VSAM API Reply Messages 439

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILNAMRM (Invalid File Name)
Purpose The file name specified on the function is not a valid target

system file name.

Code Point The code point for this term is X'1212'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.
� This is the file name that is in error.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILNFNRM (File Not Found)
Purpose The named file (specified on the function) cannot be found on the

target system.

Code Point The code point for this term is X'120E'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

440 SdU VSAM API Reference

Reply Messages

FILNAM File name

� Code point is X'110E'.
 � Returned.
� This is the file name that is in error.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILSNARM (File Space Not Available)
Purpose The file cannot be created or extended because the operating

system does not have sufficient space available.

Code Point The code point for this term is X'120F'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 441

Reply Messages

FILTNARM (File Temporarily Not Available)
Purpose The target system has temporarily made the file unavailable to all

users. Either the file is damaged and must be repaired before
further use, or a target system process, such as disk com-
pression, prevents immediate use.

Code Point The code point for this term is X'121E'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code

FILNAM File name

� Code Point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FUNATHRM (Not Authorized to Function)
Purpose The user is not authorized to perform the requested function.

Code Point The code point for this term is X'121C'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

442 SdU VSAM API Reference

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FUNNSPRM (Function Not Supported)
Purpose The function specified is not recognized or not supported for the

specified target object.

Code Point The code point for this term is X'1250'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

CODPNT Code point attribute

� Code point is X'000C'.
 � Returned.
� Specifies the code point of the function not

supported.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

HDLNFNRM (File Handle Not Found)
Purpose The file handle specified is not known or if the handle from

DDMLoadFileFirst or DDMUnLoadFileFirst is not used as the
handle for a DDMLoadFileNext or DDMUnLoadFileNext, this
reply message will be returned.

Code Point The code point for this term is X'1257'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 Chapter 6. VSAM API Reply Messages 443

Reply Messages

8 Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
� Handle number is returned.

INTATHRM (Not Authorized to Open Intent for Named File)
Purpose The user is not authorized to open the file with the specified

processing intent. This message is returned by servers that vali-
date the user's authorization to access a file when the file is
opened. Servers can allow the file to be opened without vali-
dation of the requester's specified intents if authorizations are
subsequently validated for each function used to access an
opened file.

Code Point The code point for this term is X'125C'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

ACCINTLS Access intent list

� Code point is X'1134'.
� Specifies the access intents for which the

requester is not
authorized.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

INVFLGRM (Invalid Flag)
Purpose One or more reserved bits have been set in a flag word.

Code Point The code point for this term is X'F205'.

444 SdU VSAM API Reference

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'
 � Returned.
� Reflects the reserved bits that had been set

on.

INVRQSRM (Invalid Request)
Purpose A request can be invalid for one of the following reasons:

� There is conflict with a user-specified attribute of the file,
such as:

– The function issues a request to delete a record from a
non-delete-capable file.

– The function violates the access intents specified when
the file was opened.

� The requester attempted to delete a file that is the base file
for some alternate index files.

� The requested function is supported by the access method
but not by the file class to which the access method is
opened.

� A DDMSetKeyLimits function was issued for a file that was
created with keys such that all parts of the key are not
ascending.

� A DDM_ALLREC bit was set on a DDMSetNextRec,
DDMSetPrevious, DDMSetFirst, or DDMSetLast function for
a direct file.

� An alternate index file was specified as the base file of an
alternate index file on the DDMCreateAltIndex function.

� The value of LowKeyLim is after the value of HiKeyLim on a
DDMSetKeyLimits function.

� An attempt was made to delete or clear a protected file.

� A DDMTruncFile function:

 Chapter 6. VSAM API Reply Messages 445

Reply Messages

– For file opened for read only (GETAI, but not MODAI)
– For a read-only-file (GETCP, but not MODCP).

� The requester attempted to create an alternate index file with
a path qualifier that was different than the path qualifier of
the base file.

Code Point The code point for this term is X'123C'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� Information is returned if available.
� Enumerated value(s) for this parameter:

15 The file is protected.

KEYDEFRM (Invalid Key Definition)
Purpose The key definition is invalid for the reason specified by the

KEYDEFCD parameter.

Code Point The code point for this term is X'123D'.

446 SdU VSAM API Reference

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

KEYDEFCD Key definition error code

� Code point is X'1164'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

KEYLENRM (Invalid Key Length)
Purpose Specifies that the key value provided on a function is not the

length required by the requested function.

This can be caused by:

� Specifying a partial key on a function that requires full keys.

� Specifying a key length greater than the maximum length
key supported by the target system.

� Specifying a record key value whose length is greater than
the defined key length of the file.

Code Point The code point for this term is X'122D'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

 Chapter 6. VSAM API Reply Messages 447

Reply Messages

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

KEYUDIRM (Key Update Not Allowed by Different Index)
Purpose A different file does not allow its key value (of the record being

modified) to be changed.

Code Point The code point for this term is X'1201'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code
16 Severe Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

ERRFILNM Error file name

� Code point is X'1126'.
 � Returned.
 � Repeatable.
� Only 1 error file name is required. Addi-

tional error file names may be specified if
they are known.

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

448 SdU VSAM API Reference

Reply Messages

KEYUSIRM (Key Update Not Allowed by Same Index)
Purpose The file index being used to access the file does not allow the

key value (of the record being modified) to be changed.

Code Point The code point for this term is X'123F'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 449

Reply Messages

KEYVALRM (Invalid Key Value)
Purpose Specifies that the key value provided on a function or a record is

not valid.

This can be caused by:

� Specifying a variable-length record that does not contain all
of the fields for the defined file key.

� Specifying a key that is not valid for the target server.

Code Point The code point for this term is X'1240'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

KEYVAL Key value in error

� Code point is X'1115'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file.

RECNBR Record number

� Code point is X'111D'.
� This is the number of the record being oper-

ated on by the function.

450 SdU VSAM API Reference

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

LENGTHRM (Field Length Error)
Purpose A field was found with incorrect length.

Code Point The code point for this term is X'F211'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 4 Warning Severity Code
16 Severe Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
 � Returned.
� Enumerated value(s) for this parameter:

0001 Maximum Record Length
Exceeded
The maximum record length the
local VSAM file system supports is
65,000 bytes. The maximum
record length Distributed
FileManager/MVS supports is
32 000 bytes.

0002 Record Buffer Too Small
If the buffer is at least 4 bytes long,
and no records have been placed
in the buffer, the first 4 bytes
contain the length of the record that
did not fit.

0003 Key Definition Buffer Too Small
If the buffer is at least 4 bytes long,
the first 4 bytes contain the
required length of the buffer in
order for the key definition informa-
tion to fit.

 Chapter 6. VSAM API Reply Messages 451

Reply Messages

0004 Extended Attribute Reply Buffer
Too Small

If the buffer is at least 4 bytes long,
the first 4 bytes contain the
required length.

0005 Extended Attribute Input Buffer
Length Error

0007 Default Record Buffer Length
Error

The default record buffer is outside
the allowable limits.

NEWNAMRM (Invalid New File Name)
Purpose The new file name is not a valid target system file name.

Code Point The code point for this term is X'124F'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

NEWFILNM New file name

� Code point is X'114F'.
� This is the file name that is in error.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

OBJNSPRM (Object Not Supported)
Purpose The object specified as data in a buffer is not recognized or not

supported for the function associated with the object. Only active
and inactive records are recognized.

OBJNSPRM is also returned if an object is found in a valid col-
lection that is part of a buffer (such as the RECAL collection) that
is not valid for that collection.

Code Point The code point for this term is X'1253'.

452 SdU VSAM API Reference

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CODPNT Code point attribute

� Code point is X'000C'.
 � Returned.
� This is the code point of the object that is

not supported.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

OPNMAXRM (Concurrent Opens Exceeds Maximum)
Purpose The number of concurrent DDMOpen functions to the same file

exceeds the target server maximum.

Code Point The code point for this term is X'1244'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

 Chapter 6. VSAM API Reply Messages 453

Reply Messages

MAXOPN Maximum number of files opened

� Code point is X'1157'.
� Specifies the maximum number of opens to

the same file.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

| PRCCNVRM (Conversational Protocol Error)
| Purpose A conversational protocol error occurred.

| Code Point The code point for this term is X'1245'.

| Structure See “Reply Message Structure” on page 411 for the general
| structure of reply message data.

| Parameter Description

| SVRCOD Severity code

| � Code point is X'1149'.
| � Returned.
| � Enumerated value(s) for this parameter:

| 8 Error Severity Code

| 16 Severe Error Severity Code

| 128 Session Damage Severity Code

| PRCCNVCD Conversational protocol error code

| � Code point is X'113F'.
| � Returned.
| � Enumerated value(s) for this parameter:

| 0001 RPYDSS received by target communi-
| cation manager

| 0002 Multiple DSSs sent without chaining or
| multiple DSS chains sent

| 0003 OBJDSS sent when not allowed

| 0004 The next correlation identifier was not
| ascending

| 0005 The request correlation identifier of
| OBJDSS and RPYDSS are not equal

| 0006 EXCSAT was not the first function
| after the connection was established

454 SdU VSAM API Reference

Reply Messages

| RECCNT Recode count

| � Code point is X'111A'
| � Minimum value is 0
| � Information is returned if available

| SVRDGN Server diagnostic information

| � Code point is X'1153'
| � No information is returned.

PRMNSPRM (Parameter Not Supported)
Purpose The parameter specified is not recognized or not supported for

the associated function.

Code Point The code point for this term is X'1251'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

CODPNT Code point attribute

� Code point is X'000C'.
 � Returned.
� Specifies the code point of the parameter

not supported.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECDMGRM (Record Damaged)
Purpose A record in the file is damaged and cannot be accessed. A

damaged record is one in which the Code point is not an active
or inactive record.

Damaged records can be bypassed as an option of the following
functions:

 DDMSetKeyNext
 DDMSetNextRec
 DDMUnloadFileFirst
 DDMUnLoadFileNext

 Chapter 6. VSAM API Reply Messages 455

Reply Messages

See “DDM_BYPDMG (Bypass Damaged Records)” on page 401.

RECDMGRM is returned with a severity code of WARNING for
every damaged record that is bypassed. The record number of
the bypassed record is also returned. If damaged records cannot
be bypassed, this message is returned with a severity code of
ERROR or greater.

Code Point The code point for this term is X'1249'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 4 Warning Severity Code
 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

456 SdU VSAM API Reference

Reply Messages

RECINARM (Record Inactive)
Purpose RECINARM is returned with the following severity codes:

SVRCOD Reason

X'0004' This is returned when a DDMSetxxx function has
moved the cursor to an inactive record.

X'0008' or higher
This is returned when the record is inactive, and
the function cannot be executed.

Code Point The code point for this term is X'1259'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 4 Warning Severity Code
 8 Error Severity Code
16 Severe Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECIUSRM (Record in Use)
Purpose The record cannot be locked or accessed. This happens

because another user has the record locked at a level that pre-
vents the record from being locked or accessed by other users.

Code Point The code point for this term is X'124A'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code

 Chapter 6. VSAM API Reply Messages 457

Reply Messages

16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.

 � OPTIONAL.
� Information is returned if available.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.
� This is the number of the record being oper-

ated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECLENRM (Record Length Mismatch)
Purpose The length of a data record does not match the length of the

current record position.

If the record class is fixed and the record to be inserted is an
active record, the length of the record object must be equal to the
length of the record object header (length and code point) plus
the length of the record object data. See “RECORD (Record)” on
page 391 for more information.

If the record to be inserted is an inactive record, the record
length represented by the inactive record must be the same as
the length defined for a record in the file. (See “RECINA (Inac-
tive Record)” on page 389 for more information.)

Code Point The code point for this term is X'1215'

458 SdU VSAM API Reference

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.
� This is the number of the record being oper-

ated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECNAVRM (Record Not Available)
Purpose The requested record cannot be retrieved because it is not avail-

able to the file.

Code Point The code point for this term is X'126F'.

 Chapter 6. VSAM API Reply Messages 459

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECNBRRM (Record Number Out of Bounds)
Purpose The specified record number is outside the boundaries of the file.

For a definition of file boundaries, see “DDMInsertRecNum (Insert
by Record Number)” on page 98.

Code Point The code point for this term is X'1224'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

460 SdU VSAM API Reference

Reply Messages

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECNFNRM (Record Not Found)
Purpose The cursor cannot be positioned because a record that satisfies

the absolute or relative positioning parameters of a function does
not exist.

Code Point The code point for this term is X'1225'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

 Chapter 6. VSAM API Reply Messages 461

Reply Messages

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RSCLMTRM (Resource Limits Reached on Target System)
Purpose The requested function could not be completed because of insuf-

ficient target server resources. Examples of resource limits are:

� The target agent has insufficient memory to keep track of
more open files.

� The lock manager cannot obtain another lock.

� The communication manager's send or receive buffer over-
flowed.

� The MAX_SEND_LIMIT in a TARGET_SYSTEM statement
of the DFM configuration file is set to a low value.

Code Point The code point for this term is X'1233'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code
128 Session Damage Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
� The target server determines whether this

information is returned.

DTALCKST Data lock status

� Code point is X'115C'.
� The target server determines whether this

information is returned.

462 SdU VSAM API Reference

Reply Messages

FILNAM File name

� Code point is X'110E'.
� Returned when the FILNAM parameter is

specified for the function. In other cases,
the target server determines whether this
information is returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

SRCLMTRM (Resource Limit Reached in Source System)
Purpose Some resource has reached its limit in the source system.

Code Point The code point for this term is X'F210'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'
� No information is returned.

SYNTAXRM (Data Stream Syntax Error)
Purpose The data sent to the target agent does not conform to the struc-

tural requirements of DDM architecture. The target agent termi-
nated parsing of the Data Stream Structure (DSS) when the
condition specified by the Syntax Error Code parameter was
detected.

Code Point The code point for this term is X'124C'.

 Chapter 6. VSAM API Reply Messages 463

Reply Messages

Structure See the description at the beginning of this section for the
general structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

SYNERRCD Syntax error code

� Code point is X'114A'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

CODPNT Code point attribute

� Code point is X'000C'

 � Returned.
� Specifies the code point of the object that

caused the syntax error.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

TRGNSPRM (Parameter Not Supported on Target System)
Purpose The parameter specified cannot be supported on the target

system.

Code Point The code point for this term is X'125F'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

 8 Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

464 SdU VSAM API Reference

Reply Messages

UPDCSRRM (Update Cursor Error)
Purpose The cursor cannot be updated to point to the last record inserted

in the file.

This error can be sent only if the function set the UPDCSR bit
flag for the Access Flags parameter.

Code Point The code point for this term is X'124D'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.
� This is the number of the record being oper-

ated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 465

Reply Messages

UPDINTRM (No Update Intent on Record)
Purpose The record cannot be updated for one of the following reasons:

� An update intent has not been placed on the record by the
requester.

� The update intent may have been removed because of a
previous function issued by the requester.

Code Point The code point for this term is X'124E'.

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

VALNSPRM (Parameter Value Not Supported)
Purpose The parameter value specified is not recognized or not supported

for the named parameter.

The function parameter in error is returned as a parameter in this
message.

Code Point The code point for this term is X'1252'.

466 SdU VSAM API Reference

Reply Messages

Structure See “Reply Message Structure” on page 411 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

8 Error Severity Code

CODPNT Code point attribute

� Code point is X'000C'.
 � Returned.
� Return the code point of the parameter

whose value is not
supported.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Required for requests to insert multiple

records in a file.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

| XLATERM (Translation Error)
| Purpose An error occurred during translation of a record or field. The
| record or field is not translated. This reply message is returned
| when DFM tries to convert a record from source into target
| format, or vice versa, by using the data description sequences.

| Code Point The code point for this term is X'F203'.

| Structure See “Reply Message Structure” on page 411 for the general
| structure of reply message data.

| Parameter Description

| SVRCOD Severity code

| � Code point is X'1149'.
| � Returned.
| � Enumerated values for this parameter:

| 4 Warning Severity Code

| 8 Error Severity Code

| 16 Severe Error or Severity Code

 Chapter 6. VSAM API Reply Messages 467

Reply Messages

| SVRDGN Server diagnostic information

| � Code point is X'1153'.
| � Returned.
| � Enumerated values for this parameter:

| 0001 Rounding error

| 0002 Truncation error

| 0006 Possible causes:

| – CDRASRV environment variable
| not set (Windows or AIX only).
| – CDRA conversion table not avail-
| able.

| 0101 Range error

| 0102 Untranslated data

| 0103 Modification intent, but the view does
| not cover the entire base record
| (reduced view)

| 0104 A partial numeric key field cannot be
| translated

| Other server diagnostic values might be
| returned. See SMARTdata UTILITIES Data
| Description and Conversion.

468 SdU VSAM API Reference

| Appendix A. Programming Extended Attributes in VSAM APIs

| The following example from a C program illustrates how extended attribute information
| can be prepared for a VSAM API. The particular APIs used are DDMSetPathInfo and
| DDMQueryPathInfo. It is assumed that a sequential file already exists and the file
| name coded in the C application has its value in SeqFN.

| See “Extended Attributes” on page 5 for an overview of extended attributes used by the
| VSAM APIs and the relationship of the DOS-based EAOP2, GEA2List, and FEA2List
| structures.

| /\---

| -- SYMBOLIC CONSTANTS

| --\/

| #define FILCLS_NAME ".DDM_FILCLS"

| #define DELCP_NAME ".DDM_DELCP" /\@WðA\/

| #define TITLE_NAME ".DDM_TITLE" /\@WðC\/

| #define TitleString "Title String" /\@WðC\/

| #define FILCLS_SIZE sizeof(OBJLENGTH) + (2 \ sizeof(CODEPOINT)) /\@WðM\/

| #define DELCP_SIZE sizeof(OBJLENGTH) + sizeof(CODEPOINT) + 1 /\@WðM\/

| #define TITLE_SIZE sizeof(OBJLENGTH) + sizeof(CODEPOINT) + strlen(TitleString)

| /\@WðC\/

| .

| .

| .

| /\ OS/2 extended attribute structures \/

| EAOP2 Eaop; /\ EA structure for DDMQueryPathInfo @WðC\/

| EAOP2 Eaop2; /\ EA structure for DDMSetPathInfo @WðC\/

| PFEA2 pFEA; /\ Pointer to FEA2 list entry @WðC\/

| PGEA2 pGEA; /\ Pointer to GEA2 list entry @WðC\/

| INT FEASize; /\ Tally size of FEA2 list area @WðC\/

| INT GEASize; /\ Tally size of GEA2 list area @WðC\/

| INT FEA2Size; /\ Tally size of second FEA2 list @WðC\/

| ULONG Remainder; /\ Holds remainder-byte offset calc @WðA\/

| LONG i; /\ Controls FEA2 WHILE loop @WðA\/

| .

| .

| .

| Figure 86 (Part 1 of 11). Example of C Program using Extended Attributes

 Copyright IBM Corp. 1993, 1997 469

| /\\\@WðA\/

| /\ Prepare and execute a DDMQueryPathInfo call to query a @WðA\/

| /\ file's Extended Attributes. @WðA\/

| /\\\@WðA\/

| /\ The DDM call to query a file's extended attributes is @WðA\/

| /\ based on the OS/2 extended attributes model. As such, the @WðA\/

| /\ calls to DDMQueryFileInfo and DDMQueryPAthInfo must pass a @WðA\/

| /\ pointer to an EAOP2 structure which, in turn, contains @WðA\/

| /\ pointers to the GEA2LIST area and the FEA2LIST area. @WðA\/

| /\ The GEA2LIST area contains a header and variable length @WðA\/

| /\ GEA2 list entries. Each list entry identifies one EA @WðA\/

| /\ being queried. The FEA2LIST area is where the returned @WðA\/

| /\ information will be set. @WðA\/

| /\ @WðA\/

| /\ The EAOP2, FEA2LIST, GEA2LIST, FEA2 and GEA2 are defined @WðA\/

| /\ in DUBDEFS.H which is included by DUB.H. The format of the @WðA\/

| /\ values which can be returned are documented in the VSAM @WðA\/

| /\ API Reference manual in the "VSAM API Common Parameters" @WðA\/

| /\ chapter. @WðA\/

| /\ Steps: @WðA\/

| /\ 1. Calculate the sizes of the GEA2LIST and FEA2LIST areas @WðA\/

| /\ 2. Do the GEA2LIST + FEA2LIST malloc + set EAOP2 pointers @WðA\/

| /\ 3. Fill in the GEA2LIST area @WðA\/

| /\ 4. Fill in the FEA2LIST area @WðA\/

| /\ 5. Issue the DDMQueryPathInfo @WðA\/

| /\ 6. Extract DDM attribute data from the FEA2LIST area @WðA\/

| /\ 7. Free the GEA2LIST and FEA2LIST areas @WðA\/

| /\---

| -- Set up for DDMQueryPathInfo: @WðM

| --

| -- Build an extended attribute GEA2LIST area with two GEA2 @WðC

| -- list entries specifying the DELCP and FILCLS EAs. The @WðC

| -- attributes queried and structure content match those in @WðC

| -- the "Extended Attributes" section of the VSAM API Reference @WðC

| -- manual. @WðC

| --

| --\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 1. Calculate the sizes of the GEA2LIST and FEA2LIST areas @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ @WðA\/

| /\ First calculate size of GEA2LIST area to be passed. @WðA\/

| /\ The GEA2LIST header : ULONG-Length of GEA2 list area @WðA\/

| /\ (pointed to by fpGEA2LIST in EAOP2 @WðA\/

| /\ The GEA2 list entry : ULONG-oNextEntryOffset, @WðA\/

| /\ : UCHAR-cbName (len of name) @WðA\/

| /\ : CHAR-szName[1] (char .DDM_xxx) @WðA\/

| /\ Note 1: GEA2 list entries must start on 4 byte boundaries @WðA\/

| /\ 2: The cbName does not count null string terminator @WðA\/

| /\ 3: Last entry is identified by oNextEntryOffset=ð @WðA\/

| Figure 86 (Part 2 of 11). Example of C Program using Extended Attributes

470 SdU VSAM API Reference

| /\ Calculate the GEA2LIST area size @WðA\/

| /\ GEA2 list area begins with the GEA2LIST header @WðA\/

| GEASize = sizeof(Eaop.fpGEA2List->cbList); /\@WðA\/

| /\ Each attribute to be queried needs a GEA2 list entry @WðA\/

| /\ Add on size for first GEA2 list entry - .DDM_DELCP @WðA\/

| /\ DELCP_NAME is defined as: ".DDM_DELCP" @WðA\/

| GEASize = GEASize

| + sizeof(Eaop.fpGEA2List->list[ð].oNextEntryOffset)

| + sizeof(Eaop.fpGEA2List->list[ð].cbName)

| + strlen(DELCP_NAME)

| + 1; /\ + null string terminator @WðA\/

| /\ GEAOffset entry must be on 4 byte boundary @WðA\/

| Remainder = GEASize % 4; /\@WðA\/

| if (Remainder != ð) /\@WðA\/

| GEASize=GEASize + (4-Remainder); /\@WðA\/

| /\ Now add on next GEA2 list entry - .DDM_FILCLS @WðA\/

| /\ FILCLS_NAME is defined as: ".DDM_FILCLS" @WðA\/

| GEASize = GEASize

| + sizeof(Eaop.fpGEA2List->list[ð].oNextEntryOffset)

| + sizeof(Eaop.fpGEA2List->list[ð].cbName)

| + strlen(FILCLS_NAME)

| + 1; /\ + name string terminator @WðA\/

| /\ This is last GEA2 list entry so the 4 byte boundary rule @WðA\/

| /\ does not apply. i.e. you don't need to pad this entry. @WðA\/

| /\ Now calculate size of FEA2LIST area to hold returned info. @WðA\/

| /\ The FEA2LIST header: ULONG-Length of FEA2 list area @WðA\/

| /\ (pointed to by fpFEA2LIST in EAOP2 @WðA\/

| /\ The FEA2 list entry: ULONG-oNextEntryOffset, @WðA\/

| /\ : UCHAR-fEA (flag) @WðA\/

| /\ : UCHAR-cbName (len of name) @WðA\/

| /\ : USHORT-cbValue (len of value) @WðA\/

| /\ : CHAR-szName[1] (char .DDM_xxx) @WðA\/

| /\ : followed by DDMOBJECT encoded value @WðA\/

| /\ Note 1: FEA2 list entries start on 4 byte boundaries @WðA\/

| /\ 2: The cbName does not count null string terminator @WðA\/

| /\ 3: Last entry is identified by oNextEntryOffset=ð @WðA\/

| /\ 4: A cbValue of ð means value field is null @WðA\/

| /\ Calculate the FEA2LIST area size @WðA\/

| /\ FEA2LIST area begins with the FEA2LIST header @WðA\/

| FEASize = sizeof(Eaop.fpFEA2List->cbList); /\@WðA\/

| /\ Add on size for returned FEA2 list entry - .DDM_DELCP @WðA\/

| /\ DELCP_NAME is defined as: ".DDM_DELCP" @WðA\/

| /\ DELCP_SIZE is defined as: @WðA\/

| /\ sizeof(OBJLENGTH) + sizeof(CODEPOINT) + 1 @WðA\/

| FEASize = FEASize

| + sizeof(Eaop.fpFEA2List->list[ð].oNextEntryOffset)

| + sizeof(Eaop.fpFEA2List->list[ð].fEA)

| + sizeof(Eaop.fpFEA2List->list[ð].cbName)

| + sizeof(Eaop.fpFEA2List->list[ð].cbValue)

| + strlen(DELCP_NAME)

| + 1 /\ + null string terminator WðA\/

| + DELCP_SIZE; /\@WðA\/

| Figure 86 (Part 3 of 11). Example of C Program using Extended Attributes

 Appendix A. Programming Extended Attributes in VSAM APIs 471

| /\ FEAOffset entry must be on 4 byte boundary @WðA\/

| Remainder = FEASize % 4; /\@WðA\/

| if (Remainder != ð) /\@WðA\/

| FEASize=FEASize + (4-Remainder); /\@WðA\/

| /\ Add on size for returned FEA2 list entry - .DDM_FILCLS @WðA\/

| /\ FILCLS_NAME is defined as: ".DDM_FILCLS" @WðA\/

| /\ FILCLS_SIZE is defined as: @WðA\/

| /\ sizeof(OBJLENGTH) + (2 \ sizeof(CODEPOINT)) @WðA\/

| FEASize = FEASize

| + sizeof(Eaop.fpFEA2List->list[ð].oNextEntryOffset)

| + sizeof(Eaop.fpFEA2List->list[ð].fEA)

| + sizeof(Eaop.fpFEA2List->list[ð].cbName)

| + sizeof(Eaop.fpFEA2List->list[ð].cbValue)

| + strlen(FILCLS_NAME)

| + 1 /\ + null string terminator @WðA\/

| + FILCLS_SIZE ;

| /\ Order of returned attributes is up to server so allow for @WðA\/

| /\ each returned entry to be on a 4 byte boundary. @WðA\/

| Remainder = FEASize % 4; /\@WðA\/

| if (Remainder != ð) /\@WðA\/

| FEASize=FEASize + (4-Remainder); /\@WðA\/

| /\ Note, we have calculated the minimum FEA2LIST size to hold @WðA\/

| /\ the returned information. We are permitted to pass a much @WðA\/

| /\ bigger buffer for the FEA2LIST if we wish so we could have @WðA\/

| /\ skipped doing a precise FEA2LIST size calcuation. However, @WðA\/

| /\ if we pass too small a FEA2LIST area, we will get a @WðA\/

| /\ LENGTHRM error reply message. @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 2. Do the GEA2LIST + FEA2LIST malloc + set EAOP2 pointers @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ @WðA\/

| /\ The call to DDMQueryPathInfo will include a pointer to the @WðA\/

| /\ EAOP2 structure (locally defined as Eaop) and it has @WðA\/

| /\ pointers to the GEA2LIST and FEA2LIST areas. @WðA\/

| /\ @WðA\/

| /\ The EAOP2 struct: PGEA2LIST-fpGEA2List (ptr to GEA2LIST) @WðA\/

| /\ : PFEA2LIST-fpFEA2List (ptr to FEA2LIST) @WðA\/

| /\ : ULONG-oError @WðA\/

| /\ OK, now do the mallocs for GEA2LIST and FEA2LIST areas and @WðA\/

| /\ put the pointers in the EAOP2 structure. @WðA\/

| if ((Eaop.fpFEA2List = (PFEA2LIST)malloc(FEASize)) == NULL)

| { printf("Out of memory\n");

| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);

| return(1);

| }

| if ((Eaop.fpGEA2List = (PGEA2LIST)malloc(GEASize)) == NULL)

| { printf("Out of memory\n");

| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);

| return(1);

| }

| Eaop.oError = ðL;

| Figure 86 (Part 4 of 11). Example of C Program using Extended Attributes

472 SdU VSAM API Reference

| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 3. Fill in the GEA2LIST area @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ Initialize the GEA2LIST area @WðA\/

| memset(&(Eaop.fpGEA2List->cbList),'\ð',GEASize); /\@WðA\/

| /\ OK now start filling in the GEA2LIST area detail @WðA\/

| /\ Fill in the GEA2 header which has the area length @WðA\/

| Eaop.fpGEA2List->cbList = GEASize;

| /\ The GEA2LIST struct: ULONG-cbList (len of GEA2 area) @WðA\/

| /\ GEA2-list[1] (orient first entry) @WðA\/

| /\ The pGEA pointer will point to the specific GEA2 list @WðA\/

| /\ entry on which we are working. Use the GEA2LIST structure @WðA\/

| /\ definition to orient to the first list entry. @WðA\/

| pGEA = (PGEA2)(&(Eaop.fpGEA2List->list[ð]));

| /\ Fill out the first GEA2 list entry - DELCP_NAME @WðA\/

| pGEA->cbName = (CHAR)(strlen(DELCP_NAME)); /\@WðA\/

| strcpy(pGEA->szName, DELCP_NAME); /\@WðA\/

| /\ Calculate size for first GEA2 list entry - .DDM_DELCP @WðA\/

| pGEA->oNextEntryOffset =

| sizeof(pGEA->oNextEntryOffset)

| + sizeof(pGEA->cbName)

| + pGEA->cbName +1; /\@WðA\/

| /\ The next GEA2 list entry must begin on 4 byte boundary @WðA\/

| Remainder = pGEA->oNextEntryOffset % 4; /\@WðA\/

| if (Remainder != ð) /\@WðA\/

| pGEA->oNextEntryOffset = pGEA->oNextEntryOffset + (4-Remainder);

| /\@WðA\/

| /\ Now move the GEA list entry pointer for the next list entry@WðA\/

| pGEA = (PGEA2)((PBYTE)pGEA + pGEA->oNextEntryOffset); /\@WðA\/

| /\ Set up the next GEA2 list entry - .DDM_FILCLS @WðA\/

| pGEA->cbName = (CHAR)(strlen(FILCLS_NAME)); /\@WðA\/

| strcpy(pGEA->szName, FILCLS_NAME); /\@WðA\/

| /\ This GEA2 list entry is the last in this request. So @WðA\/

| /\ set the NextEntryOffset to ð to indicate this is last @WðA\/

| /\ list entry. @WðA\/

| pGEA->oNextEntryOffset = ðL;

| /\\\\\\\\\\\\\\\\\\\\ STEP 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 4. Fill in the FEA2LIST area @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ Initialize the FEA2LIST area @WðA\/

| memset(&(Eaop.fpFEA2List->cbList),'\ð',FEASize); /\@WðA\/

| /\ Fill in the FEA2LIST header which has the area length @WðA\/

| Eaop.fpFEA2List->cbList = FEASize;

| /\ The remainder of the FEA2LIST area is untouched. It will @WðA\/

| /\ contain the returned EA FEA2 list entries from the @WðA\/

| /\ DDMQueryPathInfo call. @WðA\/

| Figure 86 (Part 5 of 11). Example of C Program using Extended Attributes

 Appendix A. Programming Extended Attributes in VSAM APIs 473

| /\\\\\\\\\\\\\\\\\\\\ STEP 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 5. Issue the DDMQueryPathInfo @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\---

| -- Query a file to get .DDM_DELCP and .DDM_FILCLS EA. @WðC

| -- Then display the returned EAs. @WðC

| --\/

| SevCode = DDMQueryPathInfo

| (SeqFN, /\ PathName \/

| 1UL, /\ PathInfoLevel \/

| (PBYTE)&Eaop, /\ PathInfoBuf \/

| (ULONG)sizeof(EAOP2) /\ PathInfoBufSize \/

|);

| if (SevCode == SC_NO_ERROR)

| { printf("\n\nSuccessful DDMQueryPathInfo call to file %s\n",SeqFN);

| /\\\\\\\\\\\\\\\\\\\\ STEP 6 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 6. Extract DDM attribute data from the FEA2LIST area @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 6 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ OK, we got a good return code, so it is time to look at @WðA\/

| /\ the FEA2LIST area which now holds the returned info. @WðA\/

| /\ Initialize the pFEA pointer to first FEA2 entry @WðA\/

| pFEA = (PFEA2)(&(Eaop.fpFEA2List->list[ð]));

| /\ The local i variable will govern the WHILE loop which @WðA\/

| /\ follows. It counts the number of bytes remaining in @WðA\/

| /\ the FEA2LIST. When the last FEA2 list entry is @WðA\/

| /\ encountered, it is set to zero to stop the WHILE loop. @WðA\/

| /\ If it goes negative, something went wrong while @WðA\/

| /\ navigating around the FEA2 entries, stop the WHILE loop. @WðA\/

| i = (Eaop.fpFEA2List->cbList - sizeof(Eaop.fpFEA2List->cbList));

| while (i > ð)

| { /\ while more FEA2 list entries to process @WðA\/

| /\ Temporarily set pAttValue to beginning szName which @WðA\/

| /\ is the .DDMxxx attribute name. @WðA\/

| pAttValue = (PDDMOBJECT)((PBYTE)&pFEA->szName);

| /\ Now move pAttValue past the .DDMxxx attribute to @WðA\/

| /\ the value field by adding the number given in cbName@WðA\/

| /\ plus one for the string terminating null character. @WðA\/

| pAttValue = (PDDMOBJECT)((PBYTE)pAttValue +

| pFEA->cbName + 1); /\@WðA\/

| /\ The value field is in PDDMOBJECT format. @WðA\/

| /\ The PDDMOBJECT: OBJLENGTH-cbObject (len obj-4 byte) @WðA\/

| /\ : CODEPOINT-cpObject (codept-2 byte) @WðA\/

| /\ : BYTE-pData[1] (data value) @WðA\/

| /\ We are expecting only 2 specific attributes back @WðA\/

| if (!memcmp(&(pFEA->szName[ð]),FILCLS_NAME,

| sizeof(FILCLS_NAME))) /\@WðA\/

| { /\ yes, this is the returned FILCLS attribute @WðA\/

| Figure 86 (Part 6 of 11). Example of C Program using Extended Attributes

474 SdU VSAM API Reference

| /\ DUBCODPT.H (inc by DUB.H) defines SEQFIL, etc. @WðA\/

| if (pFEA->cbValue == ð)

| { /\ a cbValue of zero means value field is null @WðA\/

| printf("The .DDM_FILCLS attribute "

| "for %s is null. \n", /\@WðC\/

| SeqFN);

| } /\ a cbValue of zero means value field is null @WðA\/

| else

| { /\ value returned @WðA\/

| switch (\(PCODEPOINT)pAttValue->pData) /\@WðC\/

| { case SEQFIL:

| printf("The .DDM_FILCLS attribute "

| "for %s is SEQFIL. \n",SeqFN); /\@WðC\/

| break;

| case DIRFIL:

| printf("The .DDM_FILCLS attribute "

| "for %s is DIRFIL. \n",SeqFN); /\@WðC\/

| break;

| case KEYFIL:

| printf("The .DDM_FILCLS attribute "

| "for %s is KEYFIL. \n",SeqFN); /\@WðC\/

| break;

| case ALTINDF:

| printf("The .DDM_FILCLS attribute "

| "for %s is ALTINDF. \n", /\@WðC\/

| SeqFN);

| break;

| default: printf("The .DDM_FILCLS attribute "

| "for %s is invalid. \n", /\@WðC\/

| SeqFN);

| break;

| } /\ end switch @WðC\/

| } /\ value returned @WðA\/

| } /\ yes, this is the returned FILCLS attribute @WðA\/

| else if (!memcmp(&(pFEA->szName[ð]),DELCP_NAME,

| sizeof(DELCP_NAME))) /\@WðA\/

| { /\ yes, this is the returned DELCP attribute @WðA\/

| if (pFEA->cbValue == ð)

| { /\ a cbValue of zero means value field is null @WðA\/

| printf("The .DDM_DELCP attribute "

| "for %s is null. \n", /\@WðC\/

| SeqFN);

| } /\ a cbValue of zero means value field is null @WðA\/

| else

| { /\ value returned @WðA\/

| if (\(PCODEPOINT)pAttValue->pData == ðxf1) /\@WðC\/

| printf("The .DDM_DELCP attribute for %s is TRUE. \n",

| SeqFN); /\@WðC\/

| else

| printf("The .DDM_DELCP attribute for %s is FALSE.\n",

| SeqFN); /\@WðC\/

| } /\ value returned @WðA\/

| } /\ yes, this is the returned DELCP attribute WðA\/

| else /\@WðA\/

| printf("unexpected EA returned for %s \n",

| SeqFN);

| Figure 86 (Part 7 of 11). Example of C Program using Extended Attributes

 Appendix A. Programming Extended Attributes in VSAM APIs 475

| /\ Now move to the next entry in the FEA @WðA\/

| if (pFEA->oNextEntryOffset > ð)

| { /\ the next entry is not the last entry @WðA\/

| i = i - pFEA->oNextEntryOffset; /\@WðA\/

| pFEA = (PFEA2)((PBYTE)pFEA + pFEA->oNextEntryOffset);

| /\@WðA\/

| } /\ the next entry is not the last entry @WðA\/

| else

| { /\ this was last entry-terminate WHILE @WðA\/

| i = ð; /\@WðA\/

| } /\ this was last entry-terminate WHILE @WðA\/

| } /\ while more FEA entries to process @WðA\/

| }

| else

| { printf("Error in DDMQueryPathInfo call to file %s\n",SeqFN);

| printf("Severity code = %u\n",SevCode);

| ReplyMsg();

| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);

| return(SevCode);

| }

| /\\\\\\\\\\\\\\\\\\\\ STEP 7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 7. Free the GEA2LIST and FEA2LIST areas @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| free(Eaop.fpFEA2List);

| free(Eaop.fpGEA2List);

| /\\\@WðA\/

| /\ Prepare and execute a DDMSetPathInfo call to set a file's @WðA\/

| /\ Extended Attribute. @WðA\/

| /\\\@WðA\/

| /\ The DDM call to set a file's extended attributes is @WðA\/

| /\ based on the OS/2 extended attributes model. As such, the @WðA\/

| /\ calls to DDMSetPathInfo must pass a pointer to an EAOP2 @WðA\/

| /\ structure which, in turn, contains a pointer to the @WðA\/

| /\ FEA2LIST area which contains the attributes values. @WðA\/

| /\ @WðA\/

| /\ The EAOP2, FEA2LIST, GEA2LIST, FEA2 and GEA2 are defined @WðA\/

| /\ in DUBDEFS.H which is included by DUB.H. The format of the @WðA\/

| /\ values which can be returned are documented in the VSAM @WðA\/

| /\ API Reference manual in the "VSAM API Common Parameters" @WðA\/

| /\ chapter. @WðA\/

| /\ @WðA\/

| /\ Steps: @WðA\/

| /\ 1. Calculate the size of the required FEA2LIST area @WðA\/

| /\ 2. Do the FEA2LIST malloc and set the EAOP2 pointer @WðA\/

| /\ 3. Fill in the FEA2LIST area @WðA\/

| /\ 4. Issue the DDMSetPathInfo @WðA\/

| /\ 5. Free the FEA2LIST area @WðA\/

| /\---

| -- Set up for DDMSetPathInfo:

| --

| -- Build an extended attribute FEA2LIST area with one FEA2 @WðC

| -- list entry to specify the TITLE extended attribute. @WðC

| --\/

| Figure 86 (Part 8 of 11). Example of C Program using Extended Attributes

476 SdU VSAM API Reference

| /\\\\\\\\\\\\\\\\\\\\ STEP 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 1. Calculate the size of the required FEA2LIST area @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ Now calculate size of FEA2 list area to hold returned info.@WðA\/

| /\ The FEA2LIST header: ULONG-Length of FEA2LIST area @WðA\/

| /\ (pointed to by fpFEA2LIST in EAOP2) @WðA\/

| /\ The FEA2 list entry: ULONG-oNextEntryOffset, @WðA\/

| /\ : UCHAR-fEA (flag) @WðA\/

| /\ : UCHAR-cbName (len of name) @WðA\/

| /\ : USHORT-cbValue (len of value) @WðA\/

| /\ : CHAR-szName[1] (char .DDM_xxx) @WðA\/

| /\ : followed by DDMOBJECT encoded value @WðA\/

| /\ Note 1: FEA2 list entries start on 4 byte boundaries @WðA\/

| /\ 2: The cbName does not count null string terminator @WðA\/

| /\ 3: Last entry is identified by oNextEntryOffset=ð @WðA\/

| /\ Calculate the FEA2LIST area size @WðA\/

| /\ FEA2LIST area begins with the FEA2LIST header @WðA\/

| FEA2Size = sizeof(Eaop2.fpFEA2List->cbList); /\@WðA\/

| /\ Now add on an FEA2 list entry - .DDM_TITLE @WðA\/

| /\ TITLE_NAME is defined as: ".DDM_TITLE" @WðA\/

| /\ TitleString if defined as "Title String" @WðA\/

| /\ TITLE_SIZE is defined as: @WðA\/

| /\ sizeof(OBJLENGTH) + sizeof(CODEPOINT) @WðA\/

| /\ + strlen(TitleString); @WðA\/

| FEA2Size = FEA2Size

| + sizeof(Eaop2.fpFEA2List->list[ð].oNextEntryOffset)

| + sizeof(Eaop2.fpFEA2List->list[ð].fEA)

| + sizeof(Eaop2.fpFEA2List->list[ð].cbName)

| + sizeof(Eaop2.fpFEA2List->list[ð].cbValue)

| + strlen(TITLE_NAME)

| + 1 /\ + null string terminator @WðA\/

| + TITLE_SIZE; /\@WðC\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 2. Do the FEA2LIST malloc and set the EAOP2 pointer @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ @WðA\/

| /\ The call to DDMSetPathInfo will include a pointer to the @WðA\/

| /\ EAOP2 structure (locally defined as Eaop2) and it has @WðA\/

| /\ pointers to the GEA2LIST and FEA2LIST areas. @WðA\/

| /\ @WðA\/

| /\ The EAOP2 struct: PGEA2LIST-fpGEA2List (ptr to GEA2LIST) @WðA\/

| /\ : PFEA2LIST-fpFEA2List (ptr to FEA2LIST) @WðA\/

| /\ : ULONG-oError @WðA\/

| if ((Eaop2.fpFEA2List = (PFEA2LIST)malloc(FEA2Size)) == NULL)

| { printf("Out of memory\n");

| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);

| return(1);

| }

| /\ Since this is a DDMSetPathInfo call, there is no GEA2LIST @WðA\/

| Eaop2.fpGEA2List = NULL; /\@WðM\/

| Eaop2.oError = ðL; /\@WðA\/

| Figure 86 (Part 9 of 11). Example of C Program using Extended Attributes

 Appendix A. Programming Extended Attributes in VSAM APIs 477

| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 3. Fill in the FEA2LIST area @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ Initialize the FEA2LIST area @WðA\/

| memset(&(Eaop2.fpFEA2List->cbList),'\ð',FEA2Size); /\@WðA\/

| /\ Fill in the FEA2LIST header which has list area length @WðA\/

| Eaop2.fpFEA2List->cbList = FEA2Size;

| /\ The pFEA pointer will point to the specific FEA2 entry @WðA\/

| /\ on which we are working. Use the FEA2LIST structure @WðA\/

| /\ definition to orient to the first list entry. @WðA\/

| pFEA = Eaop2.fpFEA2List->list;

| /\ Fill out the first and only FEA2 list entry - TITLE @WðA\/

| pFEA->fEA = ð;

| pFEA->cbName = (CHAR)(strlen(TITLE_NAME)); /\@WðC\/

| pFEA->cbValue = TITLE_SIZE; /\@WðA\/

| strcpy(pFEA->szName,TITLE_NAME); /\@WðC\/

| /\ Now set pAttValue ptr past the .DDMxxx attribute to @WðA\/

| /\ the value field by adding the number given in cbName @WðA\/

| /\ plus one for the string terminating null character. @WðA\/

| pAttValue = (PDDMOBJECT)((PBYTE)&pFEA->szName +

| pFEA->cbName + 1); /\@WðA\/

| /\ The value field is in PDDMOBJECT format. @WðA\/

| /\ The PDDMOBJECT: OBJLENGTH-cbObject (len obj-4 byte) @WðA\/

| /\ CODEPOINT-cpObject (codept-2 byte) @WðA\/

| /\ BYTE-pData[1] (data value) @WðA\/

| pAttValue->cbObject = TITLE_SIZE; /\@WðA\/

| /\ DUBCODPT.H (included by DUB.H) TITLE codepoint=ðxðð45 @WðA\/

| pAttValue->cpObject = TITLE;

| strcpy(pAttValue->pData,TitleString);

| /\ This FEA2 entry is the last in this request. So set the @WðA\/

| /\ NextEntryOffset to ð to indicate this is the last entry. @WðA\/

| pFEA->oNextEntryOffset = ðL; /\@WðA\/

| Figure 86 (Part 10 of 11). Example of C Program using Extended Attributes

478 SdU VSAM API Reference

| /\\\\\\\\\\\\\\\\\\\\ STEP 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 4. Issue the DDMSetPathInfo @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| SevCode = DDMSetPathInfo

| (SeqFN, /\ PathName \/

| 1UL, /\ PathInfoLevel \/

| (PBYTE)&Eaop2, /\ PathInfoBuf \/

| (ULONG)sizeof(EAOP2) /\ PathInfoBufSize \/

|);

| if (SevCode == SC_NO_ERROR)

| printf("\nSuccessful DDMSetPathInfo call to file %s\n",SeqFN);

| else

| { printf("Error in DDMSetPathInfo call to file %s\n",SeqFN);

| printf("Severity code = %u\n",SevCode);

| ReplyMsg();

| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);

| return(SevCode);

| }

| /\\\\\\\\\\\\\\\\\\\\ STEP 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ 5. Free the FEA2LIST area @WðA\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| free(Eaop2.fpFEA2List); /\@WðA\/

| .

| .

| .

| Figure 86 (Part 11 of 11). Example of C Program using Extended Attributes

 Appendix A. Programming Extended Attributes in VSAM APIs 479

480 SdU VSAM API Reference

 Glossary

This glossary defines many of the terms and abbrevi-
ations used in this manual. If you do not find the term
you are looking for, refer to the index or to the Dictionary
of Computing, SC20-1699.

abend . Abnormal end of task.

access method . The part of the DDM architecture
which accepts commands to access and process the
records of a file.

ADL . A Data Language

ADSM. ADSTAR Distributed Storage Manager.

alternate index file . A file that has a different key path
over a base file. The base file can be a keyed, direct, or
sequential file.

API. Application Programming Interface

CCS. Common Communication Support.

CCSID. Coded character set identifier.

CDRA. Character Data Representation Architecture.

CM. Communications Manager

complete path name . The specifications for a file
which includes the drive, directories, filename and file
extension.

data conversion . A set of programs that convert data
according to defined data descriptions. For example,
characters can be converted from EBCDIC to ASCII, and
numeric data can be converted from System /370
packed decimal to IEEE floating point or ASCII character
(or vice versa).

data description . Specification of the layout of data.
The data description of data stored in a file can be
viewed as a file attribute.

data security . The protection of data against unauthor-
ized disclosure, transfer, modifications or destruction,
whether accidental or intentional.

data set . The major unit of data storage and retrieval.
It consists of a collection of data in one of several pre-

scribed arrangements which is described by control
information that the system has access to.

data stream . All data transmitted through a data
channel in a single read or write operation.

DD&C. Data Description and Conversion; architecture
extension to DDM.

DDM. Distributed Data Management; an SAA CCS
architecture. A set of interfaces that gives users access
to data files that reside on remote systems connected by
a communication network. The DDM interfaces enable
an application program to retrieve, add, update and
delete data records in a file existing on a remote system.
The DDM interfaces can be used to communicate
between systems that have different architectures.

deadlock . Unresolved contention for the use of a
resource. Each element in a process is waiting for an
action by, or a response from, the other.

DFM. Distributed FileManager.

DFM client . Translates requests from the source
system for access to file data on a remote system into a
standard architected DDM request.

DFM server . A DFM component that accepts a remote
request to access data and translates this request into a
data management request on the target system.

direct file . A file that contains records that have a
relationship between the contents of the record and the
record position at which the record is stored.

distributed data management (DDM) . Architecture for
accessing distributed data located in files and distributed
relational databases.

distributed file management (DFM) . Strategy for a set
of programming facilities that implement the file aspects
of the DDM architecture on those systems which repre-
sent the SAA environments.

DRBA . Distributed relational data base access.

FSD. File System Driver.

HPFS. High Performance File System.

IFS. Installable File System.

 Copyright IBM Corp. 1993, 1997 481

independent LU . A logical unit (LU) that is not con-
trolled by a System Network Architecture (SNA) host
system.

intersystem communication . Communication between
different systems by means of SNA facilities.

keyed file . A file organization that supports keyed
forms of access to the records of the file.

LAN . Local area network.

Local area network . LAN

LDM. Local data management.

LDMI. Local data management interface.

local file . A file that resides on the same system as the
application program that is accessing it.

LU. Logical unit.

protocol . A set of rules to be followed by communi-
cation systems.

RACF. Resource Access Control Facility. An external
security management facility.

record . The basic unit of data stored in a file and trans-
ferred between DDM source and target servers.

record file . Record files consist of data fields organized
into records that can be accessed as a set of bytes.

remote file . A file that resides on a system other than
the system where the application program requesting
access to the file resides.

Remote Record Access Support . DFM function that
allows applications to access remote file data. function
is to allow byte stream applications to access remote file
data.

SAA . Systems Application Architecture

SAA data . Data on SAA systems that is subject to
remote access and management using SAA DDM proto-
cols.

SCM. Source communications manager. The DDM
layer responsible for interfacing with the local communi-
cations facilities. It coordinates the sending and
receiving of data on the source system.

sequential file . A file in which records are arranged in
exactly the same sequence as they were stored into the
file.

SNA. Systems Network Architecture.

source system . A system that requests access to data
on another system. It is the "source" of the request.

Stream Agent . The DDM program responsible for
transformation of data between the stream oriented API
requests and the DDM byte requests.

stream file . Stream files contain strings of bytes that
can be accessed according to their relative position
within the file.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through and controlling the configuration and oper-
ation of networks.

target system . The system that contains data that is
being accessed by another system.

target system data . Data considered to be owned and
maintained according to the rules and functions pre-
scribed by the data manager on the target system.

TP. Transaction Program

user exit . A point in an IBM-supplied program at which
a user-exit routine may be given control.

482 SdU VSAM API Reference

 Index

A
ACCATHRM (not authorized to use access method)

reply message 415
access capability

allow get record capability, create flag 407
allow insert record capability, create flag 407
allow modify record capability, create flag 407

access damage severity code 395
access intent

list error, reply message 415
list, parameter 361

access method 7, 18
class, parameter 362
CMBACCAM (combined) 20
CMBKEYAM (combined key) 19
CMBRNBAM (combined record number) 19
invalid, reply message 416
list, parameter 362
not authorized to use, reply message 415
promotions 20, 28
RELKEYAM (relative by key) 19
RELRNBAM (relative by record number) 18
RNDKEYAM (random by key) 19
RNDRNBAM (random by record number) 19

access method, definition 481
access order (records), copy flag
AccessFlags 399
accessing

a file, date of 383
ACCINTLS (access intent list) parameter 361

DELAI (delete record access intent) 361
GETAI (get record access intent) 361
INSAI (insert record access intent) 361
MODAI (modify record access intent) 361

ACCINTRM (access intent list error) reply
message 415

ACCMTHCL (access method class) parameter 362
ACCMTHLS (access method list) parameter 362
ACCMTHRM (invalid access method) reply

message 416
address error, reply message 417
ADDRM (address error) reply message 417
AGNPRMRM (permanent agent error) reply

message 418
ALCINISZ (allocate initial extent) parameter 363

allocate initial extent 363
allocating initial file size, parameter 375
allow

cursor to be set to inactive record, access flag 401
duplicate keys, create flag 409
get record capability, create flag 407
insert record capability, create flag 407
modify record capability, create flag 407
record deletion, create flag 408

alternate index file 16
base file 364, 365

ALTINDLS (alternate index list) parameter 364
archiving

a file, date of 384
assigning a new name to a file 386
attribute

file hidden 375
File system 378

B
base file 13, 16
base file name parameter 365
base management class name, parameter 365
base storage class name, parameter 366
BASFILNM (base file name) parameter 365
BASMGMNM (base management class name) param-

eter 365
BASNAMRM (invalid base file name) reply

message 418
BASSTGNM (base storage class name) parameter 366
BOF (beginning of file), definition 15
bypassing

all records, active and inactive, access flag 402
damaged records, access flag 401
damaged records, copy flag 405
inactive records, copy flag 405

byte count parameter, file 373

C
calendar, Gregorian 367
changing

a file, date of 373
class name

base management 365

 Copyright IBM Corp. 1993, 1997 483

class name (continued)
base storage 366
data 370
management 385
storage 393

clock, date and time parameter 367
closing a file 44
CLSDMGRM (file closed with damage) reply

message 419
CMBACCAM (combined) access method 20
CMBKEYAM (combined key) access method 19
CMBRNBAM (combined record number) access

method 19
CMDCHKRM (command check) reply message 419
Code Point

attribute parameter 366
CODPNT (code point) parameter 366
command check, reply message 419
COMMRM (communications error) reply message 421
composite key, definition 379
concurrency protection 22
concurrent opens exceeds maximum, reply

message 453
CopyFlags 404
copying a file 46
CreateFlags 405
creating

a file, date of 374
alternate index file 50
record file 57

CSRPOSST (cursor position status) parameter 366
CSTNSARM (cursor not selecting a record position)

reply message 424
cursor

allow to be set to inactive record, access flag 401
general information 21
hold cursor indicator 22
hold position, access flag 401
moving EOF to current position 337
not selecting a record position, reply message 424
setting by key value 159
setting to BOF 141
setting to first record in key sequence 177
setting to first record of the file 148
setting to last record 233
setting to last record in key sequence 186
setting to minus the number of record positions in

CsrDisp 243
setting to next record 269
setting to next record in key sequence 202

cursor (continued)
setting to next record with equal key 253
setting to plus the number of record positions in

CsrDisp 291
setting to previous record 301
setting to previous record in key sequence 220
setting to record number 314
status of, parameter 366
update error, reply message 465
update, access flag 400

CVTNFNRM (conversation table not found) reply
message 425

D
damage

access damage severity code 395
permanent damage severity code 395
session damage severity code 395

damaged
bypass damaged records, access flag 401
file, reply message 436
record, bypassing 455
record, reply message 455

data
class name, parameter 370
lock status, parameter 371
stream syntax error, reply message 463

data stream
description 1
parsing, terminating 396

date
and time parameter 367
file access date, parameter 383
file access, parameter 383
file archived date, parameter 384
file change, parameter 373
file creation, parameter 374
Gregorian calendar 367

DATE (date and time) parameter 367
DDFNFNRM (data description file not found) reply

message 425
DDM

lock management 22
DDM (Distributed Data Management)

data stream 1
records 4

DDM definition 481
DDM_ACCORD (access order) flag 405

484 SdU VSAM API Reference

DDM_ALDUPKEY (allow duplicate keys) flag 409
DDM_ALLREC (all records, active 485 inactive)

flag 402
DDM_ALWINA (allow cursor set to inactive record)

flag 401
DDM_BYPDMG (bypass damaged records) flag 401,

405
DDM_BYPINA (bypass inactive records) flag 405
DDM_DELCP (allow record deletion) flag 408
DDM_FILHDD (hidden file) flag 407
DDM_FILPRT (protected file) flag 406
DDM_FILSYS (system file) flag 406
DDM_GETCP (allow get record capability) flag 407
DDM_HLDCSR (hold cursor position) flag 401
DDM_HLDUPD (hold update intent) flag 400
DDM_INHMODKY (inhibit modified keys) flag 400
DDM_INIEX (inhibit initial extent) flag 408
DDM_INSCP (allow insert record capability) flag 407
DDM_KEYVALFB (key value feedback) flag 402
DDM_MODCP (allow modify record capability) flag 407
DDM_NODATA (no record data returned) flag 402
DDM_RECNBRFB (record number feedback) flag 403
DDM_RTNINA (return inactive record) flag 402
DDM_TMPFIL (temporary file) flag 408
DDM_UPDCSR (update cursor) flag 400
DDM_UPDINT (update intent) flag 403
DDMClose 44
DDMCopyFile 46
DDMCreateAltIndex 50
DDMCreateRecFile 57
DDMDelete 64
DDMDeleteRec 66
DDMForceBuffer 70
DDMGetRec 72
DDMGetReplyMessage 81
DDMInsertRecEOF 83
DDMInsertRecKey 93
DDMInsertRecNum 98
DDMLoadFileFirst 106
DDMLoadFileNext 115
DDMModifyRec 122
DDMOpen 127
DDMQueryFileInfo 133
DDMQueryPathInfo 135
DDMRename 138
DDMSetBOF 141
DDMSetEOF 144
DDMSetFileInfo 146
DDMSetFirst 148

DDMSetKey 159
DDMSetKeyFirst 177
DDMSetKeyLast 186
DDMSetKeyLimits 195
DDMSetKeyNext 202
DDMSetKeyPrevious 220
DDMSetLast 233
DDMSetMinus 243
DDMSetNextKeyEqual 253
DDMSetNextRec 269
DDMSetPathInfo 288
DDMSetPlus 291
DDMSetPrevious 301
DDMSetRecNum 314
DDMSetUpdateKey 321
DDMSetUpdateNum 330
DDMTruncFile 337
DDMUnLoadFileFirst 339
DDMUnLoadFileNext 349
DDMUnLockRec 358
default

record error, reply message 426
record, parameter 369

defining a key field 382
DELAI (delete record access intent) 361
DELCP (record deletion capability) parameter 369
deleting

a file 64
a record 66

deletion (record) capability, parameter 369
DFTREC (default record) parameter 369
DFTRECRM (default record error) reply message 426
diagnostic information, server 392
direct file 10, 12
directory reply messages

full 427
not authorized to (access or update) 426

DRCATHRM (not authorized to directory) reply
message 426

DRCFULRM (directory full) reply message 427
DTACLSNM (data class name) parameter 370
DTALCKST (data lock status) parameter 371
DTARECRM (invalid data record) reply message 427
DUPFILRM (duplicate file name) reply message 429
DUPKDIRM (duplicate key different index) reply

message 429
DUPKSIRM (duplicate key same index) reply

message 430
duplicate

file name, reply message 429

 Index 485

duplicate (continued)
key

allow, create flag 409
capability, parameter 381
different index, reply message 429
same index, reply message 430

record number, reply message 432
DUPRNBRM (duplicate record number) reply

message 432

E
EAs (extended attributes) 5
end of file

definition 15
record number, parameter 372
reply message 433

ENDFILRM (end of file) reply message 433
EOF (end of file), definition 15
EOFNBR (end of file record number) parameter 372
ERRFILNM (error file name) parameter 372
error code

key definition, parameter 380
syntax 396

error file name, parameter 372
error severity code 394
error, reply message 419
existing condition, reply message 435
EXSCNDRM (existing condition) reply message 435
extended attributes (EAs) 5

F
field length error, reply message 451
FILATHRM (not authorized to file) reply message 435
FILBYTCN (file byte count) parameter 373
FILCHGDT (file change date) parameter 373
FILCLS (file class) parameter 374
FILCRTDT (file creation date) parameter 374
FILDMGRM (file damaged) reply message 436
file

access intent list parameter 361
access method class parameter 362
allocating storage 363
alternate index 16
base 13, 16
base file name, parameter 364, 365
byte count, parameter 373
causing an error 372
change date 373

file (continued)
change date, parameter 373
closed with damage, reply message 419
closing 44
concurrent opens exceeds maximum, reply

message 453
copying 46
creating

an alternate index 50
record 57

creation date 374
creation date, parameter 374
damaged, reply message 436
deleting 64
direct 10, 12
duplicate keys capability 381
file class, parameter 374
file hidden attribute, parameter 375
get capability, parameter 378
handle

not found, reply message 443
hidden 407
in use, reply message 439
index 14
initial size, parameter 375
insert capability, parameter 379
invalid base file name, reply message 418
invalid name, reply message 440
is full, reply message 438
keyed 13, 14
last access date 383
last access date, parameter 383
last archived date 384
last archived date, parameter 384
length classes 7
limits 433
locked 439
locking 23, 24
modify capability, parameter 385
name, parameter 376
naming 386
new name, parameter 386
not authorized to file, reply message 435
not found, reply message 440
opening 127
protected

flag 406
parameter 377

quasi byte stream 9
record-oriented, description 4

486 SdU VSAM API Reference

file (continued)
renaming 138
retention class, parameter 392
sequential 8, 12
size, parameter 377
space not available, reply message 441
system 406
temporarily not available, reply message 442
unload records from 339, 349

file information
getting 133
setting 146

file name
duplicate, reply message 429
error 372
invalid new, reply message 452
invalid, reply message 440
parameter 376
validating 376

file space not available, reply message 441
files

maximum number opened, parameter 384
opening not authorized 444
permanent 408

FILFULRM (file is full) reply message 438
FILHDD (file hidden) parameter 375
FILINISZ (initial file size) parameter 375
FILIUSRM (file in use) reply message 439
FILNAM (file name) parameter 376
FILNAMRM (invalid file name) reply message 440
FILNFNRM (file not found) reply message 440
FILPRT (file protected) parameter 377
FILSIZ (file size) parameter 377
FILSNARM (file space not available) reply

message 441
FILSYS (system file) parameter 378
FILTNARM (file temporarily not available) reply

message 442
fixed-length records 17
flag (invalid), reply message 444
flags

access 399
all records, active and inactive 402
allow cursor to be set to inactive record 401
bypass damaged records 401
hold cursor position 401
hold update intent 400
inhibit modified keys 400
key value feedback 402
no record data returned 402
record number feedback 403

flags (continued)
access (continued)

return inactive record 402
update cursor 400
update intent 403

copy 404
access order 405
bypass damaged records 405
bypass inactive records 405

create 405
allow duplicate keys 409
allow get record capability 407
allow insert record capability 407
allow modify record capability 407
allow record deletion 408
hidden file 407
inhibit initial extent 408
protected file 406
system file 406
temporary file 408

FUNATHRM (not authorized to function) reply
message 442

function not supported, reply message 443
FUNNSPRM (function not supported) reply

message 443

G
get capability, file 378
GETAI (get record access intent) 361
GETCP (file get capability) parameter 378
GETGETLK (get, reference only) lock 24
GETMODLK (get, change) lock 24
GETNONLK (get, no sharing) lock 24
getting

a record 72
a reply message 81
file information 133
path information 135

Gregorian calendar 367

H
HDLNFNRM (file handle not found) reply message 443
hidden file

create flag 407
parameter 375

hold
cursor indicator 22
cursor position, access flag 401

 Index 487

hold (continued)
update intent, access flag 400

I
inactive

inserting inactive records 428
record bypass, copy flag 405
record, parameter 389
record, reply message 457

information only severity code 394
inhibit initial extent, create flag 408
inhibit modified keys, access flag 400
initial file size, parameter 375
initially-variable-length records 17
INSAI (insert record access intent) 361
INSCP (file insert capability) parameter 379
insert capability, file 379
inserting

a record at EOF 83
a record by key value 93
a record by record number 98

INTATHRM (not authorized for open intent) reply
message 444

invalid
base file name, reply message 418
data record, reply message 427
file name, reply message 440
flag, reply message 444
key definition, reply message 446
key length, reply message 447
key value, reply message 450
new file name, reply message 452
request, reply message 445

INVFLGRM (invalid flag) reply message 444
INVRQSRM (invalid request) reply message 445

K
key definition

error code, parameter 380
invalid, reply message 446
parameter 379

key field definition, parameter 382
key length

invalid, reply message 447
key update

not allowed by different index, reply message 448
not allowed by same index, reply message 449

key value
feedback, access flag 402
inhibit modified keys, access flag 400
inserting records by 93
invalid, reply message 450
parameter 383
setting limits 195
setting the cursor by 159
setting the update intent by 321

KEYDEF (key definition) parameter 379
KEYDEFCD (key definition error code) 380
KEYDEFRM (invalid key definition) reply message 446
KEYDUPCP (duplicate keys capability) parameter 381
keyed file 13, 14

example of fixed-length records 16
KEYFLDDF (key field definition) parameter 382
KEYLENRM (invalid key length) reply message 447
keys

capability of duplicates 381
duplicate 429, 430

KEYUDIRM (key update not allowed by different index)
reply message 448

KEYUSIRM (key update not allowed by same index)
reply message 449

KEYVAL (key value) parameter 383
KEYVALRM (invalid key value) reply message 450

L
LENGTHRM (field length error) reply message 451
loading records into a file 106, 115
locked file 439
locking

data lock status, parameter 371
files 23, 24
promotion rules 27
records 25

LSTACCDT (last access date) parameter 383
LSTARCDT (last archived date) parameter 384

M
management class

name parameter 385
naming 365, 366

MAXARNB (maximum active record number)
parameter 384

maximum
active record number, parameter 384
number of files opened, parameter 384

488 SdU VSAM API Reference

MAXOPN (maximum number of files opened)
parameter 384

message
access intent list error 415
address error 417
command check 419
communications error 421
concurrent opens exceeds maximum 453
conversational protocol error 454
cursor not selecting a record position 424
damaged file 436
data description file not found 425
data stream syntax error 463
default record error 426
directory full 427
duplicate file name 429
duplicate key different index 429
duplicate key same index 430
duplicate record number 432
end of file 433
error 419
existing condition 435
field length error 451
file closed with damage 419
file handle not found 443
file in use 439
file is full 438
file not found 440
file space not available 441
file temporarily not available 442
function not supported 443
inactive record 457
invalid access method 416
invalid base file name 418
invalid data record 427
invalid file name 440
invalid flag 444
invalid key definition 446
invalid key length 447
invalid key value 450
invalid new file name 452
invalid request 445
key update not allowed by different index 448
key update not allowed by same index 449
mismatched record length 458
no update intent on record 466
not authorized to (access or update) directory 426
not authorized to file 435
not authorized to function 442
not authorized to open for intent 444

message (continued)
not authorized to use access method 415
object not supported 452
parameter not supported 455
parameter not supported error 464
parameter value not supported 466
permanent agent error 418
record damaged 455
record in use 457
record not available 459
record not found 461
record number out of bounds 460
resource limit reached in source system 463
resource limits reached on target system 462
severity code parameter 393
translation error 467
update cursor error 465

MGMCLSNM (management class name)
parameter 385

MODAI (modify record access intent) 361
MODCP (file modify capability) parameter 385
MODGETLK (change, reference only) lock 24
modified keys

inhibited 400
modifying

a file, capability parameter 385
a record 122

MODMODLK (change, change) lock 24
MODNONLK (change, no sharing) lock 24
moving EOF to current cursor position 337

N
naming

a data class 370
a file 376, 386
a management class 365

new file name, parameter 386
NEWFILNM (new file name) parameter 386
NEWNAMRM (invalid new file name) reply

message 452
no record data returned, access flag 402
not authorized

to (access or update) directory, reply message 426
to access method, reply message 415
to file, reply message 435
to function, reply message 442
to open for intent, reply message 444
to use access method, reply message 415

 Index 489

O
object not supported, reply message 452
OBJNSPRM (object not supported) reply message 452
opening a file 127
OPNMAXRM (concurrent opens exceeds maximum)

reply message 453

P
parameter not supported, reply message 455
parameter value not supported, reply message 466
path information

getting 135
setting 288

permanent
agent error, reply message 418
damage severity code 395
file 408

PRCCNVRM (conversational protocol error) reply
message 454

PRMNSPRM (parameter not supported) reply
message 455

problem determination
reply message diagnostic information 392

promotions
access method 20, 28
file and record locks 27
record length class 390

protected file
create flag 406
parameter 377

Q
quasi byte stream file 9
querying

file information 133
path information 135

R
RECAL (record attribute list) 5
RECAL (record attribute list) parameter 386
RECCNT (record count) parameter 388
RECDMGRM (record damaged) reply message 455
RECFIX (fixed-length record) 4
RECINA (inactive record) parameter 389
RECINA (inactive records) 4

RECINARM (record inactive) reply message 457
RECIUSRM (record in use) reply message 457
RECIVL (initially-variable-length record) 4
RECLEN (record length) parameter 389
RECLENCL (record length class) parameter 390
RECLENRM (record length mismatch) reply

message 458
RECNAVRM (record not available) reply message 459
RECNBR (record number) parameter 391
RECNBRRM (record number out of bounds) reply

message 460
RECNFNRM (record not found) reply message 461
record

allow get record capability, create flag 407
allow insert record capability, create flag 407
allow record deletion, create flag 408
attribute list (RECAL) 5
attribute list, parameter 386
bypass damaged records, access flag 401
bypassing all, active and inactive, access flag 402
bypassing damaged, copy flag 405
bypassing inactive, copy flag 405
count, parameter 388
damaged, bypassing 455
damaged, reply message 455
default, parameter 369
deleting 66
deletion capability, parameter 369
getting 72
in use, reply message 457
inactive, reply message 457
inserting at EOF 83
inserting by key value 93
loading into a file 106, 115
locking 25

releasing 400
modify capability, create flag 407
modifying 122
no data returned, access flag 402
no update intent, reply message 466
not available, reply message 459
not found, reply message 461
number feedback, access flag 403
number out of bounds, reply message 460
parameter 391
return inactive, access flag 402
unlock all implicit locks 358
update intent, access flag 403

RECORD (record) parameter 391

490 SdU VSAM API Reference

record key
defining a key field 382
definition 379

record length
class

parameter 390
promotions 390

classes 8, 17
mismatch, reply message 458
parameter 389

record number
duplicate, reply message 432
end of file, parameter 372
feedback, access flag 403
inserting a record by 98
maximum active record number, parameter 384
out of bounds, reply message 460
parameter 391
setting the update intent by 330

records
active 391
basic description 4
inactive 389
inactive, description 4
inserting inactive 428
unload from file 339, 349

RECVAR (variable-length record) 4
releasing

record lock 400
update intent 400

RELKEYAM (relative by key) access method 19
RELRNBAM (relative by record number) access

method 18
renaming a file 138
reply message

access intent list error 415
address error 417
command check 419
communications error 421
concurrent opens exceeds maximum 453
conversational protocol error 454
conversion table not found 425
cursor not selecting a record position 424
damaged file 436
data description file not found 425
data stream syntax error 463
default record error 426
directory full 427
duplicate file name 429
duplicate key different index 429

reply message (continued)
duplicate key same index 430
duplicate record number 432
end of file 433
error 419
existing condition 435
field length error 451
file closed with damage 419
file handle not found 443
file in use 439
file is full 438
file not found 440
file space not available 441
file temporarily not available 442
function not supported 443
getting 81
inactive record 457
invalid access method 416
invalid base file name 418
invalid data record 427
invalid file name 440
invalid flag 444
invalid key definition 446
invalid key length 447
invalid key value 450
invalid new file name 452
invalid request 445
key update not allowed by different index 448
key update not allowed by same index 449
mismatched record length 458
no update intent on record 466
not authorized to directory 426
not authorized to file 435
not authorized to function 442
not authorized to open for intent 444
not authorized to use access method 415
object not supported 452
parameter not supported 455
parameter not supported error 464
parameter value not supported 466
permanent agent error 418
record damaged 455
record in use 457
record not available 459
record not found 461
record number out of bounds 460
resource limit reached in source system 463
resource limits reached on target system 462
server diagnostic information 392
translation error 467

 Index 491

reply message (continued)
update cursor error 465

requesting storage size 375
resource limit reached in source system, reply

message 463
resource limits reached on target system, reply

message 462
retention class, file 392
return inactive record, access flag 402
RNDKEYAM (random by key) access method 19
RNDRNBAM (random by record number) access

method 19
RSCLMTRM (resource limits reached on target system)

reply message 462
RTNCLS (file retention class) parameter 392

S
SCM 482
sequential file 8, 12
server diagnostic information, parameter 392
session

damage severity code 395
setting

file information 146
key value limits 195
path information 288

setting the cursor
by key value 159
to BOF 141
to EOF 144
to first record in key sequence 177
to first record of the file 148
to last record 233
to last record in key sequence 186
to minus the number of record positions in

CsrDisp 243
to next record 269
to next record in key sequence 202
to next record with equal key 253
to plus the number of record positions in

CsrDisp 291
to previous record 301
to previous record in key sequence 220
to record number 314

setting the update intent
by key value 321
by record number 330

severe error severity code 395

severity code, parameter 393
severity codes

access damage 395
error 394
information only 394
permanent damage 395
session damage 395
severe error 395
warning 394

size of file 377
source system, description 1
SRCLMTRM (resource limit reached in source system)

reply message 463
SRVDGN (server diagnositic information)

parameter 392
status

of cursor position, parameter 366
of data lock, parameter 371

STGCLSNM (storage class name) parameter 393
storage

class name, parameter 393
inhibit initial extent, create flag 408
size, requesting 375

SVRCOD (severity code) parameter 393
SYNERRCD (syntax error code) parameter 396
syntax error code, parameter 396
SYNTAXRM (data stream syntax error) reply

message 463
system file 406

File system attribute, parameter 378
system file, create flag 406

T
target system, description 1
temporary file

create flag 408
terminating data stream parsing 396
time and date, parameter 367
TITLE (title) parameter 397
TP 482
TRGNSPRM (Parameter not supported on target

system) reply message 464
truncating a file 337

U
unload records from file 339, 349
unlock all implicit record locks 358

492 SdU VSAM API Reference

update cursor
access flag 400
error reply message 465

update intent
none on record, reply message 466
on inactive record 401
releasing 400
setting by key value 321
setting by record number 330

UPDCSRRM (update cursor error) reply message 465
UPDINTRM (no update intent on record) reply

message 466

V
validating a file name 376
VALNSPRM (parameter value not supported) reply

message 466
variable-length records 17
VSAM

architecture 1
record files 6
technical considerations 29

W
warning severity code 394

X
XLATERM (translation error) reply message 467

 Index 493

We'd Like to Hear from You

SMARTdata UTILITIES
VSAM Application Programming
Interface Reference

Publication No. SC26-7133-00

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM represen-
tative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIB2VVG at IBMMAIL

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

SMARTdata UTILITIES
VSAM Application Programming
Interface Reference

Publication No. SC26-7133-00

How satisfied are you with the information in this book?

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and con-
sistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-7133-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-7133-00

IBM

Program Number: 5765-548
 5765-549
 5622-793
 5622-794
 5639-B92

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-7133-ðð

	Notices
	Programming Interface Information
	Trademarks and service marks

	About This Book
	Who Should Read This Publication
	What You Should Know Before Reading This Publication

	Bibliography
	Using This Reference
	Notation Conventions
	Function Descriptions
	DDMExample (Example)
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	Chapter 1. Introduction to VSAM as a DDM Implementation
	Distributed Data Management Overview
	DDM Record Types
	RECORD formats
	RECINA formats

	Record Attribute Lists (RECALs)
	Extended Attributes
	Record Files
	Record File and Record Length Classes
	Sequential Files
	Direct Files
	Keyed Files
	Alternate Index File
	File Naming Conventions

	Performance Considerations
	Sequential and Direct Files
	Keyed and Alternate Index Files

	Access Methods
	Promoting Access Methods

	DDM Cursor
	DDM Lock Management
	Concurrency Protection
	File Locking
	Record Locking (Implementation is Dependent on the Server)
	Promoting Locks (Implementation is Dependent on the Server)
	DDM Architecture Promotions and Exceptions

	Technical Considerations

	Chapter 2. Function Lists
	VSAM Function Descriptions
	Parameters Used in Function Descriptions
	Access Functions Applicable to Each File Class
	Cursor-Positioning Functions Applicable to Each File Class
	Record File Attributes by File Class
	Modifiable Record File Attributes by File Class
	Private File Attributes by File Class
	Access Functions Applicable to Each Access Method
	Access Functions Applicable to Each Access Method Continued

	Chapter 3. VSAM API Functions
	DDMClose (Close File)
	DDMCopyFile (Copy File)
	DDMCreateAltIndex (Create Alternate Index File)
	DDMCreateRecFile (Create Record File)
	DDMDelete (Delete File)
	DDMDeleteRec (Delete Record)
	DDMForceBuffer (Commit a File's Cached Information)
	DDMGetRec (Get Record)
	DDMGetReplyMessage (Get Reply Message)
	DDMInsertRecEOF (Insert Records at EOF)
	DDMInsertRecKey (Insert Records by Key Value)
	DDMInsertRecNum (Insert by Record Number)
	DDMLoadFileFirst (Load Records into File)
	DDMLoadFileNext (Load Records into File)
	DDMModifyRec (Modify Record)
	DDMOpen (Open File)
	DDMQueryFileInfo (Get a File's Information)
	DDMQueryPathInfo (Get File or Subdirectory Information)
	DDMRename (Rename File)
	DDMSetBOF (Set Cursor to Beginning of File)
	DDMSetEOF (Set Cursor to End of File)
	DDMSetFileInfo (Set File Information)
	DDMSetFirst (Set Cursor to First Record)
	DDMSetKey (Set Cursor by Key)
	DDMSetKeyFirst (Set Cursor to First Record in Key Sequence)
	DDMSetKeyLast (Set Cursor to Last Record in Key Sequence)
	DDMSetKeyLimits (Set Key Limits)
	DDMSetKeyNext (Set Cursor to Next Record in Key Sequence)
	DDMSetKeyPrevious (Set Cursor to Previous Record in Key Sequence)
	DDMSetLast (Set Cursor to Last Record)
	DDMSetMinus (Set Cursor Minus)
	DDMSetNextKeyEqual (Set Cursor to Next Record with Equal Key)
	DDMSetNextRec (Set Cursor to Next Record)
	DDMSetPathInfo (Set File or Directory Information)
	DDMSetPlus (Set Cursor Plus)
	DDMSetPrevious (Set Cursor to Previous Record)
	DDMSetRecNum (Set Cursor to Record Number)
	DDMSetUpdateKey (Set Update Intent by Key Value)
	DDMSetUpdateNum (Set Update Intent by Record Number)
	DDMTruncFile (Move EOF to Current Cursor Position)
	DDMUnLoadFileFirst (Unload Records from File)
	DDMUnLoadFileNext (Unload Records from File)
	DDMUnLockRec (Unlock Implicit Record Lock)

	Chapter 4. VSAM API Common Parameters
	ACCINTLS (Access Intent List)
	ACCMTHCL (Access Method Class)
	ACCMTHLS (Access Method List)
	ALCINISZ (Allocate Initial Extent)—DFM Only
	ALTINDLS (Alternate Index List)
	BASFILNM (Base File)
	BASMGMNM (Base Management Class Name)
	BASSTGNM (Base Storage Class Name)
	CODPNT (Code Point Attribute)
	CSRPOSST (Cursor Position Status)
	DATE (Date and Time)
	DELCP (Record Deletion Capability)
	DFTREC (Default Record)
	DTACLSNM (Data Class Name)
	DTALCKST (Data Lock Status)
	EOFNBR (End of File Record Number)
	ERRFILNM (Error File Name)
	FILBYTCN (File Byte Count)
	FILCHGDT (File Change Date)—DFM Only
	FILCLS (File Class)
	FILCRTDT (File Creation Date)
	FILHDD (File Hidden)
	FILINISZ (Initial File Size)
	FILNAM (File Name)
	FILPRT (File Protected)
	FILSIZ (File Size)
	FILSYS (System File)
	GETCP (File Get Capability)
	INSCP (File Insert Capability)
	KEYDEF (Key Definition)
	KEYDEFCD (Key Definition Error Code)
	KEYDUPCP (Duplicate Keys Capability)
	KEYFLDDF (Key Field Definition)
	KEYVAL (Key Value)
	LSTACCDT (Last Access Date)—DFM Only
	LSTARCDT (Last Archived Date)—DFM Only
	MAXARNB (Maximum Active Record Number)
	MAXOPN (Maximum Number of Files Opened)
	MGMCLSNM (Management Class Name)
	MODCP (File Modify Capability)
	NEWFILNM (New File Name)
	RECAL (Record Attribute List)
	RECCNT (Record Count)
	RECINA (Inactive Record)
	RECLEN (Record Length)
	RECLENCL (Record Length Class)
	RECNBR (Record Number)
	RECORD (Record)
	RTNCLS (File Retention Class)
	SRVDGN (Server Diagnostic Information)
	STGCLSNM (Storage Class Name)
	SVRCOD (Severity Code)
	SYNERRCD (Syntax Error Code)
	TITLE (A Brief Description)

	Chapter 5. VSAM API Flags
	AccessFlags (Access Flags)
	DDM_HLDUPD (Hold Update Intent)
	DDM_UPDCSR (Update Cursor)
	DDM_INHMODKY (Inhibit Modified Keys)
	DDM_ALWINA (Allow Cursor to Be Set to Inactive Record)
	DDM_HLDCSR (Hold Cursor Position)
	DDM_BYPDMG (Bypass Damaged Records)
	DDM_NODATA (No Record Data Returned)
	DDM_ALLREC (All Records, Active and Inactive)
	DDM_RTNINA (Return Inactive Record)
	DDM_KEYVALFB (Key Value Feedback)
	DDM_RECNBRFB (Record Number Feedback)
	DDM_UPDINT (Update Intent)

	CopyFlags (Copy Flags)
	DDM_BYPINA (Bypass Inactive Records)
	DDM_BYPDMG (Bypass Damaged Records)
	DDM_ACCORD (Access Order)

	CreateFlags (Create Flags)
	DDM_FILPRT (Protected File)
	DDM_FILSYS (System File)
	DDM_FILHDD (Hidden File)
	DDM_MODCP (Allow Modify Record Capability)
	DDM_INSCP (Allow Insert Record Capability)
	DDM_GETCP (Allow Get Record Capability)
	DDM_INIEX (Inhibit Initial Extent)
	DDM_DELCP (Allow Record Deletion)
	DDM_TMPFIL (Temporary File)
	DDM_ALDUPKEY (Allow Duplicate Keys)

	Chapter 6. VSAM API Reply Messages
	Reply Message Interface
	Reply Message Structure
	Reply Messages
	ACCATHRM (Not Authorized to Use Access Method)
	ACCINTRM (Access Intent List Error)
	ACCMTHRM (Invalid Access Method)
	ADDRRM (Address Error)
	AGNPRMRM (Permanent Agent Error)
	BASNAMRM (Invalid Base File Name)
	CLSDMGRM (File Closed with Damage)
	CMDCHKRM (Command Check)
	COMMRM (Communications Error)
	CSRNSARM (Cursor Not Selecting a Record Position)
	CVTNFNRM (Conversion Table Not Found)
	DDFNFNRM (Data Description File Not Found)
	DFTRECRM (Default Record Error)
	DRCATHRM (Not Authorized to Directory)
	DRCFULRM (Directory Full)
	DTARECRM (Invalid Data Record)
	DUPFILRM (Duplicate File Name)
	DUPKDIRM (Duplicate Key Different Index)
	DUPKSIRM (Duplicate Key Same Index)
	DUPRNBRM (Duplicate Record Number)
	ENDFILRM (End of File)
	EXSCNDRM (Existing Condition)
	FILATHRM (Not Authorized to File)
	FILDMGRM (File Damaged)
	FILFULRM (File Is Full)
	FILIUSRM (File in Use)
	FILNAMRM (Invalid File Name)
	FILNFNRM (File Not Found)
	FILSNARM (File Space Not Available)
	FILTNARM (File Temporarily Not Available)
	FUNATHRM (Not Authorized to Function)
	FUNNSPRM (Function Not Supported)
	HDLNFNRM (File Handle Not Found)
	INTATHRM (Not Authorized to Open Intent for Named File)
	INVFLGRM (Invalid Flag)
	INVRQSRM (Invalid Request)
	KEYDEFRM (Invalid Key Definition)
	KEYLENRM (Invalid Key Length)
	KEYUDIRM (Key Update Not Allowed by Different Index)
	KEYUSIRM (Key Update Not Allowed by Same Index)
	KEYVALRM (Invalid Key Value)
	LENGTHRM (Field Length Error)
	NEWNAMRM (Invalid New File Name)
	OBJNSPRM (Object Not Supported)
	OPNMAXRM (Concurrent Opens Exceeds Maximum)
	PRCCNVRM (Conversational Protocol Error)
	PRMNSPRM (Parameter Not Supported)
	RECDMGRM (Record Damaged)
	RECINARM (Record Inactive)
	RECIUSRM (Record in Use)
	RECLENRM (Record Length Mismatch)
	RECNAVRM (Record Not Available)
	RECNBRRM (Record Number Out of Bounds)
	RECNFNRM (Record Not Found)
	RSCLMTRM (Resource Limits Reached on Target System)
	SRCLMTRM (Resource Limit Reached in Source System)
	SYNTAXRM (Data Stream Syntax Error)
	TRGNSPRM (Parameter Not Supported on Target System)
	UPDCSRRM (Update Cursor Error)
	UPDINTRM (No Update Intent on Record)
	VALNSPRM (Parameter Value Not Supported)
	XLATERM (Translation Error)

	Appendix A. Programming Extended Attributes in VSAM APIs
	Glossary
	Index

