Rhapsody

IBM® Rational® Rhapsody® Automatic Test Generation Add On

Rhapsody®

IBM® Rational® Rhapsody®

Automatic Test Generation
Add On User Guide

Release 3.6.4

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems

AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed
or implied, are made regarding Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®Automatic Test Generation Add On, and
IBM® Rational® Rhapsody®TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of
their respective owners.

© Copyright 2000-2011 BTC Embedded Systems AG. All rights reserved.

Appendix

Contents

Contents
DOCUMENT STFUCTUI ...ttt b e r e e e
Contacting IBM® Rational® SOftware SUPPOIT........cceiieieiiiiisiie e 8
(070 01V T 01 o] 0TSSR 9
Where to Find More INFOIMALIONoioiiiiiiiie sttt sreerae e 9
08 oo 11 Tox £ o] I PSR OTORTRSPR 10
ATG IS BASEA 0N UML ...ttt sttt ne e 11
Structural Testing and the Role 0f MOGEIS.........ccooiiiiiiii s 12
Ja N K € I o S OO OOURURPPPRPRt 13
What are the Approaches DENING ATG?ooiiiiiiieee s 13
Sample Model: TheVendingIMaChiNeccooiiiiiiiieieeee e 13
Rhapsody
UML TeSHNG PFOFIIE ..ot 16
Automatic Test Generation (ATG) PaCKAGEcviiiiiiiiiiiisie s 17
Test Case Generation for UNit TeSTING.......cccoceiiiii i 19
Automatically Creating & TeSt ArChITECTUIE.cooiuiiiieieiee s 19
Generate and Build the TeSt CONEXTcviiiiiiieieieee st eneas 23
AN o] 0] YA N I TSSOSO 24
Test Generation CoNFIGUIALION.ccciiiiiiiccce et st ae e sre e anas 25
GENEIALE TEST CASES ...vvtiviieiieitiesteesteestte sttt te et e e st e e st et art e e te e s be e sbeesbeesr b e e s e e be e beesbeeebbeenbeebeenbeesneenneeanes 28
Export Test Cases to Rhapsody TeStCONAUCTONccueveieiiiiieriesie e 30
EXECULE AN ATG TESE CBSE ...ttt ittt ettt sttt etttk sbe e sttt e be e sbe e sbe e st e nbeenbeesbeeseeas 34
Test Case Generation for Integration TeSHINGcccceveiiiiniiiinieee e 38
Manually Creating a Testing COMPONENTcuiiieiiiie ettt ree e enee e 38
Generate and Build the TeSt COMPONENTcoiiiiiiiieieieer e 40
APPIY AT G bbb bbbttt b b ettt 41
Test Generation CONFIGUIATION..........ciiiiiiieieis bbb ene s 43
Generate, EXPOrt, aNd EXECULE TS CASES.....cuuiieaieeieiieeeiriereeseesteeie e eree e seeeneestesneeseesseeneeseesseeneeas 50
ATG MaANAGEMENT ...ttt e et b e et b e et e e e s bb e e s beeeannes 61
The Test Generation COMPONENTcoueiriiiiiiii et ene s 61
Create a Test Generation COMPONENToviiiiieiiieeie ettt eneesee e e seeseeeeeneas 61
Delete a Test Generation COMPONENTcccuiveieiieiese e sre e b e e 62
L0 =T T N I OSSPSR 63

IBM® Rational® Rhapsody® Automatic Test Generation Add On
5

CIBAN TESE CASES .vvvvreeiieieteeeeeteeetesee e eeeeteessasa e teesesssasas s reeeeeeesssasss s seeeteeesssaaessseeeeeeesssasssesreeeeeeses 63

TeSt DefiNitioN OPLIONSocviiviiiieieieie ettt bbbt e e 63
The Test Generation CONFIGUIATION.ccveiiiiiiiiire e 65
Delete a Test Generation ConfiguIationccccceiveiiii e 65
The General Definition TaD......c.ccooiiio e 66
The Interface Definition Tabc.ooiiioiiii e 68
The Coverage Definition Tab ..o e 70
(O [N | OSSPSR 70
ClEAN TESE CASES ..uvveveitiriieitsteaniesteeteetesteeseestesseeseesteastesteeseesbesseeseesteaseeseeeseaneeseeeneenteaneensesneaneeneas 71
TeSt DefiNitionN OPLIONScc.oiviiiiieieiciii ettt bbbt ne s 71
Sync ATG Data With APPHCATIONcviiiiiiiciee e 73
RNAPSOUY ATG SEIIINGS ...vveveteiieite ittt bbbttt bbbt n e 74
TESE CASE GENEIALIONviveivieiieiieiesie sttt sttt e e s st et e st et e st et et et eneenenneas 76
The Rhapsody in C++ Automatic Test Generation Dialog..........ccoocvviveiiiiiiiiieniiieie e 76
e A O] o]] 45 [0 SRS 78
One-click Expand/Collapse Hierarchical VIBWccccoiiiiiiiiiieiciec s 78
Change between Hierarchical and FIat VIEW..........ccccoiiiiiiiii i 79
Show CombiNatioNS OF TESE CASEScuvereriiriirieiisie et 81
EXPOTING TS CASES...uviitiiiieiiecteeie sttt et ste et te s sr e s te e s e st e e te e besbeese e besae et e s beeaeesbesteesbesbeeneestesreeneenes 83
EXPOIt FOMMALS ...t n e r e et r e b s resreenn e 83
XIMIL ettt et R Rt R R R r ettt e Rt R e e R e Rt Reer et et et et e neeneenearean 83
TESE SCRNAITOS.vevveveetietieie ettt ettt sttt et b et st e b e b et e st e st et e e b e e be st e et et et eneenenneas 84
I (0] 4o [1Tox (o OSSPSR 84
EXPOrting @ SINGIE TESE CaSE.....eeuiiiiiiiiiiiiite sttt bbb 84
Exporting Test Cases on Configuration LEVEL...........ccoviiiiiiiiiieieees e 86
Exporting Test Cases on Test CompoNent LEVEL...........cccovciiiieiiiiiec et 87
e o To g CT=T 1= - To] PSSR 88
Test Generation Configuration REPOIcoiiiiiiieieiceee e 88
Testing COMPONENT REPOI........ociiiiiieie sttt et sre e sbesreesaesteeneesteareetesreenee e 91
TESE EXECULION ...ttt sttt ettt st st e e et e s et e b e e st ebesbenbebe e eneenenneas 91
AUVANCEA FRATUIESeeiieeie ettt et e s e ste e te e s e sreeeeeneeaneenseaneennens 92
Specifying Interfaces in the MOGEL ..o e 92
Provided Interfaces and Required INTErfaCEScccoiireieiiiiice e 92
Operations and Events — Argument CONSIFAINTSc.oiveieiiinineie s 93
User-Defined ConStraints 0N TYPES......coieiiiiiieieeieee sttt st eeseeeneeseeseeeneesresneenee e 95
WOTKING WIth LEIDIAITES ...ttt bbbt 97
Coverage Measurement with Third-Party TOOISccccviiiiiiii i, 100
Appendix
.. 101
LY Tod o] RSP 101

Document Structure

This user guide is organized as follows:

¢

Chapter 1, Introduction, provides an introduction to Rhapsody ATG through a
high-level overview of the main features.

Chapter 2, Rhapsody UML Testing Profile, provides an overview about the
concepts of the Testing Profile as implemented in Rhapsody.

Chapter 3, Test Case Generation for Unit Testing, provides an overview on
creating Test Architectures, defining Test Cases, and executing Test Cases for unit
testing.

Chapter 4, Test Case Generation for Integration Testing, provides an overview
on creating Test Architectures, defining Test Cases, and executing Test Cases for
integration testing.

Chapter 5, ATG Management, provides information on how to administrate
ATG, generate test cases, generating text and html reports for the generated test
cases, exporting test cases into desired formats.

Chapter 6, Advanced Features, provides information on defining constraints.
Chapter 7, Coverage Measurement with Third-Party Tools, provides course
information on doing external coverage measurements.

Chapter 8, Appendix, provides information on further documents concerning
restrictions and frequently asked questions.

Contacting IBM® Rational® Software Support

IBM Rational Software Support provides you with technical assistance. The IBM
Rational Software Support Home page for Rational products can be found at
http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for
support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM
Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone
number in your country (where available). For specific country phone numbers, go
to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background
information that you will need to describe your problem. When describing a
problem to an IBM software support specialist, be as specific as possible and
include all relevant background information so that the specialist can help you
solve the problem efficiently. To save time, know the answers to these questions:

What software versions were you running when the problem occurred?
Do you have logs, traces, or messages that are related to the problem?
Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the
workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www.ibm.com/planetwide

Conventions

The following table lists the conventions used in the Rhapsody documentation.

Style Description
commandl > The greater-than (>) symbol leads you through the steps in a
command2 menu or key sequence. For example, Add New > Package

means that you should first select Add New, then select
Package from the Add New submenu.

Bold type Bold type indicates items that you should select, such as
buttons or checkboxes in dialog boxes.

For example:

Click Apply

Italic type Italic type is used for emphasis, titles of referenced documents
and new terms.

Courier type Courier type is used for file names and directory paths,
user input, and code-related items such as instance names and
properties.

<filename> Angle brackets surround variable names that you should
replace with actual names. For example, you should replace
<filename> with the actual name of a file.

Where to Find More Information

The following documents provide additional information on Rhapsody ATG and the
development process concepts used in this user guide:

¢+ W. Damm, M. Cohen, Advanced validation techniques meet complexity challenge
in embedded software development, Embedded System Journal, 2001.

+ B.P. Douglass, ROPES: Rapid Object-oriented Process for Embedded Systems, I-
Logix Inc., 1999 (adaptation of the material from book: Doing Hard Time:
Developing Real-Time Systems using UML, Objects, Frameworks, and Patterns
Reading, MA: Addison-Wesley, 1

Introduction

Welcome to the user guide for IBM® Rational® Rhapsody®Automatic Test Generation
Add On (Rhapsody ATG). Rhapsody ATG is a test case generation tool using standard
Unified Modeling Language™ (UML™) design notations. Using ATG, you can
automatically generate test suites and perform test execution for your applications
developed with the Rhapsody in C++ design tool at any stage in your development cycle.

The typical UML development process (such as the Rapid Object-Oriented Process for
Embedded Systems, ROPES) is iterative, starting with an early, fairly abstract version and
progressing to more and more concrete prototypes. To test a System Under Test, use ATG
in your development process to do unit testing, integration testing, or regression testing.

Rhapsody ATG complements Rhapsody® TestConductor. TestConductor automatically
generates Test Architectures for the system under test (SUT), and creates test monitors and
test drivers from Rhapsody sequence diagrams (SDs). During automated test execution,
the generated monitors determine whether the executed model satisfies the selected
sequence diagrams. ATG generates test cases that can be exported to Rhapsody in order to
execute test cases with TestConductor.

Rhapsody ATG is a tool that enables Design for Testability (DFT). DFT is a process
capability that enables repeatable and cost-effective testing throughout the development
process. Thus, DFT is an approach including:

¢ Model-Driven Development (MDD) with visual modeling and animation in
Rhapsody

¢ Structural testing with ATG
¢ Requirements-based testing with TestConductor
If users apply DFT, they:

+ Get repeatable tests based on models and software.
+ Expand the level of achieved design coverage.
+ Are able to perform regression testing.

¢ Speed up tests on subsequent versions of the design.

ATG offers test case generation to perform structural testing. It extends Model-Driven
Development to include both Model-Driven Code Generation and Model-Driven Test
Generation. ATG automatically generates test cases with high coverage of the design,
including:

+ Model element coverage—States, transitions, operations, event generation

+ Model code coverage—All relevant combinations of inputs for full model code
coverage sufficient to fulfill criteria such as Modified Condition Decision
Coverage (MC/DC)

Test cases consist of input stimuli, and output reactions as computed from a given model.
The generated test cases can be used to test the production code. Test case execution will
lead to a high degree of coverage of the production code, and the execution will give
pass/fail results. A fail result indicates that the actual results of a test execution run do not
match the expected output reactions as computed from the model.

ATG generated test cases can be used for unit testing, integration testing, regression
testing, and target-based testing. It works with third-party tools for code coverage analysis
and test execution.

This user guide takes you through some stages of a design and testing process supported
by ATG, such as unit testing and integration testing, and shows the various capabilities of
ATG.

ATG is Based on UML

Rhapsody ATG is based on the Unified Modeling Language (UML). Rhapsody supports
UML-based development processes throughout all development stages—from system
modeling to behavioral modeling down to code. Model execution with Rhapsody provides
developers a very efficient way to verify and validate their models and the generated
implementation-level code—both on host and target computers. By doing interactive
model execution, and in particular combined with the animation capabilities of Rhapsody,
developers:

¢ Can ensure that the modeled behavior satisfies the given requirements.
+ Can find errors at the very early stages of the development process.

The UML standard provides some answers concerning software testing based on UML
artifacts, i.e. the UML Testing Profile. The UML testing profile provides mechanisms to
define test infrastructures, test definitions, and test executions, but the challenge of test
case generation and execution automation is not tackled by the UML standard.

ATG is a new, model-based test generation product for the automatic generation and
application of test cases for testing applications generated from Rhapsody UML models.

Model-based test generation means that the UML model information is used in order to
structure the test case generation for actual software testing. ATG computes test cases
(sequences of operation calls and expected reactions), such that black-box testing and
white-box testing can be applied on the final implementation (the production code), both
on host and on target computers.

The benefits of this model-based test automation product are as follows:

More efficient testing activities
Reduced overall testing time and cost
Increased test coverage quality

Early failure detection and correction
More extensive and repeatable testing
Improved product quality

* & & 6 o o

Structural Testing and the Role of Models

Safety standards, such as airborne standard DO-178B, require certain specific software
verification activities to be done. Highest emphasis is on requirements-based testing.
Normal range tests and robustness tests have to be generated. The tests are applied in order
to perform low-level tests, software integration tests, and HW/SW integration tests. When
the testing is done, it is necessary to perform a requirements-based test coverage analysis
to assess which requirements have been tested, and a structural coverage analysis to
assess the degree of structural code coverage. If structural coverage analysis reveals code
that was not exercised, either more test cases have to be generated, or the unnecessary
code must be removed. Structural testing is usually applied in the phase of unit testing. In
this case, testing is driven by the structure of the code. Hence, it is a white-box testing
method, where the internals of the system under test are visible. Structural testing is also
known as coverage testing.

Models help to describe and understand what the system under test is supposed to do. The
complexity of software requires development of models to support design and testing
activities. For the testing, it is important to find those few input and system state
combinations that will reach, trigger, and propagate bugs out of all those that will not.
Model-level test case generation means that the model is the reference specification used
for actual test case generation. Its key characteristic is that test case generation goals are
expressed in terms of high-level model elements such as states and transitions. Generated
model-level test cases can be applied on implementation models on real test nodes to
check correctness and completeness of the developed products under real-time conditions.

ATG analyzes both UML models and the generated C++ code to automatically generate
sets of model-level test cases that cover the full source code. The achieved level of source
code coverage, when using the generated test cases for execution, must satisfy standard
criteria such as Modified Condition Decision Coverage (MC/DC).

Consider the following source code fragment:
if (2] b)

c=0;
else

c=1;

To exhaustively test this piece of code, it is necessary to execute both branches of the if-
then-else statement. This can be achieved with four different combinations of possible
values for decision (a || b). MC/DC justifies that it is sufficient to select three out of four
possible combinations in order to perform a thorough testing of this if-then-else statement.

When test cases are executed on an application, third-party tools can be applied to
measure the achieved source code coverage while testing a system under test.

ATG is for ...

ATG enables Rhapsody users to generate test cases for single classes in order to perform
unit testing, or for a set of classes in order to perform integration testing. The considered
class or set of classes is the System Under Test (SUT).

In order to generate test cases for an SUT, ATG uses both UML model and generated C++
code for actual test case generation. C++ code generation within Rhapsody uses code
generation components and configurations. An SUT must be represented as an executable
code generation component. This means if test cases should be generated for an SUT
(either a single class or a set of classes), the SUT must be compiled and linked into an
executable.

Note: To be able to apply ATG on an SUT, you must be able to interactively execute
and simulate the considered SUT within Rhapsody.

What are the Approaches behind ATG?

ATG takes the generated C++ source code and performs a virtual model execution. Virtual
model execution means that a C++ program is not executed on a real physical device with
a real processor, but it is executed by a virtual machine. In this case, the virtual machine
behavior is realized by ATG. Using virtual execution, you can assume a more ideal world
for the sake of test case generation. In an ideal world, you can abstract from concrete (real-
time) operating system features, actual processor speed, available physical memory, and
so on. In a virtual machine, these parameters are configurable.

Virtual model execution is key for ATG in order to explore the reachable state space of the
SUT. It enables the application of various test generation strategies on a model under test
such that test cases can be generated in an incremental manner. In addition, ATG does not
assume that users specify concrete values for inputs, but ATG can handle arbitrary values
until a test case has been generated.

To apply the virtual machine to the C++ source code, the source code must be translated
into a format understood by ATG. This is very similar to a compiler that translates source
code into machine code understood by a normal processor. The ATG C++ translator can
handle a large subset of C++ language constructs, but there are some limitations. See the
Rhapsody ATG Limitations document for more information.

Sample Model: TheVendingMachine

This user guide uses the Rhapsody in C++ ThevendingMachine sample model. It can be
found in <Rhapsody>\Samples\CppSamples\Atg\TheVendingMachineStart>.

Figure 1: TheVendingMachine

If a user inserts coins and selects a drink then the vending machine delivers either water,
tea, or soft drinks,. The behavior of the vending machine is realized by a set of
collaborating objects. The VendingMachine Classes and Events as shown in Figure 2 are
Changer, ChoicePanel, CoinValidator, DrinkDispenser, User, and
VendingMachine. The Figure also shows the available events used to trigger the objects.
Some of the classes are modeled with statecharts, whereas others do not have statecharts.
Inserting coins or selecting a drink causes external stimulus. Coin insertion is converted
into an operation call to the machine, whereas drink selection is mapped to events that are
sent to the machine.

RE TheVendingMachine
#-{_] Components
-] Object Model Diagrams
=] Packages
: EE] Default
- 2B Classes
- ®-8 changer

== ChoicePanel

E user
-8 vendingMachine
[—]\ Events

-\ DSOFT()
-\ DTEA()
-\ DWATER()
N ED

-\ FILLUP()
=\ 0K()
N SOFT()

-~ TEA])
N WATER()
=1+ Types

: 42 & drinkType
- #-F PredefinedTypes (RO)
-] Profiles

1

Figure 2: TheVendingMachine Classes and Events

Rhapsody
UML Testing Profile

The Rhapsody UML Testing Profile is based on the official UML Testing Profile. It
contains new terms and stereotypes that can be utilized for model testing artifacts in
Rhapsody. A couple of elements defined in the UML Testing Profile are presently not part
of the Rhapsody Testing Profile. However, the Rhapsody Testing Profile includes
supplementary elements that are not part of the UML Testing Profile. Stubbing, for
example, is one of these additional elements that are used for test activities not addressed
by the UML?® Testing Profile.

The Rhapsody Testing Profile is prearranged in three major packages with additional sub-
packages and the TestingProfile stereotype.

¢ Rhapsody UML2.0 Testing Profile (UML20TP)
1. TestArchitecture
2. TestBehavior

UML20TP

TestArchitecture TestBehavior

+ Rhapsody TestConductor (RTC)
1. TestArchitecture
2. TestBehavior

RTC

TestArchitecture

TestBehavior

Diagrams

¢ Automatic Test Generation (ATG)

ATG

The Rhapsody Testing Profile is automatically utilized by Rhapsody TestConductor.

In the next section the package Automatic Test Generation (ATG) will be described. For
further information about the profile Packages Rhapsody UML2.0 Testing Profile
(UML20TP) and Rhapsody TestConductor (RTC) refer to the Rhapsody TestConductor
User Guide.

Automatic Test Generation (ATG) Package

The ATG package consists of several stereotypes which are enhancements to the UML
Testing Profile. Using these stereotypes in the model means that Rhapsody Automatic
Test Generation (ATG) is able to interpret defined input/output interface information and
constraints to define default settings for a test generation configuration.

Two constrained stereotypes are key: argRangeConstraint and argValueConstraint.
argRangeConstraint can be used to define value range constraints. argValueConstraint can

be utilized to define single value constraints of enumerations constraints. These constraints
can be used on operation or event arguments.

Available are also the interface stereotypes providedinterace and requiredinterface. Those
stereotypes help to remove from the ATG view those classes which are not used as
interface classes.

Furthermore, the ATG package contains a number of type constraint stereotypes that can
be used to define range or value constraints on type definitions. The following figure
provides an overview about the ATG package.

=3 ATG (RO)

CRT Stereotypes
[#]-«5» argRangeConstraint (RO)
[+#-«5» argValueConstraint (RO)
«5» providedInterface (RO)
~«5% requiredInterface (RO)
[]-«5» typeBoolRangeConstraint (RO)
[+-«5» typeCharPtrRangeConstraint (RO)
[+-«5» typeCharRangeConstraint (RO)
[+-«5» typeDoubleRangeConstraint (RO)
[+-«5» typelntRangeConstraint (RO)
[+-«5» typeLongDoubleRangeConstraint (RO)
[+-«5» typeLongRangeConstraint (RO)

«5% typeOMBooleanRangeConstraint (RO)

«5% bypeOMStringvalueConstraint (RO)

«5% typeRhpBooleanRangeConstraint (RO)

«5% typeRhpCharacterRangeConstraint (RO)

«5% typeRhpIntegerRangeConstraint (RO)

«5% typeRhpPositivRangeConstraint (RO)

«5% typeRhpRealRangeConstraint (RO)

«5% typeRhpStringYalueConstraint (RO)

«5% typeRhpUnlimitediaturalRangeConstraint (RO)

«5% typeShortRangeConstraint (RO)

«5% typeUnsignedCharRangeConstraint (RO)
-45» typelnsignedIntRangeConstraint (RO)
-«5» typelnsignedLongRangeConstraint (RO)
-«5» typelnsignedShortRangeConstraint (RO)
~«S» typeYalueConstraint (RO)

(][G [[) [- - - [) [[

Test Case Generation for
Unit Testing

This chapter shows how to process a unit test on an automatically created test architecture
with a single SUT class. We will use the Rhapsody Automatic Test Generation (ATG) to
generate test cases and execute them with TestConductor.

For the next steps open the VendingMachine Model from the
<\Samples\CppSamples\ATG\TheVendingMachineStart> folder.

Automatically Creating a Test Architecture

To create a test architecture for the class brinkDispenser:

¢ Right-click on the brinkDispenser class in the Rhapsody browser and select
Create TestArchitecture

=-£3 Default
: B @ Classes
 ®-8 Changer

[+-£2 ChoicePanel
#-F2h Coinvalidator
% DrinkDispenser,
=-H user Features...
Q YendingMachin Add New >
Comments
\ Events Cut Chrl+X
. - Types Copy Ctrl+C
E & PredefinedTypes (REF, pacte |4y
: B £ PredefinedTypesCpp f pelete from Model Del
{0 Profiles Set Stereotype
Change to
Refactor
Edit Type Order
MNavigate >
Open Statechart
Delete Statechart
Make an Object
Reslize Base Classes, .,
Create Unit
Check
Generate
Edit Code
Roundtrip

tarchitecture

TestConductor automatically creates the complete test architecture which consists of:

¢ A new test context diagram with the test context TCon DrinkDispenser
containing the brinkDispenser Object itsDrinkDispenser itself as SUT, and
all necessary test component instances which are derived from the SUT
associations and ports.

« TestContexts
TCon_DrinkDispenser

1 01§SUT» o
itsDrinkDispen%er:DrinkDispenser

1 «TestComponentinstance, TestComponents a8
itsTC_for_itsCoinValidator: TC_for_itsCoinValidator

1 «TestComponentinstance, TestComponents

itsTC for_itsUser:TC for itsUser

¢ Anew test package TPkg DrinkDispenser, Which contains all generated test
components, the test context TCon DrinkDispenser with the SUT
itsDrinkDispenser, the test context diagram and the test component instances

=l [ThevendingMachine
#-(_] Components
#-{_] Object Model Diagrams
E] {1 Packages

£

=53 Default

- =B Classes

-8 Changer
#-Fh ChoicePanel
CoinYalidator

- Q vendingMachine
#-E) Comments

&N Events

- #-<$ Types

‘B PredefinedTypes (REF)
‘£ PredefinedTypesCpp (REF)

1-(_7] Profiles

=-L% TestPackages

=-&% TPkg_DrinkDispenser
=-(_] Components
=& TPka_DrinkDispenser_Comp
=-{_1 Configurations
: [+ ‘\ DefaultConfig
E] 1} TestComponents
. [#-id, DummyDriver_of_DrinkDispenser
[+, TC_for_itsCoinvalidator_of _DrinkDispenser
; TC_for_itsUser_of _DrinkDispenser
B 3) TestContexts
= 3) TCon_DrinkDispenser
H Links
=} 4 SUTs
P b itsDrinkDispenser
-k Test Context Diagrams
P #d Structure_of _TCon_DrinkDispenser
B ‘ TestComponentInstances
© L f@ itsDummyDriver_of _DrinkDispenser
@ itsTC_For_itsCoinvalidator_of _DrinkDispenser
- f@ itsTC_for_itsUser_of _DrinkDispenser
B % TestConfigurations
------ 2y, DefaultConfig

A new test configuration pefaulConfig (see figure above) with a stereotyped
dependency to a new code generation component
TCon DrinkDispenser Component (See figure below).

E]l:} TestPackages
=% TPka_DrinkDispenser

& {_] Components
=k ﬂ TCon_DrinkDispenser_Component
=-{_1 Configurations
-, DefaultConfig

Generate and Build the Test Context

After generation of the new test context you should check whether it is complete and
consistent. Therefore you should generate und build the test context to get information
about potential compile or link warnings or errors.

+ Right-click on the test context Tcon DrinkDispenser and select Build
TestContext from the context menu.

N Events
O Types Apply ATG. ..

@B PredefinedTypes (REF) ~ Create 5D TestCase

B PredefinedTypescpp (R~ Create Flowchart TestCase

{23 Profiles Create Code TestCase
=-C3 TestPackages Create Statechart TestCase
= Iy TPkg_DrinkDispenser Update TestContext
{_] Components .@EIW
g TestComponents Execute TestCont
=49 TestContexts Update TestArchitecture

=k 3) TCon_DrinkDispenser
[#-L Links
-4 SUTs
- g itsDrinkDispenser
1-&% Test Context Diagrams
“h'd Structure_of _TCon_DrinkDispenser
= ‘ TestComponentInstances
P itsDummyDriver_of _DrinkDispenser
itsTC_For_itsCoinvalidator_of _DrinkDispenser
: itsTC_for_itsUser_of _DrinkDispenser
=%y, TestConfigurations
-y DefaultConfig

If the generate, compile and link (GMR) procedure produces an executable you are able to
execute and test it.

Apply ATG

After checking whether the new test context it is complete and consistent, we should apply
ATG to generate test cases.

+ Right-click on the test context TCon DrinkDispenser and select Apply ATG...
from the context menu.

. [N Events I
@0 Types W
‘£ PredefinedTypes (F cesaabTtute

. [-F3) PredefinedTypesCy Create Flowchart TestCase
- Profiles Create Code TestCase

=-EP TestPackages Create Statechart TestCase

=% TPkg_DrinkDispens: Update TestContext
{2 Components Build TestContext
g TestComponen Execute TestContext
=49 TestContexts Update Testarchitecture
- 3) TCon_DrinkDispenser
L, Links
g SUTs
. i itsDrinkDispenser
[=-hg Test Context Diagrams
-k & Structure_of _TCon_DrinkDispenser
= ‘ TestComponentInstances
i (@, itsDummyDriver_of _DrinkDispenser
(@, itsTC_for_itsCoinvalidator_of_DrinkDispenser
: @, itsTC_For_itsUser_of_DrinkDispenser
= % TestConfigurations
q) DefaultConfig

The ,,Rhapsody Automatic Test Generation* dialog opens. In the main ATG dialog the
user is able to adjust some settings, which mainly affect the test case generation process. A

new ATG configuration “NewConfiguration0” was created.

Il Rhapsody in C++ Automatic Test Generation - Test Generati ation; & |EI|5]
File Edit Tools Help
= ‘\ TPkg_DrinkDispenser_TCon_DrinkDispenser_Component

o - MNewConfiguration0

General l Interface Delinitionl Coverage Delinitionl

— Settings

Name:]NewConﬁgurationU

Test Case Generation Timeout [min] |1

[Delete existing SDs/Tests when exporting

™ Minimize SDs/Tests when exporting
Export to:
l TPkg_DrinkD ispenser::TPkg_DrinkDispens-j

— Coverage Summary

Model Element Coverage 0
[0102
— Description

4| | |

Test Generation Configuration

The General tab of ATG defines the name of the configuration and provides a description
box to notice its purpose. The Timeout field controls ATG on how much time to spend
finding the best coverage. The default is one minute. Increase the value when dealing with
complex models. Rename the configuration to “unitTest DrinkDispenser” and leave the
timeout unchanged.

General | Interface Definition l Coverage Definition I

~ Settings

Name: |unitT est_DrinkDispensed I

Test Case Generation Timeout [min) |1

The next step is the interface definition for this unit test definition. The objective is to
perform a unit test for the single class brinkDispenser. Therefore, ATG will generate
only test case input sequences for events and operations of this class, which are designated
to be inputs. The following Figure specifies the Input interface definition of

unitTest DrinkDispenser. Interface settings for the other classes must be explicitly
unset using right-button mouse capabilities.

General Interface Definition | Coverage Definition |

[=l| Input Interface

8 Changer in Default
@ ChoicePanel in Default
F=h Coinvalidator in Default

[+]

[+

[+

=l % DrinkDispenser in Default TCon_DrinkDispenser.itsDrinkDispenser
& DrinkDispenser: :Prepare_Soft() D
& DrinkDispenser::Prepare_Tea() D
N
B evDsOFT() "
N ewDTEAD
& evDWATER(Q
B evFILLLPO

8 DummyDriver_of_DrinkDispenser in ...
= TC_for_itsCoinValidator_of _DrinkDis. ..
8 TC_for_itsUser_of _DrinkDispenser i...
£1 TCon_DrinkDispenser in TPkg_Drink. ..
@ user in Default

Figure 3: Interface Definition of a Unit Test Configuration

Events DSOFT, DTEA, DWATER, and F1LLUP Will be automatically generated by ATG.
Operations Prepare Soft, Prepare Tea, and Prepare Water are not selected. These
operations are called internally by this class if events are injected, although these
operations are marked as public in the Rhapsody model.

Coverage definitions are also focused on this unit under test (DrinkDispenser). You
should shrink the range of the test goals to that class, as shown in the following Figure.

@ Changer in Default

2 ChoicePanel in Default
@ Cointalidator in Default
E2h DrinkDispenser in Default

@ TC_for_itsCoinvalidator_of_DrinkDis...
B 1C_for_itsUser_of_DrinkDispenser i...

@ user in Default

Figure 4: Coverage Definition with Focus on the Class under Test

This Test Generation Configuration is now ready for actual ATG test case generation.

Generate Test Cases

Right-click on the ATG configuration and select unitTest DrinkDispenser.

Il Rhapsody in C++ Automatic Test Generation - Test Generation Cq
File Edit Tools Help

= ‘\ TPkqg_DrinkDispenser_TPkg_DrinkDispenser_Comp_DefaultConfig using

unitTest_DrinDispenser
Sync ATG Data with Application
Generate Port Relay Operations

Test Definition Options

Copy
Delete

Clear all
Clear Test Cases

Export Test la‘gses to XML

Export Test Cases to TestScenarios
Export Test Cases to Rhapsody

Export missing Test Cases to Rhapsody

Test Generation Configuration Report: XML
Test Generation Configuration Report: HTML

Expand

Collapse

Flat Yiew

Show Statements

The run-time dialog for actual test case generation will appear.

Il Rhapsody in C++ Automatic Test Generation] = |g|_ﬁ

— Coverage Summary

Test Generation Configuration: unitT est_DrinkDispenser
Test Case Generation Finished

Timeout 00:01:00 R‘

L] 00:00:01
— Model Element Coverage

Total Coverage 36

BV itic————————1
State Coverage 18
B i ————————]
Transition Coverage 15

| I §: 7 10
Operation Coverage 3

BB ha———]
— Model Code Coverage

Statement Coverage 25

2l 00 T —

[

stop_| Hide Details |

Ej% unitTest_DrinkDispenser 36/36 0/0 25/25
E] @ DrinkDispenser in Default 36/36 0/0 25/25
= @ Operations 3/3 0/0 6/6
; ------ a’ Prepare_Soft in Default::DrinkDispenser 0/0 2/2

------ W Prepare_Tea in Default::DrinkDispenser 0/0 2/2
: B a’ Prepare_‘Water in Default::DrinkDispenser 0/0 2/2
- Y States 18/18 0/0 0/0

\f Transitions 15/15 0/0 19419

Obviously it was an easy task for ATG to find full model element coverage for this unit
test. ATG reached 100% model element coverage after one second.

Close the dialog by pressing the button Close. Control will go back to the ATG main
dialog. In the ATG browser you will see the results of the test case generation run.

Il Rhapsody in C++ Automatic Test Generation - Test Generation Configuration: NewConfigurationd =10 x|

File Edit Tools Help

= %/ TPkg_DrinkDispenser_TCon_DrinkDispenser_Component_DefaultConfig usin

General | Interface Definition ~ Coverage Definition I

=] unitTest_DrinkDispenser 36/36 0f0 25/25
=l % DrinkDispenser in Default 36/36 0/0 25/25 ¥ Model Element Coverage ¥ Model Code Coverage
=) & operations 3/3 0j0 6/6 % TestClasses " Test Specific Instances

a’ Prepare_Soft in Default::DrinkDispenser 0f0 22

I=l| Coverage of Classes
i a’ Prepare_Tea in Default::DrinkDispenser 0/0 2/2
H ’ R 8 Changer in Default
a’ Prepare_‘Water in Default::DrinkDispenser 0/0 22

Y states 1818 0j0 0j0 E2h ChoicePanel in Default

\20 Transitions 15/15 0/0 1919 @, CoinValidator in Default

% DrinkDispenser in Default

% TC_for_itsCoinvalidator in TPkg_Drin...

8 TC_for_itsUser in TPkg_DrinkDispenser

£ TCon_DrinkDispenser in TPkg_Drink...

a user in Default

=I| Events

By Default

00 O0o0oxmooo

E TPkg_DrinkDispenser

4« | |

To validate the results ATG gives detailed graphical and textual information about
covered and not covered elements. Explore in the ATG browser the detailed information
for every element. Covered elements are marked with a green check and not covered
elements with a red cross.

Export Test Cases to Rhapsody TestConductor

ATG provides the export formats XML, sequence diagrams and directly to the Rhapsody
browser. To get further information about exporting to various formats reference the

section Exporting Test Cases at page 80. To export the generated test cases to Rhapsody
TestConductor

+ Right-click on the configuration item in the ATG browser and select Export
TestCases to Rhapsody.

Il Rhapsody in C++ Automatic Test Generation - Test Generatio
File Edit Tools Help

= ‘Q’ TPka_DrinkDispenser_TPkg_DrinkDispenser_Comp_L
E] unitTest DrinkDispenser 136 0/0 25/25
- a Dri Sync ATG Data with Application
Generate Port Relay Operations

General |

Test Definition Options

Copy
Delete

Clear All
Clear Test Cases

Generate Test Cases

Export Test Cases to XML
Export Test Cases to TestScenarios

Export Test Cases to Rhapsody
Export missing Test Cases to Rhapaddy

Test Generation Configuration Report: XML
Test Generation Configuration Report: HTML

Expand

Collapse

Flat View

Show Statements

Due to full Rhapsody integration of test cases in the Rhapsody browser ATG inserts the
test cases under the folder TestCases in the related test context TCon DrinkDispenser.
Each test case includes a link to a test scenario, which are stored in the TestScenarios
folder.

=-E3 TestPackages

= -0 TPkg_DrinkDispenser
-] Components
=-(Z] Packages
: E]E] TPkg_DrinkDispenser_TPkg_DrinkDispenser_Comp_DefaultCor

=-{_]] Packages
= E unitTest_DrinDispenser
EJ% TestScenarios

- ATG_TestCase.12
- ATG_TestCase.2
- ATG_TestCase.3
- ATG_TestCase.4
- ATG_TestCase.5
y ATG_TestCase.6
p ATG_TestCase.7
p ATG_TestCase.8
p ATG_TestCase.9

(g, TestComponents
=439 TestContexts
B 33 TCon_DrinkDispenser
-1 Links
- SUTs
[+-k'g Test Context Diagrams
[;]""-y TestCases
- @-% atg_tc_002()
, atg_tc_003()
, atg_tc_004()
, atg_tc_00S()
, atg_tc_006()
, atg_tc_007()
, atg_tc_008()
» atg_tc_009()
, atg_tc_0100)
, atg_tc_011()
, atg_tc_012(0)
estComponentInstances
estConfigurations

o G R R PR KRR

e
o
— =

Close the ATG main dialog and focus on the test context TCon DrinkDispenser.
Explore the test case atg_tc_010 by expanding the tree structure and follow the link to the
corresponding test scenario.

*. atg_tc_009()
-*. atg_tc_010()
=]

¢ Follow the link “ATG_TestCase 010” by right-clicking and selecting Navigate to
Depends On (ATG_TestCase.10) from the context menu.

(-®, atg_tc_009()
=%, atg_tc_010()
- BBy sbinstances

: B TG_TestCase.010
%, atg_tc_011() Features...
#-%, atg_tc_012()
‘ TestComponentInstance Add New »
-~q) TestConfigurations cut Chley
Copy Ctrl+C
Paste (EEri+Y
Delete from Model Del
Set Stereotype
Change to
Mavigate »

Mavigate to Depends On (ATG_TestCase. 10)

Rhapsody selects and high-lights the corresponding test scenario.

=-f3 unitTest_DrinkDispenser
=5 E’fn TestScenanos
+ ATG TestCase. 10

ATG _TestCase, 1;1 :}

E&, ATG_TestCase.12

To open the test scenario double-click on the item “ATG_TestCase.10”. The test scenario
is a stereotyped sequence diagram.

«SUT»

TCon_DrinkDi TCon_DrinkDi TCon_DrinkDi TCon_DrinkDi
spenser.itsDu spenser.itsDri spenser.itsTC spenser.itsTC
mmyDriver_of nkDispenser: _for_itsUser_ _far_itsCoinV

[evDSOFTO | |

| giveDrink(p1 =3

| | EVOKO |

' eDSOFT) . '

72 giveDrinkip1 = 3!
evOK()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}___________
/___________

To get familiar with the created structures and the generated test cases, open some test
cases and test scenarios. Test scenarios are merely sequence diagrams, which will be
executed by the test cases with TestConductor as shown in the next section exemplarily.

Execute an ATG Test Case

To execute the test case “ATG_TestCase 010" we will start TestConductor. The first step
is to compile the test case and link it to an executable. Execute the following steps:

¢ To build the single test case “ATG_TestCase 010 right-click on a test case

“ATG_TestCase 010" in the Rhapsody browser and select from the context menu
Build TestCase.

. Teoek™ e D
Features...

l?—‘f" A
| Bl at
% :; Aadd New »
AT

o

Cut Chrl+x

By a1 Copy Ctri+C
B AT paste Chrl+y
&+ Q TestComponents Delete from Model Del
[333 TestContexts Set Stereotype >
=9 TCon_DrinkDispen: Change to »
%‘ Links Refactor »
-4 SUTs
[+-&Q Test Context L Mavigate >

E]"q TestCases

Check
X, atg_te_00; PO
= atg_tc_00: Generate
v — ~
Edit Test Case

*_ atg_tc_00¢
® atg_tc_00¢ ROUI'ldtl’iD

®»,
v atg_tc_UUf Edit TestCase SDInstances
atg_tc_00. Update TestCase

- atg_tc_00¢
- atg_tc_00¢
mﬂExecute stCase

» atg_tc_011()

[

E X X X X ¥

¢ To execute the single test case “ATG_TestCase 010 right-click on the test case
“ATG_TestCase 010" in the Rhapsody browser and select from context menu
Execute TestCase.

p ATC

» akg_tc_009
®atg tc 010(;

=7

3 Features...
e ATE
=iy ATC Add New »
“p ATC
| AT Cut Chrl+¥
A atc Copy Ctrl+C
: LB ATE Paste CErf+Y
Q TestComponents Delete from Model Del
Elﬁi TestContexts Set Stereotype
533 TCon_DrinkDispense Change ko
- Links Refactor
‘Q SUTs =
@& Test Context Di Navigate b
=%, TestCases Check
% atg te 0020
- :‘{ atg-tc—ggi' Edit Test Case
- " S Roundtrip
[+]-%+ atg_tc_00S
#-%, atg_tc_006 Edit TestCase SDInstances
%y atg_tc_007t Update TestCase
@-*%y atg_tc 0081 Byid TestCase
Y
.. ®,
%y

» atg_tc_011()

TestConductor finished the test case execution successfully.

hd |
bl = f_g; .E}
Mame I Stakus
-/ ¥, atg_tc_010 [0 PassED
Ey ATG_TestCase.010) PassED
1| | 3

For further information on how to execute all test cases of a test context, a test package or
in a batch mode reference the Rhapsody TestConductor User Guide. You will also find
information how to find and correct model and code errors during test execution with the
TestConductor feature Show as SD.

Test Case Generation for
Integration Testing

Compared to unit testing the following task of integration testing has a completely
different scope. One goal is to leave the model untouched, and we will work not on test
packages, test context etc., but construct this time manually a test component and a
corresponding test configuration. This means the tests will execute the original integrated
classes and objects. In other words, all the classes and objects integrated in such a test
component will be considered to be the SUT.

Manually Creating a Testing Component

A Testing Component describes the scope of a system under test. It contains all classes
and packages that must be considered for test case generation. Testing Components are
derived from Rhapsody code generation components and configurations (see Rhapsody
documentation Creating a Component and Creating a Configuration).

To use the integration test capabilities of ATG, you must define at least one Rhapsody
component to ensure an executable code generation on the host. In other words, if a
Rhapsody component is defined, which can be used to generate C++ code without any
errors, and the compiled unit is executable in the simulator, this component can be used
for automatic test case generation.

Given the original TheVendingMachine model, create a new Rhapsody component called
ATG.

=g ThevendingMachine
[=-{_] Components
- m-id

e el

El-pd TheVendingMachine -] Object Model Diagrams
=4 m-{Z Packages
: & GUI Add New Component -] Profiles

{1 Object ModerDregra -C3 TestPackages
1.7 parkanec

EE———— B 000

Entire Model View - ‘ Entire Maodel Yew >

= g Thevendnghachine = pd ThevendingMachine
=-l -1 Comgonents
o M Add New Component " ﬂ
+)) Object Model Diagrams ' ﬁ] U1
4 _J Packages 1] Obct Mode! Diagrams
+1- 1 Profiles 11 L) Packages
1) Profiles

Figure 5: Creation of a New Rhapsody ATG Component

Specify the following component features (see Figure 10):

1. Name: ATG

2. Directory: ATG
This is the default value.

3. Type: Executable
This is the default value, which is correct for this example.

4. Scope: Selected Element: “Default”
This is necessary for this example.

To build a valid code generation component for the whole user guide example, define the
Configuration settings (double-click the befaultcConfig component) as follows (see
Figure 6):

1. Initialization tab settings:
. For the Initial instances field, select Explicit.
« Select VendingMachine in the tree of instances.
. Select Generate Code For Actors.
2. Settings tab settings (mandatory, especially for ATG):
« For the Instrumentation field, select Animation.
« For the Time Model field, select Simulated.
. For the Statechart Implementation field, select Flat.

« Accept the default values for the Environment, Build Set, Compiler
Switches, and Link Switches fields.

. Inaddition, under Instrumentation, click Advanced. In the Advanced
Instrumentation Settings dialog box, select All for the Enable Operation
Calls field. This enables you to call operations such that you can test the
application.

[Cordigu ston - DelautTontiy ATG® - | R [SAFORE P A R T R R presosy
Genardl W’Smloodulﬂml'rm | Propastes | Cvecton s _ % usoeas
il rstirce: o I =
£ Exich Deivad e -1 a j
Changm - > Y ";:?0 — n—
Choc e el J I_r S Irchade Foin [_J
Cowiv shdsion atrrarisbr
DordkDapanse Ireyurmrtaon Mode: | Sovrvab -i v el l
LEDs
1 Weldy
~ - ™ Wb Enddeg . |
¥ Gereste Code For Scton T Motel " Rgel 5 Gemded
Itk wods Sn:-adwnm " Besie © Dw
worewrt Settngs
B I e |
e foom =
Congder Sawches ,"“v.) » . -
IOMO et poch ctarlvwcton A
2 | =
b Soactae l;’mm’ wrandiet NOLOGC &
=]
Locate | Ok | Apply |
ueu| oK lm|
Advanced Instrumentation Settings
~ Trace
IV Arguments W Atitutes IV Events
v Opesations M Relations
Enatle Operation Cate: [N ~ |

Figure 6: Rhapsody ATG Testing Component Configuration Settings

Note: If the model you want to test has already an executable configuration, you can
either use this configuration directly or you can create a copy of this configuration
in order to apply ATG. The steps described above are only necessary if there is no
executable configuration in your model.

Generate and Build the Test Component

The new component was made automatically the active component. To ensure the new
component was setup correctly generate and build the configuration.

¢ To generate the code select from the Code menu the item Generate >
DefaultConfig.

I () Rhapsody in C++ by Telelogic - The¥endingMachine.rpy - [Sequence Diagram: An
|| File Edit view | Code Layout Tools Window Help

J]D == N Generate

Re Generate

Edit »

L[,

Figure 7: Code Generation and Compilation of the ATG Component

+ To execute the component select from the Code menu the item Run ATG.exe.

+ by Telelogic - The¥endingMachine.rp

Code Layout Tools Window Help

[Generate 4 E
_ ReGenerate [
Edit » |
! Roundtrip > !
Force Roundtrip 4
£ Dynamic Model Code Associativity »
f
Build ATG.exe (F7)
c Rebuild ATG.exe
g Clean
i Open IDE ...
Target »
Debug >
., IDE Options
Stop
Run ATG.exe (Ctrl+F5)
GeneratefMake/Run
Clean Redundant Source Files

Figure 8: Code Generation and Compilation of the ATG Component

Apply ATG

Once the component has been compiled into an executable unit, you can use ATG to
generate tests.

+ In Rhapsody, select Tools > Automatic Test Generator.

ic - The¥endingMachine.rpy - [Sequence Dii
ut | Tools Window Help

l £ TestingProfile » |
~ Object Model Diagram
Structure Diagram
i Activity Diagram
; Statechart

Ar5equence QIafaph . A a5 8

EIEtESTatecnart

Sequence Diagram Compare

Automatic Test Generator k
Test Conductor

The main ATG window appears. Showing the unit test ATG configuration we used during
unit testing before. It essential to create a new ATG configuration to fit the needs for
integration testing on the created test component.

Il Rhapsody in C++ Automatic Test Generation - Testing Component: TPkg_DrinkDispen o] 2
General | Interface Definition |
— t'
% DrinkDispenser in Default 36/36 0J0 25/25 Aeltings
Name: ITF’kg_DlinkDispenser_TCon_
™ Use Model Interface Specification
— Coverage Summary
Model Element Coverage 36
[36 (100%
MCDC Coverage 0
| 0(0%)
Statement Coverage 25
| 25 [100%)
— Description
J | o

Figure 9: Starting ATG

In the main ATG window, select File > New > Testing Component. Another window
pops up that asks the user to select the Rhapsody Configuration to which the newly

generated Testing Component should belong. Select the newly created configuration
ATG::DefaultConfig.

Il Rhapsody in C++ Automatic Test Generation - Testing Component: TPka_DrinkDispenser 10 =101 %]
File Edit Tools Help E)
= ‘Q’ TPkg_DrinkDispenser_TCon_DrinkDispenser_Component_Defa
El% unitTest_DrinkDispenser 36/36 0/0 25/25
- % DrinkDispenser in Default 36/36 0f0 25/25

General | Interface Definition |

Settings

Name: IT Pkg_DrinkDispenser_TCon_

I~ llea Madel Interfars § pecification

Select Code Generation Configuration

Please select the Rhapsody Code Generation herage 36
Configuration for the new ATG Testing Component. h
ge 0
ATG:DefaultConfig ”
TPkg_DrinkDispenser::TCon_DrinkDispenser_Componel)
rage 25

0K I\L Cancel
Lay

Description

< | 2

Figure 14: Selecting Rhapsody Configuration for ATG Testing Component.

Test Generation Configuration

After pressing OK, the main ATG window shows the newly created Testing Component.

Il Rhapsody in C++ Automatic Test Generation - Testing Component: ATG_I
File Edit Tools Help
B~ ‘\’ TPkg_DrinkDispenser_TCon_DrinkDispenser_Component_Defa
= ‘m'é} unitTest_DrinkDispenser 36/36 0f0 25/25
[+ % DrinkDispenser in Default 36/36 0f0 25/25

ATG_DefaultConfig using ATG: :DefaultConfig

: =1of x|

General I Interface Definition |

i~ Settings
Name: IAT G_DefaultConfig

™ Use Model Interface Specification

— Coverage Summary

Model Element Coverage 0
| 0(0%)
MCDC Coverage 0
| 0(0%)
Statement Coverage 0
| 0(0%)
r— Description
=
=

< | 2l

Figure 15: Selecting Rhapsody Configuration for ATG Testing Component

As shown in figure 16, ATG DefaultConfig using ATG::DefaultConfig IS
displayed in the ATG browser. ATG is the Rhapsody component, and DefaultConfig is
the Rhapsody configuration that belongs to the ATG component. ATG_DefaultConfig
defines a Testing Component for ATG. Testing Components are the basic entities for
actual test case generation. They define the scope of the model that shall be considered,
i.e. the set of packages and classes contained in the scope.

TheVendingMachine example has some classes which provide an interface to an external
user. Associations to and from these classes are labeled in the UML model as either
provided or required interfaces. ATG provides a mode in which only these classes are
shown in the ATG GUI. This mode can be switched on and off separately for each Testing
Component by checking Use Model Interface Specification on the General tab of the
ATG:DefaultConfig component as shown in Figure 17.

General | Interface Definition |

— Settings
MName: |ATG_DefaultConfig

[V Use Model Interface Specification

To view the filtered interface classes, select the Interface Definition tab.

Il Rhapsody in C++ Automatic Test Generation - Testing Component: ATG_DefaultConfig
File Edit Tools Help

=101x]

‘Q’ TPka_DrinkDispenser_TCon_DrinkDispenser_Com

General Interface Definition I
\ ATG_DefaultConfig using ATG::DefaultConfig

= Input Interface

Eh ChoicePanel in Default 0
=)| B2 Coinvalidator in Default 0
E Coinvalidator::Fallthrough()
& CoinYalidator: insertCoin()
§ Coinvalidator::update_ChoicePanel()
B evcson
evEL()
W evok)
£2h DrinkDispenser in Default 0

=l Traced Instances and Messages

(=)

E userin Default

ETE jia|

Figure 16: Model-Derived Interface in ATG on the Testing Component Level

If you do not set the check-box Use Model Interface Specification all classes contained

in the Testing Component will be listed, for instance also class changer.

Note: In ATG 3.0, in the interface tab of ATG main window “provided interface” is

named “Input Interface” and “Required Interface” is named “Traced Instances and

Messages”.

After selecting a Testing Component “ATG_DefaultConfig”, select File > New > Test
Generation Configuration.

Il Rhapsody in C++ Automatic Test Generation - Testing Componen
File Edit Tools Help

New Testing Component

Sync ATG Data with Application Test Generation Configuration
Settings

Test Definition Options

Exit [V UseMode

Figure 18: Creating a Test Generation Configuration

The new entry is displayed in the browser under the Testing Component.

Il Rhapsody in C++ Automatic Test Generation - Test Generation Configu 10l xi
File Edit Tools Help
7 T o
+ TPkg_DrinkDispenser_TCon_DrinkDispenser_Com e T
' ek i T R 3 General I Interface Definition I Coverage Definition l
[=]- ‘\ ATG_DefaultConfig using ATG: :DefaultConfig .
H iy S — Settings
MNewConfiguration0
Name: INewConfigurationU
Test Case Generation Timeout [min) I‘l
[Delete existing SDs/T ests when exporting
[Minimize SDs/Tests when exporting
Export to:
IATG::AT G_D efaultConﬁg::NewConfiguralioer
— Coverage Summary
Model Element Coverage 0
l 010
— Description
KN jia|

Figure 19: Test Generation Configuration Dialog

Next step is to specify a name for the new configuration. It shall be named as
integration test, because this is the use case considered in this test case generation.
You can specify this definition in the Settings section of the General tab of the Test
Generation Configuration dialog box. You can also specify the following fields:

¢ Test Case Generation Timeout (min)—Specifies a timeout value. By default, this
is set to 1, which means 1 minute run-time unless you stop the generation, or the
ATG algorithm cannot cover more model elements. Specify 2 minutes in this case
as shown in Figure 19.

+ Delete existing SDs/Tests when exporting—Specifies whether to delete any
existing sequence diagrans when you export the tests (to Rhapsody or
TestConductor). In the user guide, this option is set because only the latest results
are of interest.

+ Minimize SDs/Tests when exporting—Specifies whether the set of sequence
diagrams/Test Cases that shall be minimized when you export the tests (to
Rhapsody or TestConductor).

+ Export to—Specifies the package of the resulting test cases (sequence diagrams).
This user guide uses the default value.

Click on the Testing Component name to accept the specified values.

Use the Interface Definition tab of Test Generation Configuration integration test to
specify the model-derived interface classes. Click the plus symbol (+) corresponding to
the class to view the list of all class public operations and events. Each operation or event
has its check box, which is used for user interface definition. Each checked (v') box of the
Input Interface section of a class operation or event enables ATG to invoke the operation
or event call during test case generation. Each checked box of the Traced Instances and
Messages section of a class operation or event enables ATG to record it during test case
generation.

General Interface Definition I Coverage Definition |

[=l| Input Interface

=l By ChoicePanel in Default

¥ ChoicePanel::ChoicePanel()
ChoicePanel: :disable_all{)
ChoicePanel::enable_Soft{)

ChoicePanel::enable_Tea()

ChoicePanel::enable_‘Water()
ChoicePanel::getSoft_enabled()

ChoicePanel::getTea_enabled()

0| D |&D XD | XD XD | D

ChoicePanel::get\Water_enabled()
B evsOFT()

B evEAD

B evwATER()

=l Bl Coinvalidator in Default

& Coinvalidator::fallthrough()

= E CoinValidator::insertCoin()

E[‘; int coinValue

Vending Machine Input:
User presses buttons

O ° @EEOO0O0O0O0OOo0n0 =

Vending Machine Input:
User inserts coin

(1))
o
-
—
o
o

CoinValidator::update_ChoicePanel()
evCS0()

evEl()

evOK()

rinkDispenser in Default

B By

DrinkDispenser::Prepare_Soft()

DrinkDispenser::Prepare_Tea()

DrinkDispenser::Prepare_\Water()
evDSOFT()

evDTEA()

evDWATER()

evFILLUP()

[=l| Traced Instances and Messages

=l @ user in Default

a user::giveDrink()

Vending Machine Input:
Administrator fills machine

MEE ¥ LDDD. ¥E¥E D
KOO0O0O0O0O = 00o0nno

Vending Machine Output:
User gets drink

Qi

Figure 10: Interface Definition of the integration_test Configuration

The field to the right of the class name defines the class instances, which ATG takes into
account during test case generation. In this example, only the first class instance for every
interface class is used (0). This means that ATG can call operations and send events to

ChoicePanel[0], CoinValidator[0], and DrinkDispenser[0]. The desired
interface of the integration test of TheVendingMachine example has to be entered as
shown in Figure 20.

Operations and events usually have parameters (arguments). Click the plus sign to display
the list of parameters, which can be restricted or defined for each run of ATG. This
definition can be an enumerated list (for example. 50, 100) or a definition of a value range
(for example, 0 -100). The default settings for the parameter ranges are derived from the
Rhapsody model. ATG tries to extract as much information about the parameter ranges as
possible. If information is missing, ATG highlights those fields in red. You must add this
missing information into the ATG dialog.

Before you can activate test case generation, ATG must know the desired test goals. You
define this in the Coverage Definition field of the Test Generation Configuration dialog
box. The default setting is that no model classes (Coverage of Classes) and no Events
will be covered by ATG. This means that no test cases will be generated.

Il Rhapsody in C++ Automatic Test Generation - Test Generation Configy egre -10] x|

File Edit Tools Help

[N TPka_DrinkDispenser_TCon_DrinkDispenser_Cc

§E Generall Interface Definition Coverage Definition I
=¥\, ATG_DefaultConfig using ATG::DefaultConfig

integration_test IV Model Element Coverage [V Model Code Cova%e

% Test Classes " Test Specific Instaftes
=/ Coverage of Classes

E changer in Default

@, ChoicePanel in Default

% CoinValidator in Default

@, DrinkDispenser in Default

@ user in Default

H vendingMachine in Default
=l Events

I I |

Figure 11: Coverage Definition

Each class and package of the Rhapsody model is listed. To add classes to the list of test
goals, add the tick in the check box on the right side of the class row. To remove classes
from the list of test goals, delete the tick from the check box on the right side of the class
row.

When you switch to Test Specific Instances you can specify which of the individual
instances of a class shall be covered by ATG. If an instance (such as 0) or list of instances
(for example, 0, 1, 5-7) is defined, ATG tries to cover all the states and transitions (not the
operations) that are part of the corresponding instances of the class. In addition, you can
specify that events of the model are coverage test goals of ATG by selecting the relevant
packages.

Note: It might happen that a specific instance (e.g. instance ‘0’) cannot cover a
particular test goal, e.g. a transition of a class. However, after test case generation

the ATG browser might show that this transition has been covered regardless of
the fact that the selected instance ‘0’ could not cover the operation. This can be
the case due to other existing instances in the tested system which cover the
transition. In this case the ATG browser shows this covered transition directly
under the class and not under a specific instance of this class. The other
transitions, which are covered by the selected instance, are shown in the specific
browser part of the instance.

Check box Model ElementCoverage enables test case generation in order to cover states,
transitions, and operations of the selected classes and instances. Check box Model Code
Coverage enables test case generation in order to cover the conditions, decisions, and
branches in the source code of the selected classes.

Note: For Model Code Coverage only those portions of the code are considered that
has a associated model element visible in the Rhapsody browser. All implicitly
generated code is not taken into account.

For the first Test Generation Configuration, define the test goals using the default settings,
as shown in Figure 11. This Test Generation Configuration is ready for ATG test case
generation.

Generate, Export, and Execute Test Cases

Test Case Generation can be applied on single classes, a set of classes, or on a complete
application. ATG supports the use cases Class Testing and Integration Testing.

To generate test cases for a user-defined Test Generation Configuration,

¢ select the configuration integration test, then select Tools > Generate Test
Cases

¢ orright-click on the configuration integration test and select from the
context menu Generate Test Cases.

Il Rhapsody in C++ Automatic Test Generation - Test General]

File Edit Tools Help
=] "\, TPkg_DrinkDispenser_TPkg_DrinkDispenser_Comp_C
unitTest_DrinkDispenser
Sync ATG Data with Application
Generate Port Relay Operations

Gener:

-~

Test Definition Options

Copy
Delete

Clear all
Clear Test Cases

Export Test Cases to XFIL

Export Test Cases to TestScenarios
Export Test Cases to Rhapsody

Export missing Test Cases to Rhapsody

Test Generation Configuration Report: XML
Test Generation Configuration Report: HTML

Expand

Collapse

Flat Yiew

Show Statements

Figure 12: Generation of Test Cases for whole Vending Machine model

The test case generation virtual machine takes the C++ code, the interface definition, and
the user definition of the desired test goals of the Test Generation Configuration
integration test and tries to cover all the goals. During execution, you can view the
progress, as shown in the following Figure.

=10l x|

Il Rhapsody in C++ Automatic Test Generation

— Coverage Summary
Test Generation Configuration: intearation_test
Generating Test Cases

Timeout 00:01:00

— 00:00:09
— Model Element Coverage
Total Coverage 100
[T——————0
State Coverage 34
B0 =———]
Transition Coverage 38
[T A 2 TS|
Operation Coverage 18
| e P WA
Event Coverage 10

]

— Model Code Coverage

MCDC Coverage 14
| . i 1 72
Statement Coverage 94
| e — T 7 {1 O —

Show Detailsl Elose l

Figure 13: Progress Dialog

During the test case generation task of the ATG engine, the following information is given
at any point in time during execution:

User-defined Time-Out and current Status

Elapsed Rhapsody ATG Execution Time

Total number of Test Goals and the number of goals currently reached
Number of States Activations and the reached number

Number of Transition Firings and the reached number

Number of performed Operation Calls and the reached number
Number of Event Generations and the reached number

Number of MCDC Code Coverage Goals and the reached number
Number of Statement Code Coverage Goals and the reached number

* & & 6 6 6 o o o

During and after execution on a Test Generation Configuration, you can access
information about covered goals by clicking Details. The following Figure shows the
coverage results after a one minute run on integration test. Details about the
covered goals can be seen by clicking the “Show Details” button.

Il Rhapsody in C++ Automatic Test Generation

— Coverage Summary
Test Generation Configuration: integration_test
Test Case Generation Finished

Timeout 00:01:00

— Model Element Coverage

Total Coverage 100
= 5iig———]
State Coverage 34
=it ——————— |
Transition Coverage 38
e —————————) U 2 e s]
Operation Coverage 18
P F————]
Event Coverage 10

[E=———————jiihinl=——————1
— Model Code Coverage

MCDC Coverage 14
]
Statement Coverage 94

EBE==————————3jre- 1

Stop I Hide Details |

(= B integration_test 96/100 13/14 90/34
Q Changer in Default 2/2 0/0 2/2
[—]% ChoicePanel in Default 19/22 8/9 29/32
EI E Operations 5/8 2/3 15/18
<<<<<< %Y ChoicePanel in Default:ChoicePanel 0/0 6/6
------ a’ disable_all in Default::ChoicePanel 0/0 3/3
[+ a’ enable_Soft in Default::ChoicePanel 1/1 2/2
[=]- E enable_Tea in Default::ChoicePanel 0/1 2/2
. Ef enable_Tea (MCDC 1)
[+ ﬁ' enable_\Water in Default::ChoicePanel 1/1 2/2
<<<<<< a‘ getSoft_enabled in Default::ChoicePanel 0/0 041
<<<<<< a‘ getTea_enabled in Default::ChoicePanel 0/0 01
------ a‘ get'water_enabled in Default::ChoicePanel 0/0 0/1
#- Y States 6/6 0/0 2/2
EB---\}’ Transitions 8/8 B/6 12/12
[_j% Coin¥alidator in Default 27/28 5/5 24/25
=& Operations 2/3 5/5 10/11
: ------ a‘ fallthrough in Default:CoinValidator 0/0 041
E’ insertCoin in Default:Coin¥/alidator 2/2 4/4
-- a’ update_ChoicePanel in Default::CoinValidator 3/3 6/6

#- Y States 10410 0/0 9/9

[+~ \‘.’ Transitions 15415 0/0 5/5

- ¥ DrinkDispenser in Default 36/36 0/0 25/25
@‘ user in Default 1/1 0/0 14

@' VendingMachine in Default 1/1 0/0 9/3
H Default 10410

Figure 14: Detailed Coverage Information

The detailed view can be expanded into a finer display by clicking the plus symbol [+].
The red x indicates uncovered goals, whereas green v symbols denotes successful
coverage of a certain test goal. After execution, click Close to close the progress dialog
and display the ATG main window.

Il Rhapsody in C++ Automatic Test Generation 1 = Iﬂlﬁ

— Coverage Summary

Test Generation Configuration: integration_test
Test Case Generation Finished

Timeout 00:05:00

— Model Element Coverage

Total Coverage 100

3% g———— 1
State Coverage 34

———— a1
Transition Coverage 38

N ————————] e]
Operation Coverage 18
1] J
Event Coverage 10

[EE——]

— Model Code Coverage

MCDC Coverage 14
I 1 o1 /4

Statement Coverage 94

i ———

siop_| Hide Detaik |

= By integration_test 96/100 14/14 90/94

@’ Chanager in Default 2/2 0/0 2/2

[—]% ChoicePanel in Default 13/22 3/9 23/32

[—] E Operations 5/8 3/3 15/18

------ %Y ChoicePanel in Default:ChoicePanel 0/0 6/6
------ a’ disable_all in Default::ChoicePanel 0/0 3/3

[+ a enable_Soft in Default::ChoicePanel 1/1 2/2
[+ a’ enable_Tea in Default::ChoicePanel 1/1 2/2
[+ a’ enable_Water in Default::ChoicePanel 1/1 2/2
------ a‘ getSoft_enabled in Default::ChoicePanel 0/0 0/1
------ a‘ getTea_enabled in Default:ChoicePanel 0/0 041
------ a‘ getwater_enabled in Default:ChoicePanel 0/0 0/1
H- Y States 6/6 0/0 2/2

H- Y Transitions 8/8 6/6 12/12

= % Coinvalidator in Default 27/28 5/5 24/25

E] a Operations 2/3 5/5 10411

e a‘ fallthrough in Default::CoinValidator 0/0 01
~ & insertCain in Default:Coirivalidator 2/2 4/4
: ,. a update_ChoicePanel in Default::Cointfalidator 3/3 6/6
- Y States 1010 0/0 9/9
\‘.’ Transitions 15415 0/0 5/5
- a DrinkDispenser in Default 36/36 0/0 25/25
Eﬂ---@' user in Default 1/1 0/0 141
]@' VendingMachine in Default 1/1 0/0 9/9

7 B Default 10/10

I+

I+l

I+

Il Rhapsody in C++ Automatic Test Generation - Test Generation Configuration: integratiol
File Edit Tools Help

‘\z’ TPkg_DrinkDispenser_TCon_DrinkDispenser_Componer_ |

: General | Interface Definition | Coverage Definition |
= ‘\ ATG_DefaultConfig using ATG::DefaultConfig 96/100

3 ; L R Ty — Settings
integration_test 96/100 14/14 9094

= B

[E¥ Changer in Default 2/ 0jo 2j2
= % ChoicePanel in Default 19/22 9/9 2932 Test Case Generation Timeout (min) l1_
= Operations 5/8 3{3 15/18

Name: Iintegraticln_lest

¥ ChoicePanel in Default::ChoicePane
.. g disable_allin Default::ChoicePanel I"" Delete existing SDs/Tests when exporting
(- B enable_Soft in Default::ChoicePane [~ Minimize SDs/Tests when exporting
[+ a’ enable_Tea in Default::ChoicePanel Export to:
- E’ enable_Water in Default::ChoicePar IATG::ATG_DefaultConfig::integration_test LI
- a‘ getSoft_enabled in Default: :Choicef
ﬁ‘ getTea_enabled in Default::ChoiceF — Coverage Summary
e a‘ getWater_enabled in Default::Choic Model Element Coverage 100
EB»»U States 6f6 0f0 22 [
G- Y Transitions 8/8 6/6 12/12 MEDC Coverage 14
S) | S ¥ N v
= % Coinvalidator in Default 27/28 5/5 24/25 Statement Coverage a4
= a Operations 2f3 5/5 10/11 [
- W insertCoin in Default: :Coinvalidator
— Description

‘ E’ update_ChoicePanel in Default::Coil

a‘ fallthrough in Default: :Coinvalidator |

(|

KA

H-CY states 10/10 0j0 9/9 M|
«| | »

Figure 15: ATG Result Information

All test goals and generated test cases are collected and managed under the
integration_test folder, which can be opened by clicking on the plus symbol [+]. The
reached test goal coverage rate can be seen in the Coverage Summary section of the
General tab of the Test Generation Configuration.

Il Rhapsody in C++ Automatic Test Generation - Test Case: Prepare_Soft L 3 10| x|

File Edit Tools Help
‘\" TPkg_DrinkDispenser_TCon_DrinkDispenser_Component_C

General |
-9 ATG_DefaultConfig using ATG::DefaultConfig 96{100 14, .
4 i i~ Information
= % integration_test 96/100 14/14 90/94
- B changer in Default 2j2 0j0 2j2 CS:’:;:[Q: Ditectee: Qrieton
[+ @' ChoicePanel in Default 19/22 9/9 2932 of class_DrinkDispenser

E‘l % Coinvalidator in Default 2728 5/S 24/25

El % DrinkDispenser in Default 36/36 0f0 25/25
& B operations 3j3 0/0 6/6

. E’ Prepare_Soft in Default::
a" Prepare_Tea in Default::DrinkDispensel

: ﬁ’ Prepare_‘Water in Default::DrinkDispen
[+ dStateS 18/18 0/0 0f0 - -
Y Transitions 15/15 0j0 19/19 ~Message Sequence

[+ @/ user in Default 1/1 0/0 1)1 input: Operation insertCoin(100) called on Coin'alidator[0] ;I
o] o Operation insertCoin(100), CoinValidator[0] returhed
- &Y vendingMachine in Default 171 0/0 99 input: Event evSOFT() sent to ChoicePanel[0
== a Default 10/10 Event evSOFT() received by ChoicePanel[0]
output: Operation giveDrink(3) called on user[0]
Operation giveDrink(3), user[0] returned 1

Status: Coverage Criteria fulfilled
Test Case(s): integration_test:ATG TestCase.2

DrinkDispense;

e

K I

Figure 16: Test Goal Management and Test Trace Inspection

If you open the Test Generation Configuration folder, clicking on a test goal displays
information about the generated test case. It explains where the test case is stored on the
file system and provides details of the generated message sequence, which covers the
selected test goal. The generated message sequence is time-annotated and can be exported
into a Rhapsody sequence diagram. Again, a red x indicates uncovered goals, whereas a
green v denotes successful coverage of a certain test goal. You can double-click a test
goal to show the corresponding model element directly in Rhapsody. For example, double-
click the State goal called soft empty of class DrinkDispenser to open the
corresponding statechart and highlight the state as shown in Figure 17. This same
functionality is provided for all other test goals, including events and operations.

E] az DrinkDispenser in Default 36/36 0f0 25/25
[B operations 3(3 0j0 6/6

: 3 0/0 0f0
------ [j FillingUp in Default: :DrinkDispenser: :StatechartOfDrinkDispenser 0f0 0/0
Ej on in Default: :DrinkDispenser: :StatechartOfDrinkDispenser 0f0 0f0

------ d ROOT in Default: :DrinkDispenser:: StatechartOf DrinkDispenser 0f0 0f0

- [j 51 in Default: :DrinkDispenser: :StatechartOfDrinkDispenser 0f0 0f0

------ [j 52 in Default::DrinkDispenser: :StatechartOfDrinkDispenser 0f0 00

Ej 53 in Default: :DrinkDispenser::StatechartOfDrinkDispenser 0f0 0f0

------ Ej Soft_empty in Default: :DrinkDispenser : :StatechartOfDrinkDispenser 0f0 00

- d state_15 in Default::DrinkDispenser::StatechartOfDrinkDispenser 0f0 0f0

----- Ej state_16 in Default::DrinkDispenser: :StatechartOfDrinkDispenser 0f0 00

- [j state_17 in Default::DrinkDispenser::StatechartOfDrinkDispenser 0f0 0f0

----- [j T1 in Default: :DrinkDispenser : :StatechartOfDrinkDispenser 0f0 0/0

- d T2 in Default: :DrinkDispenser::StatechartOfDrinkDispenser 0f0 0f0

- [j T3 in Default: :DrinkDispenser : :StatechartOfDrinkDispenser 0f0 0/0

- d Tea_empty in Default::DrinkDispenser::StatechartOfDrinkDispenser 0f0 0/0

- lj W1 in Default::DrinkDispe 1:StatechartOfDrinkDispenser 00 0J0

- d W2 in Default::DrinkDispe 1:StatechartOfDrinkDispenser 0/0 0f0

- lj W3 in Default: :DrinkDisp 7:StatechartOfDrinkDispenser 00 0J0

d \Water_empty in Default: :DrinkDispenser::StatechartOfDrinkDispenser 0/0 0f0

P

States 18f

ey FILLUPSts Coin'Walidatar

40007 FillingUp -rupdate_Choice Paneld);

| o |
i o
';“DWATEE: o ev DIATER/ e DMIATER/
Frepare_tuaten.t Prepare_iniatan; Prepare_iligter!);
WS | wsCoimalidator | W2 | e Comnatigator | | itsCointalidator
> GEHGev Dk -» BEN(ev 0K COEMEVOR,) |
ey OD50OFTY ewDSOFTS evD50FTY
Prepare_Soft(l; Prepare_$oft); Prepare_Soft(y;
5 its Coinvalidator - its Coinvalidator| 5! its Coin'lidatol | 50TL_EMPLY
-+ GENfav D -+ G ENiew DK ->I3EN(e1rD§a
ew OTES ew OTEA ey OTES
Prepare_Tea(); Prepare_Teal); Prepare_Teal;
T it CoinWalidatar T its Cainvalidator | 1! it= Coin“Alidator
- GEN{ev DKL -* GEN(av D), - GEN(Ew OKY _
- A

Figure 17: ATG Test Goal Connection to the Rhapsody Model

Using the model link reference feature, you can find out why the four uncovered goals are
unreachable in the context of the specified interface.

ATG Management

The test generation component and the test generation configurations specify necessary
details for actual test generation. This entails precise interface definitions and selection of
test goals. To generate test cases with ATG, you must create a test generation
configuration based on a selected test generation component. While a test generation
component describes the scope as explained in the previous subsections, test generation
configurations specify some necessary details for actual test generation.

The Test Generation Component

Create a Test Generation Component

+ To generate a test generation component right-click on an empty area in the ATG
browser and choose from context menu New Testing Component.

I Rhapsody in C++ Automatic Test Generat]

File Edit Tools Help
[+ ‘Q’ TPkg_DrinkDispenser_TCon_DrinkDispensel

ERN

ATG_DefaultConfig using ATG: :DefaultCon

MNew Testing Component

¢ Or choose from the File menu New > Testing Component.

Il Rhapsody in C++ Automatic Test Generation - Testing Compone
File Edit Tools Help

New Testing Component

Sync ATG Data with Application Test Generation Configuratiol
Settings

Test Definition Options

Exit

¢ Select in the dialog Select Code Generation Configuration the Rhapsody
component to analyze with ATG and click OK

Select Code Generation Configuration

Please select the Rhapsody Code Generation
Configuration for the new ATG Testing Component.

GUI::winnt
ATG::DefaultConfig
TPka_DrinkDispenser::TCon_DrinkDispenser_Componel

1K Il Cancel I

Il Rhapsody in C++ Automatic Test Generation - Testing

File Edit Tools Help

‘R’ TPka_DrinkDispenser_TCon_DrinkDispenser_Component_
9\ ATG_DefaultConfig using ATG::DefaultConfig 96/100 17

ATG_DefaultConfig_1 using ATG::DefaultConfig

Delete a Test Generation Component

¢ To delete a test generation component right-click on the test generation component

to delete in the ATG browser and choose from context menu Delete.

Il Rhapsody in C++ Automatic Test Generation - Testing

File Edit Tools Help

‘\ ATG_DefaultConfig_1 using ATG::DefaultConfig

Mew Test Generation Configuration
Sync ATG Data with Application

Test Definition Options
"y
Clear all

P PR e B D

[+ ‘k’ TPka_DrinkDispenser_TCon_DrinkDispenser_Component_
‘\ ATG_DefaultConfig using ATG::DefaultConfig 96/100 13

Or select the test generation component to delete in the ATG browser and choose

from the Edit menu Delete.
Or press the DEL key.

Choose Yes to delete the test generation component. Select No not to delete test

generation component.

%

! E Really delete Testing Component ATG_DefaultConfig_17?
.

| Ja I Nein I

In case the user confirms the deletion all configurations and data under the test generation
component will be delete and are not restorable.

Clear All

To delete previously generated test cases and also the selected options in all test
generation configurations of a test generation component choose from context menu of a
test generation component in the ATG browser Clear All.

Clear Test Cases

To delete only previously generated test cases, but to maintain the selected options of all
test generation configurations of a test generation component choose from context menu
of a test generation component in the ATG browser Clear Test Cases.

Test Definition Options

+ To open the test definition option concerning the test generation component right-
click on the test generation component in the ATG browser and choose from
context menu Test Definition Options or choose File > Test Definition Options.

Il Rhapsody in C++ Automatic Test Generation - Testing Comp
File Edit Tools Help

= \’ TPka_DrinkDispenser_TCon_DrinkDispenser_Compon

General

~ unitTest_DrinkDispenser 36/36 0/0 0/0 ;
{j Q £ rSettu
& Mew Test Generation Configuration fam

Sync ATG Data with Application

Test Definition Options

Delete SOVE

Clear all

Test Definition Options _ x|

— Show

[V Inherited Dperations

— Additional Files
Additional Sources:

| =
Additional Include Paths:

|
| oK I Cance|4|

The Inherited Operation selection box in the Show section provides the possibility to
show operations from shown classes in the interface tab or coverage tab that are inherited
from their base classes.

The Additional Files section give the user the possibility to define Additional Sources
and Additional Include Paths. This is necessary if legacy code or header files from
external libraries are used from the generated model code that are not part of the model.

To specify additional files click on the “...” button next to the Additional Sources field
and write in the file name optionally including a relative or absolute path in windows
notation. Relative entries will be interpreted from the path containing your project file
(.rpy). Multiple file entries have to be separated by commas.

To specify additional include paths click on the “...” button next to the Additional
Include Paths field and write in the path in windows notation. Relative entries will be
interpreted from the path containing your project file (.rpy). Multiple path entries have to
be separated by commas.

ATG recognizes per default the content of the INCLUDE system environment variable.
This path definition will be extended under Rhapsody in the file vcvars32.bat in the
folder “share\etc” of your Rhapsody installation.

Note: You can not use self defined system environment variables e.g. $myIncludes
directly in the ATG Test Definition Options dialog. For that scenario, please
extend the INCLUDE environment variable directly.

The Test Generation Configuration

+ To generate a test generation configuration right-click on a test generation
component in the ATG browser and choose from context menu New Testing
Configuration.

Il Rhapsody in C++ Automatic Test Generation - Testing

File Edit Tools Help

- ‘Q" TPkqg_DrinkDispenser_TCon_DrinkDispenser_Component_|
9\, ATG_DefaultConfig using ATG::DefaultConfig 96/100 17

ATG_DefaultConfig_1 using ATG::DefaultConfig

MNew Test Generation Configuration
Sync ATG Data with Application

— R SRR =

¢ Or select the test generation component in the ATG browser to create a

configuration for and then choose from the File menu New > Testing
Configuration.

Il Rhapsody in C++ Automatic Test Generation - Testing Compone
File Edit Tools Help

MNew 4 Testing Component
Sync ATG Data with Application

Settinne

Il Rhapsody in C++ Automatic Test Generation - Test Gg

File Edit Tools Help

‘R’ TPka_DrinkDispenser_TCon_DrinkDispenser_Component_
‘\ ATG_DefaultConfig using ATG::DefaultConfig 96/100 13
= ‘\ ATG_DefaultConfig_1 using ATG::DefaultConfig

L - NewConfiguration0

Delete a Test Generation Configuration

¢ To delete a test generation component right-click on the test generation
configuration to delete in the ATG browser and choose from context menu Delete.

Il Rhapsody in C++ Automatic Test Generation - Test Generat
File Edit Tools Help

‘K’ TPka_DrinkDispenser_TCon_DrinkDispenser_Component_[
‘\ ATG_DefaultConfig using ATG::DefaultConfig 96/100 13
E‘\ ATG_DefaultConfig_1 using ATG::DefaultConfig

o - MewConfiguration0
Sync ATG Data with Application

Ge

Test Definition Options

Copy

Clear all

+ Or select the test generation configuration to delete in the ATG browser and
choose from the Edit menu Delete.

Or press the Del key.

Choose Yes to delete the test generation configuration. Select No not to delete test
generation configuration.

%

! E Really delete Test Generation Configuration NewConfiguration0?

| Ja I Mein I

In case the user confirms the deletion all configurations and data under the test generation
configuration will be delete and are not restorable.

The General Definition Tab

The General tab of ATG defines the name of the configuration and provides a description
box to notice its purpose.

General I Interface Definition | Coverage Definitionl

— Setlais

MName: |NewConfigurationD

Test Case Generation Timeout [min) |1

" Delete existing SDs/Tests when exporting

™ Minimize SDs/Tests when exporting
Export to:
IAT G::ATG_DefaultConfig_1 ::NewConfiguraI:J

— Coverage Summary

Model Element Coverage 0
[0101

— Description

=
H

In the Settings section the user can rename the selected test generation configuration. To
rename the test generation configuration change the name in the filed Name and change
the focus. Only one word names are allowed. ATG will update the test generation
configuration name in the ATG browser immediately.

The field Test Case Generation Timout (min) tells ATG how much time to spend
finding the best coverage. The default is one minute. Increase the value when dealing with
complex models.

The option Delete existing SDs/Tests when exporting prevents duplicated sequence
diagrams in the model when re-exporting test cases from ATG.

The option Minimize SDs/Tests when exporting results in efficient and compact sets of
test cases.

In drop-down-box Export to the user defines, into which test generation configuration to
export the generated test cases.

In the Coverage Summary section the user can read the coverage ATG reached with the
last started test case generation run. The display varies depending on whether which
option under the “Coverage Definition” tab is enabled.

— Coverage Summary — Coverage Summary
Model Element Coverage 0 Model Element Coverage 0
| 010%) l 0102
MCDC Coverage 0
I 010%1
Statement Coverage p 0
I 010%1 kg

In the Description section the user can notice the purpose of the test generation
configuration. When? Who? What? Why? are the common questions.

The Interface Definition Tab

The Interface Definition tab defines the inputs to be stimulated by ATG during test case
generation and the outputs (traced message) used as expected messages of a test case

General Interface Deﬁhnition | Coverage Definition |

= Input Interface

H Changer in Default

=l b choicePanel in Default

by ChoicePanel: :ChoicePanel()
ChoicePanel::disable_all)
ChoicePanel::enable_Soft()

ChoicePanel::enable_Tea()

ChoicePanel::enable_Water()
ChoicePanel::getSoft_enabled()
ChoicePanel::getTea_enabled()

D | D KD | D XD |ND| 6D

ChoicePanel: :getWater_enabled()
B evsOFT)
B evTEAD
B evwaTERD

% CoinValidator in Default

F=h DrinkDispenser in Default

@ user in Default

Q VendingMachine in Default

OoOooOo0oooooon

[&

[+]

[+

Traced Instances and Messages

8 Changer in Default
& Changer::qiveback_100()
=] Changer::giveback_S0{)

% ChoicePanel in Default

= Coinvalidator in Default

% DrinkDispenser in Default

a user in Default

8 VendingMachine in Default

0l [

OO

[+]

[+]

[+]

&3]

[+

The Input Interface section under the Interface Definition tab defines the operations and
events ATG is allowed to call on the SUT and the test components. TestConductor, the
execution engine, will later act as driver for theses operations and events.

The Traced Instances and Messages section under the Interface Definition tab of ATG
defines the operations and events ATG has to trace on an incorporated instance.
TestConductor, the execution engine, will later act as observer for theses operations and
events.

The Coverage Definition Tab

The Coverage Definition tab of ATG defines the target classes and events ATG will
analyze in terms of the defined SUT.

Genetall Interface Definiion Coverage Definition

[V Model Element Coverage | Model Code Coverage
% Test Classes " Test Specific Instances

I=l| Coverage of Classes

@ Changer in Default

% ChoicePanel in Default
F=h Coinvalidator in Default
% DrinkDispenser in Default
H userin Default

@ YendingMachine in Default

=] Events

B9 pefault

O Oo000O0o0

The option Model Element Coverage tells ATG to achieve model element coverage.goal
Model elements are State, Transitions, Operations and Events.

The option Model Code Coverage tells ATG to achieve MC/DC and statement code
coverage goals for the code parts which have been added to the model by the user.

Furthermore the coverage analysis can be done only for the selected Test Classes or for
Specific Instances. Specific instances means that ATG generates test cases for all
instances of selected classes instantiated during ATG execution.

The section Coverage of Classes is used to define the classes ATG has to use for test goal
computation. Test goals are all model element coverage goals and model code coverage
goals.

The section Events show all package in which Events are defined in the model. All Events
of a selected package have to be covered by ATG during Test Case Generation.

Clear All

To delete previously generated test cases and also the selected options in a test generation
configuration choose from context menu of a test generation configuration in the ATG
browser Clear All.

Clear Test Cases

To delete only previously generated test cases, but to maintain the selected options of a
test generation configuration choose from context menu of a test generation configuration
in the ATG browser Clear Test Cases.

Test Definition Options

+ To open the test definition option concerning the test generation configuration
right-click on the test generation configuration in the ATG browser and choose
from context menu Test Definition Options or choose File > Test Definition
Options.

Il Rhapsody in C++ Automatic Test Generation - Test Generd

File Edit Tools Help
= ‘Q’ TPkg_DrinkDispenser_TCon_DrinkDispenser_Compon
E] unitTest_DrinkDispenser 36/36 0/0 0/0

Test Definition Options

Copy

Delete r

Clear All -
Ex

Clear Test Cases

BB B

Generate Test Cases

Test Definition Options x|

—Show

[V Inherited Operations

— Test Case Computation

Generation Strateqy: % Breadth First (Beam
Beamwidth {500

Handling of Timeouts: {* Standard " Timestep

Milliseconds: |1 0

| 0K I Cancel

The Inherited Operation selection box in the Show section provides the possibility to
show operations from shown classes in the interface tab or coverage tab that are inherited
from their base classes.

The Test Case Computation section provides setting to control the used ATG engine and
the timeout handling. Two Generation Strategies are provided by ATG:

Breadth First search:

Breadth-first generation means that always the shortest test cases that fulfils a particular
coverage goal has to be found. ATG analyses the complete breadth of the model. But this
also means that the number of states that have to be explored grows exponentially with the
search depth.

Beam search:

In beam search the number of states grows only linearly with the search depth. A beam
search can find coverage goals with long paths lengths which cannot be found when using
breadth-first search. However, the test case found by beam search might not be the
shortest test case that leads to the coverage goal.

The value beamwidth sets the breadth of the beam

Section of problem
domain explored

Also the Handling of Timeout can be set. Always when the system is idle which means
that no further computation is possible w/o new inputs ATG is doing a timestep to find out
whether there are timeout transitions to be fired.

Standard means that ATG uses the shortest defined timeout in the model as a timestep
during test case generation. For example if there are two timeouts in the model, one with
10ms and one with 1000ms, ATG have to do 100 timesteps to fire the 1000ms timeout
transition.

Timestep with the corresponding value gives the possibility to define a time step. For
example if the time step is set to 1000ms all timeouts (10ms, 100ms ...) are fired in on
ATG time step.

Sync ATG Data with Application

ATG checks before every test case generation execution if the model data has been
changed, and asks the user to update the ATG representation of the model data by using
the synchronization function.

To synchronize the ATG representation of the model data manually right-click on the test
generation component or the test generation configuration in the ATG browser and choose
from context menu Sync ATG Data with Application or choose File > Sync ATG Data
with Application.

Rhapsody ATG settings

The Rhapsody ATG Settings dialog contains properties, which have global influence on
the automatic test case generation and the export functionality of ATG. To open the
Rhapsody ATG Settings dialog choose in the ATG main dialog from the menu File >
Settings.

M Rhapsody in C++ Automatic

#-8 Edit Tools Help

MNew »
Sync ATG Data with Application

Test Definition Options [\!

Exit

X

Rhapsody ATG Settings

Enable W arnings for non-animated Model Elements

[] Regard only stimuli when exparting to 50

Femap ztimuli from E re when exparting to 50

[]Use TestContest instead of Erny when exporting to S0
[] Add return values when exparting ta S0

[] Skip startup messages when exparting to 50

lze object names in arguments when exparting to 50
[] Compute Test Cazes with lower Thread Priority
Uze ariginal Framewark:

Truncate Test Cazes after M messages 1000

[ak.] [Cancel

In case the option Enable Warnings for non-animated Model elements is enabled, ATG
will generate a warning if test cases shall be generated for non-animated model elements.
The reason is that ATG might not be able to generate test cases due to the missing
animation information. In Rhapsody there is the possibility to uncheck the animation
property of classes, operations, messages, etc. ATG needs this animation information in
the generated CPP code to be able to find the model elements as coverage goal. This
option is enabled by default.

In case the option Regard only stimuli when exporting to SD is enabled, ATG will
export only the input messages when exporting test cases to Rhapsody. This option is
disabled by default.

In case the option Remap stimuli from Env when exporting to SD is enabled, ATG will
map messages that are generated as inputs by ATG to appropriate test components if
possible. This option is enabled by default.

In case the option Use TestContext instead of Env when exporting to SD is enabled,
inputs that can not be mapped to other test components will be mapped to the test context
instance line instead of the ENV instance line when exporting test cases. This option is
disabled by default.

In case the option Add return values when exporting to SD is enabled, ATG computes
expected return values for operation calls of all "traced" messages defined in the "Input
Definition tab", too. The values will then be exported to sequence diagrams as well. This
option allows the user to control if return values are shown in sequence diagrams. This
option is disabled by default.

In case the option Skip startup messages when exporting to SD is enabled, ATG will
suppress messages which are recorded during the initialization phase of a tested system
until the system under test is idle the first time. Sometimes such messages lead to stuck
test execution with TestConductor due to some inconsistencies between the Rhapsody
animation layer and the ATG test case generation. This option is disabled by default.

In case the option Use object names in arguments when exporting to SD is enabled,
ATG will export object names instead of a ‘don’t care® value for class/pointer arguments
in messages, if available. Messages can have arguments of different types. In the case that
a message argument is a class type, the user can choose if exported sequence diagrams use
animation names in message arguments (e.g. ‘Telephone[0]’). The benefit is that
TestConductor can use this animation information for test execution. If the export option
is disabled, ATG will replace the animation name with an asterisk symbol (*), which is
interpreted by TestConductor as ‘don’t care’ during test execution. This option is enabled
by default.

In case the option Compute test cases with lower thread priority is enabled, the task
priority assigned to the ATG will be reduced significant. Normal the ATG engine uses
98% of the processor power when generating test cases. To avoid this and to have the
possibility to work furthermore with you computer you can enable this property. This
option is disabled by default.

In case the option Use original framework is enabled, ATG uses the original Rhapsody
OXF framework implementation instead of its own specific OXF framework
implementation in order to generate test cases. In some cases ATG might be able to
generate test cases for models that use many OXF framework functions, which might not
be possible with the ATG specific OXF framework implementation. It should be

mentioned here that using the original framework often may help to overcome limitations,
in particular compilation problems without usage of properties. This option is enabled by
default.

In case the option Truncate Test Cases after N messages is enabled, all message of a
trace greater than N will be truncated from the test case. Sometimes the generated test
cases are very long and the writing of the test cases takes long time. With this option users
can control that test cases are not generated if they have a certain length N. This option is
enabled by default with N=1000.

Test Case Generation

+ To generate test cases right-click on the test generation configuration in the ATG
browser and choose from context menu Generate Test Cases.

Il Rhapsody in C++ Automatic Test Generation - Test Generation Confi
File Edit Tools Help
- ‘\" TPkg_DrinkDispenser_TCon_DrinkDispenser_Component_L
E] : ‘\ ATG_DefaultConfig using ATG::DefaultConfig 96/100 13

5 B

-E¥ ChangerinC S¥nc ATG Data with Application

General I Interf.

integration_test 96/100 13714 90/94

- ChoicePanel Test Definition Options

- Coinvalidato G
Copy

8 % DrinkDispens Delete
@’ user in Defar
Clear all i

- B vendingMact
Clear Test Cases
- B pefault 10/ e

"y
VPN PP N W55 S35 LU SR S

The Rhapsody in C++ Automatic Test Generation Dialog

The Rhapsody in C++ Automatic Test Generation dialog displays the progress during test
case generation.

Il Rhapsody in C++ Automatic Test Generation s [=| .|

— Coverage Summary
Test Generation Configuration: integration_test
Generating Test Cases

Timeout 00:01:00

. = 00:00:08
— Model Element Coverage
Total Coverage 100
[- (-4
State Coverage 34
| MR e——
Transition Coverage 38
Sy
Operation Coverage 18
T
Event Coverage 10

=

— Model Code Coverage

MCDC Coverage 14
| 17820 |
Statement Coverage 94
[YR

Hide Detait | Cos=_|

E% integration_test 88/100 11/14 84/94

- @’ Changer in Default 2/2 0/0 2/2

% ChoicePanel in Default 13/22 6/9 29/32
% CoinValidator in Default 27/28 5/5 24/25
% DrinkDispenser in Default 28736 0/0 19/25
@’ user in Default 141 0/0 141

@, YendingMachine in Default 11 0/0 3/9

- BY Defaut 10110

- -

To stop test case generation click the button Stop.

To abort test case generation and close the dialog click the button Stop and then
the button Close.

+ To hide the detail information section click the button Hide Details. To show the
hired detail section click the button Show Details.

The test generation will search for test cases until all goals are covered or the specified
timeout is reached. The actual status is displayed in the head section of the dialog.

)

Coverage Summary

Test Generation Configuration: integration_test
Test Case Generation Finished

Timeout 00:01:00
N

While active search the head section displays Generating Test Cases and change this
message to Test Case Generation Finished if one of the constraints described above is
reached.

The Model Element Coverage section give notice about the Total Coverage over the sub
coverage indices State Coverage, Transition Coverage, Operation Coverage and Event
Coverage, which are self-describing. This section is active/visible, when the user
activated the option Model Element Coverage under the Coverage tab.

The Model Code Coverage section gives notice about the MCDC Coverage and
Statement Coverage. This section is active/visible, when the user activated the option
Model Code Coverage under the Coverage tab.

These results have to be regarded as a starting point; start ATG with different properties
and you might get better results. Work with different ATG test generation configurations
such that you can compare the results afterwards.

View Customization

The ATG browser provides some mechanisms for view customization.

One-click Expand/Collapse Hierarchical View
+ Toexpand the selected item in hierarchical view right-click on the element to
expand in the ATG browser and choose from context menu Expand.

+ To collapse the selected item in hierarchical view right-click on the element to
collapse in the ATG browser and choose from context menu Collapse

a’ giveback_50 in Default: Chant_l

ﬁ" disable_all in Default::ChoiceP
E] a’ enable_Soft in Default::Choice
. BY enable_Soft (MCDC 1)
E] a’ enable_Water in Default::Cho
[B % enable_‘Water (MCDC 1)
E & enable_Teain Default::Choice
Lk E) enable_Tea (MCDC 1)
a‘ getSoft_enabled in Default::C
vvvvvv a‘ getTea_enabled in Default:: Ct
: b a‘ getWater_enabled in Default: -
=Y states 6/6 0j0 2j2
P [j Inactive in Default::ChoicePar
------- d Request_sent in Default::Choi
[j ROOT in Default:: ChoicePanel
------- d Soft_selected in Default::Choi
[j Tea_selected in Default: :Choic
P e d Water_selected in Default:: Ck
= -&’ Transitions (8 6/6 12{12
== \1’ 0in Default::ChoicePanel::iIa_:J

«| | | »

Change between Hierarchical and Flat View
The ATG browser provides the flat and the hierarchical view.

¢ To switch from hierarchical view to the flat view right-click on an element in the
ATG browser and choose from context menu Flat View.

Il Rhapsody in C++ Automatic Test Generation - Test Generatic

File Edit Tools Help

=8 ‘Q’ TPkg_DrinkDispenser_TCon_DrinkDispenser_Compon

-8 unitTest_DrinkDispenser 36/36 0/0 0/0

E]‘\ ATG_DefaultConfig using ATG::DefaultConfig 96/1C {
[3% integration_test 967100 13114 90/94

B @l ¢ Sync ATG Data with Application

General

Settin

Mame

5 % ¢ Test Definition Options

n C
Copy
Delete

Clear all
Clear Test Cases

=
B
=4
=
By

Generate Test Cases

Export Test Cases to XML
Export Test Cases to TestScenarios
Export Test Cases to Rhapsody

Test Generation Configuration Report: XML
Test Generation Configuration Report: HTML

Expand
Collapse

Show Statements [!

[

¢ To switch from flat view to the hierarchical view right-click on an element in the
ATG browser and choose from context menu Hierarchical View.

|

Ml Rhapsody in C++ Automatic Test Generation - Test Generation Configuration:
File Edit Tools Help

E]% TPka_DrinkDispenser_TCon_DrinkDispenser_Com4
unitTest_DrinkDispenser 3636 0f0 0/0
E]‘\ ATG_DefaultConfig using ATG::DefaultConfig 9€ (
&8y
>>>>> \" evC50 in Default
- N evDSOFT in Default
>>>>> \“’ evDTEA in Default Copy
N evDWATER in Defaul Delete

General l Interface Definition |

Settings

M arna: l;nleﬂr =l ior
Sync ATG Data with Application

integration_test 967100

Test Definition Options

»»»»» \“’ evEl in Default Clear Al

<. N evFILLUP in Default ~ Clear Test Cases
K-

- N evOK in Default Generate Test Cases

= \" evSOFT in Default

\J TEA W Befailt Export Test Cases to XML

» b = i Export Test Cases to TestScenarios
£y N evWWATER in Default Export Test Cases to Rhapsody

. & giveback_100in Def:
a’ giveback_S0 in Defa
% ChoicePanel in Defat

Test Generation Configuration Report: XML
Test Generation Configuration Report: HTML

fees a’ disable_all in Default Expand
Collapse

- enable_Soft in DefaL TR

a’ enable_Teain Defau ™ show Statements
. & enable_wWater in Def ST TCROTEPSRET T

Show Combinations of Test Cases

¢ To show combinations of test cases right-click on a test generation component in
the ATG browser and choose from context menu Show Combination of Test
Cases.

Il Rhapsody in C++ Automatic Test Generation - Testing Compo

File Edit Tools Help

= ‘K’ TPka_DrinkDispenser_TCon_DrinkDispenser_Compon
unitTest_DrinkDispenser 36/36 0f0 0/0
SR

General I

A O Setting
ATG_DefaultConfig using ATG::DefaultConfig 96/11 r
° integration_tes New Test Generation Configuration €.

' Sync ATG Data with Application

s
Test Definition Options N
Delete Bra
Clear all

Clear Test Cases

Export Test Cases to XML
Export Test Cases to TestScenarios i
Export Test Cases to Rhapsody

Testing Component Report: XML
Testing Component Report: HTML

Expand
Collapse

Show Combination of Test Cases

- ‘K’ TPka_DrinkDispenser_TCon_DrinkDispenser_Component_DefaultConfic

E]‘\ ATG_DefaultConfig using ATG::DefaultConfig 96/100 13/14 90/94
% integration_test 96/100 13/14 90/94
SRR Combined Test Cases 96/100 13{14 90794

= E¥ Changer in Default 22 0f0 22

= B operations 2/2 00 242
ﬁ/ aiveback_100 in Default::Changer 0/0 1/1
b a’ aiveback_S0in Default::Changer 0/0 1/1

% ChoicePanel in Default 19§22 8/9 29/32

% Coinvalidator in Default 27/28 5/5 24/25

% DrinkDispenser in Default 36/36 0f0 25/25

@’ user in Default 11 0f0 1)1

@’ YendingMachine in Default 171 0/0 9/9

- BY pefault 1010

¢ To hide the folder combinations of test cases right-click on the test generation
component in the ATG browser and choose from context menu Hide
Combination of Test Cases.

Exporting Test Cases

You can export automatically generated test cases in different formats on three different

levels:

*

Testing Component level—Exports all generated test cases under a specific
Testing Component

Test Generation Configuration level—Exports all test cases generated for one
Test Generation Configuration

Test goal level—Exports selected test cases

If you select the first or second level, Rhapsody ATG minimizes the suite of test cases for
the export. Redundant test cases are dropped from the suite for efficiency reasons.

The available test case formats are:

XML—Used to display the test case in ATG itself.

Test Scenarios (stereotyped sequence diagrams)—Exported into a corresponding
Rhapsody model.

Rhapsody—Exports the test case directly into Rhapsody. The exported test cases
can be executed using Rhapsody TestConductor.

Exporting missing test cases to Rhapsody—Only those test cases are exported that
will increase the model coverage of the test context to which the test cases are
exported. If the test context already contains test cases that cover some model
elements, then ATG generated test cases that will not cover new model elements
will not be exported.

Export Formats

XML

XML is the universal format to import and export, because of its ability to convert the
structured document by XSLT. ATG is able to produce XML strict. To get further
information contact the Rhapsody support.

4 C:\Programme'Telelogic\Rhapsody 7.1Samples\CppSamples'Atg\The¥endingMachineStarty k_10C 1ol x|

| &

Datei Bearbeiten Ansicht Favoriten Extras ?

) Zuriick: v .\) v ‘ﬂ @ h|/) Suchen \;}{Favoriten Q‘?‘ ;‘fjv ,' | - | ﬁ
Adresse I@ C:\Programme\TelelogiciRhapsody 7.11SamplesiCppSamplesiatgl ThevendingMachineStartigiveback_100,xml :_l Wechseln 2u |Links 22

[~ |

<7xml version="1.0" encoding="is0o-8859-1" 7>
<!DOCTYPE traces (WView Source for full doctype...)>
- «<traces>
- «<trace id="ATG_Conf0.trace12" number="12" comparestr="ATG_Conf0;1|1.1]1.1]1.1]1.1]1">
- <MC id="MC_12_1" direction="input" timestr="(00:00:000)">
<sender is_class="1" instance="0">0MThreadEnv</sender>
<receiver is_class="1" instance="0">CoinValidator</receiver>
- <call=
<namexinsertCoin</namexs
<fgrn=";;Coinvalidator;;insertCoin"."void"."int"</fgrn>
<argument type="int" pointer_type="0">100</argument>
</call>
</MC>
<MR idref="MC_12_1" type="void" is_pointer="0" timestr="(00:00:000)" />
<TP>2000</TP>
- <MC id="MC_12_2" direction="input" timestr="{00:02:000)">
<sender is_class="1" instance="0">0MThreadEnv</sender>
<receiver is_class="1" instance="0">CoinValidator</receiver>
- «<call>
<namex=insertCoin</namex
<fgrn=";;Coinvalidator;;insertCoin"."void"."int"</fqrn>
<argument type="int" pointer_type="0">100</argument>
</call>
</MC>
<MR idref="MC_12_2" type="void" is_pointer="0" timestr="(00:02:000)" />
</trace>
</traces>

N

[€] Fertia CD T [[arbeitsplatz

Test Scenarios

ATG will create a test scenario in an ATG package with the corresponding structure, but
without creating test cases e.g. in the test context.

TestConductor

ATG will create a test scenario in an ATG package with the corresponding structure and
corresponding test cases e.g. in the test context. Test cases and test scenarios are linked
and the user is able to jump from the test case, which can be build as an executable, to the
linked test scenario.

Exporting a Single Test Case

To export a specific test case into Rhapsody, do the following:

1. Inthe General tab of the Test Generation Configuration dialog box for
integration_test, set the export location to
ATG::ATG_DefaultConfig::integration_test.

2. Open the Testing Component ATG and integration test to Select the test
goal:

Water empty in
Default::DrinkDispenser::StatechartOfDrinkDispenser

3. Select Tools > Export Test Cases to... > Rhapsody to export the test case as
sequence diagram to the specified location,

4. orright-click on the item water empty In
Default::DrinkDispenser: :StatechartOfDrinkDispenser and choose
from the context menu Export Test Case to Rhapsody.

Il Rhapsody in C++ Automatic Test Generation - Test Gen
File Edit | Tools Help

[+ Y 7r Generate Test Cases ’ispenser_Component_De

B \ A Export Test Cases to.., P XML 31
= {'; Create Report » TestScenarios

E—-grchanger in Default 2z

& B operations 22 00 22

Figure 18: Exporting a Single SD into Rhapsody

Do equivalent steps to export to XML and test scenarios.

EMY Coinvalidatar] ChoiceFanel] DrinkDispens uset[d]:user
O] Coin'alidat 0]: ChaicePan et[0]:DrinkDis
aor el penser
inaertCuin(u:ninﬂalue = &0) | |
vy ATER(]) |
i giveDrink(p1 = 2
= 2500 ms

[sertCuin[cnin\/laIue = a0)
——————

eWWATER] |

=

= 2500 ms |

inaertCuin(u:nin\JaIue = 5]

SAWVATERD] | |

givelrinkipl = 2
| |

Figure 19: ATG-Generated test scenario test case in Rhapsody

|
|
|
|
|
|
| givelrinkipl = 2
|
|
|
|
|

e S

The sequence as shown in Figure 19 brings TheVendingMachine system into the state
Water empty, Since three demands for water demands without a refill event from the
environment will empty the tank.

Exporting Test Cases on Configuration Level

To export all the generated test cases from the test generation configuration
integration test, do the following:

1. Inthe General tab of the Test Generation Configuration dialog box, set the
export location to ATG: :ATG DefaultConfig::integration test.

2. Select the desired Test Generation Configuration in the ATG browser.

3. Select Tools > Export Test Cases to... > Rhapsody to export all the
generated test cases of that Test Generation Configuration into Rhapsody.

4. Alternatively, select Tools > Export Test Cases to... > incremental
Rhapsody to export only those test cases that will increase the model
coverage of the test context to which the test cases are exported. If the test
context already contains test cases that cover some model elements, then ATG
generated test cases that will not cover new model elements will not be
exported.

Based on the structure of the Testing Component and Test Generation Configuration,
Rhapsody browser contains a test folder called ATG that contains the same structure. The
following Figure shows this folder structure.

=] Packages
- =-Fhat6
B {11 Packages
E]--E_] ATG_DefaultConfig
= {1 Packages
: B-E] integration_test
: % TestScenarios
o B
+ & PredefinedTypes (REF)
+ E] PredefinedTypesCpp (REF)
{1 Profiles
-3 TestPackages
=) &% ATGMultipleTestcontexts
- 33 TestContexts
=-#39 ATG_DefaultConfig
=%, TestCases
&%, atg_tc_002()

v

%, atg_tc_003()

v

%, atg_tc_004()

v

45 hha D 4 2L Aot Ac SOSES B o 4

Exporting Test Cases on Test Component Level

To export all the generated test cases from the test generation component e.g.
ATG DefaultConfig, do the following:

5. Select the desired Test Generation Component in the ATG browser.

6. Select Tools > Export Test Cases to... > Rhapsody to export all the
generated test cases of that Test Generation Component into Rhapsody.

7. Alternatively, select Tools > Export Test Cases to... > incremental
Rhapsody to export only those test cases that will increase the model
coverage of the test context to which the test cases are exported. If the test
context already contains test cases that cover some model elements, then ATG
generated test cases that will not cover new model elements will not be
exported.

Based on the structure of the Testing Component, Rhapsody browser contains a test folder
called ATG that contains the same structure. The following Figure shows this folder
structure.

= {1 Packages
=B ate
E‘{:I Packages
=[5 ATG_DefaultConfig
B {1 Packages
BE:] integration_test
% TestScenarios
[+ b Default
3 & PredefinedTypes (REF)
3 E] PredefinedTypesCpp (REF)
& Profiles
=-C3 TestPackages
=Ly ATGMultipleTestcontexts
E‘gi TestContexts
=439 ATG_DefaultConfig
=% TestCases
%, atg_tc_002()

v

R, atg_tc_003()

v

saah B A b 455-80.akoet: RIS, P

Report Generation

Two kinds of reports are available. Test Generation Configuration reports provide
information about all ATG entities that are part of the selected Test Generation
Configuration, e.g. the elements in the interface and the coverage goals. Reports can be
viewed both as XML and also as HTML.

Note: Rhapsody TestConductor provides support for the reporting engine Rhapsody
ReporterPLUS, which is documented in the Rhapsody TestConductor User guide.

Test Generation Configuration Report

A test generation configuration report documents user settings and selections. Reports can
be generated in two formats: XML and HTML. You can generate an HTML test
generation configuration report for the integration test Test Generation
Configuration.

Select the integration test configuration, then select Tools > Create Report >
HTML.

Il Rhapsody in C++ Automatic Test Generation - Te
File Edit | Tools Help

=Y 1F Generate Test Cases lispenser_cOmpor
{o:{ Export Test Casesto... P 6 0/o 0f0

RN Create Report
%

Figure 20: Generating a Test Definition Report

A dialog pops up that asks you for the location where the report should be saved.

Speichern IO TheYendingt achineStart _VJ A= i 0 o
C)ATG () ThevendingMachine_rpy

IGUI

)myLibraries

) ThevendingMachine_ATG
) ThevendingMachine_ATG.BAK
) ThevendingMachine_ATG.tmp

Dateiname: Rhap&TGTCGenReport. html | Speichern I
Dateityp: lhtml Files [*.html) :‘ Abbrechen I
7

Figure 21: Select destination folder for report

After saving, a dialog asks if you want to open the generated report.

5
1 Report generated.
[Do you wish to open it?

Ja Nein |

Figure 22: Confirm to open generated report

After choosing “yes”, the following report can be seen in your default html viewer.

’3 Rhapsody ATG Test Generation Report - Microsoft Internet Explorer B = I I:llél

Datei Bearbeiten Ansicht Favoriten Extras 7 I ;'.',.

@Zuruck v @ v rﬂ @ :’hlpSuchen *Favorlten @‘ Bv ,; @ - LJ ﬁ

Adresse l@ C:\Programme! TelelogiciRhapsody 7.1\Samples\CppSamplesiatgl ThevendingMachineStart\RhapATGT :_I Wechseln zu ‘ Links >

Rhapsody ATG Test Generation Report

Test Generation Configuration: integration_test

13:01:19, Tuesday, April 24, 2007

[Used Project] [Environment Info] [Used Interface] [Coverage Definition] [Applied &bstrations] [Test Generation Summary] [List of Coverage Objectives

Project: ThevendingMachine
Component: ATG
Configuration: DefaultConfig
Testing Component: ATG_DefaultConfig
Test Generation Configuration: integration_test
Executed on machine: NBOSC30
Executed by User: tschrief
Used OS Version: Windows 2000 / Windows XP
Used Rhapsody Yersion: 7.1, build 814213
Used Rhapsody ATG Version: 3.2, build 635
ChoicePanel

eviMATER i

evSOFT *

evTES ki
Coinvalidator

insertCaoin o

coinvalue 50,100

DrinkDispenser

evFILLUP ¥ X
4« | »

|&] [[[|9 arbeitsplatz y

Figure 23: HTML-Test Definition Report of ATG

The report includes the following information:

The project used

Environment information

Inputs and Traced Instances and Messages

A summary about test case generation

A detailed list of the test generation goals and the generated test cases

The test cases are represented as hyperlinks. Click on a link to open the corresponding
description of the automatic generated test case. This test case covers the described test
goal.

* & 6 oo o

Testing Component Report

The testing component report contains the reports of all test generation configurations
within the selected testing component. To generate a testing component report, select the
Testing Component, then select Tools > Create Report > HTML to create a complete
report.

Test Execution

Using TestConductor, you can execute single test case, all test cases of a test context or of
a test package, and also batch tests. For further information concerning test execution
reference in the Rhapsody TestConductor User Guide the chapter Test Case Execution.

Advanced Features

This section explains some advanced features of Rhapsody ATG.

Specifying Interfaces in the Model

You can specify input and output interfaces for an SUT within a UML model. These are
the provided interfaces (inputs to the SUT) and required interfaces (outputs of the SUT).
ATG uses these interface specifications for test case generation.

Provided Interfaces and Required Interfaces

A typical Rhapsody model contains a larger set of classes. Usually, only very few of those
classes are classes that realize communication with the environment. Those classes serve
to implement the interface between the model and its environment. These classes provide
operations and events to the outside world, or they use the services of other required,
external classes.

TheVendingMachine contains six classes. Classes ChoicePanel, Coinvalidator, and
DrinkDispenser provide services to the environment—they provide an interface. The
additional class user has been added to the model in order to describe the fact that
external users/actors will receive a drink from the vending machine. Class user is not part
of the SUT. If the drink is ready to be delivered, the DrinkDispenser calls an operation
on class User. User provides this operation to the DrinkDispenser. The User class is
considered to be the required interface in this sample model.

The following Figure shows how to specify interfaces in the model.

YendingMachine /

/ «providedinterfaces

1 itsCoinValidator. CoinValidat & 1 itsDrinkDispenser. DrinkDispen &

|—

crequiredinterfaces

/
l///

1 itsUseruser

A
P

¢providedinterfaces

1

—

1 itsChoicePanel: ChoicePane & 1 itsChanger:Changer

«providedinterfaces
=

T

|—

Dependency : ChoicePanel in ¥ending

General l Tags | Properties

Name: | ChoicePanel _LJ

Stereotype: Iprovidedl nterface :]

Depends On: | ChoicePanel in Default

Figure 24: Provided and Required Interfaces

The object model diagram (OMD) shows the available classes. In addition, it shows that
four stereotyped dependencies are used. Three of those are stereotyped as
<<ProvidedInterface>>, ONe as <<RequiredInterface>>. These classes will be
presented in the ATG view; however, classes vendingMachine and Changer Will not be
shown. ATG uses the public message of classes ChoicePanel, Coinvalidator, and
DrinkDispenser to generate test cases for the model. It traces messages to class User to
trace reactions of the model.

A stereotype <<ProvidedInterface>> canbe added to Dependency and
generalization arrows, while a stereotype <<RequiredInterface>> can be added to
Association, Association-End, and Dependency arrows.

Operations and Events — Argument Constraints

Operations and events of provided classes might have parameters (arguments) of
predefined or user-defined types (for example integer, float, or Boolean). ATG uses type
information to generate test cases (input messages together with parameter values). You
can control the range of values used by ATG in order to make sure that ATG only
generates test cases with valid and intended argument values. For example, you might

know that for a certain message m (int p), parameter p can carry values only between 0
and 100. Those aspects can be specified in the model using constraints.

Consider the following Figure. Class Coinvalidator provides an operation
insertCoin (int coinvalue). For the argument coinvalue assume only two values:
50 cents and 100 cents. Specify a constraint to operation insertCoin () with the same
name as the argument (coinvalue) and stereotype the constraint as
argvalueConstraint. This is used to enumerate the allowed values in the supported
tag values of this stereotype.

Chject Model Diagrams

Packages
ﬁ Default General I Descriptiu:unl Relations | T
=B Classes

#-8 Changer M ame: | coirialue

ChaoicePanel

Sterentype: IargVaIueEu:unstraint
CoinYalidator

e

[-Ly Association Ends Type: IEDnstraint
=& operations Io- I
..... E viTS00) o : :
_____ E BvEL() Defined in: IlnsertEDm
----- B evoK() Specification:

& fallthrought)
= B insertCoinint coinvalue)
If_l--{l'_*.} Conskrainks
=1-{} «argvalusCanstraints cainvalus
EI@ Tags
E :f;? wvalues
B update_cChaoicePansl)
EEI---EJ Stakechart
EEI--% DrinkDispenser
F-E user
#=-B vendingMachine
Y - .

3

Anchored Elements;

MNarme

«Select =

Figure 25: Argument Constraints and Stereotypes

The following Figure shows how to add relevant enumerated values to the tag in the
dialog box. The Type of the tag is set to String, but users can enter integer, real, boolean,
or string values in the field such that values match the type of the constraint argument. In
this case the type of coinvalue is integer and we specify to valid values 50 and 100.

-~ W EL)
- | Fallthrough(y

- (@ insertCoin{int coinvalue) | General |
=-{>} Constraints
=-{} coinvalue Name: Ivalues

S 6 Tags

-6 N
- @ oK

& update_ChoicePanel()
3| Statechart

Applicable to: I
Type: |Stting
{50,100

Walue:

~

Figure 26: Enumerated Values Using Stereotype argValueConstraint

In addition to value enumeration with constraints, ATG supports range definitions. This
enables you to specify the tags 1ow value and high value to specify the boundaries of
an argument. The stereotype supporting it in the model is named argRangeConstraint,
as shown in the following Figure.

Constraint : coin¥alue in insertCoin

General IF!eIationsI Tags | Properties |

Name: Icoin\!a|ue

LG o alueConstraint

Type: ;
4% argR angeConstraint

I arg'/ alueConstraint

- e

Figure 27: argValueConstraint and argRangeConstraint

User-Defined Constraints on Types

The previous section showed how to specify constraints for message arguments. Similarly,
you can add constraints to types that are used to declare and define message arguments.

ATG provides stereotypes for most of the predefined Rhapsody types.

- «5% typeBoolRangeConstraint

- «5» typeCharPtrRangeConstraint
- «5» typeCharRangeConstraint
- «5» typeDoubleRangeConstraint
- «S» typelntRangeConstraint

- «5» typelongDoubleRangeConstraint

- «S» typelongRangeConstraint

- «5» typeOMBooleanRangeConstraint

- «S» bypeOMStringRangeConstraint

[E «5» typeRhpBooleanRangeConstraint

[E «5» typeRhpCharacterRangeConstraint

[E «5» typeRhpIntegerRangeConstraint

[4}] «5» typeRhpPositivRangeConstraint

[#-«5» typeRhpRealRangeConstraint

[#-«5» typeRhpStringRangeConstraint

[#-«s» typeRhpUnlimitediaturalRangeConstraint
[#-«5» typeShortRangeConstraint

[#-«5» typelUnsignedCharRangeConstraint

[4}] «5» typeUnsignedIntRangeConstraint
[#-«5» typelUnsignedLongRangeConstraint
[#-«5» typeUnsignedShortRangeConstraint
Rt pey alueConstraint

Figure 28: Available ATG Stereotype for Types

The following Figure shows a user-defined type, drinkType.

FH-H user LI = I
F-E vendingMachine Type : drinkType

[+ % Everts

El(} Tvpes General I Literalsl Helatiu:unsl Tags I
= § abypeyslusConstraints drinkType Mame: I dinkType

El Tags
o values Sterentype: |type‘\-faluelicunstrair1t
1-520 PredefinedTypes (RO} Kind: IEnumerati-:un

1 Profiles

Figure 29: User-Defined Type drinkType and its Stereotype

The selected stereotype is typevalueConstraint. This stereotype offers a tag so you
can specify a list of possible values for the type. ATG uses these values for every message
argument declared using this type.

_ m-B vendngMachine Tag : values in dr

- % Everks

El(} Types General |

E|¢ «bypevalueConstraints drinkTvpe Mame: Ivalues
El--lg Tags
. values Applicable to:
ﬁ PredefinedTypes (RO} Tupe: String
| Profiles
; Tea, \Water, Saft

B9 AtgProfile (RO) Value: I

Figure 30: Enumerated Values Using Stereotype typeValueConstraint

Working with Libraries

Software developers often use libraries when developing new software. These libraries are
often only available as header files and object code, but not as C++ source code. This is
not a problem for code compilation and linking, since a standard linker links object code.
ATG cannot use object code for test case generation. ATG requires source code for the
analysis. Still, source code is usually not available for external libraries.

ATG provides a feature that generates stub code fully automatically for user functions that
are implemented in libraries. The generated stub code is used for test case generation.

Suppose, a user uses an external library change_money.lib in TheVendingMachine sample
model of this user guide. Some parts of the header file of that library is shown in Figure 50

below.

/7 Header file for Library change money.lib
#ifndef CHANGE_MONEY_H
#define CHANGE_ MONEY_ H
enumn changeMoneyType
fifty = 1,
hundred = 2
¥

/7-p==1 returns 10; p==2 returns 100
int get_amount{int p);
#endif

Figure 31: Header File of Library Change_Money.lib

This library provides a function int get_amount(int p) that returns an integer value

depending on an integer argument p. The behaviour of the functions is not visible to ATG,

because it is implemented in the library.

This function int get_amount(int p) is used for the implementation of functions
giveback_50() and giveback 100() of class Changer.

Figure 32 below shows that class changer includes change_money.h.

[an) J =g petaet e reage

|_:_|{:| Packages IUsedsExternal O
L_—_lil Default = EPP_EE

=B classes
#-BH changer S| Class
- ChoicePanel DeclarationModifier
£ Coinvalidator Embeddabla
- DrinkDispenser ;
B user ImpIncludes A dmyLibrariestchange _money.h
=B vendingMachine IsReactivelnterface

B %, Everks speclncludes

oM Tomme

Figure 32: Change_money.h is Included by Class Changer

Figure 33 below shows that library function get_amount(1) is called in user function
giveback_50() of class Changer.

B == —
Primitive Operation : g

Entire Model Wiew = _ .
EI--QI TheverdingMaching General Implementation I Helatmnsl Tags I
D Components Iint giveback_50[)
[+ Object Madel Diagrams
=10 Packages #ifdef USE_ONM RETURN
= Default OM RETURN (1) ;
EI§ Classes #endif
EIE Changer
=@ Operations A
- [giveback_100() return 1
=} chack_S00) =4
[-F ChoicePanel
[+]- Coinvalidator int monew:
[+ DrinkDispenser
H-BH user money = get amount (1) :
H-H vendingMachine
[\ Events return money:
-4 Types
£ PredefinedTypes (RO) 1] I

Figure 33: get_amount(l) is called in giveback_50() of class Changer

Open the Implementation tab and change the implementation such that the code looks like
in Figure 33. Do the same in user function giveback_100().

The user can launch test case generation as usual via Tools > Generate Test Cases. ATG
will find the header file and will analyze the signature of the function. Since for the
selected scope there is no implementation of this function, ATG automatically “stubs” this
function, i.e., ATG generates an implementation for this function automatically.

Coverage Measurement
with Third-Party Tools

Actual code coverage measurement is an important activity in order to assess the quality
of the test cases. Third-party tools support these activities when test case execution is
performed on real production code.

Several third-party code coverage measurement tools exists on the market that you can use
to figure out the total code coverage achieved by executing all the ATG generated test
cases.

You can place these tools into the code generation and compilation process. These tools
do have all information about the C++ code and its objects. In addition, since
TestConductor drives the executable with the test cases generated by ATG, code coverage
(such as MC/DC coverage) can be measured. Some examples of code coverage

measurement tools are the tools from Bullseye, and IBM® Rational® Test Real Time.

B0 test.cov - Coverage Browser E .dﬂﬂ
fie £k Vew Go Regon Tocls telo

TR s A XBCRAO0O0T LD

Region | .|, \PhapsodyS01 | Saneies g Sancies| 2 g\ AGmsd Abg | SMS|SME SLB_SYSTEMDwbuy_ecw)
9% Gasoes B Fes |,) rnd] | Han 1 Funetion c,,, | Uncovmn.., | Condtionidec...| Uncovmed]
3, hegt cow R)I_#Miaxp 1007 G— O v
-— e ! MarSMS_SU0_SvSTtMe 100% G O SOV . i
= i) Package o NIV ‘e EY I e
o 626) WrDepey 20 7% S e 5% - O
3 425 Rhepsodvsnl e 5% N 13— I . 177 —
= 525 Sevph B PebaaCortro.cpp 3% AN 15w 5% R 115 e—
25 CopSanphes B Wrirctotype. oo Q%R e 0
= 54 Mg &) Station o U e % e
o1 Adredlag B Ao sit.oao LU - 0% A G-
=) {2 S) ArostCortd e =% G |7 - v NN e
= 523 M5 _SLE SYSTEM | ') acsuteystenihy. cop el R T ED
{2 o) Despley. o0 Dl ce 0
& o Shae) RebannCortroi.h S e 0
b S% U 1C .- 0
L« 1)
Furcton coverage | Urcoversd Furchions | Condtionfdeciion coverage | Lincoversd condibions decinons
520 GEEEE 199 e 32% $14 e
Cover age Buld 15 ansbind

Figure 34: Code Coverage Measurement Tool

During TestConductor Execution of Test Cases

Appendix

Restrictions

The restrictions and limitation of ATG are described in an additional document
rhap_atg_limitations.pdf

Frequently Asked Questions

Currently known FAQs are described in the addition document rhap_atg_FAQs.pdf

