Rhapsody

IBM® Rational® Rhapsody® Automatic Test Generation Add On

Limitations

IBM® Rational® Rhapsody® Automatic Test Generation Add On

IBM® Rational® Rhapsody® Automatic Test Generation Add On

Rhapsody®

IBM® Rational® Rhapsody®

Automatic Test Generation
Add On

Limitations

Release 3.6

-
I T Y el

IBM® Rational® Rhapsody® Automatic Test Generation Add On

License Agreement
No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,

optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems

AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed
or implied, are made regarding Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and
IBM® Rational® Rhapsody® TestConductor Add On are registered trademarks of 1BM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of
their respective owners.

© Copyright 2000-2009 BTC Embedded Systems AG. All rights reserved.

IBM® Rational® Rhapsody® Automatic Test Generation Add On

Contents

Preface ... 6
Contacting IBM® Rational® SOftWare SUPPOItcueviveeeeeeeeeeeeeeeeee oo 6
OVBIVIBW... ..ttt ettt b et sttt st e b e b e e st E et e e R b e e b e bt e st e e bt e ke e nbesbeenbeenbesbeeneesbeenne s 7
GENEral LIMITATION ...eouiiiiiieiiecie s bbbttt bbb bbb 7
Limitations concerning Rhapsody FEAtUIESccccveiiiiieiieie e 7
0] 1 TP PT RPN 7

2] [0Tod - T Lo I =V PSSRSO 7

LI 1 0] RO TS 7
Stable STAtES OF tNE SUT ...ttt et bt et sb e et e b e ebe b e 7
RhapsodyInC, RhapsodyInAda, and RhapSodyINJaVa.ccccceiieiriieiieiieic et sneas 7
Argument TyYPes OF Provided MESSAGEScuervirierieitirieiieie sttt sttt sttt bbbt e b e b e e 8
Yo - T SRR PP PTRON 9
ACTIVE ODJECES ..ttt b bbb bbbt bbbt bbbt e bbb bbb et b bbbt 9
RNAPSOAY PIOPEITIES ...ttt bbbkttt b et b ettt b et bt et nn e 9

LI 0] 0] T O TS 10
Limitations regarding new features in Rhapsody 7.0cccooeiieiieie i 10
MUITPIE SEEIEOTYPES. ... ettt ettt et bt bbbt e b et et b e b e sb e bt et e et enbenn e besbesbenes 10
COMPONENES 1N PACKAGES ... ettt t bbbt b e e b et e sbe s b e s be bt et e e e enbeneenbenee b 10

UNit UNIOAING/LOAAINGv ettt ettt bttt bbb 10
“Mixed Language” MOUEIS..........ooviieieie ittt sa et e e e e aesrestesneenaeseenreneenneas 10
CH+ CoNSIrUCE TraNSIATIONccvviiiiiiiiiie e 11
Not Supported CH++ CONSIIUCEScccvieiciece e 11
POINTEE £0 IMEMDEIS ...ttt bbb bbbt bbbt et b st bbb b 11
Type declarations Within fUNCLIONS.........ccoiiiiiiiiie e s e e e renns 11
AT S 1 (=] 01T £SO SRS 11
'dynamic_cast’ eXPreSSiON-0PEIALIONS.ciiiiieitirieie ettt sttt sttt se et st sb e bt et e e e b e besnesbenee b 11
2T =T [0 [OOSRV 12
EIIDSES ..ttt h R bR R R R bR R b bR bRt E bbbt r e 12
EYPEI()-EXPIESSIONSvvitiietiite ettt ettt ettt et b et b ekt b ekt s bt b e s bt e bt nb e bt eb e s bt e ebe e et e ebennebeene e 12
Delayed destruction of temporaries, if they are bound to a static or global reference.........cc.ccocveevvivrvennne. 12
Member-operator fFUNCLIONS ||, |2 &N '[|'+everviireieirieis s nes 12
Extern variables of class-type with an extern CONSIIUCTONccccvivieeiieiiese e 13

Not Correctly Translated CH+ CONSIIUCES.cuiiiiiiiiieieeee s 13
Class temporaries created under a conditional operator (“?”, “&&”, “||"”) when they require destruction .. 13
Same named (C-)static entities in different .CPP-FIlES ... 13
Casts of integral integer types, which change the ValUe ..o 14
Wrongly Translated Language Constructs With Warningscoccoeverereneinininenene e 14
Initialization oOf Virtual base ClaSS-Partsc.coiiiiiiiiie bbb 14
Types ‘unsigned int’, ‘unsigned long', 'long long’, and ‘unsigned 1ong 1oNg'"..........ccccooiiiiiniiininicieee, 15
Types 'double’ and ToNG OUDIEciiiiii bbb 15

C++ Standard Library RESIIICIONScccveiiiecic sttt sre e sre s 15
Other COMPIIALION ISSUESoiuiiiiiieiei sttt ne e eneas 16
(=10 (o] PSSR 16
UDNHON-EYPES .ttt ettt ettt e e e bbbt e b e bt e bt et e a b e ee e e b e S E e e b £ e b e e Re e R e e e e b e ebeebeeb e e bt ehe et e beneesbenbe e 16
F10AtING-POINT CONSTANTSeviitiiti ettt ettt bbbttt e b bt s b e be b e e bt e st eb e et e e neesbesbe e 16
ADSIFACTION SCENAITOS ...ttt bbbttt b bbb e b e st b bbb b b e eneas 16

IBM® Rational® Rhapsody® Automatic Test Generation Add On

Preface

Welcome to the limitations document for IBM® Rational® Rhapsody® Automatic
Test Generation Add On (Rhapsody ATG). Rhapsody ATG is a test case
generation tool using standard Unified Modeling Language™ (UML™) design
notations. Using ATG, you can automatically generate test suites and perform test
execution for your applications developed with the Rhapsody in C++ design tool at
any stage in your development cycle.

The typical UML development process (such as the Rapid Object-Oriented
Process for Embedded Systems (ROPEYS)) is iterative, starting with an early, fairly
abstract version and progressing to more and more concrete prototypes. To test a
System Under Test, use ATG in your development process to do unit testing,
integration testing, or regression testing.

Rhapsody ATG is complemented by Rhapsody® TestConductor. TestConductor
automatically generates test monitors and test drivers from Rhapsody sequence
diagrams (SDs). During automated test execution, the generated monitors
determine whether the executed model satisfies the selected SDs. ATG generates
test cases that can be exported to UML sequence diagrams in order to execute test
cases with TestConductor.

Contacting IBM® Rational® Software Support

IBM Rational Software Support provides you with technical assistance. The IBM
Rational Software Support Home page for Rational products can be found at
http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for
support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM
Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone
number in your country (where available). For specific country phone numbers, go
to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background
information that you will need to describe your problem. When describing a
problem to an IBM software support specialist, be as specific as possible and
include all relevant background information so that the specialist can help you
solve the problem efficiently. To save time, know the answers to these questions:

What software versions were you running when the problem occurred?
Do you have logs, traces, or messages that are related to the problem?
Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the
workaround.

IBM® Rational® Rhapsody® Automatic Test Generation Add On

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www.ibm.com/planetwide

Overview

Rhapsody ATG analyses a Rhapsody UML model and generates test cases. For test case
generation, ATG parses and analyses the Rhapsody generated C++ code. This document lists
the known limitations of the ATG version V3.0.

General Limitation

If a model is deeply nested in a folder hierarchy then ATG cannot generate test cases. This
problem occurs due to a known Windows limitation regarding the supported length of path
names (256 characters) which is not yet overcome by ATG. A workaround is to move the
model to a location which is on a higher level in the folder hierarchy.

Limitations concerning Rhapsody Features
Ports

Although ATG supports Rhapsody ports, it not yet considers the provided/required interfaces
specified in the port’s contract for ATG test case generation. Information about interfaces
must be specified with stereotypes and/or in the ATG UL.

Blocks and Parts

Models may contain blocks and parts. ATG can generate test cases, but the translation of test
cases into sequence diagrams may not work correctly in some rare cases.

Template Classes

Models may contain template classes. ATG cannot be applied to models containing template
classes.

Stable States of the SUT

ATG generates inputs when the SUT reaches stable states. It might happen that an application
does not reach a next stable state, for instance due to a statechart that can always fire a new
transition. If an application never becomes idle, then ATG will not compute meaningful test
cases.

When executing generated test-cases using the Test Conductor tool, sometimes the execution
may get stuck in status ACTIVE without reporting a failure or having achieved 100%
coverage of the test-case. In these cases interactively performing a step and continuing the
execution will force Test Conductor to resume the test-case execution.

RhapsodyInC, RhapsodyIlnAda, and RhapsodylnJava.
RhapsodyInC, RhapsodylnAda, and RhapsodylnJava are not supported.

IBM® Rational® Rhapsody® Automatic Test Generation Add On

Argument Types of Provided Messages

Provided messages are events, primitive operations, or triggered operations that
class/component under test provides to its environment (i.e. objects and components that
interact with it). For instance, if a class C provides an operation foo(int a, char b, double c),
then other components can invoke this operation on C with specific values for a, b, and c.
ATG simulates such calls for test case generation with appropriate values for a, b, and c.

The following Rhapsody predefined types for message arguments are supported.

bool Rhplinteger
char RhpPositive
char* RhpReal
double RhpString

int RhpUnlimitedNatural
long short

long double unsigned char
OMBoolean unsigned int
OMString unsigned long
RhpBoolean unsigned short
RhpCharacter

The following types are not supported:

RhpAddress
RhpVoid
Void

Void *

Also supported are typedefs that use these predefined types and enumeration types. Not
supported are for instance arguments with pointer types, e.g. op(user_type *a). ATG cannot
yet generate values for pointer arguments of provided messages.

This limitation also applies for user-defined enumeration types. Qua default, Rhapsody
represents operation arguments of user-defined enumeration types by references as arguments.
Such references have to be treated as pointers by ATG, unless property CPP_CG::Type::In
redefines the representation of such arguments. In general, if a Rhapsody type (model-view)
turns into a reference- or pointer type at code-view, this type is unsupported to be used as
message argument for a provided message. Additionally, ATG does in general not support
structured types (class/struct/unions) to be used as argument-types of interface-functions
(even, if structured objects are directly passed to the function, without an indirection by
pointers or references).

Another limitation regarding types concerns empty-strings of type OMString, RhpString, and
char*. Rhapsody's Sequence Diagrams are currently not capable of representing empty
strings, i.e., even though ATG generates test-cases regarding empty-strings correctly, these
test-cases cannot be executed successfully using TestConductor unless empty strings are
replaced by non-empty strings.

Variables and constants of integer types (cf. section 2.9) are translated wrongly into ATG, if
their value is outside of the range of signed 32-bit integer. In addition, ATG could only

IBM® Rational® Rhapsody® Automatic Test Generation Add On

operate on signed 32-bit integer values. Therefore the compiler could be configured such that
a warning-message is printed, if expressions exists which have these kind of types.

Please note that these limitations apply only to messages that are provided to other
components by the class/component under test. It is not an issue if pointer arguments are used
inside a class/component under test.

For the ATG interface definition, a value of type “‘wchar_t” or ‘char’ can only be specified by
an integer constant, but not by a character constant of the form *“L’<character>"" or
“’<character>"". A value of type ‘float’ can only be specified by a floating constant of type
double, but not by a floating constant of type float (that is, the suffix ‘f* or ‘F’ must be
omitted).

Libraries

As mentioned above, ATG parses and analyses the Rhapsody generated C++ code in order to
generate test cases. If the complete behavior is specified in the model, then ATG generates
test cases. Note that Rhapsody users can also add libraries to the application when the
application is linked in order to create an executable. Source code of linked libraries is usually
not available. On the other hand, ATG requires the full source code for the analysis.
Otherwise ATG cannot analyze the full behavior. This means, if some behavior is linked to
the application under test with compiled libraries, then ATG cannot yet analyze the code and
cannot generate test cases.

ATG will generate stub source code in order to provide default behavior for functions that are
implemented in libraries. The stub code is used for actual test case generation. Users can
modify and extend the stub code.

Please note that test case execution can clearly be done on the production code where libraries
are linked to the class/component under test.

Active Objects

Rhapsody ATG can handle programs that use up to 10 active objects, i.e., classes with
concurrency ‘active’. If more then 10 active objects are alive at once, the achieved coverage
may be low.

Rhapsody Properties

Rhapsody ATG uses own versions of the Rhapsody framework classes and functions.
Additionally, the ATG Rhapsody framework does not contain all classes and functions of the
original Rhapsody framework. Due to this approach, several values of project properties that
influence the code that is generated for a Rhapsody model are not supported by ATG. The
following list contains some restrictions concerning values of several Rhapsody properties:

e CPP_CG::Microsoft::EntryPoint must be set to "main" (the default-value)
e CG::Configuration::CodeGeneratorTools must be set to “internal” (default)
e CPP_CG::Configuration::ContainerSet must be set to “OMContainer” (default)

IBM® Rational® Rhapsody® Automatic Test Generation Add On

CPP_CG::Microsoft::IsFileNameShort must be unchecked (default)
CPP_CG::Microsoft::ImpExtension must be set to “.cpp” (default)
CPP_CG::Microsoft::CompileSwitches may not be changed by the user
CPP_CG:Class:AdditionalBaseClasses may not be used (default)
CPP_CG::Configuration::DefaultSpecificationDirectory may not be changed (default)

CPP_CG::Configuration::DefaultimplementationDirectory may not be changed
(default)

CPP_CG::Configuration::EmptyArgumentListName may not be changed (default)
CPP_CG::Microsoft::SpecExtension may not be changed (default)
CPP_CG::Statechart::StatechartStateOperations may not be changed (default)
CPP_CG:Operation:ImplementationName may not be changed (default)
CPP_CG::Class::Speclncludes may only refer to files in the default spec directory

CPP_CG::Class::Impincludes may only refer to files in the default implementation
directory

Template Classes

Rhapsody Template Classes (that is, Rhapsody Classes of class type ‘Template’) are not
supported.

Limitations regarding new features in Rhapsody 7.0

Multiple Stereotypes
Only the first stereotype of an element is considered by ATG

Components in Packages
Components which reside somewhere inside of packages are not visible for ATG. This
means that ATG is not applicable for configurations within such components.

Unit Unloading/Loading
The results generated by ATG represent results corresponding to the state of the model
at the time of test case generation. Unloaded model elements are treated the same way
as deleted model elements.

“Mixed Language” models
ATG can only generate test cases for configurations within C++ components opened
in RhapsodyC++. Even this is currently not working since there is a bug in the COM
API function IRPConfiguration::needsCodeGeneration (Quintus 93745)

IBM® Rational® Rhapsody® Automatic Test Generation Add On

Rhapsody in C++ Automatic Test Generation Limitations

C++ Construct Translation

Some C++ language constructs are not yet fully supported by ATG. In the sequel we list the
known limitations and give some examples.

Not Supported C++ Constructs

For a subset of C++ language constructs ATG can not yet perform an appropriate translation
for the sake of test case generation. If possible ATG applies an automatic abstraction (see
section Abstraction Scenarios) and simplification such that the compilation continues. This
section lists the known not supported C++ constructs, provides some examples, and explains
what kind of error a user will see.

Pointer to members

Example
class C {public: inti;};
int C::* ip = &C:i;

Error-message
No abnormal termination, instead various abstraction warnings possible.

Type declarations within functions

Example
int main() {
class C {public: int i;}; /* an explicit type-declaration */
Cc;
enum E {el, e2} ¢; /* a type-declaration embedded in another declaration */
return e+c.i;
}

Error-message

No abnormal termination if the type-declaration is not done in the main()-function (instead an
abstraction-warning). Otherwise (a type declaration within the main()-function): Abnormal
termination with error message "Error 224: Unsupported C++ construct (a suitable abstraction
can not be applied)"

asm()-statements

Example
void f() {asm(";"):}

Error-message
No abnormal termination, instead an abstraction-warning.

‘dynamic_cast' expression-operations
Example
class C {public: virtual int f();};

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG)
11

Rhapsody in C++ Automatic Test Generation Limitations

class D : public C {public: int j;};
D* f () { Cc; return dynamic_cast<D*>(&c);}

Error-message
No abnormal termination, instead an abstraction-warning.

Bit-fields
Example

structs { inti:2;} s1;
void f() { s1.j =s1.j+1; }

Error-message
No abnormal termination, instead an abstraction-warning.

Ellipsis

Example

void f(inta ...) {

va_list ap; va_start(ap, a); char* ¢ = va_arg(ap, char*); va_end(ap);

}

Error-message
No abnormal termination, instead an abstraction-warning.

typeid()-expressions

Example
#include <typeinfo>

void f() {int i, j; if (typeid(i)==typeid(j)) i=0;}

Error-message
No abnormal termination, instead an abstraction-warning.

Delayed destruction of temporaries, if they are bound to a static or global
reference

Example

class C {public: inti; ~C() {i=0;};};

C f();

int j() {static C& cr=f();} /* The temporary returned by f has to be destructed delayed */

Error-message
"Error 14: Unsupported C++ construct (a suitable abstraction can not be applied)”

Member-operator functions '[', '|="and ‘||’
Examples

class C {public: int j; void operator|(int i) {j=i;}; };
int f() {C c; c.operator|(1);};

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG)
12

Rhapsody in C++ Automatic Test Generation Limitations

Error-message
Abstraction warning "ABSTRACTION 229: [...] Unsupported operator in [...]" is reported.

Extern variables of class-type with an extern constructor

Examples
class C {
public:

CO {3;
C(const C&); /* copy-ctor declared, not defined - that is: extern */

};

extern C c_var; /* extern variable of type C */
Error-message
An ATG-compile error is reported.

Not Correctly Translated C++ Constructs

For a subset of C++ language constructs ATG can not yet perform a correct translation for the
sake of test case generation. This section lists the known not correctly translated C++
constructs, provides some examples, and explains the wrong semantics.

Class temporaries created under a conditional operator (*?”, “&&”, “||")
when they require destruction

Example

class C {public: inti; ~C() {i=0;}; };

C 10

void g(int i) {

int j;

j=(1?1().i:1); /*the creation of a temporary variable for the result of f() depends on 'i' */

¥

Wrong semantics
If a temporary variable, which was created under a conditional operator, would be destructed,
a warning message is printed. The temporary variable is not destructed.

Error-message
"No abnormal termination, instead an abstraction-warning"

Same named (C-)static entities in different .cpp-files

Example

Il a.cpp:
staticinti=1;
/l'b.cpp:

static inti = 2;

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG)
13

Rhapsody in C++ Automatic Test Generation Limitations

Wrong semantics
The compiler will print an error-message due to multiple definitions of 'i'.

Casts of integral integer types, which change the value

Examples

shorts =-1;

unsigned int ui = (unsigned int)s;

unsigned int ui2=INT_MAX;

unsigned char uc=(unsigned char)ui2; /* value-change, if: UCHAR_MAX < INT_MAX */

Wrong semantics
All integer-variables are internally represented as a 32-bit value. Different integer-sizes are
not taken into account and integer-casts do not change the value in ATG.

Wrongly Translated Language Constructs with Warnings

For a subset of C++ language constructs ATG can not yet perform a correct translation for the
sake of test case generation, and generates a warning. This section lists the known not
correctly translated C++ constructs, the warnings, provides some examples, and explains the
wrong semantics.

Initialization of virtual base class-parts

Virtual base classes are not fully supported in case of multiple inheritance (in ‘diamond'-
form), if the virtual base class has defined constructors or destructors:

Example

class A { public: A() {}; }

class B : public virtual A { public: B() {}; }
class C : public virtual A { public: C() {}; }
class D : public A, public B {public: D() {}; }

Wrong semantics
The constructor of A is not called from the constructor of D, instead it is called from B and C
(that is, it is called twice). The same wrong semantics exists for destructors.

Warning message

A warning message “Obiject to be initialized is a virtual base class, not correctly implemented
yet (the con-/destructor of a virtual base class is possibly called more than once)” is generated.
This message is also printed for initializations of virtual base classes, if no 'diamond'-form
exists (that is, if it does not result in wrong behavior).

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG)
14

Rhapsody in C++ Automatic Test Generation Limitations

Types ‘unsigned int’, ‘unsigned long', 'long long', and 'unsigned long
long'

Constants of these types are translated wrongly into ATG, if the value is outside of the range
of signed 32-bit integer. In addition, ATG could only operate on signed 32-bit integer values.
Example

unsigned long i = ULONG_MAX; /* OxfffiffffUL */

Wrong semantics
The representation is truncated to 32-bit (if the previous representation has more bits) and
after that the representation is interpreted as 32-bit signed integer.

Warning message

A warning message “Possible truncation from <type> to long” is generated, where <type> is
‘unsigned int’, 'unsigned long’, 'long long' or 'unsigned long long' respectively. This warning-
message is printed, if constants of these types occur.

Types 'double’ and 'long double'

Constants of these types are translated wrong into ATG, if the corresponding value can not be
represented in the float-range.

Example
double d = DBL_MAX;

Wrong semantics

The value is changed corresponding to a cast-operation from ‘double’ respectively ‘long
double' to 'float’ (the semantics of the cast corresponds to the semantics defined by the
Microsoft Visual Studio .NET 2003-compiler).

Warning message
A warning message “Possible truncation from <type> to float” is generated, where <type> is
‘double’ or 'long double’ respectively.

C++ Standard Library Restrictions

Due to the reported restrictions (v. Wrongly Translated Language Constructs with Warnings,
Not Correctly Translated C++ Constructs, Not Supported C++ Constructs) several elements
provided by the C++ Standard Library (including the Standard C Library) may not work
correctly. A detailed list of the support of C++ Standard Library functions can be found in
two separated documents

e CppStdLibSupport_VC60.csv

e CppStdLibSupport NET2003.csv
Each of these documents contains a table with all functions defined in the official ISO C++
Library standard. Each line of the table contains several rows that show if and how the
function described in that line is supported by ATG for the two compile environments

e Visual Studio 6.0

e Visual C++ .NET 2003

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG)
15

Rhapsody in C++ Automatic Test Generation Limitations

In ATG we distinguish between 3 kinds of support of a function:
e Supported, meaning that one can use the function in ATG and ATG supports the same
semantics for this function as defined in the standard
e Supported by Abstraction (see section Abstraction Scenarios), meaning that one can
use the function in ATG but ATG may have a different semantics for this function
e Unsupported, meaning that one cannot use this function in ATG
To easily access the information in the table, you can open the files with spreadsheet
programs like Excel.

Other Compilation Issues

Exceptions

Currently there is no full compilation support for exceptions. A workaround for this restriction
was implemented, which allows exception-code at compile-time. If an exception occurs at
run-time, ATG will not execute the exception handler and will continue with the test case
generation.

Union-types

The 'overlapping'-semantics of unions is currently not supported by ATG. A workaround for
this restriction was implemented to translate unions with struct-semantics.

Floating-point constants

The representation of floating-point constants is in general not correct (Floating-point
constants are represented without the use of the exponent-'E'-syntax, in particular the
representation is corresponding to the print()-formatstring '%-.10f'. That means for example
that floating-point constants loose the part of the mantissa, which is (as an absolute value) less
than 1E-10).

Abstraction Scenarios

This section describes the scenarios in which ATG applies automatic abstractions in order to
generate test cases.

Scenario: a variable is initialized with an expression and the expression contains a not
supported C++ construct.
Abstraction: the variable will not be initialized.

Scenario: an expression statement contains a not supported C++ construct.
Abstraction: the expression statement will be ignored.

Scenario: an if-/while-/do-wile-/for-expression contains a not supported C++ construct.
Abstraction: the expression will be non-deterministically chosen to be either true or false.

Scenario: the initialization of a constructor contains a not supported C++ construct.

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG)
16

Rhapsody in C++ Automatic Test Generation Limitations

Abstraction: the respective class element will not be initialized or all elements contained in
the initialization of a constructor will not be initialized.

Scenario: the call of a constructor for a temporary variable contains a not supported C++
construct, and the temporary variable defines the value of a return-statement.
Abstraction: the constructor will not be called.

Scenario: an expression which defines the value of a return-statement contains a not
supported C++ construct.
Abstraction: a NULL value will be returned.

Scenario: an expression which initializes a for-loop contains a not supported C++ construct.
Abstraction: the relevant statement will be ignored.

Scenario: an increment-statement of a for-loop contains a not supported C++ construct.
Abstraction: the relevant statement will be ignored.

Scenario: an switch-expression contains a not supported C++ construct.

Abstraction: the expression will be non-deterministically chosen from the interval [min, max].
‘min’ is the smallest value of the switch-case-constants. ‘max’ is the largest value of the
switch-case-constants.

Scenario: a switch-case constant depends on a not supported C++ construct.
Abstraction: the relevant switch-case block will be ignored.

Scenario: a call to a function with a variable number of parameters.
Abstraction: the call will be ignored.

Scenario: a call to a function which contains a type declaration in its body.
Abstraction: the call will be ignored.

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG)
17

	IBM® Rational® Rhapsody®
	Automatic Test Generation
	Add On
	Release 3.6

	Preface
	Contacting IBM® Rational® Software Support

	Overview
	General Limitation
	Limitations concerning Rhapsody Features
	Ports
	Blocks and Parts
	Template Classes
	Stable States of the SUT
	RhapsodyInC, RhapsodyInAda, and RhapsodyInJava.
	Argument Types of Provided Messages
	Libraries
	Active Objects
	Rhapsody Properties
	Template Classes

	Limitations regarding new features in Rhapsody 7.0
	Multiple Stereotypes
	Components in Packages
	Unit Unloading/Loading
	“Mixed Language” models

	C++ Construct Translation
	Not Supported C++ Constructs
	Pointer to members
	Type declarations within functions
	asm()-statements
	'dynamic_cast' expression-operations
	Bit-fields
	Ellipsis
	typeid()-expressions
	Delayed destruction of temporaries, if they are bound to a s
	Member-operator functions '|', '|=' and '||'
	Extern variables of class-type with an extern constructor

	Not Correctly Translated C++ Constructs
	Class temporaries created under a conditional operator (“?”,
	Same named (C-)static entities in different .cpp-files
	Casts of integral integer types, which change the value

	Wrongly Translated Language Constructs with Warnings
	Initialization of virtual base class-parts
	Types ‘unsigned int’, 'unsigned long', 'long long', and 'uns
	Types 'double' and 'long double'

	C++ Standard Library Restrictions
	Other Compilation Issues
	Exceptions
	Union-types
	Floating-point constants

	Abstraction Scenarios

