Tutorial for TestConductor and ATG for RIC++

Rhapsody

RiIC++ Tutorial

for

IBM® Rational® Rhapsody”®
TestConductor Add On

and
IBM® Rational® Rhapsody”®

Automatic Test Generation Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®
Rhapsody®TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2011 BTC Embedded Systems AG. Al
rights reserved.

TestConductor and Automatic Test Generation

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, flow charts,
statecharts, and source code. During
execution TestConductor verifies the
results against the defined
requirements.

Rhapsody ATG is the Automatic

Test Generation engine in the
Rhapsody Testing Environment. In
order to thoroughly verify the
functionality of the System Under Test
(SUT), it uses the UML model
information as well as the generated
source code as basis for analysis,
and creates executable test cases
with high coverage rates.

CashRegister Application

Object:

Ewent:

|.-’-‘«pplicatinnFramewolk[D]->itsEashH eqigh Select

Argumey

M ame:

|ev5mﬂ Dk |~
Object: |.t’-‘n.pp|icatiunFramewnlk[D]->itsEashHegist Select
Event: |evEnd &® _:J
Argumemt
Mame| Obiect |applicationFramework]0]-» itsCashPegist Select
Event: |evﬂemove D@ _:J
Argur
Object: icati Ry i
Mol li=ie |Ap3||cat|nnFramework[El] ritsCashFegist Select
Event: |ev35mnde

The CashRegister application, the example

C++ application for this tutorial, models a simple cash
register. Make yourself familiar with the use cases of the
application. Open the project ,CppCashRegister” from the
folder ,Samples/CppSamples/TestConductor® in your
Rhapsody installation, run the component
«CashRegisterNoGui», and use the following input:

Arguments:

N =

Coconuts
Lychees
Kiwis
Pears

Pomegranates
Watermelons

To create a new shopping basket
send the event evStart to
ApplicationFramework|[0]->itsCashRegister.

To add an product to the shopping basket send
the event evBarcode to ApplicationFramework][0]
->jtsCashRegister. The event evBarcode needs
the product code as argument. The product
database knows codes between 12344 and
12349.

To remove the last added product from the
shopping basket send the event evRemove to
ApplicationFramework[0]->itsCashRegister.

To print the bill send the event evEnd to
ApplicationFramework[0]->itsCashRegister.

CashRegister Model

CashRegister &

1

itsProductDatabase

«Crd

itzPro

preds

+

ProductDatabase

harcode

¢SimplifiedAccesss

Product

duct

H name:char®
M barcode:int
M unitPrice:int

+*

it=FProduct

e Product(aBarcode:int aMName:ch...

i, Product()
Product(aProduct: Product)

ApplicationFramework

IPrinter [Display

1 itsCashRegisterCashRegister &

by

|BarcodeReader [keyboard
|BarcodeReader Keyboard

1

itsTerminal: Terminal B

by

IPrinter,[Display

The CashRegister model mainly contains the
CashRegister class, a list of selected products, and a
product database class with a list of all products ordered
by barcode numbers. The model delegates all input and
output messages to classes with interfaces of IDisplay,
IPrinter, IBarcode and IKeyboard. These classes are
connected by a port named ,hw* to the CashRegister-

class.

The ApplicationFramework class initialises
its parts itsCashRegister of type CashRegister
and itsTerminal of type Terminal. The link
between the parts ensures the bi-directional
communication over the port hw.

The CashRegister class is able to manage
the list of products the user wants to buy. View
the provided state chart to get familiar with event
processing and state changes.

The Terminal class provides the interfaces
IPrinter and IDisplay. Imagine the Terminal class
as an input/output terminal, which is able to
process keyboard inputs and displays the
progress and the bill.

System Under Test

s [— Defining the System Under Test (SUT) is the first

e - @ TestComponents - step in the test workflow. This tutorial will focus on the
0 © @ Conteoprodet g CashRegister class. To define CashRegister to be the SUT,
R o ool N we have to create a test architecture. The needed
g“e B atrbutss administrative framework will be placed in the folder
_ E?E;E;”:;é%ﬁ?;i”‘m‘“E““’E T E"L—iTkiESCaShRegister_itSTC_at_hW_m »lestPackages”.

-4 ;s&ar&gﬁg‘ict L, itsCashReqgister_itsTC_for_itsCo

g sorcameer 5 (8 Statschart The System Under Test (SUT) is a part and

= 8 TCon_CashRegister =g SUTs

i ! ii%;&g;:g@sg‘;“g:m is the component being tested. A SUT can
et ,,ig;g;;i;;:gg;—n;;fgggshéegm consist of several objects. The SUT is exercised
@ fTC ot of CastRegister via its public interface operations and events by
¥l B _of_TCor ister
H 25!$$C_at_hw_nf_cashRag\shar’) the teSt Components.

- %y, TestConfigurations
[y TCon_CashRegister_TestContral

(- 5 N/ N

=9 CashRegisterPkg
=B dlasses ®
#-8 BuyOneGetOneFree
+-5 BuyThresGetOneFree © ‘ aTestContesxts
* m .
©8 CowtedProd, Features _ TCon_CashRegister
+-E Product Features in Mew Window = j“ SUTs
+ B ProductDatab W .
+-8 TenPercentof Acld New 4 "" |tsCashReg!ster «SUTe 0&,
: ‘;?Dl:rda::n@naf ek - -ig Test Context Dlgrms " . tsCashReqister CashRedister
= E g.‘:., Ftﬂ“M:Sd . ;eF HHHHH = sbructure of TiCon CashRegisker
! & sEq“ZEence D?ﬁg::ﬁ e Delete From Model = ‘ Test_CDmpnnentInstances
= B HardwarePkg - ‘ iksTC_at_hw

Select the class

,CashRegister” in the Have a look on the newly created Test Context Diagram
o browser and choose from e ,Structure_of TCon_CashRegister*, and view the resulting parts in
context menu ,Create the composite class ,TCon_CashRegister” of our test context.
_ TestArchitecture”. A\ .

Test Architecture

-

=
=

=R Y TPko_CashReqister
=[] Components
=&] TPkg_CashReqgister_Comp
=~ Caonfigurations
-8 «TestingConfiguration: DefaultConfig
+ (2 Everts
+- [Objects
=% TestPackages
=y TCon_CashReqgister _architecture
21 Dependencies
= TestComponents
+ %CuuntedF'deuct
+ TC_at_bw_of_CashReqgister
=59 TestContexts
=49 TCon_CashRegister
+- = Atributes
+ (22 Dependencies
+- (5 Links
+-(*2) Statechart
=g SUTs
ol itsCashRegister
=g Test Context Diagrams
4 Structure_of_TCon_CashRegister
= ‘ TestComponentInstances
s itsTC_at_hw_of_CashRegister
+ itsTC for itsCountedProduct of C

+- %y TestConfigurations
+-[y TCon_CashReqgister_TestControl

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

The new configuration under the component
,1Con_CashRegister Component® describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
Instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

«TestContexts
TCon_CashRegister

1 wSLUT»
itsCashRegister:CashRegister

Fuii
Friy

1 «TestComporertinstance, TestCom,
itsTC_at_hw_of_CashRegister:

& «TestComponentInstance:

itsTC_for_itsCountedProduct_of_CashRegister::

The automatically created test context represents
the formal structure of the test system. TestConductor

~analyzed the model structure in consideration of the

selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test
context. TestConductor generated corresponding test
components for ports and associations of the SUT.

The composite class

,1Con_CashRegister” is the part container
for the SUT object and the created test
component objects.

The class ,TC_at_hw" realizes the required
interfaces ,IDisplay” and ,IPrinter” of port ,hw".
Using ports as a high-grade encapsulation
mechanism will result in clean test architectures.

The class ,TC_for_itsCountedProduct” is a
derivation of the design class ,CountedProduct®.
It is generated due to its association to the
CashRegister class.

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let’s have a look at the test cases. A test case ...

IS a specification of one case to test the system including what
to test, with which inputs, and what the expected outcomes are.
It is defined in terms of stimuli injected to SUT objects and
observations coming from SUT objects.

IS an operation of a test context that specifies how a set of
cooperating test components interact with the SUT.

can be specified as sequence diagrams, flow charts,
statecharts, and source code.

can be generated automatically by using TestConductor’s test
case wizard.

can be generated automatically with the Rhapsody Automatic
Test Generation (ATG).

can be recorded as animated sequence diagrams.

can be created by hand.

Test Case Specification

SDTestScenario 0

«5UTs

TCon_CashRegis
ter.itsCashRegist
er.CashReqister

TCon_C
gister.its
hwe TC

showiaMsg = Ok

i

ev3tart() |

roducts()

[else)f
RTC_ASSERT_MNAME(
"check_2.1, Initialization failed", 0;

ot

this_-=itsCashRegister. addProduct{new
Product] 1234 "apple",100));

rgumenm]

=itsCaszhRegister. islloMore}
'C_AZISERT NAME ("check 1.17,
aCashBegister.addProduct |

new FProduct (1234, "apple’
=itsCaszhRegister. islloMorel
'C_AZISERT NAME ("check 1.27,

|

How to manually create test cases and how to execute them
with TestConductor will be discussed in the following sections. The
different kinds of definitions have their own strengths:

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Flow chart test cases also benefit from their graphical
nature, but in contrast to sequence diagrams the use of
complex data types (structs) and control structures (if-then-
else) is supported out-of-the-box.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

10

Test Case: Sequence Diagram |

simle_start

45T

TCon_CashRegist
er.itsCashRegister
CashRegister

TCon_CashRegist
er.itsTC_at_hw_o
f CashRegister: T

C_a_t_hw_of_Cas

«Test Seenarios

TCon_CashRegist
er.itsTC_for_jtsCo
untedProduct_of
_CashReagister:Co

To manually create a sequence diagram

test case we have to define a test scenario
which is represented as a sequence diagram
and link it to a test case. TestConductor
simplifies this process with a single command.

|

|

| +-- b gy Test Conkext Diagrams

| = “:_- TestCases

—-*, TestCase_simple_skart()
| + E—'Ij SDInstances
| + El TestObjectives
- &4 TestResuls
= % Testacenarios
_ E'{'D simple_start
4 N [N
- Ff9 TestCorkexts Assoriate Image 5 %, TestCases
- Con CashRegisker = A
ff‘ -'-|"F--E"---’ Features Delete From Model 3% Lestl._-ase_::lrnple_star‘tl.__.l
+ ;‘. SUTs Features in Mew W - p—y = : o SDIHStE!nEEtS
+1--&%, Test Context DI Create S0 TestCase k + E:l TestObjectives
+- (@ TestComponent Add Mew Create Activity TestCase + % TestResults
¥ "'3, TestCorfigurati coooop Create Flowchart TestCase = Testocenarios
Create Code TestCase E"!n simple_skart
d ch f th Rename the test case to
Select the test context atn tC 00s€ (r:om ¢ eSD ,TestCase_simple_start".
»1Con_CashRegister” in the _crontce:x menu ,Lreate Rename the test scenario to
S Rhapsody-Browser ... AN estase..)L ,simple_start* and open it.

)

Test Case: Sequence Diagram Il

[Profiles
=-C3 TestPackages

=-f3 RequirementsPlkg
(3 Controlled Files
-3 Packages
=-§0 Cash_Register_Specs
-2 Requirements
[ro» REQL

=

: o> REQ
1] «framiord> REQ2
1] «fromiords REQE

General | Description | Relations | Tags | Piopetties

23] «fromiiords REQ4 Wame REQT L

23] «fromiiords REQS

[afvamiords REOG Stereaype fromiv/orc 2| @t
]} «gannrg» REQ7 Tupe: Requitement -

1] «fromiords REQE iy REQT

03] <framitiords REQD
[Sterentypes Defined ir:

£33 Tutorial_Prerequisits Specification:

A small stand-alone Cash Register needs to be
designed that reads barcodes of products that a

=5 TPka_CashReqgister
By i b Customer has selected.

I Components
% Events
(= Objects
=L TestPackages
=% TCon_CashRegister_aArchitechire)
B
$§§?jﬁ;§ﬁjm Anchared Elements: HE X
=59 TestOontexts Name
=9 TCon_CashRegister .
(2 attributes Locate oK

as|

test case.

(24 Dependencies
5 Links
(3 Statechart
i SUTs
[=-#d Test Context Diagrams

¥l Structure_of_TCon_CashReqgister
=% TestCases

=%, TestCase_simple_start()
Ef spinstances
=kl TestObjectives
W REQL

Determine the test objective of the test
case: the SD test case should check that

requirement “REQ1” is indeed fulfilled by the
CashRegister class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

(

Features...

=% TestCases

X e

ase_simple_skark{)

TestCbjective
TestScenario

Select the test case and
select “Add New ->
TestingProfile ->
TestObjective” AN

Add TestObjective
Depends on

o

5 (] Packages
= B Cash_Register_Specs
= [Requiremerts
B § «fromWord» REQL
[} «fromwords REQZ
[«fromWords REQ3
[«fromWords REQ4

Select requirement “REQ1” as
target of the test objective”

/

= x,;- TestZases

=% TestCase_simple_start)
E—'III, SDInskances
= H TestObjectives
1l REQ1

The test objective now links

the test case to the
requirement “REQ_ Init”.

/

Test Case: Sequence Diagram Il

5DTestScenario 0)

wnllTa

«TestSeenarios

TCon_CashRegister.itsCa
shRegister CashRegister

TCon_CashRegister.its
TC_at_hw TC_at_hw

\

1

_for_itsCountedProduct: T

TCon_CashRegister.itsTC
C_for_itsCountedFroduct

Display Options ...
Remove Fom View
Delete From Model
Format...

X

Select the instance line
JtsTC for_itsCountedProduct
“and remove it from view.

)

Determine the involved objects for the
desired test scenario and remove not needed
instance lines from the view in order to
establish action and reaction between
remaining instances.

eBlUTs

TCon_CashR TCon_Cash
egister.tsCas Register.itsT
hRegister:Ca C_at_hwe T

e Arrange the remaining
instance lines ,itsTC_at_hw"

_ and ,itsCashRegister".)

13

Test Case: Sequence Diagram IV

5T

TCon_CashRegis
ter.itzsCashReqist gister.itsTC_at
erCashRegister _hwe TG at hwe

TCon_CashRe

| evatart() |
L_///»f

|
|
show(ahl=zg = Ok |
|
|
I
|

Define action and reaction of the system
under test. We will specify the ,simple_start®
scenario, where the user sends the event
evStart() to the SUT, and the SUT shall react
with a status message show(aMsg).
TestConductor, the execution engine, shall act
as as driver for evStart(), and as observer for
show(aMsg). Driving means to simulate e.g.
the users activity during test execution by
automatically sending the message to the SUT
in order to provocate a reaction. The test will
pass, if TestConductor observes the specified
reaction from the SUT. Otherwise it will fail.

_

\

N N
CashReqister: :ex3tark) e
CashReqister::evBarcodal) TC_at_hwr::prink{char®) ! evistart() !
identifyProduck(int) TC_at_bw:ishowlchar™) |
addProduct(Product) IPrinter::printichar™) how(aMsg = OK) |
startSossion]) v IDisplay::showichar®) showallsg =
CashRegister: :evEnd() r = I———___ \»{
end3essioni) |

Draw the message ,show()"

Draw the driving message from the SUT . Specify the parameter aMsg
,evStart()* from JitsCashRegister” to 7
. : " : by editing the label of show()
JitsTC at hw“to the SUT JtSTC_at_hw" such that it can _ ;
itsCashRegister” be observed. to,show(aMsg = OKJ"
" ' NG O\

)

14

Test Case Execution |

Execute the test case with Rhapsody TestConductor. 15
The execute dialog lists all executed test scenarios, their
progress and status.

The status, the final result can be either ,PASSED*

or ,FAILED".
=l
Vol The progress displays how many steps are finished
Marne Status File/Tteration | Line/Progress yet In case of a passed test 100% have to be
- "',_, TestCase_simple_start FaAILED hi d
By sD_tco @ FalED 1 66 (2/3) achievead.

The buttons in the top right corner of the execution
dialog can be used to control actual test case
execution and will be explained later.

a N :)

= " TestCases

"‘ TestZases

El TestObjectives

W hiC e stark
‘ TestCnmponentInstances wh % TestResults
qﬂn TestConfigurations = TestScenarios

™ E—'in simple_start
Edit TestCase SDInstances Update TestCase Build TestCase x| DROE "3
Execute TestCase K|
Build TestCase Execute TestCase Mame Status File/Tteration | Line/Progress
-1¥, TestCase_simple_start FAILED
By sote 1 FAILED 1 66% (2/3)

To open the test case with TestConductor select the test case) _
,TestCase_simple_start* and choose from the context menu the items The test case execution dialog
o ,Update TestCase*, ,Build TestCase®, and ,Execute TestCase“. The e is a dockable dialog that can

Rhapsody TestConductor execution dialog will open. be placed e.g. underneath the
main browser window

- NG ' /

Test Case Execution Il

The test case execution FAILED with

TCOS;;’J;;QBE TCon_CastRegite Rhapsody TestConductor. To analyze the
Rl e reason TestConductor offers two kind of
tw_of_Casfireg views. The HTML-report displays a textual
M summary and can be found directly under the
test case in the Rhapsody-Browser.
|show(aMsg = OK): Check of in value of argument aMsg faled TestConductor created a debug sequence
| diagram to display the error. The red arrow
- visualizes the faulty step and the reason.
m TestConductor expects the parameter value
::J’sza"w sbteb — ,OK*, but observes the value ,Ready” during
Progress: 3% (/3) test execution. The expected value was not
specified correctly... by accident.
4 N N N
sos 1| | [e e | el | | g el St |
-1 ¥, TestCase_simple_start) FAILED -1 ¥, TestCase_simple_start £ FAILED _Ei SDInstances
Eb [x] %W L TestObjectives
Shaow as 5D W =3 TestResults
Add to mods| d to model R4 TCon_CashRegister_ TestCase
To open the debug In the browser, below the
sequence diagram right test cases, you can find the
0 click the item SD_tc_0 in e . and select "Show as SD” e generated html report.
the TestConductor Double click the report to

_ execution dialog... VAN) U open it.)

Test Case Execution Il

The test execution PASSED with Rhapsody
TestConductor after we corrected the expected
parameter value for argument “aMsg” from
“OK” to “Ready” in the test scenario

x| V) (& ,simple_start“. After changing the scenario and
j —
Mame Skatus FilefIkeration | Line/Progress re'exeCUting the test case, the test case is
-|¥, TestCase_simple_start () PASSED passed.
By sotco @ PassED 1 100%: (313
Refer to the user guide to get
familiar with the extended functionality
of TestConductor.
4 N [N [N\
= “.'_,- TeshZases
=%, TestCase_simple_skart{) L;h.:,w(amgg = Ready'[_r[| P Q: 3= &
£ E':I;Ii 5DInstances | | Name Status File/Tteration Line{Progress
+ E:l TEStOhjECtiVES =1 % [Test(asefsimplefstarlk) PASSED
o 2 TestResults | | 4 50t 0 © PassED 1 100% (3{3)
= é TestScenarios | |
3 Asinple_skark
To correct the test case Respecify the ,show*- Re-execute the test case by
0 open the test scenario message parameter value pressing the “Start” button in
simple_start* from ,OK" to ,Ready” and the top right corner of the
" - ' close the test scenario. execution dialog.
N J AN J Y,

Test Case: Source Code |

Test Case : TestCase_code_assert in TCon_CashRegister

Locate |

General] Description |mplementation }.ﬁ.rguments] Helatiun&] Tags] F'ru:uperties]

To manually create a source code test case

|vu:|i|:| TestCaze code_aszert()

itsCashFegister . addProduct |
new Product(lzZ34, "apple™,100))

K

I:i.1=itsCashREgister. isMoMoreProducts () :
RTC_ASSERT NAME ("check 1.1", il==1):

iZ=it=sCashRegister. isNoMoreProducts () !
RTC_ASSERT NAME ("check 1.2", iZ==0):

pass.

ol

create a code test case and write the test code into
the edit field under the implementation tab of the
test case. The Rhapsody- TestConductor-macro
,RTC_ASSERT_NAME" takes a name-parameter
and a condition. If the condition
(,isNoMoreProducts®) evals to true the test case will

/

= 3.'! TestContexts
= 3.'! TiCon_CashRegister
+-Lq Links
gl SUTs
+-bg Test
- %, Testd Create 5D TestCase

% T Create Flowchart TestCase

Features

Features in M

Create Code TeskCase

Select the test context
,1Con_CashRegister” and
choose from the context
menu ,Create Code
TestCase”.

- “.'_; TestZases

+ ‘ TestComponentInstances
1

e Rename the created test
case to ,TestCase

code_assert” and open the
feature dialog.

\

- E Tukarial_Prerequisits
- Caomments

sourcecode_testcase

ttatinn] I

Replace the content of the
edit field under the

II |void TestCaze_code_azsert]]

| Ii1=itsCashRegister .isk
BT ASSFRT MAIMF (Mehack

implementation tab of the test
case with the content from the
comment field and press
,OK*.

)

18

Source Code Test Case: Execution

Execute the test case with Rhapsody

= - TestConductor.
j ' — #5" b o
. ; ; ; Both assertions evaluate to true and the
ame Skatus File/Tkeration Line/Progre .)
SE® 1-ctcase_code_assert [@)] PASSED test case passes. Double-clicking an
Q check_1.1 O PASSED TCon_CashRegister.cpp 68 . 3 3
B check_1.2 Q PASSED TCon_CashRegister.cpp 71 e_/aluated_ as_sertlon In the execu_tlon
window highlights the assertion in the test
il=it=sCashRegister.isNoMoreProductsi) ;- mOdeI.
RTC_ AZSERT MNAME ("check 1.17, i1==1);
itsCashFegister.addProduct (new Froduct |
iZ=itsCashBegister. isNoMoreProducts() ;
ETC ASIERT MAME ("check 1.2", iZ==0):
4 N I
= 5{; ;s':fgntezts o Ilpdate TestCase Name Stabus File
Wb % -1 ¥, TestCase_rode_assert (Z) PASSED

- Attributes
=[EN
= i1

+-Lg Links

+-igl SUTs

_

Create in the test context
»1Con_CashRegister” the
two integer attributes ,,i1"

and ,i2"

Build TestCase

Execute TestCase

e Select
»1estCase_code_assert”

and choose build and
execute from the context
menu.

)

_

(£) PASSED TCo

Q check_1.1
£ . [#] PasSED Too

G sserton

In the execution window,
select the assertion and
double-click “Show Assertion”
in order to highlight the

assertion in the model.

19

Test Case: Flow Charts |

20

Ao OTE 0) To manua_lly Create a flow chart test case we

= have to define a test scenario which is represented

B . .

In Flowchart TestCases you can use ASSERT macros like : as a ﬂOW Chart and I|nk It to a test case.

RTC_ASSERT_MNAWE(n.e), e.g. . Ar : : ;

AT ASSERT NAVIECGhack 1, this >attribute,_x == 42) TestConductor simplifies this process with a single

For the list of availsble macros see TestConductor UserGuide Command_

or the testconductcr.h file in the installation directory

&

v - "'.‘_'- TestZases

(_ RTC_ASSERT NAME +- % TestCase code_assert()

* . TestCase Flow_Chart)

e Fiorch
+-%, TestCase simple_skart()

+ ‘ TestComponentInstances

4 N N I
—|- 9 TestContexts +- B g Test Context Diagrams
TCon_CashRegister

X
- Create SD TestCase -5 TestCases
+- Lﬁtttl:;butes Features_ %[TestCase_Flow_Chart T|
: .
+ ; SETs FESEHESS N +-# TestCase Activity Diagram()
4 87 Test Cortextpi Add New Create Code TestCase #- %y TestCase_rode_assert()

“.'_,- TeskCases

M Tecbrace o Search...
0 STeCl;eCt tge t?:_\t) Co.n:ex“t. e a'?d tChoose from the Rename the created test case
" ;rrl]_ asd Ie39IS er‘in contex Create Flowchart to , TestCase_Flow_Chart"
e Rhapsody-Browser ... menu ,Create Flowcha o TestCase_Flow_Cha
TestCase®.

\ AN N\ /

Test Case: Flow Charts I

Define the flow chart in order to execute it with
TestConductor. The Rhapsody-TestConductor-
i1=this-»itsCashRegister.ishoMoreProducts();] macro ,RTC ASSERT NAME* takes a name-
parameter and a condition. If the conditions [i1==1]
and [i2==0] evaluate to true the test case will pass.

[elze]
Obviously the flow chart test case is very similar to

the source code test case we discussed some
pages before. The difference in comparison with

_ the source code test case is the graphical nature of
==l [RTC_ASSERT NAME{"check J this test case

2.1, Initialization failed", O,

\

—=-F3 Tutorial_Prerequisits
+ Comments

' py
[this-}itsCashRegister.addF’rnduct[j P lowchart

T T3 amT.

e F'deLII:tlﬂ 234,"apple",1EID]|j; + I:l Sequence Diagrams fe_Activicy_Diagrami)

+- P TestCase_code_assert)
—-%. TestCase_Flow_Chart()
i

Replace the content of the
i2=this->itsCashReqgister.isMoMoreProducts(); flow chart of the test case with

RTC_ASSERT NAME("check 2.2, Product the content from the fIO_N
succesfully added", i2==0); chart in Package , Tutorial_

Prerequisits®.

Flow Charts Test Execution

MName: Skatus

-1 ¥_ TestCase_Flow_Chart [2) PASSED
Q check_2.2, Praduct succesfully added Q PASSED

y

File)Tteration

TCon_iZashReqisker.cpp

=l
r=i§;h

LinefProgress

112

I 2=this-=itsCashRegister isMoMoreFroductsi);
RTC_ASSERT MNAME("check 2.2, Product

succesfully added”, i2==0);

22

Execute the test case with
Rhapsody TestConductor. The
,RTC_ASSERT_NAME“macro
evals to true and the test case
passes.

4 N [N [I
= H, TE-'St':EISE-‘S Ipdate TestCase
+ ' Testi_ase EDI:IE EISSErtl::l ESt':ElSEf —Nir:eTestCase_Flc-w_Chart Sta;:.sSSED F
+ = = e Chi I Build TestCase Y check_2.2, Product succesfully adde:
+-#, TestCase 5|m|:||e 5tart{]| Execute TestCase
+ ‘ TestComponentInstances
o e ... and choose from e In the execution window,
Select the test case . context menu the items select the assertion and
»1estCase_Flow_Chart” ... ,Build TestCase“ double-click “Show Assertion”
and ,Execute TestCase®. in order to highlight the
_ AN AN assertion in the model. Wy,

Test Case: Statecharts |

=-igh TCSC_te_0

=59 TestCantexts
=8 TCon_CashRegister

FRTC_ASSERT_MAME("Ser
itsCashR.egister-=GEM 2wt

state_2

RTC ASSERT MAME("CH

tral 1000
itsCashReqi:

state 3

To manually create a statechart test case we
have to define a test scenario which is represented
as a statechart and link it to a test case. Technically,
the test case has a dependency to a
TestComponent that contains the statechart.
TestConductor simplifies this process with a single

-5 Agsociation Ends
+ @ Operations
+-(2) Statechart
-2 Tags

H-[5 atributes

+- (22 Dependencies

#-(E Links

+ @ Operations

+-(2) Statechart

il SUTs

+-&g Test Context Diagrams

=%, TestCases

% TestCase_code_assert()

+-%, TestCase_Flowchart()
+-%, TestCase_simple_start?)
=%, TestCase_statechart?)

command.

fitsTCon-=finishTestCasel

=22 Dependencies
B StatechartTestCases TCSC o 0

+-%, Create Code TestCase
Create Statechart TestCasze
Update TestContext

0 Select the test context
»1Con_CashRegister” and
select “Create Statechart
TestCase”.

%, TestCase_simple_start()
DY TestCase_statechart()

Rename the test case to
“TestCase_statechart”

_

(= 9 TestContexts — N 4 =%, TestCases]
Uy 1Sl 2By TestCases - % TestCase_code_assert()
- %,
- ﬁ ?l Creats SD TestCase *. TestCase_code_assert() : % $2§E:22—Eilfnwll:;a;;?t 0
- 4
5 %, TE Create Flowchart TestCase #-%, TestCase Flowchart() oK, TestCase_statr;cf{art{}

+-(*2 Dependencies

=k TestObijectives
.

e Add a test objective (using
“Add New -> TestingProfile

->TestObjective”) to
requirement REQ_2

23

Test Case: Statecharts |l

I Define the statechart in order to execute it with
= TestConductor. The statechart test case first starts
| e the CashRegister by sending event evStart. After
sending this event, the test case waits 1 second.

After 1 second has elapsed, the test case checks if
the CashRegister has changed its state from idle to
active after receiving the event evStart. If both

JRTC_ASSERT_MAME("Serding event evStart truel;
itsCashR.egister- »GEM(evStart);

skate 2

l;";822?;;RT_NAM:(--checkmg s rcutsusne checks are passed, the complete test case is
itsCashR egister- = ackive_IM(]);
passed.
gsTCon:ﬁnshTestCaseO,
/ = \i T_ESC_UZ_D -\ / I Transition : 3 in statechart_0
_ + [Association Ends = - -
= i_l Tgutétl';aSISP:sg ¥ @Operations nitial G || Description | Tags | Properties
S tesc o =03 Statechart kit
51, Associatic Je S tatechartDiagramm Storeayoe: v |
s Dependencies =TCStart Target
+ E Operations state 1 Trigger : evTCStartin TPkg_Stopwatch w
=-(8) Statechart = Giuard
= T . Locate 04
o Replace the content of the e Add “evTCStart” as trigger of
test component statechart the transition from state
associated with this test case “initial” to state “state_1”
with the statechart of the

9 Tutorial package.) _ /

Statechart Test Case Execution

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to
true and the test case passes.

x| DROE -3)
4 . : : - state_2
Marme Status File/Tter ation Line/Prog
-1 ¥, TestCase_statechart @ PassED
Q Sending event evStart @ PassED TCSC_tc_O.cpp 186
7] Checking state of CashRegister (@ PASSED TCSC_tc_Ocpp 215 tm 10003/
RTC ASSERT MaME("Chedking state of CashRegister",
itsCashReqister-=active TN
state_=
4) a Edit TestCase SDinstances | N)
Update TestCase Name st |

=-*. TestCases
% TestCase code assert?)
% TestCase_Flowchart) Ex Edit TestCase SDinstances
% TestCase_simple_start() Update TestCase

X, v ——"—"
"8 TestiCase statechart .
T SRR Build TestCase

Build TestCase -1 ¥, TestCase_statechart @ PassED
T £ Sending event evStart © PassED
Q Checking state of C A=l

Execute TestCase

0 e ... and choose from e In the execution window,
Select the test case context menu the items select the assertion and
~TestCase_statechart” ... ,Build TestCase* double-click “Show Assertion”
and ,Execute TestCase®. in order to highlight the

_ L) U assertion in the model.)

Create Test Cases Using Test Case Wizard - SDs

scenano_simple_start)

:CashRegister Terminal

}é/—’///

Map instance lines to test architecture:

| Flease select test architecture for test case:
evstart() -
Con Register

showlahdsg = Ready)
| Please select test case kind

. 26
To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor
test case wizard. For an existing sequence
diagram, the test case wizard creates an analogue
test case with the same message structure as the
original sequence diagram. For an operation, the
test case wizard creates a test case that tests the
chosen operation, for a requirement the test case
wizard creates a test case with the chosen
requirement as the test objective.

Cancel

/ = ﬁ Tutorial_Prerequisits \
+ Comments
+ E Flowechart
= [:l Sequence Diagrams
,ﬂj Recorded_simple_startup

scenario_simple_skart
Bl - ' -

Creake TestZase, .,

o Select the sequence diagram

“scenario_simple_start” in
the tutorial package and
select “Create TestCase...”.

\ j

/

Create Test Case

N N

=, TestCases

. . . ®,
M ap instance lines to test architecture = W
+- 'y SDInstances

=L TestObjectives
Fleaze select test architecture for test caze: H scenario_simple_skart
<4 R

TCon_ CashBegister

As a result, a new test case

In the test case wizard e “SD_tc_0" has been created
dialog, the test context which is based on a new test
“TCon_CashRegister” is scenario containing the same
already highlighted. Press messages as the original SD,
OK to proceed. but life lines adapted to the

AN test context structure. Y.

Create Test Cases Using Test Case Wizard -
Operations

The test case wizard can also be used to
test operations that are defined in the model.

=157 CashRegisterPkg

3-8 %33395 Test Case : Code_tc_0 in TCon_CashRegister . . .
E3 BuyOneGetCneFree
BuyThreeGetOneFree General | Description | Implementation | Arguments | Relations | Tags | Properties Th e WI Zard a'I IOWS to Create fo u r d Iﬁe re nt kl n dS

=-E3% CashRegister
+-[-L agsociation Ends
-5 atributes
(24 Dependencies
= Generalizations

of test cases: sequence diagram test cases,
statechart test cases, flow chart test cases or
code test cases. Independent of the chosen
kind of test case, the created test case calls the

void Code_tc_([)

00 //In Code TestCases you can use ASSERT macro: s
01 // RTC LSSERT NAME(n, =), =.g.
N 0z // RTC ASSERT MAME ("Check 17, attribute x ==
= (5 Cperations 03 // For the list of available macros ses Test
= addProduct(Product™ aProduct) 04 // or the testconductor.h file in the instal
= countProducts() os
& endSessiong)

06 itsCashRegister.countProductsi()
Ep evBarcode(int aCode)

07 RTC_ASSERT MAME ("Inicial",true); - . ", .
o, A > selected operation. Additionally, the test case
b vhancvel e o already contains a check that can be refined by

Eve muStart

the user in order to check the out values of the
operation.

4 N N (& ®. TestCaszes i) N

- Operations SR Code_tc_00)

B addrroduck{Product® aProduct) : Testohijectives
i lesiinlectives
E countProductsi)

Flease select test case kind:

Test Case : Code_tc_0 in TCon_CashRegister *

Code TestCaze w
5D TestCase

General | Description | Implementation | Arguments | Frelatior

Create TestCase. .. Ll
Lode | esllaze
Statechart TestCasze

void Code_te_0f)

itsCashRegister.countProducts () ;
RTC_ASSERT NAME ("Initial",true):

Select operation
“‘countProducts” of class
CashRegister in the
browser and select
“Create TestCase...”

In the test case wizard
dialog, select “Code
TestCase” as test case
kind and press OK.

e As a result, a new code test
case has been created that

contains a call to operation
“countProducts” and also a
dummy assertion that can be

refined. /)

Debugging Test Cases

Build TeshCase

- ﬁ?‘;’ Debugging failed test cases can also be
" ; N done with TestConductor. When a test case
ame Skatus FilefTteration = Line/Progres: ~) .
~%, s0_te0 EXECLITING fails, one can turn on debug execution mode in
Fp sb_te 0 ACTIE 1 3% (1/3) TestConductor’s execution window. After
IE" TestScenario: Animated scenario_simple_start * SWItChIng on debug mOde’ When execu_tlng the
TCon_CashR....CashRegiste TC_at_hw_o... test case one can step through it by using the
_ “Go Step”, “Go Idle”, etc. buttons of Rhapsody’s
Animated scenario_simple start) «TestScenarion . . ang .
animation toolbar. Additionally, when stepping
TCon_CashR TCon_CashR th h th t t Rh d y
egister itsCas egister tsTC_ rough the test case, one can use Rhapsody’s
“REQ'SIE“C“ Ev;ﬁ;z‘g—“—cas animation features to inspect animated
MBI L 2 statecharts, animated SDs, etc. in order to find
O | the reason why the test case fails.
I N [N [)
: x‘?SCDESEEjI_DO S ﬁéﬂ Marme Stakus FiIe,l'Iteration’ Li:eIPir::
+ :‘; 1 1. eiLew hame Status File/Iteration Line/Progress -1¥, sbh_tco ERECUTING .
" U "Edif TectCase SDInstances % S:-St;::c_o g :itéﬁ 1 o o By sptc 0 ACTIVE 1 1% (143)
Update TestCase s [[. T < .
L — |

Execute TestCase

Select test case
“SD_tc_0” and select
“Execute TestCase”.

After the test case has
failed, turn on debug
execution mode by clicking
the debug button in the

execution dialog.

e Execute the test case again

by pressing the “Start” button
in the execution dialog. Now
you can step through the test

case by using Rhapsody’s
_ animation toolbar. J

Executing Multiple Test Cases

]

=l
2% b

Executing multiple test cases can be
done by executing a complete test context or
a complete test package. When a test context

Mame Skatus File/Tteration | Ling/Progress i
- @ Tcon_CashRegister © Faneo or a test package is executed, all test cases
1%, Code_tc_0 © PassED within the context or test package are executed.
. 2] Iniia g PASSED Teon Cas.. &8 After all test cases have been executed,
-1¥, 5D_tc_n FAILED
L B 50_te 0 O Fed 1 66 (2/3) TestConductor computes an overall test result
-1¥, TestCase_rode_assert (5) PASSED for the test context or the test package.
Q check_1.1 O PASSED TCon_Cas... 135
Q check 1.2 o PASSED TCan Cas... 138 Test Context: TCon_CashRegister
% T - - Code_tc_0 PASSED
-1¥, TestiCase_Flow_cChart (I) PASSED
I7) check 2.2, Pr... (D PASSED TCon_Cas.. 112 bt 0 FAILED
- ”., TestCase_simpIe_starto PASSED TestCase_code_assert PASSED
% S0 ke 1 O PASSED 1 100% {3,!'3]! TestCase_Flow_Chart P&SSED
- TestCase_simple_start PASSED
(= ﬁi TestContexts \ (= ﬁi TestContexts \ Mame Shabis
=R * 3T Con_CashFRegister =R * 3 TCon_CashRegister _
o Arribotoe =) - TCon_CashReqister 3 FalLED
Create Statechart TestCase L Build TestContext - y., Code_tc_0D O PASSED
Update TestCantext ¥ CuoCLte TestContxt . {2 Initial g PASSED
Build Tastrnntast i - = SD_kc_0 FAILED
%, Test Update TestContext % Update Testirchitecture % =Dt 0 € FaneD
E‘ 2 Build TestContesxt ‘ Testi_ompaonentInstances

Execute TestContext

Select the test context
“TCon_CashRegister” and
select “Update
TestContext”. After that,
select “Build TestContext”.

/

Select the test context
again and press “Execute
TestContext”. All test cases
will be executed one after
the other.

/

The results are shown in the
execution window. As always,
“Show as SD” resp. “Show
assertion” can be used to
show the reasons of failed
test cases.

/

29

Assessing Test Case Requirement Coverage |

Which requirements are covered by
my test cases? This important question
can be answered either by using a test case
requirements matrix or by generating a

To: Requirement Scope: CppCashRegister

T | — B RE01 | AEoz|E) Ress|E AEos|E REos|E meos|E Aeo7 | REos|E REds) requirements coverage test report. A test
g L% estlCaze_code asszert i) .
i TeaCase Flow Chan case requirements matrix shows the
5%, Codete 0 1 FES relationship between test cases and
B |, TestCase simple_star i
o lesbamsplesan [REY requirements in a matrix view. A
requirements coverage test report shows
the same information, but presented as a
textual report. It can be generated by
ReporterPlus using a predefined template.
/ \ / Mame: ’ el \ / \
= I:l TEStPaEkﬂgES ot pa - = To: Requirement Scope: CppCashRegister
SR Y TPkg_CashRegister et - Et Aeon |2 Aeoz |
+ D Components Lapout: TestRequirementCoverage in TestingProl g x_, TestCase_code_assert
"Fram" - = %, TestCase Flow_Chart
TableMatric » Scope | CPPLashHiegister 2 (%, 5D tc 0
Annotations ¥ TestResultTahle Include Descendants ['From" Scope) 3? % Code_tc_0 . .
TestingProfile TestScenario oo, [CopCashRegister o | Ky TeslCase_simple, star t REQT
: Include Descendants ['To"' Scope]

o Open the features dialog When double clicking the
Select the test package of the matrix, rename it to matrix in the browser, the
“TPkg_CashRegister” and “ReqCoverage”, and set matrix view shows the
select "“Add New -> the “from” scope and the relationship between the test
TestingProfile -> “to” scope to the complete cases and the requirements.

_ TestRequirementMatrix”.) U model “CppCashRegister”. AN)

Assessing Test Case Requirement Coverage |l

Test Case Reports can be used as an

p alter_native in or_der to figure out coverage of
(1 Reguirement Coverage _ requirements with the test cases. With
E =] Al Requirements A]l Req‘lm'elnellts)
1 Al Test Cases ReporterPlus a requirement coverage report
Name | Specification Covered by Test can be generated in different formats like Word,
b amal stand-lone Cash ReGSter | rocicace cimple st Html, etc. The requirements coverage test
needs to be designed that reads . - - -
REQL | {2 es of products that & customer | (B P2sse) report shows the same information as the
has selected. - -
When 2 ptmduct_ oz been dentifed, requirements coverage matrix, but presented as
KEQZ | oy and price are displayed on & | not eovered a textual report. Besides the requirements
e i et coverage report, another predefined template
e ncate con b e s |1 (TestReport.tpl) can be used to generate a
the Cashier's keyboard. complete test report that contains all details
about test cases, test architectures, etc.
(Check Model 3 ‘\ eporterPLUS Wizard : Selec \ / . _ \
F—!.E[‘:II:II'tErF'Ll-_.lEi | “What would you like to do? : e Covere d by Test
Fes EFII:II on all model elements. .. Generate MicrosolwerF‘oint Fresentation ey | b e et ;;:tz:aase us)‘mme’ ttttt
Report on selected package... Suchenirc |) Templates v hos selested
|€] TestReport.tpl ‘
@ TestRequirementiCoverage. p |
Iﬂ UseCaseDiagramsDetailedReport. ipl
0 After generating the report,
From Rhapsody’s tools As format, select Html. the report can be viewed with
menu, select “ReportPlus After that, select any browser that can display
-> Report on all model “TestRequirementCoverage Html files.
elements”. tpl” as template for the
report to generate.
\ AN porntio 9 L Y,

31

Assessing Test Case Model Coverage

Detailed Coverage Summary of CashRegister (9/25)

Operations

el el =T=l M jdenitifyProduct
addProduct
startSession
endSession
generateTicket
ishatoreProducts
removel astProduct

countProducts

evStart

evBarcode

evEnd

3

Besides coverage of the requirements,

an important orthogonal information is which
parts of the model are executed by the test

cases, i.e, what is the achieved Model

Coverage when executing the test cases.
TestConductor can compute this information
during test case execution. When model
coverage computation is turned on, after test
case execution TestConductor adds a model
coverage report to the test cases, test contexts

|Click to highlight elernent in Rha)

etc. that shows the achieved model coverage.

Configuration : DefaultConfig in TPkg_CashRegister_Comp

General | Description | Initialization | Settings | Checks | Relations | Tags | Properties
3

-!| TestArchitecture
= TestihgConfiguration
ComputeCodeCoverage

=0

ComputeMode|Coverage

On the tags tab of the
configuration, turn on
“ComputeModelCoverage”.

\

= ﬁi TestContexts
=R * 3 TCon_CashRegister
E bbb b m _
L Build TestConbext

-

i

Execute TestContext
& -
% Update Testirchitecture

‘ TestComponentInstances

Execute the test context
“TPkg_CashRegister”.

After execution has finished,
coverage reports can be

\

= 3_3 TestContexts
= ﬁ? TCon_iCashReqister
M artribures

found both for individual test
cases as well as a
cumulative coverage report
for the test context.)

Assessing Test Case Code Coverage |

Table Of Contents

Environment Info

Coverage Statistics

Goals Covered

~ Besides coverage of the requirements

Source Code

and model elements, an important additional
information is to what extend the code of the
SUT generated by Rhapsody’s code generator

is executed, i.e, which Code Coverage is
achieved when executing the test cases.

Statement Coverage 70 43| 61.4%
Decision Coverage 6 1| 16.7%
Condition Coverage 0 0 n.a.
Condition/Decision Coverage 20 7| 35%
Modified Condition/Decision Coverage 20 7l 35%

TestConductor can compute this information
during test case execution. When code
coverage computation is turned on, after test
case execution TestConductor adds a code
coverage report to the test cases, test contexts
etc. that shows the achieved code coverage.

/

=9 TestContexts
= TCC Featres..,
+ = il

5 t}[Add Mew 3
L

- |

H @ | Cut Strg+x

-7 ¢ Copy Ctri+C

+ {‘ i

ERYS Dclete from Model
% | estCases
3 ‘ TestComponentinstances

-y, I;StConﬁEurations
Delete the test
configuration dependency

/
=% TPkg_CashReqgister
= Components
=-§¥ TPkg_CashRegister_Comp
=10 Configurations
18 «TestingConfiguration: DefaultConfig
ingConfiquration» Release

e Create a copy of the

rhapsody configuration

)

nfiguratiun : Release in TPkg_CashRegister_Comp

General | Description | Initialization | Settings | Checks | Relations| 7298 | Propesties

-I| TestArchitecture

=I| TestingConfiguration
CodeCoverageOptionsFileNarne
CornputeCodeCoverage
CornputeModelCoverage]

Coveragekind SUT_hierarchical

On the tags tab og the
configuration, turn off

“DefaultConfig” _ . “ComputeModelCoverage’
underneath the test DefaultConfig®, rename it and turn on
context. to "Release” and make it “ComputeCodeCoverage”.
the active configuration.
\ AN o AN

\

)

Assessing Test Case Code Coverage |l

Coverage Report

BIEE = e e e e

o)
2
o =

BB = =

Statermn g
Decisiof 4 ,
Conditic B
Conditic @

i ? F

nment Info Tahle Of Cantents Global Statistics

33 {
34 cleanUpRelations{);

35)

36

370

38 bool false;
33 £ (even (]
3%b 1

40 event->setl PortigecPortil);

a1 if (itsIBarcodeReader != ({0))

alp

az if (event->isType0£(24601))

azb

43 res = itsIBarcodeReader->send(event, parans);
44 28

as 3

a6 3

a7 if (itsIKeyhoard != (D))

47h

{
a8 if {event->isTypeOf(24602))

a8b

a8

50

51 1
52 if {event->isTypeOf(24604))
s2b {

{
=IKeyboard->send(event, paraus);

53 res = itsIKeyboard->send(event, params);
54 urn res;

- 55 1
Modified Condition/Uecision Coverage

Source Code

- 37 bool CashRegister::hw_C::InBound C::send(I0xfEvent* event, const IOxfEventGenerationfarauss paraus)
{
res =
? i; 1=
?

Source Code

I 43| 61.4%
1| 16.7%
8] n.a.
7| 35%
7| 35%

| 2U

The Code Coverage report contains
detailed information to what extend the code of
the SUT has been executed by the test cases.
The report contains both a summary about the
achieved coverage (e.g. statement coverage)
as well as detailed information about each
single line of code. The source code view
contains color coded presentations about the
coverage status of statements, decisions and
conditions of the tested code.

/

I 5 89 TestContexts - N (= ¥ TCon_CashRegister_architecture)
= {',?J TiCon_CashRegister *-(=2 Dependencies
| mstrurmentation (2 Atributes + f’i‘; ¥ESEDVH£D{'IEEHES
. g ' fi = EST_0NTEx
| nstrumentation b ode:; Mone : [L_,L Build Testorbext A 33 TCon_CashRegister
Execute TestConbext +-[= Atributes
Update TestArchitecture - I, FDdECDvEHgERESUlE
-
i After test case execution has
0 On the set_tlngs tab of the e Select the test context e finished. by double clicki
configuration, set : d do “Undat Inished, by double clicking
Instrumentation Mode to igatlgant t(’? “Bp'lg © the code coverage element in
“None”. TeStConteXt”, cLl“th the browser you can open the
. est.ontext an erl code coverage report.
Execute TestContext”.
NG V2RNG J

34

Automatic Generation of Test Cases

r =
Ml Rhapsoedy in C++ Automatic Test Generation - Test Generation Configuration: NewConfiguration0 @@|E‘

File Edit Toals Help

To automatically create sequence diagram test

=] ‘\ TCon_Cashreqister_0_DefaLlkCaonfig using TCon_CashRegi:

L ationd.
Settings

B Rhapsody in C++ Automatic

ile Edit Tools Help

% MewiZonfigurationn

General I Interface Defmmon} Caverage Defirition I

N ewCaonfiguraliond
ise: Generation Timeout min) |1

- ‘K TCon_CashRegister _0_Defaultie sisting SDs/Tests when exporing

ize SDs/Tests when exparting

sshRegister_0::TCon_CashRiegiste_v |

cases open the ,Rhapsody Automatic Test Generation®.
In the main ATG dialog the user is able to adjust
properties, which mainly affect the test case generation
process. A new ATG configuration was created.

An ATG configuration represents a saveable
combination of properties, which gives

e Summary
odel Elemert Coverace 0 . q
reproducible test cases. Furthermore, think of a
spotlight which highlights only a small part of the
- SUT; with more configurations you have more
. ; light from different views.
K Cd TestPackages K 49 TestContexts - \ /
= £J') F'l::jl_ _CashReqister = 33 ET&SIﬁ E::atch 2 (3 Testpackages reate Coe Tasttomn
+- [Components - D 5 TPkg_CashRegister = Q”Eki*cashRSTSter Update TestContext
-2 Events Rational Rhapsody Gateway 9 agLpn =0 Components B Buid TestContext
-G Objects - op =1 TPkg_CashRegister_Comp
Create TestContext ! = Configurations
=-C8 TestPacka 4 @ St) ingConfiguration» DefaultConfig shaibu
= EJ'J TCon_t Update TestPackage - SU -85 «TestingCanfiguration» Release : ; Build TestConke:xt

_

Clean TestPackage

Build TestPackage
Execute TestPackage

Before working with ATG, do a
“Clean TestPackage” on the
top level test package
“TPkg_CashRegister”

+-bg Test Context Diagrams
+-% TestCases

3 ‘ TestComponentinstances

=y TestConﬁEurations
q.m

Add a new dependency from the
test context to the configuration
“DefaultConfig” and change it to a
TestingConfiguration via “Change

to -> TestingConfiguration”. Make
___ “DefaultConfig” the active config. /

Execute TestZontext

e —

Select the test context
,1Con_CashRegister‘ and
choose from context menu
LApply ATG...“. The ATG
main dialog appears. -

ATG Settings “General”

Generd l Interface Definition] Coverage D efinition

Settngs

Hame; |Ennfiguration_[l1

Tesx Caze Generation Timeout (mn] |1

[v Jelete exizsting SDs/Tests whan exporting

[+ dinimize SD=/Tests when exporting
Enport ba:
|TF'<g_l:ashFiegister_[l::TEon_l:ashF!egistej

Coverage Summarny

The General tab of ATG defines the name of the
configuration and provides a description box to notice its

purpose.

The Timout field tells ATG how much time to spend finding
the best coverage. The default is one minute. Increase the
value when dealing with complex models.

The selected option Delete existing SDs/Tests when

\

e B 0 exporting prevents duplicated sequence diagrams in the
) model when re-exporting test cases from ATG.
Deszription
| The selected option Minimize SDs/Tests when exporting
results in efficient and compact sets of test cases.
4 N [N [
M arme: Configuration_01 [Dzlete enizting S0 24T este when expaorting v Minimize SD=/Testz when exporting
0 Rename the configuration e Check the option ,Delete e Check the option
to ,Configuration_01“. existing SDs/Tests when ,Minimize SDs/Tests
exporting®. when exporting®.
_ O\ O\

ATG Settings “Coverage Definition”

General | Interface Definition | Cowerage Definition

todel Element Coverage
(%) Test Classes

Sl Coverage of Classes
B BuyOneGetOneFree in ...
B CashRegister in CashR...

CountedProduct in Cas...

[BarcodeReader in Inte...

IDisplay in InterfacesPkg

IKeyboard in InterfacesPkg

IFrinter in InterfacesPkg

ISpecialoffer in CashR...

Product in CashRegisterPkg

ProductDatabase in Ca...

TC_at_hw_of_CashReq...

TC_for_itsCountedProd. ..

(10 | (I | (T | (I | (I | (X Y (0)
OO0O00oO00o0o=ad

[Hodel Code Coverage
() Test Specific Instances

The Coverage Definition tab of ATG
defines the target classes and events ATG will
analyze in terms of the defined SUT. In this
tutorial ATG shall cover all model elements

from the class ,CashRegister”.

The selected option Model Element

Coverage tells ATG to generate test
cases that shall cover all operations,
states and transitions of the selected

/

General | Interface Definition | Caver:

Model Element Coverage
(%) Test Claszes

o By default, the option

“Model Element
Coverage’ is selected.

By default, the class of
the SUT of the test
context, CashRegister, is
selected.

classes.
\
-|| Coverage of Classes
H BuyOnecetOneFree in... [
B CashRegister in CashR...
H cCountedProduct in Cas... [

-

\

H Product in CashRegisterPkg | [T

ProductDatabase in Ca... B |

Since we are only
interested in the model
coverage of class
CashRegister, uncheck
coverage of Product and
ProductDatabase

)

ATG Settings “Input Interface”

General Interace Defiiion | Coverage Delirtion

= Input Interface

B BuyoneGetorefresin G

& . CashRegister in CashRegisterPhkg
a CashRegister::addProduct(}

B CashRegister::countPraducts()
= I

r Q BuyOneGetoneFres in CashRegisterPkg
TCon_CashRegister itsCashRegister

E|

|

B CashRegister:sisioMareProducts()
emovel astProduct()

H evEBarcode()
E['] int aCode

12344-12351

2 Ee e
2|3 a
=

s EE

L
o
EE|:

#| B countedprodict in CashRegisterPlg
% H IBarcodesReadsr in Interfacespkg

B mispla
5 Keybo e
B IPrinter in InterfacesP|
+ B ISpecialOffer in CashRegisterPkg

a

{0} «argRangeConstraints 4

= @ Tags

love_value

The ,Input Interface”-Section under the Interface Definition
tab defines the operations and events ATG is allowed to call
on the SUT and the test components. TestConductor, the
execution engine, will later act as driver for theses operations
and events. In this tutorial ATG shall be able to call all
available and usable elements of the CashRegister-instance
and the ProductDatabase-instance.

ATG sets the SUT as default input instance
(TCon_CashRegister.itsCashRegister) automatically.

The evBarcode has a constraint to consider a lowest

2 g Producting = product in CashRegisterPka

i ProductDat N .

CIER T H ProductDatshase in CashRegisterPlg
A B T for_itsc] B 1C_at_hw in TPkg_CashRegister

Tion_CashRegister.itsCashRegister. itsProductDatabase

and a highest value for the parameter aCode. ATG
recognizes such restrictions and adopts them as defined

B 1C_For_itsProduct in TPkg_CashRegister
% B TCon_CashRegister in TPkg_CashRe...

in the Model.

-

skerPlg

O
Y]

TCan_CashReqister.itsCashReqgister

Verify that the incorporated
instance
,1Con_CashRegister.
itsCashRegister” is noted
and all options are active.

~

4)

=l Input Interface
CiN=| BuyCneGetOneFree in CashRe...
SNt e 1T R ST [=S TCon_CashRegister, itsCashReqister

J

_

& CashRegister::addProduct() O
E CashRegister::countProducts) |
@ CashRegister::endSession() O
@ CashRegister::generateTicket() | 0
@ CashRegister::identifyPraducty) |0
§ CashRegister::ishoMarePro.. |
§ CashRegister:removelast.. |0
§ CashRegister::startSession() |0

By default, all operations & events of CashRegister are
selected as inputs. Since we just want to stimulate the
Cashregister via events, please uncheck all operations.

38

ATG Traced Instances and Messages

General Interface Definition | Coverage D efinition

+| B TCon_CashRegister in TPkg_C...
+ % TCon_CashRegister_Scheduler...
| [F TCSC_tc_0 in TPkg_CashRegis...
B TenPercentOff in CashRegisterPkg
B ThresForoneEuro in CashReqi...
= | Traced Instances and Messages
+ B BuyOneGetOneFres in CashRe...
E2 % CashRegister in CashReqgisterPkg
Bl © CountedProduct in TRkg_Cash...
+| B CSC_SD_tr_0 in TPkg_CashRe...
+| B marcodeReader in InterfacesPkg
+ B IDisplay in InterfacesPkg
+ B IKeyboard in InterfacesPkg
= B IPrinter in InterfacesPkg
+ B 1Specialoffer in CashRegisterPkg
+ B Product in CashRegisterPkg
+| B ProductDatabase in CashRegis...
+| B TC_at_hw_of_CashReqgister in ...
+| [B TCon_CashRegister in TPkg_C...
+ % TCon_CashRegister _Scheduler...
+| [TCSC_tc_0 in TPkg_CashRegis...
B TenPercentOff in CashRegisterPkg
B ThresForOneEura in CashReqi...

TCon_CashRegister. itsTC_at_hw_nof_CashReqister
TCon_CashRegister

The ,Traced Instances and Messages®- 39

Section under the Interface Definition tab of ATG defines
the operations and events ATG has to trace on an
Incorporated instance. TestConductor, the execution engine,
will later act as observer for theses operations and events.
In this tutorial ATG shall trace all needed elements of the
TC_at_hw-instance in a black-box environment. In case you
like to have white-box test cases incorporate a
CashRegister-instance.

In a black-box environment only
messages coming from the SUT will be
observed.

In a white-box environment all

_

-/ Traced Instances and Messages
+| B BuyDrecetOneFree in CashRe. ..
+| Eh CashRegister in CashRegisterPkg

| CountedProduct in TPkg_Cash...

+| B TC_at_hw_of CashRegister in... | TCon_CashRegister.itsTC_at_bwv_of_CashRegister

*_ TCon_CashReqister in TPkg_C...
+| Eh TCon_CashRegister_Schedule...

0 ATG proposes to incorporate an instance of ,CountedProduct” and
“Tcon_CashRegister”. Delete these default settings from the text

field before further using ATG.

messages from the SUT and messages
inside the SUT will be observerd. After
you finished this tutorial try to
incorporate an instance of CashRegister
under this section (it's notation is equal
to that in the ,Input Interface®-section).
ATG will trace additional messages from
inside the SUT like ,startSession()",
JidentifyProduct()“ and ,addProduct()“ in
the test cases, which will not be shown

in an black-box environment.

ATG Test Case Generation

~ To Generate TestCases start the ATG
™ Rhapsody in C++ Automatic Test Generation - Test Generation Config... [][0 engine. ATG shows the coverage results in

N i e g et o e o | percent well-defined for model element
R T o o sare | coverage (100%). The coverage browser on

T G vamsenncattagmarigoveegess o[oaconcomaarmeonen the left shows details about which model
e e elements are covered resp. not covered.
& generateTicket in CashRegisterPkg: :CashRegister Eeticle atnagb R eblibenipeling
g :gizlt\izzaduct in CashRegisterPkg : : CashRegister Minimize 50+ ests when cxporing
B e e el oo 8 The results ATG generates can be

T S mone S5 = | . evaluated (e.g. in order to check why
=Lty certain model elements are not covered)

S A and the test cases can be exported to

Rhapsody as sequence diagrams.

N \
e Tinecu 000700 , = % CashRegister in CashRegisterPkg 20,
| o) 00.00:03
Model Element Coverage . " = a’ Operatiuns El.r"El D,{'D D,u"U
St 5 & addProduct in CashRegisterPk
Clear Test Cases |
Tiasin Coverano 5 & countProducts in CashRegister
Generate Tesk Cases Operstion Coverage 8 -
Expork Test Cases to <ML . .
Details about which
To start the ATG engine Check that ATG reaches elements are covered
. . “ 0
select ,Configuration_01 100% model element resp. not covered can be
and choose coverage. seen in the coverage
from the context menu browser underneath the

_ ,Generate Test Cases”.) U) U ATG configuration.)

ATG Test Case Export

=B configuration_o1
= E—'ﬁ; TestScenarios
ATG_TestCase.2

.:CashRegiste

" TestScenario: ATG_TestCase.8 in TP
TC_at_hw_of CashRe..

ATG_TestCase.3
ATG_TestCase.4

ATG_TestCase.6 ATG_TestCased
ATG_TestCase.D
(g, TestComponents ;g;:isntne_rti:t?l'rgjﬂ
= 33 TestZontexts . _
=89 TCon_CashRegister at_trw_of_Cas
+- @8 CoverageResults [evStart()

+-L5 Lirks
=l SUTs
+-kg Test Context Diagrams
=%, TestCases
+ %, atg_tr_002()
2 atg_te_0030
2 atg_te_0040
- atg_tc_0060)
2 atg_tc_00ag)
2 SD_tc_00)

* %

ol R R A R e
o G R X

aTestSoenarion

«SUTs

TCon_CashR
egister.itsCas
hRegister. Cas

-

show(aMsy = "Ready"j/|

| evBarcode(aCode = 12345) |

show(

il
<}
E

vRermove()

allsgy = "Lychees"j/:
I

show(ahsy = "Lychees"ﬂ

[3

Export Test Cases to XML

and choose from the
context menu ,Export

Export Test Cases to TestScenarios
Export Test Cases to Rhapsody

Export missing Test Cases to Rhapsody

Select ,Configuration_01¢

Test Cases to Rhapsody*.

)

The export of test cases is a fully
automated task in ATG. The resulting test
cases are stereotyped primitive operations and
will be shown in the browser folder
,lestCases”. Test cases are linked to test
scenarios, which are stored in a new folder
,lestScenarios”.

41

All test cases are reproducible. Once the
model has changed you can delete the
corresponding test case items in order to
re-generate and re-export them from an
ATG-Configuration.

- \ [cenario\
=-£9 Configuration_o1 4 | AT TestCase 8) st
=B TestScenarios TCon_CashR TCon_CashR
ATG_Te= % TestCases Eﬂﬁi\?_r;‘ilig ES‘E;?&S?EZ?
ATG_Te @-% atg_tc_0020) [evStart) |
ATG_Te @ % atg_tc_0030) (B
- w - “evBarcode(aCode = 12345)
'&'TG—TE i ahg—b:—DDq'O L show(aMsg="Lychees"j/!
ATG_Te #-% atg_tc_00&0) "ERermove(I
%, atg_tc_0080) [showiabsg = "Lychees) |
e Close the ATG-Dialog and Open for example the
analyze the new items in TestScenario
»1estScenarios” LATG_TestCase.8" and
and ,TestCases” in the examine the driving and
Rhapsody-Browser. observed events.
AN /

Automatic Execution of ATG Test Cases

Executing test cases with Rhapsody

x| :
. - # & | TestConductor means nothing less than to replay a
Ar— E— Fileferation LinesProgress || O€fIN€d scenario. The scenarios (saved in the folder
-1%, atg_tr_n0g @ PassED TestScenarios) are specified as actions and
Fp ATG_ TestCase.008 @ PASSED 1 0% @/ || reactions in sequence diagrams (or activity
aTestSoenarion . . .
[AT0 TeslCase8) «SUTs diagrams or source code). During execution
TCon_CashR TCon_CashR 3
cgister 1aTC. Egi;”_e—r_;j;%as TestCo_nductor acts as drlver.anc! observer. In the
a*-hW-rf-gfsno hREQ'SiB"CaS Scenario ,ATG_TestCase.8" it drives the event
By.oald . .
B Show(ahsg = "ReadyT | evStart and expects the parameterized reaction
| eBarcode(aCods = 12345) 7{, show. It drives the event evBarcode and expects...
L show(aMsg = "Lychees'] | .
e | quite easy and very powerful.
|‘ show(allsg = "Lychees"ﬂ
|‘ |
4)
=% TestCases harme Status
% atg d Update TestC Build TestC =% atg_te 008 Q PasseD
- Edit TeshCase SDInstances ate TestCase uild TestZase 1 T
* x'l". abg—1 m Execute TaskCass L& A
1% S0 Buid TestCase Execute TestCase Show as SD
: : oo Add to model

To open TestConductor select the test case ,atg_tc_008“ and
choose from the context menu the items ,Update TestCase*, ,Build
TestCase” and ,Execute TestCase“.

)

Select ,Show as SD” to
view the used ATG test
scenario.

42

Conclusion

The high-grade automation in the Rhapsody Testing Environment with
TestConductor and Automatic Test Generation (ATG)

4

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

highly automates the testing process and can save up
to 80% of test development time compared to
traditional approaches.

Appendix |

Testing a Rhapsody Component!

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

Rhapsody® Testing Environment

Generate Test Architecture

|:| Conponents
(] Obiect Model Diagrams

(] Packages
(7] Profiles

L TestPackages
=% TPka_ComponentTest
= {‘,?J TestContexts

2T

- D CppCashRegisker
¥
-
N
N

on_ComponentTesk

3
+-[_] Components| Features
+-[] object Mode| Featuresin
¥ D L=l
== Component

TN

0 Select the root package

,CPPCashRegister and
choose from the context menu
»,Add New -> TestingProfile-

_ >TestPackage®.)

component.

Features

~

T
TestComponent
TestPackage [!

e Select the created test

package and choose from
the context menu ,Add
New -> TestingProfile ->
TestContext®.

To manually create a test architecture

for the component test, insert a new test
package and a new test context. It is not
necessary to define a SUT and test components.
We will use the pre-defined component
«CashRegisterNoGui» and its configuration
«Debug»; activate this configuration before you
proceed. This test validates the complete model
running in a production configuration against its
requirements. Here, the SUT is the complete

- L3 TestPackages
= EJJI TPkg_ComponentTest] 1]

+ {fi TestZontexts

— ==

=% TPko_ComponentTesk
= 33 TestContexts
#3[TCon_ComponentTest| |
*

Rename the created test
package to

»1 Pkg_ComponentTest®

and the created test

context to
,1Con_ComponentTest®.)

Link SD to Test Case

Define Test

To link an existing sequence

[T oK (requirement) diagram to a test case
Do e _ Cred | create a test case and open the dialog ,Define
| Test".
sSUInstances in | est:
% In the dialog ,Define Test" the user can
Dretailz of SDInztance SpeCIfy propertles Concernlng
SDinstance Name: the execution of sequence diagram
) q ag
IS est cases. Refer the user guide to get
| | | familar with the properties and their effect
during test case execution.
4 N [N I
® . TeshCases
SuT = & TCon_Component Test ";, TestCase Purchase_with_remover)
= ":,- TestCases

TeckiZomponenk E!

Deleke From Model

®_ [TestCase_purchase_with_removelT |
T

TestComponentInstance
TestConfiguration
TestCaontext Diagram

Edit TestCase SDInskances
Update TestCase k
Build TestCase

o Select the test context

,1Con_ComponentTest* and
choose from the context
menu ,Add New ->
TestingProfile -> TestCase®”.

e Rename the created test

case to
»lestCase_Purchase_
with_remove®.

e Select the test case
»1estCase

Purchase_with_remove*
and choose from context
menu the item ,Edit

TestCase SDInstances®.

/

Test Case Property Definition

47

Define the properties of a test case in

order to use an existing sequence diagram. In

the dialog ,Define Test" specify the sequence
diagram, switch to linear driving and apply the
changes. We use the sequence diagram
,~SDPurchase with_remove* from the

specification phase of the CashRegister

EMY ‘CashRegister ‘ProductDsta CountedProd i

base uct
% evSitart() | | |
é\\‘% _ | |
7 startSession()

| |

7
7] |
7 show(ahMsg = Ready)
é evBarcode(aCode = 12345) | |
T | . l
g =L
é identifyProduct(a w TestCases

=|- &y SDInstances
E_Iu Purchase_with_remove

project, which specifies a complete purchase

SR8 TestCase Purchase_with_remove() process.

4 N [, N I
Sequence Diagram:
Add 5DInstance |SDPurchase_wilh rermove in Tutonal_Prerequisits = D.river and MDTj‘gr |
Scenario canceling products in CazhP egisterPkg * Linear
Behavior in CazhRegisterPkg
- Animated Scenario zelecting products in CazhRegisterPlk
SDInstance Mame: Scenario manually entering a barcode in CashPegisterPk
|F'urchase_wit|’_remove Scenario generating a ticket in CashRegisterPlg Cancel
Fecorded_simple_startup in Tutorial_Frerequizsits
Sequence Diagran: SDPurchaze_with remove it Tutonial_Prerequisits |
i
Press ,Add SDInstance“ and Select the item Select the ,Driver and
write in the field ,SDInstance ~SDPurchase with_remov Monitor® option and apply all
Name® the text e“ from the drop-down changes by pressing ,,OK".
,Purchase_with_remove®. combobox in the field The dialog closes.
»>equence Diagram®.
_ NG NG J

Passed Test Execution

The test execution PASSED with
Rhapsody TestConductor.

=l
DROE - -E],
Mame Skatus File Tteration Line/Progress
-|¥, TestCase_Purchase_with_remove (O) PASSED
By sD_tc0) PassED 1 100%. {30430
4 N

=59 TCon_ComponentTest
- %, TestCases
CRL W8 TectCase Purchase with removel)

Set as active component

o “CashRegisterNoGui”.

Select the test case
“TestCase_Purchase_with
__remove”.

\ j

Edit TestCase SDInstances

i

Build TestC
Update TestZase

ExecubgTach™ !

Build TestCase

Exzecute TestCase

... and choose from

e context menu the items
,Update TestCase®, ,Build
TestCase” and ,Execute

TestCase®.

MName Skakus
-|¥, TestCase_Purch... [(2) PASSED
Hy s0te_o () PasSED

The test case runs and
passes as expected.

48

Appendix Il

Generating test reports with Rhapsody ReporterPLUS!

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

Rhapsody® Testing Environment

Test Report Generation |

-

_

ReporterPLUS Wizard : Select Task To generate a test report with Rhapsody
i b ReporterPLUS select a test package in the Rhapsody
browser and start the ReporterPLUS wizard. After all
Bt Mot ward Domamenn " needed options are selected ReporterPLUS will start to
Benerae Tom Fie collect information and displays it in a well arranged style
in different formats as listed in the figure.
In opposite to the Rhapsody TestConductor
HTML Test Result Report every ReporterPLUS
m Abbrechen template can be customized to fit the users
needs.
N)

-- L3 TestPackages
SR TFkg CashReqlster
+ I:l Components
+ I:l Sequence Diagrams
+ _j TestZomponents
- ﬁi TestContexts
—-# TCon CashRedister

Select the test package
»1 Pkg_CashRegister” in the

Rhapsody browser ...

fulel =N ‘Window Help
Check Model
ReporterPLLS
Report on model

Report on all model elements. ..

Report on selected package...

Import ¥MI inko Rhapsody

CreatefEdit template with ReporterPLUS, ..

... and choose from the , Tools“ menu ,ReporterPLUS -> Report on
selected package...“ to create a report for the selected test
package. In case a report for all test packages in the model shall
be created, choose the menu item ,Report on all model

elements...”)

50

Test Report Generation |l

ReporterPLUS Wizard : Confirmation X Select the export format and choose the

test report template, which has been installed

E:tt;ﬁmg with Rhapsody TestConductor in the

C:\Ploganime\T llogic Ahapsody 7 T\eponerplstTempltes\ TesRepor p ReporterPLUS template directory. This

E\}:}Elgiirgmeﬁelelugic‘ﬂhapsudy 7.1\5 amples\CppS ampleshT estConductar temp|ate uses the Testing Profile to provide the

TPkg_Casfegister Packagd underlying stereotypes to generate a
document.

< >

« Zuriick Imelhanw Abtrechen

'0|JE|| Template
en 13 Templates
wihat would you ke to da? ol
prterPLUS template | [R e
Generate Microsoft PowerPoint Presentation -
. dy 7. 1reparterplush T emplatestDiagrams. tpl o
Generate Microsoft Word Document Re0 T £
emplates -
Generate RTF File = u J =
Generate Text File vssufepart bl
entsTable.tpl EialseCaseD

jagramshig
v HTML Exporter,tpl @UseCaseR| Tvp: TP

Select the template

o Select the export e Click on the Button ,....“ to

document format browse the test report ,,Testlftepolrt.tell_ In tlh? folder
,Generate HTML Page” template. sreporterplusiiemplatesin
and choose ,Next>*. your Rhapsody installation

_ J U AN and choose ,Next>*. D

Test Report Generation Il

Table of Contents

[SIES| Test Report of Model Cpp
= B TCon_CashRegister

(1 System Under Test (SUT)

[Test ComponentInstances
(] Test Context Diagrarms

Test Report of Model CppCashRegister

(Report created at 7/17/2007 at 16:41:04)

CppCashRegister.rpy

[=] (] TestCases Project
B TestCasesD_te 0 -

B TestCGase Code_te_0 Directory

= & TestCase SD_te_0 —

CAProgrammesTelelogichRhapsody 7.1
sSarmples\CppSamplesiTestConductonCppashRegister

C++

“v Scenatio SD_tc_0
B TestCase ato_tc_o02
B TestCase ato_tc_o03
§ Testcase atg_tc_004
B TestCase atg_te_006
B TestCasze atg_te_007

Description

This is the CashRegister exercise model for the
Fhapsody TestConductor and aTG tutorial, It is
based on the model from M.W.Richardson and shows
the main aspects of the Testing Profile
implementation firstly delivered with

Fhapsody TestConductor 2.0,

B TestCase ato_tc_o0s
B TestCase ato_tc_o0g
B Trst Case atg_te_nin
H Testcase aty_te_013
§ TestCase atg_tc_014
B TestCasze atg_te_015

This document contains the test contexts

& TestCase ato_te_016

TCon_CashRegister |in TPkg_CashRegister:: TCon_CashRegister

HEHHEHEHHBEEEEHE

B TestCase ato_te_017

Specify the report file name and execute
Rhapsody ReporterPLUS to display
information about the defined parts of your

model.

The HTML export format we use for
this example needs Microsoft Internet
Explorer (or Netscape Navigator) with
installed Java virtual machine. In case
the virtual machine is not installed, the
browser will ask to install it automatically
from the internet.

.
/ Generate Document

Speichen | Repots | <= (B £F BB

N

ReporterPLUS

Loading Use-Cazes of Package ATG_TestCaze. 14

\

|T Plg_CazhRA egister:[

[HTHL Page [* hitrol:” him]

= Generate |

Finish the ReporterPLUS
wizard, name the export
file in the ,Generate
Document” dialog and
select ,Generate”.

Cancel

ReporterPLUS will collect
information from you
model and start the
corresponding application
for the selected export file
format to display.

-

\

Table of Contants
=[] TestReport of Model CppCashRegister
E B Tcon_tashRegister
8] Svstem Under Test (SUT)
E3 TestComponentInstanc
[TestContext D agrams
= 3 TestCases

B TestCaseaD_tc_n

Discover the browseable
information in the report.
Select a linked item in the
left section to display the
corresponding
information.

More Information ...

For further information, especially
technical news, visit our internet

' em——— information portal or contact one of our
—————— v == o worldwide sale agencies.

1IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

X

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

