

IBM® Rational® Rhapsody® Automatic Test Generation Add On

User Guide

Rhapsody®

 IBM
®

 Rational
®

 Rhapsody
®

Automatic Test Generation

 Add On User Guide

 Release 3.6.4

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated

into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,

optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,

BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems

AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed

or implied, are made regarding Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM
®
 Rational

®
 Rhapsody

®
, IBM

®
 Rational

®
 Rhapsody

®
 Automatic Test Generation Add On, and

IBM
®
 Rational

®
 Rhapsody

®
 TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of

their respective owners.

© Copyright 2000-2011 BTC Embedded Systems AG. All rights reserved.

Appendix

IBM
®

 Rational
®

Rhapsody
®

 Automatic Test Generation Add On

 5

 Contents

Contents

 .. 5

Document Structure ... 7

Contacting IBM® Rational® Software Support .. 8

Conventions.. 9

Where to Find More Information ... 9

Introduction .. 10

ATG is Based on UML .. 11

Structural Testing and the Role of Models ... 12

ATG is for … ... 13

What are the Approaches behind ATG? .. 13

Sample Model: TheVendingMachine .. 13

Rhapsody

UML Testing Profile .. 16

Automatic Test Generation (ATG) Package .. 17

Test Case Generation for Unit Testing ... 19

Automatically Creating a Test Architecture ... 19

Generate and Build the Test Context .. 23

 Apply ATG.. 24

Test Generation Configuration ... 25

Generate Test Cases ... 28

Export Test Cases to Rhapsody TestConductor ... 30

Execute an ATG Test Case .. 34

Test Case Generation for Integration Testing .. 38

Manually Creating a Testing Component .. 38

Generate and Build the Test Component ... 40

Apply ATG .. 41

Test Generation Configuration ... 43

Generate, Export, and Execute Test Cases ... 50

ATG Management .. 61

The Test Generation Component ... 61

Create a Test Generation Component ... 61

Delete a Test Generation Component ... 62

Clear All... 63

Clear Test Cases ... 63

Test Definition Options ... 63

The Test Generation Configuration.. 65

Delete a Test Generation Configuration ... 65

The General Definition Tab ... 66

The Interface Definition Tab ... 68

The Coverage Definition Tab .. 70

Clear All... 70

Clear Test Cases ... 71

Test Definition Options .. 71

Sync ATG Data with Application .. 73

Rhapsody ATG settings ... 74

Test Case Generation .. 76

The Rhapsody in C++ Automatic Test Generation Dialog .. 76

View Customization ... 78

One-click Expand/Collapse Hierarchical View ... 78

Change between Hierarchical and Flat View ... 79

Show Combinations of Test Cases .. 81

Exporting Test Cases .. 83

Export Formats .. 83

XML .. 83

Test Scenarios .. 84

TestConductor ... 84

Exporting a Single Test Case ... 84

Exporting Test Cases on Configuration Level ... 86

Exporting Test Cases on Test Component Level ... 87

Report Generation .. 88

Test Generation Configuration Report .. 88

Testing Component Report .. 91

Test Execution .. 91

Advanced Features ... 92

Specifying Interfaces in the Model .. 92

Provided Interfaces and Required Interfaces ... 92

Operations and Events – Argument Constraints .. 93

User-Defined Constraints on Types ... 95

Working with Libraries .. 97

Coverage Measurement with Third-Party Tools .. 100

Appendix

 .. 101

Restrictions .. 101

Frequently Asked Questions ... 101

 Document Structure

This user guide is organized as follows:

 Chapter 1, Introduction, provides an introduction to Rhapsody ATG through a

high-level overview of the main features.

 Chapter 2, Rhapsody UML Testing Profile, provides an overview about the

concepts of the Testing Profile as implemented in Rhapsody.

 Chapter 3, Test Case Generation for Unit Testing, provides an overview on

creating Test Architectures, defining Test Cases, and executing Test Cases for unit

testing.

 Chapter 4, Test Case Generation for Integration Testing, provides an overview

on creating Test Architectures, defining Test Cases, and executing Test Cases for

integration testing.

 Chapter 5, ATG Management, provides information on how to administrate

ATG, generate test cases, generating text and html reports for the generated test

cases, exporting test cases into desired formats.

 Chapter 6, Advanced Features, provides information on defining constraints.

 Chapter 7, Coverage Measurement with Third-Party Tools, provides course

information on doing external coverage measurements.

 Chapter 8, Appendix, provides information on further documents concerning

restrictions and frequently asked questions.

 Contacting IBM
®
 Rational

®
 Software Support

IBM Rational Software Support provides you with technical assistance. The IBM

Rational Software Support Home page for Rational products can be found at

http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for

support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM

Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone

number in your country (where available). For specific country phone numbers, go

to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background

information that you will need to describe your problem. When describing a

problem to an IBM software support specialist, be as specific as possible and

include all relevant background information so that the specialist can help you

solve the problem efficiently. To save time, know the answers to these questions:

What software versions were you running when the problem occurred?

Do you have logs, traces, or messages that are related to the problem?

Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the

workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www.ibm.com/planetwide

 Conventions
The following table lists the conventions used in the Rhapsody documentation.

Style Description

command1 >

command2

The greater-than (>) symbol leads you through the steps in a

menu or key sequence. For example, Add New > Package

means that you should first select Add New, then select

Package from the Add New submenu.

Bold type Bold type indicates items that you should select, such as

buttons or checkboxes in dialog boxes.

For example:

Click Apply

Italic type Italic type is used for emphasis, titles of referenced documents

and new terms.

Courier type Courier type is used for file names and directory paths,

user input, and code-related items such as instance names and

properties.

<filename> Angle brackets surround variable names that you should

replace with actual names. For example, you should replace

<filename> with the actual name of a file.

 Where to Find More Information
The following documents provide additional information on Rhapsody ATG and the

development process concepts used in this user guide:

 W. Damm, M. Cohen, Advanced validation techniques meet complexity challenge

in embedded software development, Embedded System Journal, 2001.

 B.P. Douglass, ROPES: Rapid Object-oriented Process for Embedded Systems, I-

Logix Inc., 1999 (adaptation of the material from book: Doing Hard Time:

Developing Real-Time Systems using UML, Objects, Frameworks, and Patterns

Reading, MA: Addison-Wesley, 1

 Introduction

Welcome to the user guide for IBM
®
 Rational

®
 Rhapsody

®
Automatic Test Generation

Add On (Rhapsody ATG). Rhapsody ATG is a test case generation tool using standard

Unified Modeling Language™ (UML™) design notations. Using ATG, you can

automatically generate test suites and perform test execution for your applications

developed with the Rhapsody in C++ design tool at any stage in your development cycle.

The typical UML development process (such as the Rapid Object-Oriented Process for

Embedded Systems, ROPES) is iterative, starting with an early, fairly abstract version and

progressing to more and more concrete prototypes. To test a System Under Test, use ATG

in your development process to do unit testing, integration testing, or regression testing.

Rhapsody ATG complements Rhapsody® TestConductor. TestConductor automatically

generates Test Architectures for the system under test (SUT), and creates test monitors and

test drivers from Rhapsody sequence diagrams (SDs). During automated test execution,

the generated monitors determine whether the executed model satisfies the selected

sequence diagrams. ATG generates test cases that can be exported to Rhapsody in order to

execute test cases with TestConductor.

Rhapsody ATG is a tool that enables Design for Testability (DFT). DFT is a process

capability that enables repeatable and cost-effective testing throughout the development

process. Thus, DFT is an approach including:

 Model-Driven Development (MDD) with visual modeling and animation in

Rhapsody

 Structural testing with ATG

 Requirements-based testing with TestConductor

If users apply DFT, they:

 Get repeatable tests based on models and software.

 Expand the level of achieved design coverage.

 Are able to perform regression testing.

 Speed up tests on subsequent versions of the design.

ATG offers test case generation to perform structural testing. It extends Model-Driven

Development to include both Model-Driven Code Generation and Model-Driven Test

Generation. ATG automatically generates test cases with high coverage of the design,

including:

 Model element coverage–States, transitions, operations, event generation

 Model code coverage–All relevant combinations of inputs for full model code

coverage sufficient to fulfill criteria such as Modified Condition Decision

Coverage (MC/DC)

Test cases consist of input stimuli, and output reactions as computed from a given model.

The generated test cases can be used to test the production code. Test case execution will

lead to a high degree of coverage of the production code, and the execution will give

pass/fail results. A fail result indicates that the actual results of a test execution run do not

match the expected output reactions as computed from the model.

ATG generated test cases can be used for unit testing, integration testing, regression

testing, and target-based testing. It works with third-party tools for code coverage analysis

and test execution.

This user guide takes you through some stages of a design and testing process supported

by ATG, such as unit testing and integration testing, and shows the various capabilities of

ATG.

 ATG is Based on UML
Rhapsody ATG is based on the Unified Modeling Language (UML). Rhapsody supports

UML-based development processes throughout all development stages—from system

modeling to behavioral modeling down to code. Model execution with Rhapsody provides

developers a very efficient way to verify and validate their models and the generated

implementation-level code—both on host and target computers. By doing interactive

model execution, and in particular combined with the animation capabilities of Rhapsody,

developers:

 Can ensure that the modeled behavior satisfies the given requirements.

 Can find errors at the very early stages of the development process.

The UML standard provides some answers concerning software testing based on UML

artifacts, i.e. the UML Testing Profile. The UML testing profile provides mechanisms to

define test infrastructures, test definitions, and test executions, but the challenge of test

case generation and execution automation is not tackled by the UML standard.

ATG is a new, model-based test generation product for the automatic generation and

application of test cases for testing applications generated from Rhapsody UML models.

Model-based test generation means that the UML model information is used in order to

structure the test case generation for actual software testing. ATG computes test cases

(sequences of operation calls and expected reactions), such that black-box testing and

white-box testing can be applied on the final implementation (the production code), both

on host and on target computers.

The benefits of this model-based test automation product are as follows:

 More efficient testing activities

 Reduced overall testing time and cost

 Increased test coverage quality

 Early failure detection and correction

 More extensive and repeatable testing

 Improved product quality

 Structural Testing and the Role of Models
Safety standards, such as airborne standard DO-178B, require certain specific software

verification activities to be done. Highest emphasis is on requirements-based testing.

Normal range tests and robustness tests have to be generated. The tests are applied in order

to perform low-level tests, software integration tests, and HW/SW integration tests. When

the testing is done, it is necessary to perform a requirements-based test coverage analysis

to assess which requirements have been tested, and a structural coverage analysis to

assess the degree of structural code coverage. If structural coverage analysis reveals code

that was not exercised, either more test cases have to be generated, or the unnecessary

code must be removed. Structural testing is usually applied in the phase of unit testing. In

this case, testing is driven by the structure of the code. Hence, it is a white-box testing

method, where the internals of the system under test are visible. Structural testing is also

known as coverage testing.

Models help to describe and understand what the system under test is supposed to do. The

complexity of software requires development of models to support design and testing

activities. For the testing, it is important to find those few input and system state

combinations that will reach, trigger, and propagate bugs out of all those that will not.

Model-level test case generation means that the model is the reference specification used

for actual test case generation. Its key characteristic is that test case generation goals are

expressed in terms of high-level model elements such as states and transitions. Generated

model-level test cases can be applied on implementation models on real test nodes to

check correctness and completeness of the developed products under real-time conditions.

ATG analyzes both UML models and the generated C++ code to automatically generate

sets of model-level test cases that cover the full source code. The achieved level of source

code coverage, when using the generated test cases for execution, must satisfy standard

criteria such as Modified Condition Decision Coverage (MC/DC).

Consider the following source code fragment:

if (a || b)

c = 0;

else

c = 1;

To exhaustively test this piece of code, it is necessary to execute both branches of the if-

then-else statement. This can be achieved with four different combinations of possible

values for decision (a || b). MC/DC justifies that it is sufficient to select three out of four

possible combinations in order to perform a thorough testing of this if-then-else statement.

When test cases are executed on an application, third-party tools can be applied to

measure the achieved source code coverage while testing a system under test.

 ATG is for …
ATG enables Rhapsody users to generate test cases for single classes in order to perform

unit testing, or for a set of classes in order to perform integration testing. The considered

class or set of classes is the System Under Test (SUT).

In order to generate test cases for an SUT, ATG uses both UML model and generated C++

code for actual test case generation. C++ code generation within Rhapsody uses code

generation components and configurations. An SUT must be represented as an executable

code generation component. This means if test cases should be generated for an SUT

(either a single class or a set of classes), the SUT must be compiled and linked into an

executable.

Note: To be able to apply ATG on an SUT, you must be able to interactively execute

and simulate the considered SUT within Rhapsody.

 What are the Approaches behind ATG?
ATG takes the generated C++ source code and performs a virtual model execution. Virtual

model execution means that a C++ program is not executed on a real physical device with

a real processor, but it is executed by a virtual machine. In this case, the virtual machine

behavior is realized by ATG. Using virtual execution, you can assume a more ideal world

for the sake of test case generation. In an ideal world, you can abstract from concrete (real-

time) operating system features, actual processor speed, available physical memory, and

so on. In a virtual machine, these parameters are configurable.

Virtual model execution is key for ATG in order to explore the reachable state space of the

SUT. It enables the application of various test generation strategies on a model under test

such that test cases can be generated in an incremental manner. In addition, ATG does not

assume that users specify concrete values for inputs, but ATG can handle arbitrary values

until a test case has been generated.

To apply the virtual machine to the C++ source code, the source code must be translated

into a format understood by ATG. This is very similar to a compiler that translates source

code into machine code understood by a normal processor. The ATG C++ translator can

handle a large subset of C++ language constructs, but there are some limitations. See the

Rhapsody ATG Limitations document for more information.

 Sample Model: TheVendingMachine
This user guide uses the Rhapsody in C++ TheVendingMachine sample model. It can be

found in <Rhapsody>\Samples\CppSamples\Atg\TheVendingMachineStart>.

Figure 1: TheVendingMachine

If a user inserts coins and selects a drink then the vending machine delivers either water,

tea, or soft drinks,. The behavior of the vending machine is realized by a set of

collaborating objects. The VendingMachine Classes and Events as shown in Figure 2 are

Changer, ChoicePanel, CoinValidator, DrinkDispenser, User, and

VendingMachine. The Figure also shows the available events used to trigger the objects.

Some of the classes are modeled with statecharts, whereas others do not have statecharts.

Inserting coins or selecting a drink causes external stimulus. Coin insertion is converted

into an operation call to the machine, whereas drink selection is mapped to events that are

sent to the machine.

Figure 2: TheVendingMachine Classes and Events

 Rhapsody
UML Testing Profile

The Rhapsody UML Testing Profile is based on the official UML Testing Profile. It

contains new terms and stereotypes that can be utilized for model testing artifacts in

Rhapsody. A couple of elements defined in the UML Testing Profile are presently not part

of the Rhapsody Testing Profile. However, the Rhapsody Testing Profile includes

supplementary elements that are not part of the UML Testing Profile. Stubbing, for

example, is one of these additional elements that are used for test activities not addressed

by the UML
2.0

 Testing Profile.

The Rhapsody Testing Profile is prearranged in three major packages with additional sub-

packages and the TestingProfile stereotype.

 Rhapsody UML2.0 Testing Profile (UML20TP)

1. TestArchitecture

2. TestBehavior

 Rhapsody TestConductor (RTC)

1. TestArchitecture

2. TestBehavior

 Automatic Test Generation (ATG)

The Rhapsody Testing Profile is automatically utilized by Rhapsody TestConductor.

In the next section the package Automatic Test Generation (ATG) will be described. For

further information about the profile Packages Rhapsody UML2.0 Testing Profile

(UML20TP) and Rhapsody TestConductor (RTC) refer to the Rhapsody TestConductor

User Guide.

 Automatic Test Generation (ATG) Package
The ATG package consists of several stereotypes which are enhancements to the UML

Testing Profile. Using these stereotypes in the model means that Rhapsody Automatic

Test Generation (ATG) is able to interpret defined input/output interface information and

constraints to define default settings for a test generation configuration.

Two constrained stereotypes are key: argRangeConstraint and argValueConstraint.

argRangeConstraint can be used to define value range constraints. argValueConstraint can

be utilized to define single value constraints of enumerations constraints. These constraints

can be used on operation or event arguments.

Available are also the interface stereotypes providedInterace and requiredInterface. Those

stereotypes help to remove from the ATG view those classes which are not used as

interface classes.

Furthermore, the ATG package contains a number of type constraint stereotypes that can

be used to define range or value constraints on type definitions. The following figure

provides an overview about the ATG package.

 Test Case Generation for
Unit Testing

This chapter shows how to process a unit test on an automatically created test architecture

with a single SUT class. We will use the Rhapsody Automatic Test Generation (ATG) to

generate test cases and execute them with TestConductor.

For the next steps open the VendingMachine Model from the

<\Samples\CppSamples\ATG\TheVendingMachineStart> folder.

 Automatically Creating a Test Architecture
To create a test architecture for the class DrinkDispenser:

 Right-click on the DrinkDispenser class in the Rhapsody browser and select

Create TestArchitecture

TestConductor automatically creates the complete test architecture which consists of:

 A new test context diagram with the test context TCon_DrinkDispenser

containing the DrinkDispenser object itsDrinkDispenser itself as SUT, and

all necessary test component instances which are derived from the SUT

associations and ports.

 A new test package TPkg_DrinkDispenser, which contains all generated test

components, the test context TCon_DrinkDispenser with the SUT

itsDrinkDispenser, the test context diagram and the test component instances

 A new test configuration DefaulConfig (see figure above) with a stereotyped

dependency to a new code generation component

TCon_DrinkDispenser_Component (see figure below).

 Generate and Build the Test Context
After generation of the new test context you should check whether it is complete and

consistent. Therefore you should generate und build the test context to get information

about potential compile or link warnings or errors.

 Right-click on the test context TCon_DrinkDispenser and select Build

TestContext from the context menu.

If the generate, compile and link (GMR) procedure produces an executable you are able to

execute and test it.

 Apply ATG
After checking whether the new test context it is complete and consistent, we should apply

ATG to generate test cases.

 Right-click on the test context TCon_DrinkDispenser and select Apply ATG…

from the context menu.

The „Rhapsody Automatic Test Generation― dialog opens. In the main ATG dialog the

user is able to adjust some settings, which mainly affect the test case generation process. A

new ATG configuration ―NewConfiguration0‖ was created.

 Test Generation Configuration
The General tab of ATG defines the name of the configuration and provides a description

box to notice its purpose. The Timeout field controls ATG on how much time to spend

finding the best coverage. The default is one minute. Increase the value when dealing with

complex models. Rename the configuration to ―unitTest_DrinkDispenser‖ and leave the

timeout unchanged.

The next step is the interface definition for this unit test definition. The objective is to

perform a unit test for the single class DrinkDispenser. Therefore, ATG will generate

only test case input sequences for events and operations of this class, which are designated

to be inputs. The following Figure specifies the Input interface definition of

unitTest_DrinkDispenser. Interface settings for the other classes must be explicitly

unset using right-button mouse capabilities.

Figure 3: Interface Definition of a Unit Test Configuration

Events DSOFT, DTEA, DWATER, and FILLUP will be automatically generated by ATG.

Operations Prepare_Soft, Prepare_Tea, and Prepare_Water are not selected. These

operations are called internally by this class if events are injected, although these

operations are marked as public in the Rhapsody model.

Coverage definitions are also focused on this unit under test (DrinkDispenser). You

should shrink the range of the test goals to that class, as shown in the following Figure.

Figure 4: Coverage Definition with Focus on the Class under Test

This Test Generation Configuration is now ready for actual ATG test case generation.

 Generate Test Cases
Right-click on the ATG configuration and select unitTest_DrinkDispenser.

The run-time dialog for actual test case generation will appear.

Obviously it was an easy task for ATG to find full model element coverage for this unit

test. ATG reached 100% model element coverage after one second.

Close the dialog by pressing the button Close. Control will go back to the ATG main

dialog. In the ATG browser you will see the results of the test case generation run.

To validate the results ATG gives detailed graphical and textual information about

covered and not covered elements. Explore in the ATG browser the detailed information

for every element. Covered elements are marked with a green check and not covered

elements with a red cross.

 Export Test Cases to Rhapsody TestConductor
ATG provides the export formats XML, sequence diagrams and directly to the Rhapsody

browser. To get further information about exporting to various formats reference the

section Exporting Test Cases at page 80. To export the generated test cases to Rhapsody

TestConductor

 Right-click on the configuration item in the ATG browser and select Export

TestCases to Rhapsody.

Due to full Rhapsody integration of test cases in the Rhapsody browser ATG inserts the

test cases under the folder TestCases in the related test context TCon_DrinkDispenser.

Each test case includes a link to a test scenario, which are stored in the TestScenarios

folder.

Close the ATG main dialog and focus on the test context TCon_DrinkDispenser.

Explore the test case atg_tc_010 by expanding the tree structure and follow the link to the

corresponding test scenario.

 Follow the link ―ATG_TestCase_010‖ by right-clicking and selecting Navigate to

Depends On (ATG_TestCase.10) from the context menu.

Rhapsody selects and high-lights the corresponding test scenario.

To open the test scenario double-click on the item ―ATG_TestCase.10‖. The test scenario

is a stereotyped sequence diagram.

To get familiar with the created structures and the generated test cases, open some test

cases and test scenarios. Test scenarios are merely sequence diagrams, which will be

executed by the test cases with TestConductor as shown in the next section exemplarily.

 Execute an ATG Test Case
To execute the test case ―ATG_TestCase_010‖ we will start TestConductor. The first step

is to compile the test case and link it to an executable. Execute the following steps:

 To build the single test case ―ATG_TestCase_010‖ right-click on a test case

―ATG_TestCase_010‖ in the Rhapsody browser and select from the context menu

Build TestCase.

 To execute the single test case ―ATG_TestCase_010‖ right-click on the test case

―ATG_TestCase_010‖ in the Rhapsody browser and select from context menu

Execute TestCase.

TestConductor finished the test case execution successfully.

For further information on how to execute all test cases of a test context, a test package or

in a batch mode reference the Rhapsody TestConductor User Guide. You will also find

information how to find and correct model and code errors during test execution with the

TestConductor feature Show as SD.

 Test Case Generation for
Integration Testing

Compared to unit testing the following task of integration testing has a completely

different scope. One goal is to leave the model untouched, and we will work not on test

packages, test context etc., but construct this time manually a test component and a

corresponding test configuration. This means the tests will execute the original integrated

classes and objects. In other words, all the classes and objects integrated in such a test

component will be considered to be the SUT.

 Manually Creating a Testing Component
A Testing Component describes the scope of a system under test. It contains all classes

and packages that must be considered for test case generation. Testing Components are

derived from Rhapsody code generation components and configurations (see Rhapsody

documentation Creating a Component and Creating a Configuration).

To use the integration test capabilities of ATG, you must define at least one Rhapsody

component to ensure an executable code generation on the host. In other words, if a

Rhapsody component is defined, which can be used to generate C++ code without any

errors, and the compiled unit is executable in the simulator, this component can be used

for automatic test case generation.

Given the original TheVendingMachine model, create a new Rhapsody component called

ATG.

Figure 5: Creation of a New Rhapsody ATG Component

Specify the following component features (see Figure 10):

1. Name: ATG

2. Directory: ATG

This is the default value.

3. Type: Executable

This is the default value, which is correct for this example.

4. Scope: Selected Element: ―Default‖

This is necessary for this example.

To build a valid code generation component for the whole user guide example, define the

Configuration settings (double-click the DefaultConfig component) as follows (see

Figure 6):

1. Initialization tab settings:

 For the Initial instances field, select Explicit.

 Select VendingMachine in the tree of instances.

 Select Generate Code For Actors.

2. Settings tab settings (mandatory, especially for ATG):

 For the Instrumentation field, select Animation.

 For the Time Model field, select Simulated.

 For the Statechart Implementation field, select Flat.

 Accept the default values for the Environment, Build Set, Compiler

Switches, and Link Switches fields.

 In addition, under Instrumentation, click Advanced. In the Advanced

Instrumentation Settings dialog box, select All for the Enable Operation

Calls field. This enables you to call operations such that you can test the

application.

Figure 6: Rhapsody ATG Testing Component Configuration Settings

Note: If the model you want to test has already an executable configuration, you can

either use this configuration directly or you can create a copy of this configuration

in order to apply ATG. The steps described above are only necessary if there is no

executable configuration in your model.

 Generate and Build the Test Component
The new component was made automatically the active component. To ensure the new

component was setup correctly generate and build the configuration.

 To generate the code select from the Code menu the item Generate >

DefaultConfig.

Figure 7: Code Generation and Compilation of the ATG Component

 To execute the component select from the Code menu the item Run ATG.exe.

Figure 8: Code Generation and Compilation of the ATG Component

 Apply ATG
Once the component has been compiled into an executable unit, you can use ATG to

generate tests.

 In Rhapsody, select Tools > Automatic Test Generator.

The main ATG window appears. Showing the unit test ATG configuration we used during

unit testing before. It essential to create a new ATG configuration to fit the needs for

integration testing on the created test component.

Figure 9: Starting ATG

In the main ATG window, select File > New > Testing Component. Another window

pops up that asks the user to select the Rhapsody Configuration to which the newly

generated Testing Component should belong. Select the newly created configuration

ATG::DefaultConfig.

Figure 14: Selecting Rhapsody Configuration for ATG Testing Component.

 Test Generation Configuration
After pressing OK, the main ATG window shows the newly created Testing Component.

Figure 15: Selecting Rhapsody Configuration for ATG Testing Component

As shown in figure 16, ATG_DefaultConfig using ATG::DefaultConfig is

displayed in the ATG browser. ATG is the Rhapsody component, and DefaultConfig is

the Rhapsody configuration that belongs to the ATG component. ATG_DefaultConfig

defines a Testing Component for ATG. Testing Components are the basic entities for

actual test case generation. They define the scope of the model that shall be considered,

i.e. the set of packages and classes contained in the scope.

TheVendingMachine example has some classes which provide an interface to an external

user. Associations to and from these classes are labeled in the UML model as either

provided or required interfaces. ATG provides a mode in which only these classes are

shown in the ATG GUI. This mode can be switched on and off separately for each Testing

Component by checking Use Model Interface Specification on the General tab of the

ATG:DefaultConfig component as shown in Figure 17.

To view the filtered interface classes, select the Interface Definition tab.

Figure 16: Model-Derived Interface in ATG on the Testing Component Level

If you do not set the check-box Use Model Interface Specification all classes contained

in the Testing Component will be listed, for instance also class Changer.

Note: In ATG 3.0, in the interface tab of ATG main window ―provided interface‖ is

named ―Input Interface‖ and ―Required Interface‖ is named ―Traced Instances and

Messages‖.

After selecting a Testing Component ―ATG_DefaultConfig‖, select File > New > Test

Generation Configuration.

Figure 18: Creating a Test Generation Configuration

The new entry is displayed in the browser under the Testing Component.

Figure 19: Test Generation Configuration Dialog

Next step is to specify a name for the new configuration. It shall be named as

integration_test, because this is the use case considered in this test case generation.

You can specify this definition in the Settings section of the General tab of the Test

Generation Configuration dialog box. You can also specify the following fields:

 Test Case Generation Timeout (min)—Specifies a timeout value. By default, this

is set to 1, which means 1 minute run-time unless you stop the generation, or the

ATG algorithm cannot cover more model elements. Specify 2 minutes in this case

as shown in Figure 19.

 Delete existing SDs/Tests when exporting—Specifies whether to delete any

existing sequence diagrans when you export the tests (to Rhapsody or

TestConductor). In the user guide, this option is set because only the latest results

are of interest.

 Minimize SDs/Tests when exporting—Specifies whether the set of sequence

diagrams/Test Cases that shall be minimized when you export the tests (to

Rhapsody or TestConductor).

 Export to—Specifies the package of the resulting test cases (sequence diagrams).

This user guide uses the default value.

Click on the Testing Component name to accept the specified values.

Use the Interface Definition tab of Test Generation Configuration integration_test to

specify the model-derived interface classes. Click the plus symbol (+) corresponding to

the class to view the list of all class public operations and events. Each operation or event

has its check box, which is used for user interface definition. Each checked () box of the

Input Interface section of a class operation or event enables ATG to invoke the operation

or event call during test case generation. Each checked box of the Traced Instances and

Messages section of a class operation or event enables ATG to record it during test case

generation.

Figure 10: Interface Definition of the integration_test Configuration

The field to the right of the class name defines the class instances, which ATG takes into

account during test case generation. In this example, only the first class instance for every

interface class is used (0). This means that ATG can call operations and send events to

Vending Machine Input:

User presses buttons

Vending Machine Input:

User inserts coin

Vending Machine Input:

Administrator fills machine

Vending Machine Output:

User gets drink

ChoicePanel[0], CoinValidator[0], and DrinkDispenser[0]. The desired

interface of the integration test of TheVendingMachine example has to be entered as

shown in Figure 20.

Operations and events usually have parameters (arguments). Click the plus sign to display

the list of parameters, which can be restricted or defined for each run of ATG. This

definition can be an enumerated list (for example. 50, 100) or a definition of a value range

(for example, 0 -100). The default settings for the parameter ranges are derived from the

Rhapsody model. ATG tries to extract as much information about the parameter ranges as

possible. If information is missing, ATG highlights those fields in red. You must add this

missing information into the ATG dialog.

Before you can activate test case generation, ATG must know the desired test goals. You

define this in the Coverage Definition field of the Test Generation Configuration dialog

box. The default setting is that no model classes (Coverage of Classes) and no Events

will be covered by ATG. This means that no test cases will be generated.

Figure 11: Coverage Definition

Each class and package of the Rhapsody model is listed. To add classes to the list of test

goals, add the tick in the check box on the right side of the class row. To remove classes

from the list of test goals, delete the tick from the check box on the right side of the class

row.

When you switch to Test Specific Instances you can specify which of the individual

instances of a class shall be covered by ATG. If an instance (such as 0) or list of instances

(for example, 0, 1, 5-7) is defined, ATG tries to cover all the states and transitions (not the

operations) that are part of the corresponding instances of the class. In addition, you can

specify that events of the model are coverage test goals of ATG by selecting the relevant

packages.

Note: It might happen that a specific instance (e.g. instance ‗0‘) cannot cover a

particular test goal, e.g. a transition of a class. However, after test case generation

the ATG browser might show that this transition has been covered regardless of

the fact that the selected instance ‗0‘ could not cover the operation. This can be

the case due to other existing instances in the tested system which cover the

transition. In this case the ATG browser shows this covered transition directly

under the class and not under a specific instance of this class. The other

transitions, which are covered by the selected instance, are shown in the specific

browser part of the instance.

Check box Model ElementCoverage enables test case generation in order to cover states,

transitions, and operations of the selected classes and instances. Check box Model Code

Coverage enables test case generation in order to cover the conditions, decisions, and

branches in the source code of the selected classes.

Note: For Model Code Coverage only those portions of the code are considered that

has a associated model element visible in the Rhapsody browser. All implicitly

generated code is not taken into account.

For the first Test Generation Configuration, define the test goals using the default settings,

as shown in Figure 11. This Test Generation Configuration is ready for ATG test case

generation.

 Generate, Export, and Execute Test Cases
Test Case Generation can be applied on single classes, a set of classes, or on a complete

application. ATG supports the use cases Class Testing and Integration Testing.

To generate test cases for a user-defined Test Generation Configuration,

 select the configuration integration_test, then select Tools > Generate Test

Cases

 or right-click on the configuration integration_test and select from the

context menu Generate Test Cases.

Figure 12: Generation of Test Cases for whole Vending Machine model

The test case generation virtual machine takes the C++ code, the interface definition, and

the user definition of the desired test goals of the Test Generation Configuration

integration_test and tries to cover all the goals. During execution, you can view the

progress, as shown in the following Figure.

Figure 13: Progress Dialog

During the test case generation task of the ATG engine, the following information is given

at any point in time during execution:

 User-defined Time-Out and current Status

 Elapsed Rhapsody ATG Execution Time

 Total number of Test Goals and the number of goals currently reached

 Number of States Activations and the reached number

 Number of Transition Firings and the reached number

 Number of performed Operation Calls and the reached number

 Number of Event Generations and the reached number

 Number of MCDC Code Coverage Goals and the reached number

 Number of Statement Code Coverage Goals and the reached number

During and after execution on a Test Generation Configuration, you can access

information about covered goals by clicking Details. The following Figure shows the

coverage results after a one minute run on integration_test. Details about the

covered goals can be seen by clicking the ―Show Details‖ button.

Figure 14: Detailed Coverage Information

The detailed view can be expanded into a finer display by clicking the plus symbol [+].

The red x indicates uncovered goals, whereas green  symbols denotes successful

coverage of a certain test goal. After execution, click Close to close the progress dialog

and display the ATG main window.

Figure 15: ATG Result Information

All test goals and generated test cases are collected and managed under the

integration_test folder, which can be opened by clicking on the plus symbol [+]. The

reached test goal coverage rate can be seen in the Coverage Summary section of the

General tab of the Test Generation Configuration.

Figure 16: Test Goal Management and Test Trace Inspection

If you open the Test Generation Configuration folder, clicking on a test goal displays

information about the generated test case. It explains where the test case is stored on the

file system and provides details of the generated message sequence, which covers the

selected test goal. The generated message sequence is time-annotated and can be exported

into a Rhapsody sequence diagram. Again, a red x indicates uncovered goals, whereas a

green  denotes successful coverage of a certain test goal. You can double-click a test

goal to show the corresponding model element directly in Rhapsody. For example, double-

click the State goal called Soft_empty of class DrinkDispenser to open the

corresponding statechart and highlight the state as shown in Figure 17. This same

functionality is provided for all other test goals, including events and operations.

Figure 17: ATG Test Goal Connection to the Rhapsody Model

Using the model link reference feature, you can find out why the four uncovered goals are

unreachable in the context of the specified interface.

 ATG Management

The test generation component and the test generation configurations specify necessary

details for actual test generation. This entails precise interface definitions and selection of

test goals. To generate test cases with ATG, you must create a test generation

configuration based on a selected test generation component. While a test generation

component describes the scope as explained in the previous subsections, test generation

configurations specify some necessary details for actual test generation.

 The Test Generation Component

 Create a Test Generation Component

 To generate a test generation component right-click on an empty area in the ATG

browser and choose from context menu New Testing Component.

 Or choose from the File menu New > Testing Component.

 Select in the dialog Select Code Generation Configuration the Rhapsody

component to analyze with ATG and click OK

 Delete a Test Generation Component

 To delete a test generation component right-click on the test generation component

to delete in the ATG browser and choose from context menu Delete.

 Or select the test generation component to delete in the ATG browser and choose

from the Edit menu Delete.

 Or press the DEL key.

 Choose Yes to delete the test generation component. Select No not to delete test

generation component.

In case the user confirms the deletion all configurations and data under the test generation

component will be delete and are not restorable.

 Clear All

To delete previously generated test cases and also the selected options in all test

generation configurations of a test generation component choose from context menu of a

test generation component in the ATG browser Clear All.

 Clear Test Cases

To delete only previously generated test cases, but to maintain the selected options of all

test generation configurations of a test generation component choose from context menu

of a test generation component in the ATG browser Clear Test Cases.

 Test Definition Options

 To open the test definition option concerning the test generation component right-

click on the test generation component in the ATG browser and choose from

context menu Test Definition Options or choose File > Test Definition Options.

The Inherited Operation selection box in the Show section provides the possibility to

show operations from shown classes in the interface tab or coverage tab that are inherited

from their base classes.

The Additional Files section give the user the possibility to define Additional Sources

and Additional Include Paths. This is necessary if legacy code or header files from

external libraries are used from the generated model code that are not part of the model.

To specify additional files click on the ―…‖ button next to the Additional Sources field

and write in the file name optionally including a relative or absolute path in windows

notation. Relative entries will be interpreted from the path containing your project file

(.rpy). Multiple file entries have to be separated by commas.

To specify additional include paths click on the ―…‖ button next to the Additional

Include Paths field and write in the path in windows notation. Relative entries will be

interpreted from the path containing your project file (.rpy). Multiple path entries have to

be separated by commas.

ATG recognizes per default the content of the INCLUDE system environment variable.

This path definition will be extended under Rhapsody in the file vcvars32.bat in the

folder ―share\etc‖ of your Rhapsody installation.

Note: You can not use self defined system environment variables e.g. %myIncludes

directly in the ATG Test Definition Options dialog. For that scenario, please

extend the INCLUDE environment variable directly.

 The Test Generation Configuration
 To generate a test generation configuration right-click on a test generation

component in the ATG browser and choose from context menu New Testing

Configuration.

 Or select the test generation component in the ATG browser to create a

configuration for and then choose from the File menu New > Testing

Configuration.

 Delete a Test Generation Configuration

 To delete a test generation component right-click on the test generation

configuration to delete in the ATG browser and choose from context menu Delete.

 Or select the test generation configuration to delete in the ATG browser and

choose from the Edit menu Delete.

 Or press the Del key.

 Choose Yes to delete the test generation configuration. Select No not to delete test

generation configuration.

In case the user confirms the deletion all configurations and data under the test generation

configuration will be delete and are not restorable.

 The General Definition Tab

The General tab of ATG defines the name of the configuration and provides a description

box to notice its purpose.

In the Settings section the user can rename the selected test generation configuration. To

rename the test generation configuration change the name in the filed Name and change

the focus. Only one word names are allowed. ATG will update the test generation

configuration name in the ATG browser immediately.

The field Test Case Generation Timout (min) tells ATG how much time to spend

finding the best coverage. The default is one minute. Increase the value when dealing with

complex models.

The option Delete existing SDs/Tests when exporting prevents duplicated sequence

diagrams in the model when re-exporting test cases from ATG.

The option Minimize SDs/Tests when exporting results in efficient and compact sets of

test cases.

In drop-down-box Export to the user defines, into which test generation configuration to

export the generated test cases.

In the Coverage Summary section the user can read the coverage ATG reached with the

last started test case generation run. The display varies depending on whether which

option under the ―Coverage Definition‖ tab is enabled.

In the Description section the user can notice the purpose of the test generation

configuration. When? Who? What? Why? are the common questions.

 The Interface Definition Tab

The Interface Definition tab defines the inputs to be stimulated by ATG during test case

generation and the outputs (traced message) used as expected messages of a test case

The Input Interface section under the Interface Definition tab defines the operations and

events ATG is allowed to call on the SUT and the test components. TestConductor, the

execution engine, will later act as driver for theses operations and events.

The Traced Instances and Messages section under the Interface Definition tab of ATG

defines the operations and events ATG has to trace on an incorporated instance.

TestConductor, the execution engine, will later act as observer for theses operations and

events.

 The Coverage Definition Tab

The Coverage Definition tab of ATG defines the target classes and events ATG will

analyze in terms of the defined SUT.

The option Model Element Coverage tells ATG to achieve model element coverage.goal

Model elements are State, Transitions, Operations and Events.

The option Model Code Coverage tells ATG to achieve MC/DC and statement code

coverage goals for the code parts which have been added to the model by the user.

Furthermore the coverage analysis can be done only for the selected Test Classes or for

Specific Instances. Specific instances means that ATG generates test cases for all

instances of selected classes instantiated during ATG execution.

The section Coverage of Classes is used to define the classes ATG has to use for test goal

computation. Test goals are all model element coverage goals and model code coverage

goals.

The section Events show all package in which Events are defined in the model. All Events

of a selected package have to be covered by ATG during Test Case Generation.

 Clear All

To delete previously generated test cases and also the selected options in a test generation

configuration choose from context menu of a test generation configuration in the ATG

browser Clear All.

 Clear Test Cases

To delete only previously generated test cases, but to maintain the selected options of a

test generation configuration choose from context menu of a test generation configuration

in the ATG browser Clear Test Cases.

 Test Definition Options

 To open the test definition option concerning the test generation configuration

right-click on the test generation configuration in the ATG browser and choose

from context menu Test Definition Options or choose File > Test Definition

Options.

The Inherited Operation selection box in the Show section provides the possibility to

show operations from shown classes in the interface tab or coverage tab that are inherited

from their base classes.

The Test Case Computation section provides setting to control the used ATG engine and

the timeout handling. Two Generation Strategies are provided by ATG:

Breadth First search:

Breadth-first generation means that always the shortest test cases that fulfils a particular

coverage goal has to be found. ATG analyses the complete breadth of the model. But this

also means that the number of states that have to be explored grows exponentially with the

search depth.

Section of prob lem dom ain exp loredSection of prob lem dom ain exp lored

Beam search:

In beam search the number of states grows only linearly with the search depth. A beam

search can find coverage goals with long paths lengths which cannot be found when using

breadth-first search. However, the test case found by beam search might not be the

shortest test case that leads to the coverage goal.

The value beamwidth sets the breadth of the beam

Section of problem
domain explored

Section of problem
domain explored

Also the Handling of Timeout can be set. Always when the system is idle which means

that no further computation is possible w/o new inputs ATG is doing a timestep to find out

whether there are timeout transitions to be fired.

Standard means that ATG uses the shortest defined timeout in the model as a timestep

during test case generation. For example if there are two timeouts in the model, one with

10ms and one with 1000ms, ATG have to do 100 timesteps to fire the 1000ms timeout

transition.

Timestep with the corresponding value gives the possibility to define a time step. For

example if the time step is set to 1000ms all timeouts (10ms, 100ms …) are fired in on

ATG time step.

 Sync ATG Data with Application
ATG checks before every test case generation execution if the model data has been

changed, and asks the user to update the ATG representation of the model data by using

the synchronization function.

To synchronize the ATG representation of the model data manually right-click on the test

generation component or the test generation configuration in the ATG browser and choose

from context menu Sync ATG Data with Application or choose File > Sync ATG Data

with Application.

 Rhapsody ATG settings
The Rhapsody ATG Settings dialog contains properties, which have global influence on

the automatic test case generation and the export functionality of ATG. To open the

Rhapsody ATG Settings dialog choose in the ATG main dialog from the menu File >

Settings.

In case the option Enable Warnings for non-animated Model elements is enabled, ATG

will generate a warning if test cases shall be generated for non-animated model elements.

The reason is that ATG might not be able to generate test cases due to the missing

animation information. In Rhapsody there is the possibility to uncheck the animation

property of classes, operations, messages, etc. ATG needs this animation information in

the generated CPP code to be able to find the model elements as coverage goal. This

option is enabled by default.

In case the option Regard only stimuli when exporting to SD is enabled, ATG will

export only the input messages when exporting test cases to Rhapsody. This option is

disabled by default.

In case the option Remap stimuli from Env when exporting to SD is enabled, ATG will

map messages that are generated as inputs by ATG to appropriate test components if

possible. This option is enabled by default.

In case the option Use TestContext instead of Env when exporting to SD is enabled,

inputs that can not be mapped to other test components will be mapped to the test context

instance line instead of the ENV instance line when exporting test cases. This option is

disabled by default.

In case the option Add return values when exporting to SD is enabled, ATG computes

expected return values for operation calls of all "traced" messages defined in the "Input

Definition tab", too. The values will then be exported to sequence diagrams as well. This

option allows the user to control if return values are shown in sequence diagrams. This

option is disabled by default.

In case the option Skip startup messages when exporting to SD is enabled, ATG will

suppress messages which are recorded during the initialization phase of a tested system

until the system under test is idle the first time. Sometimes such messages lead to stuck

test execution with TestConductor due to some inconsistencies between the Rhapsody

animation layer and the ATG test case generation. This option is disabled by default.

In case the option Use object names in arguments when exporting to SD is enabled,

ATG will export object names instead of a ‗don‘t care‗ value for class/pointer arguments

in messages, if available. Messages can have arguments of different types. In the case that

a message argument is a class type, the user can choose if exported sequence diagrams use

animation names in message arguments (e.g. ‗Telephone[0]‘). The benefit is that

TestConductor can use this animation information for test execution. If the export option

is disabled, ATG will replace the animation name with an asterisk symbol (*), which is

interpreted by TestConductor as ‗don‘t care‘ during test execution. This option is enabled

by default.

In case the option Compute test cases with lower thread priority is enabled, the task

priority assigned to the ATG will be reduced significant. Normal the ATG engine uses

98% of the processor power when generating test cases. To avoid this and to have the

possibility to work furthermore with you computer you can enable this property. This

option is disabled by default.

In case the option Use original framework is enabled, ATG uses the original Rhapsody

OXF framework implementation instead of its own specific OXF framework

implementation in order to generate test cases. In some cases ATG might be able to

generate test cases for models that use many OXF framework functions, which might not

be possible with the ATG specific OXF framework implementation. It should be

mentioned here that using the original framework often may help to overcome limitations,

in particular compilation problems without usage of properties. This option is enabled by

default.

In case the option Truncate Test Cases after N messages is enabled, all message of a

trace greater than N will be truncated from the test case. Sometimes the generated test

cases are very long and the writing of the test cases takes long time. With this option users

can control that test cases are not generated if they have a certain length N. This option is

enabled by default with N=1000.

 Test Case Generation
 To generate test cases right-click on the test generation configuration in the ATG

browser and choose from context menu Generate Test Cases.

 The Rhapsody in C++ Automatic Test Generation Dialog

The Rhapsody in C++ Automatic Test Generation dialog displays the progress during test

case generation.

 To stop test case generation click the button Stop.

 To abort test case generation and close the dialog click the button Stop and then

the button Close.

 To hide the detail information section click the button Hide Details. To show the

hired detail section click the button Show Details.

The test generation will search for test cases until all goals are covered or the specified

timeout is reached. The actual status is displayed in the head section of the dialog.

While active search the head section displays Generating Test Cases and change this

message to Test Case Generation Finished if one of the constraints described above is

reached.

The Model Element Coverage section give notice about the Total Coverage over the sub

coverage indices State Coverage, Transition Coverage, Operation Coverage and Event

Coverage, which are self-describing. This section is active/visible, when the user

activated the option Model Element Coverage under the Coverage tab.

The Model Code Coverage section gives notice about the MCDC Coverage and

Statement Coverage. This section is active/visible, when the user activated the option

Model Code Coverage under the Coverage tab.

These results have to be regarded as a starting point; start ATG with different properties

and you might get better results. Work with different ATG test generation configurations

such that you can compare the results afterwards.

 View Customization
The ATG browser provides some mechanisms for view customization.

 One-click Expand/Collapse Hierarchical View

 To expand the selected item in hierarchical view right-click on the element to

expand in the ATG browser and choose from context menu Expand.

 To collapse the selected item in hierarchical view right-click on the element to

collapse in the ATG browser and choose from context menu Collapse

 Change between Hierarchical and Flat View

The ATG browser provides the flat and the hierarchical view.

 To switch from hierarchical view to the flat view right-click on an element in the

ATG browser and choose from context menu Flat View.

 To switch from flat view to the hierarchical view right-click on an element in the

ATG browser and choose from context menu Hierarchical View.

 Show Combinations of Test Cases

 To show combinations of test cases right-click on a test generation component in

the ATG browser and choose from context menu Show Combination of Test

Cases.

 To hide the folder combinations of test cases right-click on the test generation

component in the ATG browser and choose from context menu Hide

Combination of Test Cases.

 Exporting Test Cases
You can export automatically generated test cases in different formats on three different

levels:

 Testing Component level—Exports all generated test cases under a specific

Testing Component

 Test Generation Configuration level—Exports all test cases generated for one

Test Generation Configuration

 Test goal level—Exports selected test cases

If you select the first or second level, Rhapsody ATG minimizes the suite of test cases for

the export. Redundant test cases are dropped from the suite for efficiency reasons.

The available test case formats are:

 XML—Used to display the test case in ATG itself.

 Test Scenarios (stereotyped sequence diagrams)—Exported into a corresponding

Rhapsody model.

 Rhapsody—Exports the test case directly into Rhapsody. The exported test cases

can be executed using Rhapsody TestConductor.

 Exporting missing test cases to Rhapsody—Only those test cases are exported that

will increase the model coverage of the test context to which the test cases are

exported. If the test context already contains test cases that cover some model

elements, then ATG generated test cases that will not cover new model elements

will not be exported.

 Export Formats

 XML

XML is the universal format to import and export, because of its ability to convert the

structured document by XSLT. ATG is able to produce XML strict. To get further

information contact the Rhapsody support.

 Test Scenarios

ATG will create a test scenario in an ATG package with the corresponding structure, but

without creating test cases e.g. in the test context.

 TestConductor

ATG will create a test scenario in an ATG package with the corresponding structure and

corresponding test cases e.g. in the test context. Test cases and test scenarios are linked

and the user is able to jump from the test case, which can be build as an executable, to the

linked test scenario.

 Exporting a Single Test Case

To export a specific test case into Rhapsody, do the following:

1. In the General tab of the Test Generation Configuration dialog box for

integration_test, set the export location to

ATG::ATG_DefaultConfig::integration_test.

2. Open the Testing Component ATG and integration_test to select the test

goal:

Water_empty in

Default::DrinkDispenser::StatechartOfDrinkDispenser.

3. Select Tools > Export Test Cases to… > Rhapsody to export the test case as

sequence diagram to the specified location,

4. or right-click on the item Water_empty in

Default::DrinkDispenser::StatechartOfDrinkDispenser and choose

from the context menu Export Test Case to Rhapsody.

Figure 18: Exporting a Single SD into Rhapsody

Do equivalent steps to export to XML and test scenarios.

Figure 19: ATG-Generated test scenario test case in Rhapsody

The sequence as shown in Figure 19 brings TheVendingMachine system into the state

Water_empty, since three demands for water demands without a refill event from the

environment will empty the tank.

 Exporting Test Cases on Configuration Level

To export all the generated test cases from the test generation configuration

integration_test, do the following:

1. In the General tab of the Test Generation Configuration dialog box, set the

export location to ATG::ATG_DefaultConfig::integration_test.

2. Select the desired Test Generation Configuration in the ATG browser.

3. Select Tools > Export Test Cases to… > Rhapsody to export all the

generated test cases of that Test Generation Configuration into Rhapsody.

4. Alternatively, select Tools > Export Test Cases to… > incremental

Rhapsody to export only those test cases that will increase the model

coverage of the test context to which the test cases are exported. If the test

context already contains test cases that cover some model elements, then ATG

generated test cases that will not cover new model elements will not be

exported.

Based on the structure of the Testing Component and Test Generation Configuration,

Rhapsody browser contains a test folder called ATG that contains the same structure. The

following Figure shows this folder structure.

 Exporting Test Cases on Test Component Level

To export all the generated test cases from the test generation component e.g.

ATG_DefaultConfig, do the following:

5. Select the desired Test Generation Component in the ATG browser.

6. Select Tools > Export Test Cases to… > Rhapsody to export all the

generated test cases of that Test Generation Component into Rhapsody.

7. Alternatively, select Tools > Export Test Cases to… > incremental

Rhapsody to export only those test cases that will increase the model

coverage of the test context to which the test cases are exported. If the test

context already contains test cases that cover some model elements, then ATG

generated test cases that will not cover new model elements will not be

exported.

Based on the structure of the Testing Component, Rhapsody browser contains a test folder

called ATG that contains the same structure. The following Figure shows this folder

structure.

 Report Generation
Two kinds of reports are available. Test Generation Configuration reports provide

information about all ATG entities that are part of the selected Test Generation

Configuration, e.g. the elements in the interface and the coverage goals. Reports can be

viewed both as XML and also as HTML.

Note: Rhapsody TestConductor provides support for the reporting engine Rhapsody

ReporterPLUS, which is documented in the Rhapsody TestConductor User guide.

 Test Generation Configuration Report

A test generation configuration report documents user settings and selections. Reports can

be generated in two formats: XML and HTML. You can generate an HTML test

generation configuration report for the integration_test Test Generation

Configuration.

Select the integration_test configuration, then select Tools > Create Report >

HTML.

Figure 20: Generating a Test Definition Report

A dialog pops up that asks you for the location where the report should be saved.

Figure 21: Select destination folder for report

After saving, a dialog asks if you want to open the generated report.

Figure 22: Confirm to open generated report

After choosing ―yes‖, the following report can be seen in your default html viewer.

Figure 23: HTML-Test Definition Report of ATG

The report includes the following information:

 The project used

 Environment information

 Inputs and Traced Instances and Messages

 A summary about test case generation

 A detailed list of the test generation goals and the generated test cases

The test cases are represented as hyperlinks. Click on a link to open the corresponding

description of the automatic generated test case. This test case covers the described test

goal.

 Testing Component Report

The testing component report contains the reports of all test generation configurations

within the selected testing component. To generate a testing component report, select the

Testing Component, then select Tools > Create Report > HTML to create a complete

report.

 Test Execution
Using TestConductor, you can execute single test case, all test cases of a test context or of

a test package, and also batch tests. For further information concerning test execution

reference in the Rhapsody TestConductor User Guide the chapter Test Case Execution.

 Advanced Features

This section explains some advanced features of Rhapsody ATG.

 Specifying Interfaces in the Model
You can specify input and output interfaces for an SUT within a UML model. These are

the provided interfaces (inputs to the SUT) and required interfaces (outputs of the SUT).

ATG uses these interface specifications for test case generation.

 Provided Interfaces and Required Interfaces

A typical Rhapsody model contains a larger set of classes. Usually, only very few of those

classes are classes that realize communication with the environment. Those classes serve

to implement the interface between the model and its environment. These classes provide

operations and events to the outside world, or they use the services of other required,

external classes.

TheVendingMachine contains six classes. Classes ChoicePanel, CoinValidator, and

DrinkDispenser provide services to the environment—they provide an interface. The

additional class User has been added to the model in order to describe the fact that

external users/actors will receive a drink from the vending machine. Class User is not part

of the SUT. If the drink is ready to be delivered, the DrinkDispenser calls an operation

on class User. User provides this operation to the DrinkDispenser. The User class is

considered to be the required interface in this sample model.

The following Figure shows how to specify interfaces in the model.

Figure 24: Provided and Required Interfaces

The object model diagram (OMD) shows the available classes. In addition, it shows that

four stereotyped dependencies are used. Three of those are stereotyped as

<<ProvidedInterface>>, one as <<RequiredInterface>>. These classes will be

presented in the ATG view; however, classes VendingMachine and Changer will not be

shown. ATG uses the public message of classes ChoicePanel, CoinValidator, and

DrinkDispenser to generate test cases for the model. It traces messages to class User to

trace reactions of the model.

A stereotype <<ProvidedInterface>> can be added to Dependency and

generalization arrows, while a stereotype <<RequiredInterface>> can be added to

Association, Association-End, and Dependency arrows.

 Operations and Events – Argument Constraints

Operations and events of provided classes might have parameters (arguments) of

predefined or user-defined types (for example integer, float, or Boolean). ATG uses type

information to generate test cases (input messages together with parameter values). You

can control the range of values used by ATG in order to make sure that ATG only

generates test cases with valid and intended argument values. For example, you might

know that for a certain message m(int p), parameter p can carry values only between 0

and 100. Those aspects can be specified in the model using constraints.

Consider the following Figure. Class CoinValidator provides an operation

insertCoin(int coinValue). For the argument coinValue assume only two values:

50 cents and 100 cents. Specify a constraint to operation insertCoin() with the same

name as the argument (coinValue) and stereotype the constraint as

argValueConstraint. This is used to enumerate the allowed values in the supported

tag values of this stereotype.

Figure 25: Argument Constraints and Stereotypes

The following Figure shows how to add relevant enumerated values to the tag in the

dialog box. The Type of the tag is set to String, but users can enter integer, real, boolean,

or string values in the field such that values match the type of the constraint argument. In

this case the type of coinValue is integer and we specify to valid values 50 and 100.

Figure 26: Enumerated Values Using Stereotype argValueConstraint

In addition to value enumeration with constraints, ATG supports range definitions. This

enables you to specify the tags low_value and high_value to specify the boundaries of

an argument. The stereotype supporting it in the model is named argRangeConstraint,

as shown in the following Figure.

Figure 27: argValueConstraint and argRangeConstraint

 User-Defined Constraints on Types

The previous section showed how to specify constraints for message arguments. Similarly,

you can add constraints to types that are used to declare and define message arguments.

ATG provides stereotypes for most of the predefined Rhapsody types.

Figure 28: Available ATG Stereotype for Types

The following Figure shows a user-defined type, drinkType.

Figure 29: User-Defined Type drinkType and its Stereotype

The selected stereotype is typeValueConstraint. This stereotype offers a tag so you

can specify a list of possible values for the type. ATG uses these values for every message

argument declared using this type.

Figure 30: Enumerated Values Using Stereotype typeValueConstraint

 Working with Libraries
Software developers often use libraries when developing new software. These libraries are

often only available as header files and object code, but not as C++ source code. This is

not a problem for code compilation and linking, since a standard linker links object code.

ATG cannot use object code for test case generation. ATG requires source code for the

analysis. Still, source code is usually not available for external libraries.

ATG provides a feature that generates stub code fully automatically for user functions that

are implemented in libraries. The generated stub code is used for test case generation.

Suppose, a user uses an external library change_money.lib in TheVendingMachine sample

model of this user guide. Some parts of the header file of that library is shown in Figure 50

below.

Figure 31: Header File of Library Change_Money.lib

This library provides a function int get_amount(int p) that returns an integer value

depending on an integer argument p. The behaviour of the functions is not visible to ATG,

because it is implemented in the library.

This function int get_amount(int p) is used for the implementation of functions

giveback_50() and giveback_100() of class Changer.

Figure 32 below shows that class Changer includes change_money.h.

Figure 32: Change_money.h is Included by Class Changer

Figure 33 below shows that library function get_amount(1) is called in user function

giveback_50() of class Changer.

Figure 33: get_amount(1) is called in giveback_50() of class Changer

Open the Implementation tab and change the implementation such that the code looks like

in Figure 33. Do the same in user function giveback_100().

The user can launch test case generation as usual via Tools > Generate Test Cases. ATG

will find the header file and will analyze the signature of the function. Since for the

selected scope there is no implementation of this function, ATG automatically ―stubs‖ this

function, i.e., ATG generates an implementation for this function automatically.

 Coverage Measurement
with Third-Party Tools

Actual code coverage measurement is an important activity in order to assess the quality

of the test cases. Third-party tools support these activities when test case execution is

performed on real production code.

Several third-party code coverage measurement tools exists on the market that you can use

to figure out the total code coverage achieved by executing all the ATG generated test

cases.

You can place these tools into the code generation and compilation process. These tools

do have all information about the C++ code and its objects. In addition, since

TestConductor drives the executable with the test cases generated by ATG, code coverage

(such as MC/DC coverage) can be measured. Some examples of code coverage

measurement tools are the tools from Bullseye, and IBM
®
 Rational

®
 Test RealTime.

Figure 34: Code Coverage Measurement Tool

During TestConductor Execution of Test Cases

 Appendix

 Restrictions
The restrictions and limitation of ATG are described in an additional document

rhap_atg_limitations.pdf

 Frequently Asked Questions
Currently known FAQs are described in the addition document rhap_atg_FAQs.pdf

