IBM® Rational® Rhapsody®
Developer for Ada

Code Generator

User’s Guide

IBM Rational Rhapsody Developer for Ada — User Guide Page 2/220

— —— = = @)
1. Notices

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer
the products, services, or features discussed in this document in other countries. Consult your local
IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send written license inquiries to:

IBM Director of Licensing IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome
Minato-ku Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you. ii This information could
include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you. Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the information which
has been exchanged, should contact:

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 3/220

Intellectual Property Dept. for Rational Software
IBM Corporation

1 Rogers Street

Cambridge, Massachusetts 02142 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application programming interface
for the operating platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 4/220

Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. 1997,
2009.

IBM, the IBM logo, ibm.com, Rhapsody, and Statemate are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both. These
and other IBM trademarked terms are marked on their first occurrence in this information with the
appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at
the time this information was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available on the Web at

www.ibm.com/legal/copytrade.html.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 5/220

Table of Contents

1. NOTICES ...t e bR R e R e R Rt Rt b bt n et n bt e n e anas 2
INTRODUGCTION. ..ottt bbb se bbb n et r e enn e anas 14
2. INSTALLATION NOTES ...ttt 14
2.1, SUPPORTED COMPILERS.ccttiitti ittt e sitee sttt siee et e e stae e sts e e sta e et e e staeessb e e ssaaessbeessaeesnneesnnaesnnees 14
2.2. BEHAVIOR SERVICES AND ANIMATION LIBRARIEScoooiiiiiiiiie et 14
2.2.1. Automatically building behavior services and animation library..........c.cccooeovinineinenn 15

2.2.2. Manually rebuilding the BEhaVIOr SEIVICES........ccvcviiiic i 15

2.2.3. Manually rebuilding the animation C HBraries ... 17

2.3. BOOCH COMPONENTS ...etiitititie it asiee et siee st e sbee s beesnbee st e s nbe e e nbb e e sbe e et e e nbee e beeebeeenbeeenbeeetes 20
2.4, AN N N LY | J@] 1Y, | = N PP PR 20
2.4.1. B L N =T o U =T 1T o £ 20

3. COVERAGEottt b bbbt bbbttt b e 21
3.1 RHAPSODY MODEL ELEMENT COVERAGE.........ccceeiitiiieeitie ettt sie e stee e sive e siee e staeesiee e stne e nnee s 21
3.2. ADA CODE COVERAGEcttiititi ittt ste st sttt sita e st sibe et esbe et s s be e s beasbe e s beeabeesntes 26

4. ADA CODE GENERATION ..ottt 26
4.1. L] SRS 27
4.1.1. ClasS AEFINITIONc.eivirieceiie s 27

4.1.2. Class record type VISIDIIITYcooiiiiii s 27

4.1.3. INNEITEANCE ...t 29

4.14. INGIAIZALION COUR ..ottt ee e e 30

4.15. SEALIC ClASS ...vveveeceet e 31

4.2. ATTRIBUTES ..ottt itiit ettt sttt s ettt e et e e e s tte e e s sate e e e s st e e e anste e e s steeeeastbeeessteeesssaneeeantaeeennns 33
4.2.1. ACCESSOT AN MULALOTcviieieirtieecnt et 33

4.2.2. NON-SLALIC ALEFHDULES. ... o e e 33

4.2.3. SEALIC ALITDULES ... 36

4.24. Static attributes VISIDIITY. ..o s 36

4.2.5. Static attributes declaration POSIIONc.cccviieiieiieie e 38

4.2.6. Non-Predefined AttrDULE TYPES.. ..ot 41

4.2.7. GUArded ATEIIDULES. ..o s 44

4.2.8. <<Discriminant>> AtIIDULEScccoieieiie e 44

4.2.9. Overriding and redefining discriminant attributescccooe i, 47

4.3. (O] Y 2N 0 N SRS 50
4.3.1. LCT0F= Yo [=To I T o 1= = LA o] USSR 53

4.3.2. Template operations and their iNStantiations.............ccoeorriiine e 53

4.3.3. E ool o L= 1011 (=T TSP TPR TP 57

4.34. ClasS-Wide PAFAMELETS........coveiitirieeeti ettt b ettt bbbttt 58

4.4, DEPENDENCIES ... uotiititiiteetitesiee st s siee st bae st e nbee st e s be e et e s be e et e e beeasbe e e be e e beeebeeebeeanneesntes 60
4.4.1. <<KUSAQE=> AEPENUBNCIESe.veeeieeiierieseesie ettt ettt sttt estesteseesreaseeneeneeneeneeneens 60

4.4.2. <<RENAMES=>=> AEPENUENCIESveceeicviecte ettt sttt et e st e st e e e teeaeenenneas 62

4.5. O 10 5 TSRS 64
4.6. PACKAGESoiiiitieiit sttt ettt st et e st e e st e s b b e e e s e e ea b e e e R be e aR b e e e R beeaabe e e nbeennbe e e reennbeeans 67
46.1. Child PACKAGESveveiveeeiictireeet bbbttt 69

4.6.2. NESTEA PACKAGES ... eeeveeeete sttt e bbbttt b bbbttt nne b b e 70

4.6.3. PrIVAE PACKAGES ..o veveiteieieite ettt bbb 73

4.6.4. Elaboration Pragmas...... ..ottt st 75

4.6.5. <CONLAINET=> PACKAGES ... vttt 76

4.7 T PES ettt bbb b E b £ bR £ E R bR b bR R bR b bRt b e b bt et 78
4.7.1. TYPE HECIATALION ..ttt 78

4.7.2. TYPE VISIDITITY ... e bbb e e 81

4.7.3. Type declaration POSILION.ccviiiiiiiie et 82

4.7.4. Type defiNed @S @ CIASS......ccuiiiiiieiieee e e 82

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 6/220

4.8. TEMPLATE CLASSES AND THEIR INSTANTIATIONcciitiiiiie it siee s es et e et 87
4.8.1. =TT 0] P e P T SSS 87
4.8.2. template INStANTIATIONSoviiiiic e 87
4.8.3. teMPIAte INNEIITANCE.......oci e e e nrenns 88
4.8.4. template instantiation INNEFTTANCE.ccviiiiieee e 89

4.9. CONCURRENT TYPES ...eei ittt sttt aiee sttt sttt sttt sbee ke e e nbe e e nbb e e nbeeenbee e sbeeenbb e e naneenbre s 91
49.1. TASKS ettt ettt ettt bbb Rt h R Rt Rt Rt Rt e b e R ebeebe e Rt e Rt et et et nee et 91
4.9.2. o 0] (=01 (<o [@] o] 1=T o1 £ 97

4.10. EINTRY POINTS ..ttt ettt ettt e st e st e st e et e e e s bt e aabe e s s bt e anbeessbeeanbeeasteeanbeeanteeanreeans 103

4.11. SINGLETON CLASSES....eiitiiiieeiiiestee st et e st e bt e st e abe e s be et e st s sabeessbeeasbeeasbeeanbeesbeeebeeanees 104
O Vo = TR L SO SPR 104
O Vo = T < 1 OSSOSO 106

4.12. UNIDIRECTIONAL RELATIONSuitiitiiitieiitie st et e st s e e s e e ste e s e e sntae s baeaaeeastaesnneestaesnneeans 109
4121 MURIPHCITY = L oo bbbttt 109
4.12.2. MUltiplicity = 1, gENEral NOLES........civeieieieeiirie ettt st 109
4.12.3. Details on the BOOCh COMPONENTS.........cceiiiiiicieiee e 110
4.12.4. Multiplicity = 1, DOUNGEccooiiiiiiiiiiie e 112
4.12.5. Multiplicity > 1, UNBOUNUEAcooviieci e e 112
4.12.6. Multiplicity > 1, qualified relationsccociiiiiiiiinie e 112

4.13. BIDIRECTIONAL RELATIONS .. .oiitit ittt sttt siee sttt st s e st sbeesbaessbaessbeessbeesbeesnbeesntaesnnee e 114
4.13.1. SubtypingAndRENAMING SChEMEoiiiiiiiiic e 114
4.13.2. IntermediateParentClasses SCREME..........coiiiiiiieiiiee e 114

4.14. PO R T S .ttt h e h bt ah e sR e R bt e e bt e nhb e e shr e e nnb e nrreennre s 115
4140, LIMITATIONS ..ottt bbbt bbb bbbttt e e e nnenre e 115
A 142, USING POFTS .ottt sttt sttt bbbkt b et b bbb bbbt nbe e 115
4.14.3. Example 1 : Dehavioral POt ..o i 116
4144, EXaMPIE 2 2 FASE POITS ..eiiiiiiiieiieiire bbb 117
T V[Tt T B oo USSR 117

4.15. ADA LIBRARIESceiiitiii ittt ettt s sttt e st e e s st e e s sstae e e assa e e e s asbe e e s asbaeeeasbaeeeaasteeeesnnaaeesnsreeean 120
4.15.1. Creating an Ada LIDFary........cccooiiiii it 120
4.15.2. Linking an Ada LIDFary.........ccoooiiiiiieee e 121

4.16. CONFIGURATION OF MAIN FILE GENERATION ...cctviiiiiiiieiieesitissiee s sirsssiee e ssieessinesnsee s 122
T O 11 1 T o TU SRS 122
T o i [o [0 T = 1 {o] g =] (o] o USSR 122
e TR Vg1 =Yg Tot I @ =T 1 o PSS 122
4.16.4. RiADefaultActive INItIAlIZationcccooiiiiiiiii s 122
4.16.5. Reactive INStance HOOKUP. ..ottt 123
4.16.6. StArT BENAVIOKoiiiiiiiiiiie bbb bbbttt ae e 123
4.16.7. User defined 10Cal Variables ..o 123
4.16.8. USer INItIAlization COOB........cceriiiiiiiee st st 123
4.16.9. Configuration EPIlOgccoeiiiiiiiiiiiiecre e 123

4.17. INSTANCES DEFINED ON A PACKAGEc.cttiitieiiiesiieiit st site e sisee e siaeessnessiaesssnesssnessnesnns 124
4.17.1. Package MOIfiCAtIONS.........ccooiiiiiiiiiee e 124

4.18. USER-DEFINED HEADER AND FOOTERSutiiiiiiiiesiie st sieesieesiee e sbessaessnaaesnnesssessnnenans 127
4.18.1. AVAIIADIE PrOPEITIEScuiieiiciiceec e 127
4.18.2. Keyword SUDSHITULION.........cveiiiiie ittt te e e 127
4.18.3. SCHIPLEVAIUALION ..o.eoviiiiiiiiiee bbb 128

4.19. CUSTOM MAKEFILESciitiiiieiiite sttt sttt st s ssbee s bessbessnbeeanbe e s s e e anbeesbeeabeesees 129
L I N 11 (oo [0 Tod o o S 129
4.19.2. FRALUIES ...ttt e b bRt e bbb ne e 129
4.19.3. Standard Macros and property KEYWOITSccovereirineininenscse e 131
4.19.4. New environmeNnt CrEALIONcoiiiiiieie ettt see e e 137
TR T U 1T o 1SR 137

5. SPARK CODE GENERATION ..ottt sttt ee e sneesseesteenaeeneesneenneens 143

5.1. ENABLING SPARK CODE GENERATION ...cttiiiitiiiesiiesieesieesieesieesteessaesaessbaesnseessassnneeans 143

511 Adding the SPARK profile to the model ... 143

5.1.2. Setting the SPARK €NVIFONMENT..........oiiiiiiiiiieie e 144

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 7/220

5.1.3. EXaMINAtioN TEVEL......c..oiii e et 145
5.2. DIFFERENCES BETWEEN CODE GENERATED WITH AND WITHOUT THE SPARK PROFILE 146
5.3. GENERAL USAGE NOTES ON SPARK PROFILE TAGSccctvtiiiiitieiteesitresiee s sieeesiee s sine e 146

5.3.1. Capturing annotations With StriNg tagS.......cciereieririese e 146

5.3.2. Annotations often COME IN PAITS.......cceiiiiiiiiiree s 146

5.3.3. Multiple modeling aPPrOAChES.cveiiie et 147
5.4. INHERIT CLAUSES .. .ottt ittt ettt ettt ettt ettt e e ta e et e e st e e saa e e st beeasbe e atbeesnbeesntaennbeeans 147

5.4.1. 0L 1o Tl g =T) U o= S 147

5.4.2. Using <<Usage==> depPendenCies.........cccureiririeirinieisesieisie st 148

5.4.3. Using the inherits tag on a class Or @ PACKAGEcoeierierrrieeieieesie e 149
5.5. OWN VARIABLES.oi ittt ettt e et e et e e s te e e te e e be e s abe e s sbe e e nbeeasbeeabeeebeeanneeesees 150

5.5.1. Modeling through tags on attribULES..........cccvieeieieicce s 150

5.5.2. Using the OwnSpec and OWNBOAY TAGS.......ccuiiriiiririeireniese et 153
5.6. INITIALIZES ANNOTATIONS Lottt ittt ettt ettt a et stae e st e ssbeessbe e ssbeessbeesnbeennbeean 155

5.6.1. USINg tags 0N AIFIDULEScueiiiiiiieics e 155

5.6.2. Using tags on €lass and PACKAGEccevuririeeieieiese et sre s 155

5.6.3. Using <<SPARK_Initializes>> dependenciesc.ccccuereriineiniineieeseee e 155
5.7. PROOF TYPES AND PROOF FUNCTIONS ANNOTATIONScvtiiiieiiieniie et sive e 155
5.8. GLOBAL ANNOTATIONS ...otiitieiiiectee ettt et e te et e e e s e s e te e st e e be e e teeabe e e beeabeeesbeeaneeenees 157

5.8.1. Using <<SPARK_Global>> dependenCi€s..........ccccoveiriieiieriieeieesieenie e see e e e see e 157

5.8.2. USING tagS ON OPEFALIONScuiviuiiiiitiieiisteiei ettt bbb 160
5.9. DERIVES ANNOTATIONittttitieitiesiteesttesieesbeesbeesbessbeesbeesseesstesssesssbessssessssesssesssessnsessns 162
5.10. PRECONDITON, POSTCONDITION AND RETURN ANNOTATIONSccccviveiviiieesiieeeeniiee e 163
5.11. HIDE ANNOTATION ..ttt itit ittt siee sttt st st sttt be e st e st e e s st e e snbe e ss e e ssbeessbeeanbeeanbeesnbee e 166

5111, ONACIaSS OF @ PACKAGEc.eiieirietirieiet sttt 166

TR @ 1 =V a1 1< 7 U1 o] SRS 169
5.12. MAIN PROGRAM ANNOTATION ...tiiiiiite ittt siiee st s s siee e sitee e s sntee e s sntaeaesssaneessntseeesnssneessnnees 169

6. BEHAVIORAL CODE GENERATIONoiiiiiii sttt 170
6.1. OVERVIEW OF THE BEHAVIORAL FRAMEWORKS.......cciiiiiiiiiiiiie st sireesiee e ssieessine e 170

6.1.1. Selecting the behavioral framework implementation............cccocveviieiiiiiicieee 170

6.1.2. Differences between the Ada 83 and the Ada 95 implementationsccccccevvevveinenen. 170

6.1.3. Common features of both frameworksccoovveiiii i 170
6.2. USING THE ADA 83 BEHAVIORAL FRAMEWORKcoiiiiiiiiiiiiieiiieiieesieessiesssiessseesiessneeans 171

6.2.1. 01T U o] OSSP 171

6.2.2. Event-Dased reactiVe CIASSES........cuouiiiiiieiereceee e 172

6.2.3. Reactive Class GENEIALIONccviviieeieee sttt sne e e 172

6.2.4. ACHIVE ClaSS GENEIALION.......ccueiiieiiiieie ettt bbbt sb e b sre s 177

6.2.5. Working with Active and Reactive CIaSSEScociriiiiiinciieeceseee s 179

6.2.6. ACHIVE REACLIVE CIASS ...ttt sttt sttt bbbttt n e nbenae s 180

6.2.7. DefaUlt ACHIVE ClaSS.....iiiieie et sae e e 181

6.2.8. I Lo o [= =T I @ L - U o] oSSR 182
6.3. USING THE ADA 95 BEHAVIORAL FRAMEWORKScccoeiitiiiieeiitiesieesieessieessieesieesntaesnee s 184

6.3.1. LEMITALIONS ...ttt bbbttt bbbt b e b b e 184

6.3.2. New Ada 95 Framework ChanNQeS ..o 184

6.3.3. REACHIVE CIASSES. ...ttt ettt bbbt be b e 185

6.3.4. Event-based reaCtiVe CIASSES......ccueierire ettt nre s 185

6.3.5. =] Lo [T Lo Y =T) RS SRSRPR 185

6.3.6. USINg triggered OPEratioNSccoeueirierieireees et 185

6.3.7. Accessing the CUrrent eVENt PAramMELErS........ccviiiriere sttt 185

6.3.8. TesSting if @ SLALE 1S ACTIVEc.ecviiiecie s 186

6.3.9. Working with Active and ReactiVe CIASSESccoeieririreiiiecie e 186

6.3.10. Default ACIVE ClaSS.......ciiiiieieieieieie st se sttt e testesrestesneeneeseeneeneenrens 186

6.3.11. User ACtive Class fOr FAVENSCALccoiiiiriiiiiieieie ettt 186

7. CODE ORDER RESPECT TOOL ...c.iciiiiiiiiiiieisietse ettt nsens 187
7.1. INTRODUCTION ...oiititettctiitete ettt st e ettt st aebe st e s e ebe st esaatesaesaebessesaebesteseebesaeseebesteaeresaeseas 187

7.2. ACTIVATION AND USAGE ...ttt sttt ettt ettt ettt ae e st she e sbeesbeebeanbesnbeseeenbeen 187

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 8/220

7.3. FREQUENT ERRORS.....ccttiititiiee sttt sieessteesstee s e s steessbe s ateessbeaanbaessbeeanbeessbeessbeesnbeesnbeesnteesnsenans 187
7.3.1. SYNtaxX rror iNAAA fIlEv i s 187

7.3.2. Syntax error due t0 MOTELooiiiiiiiiiie e 188

7.3.3. AddiNg @ NEBW BIEMENT ..o nre s 188

8. ANIMATION IN IBM® RATIONAL® RHAPSODY® DEVELOPER FOR ADA..........ccc...... 188
8.1. ENABLING ANIMATION ...oiutiiiiieiiieiitee st e sieessteesnteesbeaateesbeesssaeateaansaessteeanseessseesnsessssassnsesans 188
8.1.1. Animation of a user defined tYPe.......cccv i e 190

8.2. ANIMATION ON REMOTE HOST ..ottt ittt sttt et e s ve e taesva e taesnnee e 192

9. GENERATION RULES CUSTOMIZATION ..ottt 193
9.1. OVERVIEW ...ttt sttt sttt et st et e et e et e e Rt e et e e e ke eebe e e beeenbeeentes 193
9.2. RULES MODIFICATION L.uiiitititieitiesitieste e siee st e it e s e s ataeabeeanteessteaanbee s teeanbeeastaeanseeastaesnsenans 193
9.3. LEGACY UML 1.3 METAMODEL BASED RULESETcccctiiiiiiiieiiie e siee e siee e sieesnee e 193
10. COMPILERS AND RELATED TOOLS SUPPORTccceitririirinieienisieenieee e 194
10.1. SUPPORTED COMPILERS/IDES, TOOLS & ENVIRONMENTScoiiiiieiiieieeie e 194
10.2. ENVIRONMENT SPECIFIC INSTRUCTIONSooitiiiitieiiiesiee st sieesireste e sbeesne s siaesnnee e 194
10.2.1. Using the INTEGRITY simulator with Rhapsody............ccccoeriiriiniineiniieeeseeesieas 194
10.2.2. INTEGRITY BSP SUPPOIT.....ctiiiiiiiiiteiirisieitsisie sttt 194
10.2.3. RAVEN/PPC BSP SUPPOIT ...c.viiiitiieiiiteieeieste ettt sttt sttt sb et sre b sne e 194
10.2.4, GINAT ISSUES ...ecuiretetiristetesee ettt sttt sttt bbbt bbb bt s bbb bbbt e b nn b 195

10.3. COMPILER USAGE NOTE FOR OBJECTADA AND GREENHILLS COMPILERS..........c.cccveunee. 195
10.4. COMPILER SUPPORT LIMITATIONSttt ittt siee sttt besstee sttt st bresbeesbaessee s 195
10.4.1. Rhapsody FrameWOorks SUPPOIT........cciueiiirieirerieeateseeeete sttt sre et sne e snesne e 195
10.4.2. CompPilation rrOr MESSAGESciveeiieerieesieerearesteesteesteestee e eseesreeseesreesreesseenseesesssesseessenns 195
10.4.3. Notes on Pre-compiled lDraries ... 195

10.5. COMPILER AND ASSIMILATED TOOLS RELATED PROPERTIES ...cccocviiiiiiieniic e iie i 197

11, MODEL LIMITATIONS. ...ttt 200
11.1. LIMITATIONS FOR ADA 83..... et ciee et stee sttt et e e e st e snte e s te e ente e s baeabeeabeeanneeanbaeanreeans 200
11.2. GENERAL LIMITATIONS L.otiiitiiitie sttt sttt sttt sttt a bt asbee s e e e be e s beaebeeanees 200

APPENDIX A: PROPERTIES FOR IBM® RATIONAL® RHAPSODY® DEVELOPER FOR ADA201

APPENDIX B: TAGS FOR IBM® RATIONAL® RHAPSODY® DEVELOPER FOR ADA............. 215

APPENDIX C: STEREOTYPES FOR IBM® RATIONAL® RHAPSODY® DEVELOPER FOR ADA218

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 9/220

Table of Figures

Figure 1: Rebuilding Ada 83 Behavioral FrameWOrK.ccoeiiiiiiiiiiieisiesseesse e 16
Figure 2: Changing the behavioral framework generation directory for an Integrity-based configuration 17
Figure 3: A simple class in RNAPSOAY.ceiiiiiiiiiiiece e 27
Figure 4: The generated Ada code for a SIMPIE ClaSS.........ccuvveiiiiii i 27
Figure 5: Controlling the location of the record type definition. ..o 28
Figure 6: Inheritance iN RNAPSOTY.ccviiiieieicie ittt st tesne e e e aestestesneereeneens 29
Figure 7: The package specification for a Specialized Class.cccveriiiiiiiiiiee s 29
Figure 8 Setting the initialization code property for a Classcccovvviviiiiiriieierc e 30
Figure 9 Generated body for a class with initialization COAEccoceriiiiiiiiiic 31
Figure 10 setting I1SStatic Property fOr @ ClaSscuiviiviieiieicie st 32
Figure 11: Non-static attribDULeS OF @ ClASS.c.erviiiiiiiieree e 33
Figure 12: The package specification for non-static attributes............ccccvvveieieicc s 34
Figure 13: The package body for non-static attribDULES.coeiiiiiiiiii e 35
Figure 14: Controlling the visibility of the accessor and MULALOT.c.cccevvveririeiie s 36
Figure 15: Static attribUtes 0F @ CIASS.cooiiiiiic e 36
Figure 16: The package specification for statiC attribULES.cccvevveiiiii i 37
Figure 17: The package body for StatiC attriDULES. ..o 38
Figure 18 Static attributes of a class with overridden declarationPosition propertyc.cccoeevvvevivereecvennnne 39
Figure 19 Setting the DeclarationPosition for a static attribute to BeforeClassRecord...........cccccovevviinennnnn 40
Figure 20 Setting the DeclarationPosition for a static attribute to AfterClassRecordc.cccovvevvevveiennnnne, 41
Figure 21: Generated code for static attributes with overridden DeclarationPosition propertyc.ccc...... 41
Figure 22: Non-static attribute definition.ccveiiiiiie e 42
Figure 23: Static attribute definition. ..o 43
Figure 24: The package specification for non-predefined type attributes.ccccvvevieiii i 43
Figure 25: GUarding an AFIDULE.oiiiii bbbt 44
Figure 26 Modeling a class with a <<Discriminant>> attribute...........c.ccccecveiieriieriie i 44
Figure 27 Defining an unconstrained array tYPEcoeoveereiiireiiirieieie sttt 45
Figure 28 Setting an attribute stereotype to <<DIiSCHMINANT>>cccociiiiiiieiieee e 45
Figure 29 Defining an attribute with a type definition based on the class record type discriminant................. 46
Figure 30 Generated code for a class with a diSCrimiNaNnt...........ccccocvevi i 47
Figure 31 Class with overriding and redefining diSCriminant ..o 47
Figure 32 OVerriding diSCIIMINANT...........cccviiiiiiicii et te e e st esre e s teenteeeeeneeenee e 48
Figure 33 Overriding and redefining diSCrIMINANT...........ccoiiiiiiriine e 48
Figure 34 Redefining diSCHMINANT.........c.cciviiiiiii et e e sre e s e e s teeeeenbeenee e 48
Figure 35: Operations defined 0N @ CIASS.cuiviiiiiiiiiiie e 50
FIQUre 36: OPEration FRALUIES.ciiiieeiecie ettt te e e e s te et e et e et e et esba e be e beesaesseesteesaeesteeateenseensennee e 50
Figure 37: The implementation of MYOPEIatioN.ccciiiiiiiiiie e 51
Figure 38: The local variables for myOperation.ccocveiieiiie i 51
Figure 39: Operations in the package SPeCIfiCatioN. ... 52
Figure 40: Operations in the Package DOUY..........ccvciiiiieie e 52
Figure 41: Making an Operation GUAIAEA.couciiuiiiirieiiirieeiesie sttt 53
Figure 42 Modeling a template operation and a template operation instantiation.............c.cccocevvveiievvcceenenn, 53
Figure 43 features of a template OPEration...........cociiiiiiiiiiie e 54
Figure 44 setting up template parameters for a template Operation............cccvcvvevievienie e 54
Figure 45 generated code for a template operation SpecifiCation ... 55
Figure 46 generated code for a template operation implementationccccocveviieie e 55
Figure 47 features of a template operation INStANTIALIONccoceriiiiriiie e 56
Figure 48 setting up template arguments for a template operation instantiationccccceveieienieiciennee 56
Figure 49 generated code for a template operation inStantiation..............ccocevevrinininnn 57
Figure 50 Making a parameter passing MOUE "ACCESS"cuiirrirrirereriereeieee et sttt st ae e b saesee e 57
Figure 51 Making an operation this parameter passing Mode "aCCESS"cocvvrerririrniire e 58
Figure 52 Operation using acCess MO PAFAMELETScc.eiiiierieririe sttt sttt see bbb see e e 58
Figure 53: <<Usage>> dependencies in IBM® Rational® Rhapsody® in Ada.cccccvvrriiirninenieeneenn 60
Figure 54: An implementation dePeNUENCY.oiiiiiiiieiiiee ettt bbbt een 60
Figure 55: Creating @ "USE" SLAIEMENL.oiiiiiiiiiiee ettt 61
Figure 56: The package specification for dependenCies. ..o 61

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 10/220

Figure 57: The package body for dependeNCIES.coi i 62
Figure 58: An ACOr in RNAPSOAY.viiviiieieieiciee sttt e e st st sresneese e e seesrestesneereeneens 64
Figure 59: Package Specification fOr an ACLOT.cooiiiiiiiiirieere e 65
Figure 60: Package body fOr @an ACLOL.cviiii it sr e snesre e 66
Figure 61: A package defined in RRAPSOAY.coiiiiiiiiriiieiiec e 67
Figure 62: The package specification for a Rhapsody package.ccccveveieiereievisie e 68
Figure 63: The package body for a Rhapsody PACKAGE.ccvreriiiriirieiiiieiisieese e 69
Figure 64: Packages and classes USEd as NAMESPACES.uvcvererveruerrerresteseeeeseessessessessessessessesssessessessessessessenns 70
Figure 65: The package Specification fOr CIaSS_2. ..o 70
Figure 66: The resulting files including the NAMESPACES.c.cieiiieriiisie e 70
Figure 67: Example of a nested package and a NeSted CIaSS.cccveririiiiiiiinesec e 71
Figure 68: Setting a class to be generated as a Nested PACKAGE.ccvevvvvvvieeieieerere e 71
Figure 69: Setting a package to be generated as a NeSted PACKAGE.cvrerieiririeirisieee e 72
Figure 70: Controlling the location of the specification of a nested package..........cccceevviveiveieeieiensie s, 72
Figure 71: Exampe of a private package and @ private Class.cccuereiririiiinieneese e 73
Figure 72: Setting a class to be generated as a private PACKAgEccovvvvveieiierere s 73
Figure 73: Setting a package to be generated as a private PaCKage.........cccovrerrereinenieeesee e 74
Figure 74: Specification Of @ Private ClaSsc.ccieiiiiiiie et 74
Figure 75: Specification of & private PACKAGEccuviiiiriiie e 74
Figure 76: Example of a class and a package with elaboration pragmas............ccccecvvvveiie i i sieese e 75
Figure 77: Enabling generation of elaboration pragmas 0N @ Class...........cocuveiinernenenssee e 75
Figure 78: Enabling generation of elaboration pragmas 0n a package...........cccvevverveieiiesie s 75
Figure 79: Specificaton of a class with elaboration Pragmas ..o 76
Figure 80: Specificaton of a package with elaboration Pragmas..........cccccvvievieiiieniee i 76
Figure 81: A Sample <<Container>> PaCKAQE.cccoiiiiriiiiiicinee e 77
Figure 82: Types defined in RNAPSOAY.cccviiiiiieicc et e e enee e 78
Figure 83: The declaration of @ private type 0N @ CIaSS.ccciiiiiiiiiier e 78
Figure 84: The declaration of a public type 0N @ CIaSS.cccueieeiiiiice e 79
Figure 85: The declaration of a private type on @ PaCKage.ccoverirririiiiie e 80
Figure 86: The declaration of a public type 0N @ PACKAgE.c.ceeiveiieiie e 81
Figure 87: Controlling the ViSibility OF @ tYPE.coviiiiie e 81
Figure 88: The package specification for a class With tyPes.cocvevv i 82
Figure 89: The package specification for a package With tyPes.ccoviriiiiiiniice e 82
Figure 90: Representation Of @ tyPed ClaSS........ccviiieiiiii et 83
Figure 91: Generated code Of @ tYPed CIASSooviiiiiiiiiiiee e 83
Figure 92: Representation Of @ SUDLYPEooiiiiic e e 83
Figure 93: Generated COUE OF @ SUDLYPE.......oiiiiiiiiiriee s 83
Figure 94: Representation Of @ FANQE tYPEocviivieiici ettt et e et e e enee e 84
Figure 95: Generated COde OF @ FANGE TYPE ...c.vivirviiiiiitieiere bbbt 84
Figure 96: Representation of a range type with dependency to a constant............cccccevevievieviesieese e 84
Figure 97: Generated COde OF @ FANGE TYPE ...c.viviriiiieiieieie et 84
Figure 98: Representation Of @n @rray TYPEcviiuieiiciice ettt 85
Figure 99: Generated COde OF AN AITAY TYPEouiriiiiiieiee bbb 85
Figure 100: Representation of a variant reCord tYPEc.eeveiieiie it 85
Figure 101: Generated code 0f & Variant reCOrd tYPEccviiriiiririiireee e 86
Figure 102: Definition of a template CIaSS.cvccieiiiiiie e 87
Figure 103: Package specification for a generic PaCkage.coovivereininiiiiee e 87
Figure 104: An instantiation of a template Class.ccoeiieiie i 88
Figure 105: The generated Ada package for a generic instantiation.cccccvveriininiincne s 88
Figure 106 Inheritance between template CIASSEScociiiiiiieiiiiie e 88
Figure 107 generated code for a template class derived from another template class..........ccoceovvrevicrnnnnene. 89
Figure 108 Modeling instantiation of a template inheritance hierarchyccccocioiiiiiicie e 89
Figure 109 generated code for a base template instantiation Class. ... 89
Figure 110 generated code for a derived template instantiation Class...........ccooereiirinenie i 89
Figure 111 generate code for another derived template instantiation class..........ccccoovvervininviiineince 90
Figure 112 Modeling template inheritance hierarchy across (Ada) children packages...........ccccovevverereninnnnne 90

Figure 113 Generated code for a derived template class that is a child package of its base class.................... 90

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 11/220

Figure 114 Generated code for the instantiation of a derived template class that is a child package of its base

ClaSS. 1Rt 90
Figure 115: Ada tasks in RNAPSOAY.........ciiiiiiiiiiiiiees ettt 91
Figure 116: Setting the record type visibility to “Private” for an <<AdaTaskType>> class........c.ceovrvvrrrereene 91
Figure 117: Setting an operation on a <<AdaTaskType>> class to generate as a regular operation. 92
Figure 118: Ada task SPECITICALION.cuiieiicieicie st sttt re e et e e e st e tesneereeneens 92
Figure 119: Ada taSK DOGY.cueiviiiiiiieiiiir ettt bbbt 93
Figure 120: Ada task type SPECITICALION.cviiiii i re e 94
Figure 121: Ada task tYPE DOAY.c.oiuiiiiiiiiic bbb 95
Figure 122 Ada task With default NIcoveiiiiiice e 96
Figure 123 Specification of Ada Task with default entry............ccooiviiiiiiii 96
Figure 124 Implementation of Ada Task with default entry ..o 97
Figure 125: Protected 0bjects in RNAPSOTY.cviiiiiiiiiiiieiinieeise st 97
Figure 126: Setting the record type visibility to “Private” for an <<AdaProtectedType>> classc...... 98
Figure 127: Applying the <<entry>> stereotype to a protected object operationcccccoeervreinincinenn 98
Figure 128: Setting the guard for a protected ObJEC/tYPE BNV ..c.oivi v i 99
Figure 129: Protected 0bject SPECITICAION.coviiiiiiiiiieee e 99
Figure 130: Protected 0DJECE DOAY. ...ccvviieie e 100
Figure 131: Protected type SPeCITICAtION.ciiiiiiiiiieics e 101
Figure 132: Protected tyPe DOUY.cciiiie ettt sre e nre s 102
Figure 133: An entrypoint in RNAPSOAY.c.coiiiiiiiiiii ettt 103
Figure 134: The entrypoint definition.coovi i e 103
Figure 135: A singleton class in RNAPSOAY.c..civiiiiiiiiiiieieec et 104
Figure 136: The package specification for a singleton class in Ada 95. ..o, 105
Figure 137: The package body for a singleton class in Ada 95.........c.cooviiiiiiiiiiinee e 106
Figure 138: Changing the component to generate Ada 83 COE........ccccovevviiiiciiiiiecc e 107
Figure 139: The package specification for a singleton class in Ada 83. ..o, 107
Figure 140: The package body for a singleton class in Ada 83.........cccccevveie e 108
Figure 141: Class relations with mUltipliCity = L.ccooviiiiiiiee e 109
Figure 142: Class relations with multiplicity > 1, bounded...........c.ccocovieii i 112
Figure 143: Setting the Component to Create @ Library.ccooviiieiiiiiiiic e 120
Figure 144: UsiNg an Ada LIDIAIY.cooie ittt sttt te et e e e sneenreenas 121
Figure 145: Configuration INSTANCES.couiiiiiiiie ettt ettt bbb 122
Figure 146: Auto-generated ENtrYPOINT.oovviiiiiiiicce e nre e 123
Figure 147: Global InStances 0N @ PACKAJE.couoiiuiiiiiiiiciiee e 124
Figure 148: Global Instance with MUIItPIICITY = L. ...coooiiiiei e 124
Figure 149: Global Instance with MUItIPICITY > L. ..o 125
Figure 150: The Instances Package SPeCifiCation.ccccoveiiiiiiii it 126
Figure 151: The Instances PACKAGE BOUY.coeiiiriiiiiiieiiie sttt 126
Figure 152 Defining custom header and footer at the component [eVel ..., 127
Figure 153 Inserting keywords inside user-defined header and fOOter...........cccoeviiiiiiiiiic i, 128
Figure 154 Example of generated code using user-defined header and footer.............cccocvevviveiie i iecvieenee. 128
Figure 155: Modeling inherit clauses via iNNErTANCEcccciiiiiiiiii e 147
Figure 156: Generated code for derived class using the SPARK profileccccccvveviiiiei i, 148
Figure 157: Modeling inherit clauses via <<Usage>> dependencies.cccoiveiieneininensene e 148
Figure 158: Generated code for dependency client class using the SPARK profilecccccovevviiiiieinennn. 149
Figure 159: Modeling inherit clauses via INNEFIt tag........ccoeiiiiriiiiiec e 149
Figure 160: Setting the iNherit tag 0N @ CIASScviiiiiicci e 150
Figure 161: Generated code for inherit tag on a class using the SPARK profileccccooeiviiiniinicennn, 150
Figure 162: Modeling an own annotation on a package via tags on an attribute..........c.cccoceveieniiicienn, 151
Figure 163: Setting some of the tags related to own variables on an attributecccoceveiiiiicincieen, 152
Figure 164: Setting a default value on an initialized own variable attributecoccooioiiiiiniii 153
Figure 165: Generated annotations for an initialized own variable............ccccoooooiiiniiii 153
Figure 166: Modeling an own annotation on a package via tags on packagesccoceveeeeieenenenieneneeeenns 154
Figure 167: Disabling the generation of an own annotation at the attribute level ..., 154
Figure 168: Setting some of the tags related to own variables on a packageccocoeeverieieiienc i 155
Figure 169: Modeling a package with a proof type and a proof functioncccocveviiiiniiiencicieee, 156
Figure 170: Setting the stereotype of a function to <<SPARK_Proof>>........cccccociiiiniiiece 156

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 12/220

Figure 171: Setting the stereotype of a type to <<SPARK_Proof>> ..o 157
Figure 172: Generated code for package with proof type and proof function...........ccccceevevevevencvcvsinse e, 157
Figure 173: Modeling global annotations via dependencies from operation to attributec.cccoereenn. 158
Figure 174: Setting the stereotype of a dependency to <<SPARK_Global>>..........ccccoovevvivvivininiiesnaene, 158
Figure 175: Setting the mode of a <<SPARK_Global>> dependency.........ccccveiiireiinincncnenceseieeenes 159
Figure 176: Controlling where the annotation is generated for a <<SPARK_Global>> dependency............ 159
Figure 177: Specification for a package with a <<SPARK_Global>> dependency from an operation to a

O (o 16T S 160
Figure 178: Implementation for a package with a <<SPARK_Global>> dependency from an operation to a

O (o 16T S 160
Figure 179: Modeling global annotations via GlobalSPec tagcccceivvireiiiiieieireeeee e 160
Figure 180: Setting the GlobalSpec tag 0n an OPEratioN..........ccccceieieiesieeirere e ns 161
Figure 181: Specification for a package with an operation with a GlobalSpec tag..........cc.coevviiciicicnnn, 161
Figure 182: Implementation for a package with an operation with a GlobalSpec tag...........cccecevevvivrvivannnne. 162
Figure 183: Modeling derives annotations via DeriveSSPEC tagc.eivrereirireiiiinerieiese s 162
Figure 184: Setting the DerivesSpec tag 0n an OPErationccccvceierieieeiieriesesese e e ereenes 163
Figure 185: Specification for a package with an operation with a DerivesSPec tagc.ccoevvrerieencrieennn. 163
Figure 186: Modeling post conditions annotations via PostConditionSpec tagccccevvevvevvciesieeseesieenne. 164
Figure 187: Setting the PostConditionSpec tag 0N an OPerationccccoeoveereiienenieeseee e 164
Figure 188: Specification for a package with an operation with a PostConditionSpec tagcccccceevvevuenee. 165
Figure 189: Implementation for a package with an operation with a PostConditionSpec tagcc.ccceuenee. 166
Figure 190: Modeling hide annotations on packages and OPerations...........ccccvevververieereeseeiesreesee s seeenes 167
Figure 191: Generated body code for a package body with its HideBody tag set to truecccevevvenenne. 167
Figure 192: Setting the elaboration code 0N a PaCKage........cccvvvvieeiiiiiie e 168
Figure 193: Generated code for a package body with elaboration code and its HideElaborationCode tag set to

LT TP P PRSP PRTUUR PR PRPRPPIN 168
Figure 194: Generated code for a package specification with its HidePrivatePart tag set to true................... 168
Figure 195: Generated code for an operation body with its HideBody tag set to trueccccecevvvevveinnne. 169
Figure 196: Operations to Control the Reactive Class Statechart. ..o 171
Figure 197: Definition OF an ACLIVE ClaSS........ccciiiiiieiieie ettt sreesre e 171
Figure 198: Operations to Control the ACHIVE Classcoeiviiriiiiieise e 171
Figure 199: A Reactive Class and its ACLIVE ClaSS.ccveiveiiiiiieiie et 172
Figure 200: The "With" Clauses for a Reactive CIass.cociviiiiiiiiiiiicerese s 172
Figure 201: The Reactive Class RECOIT.ccuiiiiiieiieiecie ettt et te e sae s sneenreenas 173
Figure 202: Operations for the Current Event INfOrmation.cccoeiiiiiiiiiiicneee e 174
Figure 203: Initialization and Finalization of the Reactive Class..........ccccccevvevi e 174
Figure 204: Example Reactive Class PrOJECL.oiiiiiiiiiii ettt 174
Figure 205: Statechart for the ReACHIVE CIaSS.cvciviiiieiice st 174
Figure 206: The Event Types for the REactive Class.cccooviiiiiiiiiiiie e 175
Figure 207: Using relative naming for current eVent data.............ccoceeveeieeie e 176
Figure 208: Event data record type using relative Namingccoooeveiiiiinineiccse e 176
Figure 209: The Parent Package Of the ReaCtive Class.cccvueiieiiiiieie e 176
Figure 210: Operations to Generate Events for a Reactive Class...........cccvvviirinnineneiiincsecese s 176
Figure 211: Accessing a trigger parameter value (using full namespace based naming)cccoeevverinnen. 177
Figure 212: Accessing a trigger parameter value (using relative Naming)ccccoceveiniriininenceneieeen 177
Figure 213: Setting the Record Type Visibility for an Active Class.ccccvevviiiiiivieesie e 178
Figure 214: The Task Generated for an ACtIVE ClIaSS.c.oiviiiiiiiii e 178
Figure 215: The Record Definition for the ACtive ClIass.ccccveiiiiieie e 178
Figure 216: "With" Statements for an ACHIVE ClaSS.ccuiiiiiiiiiiiese e 179
Figure 217: The Public Operations of an ACtIVE CIass.cceiiriiiiiiireiee e s 179
Figure 218: Initialization and Finalization of the Active INSTANCE.ccoviiiiiiiinee e 179
Figure 219: Using an Active and ReaCtiVe CIaSS.ocuiiiiiiiiiieie e 180
Figure 220: AN ACtIVE-REACLIVE CIaSS.eviriitirieieiti ittt sttt bt sre b e 180
Figure 221: Using an ACtiVe-REACTIVE ClaSS.........ciiiiiiiiiieieie st s 181
Figure 222: Using the Default ACHIVE CIaSS.ooiiiiiiiiiciee s 182
Figure 223: A Sample Model of a Synchronous Reactive ClIass.c.ccoveieininiieieneceeee s 182
Figure 224: A Statechart Using Triggered OPerations.oceveeeireisereieiesieeste st 182

Figure 225:

Triggered Operation Unique Tdentifiers.coooiiiiiiii s 183

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 13/220

Figure 226: Generated Procedures for Triggered OpPerations.ccoeeereeieiieniene s e 183
Figure 227: Using a Synchronous REACLIVE ClaSS.ccvcveieiereriiresieseseeeeseeseesese e e sse e sne e e sneens 184
Figure 228: The State_Type enumeration type for a reactive Class...........ccovveirirrinininineseeeees 185
Figure 229: A Reactive Class and its ACLIVE ClaSS.cvcviiiieieiiie s 185
Figure 230: Operations to Generate Events for @ REaCtive Class...........ccovereiririininicnineseeeese s 185
Figure 231: Accessing a trigger parameter ValUEcccvvveierieieie s 186

Figure 232: Enabling Animation in the CoNfigUration.coeiiireiiiiicis e 189

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 14/220

Introduction

This document is the user’s guide for the code Generator of IBM® Rational® Rhapsody®
Developer for Ada.

2. Installation Notes

2.1. Supported compilers
The code generator has been tested against the following Ada compilers
e AdaCore’s GNAT 3.15p
e AdaCore’s GNAT Pro 6.01
o AdaCore’s GNAT Pro 6.02
e AONIX ObjectAda ® Enterprise Edition 8.4

e Green Hills Software’s AdaMULTI® 3.5 for PowerPC on INTEGRITY® v4.0.8, with updates
from Green Hills Support services.

e Green Hills Software’s AdaMULTI® 3.5 for x86 on Win32, with updates from Green Hills
Support services.

For AdaMULT]I 3.5, updates may be necessary in order to work with IBM® Rational®
Rhapsody® Developer for Ada. Please contact Green Hills Support staff at support-
ada@ghs.com (or support-adauk@ghs.com if you are in Europe) for details, stating that you
intend to use IBM® Rational® Rhapsody® Developer for Ada.

In order to determine if you need such updates, try to rebuild the behavior services. If you
get an assertion failure message from the compiler, you need the updates.

e Green Hills Software’s AdaMULTI® 4.0.7 for PowerPC on INTEGRITY® v5.0.4.
e Green Hills Software’s AdaMULTI® 4.0.7 for x86 on Win32

If user needs to use another compiler, he can customize IBM Rational Rhapsody, in order to
generate appropriate files to compile the project. See §4.19 CUSTOM MAKEFILES.

Warning :

If user uses AdaCore’s GNAT 3.15p compiler with the default installation path, the compilation will
fail, because the path contains a white space which is not recognized by the compiler. In this case,
IBM Rational Rhapsody must be installed into another path which doesn’t contain white spaces.

2.2. Behavior services and animation Libraries
As part of IBM Rational Rhapsody installation you are receiving the following files:
e Basic behavior services sources.
e Animation C libraries (currently supported only for Win32 and Integrity Targets).

These files are not compiled during install, and must be compiled by user. They can be compiled
manually or automatically from Rhapsody menu. This is explained in the following chapter.

These files have been tested against the following Ada compilers

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 15/220

e AdaCore’s GNAT 3.15p

e AdaCore’s GNAT Pro 6.01

e AdaCore’s GNAT Pro 6.02

¢ AONIX ObjectAda ® Enterprise Edition

e Green Hills Software’s AdaMULTI® 3.5 for PowerPC on INTEGRITY® v4.0.8, with updates
from Green Hills Support services.

e Green Hills Software’s AdaMULTI® 3.5 for x86 on Win32, with updates from Green Hills
Support services.

For AdaMULTI 3.5, updates may be necessary in order to work with IBM® Rational®
Rhapsody® Developer for Ada. Please contact Green Hills Support staff at support-
ada@ghs.com (or support-adauk@ghs.com if you are in Europe) for details, stating that you
intend to use IBM® Rational® Rhapsody® Developer for Ada.

In order to determine if you need such updates, try to rebuild the behavior services. If you
get an assertion failure message from the compiler, you need the updates.

e Green Hills Software’s AdaMULTI® 4.0.7 for PowerPC on INTEGRITY® v5.0.4.
e Green Hills Software’s AdaMULTI® 4.0.7 for x86 on Win32

In some cases, where the compiler version used by you is different from the version used on
installation, or when you need versions of the libraries targeted for a specific operating system /
hardware architecture combination (e.g. a specific board running with INTEGRITY), you will need to
rebuild them. For GNAT, ObjectAda and AdaMulti compilers on Win32 platforms, rebuilding the
libraries can be done by executing the recompile_<ENV>.bat program in the Sodius subdirectory.
The following instructions indicate how to rebuild them manually for every supported platform.

2.2.1. Automatically building behavior services and animation library

Behavior services and animation library can be built in a simple way by using the menu Code/Build
Framework. This is the recommended method to build them for the first time after Rhapsody install.

This command will automatically build the behavior services and animation library for the
environment defined in the current configuration. This command calls a script defined in the
property : Ada_CG::<ENV>::buildFrameworkCommand.

Compilation results are logged into the file <Rhp_instal_dir>\Sodius\RiA_CG\recompile.log

For the environment Integrity5 of the FWKSs, it is recommended to regenerate the files, in order to
setup correctly the make file with your environment.

2.2.2. Manually rebuilding the behavior services

If you are using the Ada 83 framework then

e Open the RiAServices model under <Rhapsody installation>\Share\LangAda83\model directory.
If you are using the old Ada 95 framework then

e Open the RiA_Framework model under <Rhapsody installation>\Share\LangAda\model
directory.

If you are using the New Ada 95 framework then

e Open the RiA_Framework model under <Rhapsody installation>\Share\LangAda95\Ada_FWK
directory.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 16/220

e Select the appropriate configuration among the available ones :
o GNAT_Win32
o OBJECTADA_Win32
o AdaMULTI_Win32
o AdaMULTI_4 Win32
o AdaMULTI_INTEGRITY_<target>

o AdaMULTI_4_INTEGRITY_<target>)

e Select Rebuild from the code menu.

R 1BM Rational Rhapsody Developer for Ada - RiAServices.rpy - [Object Model Diagram: External dependencies in RiA::Services] \ g
ﬂ File Edit Wiew ReeacB | ayout Tools Window Help - & *x
DEE Gererate YA R B E B 100z v g H &) A % B 2] %) S
= - Re Generate 4 =
i @8 ox 2 v||Me S8 BE € 5
Edit L3
H o & B @Arial Uy
el . - =
»

Force Roundirip
Enfire Model View

(S RAservicss | »
5T RiAServices DCrynamic Madel Code Associativity RiA_Language_In

Select

Actor

=)
R
(3 Compenents Buld R] object
=3 Packages e H clss
9 ada Rebuid Rebuild ox Shift+F7) =]
% Predefine Clean Rebuild oxf_cmp.a With Dependencies «lJsagey Composite class
Predefine
Rebuiid Enfire Project — 2 Package
= {0 R Open IDE ... ! -~
=0 Packa ~—~ -0 Port
=B ser Target 4 ® o
=8 Diebug 4 «Usager - AdaSystem Inheritance
} IDE Gptions o L, Associatian
- 5 Directed associa
- —
) RiA_Typ ™ ¢ Aggregation
I
e -—J(_lisage * * Composition
| Generate/Make — -) Ada:Unchecked Convel &
i e
o Clean Redundant SoLrce Files o “u Deperdency
BaRria_Lang element_ty | By Flow
(0 Settings pe
RiA_Queue]—_—_—_‘ _ iuﬂag_&;_\da Unchecked_Dealloc 2 Realization
T Interface
&

Figure 1: Rebuilding Ada 83 Behavioral Framework.

Adding a platform specific target for Integrity :

¢ Make a copy of one of the existing Integrity configuration (for example
ADAMULTI_4_INTEGRITY_sim800)

e Rename it appropriately by giving it the appropriate target suffix (for example mbx800)

e Open the settings tab of the configuration, and edit the directory field, replacing the old target
suffix by the new one (sim800 => mbx800)

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 17/220

Configuration : ADAMULTI_4_INTEGRITY_mbx800 in oxf_cmp

General] Descripticn] Initialization Settings lChecks] F?!elaticms] Tags] F‘rnperties]

Directon, |daMULTI_4_Integrit}.#_m || Use Default

Libraries: |

Additional Sources:

Include Path:

|
Standard Headers: |
|

Instrumentation

Instrurmentation Mode: |Maone - |

Wahify
- |

Time kodel: o Feal " Simulated

statechart Implementation: ¢ Beusahle & Flat

Environment Settings

Enviranment: | INTEGRITYS ﬂ Diefault
-

Build Set: |Debug J

Compiler Switches:

Link Switches:

Locate | 0K | |

Figure 2: Changing the behavioral framework generation directory for an Integrity-based
configuration

e Generate code and build component
2.2.3. Manually rebuilding the animation C libraries

Rebuilding for GNAT

The build is done using the GCC compiler supplied as part of the GNAT package. The process
differs a bit depending on the version of GNAT you’ve installed.

If you are using GNAT v3.13 or earlier version follow these steps :

e Open a command prompt.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 18/220

e (o to the <Rhapsody installation>\Share\LangC directory.
o Type “make -f AdaWinbuild.mak PATH_SEP=Y
If you are using a later version of GNAT, you might have to follow these steps :
e Make sure the GNAT Win32 support package is installed
e Open a command prompt.
e (o to the <Rhapsody installation>\Share\LangC directory.
o Type “make —f AdaWinbuild.mak buildLibs”
The following files will be generated in the <RhapsodylnAdalnstallDir>\Share\LangC\lib directory:
e AdaWinaomanim.lib
e AdaWinomcomappl.lib
e AdaWinoxfinst.lib
Notes:

e The GNAT_HOME environment variable must be set to the location of the GNAT install
directory. The path must use forward slashes and not backslashes in its path.

¢ If your environment contains UNIX like Shell utilities, you will need to remove them from the
path in order to compile.

e The Win32 libraries may be included as part of a separate install for GNAT. For example, for
3.15p, the install file is called gnatwin-3.15p.exe.

If you are using a later version of GNAT and wish to use animation, make sure to have GNU Make
installed in the same directory as GNAT executables, rename it as “make.exe”, and follow the
previous instructions.

Rebuilding for ObjectAda

The build is done using the GCC compiler supplied as part of the cygwin package. :

e Open a command prompt.

e Go to the <Rhapsody installation>\Share\LangC directory.

o Type “.\etc\cygwinMake.bat" AdawinBuild.mak adaBuildLibs”

The following files will be generated in the <RhapsodylnAdalnstallDir>\Share\LangC\lib directory:
e AdaWinaomanim.lib
¢ AdaWinomcomappl.lib

e AdaWinoxfinst.lib

Rebuilding for MultiWin32

e Open a command prompt.
If you are using Multi 3.5 or an older version follow these steps :

e Go to the <Rhapsody installation>\Share\LangC directory.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 19/220

Type “MultiWin32Build.bat <AdaMultiWin32InstallDir> ada bld ”, replacing
<AdaMultiwin32InstallDir> by the appropriate directory for your machine

The following files will be generated in the <RhapsodylnAdalnstallDir>\Share\LangC\lib directory:

AdaMultiwin32Aomanim.dba
AdaMultiwin32Aomanim.lib
AdaMultiwin320mComAppl.dba
AdaMultiwin320mComAppl.lib
AdaMultiwin320xfInst.dba

AdaMultiwin320xfInst.lib

If you are using Multi 4.0 or a newer version follow these steps :

Go to the <Rhapsody installation>\Share\LangC directory.

Type “Multiwin32Build.bat <AdaMultiWwin32InstallDir> ada”, replacing
<AdaMultiwin32InstallDir> by the appropriate directory for your machine

AdaMulti4wWin32Aomanim.dba
AdaMulti4wWin32Aomanim.lib
AdaMulti4wWin320mComAppl.dba
AdaMulti4wWin320mComAppl.lib
AdaMulti4Win320xfInst.dba

AdaMulti4dWin320xfInst.lib

Rebuilding for Integrity

e Open a command prompt.

If you are using Multi 3.5 or an older version follow these steps :

Go to the <Rhapsody installation>\Share\LangC directory.

Type “IntegrityBuild.bat <AdaMultilntegrityInstallDir> <TargetCPU>
<AdaMultilntegrityInstallDir> ADA bld”, replacing <AdaMultilntegritylnstallDir> by the
appropriate directory for your machine and <TargetCPU> by the desired target.

The following files will be generated in the <RhapsodylnAdalnstallDir>\Share\LangC\lib directory:

AdalntegrityAomAnim<TargetCPU>.a
AdalntegrityAomAnim<TargetCPU>.dba
AdalntegrityOmComAppl.dba
AdalntegrityOmComAppl<TargetCPU>.a
AdalntegrityOxflnst<TargetCPU>.a

AdalntegrityOxfinst<TargetCPU>.dba

If you are using Multi 4.0 or a newer version follow these steps :

Go to the <Rhapsody installation>\Share\LangC directory.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 20/220

e Type “IntegrityBuild.bat <IntegrityOSlInstallDir> <TargetCPU>
<AdaMultilntegrityInstallDir> ADA”, replacing <AdaMultilntegritylnstallDir> and
<IntegrityOSinstallDir> by the appropriate directories for your machine and <TargetCPU>
by the desired target.

The following files will be generated in the <RhapsodylnAdalnstallDir>\Share\LangC\lib directory:
e AdalntegritySAomAnim<TargetCPU>.a
e AdalntegritysAomAnim<TargetCPU>.dba
¢ Adalntegrity50OmComAppl.dba
e Adalntegrity5OmComAppl<TargetCPU>.a
e Adalntegrity5Oxfinst<TargetCPU>.a

e Adalntegrity5Oxfinst<TargetCPU>.dba

2.3. Booch components

The Booch components are copyrighted© by Grady Booch.

The Booch components and their license terms are available at the AdaPower website at the
following URL http://www.adapower.com/original booch/original booch.html and
http://www.adapower.net/booch/documentation.html.

The Booch components are not distributed with IBM® Rational® Rhapsody® Developer for Ada.
User must install them manually by following the procedure.

Install Booch Components 95

Get the files from the following URL for example:
http://sourceforge.net/projects/booch95/files/

Unzip the files

Copy the folder “src” into <Rhapsody _install_folder>\Share\LangAda95\Booch_ada_95\src

Install Booch Components 83

Get the files from the following URL for example:
http://www.adapower.com/original_booch/original _booch.html|
Unzip the files
Copy the folder “src” into <Rhapsody _install_folder>\Share\LangAda83\Booch_ada 83\src
The extension of the files must be changed in order to respect the convention of your
compiler:

- *.l.ada must be changed to *.ads,

- *.2.ada must be changed to *.adb.

2.4. Java environment
2.4.1. JDK-JRE requirements

The code generator is written using Java technology, and uses the Java API of Rhapsody. Consult
the Rhapsody user documentation for details on this API.

http://www.adapower.com/original_booch/original_booch.html
http://www.adapower.net/booch/documentation.html
http://sourceforge.net/projects/booch95/files/
http://www.adapower.com/original_booch/original_booch.html

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 21/220

3. Coverage

Two views of coverage are provided. The first one answers the question of “Which Rhapsody
model elements will be considered when generating Ada code?” while the other one is from the
perspective of “Which Ada constructs can be generated from a Rhapsody model?”.

3.1. Rhapsody Model Element Coverage

The following table indicates the model elements that are covered by the code generation in this
release.

\ Model Element Fields Covered?
Project Yes
Active component No
Component No
Configuration No
Folder No
File No
Package
Name Yes
Description Yes
CG.Package.FileName No
CG.Package.UseAsExternal Yes
Class
Name Yes
Description Yes
CG.Class.FileName No
CG.Class.UseAsExternal Yes
Template Class Yes
Template arguments Yes
Template Instantiation Class Yes
Template instantiation arguments Yes
Reactive Class Yes
Active Class Yes
Guarded Class No
Class Stereotypes
Abstract Yes

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 22/220

[Model Element Fields Covered?
AdaProtectedType Yes
AdaProtectedObject Yes
AdaTask Yes
AdaTaskType Yes
Entrypoint Yes
EventFlag No
MessageQueue No
Mutex No
Resource No
Semaphore No
Singleton Yes
Task No
Timer No
Nested Class Yes
Actor Yes
Type Yes
Name Yes
Declaration Yes
Description Yes
CG.Type.UseAsExternal Yes
Event Yes
Event Reception No
Timeout No
Function Yes
Name Yes
Description Yes
Arguments Yes
Return type Yes
Implementation Yes
CG.Operation.Generate Yes
Template Function Yes

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 23/220

[Model Element Fields Covered?
Template arguments Yes
Operation
Name Yes
Description Yes
Arguments Yes
Return type Yes
Implementation Yes
Visibility Yes
Virtual Yes
Static Yes
Constant Yes
ADA_CG.Operation.Kind Yes
ADA_CG.Operation.Inline Yes
CG.Operation.Concurrency Yes
CG.Operation.Generate Yes
Triggered Operation Yes
Constructor
Description Yes
Arguments Yes
Initializer No
Implementation Yes
Visibility Yes
CG.Operation.Generate Yes
Destructor
Description Yes
Implementation Yes
Visibility Yes
Virtual Yes
CG.Operation.Concurrency No
CG.Operation.Generate Yes
Attribute

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 24/220

[Model Element Fields Covered?
Name Yes
Type Yes
Description Yes
Visibility Yes
Static Yes
Default value Yes
CG.Attribute.Generate Yes
CG.Attribute.AccessorGenerate Yes
CG.Attribute.MutatorGenerate Yes
CG.Attribute.lsConst Yes
CG.Attribute.IsGuarded Yes
Ada_CG.Attribute. Visibility Yes
Variable
Name Yes
Description Yes
Type Yes
Default value Yes
CG.Attribute.Generate Yes
CG.Attribute.Visibility Yes
Relation
Type No
Description No
Multiplicity Partial
Qualifier Yes
CG.Realtion.Generate Yes
CG.Realtion.Implementation Partial
CG.Relation.IsConst No
CG.Relation.IsGuarded Yes
CG.Relation.Ordered No
CG.Relation.GenerateRelationWithActors Yes
Symmetric Relation No

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 25/220

[Model Element Fields Covered?
Part Relation No
Link instances No
Generalization
Super class Yes
CG.Generalization.Generate Yes
Dependency
Dependent Yes
CG.Dependency.ConfigurationDependencies No
CG.Dependency.UsageType Yes
ADA_CG.Dependency.CreateUseStatement Yes
CG.Dependency.GenerateRelationWithActors Yes
Argument
Name Yes
Type Yes
Default value Yes
Direction Yes
Description Yes
Statechart Yes
Activity diagram Yes

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 26/220

3.2. Ada Code Coverage

The following table indicates the Ada constructs that are covered by the code generation.

Overall Structure Library Subprogram

Package

With clause with A_Package;

Use clause use A_Package;

(95) Use Type clause use type A_Package.A Type;
Separate procedure Proc is separate;

Renaming as specification procedure Proc renames A_Package.A_Proc;

Renaming as body procedure Proc renames A_Package.A Proc;

(95) Child Package package Parent.Child is ...

(95) Private Child Package private package Parent.Child is ...

Exceptions Predefined exception program_Error, ...

Generics Generic formal type type T is (<>);

Generic formal subprogram with procedure Update is Default_Update;

(95) generic formal with package A is new G_A(<>);
package
Generic package Generic

type T is (<>);

package P is ...

Tasking Task specification task T is
entry E(...);

end;

Task Type task type T is
entry E(...);

end T;

(95) Protected Type protected type PT is ...

SPARK SPARK Annotations --# global in out A;

4. Ada Code Generation

The detailed rules used to generate Ada code from a Rhapsody model follow this section. But
before giving the low-level rules, this section gives an overview of the generation concepts by
showing simple examples of the Ada code that is generated from a particular model.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 27/220

4.1. Classes
4.1.1. Class definition

A class in Rhapsody is represented as an Ada package, and produces a package specification and
an optional package body in Ada. The name of the Ada package is the name of the class.

Entire Maodel Yiew >

El--D Class_Fxample
{:l Camponents
{:l Object Model Diagrams
El{:l Packages
: Elﬁ Cefault
El@ Classe

class_name

s PE @A |

Eﬁ Predefinedwes (RO

Figure 3: A simple class in Rhapsody.

——++ class class name
package class name is

type class name t;
type class name acc t is access all class name Cr

type class name t is tagged null record:
private

end class name;

Figure 4: The generated Ada code for a simple class.

The name of the file generated is class_name.ads.

In addition, two new types are declared in the public part of the package specification — a record
type, and an optional access to that type.

4.1.2. Class record type visibility

The definition of this record type appears in the public part of the specification package where the
record type is declared, but it could also appear in the private part by setting the
“Ada_CG.Class.Visibility” property.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 28/220

Class : class_name in default 2=l

General I Dezcription I Attributes I Dperations | Partz | Flow Portz
Relations I Tags Properties
Wigm Al -
CG (=
= | ada_CG
=l Class
AccessTypeMame

BaseMumbersfInstances

Class'WideAccess Typehame

DeclarationPosikion EndOfDeclaration

ExceptionHandlerfckive

ExceptionHandlerReactive

Final D

GeneratedccessType zeneral
GenerateClassWidedccessType Maore
GenerateRecordType
HasUnknownDiscriminant D

ImplementationEpilog

ImplementationPragmas

ImplementationPragmasInContexkClause

ImplementationProlog

InitializationCode

IsLimnited

Ishested

IsPrivate

Is3katic

Mestingvisibiliky

CptimizestatechartsWithoutEventsMernaryallacation

RecordTypeMame

O Oz0000

RelativeEventDataRecordTypeComponentstaming

Fenames

SingletonExposeThis

SingletonInstanceisibility Body

specificationEpilog

SpecificationPragmas

SpecificationPragmasInContextClause

SpecificationProlog

TaskBody

Ll

 —

Locate | ()4 I Apply I |

seAdadzFramework,

Figure 5: Controlling the location of the record type definition.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 29/220

4.1.3. Inheritance

When a class inherits from another class, the record type for the subclass is an extension of the
record type of the parent class.

E--D Inheritance
D Components
ED Obiject Model Diagrams
) ﬂg Madell
ED Packages

L—__|E| Defaulk

E|§ Classes
=R= < bclass
- Attributes

- M my Boolean
E|£|5‘ Superlasses

‘ - T Superclass

Elg Superclass

- Attributes
- B my Akkribute

Eﬂ---& PredefinedTypes (RO)

Figure 6: Inheritance in Rhapsody.

With 3Zuperclass:;

——++ class Subclass
package Subclass is

type Subclass t is new J3uperclass.3uperclass t with private:
type Subclass acc t is access all Subclass t)

——DPublic Fields Variables accessols ——————————

Ffunction get _wy EBoolean (this : in 3ubclass t) return Boolean:

Pragma inline (get_mwy Boolean):

procedure set my Boolean (this @ in out Jubclass t: walue @ in EBoolean):
Pragma inline (set_mwy Boolean):

private

type Subclass t is new Juperclass.3uperclass € with
record

—— Fields —-
wmy EBoolean : Boolean: ——t+ attribute my Boolean

end record;

end Subclass;

Figure 7: The package specification for a specialized class.

Notice that a “With” statement has been generated for the superclass in the package specification
of the subclass.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 30/220

4.1.4. Initialization code

A non-abstract class can have initialization code that is executed during elaboration of the
associated package. In order to generate such code, you'll need to edit the InitializationCode
property for that class.

Class : class_name in default EE

eneral I Deszcription I Attributes I Operationz | Parts | Flaw Partz
Relations I Tags Properties

Wigw &l -
G -
=| ada_CG
El| Class

AccessTypeMamne

BaserumberOfInstances

ClassWideaccessTypellame

DeclarationPosition EndOfDeclarakion

ExceptionHandler Ackive

ExceptionHandlerReactive

Final O
GeneratedccessType General
GenerateClass\WidedccessType More
GenerateRecordType
HasUnknownDiscriminant D

ImplementationEpilog

ImplementationPragmas

ImplementationPragmasInContextClause

ImplementationPralog

InitializationCode

IsLimited O <

Locate (04 I Spply I |

Figure 8 Setting the initialization code property for a class

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 31/220

—-—t+ class class name
package body class name is

——Functions/ Procedures section
procedure mylperation (thi=s
begin

null;

——+[opergtion mydperstion()

__+_'|I
end myOperation;

hegin
null;
end class name;

in out class name t)

i=

Figure 9 Generated body for a class with initialization code

4.1.5. Static class

A static class is a class witch as only static attributes and operations. No record type and no "this”

parameters are generated for this kind of class.

A Static class is used for safety critical application.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 32/220

Class : class_0 in default

General I

Dezcription I Attributes I

Relations Tags

Wigm Al -

Dperations |

2=

Partz | Flow Portz
Froperties

=
=

G

Ada_CG

Class

AccessTypeMame

BaseMumbersfInstances

Class'WideAccess Typehame

DeclarationPosikion

EndOfDeclaration

ExceptionHandlerfckive

ExceptionHandlerReactive

Final O
GeneratedccessType zeneral
GenerateClassWidedccessType Maore

GenerateRecordType

HasUnknownDiscriminant

|

ImplementationEpilog

ImplementationPragmas

ImplementationPragmasInContexkClause

ImplementationProlog

InitializationCode

IsLimnited

Ishested

IsPrivate

Mestingvisibiliky

CptimizestatechartsWithoutEventsMernaryallacation

ODzEOO0OO

RecordTvpehlame

Locake

ok I Apply I |

Figure 10 setting IsStatic property for a class

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 33/220

4.2. Attributes

4.2.1. Accessor and mutator

By default, a mutator and accessor are created for each attribute.

4.2.2. Non-static attributes

When non-static attributes are added to a class, these attributes are added to the record type.

When non-static attributes are added to a package, these attributes are handled as static attributes.

r 4|6 PEDA

Erkire Madel Yisw v

=l-f Attributes
I:| Components
I:| Object Model Diagrams
I_—__||:| Packages
Eﬁ Defaulk
: EE Classes
Elg class_name
E|E Aktributes
----- B my Eoolean
e E my_Inkeger

class_name

+my_Boalean : Boaolean
+my_Integer : Integer

Figure 11. Non-static attributes of a class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 34/220

-—++ class class name
package class name is

type class name)
type class nawne acc t is access all class name ©L!

type clsss name t is tagged

record
—— Fields —-
my_Boolean : Boolean; ——++ attribute my Boolean
wy_Integer : Integer; ——++ attribute my Integer

end record;
——Public Fields/Variahles 3ccessols ——————————
function get mwy Boolean (this : in class name t] return Boolean;

Pragma inline (get_mwmy Boolean):

procedure set_mwy Boolean (this : in out class name t: wvalue : in Boolean):
Pragma inline (set_mwy Boolean):

function get mwy Integer (this : in class name t] return Integer;
Pragma inline (get_mwmy Integer):

procedure set_my Integer (this : in out class name t: wvalue : in Integer):
Pragma inline (set_mwmy Integer):

private

end class name;

Figure 12: The package specification for non-static attributes.

Because accessor and mutator methods are created, a package body file is created with the name
class_name.adb.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 35/220

——++ class class name
package hody class name is

——Fields/Variables 3cCCesSSopSs ————————————————
function get_mwy FBoolean(this : in clazs namwe t) return EBoolean is
bhegin
return this.my Boolean;
end get mwy Boolean;

procedure set_my Boolean (this @ in out class name t: value @ in Boolean) is
bhegin

thiz.my Boolean := walue;
end set mwy Boolean;

function get_mwy Integer (this @ in class namwe t) return Integer is
bhegin

return this.my_ Integer;
end get mwy Integer;

procedure set_my Integer (this @ in out class name t: value @ in Integer) is
bhegin

thiz.my Integer := walue;
end set mwy_ Integer;

end class name;

Figure 13: The package body for non-static attributes.
The record type now contains the two non-static attributes that were added in Rhapsody.

In addition, the attribute accessor and mutator operations contain a this’ parameter that is used to
pass in an instance of the type being affected. This is true for all non-static operations that are not
for singleton classes.

The accessor and mutator are generated in the public part of the package specification by default,
but they can be moved to private part by clicking the “Private” radio button on the features page.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 36/220

Attribute : my_Boolean in class_name |

General I Helatiunsl Tags I F'ru:upertiesl

M ame: Im_I,I_E aalean LI

Stereotype:; I j

— Attribute type
¥ Usze existing type

Type: IE aalean j EI

— izibility
* Public T Private
P ultiplicity I'I j I Ordered

[T Constant [~ Beference [T Static

Initial W alue: I |

Dezcrption:

N

Lu[:att:l 114 | Apply ||

Figure 14: Controlling the visibility of the accessor and mutator.

4.2.3. Static attributes

Attributes marked as static do not create record elements in classes, but instead are represented
as variables in the Ada package.

4.2.4, Static attributes visibility

These variables can be defined in the public or private part of the package specification, or in the
package body, depending on the setting of property “Ada_CG.Attribute.Visibility”.

= Default
i 2B Classes
28 dass_name
- attributes
private_Skatic_Inkeger

------ B public_Skatic_Boolean

Figure 15: Static attributes of a class.

In this example, both attributes are marked as static. However, the attribute privateStaticint is
marked as private, which means that the accessors will appear in the private part of the package
specification, and its property “Ada_CG.Attribute.Visibility” is set to “Private”, forcing the variable
definition to appear in the private part as well.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 37/220

-——++ class class name
package clasz nawme i=

type class name t;
type class nawme scc t ig access all class name Lr

type class name t is tagged null record;

—-— Pubklic Variakles/Constants ———————————————=
public Ztatic Boolean @ Boolean: ——++ attribute public Static Boolean

——Puklic Fields/Varigbkles accessobs ——————————
function get public 3tatic Boolean return Boolean:

pragma inline [(get public Static Boolean)

procedure set public Static Boolean (valus : in Boolean);
pragma inline (set_public Static Boolean)

private

—— Private Varighkles /Constants - —-——————————-
private Static_Integer : Integer; -——++ atiribubte private Static Integer

——Private Fields/Variagbkles accessols —————————
function get private Static_Integer return Integer:

pragma inline [(get priwvate 3tatic Integer):

procedure set_private 3tatic Integer (walue : in Integer):
pragma inline (set_priwvate 3tatic Integer):

end clazs name;

Figure 16: The package specification for static attributes.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 38/220

bhegin

bhegin

bhegin

-—++ class class name
package body class name is

——Fields/ Variakles 3ccessors ————————————————
function get private Static Integer return Integer is

return private Static Integer:
end get private Ftatic Integer:

procedure set private Ftatic Integer (value : in Integer) is

private Static Integer := value:
end set private Ftatic Integer:

function get _public 3tatic Boolean return Boolean is

return public Ftatic Boolean:
end get public Static Boolean:

procedure set public 3tatic_Boolean (value : in Boolean) is
bhegin
public Static Boolean := walue:

end set public Static Boolean:

end cla==z name:

Figure 17: The package body for static attributes.

4.2.5. Static attributes declaration position

In Ada, declaration order is important. For example, a type declaration might depend on a constant
that has to be declared before being used.

In order to provide some degree of control over the declaration order of attributes, the
Ada_CG.Attribute.DeclarationPosition property can be used. The table below summarize the
different values that this property can take and its effects on the attribute it is being applied.

Value

Description

Default

This is the default setting provided for compatibility reasons. It is
similar to the AfterClassRecord setting with the following exception :

e For static attributes defined in a class with an
“Ada_CG.Attribute.Visibility” property set to “Public’, these
attributes get generated after types with an
“‘Ada_CG.Type.Visibility” property set to “Public”.

On new models, it is advised not to use this value. Should you change
this value on previous models, make sure the code compiles once
you've regenerated it.

BeforeClassRecord

The attribute will be generated immediately before the class record

AfterClassRecord

The attribute will be generated immediately after the class record

StartOfDeclaration

The attribute will be generated immediately after the start of the
section (public part of the specification, private part of the specification,
package body)

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 39/220

EndOfDeclaration The attribute will be generated immediately before the end of the
section (public part of the specification, private part of the specification,
package body)

Table 1 Ada_CG.Attribute.DeclarationPosition property values description

A few special cases :
o if the attributes have their Ada_CG.Attribute.Visibility property set to “Body”
o |If the attributes are defined on a package

e |f the Ada_CG.Class.Visibility property of the class they are defined in has a different
setting

These attributes then have no actual class record around which they can be positioned. In such
cases, they are generated around a “virtual” class record location that gives a declaration order as
close as possible to the one that would exist if there was a class record definition in the section the
attributes are being generated into.

Entire Model Yiew ~

=-f 1 Declaration_Position
l:| Components
l:| Cbject Model Diagrams
EH:l Packages
Elﬁ Default
: EIE lasses
Elg class_name
- Attributes
B public_Static_Boolean_Eefore_Record
‘. public_Static_Integer After Record

Figure 18 Static attributes of a class with overridden declarationPosition property

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 40/220

Attribute : public_Static_Boolean_Before_Record in class |
Eenerall Fielatil:unsl Tags Properties
Filker : :
|_ = Al " Commaon " Overidden " Locally Overidden |
CG =
= ada_CG
| Aktribute
Accessor Get_fatkribute:c
ACcessorGenarate D

DeclarationPosition

ImplementationEpilog

ImplementationProlog

BeforeClassRecord

[DeFault

lEeforeClassRecord

AfterClassRecord

Isaliased

StartOfDeclaration

|EndOfDeclaration
Mukatar Set_tatkribute:c
futatoraenerate ewer
Renames
SpecificationEpilag
SpecificationPralog
Wisibility Public
Class
Lu-::att:l 1] 4 | Apply ||

[

Figure 19 Setting the DeclarationPosition for a static attribute to BeforeClassRecord

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 41/220

Attribute : public_Static_Integer_After_ Record in cl K|

Eenerall Fielatil:unsl Tags FProperties

Filk
|_ e = Al " Commaon " Overidden " Locally Overidden |

CG =
= ada_CG
=l Attribute
Accessor Gek_tattribute:c
ACcessorGenarate D
DeclarationPosition _ AfterClassRecord j
ImplementationEpilog Deefault
|BeforeClassRecord
ImplementationProlog iAfterC|acsR arord
e n
Mukatar Set_tatkribute:c
futatoraenerate ewer
Renames b
SpecificationEpilag
SpecificationPralog
Wisibility Public
Class j

Lu-::att:l 1] 4 | Apply ||

Figure 20 Setting the DeclarationPosition for a static attribute to AfterClassRecord

——++ clazg class name
package class nawe is

type class_name_t;
type class_name_acc_t is access all class nawe _tr!

-- Public Variables/Constants —————-—-————--————-
public_Static_Boolean Before Record @ Integer: ——++ attribute public Static Boolean Before Record

type class_name_t is tagged null record:;

—- Public Variables/Constants ————————————————
public _Static_Integer After FRecord : Integer; ——++ attribute public Static Integer After Record

——Puklic Fields/Variables &dccessolrs —————————-—
private

end class nesme:

Figure 21. Generated code for static attributes with overridden DeclarationPosition property

4.2.6. Non-Predefined Attribute Types

The attribute definitions can be entered directly in the “Ada declaration” field instead of choosing a
predefined type. In this case, it might be necessary to set the two properties
“Ada_CG.Attribute.AccessorGenerate” and “Ada_CG.Attribute.MutatorGenerate” to false so that the
default accessors are not generated.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 42/220

Attribute : my_String in class_name

General I Fielatil:unsl Tags I F'rl:upertiesl

Mame: Im_I,I_S trirg LI

Stereotype:; I j

— Attribute type
¥ Use existing type

Thpe: IInteger j EI

~isibility
&+ Public " Private
Multplicity [= & Ordered

[T Congtant [Reference [T Static

[ritial ' alue:; I"testte > |

D ezcription;

Thiz i a string attribute

Lu-::att:l Ok | Apply ||

N

Figure 22: Non-static attribute definition.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 43/220

Attribute : my_Static_String in class_name

General I Fielatil:unsl Tags I F'rl:upertiesl

Mame: Ihy_Statin:_String L |
Stereotype:; I j

— Attribute type

[Use existing type

&da Declaration: |String (1..8) ;I

=
— Yizihility
* Public " Private

Fulbiplicity |-| j | Wi

[T | Constant [T | Eefererce v Static

I mitial % alue: I"stpuhlin:" |

D ezcription;

Thiz iz a public sting variable

Lu-::att:l Ok | Apply ||

Figure 23: Static attribute definition.

——++ class class name
package class name is

type class name t)
type class name acc t is access all class name t;

type class name ¢ is tagged

record
-— Fields --
—— Thi=z 15 3 string sttribute
wy_3cring : Integer := "testtest'; ——++ attribute my String

end record:

—— Public Variakles Constants --——————————————-

—— This is & public string variahle

my_3tatic String : 3tring (1..8) := "stpublic'; ——++ attribute my Static String

——Public Fields/Variables dccessors ————-————-

private

end class name;

Figure 24: The package specification for non-predefined type attributes.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 44/220

4.2.7.

Guarded Attributes

Access to attributes can be guarded by setting the “isGuarded” property. There are two possible
settings. One setting is “all” which guards both the accessor and mutator of the attribute. The other
setting is “mutator” which will only guard the mutator.

Attribute : my_Boolean in class_name

Generall Helatin:nnsl Tage Froperties |

E

Filter
|_ o al © Common © Overidden @ Localy Overidden |

ElCG

El| Attribute
Accessar Get_gatkribute:c
Anirmate E

CorbaRealizingficcessor $atkribute

CorbaRealizingMutatar | $atkribute

Mukakor

Generate E
Implementation Dref aulk
IsConst E
IsGuarded all

Set_fattribute:c

Class

Tvpe

Ada_CG

Lu[:atﬂl 1].4 |

Aol | |

Figure 25: Guarding an Attribute.

When an attribute is guarded, a mutex is used to synchronize access to the attribute. Depending on
the value of the “Ada_CG.<Class|Package>.UseAda83Framework property of the attribute owner,

an Ada83 task based Mutex or an Ada95 protected object based Mutex will be used.

4.2.8. <<Discriminant>> Attributes

By setting a class instance attribute or a struct attribute stereotype to <<Discriminant>>, it is
possible to generate a discriminated record type.

Figure 26 Modeling a class with a <<Discriminant>> attribute

Entire Madel Yiew 7

El--D Discriminant_akkributes
{:l Camponents
{:l Chject Model Diagrams
I__—_H:l Packages

Elﬁ Defaulk

L——_Ig Classes

Elg class_0

El{) Types

- Attributes
I By Ink_Array

&)

i 3 INE_Array

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 45/220

Type : Int_Array in class_D K|

General Declaration | Fielatiu:unsl Tags I P'ru:upertiesl

Declaration:

00 type %= iz array(Integer range <>] of Integer: -

w
4| | 5

Lu[:att:l 0Ok | Apply ||

Figure 27 Defining an unconstrained array type

Attribute : Size in class_0 k|

General | Helatin:nnsl Tags I F'rn:npertiesl

M ame: |Size LI
B (D i=criminan j

— Attnbute type
¥ Lze existing type

Type: IInteger j EI

~Visibility
&+ Public " Private
Muliglicity |7 =l T drdered

[~ Constant [~ Reference [Static

[ritial % alue: I |

Dezcription;

|

Lu[:atﬂl 0K | Apply ||

Figure 28 Setting an attribute stereotype to <<Discriminant>>

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 46/220

Attribute : My_Int_Array in class_0

General | Helatiunsl Tags I F'r-:upertiesl

M ame: IM_I,I_Int_.-i'-.rra_I,I
Stereotype: I j
— aittribute type

[T Usze existing tvpe

Ada Declaration; |IkaSs L=y 4

— Wizibility

* Public " Private
R uiltiplicity |1 j ™ Ordered
™| Constant ™| Beference [~ Static
[ritial % aluie:; I |
Description:

Locate | 1].4 | Apply | |

N

Figure 29 Defining an attribute with a type definition based on the class record type
discriminant

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 47/220

——++ class class O
package class 0 is

type class 0 © |
Jige : Integer ——++ gttribute Size
1

type class 0 acc t iz access all class 0 t;

——Pubklic t¥pesS —————————
type Int Array is array(Integer range <>) of Integer;

type class 0 © |

end record;
private

end class 0;

Jige : Integer ——++ gttribute Size
1 i= tagged
record
—— Fields —-
My Int Array : Int Array(l..3ize); -—++ attribute My Int Array

Figure 30 Generated code for a class with a discriminant

Note that no setter is generated for attributes with a <<Discriminant>> stereotype, no matter the

setting of its Ada_CG.Attribute.MutatorGenerate property.

4.2.9. Overriding and redefining discriminant attributes

If the attribute is a <<Discriminant>> non-static attribute and it has an initial value and it is defined
as a <<Discriminant>> attribute in at least one of its parent classes then the attribute may be
generated as a constraint on the parent discriminant, as a new discriminant hiding the one from the

parent or as both.

This behavior is controlled by using the “Ada_CG.Attribute.RedefiningDiscriminantPolicy “ and

“Ada_CG.Attribute.ParentDiscriminantValue” properties.

Entire Model View ~

L2 Discriminant Overriding
<1 Components
+-1 Obiject Model Diagrams

-1 Packages
-3 Default

Base_Class

-8B Classes
--B Base Class

---m Attributes
H «Discriminant» overridden

H «Discriminant» overridden and redefined
«Discriminant» redefined
H reqular attribute
-8B Derived Class

- Attributes
H «Discriminant» overridden

Derived_Class

H «Discriminant» overridden and redefined
B «Discriminant» redefined

- SuperClasses
T Base Class

Ol TP r+| s PEDA

+-B3 PredefinedTypes (REF)

Figure 31 Class with overriding and redefining discriminant

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 48/220

Attribute : overridden in Derived_Class

General | Description | Relations | Tags ~ Properties

View Overridden -

- Ada_CG

= Attribute
ParentDiscriminantValue 10
RedefiningDiscriminantPolicy | AsOverriding

Figure 32 Overriding discriminant

Attribute : overridden_and_redefined in Derived_Class

General | Description | Relations | Tags Properties

View Overridden -

=l Attribute

ParentDiscriminantValue 100
RedefiningDiscriminantPolicy | AsNewAndQOverriding

Figure 33 Overriding and redefining discriminant

Attribute : redefined in Derived_Class

General | Description | Relations | Tags Properties

View Qverridden -

- Ada_CG
=l Attribute
RedefiningDiscriminantPolicy | AsNew

Figure 34 Redefining discriminant

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 49/220

With Base_Class;

-—-t++ class Derived Class
package Derived Class is

type Derived Class t (
overridden_and redefined : Integer; --++ attribute overridden and redefined
redefined : Integer -——++ attribute redefined

)i

type Derived Class_acc t is access all Derived Class_t;

type Derived Class_t (
overridden and redefined : Integer; --++ attribute overridden and redefined
redefined : Integer -—-++ attribute redefined B B
) is new Base_Class.Base_Class_t(
overridden => 10, -—++ attribute overridden
overridden_and redefined => 100 --++ attribute overridden and redefined
) With null record: - -

private

end Derived Class;

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 50/220

4.3.

Operations

Operations created in Rhapsody will result in Ada functions if there is a return type, or procedures if
there is not. In this example, myOperation will be a function with two parameters that returns an
Integer. And myProc will be a procedure with one parameter.

Entire Model Yiew

-

=--f] Operations
-1 Components

E|D Obiject Model Diagrams

@ miodell
EI{:I Packages
E|E| Default

B B classes

ﬁ PredefinedTypes (RO}

class_name

B mvProciInteger argl)

+myOperation(integer arg1 Boolean arg2): Integer
+myProc{integer argl):void

Pe s FED@mA,

Figure 35: Operations defined on a class.

Primitive Operation : myDperation in class_ n

I arne: iy O peration L |
Sterent_upe:l j & Fegular
Visibiity: | Public || Instantiation
Type: IF'rimitive O peration j " Template _I
— Returns
v Use existing bupe
Tupe: IInteger j gl
— Modifiers
[T %itwal [Static [T Inline [T Constant [Abstract
Arguments; i Hr o+
Marme | Tvpe | Yalue | Direction |
E{'] argl Inteqger In
&b arg2 Boolean In
<Mew =
D eszcription;
Locate | 1] 4 | Apply ||

Figure 36: Operation Features

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 51/220

Primitive Operation : myDOperation in class_name A

General Implementation | Helatiu:unsl Tags I F'ru:upertiesl

IInteger myOperation(| nteger B oolean]

00 return 5 il

| _>|;I

Lu[:att:l 0Ok | Apply ||

Figure 37: The implementation of myOperation.

Primitive Operation : myDperation in class_name £

General | Implementation | Relations | Tags Properties

Filker
|— all * Commaon " Overidden " Locally Overidden |

G
= ada_CG

| operation

EntryCondition

LocalvariablesDeclaration myLocal : Boolean 1= TRUE;

Renames
ThisByAroess D
wWebComponents

Locate | 1] 4 | Apply ||

Figure 38: The local variables for myOperation.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 52/220

-—++ class class name
package class name is

type class name T2

type class name ace €L is access all class name t!

type class name € is tagged null record:

——Puklic Functions Procedures section ———————-
——++ opergtion mylperadtion(Integer, Boolean)

function wyOperation [(this : in class name €
argl @ in Integer:
arg2 : in Boolean

] return Integer:
——++ operation myProciInteger)
procedure mwyProc |
argl : in Integer
1

private

end class namwe:

Figure 39: Operations in the package specification.

——++ class class name
package body clsss nawme is

——FunctionsProcedures sectiol ———————————————

function mwyCperation (this : in class name €
argl : in Integer:;
args : in Boolean
] return Integer is
myLocal @ Boolean := TRUE:
hegin

——+[operation mylperationiInteger, Boolean)
return 5;
-]

end mwyoperation:

procedure mwyProc |
argl : in Integer
1 is
hegin
nall;
——+[operation mvlrociInteoger)

——t]
end mwyProc;

end class name;

Figure 40: Operations in the package body.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 53/220

In the operation bodies, the implementation provided in Rhapsody has been used for myOperation,
but an appropriate default statement has been created for myProc because the implementation field
in Rhapsody has been left blank. Any lines entered in this implementation field will replace this
default statement.

4.3.1. Guarded operations

An operation can be made guarded by setting the “Concurrency” property to guarded.

Primitive Operation : myDOperation in class_name k|
Generall Implementatiunl Helatiunsl Tage Froperties
|—F|Iter Al % Comman " Overidden i~ Locally Overidden
= i T
El operation
Animate E

....... oo

...... YariableLengthArgumentList D
Ada_CG
WebComponents

Lucatel 1].4 | Apply ||

Figure 41. Making an Operation Guarded.

When an operation is guarded, a mutex is used to synchronize access to the operation. Depending
on the value of the “Ada_CG.<Class|Package>.UseAda83Framework property of the operation
owner, an Ada83 task based Mutex or an Ada95 protected object based Mutex will be used.

4.3.2. Template operations and their instantiations

The mechanism for supporting template operations and their instantiations is very similar to the one
available for template classes and their instantiation.

-] Packages
Eﬁ Generic_Op_Instantiation_Pkg
: EE Functions
- B Seneric_Function_InstantiationiInteger regular_param)
Eﬁ Generic_Op_Pka
EE Functions
- B Generic_FunctionfInteger regular_param)

Figure 42 Modeling atemplate operation and a template operation instantiation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 54/220

Primitive Operation : Generic_Function in Gen |

General | Implementation Fielati-:unsl Tags I F'rl:upertiesl

M arne: IGeneric_Functinn Ll
Stereotype: I j
visihilty: [Public =]

— Returns

[+ Use existing type

Tupe: IInteger j EI

— Modifiers Type
| Statin::_‘ ’}' Regular © Instantiation (= Templatelj

Arguments: i X1+ +
Mame | Twpe | Walue | Direction
& regular... Inkeger In
<MNewx

<] |]

Dezcription:

Lucatﬂl Ok | Apply ||

Figure 43 features of a template operation

Template Arguments ﬂ

Formal Arguments:

D efinitian Default Yalue | ﬂl
LI

Cancel |

Figure 44 setting up template parameters for a template operation

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 55/220

——+t+ package Generiq_DR_Pkg
package Generic Op Pkg is

——Pukhlic Functions/Procedures section ————————
—-—t+ operation Generic Funciion(Integer)

generic
gen parsm : Integer:
function Generic Function |
regular parsm : in Integer

1 return Integer;

private

end Generic Op Pkg:

Figure 45 generated code for a template operation specification

——1++ package Generiq_ﬂp_Pkg
package body Gensric Op Pky is

——Functions /Procedures section ———————————————
function Generic Function |

regular param @ in Integer
] return Integer is

hegin
return 0O;
-—+[operation Generic Functicon{Integer)

__+_'|I
end Generic Function;

end Generic Op Pkg:

-—+[operation Generic Function(Integer).Variables

Figure 46 generated code for a template operation implementation

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 56/220

Primitive Operation : Generic_Function_Insta]

M arne:
Sterentype: I j
visihilty: [Public =]
— Returns

[+ Use existing type

Tupe: IInteger j g‘l
— Modifiers Type

[~ Static ’}' Regular (% Instantiation © Template |
Arguments: i X+ +
Mame | Twpe | Walue | Direction

& regular... Inkeger In
<MNewx

Jl [2]

Dezcription:
Locate | Ok | Apply | |

Figure 47 features of atemplate operation instantiation

Template Arguments

Template Mame:

Actual Arguments;

M ame

| Defintion | Value [add |

ger_pararm

Integer b

u|m

Cancel |

x|

Figure 48 setting up template arguments for a template operation instantiation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 57/220

——++ package Generic Op Instantiation Pkyg
package Generic Op Instantiation FPkg is

—-—Public Functions/Procedures section —-————-—-—

——++ operdtion Gereric Funpction Instantigtion(Integer)

function Generic_Funct_iDn_Insta?ltiatinn iz new Generic Op Pkg.Generic Functiond
gen_param =x> 5

I
private

end Generic Op Instantiation Pkg:

Figure 49 generated code for a template operation instantiation

4.3.3. Access parameters

Ada95 introduced the concept of access parameters. In order to set the mode of a parameter to be
“access”, as opposed to “in”, “out’, or “in out”, first the package in which is defined the operation
has to generate Ada95 code (and not Ada83), second you will need to edit the properties of the

parameter to set the AsAccess property to true.

Argument myOperation{Integer,Boolean).0 prof 5[

Propertiez I

Filter
|_ € A4l Common ¢ Ovemidden ¢ Locally Overidden |

| ada_CG

Elf Argument

Classi\Wide

O

ak. I Eanzel Help

Figure 50 Making a parameter passing mode "access"

You can also choose to pass the this parameter as an access mode parameter for a non-static
operation, to do this you need to edit the properties of the operation to set the ThisByAccess
property to true.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 58/220

Primitive Operation : myOperation in class_name]

Generall Implementatinnl Fielaticunsl Tag: Properties

Filk
|_ e Al ¢ Common ™ Overidden " Locally Overidden |

| G

=| ada_CG

| operation

EntryCondition

LocalvariablesDeclaration rvLocal @ Boolean 1= TRLE;

Renames

¥

WebComponents

Locate |

ok | Aopiy ||

Figure 51

Making an operation this parameter passing mode "access"

type
type

type

——-Puklic Functions/sProcedures section ————————

——++ operation mylperation(Integer, Boolean)
function myQOperation (this : access class name t:
argl : access Integer:
args : in Boolean

I return Integer:

class name t;

claszss newme acc t is access all class nane L

class namwe t is tagyged null record:

Figure 52 Operation using access mode parameters

4.3.4. Class-wide parameters

In order to specify whether a parameter is to be passed class-wide or not, you will need to set its
“ClassWide” property to true.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 59/220

Argument myOperation{Integer,Boolean).0 properktie

Propertiez I

Filter
|— &l % Common ¢ Ovemidden ¢ Locally Overidden |

X

=
=

Ada_CG

Argument

AsAccess

O

x|

Eanzel

Help

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 60/220

4.4, Dependencies
4.4.1. <<Usage>> dependencies

Dependencies stereotyped as <<Usage>> in Rhapsody create “With” statements in the generated
Ada packages. If the “Ada_CG.Dependency.CreateUseStatement” property is set to “Use”, a “Use”
statement will also be created for the target package.lf it is set to “UseType”, a “Use Type”
statement will also be created for the target type. By default, the “With” and “Use” statements will
appear in the package specification. They can be moved to the package body by setting the
“CG.Dependency.UsageType” property to “Implementation”.

package 0
class 0
clasg 2
T
" -]
. =
bl |’J
<<llsgge=x=
<<lgages> K
usé, B ==l lGage=>
e . s bédy dependency
actor_3 L""—.‘_ <=zlsage=> " " !
class_1
:

Figure 53. <<Usage>> dependencies in IBM® Rational® Rhapsody® in Ada.

Dependency : class_Z2 in class_1]

General | Tags Froperties |

Filt
|_ e Al = Comman £ Overidden " Locally Overidden |

S o
El| Dependency

...... Implementation j
=l Ada_CG Specification

51ﬁ'|EI|E=F|‘|EF|t-Eltil:lrl
Existence

El| Cependency

CreatelsesStatement | Mane

Locate 1].4 Apply

Figure 54: An implementation dependency.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 61/220

Dependency : class_0in class_1

%]

General | Tags PmpeMesl

Filk
|_ e ol = Commaon " Ovemidden " Locally Overidden

S
=

Locate | 1].4 | apply] |

CG

Dependency

UsageTvpe Specification

Ada_CG

Dependency

se

[

.Nnne
UseTvpe

Figure 55: Creating a "Use" statement.

With actor 3;
With class 0;
With package 0;
Use class 0;

——++ class class 1
package class 1 i=s

type class 1 t;
type class 1 acc t ig access all class 1 t»

type class 1 © is tagged null record;

——++ operation Message O)

private

end class 1;

——Puklic Functions/Procedures section ———————-—

procedure Message 0 (this @ in out class 1 t);

Figure 56: The package specification for dependencies.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 62/220

With package O.class 2:;

——++ class class 1
package body clsss 1 is

——-Functionz Procedures sectioh ———————————————
procedure Message 0 (this : in out class 1 t) is
begin

null:;

——+[operdtion Mezzage O()

-]
end Message 0O

end class_l:

Figure 57: The package body for dependencies.

Note that elaboration pragmas can be generated for the supplier class or package of the
dependency in the client class or package by setting the appropriate properties on the dependency :

e Ada_CG.Dependency.GeneratePragmaElaborate
e Ada_CG.Dependency.GeneratePragmaElaborateAll

4.4.2. <<Renames>> dependencies

Dependencies stereotyped as <<Renames> in Rhapsody create “renames” statements in the
generated Ada packages.

Valid <<Renames>> dependencies can be modeled between any two model elements of the same
kind among the following ones :

e Packages
e Classes
e Operations
e Attributes
o Defined on a package
o Defined on a class with a static modifier

Be aware that using this feature on classes limits what you can do with the renaming class. More
specifically :

e You cannot derive other classes from

e Adding attributes or operations to it has no effect on the generated code
Note that for operations :

e Signatures have to be compatible

e |tis possible to have a “renaming as spec” or a “renaming as body” behavior depending on
the setting of the “CG.Dependency.UsageType” property (Specification or Implementation).

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 63/220

Only <<renames>> dependencies between classes and packages can be drawn on the Object
Model Diagrams of Rhapsody. In order to model <<renames>> dependencies between two
attributes or two operations, one has to use the context menu in the Rhapsody browser.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 64/220

4.5. Actors

Actors generate exactly the same code as classes.

Entire Model Yiew =

E--g Ackors

-] Components

#-(] Object Model Diagrams

ED Packages
=-E9 Default

Class_0O

El ?% actors

L Super_Ackor
% supef,_Actor

E|§ Classes
wH Cass_o
[—:Iﬁ packaqe_1

El?% Ackors
Elﬁ &ctor_0
== Attributes

packagé&_‘l | e 4

o attr_t
@ private_static_attr
[y} Dependencies

= Operations

- [operation()

‘.. B static_operation()
- Superfictors

£ PredefinedTypes (RO)

Usages
O &

| TR r3 s FEDA|

Actor 0

-2 Profiles

Figure 58: An Actor in Rhapsody.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 65/220

With Class 0O:
With Zuper Actor;

—-—++ 2ctor Actor 0
package package 1.4Letor 0 is

type Loctor O t)
type Lctor 0 acc t is access all Actor 0Ot

type Actor 0 t is new Super Letor.3uper Letor t with
record

-- Fields --
attr 1 : Integer: -—-++ attribute attr 1

end record;

—— Dubklic Varigbhles/Constants —-———————————————
—-Public Functions/Procedures section —----——-———-
——++ operation operdtion()

procedure operation (this : in out Actor 0 t):

--++ operation static operation()
procedure static operation;

—-Public Fields/Variahles accessors ————-—-————-—
pPragma inline (get_attr 1);:

procedure set _attr 1 (this : in out ALctor 0 t: wvalue
Pragma inline (set_attr 1):

private
—-Private Fields /Variables 3ccessors —--——-——————-—
function get private static_attr return Integer;

pPragma inline (get priwvate static_attr]:

procedure sSet private static attr (value @ in Integer):
pPragma inline (set_priwvate static_attr]:

end package 1.Lctor 0;

private static attr : Integer; --++ attribute private static attr

function get _attr 1 (this : in ALetor 0 t) return Integer;

in Integer):

Figure 59: Package specification for an Actor.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 66/220

——++ actor Actor O
package body package 1.Actor 0O is

——Functions /Procedures section ———————————————
procedure operation (this : in out Actor 0 t) is
——+[operation operation().Variakles

——+[operation operation()

__+_'|I
end operation;

Procedure static operation is
-—-+[operation static operadtion().Variables

-—-+[operation static operation()

__+_'|I
end static operation;

——Fields/ Variagkles accessors ———————————————-—
function get _attr 1(this : in Actor 0 t) return Integer is
hegin
return this.atcr 1:
end get _attr 1;

procedure set attr 1 (this @ in out Actor 0 £ walue : in Integer) is
hegin
this.attr 1 := wvalue;

end set_attr 1;

function get private static attr return Integer is
hegin

return private static_attr;
end get private static_attr:

bProcedure sSet private static attr (walue @ in Integer) is
hegin
private static attr := wvalue;

end set private static_attr:

end package 1.Actor 0:

Figure 60: Package body for an Actor.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 67/220

4.6. Packages

Like classes, packages in Rhapsody will also be represented as Ada packages. A package in
Rhapsody can have functions and variables, which will be handled in the same manner as static
operations and static attributes on a class. A package can also have initialization code.

In this example, the package specification will be named “myPackage.ads” and the package body
will be “myPackage.adb”.

Entire Model Yiew w
E"D Package

D Components

D Obiject Model Diagrams

B Packages
|_:_|E| Default
-] Packages
E‘& nry_Package

=~ Functions
----- B mv_Function{Integer argument_0}
o B my_Procedured)
= Yariables
..... E m‘:,-'_EDI:IlEEIn
e E my_Inkeger

Figure 61: A package defined in Rhapsody.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 68/220

——++ bpackage Default::iny Package
package wy Package is

—— Public Variagkles/Constants - ——————————————
y Integer : Integer: --++ attrikute my Integer

wy_ Boolean @ Boolean; --++ attribute my Boolean

——Puklic FunctionssProcedures section ———————-
——1+ operdtion vy FunctioniInteger)
function my_FuncﬁEDn [
argument 0 @ in Integer
] return Eoolean;

——1+ operdtion my Drocedurer)
Procedure my Procedure;

——Puklic Fields/Varighles 3ccesscols ——————————
function get my Integer return Integer:

Pragma inline (get_my Integer):

pProcedure set wy Integer (walue : in Integer):
Pragma inline (set_my Integer):

function get _my EBoolean return Boolean:
Pragma inline (get_my Boolean):

Procedure set wy Boolean (walue : in Boolean)
Pragma inline (sSet_my Boolean):

private

end mwy Package;

Figure 62: The package specification for a Rhapsody package.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 69/220

4.6.1.

——++ package Default: iy Package

package body my Package is

——Functions/Procedures section ———————————————
function wy Function |
argument 0 @ in Integer
1 return Eoolean is
——+[operation my Function({Integer).Variables

——+]
bhegin

return true;

——+[operation my Function{Integer)

-]
end wy Function:

procedure my Procedure is
——+[operation my Procedure().Variables

——+[operation my Procedure()

-]
end mwy Procedure;

——Fields/Variahles 3dccessors ————————————————
function get _my Integer return Integer is
bhegin

return my_ Integer:
end get my Integer;

procedure set_mwmy Integer [valus @ in Integer) is
bhegin
wmy_Integer := walue:

end set_my Integer;

function get my Boolean return EBoolean is
bhegin

return my_ Boolean:
end get my Boolean;

procedure set_wy Eoolean [valus @ in Boolean) is
bhegin
wy_EBoolean := walue:

end set_my Boolean;

end my_ Package:

Figure 63: The package body for a Rhapsody package.

Child Packages

When working with Ada 95, classes and packages are also used as the namespace for classes
and packages contained within them. This containment is used to create child packages. In Ada
83, this containment does not have any effect.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 70/220

Entire Maodel Wiew <
El--D Child_Packages
{:l Components
{:l Chbject Model Diagrams
EI{:l Packages
Elﬁ Defaulk
EIE Classes
E class_0
[—:Iﬁ my_Package
-] Packages
=B my_sub_Package
=B classes
=-H cass_t
E|§ Classes

Figure 64: Packages and classes used as namespaces.

——++ class class l::class =
package wy Package.my Sub Package.class l.class 2 1is

type class 2 t;
type class 2 acc t is access all class 2 t;

type class 2 t is tagged null record:

private

end my Package.wy Sub Package.class l.class 2:

Figure 65: The package specification for class_2.

Defaultsclazs_0.ads
my_Packagemy_Sub_Package'clazs 1.adz
my_Fackage'my_Sub_Package'clazs 1\wclazs 2 adz
CefaultsDrefaul. ads

my_Fackags\my_Package ads
my_Fackags'my_Sub_Packagetmy_Sub_Package. adz

Figure 66: The resulting files including the namespaces.

In this example, the Ada package name is prefixed by the parent names. For example, class_2 is
contained in class_1, which is found in my_Sub_Package, which itself if located inside of
my_Package. Therefore the package name for class_2 is
my_Package.my_Sub_Package.class_1.class_2. This package will be found in the configuration
directory in my_Package/my_Sub_Package/class_1.

Also notice that class_0 is located in the “Default” package, and therefore is not considered as a
child package.

4.6.2. Nested Packages

Child packages are in the namespace of their parent, but they are defined in separate files. Nested
packages are not only in the namespace of their parent, but they are also defined in the same files
as their parent.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 71/220

Ell:l Packages
E Elﬁ Parent_Package
E Elg Classes
Q Mested_Class
El{:l Packages
b ﬁ Mested_Package

Figure 67: Example of a nested package and a nested class.

In order to generate nested packages, one has to set the Ada_CG.Package.IsNested property for a
package or the Ada_CG.Class.IsNested property for a class.

Class : Mested_Class in Parent_Package |

Generall .-'-‘-.ttril:uutesl Dperatiunsl Helatiunsl Tags Properties |

Filker
|_ = al " Common " Overnidden " Locally Overidden |

| ada_CG ;|
El| Class

accessTypeMame

Final D

GeneratebccessType zeneral

GenerateRecordType

ImplementationEpilog

ImplementationPragmas

ImplementationPragmasInContextClause

ImplementationPralog

Implementstatechart

InitializationZode

O
IsLirited a
™
(o

=l

Locate | 1] 4 | Apply ||

Figure 68: Setting a class to be generated as a nested package.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 72/220

Locate |

Eenerall Fielatil:unsl Tags FProperties |

Package : Nested_Package in Parent_Package A

Filk
|_ e &= Al " Common i

Overridden

" Locally Overidden |

E| ada_CG

[

El| Package

ContributesTolamespace

EventsBaselD

—_

ImplementationEpilog

ImplementationPragmas

ImplementationPragmasInContexkClause

ImplementationProlog

InitializationCode

IsPrivate

O

hd

ok | aopiy ||

Figure 69: Setting a package to be generated as a nested package.

To determine in which section of the parent package the specification of the nested package will be
generated, one can use the Ada_CG.Package.NestingVisibility property for a package, or the
Ada_CG.Class.NestingVisibility property for a class.

Package : Mested_Package in Parent_Package £

Generall Helatiansl Tage Froperties |

Locate |

Filter
|_ Lo | " Carmmon i~ Overnidden " Locally Dwveridden
E| ada_CG il
| Package
ContributesToNamespace E

EventsBaselD

—_

ImplementationEpilog

ImplementationPragmas

ImplementationPragmasInContextClause

ImplementationPralog

InitializationCode

Ishlested

IsPrivate

Meskingvisibility

ok | aoply ||

F‘rivate

Body

Figure 70: Controlling the location of the specification of a nested package

Note that any package or class defined inside of a package or class that is itself nested will be
generated as a nested package too.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 73/220

4.6.3.

Private Packages

Packages and classes can be defined as private via the use of the Ada_CG.Package.IsPrivate
property for packages and Ada_CG.Class.IsPrivate property for classes.

E‘EJ F

El{:l Packages
arent_Plkg
BB Classes
- B Private_chid_Class
EI{:l Packages

& Private_Child_Package

Figure 71. Exampe of a private package and a private class.

Class : Private_Child_Class in Parent_Pkg

Generall .-'f-.ttril:uutesl I:Iperatil:unsl Fielatil:unsl Tags Properties

Filk
|_ e Lo " Commaon

" Owveridden £ Locally Overidden

=
=

Ada_CG

Class

AccessTypeMame

Final

GeneratefccessType

General

GenerateRecordType

ImplementationEpilog

ImplementationPragmas

ImplementationPragmasInContexkClause

ImplementationProlog

Implementstatechart

InitializationCode

IsLirnited

Ishested

Lucatel 1].4 | Apply ||

Figure 72: Setting a class to be generated as a private package

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 74/220

Package : Private_Child_Package in Parent_Pkqg K|

Eenerall Fielatil:unsl Tags FProperties |

Filker
|_ Lo £ Common " Overidden " Locally Overidden |
=l Ada_CG ;l
El| Package
ContributesToNamespace E
EventsBaselD 1

ImplementationEpilog

ImplementationPragmas

ImplementationPragmasinContexkClause

ImplementationProlog

InitializationZode

Ishested D

Lu-::att:l Ok | Apply ||

Figure 73: Setting a package to be generated as a private package

--++ class Private Child Class
Private package Parent Pkg.Priwvate Child Classz is

type Private Child Class t;
type Private Child Class acc t is access all Private Child Class t;

type Private Child Class t is tagged null record;

private

end Parent Pkg.Private Child Class:

Figure 74: Specification of a private class

-—-++ package Parent Pkg::FPrivate Child Package
private package Parent Pkg.Priwvate Child Package is

private

end Parent Pkg.Private Child Package:

Figure 75: Specification of a private package

Note that a nested class or package cannot be private.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 75/220

4.6.4. Elaboration Pragmas

Via the use of appropriate tags, different pragmas can be generated for a class or a package

Entire Model View <

EI--Q Pragmas
{:l Components
{:l Cbject Model Diagrams
EI{:I Packages
- ENEm
- 2B Classes
Q Class_with_Flaboration_Pragmas
=1+ Packages
_ -1 Pka_with_Elaboration_Pragmas
- PredefinedTypes (RO)
=2 Profiles
#-F AdaCodeGeneration (RO)

Figure 76: Example of a class and a package with elaboration pragmas

Class : Class_With_Elaboration_Pragmas in De A

Generall .-'-‘-.ttril:nutesl Dperatiansl Fielations: Tags |F'rn:||:|erties|

B K

=l| adaCodeGeneration
= Class

generakePragmaklaborateBody

generatePragmaPreelaborate

HEA

generatePragmaPure

....... -l

Lu[:att:l 0Ok | Apply ||

Figure 77: Enabling generation of elaboration pragmas on a class

Package : Pkg_With_Elaboration_Pragmas in [£

Generall Fielations: Tags |F'rn:-|:|erties|

=l| adaCodeGeneration
= Package

generakePragmaklaborg

generatePragmaPreelak

HEA

generatePragmaPure

=

Lu[:att:l 1] 4 |4\!l;|]pl'g.|r

Figure 78: Enabling generation of elaboration pragmas on a package

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 76/220

-—++ class Class With Elaboration Pragmas
package Class With Elshoration Fragmas is

pragma elshorate body;
pragma preelaborate;
pragma pure:

type Class With Elshoration Pragmas t:
type Class With Elshoration Pragmas_acc t 1s access all Class With Elshoration Pragmas t:

type Class With Elshoration Pragmss t is tagged null record:

private

end Class With Elaboration Pragmas:

Figure 79: Specificaton of a class with elaboration pragmas

—-—t+ package Defauli::Pkg With Elaboration Pragmas
package Pkg With Elshoration Pragmas is

pragma =laborate body:
pragma preelaborate:
pragma pure:;

private

end Pky With Elshoration Pragmas:

Figure 80: Specificaton of a package with elaboration pragmas

Please read the section on <<Usage>> dependencies to see how to generate “elaborate” and
“elaborate_all” pragmas.

Note that other pragmas can be generated for a class or a package via the use of the following
properties :

e Foraclass

o Ada_CG.Class.SpecificationPragmas

o Ada_CG.Class.SpecificationPragmasinContextClause

o Ada_CG.Class.ImplementationPragmas

o Ada_CG.Class.ImplementationPragmasinContextClause
e For a package

o Ada_CG.Package.SpecificationPragmas

o Ada_CG.Package.SpecificationPragmasinContextClause

o Ada_CG.Package.ImplementationPragmas

o Ada_CG.Package.ImplementationPragmasinContextClause

4.6.5. <<Container>> Packages

Any class or package that is defined within a package stereotyped as <<Container>> will not
include the package in its namespace.

In the following example, Package 1 is stereotyped <<Container>>.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 77/220

I__—_l{:l Packages
Elﬁ Package_0D
El{:l Packages
Elﬁ package_1
=-B lasses
Q class_#
ED Packages
Eﬁ package_Z
E|§ Classes
Q class_B

Figure 81: A Sample <<Container>> Package.

In this example, every package is generated, but the namespaces for Class_A, Package 2, and
Class_B do not include Package 1.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 78/220

4.7. Types

4.7.1.

Type declaration

Types can be created in either packages or classes. In both cases, the definition of the type is
taken from the “Ada declaration” field,. In the declaration, a “%s” can be inserted to represent the

name of the type.

Entire Model Wiew <

=g Types
- Components
l:] Object Model Diagrams
EH:] Packages

L——_IEJ Crefaulk
-8 Classes
=8 dass_t
E{} Types
¢ ey _Private_Tvpe
gy I
I:—]EJ package_1
E|¢' Types
----- £ private_Type
e £ public_Type

Figure 82: Types defined in Rhapsody.

Type : my_Private_Type in class_1

General I Declarati-:unl Fielatil:unsl Tags I F'rl:upertiesl

M arme;

Sterentype: I j
Kind: ILanguage j
D ezcription;

Locate

ok | aoply ||

Drefinition of my private twpe.

Type : my_Private_Type in class_1

Declaration:

General Declaration |Helatinns| Tagz I Properties

K1 —

Locate |

00 subtype %= iz Integer range 1..5:

ok | aoply ||

sl

Figure 83: The declaration of a private type on a class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 79/220

Type : my_Type in class_1 A

General I Declarati-:unl Fielatil:unsl Tags I F'rl:upertiesl

I arne; Im_l,l_T_l,lpE LI

Sterentype: I j
Kind: ILanguage j
D ezcription;

Thiz iz the declaration of my bpe.

Lucatel 1].4 | Apply ||

Type : my_Type in class_1 |
General Declaration |Fie|ati|:uns| Tags I F'rl:upertiesl

Declaration:

oo F:jl']:_lE 32 ig new Integer range 0..5; &

T o

Lucatel 1].4 | Apply ||

Figure 84: The declaration of a public type on a class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 80/220

Type : private_Type in package_1 |

General I Declarati-:unl Fielatil:unsl Tags I F'rl:upertiesl

M arme; LI
Sterentype: I j

Kind: ILanguage j

D ezcription;

Declaration of the private tope.

Lucatel 1].4 | Apply ||

Type : private_Type in package_1 |
General Declaration |Fie|ati|:uns| Tags I F'rl:upertiesl

Declaration:

oo F:jl']:_lE 32 is new Pozitive: &

T o

Lucatel 1].4 | Apply ||

Figure 85: The declaration of a private type on a package.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 81/220

Type : public_Type in package_1

General I Declarati-:unl Fielatil:unsl Tags I F'rl:upertiesl

L

M ame: LI
Sterentype: I j

Kind: ILanguage j

D ezcription;

The declaration of the public type.

Lucatel 1].4 | Apply ||

Type : public_Type in package_1 |

General Declaration |Fie|ati|:uns| Tags I F'rl:upertiesl

Declaration:

00 type %= 1= [(one, two, three): &

T o

Lucatel 1].4 | Apply ||

Figure 86: The declaration of a public type on a package.

4.7.2. Type visibility

A type definition can appear in the public or private portion of the resulting package specification, or
in the package body.

Type : public_Type in package_1 |

Eenerall Declarati-:unl Fielatil:unsl Tags Properties |

Filk
|_ et Al f* Comman ™ Overidden " Locally Overidden |

| ada_CG
Ef Type

DeclarationPosition BeforeClassRecord

Lucatel 1].4 |ﬁ|.|]|]|"o_.|"

Figure 87: Controlling the visibility of a type.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 82/220

—-—++ class class 1
package class 1 i=s

type class 1 t;
type class 1 acc t is access all class 1 t;

——Public types ———————————

—— This 1is the declaration of myv tvpe.

type my Type is new Integer range 0..5;

type class 1 t is tagyged limited null record:
private

——Private t¥pes —————————————

—— Defipition of my private tvpe.

subtype my Private Type is Integer range 1..5;

emnd class_l;

Figure 88: The package specification for a class with types.

——++ package package 1
package package 1 is

——Public t¥pes ——————————
—— The declaration of the public tvpe.
type public Type is (one, two, three);

private
——Private L¥pes ———————————————
—— Declaration of the private tvpe.

type private Type is new Positive:

end package 1;

Figure 89: The package specification for a package with types.

4.7.3. Type declaration position

In order to provide some degree of control over the declaration order of types, the
Ada_CG.Type.DeclarationPosition property can be used. Its behavior is very similar to the one of
the Ada_CG.Attribute.DeclarationPosition property for attributes, with the following exceptions :

e There is no “default” value for this property on types

¢ If an attribute and a type have a similar value for their respective declarationPosition
properties, then the attribute will be generated before the type declaration.

4.7.4. Type defined as a class

A type can be also defined with a class with a stereotype. This enables to have more visibility on
type relations. The stereotypes are defined in the profile AdaCodeGenerator.

Main stereotype is “Type”. It is applicable on a class. This stereotype has a tag “IsSubtype”. If this
tag is set to true, then the class will define a subtype.

Any type has a reference to another Ada type. This reference is represented by a dependency with
the stereotype “New”. The dependency can be set to a Rhapsody type or a Rhapsody typed class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 83/220

Basic use cases :

Definition of a type

= ﬁ package_3
-8 classes
= E “Typer Integer_32
=-*) Dependencies
*s #Mews Integer

Figure 90: Representation of atyped class

——Public t¥pes ————————
type Integer 32 is new Integer:

Figure 91: Generated code of a typed class

Definition of a subtype

--H «Types &_SubTvpe 2
=-*xj Dependencies
*» «Mews Integer_32
= @ Tags

[ﬁ Is5ubtvpe

Figure 92: Representation of a subtype

——Public t¥pEsS ————————
subtype AL SubType is Integer;

Figure 93: Generated code of a subtype

Some other stereotypes are derived from “Type”
e RangeType : allow defining range type
o ArrayType : allow defining array type

e VariantRecordType : allow defining variant record type

4.7.1.4 Range type
A range type is defined by a class which has the stereotype “RangeType”.

The range is defined by two different ways.
e Firstit can be defined in a free text box in the tag “rangeDefinition”.

e It can also be defined with dependencies to a constant of the model. The dependencies
have the stereotype “highRangeValue” or “lowRangeValue”.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 84/220

Basic use cases :

Case |
“New” dependency to a predefined type
- rangeDefinition set to “1..10”
= E #RangeTyper A_Range_Tvpe
= *) Dependencies
*sj #Mews Integer
= lﬁ? Tags
Iﬁ rangelefinition
Figure 94: Representation of a range type
——Duplic types ———————————
type A Range Type is new Integer range 1..10;
Figure 95: Generated code of arange type
Case Il

- “New” dependency to a typed class
- “HighRangeValue” dependency to a constant of the model
- “IsSubtype” tag set to true

- “rangeDefinition” tag set to “1”

= E <RangeTyper A_Range_Tvpe_1
=-"») Dependencies
*s) sHighRangeYalues variable_11
*s) sMews Integer_32_2

= Ig Tags
IsSubkype
rangelefinition

Figure 96: Representation of arange type with dependency to a constant

——Puplic t¥pes ———————————
subtype L Range Type_1 is Default.Integer 32 Z range 1 .. Default.variable 11;

Figure 97: Generated code of a range type

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 85/220

4.7.2.4 Array type
An array type is defined by a class which has the stereotype “ArrayType”.

The size of the array is defined in a free text box of the tag “Size”

-8 «hrravTypes &_Array_Type
=)--*») Dependencies
*s &Mews Integer

Figure 98: Representation of an array type

—=Public {¥pPeS —————— e
type L Lrray Type is array (1..10] of Integer:

Figure 99: Generated code of an array type

4.7.3.4 Variant record type
A variant record type is defined by a class which has the stereotype “VariantRecordType”.

This class has several elements which describe the structure of this record.

-8 evVariantRecordTypes A_Variant_Fecord_Tvpe
- Attributes
E +Discriminants atkribute_00
E +«Discriminants attribuke_01
o attribute 1
o attribute 2

= ﬁ Parts

=-[7] «Cases attribuke_00
= ﬁ Parts
= ﬁ #Whens when_condition_1
= attributes
B attribute 1 of when_condition
= lf; Tags
l‘g Condition
= ﬁ aWhenz when_condition_2
= attributes
B attribute 7 of when_condition
o attribute 3

= lff; Tags

l‘g Condition

Figure 100: Representation of a variant record type

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 86/220

The class has some attributes which represent the attributes of the record type.

Some attributes have the stereotype discriminant. Those are discriminant attributes of the record
type.

The class has a part with stereotype “Case”. It represents the variant part of the record. The name
of this part must be the name of the discriminant attribute used in the variant part.

The “Case” part has as many “When” parts as “When” cases in the Ada variant part. Those “When”
parts have attributes, and a tag “Condition”, which defines the value of the “when” condition.

——Public t¥pes ——————————————
type L Variant FRecord Type |

attribute 00 @ Default.i Enum;

attribute 01 : Default.i Bange Type
1 i= record

—— Fields —--
attribute 1 @ Integer:

attribute 2 @ Integer:

case attribute 00 is
when AL => gtrtribute 1 of when condition @ Integer:

when EBE..CC =» attribute 2 of when condition : Integer:
attribute 3 @ Integer:
end case;

end record;

Figure 101: Generated code of a variant record type

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 87/220

4.8. Template Classes and their instantiation

4.8.1. template classes

Creating a template class in Rhapsody results in the generation of a generic Ada package. The
arguments become the generic parameters.

In this example, argl is an Integer argument and arg2 is a Boolean argument.

Class : generic_Class in Defaulk |

e
General I.-'-‘-.ttril:uutesl Dperatiunsl Helatiunsl Tags I F'ru:upertiesl =
M ame: Igeneric_ElaSS Ll
Stersotype; I

tain Diagran: IMDdE”
Concumency: Isequential

Defined Ik ; IDefauIt

Ll lLed L

Clazz Type
i Begular ™ Template © Instantiation

|< argl, arges Argurments ... |

Lu[:att:l 1] 4 | Apply ||

Figure 102: Definition of a template class.

——++ £lass gereri c Class

generic
argl : Integer:
args : Boolean:

package generic Class is

type generic Class t;
type generic Class acc t ig accegs all generic Class t:

type generic Class t is tagged null record:
private

end generic Class;

Figure 103: Package specification for a generic package.

4.8.2. template instantiations

An instantiation of this generic package is created by using an instantiation class in Rhapsody.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 88/220

Template Arguments 5[

QLT EEMR R e eric_Class in Default

Actual Arguments:
Mame | D efinitian | Walue | Add |

argl [nteger 5 "
args Boolean true M
[Nelete |
| m|

Cancel |

Figure 104: An instantiation of a template class.

The generated result is an instantiation of the generic package using the supplied arguments.

With generic Class:

——++ class generic Instantiation
package generic Instantiation is new generic Class(argl = 5, argiZ => true);

Figure 105: The generated Ada package for a generic instantiation.

4.8.3. template inheritance

Note that it is possible to have a template class inherit from another template class.

Entire Maodel Wigw <

=1 Template_Inheritance
=] Components
E DefaultComponent
#-{_1 Ohbject Model Diagrams
EI{:I Packages
Elﬁ Default
EIE Zlasses
ElEI:I generic_Child<arg3=
: El“F‘ SuperClasses
i e “f‘“ generic_Parent
H EI:' generic_Parent<argl, argz=
---KS» Stereatypes
EEI---& PredefinedTypes (RO}
- Profiles

Fgrarg_z)

generic_Parent |__ o

Er

gereric_Child |

= P A L S I e o

Figure 106 Inheritance between template classes

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 89/220

With generic_Parent;

-—++ class generic Child

generic
with package generic Parent Instantiation is new generic Parent (<>);
argd : Character:

package generic child is

type generic_Child &;
type generic Child acc_t is access all generic Child t;

type generic Child t is new generic Parent Instantiation.generic Parent t with null record;

private

end generic Child;

Figure 107 generated code for a template class derived from another template class

4.8.4. template instantiation inheritance

In order to fully benefit from the facilities offered by template inheritance, an efficient way to
instantiate the whole class hierarchy is needed.

ED Template_Inheritance I
-1 Components argl, arg2 |
ﬂ DefaultComponent - |
-1 Object Model Diagrams generic_Parent generic_Parent_nstantiation

-1 Packages

=2 Default

: Classes

H genetic_child_Instantiation_1
B generic_child_Instantiation_2
5 generic_child zarg3>

Bl SuperClasses

‘ﬁ generic_Parent 7 [
B generic_Parent_Instariiation / \
{m .
- Eerge‘z:j;';farantﬁrgl’ argz> rgT] «Parem_/lnstantiation» «Parent}mtantiatinn»
£ PredefinedTypes (RO) - f - —
N %Iofiles generic_chid| _| generic_Child_Instantiation_1 generic_Child_Instantiation_3

‘xblfu'.rr'rOJlethJmm@

Figure 108 Modeling instantiation of a template inheritance hierarchy

Note that to specify that a derived class instantiation depends on a parent class instantiation, we
use a <<Parent_Instantiation>> dependency from the derived class instantiation to the base class
instantiation. This approach allows for reusing of the same parent class instantiation by several
derived class instantiations

With generic Parent;

——t+ class generic Parent Tnstantiation
package generic Parent Instantiation is new generic Parent jargl => 5, argl => true);

Figure 109 generated code for a base template instantiation class

With generic Child;
With generic Parent Instantiation;

——++ £2lass geperic Child ITrstantiation 1

package generic_CHEld_IﬁEtantiatiDn_l is new generic Child(
generic Parent Instantiation = generic Parent Instantiation,
argi =» 'a!'

1

Figure 110 generated code for a derived template instantiation class

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 90/220

With generic Child:
With generic Parent Instantiation:

——++ £lass geperic Child ITrstantigtion 2

package generic_chzld_IﬁEtantiatiDn_Z is new generic Child(
generic Parent Instantiation => generic Parent Instantiation,
argis => 'k'

1

Figure 111 generate code for another derived template instantiation class

Note that if the derived template class is an (Ada) child package of the base class, the generated
code will slightly differ to accommodate the special visibility that the child has upon its parent

Entire Madel View -

{3 Profiles Fg?) «Parentﬁnslant\ahun» «Parent_|Rstantiations

generic_Parent::generic_Child ‘7 —— generic_Child_Instantiation_1 genetic_Child_lnstantiation_2

[=-50 Template_Inheritance_Chid_Pkg_version £ S
{3 Components g |t a2]
=1 ohject Model Diagrams — | |
* g5 Modelt generic_Parent |]
5 (3 Packages ~ —— genetic_Parent_Instantiation
£ Default .
. =B Classes -
f B generic_child_Instantiation_1 a
B generic_child_Instantiation_2
8 generic_Parent_Instantiation N
E-EF generic_Parent <argl, arge> Ly
BB dlasses
: EZ generic_Chideargzs || & = W
5% Stereotypes *
B PredefinedTypes (R0) - s N
Y
N
b

Figure 112 Modeling template inheritance hierarchy across (Ada) children packages

——++ £l3ss generic Parent::ogereric Child
generic B B

argd : Character:
package generic Parent.generic Child is

type generic Child t;
type generic Child ace t is access all generic Child t;

type generic Child t is new generic Parent.generic Parent t with null record;

private

end generic Parent.generic Child:

Figure 113 Generated code for a derived template class that is a child package of its base
class

With generic_ Parent.generic_Child;
With generic Parent_Instantiation;

-—++ class generic Child Instantiation 1
package generic Child Instantiation 1 is new generic Parent Instantiation.generic Child|

argi =» 'a'

13

Figure 114 Generated code for the instantiation of a derived template class that is a child
package of its base class

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 91/220

4.9. Concurrent types
49.1. Tasks

Ada tasks are represented in Rhapsody by a class stereotyped as <<AdaTask>> or
<<AdaTaskType>>. The result is the creation of an Ada package containing a task type. The
<<AdaTask>> stereotype should be used for singleton tasks.

task _class task_type_class

+myEntry () void

+entry _10:void
entry_1(J:voi +myRegularOperation():vaid

+entry 2{)waid

<<hdaTasks> <<=AdaTaskType=>

Figure 115: Adatasks in Rhapsody.

For <<AdaTask>> and <<AdaTaskType>> classes, the Ada_CG.Class.Visibility property has to be
set to “Private”

Class : task_type_dass in Default

General] Description] Attributes Operaﬂnns] Paorts] Relations | Tags Properiies l
View Overridden -
+ 1 CG
- Ada_CG
=I| Class
RelativeEventDataRecordTypeComponentsMaming
Visibility Private
=I| Operation
IsEntry
Lu[:atf:| Ok | |

Figure 116: Setting the record type visibility to “Private” for an <<AdaTaskType>> class

By default, all the operations in the class represent the entries of the task, and can have either a
<<HSER>> or <<LSER>> stereotype to indicate highly synchronous or loosely synchronous
execution requests respectively. In the given example, myEntry is HSER while entry_1 and entry_2
are LSER. The implementation of the operations is used as the task entry bodies.

For operations such as myRegularOperation which do not represent an entry, the
Ada_CG.Operation.isEntry property has to be overridden to False (it defaults to True on
<<AdaTask>> and <<AdaTaskType>> classes). This will generate a regular operation instead of a
task entry for this operation.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 92/220

%]

Primitive Operation : myRegularOperation in task_Eype class
Eenemlllmﬂemenmﬂunl HehﬂnnslTags Froperties
|—F|Iter Al " Commaon g Dverrldder‘g " Locally Owveridden |
=l G
Ell Type
Animate Force
=l ada_CG
El| Operation
IsEntry D
El| Class
Wisihility Private

Lu[:atﬂl 0K | Apply ||

Figure 117: Setting an operation on a <<AdaTaskType>> class to generate as a regular

operation.

-——++ class task class
package task class is

type task class t is tagyged private;

—-Pubklic Functions/Procedures section

——ta3sk tvpe declaration
task task class _task is

end task class task:

end task class;

type task class acc t is access all task class t;

procedure entry 1 [(this : in out task class t):;
procedure entry 2 [(this : in out task class t):;
private

entry entry 1 (this : in out task class t):
entry entry Z (this : in out task class t):

type task class t is tagged null record:

Figure 118: Ada task specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 93/220

——++ class task class
package body task class is

——Functions/Procedures section —————————————-
procedure entry 1 (this : in out task class t) is
begin

task class task.entry 1 ithis);
end entry 1;

procedure entry 2 (this : in out task class t) is
begin
task class task.entry 2 (this);

end entry Z2;

——Tasking Implementation —-——————————————————
task bhody task class task is

hegin
loop
select
accept entry 1 (this : in out task class t);
——implementation of entrv 1
or a
accept entry 2 (this : in out task class t);

——implementation of entryvy 2
end select; a
end loop:;
end task class task;

end task class;

Figure 119: Adatask body.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 94/220

-—++ class task type class
package task type class is

type task type class t is tagged private;
type task type class acc t is access all task type class t:

——Puklic Functions/Procedures section ———————-—
procedure myEntry (this : in out task type class t):

——++ operation mwkegulardperation)
procedure myRegularOperation (this : in out task type class t):

procedure Initialize(this : in out task type class t):
procedure Finalize(this : in out task type class t):
private
——task tvpe declaration
task type task type class task is
entry myEntry (this : in out task type class t):
end task type class task:
type task type class task acc is access task type class task:

type task type class t i=s tagged

record
my task type class task @ task type class task acc;

end record;

end task type class;

Figure 120: Ada task type specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 95/220

With UNCHECEED DEALLOCATION:

——++ class task tvpe class
package body task type class is

——FunctionaProcedures section ———————————————
procedure myEntry (this : in out task type class t) is
begin

thiz.my task type class task.myEntry (this):
end myEntry:

procedure myRegulardperation (this : in out task type class t) is
——+[opergtion myRegularOperationi).Variahles

——+[operztion mwvRegularOperationi)

__+j|
end myRegularCperation;

——Tasking Implementation —-——————————————————-
task bhody task type class task is
bhegin
loop
select
accept myEntry (this : in out task type class t) do
——implementation of myEntry
nuall;
end myEntry:
end select;
end loop;
end task type class task:

pProcedure Initialize(this : in out task type class t) is
hegin
thiz.my_task type class task = new task type class task;

end Initialize;

procedure Finalize(this : in out task type class t©) is
procedure FREE is new TNCHECEED DEALLOCATTION
task _type class task,
task _type class task aco
1
hegin
FREE(this.my task type class_ task);
end Finalize;

end task type class;

Figure 121: Adatask type body.

The Ada task type generates the constructor and destructor as well, which create the task instance
and destroy it.

It is also possible to define timed or conditional entries on a task. In the next example, we define a
timed entry by doing the following:

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 96/220

1. Setthe Ada_CG.TaskDefaultScheme to “Timed” on task_with_default_entry class.
2. Setthe Ada_CG.TaskDefaultSchemeDelayStatement with a valid delay statement
3. Apply the <<TaskDefaultAction>> to timeOutAction

Note that to define conditional entries, you must set the property to “Conditional” and then apply the
<<TaskDefaultAction>> to the default entry.

task with_default_entry

+myEntry(:void
HimeoutAction():void

ZohdaTagks=x

Figure 122 Ada task with default entry

—-—+4++ class t&sk_with_default_entry
package task with default entry is

type task with default entry t;
type task with default entry acc t is access all task with default _entry t:

——task tvpe declaration
task task with default entry task is

entry myEntry (this : in out task with default entry t):
end task _with default entry task;

type task with default entry t iz tagged null record:

——Duklic Functions/Procedures section --—————-
procedure myEntry (this : in out task with default entry t):

private

end task with default entry;

Figure 123 Specification of Ada Task with default entry

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 97/220

——++ class task_udth_defaulﬁ_entry
package body task with default entry is

——Functions Procedures section ———————————————
procedure myEntry (thi=z : in out task with defsult entry t] is
begin
task with default entry task.wmyEntry ithis):
end myEntry:

——Tasking Implementation ————————————————————
task body task with default entry task is
begin
loop
select
accept myEntry (this : in out task with default entry t) do
—-— regular entryv bodyv
end myEntry:
or
delay 10.0;
—— default bekavior starts here
end select;
end loop;
end task with default entry task;

end task with default entry:

Figure 124 Implementation of Ada Task with default entry

4.9.2. Protected Objects

Protected objects are represented in Rhapsody by a class stereotyped as <<AdaProtectedObject>>
or <<AdaProtectedType>>. The result is the creation of an Ada package containing a protected
type. The <<AdaProtectedObject>> stereotype should be used for singleton tasks.

Protected Object Class FProtected Type Class
+attribute O Integer

+entry_default_guard():void +entry_true_or_false()vaid
+regular_operation();void
+regular_function(): Integer

=<AdaProtectedObject>= z<AdaProtectedTypes=

Figure 125: Protected objects in Rhapsody.

For <<AdaProtectedObject>> and <<AdaProtectedType>> classes, the Ada_CG.Class.Visibility
property has to be set to “Private”

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 98/220

Class : Protected_Type_Class in Default

General | Description | Attributes Operaﬂnns]F’uns]Helaﬂcns Tags Pmperﬂesl

View Qvemridden -

- Ada_CG
-l Class
RelativeEventData
Visibility Private
Locate | 0K | |

Figure 126: Setting the record type visibility to “Private” for an <<AdaProtectedType>> class

By default, all operations in the class do not represent entries. In order to generate a protected
object entry, one has to apply the <<entry>> stereotype to an operation.

Primitive Operation : entry_default_guard in Protect k|

General | Implementatianl Helatinnsl Tags I F'rn:npertiesl

M amne: Ientry_default_guard L |
Stereotype: I j
"Wizibility:

HSER
LSER [Template _|

zeparate
T azk [efaultichion

Type:

— Returns
[+ Usze

Type: IVDid j El

— Modifiers
[T “itwal [~ Static [Inline [Constant [Abstract

Argurnentz; i ﬂ + +

Mame | Twpe | Walue | Direction |

Mew>

Description:

L

Lucatﬂl 0K | Apply ||

Figure 127: Applying the <<entry>> stereotype to a protected object operation

By default, the guard for a protected entry will be set to true, however one can define its own guard
by setting the “Ada_CG.Operation.EntryCondition” property to the appropriate boolean expression.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 99/220

Primitive Operation : entry_krue_or_false in Protected Typ]

Eenerall Implementatiunl Fielatil:unsl Tags Properties

Filt
|_ e Al = Comman £ Overidden " Locally Overidden |

CG
El| ada_CG

El| operation

|true or False

LocalvariablesDeclaration

Renames
ThisByfccess D
WebComponents

Lu[:atﬂl Ok | Apply ||

Figure 128: Setting the guard for a protected object/type entry

-—++ class Protected Obyect Class
package Frotected Chject Class is

type Protected Chject Class t is tagged limited private;
type Protected Chject Class acc t is access all Protected Object _Class t;

——Public Functions/FProcedures section -—-———-—-
——++ pperdtion entry default guard()

procedure entry default guard (this : in out Protected Chiject Class t);

——++ operation regular function()
function regular function (this : in Protected Chject Class t)] return Integer;

-—++ operation regular operation()
procedure regular operation (this : in out Protected Object_Class t):;

private

——protected tyvpe declarstion
protected Protected Chject Class protected is

entry entry default guard (this : in out Protected Chject Class t):;

procedure regular operation (this : in out Protected Chject Class t):
function regular function (this : in Protected Chject Class t)] return Integer:
private

end Protected Chject Class protected;
type Protected Chject Class t is tagged limited null record;

end Frotected Chject Class;

Figure 129: Protected object specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 100/220

——++ class Protected Object Class
package body Protected Object Class is

——Functions/Procedures section ——————————————-
procedure entry default guard (this : in out Protected Object Clazs t) is
bhegin
Frotected Object Class protected.entry default guard (this):
end entry default guard;

procedure regular operation (this : in out Protected Ohject Class t) is
bhegin

Frotected Object Class protected.regular operation {(this):;
end regular operation;

function regular funection (this : in Protected Chject Class t) return Integer is
begin

return Protected Chject Class protected.regular function (this):
end regular function;

——DProtected Object/Tvpe Implementation
protected body Protected Chject Class protected is
entry entry default guard (this : in out Protected Object Class t)] when true is
hegin
null;
——+[operation entry default guard()

__+}
end entry default guard;

procedure regular operation (this : in out FProtected Ohject Class_t) is
-—+[operation regular operation().Variables

__+}
hegin
null;
-—+[operztion regular operation()

__+}
end regular operation;

function regular function (this : in Protected Ohject Class t) return Integer is
--+[operation regular Ffunction().Variables

__+}
hegin
return 0O;

-—+[operztion regular function()

__+}
end regular funetion:

end Protected CThject Class protected;

end Protected Chject Class:

Figure 130: Protected object body.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 101/220

——++ class Protected Tyvpe Class
package Protected Type Class is

type Protected Type Class t is tagged limited private;
type Protected Type Class acc t is access all Protected Type Class t;

—— Public Variables/Constants —-———————————————
static_attribute : Integer; ——++ attribute static atiribute

—=Public Functions/Procedures section —-———————

——++ operation entry Ffunction()
function entry function (this : in Protected Type Class t) return Integer:

——++ operation entry trus or false()
procedure entry true_or_ false (this : in out Protected Type_Class_t):

—=DPublic Fields/Variables 3cCesSSors ———-—-——-——-=
function get_attribute 0 (this : in Protected Type Class_t] return Integer:

pragma inline [get_sttribute 0):

procedure set attribute 0 (this : in out Protected Type Class t; wvalue : in Integer):
pragma inline (set_attribute 0):

function get static attribute return Integer:
pragma inline (get static attribute);

procedure set_static_attribute (value : in Integer);
pragma inline (set_static attribute):

procedure Initialize(this : in out Protected Type_Class_t):
procedure Finslize(this : in out Protected Type Class t):
private

——protected tvpe declaration
protected type Protected Type Class protected is

entry entry true or_ false (this : in out Protected Type_Class_t):

function entry function (thisz : in Protected Type Class t) return Integer:

function get attribute 0 (this : in Protected Type Class t] return Integer:

procedure set_attribute_ 0 (this : in out Protected Type_Class t: wvalue : in Integer):

private

-— Fields --
attribute 0 : Integer: ——++ attribute attribute 0

end Protected Type Class protected:
type Frotected Type Class_protected acc is access Protected Type Class_protected;
type Protected Type Class t is tagged limited

record
wmy_ Protected Type Class protected @ Protected Type Class protected acc:

end record;

end Protected Type Class:

Figure 131: Protected type specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 102/220

With UNCHECKED DEALLOCATICH:

-—++ class Protected Type Class
package hody Protected Type Class is

——Functions/Procedures section —-———————————————————
procedure entry truse or false (this : in out Protected Type Class t) is
bhegin

this.my Protected Type Class protected.entry true or false (this):;
end entry trus or false;

—-Fields/Variables acCCesSOrs ——————————————————————
function get attribute Oithis : in Protected Type Class t) return Integer is
bhegin
return this.my Protected Type Class protected.get attribuce Oithis);
end get attribute 0;

procedure set_attribute 0 (this : in out Protected Type Class t; value : in Integer) is
bhegin

this.my Protected Type Class protected.set attribute 0 (this, wvalue):
end set attribute 0;

——Protected Object/Type Implementation
protected body Protected Type Class protected is
entry entry true or false (thiz : in out Protected Type Class t) when true or false is
bhegin
null;
——+[operation cntry true or false()

end entry trus or false;

function get attribute Oithis : in Protected Type Class t) return Integer is
bhegin

return attribute 0O;
end get attribute 0;

procedure set_attribute 0 (this : in out Protected Type Class t; value : in Integer) is
bhegin
attribuce 0 = walue;

end set attribute 0;

end Protected Type Class protected;

procedure Initislize(thiz : in out Protected Type Class t) is
bhegin
this.my Protected Type Class protected := new Protected Type Class protected;

end Initialize;

procedure Finalizeithi= : in out Protected Type Class t) is
procedure FREE is new UNCHECKED DEALLOCATION|
Protected Type Class protected,
Protected Type Class protected acco
1:
hegin
FREE (this.wmy Protected Type Class protected):
end Finalize:

end Protected Type Class;

Figure 132: Protected type body.

The protected type generates the constructor and destructor as well, which create the task instance
and destroy it.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 103/220

4.10. Entrypoints

An entrypoint can be created in Rhapsody to represent the starting point of the Ada program. This
is done by stereotyping a class as <<Entrypoint>>.

myEntrypoint

+maing) void

<<entrypoint==

Figure 133: An entrypoint in Rhapsody.

In addition, define an operation on the class, and enter the implementation of the operation to
complete the entrypoint. The result is a single package body file generated in myEntrypoint.adb.

procedure myEntrypoint is
——+[opergtion main().Variabkles

——+[opergtion main()
——entrypoint implementation
__+j|

end myEntrypoint;

Figure 134: The entrypoint definition.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 104/220

4.11. Singleton Classes

Singleton classes represent classes that have only one instance. This is represented in Rhapsody
by stereotyping the class <<Singleton>>. A singleton class creates a private variable to contain the
singleton instance, and all non-static operations access this instance instead of passing in a this’
parameter.

hlySinoleton

+rmyint : Integer
+rmyStaticint : Integer

+myDperationdvoid
+myStaticOperationdavoid

==5ingleton==

Figure 135: A singleton class in Rhapsody.

4.11.1. Ada 95

When the singleton class is generated using the Ada 95 rules, the non-static attributes are held in a
record in the same manner as a hormal class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 105/220

-—++ class My Singleton
package My Zingleton i=s

type My J3ingleton t;
type My Jingleton sacc t is access all My Singleton t:

type My Jingleton t is tagged
record

-— Fields --
wy_Int : Integer; -—t+ attribute my Int

enid record;

-— Puklic Variables/Constants ——-———————-——-———-
wy_Static_Int @ Integer: —-++ atbtribute my Static Int

——Public Functions/Procedures section ——-——————-—
——t+ operation my Operation()
procedure my Operation (this : in omt My Singleton t);

-—++ operation my Static Operation()
procedure my Ftatic Operation;

——Puklic Fields/Variahles 3ccessors ——————————
function get wy Int (this : in My Jingleton t] return Integer:

Pragma inline (get my Int):

procedure set_mwy Int (this : in out My Singleton t; walue : in Integer):
Pragma inline (set_my Int):

function get _mwy Static Int return Integer:
pragma inline (get_my Static Intj:

procedure set my Jtatic Int (value @ in Integer);
Pragma inline (set_my Static Int);

private

end My Zingleton;

Figure 136: The package specification for a singleton class in Ada 95.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 106/220

-—t+ class My Singleton
package body My Singleton is

——Functions/Procedures section ———————————————
procedure my Operation (this : in out My Singleton t] is
-—+[operation my Operation().Variables

-—+[operation my Operation()

__..L:Il
end my_ Operation;

procedure my_ Static Operation is
—-—+[cperation my Static Operation().Variakles

-—+[operation my Static Operationy)

-—+]
end my Static Operation;

——Fields Varigkles 3ccessors ————————————————
function get mwy Intithi=s : in My Singleton t) return Integer is
hegin
return this.my_Int;
end get_mwy Int;

procedure set my Int (thisz @ in out My Singleton t; walus : in Integer) is
hegin
this.wy_Int := wvalue;

end set_mwy_ Int;

function get mwy Jtatic Int return Integer is
hegin

return wy_ Ztatic Int;
end get mwy Static Int:

procedure set my 3tatic Int (valus : in Integer) is
hegin
wy_Static Int = wvalue;

end set mwy Static Int:

end My 3Jingleton;

Figure 137: The package body for a singleton class in Ada 95.

4.11.2. Ada 83

Changing the “DefaultComponent” component to be an Ada 83 package changes the generation of
the singleton class so that the rules for Ada 83 are followed. In this case, all attributes are
considered static attributes and a record type is not created for the class nor is a variable for the
singleton instance created in the package body.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 107/220

Component : DefaultComponent in Singleton_83 |

Eenerall Fielatil:unsl Tags FProperties |

Filk
|_ et Al f* Comman ™ Overidden " Locally Dverridden|

| ada_CG

El| Component

|adags =]

Lucatel 1].4 | Apply ||

Figure 138: Changing the component to generate Ada 83 code.

—-—t+ class My Singleton
package My Singleton is

wy_Int : Integer; --++ attribute my Int

—— Public Variagbhles/ Constants - ———————————————
wy_Jtatic_Int : Integer; --++ attribute my Static Int

——Pubhlic Functions Procedures section —-——————-—
—-—t+ operation my Operation()
procedure my Operation:

—-—t+ operation my Static Operation()
procedure my 3tatic Operation:

——Pubhlic Fields Variagbles accessors ——————————
function get my Int return Integer:

pragma inline (get my Int):

procedure set my Int [(wvalus : in Integer):
pragma inline (st _my Int):

function get my Static Int return Integer:
pragma inline (get my Static Int):

procedure set my Static Int (valus : in Integer):
pragma inline (St _my Static Int):

private

end My Singleton:

Figure 139: The package specification for a singleton class in Ada 83.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 108/220

-—t+ class My Singleton
package body My Singleton is

——Functions,Procedures sectiolh ———————————————
Procedure my Operation is

-—-+[coperation my Operation().Variables

-—-+[coperation my Operation()

__+_'|I
end mwy Operation;

procedure my 3tatic Operation is
-—-+[coperation my Static Operation().Variables

-—-+[coperation my Static Operationi)

__+_'|I
end my Static Operation;

——Fields/sVarigkles adccessols ———————————————-—
function get my Int return Integer is
hegin
return my Int;
end get my Int;

procedure set wy Int (value @ in Integer) is
hegin
my_Int := wvalue;

end set my Int;

function get my 3tatic Int return Integer is
hegin

return my Static Int;
end get my 3Itatic Int:

procedure set wy 3tatic Int (value : in Integer) is
begin
my Jtatic Int = value:

end set my 3tatic Int:

end My Zingleton;

Figure 140: The package body for a singleton class in Ada 83.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 109/220

4.12. Unidirectional Relations

There are three different options for the implementation of relations. Each implementation creates
an Ada record field and accessor(s) and mutator(s) methods and possibly some new types and
inner packages to support the implementation. The name of the Ada record field is the name of the
role for the relation.

Default implementation: The default implementation uses an access type for the target object.
The access type is held in an Ada record field. In addition, a “With” statement is added for the
target package so that the access type is visible.

Fixed implementation: The fixed implementation uses a direct reference to the target object. The
target object type is held in an Ada record field. As with the “Default” implementation, a “With”
statement is added for the target package so that the target type is visible.

Scalar implementation: The scalar implementation is better described as the index
implementation. Instead of holding a direct reference to either the target type or an access to the
target type, a numerical index is used instead. The intent is that there will be a container object in
the system that will hold the instances of the target class, and that the index is used to retrieve the
correct instance from the collection. In this case, a “With” statement is not created for the target
package because only an index is stored in the class, and not a reference to the target object itself.
Instead, a new type is created to represent the valid range for the indexBi-directional relations are
not supported at this time, nor are unbounded multiplicities.

4.12.1. Multiplicity = 1

When the multiplicity = 1, the class will have a reference to only one instance of the target class.
The following example demonstrates the generated code for each of the implementation types.
Note that no accessors are generated for the “Fixed” implementation.

class 1

Default [access) Fixed [direct) StaticArray (index)

1 1 1

access class direct_class index_class

Figure 141: Class relations with multiplicity = 1.

4.12.2. Multiplicity > 1, general notes

When the multiplicity is greater than 1, the same basic concepts are followed for each
implementation choice, except some data structures are created to hold the instances. In addition,
new types are defined to represent the valid indices into such structures, and iterator subpackages
are declared for every relation..

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 110/220

Unbounded relations and qualified relations (both bounded and unbounded) use data structures
that rely on the Booch components.

Dalatio e

enerated Method Bounded Unbounded | Bounded Unbounded
Quialified Quialified

Get_At_Pos (Procedure) Y Y

Get_At_Pos (Function) Y Y

Contains Y Y

Get_Count Y Y Y Y

Set_At_Pos Y Y

Add_At_Pos N Y

Remove N Y

Remove_At_Pos N Y

Get(Key) (Procedure) Y Y

Get(Key) (Function)

Contains(Key) Y Y

Set(Key) Y Y

Remove(Key) Y Y

Table 2 Nary relations methods matrix

Method Name Description

Initialize Creates the iterator

Get_Next Gets next element

To_Value Get value associated to current iterator position
Is_Last Return true if there’s no more elements to iterate over.

Table 3 Nary relations Iterator package method description

4.12.3. Details on the Booch components

IBM® Rational® Rhapsody® Developer for Ada does not install Booch Components files. If needed,
user must do it manually by following the procedure. See §2.3 Booch components.

Either the original Ada 83 version of the components can be used, or the Ada 95 version. The
choice is made at the component level with the Ada_CG.Component.UseBoochComponents

property.

Although only part of it is used. Here is the list of packages that may be with’ed by the generated
code when using Ada 83:

1. semaphore

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 111/220

2. storage_manager_concurrent

3. list_single_unbounded_controlled
4. list_utilities_single

5. list_search

6.

7.

Bounded Unbounded

Unqualified relations

None

map_simple_noncached_concurrent_bounded_managed_noniterator

map_simple_noncached_concurrent_unbounded_managed_noniterator

12,345

Qualified relations

1,6

12,7

Table 4 Booch 83 Components Package Dependency Matrix

Here is the list of packages that may be with’ed by the generated code when using Ada 95:

1. BC.Support.Standard_Storage

2. BC.Containers.Collections.Unbounded

3. BC.Containers.Maps.Unbounded

4. BC.Containers.Maps.Bounded

Bounded Unbounded

Unqualified relations

None

1,2

Qualified relations

4

13

Table 5 Booch 95 Components Package Dependency Matrix

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 112/220

4.12.4. Multiplicity > 1, bounded

An array is created to hold the instances

class 1
[, |
Default faccess _ _ ; -
) Fixed [direct) Static4rray (indesx)
20 30
10 J;
access_class direct_class index_class

Figure 142: Class relations with multiplicity > 1, bounded.

4.12.5. Multiplicity > 1, unbounded

Unbounded relations are no longer represented as arrays of 100 elements, but as data structures
relying on dynamic memory allocation.

Important note : Any legacy code using unbounded relations relying on the fact that the underlying
implementation is an array of 100 elements MUST be updated, as it will either not compile or
potentially lead to run-time errors.

4.12.6. Multiplicity > 1, qualified relations

Quialified relations are represented with maps. The unbounded form relies on dynamic memory
allocation.

A qualified relation is a key based association. This means that if there is an association from A to
B, where the qualifier is an attribute B.id of type Integer, the relation is key based (in this case,
Integer is the key type).

Only one element can be bound for each value of the qualifier domain.

Adding an element with a key that already exists has the effect of replacing the old element with the
new one.

Note : only attributes of a type that is a subtype of Integer can be used as Qualifiers.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 113/220

Note : with booch 95 components, if the type of the key is a subtype of integer (or any standard
type) which is defined in an other package, then user must define a new “=" function in this other
package.

For example, a new subtype of integer is defined into User_Type package.

User must define a new “=" function into this package.

package User Type is
subtype My Subtype Integer is Integer range 1..1000;
function "=" (A : in My Subtype Integer; B : in My Subtype Integer)
return Boolean;

private

end User Type;

package body User Type is

function "=" (A : in My Subtype Integer; B : in My Subtype Integer)
return Boolean is
begin
return standard."=" (A, B);
end "=";

end User Type;

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 114/220

4.13. Bidirectional relations

IBM® Rational® Rhapsody® Developer for Ada provides two implementations for bidirectional
relations. By setting the Ada_CG.Relation.BidirectionalRelationsScheme to SubtypingAndRenaming
(selected by default) or IntermediateParentClasses, it is possible to select which one is to be used.

4.13.1. SubtypingAndRenaming scheme
413.1.1 Implementation principles

This implementation supports bidirectional relations via the following mechanisms :

o the actual class members for classes participating in bidirectional relations are all
generated in the same package so as to get reciprocal visibility.

o The classes are “emulated” in packages made up of subtyping and renaming of the class
members.

4,13.2.1 Limitations

Note that there are limitations applicable to classes participating in bidirectional relations using that
scheme which are described hereafter :

o They shall not contain elements with the same name (for types, static attributes or
association ends role names) or signatures (for operations).

o They shall not be template classes

o Deferred initialization of public constants is not supported.
o They shall not contain statechart code

o They shall not have triggered operations

o Roundtrip is not supported

o Ports are not supported

4.13.2. IntermediateParentClasses scheme
413.1.2 Implementation principles
This scheme supports bidirectional relations via the following mechanisms :

o For each class participating in a bidirectional relation, an intermediate parent class is
generated and inserted into the inheritance hierarchy.

o The bidirectional relations pointing to this class are redirected to point to its intermediate
parent.

413.2.2 Using
Example :

Classes class_1 and class_2 have bidirectional relation.
If class_2 wants to get instance of “its class_1", then the following accessor should be used :

get_downcast_itsClass_1 (this : in class_2_t)

4.13.3.2 Limitations

Most of the limitations of the SubtypingAndRenaming scheme are no longer relevant with this
implementation. However there are still a few remaining limitations :

o This implementation is not compatible with Ada83 only configurations.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 115/220

4.14. Ports
4.14.1. Limitations
Note that there are limitations applicable to usage of ports which are described hereafter :
o Ports contracts have to be implicit
o Multiplicities in links between ports have to be balanced
o The number of source instances has to match the number of target instances
o And the number of source ports has to match the number of target ports
o A port can have multiple contracts if the model is built for Ada 2005

o Fast ports are available only is the model is built for Ada 2005

4.14.2. Using ports
RIA generates code for ports in classes and for linking instances via ports.

When a class has ports, the code generator will create an additional Ada package called
<class>_port. This Ada package contains all the material to declare the class’s ports. The class
contains a part of this <class>_port type.

Some functions are added in order to send some messages through ports.
e Get_<Port_Name>(this : class_type) : return port_type

This function gets the instance of the port we need.
e <message>(this: class_type, port : port_type)

This function sends the message “message” through the port “port” of the class “this”. One function
is created for each message defined in the port’s interface. The usual way to send a message is to
write :

<message>(this, Get_<Port_Name>(this));

If some parameters need to be passed with the message, then they are added after the port’s
instance :

<message>(this, Get_<Port_Name>(this), param : param_type);

The procedure is the same when you want to send an event through a port. Use the gen event
function with port’s name :

Gen_<event_name>(this, Get_<Port_Name>(this));

When an event is received from a port, it is possible to know which port received it. It is done with
the function Is_Port of class Oxf.l_Event. Its signature is :

oxf.l_Event.is_port(event : oxf.l_event_t, port_ID : System.address)
The port_ID is given by the address of the port. You must get it like that :

<port_name>.Get_Inbound(Get_<port_name>(this)).Port_ID

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 116/220

4.14.3. Example 1 : behavioral port

Create a new model with 2 classes Class_0 and Class_1 which are parts of a class Build.
Create an interface interface_1 with one operation “message_0".
Create port “Port_0" on Class_0.

Open features window of this port. Check behavioral check button, and add a provided interface in
contract tab.

Copy this port in Class_1.

Open features window of this new port. Check reversed check button

Create a link between ports of the two classes.

Add an operation message_0() in class_0. Its implementation must be :
put line("class 0 : message 0()");

Add an operation test() in class_1. Its implementation must be :
put line("Class_1 : test()");
message 0 (this,get port 0(this));

Add an operation test() in class Build. Its implementation must be :
put line ("Build : test()");

Add a with and use clause for Ada.text 10 in all classes.

In configuration features, initialize the Build class in Initialization tab, and implement initialization
code with :

Build.test (p Build.all);

You should get a model like this one :

I X
Entire Model View > | + +

E id Project
=1 Components
=-# DefaultComponent
-3 Confiqurations
=% DefaultConfia
(= Hyperlinks
& Edit Main File
~-F Edit Makefile
fect Model Diagrams

]
=

=B Classes
=8 Build

4 Links
=& Qperations
- i@l test()
a

=- Parts
[itsClass 0
{7 itsClass 1
class 0
T Generalizations
@ Operations
~ & messaage 0()
=0 Ports
- port 0
class 1
@ Qperations .
- @ test() Build
E--2 Ports
e |
&8 Interfaces 1 itsClass_0:class_0
=8 Interface 1
=@ Qperations
- @ message 0() Smessage_0():void
#-£3 PredefinedTypes (REF)
&2 PredefinedTvpesAda (REF)
-1 Profiles

i anterface» T
Interface_1

B il

m:
eemD e

1 itsClass_1:class_1

port_0 port_0

L
Interface_1 Interface_1| Stest():void

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 117/220

In this model test() function of class_1 will send message “message_0” through its port port_0.

4.14.4, Example 2 : fast ports

Take the model created below.

Set Ada_CG:Component:AdaVersion Property to Ada05 in oder to build the model for Ada 2005.
In Class_0, Add a statechart with 2 states and one event “a” between the 2 states

In Class_1, Add a statechart with 2 states and one event “b” between the 2 states
Remove the contract of the 2 ports

Change the implementation of class_1.test() :

gen_event (this, Default.get a, get port 0 (this));

To send an event through a fast port you must use the function Gen_Event. Its signature is:
gen_event(this: class type, event : Oxf.Event.Event_acc _t, port : port type);
The event must be created with the function defined in the event’s package. Its name is :

<event package>.get_<event_name>

4.14.5. Multicast ports

This feature allows sending a message through one port to several ports in a single operation. It
uses Booch components 95 in order to create an unbounded list of interfaces. Booch components
are not provided with Rhapsody install. They must be installed manually if needed. (See 2.3 Booch
components for more information.)

Multicast generation is controlled by the property
ADA_CG::Port::Support Multicasting
This property has the following values
Never : multicast instrumentation is never used
Smart : multicast instrumentation is used only if needed (see algorithm below)

Always : multicast instrumentation is always generated

Sending a multicast message

Sending a message to a port will automatically send it to all connected interfaces. The
syntax is the same than with a single interface.

Example

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 118/220

The port Port_0 of an instance of class Class_0 is linked to several ports of instances of
various other classes(which have the same interface as port_0)

To send a message “message” through Port_0 of class_0 you must write :

message(this, get_port_0(this));

A message can be a procedure, an event or a triggered operation. Functions cannot be
sent through multicast ports.

Fast ports also support multicast.

Link initialization with multiplicity

Multicast can be automatically initialized only if required and provided interface of the link
belongs to class instance of multiplicity 1 and if its port has also multiplicity 1. In this case there is
no ambiguity for initializing the links. Multiplicity of both ends of the link must be equal to 1.

Multiplicity equals 1 in both ends of the link (in this case multicast is not useful)

1 itsMicrophone micraphone

p Class Build in Default

1

itsloudspeakerloudspeaker

ort 0
1F3 _

1
[F—=

Etest]void

Interface_9

= nn:Integer
=7 ™ n:integer

Interface 9

& zend(s: String):vaid
Ha Initialize()

There are several instances of a class with provided interface.

1 itsMicrophone O:rmicrophone

BEtestivoid

1 itsloudspeaker O:loudspeaker
por_D = nn:integer
40;[35 r:integer
Interface) 9, Intetface_14 [
Eﬁﬁt?:ﬁ;%mng)'mld T itsloudspeaker 1:loudspeaker
portd port_00 = nniinteger
d 1 ~ 4 = ninteger
Interface_9) Interface_14 Interface_9 Interface. 14 5 send(s Strngyvord
1 jtsLoudspesker 2loudspeaker s Initialize
por_D = nn:intener
—D;[] = niinteger
Interface_8,(Interface_14 | Bsendes String)void
W Initialized U itsloudspeaker Jloudspeaker
port_p| H aninteer
(T E ninteger

Interface_9, Interface_14

& sendis:Stringyvoid
W Initialize ()

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 119/220

Other operations on multicast ports

Some other operations can be done on a multicast Port in order to control the links between ports.
e Add a new provided interface
e Remove an existing provided interface

e Send a message to only one provided interface.

A provided interface can be disconnected from required interface. The following procedure does
this.

Remove_<interface_name>(this : port_type, interface : interface_type);

Example
declare
currentSourcePort : microphone port.port O.port type;
currentTargetPort : loudspeaker port.port O.port type;
begin

currentSourcePort microphone.get port O(this.itsMicrophone 0.all);

currentTargetPort loudspeaker.get port 0(this.itsLoudspeaker 0.all);
microphone port.port O.remove Interface_9 (
currentSourcePort,
loudspeaker port.port O.get Interface 9(currentTargetPort)
);

end;

To add a new link to port, you just need to set port interface as usual.

Example

declare
currentSourcePort : microphone port.port O.port type;
currentTargetPort : loudspeaker port.port O.port type;

begin
currentSourcePort := microphone.get port 0(this.itsMicrophone 0.all);

currentTargetPort loudspeaker.get port O(this.itsLoudspeaker 0.all);

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 120/220

microphone port.port 0.set_ Interface_9(
currentSourcePort,
loudspeaker port.port 0O.get Interface 9 (currentTargetPort)
)7

end;

It is possible to send a message to only one link.
A message “Message” can be sent to only one provided interface.

Message(this : class_type, port : port_type, interface : interface_type);

4.15. Ada Libraries
4.15.1. Creating an Ada Library

An Ada library can be created from a project by setting the “Library” option on the component.

Component : Default in Ada_Libraries ﬂ
F
General | Properties | =
Marme: IDefauIt
Stereotype: I ﬂ
Directony: |Defau|t
Libraries: | o

Additional Sources:

|
Standard Headers: I
|

Include Path:

anman

Type
’7 & Librany " Executahle " Cther

anatel Ok | Apply | ‘

Figure 143: Setting the Component to Create a Library.

When the project is built, a library will be created in the directory specified by the configuration using
the naming conventions described in the table below.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 121/220

Compiler(s)

GNAT

Library naming convention

Lib<ComponentName>.a

GreenHills AdaMulti / Win32

<ComponentName>.lib

GreenHills AdaMulti / Integrity

Lib<ComponentName>.a

ObjectAda / Win32

<ComponentName>.lib

ObjectAda/ Raven

N/A

Table 6 Compilers library naming conventions

4.15.2. Linking an Ada Library

To use an Ada library from another project, two pieces of information are required in the component
properties. The first is the name of the library to use. This name depends on the compiler you are

using, the syntax is described in the previous table. This name is put in the “Libraries” field. If there
is more than one library to list, place a carriage return between the names.

General Prupertiesl

MNarme:

Stereotype:
Directony:

Libraries:

Include Fath:

Additional Sources:

Standard Headers:

Component : MyComp in ADA_Libraries_Inclu

IMyCDmp

|MyCDmp

IDefauIﬂ

£ N

Twype
’7 Library & Executshle = Other

Locate | 0K | Apply | |

| [x

Figure 144: Using an Ada Library.

The location of the libraries also needs to be specified. The “Include Path” field is used to capture
this information. The location of the library as well as the location of the sources for the library must
be included. If there is more than one path to enter a carriage return should be used as a

separator.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 122/220

4.16. Configuration of Main File Generation

If the property “CG.Configuration.MainGenerationScheme” is set to “Full” on the configuration being
generated, an entrypoint will automatically be created. The entrypoint will be named
main<Component Name>.adb, and will produce an executable called <Component Name>.exe.
This entrypoint will overwrite the output from any user-created entrypoint in the model.

Configuration : DefaultConfig in DefaultCompone ﬂ

General | Settingsl Checksl Froperties

— Initial instances

& Ewplicit ¢ Derived

=5 Default
class 0
vl class_1

v Generate Code For Actors

Initialization code
— by User Code :I

i

Locate | 0K | Apply ||

Figure 145: Configuration Instances.

4.16.1. With Clauses
A “With” Clause will be created for every class selected.
4.16.2. Configuration Prolog

The contents of the “Ada_CG.Configuration.ImplementationProlog” property on the configuration
will appear just after the “With” clauses. It can be used to “With” other classes or packages as
needed.

4.16.3. Instance Creation

If the selected class is not a singleton, a variable will be created to hold an access to the type of the
class, and initialized with a new instance. If the class implements an Initialize procedure, the new
instance will be initialized as well. If the class is a singleton and implements the Initialize procedure,
the procedure will be called on the class.

4.16.4. RiADefaultActive Initialization

If there is a reactive class in the model that requires the RiADefaultActive class, the
RiADefaultActive class will be initialized.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 123/220

4.16.5. Reactive Instance Hookup

If there is both an instance of a reactive class, and an instance of the active context for this reactive
class, the reactive instance will be registered on the active instance. If the reactive instance uses
the RiADefaultActive class, this registration will be done as well.

4.16.6. Start Behavior
The RiADefaultActive class will be started if needed

As for the configuration initial instances, the Ada_CG.Relation.ObjectlInitialization (Creation, Full,
None) configuration property controls their initial behavior. By default it is set to “Full”, which means
instances will be initialized and their behavior will be started. If the user would like the behavior not
to be started, “Creation” should be selected.

4.16.7. User defined local variables

Variables declared in the “Ada_CG.Configuration.LocalVariablesDeclaration” property will appear in
the declaration of the entrypoint.

4.16.8. User Initialization Code

Any code entered in the “Initialization Code” field on the configuration will be inserted into the
entrypoint.

4.16.9. Configuration Epilog

The contents of the “Ada_CG.Configuration.ImplementationEpilog” property on the configuration will
appear just after the “end MainDefaultComponent;” line.

With Rin_Default_nctive;
With class 0;
With clas;_l;

procedure MainDefaul tComponent is

start hehavior status : Boolean:

P class 0 : class 0.class 0 acc t;

p_class_l H clasé_l.class_l_acd_t;
hegIn N o o o

-- Instance Initialization
PiA Default Active.Initialize;

p_cIass_O i= new class 0.class 0 t;
class_ﬂ.Initialize(p_class_ﬂ.all};
p_class 1 := new class 1.class 1 t;

-- Register PReactive Classes
Rik Default Active.register context class 0(p class 0.all);:

-- Start Behawvior
Rin_Default_nctive.start;
class 0.start behavior{p class 0.all, start bhehavior status):

-- Initialize Package Instances

-- User Initialization Code
-— ¥Your Configuration Initialization Code

end MainDefaul tComponent ;

Figure 146: Auto-generated Entrypoint.

The generated entrypoint can be viewed by selecting “Edit Configuration Main File” from the
Configuration.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 124/220

If animation is turned on, these instances will NOT be animated.

4.17. Instances Defined on a Package
4.17.1. Package Modifications

A child package will be created to handle the creation and initialization of any instances defined in a
package. The name of the package will be <<Ada Package Name>>.RiA_Instances, where <<Ada
Package Name >> is the name of the package where the instances are defined. When generating
Ada83, the package name will be <<Ada Package Name>>_Instances. Each instance defined in
the UML package will create global variables in this generated Ada package.

-5 MyPackage
=B Classes
: % dass_0
- L H dass_1
=7 Objects
-y itsClass_0
[y itsClass_1

Figure 147: Global Instances on a Package.

Object : itsClass_0 in MyPackage]

General I.-'l‘-.ttril:uutesl I:Iperatil:unsl Fielatil:unsl Tags I F'n:upertiesl

M arme; IitsEIass_El Ll

Sterentype: I j

b ain Diiagram; I j
Concurency: I j
Type: In::lass_[l i MyPackage =]

Multiplicity: |1 =]
Initialization: I |

— Relation to whole

[T Enows itz whole as:

D escription:

Lucatel 1].4 | Apply ||

Figure 148: Global Instance with Mulitplicity = 1.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 125/220

Dbject : itsClass_1 in MyPackage]

General I.-'l‘-.ttril:uutesl I:Iperatil:unsl Fielatil:unsl Tags I F'n:upertiesl

M arme: Ll
Stereohype: I j
b aity Diagram: I j
Concurency: I j
Type: In::lass_1 in MyPackage j
Multiplicity: ~ [1..10 ~|

Initialization: I |

— Relation to whole

[T Enows itz whole as:

D escription:

Lucatel 1].4 | Apply ||

Figure 149: Global Instance with Multiplicity > 1.

Variables will be created in the public part of the package specification for each instance defined.
The type of variable will depend on the setting of the “CG.Relation.Implementation” property for
each of the relations. If the instance is a singleton, no variable will be created. If the multiplicity is
greater than 1 but not *, an array with be used of the given size. If the multiplicity is given as *, an
array will be generated of size 100. The elements in this array will not be initialized.

The appropriate “With” statements will be added to the package specification for each Class
instantiated.

These instances will be created in the procedure Initialize_Relations, and they will be initialized if an
Initialize operation exists for their class.

Likewise, these instances will be finalized in the procedure Finalize_Relations if a Finalize
operation exists for their class.

If the instances have a statechart, the start_behavior procedure will be called to start the behaviors
of the instances in the Initialize_Relations procedure. The instances will be hooked up to their
active context if needed as well. If the instances are active, they will be started by calling the start
procedure.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 126/220

With MyPackage.class 0;
With MyPackage.class 1;

package MNyPackage.Ril Instances is

—— Instance Declarations
itzClass 0 : MyPackage.class O.class 0 acc t;

type itsClsass 1 card t is new Positive range 1..10;
type itsClass 1 acc lst t is array(itsClass 1 card t) of MyPackage.class l.class 1 ace t;
itsClass 1 : itsClass 1 acc lst t;

procedure Initislize Relations;

procedure Finalize Relations;

end MyPackage.Ril Instances;

Figure 150: The Instances Package Specification.

Mith Rik Default Active:
package body MyFackage.RiA Tnstances is

procedure Initialize Relations is
start _hehavior status : Boolean;
bhegin
—-— Create the globhal instances
itsClass 0 := new MyPackage.class O.class 0 t;
MyPackage.class_0.Initialize(itsClass _0.all);
for i in itsClass 1 card t loop
itsClass_1(i) := new MyPackage.class l.class 1 t;
end loop;

—-— Register the contexts
FiA Defsult Active.register context class 0(itsClass 0.all):;

—— Start beharior
MyPackage.class O.start_behawvior (itsClass 0.all, start _bhehavior status):

—— Hookup instances

—— Ensure that there is at least one statement
null;
end Initialize Relations:

procedure Finalize Relations is
hegin

MyFPackage.class 0.Finalize(itsClass 0.all);

end Finalize Relations:

end MyPackage.Ril Instances;

Figure 151: The Instances Package Body.

If a link is created between the instances, the relation will be initialized as well in the
Initialize_Relations procedure.

Only the Initialize_Relations procedure will be called from the auto-generated entrypoint.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 127/220

4.18. User-Defined header and footers
4.18.1. Available properties

By modifying the following properties on the project, component, configuration, package or class
level the user can get Rhapsody to use custom headers and footers instead of the default ones for
generated files.

- Ada_CG.File.ImplementationFooter

- Ada_CG.File.ImplementationHeader

- Ada_CG.File.SpecificationFooter

- Ada_CG.File.SpecificationHeader

Component : DefaultComponent in RiA_User_Defined_Header_Footer |

Generall Helationsl Tags Properiss I

Filt
|— et Al " Comman & Dvenidden " Locally Dveridden |

E|ada_cG
El| File

ImplementationFooker | -- Component level Implementation Fooker 10 0-- Component level Implementation Fooker 2

ImplementationHezader | -- Component level Implementation Header 10 0-- Component level Implementation Header 2

SpecificationFooter -- Component level Specification Footer 100-- Component level Specification Footer 2

SpecificationHeader -- Component level Specification Header 1 00-- $Login $Configurationfame $ComponentMame $Rhapsodyiersion $Login00-- Compal

Locatel 0K | Apply ||

Figure 152 Defining custom header and footer at the component level

The usual Rhapsody inheritance rules apply for these properties, which means that you can refine
your settings from the project level all the way down to the class.

These four properties are independent, which means that you can use a single project level setting
for say the specification header and have different configuration level settings for the
implementation header.

Those properties can also be updated at class level or at operation level (for separate operation).
This can be useful to set change history log for example.

If the value of a keyword is a MultiLine, each new line (except the first one) starts with the value of
the ADA_CG::Configuration::DescriptionBeginLine property; each line ends with the value of the
ADA_CG::Configuration::DescriptionEndLine property.

4.18.2. Keyword substitution

Keyword based substitution is supported inside of these headers and footers.
The following keywords are supported:

* $ProjectName - The project name.

* $ComponentName - The component name.

* $ConfigurationName - The configuration name.

* $ModelElementName - The name of the element mapped to the file. If there is more than one,
this is the name of the first element.

* $FullModelElementName - The name of the element mapped to the file, including the full path. If
there is more than one, this is the name of the first element.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 128/220

* $CodeGeneratedDate - The generation date.

* $CodeGeneratedTime - The generation time.

*

* $Login - The user who generated the file.

* $CodeGeneratedFileName - The name of the generated file.
* $FullCodeGeneratedFileName - The full file name.

* $Description — the description of the class or package

Note the following:

* Keyword names can be written in parentheses. For example:

$(Name)

$RhapsodyVersion - The version of Rational Rhapsody that generated the file.

* |f the value of a keyword is a MultiLine, each new line (except the first one) starts with the value of
the ADA_CG::Configuration::DescriptionBeginLine property; each line ends with the value of the

ADA_CG::Configuration::DescriptionEndLine property.

: Text Editor x|
01 —-- Compohent lewel 3Specification Header 1 ﬂ
0z -- $Login $ConfigurationMName §Componentlame $RhapsodyVersion $Login
03 —-- Component lewel Specification Header 2

a |

LCancel | Help

ul

Figure 153 Inserting keywords inside user-defined header and footer

——++ package Default
—— Component level Specification Header 1

—— Compornent level Specification Header =

-—++ class class O
package class 0 is

type class 0 t©;
type class 0 acc © is accesgs all class 0 t;

type class 0 © is tagged null record:
private
end class 0;

—-— Component level Specification Footer 1
—— Compornent level Specification Footer =2

—— zseodius ITrheritedSettings Defaul tComponent &.0 sodius

Figure 154 Example of generated code using user-defined header and footer

4.18.3. Script Evaluation

It is also possible to put script names inside of headers and footers so that they get evaluated at

code generation time.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 129/220

The name has to be framed following this convention [[scriptName]].

The script has to be applicable for the model element for which the header is being evaluated,
otherwise an error message will be displayed.

4.19. Custom makefiles
4.19.1. Introduction

Makefiles are usually generated by the Ada code generator. However they can also be created
manually. This document describes all the features of custom makefiles, and gives some examples
of makefile creation.

4.19.2. Features

4.19.1.2 Entry point
A makefile is built from 2 entry point properties

Ada_CG.<ENV>.MakeFileNameForExe

This property sets the name of the makefile. The extension must be inserted in this property.

Ada_CG.<ENV>. MakeFileContentForExe

This property is the file template. It can contain some text and some keywords. Keywords will
be interpreted by CG.

There are some entry point properties to generate makefiles for executable project and for library
projects. Different entry points will be used depending on the component property.

Executable project
MakeFileNameForExe
MakeFileContentForExe

Library project
MakeFileNameForLib

MakeFileContentForLib

If several files must be generated, then property names must be followed by a number from 1 to N.
The CG will automatically scan all entry point properties.

MakeFileNameForExel

MakeFileContentForExel

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 130/220

MakeFileNameForExe2

MakeFileContentForExe2

2 additional entry points must be added for Green Hills compilers in order to generate entry point
build files.

FilenameEntrypointBuildFileContent

EntrypointBuildFileContent

419.2.2 Keywords

Keywords are replaced by CG with some text. This text can also contain other keywords, which will
be interpreted recursively.

Keywords are preceded by the character “$”

There are 2 kinds of keywords: property keyword and macro.

4.19.3.2 Property keyword

Property keywords can be any of the properties of the current environment. This keyword will be
replaced by the content of the property. Its syntax is

$<properety_name>

Example
Property MakeExtension String ".bat"

Property MakeFileNameForExe String "makefile$MakeExtension”

In the second property, CG will replace $MakeExtension by the content of property
Ada_CG.<ENV>.MakeExtension. The result will be :

“makefile.bat.”

4.19.4.2 Macro

A Macro is a keyword which will be interpreted by CG to execute a script. Macros are recognized
because they start with “$AdaCG”.

Some macros don’t begin by this prefix :
- $ComponentName
- $ProjectName

- SOMROOT

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 131/220

4.19.5.2 Creating new macro

If needed, users can add some new macros which will call Code Generator rule. The user must
have knowledge of the RiA Code Generator rules in order to do this.

A property file must be created, which will make the mapping between the name of the macro and
the script to call.

The file name must be :

<Rhp_install_dir>\share\\properties\MakeFileCommand.ini

Syntax to fill this file is

<Macro_Name>=<script_name> for a script defined in configuration level

<Macro_Name>=Project.<script_name> for a script defined in project level

4.19.3. Standard Macros and property Keywords

This list of macros already known by the code generator:

AdaCGAnimationinclude If animation is enabled, this macro will get property
AnimationLibraries83Path, AnimationLibraries95Path or
AnimationLibrariesNew95Path, depending on used FWK

AdaCGAnimLib If animation is enabled, this macro will get property

AnimationLibraries

AdaCGBehaviorallnclude If animation is enabled, or if model needs Behavioral
FWK, this macro will get property
BehavioralLibraries83Path, BehavioralLibraries95Path or
BehavioralLibrariesNew95Path

AdaCGBehavioralLib This macro gets properties BehavioralLibraries83Lib,
BehavioralLibraries95Lib or BehavioralLibrariesNew95Lib
depending on used FWK

AdaCGBoochPath If relations are used, this macro will get property
Booch83Path or Booch95Path depending on used Booch
component.

AdaCGBoochFiles This macro gets some property depending on the following condition :

if Uses_Relations_Include{

if Use_Booch_95 Components{
if Needs_Relations_Include_Bounded_Qualified{
get property Booch95RelationsIncludeBoundedQualified }
if Needs_Relations_Include_Unbounded{

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 132/220

if Needs_Relations_Include_Unbounded_Qualified{

if Use_Booch_83 Components {

get property Booch95RelationsincludeUnbounded}
if Needs_Relations_Include_Unbounded_Not_Qualified{
get property Booch95RelationsincludeUnboundedNotQualified}

get property Booch95RelationsincludeUnboundedQualified}

if Needs_Relations_Include_Bounded_Qualified{
get property Booch83RelationsincludeBoundedQualified}
if Needs_Relations_Include_Unbounded{
get property Booch83RelationsincludeUnbounded}
if Needs_Relations_Include_Unbounded_Not_Qualified{
get property Booch83RelationsincludeUnboundedNotQualified}
if Needs_Relations_Include_Unbounded_Qualified{
get property Booch83RelationsincludeUnboundedQualified}

AdaCGAdaPath

This macro gets all generated folders. All folders are
separated by “\n”. This macro uses the property
AdaPathContent in order to format this list. See
AdaPathContent description for more details.

AdaCGAdaVersionSwitch

This macro will get property Ada83Switch, Ada95Switch
or Ada2005Switch, depending on Ada version used. If a
model in Ada83 is animated, version switch will be forced
to Ada9s.

AdaCGDebugSwitch

This macro generates the text of property CompileDebug
if build set of configuration setting is set to debug.

AdaCGAdditionalSources

This macro gets additional sources from configuration
settings. It uses property AdditionalSourcesTemplate in
order to format this text. See AdditionalSourcesTemplate
description for more details.

AdaCGUserIncludPath

This macro gets user include path from configuration
settings. It uses property IncludePathTemplate in order to
format this text. See IncludePathTemplate description for
more details.

AdaCGLibraries

This macro gets library from configuration settings. It
uses property LibrariesTemplate in order to format this
text. See LibrariesTemplate description for more details.

AdaCGCompileSwitches

This macro gets compile switches from configuration
settings

AdaCGLinkSwitches

This macro gets link switches from configuration settings

AdaCGFileSpecList

This Macro makes the list of all generated spec files. The
spec file is added to the make file using the
SpecTemplate property.

This macro uses properties

IBM® Rational® Rhapsody® Developer for Ada - User Guide

- SpecTemplate<index of makefile>
- ProtectedStartTagFormatl<index of makefile>
- ProtectedEndTagFormatl<index of makefile>

<index of makefile> is the index of makefile entry point

AdaCGFileBodyList

This Macro makes the list of all generated body files This
macro uses properties

- BodyTemplate<index of makefile>
- ProtectedStartTagFormatl<index of makefile>
- ProtectedEndTagFormatl<index of makefile>

<index of makefile> is the index of makefile entry point

AdaCGObjectAdaMakefile

This macro generates makefile for OBJECTADA
compiler. “Compiler” property should be set to
OBJECTADA.

AdaCGGnatMakefile

This macro generates makefile for GNAT or
GNATVxWorks compiler. “Compiler” property should be
set to GNAT or GNATVxWorks.

AdaCGGnatAdc This macro generates gnat.adc file for GNAT or
GNATVxWorks compiler. “Compiler” property should be
set to GNAT or GNATVxWorks.

AdaCGOptionalAdaPath Used to split AdaCGGnatMakeFile macro

AdaCGGnatchopCommands

Used to split AdaCGGnatMakeFile macro

AdaCGCommands

Used to split AdaCGGnatMakeFile macro

AdaCGArchiveCommand

Used to split AdaCGGnatMakeFile macro

AdaCGIDEName

Get value of IDEName tag of current configuration (for
RIiA in eclipse)

AdaCGIDEProject

Get value of IDEProject tag of current configuration (for
RiA in eclipse)

AdaCGIDEWorkspace

Get value of IDEWorkspace tag of current configuration
(for RiA in eclipse)

AdaCGFilenameMULTIEntrypointBui
IdFile

This macro generates makefile name for user entry point
for GHS tools.

AdaCGMULTIEntrypointBuildFile

This macro generates makefile content for user entry
point forINTEGRITY or Multiwin32 environment

AdaCGMULTI4EntrypointBuildFile

This macro generates makefile content for user entry
point for INTEGRITYS5 or Multi4dWin32 environment

AdaCGMultiMakeFile

This macro generates makefile for INTEGRITY or
MultiWin32 environment. “Compiler” property should be
setto INTEGRITY or Multiwin32.

AdaCGMultiEntryPoint

This macro generates entry point files for INTEGRITY or
MultiWin32 environment. “Compiler” property should be
setto INTEGRITY or Multiwin32.

Page 133/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 134/220

AdaCGMultiSources This macro generates sources files for INTEGRITY or
Multiwin32 environment. “Compiler” property should be
setto INTEGRITY or Multiwin32.

AdaCGMultidMakeFile This macro generates makefile for INTEGRITY5 or
Multi4Win32 environment. “Compiler” property should be
set to INTEGRITY5 or MultidWin32.

AdaCGMulti4EntryPoint This macro generates entry point file for INTEGRITY5 or
Multi4Win32 environment. “Compiler” property should be
setto INTEGRITY5 or Multi4Win32.

AdaCGMulti4Sources This macro generates sources file for INTEGRITY5S or
Multi4Win32 environment. “Compiler” property should be
set to INTEGRITY5 or MultidWin32.

AdaCGDefaultActiveClass If default active class is need for FWK83, then this macro
will get the property ActiveClassinclude.

AdaCGFileList This macro generates the list of generated spec files. It
uses property FileTemplate in order to format this list.

AdaCGOMROOTSingleSlashes Generates OMROOT with back slashes.
AdaCGOMROOTDoubleSlashes Generates OMROOT with double back slashes
AdaCGOMROOTForwardSlashes Generates OMROOT with forward slashes.
OMROOT Generates OMROOT with back slashes. This string is

quoted if the property QuoteOMROOT s set to “True”.

This list of additional properties shows properties which are used by macro listed below.

CompileDebug This property contains debug switches. Is used by
AdaCGDebugSwitch macro.

Ada83Switch Those properties contain Ada version switches.
Ada95Switch

Ada2005Switch

AnimationLibraries83Path Those properties contain Animation libraries path for each
AnimationLibraries95Path WK

AnimationLibrariesNew95Path

BehavioralLibraries83Path Those properties contain Behavioral libraries path for each
BehavioralLibraries95Path FwK

BehavioralLibrariesNew95Path

AnimationLibraries This property give the animation library located at

<Rhp_Install_Dir>\ Share\LangC\Lib

AdaPathContent This property contains patterns to be replaced. The format

IBM® Rational® Rhapsody® Developer for Ada -

User Guide Page 135/220

of this property is
<"The_String_To_Replace”><"Is_Replaced_With">
For example

<\\\n\'><\7;\7>

This will replace \n by ;

Compiler This property sets the name of compiler. It is used to be
able to reuse already existing rules with other
environment.

For example, if you create a new Environment called
GNAT_1, and if you use the Macro AdaCGGnatMakefile,
then some part of rules won't work as expected because
this new environment variable is unknown. So a new
property is created to replace this environment name with
compiler name.
If a new compiler is created, this property is not useful,
because it is unknown by CG.
The values for this property should be :

GNAT

GNATVxWorks

OBJECTADA

Multiwin32

MultidWin32

INTEGRITY

INTEGRITY5

RAVEN_PPC

SPARK

Booch83Path Those properties contain booch components path

Booch95Path

Booch95RelationsIncludeBoundedQualified Those properties contain the list of

Booch95RelationsincludeUnbounded
Booch95RelationsincludeUnbounded

Booch95RelationsincludeUnbounded

Booch83RelationsincludeBoundedQualified

Booch83RelationsincludeUnbounded
Booch83RelationsincludeUnbounded

Booch83RelationsincludeUnbounded

booch component files needed for each
kind of relation.

NotQualified

Qualified

NotQualified

Quialified

AdditionalSourcesTemplate
IncludePathTemplate

LibrariesTemplate

Those 3 properties allow replacing some string of
configuration fields by some other string. Syntax is :

[optional_string]
<"The_String_To_Replace”><"Is_Replaced_With">

IBM® Rational® Rhapsody® Developer for Ada -

User Guide Page 136/220

For example

Property LibrariesTemplate Multiline " -largs <\"\"\"><\" -
N"><A"NI><E SNl > <) V> <V St -\

If user update configuration libraries with the string
“lib1,lib2”, then it will be generated like this :

-largs —llib1 —llib2

BodyTemplate Those properties are use to format the file list generated by Macros

SpecTemplate

AdaCGFileBodyList and AdaCGFileBodyList.

The following keyword can be used in this template :
ConfigurationRelativeFilename
ConfigurationRelativeBodyFilename
ConfigurationRelativeBodyFilename
SpecRelativeFilename
BodyRelativeFilename
FileName
GNATCommandFileName
AdaCGRIiAFullName

For example for a class class_0 defined in default package those
keywords will produce :

ConfigurationRelativeFilename . \Default\class_0
ConfigurationRelativeBodyFilename . \Default\class_0.adb
ConfigurationRelativeSpecFilename : \Default\class_0.ads
SpecRelativeFilename : class_0.ads
BodyRelativeFilename : class_0.adb

FileName : class_0
FullNameDashes : class_0 (“.” Are

replaced by “-“)

AdaCGRIiAFullName : Default::class_0

ProtectedStartTagFormat

ProtectedEndTagFormat

Those properties are used to format the file list generated
by Macros AdaCGFileBodyList and AdaCGFileBodyList.

They are used to add some tags in the list in order to help
CG to add only new text in the file.

The same keywords than properties BodyTemplate and
SpecTemplate can be used.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 137/220

4.19.4. New environment creation

Create a new file SiteAda.prp
Add the following properties
Subject Ada CG
Metaclass Configuration
Property Environment Enum
"GNAT, INTEGRITY, INTEGRITY5,MultiWin32,Multi4Win32, OBJECTADA, RAVEN PPC, SPARK, GNATV
xWorks,New_Env" "GNAT"

end

end

Copy an environment which is as close as possible to your new one, from sodius.prp to siteAda.prp.
It must be copied just before the last “end” of the file.

Then modify entry points and add some new properties which will describe your new files.

4.19.5. Use cases

Custom makefiles can be created for several purposes. For example user needs to make a small
modification of a current makefile. Or user wants to use a new compiler which is not supported by
code generator. This chapter will describe how this can be done.

4.19.1.5 Create a new makefile for an unknown compiler.

Fast solution

Just add the text of the make file in the entry point property. This will generate always the
same makefile. This solution can be used to make a quick test, but it cannot take into
account all possible configurations.

Configurable solution

A new environment could be used for different kind of configuration. User can use different
frameworks or Ada versions, or he can set animation or not. In order to take into account
automatically those configurations, custom makefiles can be written with some macros which
will automatically select the desired property depending on configuration properties.

Makefiles depend also on the model structure. A list of generated files or folders can be
added to makefiles with the possibility to format the list.

Take into account Framework

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 138/220

If your model has events or statecharts, then a Framework must be used. Three
different Frameworks can be used (FWK83, FWK95, NewFWK95), depending on
property Ada_CG:Component:UseAdaFramework. Those Frameworks have been first
generated and compiled for your compiler and your environment. You should know
what their locations are. The path of your different Framework should be set in
properties BehavioralLibraries83Path, BehavioralLibraries95Path and
BehavioralLibrariesNew95Path, and you should invoke them by using macro
AdaCGBehaviorallnclude, which will select the correct property, depending on used
Framework.

Take into account animation

If model is animated, you should add some libraries
C Animation libraries which are :

%OMROOT%\LangC\lib\Adawinaomanim.lib
%0OMROOT%\LangC\lib\AdaWinoxfinst.lib
%OMROOT%\LangC\lib\Adawinomcomappl.lib

C libraries should be compiled as explaind in Ada_User_Guide.pdf.
Ada animation libraries path which are :
%OMROOT%\LangAda\aom for FWK 83.

%OMROOT%\LangAda\aom_95 for FWK95 and newFWK95.

You should use AdaCGAnimationinclude and AdaCGAnimationLib macros with there
associated properties, in order to add animation facilities into makefiles.

Take into account relations

If your model contains relations which use booch components, then some booch
components files must be added to your makefile.

Booch components are located in :
%OMROOT%\LangAda95\booch_ada_83\src\

%OMROOT%\LangAda95\booch_ada_95\src\

For each kind of relation, the Code generator uses a different set of Booch
components.

Booch components 83

Relations_Include_Bounded_Qualified
map_simple_noncached_concurrent_bounded_managed_noniterator.ads
map_simple_noncached_concurrent_bounded_managed_noniterator.adb

Relations_Include_Unbounded
Storage_Manager_Concurrent.ads
Storage_Manager_Concurrent.adb

Relations_Include_Unbounded_Not_Qualified
list_single_unbounded_controlled.ads

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 139/220

list_single_unbounded_controlled.adb
list_utilities_single.ads
list_utilities_single.adb
list_search.ads

list_search.adb

Relations_Include _Unbounded_Qualified
Storage_Manager_Concurrent.ads
Storage_Manager_Concurrent.adb
map_simple_noncached_concurrent_unbounded_managed_noniterator.ads
map_simple_noncached_concurrent_unbounded_managed_noniterator.adb

Booch components 95

Relations_Include_Bounded_Qualified
bc.ads
bc-containers.ads
bc-containers.adb
bc-containers-maps.ads
bc-containers-maps.adb
bc-containers-maps-bounded.ads
bc-containers-maps-bounded.adb
bc-support.ads
bc-support-hash_tables.ads
bc-support-hash_tables.adb
bc-support-bounded_hash_tables.ads
bc-support-bounded_hash_tables.adb

Relations_Include_Unbounded
bc.ads
bc-support.ads
bc-support-standard_storage.ads
bc-support-unbounded.ads
bc-support-unbounded.adb

Relations_Include_Unbounded_Not_Qualified
bc.ads
bc-containers.ads
bc-containers.adb
bc-containers-collections.ads
bc-containers-collections.adb
bc-containers-collections-unbounded.ads
bc-containers-collections-unbounded.adb

Relations_Include_Unbounded_Qualified
bc.ads
bc-containers.ads
bc-containers.adb
bc-containers-maps.ads
bc-containers-maps.adb
bc-containers-maps-unbounded.ads
bc-containers-maps-unbounded.adb

You should use AdaCGBoochPath and AdaCGBoochFiles macro with their associated
properties to add Booch component facilities into makefiles.

4.19.2.5 Modify the generated code of a current environment.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 140/220

For example, you need to change the primaryTarget of your project for INTEGRITY5 environment.
But this is hardcoded by the code generator. Instead of calling the macro AdaCGMulti4MakeFile,
you will call a set of macros which are called by it. To do this you must use the Rules composer and
generate code in debug mode. Open the debug hierarchy and find the script which is called by the
macro.

Copy this script in a new property and change the script names into some custom names.

The script (get from Ada code generator rules) called by AdaCGMultidMakeFile does this :

[#script]
#!gbuild

Generated by Rhapsody

${self .MULTI 4 Top Settings}${self.MULTI 4 Get Library Options}${self.MUL
TI 4 Get Executable Options}

${self .MULTI 4 Debug Switches}S${self.MULTI 4 Additional Options}S${self.Ma
kefile Compile Switches}${self.Makefile Link Switches}

Generation directories settings
-object dir=obj
-—ada_info dir info
-—ada_xref dir xref

${self.MULTI 4 Ada Path}

${self .MULTI 4 User Include Path}${self.MULTI 4 User Libraries}${self.MUL
TI 4 RiA Anim Libs Linker Options}

${self .MULTI 4 Anim And Behavioral Includes}
Sources.gpj ${self.MULTI 4 Component Type}

${self.MULTI 4 Entrypoints}[/#script]

The Macro AdaCGMulti4MakeFile should be replaced by the following text in property
MakeFileContentForExe3

#!gbuild

Generated by Custom template

primaryTarget=NEW_PRIMARY TARGET integrity.tgt
[INTEGRITY Application]

-0 S$ComponentNameSExeExtension
Target definition

-bsp $BLDTarget

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 141/220

-os_dir=S$IntegrityRoot

$SBLDMainExecutableOptions

SMULTI4DebugSwitchesSMULTI4AdditionalOptionsS$MakefileCompileSwitches$SMake
fileLinkSwitches

Generation directories settings

-object dir=obj

--ada_info dir info

--ada_xref dir xref
SMULTI4AdaPath
SMULTI4UserIncludePath$SMULTI4UserLibraries$SMULTI4RiAAnimLibsLinkerOptions
SMULTI4AnimAndBehavioralIncludes
Sources.gpj [Project]

MainS$ComponentName$MakeExtension [program]

This new text will do the same job than the RulesComposer script. The names of the rules have
been replaced by new Macros. The rule MULTI 4 Top Settings has been replaced directly by
some text, because this is the part of generation that we want to modify.

In order to enable the code generator to understand those new macros, a new initialization file must
be updated, to create mappings between macros and rules.

Create the file :

<Rhp_install_dir>\share\\properties\MakeFileCommand.ini

In this file, you will map custom names to a script.

MULTI4DebugSwitches =Project.MULTI 4 Debug Switches
MULTI4AdditionalOptions =Project.MULTI 4 Additional Options
MakefileCompileSwitches =Project.Makefile Compile Switches
MakefileLinkSwitches =Project.Makefile Link Switches
MULTI4AdaPath =Project.MULTI 4 Ada_ Path
MULTI4UserIncludePath =Project.MULTI 4 User Include_ Path
MULTI4UserLibraries =Project.MULTI 4 User Libraries

MULTI4RiAAnimLibsLinkerOptions=Project.MULTI 4 RiA Anim Libs Linker Optio
ns
MULTI4AnimAndBehavioralIncludes=Project.MULTI 4 Anim And Behavioral Inclu
des

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 142/220

The prefix “Project.” means that this script is defined at project level. If this prefix is omitted, then
the script must be defined at configuration level.

You should also take care of Framework location. You may have generated a new Framework for
your new environment. So Framework location has changed. To do this, replace the Macro
MULTI4AnimAndBehavioralIncludes by AdaCGBehaviorallnclude. This macro will get
information from properties BehavioralLibraries83Path, BehavioralLibraries95Path or
BehavioralLibrariesNew95Path depending on Framework version.

Property BehavioralLibraries83Path should be for example :

--ada_elab dirs '"\'
$AdaCGOMROOTForwardSlashes/LangAda83/oxf/NewEnv sim800'"'

-L'$AdaCGOMROOTDoubleSlashes\\\\LangAda83\\\\oxf\\\\ NewEnv
sim800"'

A new property “Compiler” should also be added and set to “INTEGRITYS” in order to be sure that
the code generator will interpret the macro for the correct compiler.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 143/220

5. SPARK code generation

IBM® Rational® Rhapsody® Developer for Ada enables the generation of SPARK annotations from
UML models.

In order to analyse the generated annotations, you need the SPARK Examiner, available from
Praxis High Integrity Systems, much like you need an Ada compiler to compile the code generated
by Rhapsody.

IBM® Rational® Rhapsody® Developer for Ada supports the SPARK toolkit version 7.2 and above.
Contact Praxis High Integrity Systems to get the appropriate updates if you have a previous version.

5.1. Enabling SPARK code generation

5.1.1. Adding the SPARK profile to the model

A SPARK profile is provided with IBM® Rational® Rhapsody® Developer for Ada that allows
modeling of SPARK annotations. To use this profile on a new or existing Rhapsody model, from the
model :

e select “File, Add to model”...
¢ Navigate to the <Rhapsody>\Share\Profiles\SPARK directory
e Select the file type “Package (*.sbs)”

e Select the “As Reference” radio button

e Click “Open”

Add To Model : 2] x|
~| &« ® ek BB

¥ with Suturits
[wWith Peferences
A Unit

%' Az Feference

File name: |SPARK. shs Open |
Files of twpe: IF'a.:kage [*.zhz] j Cancel |

The SPARK Profile is now added to your model.

Entire Model View <

[=h-f] SPARE_Documentation
-] Components
#-{_] Object Model Diagrams
-] Packages
=27 Profiles
#-fa AdaCodeGeneration (RO
ERRESPARK (RO)

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 144/220

5.1.2. Setting the SPARK environment

The motivation in generating SPARK annotations is to have them analyzed by the SPARK
Examiner. This is why Rhapsody generates commands to pass on to the SPARK Examiner which
will then analyse the generated SPARK code. To enable the generation of these commands on a
configuration, you have to go through the following steps :

e Create or add a SPARK configuration

Entire Model Yiew w7

=-f] SPARK_Documentation
EH:l Components
: Elg DefaultComponent
EH:l Configurations
AR B
l:| Object Model Diagrams
D Packages
ED Profiles
@ AdaCodeGeneration (RO)
H-fa) SPARK (RO

¢ On the features window of the configuration, go to the settings tab, and in the environment
settings frame, select SPARK as the environment.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 145/220

Configuration : SPARK in DefaultComponenk |

General | Initislization Settings | Ehecksl Helatinnsl Tags I P'ru:upertiesl

Directany: Ip:.-’_dnu:umentatiu:un#mu:udels.-’ | V¥ Lse Default

Librariez: | _I

Additional Sources: .

| |
Standard Headers: | _I
|nzlude Path: I _l
— Inztrumentation

Inztrumentation Maode: |Hone vI Advanced ... |

— hafehify
I~ | web Enatling Advanced... |
Time todel: * Real " Simulated

Statechart Implementation: (™ Reysable (% Flat

— Environment Settings

Ervviranmnent: GHAT j Default |
Build S et IMTEGRITY -
HiE e Multiinz
:] . |OBJECTADA
Compiler Switches: PAVE PPC | = I
k. [~ _|
Link Switches: ;I

Lucatﬂl Ok | Apply ||

5.1.3. Examination level

You can select the required examination level for a class or package specification property by
setting the following properties to the appropriate values:

o Class.SPARK.Class.ExaminerLevelBody
e Class.SPARK.Class.ExaminerLevelSpec
o Package.SPARK.Class.ExaminerLevelBody
e Package.SPARK.Class.ExaminerLevelSpec
The available values for these properties are described below :
e None : the file will not be examined
e Data : data-flow analysis will be performed on the file

¢ Information : information-flow analysis will be performed on the file

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 146/220

5.2. Differences between code generated with and without the SPARK
profile

Apart from the fact that the profile allows to model and generate SPARK annotations, there are a
few differences between code generated using the profile and code generated without using the
profile :

e Attribute accessors are not generated
e Relations accessors are not generated
e Statecharts code is not generated

This is achieved by overriding the appropriate properties in the profile.

Profile : SPARK in SPARK_Tests)
Generall Helatiu:unsl Tags Properties
|—F|Iter Al " Common &+ Overidden " Locally Overidden
Sin
El Class
Implementstatechart D
=1 Relation
Generate
| ada_CG
=1 atkribuke
AccessarGenerake D
MukatorGenerate Mewver
El Class
GeneratefccessTwpe | Mone
SPARK
Lucatel 1].4 | Apply ||

5.3. General usage notes on SPARK profile tags
5.3.1. Capturing annotations with string tags

The SPARK profile is mostly based on the use of tags. Some of these tags are strings in which you
can type annotations, which should be valid SPARK annotations, except that they shall not contain
“--#” character sequences at the beginning of each line, as they will be generated by Rhapsody for
you for each line in the tag.

5.3.2. Annotations often come in pairs

Very often, an annotation to be generated in the package specification may have a counterpart to
be generated in the package body. Such annotations pairs are modeled by :

e tags which names end by a “Spec” and a “Body” suffix (such as DerivesBody and
DerivesSpec tags for an operation).

e Dependencies from a client that have the same stereotype, but a different
CG.Dependency.UsageType property value (either Implementation or Specification). An
examples of such a dependency pair is the <<SPARK_Global>> dependency from an
operation to an attribute.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 147/220

5.3.3. Multiple modeling approaches

For most annotations, there are several ways to model and/or capture them using Rhapsody :
e The most common one is to use a string tag in which you type in the annotation content
e You might also use some stereotyped dependencies for most annotations

e More rarely, depending on the annotation kind, there might be some other ways yet (one
illustration of this is described in the “Initializes annotations” section)

Depending on your preferences, you might favor one style over the other. These different
approaches are generally not exclusive, meaning that part of an annotation might be modeled via
the use of a string tag while another part is modeled through dependencies. However, we
recommend avoiding mixing styles to facilitate model maintenance.

5.4. Inherit clauses
This section describes the various ways to model inherit annotations
5.4.1. Using inheritance

When a class A inherits from a class B, a with clause to B is generated in the specification of A.
When generating code for SPARK, an inherit clause to B is also generated

Entire Model Wiew <

=141 SPARK_Inheritance
EI{:I Camponents
EIE DefaultComponent
El{:l Zonfigurations
L ‘k SPARE
=7 Object Model Diagrams
—-[27 Packages
EI& Defaulk
E|§ Classes
=8 Subclass
- attributes
Lo my_Boolean
El“|h SuperClasses

i

I T superclass
=8 superclass
- Attributes
o my_Attribute
#-F PredefinedTypes (RO)
= Profiles
@ adaCodecenaration (RO)
-3 SPARK (RO

Figure 155: Modeling inherit clauses via inheritance

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 148/220

With 3Zuperclass:
——# inherit Superclass;

——++ class Subclass
package Subclass is

——Public Fields/Variables 3cCesSSors —-————--—-——-—
private
type Jubclass t is new Juperclass.Superclass € with
record

—— Fields
iy _Boolean

Boolean: -—++ attribute my Boolean

end record;

end Subclass:

type Jubclass t is new Juperclass.3uperclass € with private;

Figure 156: Generated code for derived class using the SPARK profile

5.4.2. Using <<Usage>> dependencies

By default, every usage dependency will generate both a with clause (either in the client

specification or body) and an inherit clause (always in the specification of the client) to the supplier

of the dependency.

-

Entire Model View
El--g SPARE_Usage_Dependencies

l:l Cormponents

Supplier A

=1-Z3 Object Madel Diagrams

- @ Modell

=27 Packages

5 B Default Client s<Usagez>. <

El@ Classes

SRS i

=1+ Dependencies

*+) Supplier_A

Supplier_B

v} Supplier_B
B supplier_a

<<l lsage=x™ o

EEI---E PredefinedTypes (RO)
i-{27 Profiles

Ty s PE@AI

Figure 157: Modeling inherit clauses via <<Usage>> dependencies

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 149/220

With 3upplier A;
With 3upplier E:
-—# inkerit Supplier A,
- Supplier B’

——++ class Cliexnt
package Client is

type Client t is tagged private;
private
type Client t is tagged null record:

end Client;

Figure 158: Generated code for dependency client class using the SPARK profile

To turn off the generation of the inherit clause for usage dependency, uncheck the inherits tag on

the dependency

There are cases where an inherit clause is required but not a with clause. In such cases, you can
turn off the generation of the with clause for <<Usage>> dependencies by setting the
Ada_CG.Dependency.GenerateWithClause property to false.

5.4.3.

Using the inherits tag on a class or a package

You also have the option to type in the list of packages to be inherited using the inherits tag
available for packages and classes.

o8

E(fg Tags

= Attributes
i e atbribute_a
[attribute_E

E1-{_] Packages
E'El Default Client Supplier_4& | | Supplier_ B
=B Classes +attribute_A : Supplier_A
+attribute_B : Supplier_B

: E-----lffg'lnherilz
E Supplier_a
E Supplier _B
[]---E PredefinedTypes (RO

LA s L I'—D|[

Figure 159: Modeling inherit clauses via Inherit tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 150/220

Class : Client in Default B
Eenerall .-“-‘-.ttril:uutesl Elperati-:unsl Fielations Tags IF'rl:upertiesl
i ot
= | adaCodeGeneration 1=
=l Class
generatePragmaklabors D
generatePragmaPreelak D
generatePragmaPure D
= SPARK
| Class
HideBody D
HideElaborationCode D
HidePrivatePart D |-
Supplier_n, Supplier_B
Initializes LI
Guick Add
Namal Vahal Add
Lu-::att:l 0Ok | Apply ||

Figure 160: Setting the inherit tag on a class

With Supplier A4;
With Supplier E:
-—# inherit Supplier A, Supplier Br

——++ olazz Client
package Client is

type Client t is tagged

record
—-— Fields —-
attribute A : Jupplier A.Supplier A t: ——+4+ Fttribute zttribute 4
attribute B : ZJupplier E.Supplier B t: ——+4+ Fttribute zttribute B

end record;

private

end Client;

Figure 161: Generated code for inherit tag on a class using the SPARK profile

5.5. Own variables
This section describes the various ways to model own annotations.
5.5.1. Modeling through tags on attributes

The table below summarizes the roles of the various SPARK profile tags related to own variables.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 151/220

Note that these tags do not affect non-static attributes of classes.

IsAbstract SPARK own variables may designate actual Ada variables, or may have no
concrete Ada counterpart. When they fall in this last category, they are called
abstract own variables.

Use this tag to prevent the generation of an Ada variable for an abstract
SPARK own variable.

IsInitialized Setting this tag to true will add the name of this own variable to the list of
initialized variables in the "initializes" SPARK annotation for the class or
package it is defined in.

. In SPARK, a static attribute falls into one of these 3 categories :

OwnKind

e Own: the attribute is in the own annotation of the specification for this
package or class

o TypelessOwn: same as Own, but there is no type associated to it in the
annotation

o RefinementConstituent: the attribute is not in the own annotation for the
specification of this package or class, but it should be part of a refinement
definition in the own annotation for the body

¢ None: the attribute is not in the own annotation for the specification of this
package or class, and it should not be part of a refinement definition

Use this tag to control the mode for an own variable :

OwnMode
e None : the own variable will not have an associated mode
e In: the own variable will have a mode set to "in"

e Out: the own variable will have a mode set to "out"
. The purpose of this tag is to hold the refinement definition for this own variable.

OwnRefinement
This refinement is generated in the package body.

Table 7 Own variables related tags

=] Packages
- PredefinedTypes (RO)
=-£9 The_Counter
= variables
= Counter

El@ Tags
= IsInitialized
o Cwnkind

Figure 162: Modeling an own annotation on a package via tags on an attribute

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 152/220

¥ariable : Counter in The_Counter

General I Fielations Tags | F'rcupertiesl

i pt

=l SPARK
=l| attribute

IsAbskract

IsInitialized

CiwnMode

CvanRefinement Refineme

Mane

Cluick Add
M arne:; I Walue: 4dd

Lucatel 1].4 | Apply ||

Figure 163: Setting some of the tags related to own variables on an attribute

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 153/220

¥ariable : Counter in The_Counter

General | Fielaticunsl Tags I F'rcupertiesl

M ame: IEnunter

Stereotype: I

-

Il

— Aittribute bype
¥ sze existing type

Type: INaturaI

i e

— Wizibility

e Public £ Private

b uiltiplicity |1

[" Reference

[T Constant [T Static

Iritial " alue:; lﬂ

| ™ Ordered

N

Description:

Lucatel 1].4 | Apply ||

L

Figure 164: Setting a default value on an initialized own variable attribute

——1t+ package The Counter
package ThE_CDunEE]‘:

——# own Counter.:

——# iritiglizes Counter.

is
—— Puklic Varigbhles/Constants
Counter Matural := 0O;
——Public Fields/Varisghles 3ccessors
private

end The Counter:

——1+ Fttribute Counter

Figure 165: Generated annotations for an initialized own variable

5.5.2. Using the OwnSpec and OwnBody tags

You also have the option to type in the list of own variables in the OwnSpec tag.

The OwnBody tag can be used to specify the own variables refinements.

Both tags are available for packages and classes.

IBM® Rational® Rhapsody® Develop

er for Ada - User Guide

Page 154/220

=[] Packages
ﬁ FredefinedTypes (RO}
B-5
- Tags
L Initializes
Ty CwnSpec
E|E Yariables
E|E Counter

EHg Tags

- l‘,g Owunikind

Figure 166: Modeling an own annotation on a package via tags on packages

¥ariable : Counter in The_Counter |

General I Fielations Tags | F'ru:upertiesl

x

=l sSPARK
=l attribute

IsAhskract D

IsInitialized O

Cvnkind Mone j

CianMode [2wn

{Typelesstwn
Cvanfefinement RefinementConstituant

Cluick Add
Marme: I WYalle: Add
Locate | 1].4 | Apply | |

Figure 167: Disabling the generation of an own annotation at the attribute level

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 155/220

Package : The_Counter in SPARK_DOwn_#A K|
Eenerall Fielations Tags | F'rcupertiesl
““ X
generakePragmaklabors D ;I
generatePragmaPreelak D
generatePragriaPure
=l | SPARK
| Package
HideBady D
HideElaborationZode D
HidePrivatePart D
Inherit
Initializes Counter
CnwnBody
|:::||..'..|r|'_:.|:||3|: I Zounker JE
Cluick Add
Name:l WYalle: I Add

Lucatel 1].4 | Apply ||

Figure 168: Setting some of the tags related to own variables on a package
Note that this example would generate the same code as the one shown in the previous section.
5.6. Initializes annotations
This section describes the various ways to model initializes annotations.

5.6.1. Using tags on attributes

As described in the section on own variables, one possible way to indicate that an own variable is
initialized by a class or package is to use the Islnitialized tag on the own variable.

5.6.2. Using tags on class and package

As an alternative, and also described in the section on own variables, you might want to use the
initializes tag available for classes and packages to type in the list of owned variables initialized by
this class or package.

5.6.3. Using <<SPARK_Initializes>> dependencies

Yet another approach is to draw <<SPARK _Initializes>> dependencies from the class or package to
the attributes to be initialized.

5.7. Proof types and Proof functions annotations

This section describes how to model proof types and proof functions annotations.

To indicate that a given type or function is to be generated as a proof type or as a proof function,
apply the <<SPARK_Proof>> stereotype to it.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 156/220

=] Packages
: E‘E:l My _Package
Ea Functions
- a My_Proof_Function()
=4y Types
- £ My_Proof_Type

Figure 169: Modeling a package with a proof type and a proof function

Primitive Operation : My_Proof_Funckion in |

M arne: IM_I,I_F'rn:u:nf_Funn::tin:-n L |
A (== =l |5 PA R E Proof j
Visihilty: [Public =l

— Returnz

[+ Usze existing type

Type: Ivn:niu:l j EI

— bodifiers
[St-ﬂtiﬂ_‘ | Template;l
Arguments; i by Tﬂ

Mame | Twpe | Walue | Direction

Mew

1 |]

Dezcription:

Locate | 1].4 | Apply | |

L

Figure 170: Setting the stereotype of a function to <<SPARK_Proof>>

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 157/220

Type : My_Proof_Type in My_Package K|

General | Declaratil:unl Fielaticunsl Tags I F'r-:upertiesl

I arne: IM],I_PrDl:If_T_l..IIIIE Ll
Stereotype: ISP‘.-’-‘-.H K._Proof j
Kind: ILanguage j
Description:

L

Locate | 1].4 | Apply | |

Figure 171: Setting the stereotype of atype to <<SPARK_Proof>>

-—++ package My Package
package My Package i=

——-Dublic types - ———————
-—# type My Proof Type is abstract:

—-Puklic Functions/Procedures sectioh ———————-—

——++ operation My Proof Function()
-—# procedure My Proof Function:s

private

end My Package:

Figure 172. Generated code for package with proof type and proof function

5.8. Global annotations
This section describes the various ways to model global annotations.
5.8.1. Using <<SPARK_Global>> dependencies

You can model the global annotations for an operation using <<SPARK_Global>> dependencies
from the operation to the global variables it is using.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 158/220

=553 The_Counter
ElE Functions
LB B Reset_Counterf
-+ Dependencies
-+ Counter

ElE Wariables
= Counter

Elﬁ Tags
- IsInitialized
b, Onnkind

Figure 173: Modeling global annotations via dependencies from operation to attribute

Dependency : Counter in Reset_Counter £

General | Tags I F'rn:npertiesl

Mame: IEnunter Ll
Stereotppe:; SPARE, Globa j

Depends On: |I:|:uunter ir The_Counter

Diezcription:

L

Locate 1].4 | Apply

Figure 174. Setting the stereotype of a dependency to <<SPARK_Global>>

On such dependencies, a GlobalMode tag is available so that you can specify in which mode the
variable is being used by the operation. The possible values are :

e |In
e Out

e In_Out

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 159/220

Dependency : Counter in Reset_Counter

General Tags | F'rcupertiesl

M E K

=l sPARK

| Dependency

Inhetit

El| sPark_alobal
GlobalMaode

Cuick Add

M ame: I

Walue: | fdd

Lucatﬂl Ok | Apply ||

Figure 175: Setting the mode of a <<SPARK_Global>> dependency

The CG.Dependency.UsageType property on the dependencies determines whether the global
variable will be added to the global annotation in the specification or in the body.

Dependency : Counter in Reset_Counter

General | Tags ~ FProperties I

Filker
|_ Al & Common ¢ Overidden € Lozally Dveridden |

=l cG

Dependency

| ada_CG

B

| Dependency

Createllsestatement

MNone

Lucatﬂl Ok | Apply ||

Figure 176: Controlling where the annotation is generated for a <<SPARK_Global>>
dependency

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 160/220

——++ package The Counter
package ThE_CDuﬁEEI

——# owm Counter;

——# imitializes Counter:
i=

——++ operation Feset Counter()
procedure Feset Counter:

——Puklic Fields/Variazbhles accessors
private

end The_CDunter :

—— Public VariablesSConstants ————————————-
Counter : Natural := 0O; ——++ attribute

——Puklic Functions sProcedures section

Figure 177: Specification for a package with a <<SPARK_Global>> dependency from an

operation to a package

-—++ package The Counter
package body The Counter is

Procedure Reset Counter

——# global out Counter:

is=

hegin
——+[operation Reset Counter()
Counter = 0O; a

end Reset Counter;

end The Counter;

——FunctionsProcedures sectioh ———————————-—

——Figlds/Variahles Jccessols ——————————————

Figure 178: Implementation for a package with a <<SPARK_Global>> dependency from an

operation to a package

5.8.2. Using tags on operations

An alternative is to use the GlobalSpec and GlobalBody tags on operations to type in the list of

global variables and their modes.

=15 The_Counter

=& Functions

= [Reset_Counter()
El@ Tags
5 - ﬁg Globalspec
= variables
= Counter

El@ Tags

: IsInitialized
Cynkind

Figure 179: Modeling global annotations via GlobalSpec tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 161/220

Primitive Operation : Reset_Counter in The

=l SPARK

=l PrimitiveCperation

DerivesBody

Derivesapec

GlobalBody

Globalspec out Counker

HideBody D

PostConditionBody

PostConditionspec

PreonditionBody

PrecConditionSpec

Guick Add

Nam&l Vah&l

&dd

Lu-::att:l Ok | Apply ||

Figure 180: Setting the GlobalSpec tag on an operation

——++ package The Counter
package ThE_CDuﬁEEE

——# own Counter:

——# imitiglizes Counter;
is

—— Pubklic Variakles Constants ——————————-
Counter : MNatural := 0O; ——1+ Fttribute

——Puklic FunctionssProcedures section —-—-
——1+ operdtion Reset Counter()
procedure Reset Counter:

—-# cglobal out Counter:

—-Puklic Fields/Varisghles 3ccessobs —--—-——-—

private

end The Counter:

Counter

Figure 181: Specification for a package with an operation with a GlobalSpec tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 162/220

-—++ package The Counter
packayge body The Counter i=s

——FunctionssProcedures section —-—————————-

procedure Feset Counter is
begin
——+[operation Reset Counter()
Counter = 0O; B
——+]
end Feset Counter:

——Fields/Variables Fccessors —-—--———————-——-

end The_CDunter :

Figure 182: Implementation for a package with an operation with a GlobalSpec tag

Note that except for the location of the global annotation, which is here set to be generated in the

specification, the generated code is similar to the one shown in the previous section.

5.9.

Derives annotation

This section describes how to model derives annotations

You can model the derives annotation using the DerivesSpec and DerivesBody tags on an

operation.

=1-£59 The_Counter
EE Functions
LB B Reset_Counterf)
E{g Tags

El E Variables
= Courker

EI@ Tags

e IsInitialized
b Ownkind

i DerivesSpec
(- Globalspec

Figure 183: Modeling derives annotations via DerivesSpec tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 163/220

5.10.

This section describes how to model precondition, postcondition and return annotations

Primitive Operation : Reset_Counter in The

=l SPARK

| PrimitiveCperation

DetivesBody

GlobalBody

| Counter from ; J

Globalspec

ouk Counter

HideEody

O

PostConditionBodsy:

PostConditionSpec

PreConditionBody

PreConditionSpec

Cuick Add

M arne: I

Walue: | Add

Lu[:atﬂl 0K | Apply ||

Figure 184: Setting the DerivesSpec tag on an operation

package The Counter
——# own Counter:

is

private

end The Counter:

——++ package The Counter

——# imitiglizes Counter’

——Public FunctionssProcedures section
——++ operation REeset Counter()
procedure RESEE_CDuﬁEEI;

——# global out Counterr

——# derives Counter from

——Iuklic Fields/Variahles Fccessors

Figure 185: Specification for a package with an operation with a DerivesSpec tag

Preconditon, postcondition and return Annotations

You can model the precondition, postcondition and return annotations using the following tags on
operations

PreConditionSpec

PreConditionBody

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 164/220

e PostConditionSpec
e PostConditionBody

Note that return annotations are modeled using the PostConditionSpec and PostConditonBody
tags.

The example below, which is an extension of the counter example used in some of the other
sections on SPARK, illustrates how a postcondition tag can be used.

=-§5 The_Counter
EIE Functions

= B Increment(y

EI{‘E: Tags
Detivesspec

Globalspec

PoskConditionSpec
- B Reset_Counterf
- B Set_IncrementiMatural New Increment_Yalue)
Yariables
E Counter
- Increment_value

m
- -

Figure 186: Modeling post conditions annotations via PostConditionSpec tag

Primitive Operation : Increment in The_Counter |

General Implementationl Relations Tags IF'mpertiesl

=l SPARK

=l Primnitive Operation
DetivesBody
DerivesSpec Counter Fram Counker, Incremel
GlobalBody i Text Editor X
GlobalSpec in out Counter; O Oin Increment

X 00 Counter = Counter~ + Increment Value -
HideBody O —
PostConditionBody
ikio : Counter = Counter~ + Increme _ILI
PreConditionBody h I I *
PreConditionspec
LCancel Help
Quick Add
Name:l Value:l Add

Locate | 0K | Apply. | |

Figure 187: Setting the PostConditionSpec tag on an operation

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 165/220

——++ package The Counter

package ThE_CDuﬁEer

——# own Counter : Natural,

——f ITncrement Value : Natural:
——# imitizlizes Counter,

——f Increment Value:
is

——Puklic Fupctions/Drocedures section ———————-—
——++ operztion Increment ()

procedure Increment;

——# globkal ip out Counter:

——f in Increment Value,

——# derives Counter from Counter, ITncrement WValue:
——# post Counter = Counter~ + ITncrement WValue:

——++ operztion Reset Counter()
procedure Reset_CDuﬁEer;

——# globkal out Counter:

——# derives Counter from

——t+ opergtion Set Increment (Naturazl)
procedure SEt_IncfEment {
New Increment Value : in Natural
1
——# globazl out Incrament Values
——# derires Increment Value from New Increment Valuer

——Public Fields/Variables 3ccessors ——————————
private

end The Counter:

Figure 188: Specification for a package with an operation with a PostConditionSpec tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 166/220

-—++ package The Counter
package body The Counter is

—— Body Varigkles/Constants ————————————————-
Counter : MNatural := 0O; ——++ Fttribute Counter

——-Functions/Procedures section ———————————————
procedure Increment is

begin
——+[operation Increment()
Counter := Counter + Increment Value:
__+}

end Increment:

procedure Feset Counter is

begin
——+[operation Leset Counter()
Counter := 0O;
__+}

end RESEE_CDuntEE;

procedure Set Increment |
New Increment Value : in Natural
1 is=s
begin
——+[operztion Set Increment (Natural)
Increment Value :¥_New_Increment_Ualue;
end 2=t Increment:

——Fields/ Varigkles dccessols ————————————————

end ThE_CDunter;

Increment Value : Natural := 0: ——++ 2ttribute Increment Value

Figure 189: Implementation for a package with an operation with a PostConditionSpec tag

5.11. Hide annotation
This section describes how to model hide annotations

5.11.1. On aclass or a package

There are 3 tags controlling the various hide annotations that can appear in the generated code for

a class or a package

¢ HideBody : controls the generation of a hide annotation in the body of the generated Ada

package

¢ HideElaborationCode : controls the generation of a hide annotation in the initialization code

of the generated Ada package

e HidePrivatePart : controls the generation of a hide annotation in the private part of the

generated Ada package

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 167/220

[=1-_] Packages
EIEI Hidden_Body_Pkg
=@ Functions
o e | My _operation)
El@ Tags

%, HideBody
=-f3 Hidden_Elaboration_Code_Pkg
=- @ Functions
e B My _Operationi)
El@ Tags

- ﬁi HideElaborationCode
=-f3 Hidden_Private_Part_Phkg
Eiﬁ Tags

o, HidePrivatePart
[_]El Plg_With_Oper ation_with_Hidden_Body
=B Functions

= @ Operation_with_Hidden_Body()

E@ Tags

- Ig HideBody

Figure 190: Modeling hide annotations on packages and operations

In the figure above, every tag is a Boolean and has its value set to True.

-—++ package Hidden Body Pkg
package body Hidden Body Pky is
——# hide Hidden Body Pkg

——Functions/sProcedures section
procedure My Operation is
hegin

nuall;

-—+[operation My Operation()

__+_'|I
end My Operation;

end Hidden Eody Pkg;

Figure 191: Generated body code for a package body with its HideBody tag set to true

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 168/220

Package : Hidden_FElaboration_Code_Pkag in SPARK

Eenerall Helatiunsl Tags FProperties

Filk
|_ e Al Common % Overidden ¢ Locally Overidden

CG

B

0]

[+]

Akkribute

InitializationCode

[+]

Class

[+]

Configuration

[#

SequenceDiagram

[

SPARK

Locate

0K Apply

Figure 192: Setting the elaboration code on a package

-—++ package Hidden Elzboration Code FPkg
package body Hidden Elaboration Code Pky is

—--Functions/Procedures sectioh ———————————-

procedure My Operation is
hegin

nuall;

-—-+[operation My (Operation()

-]
end My Operation;

hegin
—-—# hide

null;

end Hidden Elshoration Code Pkg;

HideElaborationCode tag set to true

private

end Hidden Priwvate Part Pkg:

—-—++ package Hidden Private Part Dkg
package Hidden Priwvate Part Pkg is

-—# hide Hidden Private Part Pky

true

Figure 193: Generated code for a package body with elaboration code and its

Figure 194: Generated code for a package specification with its HidePrivatePart tag set to

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 169/220

—-—t+ package Pkg With Operation Witk Hidden Body
package body Pkg With Operation With Hidden Body is

——Functions//Procedures sectioln ———————————————
procedure Operation With Hidden Body is
begin
——# hide Operzticon With Hidden Body
null; B B B
—-—+[operation Operation With Hidden Body()

__+j|
end Operation With Hidden Body;

end Pky With Operation With Hidden Body:

Figure 195: Generated code for an operation body with its HideBody tag set to true

5.11.2. On an operation

The HideBody tag on operations controls the generation of a hide annotation in the body of an
operation.

5.12. Main program annotation
This section describes how to model the main program annotation.

The main_program annotation is automatically generated for <<entrypoint>> classes.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 170/220

6. Behavioral Code Generation

This section uses the following definitions:

Reactive class A class that consumes messages, typically defined by
statecharts or activity diagrams
Reactive instance An instance of a reactive class.
Active class A class that dispatches events (e.g. manages an
event loop) on its own OS task.
Active instance An instance of an active class.
Event An asynchronous message, with or without data.
Triggered Operation A synchronous message, with or without data.
6.1. Overview of the behavioral frameworks
6.1.1. Selecting the behavioral framework implementation

It is possible to select between three versions of the behavioral framework, one relies on Ada83
constructs exclusively, and the others exploit Ada95 constructs.

The new Ada 95 based framework is the default for new models. The component property
“Ada_CG.Component.UseAdaFramework” is used to switch between the frameworks. The value
"NewFWK95” is used to select the ravenscar compatible framework. “FWK95” is used for
backward compatiblilty for models before version 7.3. And, “FWK83" " Is set to use the Ada 83
Framework instead.

Note that it is not possible to mix the three frameworks in a same component.

6.1.2. Differences between the Ada 83 and the Ada 95 implementations

o Features available exclusively with the two 95 Frameworks

o Tasks are only used for active classes and not for locking resources (protected objects are

used for this).

o Dynamic memory allocation (DMA) is only used for asynchronous events (with the Ada 83
Framework, triggered operations are using DMA by default, unless the
“Ada_CG.Class.OptimizeStatechartsWithoutEventsMemoryAllocation” property is set).
Statechart Inheritance
Generation of code for SendAction states
Deep History Connectors
Active classes no longer need <<active_context>> dependencies,

Indirect reactive parts (that is a reactive composite class having direct parts that are not
reactive but have reactive parts themselves)
o Out transitions with same trigger but different guards on a same state (with the Ada 83

Framework, this requires using a condition connector)

o O O O O

e Features available exclusively with the 83 Framework
o Generic reactive classes

6.1.3. Common features of both frameworks

Behavior is modeled in IBM® Rational® Rhapsody® Developer for Ada by creating a statechart for
a class. This class is then said to be a reactive class. Within the family of reactive classes, there
are 2 distinct types: classes with asynchronous messaging using events, and those with
synchronous messaging that use only triggered operations.

6.1.1.3 Reactive classes

Four operations exist to start or stop the reactive class statechart, and to monitor its status. They
have the same interface regardless of the framework version.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 171/220

-- Aotiwvate the state machine, and take the default transitions.
procedure start behawvior (this : in out reactive class t; success : out Boolean);

-- Set the ria behavior terminated attribute to true
procedure terminate_hehaviur (thi= : in out reactive_class_t);

-- Returns the ria behavior started attribute
function is behavior started (this : in reactive class t) return Boolean;

-- Beturns the ria behavior terminated attribute
function is_hehaviur_terminated (this : in reactive_class_t) return Boolean;

Figure 196: Operations to Control the Reactive Class Statechart.

6.1.2.3 Active classes

For a class to be considered an active class, the concurrency of the class must be set to “active”.

Class : active_class in Default ﬂ

General |Attributes| Operations Prupeniesl

MName: Ial:tive_cl ass L |

Stereatype: | =]
kain Diagram: I LI
Concurrency: Ial:tive LI
Definedn: [Default =]
—Class Type

& Regular Termplate " Instantiation

Argurnents ... |

Description:

L

Lucatel OK | Apply ||

Figure 197: Definition of an Active Class.

An active class has a start operation which begins the event loop for the process of events.

procedure Start (this : in out Active Class t):

Figure 198: Operations to Control the Active Class

6.2. Using the Ada 83 Behavioral framework

6.2.1. Limitations

Indirect reactive parts are not supported (that is a reactive composite class having direct parts
that are not reactive but have reactive parts themselves)

e Statechart inheritance is not supported
e Deep history connectors are not supported

e SendAction states are not supported

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 172/220

e Out transitions with same trigger but different guards on a same state are not supported, a
workaround is to use an intermediate condition connector instead.

6.2.2. Event-based reactive classes

Each event-based reactive class must have an active class that performs the event loop and
delivers events to it. Each active class creates its own task to handle its event loop, and is linked to
its reactive classes by a dependency stereotyped “Active Context”.

reactive_class B

B trigger AQ:void
B trigger B(:void
AT

| a & otive O ontexts

active_class

Figure 199: A Reactive Class and its Active Class.

6.2.3. Reactive Class Generation

Each reactive class automatically generates:

e Its own event type which contains a variant record for various event reception data.
e |ts own event queue type.

e gen_<event>() method for each type of event it may consume.

e Event creation/deletion methods.

e Event consumption methods.

e Specific statechart implementation methods.

Every reactive class will use the Ada packages found in the Rhapsody behavioral code for Ada 83
library. This library uses only Ada 83 constructs and is used whether generating Ada 95 or 83. A
future release will include a library for Ada 95 which will incorporate some optimizations possible
when using Ada 95.

The set of “With” statements for an event-based reactive class is shown below.

With Pik Mutex AdaB3; -- Provides the event gqueue guard

With Rin:Event:Flag_ndaB3; -- Provides the event flag

With Ria Guarded Queue AdaB3; -- Provides the gueue for the events to process

With Rih:TY'pes; - - -- Provides the types used in the behavior code library

Figure 200: The "With" Clauses for a Reactive Class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 173/220

6.2.1.3 Reactive Class Variables

A reactive class communicates with its active class using shared variables between the two
instances. These variables are generated in the class record.

type reactive class t is tagged

record
ria behawior started : Boolean := false;
ria behavior terminated : Boolean := false;
ria null transitions count : Integer := 0;
ria state machine hu;y : Boolean := false;
ria_cu:r:re;t event_: Ewvent ;
ria events available signal : RiA Event Flag Ada83.RiA Event Flag AdaB83 acc t := null;
ria_q‘ueue E‘uard : RiA Mutex AdaB83.RiA Mutex AdaB3 acc t := nl_Jll; - - -
ria_event_queue H Eve;t Queae t; - - - -
ria context ready : Rin_TypesTBunlean acc := null;
ria_cunt.ext_queue : Reactive Instances Queue acc = null;
root state active : Integer T= RiA Nnn_State_;
root state sub state : Integer := Ria Hon State;
end reEurd; - - - -

Figure 201: The Reactive Class Record.

The variables are used in the following manner:

ria behavior_started: A boolean flag that indicates that the reactive class is ready to
consume events.

ria behavior_ terminated: A boolean flag that indicate that the reactive class reached a
terminate connector.

ria null_transitions_count: Count the number of null-transitions that are yet to be taken
after an event is consumed.

ria state_machine_busy: An indicator that the state machine is currently consuming an event,
used to prevent self calls of triggered operations while the state machine is in an undefined state.
This flag is not used for mutual exclusion.

ria_current_event: A pointer to the currently consumed event.
ria_events_available_ signal: A pointer to the active instance event flag.

ria_ queue_guard: The event queue guard, specified by the active class.
ria_event_queue: The reactive instance event queue.

ria_ context_ready: A pointer to a boolean flag, used for event consumption optimization.
ria_context_queue: A pointer to a Reactive_Instances_Queue.

root_state_active: Aninteger that holds the current active state, of the root state.
root_state_sub_state: Aninteger that holds the current active sub-state of the root state.
There is also one static variable that is generated:

ria maximum allowed null_steps: A static integer that indicated the maximum allowed null
steps (used to detect infinite null-transitions loop), can be disabled by setting to 0.

6.2.2.3 Reactive Class Public Operations

In addition, there are several public operations generated for the Ada package that represents a
reactive class.

There are 2 operations to retrieve information about the current event being processed.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 174/220

function current event id {(this

-- PReturns the current ewvent data record
function current_event_data {thi=s

-- Returns the current event id

: in reactive_class_t) return Event Data acc;

: in reactive class t) return Integer;

Figure 202: Operations for the Current Event Information.

These operations use the public types that are defined for a reactive class and will be discussed in

the next section.

As well as defining the new operations discussed above, reactive classes also require some
initialization and finalization. These methods will be created if they do not already exist, or the
necessary code will be added to existing implementations.

—— Initialization of the instance
procedure Initialize(this :

—-- Finalization of the instance
procedure Finalize(this

in out reactive class t);

: in out reactiwve class t);

Figure 203: Initialization and Finalization of the Reactive Class.

6.2.3.3

Statechart-Specific Reactive Class Operations

In addition to the generic public operations discussed above for every reactive class, there are also
specific operations and types created based on the contents of the statechart.

For this discussion, an example project will be used which contains a reactive class called

“reactive_class” defined in the “Default” package. The reactive class has a simple statechart with 2
states (“state_1” and “state-2”) with 2 events being used to trigger the state transitions (“trigger_A”,
and “trigger_B”). The event “trigger_B” has an Integer for its event data.

EI& Drefaulk

=B

Elg active_class

El% reactive_class

=l \ Events

£ PredefinedTypes (RO

Classes

(= ‘;‘ Dependencies
May peactive_class

- operations

E krigger_al)

E krigoer_BlInteger myData)
[T Statechart

\ krigger _al)
\ krigoer_B(Integer myData)

Figure 204: Example Reactive Class Project.

trigger_A[<guard_A>]/<transition_A action>

state_1

)

trigger_B[<guard_B>)/<transition_B action>

-

state 2 &

Figure 205: Statechart for the Reactive Class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 175/220

Given the above example project, the event types will be generated as follows:

—— A wvariant record that kolds 3 pointer to the events consumed
—— bv the class.
type Event Data (event id : integer) is
record
case ewvent id is
when Defsult.trigger s id =>
null;
when Defsult.trigger b id =>
Default trigger B mwyData : Integer:;
when others =>
null;
end case;
end record;

type Event Data acc is access Event Datar

—— The redctive class event representition
type Event 1i=s

record
id : Integer := 0;
data : Ewvent Dats acc = null;

end record;

type Event acc is access Event:

Figure 206: The Event Types for the Reactive Class.

The Event_Data variant record will either have no elements in the case of the event being
“trigger_A”, or will have an Integer element for the “trigger_B” event.

To allow different events to share argument names, the record component corresponding to an
event argument has a name based on the full namespace of the argument.

Shall the relative name of the argument be preferred instead, setting the
Ada_CG.Class.RelativeEventDataRecordTypeComponentsNaming to true will disable this behavior.
Note that if this property is set to true, there shall be no events or triggered operations sharing an
argument name, as they would generate variant record components with the same name, which is
uncompilable.

In case of triggered operations, the property shall be set on the reactive class whose statechart
uses the triggered operations, and in case of events it shall be set on the events themselves (and
not on the receptions).

Event : trigger_B in Default |

Generall Helatiunsl Tage Froperties |

Filker T -
|_ i Al " Commah % Overidden = Locally Overidden |

E| ada_CG
| Class

RelativeEventDataRecord TypeComponentsiaming E

Locate | 1] 4 | Apply ||

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 176/220

Figure 207: Using relative naming for current event data

type Event Data ([event id @ integer) 1is
record
case event id is
when Defsult.trigger a id =
nuall;
when Defsult.trigger b id =&
myDhata : Integer:
when others =:-
nuall;
end case;
end record:;

Figure 208: Event data record type using relative naming

As shown in the sample code above, the event is identified by an Integer defined on the containing
package, in this case the “Default” package.

package Default is

-- Identifier for trigger A event
trigger a id : constant Integer := 1;

-- Identifier for trigger B event
trigger b id : constant Integer := 2;

end Default;

Figure 209: The Parent Package of the Reactive Class.

Beside the event types, there are public operations added to enable events to be sent to the
reactive class. For each event, a “get_<event _name>" operation is created.

-- Generate the trigger A event

procedure gen trigger a (this : in out reactive class t) ;

-- Generate the trigger B event

procedure gen trigger b (this=s : in out reactive class t; myData : in Integer);

Figure 210: Operations to Generate Events for a Reactive Class.

The following statecharts show how one can access the current event data in a statechart so as to
decide which transition shall be taken. Note that depending on the value of the
Ada_CG.Class.RelativeEventDataRecordTypeComponentsNaming property, the guards on some
transitions may have to be modified

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 177/220

event data'this) Default trigze

“myData < 10]

Figure 211: Accessing atrigger parameter value (using full namespace based naming)

state 2

state 1

exvent datalthis) myData < 10

Figure 212: Accessing atrigger parameter value (using relative naming)

6.2.4. Active Class Generation
An active class must have a dependency to at least one reactive class stereotyped “Active Context”.

For the code to generate correctly, the active class must set its record type to be private. This is
done by setting the “Ada_CG.Class.Visibility” property to “Private” for the active class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 178/220

Class : active_class in Default ﬂ

GenerallAﬂributes Operations Properties

Filter— =
r et Al & Common Cvermidden ¢ Locally Overridden

Sk ae

Bl Class
ActiveMessageue
ActiveStackSize
ActiveThreadName
ActiveThreadPriorit
UsedsExternal (O
=l Ada_CG

H| Class
TaskBody

Private

=| WebComponents
H| Class
WebMaraged O

Lucatel 0K | Apply ||

Figure 213: Setting the Record Type Visibility for an Active Class.

An active class generates an Ada task type to execute the event loop for the handling of events.
There is one entry to the task type called “process_events”.

-- The task to handle the processing of events
task type RiA Active Task is

entry process | events {this : in out active class t):
end RiA Active Task; - -

type RiA Active Task acc is access RiA Active Task;

Figure 214: The Task Generated for an Active Class.
6.2.14 Active Class Variables

In addition, several elements are added to the record for the active class type.

record
<reactive class name> context queue
{reactive class namer.Reactive Instances - Queue acc := null;
<reactive class name> context ready : RiA Types.Boolean acc := null;
ria task : Pik Active “Task acc := null; - -
ria events available glgnal
Rln Event - Flag AdaB3.PifA Event Flag Ada83 acc t := null;
ria gqueue guard : Bi& | Hutex AdaB3.Ril Mutex | nda83 ace t := muill;
end record;

Figure 215: The Record Definition for the Active Class.

ria_task: The instance task.

ria_events_available_signal: The task event flag, used to signal the active instance that there are
events ready to be consumed on at least one of the reactive instances in its context.

ria_queue_guard: A mutex to protect the reactive instances queues.

For every reactive class that the active class has an <<Active Context>> dependency to, the
following attributes are generated:

<reactive class name>_context_queue: A queue of reactive instances that is used for event
dispatching.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 179/220

<reactive class name>_context_ready: A boolean flag used for event dispatching optimizations.

The following “With” statements are needed in the active class as well to use the Rhapsody
behavioral code for Ada 83 library.

With Rin_Hutex_ndaE3;
With RiA Event Flag Ada83;
With RiA Types;

Figure 216: "With" Statements for an Active Class.

In addition, a “With” statement will be added for each of its reactive classes.
6.2.2.4 Public Operations for an Active Class

There are 2 kind of public operations of interest generated for an active class. One is the “start”
operation, as mentioned earlier.

The other is the “register_context_<reactive class name>" series of procedures, which make the
active instance the context for the event dispatching of the reactive instance. One of these
methods will be created for each reactive class for which this class serves as its active context.

—— Register an instance of the egquivalent reactive type on the active instance
procedure register context reactive class (this : in out Active Class_t;
reactive : in out reactive class.reactive class t);

Figure 217: The Public Operations of an Active Class.

An active class also requires some initialization and finalization. The Initialize and Finalize methods
will be created if they do not already exist, or the necessary code will be inserted into existing
implementations.

—-- Initialization of the instance
procedure Initialize(this : in out reactive class t);

-- Finalization of the instance
procedure Finalize(this : in out reactive class t);

Figure 218: Initialization and Finalization of the Active Instance.

6.2.5. Working with Active and Reactive Classes

There are four distinct steps when using active and reactive classes: Initializing, Starting the
Behavior, Sending Events, and Finalizing.

6.2.1.5 Initializing

Both the active and reactive instances need to be initialized before using them. This is
accomplished by calling the “Initialize” procedure on each of them.

6.2.2.5 Starting the Behavior

To activate the state machine for a reactive class, the “start_behavior” procedure is called for the

reactive instance. This will cause the default transitions to be taken, and will allow the reactive
class to receive events.

The active class can be started by calling the “start” procedure which will activate the active

instance event loop.
6.2.3.5 Sending Events

Once the active and reactive classes have been started, it is possible to send events to the reactive
class. This is done by the calling the “gen_<event name>" procedure on the reactive instance.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 180/220

6.2.4.5 Finalizing

To cleanup the resources of the reactive and active instances, the “Initialize” and “Finalize”
procedures should be called.

The following procedure definition demonstrates these four phases for the example model given
above.

procedure main is
active instance : active class.active class acc t;

reactive instance : reactive class.reactive class acc t:
start result : Boolean:

begin
-— Create the new instances
active instance := new active class.active class t;
reactive_instance := new reactive_class.reactive_class_t;

—— Initialize the instances
active class.Initialize(active instance.all):
reactive class.Initialize(reactive instance.all):

-— Start the behavior
reactive class.start behavior(reactive instance.all, start result);
active class.start(active instance.all):

—-— Send events
reactive class.gen trigger A(reactive instance.all):
reactive class.gen trigger B(reactive instance.all, 1);

—— Cleanup the instances
active class.Finalize (active instance.all);

reactive class.Finalize(reactive instance.all);

end main;

Figure 219: Using an Active and Reactive Class.

6.2.6. Active Reactive Class

A reactive instance can act as its own active context as well by setting its concurrency to “active” -
this class is then called an Active-Reactive class. Instances of this type cannot have another active
class act as its active context, and they cannot be the active context for any other reactive
instances. When using an active-reactive class, an <<Active Context>> dependency to itself is not
needed.

active_reactive_class =

Figure 220: An Active-Reactive Class.

Using the active-reactive class is the same as using a separate active class. The instance needs to
be initialized, the statechart needs to be started, the event loop needs to be started, events are
sent, and the instance is finalized.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 181/220

procedure main is
active_reactive_instance : active_reactive_class.active reactive class_acc_t;
start result : Boolean;
begin
-— Create the new instance
active reactive instance := new active reactive class.active reactive class t;

—-— Initialize the instance
active reactive class.Initialize(active reactive instance.all);

-— Start the behavior
active reactive class.start behavior (active reactive instance.all, start result):
active reactive class.start (active reactive instance.all);

-— Send events
active reactive class.gen trigger A(active reactive instance.all);
active reactive class.gen trigger B(active reactive instance.all, 1);

—— Cleanup the instances
active reactive class.Finalize(active reactive instance.all);

end main;
Figure 221: Using an Active-Reactive Class.
6.2.7. Default Active Class
Instead of explicitly creating an active class for his reactive class, a user has the op tion of

using the automatically generated Default Active Class singleton. The default active class is called
“RiA_Default_Active”, and a “With” statement in automatically generated in all <<entrypoint>>
packages when needed.

The user can disable the creation of the default active class, as well as control which classes it can
act as the active context for, with the Ada_CG.Configuration.DefaultActiveGeneration property. The
settings are as follows:

Disable: The default active singleton is not created.

ReactiveWithoutContext: This is the default setting. The default active singleton is created if
there are reactive classes which consume events and which do not have an active context explicitly
specified. The default active singleton can handle only these classes.

All: The default active singleton is generated if there is at least one event-consuming reactive
class, and the active singleton can handle all reactive classes that consume events — even those
reactive classes that specify another active class as their active context.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 182/220

procedure main is

reactive instance : reactive class.reactive class_acc t:
start result : Booclean:
begin
-— Create the new instance
reactive_instance := new reactive class.reactive class_t;

-- Initialize the instances
RiA Default Active.Initialize;
reactive class.Initialize(reactive instance.all):

-— Start the behavior
reactive class.start behavior (reactive instance.all, start result):
RiA Default Active.start;

-— Send events
reactive class.gen trigger A(reactive instance.all):
reactive class.gen trigger B(reactive instance.all, 1):

-—- Cleanup the instances
RiA Default Active.Finalize;

reactive class.Finalize(reactive instance.all):

end main;

Figure 222: Using the Default Active Class.

6.2.8. Triggered Operations

A reactive class can also execute synchronously by using triggered operations. A reactive class
that uses only triggered operations does not need an active context, and therefore does not
produce an Ada task.

NOTE: By default, memory is allocated for each triggered operation that has parameters.

-89 Default
---B Classes
=B triggered class
- @ Operations
tria op A()
& tria op B(Inteaer myData)
+--3| Statechart

Figure 223: A Sample Model of a Synchronous Reactive Class.

trig_op_A[guard_A]/--transition_A_action

trig_op_B[guard_B]/-- transition_B_action

Figure 224: A Statechart Using Triggered Operations.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 183/220

6.2.1.8 Reactive Class Variables

For each triggered operation, a static attribute is created in the reactive class to contain its unique
id.

-- ddentifier for trig op A
trig op a id : constant Integer := 1;
-- ddentifier for trig op B
trig op b id : constant Integer := 2;

Figure 225: Triggered Operation Unique Identifiers.

6.2.2.8 Reactive Class Public Operations

A synchronous reactive class has the same operations as the asynchronous version, with the
exception of the Initialize and Finalize procedures. These procedures are not necessary for a
reactive class with only triggered operations.

6.2.3.8 Statechart-Specific Reactive Class Operations

Triggered operations produce the same “gen_<event name>" procedures as an asynchronous
reactive class, but in addition, another operation is provided which adds an “in out” parameter to
return the event consumption status for this trigger. The type of this parameter is
RiA_Types.Consume_event_status, and is equal to one of the following values: event_consumed,
event_not_consumed, instance_in_destruction, or reached_terminate.

Another difference occurs if the triggered operation has a return value. This value becomes an
“out” parameter of the given return type.

For the example given above, the following procedures are generated.

-- %end the trig op A trigger
procedure trig op A (this : in out triggered class t);

-- Send the trig op A trigger and return the consume status

procedure trig DE A (this : in out triggered class t;
ria_cnnsume_;eéalt : out Rih_Types.CDnsumB:event:status);

-- Send the trig op B trigger

procedure trig DE B_(this : in out triggered class t;
myData @ in fnfgger; ria result : out BuulEanJ; -

-- Send the trig op B trigger and return the consume status
procedure trig DE B_(this : in out triggered class t;
myData : in fntgger; ria result : out Boolean;
ria consume result : nut_Rin_Types.Cunsume event_status);

Figure 226: Generated Procedures for Triggered Operations.

6.2.4.8 Using a Synchronous Reactive Class

To use a synchronous reactive class, only two steps are needed: starting the behavior, and calling
the triggered operations. The following procedure demonstrates these steps.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 184/220

procedure main (this : in out Entrypoint t) is
triggered instance : triggered class.triggered class acc t;
start_result : Boolean;
operatien_result : Boolean;
begin
—-— Create the new Instance
triggered instance := new triggered class.triggered class t:

—— Start the behavior
triggered_class.start_bkehavier (triggered_instance.all, start_result);

—-— Send events
triggered class.trig op Altriggered instance.all):
triggered class.trig op Bltriggered instance.all, 1, operation result);

end main;

Figure 227: Using a Synchronous Reactive Class.
6.2.5.8 Avoiding memory allocation on statecharts with only triggered operation

It is now possible to generate code for statecharts that use only triggered operations which does not
allocate memory for triggered operations.

The Ada_CG.Class.OptimizeStatechartsWithoutEventsMemoryAllocation class property can be
used to enable this generation scheme.

Note however that this slightly modifies the generated code :
e The Event_data type is now generated as a mutant record

e The Event type does no longer hold an instance of an access type to Event_Data but a
direct instance of the Event_Data type.

e The current_event_data operation no longer returns an instance of an access type to
Event_Data but a direct instance of the Event_Data type.

e The initialize_event procedure does no longer take a parameter that is an instance of an
access type to Event_Data, but a direct instance of the Event_Data type

Should some model using the default implementation be converted to use this new implementation,
any calls to the current_event_data and initialize_event operations should take into account the fact
that the event_data is no longer represented by an instance of an access to Event_Data type but by
an instance of Event_Data type.

6.3. Using the Ada 95 Behavioral frameworks
6.3.1. Limitations

e Generic reactive classes are not supported

¢ Inherited statecharts for singleton reactive classes are not supported
6.3.2. New Ada 95 Framework changes

Starting with Rhapsody 7.3, the new Ada 95 framework makes several changes in the generation of
the reactive and active classes. Reactive classes are given a reactive part that inherits from the
Oxf.Reactive type of the OXF framework. The reactive part just delegates the processing of events
to its parent user-defined Reactive class. The same concept is used for Active types. They are
given an active part which does the handling of events.

When using the default active class, or classes with only triggered operations, the framework is
ravenscar compliant. If a user active class is created, some properties must be set in oder to be
ravenscar compliant (see §6.3.11).

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 185/220

Some changes may occur in user code, if parameterized events are used. The function
get_parameter() does not exist anymore in new Ada 95 framework (see 86.3.7). Therefore the
params variable needs to be used directly.

6.3.3. Reactive classes

A State_Type enumeration type is declared for each reactive class, it will hold two predefined
literals and the qualified names (relatively to the statemachine) of the states as the other literals

type State Type is (
NON_STATE,
root state,
state 1,
state 2

) ;

Figure 228: The State_Type enumeration type for a reactive class

6.3.4. Event-based reactive classes

Each event-based reactive class must be part of an active class that performs the event loop and
delivers events to it. Each active class creates its own task to handle its event loop.

reactive_class = Active_Class

Figure 229: A Reactive Class and its Active Class.

6.3.5. Sending events

Once the active and reactive classes have been started, it is possible to send events to the reactive
class. This is done by the calling the “Gen_<qualified_event_name>" procedure on the reactive
instance. The <qualified_event_name> token designates the full path to the event from the root of
the model, using underscores as hamespace separators.

procedure Gen Default trigger a (this : in out reactive class t);

procedure Gen Default trigger b (this : in out reactive class t;
myData : in Integer

)i

Figure 230: Operations to Generate Events for a Reactive Class.

6.3.6. Using triggered operations
Triggered operations are invoked the same way as with the Ada_83 framework.
6.3.7. Accessing the current event parameters

A reference to the current_event is available on transitions that have triggers with parameters. To
access these parameters, two methods are available :

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 186/220

- use “get_parameters(current_event) .<parameter name>" (only in the previous Ada 95
framework).

- use “params.<parameter name>". (available on both Ada 95 frameworks).

state_2
[state_1 =
| igger_b
else
[get_parameters(current_event).myData < 10]
Figure 231: Accessing atrigger parameter value
6.3.8. Testing if a state is active

Use the “Is_In(<qualified_state_name>)" function. The <qualified_state_name> token designates
the full path to the state from the root of the statechart, using underscores as namespace
separators.

6.3.9. Working with Active and Reactive Classes

The usage is similar to the one of the Ada 83 framework except that reactive classes do not need
any initialization or finalization (unless some non statechart related operations, relations, attributes
or user-defined code require them).

6.3.10. Default Active Class

The mechanism for default active class is similar to the one available in the Ada 83 framework
except that the class is called “Ria_Default_Active_Class” instead of “Ria_Default_Active”

6.3.11. User Active class for ravenscar

To have a ravenscar compliant model with user active classes, those classes must be created
statically. To do this, the property Ada_CG:Class:BaseNumberOfinstances must be filled with the number
of instance that the model needs.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 187/220

7. Code order respect tool

7.1. Introduction

Although the Ada code is generated fully automatically, we allow you to organize the content of the
source modules in order to respect your own code writing rules.

So this tool respects:

¢ Location of declarations for operations, attributes, types, etc, in the specification file and the
body file.

e Order of declarations in structures (members), etc...
¢ Newlines count between declarations.
This tool can be used with basic round-tripping in operation’s body.

This tool doesn’t reverse code to rhapsody model, also doesn’t allow renaming arguments of
methods (spec & body), changing method names, and types or attributes names.

All changes of the elements order in the source file are kept in it, and they are not sent back to the
model. The mechanism of code order respect consists in merging a generated file with a source
file. The order of elements in the source file is preserved, and new elements are added in the
source file.

7.2. Activation and usage

To activate this tool:
e Open IBM Rational Rhapsody Developer for Ada application.
e Open a project.
e Select a Component element and double-click.

e Select Properties tab and expand subject Ada_CG, choose Component metaclass and
find property RespectCodelLayout.

e Change this property to value Ordering.
Note: this tool can be activated only:

e If current language is Ada.

e Generated file extension is ada, ads and adb.
7.3. Frequent errors
7.3.1. Syntax error in Ada file

If a syntax error is inserted into source file, the code order respect tool cannot parse the file, and will
not merge it with generated code from model. A message appears to show where the error is. User
must fixe the error into the file before continuing.

An error message like the following one, should appear

Generating
D:\Rhapsody\F CodeRespect\DefaultComponent\DefaultConfig\Default\class Ada Task.adb.
Ada syntax error: Encountered " "end" "end "" at line 82, column 9.

Ada syntax error: Encountered " "end" "end "" at line 82, column 9.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 188/220

7.3.2. Syntax error due to model

If Ada code generator generates a file with some syntax error, then the code order respect tool
cannot parse the file. In this case, the source file is saved in another file, and the generated file is
edited. A message of code generator shows where the error is. User must fixe the error into the
model. When generated code is clean, the merge becomes possible, and the saved source file can
be merged with generated file.

An error message like the following one, should appear

Generating
D:\Rhapsody\F CodeRespect\DefaultComponent\DefaultConfig\Default\class Ada Task.adb.
Ada syntax error: Encountered " "end" "end "" at line 83, column 9.

Your original file is saved as:
D:\Rhapsody\F CodeRespect\DefaultComponent\DefaultConfig\Default\class Ada Task.adb.ordered
Please update the model and then check the generated file:
D:\Rhapsody\F CodeRespect\DefaultComponent\DefaultConfig\Default\class Ada Task.adb
When no errors remain, your original file is restored and contains all
updates.

7.3.3. Adding a new element

A new element is added at the end of the section (public or private). But this is not necessary the
desired location. User will need to move it where he wants. In some case code generator creates
some auto generated code. This code may need to be moved.

¢ When adding a statechart, the class wide declaration, statechart’s constants and
reactive_part package must be placed at the top of the spec before class record declaration

e When adding a state, the implementation of functions <state>_entry(), <state>_exit() and
<state> process_event() must be moved to the top of body.

¢ In animated mode, it is recommended to first generate code without code respect order, and
to move user code afterwards.

8. Animation in IBM® Rational® Rhapsody®
Developer for Ada

IBM® Rational® Rhapsody® Developer for Ada supports tracing and animation of statecharts and
sequence diagrams.

8.1. Enabling Animation

Animation is enabled by setting the Instrumentation Mode in the Configuration to “Animation”.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 189/220

General | Initialization Settings |Chec:ks| Perer‘ties'

Configuration : DefaultConfig in DefaultComponent *

Directary:

|C:fsodiusfada,-’Duu:_RiNUser | ¥ Use Default

Libraries: |

|

Additional Sources:

|

|

|
Standard Headers: I
Include Path: I

|

—Instrumentation

Instrurnentation Mode: IAnimatiDn Ll Advanced...l

—\Wehify

™ eb Enabling

Addvanced.., |

Time Model: & Feal " Simulated
Statechar Implementation: ¢~ Beusahla & Flat
—Enwvironment Settings
Environment: IGNAT LI Default |
Build Set: IDebug Ll

Compiler Switches:

=
HE

Link Switches:

=
]

Addiionsl Setings |

Locate | 0K | Apply | |

Figure 232: Enabling Animation in the Configuration.

Warning :

If you come back to none animation in Instrumentation Mode, after having generating code, you
may have some troubles when compiling the project, because some files are generated in
animation mode and not in release mode. To avoid this, you may delete generated files before
doing a code generation in none animated mode.

After animation has been enabled, the “Initialize” procedure for any instance to be animated needs
be called. This will register the instance with the animation framework.

Animation can be disabled for individual packages, classes, operations, and attributes by setting the

corresponding property to “False”.

Element Property
Package CG.Type.Animate
Class CG.Type.Animate
Operation CG.Operation.Animate
Attribute CG.Type.Animate

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 190/220

Element Property
Event CG.Event.Animate
Argument CG.Type.Animate

For attributes, arguments, and events that are not standard Ada types, the address of the element
will be used for animation. The user can enable the animation of the value by defining an
Add_Attribute operation on his class for his particular type. Then, by setting the animation property
to “Force”, the value of the type will be used instead. For events of user-defined types, it is also
necessary to define a Get_Attribute operation as well.

8.1.1. Animation of a user defined type
Code generator uses predefined operations to animate predefined types (Integer, Float, Character).

If user defines its own types, then he needs to add some properties and some new functions
manually, in order to support those new types.

After having defined this type, two new operations (called for example Add_Attribute() and
Get_Attrinute()) must be declared in this type’s package. Operations’ signature and implementation
are described further on. Some properties must be set on those 2 new operations :

The property CG:Operation:Animate must be unchecked.

The property Ada_CG:Operation:IsAnimationHelper must be checked

Some properties must be updated on the type :
Ada_CG:Type:AnimSerializeOperation must be set to : <type_package>.Add_Attribute

Ada_CG:Type:AnimUnserializeOperation must be set to : <type_package>.Get_Attribute

If a class has an attribute of this user type, then the attribute’s property CG:Type:Animate must be set
to “Force”.

If an event has a parameter of this user type, then the parameter’s property CG:Type:Animate must be
set to “Force”.

Here are some examples of serialize/unserialize operations :

Case | : type Integer

type My Integer is range 1..10;

Function add_attribute()

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 191/220

procedure Add Attribute (
udtName : in String;
udtValue : in My Integer;
udtAttrList : in System.address
) 1s
begin
RhpAnim.Add Attribute(udtName,
User Type Pkg.My Integer'Image (udtValue),
udtAttrList
)
end Add Attribute;

Function Get_attribute()

procedure Get Attribute (
data : in out My Integer;
address : in System.address;
position : in System.address
) is
value : integer;
begin
rhpanim.get attribute (value,address,position);
data := User Type Pkg.My Integer’value (value);
end Get Attribute;

Case |l : enumerated type :

type type 0 is (
ONE,
TWO,
THREE,
FOUR,
NULL NULL
)

Function add_attribute()

procedure Add Attribute (
udtName : in String;
udtvValue : in type O;
udtAttrList : in System.address
) is
begin
RhpAnim.Add Attribute(udtName,

user type.type 0'Image (udtValue),
udtAttrList

)i
end Add Attribute;

Function get_attribute()

procedure Get Attribute (
data : in out type 0;
address : in System.address;

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 192/220

position : in System.address
) is
value : string(1..10);
begin
rhpanim.get attribute(value, address, position);
if (value = "ONE ") then
data := User Type.ONE;
elsif (value = "TWO ") then
data := User Type.TWO;
elsif (value = "THREE ") then
data := User Type.THREE;
elsif (value = "FOUR ") then
data := User Type.FOUR;
else
data := User Type.NULL NULL;
end 1if;

end Get Attribute;

8.2. Animation on Remote Host

By adding the following line to the <Rhapsody_Install_Dir>\Sodius\Sodius.ini file, one can enable
remote host animation

animationAddress=<RemoteHostIPAddress>

Alternatively, one can use the Ada_CG.<Compiler>.UseRemoteHost and
Ada_CG.<Compiler>.RemoteHost properties to activate remote host animation.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 193/220

9. Generation Rules Customization

9.1. Overview

Rhapsody® in Ada uses a rule-base engine for its code generation. The rules are written using a
combination of WYSIWYG (“What-You-See-Is-What-You-Get”) templates and java macros to
describe the desired contents for the generated Ada code. Each user can create his own rules, and
use them when generating code from the application.

9.2. Rules Modification

The rules are available for modification by using the RulesComposer in tools menu of IBM®
Rational® Rhapsody® environement. Choose the IBM® Rational® Rhapsody® Developer for Ada
ruleset in RulesComposer’s Welcome page, to launch the RulesComposer with the IBM®
Rational® Rhapsody® Developer for Ada rules. From the user-friendly interface, the rules are fully
modifiable. See the documentation in the <Rhapsody>\Sodius\RulesComposer\help directory.

9.3. Legacy UML 1.3 metamodel based ruleset

With the release of Rhapsody 7.0, there has been a change in the underlying code generation
RuleSet. Instead of being based on the UML 1.3 metamodel, the RuleSet is now based on the
Rhapsody metamodel.

The main benefits of this change are the following :
e Performance improvements gained from the elimination of the Rhapsody to UML
transformation
e Better support of Rhapsody unique features

Existing customizations of the legacy UML 1.3 metamodel based RuleSet should be migrated to
the Rhapsody metamodel based RuleSet

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 194/220

10. Compilers and related tools support

10.1. Supported compilers/IDEs, tools & environments
Compiler/IDE/Tool Target Environments

GNAT Win32

Aonix’s ObjectAda Win32, Raven/PPC

GreenHills Software’s AdaMULTI Win32, Integrity

Praxis High Integrity System”s SPARK Examiner | All

10.2. Environment specific instructions
10.2.1. Using the INTEGRITY simulator with Rhapsody

Please refer to the “Using Integrity Simulator with Rhapsody” document for detailed instructions.

10.2.2. INTEGRITY BSP support

When generating code for GreenHills’ INTEGRITY operating system, you can modify the board
target for the selected component via its properties (select the features entry in its context menu).

Configuration : INTEGRITY in DefaultComponent |

General | Initialization | Settings | Checks ~Properties |

Filt
|_ e oAl ' Common " Ovemdden " Locally Overidden |

[+

ChL =
Ada_CG
Configuration

Attribute

]

[+

[+

[+

Class

[+]

Campoanent

[+]

Dependency

File

[+

[+

Framawork,
GHAT

[+

[

INTEGRITY

BELDTarget sim300

BuildCommand3et Dehug

CampileSwitches

ErrorMessageTokensFormat | ToTalMumberOf Tokens=3,FileTokenPosition=1,LineTakenPosition=3

ExeExtension o

ImpExtension .adb

InvokeCodeGeneration "SOMROOT etc/Executer exe” "$OMROOT ete/runScriptor . bat”

InvokeExecutable "$executable”

InwokeMake "$OMROOT fete/Executer exe” "$OMROCT et Integrityadatake bat $makefile $maketarget”
IsFileMameshaort D

LibExtension .a

LimbkSimikrhac LI

Lu-::atel 0K | Apply ”

10.2.3. Raven/PPC BSP Support

By default, the following BSP libraries are registered when compiling for Raven PPC:

Using_Integrity_Simulator_with_Rhapsody.pdf

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 195/220

e raven\standard_model

e system\simulator

¢ lib\extensions
You can override these defaults by modifying the Ada_CG.Raven_PPC.BSP_Libraries property.
10.2.4. GNAT issues

On Win32 platforms, using GNAT 3.15p or earlier releases, some generated executables using 1/0
features may cause generated applications to hang.

Using recent versions of GCC such as 3.4.2, the problem is solved.
10.3. Compiler usage note for ObjectAda and GreenHills compilers

If you regenerate code for an Ada Library that has already gone through a generate-build cycle,
make sure that you rebuild it too (that is “clean and build” or “rebuild”), and not only build it. If you do
not, you are very likely to encounter compilation errors when compiling code that is using this library
saying that the source file that you are using is newer than the registered file.

10.4. Compiler support limitations

GreenHills compilers won't compile packages named main. Main is used for the ada runtime
entrypoint.

Using Rhapsody with Aonix ObjectAda compilers requires that Rhapsody be installed in a directory
with no spaces in it.

10.4.1. Rhapsody Frameworks support

Compiler Behavioral framework Animation
GNAT / Win32 Yes Yes
ObjectAda / Win32 Yes Yes
ObjectAda / Raven/PPC No No
AdaMulti / Win32 Yes Yes
AdaMulti / Integrity Yes Yes

Behavioral framework and model animation are not supported for ObjectAda RavenPPC as they
violate some of the Raven profile restrictions.

10.4.2. Compilation error messages

The compilation error messages for ObjectAda get displayed in Rhapsody, and you can access the
offending line in the related source file with the following limitation: error messages generated by
the source registration utility (adareg) are not navigable while other error messages (generated by
adacomp, directly or via adabuild) are navigable.

10.4.3. Notes on Pre-compiled libraries
Pre-compiled libraries use with Aonix ObjectAda compiler

Code generated for ObjectAda supports directory based libraries only. This means that object files
for that library must be in the same directory as the sources (this is a limitation to be overcome in
future releases).

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 196/220

The consequences are that you can specify the directory where your library is located using the
“Include Path” field in the “General” tab of a component/configuration properties and the generated
compilation commands will look in this directory for sources and object files as well (using adaopts
—p command). If you put something in the “libraries” field, the behavior at link time is unpredictable if
you do not modify the generated compilation batch file.

If you have several libraries to link to, put one library per line in the “Include Path” field, but do not

I8}

use any separator such as ‘,’ or ;.

If you insist on using library archive files in a different location from the library source files, here is
what to do:

1. Inthe “Include path” field, specify the directory <sourcedir> where the sources for the library
are located. Regenerate your makefile.

2. Inthe generated makefile, replace lines starting with “adaopts -p <sourcedir>" by
“adaopts -ep <sourcedir>". Do not replace lines starting with adaopts —p that
register other directories different from the ones you specified in “Include path” field.

3. Inthe “libraries” field, specify the full path or the relative path from the generation directory
to the library archive file(s) you want to use

4. Orinstead of step 3, add the following line to the generated makefile where <libdir> is the
directory where your library archive is located. This is usually more convenient as you can
put all your libraries in a single directory and get ObjectAda find them with a single line.
“adaopts —-ip <libdir>"

Please refer to ObjectAda documentation for more details on source and library registration and
linking

Library archive files and GreenHills compilers

Object files for libraries generated by IBM® Rational® Rhapsody® Developer for Ada are put in
archive files (.a for GreenHills and GNAT, and .lib for Aonix). Such archive files are located in the
same directories as source files for the libraries.

For GreenHills, if you want to use libraries whose object files are not archived in a file but in a
subdirectory of the library directory (as is often the case when you do not use library archive files)
with code generated by Rhapsody you have to do the following:

If you are using Multi 3.5 or an older version :

e Inthe top level build file of the generated component, add the following command (do not forget
the leading tab), where <librarydirectory> is the directory where your library is located.

radalibdirs=<librarydirectory>

IBM® Rational® Rhapsody® Developer for Ada - User Guide

10.5.

Compiler and assimilated tools related properties

The following properties have an impact on the generated compilation commands :

Element

<Property>

<Description>

Configuration

GNAT

Ada_CG.GNAT.BuildCommandSet

Sets debug switch for generated gnatmake
commands

Ada_CG.GNAT.CompileSwitches

Inserts user-defined compilation switches into
gnatmake commands

Ada_CG.GNAT.LinkSwitches

Inserts user-defined link switches into gnatmake
commands

AdaMULTI PowerPC (v4.0 and newer)

Ada_CG.INTEGRITY5.BLDAdditionalOptions

Inserts user-defined options in the build file for
the component

Ada_CG.INTEGRITY5.BLDMainExecutableO
ptions

Inserts user-defined options in every executable
build file generated for the current component
configuration

Ada_CG.INTEGRITY5.BLDMainLibraryOptio
ns

Inserts user-defined options in the build file for
the component if it is of library type

Ada_CG.INTEGRITY5.BLDTarget

Sets the board target

Ada_CG.INTEGRITY5.BuildCommandSet

Activates debug mode for generated top level
build file

Ada_CG.INTEGRITY5.CompileSwitches

Inserts user-defined compilation switches into top
level build file

Ada_CG.INTEGRITY5.DebugSwitches

Sets debug level used in debug build

Ada_CG.INTEGRITY5.LinkSwitches

Inserts user-defined compilation switches into top
level build file

Ada_CG.INTEGRITY5.IntegrityRoot

Holds the value of the “os_dir” parameter
generated in build files.

AdaMULTI PowerPC (v3.5 and older)

Ada_CG. INTEGRITY.BLDAdditionalOptions

Inserts user-defined options in the build file for
the component

Ada_CG.INTEGRITY.BLDMainExecutableOp
tions

Inserts user-defined options in every executable
build file generated for the current component
configuration

Ada_CG.INTEGRITY.BLDMainLibraryOption
S

Inserts user-defined options in the build file for
the component if it is of library type

Page 197/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Ada_CG.INTEGRITY.BLDTarget

Sets the board target

Ada_CG.INTEGRITY.BuildCommandSet

Activates debug mode for generated top level
build file

Ada_CG.INTEGRITY.CompileSwitches

Inserts user-defined compilation switches into top
level build file

Ada_CG.INTEGRITY.DebugSwitches

Sets debug level used in debug build

Ada_CG.INTEGRITY.LinkSwitches

Inserts user-defined compilation switches into top
level build file

AdaMULTI Win32 (v4.0 and older)

Ada_CG.Multi4wWin32.BLDAdditionalOptions

Inserts user-defined options in the build file for
the component

Ada_CG.Multi4Win32.BLDMainExecutableO
ptions

Inserts user-defined options in every executable
build file generated for the current component
configuration

Ada_CG.Multi4Win32.BLDMainLibraryOption
S

Inserts user-defined options in the build file for
the component if it is of library type

Ada_CG.Multi4Win32.BuildCommandSet

Activates debug mode for generated top level
build file

Ada_CG.Multi4Win32.CompileSwitches

Inserts user-defined compilation switches into top
level build file

Ada_CG.Multi4Win32.DebugSwitches

Sets debug level used in debug build

Ada_CG.Multi4dWin32.LinkSwitches

Inserts user-defined compilation switches into top
level build file

AdaMULTI Win3 (v3.5 and older)

Ada_CG.Multiwin32.BLDAdditionalOptions

Inserts user-defined options in the build file for
the component

Ada_CG.Multiwin32.BLDMainExecutableOpt
ions

Inserts user-defined options in every executable
build file generated for the current component
configuration

Ada_CG.Multiwin32.BLDMainLibraryOptions

Inserts user-defined options in the build file for
the component if it is of library type

Ada_CG.Multiwin32.BuildCommandSet

Activates debug mode for generated top level
build file

Ada_CG.Multiwin32.CompileSwitches

Inserts user-defined compilation switches into top
level build file

Ada_CG.Multiwin32.DebugSwitches

Sets debug level used in debug build

Ada_CG.Multiwin32.LinkSwitches

Inserts user-defined compilation switches into top
level build file

Page 198/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

ObjectAda Win32

Ada_CG.OBJECTADA.BuildCommandSet

Activates debug switches for generated adacomp
and adabuild commands

Ada_CG.OBJECTADA.CompileSwitches

Inserts user-defined compilation switches into
adacomp or adabuild commands

Ada_CG.OBJECTADA.DebugSwitches

Sets debug level used in debug switches

Ada_CG.OBJECTADA LinkSwitches

Inserts user-defined compilation switches into
adabuild commands

Raven_PPC

Ada_CG.RAVEN_PPC.BuildCommandSet

Activates debug switches for generated adacomp
and adabuild commands

Ada_CG.RAVEN_PPC.CompileSwitches

Inserts user-defined compilation switches into
adacomp or adabuild commands

Ada_CG.RAVEN_PPC.DebugSwitches

Sets debug level used in debug switches

Ada_CG.RAVEN_PPC.LinkSwitches

Inserts user-defined compilation switches into
adabuild commands

Ada_CG.RAVEN_PPC.BSP_Libraries

Default BSP libraries to link to.

SPARK

Ada_CG.SPARK.BriefErrorMessages

Generates a /brief option on SPARK Examiner
calls.

Ada_CG.SPARK.OpenHTMLReports

Instructs Rhapsody to open the HTML reports on
examination completion

Ada_CG.SPARK.TargetConfigurationFileNa
me

Specifies a target configuration file name to be
passed on as an argument to the SPARK
Examiner

Page 199/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 200/220

11.

11.1.

When creating a model for Ada 83, the following guidelines should be followed.

11.2.

Model Limitations

Limitations for Ada 83

Do not create virtual operations.
Do not create abstract operations.
Do not create abstract classes.
Do not use generalizations.

General Limitations

Active classes must be defined to be private.

IBM Rational Rhapsody® Developer for Ada - Mapping Rules

Appendix A: Properties for IBM® Rational®
Rhapsody® Developer for Ada

Compiler and assimilated tools specific properties are not listed here. You can find their description
in the “Compiler and assimilated tools related properties” section.

Element

<Property>

<Description>

Actor

Ada_CG.Class.AccessTypeName

Overrides the access type name.

Ada_CG.Class.ClassWideAccessTypeName

Overrides the class-wide access type name.

Ada_CG.Class.Final

Makes the class record non-“tagged”.

Ada_CG.Class.GenerateAccessType

Turns off the generation of the access type.

Ada_CG.Class.GenerateClassWideAccessT
ype

Controls the generation of the class-wide access
type.

Ada_CG.Class.GenerateRecordType

Turns off the generation of the record type.

Ada_CG.Class.HasUnknownDiscriminant

If true, an unknown discriminant (<>) will be
generated for this class.

Ada_CG.Class.ImplementationEpilog

Adds an epilog to the package body.

Ada_CG.Class.ImplementationPragmas

Holds user-defined pragmas to generate in body.

Ada_CG.Class.ImplementationPragmasinCo
ntextClause

Holds user-defined pragmas to generate in
context clause of body.

Ada_CG.Class.ImplementationProlog

Adds a prolog to the package body.

Ada_CG.Class.InitializationCode

Adds initialization code in the class package
body.

Ada_CG.Class.IsLimited

Indicates if the record type is to be generated as
limited.

Ada_CG.Class.IsNested

Indicates if the class is to be generated as a
nested package.

Ada_CG.Class.IsPrivate

Indicates if the class is to be generated as a
private package.

Ada_CG.Class.NestingVisibility

Indicates where in the nesting package the
specification of the nested package should be
generated.

Ada_CG.Class.OptimizeStatechartsWithoutE
ventsMemoryAllocation

Controls whether the generated statechart code
will use dynamic memory allocation or not on
statecharts that use only triggered operations.

Ada_CG.Class.RecordTypeName

Overrides the generated record type name.

Ada_CG.Class.SpecificationEpilog

Adds an epilog to the package specification.

This document is the property of IBM.
It cannot be reproduced, even partially, by any means, without prior written permission.

Page 201/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Ada_CG.Class.SpecificationPragmas

Holds user-defined pragmas to generate in spec.

Ada_CG.Class.SpecificationPragmasinConte
xtClause

Holds user-defined pragmas to generate in
context clause of spec.

Ada_CG.Class.SpecificationProlog

Adds a prolog to the package specification.

Ada_CG.Class.TaskBody

Overrides the generated task body.

Ada_CG.Class.UseAda83Framework

If “True”, then generated code for statecharts,
events and guarded operations and attributes will
use Ada 83 constructs. If “False”, Ada 95
constructs will be used.

Ada_CG.Class.Visibility

Determines the location of the record type.

Ada_CG.File.ImplementationFooter

Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader

Overrides the generated implementation header.

Ada_CG.File.SpecificationFooter

Overrides the generated specification footer.

Ada_CG.File.SpecificationHeader

Overrides the generated specification header.

Ada_CG.Operation.AlphabeticalSort

Controls alphabetical sorting of operations on
generation.

Ada_CG.Operation.VirtualMethodGeneration
Scheme

Enables backward compatibility mode for
methods of interface and abstract classes.

CG.Class.Concurrency

Determines if the class is active.

CG.Class.ImplementStatechart

Controls the generation of statechart code for this
class.

CG.Class.UseAsExternal

Turns off generation for this object.

CG.Type.Animate

Turns off animation for this object.

Argument

Ada_CG.Argument.AccessTypeUsage

Controls whether the actual type for the attribute
is the class record type, the regular access type,
or the class-wide access type. Only works if the
type is a class.

Ada_CG.Argument.AsAccess

Used to set parameter passing mode as access.

Ada_CG.Argument.ClassWide

Controls the generation of a class-wide modifier
for the argument.

Ada_CG.Type.AnimEnumerationTypelmage

Activates usage of Image attribute for
enumerated types when using animation.

Ada_CG.Type.AnimSerializeOperation

Overrides generated serialize operation for
animation.

CG.Argument.Animate

Enables animation of the argument.

CG.Type.Animate

Used to “force” animation of the argument.

Page 202/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Attribute

Ada_CG.Attribute.Accessor

Controls the name of the accessor.

Ada_CG.Attribute.AccessorGenerate

Controls the generation of the accessor.

Ada_CG.Attribute.AccessTypeUsage

Controls whether the actual type for the attribute
is the class record type, the regular access type,
or the class-wide access type. Only works if the
type is a class.

Ada_CG.Attribute.DeclarationPosition

Controls the declaration position of a static
attribute relatively to the section (public part of
spec, private part of spec, body) it is declared in
and to the “virtual” location of the class record
type if it is/was declared in this section.

Ada_CG.Attribute.DeferredInitializationPositi
on

Applicable to public constants only, this property
controls where in the private part the deferred
initialization is generated.

Ada_CG.Attribute.GenerateRenamesForSing
leton

Controls the generation of renaming statements
for attributes in singleton classes.

Ada_CG.Attribute.ImplementationEpilog

Adds an epilog to the attribute accessors body.

Ada_CG.Attribute.ImplementationProlog

Adds a prolog to the attribute accessors body.

Ada_CG.Attribute.InlineAccessor

Controls generation of inline pragma for the
accessor.

Ada_CG.Attribute.InlineMutator

Controls generation of inline pragma for the
mutator.

Ada_CG.Attribute.IsAliased

Determines if attribute is aliased.

Ada_CG.Attribute.Mutator

Controls the name of the mutator.

Ada_CG.Attribute.MutatorGenerate

Controls generation of the mutator.

Ada_CG.Attribute.ParentDiscriminantValue

Holds the value to assign to the parent
discriminant if it exists.

Page 203/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Ada_CG.Attribute.RedefiningDiscriminantPoli
cy

If the attribute is a <<Discriminant>> attribute and
it is already defined as a <<Discriminant>> in one
of the parent classes of the current class, this
property controls the generation policy for this
discriminant

AsNew : attribute is generated as a regular
disciriminant

AsNewAndOverriding : attribute is generated as a
regular discriminant and the parent discriminant
of the same name is assigned the value defined
in the
“Ada_CG.Attribute.ParentDiscriminantValue”

property.

AsOverriding : the parent discriminant of the
same name is assigned the value defined in the
“Ada_CG.Attribute.ParentDiscriminantValue”

property.

Ada_CG.Attribute.Renames

Holds the name of the variable this attribute is
renaming (only works for static attributes in a
class or for attributes in a package).

Ada_CG.Attribute.SpecificationEpilog

Adds an epilog to the attribute specification.

Ada_CG.Attribute.SpecificationProlog

Adds a prolog to the attribute specification.

Ada_CG.Attribute.Visibility

Determines the visibility of the attribute.

Ada_CG.Type.AnimEnumerationTypelmage

Activates usage of Image attribute for
enumerated types when using animation.

Ada_CG.Type.AnimSerializeOperation

Overrides generated serialize operation for
animation.

CG.Attribute.Animate

Turns off animation of this attribute.

CG.Attribute.Generate

Turns off generation of the attribute.

CG.Attribute.IsGuarded

Generates a guarded attribute.

CG.Type.Animate

Turns off animation of this attribute type.

Class

Ada_CG.Class.AccessTypeName

Overrides the access type name.

Ada_CG.Class.ClassWideAccessTypeName

Overrides the class-wide access type name.

Ada_CG.Class.DeclarationPosition

Applicable to nested classes only.

Determines declaration position relatively to the
section (public part of spec, private part of spec,
body) it is declared in and to the “virtual” location
of the class record type if it is/'was declared in this
section.

Page 204/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Ada_CG.Class.Final

Makes the class record non-“tagged”.

Ada_CG.Class.GenerateAccessType

Controls the generation of the access type.

Ada_CG.Class.GenerateClassWideAccessT
ype

Controls the generation of the class-wide access
type.

Ada_CG.Class.GenerateRecordType

Turns off the generation of the record type.

Ada_CG.Class.ImplementationEpilog

Adds an epilog to the package body.

Ada_CG.Class.ImplementationPragmas

Holds user-defined pragmas to generate in body.

Ada_CG.Class.ImplementationPragmasinCo
ntextClause

Holds user-defined pragmas to generate in
context clause of body.

Ada_CG.Class.ImplementationProlog

Adds a prolog to the package body.

Ada_CG.Class.InitializationCode

Adds initialization code in the class package
body.

Ada_CG.Class.IsLimited

Indicates if the record type is to be generated as
limited.

Ada_CG.Class.IsNested

Indicates if the class is to be generated as a
nested package.

Ada_CG.Class.IsPrivate

Indicates if the class is to be generated as a
private package.

Ada_CG.Class.IsStatic

This property indicates whether the class is a
regular class (Unchecked) or a static class
(Checked).

A static class has no record type and all its
attributes and operation are static. The parameter
"this" is never generated

Ada_CG.Class.NestingVisibility

Indicates where in the nesting package the
specification of the nested package should be
generated.

Ada_CG.Class.OptimizeStatechartsWithoutE
ventsMemoryAllocation

Controls whether the generated statechart code
will use dynamic memory allocation or not on
statecharts that use only triggered operations.

Ada_CG.Class.RecordTypeName

Overrides the generated record type name.

Ada_CG.Class.RelativeEventDataRecordTyp
eComponentsNaming

Enables relative naming of event data record type
components representing events and triggered
operations parameters. If set to true, there shall
be no events or triggered operations sharing an
argument name, as they would generate record
components with the same name, which would be
uncompilable.

When using triggered operations in a statechart,
this property should be modified at the class level.

Page 205/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Ada_CG.Class.Renames

Holds the name of the class or package this class
is renaming.

Ada_CG.Class.SpecificationEpilog

Adds an epilog to the package specification.

Ada_CG.Class.SpecificationPragmas

Holds user-defined pragmas to generate in spec.

Ada_CG.Class.SpecificationPragmasinConte
xtClause

Holds user-defined pragmas to generate in
context clause of spec.

Ada_CG.Class.SpecificationProlog

Adds a prolog to the package specification.

Ada_CG.Class.Visibility

Determines the location of the record type.

Ada_CG.File.ImplementationFooter

Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader

Overrides the generated implementation header.

Ada_CG.File.SpecificationFooter

Overrides the generated specification footer.

Ada_CG.File.SpecificationHeader

Overrides the generated specification header.

CG::File::InvokePostProcessor

Runs a post-processing utility on the code that is
generated by Rational Rhapsody. For example,
you could run a “beautify” program to get a
specific coding style.

Ada_CG.Operation.AlphabeticalSort

Controls alphabetical sorting of operations on
generation.

Ada_CG.Operation.ISEntry

Determines if the operation is a task entry or a
regular operation in <<AdaTask>> and
<<AdaTaskType>> classes.

Ada_CG.Operation.ThisName

Modifies the name of the “this” parameter for
instance level operations.

Ada_CG.Operation.VirtualMethodGeneration
Scheme

Enables backward compatibility mode for
methods of interface and abstract classes.

CG.Class.Concurrency

Determines if the class is active.

CG.Class.ImplementStatechart

Controls the generation of statechart code for this
class.

CG.Class.UseAsExternal

Turns off generation for this object.

CG.Type.Animate

Turns off animation for this object.

SPARK.Class.ExaminerLevelBody

Sets Examiner level for this class body.

SPARK.Class.ExaminerLevelSpec

Sets Examiner level for this class spec.

Class <<AdaTask>, <<AdaTaskType>>

Ada_CG.Class.TaskBody

Overrides the generated task body.

Ada_CG.Operation.TaskDefaultScheme

Sets the task default entry scheme.

Page 206/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 207/220

Element

<Property> <Description>

Ada_CG.Operation.TaskDefaultSchemeDela | Sets the task default entry delay statement for
yStatement timed default entry scheme.

CG.Class.ActiveThreadPriority Determines the task priority.

Class <<Singleton>>

Ada_CG.Class.SingletonExposeThis

Ada_CG.Class.SingletonInstanceVisibility Controls where the singleton unique instance is
generated. Available values are :

o Body(default)

o Private
Component
Ada_CG.Component.AdaVersion Sets the code style to be Ada 83.
Ada_CG.Component.UseAdaFramework Selects between the Ada 83, Ada 95, and

ravenscar compatible Ada 95 frameworks.

Ada_CG.Component.UseBoochComponents | Selects between the Booch 83 and 95
components to be used for collections.

Ada_CG.Component.RespectCodelLayout Enables code order respect

Ada_CG.Configuration.DefaultActiveGenerati | Determines the generation of the Default Active

on class.

Ada_CG.File.ImplementationFooter Overrides the generated implementation footer.
Ada_CG.File.ImplementationHeader Overrides the generated implementation header
Ada_CG.File.SpecificationFooter Overrides the generated specification footer
Ada_CG.File.SpecificationHeader Overrides the generated specification header

Configuration

Ada_CG.Configuration.ImplementationProlog | Adds a prolog to the generated entrypoint.

Ada_CG.Configuration.ImplementationEpilog | Adds an epilog to the generated entrypoint.

Ada_CG.Configuration.GenerateAnnotations | Enables generation of SPARK annotations even if
ForNonSPARKConfigurations active environment is not SPARK. This is only
effective if SPARK profle is loaded.

Ada_CG.Configuration.LocalVariablesDeclar | Provides the local variables for auto-generated
ation entrypoint.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Ada_CG::Configuration::DescriptionBeginLin
e

This property specifies the prefix for the
beginning of comment lines in the generated
code. This functionality uses a documentation
system (such as Doxygen), which looks for a
certain prefix to produce the documentation.

This property affects only the code that is
generated for descriptions of model elements;
other auto-generated comments are not affected.

The default value is

Ada_CG::Configuration::DescriptionEndLine

This property specifies the prefix for the end of
comment lines in the generated code. This
functionality uses a documentation system (such
as Doxygen), which looks for a certain prefix to
produce the documentation.

This property affects only the code that is
generated for descriptions of model elements;
other auto-generated comments are not affected.

The default value is

Ada_CG.File.ImplementationFooter

Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader

Overrides the generated implementation header

Ada_CG.File.SpecificationFooter

Overrides the generated specification footer

Ada_CG.File.SpecificationHeader

Overrides the generated specification header

Ada_CG.Relation.Objectlnitialization

Determines what kind of initialization shall occur
for configuration’s initial instances

CG.Configuration.GenerationDirectoryPerMo
delComponent

Determines if each package will be generated
into its own subdirectory.

This property is obsolete. It is replaced by
CG.Package.GenerateDirectory

CG.Configuration.LineWrapLength

Specifies the length of the code line generated
during code generation.

Dependency

Ada_CG.Dependency.ImplementationEpilog

Adds an epilog to the resulting with clause (if any)
in package body.

Ada_CG.Dependency.ImplementationProlog

Adds a prolog to the resulting with clause (if any)
in package body.

Ada_CG.Dependency.SpecificationEpilog

Adds an epilog to the resulting with clause (if any)
in package specification.

Ada_CG.Dependency.SpecificationProlog

Adds a prolog to the resulting with clause (if any)
in package specification.

Page 208/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

CG.Dependency.GenerateRelationWithActor
s

Determines generation when target is an actor.

CG.Dependency.UsageType

Determines the location (package specification or
package implementation) of the “With” and
optional “Use” or “Use Type” statements.”

Dependency <<Renames>>

CG.Dependency.UsageType

For <<Renames>> dependencies this property is
only applicable to dependencies between
operations, it controls whether the operation is
“renaming as specification” or “renaming as body”

Dependency <<Usage>>

Ada_CG.Dependency.AccessTypeUsage

Controls whether the actual type referred to in a
use type clause is the class record type, the
regular access type, or the class-wide access
type. Only works if the type is a class.

Ada_CG.Dependency.CreateUseStatement

Creates a “Use” or “Use Type” statement.

Ada_CG.Dependency.GeneratePragmaElab
orate

Generated an “elaborate” pragma fo the supplier
class or package in the client class or package

Ada_CG.Dependency.GeneratePragmakElab
orateAll

Generated a “preelaborate” pragma fo the
supplier class or package in the client class or
package

Ada_CG.Dependency.UsesStatementPositio
n

Specifies whether the “Use” or “Use type” clause
should be generated in the package context
clause (before the “package” keyword) or in the
package declaration or body (after the "package”
keyword)

Event

Ada_CG.Class.RelativeEventDataRecordTyp
eComponentsNaming

Enables relative naming of event data record type
components representing events and triggered
operations parameters. If set to true, there shall
be no events or triggered operations sharing an
argument name, as they would generate record
components with the same name, which would be
uncompilable.

When using events in a statechart, this property
should be modified on the events being used.

CG.Event.Animate

Turns off animation of the event.

Generalization

CG.Generalization.Generate

Turns off generation.

Operation

Page 209/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Ada_CG.Operation.DeclarationPosition

Determines declaration position relatively to the
section (public part of spec, private part of spec,
body) it is declared in and to the “virtual” location
of the class record type if it is/'was declared in this
section.

Ada_CG.Operation.EntryCondition

Specifies the task entry guard.

Ada_CG.Operation.GenerateForwardDeclara
tionInPackageBody

Controls generation of forward declaration of an
operation defined as “private”.

Ada_CG.Operation.Generatelmplementation

Controls generation of body for the operation

Ada_CG.Operation.ImplementationEpilog

Adds an epilog to the package body.

Ada_CG.Operation.ImplementationName

Overrides the name to be used for the operation
in the generated code. Useful as a workaround
for defining operations that differ only by their
return type in a same class or package.

Ada_CG.Operation.ImplementationProlog

Adds a prolog to the package body.

Ada_CG.Operation.Inline

Indicates to inline the operation.

Ada_CG.Operation.IsAnimationHelper

Indicates if this operation should only be
generated when animating model.

Ada_CG.Operation.IsEntry

Determines if the operation is a task entry or a
regular operation in <<AdaTask>> and
<<AdaTaskType>> classes.

Ada_CG.Operation.Kind

Determines if the operation is abstract.

Ada_CG.Operation.LocalVariablesDeclaratio
n

Provides the local variables.

Ada_CG.Operation.PreserveUserCode

Controls the generation of tags that allow to
preserve user changes to a file over successive
generations.

Ada_CG.Operation.Renames

Holds the name of the operation this operation is
renaming (signatures of operations must match).

Ada_CG.Operation.RenamesKind

Specifies if the renaming of the operation
designated in the “Ada_CG.Operation.Renames”
property is “as specification” or “as body”.

Ada_CG.Operation.ReturnTypeByAccess

Controls whether the return type is generated as
an access type, a class-wide access type or a
regular type or not. Effective only if the return type
is a class.

Ada_CG.Operation.SpecificationEpilog

Adds an epilog to the package specification.

Ada_CG.Operation.SpecificationProlog

Adds a prolog to the package specification.

Ada_CG.Operation.ThisAccessTypeUsage

Controls whether the actual type for the “this”
parameter is the class record type, the regular
access type, or the class-wide access type.

Page 210/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 211/220

Element

<Property>

<Description>

Ada_CG.Operation.ThisByAccess

Sets passing mode for this parameter to “access”
if set

Ada_CG.Operation.ThisName

Modifies the name of the “this” parameter for
instance level operations.

Ada_CG.Operation.ThisPassingMode

When set to a value different from “FromGUI”,
overrides the setting of the “constant” checkbox of
an operation and the one of the
“Ada_CG.Operation.ThisByAccess” property.

Ada_CG.Operation.VirtualMethodGeneration
Scheme

Enables backward compatibility mode for
methods of interface and abstract classes.

CG.Operation.Animate

Turns off animation for this operation.

CG.Operation.Generate

Turns off generation for this operation.

CG.Operation.Concurrency

Sets the operation to be guarded.

Package

Ada_CG.File.ImplementationFooter

Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader

Overrides the generated implementation header

Ada_CG.File.SpecificationFooter

Overrides the generated specification footer

Ada_CG.File.SpecificationHeader

Overrides the generated specification header

Ada_CG.Operation.AlphabeticalSort

Controls alphabetical sorting of operations on
generation

Ada_CG.Package.ContributesToNamespace

Turns off participation of this package in its
contained elements namespaces.

Ada_CG.Package.DeclarationPosition

Applicable to nested packages only.

Determines declaration position relatively to the
section (public part of spec, private part of spec,
body) it is declared in and to the “virtual” location
of the class record type if it is/was declared in this
section.

Ada_CG.Package.ImplementationEpilog

Adds an epilog to the package body.

Ada_CG.Package.ImplementationPragmas

Holds user-defined pragmas to generate in body

Ada_CG.Package.ImplementationPragmasin
ContextClause

Holds user-defined pragmas to generate in
context clause of body

Ada_CG.Package.ImplementationProlog

Adds a prolog to the package body.

Ada_CG.Package.InitializationCode

Adds initialization code in the package body

Ada_CG.Package.IsNested

Indicates if the package is to be generated as a
nested package

Ada_CG.Package.IsPrivate

Indicates if the package is to be generated as a
private package

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Property>

<Description>

Ada_CG.Package.NestingVisibility

Indicates where in the nesting package the
specification of the nested package should be
generated

Ada_CG.Package.Renames

Holds the name of the package this package is
renaming

Ada_CG.Package.SpecificationEpilog

Adds an epilog to the package specification.

Ada_CG.Package.SpecificationPragmas

Holds user-defined pragmas to generate in spec

Ada_CG.Package.SpecificationPragmasIinCo
ntextClause

Holds user-defined pragmas to generate in
context clause of spec

Ada_CG.Package.SpecificationProlog

Adds a prolog to the package specification.

Ada_CG.Relation.ObjectlInitialization

Determines what kind of initialization shall occur
for package instances

Ada_CG.Package.UseAda83Framework

If “True”, then generated code for statecharts,
events and guarded operations and attributes will
use Ada 83 constructs. If “False”, Ada 95
constructs will be used.

CG.Package.UseAsExternal

Turns off generation of this package and of its
contained elements.

CG.Package.GeneratePackageCode

Turns off generation of this package, but not of its
contained elements.

CG.Type.Animate

Turns of animation of this package.

SPARK.Package.ExaminerLevelBody

Sets Examiner level for this package body

SPARK.Package.ExaminerLevelSpec

Sets Examiner level for this package spec

Port

Ada_CG.Port.Generate

Turns off generation.

Project

Ada_CG.File.ImplementationFooter

Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader

Overrides the generated implementation header

Ada_CG.File.SpecificationFooter

Overrides the generated specification footer

Ada_CG.File.SpecificationHeader

Overrides the generated specification header

Relation

Ada_CG.Relation.BidirectionalRelationsSche
me

Controls how bidirectional relations are
implemented

Possible values are :
¢ IntermediateParentClasses

e SubtypingAndRenaming (default)

Page 212/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 213/220

Element
<Property> <Description>
Ada_CG.Relation.InitializeComposition Controls how a composition relation is initialized.
Possible values are :
e Ininitializer (default)
e InRecordType
e None
Ada_CG.Relation.IsAliased Determines if relation is aliased
Ada_CG.Relation.Visibility Sets the visibility of the relation getter and setter.
Ada_CG.Relation.Obijectlnitialization Determines what kind of initialization shall occur
for instances
CG.Relation.Generate Turns off generation of this relation.
CG.Relation.GenerateRelationWithActors Determines generation when target is an actor.
CG.Relation.GetGenerate Turns off generation of the relation getter.
CG.Relation.Implementation Chooses the relation implementation style.
When set to “User”, no accessors are generated
for the relation.
CG.Relation.SetGenerate Turns off generation of the relation setter.
OMContainers.Access.AccessKind For relations with the
CG.Relation.Implementation property set to
“Default”, this property controls whether a regular
or a class-wide access type will be used as the
relation implementation type.
OMContainers.User.CType If CG.Relation.Implementation is set to “User”,
the contents of this property will be used as the
type to generate in the declaration of the record
component holding the relation.
This property supports the following Rhapsody
keywords :
o cnhame : returns the name of the
association end
o RelationTargetType : returns the name
of the type of the relation target
Type
Ada_CG.Type.AccessTypeUsage For typedef types, indicates if the basic type is
referred to as an access type, a class-wide
access type or a regular type or not. Effective
only if the basic type is a class.
Ada_CG.Type.AnimEnumerationTypelmage | Activates usage of Image attribute for
enumerated types when using animation
Ada_CG.Type.AnimSerializeOperation Overrides generated serialize operation for
animation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 214/220

Element
<Property> <Description>

Ada_CG.Type.DeclarationPosition Determines type declaration position relatively to
the section (public part of spec, private part of
spec, body) it is declared in and to the “virtual”
location of the class record type if it is/was
declared in this section.

Ada_CG.Type.Final Makes the type record non-“tagged”. Only
applicable to struct types.

Ada_CG.Type.LanguageMap Holds the Ada declaration for Rhapsody
Language Independent Types

Ada_CG.Type.Visibility Sets the visibility of the type.

CG.Type.Animate Turns off the animation of this type.

CG.Type.UseAsExternal Turns off generation of this type.

Statechart

Ada_CG.Statechart.HistoryConnectorDepth Controls the depth of history connectors. Only
effective when using the Ada 95 Behavioral
framework. History connectors are always
shallow when using the Ada 83 framework.

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Appendix B: Tags for IBM® Rational® Rhapsody®

Developer for Ada

Element

<Profile>.<MetaType>.<Tag>

<Description>

Attribute

AdaCodeGeneration.Attribute.generatePrag
maAtomic

Generates an “atomic” pragma for this
attribute/variable. Only works for package
variables or static class attributes.

AdaCodeGeneration.Attribute.generatePrag
maVolatile

Generates a “volatile” pragma for this
attribute/variable. Only works for package
variables or static class attributes.

AdaCodeGeneration.Attribute.representation
Clauses

Contains the representation clauses to be
generated for this attribute. Note that this is only
applicable for attributes defined on a package
and for static attributes defined on classes.

SPARK_.Attribute.IsAbstract

Controls the generation of the Ada declaration for
the attribute. Used to model abstract own
variables

SPARK_.Attribute.IsInitialized

If this tag is set to true, the attribute name will be
added to the initialization annotation of the class
or package it is defined in

SPARK.Attribute.OwnMode

If this attribute is an own variable, controls the
mode used in the own annotation of the class or
package it is defined in

SPARK.Attribute.OwnKind

Controls the participation of the own attribute to
the own annotation of the class or package it is
defined in

Class

AdaCodeGeneration.Attribute.generatePrag
maAtomic

Generates an “atomic” pragma for this class
record type.

AdaCodeGeneration.Class.generatePragma
ElaborateBody

Generates an “elaborate” pragma for this class

AdaCodeGeneration.Class.generatePragma
Preelaborate

Generates a “preelaborate” pragma for this class

AdaCodeGeneration.Class.generatePragma
Pure

Generates a “pure” pragma for this class

AdaCodeGeneration.Attribute.generatePrag
maVolatile

Generates a “volatile” pragma for this class
record type.

AdaCodeGeneration.Class.representationCla
uses

Contains the representation clauses to be
generated for this class

SPARK.Class.HideBody

Controls the generation of the hide annotation for
this class package body

Page 215/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Profile>.<MetaType>.<Tag>

<Description>

SPARK.Class.HideElaborationCode

Controls the generation of the hide annotation for
this class package elaboration code

SPARK.Class.HidePrivatePart

Controls the generation of the hide annotation for
this class package private part

SPARK.Class.Inherit

Contains the comma separated list of packages
this class is inheriting from

SPARK.Class.Initializes

Contains the comma separated list of own
variables this class is initializing

SPARK.Class.OwnSpec

Contains the list of own variables (with optional
modes and types) to be generated in the own
annotation of this class package spec

SPARK.Class.OwnBody

Contains the list of own variables (with optional
modes and types) to be generated in the own
annotation of this class package body

Dependency

SPARK.Dependency.Inherit

Indicates if this <<usage>> dependency shall also
generate an inherit annotation

SPARK.Dependency.GlobalMode

Indicates the mode for the supplier variable of
this <<SPARK_Global>> dependency

Operation

SPARK.Operation.DerivesBody

Enter the dependency clauses for the operation
body derives annotation in this tag.

SPARK.Operation.DerivesSpec

Enter the dependency clauses for the operation
specification derives annotation in this tag.

SPARK.Operation.GlobalBody

Enter the global variables and their usage mode
for this operation body in this tag

SPARK.Operation.GlobalSpes

Enter the global variables and their usage mode
for this operation specification in this tag

SPARK.Operation.HideBody

set this tag to true if you want the body for this
operation to be hidden from the examiner

SPARK.Operation.PostConditionBody

Use this tag to capture the postcondition
annotation for a procedure body or the return
annotation for a function body

SPARK.Operation.PostConditionSpec

Use this tag to capture the postcondition
annotation for a procedure specification or the
return annotation for a function specification

SPARK.Operation.PreConditionBody

Use this tag to capture the precondition
annotation for a procedure or function body

SPARK.Operation.PreConditionSpec

Use this tag to capture the precondition
annotation for a procedure or function
specification

Page 216/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Element

<Profile>.<MetaType>.<Tag>

<Description>

Package

AdaCodeGeneration.Package.generatePrag
maElaborateBody

Generates an “elaborate” pragma for this
package

AdaCodeGeneration.Package.generatePrag
maPreelaborate

Generates a “preelaborate” pragma for this
package

AdaCodeGeneration.Package.generatePrag
maPure

Generates a “pure” pragma for this package

SPARK.Class.HideBody

Controls the generation of the hide annotation for
this package body

SPARK.Class.HideElaborationCode

Controls the generation of the hide annotation for
this package elaboration code

SPARK.Class.HidePrivatePart

Controls the generation of the hide annotation for
this package private part

SPARK.Class.Inherit

Contains the comma separated list of packages
this package is inheriting from

SPARK.Class.Initializes

Contains the comma separated list of own
variables this package is initializing

SPARK.Class.OwnSpec

Contains the list of own variables (with optional
modes and types) to be generated in the own
annotation of this package spec

SPARK.Class.OwnBody

Contains the list of own variables (with optional
modes and types) to be generated in the own
annotation of this package body

Type

AdaCodeGeneration.Attribute.generatePrag
maAtomic

Generates an “atomic” pragma for this type.

AdaCodeGeneration.Attribute.generatePrag
maVolatile

Generates a “volatile” pragma for this type.

AdaCodeGeneration.Type.representationCla
uses

Contains the representation clauses to be
generated for this type

Page 217/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 218/220

Appendix C: Stereotypes for IBM® Rational®
Rhapsody® Developer for Ada

Stereotype Applicable to <Description>

<Profile>

abstract Class

AdaProtectedObject Class

AdaProtectedType Class

AdaTask Class

AdaTaskType Class

Container Package Indicates that a package
does not contribute to the
namespace of its
contained elements.

Discriminant Attribute Only applicable to struct
attributes and to class
instance-level attributes.
This stereotype specifies
that the attribute shall be
generated as a record
type discriminant instead
of a record type
component.

entry Operation

entrypoint Class

HSER Operation Stands for Highly
Synchronous

Interface Class

LSER Operation Stands for Loosely
Synchronous

Parent_Instantiation Dependency Indicates that the
instantiation DI for a
derived template class D
depends on a given
instantiation Bl of the
base class B of D

Renames Dependency Indicates that a client
variable, operation, class
or package is just a
renaming of its supplier.

separate Operation

Singleton

IBM® Rational® Rhapsody® Developer for Ada - User Guide

Page 219/220

TaskDefaultAction Operation
Usage Dependency
SPARK
INFORMED_Boundary Variable_Package | Class
Package
INFORMED_Main_Program Class
INFORMED_Type_ Package Class
Package
INFORMED _Utility_Package Package
INFORMED_Variable_Package Class
Package
SPARK_Global Dependency
SPARK _Initializes Dependency
SPARK_Proof Actor
Class
Operation
Type
SPARK_Refined_By Dependency

