

IBM Rational Rhapsody
Developer for Ada

Code Generator

User’s Guide

IBM Rational Rhapsody Developer for Ada – User Guide Page 2/220

1. Notices

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by

GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer

the products, services, or features discussed in this document in other countries. Consult your local

IBM representative for information on the products and services currently available in your area.

Any reference to an IBM product, program, or service is not intended to state or imply that only that

IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You

can send written license inquiries to:

IBM Director of Licensing IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM

Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome

Minato-ku Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where

such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES

CORPORATION PROVIDES THIS PUBLICATION ―AS IS‖ WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions. Therefore, this statement may not apply to you. ii This information could

include technical inaccuracies or typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new editions of the publication. IBM may

make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do

not in any manner serve as an endorsement of those Web sites. The materials at those Web sites

are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you. Licensees of this program who wish to have information

about it for the purpose of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the information which

has been exchanged, should contact:

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 3/220

Intellectual Property Dept. for Rational Software

IBM Corporation

1 Rogers Street

Cambridge, Massachusetts 02142 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some

cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are

provided by IBM under terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may

have been made on development-level systems and there is no guarantee that these

measurements will be the same on generally available systems. Furthermore, some measurements

may have been estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products

and cannot confirm the accuracy of performance, compatibility or any other claims related to non-

IBM products. Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business operations. To

illustrate them as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any similarity to the names

and addresses used by an actual business enterprise is entirely coincidental.

This information contains sample application programs in source language, which illustrate

programming techniques on various operating platforms. You may copy, modify, and distribute

these sample programs in any form without payment to IBM, for the purposes of developing, using,

marketing or distributing application programs conforming to the application programming interface

for the operating platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 4/220

Each copy or any portion of these sample programs or any derivative work, must include a

copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. 1997,
2009.

IBM, the IBM logo, ibm.com, Rhapsody, and Statemate are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries, or both. These

and other IBM trademarked terms are marked on their first occurrence in this information with the

appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at

the time this information was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the Web at

www.ibm.com/legal/copytrade.html.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 5/220

Table of Contents

1. NOTICES .. 2

INTRODUCTION.. 14

2. INSTALLATION NOTES ... 14

2.1. SUPPORTED COMPILERS .. 14
2.2. BEHAVIOR SERVICES AND ANIMATION LIBRARIES ... 14

2.2.1. Automatically building behavior services and animation library .. 15
2.2.2. Manually rebuilding the behavior services .. 15
2.2.3. Manually rebuilding the animation C libraries ... 17

2.3. BOOCH COMPONENTS ... 20
2.4. JAVA ENVIRONMENT ... 20

2.4.1. JDK-JRE requirements .. 20

3. COVERAGE ... 21

3.1. RHAPSODY MODEL ELEMENT COVERAGE .. 21
3.2. ADA CODE COVERAGE .. 26

4. ADA CODE GENERATION ... 26

4.1. CLASSES .. 27
4.1.1. Class definition .. 27
4.1.2. Class record type visibility ... 27
4.1.3. Inheritance ... 29
4.1.4. Initialization code .. 30
4.1.5. Static class ... 31

4.2. ATTRIBUTES ... 33
4.2.1. Accessor and mutator... 33
4.2.2. Non-static attributes ... 33
4.2.3. Static attributes .. 36
4.2.4. Static attributes visibility.. 36
4.2.5. Static attributes declaration position ... 38
4.2.6. Non-Predefined Attribute Types ... 41
4.2.7. Guarded Attributes ... 44
4.2.8. <<Discriminant>> Attributes ... 44
4.2.9. Overriding and redefining discriminant attributes .. 47

4.3. OPERATIONS ... 50
4.3.1. Guarded operations ... 53
4.3.2. Template operations and their instantiations... 53
4.3.3. Access parameters .. 57
4.3.4. Class-wide parameters ... 58

4.4. DEPENDENCIES .. 60
4.4.1. <<Usage>> dependencies .. 60
4.4.2. <<Renames>> dependencies .. 62

4.5. ACTORS ... 64
4.6. PACKAGES .. 67

4.6.1. Child Packages .. 69
4.6.2. Nested Packages .. 70
4.6.3. Private Packages ... 73
4.6.4. Elaboration Pragmas ... 75
4.6.5. <<Container>> Packages .. 76

4.7. TYPES .. 78
4.7.1. Type declaration .. 78
4.7.2. Type visibility ... 81
4.7.3. Type declaration position... 82
4.7.4. Type defined as a class... 82

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 6/220

4.8. TEMPLATE CLASSES AND THEIR INSTANTIATION .. 87
4.8.1. template classes.. 87
4.8.2. template instantiations ... 87
4.8.3. template inheritance ... 88
4.8.4. template instantiation inheritance.. 89

4.9. CONCURRENT TYPES ... 91
4.9.1. Tasks .. 91
4.9.2. Protected Objects ... 97

4.10. ENTRYPOINTS ... 103
4.11. SINGLETON CLASSES ... 104

4.11.1. Ada 95 .. 104
4.11.2. Ada 83 .. 106

4.12. UNIDIRECTIONAL RELATIONS .. 109
4.12.1. Multiplicity = 1 .. 109
4.12.2. Multiplicity > 1, general notes ... 109
4.12.3. Details on the Booch components .. 110
4.12.4. Multiplicity > 1, bounded .. 112
4.12.5. Multiplicity > 1, unbounded .. 112
4.12.6. Multiplicity > 1, qualified relations ... 112

4.13. BIDIRECTIONAL RELATIONS ... 114
4.13.1. SubtypingAndRenaming scheme .. 114
4.13.2. IntermediateParentClasses scheme .. 114

4.14. PORTS .. 115
4.14.1. Limitations ... 115
4.14.2. Using ports ... 115
4.14.3. Example 1 : behavioral port .. 116
4.14.4. Example 2 : fast ports .. 117
4.14.5. Multicast ports ... 117

4.15. ADA LIBRARIES .. 120
4.15.1. Creating an Ada Library .. 120
4.15.2. Linking an Ada Library .. 121

4.16. CONFIGURATION OF MAIN FILE GENERATION ... 122
4.16.1. With Clauses .. 122
4.16.2. Configuration Prolog ... 122
4.16.3. Instance Creation ... 122
4.16.4. RiADefaultActive Initialization .. 122
4.16.5. Reactive Instance Hookup .. 123
4.16.6. Start Behavior .. 123
4.16.7. User defined local variables .. 123
4.16.8. User Initialization Code ... 123
4.16.9. Configuration Epilog ... 123

4.17. INSTANCES DEFINED ON A PACKAGE .. 124
4.17.1. Package Modifications ... 124

4.18. USER-DEFINED HEADER AND FOOTERS .. 127
4.18.1. Available properties ... 127
4.18.2. Keyword substitution .. 127
4.18.3. Script Evaluation ... 128

4.19. CUSTOM MAKEFILES ... 129
4.19.1. Introduction ... 129
4.19.2. Features ... 129
4.19.3. Standard Macros and property Keywords ... 131
4.19.4. New environment creation ... 137
4.19.5. Use cases .. 137

5. SPARK CODE GENERATION .. 143

5.1. ENABLING SPARK CODE GENERATION ... 143
5.1.1. Adding the SPARK profile to the model ... 143
5.1.2. Setting the SPARK environment ... 144

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 7/220

5.1.3. Examination level ... 145
5.2. DIFFERENCES BETWEEN CODE GENERATED WITH AND WITHOUT THE SPARK PROFILE 146
5.3. GENERAL USAGE NOTES ON SPARK PROFILE TAGS .. 146

5.3.1. Capturing annotations with string tags .. 146
5.3.2. Annotations often come in pairs ... 146
5.3.3. Multiple modeling approaches ... 147

5.4. INHERIT CLAUSES .. 147
5.4.1. Using inheritance ... 147
5.4.2. Using <<Usage>> dependencies .. 148
5.4.3. Using the inherits tag on a class or a package .. 149

5.5. OWN VARIABLES .. 150
5.5.1. Modeling through tags on attributes .. 150
5.5.2. Using the OwnSpec and OwnBody tags ... 153

5.6. INITIALIZES ANNOTATIONS .. 155
5.6.1. Using tags on attributes ... 155
5.6.2. Using tags on class and package ... 155
5.6.3. Using <<SPARK_Initializes>> dependencies .. 155

5.7. PROOF TYPES AND PROOF FUNCTIONS ANNOTATIONS ... 155
5.8. GLOBAL ANNOTATIONS .. 157

5.8.1. Using <<SPARK_Global>> dependencies ... 157
5.8.2. Using tags on operations ... 160

5.9. DERIVES ANNOTATION .. 162
5.10. PRECONDITON, POSTCONDITION AND RETURN ANNOTATIONS ... 163
5.11. HIDE ANNOTATION .. 166

5.11.1. On a class or a package ... 166
5.11.2. On an operation ... 169

5.12. MAIN PROGRAM ANNOTATION ... 169

6. BEHAVIORAL CODE GENERATION .. 170

6.1. OVERVIEW OF THE BEHAVIORAL FRAMEWORKS ... 170
6.1.1. Selecting the behavioral framework implementation ... 170
6.1.2. Differences between the Ada 83 and the Ada 95 implementations 170
6.1.3. Common features of both frameworks ... 170

6.2. USING THE ADA 83 BEHAVIORAL FRAMEWORK .. 171
6.2.1. Limitations ... 171
6.2.2. Event-based reactive classes .. 172
6.2.3. Reactive Class Generation ... 172
6.2.4. Active Class Generation ... 177
6.2.5. Working with Active and Reactive Classes .. 179
6.2.6. Active Reactive Class ... 180
6.2.7. Default Active Class ... 181
6.2.8. Triggered Operations ... 182

6.3. USING THE ADA 95 BEHAVIORAL FRAMEWORKS .. 184
6.3.1. Limitations ... 184
6.3.2. New Ada 95 Framework changes .. 184
6.3.3. Reactive classes.. 185
6.3.4. Event-based reactive classes .. 185
6.3.5. Sending events .. 185
6.3.6. Using triggered operations .. 185
6.3.7. Accessing the current event parameters ... 185
6.3.8. Testing if a state is active ... 186
6.3.9. Working with Active and Reactive Classes .. 186
6.3.10. Default Active Class ... 186
6.3.11. User Active class for ravenscar ... 186

7. CODE ORDER RESPECT TOOL .. 187

7.1. INTRODUCTION .. 187
7.2. ACTIVATION AND USAGE .. 187

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 8/220

7.3. FREQUENT ERRORS .. 187
7.3.1. Syntax error in Ada file .. 187
7.3.2. Syntax error due to model .. 188
7.3.3. Adding a new element .. 188

8. ANIMATION IN IBM® RATIONAL® RHAPSODY® DEVELOPER FOR ADA 188

8.1. ENABLING ANIMATION ... 188
8.1.1. Animation of a user defined type .. 190

8.2. ANIMATION ON REMOTE HOST .. 192

9. GENERATION RULES CUSTOMIZATION ... 193

9.1. OVERVIEW .. 193
9.2. RULES MODIFICATION .. 193
9.3. LEGACY UML 1.3 METAMODEL BASED RULESET .. 193

10. COMPILERS AND RELATED TOOLS SUPPORT .. 194

10.1. SUPPORTED COMPILERS/IDES, TOOLS & ENVIRONMENTS ... 194
10.2. ENVIRONMENT SPECIFIC INSTRUCTIONS .. 194

10.2.1. Using the INTEGRITY simulator with Rhapsody ... 194
10.2.2. INTEGRITY BSP support ... 194
10.2.3. Raven/PPC BSP Support ... 194
10.2.4. GNAT issues ... 195

10.3. COMPILER USAGE NOTE FOR OBJECTADA AND GREENHILLS COMPILERS 195
10.4. COMPILER SUPPORT LIMITATIONS... 195

10.4.1. Rhapsody Frameworks support.. 195
10.4.2. Compilation error messages .. 195
10.4.3. Notes on Pre-compiled libraries .. 195

10.5. COMPILER AND ASSIMILATED TOOLS RELATED PROPERTIES .. 197

11. MODEL LIMITATIONS ... 200

11.1. LIMITATIONS FOR ADA 83 ... 200
11.2. GENERAL LIMITATIONS .. 200

APPENDIX A: PROPERTIES FOR IBM® RATIONAL® RHAPSODY® DEVELOPER FOR ADA201

APPENDIX B: TAGS FOR IBM® RATIONAL® RHAPSODY® DEVELOPER FOR ADA 215

APPENDIX C: STEREOTYPES FOR IBM® RATIONAL® RHAPSODY® DEVELOPER FOR ADA218

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 9/220

Table of Figures
Figure 1: Rebuilding Ada 83 Behavioral Framework. ... 16
Figure 2: Changing the behavioral framework generation directory for an Integrity-based configuration 17
Figure 3: A simple class in Rhapsody. ... 27
Figure 4: The generated Ada code for a simple class. .. 27
Figure 5: Controlling the location of the record type definition. .. 28
Figure 6: Inheritance in Rhapsody. .. 29
Figure 7: The package specification for a specialized class. .. 29
Figure 8 Setting the initialization code property for a class ... 30
Figure 9 Generated body for a class with initialization code ... 31
Figure 10 setting IsStatic property for a class .. 32
Figure 11: Non-static attributes of a class. ... 33
Figure 12: The package specification for non-static attributes. .. 34
Figure 13: The package body for non-static attributes. .. 35
Figure 14: Controlling the visibility of the accessor and mutator. ... 36
Figure 15: Static attributes of a class. .. 36
Figure 16: The package specification for static attributes. ... 37
Figure 17: The package body for static attributes. ... 38
Figure 18 Static attributes of a class with overridden declarationPosition property .. 39
Figure 19 Setting the DeclarationPosition for a static attribute to BeforeClassRecord 40
Figure 20 Setting the DeclarationPosition for a static attribute to AfterClassRecord 41
Figure 21: Generated code for static attributes with overridden DeclarationPosition property 41
Figure 22: Non-static attribute definition. .. 42
Figure 23: Static attribute definition. ... 43
Figure 24: The package specification for non-predefined type attributes. ... 43
Figure 25: Guarding an Attribute. .. 44
Figure 26 Modeling a class with a <<Discriminant>> attribute ... 44
Figure 27 Defining an unconstrained array type .. 45
Figure 28 Setting an attribute stereotype to <<Discriminant>> ... 45
Figure 29 Defining an attribute with a type definition based on the class record type discriminant 46
Figure 30 Generated code for a class with a discriminant .. 47
Figure 31 Class with overriding and redefining discriminant .. 47
Figure 32 Overriding discriminant ... 48
Figure 33 Overriding and redefining discriminant ... 48
Figure 34 Redefining discriminant ... 48
Figure 35: Operations defined on a class. .. 50
Figure 36: Operation Features.. 50
Figure 37: The implementation of myOperation. ... 51
Figure 38: The local variables for myOperation. ... 51
Figure 39: Operations in the package specification. .. 52
Figure 40: Operations in the package body. ... 52
Figure 41: Making an Operation Guarded. .. 53
Figure 42 Modeling a template operation and a template operation instantiation .. 53
Figure 43 features of a template operation ... 54
Figure 44 setting up template parameters for a template operation .. 54
Figure 45 generated code for a template operation specification ... 55
Figure 46 generated code for a template operation implementation .. 55
Figure 47 features of a template operation instantiation .. 56
Figure 48 setting up template arguments for a template operation instantiation .. 56
Figure 49 generated code for a template operation instantiation.. 57
Figure 50 Making a parameter passing mode "access" .. 57
Figure 51 Making an operation this parameter passing mode "access" ... 58
Figure 52 Operation using access mode parameters .. 58
Figure 53: <<Usage>> dependencies in IBM® Rational® Rhapsody® in Ada. .. 60
Figure 54: An implementation dependency. .. 60
Figure 55: Creating a "Use" statement. .. 61
Figure 56: The package specification for dependencies. ... 61

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 10/220

Figure 57: The package body for dependencies. .. 62
Figure 58: An Actor in Rhapsody. ... 64
Figure 59: Package specification for an Actor. .. 65
Figure 60: Package body for an Actor. .. 66
Figure 61: A package defined in Rhapsody. .. 67
Figure 62: The package specification for a Rhapsody package. .. 68
Figure 63: The package body for a Rhapsody package. ... 69
Figure 64: Packages and classes used as namespaces. ... 70
Figure 65: The package specification for class_2. ... 70
Figure 66: The resulting files including the namespaces. ... 70
Figure 67: Example of a nested package and a nested class. ... 71
Figure 68: Setting a class to be generated as a nested package. ... 71
Figure 69: Setting a package to be generated as a nested package. .. 72
Figure 70: Controlling the location of the specification of a nested package ... 72
Figure 71: Exampe of a private package and a private class. ... 73
Figure 72: Setting a class to be generated as a private package ... 73
Figure 73: Setting a package to be generated as a private package .. 74
Figure 74: Specification of a private class ... 74
Figure 75: Specification of a private package .. 74
Figure 76: Example of a class and a package with elaboration pragmas.. 75
Figure 77: Enabling generation of elaboration pragmas on a class .. 75
Figure 78: Enabling generation of elaboration pragmas on a package ... 75
Figure 79: Specificaton of a class with elaboration pragmas ... 76
Figure 80: Specificaton of a package with elaboration pragmas .. 76
Figure 81: A Sample <<Container>> Package. ... 77
Figure 82: Types defined in Rhapsody. ... 78
Figure 83: The declaration of a private type on a class. ... 78
Figure 84: The declaration of a public type on a class. .. 79
Figure 85: The declaration of a private type on a package. ... 80
Figure 86: The declaration of a public type on a package. ... 81
Figure 87: Controlling the visibility of a type. ... 81
Figure 88: The package specification for a class with types. ... 82
Figure 89: The package specification for a package with types. .. 82
Figure 90: Representation of a typed class .. 83
Figure 91: Generated code of a typed class .. 83
Figure 92: Representation of a subtype ... 83
Figure 93: Generated code of a subtype .. 83
Figure 94: Representation of a range type .. 84
Figure 95: Generated code of a range type ... 84
Figure 96: Representation of a range type with dependency to a constant .. 84
Figure 97: Generated code of a range type ... 84
Figure 98: Representation of an array type ... 85
Figure 99: Generated code of an array type .. 85
Figure 100: Representation of a variant record type ... 85
Figure 101: Generated code of a variant record type .. 86
Figure 102: Definition of a template class. .. 87
Figure 103: Package specification for a generic package. ... 87
Figure 104: An instantiation of a template class. ... 88
Figure 105: The generated Ada package for a generic instantiation. ... 88
Figure 106 Inheritance between template classes ... 88
Figure 107 generated code for a template class derived from another template class 89
Figure 108 Modeling instantiation of a template inheritance hierarchy .. 89
Figure 109 generated code for a base template instantiation class .. 89
Figure 110 generated code for a derived template instantiation class ... 89
Figure 111 generate code for another derived template instantiation class ... 90
Figure 112 Modeling template inheritance hierarchy across (Ada) children packages 90
Figure 113 Generated code for a derived template class that is a child package of its base class 90

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 11/220

Figure 114 Generated code for the instantiation of a derived template class that is a child package of its base

class... 90
Figure 115: Ada tasks in Rhapsody.. 91
Figure 116: Setting the record type visibility to “Private” for an <<AdaTaskType>> class 91
Figure 117: Setting an operation on a <<AdaTaskType>> class to generate as a regular operation. 92
Figure 118: Ada task specification. .. 92
Figure 119: Ada task body. .. 93
Figure 120: Ada task type specification. .. 94
Figure 121: Ada task type body. .. 95
Figure 122 Ada task with default entry ... 96
Figure 123 Specification of Ada Task with default entry... 96
Figure 124 Implementation of Ada Task with default entry .. 97
Figure 125: Protected objects in Rhapsody. ... 97
Figure 126: Setting the record type visibility to “Private” for an <<AdaProtectedType>> class 98
Figure 127: Applying the <<entry>> stereotype to a protected object operation .. 98
Figure 128: Setting the guard for a protected object/type entry ... 99
Figure 129: Protected object specification. .. 99
Figure 130: Protected object body. .. 100
Figure 131: Protected type specification. ... 101
Figure 132: Protected type body. ... 102
Figure 133: An entrypoint in Rhapsody. .. 103
Figure 134: The entrypoint definition. ... 103
Figure 135: A singleton class in Rhapsody. ... 104
Figure 136: The package specification for a singleton class in Ada 95. .. 105
Figure 137: The package body for a singleton class in Ada 95. ... 106
Figure 138: Changing the component to generate Ada 83 code. .. 107
Figure 139: The package specification for a singleton class in Ada 83. .. 107
Figure 140: The package body for a singleton class in Ada 83. ... 108
Figure 141: Class relations with multiplicity = 1. .. 109
Figure 142: Class relations with multiplicity > 1, bounded.. 112
Figure 143: Setting the Component to Create a Library. ... 120
Figure 144: Using an Ada Library. .. 121
Figure 145: Configuration Instances. ... 122
Figure 146: Auto-generated Entrypoint. .. 123
Figure 147: Global Instances on a Package. .. 124
Figure 148: Global Instance with Mulitplicity = 1. .. 124
Figure 149: Global Instance with Multiplicity > 1. .. 125
Figure 150: The Instances Package Specification. ... 126
Figure 151: The Instances Package Body. ... 126
Figure 152 Defining custom header and footer at the component level ... 127
Figure 153 Inserting keywords inside user-defined header and footer ... 128
Figure 154 Example of generated code using user-defined header and footer ... 128
Figure 155: Modeling inherit clauses via inheritance .. 147
Figure 156: Generated code for derived class using the SPARK profile ... 148
Figure 157: Modeling inherit clauses via <<Usage>> dependencies ... 148
Figure 158: Generated code for dependency client class using the SPARK profile 149
Figure 159: Modeling inherit clauses via Inherit tag .. 149
Figure 160: Setting the inherit tag on a class ... 150
Figure 161: Generated code for inherit tag on a class using the SPARK profile ... 150
Figure 162: Modeling an own annotation on a package via tags on an attribute .. 151
Figure 163: Setting some of the tags related to own variables on an attribute ... 152
Figure 164: Setting a default value on an initialized own variable attribute .. 153
Figure 165: Generated annotations for an initialized own variable .. 153
Figure 166: Modeling an own annotation on a package via tags on packages ... 154
Figure 167: Disabling the generation of an own annotation at the attribute level .. 154
Figure 168: Setting some of the tags related to own variables on a package ... 155
Figure 169: Modeling a package with a proof type and a proof function .. 156
Figure 170: Setting the stereotype of a function to <<SPARK_Proof>> ... 156

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 12/220

Figure 171: Setting the stereotype of a type to <<SPARK_Proof>> ... 157
Figure 172: Generated code for package with proof type and proof function .. 157
Figure 173: Modeling global annotations via dependencies from operation to attribute 158
Figure 174: Setting the stereotype of a dependency to <<SPARK_Global>> ... 158
Figure 175: Setting the mode of a <<SPARK_Global>> dependency ... 159
Figure 176: Controlling where the annotation is generated for a <<SPARK_Global>> dependency 159
Figure 177: Specification for a package with a <<SPARK_Global>> dependency from an operation to a

package ... 160
Figure 178: Implementation for a package with a <<SPARK_Global>> dependency from an operation to a

package ... 160
Figure 179: Modeling global annotations via GlobalSpec tag ... 160
Figure 180: Setting the GlobalSpec tag on an operation .. 161
Figure 181: Specification for a package with an operation with a GlobalSpec tag .. 161
Figure 182: Implementation for a package with an operation with a GlobalSpec tag 162
Figure 183: Modeling derives annotations via DerivesSpec tag .. 162
Figure 184: Setting the DerivesSpec tag on an operation .. 163
Figure 185: Specification for a package with an operation with a DerivesSpec tag 163
Figure 186: Modeling post conditions annotations via PostConditionSpec tag ... 164
Figure 187: Setting the PostConditionSpec tag on an operation .. 164
Figure 188: Specification for a package with an operation with a PostConditionSpec tag 165
Figure 189: Implementation for a package with an operation with a PostConditionSpec tag 166
Figure 190: Modeling hide annotations on packages and operations ... 167
Figure 191: Generated body code for a package body with its HideBody tag set to true 167
Figure 192: Setting the elaboration code on a package .. 168
Figure 193: Generated code for a package body with elaboration code and its HideElaborationCode tag set to

true .. 168
Figure 194: Generated code for a package specification with its HidePrivatePart tag set to true 168
Figure 195: Generated code for an operation body with its HideBody tag set to true 169
Figure 196: Operations to Control the Reactive Class Statechart. ... 171
Figure 197: Definition of an Active Class. ... 171
Figure 198: Operations to Control the Active Class .. 171
Figure 199: A Reactive Class and its Active Class. .. 172
Figure 200: The "With" Clauses for a Reactive Class. .. 172
Figure 201: The Reactive Class Record. .. 173
Figure 202: Operations for the Current Event Information. ... 174
Figure 203: Initialization and Finalization of the Reactive Class. .. 174
Figure 204: Example Reactive Class Project. .. 174
Figure 205: Statechart for the Reactive Class. ... 174
Figure 206: The Event Types for the Reactive Class. .. 175
Figure 207: Using relative naming for current event data .. 176
Figure 208: Event data record type using relative naming ... 176
Figure 209: The Parent Package of the Reactive Class. ... 176
Figure 210: Operations to Generate Events for a Reactive Class. .. 176
Figure 211: Accessing a trigger parameter value (using full namespace based naming) 177
Figure 212: Accessing a trigger parameter value (using relative naming) ... 177
Figure 213: Setting the Record Type Visibility for an Active Class. ... 178
Figure 214: The Task Generated for an Active Class. ... 178
Figure 215: The Record Definition for the Active Class. .. 178
Figure 216: "With" Statements for an Active Class. .. 179
Figure 217: The Public Operations of an Active Class. ... 179
Figure 218: Initialization and Finalization of the Active Instance. .. 179
Figure 219: Using an Active and Reactive Class. .. 180
Figure 220: An Active-Reactive Class. .. 180
Figure 221: Using an Active-Reactive Class. ... 181
Figure 222: Using the Default Active Class. .. 182
Figure 223: A Sample Model of a Synchronous Reactive Class. ... 182
Figure 224: A Statechart Using Triggered Operations. .. 182
Figure 225: Triggered Operation Unique Identifiers. .. 183

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 13/220

Figure 226: Generated Procedures for Triggered Operations. ... 183
Figure 227: Using a Synchronous Reactive Class. ... 184
Figure 228: The State_Type enumeration type for a reactive class... 185
Figure 229: A Reactive Class and its Active Class. .. 185
Figure 230: Operations to Generate Events for a Reactive Class. .. 185
Figure 231: Accessing a trigger parameter value ... 186
Figure 232: Enabling Animation in the Configuration. .. 189

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 14/220

Introduction

This document is the user‘s guide for the code Generator of IBM® Rational® Rhapsody®

Developer for Ada.

2. Installation Notes

2.1. Supported compilers

The code generator has been tested against the following Ada compilers

 AdaCore‘s GNAT 3.15p

 AdaCore‘s GNAT Pro 6.01

 AdaCore‘s GNAT Pro 6.02

 AONIX ObjectAda  Enterprise Edition 8.4

 Green Hills Software‘s AdaMULTI 3.5 for PowerPC on INTEGRITY v4.0.8, with updates

from Green Hills Support services.

 Green Hills Software‘s AdaMULTI 3.5 for x86 on Win32, with updates from Green Hills

Support services.

For AdaMULTI 3.5, updates may be necessary in order to work with IBM® Rational®
Rhapsody® Developer for Ada. Please contact Green Hills Support staff at support-
ada@ghs.com (or support-adauk@ghs.com if you are in Europe) for details, stating that you
intend to use IBM® Rational® Rhapsody® Developer for Ada.

In order to determine if you need such updates, try to rebuild the behavior services. If you

get an assertion failure message from the compiler, you need the updates.

 Green Hills Software‘s AdaMULTI 4.0.7 for PowerPC on INTEGRITY v5.0.4.

 Green Hills Software‘s AdaMULTI 4.0.7 for x86 on Win32

If user needs to use another compiler, he can customize IBM Rational Rhapsody, in order to

generate appropriate files to compile the project. See §4.19 CUSTOM MAKEFILES.

Warning :

If user uses AdaCore‘s GNAT 3.15p compiler with the default installation path, the compilation will

fail, because the path contains a white space which is not recognized by the compiler. In this case,

IBM Rational Rhapsody must be installed into another path which doesn‘t contain white spaces.

2.2. Behavior services and animation Libraries

As part of IBM Rational Rhapsody installation you are receiving the following files:

 Basic behavior services sources.

 Animation C libraries (currently supported only for Win32 and Integrity Targets).

These files are not compiled during install, and must be compiled by user. They can be compiled

manually or automatically from Rhapsody menu. This is explained in the following chapter.

These files have been tested against the following Ada compilers

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 15/220

 AdaCore‘s GNAT 3.15p

 AdaCore‘s GNAT Pro 6.01

 AdaCore‘s GNAT Pro 6.02

 AONIX ObjectAda  Enterprise Edition

 Green Hills Software‘s AdaMULTI 3.5 for PowerPC on INTEGRITY v4.0.8, with updates

from Green Hills Support services.

 Green Hills Software‘s AdaMULTI 3.5 for x86 on Win32, with updates from Green Hills

Support services.

For AdaMULTI 3.5, updates may be necessary in order to work with IBM® Rational®
Rhapsody® Developer for Ada. Please contact Green Hills Support staff at support-
ada@ghs.com (or support-adauk@ghs.com if you are in Europe) for details, stating that you
intend to use IBM® Rational® Rhapsody® Developer for Ada.

In order to determine if you need such updates, try to rebuild the behavior services. If you

get an assertion failure message from the compiler, you need the updates.

 Green Hills Software‘s AdaMULTI 4.0.7 for PowerPC on INTEGRITY v5.0.4.

 Green Hills Software‘s AdaMULTI 4.0.7 for x86 on Win32

In some cases, where the compiler version used by you is different from the version used on

installation, or when you need versions of the libraries targeted for a specific operating system /

hardware architecture combination (e.g. a specific board running with INTEGRITY), you will need to

rebuild them. For GNAT, ObjectAda and AdaMulti compilers on Win32 platforms, rebuilding the

libraries can be done by executing the recompile_<ENV>.bat program in the Sodius subdirectory.

The following instructions indicate how to rebuild them manually for every supported platform.

2.2.1. Automatically building behavior services and animation library

Behavior services and animation library can be built in a simple way by using the menu Code/Build

Framework. This is the recommended method to build them for the first time after Rhapsody install.

This command will automatically build the behavior services and animation library for the

environment defined in the current configuration. This command calls a script defined in the

property : Ada_CG::<ENV>::buildFrameworkCommand.

Compilation results are logged into the file <Rhp_instal_dir>\Sodius\RiA_CG\recompile.log

For the environment Integrity5 of the FWKs, it is recommended to regenerate the files, in order to

setup correctly the make file with your environment.

2.2.2. Manually rebuilding the behavior services

If you are using the Ada 83 framework then

 Open the RiAServices model under <Rhapsody installation>\Share\LangAda83\model directory.

If you are using the old Ada 95 framework then

 Open the RiA_Framework model under <Rhapsody installation>\Share\LangAda\model

directory.

If you are using the New Ada 95 framework then

 Open the RiA_Framework model under <Rhapsody installation>\Share\LangAda95\Ada_FWK

directory.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 16/220

 Select the appropriate configuration among the available ones :

o GNAT_Win32

o OBJECTADA_Win32

o AdaMULTI_Win32

o AdaMULTI_4_Win32

o AdaMULTI_INTEGRITY_<target>

o AdaMULTI_4_INTEGRITY_<target>)

 Select Rebuild from the code menu.

Figure 1: Rebuilding Ada 83 Behavioral Framework.

Adding a platform specific target for Integrity :

 Make a copy of one of the existing Integrity configuration (for example

ADAMULTI_4_INTEGRITY_sim800)

 Rename it appropriately by giving it the appropriate target suffix (for example mbx800)

 Open the settings tab of the configuration, and edit the directory field, replacing the old target

suffix by the new one (sim800 => mbx800)

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 17/220

Figure 2: Changing the behavioral framework generation directory for an Integrity-based

configuration

 Generate code and build component

2.2.3. Manually rebuilding the animation C libraries

Rebuilding for GNAT

The build is done using the GCC compiler supplied as part of the GNAT package. The process

differs a bit depending on the version of GNAT you‘ve installed.

If you are using GNAT v3.13 or earlier version follow these steps :

 Open a command prompt.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 18/220

 Go to the <Rhapsody installation>\Share\LangC directory.

 Type ―make -f AdaWinbuild.mak PATH_SEP=\‖

If you are using a later version of GNAT, you might have to follow these steps :

 Make sure the GNAT Win32 support package is installed

 Open a command prompt.

 Go to the <Rhapsody installation>\Share\LangC directory.

 Type “make –f AdaWinbuild.mak buildLibs”

The following files will be generated in the <RhapsodyInAdaInstallDir>\Share\LangC\lib directory:

 AdaWinaomanim.lib

 AdaWinomcomappl.lib

 AdaWinoxfinst.lib

Notes:

 The GNAT_HOME environment variable must be set to the location of the GNAT install

directory. The path must use forward slashes and not backslashes in its path.

 If your environment contains UNIX like Shell utilities, you will need to remove them from the

path in order to compile.

 The Win32 libraries may be included as part of a separate install for GNAT. For example, for

3.15p, the install file is called gnatwin-3.15p.exe.

If you are using a later version of GNAT and wish to use animation, make sure to have GNU Make

installed in the same directory as GNAT executables, rename it as ―make.exe‖, and follow the

previous instructions.

Rebuilding for ObjectAda

The build is done using the GCC compiler supplied as part of the cygwin package. :

 Open a command prompt.

 Go to the <Rhapsody installation>\Share\LangC directory.

 Type ―..\etc\cygwinMake.bat" AdaWinBuild.mak adaBuildLibs‖

The following files will be generated in the <RhapsodyInAdaInstallDir>\Share\LangC\lib directory:

 AdaWinaomanim.lib

 AdaWinomcomappl.lib

 AdaWinoxfinst.lib

Rebuilding for MultiWin32

 Open a command prompt.

If you are using Multi 3.5 or an older version follow these steps :

 Go to the <Rhapsody installation>\Share\LangC directory.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 19/220

 Type ―MultiWin32Build.bat <AdaMultiWin32InstallDir> ada bld ‖, replacing

<AdaMultiWin32InstallDir> by the appropriate directory for your machine

The following files will be generated in the <RhapsodyInAdaInstallDir>\Share\LangC\lib directory:

 AdaMultiWin32Aomanim.dba

 AdaMultiWin32Aomanim.lib

 AdaMultiWin32OmComAppl.dba

 AdaMultiWin32OmComAppl.lib

 AdaMultiWin32OxfInst.dba

 AdaMultiWin32OxfInst.lib

If you are using Multi 4.0 or a newer version follow these steps :

 Go to the <Rhapsody installation>\Share\LangC directory.

 Type ―MultiWin32Build.bat <AdaMultiWin32InstallDir> ada‖, replacing

<AdaMultiWin32InstallDir> by the appropriate directory for your machine

 AdaMulti4Win32Aomanim.dba

 AdaMulti4Win32Aomanim.lib

 AdaMulti4Win32OmComAppl.dba

 AdaMulti4Win32OmComAppl.lib

 AdaMulti4Win32OxfInst.dba

 AdaMulti4Win32OxfInst.lib

Rebuilding for Integrity

 Open a command prompt.

If you are using Multi 3.5 or an older version follow these steps :

 Go to the <Rhapsody installation>\Share\LangC directory.

 Type ―IntegrityBuild.bat <AdaMultiIntegrityInstallDir> <TargetCPU>

<AdaMultiIntegrityInstallDir> ADA bld‖, replacing <AdaMultiIntegrityInstallDir> by the

appropriate directory for your machine and <TargetCPU> by the desired target.

The following files will be generated in the <RhapsodyInAdaInstallDir>\Share\LangC\lib directory:

 AdaIntegrityAomAnim<TargetCPU>.a

 AdaIntegrityAomAnim<TargetCPU>.dba

 AdaIntegrityOmComAppl.dba

 AdaIntegrityOmComAppl<TargetCPU>.a

 AdaIntegrityOxfInst<TargetCPU>.a

 AdaIntegrityOxfInst<TargetCPU>.dba

If you are using Multi 4.0 or a newer version follow these steps :

 Go to the <Rhapsody installation>\Share\LangC directory.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 20/220

 Type ―IntegrityBuild.bat <IntegrityOSInstallDir> <TargetCPU>

<AdaMultiIntegrityInstallDir> ADA‖, replacing <AdaMultiIntegrityInstallDir> and

<IntegrityOSInstallDir> by the appropriate directories for your machine and <TargetCPU>

by the desired target.

The following files will be generated in the <RhapsodyInAdaInstallDir>\Share\LangC\lib directory:

 AdaIntegrity5AomAnim<TargetCPU>.a

 AdaIntegrity5AomAnim<TargetCPU>.dba

 AdaIntegrity5OmComAppl.dba

 AdaIntegrity5OmComAppl<TargetCPU>.a

 AdaIntegrity5OxfInst<TargetCPU>.a

 AdaIntegrity5OxfInst<TargetCPU>.dba

2.3. Booch components

The Booch components are copyrighted by Grady Booch.

The Booch components and their license terms are available at the AdaPower website at the

following URL http://www.adapower.com/original_booch/original_booch.html and

http://www.adapower.net/booch/documentation.html.

The Booch components are not distributed with IBM® Rational® Rhapsody® Developer for Ada.

User must install them manually by following the procedure.

Install Booch Components 95

 Get the files from the following URL for example:

 http://sourceforge.net/projects/booch95/files/

 Unzip the files

 Copy the folder ―src‖ into <Rhapsody_install_folder>\Share\LangAda95\Booch_ada_95\src

Install Booch Components 83

 Get the files from the following URL for example:

 http://www.adapower.com/original_booch/original_booch.html

 Unzip the files

 Copy the folder ―src‖ into <Rhapsody_install_folder>\Share\LangAda83\Booch_ada_83\src

 The extension of the files must be changed in order to respect the convention of your
compiler:

- *.1.ada must be changed to *.ads,
- *.2.ada must be changed to *.adb.

2.4. Java environment

2.4.1. JDK-JRE requirements

The code generator is written using Java technology, and uses the Java API of Rhapsody. Consult

the Rhapsody user documentation for details on this API.

http://www.adapower.com/original_booch/original_booch.html
http://www.adapower.net/booch/documentation.html
http://sourceforge.net/projects/booch95/files/
http://www.adapower.com/original_booch/original_booch.html

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 21/220

3. Coverage

Two views of coverage are provided. The first one answers the question of ―Which Rhapsody

model elements will be considered when generating Ada code?‖ while the other one is from the

perspective of ―Which Ada constructs can be generated from a Rhapsody model?‖.

3.1. Rhapsody Model Element Coverage

The following table indicates the model elements that are covered by the code generation in this

release.

Model Element Fields Covered?

Project Yes

 Active component No

Component No

Configuration No

Folder No

File No

Package

 Name Yes

 Description Yes

 CG.Package.FileName No

 CG.Package.UseAsExternal Yes

Class

 Name Yes

 Description Yes

 CG.Class.FileName No

 CG.Class.UseAsExternal Yes

Template Class Yes

 Template arguments Yes

Template Instantiation Class Yes

 Template instantiation arguments Yes

Reactive Class Yes

Active Class Yes

Guarded Class No

Class Stereotypes

 Abstract Yes

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 22/220

Model Element Fields Covered?

 AdaProtectedType Yes

 AdaProtectedObject Yes

 AdaTask Yes

 AdaTaskType Yes

 Entrypoint Yes

 EventFlag No

 MessageQueue No

 Mutex No

 Resource No

 Semaphore No

 Singleton Yes

 Task No

 Timer No

Nested Class Yes

Actor Yes

Type Yes

 Name Yes

 Declaration Yes

 Description Yes

 CG.Type.UseAsExternal Yes

Event Yes

Event Reception No

Timeout No

Function Yes

 Name Yes

 Description Yes

 Arguments Yes

 Return type Yes

 Implementation Yes

 CG.Operation.Generate Yes

Template Function Yes

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 23/220

Model Element Fields Covered?

 Template arguments Yes

Operation

 Name Yes

 Description Yes

 Arguments Yes

 Return type Yes

 Implementation Yes

 Visibility Yes

 Virtual Yes

 Static Yes

 Constant Yes

 ADA_CG.Operation.Kind Yes

 ADA_CG.Operation.Inline Yes

 CG.Operation.Concurrency Yes

 CG.Operation.Generate Yes

Triggered Operation Yes

Constructor

 Description Yes

 Arguments Yes

 Initializer No

 Implementation Yes

 Visibility Yes

 CG.Operation.Generate Yes

Destructor

 Description Yes

 Implementation Yes

 Visibility Yes

 Virtual Yes

 CG.Operation.Concurrency No

 CG.Operation.Generate Yes

Attribute

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 24/220

Model Element Fields Covered?

 Name Yes

 Type Yes

 Description Yes

 Visibility Yes

 Static Yes

 Default value Yes

 CG.Attribute.Generate Yes

 CG.Attribute.AccessorGenerate Yes

 CG.Attribute.MutatorGenerate Yes

 CG.Attribute.IsConst Yes

 CG.Attribute.IsGuarded Yes

 Ada_CG.Attribute. Visibility Yes

Variable

 Name Yes

 Description Yes

 Type Yes

 Default value Yes

 CG.Attribute.Generate Yes

 CG.Attribute.Visibility Yes

Relation

 Type No

 Description No

 Multiplicity Partial

 Qualifier Yes

 CG.Realtion.Generate Yes

 CG.Realtion.Implementation Partial

 CG.Relation.IsConst No

 CG.Relation.IsGuarded Yes

 CG.Relation.Ordered No

 CG.Relation.GenerateRelationWithActors Yes

Symmetric Relation No

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 25/220

Model Element Fields Covered?

Part Relation No

Link instances No

Generalization

 Super class Yes

 CG.Generalization.Generate Yes

Dependency

 Dependent Yes

 CG.Dependency.ConfigurationDependencies No

 CG.Dependency.UsageType Yes

 ADA_CG.Dependency.CreateUseStatement Yes

 CG.Dependency.GenerateRelationWithActors Yes

Argument

 Name Yes

 Type Yes

 Default value Yes

 Direction Yes

 Description Yes

Statechart Yes

Activity diagram Yes

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 26/220

3.2. Ada Code Coverage

The following table indicates the Ada constructs that are covered by the code generation.

Ada Construct Category Examples

Overall Structure Library Subprogram

 Package

 With clause with A_Package;

 Use clause use A_Package;

 (95) Use Type clause use type A_Package.A_Type;

 Separate procedure Proc is separate;

 Renaming as specification procedure Proc renames A_Package.A_Proc;

 Renaming as body procedure Proc renames A_Package.A_Proc;

 (95) Child Package package Parent.Child is …

 (95) Private Child Package private package Parent.Child is …

Exceptions Predefined exception program_Error, …

Generics Generic formal type type T is (<>);

 Generic formal subprogram with procedure Update is Default_Update;

 (95) generic formal

package

with package A is new G_A(<>);

 Generic package Generic

 type T is (<>);

package P is …

Tasking Task specification task T is

 entry E(…);

end;

 Task Type task type T is

 entry E(…);

end T;

 (95) Protected Type protected type PT is …

SPARK SPARK Annotations --# global in out A;

4. Ada Code Generation

The detailed rules used to generate Ada code from a Rhapsody model follow this section. But

before giving the low-level rules, this section gives an overview of the generation concepts by

showing simple examples of the Ada code that is generated from a particular model.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 27/220

4.1. Classes

4.1.1. Class definition

A class in Rhapsody is represented as an Ada package, and produces a package specification and

an optional package body in Ada. The name of the Ada package is the name of the class.

Figure 3: A simple class in Rhapsody.

Figure 4: The generated Ada code for a simple class.

The name of the file generated is class_name.ads.

In addition, two new types are declared in the public part of the package specification – a record

type, and an optional access to that type.

4.1.2. Class record type visibility

The definition of this record type appears in the public part of the specification package where the

record type is declared, but it could also appear in the private part by setting the

―Ada_CG.Class.Visibility‖ property.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 28/220

Figure 5: Controlling the location of the record type definition.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 29/220

4.1.3. Inheritance

When a class inherits from another class, the record type for the subclass is an extension of the

record type of the parent class.

Figure 6: Inheritance in Rhapsody.

Figure 7: The package specification for a specialized class.

Notice that a ―With‖ statement has been generated for the superclass in the package specification

of the subclass.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 30/220

4.1.4. Initialization code

A non-abstract class can have initialization code that is executed during elaboration of the

associated package. In order to generate such code, you‘ll need to edit the InitializationCode

property for that class.

Figure 8 Setting the initialization code property for a class

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 31/220

Figure 9 Generated body for a class with initialization code

4.1.5. Static class

A static class is a class witch as only static attributes and operations. No record type and no ‖this‖

parameters are generated for this kind of class.

A Static class is used for safety critical application.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 32/220

Figure 10 setting IsStatic property for a class

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 33/220

4.2. Attributes

4.2.1. Accessor and mutator

By default, a mutator and accessor are created for each attribute.

4.2.2. Non-static attributes

When non-static attributes are added to a class, these attributes are added to the record type.

When non-static attributes are added to a package, these attributes are handled as static attributes.

Figure 11: Non-static attributes of a class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 34/220

Figure 12: The package specification for non-static attributes.

Because accessor and mutator methods are created, a package body file is created with the name

class_name.adb.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 35/220

Figure 13: The package body for non-static attributes.

The record type now contains the two non-static attributes that were added in Rhapsody.

In addition, the attribute accessor and mutator operations contain a ‘this’ parameter that is used to

pass in an instance of the type being affected. This is true for all non-static operations that are not

for singleton classes.

The accessor and mutator are generated in the public part of the package specification by default,

but they can be moved to private part by clicking the ―Private‖ radio button on the features page.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 36/220

Figure 14: Controlling the visibility of the accessor and mutator.

4.2.3. Static attributes

Attributes marked as static do not create record elements in classes, but instead are represented

as variables in the Ada package.

4.2.4. Static attributes visibility

These variables can be defined in the public or private part of the package specification, or in the

package body, depending on the setting of property ―Ada_CG.Attribute.Visibility‖.

Figure 15: Static attributes of a class.

In this example, both attributes are marked as static. However, the attribute privateStaticInt is

marked as private, which means that the accessors will appear in the private part of the package

specification, and its property ―Ada_CG.Attribute.Visibility‖ is set to ―Private‖, forcing the variable

definition to appear in the private part as well.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 37/220

Figure 16: The package specification for static attributes.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 38/220

Figure 17: The package body for static attributes.

4.2.5. Static attributes declaration position

In Ada, declaration order is important. For example, a type declaration might depend on a constant

that has to be declared before being used.

In order to provide some degree of control over the declaration order of attributes, the

Ada_CG.Attribute.DeclarationPosition property can be used. The table below summarize the

different values that this property can take and its effects on the attribute it is being applied.

Value Description

Default This is the default setting provided for compatibility reasons. It is

similar to the AfterClassRecord setting with the following exception :

 For static attributes defined in a class with an

―Ada_CG.Attribute.Visibility‖ property set to ―Public‖, these

attributes get generated after types with an

―Ada_CG.Type.Visibility‖ property set to ―Public‖.

On new models, it is advised not to use this value. Should you change

this value on previous models, make sure the code compiles once

you‘ve regenerated it.

BeforeClassRecord The attribute will be generated immediately before the class record

AfterClassRecord The attribute will be generated immediately after the class record

StartOfDeclaration The attribute will be generated immediately after the start of the

section (public part of the specification, private part of the specification,

package body)

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 39/220

EndOfDeclaration The attribute will be generated immediately before the end of the

section (public part of the specification, private part of the specification,

package body)

Table 1 Ada_CG.Attribute.DeclarationPosition property values description

A few special cases :

 if the attributes have their Ada_CG.Attribute.Visibility property set to ―Body‖

 If the attributes are defined on a package

 If the Ada_CG.Class.Visibility property of the class they are defined in has a different

setting

These attributes then have no actual class record around which they can be positioned. In such

cases, they are generated around a ―virtual‖ class record location that gives a declaration order as

close as possible to the one that would exist if there was a class record definition in the section the

attributes are being generated into.

Figure 18 Static attributes of a class with overridden declarationPosition property

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 40/220

Figure 19 Setting the DeclarationPosition for a static attribute to BeforeClassRecord

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 41/220

Figure 20 Setting the DeclarationPosition for a static attribute to AfterClassRecord

Figure 21: Generated code for static attributes with overridden DeclarationPosition property

4.2.6. Non-Predefined Attribute Types

The attribute definitions can be entered directly in the ―Ada declaration‖ field instead of choosing a

predefined type. In this case, it might be necessary to set the two properties

―Ada_CG.Attribute.AccessorGenerate‖ and ―Ada_CG.Attribute.MutatorGenerate‖ to false so that the

default accessors are not generated.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 42/220

Figure 22: Non-static attribute definition.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 43/220

Figure 23: Static attribute definition.

Figure 24: The package specification for non-predefined type attributes.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 44/220

4.2.7. Guarded Attributes

Access to attributes can be guarded by setting the ―isGuarded‖ property. There are two possible

settings. One setting is ―all‖ which guards both the accessor and mutator of the attribute. The other

setting is ―mutator‖ which will only guard the mutator.

Figure 25: Guarding an Attribute.

When an attribute is guarded, a mutex is used to synchronize access to the attribute. Depending on

the value of the ―Ada_CG.<Class|Package>.UseAda83Framework property of the attribute owner,

an Ada83 task based Mutex or an Ada95 protected object based Mutex will be used.

4.2.8. <<Discriminant>> Attributes

By setting a class instance attribute or a struct attribute stereotype to <<Discriminant>>, it is

possible to generate a discriminated record type.

Figure 26 Modeling a class with a <<Discriminant>> attribute

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 45/220

Figure 27 Defining an unconstrained array type

Figure 28 Setting an attribute stereotype to <<Discriminant>>

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 46/220

Figure 29 Defining an attribute with a type definition based on the class record type

discriminant

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 47/220

Figure 30 Generated code for a class with a discriminant

Note that no setter is generated for attributes with a <<Discriminant>> stereotype, no matter the

setting of its Ada_CG.Attribute.MutatorGenerate property.

4.2.9. Overriding and redefining discriminant attributes

If the attribute is a <<Discriminant>> non-static attribute and it has an initial value and it is defined

as a <<Discriminant>> attribute in at least one of its parent classes then the attribute may be

generated as a constraint on the parent discriminant, as a new discriminant hiding the one from the

parent or as both.

This behavior is controlled by using the ―Ada_CG.Attribute.RedefiningDiscriminantPolicy ― and

―Ada_CG.Attribute.ParentDiscriminantValue‖ properties.

Figure 31 Class with overriding and redefining discriminant

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 48/220

Figure 32 Overriding discriminant

Figure 33 Overriding and redefining discriminant

Figure 34 Redefining discriminant

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 49/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 50/220

4.3. Operations

Operations created in Rhapsody will result in Ada functions if there is a return type, or procedures if

there is not. In this example, myOperation will be a function with two parameters that returns an

Integer. And myProc will be a procedure with one parameter.

Figure 35: Operations defined on a class.

Figure 36: Operation Features

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 51/220

Figure 37: The implementation of myOperation.

Figure 38: The local variables for myOperation.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 52/220

Figure 39: Operations in the package specification.

Figure 40: Operations in the package body.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 53/220

In the operation bodies, the implementation provided in Rhapsody has been used for myOperation,

but an appropriate default statement has been created for myProc because the implementation field

in Rhapsody has been left blank. Any lines entered in this implementation field will replace this

default statement.

4.3.1. Guarded operations

An operation can be made guarded by setting the ―Concurrency‖ property to guarded.

Figure 41: Making an Operation Guarded.

When an operation is guarded, a mutex is used to synchronize access to the operation. Depending

on the value of the ―Ada_CG.<Class|Package>.UseAda83Framework property of the operation

owner, an Ada83 task based Mutex or an Ada95 protected object based Mutex will be used.

4.3.2. Template operations and their instantiations

The mechanism for supporting template operations and their instantiations is very similar to the one

available for template classes and their instantiation.

Figure 42 Modeling a template operation and a template operation instantiation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 54/220

Figure 43 features of a template operation

Figure 44 setting up template parameters for a template operation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 55/220

Figure 45 generated code for a template operation specification

Figure 46 generated code for a template operation implementation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 56/220

Figure 47 features of a template operation instantiation

Figure 48 setting up template arguments for a template operation instantiation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 57/220

Figure 49 generated code for a template operation instantiation

4.3.3. Access parameters

Ada95 introduced the concept of access parameters. In order to set the mode of a parameter to be

―access‖, as opposed to ―in‖, ―out‖, or ―in out‖, first the package in which is defined the operation

has to generate Ada95 code (and not Ada83), second you will need to edit the properties of the

parameter to set the AsAccess property to true.

Figure 50 Making a parameter passing mode "access"

You can also choose to pass the this parameter as an access mode parameter for a non-static

operation, to do this you need to edit the properties of the operation to set the ThisByAccess

property to true.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 58/220

Figure 51 Making an operation this parameter passing mode "access"

Figure 52 Operation using access mode parameters

4.3.4. Class-wide parameters

In order to specify whether a parameter is to be passed class-wide or not, you will need to set its

―ClassWide‖ property to true.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 59/220

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 60/220

4.4. Dependencies

4.4.1. <<Usage>> dependencies

Dependencies stereotyped as <<Usage>> in Rhapsody create ―With‖ statements in the generated

Ada packages. If the ―Ada_CG.Dependency.CreateUseStatement‖ property is set to ―Use‖, a ―Use‖

statement will also be created for the target package.If it is set to ―UseType‖, a ―Use Type‖

statement will also be created for the target type. By default, the ―With‖ and ―Use‖ statements will

appear in the package specification. They can be moved to the package body by setting the

―CG.Dependency.UsageType‖ property to ―Implementation‖.

Figure 53: <<Usage>> dependencies in IBM® Rational® Rhapsody® in Ada.

Figure 54: An implementation dependency.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 61/220

Figure 55: Creating a "Use" statement.

Figure 56: The package specification for dependencies.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 62/220

Figure 57: The package body for dependencies.

Note that elaboration pragmas can be generated for the supplier class or package of the

dependency in the client class or package by setting the appropriate properties on the dependency :

 Ada_CG.Dependency.GeneratePragmaElaborate

 Ada_CG.Dependency.GeneratePragmaElaborateAll

4.4.2. <<Renames>> dependencies

Dependencies stereotyped as <<Renames> in Rhapsody create ―renames‖ statements in the

generated Ada packages.

Valid <<Renames>> dependencies can be modeled between any two model elements of the same

kind among the following ones :

 Packages

 Classes

 Operations

 Attributes

o Defined on a package

o Defined on a class with a static modifier

Be aware that using this feature on classes limits what you can do with the renaming class. More

specifically :

 You cannot derive other classes from

 Adding attributes or operations to it has no effect on the generated code

Note that for operations :

 Signatures have to be compatible

 It is possible to have a ―renaming as spec‖ or a ―renaming as body‖ behavior depending on

the setting of the ―CG.Dependency.UsageType‖ property (Specification or Implementation).

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 63/220

Only <<renames>> dependencies between classes and packages can be drawn on the Object

Model Diagrams of Rhapsody. In order to model <<renames>> dependencies between two

attributes or two operations, one has to use the context menu in the Rhapsody browser.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 64/220

4.5. Actors

Actors generate exactly the same code as classes.

Figure 58: An Actor in Rhapsody.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 65/220

Figure 59: Package specification for an Actor.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 66/220

Figure 60: Package body for an Actor.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 67/220

4.6. Packages

Like classes, packages in Rhapsody will also be represented as Ada packages. A package in

Rhapsody can have functions and variables, which will be handled in the same manner as static

operations and static attributes on a class. A package can also have initialization code.

In this example, the package specification will be named ―myPackage.ads‖ and the package body

will be ―myPackage.adb‖.

Figure 61: A package defined in Rhapsody.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 68/220

Figure 62: The package specification for a Rhapsody package.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 69/220

Figure 63: The package body for a Rhapsody package.

4.6.1. Child Packages

 When working with Ada 95, classes and packages are also used as the namespace for classes

and packages contained within them. This containment is used to create child packages. In Ada

83, this containment does not have any effect.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 70/220

Figure 64: Packages and classes used as namespaces.

Figure 65: The package specification for class_2.

Figure 66: The resulting files including the namespaces.

In this example, the Ada package name is prefixed by the parent names. For example, class_2 is

contained in class_1, which is found in my_Sub_Package, which itself if located inside of

my_Package. Therefore the package name for class_2 is

my_Package.my_Sub_Package.class_1.class_2. This package will be found in the configuration

directory in my_Package/my_Sub_Package/class_1.

Also notice that class_0 is located in the ―Default‖ package, and therefore is not considered as a

child package.

4.6.2. Nested Packages

Child packages are in the namespace of their parent, but they are defined in separate files. Nested

packages are not only in the namespace of their parent, but they are also defined in the same files

as their parent.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 71/220

Figure 67: Example of a nested package and a nested class.

In order to generate nested packages, one has to set the Ada_CG.Package.IsNested property for a

package or the Ada_CG.Class.IsNested property for a class.

Figure 68: Setting a class to be generated as a nested package.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 72/220

Figure 69: Setting a package to be generated as a nested package.

To determine in which section of the parent package the specification of the nested package will be

generated, one can use the Ada_CG.Package.NestingVisibility property for a package, or the

Ada_CG.Class.NestingVisibility property for a class.

Figure 70: Controlling the location of the specification of a nested package

Note that any package or class defined inside of a package or class that is itself nested will be

generated as a nested package too.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 73/220

4.6.3. Private Packages

Packages and classes can be defined as private via the use of the Ada_CG.Package.IsPrivate

property for packages and Ada_CG.Class.IsPrivate property for classes.

Figure 71: Exampe of a private package and a private class.

Figure 72: Setting a class to be generated as a private package

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 74/220

Figure 73: Setting a package to be generated as a private package

Figure 74: Specification of a private class

Figure 75: Specification of a private package

Note that a nested class or package cannot be private.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 75/220

4.6.4. Elaboration Pragmas

Via the use of appropriate tags, different pragmas can be generated for a class or a package

Figure 76: Example of a class and a package with elaboration pragmas

Figure 77: Enabling generation of elaboration pragmas on a class

Figure 78: Enabling generation of elaboration pragmas on a package

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 76/220

Figure 79: Specificaton of a class with elaboration pragmas

Figure 80: Specificaton of a package with elaboration pragmas

Please read the section on <<Usage>> dependencies to see how to generate ―elaborate‖ and

―elaborate_all‖ pragmas.

Note that other pragmas can be generated for a class or a package via the use of the following

properties :

 For a class

o Ada_CG.Class.SpecificationPragmas

o Ada_CG.Class.SpecificationPragmasInContextClause

o Ada_CG.Class.ImplementationPragmas

o Ada_CG.Class.ImplementationPragmasInContextClause

 For a package

o Ada_CG.Package.SpecificationPragmas

o Ada_CG.Package.SpecificationPragmasInContextClause

o Ada_CG.Package.ImplementationPragmas

o Ada_CG.Package.ImplementationPragmasInContextClause

4.6.5. <<Container>> Packages

Any class or package that is defined within a package stereotyped as <<Container>> will not

include the package in its namespace.

In the following example, Package_1 is stereotyped <<Container>>.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 77/220

Figure 81: A Sample <<Container>> Package.

In this example, every package is generated, but the namespaces for Class_A, Package_2, and

Class_B do not include Package_1.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 78/220

4.7. Types

4.7.1. Type declaration

Types can be created in either packages or classes. In both cases, the definition of the type is

taken from the ―Ada declaration‖ field,. In the declaration, a ―%s‖ can be inserted to represent the

name of the type.

Figure 82: Types defined in Rhapsody.

Figure 83: The declaration of a private type on a class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 79/220

Figure 84: The declaration of a public type on a class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 80/220

Figure 85: The declaration of a private type on a package.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 81/220

Figure 86: The declaration of a public type on a package.

4.7.2. Type visibility

A type definition can appear in the public or private portion of the resulting package specification, or

in the package body.

Figure 87: Controlling the visibility of a type.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 82/220

Figure 88: The package specification for a class with types.

Figure 89: The package specification for a package with types.

4.7.3. Type declaration position

In order to provide some degree of control over the declaration order of types, the

Ada_CG.Type.DeclarationPosition property can be used. Its behavior is very similar to the one of

the Ada_CG.Attribute.DeclarationPosition property for attributes, with the following exceptions :

 There is no ―default‖ value for this property on types

 If an attribute and a type have a similar value for their respective declarationPosition

properties, then the attribute will be generated before the type declaration.

4.7.4. Type defined as a class

A type can be also defined with a class with a stereotype. This enables to have more visibility on

type relations. The stereotypes are defined in the profile AdaCodeGenerator.

Main stereotype is ―Type‖. It is applicable on a class. This stereotype has a tag ―IsSubtype‖. If this

tag is set to true, then the class will define a subtype.

Any type has a reference to another Ada type. This reference is represented by a dependency with

the stereotype ―New‖. The dependency can be set to a Rhapsody type or a Rhapsody typed class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 83/220

Basic use cases :

Definition of a type

Figure 90: Representation of a typed class

Figure 91: Generated code of a typed class

Definition of a subtype

Figure 92: Representation of a subtype

Figure 93: Generated code of a subtype

Some other stereotypes are derived from ―Type‖

 RangeType : allow defining range type

 ArrayType : allow defining array type

 VariantRecordType : allow defining variant record type

4.7.1.4 Range type

A range type is defined by a class which has the stereotype ―RangeType‖.

The range is defined by two different ways.

 First it can be defined in a free text box in the tag ―rangeDefinition‖.

 It can also be defined with dependencies to a constant of the model. The dependencies

have the stereotype ―highRangeValue‖ or ―lowRangeValue‖.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 84/220

Basic use cases :

Case I

- ―New‖ dependency to a predefined type

- rangeDefinition set to ―1..10‖

Figure 94: Representation of a range type

Figure 95: Generated code of a range type

Case II

- ―New‖ dependency to a typed class

- ―HighRangeValue‖ dependency to a constant of the model

- ―IsSubtype‖ tag set to true

- ―rangeDefinition‖ tag set to ―1‖

 Figure 96: Representation of a range type with dependency to a constant

Figure 97: Generated code of a range type

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 85/220

4.7.2.4 Array type

An array type is defined by a class which has the stereotype ―ArrayType‖.

The size of the array is defined in a free text box of the tag ―Size‖

Figure 98: Representation of an array type

Figure 99: Generated code of an array type

4.7.3.4 Variant record type

A variant record type is defined by a class which has the stereotype ―VariantRecordType‖.

This class has several elements which describe the structure of this record.

Figure 100: Representation of a variant record type

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 86/220

The class has some attributes which represent the attributes of the record type.

Some attributes have the stereotype discriminant. Those are discriminant attributes of the record

type.

The class has a part with stereotype ―Case‖. It represents the variant part of the record. The name

of this part must be the name of the discriminant attribute used in the variant part.

The ―Case‖ part has as many ―When‖ parts as ―When‖ cases in the Ada variant part. Those ―When‖

parts have attributes, and a tag ―Condition‖, which defines the value of the ―when‖ condition.

Figure 101: Generated code of a variant record type

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 87/220

4.8. Template Classes and their instantiation

4.8.1. template classes

Creating a template class in Rhapsody results in the generation of a generic Ada package. The

arguments become the generic parameters.

In this example, arg1 is an Integer argument and arg2 is a Boolean argument.

Figure 102: Definition of a template class.

Figure 103: Package specification for a generic package.

4.8.2. template instantiations

An instantiation of this generic package is created by using an instantiation class in Rhapsody.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 88/220

Figure 104: An instantiation of a template class.

The generated result is an instantiation of the generic package using the supplied arguments.

Figure 105: The generated Ada package for a generic instantiation.

4.8.3. template inheritance

Note that it is possible to have a template class inherit from another template class.

Figure 106 Inheritance between template classes

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 89/220

Figure 107 generated code for a template class derived from another template class

4.8.4. template instantiation inheritance

In order to fully benefit from the facilities offered by template inheritance, an efficient way to

instantiate the whole class hierarchy is needed.

Figure 108 Modeling instantiation of a template inheritance hierarchy

Note that to specify that a derived class instantiation depends on a parent class instantiation, we

use a <<Parent_Instantiation>> dependency from the derived class instantiation to the base class

instantiation. This approach allows for reusing of the same parent class instantiation by several

derived class instantiations

Figure 109 generated code for a base template instantiation class

Figure 110 generated code for a derived template instantiation class

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 90/220

Figure 111 generate code for another derived template instantiation class

Note that if the derived template class is an (Ada) child package of the base class, the generated

code will slightly differ to accommodate the special visibility that the child has upon its parent

Figure 112 Modeling template inheritance hierarchy across (Ada) children packages

Figure 113 Generated code for a derived template class that is a child package of its base

class

Figure 114 Generated code for the instantiation of a derived template class that is a child

package of its base class

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 91/220

4.9. Concurrent types

4.9.1. Tasks

Ada tasks are represented in Rhapsody by a class stereotyped as <<AdaTask>> or

<<AdaTaskType>>. The result is the creation of an Ada package containing a task type. The

<<AdaTask>> stereotype should be used for singleton tasks.

Figure 115: Ada tasks in Rhapsody.

For <<AdaTask>> and <<AdaTaskType>> classes, the Ada_CG.Class.Visibility property has to be

set to ―Private‖

Figure 116: Setting the record type visibility to “Private” for an <<AdaTaskType>> class

By default, all the operations in the class represent the entries of the task, and can have either a

<<HSER>> or <<LSER>> stereotype to indicate highly synchronous or loosely synchronous

execution requests respectively. In the given example, myEntry is HSER while entry_1 and entry_2

are LSER. The implementation of the operations is used as the task entry bodies.

For operations such as myRegularOperation which do not represent an entry, the

Ada_CG.Operation.isEntry property has to be overridden to False (it defaults to True on

<<AdaTask>> and <<AdaTaskType>> classes). This will generate a regular operation instead of a

task entry for this operation.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 92/220

Figure 117: Setting an operation on a <<AdaTaskType>> class to generate as a regular

operation.

Figure 118: Ada task specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 93/220

Figure 119: Ada task body.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 94/220

Figure 120: Ada task type specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 95/220

Figure 121: Ada task type body.

The Ada task type generates the constructor and destructor as well, which create the task instance

and destroy it.

It is also possible to define timed or conditional entries on a task. In the next example, we define a

timed entry by doing the following:

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 96/220

1. Set the Ada_CG.TaskDefaultScheme to ―Timed‖ on task_with_default_entry class.

2. Set the Ada_CG.TaskDefaultSchemeDelayStatement with a valid delay statement

3. Apply the <<TaskDefaultAction>> to timeOutAction

Note that to define conditional entries, you must set the property to ―Conditional‖ and then apply the

<<TaskDefaultAction>> to the default entry.

Figure 122 Ada task with default entry

Figure 123 Specification of Ada Task with default entry

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 97/220

Figure 124 Implementation of Ada Task with default entry

4.9.2. Protected Objects

Protected objects are represented in Rhapsody by a class stereotyped as <<AdaProtectedObject>>

or <<AdaProtectedType>>. The result is the creation of an Ada package containing a protected

type. The <<AdaProtectedObject>> stereotype should be used for singleton tasks.

Figure 125: Protected objects in Rhapsody.

For <<AdaProtectedObject>> and <<AdaProtectedType>> classes, the Ada_CG.Class.Visibility

property has to be set to ―Private‖

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 98/220

Figure 126: Setting the record type visibility to “Private” for an <<AdaProtectedType>> class

By default, all operations in the class do not represent entries. In order to generate a protected

object entry, one has to apply the <<entry>> stereotype to an operation.

Figure 127: Applying the <<entry>> stereotype to a protected object operation

By default, the guard for a protected entry will be set to true, however one can define its own guard

by setting the ―Ada_CG.Operation.EntryCondition‖ property to the appropriate boolean expression.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 99/220

Figure 128: Setting the guard for a protected object/type entry

Figure 129: Protected object specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 100/220

Figure 130: Protected object body.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 101/220

Figure 131: Protected type specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 102/220

Figure 132: Protected type body.

The protected type generates the constructor and destructor as well, which create the task instance

and destroy it.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 103/220

4.10. Entrypoints

An entrypoint can be created in Rhapsody to represent the starting point of the Ada program. This

is done by stereotyping a class as <<Entrypoint>>.

Figure 133: An entrypoint in Rhapsody.

In addition, define an operation on the class, and enter the implementation of the operation to

complete the entrypoint. The result is a single package body file generated in myEntrypoint.adb.

Figure 134: The entrypoint definition.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 104/220

4.11. Singleton Classes

Singleton classes represent classes that have only one instance. This is represented in Rhapsody

by stereotyping the class <<Singleton>>. A singleton class creates a private variable to contain the

singleton instance, and all non-static operations access this instance instead of passing in a ‘this’

parameter.

Figure 135: A singleton class in Rhapsody.

4.11.1. Ada 95

When the singleton class is generated using the Ada 95 rules, the non-static attributes are held in a

record in the same manner as a normal class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 105/220

Figure 136: The package specification for a singleton class in Ada 95.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 106/220

Figure 137: The package body for a singleton class in Ada 95.

4.11.2. Ada 83

Changing the ―DefaultComponent‖ component to be an Ada 83 package changes the generation of

the singleton class so that the rules for Ada 83 are followed. In this case, all attributes are

considered static attributes and a record type is not created for the class nor is a variable for the

singleton instance created in the package body.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 107/220

Figure 138: Changing the component to generate Ada 83 code.

Figure 139: The package specification for a singleton class in Ada 83.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 108/220

Figure 140: The package body for a singleton class in Ada 83.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 109/220

4.12. Unidirectional Relations

There are three different options for the implementation of relations. Each implementation creates

an Ada record field and accessor(s) and mutator(s) methods and possibly some new types and

inner packages to support the implementation. The name of the Ada record field is the name of the

role for the relation.

Default implementation: The default implementation uses an access type for the target object.

The access type is held in an Ada record field. In addition, a ―With‖ statement is added for the

target package so that the access type is visible.

Fixed implementation: The fixed implementation uses a direct reference to the target object. The

target object type is held in an Ada record field. As with the ―Default‖ implementation, a ―With‖

statement is added for the target package so that the target type is visible.

Scalar implementation: The scalar implementation is better described as the index

implementation. Instead of holding a direct reference to either the target type or an access to the

target type, a numerical index is used instead. The intent is that there will be a container object in

the system that will hold the instances of the target class, and that the index is used to retrieve the

correct instance from the collection. In this case, a ―With‖ statement is not created for the target

package because only an index is stored in the class, and not a reference to the target object itself.

Instead, a new type is created to represent the valid range for the indexBi-directional relations are

not supported at this time, nor are unbounded multiplicities.

4.12.1. Multiplicity = 1

When the multiplicity = 1, the class will have a reference to only one instance of the target class.

The following example demonstrates the generated code for each of the implementation types.

Note that no accessors are generated for the ―Fixed‖ implementation.

Figure 141: Class relations with multiplicity = 1.

4.12.2. Multiplicity > 1, general notes

When the multiplicity is greater than 1, the same basic concepts are followed for each

implementation choice, except some data structures are created to hold the instances. In addition,

new types are defined to represent the valid indices into such structures, and iterator subpackages

are declared for every relation..

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 110/220

Unbounded relations and qualified relations (both bounded and unbounded) use data structures

that rely on the Booch components.

Generated Method

Relation type

Bounded Unbounded Bounded

Qualified

Unbounded

Qualified

Get_At_Pos (Procedure) Y Y

Get_At_Pos (Function) Y Y

Contains Y Y

Get_Count Y Y Y Y

Set_At_Pos Y Y

Add_At_Pos N Y

Remove N Y

Remove_At_Pos N Y

Get(Key) (Procedure) Y Y

Get(Key) (Function)

Contains(Key) Y Y

Set(Key) Y Y

Remove(Key) Y Y

Table 2 Nary relations methods matrix

Method Name Description

Initialize Creates the iterator

Get_Next Gets next element

To_Value Get value associated to current iterator position

Is_Last Return true if there‘s no more elements to iterate over.

Table 3 Nary relations Iterator package method description

4.12.3. Details on the Booch components

IBM® Rational® Rhapsody® Developer for Ada does not install Booch Components files. If needed,

user must do it manually by following the procedure. See §2.3 Booch components.

Either the original Ada 83 version of the components can be used, or the Ada 95 version. The

choice is made at the component level with the Ada_CG.Component.UseBoochComponents

property.

Although only part of it is used. Here is the list of packages that may be with‘ed by the generated

code when using Ada 83:

1. semaphore

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 111/220

2. storage_manager_concurrent

3. list_single_unbounded_controlled

4. list_utilities_single

5. list_search

6. map_simple_noncached_concurrent_bounded_managed_noniterator

7. map_simple_noncached_concurrent_unbounded_managed_noniterator

 Bounded Unbounded

Unqualified relations None 1,2,3,4,5

Qualified relations 1,6 1,2,7

Table 4 Booch 83 Components Package Dependency Matrix

Here is the list of packages that may be with‘ed by the generated code when using Ada 95:

1. BC.Support.Standard_Storage

2. BC.Containers.Collections.Unbounded

3. BC.Containers.Maps.Unbounded

4. BC.Containers.Maps.Bounded

 Bounded Unbounded

Unqualified relations None 1,2

Qualified relations 4 1,3

Table 5 Booch 95 Components Package Dependency Matrix

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 112/220

4.12.4. Multiplicity > 1, bounded

An array is created to hold the instances

Figure 142: Class relations with multiplicity > 1, bounded.

4.12.5. Multiplicity > 1, unbounded

Unbounded relations are no longer represented as arrays of 100 elements, but as data structures

relying on dynamic memory allocation.

Important note : Any legacy code using unbounded relations relying on the fact that the underlying

implementation is an array of 100 elements MUST be updated, as it will either not compile or

potentially lead to run-time errors.

4.12.6. Multiplicity > 1, qualified relations

Qualified relations are represented with maps. The unbounded form relies on dynamic memory

allocation.

A qualified relation is a key based association. This means that if there is an association from A to

B, where the qualifier is an attribute B.id of type Integer, the relation is key based (in this case,

Integer is the key type).

Only one element can be bound for each value of the qualifier domain.

Adding an element with a key that already exists has the effect of replacing the old element with the

new one.

Note : only attributes of a type that is a subtype of Integer can be used as Qualifiers.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 113/220

Note : with booch 95 components, if the type of the key is a subtype of integer (or any standard

type) which is defined in an other package, then user must define a new ―=‖ function in this other

package.

For example, a new subtype of integer is defined into User_Type package.

User must define a new ―=‖ function into this package.

package User_Type is

 subtype My_Subtype_Integer is Integer range 1..1000;

 function "=" (A : in My_Subtype_Integer; B : in My_Subtype_Integer)

 return Boolean;

private

end User_Type;

package body User_Type is

 function "=" (A : in My_Subtype_Integer; B : in My_Subtype_Integer)

 return Boolean is

 begin

 return standard."="(A, B);

 end "=";

end User_Type;

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 114/220

4.13. Bidirectional relations

IBM® Rational® Rhapsody® Developer for Ada provides two implementations for bidirectional

relations. By setting the Ada_CG.Relation.BidirectionalRelationsScheme to SubtypingAndRenaming

(selected by default) or IntermediateParentClasses, it is possible to select which one is to be used.

4.13.1. SubtypingAndRenaming scheme

4.13.1.1 Implementation principles

This implementation supports bidirectional relations via the following mechanisms :

o the actual class members for classes participating in bidirectional relations are all

generated in the same package so as to get reciprocal visibility.

o The classes are ―emulated‖ in packages made up of subtyping and renaming of the class

members.

4.13.2.1 Limitations

Note that there are limitations applicable to classes participating in bidirectional relations using that

scheme which are described hereafter :

o They shall not contain elements with the same name (for types, static attributes or

association ends role names) or signatures (for operations).

o They shall not be template classes

o Deferred initialization of public constants is not supported.

o They shall not contain statechart code

o They shall not have triggered operations

o Roundtrip is not supported

o Ports are not supported

4.13.2. IntermediateParentClasses scheme

4.13.1.2 Implementation principles

This scheme supports bidirectional relations via the following mechanisms :

o For each class participating in a bidirectional relation, an intermediate parent class is

generated and inserted into the inheritance hierarchy.

o The bidirectional relations pointing to this class are redirected to point to its intermediate

parent.

4.13.2.2 Using

Example :

Classes class_1 and class_2 have bidirectional relation.

If class_2 wants to get instance of ―its class_1‖, then the following accessor should be used :

get_downcast_itsClass_1 (this : in class_2_t)

4.13.3.2 Limitations

Most of the limitations of the SubtypingAndRenaming scheme are no longer relevant with this

implementation. However there are still a few remaining limitations :

o This implementation is not compatible with Ada83 only configurations.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 115/220

4.14. Ports

4.14.1. Limitations

Note that there are limitations applicable to usage of ports which are described hereafter :

o Ports contracts have to be implicit

o Multiplicities in links between ports have to be balanced

o The number of source instances has to match the number of target instances

o And the number of source ports has to match the number of target ports

o A port can have multiple contracts if the model is built for Ada 2005

o Fast ports are available only is the model is built for Ada 2005

4.14.2. Using ports

RiA generates code for ports in classes and for linking instances via ports.

When a class has ports, the code generator will create an additional Ada package called

<class>_port. This Ada package contains all the material to declare the class‘s ports. The class

contains a part of this <class>_port type.

Some functions are added in order to send some messages through ports.

 Get_<Port_Name>(this : class_type) : return port_type

This function gets the instance of the port we need.

 <message>(this: class_type, port : port_type)

This function sends the message ―message‖ through the port ―port‖ of the class ―this‖. One function

is created for each message defined in the port‘s interface. The usual way to send a message is to

write :

<message>(this, Get_<Port_Name>(this));

If some parameters need to be passed with the message, then they are added after the port‘s

instance :

<message>(this, Get_<Port_Name>(this), param : param_type);

The procedure is the same when you want to send an event through a port. Use the gen event

function with port‘s name :

Gen_<event_name>(this, Get_<Port_Name>(this));

When an event is received from a port, it is possible to know which port received it. It is done with

the function Is_Port of class Oxf.I_Event. Its signature is :

oxf.I_Event.is_port(event : oxf.I_event_t, port_ID : System.address)

The port_ID is given by the address of the port. You must get it like that :

<port_name>.Get_Inbound(Get_<port_name>(this)).Port_ID

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 116/220

4.14.3. Example 1 : behavioral port

Create a new model with 2 classes Class_0 and Class_1 which are parts of a class Build.

Create an interface interface_1 with one operation ―message_0‖.

Create port ―Port_0‖ on Class_0.

Open features window of this port. Check behavioral check button, and add a provided interface in

contract tab.

Copy this port in Class_1.

Open features window of this new port. Check reversed check button

Create a link between ports of the two classes.

Add an operation message_0() in class_0. Its implementation must be :

put_line("class_0 : message_0()");

Add an operation test() in class_1. Its implementation must be :

put_line("Class_1 : test()");

message_0(this,get_port_0(this));

Add an operation test() in class Build. Its implementation must be :

put_line("Build : test()");

Add a with and use clause for Ada.text_IO in all classes.

In configuration features, initialize the Build class in Initialization tab, and implement initialization

code with :

Build.test(p_Build.all);

You should get a model like this one :

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 117/220

In this model test() function of class_1 will send message ―message_0‖ through its port port_0.

4.14.4. Example 2 : fast ports

Take the model created below.

Set Ada_CG:Component:AdaVersion Property to Ada05 in oder to build the model for Ada 2005.

In Class_0, Add a statechart with 2 states and one event ―a‖ between the 2 states

In Class_1, Add a statechart with 2 states and one event ―b‖ between the 2 states

Remove the contract of the 2 ports

Change the implementation of class_1.test() :

gen_event(this, Default.get_a, get_port_0(this));

To send an event through a fast port you must use the function Gen_Event. Its signature is:

gen_event(this: class type, event : Oxf.Event.Event_acc_t, port : port type);

The event must be created with the function defined in the event‘s package. Its name is :

<event package>.get_<event_name>

4.14.5. Multicast ports

This feature allows sending a message through one port to several ports in a single operation. It

uses Booch components 95 in order to create an unbounded list of interfaces. Booch components

are not provided with Rhapsody install. They must be installed manually if needed. (See 2.3 Booch

components for more information.)

Multicast generation is controlled by the property

ADA_CG::Port::Support Multicasting

This property has the following values

 Never : multicast instrumentation is never used

 Smart : multicast instrumentation is used only if needed (see algorithm below)

 Always : multicast instrumentation is always generated

Sending a multicast message

Sending a message to a port will automatically send it to all connected interfaces. The

syntax is the same than with a single interface.

Example

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 118/220

The port Port_0 of an instance of class Class_0 is linked to several ports of instances of

various other classes(which have the same interface as port_0)

To send a message ―message‖ through Port_0 of class_0 you must write :

message(this, get_port_0(this));

A message can be a procedure, an event or a triggered operation. Functions cannot be

sent through multicast ports.

Fast ports also support multicast.

Link initialization with multiplicity

Multicast can be automatically initialized only if required and provided interface of the link

belongs to class instance of multiplicity 1 and if its port has also multiplicity 1. In this case there is

no ambiguity for initializing the links. Multiplicity of both ends of the link must be equal to 1.

Multiplicity equals 1 in both ends of the link (in this case multicast is not useful)

There are several instances of a class with provided interface.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 119/220

Other operations on multicast ports

Some other operations can be done on a multicast Port in order to control the links between ports.

 Add a new provided interface

 Remove an existing provided interface

 Send a message to only one provided interface.

A provided interface can be disconnected from required interface. The following procedure does

this.

 Remove_<interface_name>(this : port_type, interface : interface_type);

Example

declare

 currentSourcePort : microphone_port.port_0.port_type;

 currentTargetPort : loudspeaker_port.port_0.port_type;

begin

 currentSourcePort := microphone.get_port_0(this.itsMicrophone_0.all);

 currentTargetPort := loudspeaker.get_port_0(this.itsLoudspeaker_0.all);

 microphone_port.port_0.remove_Interface_9(

 currentSourcePort,

 loudspeaker_port.port_0.get_Interface_9(currentTargetPort)

);

end;

To add a new link to port, you just need to set port interface as usual.

Example

declare

 currentSourcePort : microphone_port.port_0.port_type;

 currentTargetPort : loudspeaker_port.port_0.port_type;

begin

 currentSourcePort := microphone.get_port_0(this.itsMicrophone_0.all);

 currentTargetPort := loudspeaker.get_port_0(this.itsLoudspeaker_0.all);

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 120/220

 microphone_port.port_0.set_Interface_9(

 currentSourcePort,

 loudspeaker_port.port_0.get_Interface_9(currentTargetPort)

);

end;

It is possible to send a message to only one link.

 A message ―Message‖ can be sent to only one provided interface.

 Message(this : class_type, port : port_type, interface : interface_type);

4.15. Ada Libraries

4.15.1. Creating an Ada Library

An Ada library can be created from a project by setting the ―Library‖ option on the component.

Figure 143: Setting the Component to Create a Library.

When the project is built, a library will be created in the directory specified by the configuration using

the naming conventions described in the table below.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 121/220

Compiler(s) Library naming convention

GNAT Lib<ComponentName>.a

GreenHills AdaMulti / Win32 <ComponentName>.lib

GreenHills AdaMulti / Integrity Lib<ComponentName>.a

ObjectAda / Win32 <ComponentName>.lib

ObjectAda / Raven N/A

Table 6 Compilers library naming conventions

4.15.2. Linking an Ada Library

To use an Ada library from another project, two pieces of information are required in the component

properties. The first is the name of the library to use. This name depends on the compiler you are

using, the syntax is described in the previous table. This name is put in the ―Libraries‖ field. If there

is more than one library to list, place a carriage return between the names.

Figure 144: Using an Ada Library.

The location of the libraries also needs to be specified. The ―Include Path‖ field is used to capture

this information. The location of the library as well as the location of the sources for the library must

be included. If there is more than one path to enter a carriage return should be used as a

separator.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 122/220

4.16. Configuration of Main File Generation

If the property ―CG.Configuration.MainGenerationScheme‖ is set to ―Full‖ on the configuration being

generated, an entrypoint will automatically be created. The entrypoint will be named

main<Component Name>.adb, and will produce an executable called <Component Name>.exe.

This entrypoint will overwrite the output from any user-created entrypoint in the model.

Figure 145: Configuration Instances.

4.16.1. With Clauses

A ―With‖ Clause will be created for every class selected.

4.16.2. Configuration Prolog

The contents of the ―Ada_CG.Configuration.ImplementationProlog‖ property on the configuration

will appear just after the ―With‖ clauses. It can be used to ―With‖ other classes or packages as

needed.

4.16.3. Instance Creation

If the selected class is not a singleton, a variable will be created to hold an access to the type of the

class, and initialized with a new instance. If the class implements an Initialize procedure, the new

instance will be initialized as well. If the class is a singleton and implements the Initialize procedure,

the procedure will be called on the class.

4.16.4. RiADefaultActive Initialization

If there is a reactive class in the model that requires the RiADefaultActive class, the

RiADefaultActive class will be initialized.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 123/220

4.16.5. Reactive Instance Hookup

If there is both an instance of a reactive class, and an instance of the active context for this reactive

class, the reactive instance will be registered on the active instance. If the reactive instance uses

the RiADefaultActive class, this registration will be done as well.

4.16.6. Start Behavior

The RiADefaultActive class will be started if needed

As for the configuration initial instances, the Ada_CG.Relation.ObjectInitialization (Creation, Full,

None) configuration property controls their initial behavior. By default it is set to ―Full‖, which means

instances will be initialized and their behavior will be started. If the user would like the behavior not

to be started, ―Creation‖ should be selected.

4.16.7. User defined local variables

Variables declared in the ―Ada_CG.Configuration.LocalVariablesDeclaration‖ property will appear in

the declaration of the entrypoint.

4.16.8. User Initialization Code

Any code entered in the ―Initialization Code‖ field on the configuration will be inserted into the

entrypoint.

4.16.9. Configuration Epilog

The contents of the ―Ada_CG.Configuration.ImplementationEpilog‖ property on the configuration will

appear just after the ―end MainDefaultComponent;‖ line.

Figure 146: Auto-generated Entrypoint.

The generated entrypoint can be viewed by selecting ―Edit Configuration Main File‖ from the

Configuration.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 124/220

If animation is turned on, these instances will NOT be animated.

4.17. Instances Defined on a Package

4.17.1. Package Modifications

A child package will be created to handle the creation and initialization of any instances defined in a

package. The name of the package will be <<Ada Package Name>>.RiA_Instances, where <<Ada

Package Name >> is the name of the package where the instances are defined. When generating

Ada83, the package name will be <<Ada Package Name>>_Instances. Each instance defined in

the UML package will create global variables in this generated Ada package.

Figure 147: Global Instances on a Package.

Figure 148: Global Instance with Mulitplicity = 1.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 125/220

Figure 149: Global Instance with Multiplicity > 1.

Variables will be created in the public part of the package specification for each instance defined.

The type of variable will depend on the setting of the ―CG.Relation.Implementation‖ property for

each of the relations. If the instance is a singleton, no variable will be created. If the multiplicity is

greater than 1 but not *, an array with be used of the given size. If the multiplicity is given as *, an

array will be generated of size 100. The elements in this array will not be initialized.

The appropriate ―With‖ statements will be added to the package specification for each Class

instantiated.

These instances will be created in the procedure Initialize_Relations, and they will be initialized if an

Initialize operation exists for their class.

Likewise, these instances will be finalized in the procedure Finalize_Relations if a Finalize

operation exists for their class.

If the instances have a statechart, the start_behavior procedure will be called to start the behaviors

of the instances in the Initialize_Relations procedure. The instances will be hooked up to their

active context if needed as well. If the instances are active, they will be started by calling the start

procedure.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 126/220

Figure 150: The Instances Package Specification.

Figure 151: The Instances Package Body.

If a link is created between the instances, the relation will be initialized as well in the

Initialize_Relations procedure.

Only the Initialize_Relations procedure will be called from the auto-generated entrypoint.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 127/220

4.18. User-Defined header and footers

4.18.1. Available properties

By modifying the following properties on the project, component, configuration, package or class

level the user can get Rhapsody to use custom headers and footers instead of the default ones for

generated files.

- Ada_CG.File.ImplementationFooter

- Ada_CG.File.ImplementationHeader

- Ada_CG.File.SpecificationFooter

- Ada_CG.File.SpecificationHeader

Figure 152 Defining custom header and footer at the component level

The usual Rhapsody inheritance rules apply for these properties, which means that you can refine

your settings from the project level all the way down to the class.

These four properties are independent, which means that you can use a single project level setting

for say the specification header and have different configuration level settings for the

implementation header.

Those properties can also be updated at class level or at operation level (for separate operation).

This can be useful to set change history log for example.

If the value of a keyword is a MultiLine, each new line (except the first one) starts with the value of

the ADA_CG::Configuration::DescriptionBeginLine property; each line ends with the value of the

ADA_CG::Configuration::DescriptionEndLine property.

4.18.2. Keyword substitution

Keyword based substitution is supported inside of these headers and footers.

The following keywords are supported:

* $ProjectName - The project name.

* $ComponentName - The component name.

* $ConfigurationName - The configuration name.

* $ModelElementName - The name of the element mapped to the file. If there is more than one,

this is the name of the first element.

* $FullModelElementName - The name of the element mapped to the file, including the full path. If

there is more than one, this is the name of the first element.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 128/220

* $CodeGeneratedDate - The generation date.

* $CodeGeneratedTime - The generation time.

* $RhapsodyVersion - The version of Rational Rhapsody that generated the file.

* $Login - The user who generated the file.

* $CodeGeneratedFileName - The name of the generated file.

* $FullCodeGeneratedFileName - The full file name.

* $Description – the description of the class or package

Note the following:

* Keyword names can be written in parentheses. For example:

 $(Name)

* If the value of a keyword is a MultiLine, each new line (except the first one) starts with the value of

the ADA_CG::Configuration::DescriptionBeginLine property; each line ends with the value of the

ADA_CG::Configuration::DescriptionEndLine property.

.

Figure 153 Inserting keywords inside user-defined header and footer

Figure 154 Example of generated code using user-defined header and footer

4.18.3. Script Evaluation

It is also possible to put script names inside of headers and footers so that they get evaluated at

code generation time.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 129/220

The name has to be framed following this convention [[scriptName]].

The script has to be applicable for the model element for which the header is being evaluated,

otherwise an error message will be displayed.

4.19. Custom makefiles

4.19.1. Introduction

Makefiles are usually generated by the Ada code generator. However they can also be created

manually. This document describes all the features of custom makefiles, and gives some examples

of makefile creation.

4.19.2. Features

4.19.1.2 Entry point

A makefile is built from 2 entry point properties

Ada_CG.<ENV>.MakeFileNameForExe

This property sets the name of the makefile. The extension must be inserted in this property.

Ada_CG.<ENV>. MakeFileContentForExe

This property is the file template. It can contain some text and some keywords. Keywords will

be interpreted by CG.

There are some entry point properties to generate makefiles for executable project and for library

projects. Different entry points will be used depending on the component property.

Executable project

MakeFileNameForExe

MakeFileContentForExe

Library project

MakeFileNameForLib

MakeFileContentForLib

If several files must be generated, then property names must be followed by a number from 1 to N.

The CG will automatically scan all entry point properties.

MakeFileNameForExe1

MakeFileContentForExe1

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 130/220

MakeFileNameForExe2

MakeFileContentForExe2

2 additional entry points must be added for Green Hills compilers in order to generate entry point

build files.

 FilenameEntrypointBuildFileContent

EntrypointBuildFileContent

4.19.2.2 Keywords

Keywords are replaced by CG with some text. This text can also contain other keywords, which will

be interpreted recursively.

Keywords are preceded by the character ―$‖

There are 2 kinds of keywords: property keyword and macro.

4.19.3.2 Property keyword

Property keywords can be any of the properties of the current environment. This keyword will be

replaced by the content of the property. Its syntax is

$<properety_name>

Example

Property MakeExtension String ".bat"

Property MakeFileNameForExe String "makefile$MakeExtension‖

In the second property, CG will replace $MakeExtension by the content of property

Ada_CG.<ENV>.MakeExtension. The result will be :

―makefile.bat.‖

4.19.4.2 Macro

A Macro is a keyword which will be interpreted by CG to execute a script. Macros are recognized

because they start with ―$AdaCG‖.

Some macros don‘t begin by this prefix :

- $ComponentName

- $ProjectName

- $OMROOT

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 131/220

4.19.5.2 Creating new macro

If needed, users can add some new macros which will call Code Generator rule. The user must

have knowledge of the RiA Code Generator rules in order to do this.

A property file must be created, which will make the mapping between the name of the macro and

the script to call.

The file name must be :

<Rhp_install_dir>\share\\properties\MakeFileCommand.ini

Syntax to fill this file is

<Macro_Name>=<script_name> for a script defined in configuration level

<Macro_Name>=Project.<script_name> for a script defined in project level

4.19.3. Standard Macros and property Keywords

This list of macros already known by the code generator:

AdaCGAnimationInclude If animation is enabled, this macro will get property

AnimationLibraries83Path, AnimationLibraries95Path or

AnimationLibrariesNew95Path, depending on used FWK

AdaCGAnimLib If animation is enabled, this macro will get property

 AnimationLibraries

AdaCGBehavioralInclude If animation is enabled, or if model needs Behavioral

FWK, this macro will get property

BehavioralLibraries83Path, BehavioralLibraries95Path or

BehavioralLibrariesNew95Path

AdaCGBehavioralLib This macro gets properties BehavioralLibraries83Lib,

BehavioralLibraries95Lib or BehavioralLibrariesNew95Lib

depending on used FWK

AdaCGBoochPath If relations are used, this macro will get property

Booch83Path or Booch95Path depending on used Booch

component.

AdaCGBoochFiles
This macro gets some property depending on the following condition :

if Uses_Relations_Include{

 if Use_Booch_95_Components{

 if Needs_Relations_Include_Bounded_Qualified{

 get property Booch95RelationsIncludeBoundedQualified }

 if Needs_Relations_Include_Unbounded{

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 132/220

 get property Booch95RelationsIncludeUnbounded}

 if Needs_Relations_Include_Unbounded_Not_Qualified{

 get property Booch95RelationsIncludeUnboundedNotQualified}

 if Needs_Relations_Include_Unbounded_Qualified{

 get property Booch95RelationsIncludeUnboundedQualified}

 }

if Use_Booch_83_Components {

 if Needs_Relations_Include_Bounded_Qualified{

 get property Booch83RelationsIncludeBoundedQualified}

 if Needs_Relations_Include_Unbounded{

 get property Booch83RelationsIncludeUnbounded}

 if Needs_Relations_Include_Unbounded_Not_Qualified{

 get property Booch83RelationsIncludeUnboundedNotQualified}

 if Needs_Relations_Include_Unbounded_Qualified{

 get property Booch83RelationsIncludeUnboundedQualified}

 }

}

AdaCGAdaPath This macro gets all generated folders. All folders are

separated by ―\n‖. This macro uses the property

AdaPathContent in order to format this list. See

AdaPathContent description for more details.

AdaCGAdaVersionSwitch This macro will get property Ada83Switch, Ada95Switch

or Ada2005Switch, depending on Ada version used. If a

model in Ada83 is animated, version switch will be forced

to Ada95.

AdaCGDebugSwitch This macro generates the text of property CompileDebug

if build set of configuration setting is set to debug.

AdaCGAdditionalSources This macro gets additional sources from configuration

settings. It uses property AdditionalSourcesTemplate in

order to format this text. See AdditionalSourcesTemplate

description for more details.

AdaCGUserIncludPath This macro gets user include path from configuration

settings. It uses property IncludePathTemplate in order to

format this text. See IncludePathTemplate description for

more details.

AdaCGLibraries This macro gets library from configuration settings. It

uses property LibrariesTemplate in order to format this

text. See LibrariesTemplate description for more details.

AdaCGCompileSwitches This macro gets compile switches from configuration

settings

AdaCGLinkSwitches This macro gets link switches from configuration settings

AdaCGFileSpecList This Macro makes the list of all generated spec files. The

spec file is added to the make file using the

SpecTemplate property.

This macro uses properties

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 133/220

 - SpecTemplate<index of makefile>

 - ProtectedStartTagFormat1<index of makefile>

 - ProtectedEndTagFormat1<index of makefile>

<index of makefile> is the index of makefile entry point

AdaCGFileBodyList This Macro makes the list of all generated body files This

macro uses properties

 - BodyTemplate<index of makefile>

 - ProtectedStartTagFormat1<index of makefile>

 - ProtectedEndTagFormat1<index of makefile>

<index of makefile> is the index of makefile entry point

AdaCGObjectAdaMakefile This macro generates makefile for OBJECTADA

compiler. ―Compiler‖ property should be set to

OBJECTADA.

AdaCGGnatMakefile This macro generates makefile for GNAT or

GNATVxWorks compiler. ―Compiler‖ property should be

set to GNAT or GNATVxWorks.

AdaCGGnatAdc This macro generates gnat.adc file for GNAT or

GNATVxWorks compiler. ―Compiler‖ property should be

set to GNAT or GNATVxWorks.

AdaCGOptionalAdaPath Used to split AdaCGGnatMakeFile macro

AdaCGGnatchopCommands Used to split AdaCGGnatMakeFile macro

AdaCGCommands Used to split AdaCGGnatMakeFile macro

AdaCGArchiveCommand Used to split AdaCGGnatMakeFile macro

AdaCGIDEName Get value of IDEName tag of current configuration (for

RiA in eclipse)

AdaCGIDEProject Get value of IDEProject tag of current configuration (for

RiA in eclipse)

AdaCGIDEWorkspace Get value of IDEWorkspace tag of current configuration

(for RiA in eclipse)

AdaCGFilenameMULTIEntrypointBui

ldFile

This macro generates makefile name for user entry point

for GHS tools.

AdaCGMULTIEntrypointBuildFile This macro generates makefile content for user entry

point forINTEGRITY or MultiWin32 environment

AdaCGMULTI4EntrypointBuildFile This macro generates makefile content for user entry

point for INTEGRITY5 or Multi4Win32 environment

AdaCGMultiMakeFile This macro generates makefile for INTEGRITY or

MultiWin32 environment. ―Compiler‖ property should be

set to INTEGRITY or MultiWin32.

AdaCGMultiEntryPoint This macro generates entry point files for INTEGRITY or

MultiWin32 environment. ―Compiler‖ property should be

set to INTEGRITY or MultiWin32.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 134/220

AdaCGMultiSources This macro generates sources files for INTEGRITY or

MultiWin32 environment. ―Compiler‖ property should be

set to INTEGRITY or MultiWin32.

AdaCGMulti4MakeFile This macro generates makefile for INTEGRITY5 or

Multi4Win32 environment. ―Compiler‖ property should be

set to INTEGRITY5 or Multi4Win32.

AdaCGMulti4EntryPoint This macro generates entry point file for INTEGRITY5 or

Multi4Win32 environment. ―Compiler‖ property should be

set to INTEGRITY5 or Multi4Win32.

AdaCGMulti4Sources This macro generates sources file for INTEGRITY5 or

Multi4Win32 environment. ―Compiler‖ property should be

set to INTEGRITY5 or Multi4Win32.

AdaCGDefaultActiveClass If default active class is need for FWK83, then this macro

will get the property ActiveClassInclude.

AdaCGFileList This macro generates the list of generated spec files. It

uses property FileTemplate in order to format this list.

AdaCGOMROOTSingleSlashes Generates OMROOT with back slashes.

AdaCGOMROOTDoubleSlashes Generates OMROOT with double back slashes

AdaCGOMROOTForwardSlashes Generates OMROOT with forward slashes.

OMROOT Generates OMROOT with back slashes. This string is

quoted if the property QuoteOMROOT is set to ―True‖.

This list of additional properties shows properties which are used by macro listed below.

CompileDebug This property contains debug switches. Is used by

AdaCGDebugSwitch macro.

Ada83Switch

Ada95Switch

Ada2005Switch

Those properties contain Ada version switches.

AnimationLibraries83Path

AnimationLibraries95Path

AnimationLibrariesNew95Path

Those properties contain Animation libraries path for each

FWK

BehavioralLibraries83Path

BehavioralLibraries95Path

BehavioralLibrariesNew95Path

Those properties contain Behavioral libraries path for each

FWK

AnimationLibraries

This property give the animation library located at

<Rhp_Install_Dir>\ Share\LangC\Lib

AdaPathContent This property contains patterns to be replaced. The format

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 135/220

of this property is

<‖The_String_To_Replace‖><‖Is_Replaced_With‖>

For example

<\‖\\n\‖><\‖;\‖>

This will replace \n by ;

Compiler This property sets the name of compiler. It is used to be

able to reuse already existing rules with other

environment.

For example, if you create a new Environment called

GNAT_1, and if you use the Macro AdaCGGnatMakefile,

then some part of rules won‘t work as expected because

this new environment variable is unknown. So a new

property is created to replace this environment name with

compiler name.

If a new compiler is created, this property is not useful,

because it is unknown by CG.

The values for this property should be :

GNAT

GNATVxWorks

OBJECTADA

MultiWin32

Multi4Win32

INTEGRITY

INTEGRITY5

RAVEN_PPC

 SPARK

Booch83Path

Booch95Path

Those properties contain booch components path

Booch95RelationsIncludeBoundedQualified

Booch95RelationsIncludeUnbounded

Booch95RelationsIncludeUnboundedNotQualified

Booch95RelationsIncludeUnboundedQualified

Booch83RelationsIncludeBoundedQualified

Booch83RelationsIncludeUnbounded

Booch83RelationsIncludeUnboundedNotQualified

Booch83RelationsIncludeUnboundedQualified

Those properties contain the list of

booch component files needed for each

kind of relation.

AdditionalSourcesTemplate

IncludePathTemplate

LibrariesTemplate

Those 3 properties allow replacing some string of

configuration fields by some other string. Syntax is :

[optional_string]

<‖The_String_To_Replace‖><‖Is_Replaced_With‖>

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 136/220

 For example

Property LibrariesTemplate Multiline " -largs <\"\^\"><\" -

l\"><\"\\n\"><\" -l\"><\"\\r\\n\"><\" -l\"><\",\"><\" -l\">"

If user update configuration libraries with the string

―lib1,lib2‖, then it will be generated like this :

-largs –llib1 –llib2

BodyTemplate

SpecTemplate

Those properties are use to format the file list generated by Macros

AdaCGFileBodyList and AdaCGFileBodyList.

The following keyword can be used in this template :

ConfigurationRelativeFilename

ConfigurationRelativeBodyFilename

ConfigurationRelativeBodyFilename

SpecRelativeFilename

BodyRelativeFilename

FileName

GNATCommandFileName

AdaCGRiAFullName

For example for a class class_0 defined in default package those

keywords will produce :

ConfigurationRelativeFilename : .\Default\class_0

ConfigurationRelativeBodyFilename : .\Default\class_0.adb

ConfigurationRelativeSpecFilename : .\Default\class_0.ads

SpecRelativeFilename : class_0.ads

BodyRelativeFilename : class_0.adb

FileName : class_0

FullNameDashes : class_0 (―.‖ Are

replaced by ―-―)

AdaCGRiAFullName : Default::class_0

ProtectedStartTagFormat

ProtectedEndTagFormat

Those properties are used to format the file list generated

by Macros AdaCGFileBodyList and AdaCGFileBodyList.

They are used to add some tags in the list in order to help

CG to add only new text in the file.

The same keywords than properties BodyTemplate and

SpecTemplate can be used.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 137/220

4.19.4. New environment creation

Create a new file SiteAda.prp

Add the following properties

Subject Ada_CG

 Metaclass Configuration

 Property Environment Enum

"GNAT,INTEGRITY,INTEGRITY5,MultiWin32,Multi4Win32,OBJECTADA,RAVEN_PPC,SPARK,GNATV

xWorks,New_Env" "GNAT"

 end

end

Copy an environment which is as close as possible to your new one, from sodius.prp to siteAda.prp.

It must be copied just before the last ―end‖ of the file.

Then modify entry points and add some new properties which will describe your new files.

4.19.5. Use cases

Custom makefiles can be created for several purposes. For example user needs to make a small

modification of a current makefile. Or user wants to use a new compiler which is not supported by

code generator. This chapter will describe how this can be done.

4.19.1.5 Create a new makefile for an unknown compiler.

Fast solution

Just add the text of the make file in the entry point property. This will generate always the

same makefile. This solution can be used to make a quick test, but it cannot take into

account all possible configurations.

Configurable solution

A new environment could be used for different kind of configuration. User can use different

frameworks or Ada versions, or he can set animation or not. In order to take into account

automatically those configurations, custom makefiles can be written with some macros which

will automatically select the desired property depending on configuration properties.

Makefiles depend also on the model structure. A list of generated files or folders can be

added to makefiles with the possibility to format the list.

Take into account Framework

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 138/220

If your model has events or statecharts, then a Framework must be used. Three

different Frameworks can be used (FWK83, FWK95, NewFWK95), depending on

property Ada_CG:Component:UseAdaFramework. Those Frameworks have been first

generated and compiled for your compiler and your environment. You should know

what their locations are. The path of your different Framework should be set in

properties BehavioralLibraries83Path, BehavioralLibraries95Path and

BehavioralLibrariesNew95Path, and you should invoke them by using macro

AdaCGBehavioralInclude, which will select the correct property, depending on used

Framework.

Take into account animation

If model is animated, you should add some libraries

C Animation libraries which are :

%OMROOT%\LangC\lib\AdaWinaomanim.lib

%OMROOT%\LangC\lib\AdaWinoxfinst.lib

%OMROOT%\LangC\lib\AdaWinomcomappl.lib

C libraries should be compiled as explaind in Ada_User_Guide.pdf.

Ada animation libraries path which are :

%OMROOT%\LangAda\aom for FWK 83.

%OMROOT%\LangAda\aom_95 for FWK95 and newFWK95.

You should use AdaCGAnimationInclude and AdaCGAnimationLib macros with there

associated properties, in order to add animation facilities into makefiles.

Take into account relations

If your model contains relations which use booch components, then some booch

components files must be added to your makefile.

Booch components are located in :

%OMROOT%\LangAda95\booch_ada_83\src\

%OMROOT%\LangAda95\booch_ada_95\src\

For each kind of relation, the Code generator uses a different set of Booch

components.

Booch components 83
Relations_Include_Bounded_Qualified
 map_simple_noncached_concurrent_bounded_managed_noniterator.ads
 map_simple_noncached_concurrent_bounded_managed_noniterator.adb

Relations_Include_Unbounded
 Storage_Manager_Concurrent.ads
 Storage_Manager_Concurrent.adb

Relations_Include_Unbounded_Not_Qualified
 list_single_unbounded_controlled.ads

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 139/220

 list_single_unbounded_controlled.adb
 list_utilities_single.ads
 list_utilities_single.adb
 list_search.ads
 list_search.adb

Relations_Include_Unbounded_Qualified
 Storage_Manager_Concurrent.ads
 Storage_Manager_Concurrent.adb
 map_simple_noncached_concurrent_unbounded_managed_noniterator.ads
 map_simple_noncached_concurrent_unbounded_managed_noniterator.adb

Booch components 95
Relations_Include_Bounded_Qualified
 bc.ads
 bc-containers.ads
 bc-containers.adb
 bc-containers-maps.ads
 bc-containers-maps.adb
 bc-containers-maps-bounded.ads
 bc-containers-maps-bounded.adb
 bc-support.ads
 bc-support-hash_tables.ads
 bc-support-hash_tables.adb
 bc-support-bounded_hash_tables.ads
 bc-support-bounded_hash_tables.adb

Relations_Include_Unbounded
 bc.ads
 bc-support.ads
 bc-support-standard_storage.ads
 bc-support-unbounded.ads
 bc-support-unbounded.adb

Relations_Include_Unbounded_Not_Qualified
 bc.ads
 bc-containers.ads
 bc-containers.adb
 bc-containers-collections.ads
 bc-containers-collections.adb
 bc-containers-collections-unbounded.ads
 bc-containers-collections-unbounded.adb

Relations_Include_Unbounded_Qualified
 bc.ads
 bc-containers.ads
 bc-containers.adb
 bc-containers-maps.ads
 bc-containers-maps.adb
 bc-containers-maps-unbounded.ads
 bc-containers-maps-unbounded.adb

You should use AdaCGBoochPath and AdaCGBoochFiles macro with their associated

properties to add Booch component facilities into makefiles.

4.19.2.5 Modify the generated code of a current environment.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 140/220

For example, you need to change the primaryTarget of your project for INTEGRITY5 environment.

But this is hardcoded by the code generator. Instead of calling the macro AdaCGMulti4MakeFile,

you will call a set of macros which are called by it. To do this you must use the Rules composer and

generate code in debug mode. Open the debug hierarchy and find the script which is called by the

macro.

Copy this script in a new property and change the script names into some custom names.

The script (get from Ada code generator rules) called by AdaCGMulti4MakeFile does this :

[#script]

#!gbuild

Generated by Rhapsody

${self.MULTI_4_Top_Settings}${self.MULTI_4_Get_Library_Options}${self.MUL

TI_4_Get_Executable_Options}

${self.MULTI_4_Debug_Switches}${self.MULTI_4_Additional_Options}${self.Ma

kefile_Compile_Switches}${self.Makefile_Link_Switches}

Generation directories settings

 -object_dir=obj

 --ada_info_dir info

 --ada_xref_dir xref

${self.MULTI_4_Ada_Path}

${self.MULTI_4_User_Include_Path}${self.MULTI_4_User_Libraries}${self.MUL

TI_4_RiA_Anim_Libs_Linker_Options}

${self.MULTI_4_Anim_And_Behavioral_Includes}

Sources.gpj ${self.MULTI_4_Component_Type}

${self.MULTI_4_Entrypoints}[/#script]

The Macro AdaCGMulti4MakeFile should be replaced by the following text in property

MakeFileContentForExe3

#!gbuild

Generated by Custom template

primaryTarget=NEW_PRIMARY_TARGET_integrity.tgt

[INTEGRITY Application]

 -o $ComponentName$ExeExtension

Target definition

 -bsp $BLDTarget

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 141/220

 -os_dir=$IntegrityRoot

$BLDMainExecutableOptions

$MULTI4DebugSwitches$MULTI4AdditionalOptions$MakefileCompileSwitches$Make

fileLinkSwitches

Generation directories settings

 -object_dir=obj

 --ada_info_dir info

 --ada_xref_dir xref

$MULTI4AdaPath

$MULTI4UserIncludePath$MULTI4UserLibraries$MULTI4RiAAnimLibsLinkerOptions

$MULTI4AnimAndBehavioralIncludes

Sources.gpj [Project]

Main$ComponentName$MakeExtension[program]

This new text will do the same job than the RulesComposer script. The names of the rules have

been replaced by new Macros. The rule MULTI_4_Top_Settings has been replaced directly by

some text, because this is the part of generation that we want to modify.

In order to enable the code generator to understand those new macros, a new initialization file must

be updated, to create mappings between macros and rules.

Create the file :

<Rhp_install_dir>\share\\properties\MakeFileCommand.ini

In this file, you will map custom names to a script.

MULTI4DebugSwitches =Project.MULTI_4_Debug_Switches

MULTI4AdditionalOptions =Project.MULTI_4_Additional_Options

MakefileCompileSwitches =Project.Makefile_Compile_Switches

MakefileLinkSwitches =Project.Makefile_Link_Switches

MULTI4AdaPath =Project.MULTI_4_Ada_Path

MULTI4UserIncludePath =Project.MULTI_4_User_Include_Path

MULTI4UserLibraries =Project.MULTI_4_User_Libraries

MULTI4RiAAnimLibsLinkerOptions=Project.MULTI_4_RiA_Anim_Libs_Linker_Optio

ns

MULTI4AnimAndBehavioralIncludes=Project.MULTI_4_Anim_And_Behavioral_Inclu

des

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 142/220

The prefix ―Project.‖ means that this script is defined at project level. If this prefix is omitted, then

the script must be defined at configuration level.

You should also take care of Framework location. You may have generated a new Framework for

your new environment. So Framework location has changed. To do this, replace the Macro

MULTI4AnimAndBehavioralIncludes by AdaCGBehavioralInclude. This macro will get

information from properties BehavioralLibraries83Path, BehavioralLibraries95Path or

BehavioralLibrariesNew95Path depending on Framework version.

Property BehavioralLibraries83Path should be for example :

 --ada_elab_dirs '\'

$AdaCGOMROOTForwardSlashes/LangAda83/oxf/NewEnv_sim800''

 -L'$AdaCGOMROOTDoubleSlashes\\\\LangAda83\\\\oxf\\\\ NewEnv

_sim800'

A new property ―Compiler‖ should also be added and set to ―INTEGRITY5‖ in order to be sure that

the code generator will interpret the macro for the correct compiler.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 143/220

5. SPARK code generation

IBM® Rational® Rhapsody® Developer for Ada enables the generation of SPARK annotations from

UML models.

In order to analyse the generated annotations, you need the SPARK Examiner, available from

Praxis High Integrity Systems, much like you need an Ada compiler to compile the code generated

by Rhapsody.

IBM® Rational® Rhapsody® Developer for Ada supports the SPARK toolkit version 7.2 and above.

Contact Praxis High Integrity Systems to get the appropriate updates if you have a previous version.

5.1. Enabling SPARK code generation

5.1.1. Adding the SPARK profile to the model

A SPARK profile is provided with IBM® Rational® Rhapsody® Developer for Ada that allows

modeling of SPARK annotations. To use this profile on a new or existing Rhapsody model, from the

model :

 select ―File, Add to model‖…

 Navigate to the <Rhapsody>\Share\Profiles\SPARK directory

 Select the file type ―Package (*.sbs)‖

 Select the ―As Reference‖ radio button

 Click ―Open‖

The SPARK Profile is now added to your model.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 144/220

5.1.2. Setting the SPARK environment

The motivation in generating SPARK annotations is to have them analyzed by the SPARK

Examiner. This is why Rhapsody generates commands to pass on to the SPARK Examiner which

will then analyse the generated SPARK code. To enable the generation of these commands on a

configuration, you have to go through the following steps :

 Create or add a SPARK configuration

 On the features window of the configuration, go to the settings tab, and in the environment

settings frame, select SPARK as the environment.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 145/220

5.1.3. Examination level

You can select the required examination level for a class or package specification property by

setting the following properties to the appropriate values:

 Class.SPARK.Class.ExaminerLevelBody

 Class.SPARK.Class.ExaminerLevelSpec

 Package.SPARK.Class.ExaminerLevelBody

 Package.SPARK.Class.ExaminerLevelSpec

The available values for these properties are described below :

 None : the file will not be examined

 Data : data-flow analysis will be performed on the file

 Information : information-flow analysis will be performed on the file

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 146/220

5.2. Differences between code generated with and without the SPARK

profile

Apart from the fact that the profile allows to model and generate SPARK annotations, there are a

few differences between code generated using the profile and code generated without using the

profile :

 Attribute accessors are not generated

 Relations accessors are not generated

 Statecharts code is not generated

This is achieved by overriding the appropriate properties in the profile.

5.3. General usage notes on SPARK profile tags

5.3.1. Capturing annotations with string tags

The SPARK profile is mostly based on the use of tags. Some of these tags are strings in which you

can type annotations, which should be valid SPARK annotations, except that they shall not contain

―--#‖ character sequences at the beginning of each line, as they will be generated by Rhapsody for

you for each line in the tag.

5.3.2. Annotations often come in pairs

Very often, an annotation to be generated in the package specification may have a counterpart to

be generated in the package body. Such annotations pairs are modeled by :

 tags which names end by a ―Spec‖ and a ―Body‖ suffix (such as DerivesBody and

DerivesSpec tags for an operation).

 Dependencies from a client that have the same stereotype, but a different

CG.Dependency.UsageType property value (either Implementation or Specification). An

examples of such a dependency pair is the <<SPARK_Global>> dependency from an

operation to an attribute.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 147/220

5.3.3. Multiple modeling approaches

For most annotations, there are several ways to model and/or capture them using Rhapsody :

 The most common one is to use a string tag in which you type in the annotation content

 You might also use some stereotyped dependencies for most annotations

 More rarely, depending on the annotation kind, there might be some other ways yet (one

illustration of this is described in the ―Initializes annotations‖ section)

Depending on your preferences, you might favor one style over the other. These different

approaches are generally not exclusive, meaning that part of an annotation might be modeled via

the use of a string tag while another part is modeled through dependencies. However, we

recommend avoiding mixing styles to facilitate model maintenance.

5.4. Inherit clauses

This section describes the various ways to model inherit annotations

5.4.1. Using inheritance

When a class A inherits from a class B, a with clause to B is generated in the specification of A.

When generating code for SPARK, an inherit clause to B is also generated

Figure 155: Modeling inherit clauses via inheritance

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 148/220

Figure 156: Generated code for derived class using the SPARK profile

5.4.2. Using <<Usage>> dependencies

By default, every usage dependency will generate both a with clause (either in the client

specification or body) and an inherit clause (always in the specification of the client) to the supplier

of the dependency.

Figure 157: Modeling inherit clauses via <<Usage>> dependencies

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 149/220

Figure 158: Generated code for dependency client class using the SPARK profile

To turn off the generation of the inherit clause for usage dependency, uncheck the inherits tag on

the dependency

There are cases where an inherit clause is required but not a with clause. In such cases, you can

turn off the generation of the with clause for <<Usage>> dependencies by setting the

Ada_CG.Dependency.GenerateWithClause property to false.

5.4.3. Using the inherits tag on a class or a package

You also have the option to type in the list of packages to be inherited using the inherits tag

available for packages and classes.

Figure 159: Modeling inherit clauses via Inherit tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 150/220

Figure 160: Setting the inherit tag on a class

Figure 161: Generated code for inherit tag on a class using the SPARK profile

5.5. Own variables

This section describes the various ways to model own annotations.

5.5.1. Modeling through tags on attributes

The table below summarizes the roles of the various SPARK profile tags related to own variables.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 151/220

Note that these tags do not affect non-static attributes of classes.

Tag name Description

IsAbstract
SPARK own variables may designate actual Ada variables, or may have no
concrete Ada counterpart. When they fall in this last category, they are called
abstract own variables.

Use this tag to prevent the generation of an Ada variable for an abstract

SPARK own variable.

IsInitialized Setting this tag to true will add the name of this own variable to the list of

initialized variables in the "initializes" SPARK annotation for the class or

package it is defined in.

OwnKind
In SPARK, a static attribute falls into one of these 3 categories :

 Own: the attribute is in the own annotation of the specification for this
package or class

 TypelessOwn: same as Own, but there is no type associated to it in the
annotation

 RefinementConstituent: the attribute is not in the own annotation for the
specification of this package or class, but it should be part of a refinement
definition in the own annotation for the body

 None: the attribute is not in the own annotation for the specification of this
package or class, and it should not be part of a refinement definition

OwnMode
Use this tag to control the mode for an own variable :

 None : the own variable will not have an associated mode

 In : the own variable will have a mode set to "in"

 Out : the own variable will have a mode set to "out"

OwnRefinement
The purpose of this tag is to hold the refinement definition for this own variable.

This refinement is generated in the package body.

Table 7 Own variables related tags

Figure 162: Modeling an own annotation on a package via tags on an attribute

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 152/220

Figure 163: Setting some of the tags related to own variables on an attribute

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 153/220

Figure 164: Setting a default value on an initialized own variable attribute

Figure 165: Generated annotations for an initialized own variable

5.5.2. Using the OwnSpec and OwnBody tags

You also have the option to type in the list of own variables in the OwnSpec tag.

The OwnBody tag can be used to specify the own variables refinements.

Both tags are available for packages and classes.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 154/220

Figure 166: Modeling an own annotation on a package via tags on packages

Figure 167: Disabling the generation of an own annotation at the attribute level

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 155/220

Figure 168: Setting some of the tags related to own variables on a package

Note that this example would generate the same code as the one shown in the previous section.

5.6. Initializes annotations

This section describes the various ways to model initializes annotations.

5.6.1. Using tags on attributes

As described in the section on own variables, one possible way to indicate that an own variable is

initialized by a class or package is to use the IsInitialized tag on the own variable.

5.6.2. Using tags on class and package

As an alternative, and also described in the section on own variables, you might want to use the

initializes tag available for classes and packages to type in the list of owned variables initialized by

this class or package.

5.6.3. Using <<SPARK_Initializes>> dependencies

Yet another approach is to draw <<SPARK_Initializes>> dependencies from the class or package to

the attributes to be initialized.

5.7. Proof types and Proof functions annotations

This section describes how to model proof types and proof functions annotations.

To indicate that a given type or function is to be generated as a proof type or as a proof function,

apply the <<SPARK_Proof>> stereotype to it.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 156/220

Figure 169: Modeling a package with a proof type and a proof function

Figure 170: Setting the stereotype of a function to <<SPARK_Proof>>

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 157/220

Figure 171: Setting the stereotype of a type to <<SPARK_Proof>>

Figure 172: Generated code for package with proof type and proof function

5.8. Global annotations

This section describes the various ways to model global annotations.

5.8.1. Using <<SPARK_Global>> dependencies

You can model the global annotations for an operation using <<SPARK_Global>> dependencies

from the operation to the global variables it is using.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 158/220

Figure 173: Modeling global annotations via dependencies from operation to attribute

Figure 174: Setting the stereotype of a dependency to <<SPARK_Global>>

On such dependencies, a GlobalMode tag is available so that you can specify in which mode the

variable is being used by the operation. The possible values are :

 In

 Out

 In_Out

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 159/220

Figure 175: Setting the mode of a <<SPARK_Global>> dependency

The CG.Dependency.UsageType property on the dependencies determines whether the global

variable will be added to the global annotation in the specification or in the body.

Figure 176: Controlling where the annotation is generated for a <<SPARK_Global>>

dependency

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 160/220

Figure 177: Specification for a package with a <<SPARK_Global>> dependency from an

operation to a package

Figure 178: Implementation for a package with a <<SPARK_Global>> dependency from an

operation to a package

5.8.2. Using tags on operations

An alternative is to use the GlobalSpec and GlobalBody tags on operations to type in the list of

global variables and their modes.

Figure 179: Modeling global annotations via GlobalSpec tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 161/220

Figure 180: Setting the GlobalSpec tag on an operation

Figure 181: Specification for a package with an operation with a GlobalSpec tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 162/220

Figure 182: Implementation for a package with an operation with a GlobalSpec tag

Note that except for the location of the global annotation, which is here set to be generated in the

specification, the generated code is similar to the one shown in the previous section.

5.9. Derives annotation

This section describes how to model derives annotations

You can model the derives annotation using the DerivesSpec and DerivesBody tags on an

operation.

Figure 183: Modeling derives annotations via DerivesSpec tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 163/220

Figure 184: Setting the DerivesSpec tag on an operation

Figure 185: Specification for a package with an operation with a DerivesSpec tag

5.10. Preconditon, postcondition and return Annotations

This section describes how to model precondition, postcondition and return annotations

You can model the precondition, postcondition and return annotations using the following tags on

operations

 PreConditionSpec

 PreConditionBody

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 164/220

 PostConditionSpec

 PostConditionBody

Note that return annotations are modeled using the PostConditionSpec and PostConditonBody

tags.

The example below, which is an extension of the counter example used in some of the other

sections on SPARK, illustrates how a postcondition tag can be used.

Figure 186: Modeling post conditions annotations via PostConditionSpec tag

Figure 187: Setting the PostConditionSpec tag on an operation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 165/220

Figure 188: Specification for a package with an operation with a PostConditionSpec tag

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 166/220

Figure 189: Implementation for a package with an operation with a PostConditionSpec tag

5.11. Hide annotation

This section describes how to model hide annotations

5.11.1. On a class or a package

There are 3 tags controlling the various hide annotations that can appear in the generated code for

a class or a package

 HideBody : controls the generation of a hide annotation in the body of the generated Ada

package

 HideElaborationCode : controls the generation of a hide annotation in the initialization code

of the generated Ada package

 HidePrivatePart : controls the generation of a hide annotation in the private part of the

generated Ada package

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 167/220

Figure 190: Modeling hide annotations on packages and operations

In the figure above, every tag is a Boolean and has its value set to True.

Figure 191: Generated body code for a package body with its HideBody tag set to true

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 168/220

Figure 192: Setting the elaboration code on a package

Figure 193: Generated code for a package body with elaboration code and its

HideElaborationCode tag set to true

Figure 194: Generated code for a package specification with its HidePrivatePart tag set to

true

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 169/220

Figure 195: Generated code for an operation body with its HideBody tag set to true

5.11.2. On an operation

The HideBody tag on operations controls the generation of a hide annotation in the body of an

operation.

5.12. Main program annotation

This section describes how to model the main program annotation.

The main_program annotation is automatically generated for <<entrypoint>> classes.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 170/220

6. Behavioral Code Generation

This section uses the following definitions:

Reactive class A class that consumes messages, typically defined by

statecharts or activity diagrams

Reactive instance An instance of a reactive class.

Active class A class that dispatches events (e.g. manages an

event loop) on its own OS task.

Active instance An instance of an active class.

Event An asynchronous message, with or without data.

Triggered Operation A synchronous message, with or without data.

6.1. Overview of the behavioral frameworks

6.1.1. Selecting the behavioral framework implementation

It is possible to select between three versions of the behavioral framework, one relies on Ada83

constructs exclusively, and the others exploit Ada95 constructs.

The new Ada 95 based framework is the default for new models. The component property
―Ada_CG.Component.UseAdaFramework‖ is used to switch between the frameworks. The value
"NewFWK95‖ is used to select the ravenscar compatible framework. ―FWK95‖ is used for
backward compatiblilty for models before version 7.3. And, ―FWK83" " Is set to use the Ada 83
Framework instead.

Note that it is not possible to mix the three frameworks in a same component.

6.1.2. Differences between the Ada 83 and the Ada 95 implementations

 Features available exclusively with the two 95 Frameworks

o Tasks are only used for active classes and not for locking resources (protected objects are

used for this).

o Dynamic memory allocation (DMA) is only used for asynchronous events (with the Ada 83

Framework, triggered operations are using DMA by default, unless the

―Ada_CG.Class.OptimizeStatechartsWithoutEventsMemoryAllocation‖ property is set).

o Statechart Inheritance

o Generation of code for SendAction states

o Deep History Connectors

o Active classes no longer need <<active_context>> dependencies,

o Indirect reactive parts (that is a reactive composite class having direct parts that are not

reactive but have reactive parts themselves)

o Out transitions with same trigger but different guards on a same state (with the Ada 83

Framework, this requires using a condition connector)

 Features available exclusively with the 83 Framework

o Generic reactive classes

6.1.3. Common features of both frameworks

Behavior is modeled in IBM® Rational® Rhapsody® Developer for Ada by creating a statechart for

a class. This class is then said to be a reactive class. Within the family of reactive classes, there

are 2 distinct types: classes with asynchronous messaging using events, and those with

synchronous messaging that use only triggered operations.

6.1.1.3 Reactive classes

Four operations exist to start or stop the reactive class statechart, and to monitor its status. They

have the same interface regardless of the framework version.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 171/220

Figure 196: Operations to Control the Reactive Class Statechart.

6.1.2.3 Active classes

For a class to be considered an active class, the concurrency of the class must be set to ―active‖.

Figure 197: Definition of an Active Class.

An active class has a start operation which begins the event loop for the process of events.

Figure 198: Operations to Control the Active Class

6.2. Using the Ada 83 Behavioral framework

6.2.1. Limitations

 Indirect reactive parts are not supported (that is a reactive composite class having direct parts

that are not reactive but have reactive parts themselves)

 Statechart inheritance is not supported

 Deep history connectors are not supported

 SendAction states are not supported

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 172/220

 Out transitions with same trigger but different guards on a same state are not supported, a

workaround is to use an intermediate condition connector instead.

6.2.2. Event-based reactive classes

Each event-based reactive class must have an active class that performs the event loop and

delivers events to it. Each active class creates its own task to handle its event loop, and is linked to

its reactive classes by a dependency stereotyped ―Active Context‖.

Figure 199: A Reactive Class and its Active Class.

6.2.3. Reactive Class Generation

Each reactive class automatically generates:

 Its own event type which contains a variant record for various event reception data.

 Its own event queue type.

 gen_<event>() method for each type of event it may consume.

 Event creation/deletion methods.

 Event consumption methods.

 Specific statechart implementation methods.

Every reactive class will use the Ada packages found in the Rhapsody behavioral code for Ada 83

library. This library uses only Ada 83 constructs and is used whether generating Ada 95 or 83. A

future release will include a library for Ada 95 which will incorporate some optimizations possible

when using Ada 95.

The set of ―With‖ statements for an event-based reactive class is shown below.

Figure 200: The "With" Clauses for a Reactive Class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 173/220

6.2.1.3 Reactive Class Variables

A reactive class communicates with its active class using shared variables between the two

instances. These variables are generated in the class record.

Figure 201: The Reactive Class Record.

The variables are used in the following manner:

ria_behavior_started: A boolean flag that indicates that the reactive class is ready to

consume events.

ria_behavior_terminated: A boolean flag that indicate that the reactive class reached a

terminate connector.

ria_null_transitions_count: Count the number of null-transitions that are yet to be taken

after an event is consumed.

ria_state_machine_busy: An indicator that the state machine is currently consuming an event,

used to prevent self calls of triggered operations while the state machine is in an undefined state.

This flag is not used for mutual exclusion.

ria_current_event: A pointer to the currently consumed event.

ria_events_available_signal: A pointer to the active instance event flag.

ria_queue_guard: The event queue guard, specified by the active class.

ria_event_queue: The reactive instance event queue.

ria_context_ready: A pointer to a boolean flag, used for event consumption optimization.

ria_context_queue: A pointer to a Reactive_Instances_Queue.

root_state_active: An integer that holds the current active state, of the root state.

root_state_sub_state: An integer that holds the current active sub-state of the root state.

There is also one static variable that is generated:

ria_maximum_allowed_null_steps: A static integer that indicated the maximum allowed null

steps (used to detect infinite null-transitions loop), can be disabled by setting to 0.

6.2.2.3 Reactive Class Public Operations

In addition, there are several public operations generated for the Ada package that represents a

reactive class.

There are 2 operations to retrieve information about the current event being processed.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 174/220

Figure 202: Operations for the Current Event Information.

These operations use the public types that are defined for a reactive class and will be discussed in

the next section.

As well as defining the new operations discussed above, reactive classes also require some

initialization and finalization. These methods will be created if they do not already exist, or the

necessary code will be added to existing implementations.

Figure 203: Initialization and Finalization of the Reactive Class.

6.2.3.3 Statechart-Specific Reactive Class Operations

In addition to the generic public operations discussed above for every reactive class, there are also

specific operations and types created based on the contents of the statechart.

For this discussion, an example project will be used which contains a reactive class called

―reactive_class‖ defined in the ―Default‖ package. The reactive class has a simple statechart with 2

states (―state_1‖ and ―state-2‖) with 2 events being used to trigger the state transitions (―trigger_A‖,

and ―trigger_B‖). The event ―trigger_B‖ has an Integer for its event data.

Figure 204: Example Reactive Class Project.

Figure 205: Statechart for the Reactive Class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 175/220

Given the above example project, the event types will be generated as follows:

Figure 206: The Event Types for the Reactive Class.

The Event_Data variant record will either have no elements in the case of the event being

―trigger_A‖, or will have an Integer element for the ―trigger_B‖ event.

To allow different events to share argument names, the record component corresponding to an

event argument has a name based on the full namespace of the argument.

Shall the relative name of the argument be preferred instead, setting the

Ada_CG.Class.RelativeEventDataRecordTypeComponentsNaming to true will disable this behavior.

Note that if this property is set to true, there shall be no events or triggered operations sharing an

argument name, as they would generate variant record components with the same name, which is

uncompilable.

In case of triggered operations, the property shall be set on the reactive class whose statechart

uses the triggered operations, and in case of events it shall be set on the events themselves (and

not on the receptions).

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 176/220

Figure 207: Using relative naming for current event data

Figure 208: Event data record type using relative naming

As shown in the sample code above, the event is identified by an Integer defined on the containing

package, in this case the ―Default‖ package.

Figure 209: The Parent Package of the Reactive Class.

Beside the event types, there are public operations added to enable events to be sent to the

reactive class. For each event, a ―get_<event_name>‖ operation is created.

Figure 210: Operations to Generate Events for a Reactive Class.

The following statecharts show how one can access the current event data in a statechart so as to

decide which transition shall be taken. Note that depending on the value of the

Ada_CG.Class.RelativeEventDataRecordTypeComponentsNaming property, the guards on some

transitions may have to be modified

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 177/220

Figure 211: Accessing a trigger parameter value (using full namespace based naming)

Figure 212: Accessing a trigger parameter value (using relative naming)

6.2.4. Active Class Generation

An active class must have a dependency to at least one reactive class stereotyped ―Active Context‖.

For the code to generate correctly, the active class must set its record type to be private. This is

done by setting the ―Ada_CG.Class.Visibility‖ property to ―Private‖ for the active class.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 178/220

Figure 213: Setting the Record Type Visibility for an Active Class.

An active class generates an Ada task type to execute the event loop for the handling of events.

There is one entry to the task type called ―process_events‖.

Figure 214: The Task Generated for an Active Class.

6.2.1.4 Active Class Variables

In addition, several elements are added to the record for the active class type.

Figure 215: The Record Definition for the Active Class.

ria_task: The instance task.

ria_events_available_signal: The task event flag, used to signal the active instance that there are

events ready to be consumed on at least one of the reactive instances in its context.

ria_queue_guard: A mutex to protect the reactive instances queues.

For every reactive class that the active class has an <<Active Context>> dependency to, the

following attributes are generated:

<reactive class name>_context_queue: A queue of reactive instances that is used for event

dispatching.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 179/220

<reactive class name>_context_ready: A boolean flag used for event dispatching optimizations.

The following ―With‖ statements are needed in the active class as well to use the Rhapsody

behavioral code for Ada 83 library.

Figure 216: "With" Statements for an Active Class.

In addition, a ―With‖ statement will be added for each of its reactive classes.

6.2.2.4 Public Operations for an Active Class

There are 2 kind of public operations of interest generated for an active class. One is the ―start‖

operation, as mentioned earlier.

The other is the ―register_context_<reactive class name>‖ series of procedures, which make the

active instance the context for the event dispatching of the reactive instance. One of these

methods will be created for each reactive class for which this class serves as its active context.

Figure 217: The Public Operations of an Active Class.

An active class also requires some initialization and finalization. The Initialize and Finalize methods

will be created if they do not already exist, or the necessary code will be inserted into existing

implementations.

Figure 218: Initialization and Finalization of the Active Instance.

6.2.5. Working with Active and Reactive Classes

There are four distinct steps when using active and reactive classes: Initializing, Starting the

Behavior, Sending Events, and Finalizing.

6.2.1.5 Initializing

Both the active and reactive instances need to be initialized before using them. This is

accomplished by calling the ―Initialize‖ procedure on each of them.

6.2.2.5 Starting the Behavior

To activate the state machine for a reactive class, the ―start_behavior‖ procedure is called for the

reactive instance. This will cause the default transitions to be taken, and will allow the reactive

class to receive events.

The active class can be started by calling the ―start‖ procedure which will activate the active

instance event loop.

6.2.3.5 Sending Events

Once the active and reactive classes have been started, it is possible to send events to the reactive

class. This is done by the calling the ―gen_<event name>‖ procedure on the reactive instance.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 180/220

6.2.4.5 Finalizing

To cleanup the resources of the reactive and active instances, the ―Initialize‖ and ―Finalize‖

procedures should be called.

The following procedure definition demonstrates these four phases for the example model given

above.

Figure 219: Using an Active and Reactive Class.

6.2.6. Active Reactive Class

A reactive instance can act as its own active context as well by setting its concurrency to ―active‖ -

this class is then called an Active-Reactive class. Instances of this type cannot have another active

class act as its active context, and they cannot be the active context for any other reactive

instances. When using an active-reactive class, an <<Active Context>> dependency to itself is not

needed.

Figure 220: An Active-Reactive Class.

Using the active-reactive class is the same as using a separate active class. The instance needs to

be initialized, the statechart needs to be started, the event loop needs to be started, events are

sent, and the instance is finalized.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 181/220

Figure 221: Using an Active-Reactive Class.

6.2.7. Default Active Class

Instead of explicitly creating an active class for his reactive class, a user has the op tion of

using the automatically generated Default Active Class singleton. The default active class is called

―RiA_Default_Active‖, and a ―With‖ statement in automatically generated in all <<entrypoint>>

packages when needed.

The user can disable the creation of the default active class, as well as control which classes it can

act as the active context for, with the Ada_CG.Configuration.DefaultActiveGeneration property. The

settings are as follows:

Disable: The default active singleton is not created.

ReactiveWithoutContext: This is the default setting. The default active singleton is created if

there are reactive classes which consume events and which do not have an active context explicitly

specified. The default active singleton can handle only these classes.

All: The default active singleton is generated if there is at least one event-consuming reactive

class, and the active singleton can handle all reactive classes that consume events – even those

reactive classes that specify another active class as their active context.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 182/220

Figure 222: Using the Default Active Class.

6.2.8. Triggered Operations

A reactive class can also execute synchronously by using triggered operations. A reactive class

that uses only triggered operations does not need an active context, and therefore does not

produce an Ada task.

NOTE: By default, memory is allocated for each triggered operation that has parameters.

Figure 223: A Sample Model of a Synchronous Reactive Class.

Figure 224: A Statechart Using Triggered Operations.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 183/220

6.2.1.8 Reactive Class Variables

For each triggered operation, a static attribute is created in the reactive class to contain its unique

id.

Figure 225: Triggered Operation Unique Identifiers.

6.2.2.8 Reactive Class Public Operations

A synchronous reactive class has the same operations as the asynchronous version, with the

exception of the Initialize and Finalize procedures. These procedures are not necessary for a

reactive class with only triggered operations.

6.2.3.8 Statechart-Specific Reactive Class Operations

Triggered operations produce the same ―gen_<event name>‖ procedures as an asynchronous

reactive class, but in addition, another operation is provided which adds an ―in out‖ parameter to

return the event consumption status for this trigger. The type of this parameter is

RiA_Types.Consume_event_status, and is equal to one of the following values: event_consumed,

event_not_consumed, instance_in_destruction, or reached_terminate.

Another difference occurs if the triggered operation has a return value. This value becomes an

―out‖ parameter of the given return type.

For the example given above, the following procedures are generated.

Figure 226: Generated Procedures for Triggered Operations.

6.2.4.8 Using a Synchronous Reactive Class

To use a synchronous reactive class, only two steps are needed: starting the behavior, and calling

the triggered operations. The following procedure demonstrates these steps.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 184/220

Figure 227: Using a Synchronous Reactive Class.

6.2.5.8 Avoiding memory allocation on statecharts with only triggered operation

It is now possible to generate code for statecharts that use only triggered operations which does not

allocate memory for triggered operations.

The Ada_CG.Class.OptimizeStatechartsWithoutEventsMemoryAllocation class property can be

used to enable this generation scheme.

Note however that this slightly modifies the generated code :

 The Event_data type is now generated as a mutant record

 The Event type does no longer hold an instance of an access type to Event_Data but a

direct instance of the Event_Data type.

 The current_event_data operation no longer returns an instance of an access type to

Event_Data but a direct instance of the Event_Data type.

 The initialize_event procedure does no longer take a parameter that is an instance of an

access type to Event_Data, but a direct instance of the Event_Data type

Should some model using the default implementation be converted to use this new implementation,

any calls to the current_event_data and initialize_event operations should take into account the fact

that the event_data is no longer represented by an instance of an access to Event_Data type but by

an instance of Event_Data type.

6.3. Using the Ada 95 Behavioral frameworks

6.3.1. Limitations

 Generic reactive classes are not supported

 Inherited statecharts for singleton reactive classes are not supported

6.3.2. New Ada 95 Framework changes

Starting with Rhapsody 7.3, the new Ada 95 framework makes several changes in the generation of

the reactive and active classes. Reactive classes are given a reactive part that inherits from the

Oxf.Reactive type of the OXF framework. The reactive part just delegates the processing of events

to its parent user-defined Reactive class. The same concept is used for Active types. They are

given an active part which does the handling of events.

When using the default active class, or classes with only triggered operations, the framework is

ravenscar compliant. If a user active class is created, some properties must be set in oder to be

ravenscar compliant (see §6.3.11).

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 185/220

Some changes may occur in user code, if parameterized events are used. The function

get_parameter() does not exist anymore in new Ada 95 framework (see §6.3.7). Therefore the

params variable needs to be used directly.

6.3.3. Reactive classes

A State_Type enumeration type is declared for each reactive class, it will hold two predefined

literals and the qualified names (relatively to the statemachine) of the states as the other literals

Figure 228: The State_Type enumeration type for a reactive class

6.3.4. Event-based reactive classes

Each event-based reactive class must be part of an active class that performs the event loop and

delivers events to it. Each active class creates its own task to handle its event loop.

Figure 229: A Reactive Class and its Active Class.

6.3.5. Sending events

Once the active and reactive classes have been started, it is possible to send events to the reactive

class. This is done by the calling the ―Gen_<qualified_event_name>‖ procedure on the reactive

instance. The <qualified_event_name> token designates the full path to the event from the root of

the model, using underscores as namespace separators.

Figure 230: Operations to Generate Events for a Reactive Class.

6.3.6. Using triggered operations

Triggered operations are invoked the same way as with the Ada_83 framework.

6.3.7. Accessing the current event parameters

A reference to the current_event is available on transitions that have triggers with parameters. To

access these parameters, two methods are available :

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 186/220

- use ―get_parameters(current_event) .<parameter name>‖ (only in the previous Ada 95

framework).

- use ―params.<parameter name>‖. (available on both Ada 95 frameworks).

Figure 231: Accessing a trigger parameter value

6.3.8. Testing if a state is active

Use the ―Is_In(<qualified_state_name>)‖ function. The <qualified_state_name> token designates

the full path to the state from the root of the statechart, using underscores as namespace

separators.

6.3.9. Working with Active and Reactive Classes

The usage is similar to the one of the Ada 83 framework except that reactive classes do not need

any initialization or finalization (unless some non statechart related operations, relations, attributes

or user-defined code require them).

6.3.10. Default Active Class

The mechanism for default active class is similar to the one available in the Ada 83 framework

except that the class is called ―Ria_Default_Active_Class‖ instead of ―Ria_Default_Active‖

6.3.11. User Active class for ravenscar

To have a ravenscar compliant model with user active classes, those classes must be created
statically. To do this, the property Ada_CG:Class:BaseNumberOfInstances must be filled with the number
of instance that the model needs.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 187/220

7. Code order respect tool

7.1. Introduction

Although the Ada code is generated fully automatically, we allow you to organize the content of the

source modules in order to respect your own code writing rules.

So this tool respects:

 Location of declarations for operations, attributes, types, etc, in the specification file and the

body file.

 Order of declarations in structures (members), etc…

 Newlines count between declarations.

This tool can be used with basic round-tripping in operation‘s body.

This tool doesn‘t reverse code to rhapsody model, also doesn‘t allow renaming arguments of

methods (spec & body), changing method names, and types or attributes names.

All changes of the elements order in the source file are kept in it, and they are not sent back to the

model. The mechanism of code order respect consists in merging a generated file with a source

file. The order of elements in the source file is preserved, and new elements are added in the

source file.

7.2. Activation and usage

To activate this tool:

 Open IBM Rational Rhapsody Developer for Ada application.

 Open a project.

 Select a Component element and double-click.

 Select Properties tab and expand subject Ada_CG, choose Component metaclass and

find property RespectCodeLayout.

 Change this property to value Ordering.

Note: this tool can be activated only:

 If current language is Ada.

 Generated file extension is ada, ads and adb.

7.3. Frequent errors

7.3.1. Syntax error in Ada file

If a syntax error is inserted into source file, the code order respect tool cannot parse the file, and will

not merge it with generated code from model. A message appears to show where the error is. User

must fixe the error into the file before continuing.

An error message like the following one, should appear

Generating

D:\Rhapsody\F_CodeRespect\DefaultComponent\DefaultConfig\Default\class_Ada_Task.adb.

Ada syntax error: Encountered " "end" "end "" at line 82, column 9.

Ada syntax error: Encountered " "end" "end "" at line 82, column 9.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 188/220

7.3.2. Syntax error due to model

If Ada code generator generates a file with some syntax error, then the code order respect tool

cannot parse the file. In this case, the source file is saved in another file, and the generated file is

edited. A message of code generator shows where the error is. User must fixe the error into the

model. When generated code is clean, the merge becomes possible, and the saved source file can

be merged with generated file.

An error message like the following one, should appear

Generating

D:\Rhapsody\F_CodeRespect\DefaultComponent\DefaultConfig\Default\class_Ada_Task.adb.

Ada syntax error: Encountered " "end" "end "" at line 83, column 9.

 Your original file is saved as:

D:\Rhapsody\F_CodeRespect\DefaultComponent\DefaultConfig\Default\class_Ada_Task.adb.ordered

 Please update the model and then check the generated file:

D:\Rhapsody\F_CodeRespect\DefaultComponent\DefaultConfig\Default\class_Ada_Task.adb

 When no errors remain, your original file is restored and contains all

updates.

7.3.3. Adding a new element

A new element is added at the end of the section (public or private). But this is not necessary the

desired location. User will need to move it where he wants. In some case code generator creates

some auto generated code. This code may need to be moved.

 When adding a statechart, the class wide declaration, statechart‗s constants and

reactive_part package must be placed at the top of the spec before class record declaration

 When adding a state, the implementation of functions <state>_entry(), <state>_exit() and

<state>_process_event() must be moved to the top of body.

 In animated mode, it is recommended to first generate code without code respect order, and

to move user code afterwards.

8. Animation in IBM® Rational® Rhapsody®

Developer for Ada

IBM® Rational® Rhapsody® Developer for Ada supports tracing and animation of statecharts and

sequence diagrams.

8.1. Enabling Animation

Animation is enabled by setting the Instrumentation Mode in the Configuration to ―Animation‖.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 189/220

Figure 232: Enabling Animation in the Configuration.

Warning :

If you come back to none animation in Instrumentation Mode, after having generating code, you

may have some troubles when compiling the project, because some files are generated in

animation mode and not in release mode. To avoid this, you may delete generated files before

doing a code generation in none animated mode.

After animation has been enabled, the ―Initialize‖ procedure for any instance to be animated needs

be called. This will register the instance with the animation framework.

Animation can be disabled for individual packages, classes, operations, and attributes by setting the

corresponding property to ―False‖.

Element Property

Package CG.Type.Animate

Class CG.Type.Animate

Operation CG.Operation.Animate

Attribute CG.Type.Animate

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 190/220

Element Property

Event CG.Event.Animate

Argument CG.Type.Animate

For attributes, arguments, and events that are not standard Ada types, the address of the element

will be used for animation. The user can enable the animation of the value by defining an

Add_Attribute operation on his class for his particular type. Then, by setting the animation property

to ―Force‖, the value of the type will be used instead. For events of user-defined types, it is also

necessary to define a Get_Attribute operation as well.

8.1.1. Animation of a user defined type

Code generator uses predefined operations to animate predefined types (Integer, Float, Character).

If user defines its own types, then he needs to add some properties and some new functions

manually, in order to support those new types.

After having defined this type, two new operations (called for example Add_Attribute() and

Get_Attrinute()) must be declared in this type‘s package. Operations‘ signature and implementation

are described further on. Some properties must be set on those 2 new operations :

The property CG:Operation:Animate must be unchecked.

The property Ada_CG:Operation:IsAnimationHelper must be checked

Some properties must be updated on the type :

Ada_CG:Type:AnimSerializeOperation must be set to : <type_package>.Add_Attribute

Ada_CG:Type:AnimUnserializeOperation must be set to : <type_package>.Get_Attribute

If a class has an attribute of this user type, then the attribute‘s property CG:Type:Animate must be set

to ―Force‖.

If an event has a parameter of this user type, then the parameter‘s property CG:Type:Animate must be

set to ―Force‖.

Here are some examples of serialize/unserialize operations :

Case I : type Integer

 type My_Integer is range 1..10;

Function add_attribute()

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 191/220

 procedure Add_Attribute (

 udtName : in String;

 udtValue : in My_Integer;

 udtAttrList : in System.address

) is

 begin

 RhpAnim.Add_Attribute(udtName,

 User_Type_Pkg.My_Integer'Image(udtValue),

 udtAttrList

);

 end Add_Attribute;

Function Get_attribute()

 procedure Get_Attribute (

 data : in out My_Integer;

 address : in System.address;

 position : in System.address

) is

 value : integer;

 begin

 rhpanim.get_attribute(value,address,position);

 data := User_Type_Pkg.My_Integer’value(value);

 end Get_Attribute;

Case II : enumerated type :

 type type_0 is (

 ONE,

 TWO,

 THREE,

 FOUR,

 NULL_NULL

);

Function add_attribute()

 procedure Add_Attribute (

 udtName : in String;

 udtValue : in type_0;

 udtAttrList : in System.address

) is

 begin

 RhpAnim.Add_Attribute(udtName,

 user_type.type_0'Image(udtValue),

 udtAttrList

);

 end Add_Attribute;

Function get_attribute()

 procedure Get_Attribute (

 data : in out type_0;

 address : in System.address;

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 192/220

 position : in System.address

) is

 value : string(1..10);

 begin

 rhpanim.get_attribute(value, address, position);

 if(value = "ONE ") then

 data := User_Type.ONE;

 elsif (value = "TWO ") then

 data := User_Type.TWO;

 elsif (value = "THREE ") then

 data := User_Type.THREE;

 elsif (value = "FOUR ") then

 data := User_Type.FOUR;

 else

 data := User_Type.NULL_NULL;

 end if;

 end Get_Attribute;

8.2. Animation on Remote Host

By adding the following line to the <Rhapsody_Install_Dir>\Sodius\Sodius.ini file, one can enable

remote host animation

animationAddress=<RemoteHostIPAddress>

Alternatively, one can use the Ada_CG.<Compiler>.UseRemoteHost and

Ada_CG.<Compiler>.RemoteHost properties to activate remote host animation.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 193/220

9. Generation Rules Customization

9.1. Overview

Rhapsody® in Ada uses a rule-base engine for its code generation. The rules are written using a

combination of WYSIWYG (―What-You-See-Is-What-You-Get‖) templates and java macros to

describe the desired contents for the generated Ada code. Each user can create his own rules, and

use them when generating code from the application.

9.2. Rules Modification

The rules are available for modification by using the RulesComposer in tools menu of IBM®

Rational® Rhapsody® environement. Choose the IBM® Rational® Rhapsody® Developer for Ada

ruleset in RulesComposer‘s Welcome page, to launch the RulesComposer with the IBM®

Rational® Rhapsody® Developer for Ada rules. From the user-friendly interface, the rules are fully

modifiable. See the documentation in the <Rhapsody>\Sodius\RulesComposer\help directory.

9.3. Legacy UML 1.3 metamodel based ruleset

With the release of Rhapsody 7.0, there has been a change in the underlying code generation
RuleSet. Instead of being based on the UML 1.3 metamodel, the RuleSet is now based on the
Rhapsody metamodel.

The main benefits of this change are the following :

 Performance improvements gained from the elimination of the Rhapsody to UML
transformation

 Better support of Rhapsody unique features

Existing customizations of the legacy UML 1.3 metamodel based RuleSet should be migrated to
the Rhapsody metamodel based RuleSet

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 194/220

10. Compilers and related tools support

10.1. Supported compilers/IDEs, tools & environments

Compiler/IDE/Tool Target Environments

GNAT Win32

Aonix‘s ObjectAda Win32, Raven/PPC

GreenHills Software‘s AdaMULTI Win32, Integrity

Praxis High Integrity System‖s SPARK Examiner All

10.2. Environment specific instructions

10.2.1. Using the INTEGRITY simulator with Rhapsody

Please refer to the ―Using_Integrity_Simulator_with_Rhapsody‖ document for detailed instructions.

10.2.2. INTEGRITY BSP support

When generating code for GreenHills‘ INTEGRITY operating system, you can modify the board

target for the selected component via its properties (select the features entry in its context menu).

10.2.3. Raven/PPC BSP Support

By default, the following BSP libraries are registered when compiling for Raven PPC:

Using_Integrity_Simulator_with_Rhapsody.pdf

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 195/220

 raven\standard_model

 system\simulator

 lib\extensions

You can override these defaults by modifying the Ada_CG.Raven_PPC.BSP_Libraries property.

10.2.4. GNAT issues

On Win32 platforms, using GNAT 3.15p or earlier releases, some generated executables using I/O

features may cause generated applications to hang.

Using recent versions of GCC such as 3.4.2, the problem is solved.

10.3. Compiler usage note for ObjectAda and GreenHills compilers

If you regenerate code for an Ada Library that has already gone through a generate-build cycle,

make sure that you rebuild it too (that is ―clean and build‖ or ―rebuild‖), and not only build it. If you do

not, you are very likely to encounter compilation errors when compiling code that is using this library

saying that the source file that you are using is newer than the registered file.

10.4. Compiler support limitations

GreenHills compilers won‘t compile packages named main. Main is used for the ada runtime

entrypoint.

Using Rhapsody with Aonix ObjectAda compilers requires that Rhapsody be installed in a directory

with no spaces in it.

10.4.1. Rhapsody Frameworks support

Compiler Behavioral framework Animation

GNAT / Win32 Yes Yes

ObjectAda / Win32 Yes Yes

ObjectAda / Raven/PPC No No

AdaMulti / Win32 Yes Yes

AdaMulti / Integrity Yes Yes

Behavioral framework and model animation are not supported for ObjectAda RavenPPC as they

violate some of the Raven profile restrictions.

10.4.2. Compilation error messages

The compilation error messages for ObjectAda get displayed in Rhapsody, and you can access the

offending line in the related source file with the following limitation: error messages generated by

the source registration utility (adareg) are not navigable while other error messages (generated by

adacomp, directly or via adabuild) are navigable.

10.4.3. Notes on Pre-compiled libraries

Pre-compiled libraries use with Aonix ObjectAda compiler

Code generated for ObjectAda supports directory based libraries only. This means that object files

for that library must be in the same directory as the sources (this is a limitation to be overcome in

future releases).

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 196/220

The consequences are that you can specify the directory where your library is located using the

―Include Path‖ field in the ―General‖ tab of a component/configuration properties and the generated

compilation commands will look in this directory for sources and object files as well (using adaopts

–p command). If you put something in the ―libraries‖ field, the behavior at link time is unpredictable if

you do not modify the generated compilation batch file.

If you have several libraries to link to, put one library per line in the ―Include Path‖ field, but do not

use any separator such as ‗,‘ or ‗;‘.

If you insist on using library archive files in a different location from the library source files, here is

what to do:

1. In the ―Include path‖ field, specify the directory <sourcedir> where the sources for the library

are located. Regenerate your makefile.

2. In the generated makefile, replace lines starting with “adaopts –p <sourcedir>” by

“adaopts –ep <sourcedir>”. Do not replace lines starting with adaopts –p that

register other directories different from the ones you specified in ―Include path‖ field.

3. In the ―libraries‖ field, specify the full path or the relative path from the generation directory

to the library archive file(s) you want to use

4. Or instead of step 3, add the following line to the generated makefile where <libdir> is the

directory where your library archive is located. This is usually more convenient as you can

put all your libraries in a single directory and get ObjectAda find them with a single line.
“adaopts –ip <libdir>”

Please refer to ObjectAda documentation for more details on source and library registration and

linking

Library archive files and GreenHills compilers

Object files for libraries generated by IBM® Rational® Rhapsody® Developer for Ada are put in

archive files (.a for GreenHills and GNAT, and .lib for Aonix). Such archive files are located in the

same directories as source files for the libraries.

For GreenHills, if you want to use libraries whose object files are not archived in a file but in a

subdirectory of the library directory (as is often the case when you do not use library archive files)

with code generated by Rhapsody you have to do the following:

If you are using Multi 3.5 or an older version :

 In the top level build file of the generated component, add the following command (do not forget

the leading tab), where <librarydirectory> is the directory where your library is located.

 :adalibdirs=<librarydirectory>

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 197/220

10.5. Compiler and assimilated tools related properties

The following properties have an impact on the generated compilation commands :

Element

<Property> <Description>

Configuration

GNAT

Ada_CG.GNAT.BuildCommandSet Sets debug switch for generated gnatmake

commands

Ada_CG.GNAT.CompileSwitches Inserts user-defined compilation switches into

gnatmake commands

Ada_CG.GNAT.LinkSwitches Inserts user-defined link switches into gnatmake

commands

AdaMULTI PowerPC (v4.0 and newer)

Ada_CG.INTEGRITY5.BLDAdditionalOptions Inserts user-defined options in the build file for

the component

Ada_CG.INTEGRITY5.BLDMainExecutableO

ptions

Inserts user-defined options in every executable

build file generated for the current component

configuration

Ada_CG.INTEGRITY5.BLDMainLibraryOptio

ns

Inserts user-defined options in the build file for

the component if it is of library type

Ada_CG.INTEGRITY5.BLDTarget Sets the board target

Ada_CG.INTEGRITY5.BuildCommandSet Activates debug mode for generated top level

build file

Ada_CG.INTEGRITY5.CompileSwitches Inserts user-defined compilation switches into top

level build file

Ada_CG.INTEGRITY5.DebugSwitches Sets debug level used in debug build

Ada_CG.INTEGRITY5.LinkSwitches Inserts user-defined compilation switches into top

level build file

Ada_CG.INTEGRITY5.IntegrityRoot Holds the value of the ―os_dir‖ parameter

generated in build files.

AdaMULTI PowerPC (v3.5 and older)

Ada_CG. INTEGRITY.BLDAdditionalOptions Inserts user-defined options in the build file for

the component

Ada_CG.INTEGRITY.BLDMainExecutableOp

tions

Inserts user-defined options in every executable

build file generated for the current component

configuration

Ada_CG.INTEGRITY.BLDMainLibraryOption

s

Inserts user-defined options in the build file for

the component if it is of library type

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 198/220

Element

<Property> <Description>

Ada_CG.INTEGRITY.BLDTarget Sets the board target

Ada_CG.INTEGRITY.BuildCommandSet Activates debug mode for generated top level

build file

Ada_CG.INTEGRITY.CompileSwitches Inserts user-defined compilation switches into top

level build file

Ada_CG.INTEGRITY.DebugSwitches Sets debug level used in debug build

Ada_CG.INTEGRITY.LinkSwitches Inserts user-defined compilation switches into top

level build file

AdaMULTI Win32 (v4.0 and older)

Ada_CG.Multi4Win32.BLDAdditionalOptions Inserts user-defined options in the build file for

the component

Ada_CG.Multi4Win32.BLDMainExecutableO

ptions

Inserts user-defined options in every executable

build file generated for the current component

configuration

Ada_CG.Multi4Win32.BLDMainLibraryOption

s

Inserts user-defined options in the build file for

the component if it is of library type

Ada_CG.Multi4Win32.BuildCommandSet Activates debug mode for generated top level

build file

Ada_CG.Multi4Win32.CompileSwitches Inserts user-defined compilation switches into top

level build file

Ada_CG.Multi4Win32.DebugSwitches Sets debug level used in debug build

Ada_CG.Multi4Win32.LinkSwitches Inserts user-defined compilation switches into top

level build file

AdaMULTI Win3 (v3.5 and older)

Ada_CG.MultiWin32.BLDAdditionalOptions Inserts user-defined options in the build file for

the component

Ada_CG.MultiWin32.BLDMainExecutableOpt

ions

Inserts user-defined options in every executable

build file generated for the current component

configuration

Ada_CG.MultiWin32.BLDMainLibraryOptions Inserts user-defined options in the build file for

the component if it is of library type

Ada_CG.MultiWin32.BuildCommandSet Activates debug mode for generated top level

build file

Ada_CG.MultiWin32.CompileSwitches Inserts user-defined compilation switches into top

level build file

Ada_CG.MultiWin32.DebugSwitches Sets debug level used in debug build

Ada_CG.MultiWin32.LinkSwitches Inserts user-defined compilation switches into top

level build file

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 199/220

Element

<Property> <Description>

ObjectAda Win32

Ada_CG.OBJECTADA.BuildCommandSet Activates debug switches for generated adacomp

and adabuild commands

Ada_CG.OBJECTADA.CompileSwitches Inserts user-defined compilation switches into

adacomp or adabuild commands

Ada_CG.OBJECTADA.DebugSwitches Sets debug level used in debug switches

Ada_CG.OBJECTADA.LinkSwitches Inserts user-defined compilation switches into

adabuild commands

Raven_PPC

Ada_CG.RAVEN_PPC.BuildCommandSet Activates debug switches for generated adacomp

and adabuild commands

Ada_CG.RAVEN_PPC.CompileSwitches Inserts user-defined compilation switches into

adacomp or adabuild commands

Ada_CG.RAVEN_PPC.DebugSwitches Sets debug level used in debug switches

Ada_CG.RAVEN_PPC.LinkSwitches Inserts user-defined compilation switches into

adabuild commands

Ada_CG.RAVEN_PPC.BSP_Libraries Default BSP libraries to link to.

SPARK

Ada_CG.SPARK.BriefErrorMessages Generates a /brief option on SPARK Examiner

calls.

Ada_CG.SPARK.OpenHTMLReports Instructs Rhapsody to open the HTML reports on

examination completion

Ada_CG.SPARK.TargetConfigurationFileNa

me

Specifies a target configuration file name to be

passed on as an argument to the SPARK

Examiner

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 200/220

11. Model Limitations

11.1. Limitations for Ada 83

When creating a model for Ada 83, the following guidelines should be followed.

 Do not create virtual operations.

 Do not create abstract operations.

 Do not create abstract classes.

 Do not use generalizations.

11.2. General Limitations

 Active classes must be defined to be private.

IBM Rational Rhapsody® Developer for Ada - Mapping Rules Page 201/220

This document is the property of IBM.

It cannot be reproduced, even partially, by any means, without prior written permission.

Appendix A: Properties for IBM® Rational®

Rhapsody® Developer for Ada

Compiler and assimilated tools specific properties are not listed here. You can find their description

in the ―Compiler and assimilated tools related properties‖ section.

Element

<Property> <Description>

Actor

Ada_CG.Class.AccessTypeName Overrides the access type name.

Ada_CG.Class.ClassWideAccessTypeName Overrides the class-wide access type name.

Ada_CG.Class.Final Makes the class record non-―tagged‖.

Ada_CG.Class.GenerateAccessType Turns off the generation of the access type.

Ada_CG.Class.GenerateClassWideAccessT

ype

Controls the generation of the class-wide access

type.

Ada_CG.Class.GenerateRecordType Turns off the generation of the record type.

Ada_CG.Class.HasUnknownDiscriminant If true, an unknown discriminant (<>) will be

generated for this class.

Ada_CG.Class.ImplementationEpilog Adds an epilog to the package body.

Ada_CG.Class.ImplementationPragmas Holds user-defined pragmas to generate in body.

Ada_CG.Class.ImplementationPragmasInCo

ntextClause

Holds user-defined pragmas to generate in

context clause of body.

Ada_CG.Class.ImplementationProlog Adds a prolog to the package body.

Ada_CG.Class.InitializationCode Adds initialization code in the class package

body.

Ada_CG.Class.IsLimited Indicates if the record type is to be generated as

limited.

Ada_CG.Class.IsNested Indicates if the class is to be generated as a

nested package.

Ada_CG.Class.IsPrivate Indicates if the class is to be generated as a

private package.

Ada_CG.Class.NestingVisibility Indicates where in the nesting package the

specification of the nested package should be

generated.

Ada_CG.Class.OptimizeStatechartsWithoutE

ventsMemoryAllocation

Controls whether the generated statechart code

will use dynamic memory allocation or not on

statecharts that use only triggered operations.

Ada_CG.Class.RecordTypeName Overrides the generated record type name.

Ada_CG.Class.SpecificationEpilog Adds an epilog to the package specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 202/220

Element

<Property> <Description>

Ada_CG.Class.SpecificationPragmas Holds user-defined pragmas to generate in spec.

Ada_CG.Class.SpecificationPragmasInConte

xtClause

Holds user-defined pragmas to generate in

context clause of spec.

Ada_CG.Class.SpecificationProlog Adds a prolog to the package specification.

Ada_CG.Class.TaskBody Overrides the generated task body.

Ada_CG.Class.UseAda83Framework If ―True‖, then generated code for statecharts,

events and guarded operations and attributes will

use Ada 83 constructs. If ―False‖, Ada 95

constructs will be used.

Ada_CG.Class.Visibility Determines the location of the record type.

Ada_CG.File.ImplementationFooter Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader Overrides the generated implementation header.

Ada_CG.File.SpecificationFooter Overrides the generated specification footer.

Ada_CG.File.SpecificationHeader Overrides the generated specification header.

Ada_CG.Operation.AlphabeticalSort Controls alphabetical sorting of operations on

generation.

Ada_CG.Operation.VirtualMethodGeneration

Scheme

Enables backward compatibility mode for

methods of interface and abstract classes.

CG.Class.Concurrency Determines if the class is active.

CG.Class.ImplementStatechart Controls the generation of statechart code for this

class.

CG.Class.UseAsExternal Turns off generation for this object.

CG.Type.Animate Turns off animation for this object.

Argument

Ada_CG.Argument.AccessTypeUsage Controls whether the actual type for the attribute

is the class record type, the regular access type,

or the class-wide access type. Only works if the

type is a class.

Ada_CG.Argument.AsAccess Used to set parameter passing mode as access.

Ada_CG.Argument.ClassWide Controls the generation of a class-wide modifier

for the argument.

Ada_CG.Type.AnimEnumerationTypeImage Activates usage of Image attribute for

enumerated types when using animation.

Ada_CG.Type.AnimSerializeOperation Overrides generated serialize operation for

animation.

CG.Argument.Animate Enables animation of the argument.

CG.Type.Animate Used to ―force‖ animation of the argument.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 203/220

Element

<Property> <Description>

Attribute

Ada_CG.Attribute.Accessor Controls the name of the accessor.

Ada_CG.Attribute.AccessorGenerate Controls the generation of the accessor.

Ada_CG.Attribute.AccessTypeUsage Controls whether the actual type for the attribute

is the class record type, the regular access type,

or the class-wide access type. Only works if the

type is a class.

Ada_CG.Attribute.DeclarationPosition Controls the declaration position of a static

attribute relatively to the section (public part of

spec, private part of spec, body) it is declared in

and to the ―virtual‖ location of the class record

type if it is/was declared in this section.

Ada_CG.Attribute.DeferredInitializationPositi

on

Applicable to public constants only, this property

controls where in the private part the deferred

initialization is generated.

Ada_CG.Attribute.GenerateRenamesForSing

leton

Controls the generation of renaming statements

for attributes in singleton classes.

Ada_CG.Attribute.ImplementationEpilog Adds an epilog to the attribute accessors body.

Ada_CG.Attribute.ImplementationProlog Adds a prolog to the attribute accessors body.

Ada_CG.Attribute.InlineAccessor Controls generation of inline pragma for the

accessor.

Ada_CG.Attribute.InlineMutator Controls generation of inline pragma for the

mutator.

Ada_CG.Attribute.IsAliased Determines if attribute is aliased.

Ada_CG.Attribute.Mutator Controls the name of the mutator.

Ada_CG.Attribute.MutatorGenerate Controls generation of the mutator.

Ada_CG.Attribute.ParentDiscriminantValue Holds the value to assign to the parent

discriminant if it exists.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 204/220

Element

<Property> <Description>

Ada_CG.Attribute.RedefiningDiscriminantPoli

cy

If the attribute is a <<Discriminant>> attribute and

it is already defined as a <<Discriminant>> in one

of the parent classes of the current class, this

property controls the generation policy for this

discriminant

AsNew : attribute is generated as a regular

disciriminant

AsNewAndOverriding : attribute is generated as a

regular discriminant and the parent discriminant

of the same name is assigned the value defined

in the

―Ada_CG.Attribute.ParentDiscriminantValue‖

property.

AsOverriding : the parent discriminant of the

same name is assigned the value defined in the

―Ada_CG.Attribute.ParentDiscriminantValue‖

property.

Ada_CG.Attribute.Renames Holds the name of the variable this attribute is

renaming (only works for static attributes in a

class or for attributes in a package).

Ada_CG.Attribute.SpecificationEpilog Adds an epilog to the attribute specification.

Ada_CG.Attribute.SpecificationProlog Adds a prolog to the attribute specification.

Ada_CG.Attribute.Visibility Determines the visibility of the attribute.

Ada_CG.Type.AnimEnumerationTypeImage Activates usage of Image attribute for

enumerated types when using animation.

Ada_CG.Type.AnimSerializeOperation Overrides generated serialize operation for

animation.

CG.Attribute.Animate Turns off animation of this attribute.

CG.Attribute.Generate Turns off generation of the attribute.

CG.Attribute.IsGuarded Generates a guarded attribute.

CG.Type.Animate Turns off animation of this attribute type.

Class

Ada_CG.Class.AccessTypeName Overrides the access type name.

Ada_CG.Class.ClassWideAccessTypeName Overrides the class-wide access type name.

Ada_CG.Class.DeclarationPosition Applicable to nested classes only.

Determines declaration position relatively to the

section (public part of spec, private part of spec,

body) it is declared in and to the ―virtual‖ location

of the class record type if it is/was declared in this

section.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 205/220

Element

<Property> <Description>

Ada_CG.Class.Final Makes the class record non-―tagged‖.

Ada_CG.Class.GenerateAccessType Controls the generation of the access type.

Ada_CG.Class.GenerateClassWideAccessT

ype

Controls the generation of the class-wide access

type.

Ada_CG.Class.GenerateRecordType Turns off the generation of the record type.

Ada_CG.Class.ImplementationEpilog Adds an epilog to the package body.

Ada_CG.Class.ImplementationPragmas Holds user-defined pragmas to generate in body.

Ada_CG.Class.ImplementationPragmasInCo

ntextClause

Holds user-defined pragmas to generate in

context clause of body.

Ada_CG.Class.ImplementationProlog Adds a prolog to the package body.

Ada_CG.Class.InitializationCode Adds initialization code in the class package

body.

Ada_CG.Class.IsLimited Indicates if the record type is to be generated as

limited.

Ada_CG.Class.IsNested Indicates if the class is to be generated as a

nested package.

Ada_CG.Class.IsPrivate Indicates if the class is to be generated as a

private package.

Ada_CG.Class.IsStatic This property indicates whether the class is a

regular class (Unchecked) or a static class

(Checked).

A static class has no record type and all its

attributes and operation are static. The parameter

"this" is never generated

Ada_CG.Class.NestingVisibility Indicates where in the nesting package the

specification of the nested package should be

generated.

Ada_CG.Class.OptimizeStatechartsWithoutE

ventsMemoryAllocation

Controls whether the generated statechart code

will use dynamic memory allocation or not on

statecharts that use only triggered operations.

Ada_CG.Class.RecordTypeName Overrides the generated record type name.

Ada_CG.Class.RelativeEventDataRecordTyp

eComponentsNaming

Enables relative naming of event data record type

components representing events and triggered

operations parameters. If set to true, there shall

be no events or triggered operations sharing an

argument name, as they would generate record

components with the same name, which would be

uncompilable.

When using triggered operations in a statechart,

this property should be modified at the class level.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 206/220

Element

<Property> <Description>

Ada_CG.Class.Renames Holds the name of the class or package this class

is renaming.

Ada_CG.Class.SpecificationEpilog Adds an epilog to the package specification.

Ada_CG.Class.SpecificationPragmas Holds user-defined pragmas to generate in spec.

Ada_CG.Class.SpecificationPragmasInConte

xtClause

Holds user-defined pragmas to generate in

context clause of spec.

Ada_CG.Class.SpecificationProlog Adds a prolog to the package specification.

Ada_CG.Class.Visibility Determines the location of the record type.

Ada_CG.File.ImplementationFooter Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader Overrides the generated implementation header.

Ada_CG.File.SpecificationFooter Overrides the generated specification footer.

Ada_CG.File.SpecificationHeader Overrides the generated specification header.

CG::File::InvokePostProcessor Runs a post-processing utility on the code that is

generated by Rational Rhapsody. For example,

you could run a ―beautify‖ program to get a

specific coding style.

Ada_CG.Operation.AlphabeticalSort Controls alphabetical sorting of operations on

generation.

Ada_CG.Operation.IsEntry Determines if the operation is a task entry or a

regular operation in <<AdaTask>> and

<<AdaTaskType>> classes.

Ada_CG.Operation.ThisName Modifies the name of the ―this‖ parameter for

instance level operations.

Ada_CG.Operation.VirtualMethodGeneration

Scheme

Enables backward compatibility mode for

methods of interface and abstract classes.

CG.Class.Concurrency Determines if the class is active.

CG.Class.ImplementStatechart Controls the generation of statechart code for this

class.

CG.Class.UseAsExternal Turns off generation for this object.

CG.Type.Animate Turns off animation for this object.

SPARK.Class.ExaminerLevelBody Sets Examiner level for this class body.

SPARK.Class.ExaminerLevelSpec Sets Examiner level for this class spec.

Class <<AdaTask>, <<AdaTaskType>>

Ada_CG.Class.TaskBody Overrides the generated task body.

Ada_CG.Operation.TaskDefaultScheme Sets the task default entry scheme.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 207/220

Element

<Property> <Description>

Ada_CG.Operation.TaskDefaultSchemeDela

yStatement

Sets the task default entry delay statement for

timed default entry scheme.

CG.Class.ActiveThreadPriority Determines the task priority.

Class <<Singleton>>

Ada_CG.Class.SingletonExposeThis

Ada_CG.Class.SingletonInstanceVisibility Controls where the singleton unique instance is

generated. Available values are :

o Body(default)

o Private

Component

Ada_CG.Component.AdaVersion Sets the code style to be Ada 83.

Ada_CG.Component.UseAdaFramework Selects between the Ada 83, Ada 95, and

ravenscar compatible Ada 95 frameworks.

Ada_CG.Component.UseBoochComponents Selects between the Booch 83 and 95

components to be used for collections.

Ada_CG.Component.RespectCodeLayout Enables code order respect

Ada_CG.Configuration.DefaultActiveGenerati

on

Determines the generation of the Default Active

class.

Ada_CG.File.ImplementationFooter Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader Overrides the generated implementation header

Ada_CG.File.SpecificationFooter Overrides the generated specification footer

Ada_CG.File.SpecificationHeader Overrides the generated specification header

Configuration

Ada_CG.Configuration.ImplementationProlog Adds a prolog to the generated entrypoint.

Ada_CG.Configuration.ImplementationEpilog Adds an epilog to the generated entrypoint.

Ada_CG.Configuration.GenerateAnnotations

ForNonSPARKConfigurations

Enables generation of SPARK annotations even if

active environment is not SPARK. This is only

effective if SPARK profle is loaded.

Ada_CG.Configuration.LocalVariablesDeclar

ation

Provides the local variables for auto-generated

entrypoint.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 208/220

Element

<Property> <Description>

Ada_CG::Configuration::DescriptionBeginLin

e

This property specifies the prefix for the

beginning of comment lines in the generated

code. This functionality uses a documentation

system (such as Doxygen), which looks for a

certain prefix to produce the documentation.

 This property affects only the code that is

generated for descriptions of model elements;

other auto-generated comments are not affected.

 The default value is ―--―

Ada_CG::Configuration::DescriptionEndLine This property specifies the prefix for the end of

comment lines in the generated code. This

functionality uses a documentation system (such

as Doxygen), which looks for a certain prefix to

produce the documentation.

 This property affects only the code that is

generated for descriptions of model elements;

other auto-generated comments are not affected.

 The default value is ――

Ada_CG.File.ImplementationFooter Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader Overrides the generated implementation header

Ada_CG.File.SpecificationFooter Overrides the generated specification footer

Ada_CG.File.SpecificationHeader Overrides the generated specification header

Ada_CG.Relation.ObjectInitialization Determines what kind of initialization shall occur

for configuration‘s initial instances

CG.Configuration.GenerationDirectoryPerMo

delComponent

Determines if each package will be generated

into its own subdirectory.

This property is obsolete. It is replaced by

CG.Package.GenerateDirectory

CG.Configuration.LineWrapLength Specifies the length of the code line generated

during code generation.

Dependency

Ada_CG.Dependency.ImplementationEpilog Adds an epilog to the resulting with clause (if any)

in package body.

Ada_CG.Dependency.ImplementationProlog Adds a prolog to the resulting with clause (if any)

in package body.

Ada_CG.Dependency.SpecificationEpilog Adds an epilog to the resulting with clause (if any)

in package specification.

Ada_CG.Dependency.SpecificationProlog Adds a prolog to the resulting with clause (if any)

in package specification.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 209/220

Element

<Property> <Description>

CG.Dependency.GenerateRelationWithActor

s

Determines generation when target is an actor.

CG.Dependency.UsageType Determines the location (package specification or

package implementation) of the ―With‖ and

optional ―Use‖ or ―Use Type‖ statements.‖

Dependency <<Renames>>

CG.Dependency.UsageType For <<Renames>> dependencies this property is

only applicable to dependencies between

operations, it controls whether the operation is

―renaming as specification‖ or ―renaming as body‖

Dependency <<Usage>>

Ada_CG.Dependency.AccessTypeUsage Controls whether the actual type referred to in a

use type clause is the class record type, the

regular access type, or the class-wide access

type. Only works if the type is a class.

Ada_CG.Dependency.CreateUseStatement Creates a ―Use‖ or ―Use Type‖ statement.

Ada_CG.Dependency.GeneratePragmaElab

orate

Generated an ―elaborate‖ pragma fo the supplier

class or package in the client class or package

Ada_CG.Dependency.GeneratePragmaElab

orateAll

Generated a ―preelaborate‖ pragma fo the

supplier class or package in the client class or

package

Ada_CG.Dependency.UsesStatementPositio

n

Specifies whether the ―Use‖ or ―Use type‖ clause

should be generated in the package context

clause (before the ―package‖ keyword) or in the

package declaration or body (after the ‖package‖

keyword)

Event

Ada_CG.Class.RelativeEventDataRecordTyp

eComponentsNaming

Enables relative naming of event data record type

components representing events and triggered

operations parameters. If set to true, there shall

be no events or triggered operations sharing an

argument name, as they would generate record

components with the same name, which would be

uncompilable.

When using events in a statechart, this property

should be modified on the events being used.

CG.Event.Animate Turns off animation of the event.

Generalization

CG.Generalization.Generate Turns off generation.

Operation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 210/220

Element

<Property> <Description>

Ada_CG.Operation.DeclarationPosition Determines declaration position relatively to the

section (public part of spec, private part of spec,

body) it is declared in and to the ―virtual‖ location

of the class record type if it is/was declared in this

section.

Ada_CG.Operation.EntryCondition Specifies the task entry guard.

Ada_CG.Operation.GenerateForwardDeclara

tionInPackageBody

Controls generation of forward declaration of an

operation defined as ―private‖.

Ada_CG.Operation.GenerateImplementation Controls generation of body for the operation

Ada_CG.Operation.ImplementationEpilog Adds an epilog to the package body.

Ada_CG.Operation.ImplementationName Overrides the name to be used for the operation

in the generated code. Useful as a workaround

for defining operations that differ only by their

return type in a same class or package.

Ada_CG.Operation.ImplementationProlog Adds a prolog to the package body.

Ada_CG.Operation.Inline Indicates to inline the operation.

Ada_CG.Operation.IsAnimationHelper Indicates if this operation should only be

generated when animating model.

Ada_CG.Operation.IsEntry Determines if the operation is a task entry or a

regular operation in <<AdaTask>> and

<<AdaTaskType>> classes.

Ada_CG.Operation.Kind Determines if the operation is abstract.

Ada_CG.Operation.LocalVariablesDeclaratio

n

Provides the local variables.

Ada_CG.Operation.PreserveUserCode Controls the generation of tags that allow to

preserve user changes to a file over successive

generations.

Ada_CG.Operation.Renames Holds the name of the operation this operation is

renaming (signatures of operations must match).

Ada_CG.Operation.RenamesKind Specifies if the renaming of the operation

designated in the ―Ada_CG.Operation.Renames‖

property is ―as specification‖ or ―as body‖.

Ada_CG.Operation.ReturnTypeByAccess Controls whether the return type is generated as

an access type, a class-wide access type or a

regular type or not. Effective only if the return type

is a class.

Ada_CG.Operation.SpecificationEpilog Adds an epilog to the package specification.

Ada_CG.Operation.SpecificationProlog Adds a prolog to the package specification.

Ada_CG.Operation.ThisAccessTypeUsage Controls whether the actual type for the ―this‖

parameter is the class record type, the regular

access type, or the class-wide access type.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 211/220

Element

<Property> <Description>

Ada_CG.Operation.ThisByAccess Sets passing mode for this parameter to ―access‖

if set

Ada_CG.Operation.ThisName Modifies the name of the ―this‖ parameter for

instance level operations.

Ada_CG.Operation.ThisPassingMode When set to a value different from ―FromGUI‖,
overrides the setting of the ―constant‖ checkbox of
an operation and the one of the
―Ada_CG.Operation.ThisByAccess‖ property.

Ada_CG.Operation.VirtualMethodGeneration

Scheme

Enables backward compatibility mode for

methods of interface and abstract classes.

CG.Operation.Animate Turns off animation for this operation.

CG.Operation.Generate Turns off generation for this operation.

CG.Operation.Concurrency Sets the operation to be guarded.

Package

Ada_CG.File.ImplementationFooter Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader Overrides the generated implementation header

Ada_CG.File.SpecificationFooter Overrides the generated specification footer

Ada_CG.File.SpecificationHeader Overrides the generated specification header

Ada_CG.Operation.AlphabeticalSort Controls alphabetical sorting of operations on

generation

Ada_CG.Package.ContributesToNamespace Turns off participation of this package in its

contained elements namespaces.

Ada_CG.Package.DeclarationPosition Applicable to nested packages only.

Determines declaration position relatively to the

section (public part of spec, private part of spec,

body) it is declared in and to the ―virtual‖ location

of the class record type if it is/was declared in this

section.

Ada_CG.Package.ImplementationEpilog Adds an epilog to the package body.

Ada_CG.Package.ImplementationPragmas Holds user-defined pragmas to generate in body

Ada_CG.Package.ImplementationPragmasIn

ContextClause

Holds user-defined pragmas to generate in

context clause of body

Ada_CG.Package.ImplementationProlog Adds a prolog to the package body.

Ada_CG.Package.InitializationCode Adds initialization code in the package body

Ada_CG.Package.IsNested Indicates if the package is to be generated as a

nested package

Ada_CG.Package.IsPrivate Indicates if the package is to be generated as a

private package

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 212/220

Element

<Property> <Description>

Ada_CG.Package.NestingVisibility Indicates where in the nesting package the

specification of the nested package should be

generated

Ada_CG.Package.Renames Holds the name of the package this package is

renaming

Ada_CG.Package.SpecificationEpilog Adds an epilog to the package specification.

Ada_CG.Package.SpecificationPragmas Holds user-defined pragmas to generate in spec

Ada_CG.Package.SpecificationPragmasInCo

ntextClause

Holds user-defined pragmas to generate in

context clause of spec

Ada_CG.Package.SpecificationProlog Adds a prolog to the package specification.

Ada_CG.Relation.ObjectInitialization Determines what kind of initialization shall occur

for package instances

Ada_CG.Package.UseAda83Framework If ―True‖, then generated code for statecharts,

events and guarded operations and attributes will

use Ada 83 constructs. If ―False‖, Ada 95

constructs will be used.

CG.Package.UseAsExternal Turns off generation of this package and of its

contained elements.

CG.Package.GeneratePackageCode Turns off generation of this package, but not of its

contained elements.

CG.Type.Animate Turns of animation of this package.

SPARK.Package.ExaminerLevelBody Sets Examiner level for this package body

SPARK.Package.ExaminerLevelSpec Sets Examiner level for this package spec

Port

Ada_CG.Port.Generate Turns off generation.

Project

Ada_CG.File.ImplementationFooter Overrides the generated implementation footer.

Ada_CG.File.ImplementationHeader Overrides the generated implementation header

Ada_CG.File.SpecificationFooter Overrides the generated specification footer

Ada_CG.File.SpecificationHeader Overrides the generated specification header

Relation

Ada_CG.Relation.BidirectionalRelationsSche

me

Controls how bidirectional relations are
implemented

Possible values are :

 IntermediateParentClasses

 SubtypingAndRenaming (default)

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 213/220

Element

<Property> <Description>

Ada_CG.Relation.InitializeComposition Controls how a composition relation is initialized.

Possible values are :

 InInitializer (default)

 InRecordType

 None

Ada_CG.Relation.IsAliased Determines if relation is aliased

Ada_CG.Relation.Visibility Sets the visibility of the relation getter and setter.

Ada_CG.Relation.ObjectInitialization Determines what kind of initialization shall occur

for instances

CG.Relation.Generate Turns off generation of this relation.

CG.Relation.GenerateRelationWithActors Determines generation when target is an actor.

CG.Relation.GetGenerate Turns off generation of the relation getter.

CG.Relation.Implementation Chooses the relation implementation style.

When set to ―User‖, no accessors are generated

for the relation.

CG.Relation.SetGenerate Turns off generation of the relation setter.

OMContainers.Access.AccessKind For relations with the

CG.Relation.Implementation property set to

―Default‖, this property controls whether a regular

or a class-wide access type will be used as the

relation implementation type.

OMContainers.User.CType If CG.Relation.Implementation is set to ―User‖,

the contents of this property will be used as the

type to generate in the declaration of the record

component holding the relation.

This property supports the following Rhapsody
keywords :

o cname : returns the name of the
association end

o RelationTargetType : returns the name
of the type of the relation target

Type

Ada_CG.Type.AccessTypeUsage For typedef types, indicates if the basic type is

referred to as an access type, a class-wide

access type or a regular type or not. Effective

only if the basic type is a class.

Ada_CG.Type.AnimEnumerationTypeImage Activates usage of Image attribute for

enumerated types when using animation

Ada_CG.Type.AnimSerializeOperation Overrides generated serialize operation for

animation

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 214/220

Element

<Property> <Description>

Ada_CG.Type.DeclarationPosition Determines type declaration position relatively to

the section (public part of spec, private part of

spec, body) it is declared in and to the ―virtual‖

location of the class record type if it is/was

declared in this section.

Ada_CG.Type.Final Makes the type record non-―tagged‖. Only

applicable to struct types.

Ada_CG.Type.LanguageMap Holds the Ada declaration for Rhapsody

Language Independent Types

Ada_CG.Type.Visibility Sets the visibility of the type.

CG.Type.Animate Turns off the animation of this type.

CG.Type.UseAsExternal Turns off generation of this type.

Statechart

Ada_CG.Statechart.HistoryConnectorDepth Controls the depth of history connectors. Only

effective when using the Ada 95 Behavioral

framework. History connectors are always

shallow when using the Ada 83 framework.

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 215/220

Appendix B: Tags for IBM® Rational® Rhapsody®

Developer for Ada

Element

<Profile>.<MetaType>.<Tag> <Description>

Attribute

AdaCodeGeneration.Attribute.generatePrag

maAtomic

Generates an ―atomic‖ pragma for this

attribute/variable. Only works for package

variables or static class attributes.

AdaCodeGeneration.Attribute.generatePrag

maVolatile

Generates a ―volatile‖ pragma for this

attribute/variable. Only works for package

variables or static class attributes.

AdaCodeGeneration.Attribute.representation

Clauses

Contains the representation clauses to be

generated for this attribute. Note that this is only

applicable for attributes defined on a package

and for static attributes defined on classes.

SPARK.Attribute.IsAbstract Controls the generation of the Ada declaration for

the attribute. Used to model abstract own

variables

SPARK.Attribute.IsInitialized If this tag is set to true, the attribute name will be

added to the initialization annotation of the class

or package it is defined in

SPARK.Attribute.OwnMode If this attribute is an own variable, controls the

mode used in the own annotation of the class or

package it is defined in

SPARK.Attribute.OwnKind Controls the participation of the own attribute to

the own annotation of the class or package it is

defined in

Class

AdaCodeGeneration.Attribute.generatePrag

maAtomic

Generates an ―atomic‖ pragma for this class

record type.

AdaCodeGeneration.Class.generatePragma

ElaborateBody

Generates an ―elaborate‖ pragma for this class

AdaCodeGeneration.Class.generatePragma

Preelaborate

Generates a ―preelaborate‖ pragma for this class

AdaCodeGeneration.Class.generatePragma

Pure

Generates a ―pure‖ pragma for this class

AdaCodeGeneration.Attribute.generatePrag

maVolatile

Generates a ―volatile‖ pragma for this class

record type.

AdaCodeGeneration.Class.representationCla

uses

Contains the representation clauses to be

generated for this class

SPARK.Class.HideBody Controls the generation of the hide annotation for

this class package body

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 216/220

Element

<Profile>.<MetaType>.<Tag> <Description>

SPARK.Class.HideElaborationCode Controls the generation of the hide annotation for

this class package elaboration code

SPARK.Class.HidePrivatePart Controls the generation of the hide annotation for

this class package private part

SPARK.Class.Inherit Contains the comma separated list of packages

this class is inheriting from

SPARK.Class.Initializes Contains the comma separated list of own

variables this class is initializing

SPARK.Class.OwnSpec Contains the list of own variables (with optional

modes and types) to be generated in the own

annotation of this class package spec

SPARK.Class.OwnBody Contains the list of own variables (with optional

modes and types) to be generated in the own

annotation of this class package body

Dependency

SPARK.Dependency.Inherit Indicates if this <<usage>> dependency shall also

generate an inherit annotation

SPARK.Dependency.GlobalMode Indicates the mode for the supplier variable of

this <<SPARK_Global>> dependency

Operation

SPARK.Operation.DerivesBody Enter the dependency clauses for the operation

body derives annotation in this tag.

SPARK.Operation.DerivesSpec Enter the dependency clauses for the operation

specification derives annotation in this tag.

SPARK.Operation.GlobalBody Enter the global variables and their usage mode

for this operation body in this tag

SPARK.Operation.GlobalSpes Enter the global variables and their usage mode

for this operation specification in this tag

SPARK.Operation.HideBody set this tag to true if you want the body for this

operation to be hidden from the examiner

SPARK.Operation.PostConditionBody Use this tag to capture the postcondition

annotation for a procedure body or the return

annotation for a function body

SPARK.Operation.PostConditionSpec Use this tag to capture the postcondition

annotation for a procedure specification or the

return annotation for a function specification

SPARK.Operation.PreConditionBody Use this tag to capture the precondition

annotation for a procedure or function body

SPARK.Operation.PreConditionSpec Use this tag to capture the precondition

annotation for a procedure or function

specification

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 217/220

Element

<Profile>.<MetaType>.<Tag> <Description>

Package

AdaCodeGeneration.Package.generatePrag

maElaborateBody

Generates an ―elaborate‖ pragma for this

package

AdaCodeGeneration.Package.generatePrag

maPreelaborate

Generates a ―preelaborate‖ pragma for this

package

AdaCodeGeneration.Package.generatePrag

maPure

Generates a ―pure‖ pragma for this package

SPARK.Class.HideBody Controls the generation of the hide annotation for

this package body

SPARK.Class.HideElaborationCode Controls the generation of the hide annotation for

this package elaboration code

SPARK.Class.HidePrivatePart Controls the generation of the hide annotation for

this package private part

SPARK.Class.Inherit Contains the comma separated list of packages

this package is inheriting from

SPARK.Class.Initializes Contains the comma separated list of own

variables this package is initializing

SPARK.Class.OwnSpec Contains the list of own variables (with optional

modes and types) to be generated in the own

annotation of this package spec

SPARK.Class.OwnBody Contains the list of own variables (with optional

modes and types) to be generated in the own

annotation of this package body

Type

AdaCodeGeneration.Attribute.generatePrag

maAtomic

Generates an ―atomic‖ pragma for this type.

AdaCodeGeneration.Attribute.generatePrag

maVolatile

Generates a ―volatile‖ pragma for this type.

AdaCodeGeneration.Type.representationCla

uses

Contains the representation clauses to be

generated for this type

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 218/220

Appendix C: Stereotypes for IBM® Rational®

Rhapsody® Developer for Ada

Stereotype Applicable to <Description>

<Profile>

abstract Class

AdaProtectedObject Class

AdaProtectedType Class

AdaTask Class

AdaTaskType Class

Container Package Indicates that a package

does not contribute to the

namespace of its

contained elements.

Discriminant Attribute Only applicable to struct

attributes and to class

instance-level attributes.

This stereotype specifies

that the attribute shall be

generated as a record

type discriminant instead

of a record type

component.

entry Operation

entrypoint Class

HSER Operation Stands for Highly

Synchronous

Interface Class

LSER Operation Stands for Loosely

Synchronous

Parent_Instantiation Dependency Indicates that the

instantiation DI for a

derived template class D

depends on a given

instantiation BI of the

base class B of D

Renames Dependency Indicates that a client

variable, operation, class

or package is just a

renaming of its supplier.

separate Operation

Singleton

IBM® Rational® Rhapsody® Developer for Ada - User Guide Page 219/220

TaskDefaultAction Operation

Usage Dependency

SPARK

INFORMED_Boundary_Variable_Package Class

Package

INFORMED_Main_Program Class

INFORMED_Type_Package Class

Package

INFORMED_Utility_Package Package

INFORMED_Variable_Package Class

Package

SPARK_Global Dependency

SPARK_Initializes Dependency

SPARK_Proof Actor

Class

Operation

Type

SPARK_Refined_By Dependency

