
    

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

  Limitations 

 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 



 

 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 



 

 

 

 

 

Rhapsody®  
 
 
 
 
IBM® Rational® Rhapsody®

Automatic Test Generation  
Add On 
 
Limitations  

 
 
 
 

 
Release 3.6 

 
 
 
 
 
 

 
 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 



 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

 
License Agreement 
 
No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated 
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, 
optical, chemical, manual or otherwise, without the prior written permission of the copyright owner, 
BTC Embedded Systems AG.  
  
The information in this publication is subject to change without notice, and BTC Embedded Systems 
AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed 
or implied, are made regarding Rhapsody software and its fitness for any particular purpose.  
 
 
Trademarks  
 
IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and 
IBM® Rational® Rhapsody® TestConductor Add On are registered trademarks of IBM Corporation.  
 
All other product or company names mentioned herein may be trademarks or registered trademarks of 
their respective owners.  
 
© Copyright 2000-2009 BTC Embedded Systems AG. All rights reserved.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

 

 



 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

Contents 
 
 

Preface ....................................................................................................................................... 6 
Contacting IBM® Rational® Software Support .............................................................................. 6 

Overview..................................................................................................................................... 7 
General Limitation .................................................................................................................... 7 
Limitations concerning Rhapsody Features ............................................................................ 7 

Ports............................................................................................................................................................... 7 
Blocks and Parts ............................................................................................................................................ 7 
Template Classes ........................................................................................................................................... 7 
Stable States of the SUT................................................................................................................................ 7 
RhapsodyInC, RhapsodyInAda, and RhapsodyInJava. ................................................................................. 7 
Argument Types of Provided Messages ........................................................................................................ 8 
Libraries......................................................................................................................................................... 9 
Active Objects ............................................................................................................................................... 9 
Rhapsody Properties ...................................................................................................................................... 9 
Template Classes ......................................................................................................................................... 10 

Limitations regarding new features in Rhapsody 7.0 ............................................................ 10 
Multiple Stereotypes.................................................................................................................................... 10 
Components in Packages ............................................................................................................................. 10 
Unit Unloading/Loading.............................................................................................................................. 10 
“Mixed Language” models.......................................................................................................................... 10 

C++ Construct Translation ..................................................................................................... 11 

Not Supported C++ Constructs ...................................................................................... 11 
Pointer to members...................................................................................................................................... 11 
Type declarations within functions.............................................................................................................. 11 
asm()-statements.......................................................................................................................................... 11 
'dynamic_cast' expression-operations.......................................................................................................... 11 
Bit-fields...................................................................................................................................................... 12 
Ellipsis ......................................................................................................................................................... 12 
typeid()-expressions .................................................................................................................................... 12 
Delayed destruction of temporaries, if they are bound to a static or global reference................................. 12 
Member-operator functions '|', '|=' and '||'..................................................................................................... 12 
Extern variables of class-type with an extern constructor ........................................................................... 13 

Not Correctly Translated C++ Constructs....................................................................................... 13 
Class temporaries created under a conditional operator (“?”, “&&”, “||”) when they require destruction .. 13 
Same named (C-)static entities in different .cpp-files ................................................................................. 13 
Casts of integral integer types, which change the value .............................................................................. 14 

Wrongly Translated Language Constructs with Warnings ............................................................ 14 
Initialization of virtual base class-parts ....................................................................................................... 14 
Types ‘unsigned int’, 'unsigned long', 'long long', and 'unsigned long long' ............................................... 15 
Types 'double' and 'long double' .................................................................................................................. 15 

C++ Standard Library Restrictions ................................................................................................. 15 
Other Compilation Issues ................................................................................................................ 16 

Exceptions ................................................................................................................................................... 16 
Union-types ................................................................................................................................................. 16 
Floating-point constants .............................................................................................................................. 16 

Abstraction Scenarios ...................................................................................................................... 16 
 
 
 



 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

Preface 
Welcome to the limitations document for IBM® Rational® Rhapsody® Automatic 
Test Generation Add On (Rhapsody ATG). Rhapsody ATG is a test case 
generation tool using standard Unified Modeling Language™ (UML™) design 
notations. Using ATG, you can automatically generate test suites and perform test 
execution for your applications developed with the Rhapsody in C++ design tool at 
any stage in your development cycle. 

The typical UML development process (such as the Rapid Object-Oriented 
Process for Embedded Systems (ROPES)) is iterative, starting with an early, fairly 
abstract version and progressing to more and more concrete prototypes. To test a 
System Under Test, use ATG in your development process to do unit testing, 
integration testing, or regression testing. 

Rhapsody ATG is complemented by Rhapsody® TestConductor. TestConductor 
automatically generates test monitors and test drivers from Rhapsody sequence 
diagrams (SDs). During automated test execution, the generated monitors 
determine whether the executed model satisfies the selected SDs. ATG generates 
test cases that can be exported to UML sequence diagrams in order to execute test 
cases with TestConductor. 

Contacting IBM® Rational® Software Support 
IBM Rational Software Support provides you with technical assistance. The IBM 
Rational Software Support Home page for Rational products can be found at 
http://www.ibm.com/software/rational/support/. 

For contact information and guidelines or reference materials that you need for 
support, read the IBM Software Support Handbook.  

For Rational software product news, events, and other information, visit the IBM 
Rational Software Web site. 

Voice support is available to all current contract holders by dialing a telephone 
number in your country (where available). For specific country phone numbers, go 
to http://www.ibm.com/planetwide. 

Before you contact IBM Rational Software Support, gather the background 
information that you will need to describe your problem. When describing a 
problem to an IBM software support specialist, be as specific as possible and 
include all relevant background information so that the specialist can help you 
solve the problem efficiently. To save time, know the answers to these questions:  

What software versions were you running when the problem occurred?  

Do you have logs, traces, or messages that are related to the problem?  

Can you reproduce the problem? If so, what steps do you take to reproduce it?  

Is there a workaround for the problem? If so, be prepared to describe the 
workaround.  

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www.ibm.com/planetwide


 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

Overview 
 
Rhapsody ATG analyses a Rhapsody UML model and generates test cases. For test case 
generation, ATG parses and analyses the Rhapsody generated C++ code. This document lists 
the known limitations of the ATG version V3.0. 

General Limitation 
If a model is deeply nested in a folder hierarchy then ATG cannot generate test cases. This 
problem occurs due to a known Windows limitation regarding the supported length of path 
names (256 characters) which is not yet overcome by ATG. A workaround is to move the 
model to a location which is on a higher level in the folder hierarchy. 

Limitations concerning Rhapsody Features 

Ports 
 
Although ATG supports Rhapsody ports, it not yet considers the provided/required interfaces 
specified in the port’s contract for ATG test case generation. Information about interfaces 
must be specified with stereotypes and/or in the ATG UI. 

Blocks and Parts 
Models may contain blocks and parts. ATG can generate test cases, but the translation of test 
cases into sequence diagrams may not work correctly in some rare cases. 
 

Template Classes 
Models may contain template classes. ATG cannot be applied to models containing template 
classes. 

Stable States of the SUT 
 
ATG generates inputs when the SUT reaches stable states. It might happen that an application 
does not reach a next stable state, for instance due to a statechart that can always fire a new 
transition.  If an application never becomes idle, then ATG will not compute meaningful test 
cases. 
When executing generated test-cases using the Test Conductor tool, sometimes the execution 
may get stuck in status ACTIVE without reporting a failure or having achieved 100% 
coverage of the test-case. In these cases interactively performing a step and continuing the 
execution will force Test Conductor to resume the test-case execution. 

RhapsodyInC, RhapsodyInAda, and RhapsodyInJava. 
RhapsodyInC, RhapsodyInAda, and RhapsodyInJava are not supported. 
 

 



 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

Argument Types of Provided Messages  
 
Provided messages are events, primitive operations, or triggered operations that 
class/component under test provides to its environment (i.e. objects and components that 
interact with it). For instance, if a class C provides an operation foo(int a, char b, double c), 
then other components can invoke this operation on C with specific values for a, b, and c. 
ATG simulates such calls for test case generation with appropriate values for a, b, and c.  
 
The following Rhapsody predefined types for message arguments are supported. 
 
bool 
char 
char* 
double  
int 
long 
long double 
OMBoolean 
OMString 
RhpBoolean 
RhpCharacter 

RhpInteger 
RhpPositive 
RhpReal 
RhpString 
RhpUnlimitedNatural 
short 
unsigned char 
unsigned int 
unsigned long 
unsigned short

 
 
The following types are not supported: 
 
RhpAddress 
RhpVoid 
Void  
Void * 
 
Also supported are typedefs that use these predefined types and enumeration types. Not 
supported are for instance arguments with pointer types, e.g. op(user_type *a). ATG cannot 
yet generate values for pointer arguments of provided messages.  
This limitation also applies for user-defined enumeration types. Qua default, Rhapsody  
represents operation arguments of user-defined enumeration types by references as arguments. 
Such references have to be treated as pointers by ATG, unless property CPP_CG::Type::In 
redefines the representation of such arguments. In general, if a Rhapsody type (model-view) 
turns into a reference- or pointer type at code-view, this type is unsupported to be used as 
message argument for a provided message. Additionally, ATG does in general not support 
structured types (class/struct/unions) to be used as argument-types of interface-functions 
(even, if structured objects are directly passed to the function, without an indirection by 
pointers or references). 
 
Another limitation regarding types concerns empty-strings of type OMString, RhpString, and 
char*. Rhapsody's Sequence Diagrams are currently not capable of representing empty 
strings, i.e., even though ATG generates test-cases regarding empty-strings correctly, these 
test-cases cannot be executed successfully using TestConductor unless empty strings are 
replaced by non-empty strings.     
 
Variables and constants of integer types (cf. section 2.9) are translated wrongly into ATG, if 
their value is outside of the range of signed 32-bit integer. In addition, ATG could only 



 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

operate on signed 32-bit integer values. Therefore the compiler could be configured such that 
a warning-message is printed, if expressions exists which have these kind of types. 
 
Please note that these limitations apply only to messages that are provided to other 
components by the class/component under test. It is not an issue if pointer arguments are used 
inside a class/component under test. 
 
For the ATG interface definition, a value of type ‘wchar_t’ or ‘char’ can only be specified by 
an integer constant, but not by a character constant of the form “L’<character>’” or 
“’<character>’”. A value of type ‘float’ can only be specified by a floating constant of type 
double, but not by a floating constant of type float (that is, the suffix ‘f’ or ‘F’ must be 
omitted). 
  

Libraries 
  
As mentioned above, ATG parses and analyses the Rhapsody generated C++ code in order to 
generate test cases. If the complete behavior is specified in the model, then ATG generates 
test cases. Note that Rhapsody users can also add libraries to the application when the 
application is linked in order to create an executable. Source code of linked libraries is usually 
not available. On the other hand, ATG requires the full source code for the analysis. 
Otherwise ATG cannot analyze the full behavior. This means, if some behavior is linked to 
the application under test with compiled libraries, then ATG cannot yet analyze the code and 
cannot generate test cases.  
ATG will generate stub source code in order to provide default behavior for functions that are 
implemented in libraries. The stub code is used for actual test case generation. Users can 
modify and extend the stub code. 
 
Please note that test case execution can clearly be done on the production code where libraries 
are linked to the class/component under test. 
 

Active Objects 
Rhapsody ATG can handle programs that use up to 10 active objects, i.e., classes with 
concurrency ‘active’. If more then 10 active objects are alive at once, the achieved coverage 
may be low. 
 

Rhapsody Properties 
Rhapsody ATG uses own versions of the Rhapsody framework classes and functions. 
Additionally, the ATG Rhapsody framework does not contain all classes and functions of the 
original Rhapsody framework. Due to this approach, several values of project properties that 
influence the code that is generated for a Rhapsody model are not supported by ATG. The 
following list contains some restrictions concerning values of several Rhapsody properties:  

 

• CPP_CG::Microsoft::EntryPoint must be set to "main" (the default-value) 
• CG::Configuration::CodeGeneratorTools must be set to “internal” (default) 
• CPP_CG::Configuration::ContainerSet must be set to “OMContainer” (default) 



 

IBM® Rational® Rhapsody® Automatic Test Generation Add On 

• CPP_CG::Microsoft::IsFileNameShort must be unchecked (default) 
• CPP_CG::Microsoft::ImpExtension must be set to “.cpp” (default) 
• CPP_CG::Microsoft::CompileSwitches may not be changed by the user 
• CPP_CG:Class:AdditionalBaseClasses may not be used (default) 
• CPP_CG::Configuration::DefaultSpecificationDirectory may not be changed (default) 
• CPP_CG::Configuration::DefaultImplementationDirectory may not be changed 

(default) 
• CPP_CG::Configuration::EmptyArgumentListName may not be changed (default) 
• CPP_CG::Microsoft::SpecExtension may not be changed (default) 
• CPP_CG::Statechart::StatechartStateOperations may not be changed (default) 
• CPP_CG:Operation:ImplementationName may not be changed (default) 
• CPP_CG::Class::SpecIncludes may only refer to files in the default spec directory 
• CPP_CG::Class::ImpIncludes may only refer to files in the default implementation 

directory 

Template Classes 
Rhapsody Template Classes (that is, Rhapsody Classes of class type ‘Template’) are not 
supported. 

Limitations regarding new features in Rhapsody 7.0  

Multiple Stereotypes 
Only the first stereotype of an element is considered by ATG  

Components in Packages 
Components which reside somewhere inside of packages are not visible for ATG. This 

means that ATG is not applicable for configurations within such components. 

Unit Unloading/Loading 
The results generated by ATG represent results corresponding to the state of the model 

at the time of test case generation. Unloaded model elements are treated the same way 

as deleted model elements.  

“Mixed Language” models 
ATG can only generate test cases for configurations within C++ components opened 

in RhapsodyC++. Even this is currently not working since there is a bug in the COM 

API function IRPConfiguration::needsCodeGeneration (Quintus 93745)  



Rhapsody in C++  Automatic Test Generation Limitations  

C++ Construct Translation 
 
Some C++ language constructs are not yet fully supported by ATG. In the sequel we list the 
known limitations and give some examples. 

Not Supported C++ Constructs 
For a subset of C++ language constructs ATG can not yet perform an appropriate translation 
for the sake of test case generation. If possible ATG applies an automatic abstraction (see 
section Abstraction Scenarios) and simplification such that the compilation continues. This 
section lists the known not supported C++ constructs, provides some examples, and explains 
what kind of error a user will see. 

Pointer to members 
Example 
class C {public: int i;}; 
int C::* ip = &C::i; 
 
Error-message 
No abnormal termination, instead various abstraction warnings possible. 

Type declarations within functions 
Example 
int main() { 
 class C {public: int i;}; /* an explicit type-declaration */ 
 C c; 
 enum E {e1, e2} e;        /* a type-declaration embedded in another declaration */ 
 return e+c.i; 
} 
 
Error-message 
No abnormal termination if the type-declaration is not done in the main()-function (instead an 
abstraction-warning). Otherwise (a type declaration within the main()-function): Abnormal 
termination with error message "Error 224: Unsupported C++ construct (a suitable abstraction 
can not be applied)" 

asm()-statements 
Example 
void f() {asm(";");} 
 
Error-message 
No abnormal termination, instead an abstraction-warning. 

'dynamic_cast' expression-operations 
Example 

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) 
 11 

class C {public: virtual int f();};  

 
 



Rhapsody in C++  Automatic Test Generation Limitations  

class D : public C {public: int j;}; 
D* f () { C c;  return dynamic_cast<D*>(&c);} 
 
Error-message 
No abnormal termination, instead an abstraction-warning. 

Bit-fields 
Example 

struct s { int i:2;} s1; 
void f() { s1.j = s1.j+1; } 
 
Error-message 
No abnormal termination, instead an abstraction-warning. 

Ellipsis 
Example 
void f(int a ...) { 
va_list ap; va_start(ap, a); char* c = va_arg(ap, char*); va_end(ap); 
} 
 
Error-message 
No abnormal termination, instead an abstraction-warning. 

typeid()-expressions 
Example 
#include <typeinfo> 
void f() {int i, j; if (typeid(i)==typeid(j)) i=0;} 
 
Error-message 
No abnormal termination, instead an abstraction-warning. 

Delayed destruction of temporaries, if they are bound to a static or global 
reference 
Example 
class C {public: int i; ~C() {i=0;};}; 
C f(); 
int j() {static C& cr=f();} /* The temporary returned by f has to be destructed delayed */ 
 
Error-message 
"Error 14: Unsupported C++ construct (a suitable abstraction can not be applied)" 
 

Member-operator functions '|', '|=' and '||' 
Examples 
class C {public: int j; void operator|(int i) {j=i;}; }; 
int f() {C c; c.operator|(1);}; 
IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) 
 12 
 

 



Rhapsody in C++  Automatic Test Generation Limitations  

 
Error-message 
Abstraction warning "ABSTRACTION 229: […] Unsupported operator in […]" is reported. 
 

Extern variables of class-type with an extern constructor 
Examples 
class C { 
public: 
  C() {}; 
  C(const C&); /* copy-ctor declared, not defined - that is: extern */ 
}; 
 
extern C c_var; /* extern variable of type C */
Error-message 
An ATG-compile error is reported. 

 

Not Correctly Translated C++ Constructs 
For a subset of C++ language constructs ATG can not yet perform a correct translation for the 
sake of test case generation. This section lists the known not correctly translated C++ 
constructs, provides some examples, and explains the wrong semantics. 

Class temporaries created under a conditional operator (“?”, “&&”, “||”) 
when they require destruction 
Example 

class C {public: int i; ~C() {i=0;}; }; 
C f(); 
void g(int i) { 
int j; 
j = (i ? f().i : 1); /* the creation of a temporary variable for the result of f() depends on 'i' */ 
} 
Wrong semantics 
If a temporary variable, which was created under a conditional operator, would be destructed, 
a warning message is printed. The temporary variable is not destructed. 
 
Error-message 
"No abnormal termination, instead an abstraction-warning" 
 

Same named (C-)static entities in different .cpp-files 
Example 

// a.cpp: 
static int i = 1; 
// b.cpp: 
static int i = 2; 

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) 
 13 
 

 



Rhapsody in C++  Automatic Test Generation Limitations  

Wrong semantics 
The compiler will print an error-message due to multiple definitions of 'i'. 
 

Casts of integral integer types, which change the value 
Examples 
short s = -1; 
unsigned int ui = (unsigned int)s; 
unsigned int ui2=INT_MAX; 
unsigned char uc=(unsigned char)ui2; /* value-change, if: UCHAR_MAX < INT_MAX */ 
 
Wrong semantics 
All integer-variables are internally represented as a 32-bit value. Different integer-sizes are 
not taken into account and integer-casts do not change the value in ATG. 
 
 
 

Wrongly Translated Language Constructs with Warnings 
For a subset of C++ language constructs ATG can not yet perform a correct translation for the 
sake of test case generation, and generates a warning. This section lists the known not 
correctly translated C++ constructs, the warnings, provides some examples, and explains the 
wrong semantics. 
 

Initialization of virtual base class-parts 
Virtual base classes are not fully supported in case of multiple inheritance (in 'diamond'-
form), if the virtual base class has defined constructors or destructors: 
 
Example 
class A { public: A() {}; } 
class B : public virtual A { public: B() {}; } 
class C : public virtual A { public: C() {}; } 
class D : public A, public B {public: D() {}; } 
 
Wrong semantics 
The constructor of A is not called from the constructor of D, instead it is called from B and C 
(that is, it is called twice). The same wrong semantics exists for destructors. 
 
Warning message 
A warning message “Object to be initialized is a virtual base class, not correctly implemented 
yet (the con-/destructor of a virtual base class is possibly called more than once)” is generated. 
This message is also printed for initializations of virtual base classes, if no 'diamond'-form 
exists (that is, if it does not result in wrong behavior). 
 

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) 
 14 
 

 



Rhapsody in C++  Automatic Test Generation Limitations  

Types ‘unsigned int’, 'unsigned long', 'long long', and 'unsigned long 
long' 
Constants of these types  are translated wrongly into ATG, if the value is outside of the range 
of signed 32-bit integer. In addition, ATG could only operate on signed 32-bit integer values.  
Example 
unsigned long i = ULONG_MAX; /* 0xffffffffUL */ 
 
Wrong semantics 
The representation is truncated to 32-bit (if the previous representation has more bits) and 
after that the representation is interpreted as 32-bit signed integer. 
 
Warning message 
A warning message “Possible truncation from <type> to long” is generated, where <type> is 
‘unsigned int’, 'unsigned long', 'long long' or 'unsigned long long' respectively. This warning-
message is printed, if constants of these types occur. 
 

Types 'double' and 'long double' 
Constants of these types are translated wrong into ATG, if the corresponding value can not be 
represented in the float-range. 
 
Example 
double d = DBL_MAX; 
 
Wrong semantics 
The value is changed corresponding to a cast-operation from 'double' respectively 'long 
double' to 'float' (the semantics of the cast corresponds to the semantics defined by the 
Microsoft Visual Studio .NET 2003-compiler). 
 
Warning message 
A warning message “Possible truncation from <type> to float” is generated, where <type> is 
'double' or 'long double' respectively. 
 
 

C++ Standard Library Restrictions 
Due to the reported restrictions (v. Wrongly Translated Language Constructs with Warnings, 
Not Correctly Translated C++ Constructs, Not Supported C++ Constructs) several elements 
provided by the C++ Standard Library (including the Standard C Library) may not work 
correctly. A detailed list of the support of  C++ Standard Library functions can be found in 
two separated documents 

• CppStdLibSupport_VC60.csv 
• CppStdLibSupport_NET2003.csv 

Each of these documents contains a table with all functions defined in the official ISO C++ 
Library standard. Each line of the table contains several rows that show if and how the 
function described in that line is supported by ATG for the two compile environments 

• Visual Studio 6.0 
• Visual C++ .NET 2003 

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) 
 15 
 

 



Rhapsody in C++  Automatic Test Generation Limitations  

 In ATG we distinguish between 3 kinds of support of a function: 
• Supported, meaning that one can use the function in ATG and ATG supports the same 

semantics for this function as defined in the standard  
• Supported by Abstraction (see section Abstraction Scenarios), meaning that one can 

use the function in ATG but ATG may have a different semantics for this function  
• Unsupported, meaning that one cannot use this function in ATG 

To easily access the information in the table, you can open the files with spreadsheet 
programs like Excel. 

Other Compilation Issues 

Exceptions 
Currently there is no full compilation support for exceptions. A workaround for this restriction 
was implemented, which allows exception-code at compile-time. If an exception occurs at 
run-time, ATG will not execute the exception handler and will continue with the test case 
generation. 

Union-types 
The 'overlapping'-semantics of unions is currently not supported by ATG. A workaround for 
this restriction was implemented to translate unions with struct-semantics. 

Floating-point constants 
The representation of floating-point constants is in general not correct (Floating-point 
constants are represented without the use of the exponent-'E'-syntax, in particular the 
representation is corresponding to the print()-formatstring '%-.10f'. That means for example 
that floating-point constants loose the part of the mantissa, which is (as an absolute value) less 
than 1E-10). 
 
 

Abstraction Scenarios  
 
This section describes the scenarios in which ATG applies automatic abstractions in order to 
generate test cases. 
 
Scenario: a variable is initialized with an expression and the expression contains a not 
supported C++ construct. 
Abstraction: the variable will not be initialized.  
 
Scenario: an expression statement contains a not supported C++ construct. 
Abstraction: the expression statement will be ignored. 
 
Scenario: an if-/while-/do-wile-/for-expression contains a not supported C++ construct. 
Abstraction: the expression will be non-deterministically chosen to be either true or false. 
 
Scenario: the initialization of a constructor contains a not supported C++ construct. 

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) 
 16 
 

 



Rhapsody in C++  Automatic Test Generation Limitations  

Abstraction: the respective class element will not be initialized or all elements contained in 
the initialization of a constructor will not be initialized. 
 
Scenario: the call of a constructor for a temporary variable contains a not supported C++ 
construct, and the temporary variable defines the value of a return-statement. 
Abstraction: the constructor will not be called. 
 
Scenario: an expression which defines the value of a return-statement contains a not 
supported C++ construct. 
Abstraction: a NULL value will be returned. 
 
Scenario: an expression which initializes a for-loop contains a not supported C++ construct. 
Abstraction: the relevant statement will be ignored. 
 
Scenario: an increment-statement of a for-loop contains a not supported C++ construct. 
Abstraction: the relevant statement will be ignored. 
 
Scenario: an switch-expression contains a not supported C++ construct. 
Abstraction: the expression will be non-deterministically chosen from the interval [min, max]. 
‘min’ is the smallest value of the switch-case-constants. ‘max’ is the largest value of the 
switch-case-constants. 
 
Scenario: a switch-case constant depends on a not supported C++ construct. 
Abstraction: the relevant switch-case block will be ignored. 
 
Scenario: a call to a function with a variable number of parameters. 
Abstraction: the call will be ignored. 
 
Scenario: a call to a function which contains a type declaration in its body. 
Abstraction: the call will be ignored. 
 

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) 
 17 
 

 


	IBM® Rational® Rhapsody®
	Automatic Test Generation
	Add On
	Release 3.6

	Preface
	Contacting IBM® Rational® Software Support

	Overview
	General Limitation
	Limitations concerning Rhapsody Features
	Ports
	Blocks and Parts
	Template Classes
	Stable States of the SUT
	RhapsodyInC, RhapsodyInAda, and RhapsodyInJava.
	Argument Types of Provided Messages
	Libraries
	Active Objects
	Rhapsody Properties
	Template Classes


	Limitations regarding new features in Rhapsody 7.0
	Multiple Stereotypes
	Components in Packages
	Unit Unloading/Loading
	“Mixed Language” models


	C++ Construct Translation
	Not Supported C++ Constructs
	Pointer to members
	Type declarations within functions
	asm()-statements
	'dynamic_cast' expression-operations
	Bit-fields
	Ellipsis
	typeid()-expressions
	Delayed destruction of temporaries, if they are bound to a s
	Member-operator functions '|', '|=' and '||'
	Extern variables of class-type with an extern constructor

	Not Correctly Translated C++ Constructs
	Class temporaries created under a conditional operator (“?”,
	Same named (C-)static entities in different .cpp-files
	Casts of integral integer types, which change the value

	Wrongly Translated Language Constructs with Warnings
	Initialization of virtual base class-parts
	Types ‘unsigned int’, 'unsigned long', 'long long', and 'uns
	Types 'double' and 'long double'

	C++ Standard Library Restrictions
	Other Compilation Issues
	Exceptions
	Union-types
	Floating-point constants

	Abstraction Scenarios


