
Tutorial for TestConductor for RiA

RiA Tutorial
for

IBM® Rational® Rhapsody®

TestConductor Add On

2

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®

Automatic Test Generation Add On, and IBM® Rational®
Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2011 BTC Embedded Systems AG. All
rights reserved.

TestConductor for Rhapsody for Ada

3In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, and
source code. During execution
TestConductor verifies the results
against the defined requirements.

IBM® Rational® Rhapsody® Testing Environment

Rhapsody®

UML Testing

Profile

Automatic

Test
Architecture

Generation

Automatic

Test Case

Generation

Automatic

Test Case

Execution

StopWatch Application

The StopWatch application, the example
Ada application for this tutorial, models a simple stopwatch.
Make yourself familiar with the use cases of the application.
Open the project „AdaStopWatch“ from the folder
„Samples/AdaSamples/TestConductor“ in your Rhapsody
installation, run the component «StopWatchComp», and
use the following input:

4

To start the application, press “Go” in
Rhapsody’s animation toolbar.

To start the stopwatch, generate event
“evKey(1)” using the animation toolbar.

To stop the stopwatch, generate event
“evKey(1)” again using the animation toolbar.

When running, the stopwatch outputs the
elapsed time in minutes and seconds to the
console. Each second is printed twice, one time
with a colon and 0.5 seconds later without a
colon, similar to a stopwatch with blinking colon.

Before testing the model

Before testing the tutorial model, one
has to rebuild the Rhapsody framework. In order to do this,
go to Rhapsody’s Code menu and select “Build framework”.
This rebuilds Rhapsody’s framework which is needed
before we can test the tutorial model. Please note that this
is only needed once, you don’t have to rebuild the
framework again if you want to test other models.

5

StopWatch Model

The StopWatch model contains the
StopWatch class and its three parts. The first part is a
button that can be used to start and stop the stopwatch.
The second part is the timer that is used in order to count
the elapsed time. The third part is the display that displays
the elapsed time. Within the stopwatch the different
components are connected via ports and links.
Additionally, the stopwatch class itself relays both the
start/stop button and the display to its boundaries in order
to be able to connect an external start/stop button and an
external display .

6

The myStopWatch class represents a
sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”
that can be used as a start/stop button.
Additionally, it connects the stopwatch to an
external display “myDisplay” that displays the
elapsed time.

System Under Test

7

The System Under Test (SUT) is a part and
is the component being tested. A SUT can
consist of several objects. The SUT is exercised
via its public interface operations and events by
the test components.

Defining the System Under Test (SUT) is the first
step in the test workflow. This tutorial will focus on the
StopWatch class. To define StopWatch to be the SUT, we
have to create a test architecture. The needed
administrative framework will be placed in the folder
„TestPackages“.

1 2

Select the class
„StopWatch“ in the browser
and choose from context
menu „Create
TestArchitecture“.

Have a look on the newly created Test Context Diagram
„Structure_of_TCon_StopWatch “, and view the resulting parts in
the composite class „TCon_StopWatch“ of our test context.

Test Architecture

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

8

The new configuration under the component
„TCon_StopWatch_Comp“ describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

9

The composite class „TCon_StopWatch“ is
the part container for the SUT object and the
created test component objects.

The class „TC_at_pIn_of_StopWatch“
realizes the required interface „IKey“ and thus
can be connected to the “pIn” port of the
stopwatch class that provides this interface.

The class „TC_at_pOut_of_StopWatch“
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.

The automatically created test context represents
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test
context. TestConductor generated corresponding test
components for ports and associations of the SUT.

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let‘s have a look at the test cases. A test case ...

10

is a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

is an operation of a test context that specifies how a
set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

Test Case Specification

How to manually create test cases and how to execute them
with TestConductor will be discussed in the following sections. The
different kinds of definitions have their own strengths:

11

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

Test Case: Sequence Diagram I

12
To manually create a sequence diagram
test case we have to define a test scenario
which is represented as a sequence diagram
and link it to a test case. TestConductor
simplifies this process with a single command.

1 2 3
Select the test context
„TCon_StopWatch“ in the
Rhapsody-Browser ...

... and choose from the
context menu „Create SD
TestCase“..

Rename the test case to
„tc_check_init“. Rename the
test scenario to „CheckInit“
and open it.

Test Case: Sequence Diagram II

13
Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_Init” is indeed fulfilled by
the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the
test case.

1 2 3
Select the test case and
select “Add New ->
TestingProfile ->
TestObjective”

Select requirement “REQ_Init”
as target of the test objective”

The test objective now links
the test case to the
requirement “REQ_Init”.

Test Case: Sequence Diagram III

Define action and reaction of the system
under test. We will specify the „CheckInit“
scenario, where the SUT shall emit event
“evShow” with current time 0:0 after starting
the SUT. This output shall be generated
automatically by the SUT, since no further
input is needed for that.

14

1 2 3

Draw the message
“evShow” from the SUT to
the test component
“TCon_StopWatch.itsTC_at
_pOut_of_StopWatch”.

Specify argument values
m = 0, s = 0, b = TRUE for the
message.

That’s it already. The test
case specification is
complete.

Test Case Execution I

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their
progress and status.

15

The status, the final result can be either
„PASSED“ or „FAILED“.

The progress displays how many steps are
finished yet. In case of a passed test 100% have
to be achieved.

The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.

1 2

To execute a test case, simply right-click the test case and select
“Execute TestCase” from the context menu. In case the test model
needs to be updated and/or the tested executable needs to be
compiled, a popup window appears in order to update the test case
and/or build the executable.

The test case execution
dialog is a dockable dialog
that can be placed e.g.
underneath the main
browser window

Test Case Execution II

The test case execution FAILED with
Rhapsody TestConductor. To analyze the
reason TestConductor offers two kind of views.
The HTML-report displays a textual summary
and can be found directly under the test case in
the Rhapsody-Browser. TestConductor created
a debug sequence diagram to display the error.
The red arrow visualizes the faulty step and the
reason. TestConductor expects the parameter
value „TRUE“ for argument “b”, but observes the
value „FALSE“ during actual test execution. The
expected value was not specified correctly... by
accident.

16

1 2 3

To open the debug
sequence diagram right
click the item SD_tc_0 in
the TestConductor
execution dialog…

... and select “Show as SD”
In the browser, underneath the
test case, you can find the
generated html report. Double
click the report to open it.

Test Case Execution III

17
The test execution PASSED with
Rhapsody TestConductor after we corrected
the expected parameter value for argument “b”
from “true” to “false” in the test scenario
„CheckInit“. After changing the scenario and
re-executing the test case, the test case is
passed.

Refer to the user guide to get
familiar with the extended functionality
of TestConductor.

1 2 3
To correct the test case
open the test scenario
„CheckInit“.

For argument “b”, change the
exptected value from “TRUE”
to “FALSE”.

Re-execute the test case by
pressing the “Start” button in
the top right corner of the
execution dialog.

Test Case: Source Code I

18
To manually create a source code test case
create a code test case and write the test code into
the edit field under the implementation tab of the
test case. TestConductor provides a set of
functions like e.g.
„TestConductor.ASSERT_NAME“ that can be used
to execute checks during test case execution. If the
function “setTime” (line 08) of the stopwatch works
as expected, the test case passes.

1 2 3Select the test context
„TCon_StopWatch“ and
choose from the context
menu „Create Code
TestCase“.

Rename the created test
case to „tc_check_time“
and open the features
dialog.

Replace the content of the
edit field under the
implementation tab of the test
case with the content from the
“tc_check_time” operation in
the Tutorial package.

Source Code Test Case: Execution

19

Execute the test case with Rhapsody
TestConductor.
Both assertions evaluate to true and the
test case passes. Double-clicking an
evaluated assertion in the execution
window highlights the assertion in the test
model.

1 2 3Select test case
“tc_check_time” and then
select “Build TestCase”
from the context menu.

Select test case
„tc_check_time“ and select
“Execute TestCase” from
the context menu.

In the execution window,
select the assertion and
double-click “Show Assertion”
in order to highlight the
assertion in the model.

Test Case: Statecharts I

20
To manually create a statechart test case we
have to define a test scenario which is represented
as a statechart and link it to a test case.
Technically, the test case has a dependency to a
TestComponent that contains the statechart.
TestConductor simplifies this process with a single
command.

1 2 3Select the test context
„TCon_StopWatch“ and
select “Create Statechart
TestCase”.

Rename the test case to
“tc_check_progress” Add a test objective (using

“Add New -> TestingProfile
->TestObjective”) to
requirement REQ_Running_1

Test Case: Statecharts II

21
Vitalize the statechart in order to execute it with
TestConductor. The statechart test case first
checks that initially the stopwatch’s time is indeed
0:0. After starting the stopwatch, the statechart test
case waits 6 seconds, and then checks that indeed
more than 3 seconds have been counted by the
stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody
TestConductor function
„TestConductor.ASSERT_NAME()“. This function
was already used for the code test case in order to
perform code based checks. If both checks are
passed, the complete test case is passed.

Replace the content of the
test component statechart
associated with this test case
with the statechart of the
Tutorial package.

1

Statechart Test Execution

22

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to
true and the test case passes.

1 2 3Select the test case
„tc_check_progress“ ...

... and choose from
context menu the items
„Build TestCase“
and „Execute TestCase“.

In the execution window,
select the assertion and
double-click “Show Assertion”
in order to highlight the
assertion in the model.

Create Test Cases Using Test Case Wizard - SDs

23

1 2 3Select the sequence diagram
“StopWatchRunning” in the
tutorial package and select
“Create TestCase…”.

In the test case wizard
dialog, the test context
“TCon_StopWatch” is
already highlighted. Press
OK to proceed.

As a result, a new testcase
“SD_tc_0” has been created
which is based on a new test
scenario containing the same
messages as the original SD,
but life lines adapted to the test
context structure.

To create a test case based on existing
sequence diagrams, operations or
requirements, you can use the TestConductor
test case wizard. For an existing sequence
diagram, the test case wizard creates an analogue
test case with the same message structure as the
original sequence diagram. For an operation, the
test case wizard creates a test case that tests the
chosen operation, for a requirement the test case
wizard creates a test case with the chosen
requirement as the test objective.

Create Test Cases Using Test Case Wizard -
Operations

24
The test case wizard can also be used to
test operations that are defined in the model.
The wizard allows to create three different kinds
of test cases: sequence diagram test cases,
statechart test cases or code test cases.
Independent of the chosen kind of test case, the
created test case calls the selected operation.
Additionally, the test case already contains a
check that can be refined by the user in order to
check the out values of the operation.

1 2 3Select operation
“setTime” of class
StopWatch in the browser
and select “Create
TestCase…”

In the test case wizard
dialog, select “Code
TestCase” as test case
kind and press OK.

As a result, a new code test
case has been created that
contains a call to operation
“setTime” and also a dummy
assertion that can be refined.

Debugging Test Cases

25
Debugging failed test cases can also be
done with TestConductor. When a test case
fails, one can turn on debug execution mode in
TestConductor’s execution window. After
switching on debug mode, when executing the
test case one can step through it by using the
“Go Step”, “Go Idle”, etc. buttons of Rhapsody’s
animation toolbar. Additionally, when stepping
through the test case, one can use Rhapsody’s
animation features to inspect animated
statecharts, animated SDs, etc. in order to find
the reason why the test case fails.

1 2 3Select test case
“SD_tc_0” and select
“Execute TestCase”.

After the test case has
failed, turn on debug
execution mode by clicking
the debug button in the
execution dialog.

Execute the test case again
by pressing the “Start” button
in the execution dialog. Now
you can step through the test
case by using Rhapsody’s
animation toolbar.

Executing Multiple Test Cases

Executing multiple test cases can be
done by executing a complete test context or
a complete test package. When a test context
or a test package is executed, all test cases
within the context or test package are executed.
After all test cases have been executed,
TestConductor computes an overall test result
for the test context or the test package.

26

1 2 3Select the test context
“TCon_StopWatch” and
select “Update
TestContext”. After that,
select “Build TestContext”.

Select the test context
again and press “Execute
TestContext”. All test
cases will be executed one
after the other.

The results are shown in the
execution window. As always,
“Show as SD” resp. “Show
assertion” can be used to
show the reasons of failed
test cases.

Assessing Test Case Requirement Coverage I

Which requirements are covered by
my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a
requirements coverage test report. A test case
requirements matrix shows the relationship
between test cases and requirements in a
matrix view. A requirements coverage test
report shows the same information, but
presented as a textual report. It can be
generated by ReporterPlus using a predefined
template.

27

1 2 3Select the test package
“TPkg_StopWatch” and
select “Add New ->
TestingProfile ->
TestRequirementMatrix”.

Open the features dialog of
the matrix, rename it to
“ReqCoverage”, and set
the “from” scope and the
“to” scope to the complete
model “AdaStopWatch”.

When double clicking the
matrix in the browser, the
matrix view shows the
relationship between the test
cases and the requirements.

Assessing Test Case Requirement Coverage II

28

1 2 3From Rhapsody’s tools
menu, select “ReportPlus
-> Report on all model
elements”.

As format, select Html.
After that, select
“TestRequirementCoverage
.tpl” as template for the
report to generate.

After generating the report,
the report can be viewed with
any browser that can display
Html files.

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With
ReporterPlus a requirement coverage report
can be generated in different formats like Word,
Html, etc. The requirements coverage test
report shows the same information as the
requirements coverage matrix, but presented as
a textual report. Besides the requirements
coverage report, another predefined template
(TestReport.tpl) can be used to generate a
complete test report that contains all details
about test cases, test architectures, etc.

Assessing Test Case Model Coverage

29

Besides coverage of the requirements,
an important orthogonal information is which
parts of the model are executed by the test
cases, i.e, what is the achieved Model
Coverage when executing the test cases.
TestConductor can compute this information
during test case execution. When model
coverage computation is turned on, after test
case execution TestConductor adds a model
coverage report to the test cases, test contexts
etc. that shows the achieved model coverage.

1 2 3Open the features dialog
of the test package
“TPkg_StopWatch” and
turn on property
“TestConductor.TestCase.
ComputeCoverage”.

Execute the test context
“TCon_StopWatch”.

After execution has finished,
coverage reports can be
found both for individual test
cases as well as a cumulative
coverage report for the test
context.

Conclusion

The high-grade automation in the Rhapsody Testing Environment with
TestConductor

p generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

p makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

p increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

p makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

p highly automates the testing process and can save up
to 80% of test development time compared to
traditional approaches.

More Information …

For further information, especially
technical news, visit our internet
information portal or contact one of our
worldwide sale agencies.

31

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

• What software versions were you running when the problem occurred?
• Do you have logs, traces, or messages that are related to the problem?
• Can you reproduce the problem? If so, what steps do you take to reproduce it?
• Is there a workaround for the problem? If so, be prepared to describe the workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

