

IBM Rational Rhapsody
Developer RulesComposer Add

On

Tutorial

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 2/44

Notices

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may

not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently

available in your area. Any reference to an IBM product, program, or service is not intended

to state or imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any IBM

intellectual property right may be used instead. However, it is the user's responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in

this document. The furnishing of this document does not grant you any license to these

patents. You can send written license inquiries to:

IBM Director of Licensing IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the

IBM Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome

Minato-ku Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS

MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do

not allow disclaimer of express or implied warranties in certain transactions. Therefore, this

statement may not apply to you. ii This information could include technical inaccuracies or

typographical errors. Changes are periodically made to the information herein; these changes

will be incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any time

without notice.

Any references in this information to non-IBM Web sites are provided for convenience only

and do not in any manner serve as an endorsement of those Web sites. The materials at those

Web sites are not part of the materials for this IBM product and use of those Web sites is at

your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you. Licensees of this program who wish to

have information about it for the purpose of enabling: (i) the exchange of information

between independently created programs and other programs (including this one) and (ii) the

mutual use of the information which has been exchanged, should contact:

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 3/44

Intellectual Property Dept. for Rational Software

IBM Corporation

1 Rogers Street

Cambridge, Massachusetts 02142 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in

some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are

provided by IBM under terms of the IBM Customer Agreement, IBM International Program

License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.

Therefore, the results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no guarantee

that these measurements will be the same on generally available systems. Furthermore, some

measurements may have been estimated through extrapolation. Actual results may vary.

Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM has not

tested those products and cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the capabilities of non-IBM products

should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To

illustrate them as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any similarity to the

names and addresses used by an actual business enterprise is entirely coincidental.

This information contains sample application programs in source language, which illustrate

programming techniques on various operating platforms. You may copy, modify, and

distribute these sample programs in any form without payment to IBM, for the purposes of

developing, using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample programs

are written. These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 4/44

Each copy or any portion of these sample programs or any derivative work, must include a

copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp.

1997, 2009.

IBM, the IBM logo, ibm.com, Rhapsody, and Statemate are trademarks or registered

trademarks of International Business Machines Corporation in the United States, other

countries, or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or ™), indicating US

registered or common law trademarks owned by IBM at the time this information was

published. Such trademarks may also be registered or common law trademarks in other

countries. A current list of IBM trademarks is available on the Web at
www.ibm.com/legal/copytrade.html.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 5/44

Table of Contents

Notices .. 2
Overview ... 6

Features demonstrated .. 6
Create the RulesComposer project .. 6
Browse the source Rational Rhapsody model sample .. 7

Create a Java generation template ... 10
Create a ruleset to launch the Java template ... 12
Run the generation .. 14

Inspect the generated files ... 16
Add fields declaration ... 16

Add relations declaration .. 17

Add a script to handle relation multiplicity .. 18
Call the script from the template ... 21

Add methods declaration .. 21

Add return type declaration .. 24
Add arguments declaration ... 25

Add operation body... 27
Use the debug hierarchy.. 29

Include a Javadoc template ... 30

Deploy the Launch Configuration .. 31

Use filenames associated to objects in Rational Rhapsody .. 34
Either use “On-Demand” or “Application” model reader .. 37
Customize filenames associated to Rational Rhapsody objects ... 38

Launch an external ruleset .. 41
Import, run and deploy "Rhapsody to Excel" sample ... 43

Import this ruleset ... 43
Run this ruleset ... 44
Deploy this ruleset .. 44

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 6/44

Overview

In this tutorial, you will generate simple Java source files from an input Rational Rhapsody

model.

The finished tutorial project is found in the default workspace in:

C:\Documents and Settings\<username>\workspace.

Features demonstrated

This tutorial shows:

 How to navigate in models to determine the structure of the information to generate.

 How to generate code based on an input model using a text template.

 How to extend metatype capabilities using scripts.

 How to use a debug hierarchy to understand the flow of a generation.

Create the RulesComposer project

Generation rules must be contained in a RulesComposer project.

To create a RulesComposer project:

1. Click File > New > Project....

2. Select RulesComposer Project and click Next.

3. Type the name of the project to create (JavaGeneration) in the Project name field.

4. Click Finish.

The created project shows up in the Project Explorer view.

The project contains a src folder, where we will put the RulesComposer source files. It also

references libraries:

 JRE System Library: runtime libraries required to compile and run Java code.

 RulesComposer Required Libraries: runtime libraries and metamodels required to

compile and run RulesComposer files.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 7/44

Browse the source Rational Rhapsody model sample

To be able to write a RulesComposer program, we need to know the structure of the

information to handle. We will open the sample model found in the

<rhapsodyInstallationDirectory>Sodius\RulesComposer\help\tutorial\RhapsodyModel in the

Rational Rhapsody installation.

Here is a diagram of this model.

To open the sample model in the RulesComposer, the project must first be open in Rational

Rhapsody. Start this application and open the

<rhapsodyInstallationDirectory>\Sodius\RulesComposer\help\tutorial\RhapsodyModel\Rule

sComposer_Tutorial.rpy project.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 8/44

Next read the model into the RulesComposer:

1. In the Models tab, right click on Rhapsody, and then Open Model…

2. Expand the Rhapsody label in the Model reader tree.

3. Select the Rhapsody Application element in the expanded tree.

4. Click Finish.

The Rational Rhapsody project is loaded and shows up in a model editor:

 The Types section displays types (e.g. Class) defined in the Rational Rhapsody

metamodel, for which instances are defined in the loaded project.

 The Instances section displays instances (e.g. Customer) of the selected metatype.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 9/44

When you select an instance (e.g. Customer), you can display its properties in the

Properties view (bottom of the screen):

The Properties view displays attributes (e.g. the name Customer) and references (to other

instances) of the selected instance. The references of the selected instance can also be

inspected in the Instances section of the model editor. Navigating through the children of the

Customer instance for example is shown below:

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 10/44

You can see the Class Customer is linked to the Class Order through the reference

relations.

Note: references starting with a '/' are derived references (computed from other attributes

or references).

Create a Java generation template

In previous steps, we created an RulesComposer project and inspected the structure of model

information we need to handle. Now we are ready to create a generation program using a text

template.

A text template specifies the information to generate in a given file as well as the name of the

file.

To create a text template:

1. Click File > New > Text Template.

2. Type JavaGeneration/src in the Source folder field.

3. Type tutorial.java in the Package field.

4. Type JavaSource in the Name field.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 11/44

5. Click Finish.

A file JavaSource.tgt is created in the folder JavaGeneration/src/tutorial/java and is

opened in an editor.

[#package tutorial.java]

[#template public JavaSource()]

[#file]file.txt[/#file]

generated text

[/#template]

The text template JavaSource is defined in the package tutorial.java and generates the

static text "generated text" in the file file.txt.

We want to generate a Java source file based on a Rational Rhapsody Class. Therefore we

need to add a Rational Rhapsody Class parameter to the text template:

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]file.txt[/#file]

generated text

[/#template]

Add the code "class : rhapsody.Class" and click File > Save.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 12/44

rhapsody is the metamodel identifier of the Rational Rhapsody metamodel, Class is the

name of a metatype defined in this metamodel, and class is the name of the parameter.

The generated file name and contents must depend on the Rational Rhapsody Class name. So

we need to change the contents of the template and file directives to reflect the name of the

class parameter, using dynamic text. Dynamic text is a section delimited by ${ and }

replaced with a calculated value in the output.

Change the text template contents to:

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]generated/${class.name}.java[/#file]

public class ${class.name} {

}

[/#template]

Now the generated contents will be the static text "public class ", followed by the name

of the class parameter and by brackets. This generated contents will be written out in a file

whose name is the name of the class parameter, extension is ".java", in a "generated"

folder.

Create a ruleset to launch the Java template

In previous step, we created a text template expecting a UML Class parameter to generate a

Java source file. Now we want to iterate on all classes of a UML model and generate the

Java source file for each of these classes. This is done using a ruleset.

A ruleset is a group of logically interdependent rules, where a rule defines a set of procedural

expressions that query or update model elements.

To create a ruleset:

1. Click File > New > Rule Set.

2. Type JavaGeneration/src in the Source folder field.

3. Type tutorial.java in the Package field.

4. Type JavaGeneration in the Name field.

5. Select Call a text template in the Available patterns section.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 13/44

6. Click Next.

7. Type tutorial.java.JavaSource in the Text template field, on second page.

8. Click Finish.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 14/44

A file JavaGeneration.mqr is created in the folder JavaGeneration/src/tutorial/java and

is opened in an editor.

package tutorial.java;

public ruleset JavaGeneration(in model : rhapsody) {

 public rule main() {

 foreach (class : rhapsody.Class in model.getInstances("Class"))

{

 $JavaSource(class);

 }

 }

}

Here is the behavior of this ruleset:

1. Expects an input Rational Rhapsody model (the direction in tells RulesComposer the

model parameter is expected to read from Rational Rhapsody.

2. Retrieves the list of instances of the type Class in the input Rational Rhapsody

project, using model.getInstances("Class").

3. Iterates on this instance list using foreach and the loop variable class of type

Rational Rhapsody Class.

4. Calls the text template JavaSource with the class variable as argument ('$' is the

notation used to call a text template). The referenced template is evaluated and the

generated contents is written on disk.

Run the generation

We can now run the ruleset using a sample model:

1. Click Run > Run...

2. Select RulesComposer in the left hand list of launch configuration types, and press

New.

3. Type JavaGeneration in the Project field.

4. Click Rule in the Main element section.

5. Type tutorial.java.JavaGeneration.main in the Main element field.

6. Select the Rational Rhapsody model:

a. Click on the model parameter (first line of the Parameters section) to display

the model selection dialog.

b. Select Rhapsody and then Rhapsody Application in the tree.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 15/44

c. Click OK.

7. Click Run. The launch configuration should look like this:

RulesComposer evaluates the ruleset using the specified models and prints messages in the

Console view:

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 16/44

[progress] Evaluation of JavaGeneration.main

[progress] Reading Rhapsody Application

[progress] Reading Application

[progress] Reading Project : RulesComposer_Tutorial

...

[progress] Generating generated\Customer.java

[progress] Generating generated\Order.java

[progress] Generating generated\Product.java

[progress] Generating generated\LineItem.java

[progress] Generating generated\IdentifiedElement.java

[progress] Generating generated\NamedElement.java

[progress] Done.

Inspect the generated files

When the generation is completed, an evaluation report is created and displayed in the

Report view.

This report shows the generated file locations, as well as the status of the generated file (new

for newly generated file, that didn't exist before the generation). You can open a generated

file from this Report view double-clicking the Customer.java file for example

The Java editor shows up and displays the created Java class:

public class Customer {

}

Add fields declaration

Now we want to generate a Java field for each attribute defined on a Class:

1. Read the Rhapsody project.

2. Select the type Class.

3. Select the Class Order and show its children.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 17/44

You can see the attributes are linked to their class with the reference attributes. The text

template has to iterate on the attributes list and print the corresponding Java field

declaration:

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]generated/${class.name}.java[/#file]

public class ${class.name} {

[#-- Attributes declaration --]

[#foreach attr : rhapsody.Attribute in class.attributes]

 private ${attr.type.name} ${attr.name};

[/#foreach]

}

[/#template]

The template loops on each attribute and prints the name of its type (dynamic text

${attr.type.name}) followed by its name.

[#-- Attributes declaration --] is a comment. A comment is delimited by [#-- and -

-] and is not written to the output. Note that due to automatic whitespace stripping,

whitespaces and linefeeds on line containing only directives and comments are ignored.

Relaunch the generation and open the file Order.java:

public class Order {

 private String date;

}

Add relations declaration

Now we want to generate a Java field for each relation defined on a Class like we did for

attributes.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 18/44

You can see the relations are linked to their class with the reference relations. The text

template has to iterate on the relations list and print the corresponding Java field declaration:

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]generated/${class.name}.java[/#file]

public class ${class.name} {

[#-- Attributes declaration --]

[#foreach attr : rhapsody.Attribute in class.attributes]

 private ${attr.type.name} ${attr.name};

[/#foreach]

[#-- Relations declaration --]

[#foreach rel : rhapsody.Relation in class.relations]

 private ${rel.otherClass.name} ${rel.name};

[/#foreach]

}

[/#template]

Relaunch the generation and open the file Order.java:

public class Order {

 private RhpString date;

 private Customer customer;

 private LineItem items;

}

Add a script to handle relation multiplicity

In the previous step, we generated a Java field for each relation, regardless of its multiplicity.

For example the relation items of the Class Order in the sample model has a multiplicity *.

Its corresponding Java field type should be java.util.Collection, not LineItem.

The type Relation has an attribute multiplicity that contains this information. We have to

update the generation to introduce an if directive to test the multiplicity value for each

Relation. If the multiplicity is not equal to 1, we will consider the relation to be multivalued.

We could add this logic directly inside the text template, but because the text to generate

depends on each Relation, we will introduce two scripts to maintain the readability of the

script. A script is a method dynamically added to a metatype.

The first script we will add will be called isMultivalued.

To add a script:

1. Click File > New > Script.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 19/44

2. Type JavaGeneration/src in the Source folder field.

3. Type tutorial.java in the Package field.

4. Type rhapsody.Relation in the Type field.

5. Type isMultivalued in the Name field.

6. Click MQL in the Language group.

7. Click Finish.

A file rhapsody_Relation.mqs is created: it allows us to define MQL scripts on the

metatype Relation. Change its contents to:

package tutorial.java;

metatype rhapsody.Relation;

public script isMultivalued() : boolean {

 if (self.multiplicity == "1") {

 return false;

 } else {

 return true;

 }

}

The self variable is available in the script contents. This variable is the instance the script is

evaluated on (instance of the script's metatype).

Now we will add the javaType script.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 20/44

1. Click File > New > Script.

2. Type JavaGeneration/src in the Source folder field.

3. Type tutorial.java in the Package field.

4. Type rhapsody.Relation in the Type field.

5. Type javaType in the Name field.

6. Click MQL in the Language group.

7. Click Finish.

A new script has been created in the rhapsody_Relation.mqs file. Change its contents to:

public script javaType() : String {

 if (self.isMultivalued()) {

 return "java.util.Collection";

 } else {

 // if the otherClass is not set, returns "Object"

 return self.otherClass.name ? "Object";

 }

}

The script behavior is the following:

1. If the isMultivalued() method answers true, the String

"java.util.Collection" is returned.

2. Otherwise the expression self.otherClass.name is evaluated. The String "Object"

is returned if the otherClass reference returns null, due to the default value

expression and the null management of RulesComposer.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 21/44

Now the script javaType can be used in a text template, as you do with any predefined

feature of the type Relation (e.g. $(myRelation.javaType}).

Relaunch the generation and open the file Order.java:

public class Order {

 private RhpString date;

 private Customer customer;

 private java.util.Collection items;

}

Call the script from the template

We need to update the text template contents to call the newly created javaType script:

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]generated/${class.name}.java[/#file]

public class ${class.name} {

[#-- Attributes declaration --]

[#foreach attr : rhapsody.Attribute in class.attributes]

 private ${attr.type.name} ${attr.name};

[/#foreach]

[#-- Relations declaration --]

[#foreach rel : rhapsody.Relation in class.relations]

 private ${rel.javaType} ${rel.name};

[/#foreach]

}

[/#template]

Relaunch the generation and open the file Order.java:

public class Order {

 private String date;

 private Customer customer;

 private java.util.Collection items;

}

Add methods declaration

Now we want to generate a Java method for each operation defined on a Class:

1. Read the Rational Rhapsody model using the Rhapsody Application reader.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 22/44

2. Select the type Class.

3. Select the Class Order and show its children.

You can see the Class Order has an operation findLineItem linked through the reference

operations.

We will start by adding a declaration script on operation to generate the declaration for an

operation.

1. Click File > New > Script.

2. Type JavaGeneration/src in the Source folder field.

3. Type tutorial.java in the Package field.

4. Type rhapsody.Operation in the Type field.

5. Type declaration in the Name field.

6. Click Text in the Language group.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 23/44

7. Click Finish.

A file rhapsody_Operation.tgs is created that allows us to define TGL scripts on the

metatype Operation. Change its contents to:

[#package tutorial.java]

[#metatype rhapsody.Operation]

[#script public declaration]

 public Object ${self.name}() {

 return null;

 }

[/#script]

The declaration script can now be called from the main template.

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]generated/${class.name}.java[/#file]

public class ${class.name} {

[#-- Attributes declaration --]

[#foreach attr : rhapsody.Attribute in class.attributes]

 private ${attr.type.name} ${attr.name};

[/#foreach]

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 24/44

[#-- Relations declaration --]

[#foreach rel : rhapsody.Relation in class.relations]

 private ${rel.javaType} ${rel.name};

[/#foreach]

[#-- Operations declaration --]

[#foreach operation : rhapsody.Operation in class.operations]

 ${operation.declaration}[#trim]

[/#foreach]

}

[/#template]

Add return type declaration

We will now change the return type of the generated method so that the return type is not set

to always be Object. We will create a new MQL script on Operation called returnType to

return Object if the operation does not have a return type, or the name of the classifier being

returned. In order to facilitate the creation of this script we will first create a script called

hasReturnType which will check if the operation returns a value.

The hasReturnType is an MQL script which is implemented as follows.

public script hasReturnType() : boolean {

 return self.returns != null;

}

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 25/44

The hasReturnType script is now called from a new returnType MQL script created as

shown below.

Set the contents of this script to be:

public script returnType() : String {

 if (self.hasReturnType()) {

 return self.returns.name;

 } else {

 return "Object";

 }

}

The returnType script is now called from the declaration script on Operation.

[#package tutorial.java]

[#metatype rhapsody.Operation]

[#script public declaration]

 public ${self.returnType} ${self.name}() {

 return null;

 }

[/#script]

Add arguments declaration

Now we want to handle the arguments of the operations.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 26/44

Arguments are linked to their owner operation through the reference arguments. An

Argument has an attribute name and a reference to its type. Create a declaration script as a

Text script that returns the name of the type of the argument and the name of the argument.

Change its contents to:

[#package tutorial.java]

[#metatype rhapsody.Argument]

[#script public declaration]

${self.type.name} ${self.name}[#rtrim]

[/#script]

The rtrim directive removes the whitespace at the end of the argument declaration so that

all the arguments can be printed on the same line.

The declaration script is now called from the declaration script on Operation.

[#package tutorial.java]

[#metatype rhapsody.Operation]

[#script public declaration]

 public ${self.returnType}

${self.name}(${self.arguments.concat("declaration", ", ")}) {

 return null;

 }

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 27/44

[/#script]

The concat operation appends the results of the declaration script for each of the

arguments in the arguments collection. The "," argument will insert a comma between each

of the declarations in the case when more than one argument exists.

Add operation body

Now we will change the body of the java method so that it uses the body attribute of the

operation. In the case where body is empty, we will provide a default implementation.

The first step is to define a defaultMethodBody TGL script on Operation which will return

null if the operation has a return type, or return an empty string.

[#script public defaultMethodBody]

 [#if self.hasReturnType]

 return null;

 [/#if]

[/#script]

We then need to create a methodBody MQL Script on Operation that will call the

defaultMethodBody script.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 28/44

public script methodBody() : String {

 if (self.body.length() > 0) {

 return self.body;

 }

 else {

 return self.defaultMethodBody();

 }

}

The methodBody script is now called from the declaration script on Operation.

[#package tutorial.java]

[#metatype rhapsody.Operation]

[#script public declaration]

 public ${self.returnType} ${self.name}() {

 ${self.methodBody}[#ltrim]

 }

[/#script]

Relaunch the generation and open the file Order.java:

public class Order {

 private RhpString date;

 private Customer customer;

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 29/44

 private java.util.Collection items;

 public LineItem findLineItem(RhpString productName) {

 return null;

 }

}

Use the debug hierarchy

We will now use debug facilities of the RulesComposer to analyze the flow of the

generation:

1. Click Run > Debug Last Launched to launch the generation in debug mode.

2. Show the Report view.

3. Right-click the file Order.java in this view.

4. Click Open Debug Hierarchy.

The debug hierarchy shows up in an editor. A debug hierarchy is a tree of nodes, each node

representing an evaluated element (template, rule or script):

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 30/44

We will now find the script that generated a part of the file Order.java:

1. Select the node main\JavaSource [Order.java] in the debug hierarchy Debug

Nodes section.

2. Select the node Result\result in the Properties section.

3. Select the text productName in the details pane, bottom part of the Properties

section.

4. Right-click to open the context menu.

5. Click Find Text in Children Nodes.

The debug hierarchy focus is moved to the node main\JavaSource\declaration\declaration.

This is the script defined on rhapsody.Argument whose evaluation produced the text

"RhpString productName".

The debug hierarchy is very useful in two situations:

 You want to find the script that generated a part of a file in a complex generation.

 You want to see the flow (debug nodes) of a complex generation to understand how

the generator is built.

Include a Javadoc template

In this step, we will add a javadoc to the generated Java file, introducing template inclusion.

First create a Javadoc template:

1. Click File > New > Text Template.

2. Type JavaGeneration/src in the Source folder field.

3. Type tutorial.java in the Package field.

4. Type Javadoc in the Name field.

5. Click Finish.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 31/44

Change the Javadoc.tgt contents to:

[#package tutorial.java]

[#template public Javadoc()]

/*

 * Generated by ${System.getProperty("user.name")}

 * on ${java.util.Calendar.getInstance().getTime()}

 */

[/#template]

Note that this template does not define a file directive: it means this template is not a

generation entry-point, it's a fragment designed to be included in another template. This

template does not expect any parameter.

This template uses the getProperty() method of the class java.lang.System to retrieve

the name of the current user. It also uses the class java.util.Calendar to compute the

current time.

We can include this Javadoc in the template JavaSource.tgt:

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]generated/${class.name}.java[/#file]

[#include Javadoc()]

public class ${class.name} {

...

Relaunch the generation and open the file Order.java:

/*

 * Generated by IBM

 * on Thu Mar 12 19:29:12 CEST 2009

 */

public class Order {

...

Deploy the Launch Configuration

The final step is to deploy the launch configuration that we have been executing so that

Rational Rhapsody uses our generator.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 32/44

1. Click File > Export…

2. Open the IBM Rational Rhapsody Developer RulesComposer Add On folder,

select Deployable RulesComposer Add On configuration, and press Next.

3. Choose the JavaGeneration launch configuration and press Next.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 33/44

4. Enter the location where to deploy the rules, click Deploy JAR file, and press Finish.

Note: If you wish to encrypt .JAR files, you can press button Advanced and check

option Obfuscate rulesets and scripts.

5. You can now:

1. Set the properties shown below on the Configuration in Rational Rhapsody

so that our generator is used.

2. Or insert a new Helper in Rational Rhapsody menu Tools using Tools >

Customize… (see page 41).

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 34/44

Use filenames associated to objects in Rational Rhapsody

In this step, we will change the Java template to generate Java files according to folders and

filenames chosen by Rational Rhapsody.

For each object, Rational Rhapsody proposes two files: one for the specifications and a

second for the body. Typically files with extension ADS and ADB in Ada, H and CPP in

C++ and only JAVA in Java language.

To add a script:

1. Click File > New > Script.

2. Type JavaGeneration/src in the Source folder field.

3. Type tutorial.java in the Package field.

4. Type rhapsody.ModelElement in the Type field.

5. Type getPropertyValueByKey in the Name field.

6. Click Java in the Language group.

7. Click Finish.

A file rhapsody_Class.java is created: it allows us to define Java scripts on the metatype

Class. Change its contents to:

package tutorial.java;

import java.util.Collection;

import java.util.Iterator;

import com.sodius.mdw.metamodel.rhapsody.Property;

import com.sodius.mdw.metamodel.rhapsody.scripts.ClassScriptContainer;

public class rhapsody_Class public class ClassScriptContainer

 public String getPropertyValueByKey(String key) {

 Collection properties = self.getProperties();

 Iterator it = properties.iterator();

 Property currentProperty = null;

 while (it.hasNext()) {

 currentProperty = (Property) it.next();

 if (currentProperty != null &&

 currentProperty.getKey().equals(key)) {

 return currentProperty.getValue();

 }

 }

 return null;

 }

}

The self variable is available in the script contents. This variable is the instance the script is

evaluated on (instance of the script's metatype).

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 35/44

The method getPropertyValueByKey is able to retrieve properties associated to each object

by RulesPLayer/RulesComposer.

To add a script:

8. Click File > New > Script.

9. Type JavaGeneration/src in the Source folder field.

10. Type tutorial.java in the Package field.

11. Type rhapsody.Class in the Type field.

12. Type qualifiedPath in the Name field.

13. Click MQL in the Language group.

14. Click Finish.

A file rhapsody_Class.mqs is created: it allows us to define MQL scripts on the metatype

Class. Change its contents to:

package tutorial.java;

metatype rhapsody.Class;

public script qualifiedPath() : String {

 return self

 .getPropertyValueByKey("RHP.SpecificationFilename");

}

Method qualifiedPath is able to retrieve the specification name provided by Rational

Rhapsody.

Use property RHP.ImplementationFilename to get body name (for C++ or Ada).

Note: property RHP.SpecificationFilename is set only when Class object should be re-

generated under RulesPlayer, but always under RulesComposer.

Now we can update template JavaSource.tgt:

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]${class.qualifiedPath}[/#file]

[#include JavaDoc()]

public class ${class.name} {

...

Relaunch the generation and check that Java files are generated in the current configuration

folder:

 <ProjectDir>/<ComponentDir>/<ConfigurationDir>

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 36/44

Note: please find a full example implementing this solution in RulesComposer samples:

 To add it to your workspace, please:

 Click File > New > Example > RulesComposer Sample > Next

 Click Rhapsody Code Generation > C++ > Next > Finish

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 37/44

Either use “On-Demand” or “Application” model reader

Just change module JavaGeneration.mqr:

package tutorial.java;

public ruleset JavaGeneration(in model : rhapsody) {

 entry rule main() {

 // calls the proxy preloader when the connector

 // "On-Demand" is invoked.

 if (com.sodius.mdw.metamodel.rhapsody.proxy.

 ProxyPreloader.isProxyModel(model)) {

 var myProxyPreloader : com.sodius.mdw.metamodel.

 rhapsody.proxy.ProxyPreloader

 = com.sodius.mdw.metamodel.rhapsody

 .proxy.ProxyPreloader

 .getNewProxyPreloader(model);

 myProxyPreloader.preload();

 }

 foreach (class : rhapsody.Class in

 model.getInstances("Class")) {

 $JavaSource(class);

 }

 }

}

If RulesComposer indicates a compilation error for the class ProxyPreloader, please open file

/META-INF/MANIFEST.MF and add a dependency to:

com.sodius.mdw.metamodel.rhapsody.proxy

If file /META-INF/MANIFEST.MF is missed, please check if you project is an Eclipse

plugin type. You can check it, using right-click on project node, and select command PDE

Tools > Convert Projects to Plug-in Projects…

And add dependencies to:

com.sodius.mdw.metamodel.rhapsody

com.sodius.mdw.metamodel.rhapsody.proxy

com.sodius.mdw.core

Relaunch now the generation and check that generator allows indifferently On-Demand and

Application model reader connector.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 38/44

Customize filenames associated to Rational Rhapsody
objects

In this step, we will change the Java template to generate Java files in your own project

workspace folder.

For each object, we can propose several files that Rational Rhapsody could be able to bind

and edit on user demand.

Typically in Ada, we can propose four files for a Class object: two for specification and

body, and two other to regroup nested Port objects.

In our tutorial, we present a case for Java language with a single filename per object.

To add a script:

1. Click File > New > Script.

2. Type JavaGeneration/src in the Source folder field.

3. Type tutorial.java in the Package field.

4. Type rhapsody.ModelElement in the Type field.

5. Type rulesFileMapper in the Name field.

6. Click MQL in the Language group.

7. Click Finish.

A file rhapsody_ModelElement.mqs is created: it allows us to define MQL scripts on the

metatype ModelElement. Change its contents to:

package tutorial.java;

metatype rhapsody.ModelElement;

public script rulesFileMapper() : com.sodius.mdw.rhapsody.api.utils

 .RhapsodyFileMapper {

 var mapper : com.sodius.mdw.rhapsody.api.utils

 .RhapsodyFileMapper = null;

 mapper = self.eMetamodel()

 .getModelReaderDescriptor("Rhapsody On-Demand")

 .getProperty("interfaceFileMapper");

 // Under RulesComposer, interface is inactive

 if (mapper == null) {

 return com.sodius.mdw.rhapsody.api.utils

 .NullRhapsodyFileMapper.INSTANCE;

 }

 return mapper;

}

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 39/44

Method rulesFileMapper retrieves Rational Rhapsody interface object to send the list of

files to Rational Rhapsody application.

This interface provides several methods to send filename to Rational Rhapsody, the filename

argument should contains only one file with its absolute path:

String addFileName(rhapsody.ModelElement element, String filename);

This can be called several times with the same element, but a different filename.

String addMainFileName(rhapsody.ModelElement element, String filename);

This can be called several times with the same element, but a different filename.

String addMakeFileName(rhapsody.Configuration element, String filename);

This should be called only one time per generation for a Rhapsody Configuration

object only.

String addTargetFileName(rhapsody.Configuration element, String filename);

This should be called only one time per generation for a Rational Rhapsody

Configuration object only.

To add a script:

8. Click File > New > Script.

9. Type JavaGeneration/src in the Source folder field.

10. Type tutorial.java in the Package field.

11. Type rhapsody.ModelElement in the Type field.

12. Type qualifiedPath in the Name field.

13. Click MQL in the Language group.

14. Click Finish.

This method is added to file rhapsody_ModelElement.mqs. Change its contents to:

public script qualifiedPath() : String {

 return self.rulesFileMapper.addFileName(self,

 "C:/workspace/Tutorial_Java/src/"+

 self.name+".java");

}

Method qualifiedPath computes the filename and sends it to the Rational Rhapsody

interface.

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 40/44

Now we can update the template JavaSource.tgt:

[#package tutorial.java]

[#template public JavaSource(class : rhapsody.Class)]

[#file]${class.qualifiedPath}[/#file]

[#include JavaDoc()]

public class ${class.name} {

...

Relaunch the generation and check that Java files are generated in folder:

 C:/workspace/Tutorial_Java/src

Now, in Rational Rhapsody click the menu File > Project properties and select

tab Properties.

The new file api interface is inactive under RulesComposer. We should deploy your project

as a launch configuration under Rational Rhapsody to use it with the RulesPlayer.

For details, see chapter Deploy the Launch Configuration.

Change the following properties for your new launch configuration:

lang_CG:Configuration:CodeGeneratorTool = External

lang_CG:Configuration:ExternalGeneratorFileMappingRules = DefinedByGenerator

lang_CG:Configuration:GeneratorRulesSet = JavaGeneration.classpath

lang_CG:Configuration:GeneratorScenarioName = tutorial.java.JavaGeneration.main

Where lang is here JAVA.

Check that Rational Rhapsody displays the message “Loading external generator...”.

Now, you can execute command Code > Re Generate > Entire Project.

When the operation is completed, select a Class object and right-click Edit Code. Check that

the source file is edited in folder C:/workspace/Tutorial_Java/src.

Note: please find a full example implementing this solution in RulesComposer samples:

 To add it to your workspace, please:

 Click File > New > Example > RulesComposer Sample > Next

 Click Rhapsody Code Generation > Java > Next > Finish

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 41/44

Launch an external ruleset

After deploying a launch configuration you wish to execute it in IBM Rational Rhapsody

for all your own projects but you want invoke it without changing properties for each project.

You will find below a way to perform this operation.

Note: you can launch rulesets in deployed mode that use only following metamodels:

 rhapsody
 matlab
 simulink
 excel

You can add as many commands as necessary rulesets in Rational Rhapsody as follows:

1. Click Tools > Customize...

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 42/44

2. Press button New on top of Menu Content box and enter for example

JavaGeneration.

3. Choose type External program in Type box and select Show in Tools menu check

box.

4. In Helper parameters box, on line Command, press on right button to find location

of DOS script rhp_generate.bat.

You find this program at location:
<rhapsodyInstallationDirectory>\Sodius\RulesComposer\bin\rhp_gene

rate.bat

5. On line Arguments, paste the .launch file associated to your own ruleset with its

full folder path:
C:\tmp\JavaGeneration\JavaGeneration.launch

Note: To avoid error, the field Arguments can be left empty. In this case Rational

Rhapsody should launch ruleset declared in:

1. current project properties,

2. default language properties,

3. in file
<rhapsodyInstallationDirectory>\Sodius\RulesComposer\mdw.in

i,

See values of properties project and scenario.

6. Press now button OK and check that command JavaGeneration is appeared in menu

Tools above Customize....

7. You can now click on menu command Tools > JavaGeneration.

During ruleset evaluation, Rational Rhapsody opens a temporary black window but

generation result is always reported in Out tab.

Note: To avoid error during execution, ruleset main entry must contain only one input

argument of type rhapsody, example:

public ruleset Class2List(in rhp : rhapsody)

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 43/44

Import, run and deploy "Rhapsody to Excel" sample

Import this ruleset

1. Click File > New > Example.

2. Choose Rulescomposer Sample in the New Example window and press Next.

3. Expand folder Rhapsody ruleset in the Import Rulescomposer Sample window

and press Next.

4. Choose Rhapsody to Excel in this folder and press Next.

5. In last window press Finish.

A project com.sodius.mdw.rhapsody.rhapsody2excel is created in the workspace.

This project contains in src folder only one package com.sodius.mdw.rhapsody2excel and

only one file Class2List.mqr, please open this file.

Here is the behavior of this ruleset:

1. Code generator requires a single input argument of type rhapsody when we wish to

deploy this ruleset:

public ruleset Class2List(in rhp :rhapsody)

2. As a second argument for output is forbidden, we should create an inner model to

assume Excel transformation.

var exc : excel = context.getWorkbench()

 .getMetamodelManager()

 .getMetamodel("excel").createModel();

3. we need class com.sodius.mdw.metamodel.rhapsody.proxy

.ProxyPreloader when we want to use instruction getInstances("Class") in

a deployed ruleset (See tutorial):

var myProxyPreloader : ProxyPreloader = ProxyPreloader

 .getNewProxyPreloader(rhp);

myProxyPreloader.preload();

4. We need to prepare main structure of Excel workbook:

var workbook : excel.Workbook = exc.create("Workbook");

var sheet : excel.Sheet = exc.create("Sheet");

workbook.sheets.add(sheet);

5. For each row we create only cell to insert class name:

../../../../../Archive/RulesComposer-Documentation-7.5.15/com.sodius.mdw.rulescomposer.ui/doc/tutorial/tutorial_java_readers.html

IBM Rational Rhapsody Developer RulesComposer Add On: Tutorial Page 44/44

var row : excel.Row = exc.create("Row");

var cell : excel.Cell = exc.create("Cell");

cell.value = class.name;

row.cells.add(cell);

sheet.rows.add(row);

6. Finally, we can save model in a XLS file:

var app : rhapsody.Application =

rhp.getInstances("Application").first();

var path : String = app.activeProject

 .activeConfiguration.getPath();

exc.write("Excel Workbook", path + "\\output.xls");

Run this ruleset

1. Click Run > Run Configurations...

2. Expand folder Rulescomposer in the Run Configurations window.

3. Choose Rhp Class 2 XLS List launch configuration in this folder and press Run.

4. You will find a compliant Excel file output.xls in the code generation folder of the

Rational Rhapsody active configuration.

Deploy this ruleset

1. Click File > Export...

2. Expand folder Rulescomposer in the Export window.

3. Choose Deployable Rulescomposer configuration and press Next.

4. Choose Rhp Class 2 XLS List launch configuration and press Next.

5. Select Deploy JAR file.

6. Fill Export directory with c:\tmp and press Finish.

7. Return in IBM Rational Rhapsody application.

8. Click Tools > Customize...

9. Create a new customized tool Rhapsody to Excel (See details page 41):

With Command =
<RhpInstallDir>\Sodius\RulesComposer\bin\rhp_generate.bat

With Arguments =
"C:\tmp\Rhp Class 2 XLS List.launch"

10. You can now launch command Tools > Rhapsody to Excel.

