utorial for TestConductor for RiIJ

Rhapsody

RiJ Tutorial

for

R IBM® Rational® Rhapsody”®
_———— = TestConductor Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®
Rhapsody®TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2011 BTC Embedded Systems AG. Al
rights reserved.

TestConductor for Rhapsody for Java

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, and
source code. During execution
TestConductor verifies the results
against the defined requirements.

Rhapsody® Automatic Automatic Automatic

Test
Architecture

UML Testing Test Case Test Case

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

StopWatch Application

The StopWatch application, the example

Java application for this tutorial, models a simple stopwatch.
Make yourself familiar with the use cases of the application.
Open the project ,JavaStopWatch® from the folder
~samples/JavaSamples/TestConductor® in your Rhapsody
installation, run the component «StopWatchComp», and
use the following input:

Obiect | myStopwatch(d]

Ewvent: evkoey "

Arguments:

i To start the application, press “Go” in

ke

colon, similar to a stopwatch with blinking colon.

Rhapsody’s animation toolbar.
" Object | mpStopwiatchld]
1zkar
astl BV [evkey r To start the stopwatch, generate event
Sy i “evKey(1)” using the animation toolbar.
M ame -El:lit
[6d Kewal To stop the stopwatch, generate event
“‘evKey(1)” again using the animation toolbar.
Higtory:
myStopwatch{0]> R When running, the stopwatch outputs the
9 elapsed time in minutes and seconds to the
1 console. Each second is printed twice, one time
=2 . .
i 2 with a colon and 0.5 seconds later without a
'3
.
4
=L
5

StopWatch Model

pStopyatchin
Q

—{ 10—

[Key

pStopyatchOut
—

IDisplay

Stopy¥atch

1 itsButton:Buttal &

PEny]

ey

pButton

|Buttan

B evPrasskey(k
S keySend(Key...

1 itsDigplay:Displa &

pOut
———1
IDisplay

pDisplay
[

E ShowTime(m:in

|Display

pButton -
= seciint

IButtan | B min:int
pDisplay| @ reset)void
IDisplay

........

1 jtsTimerTimer &

myStopWWatch

T itshMykey:mykey

Epresskeyiiey. .

[

pBtopWatchin

IKey

1 itsMyDisplay:myDispla: &

1 itsStop¥Watch: StopyWatch
O

pStop¥WatchOut

IDisplay

L

pl
1—

IDizplay

The StopWatch model contains the

StopWatch class and its three parts. The first part is a
button that can be used to start and stop the stopwatch.
The second part is the timer that is used in order to count
the elapsed time. The third part is the display that displays
the elapsed time. Within the stopwatch the different
components are connected via ports and links. Additionally,
the stopwatch class itself relays both the start/stop button
and the display to its boundaries in order to be able to
connect an external start/stop button and an external
display .

The myStopWatch class represents a
sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”
that can be used as a start/stop button.
Additionally, it connects the stopwatch to an
external display “myDisplay” that displays the
elapsed time.

System Under Test

Defining the System Under Test (SUT) is the first

l step in the test workflow. This tutorial will focus on the
®-] Components — | et 'a | .
8 pepeoneinagans e StopWatch class. To define StopWatch to be the SUT, we
£ InterfacePkg 5 = arr .
A, E?E%fﬁ'gﬁfiﬁf g have to create a test architecture. The needed
Bt @ Testcomponas administrative framework will be placed in the folder
=3 Profiles + TC_at_pln_of Stopwiatch “
et] N Qi A , lestPackages”.
=G TestPackages =9 TestContexts
o e = 89 TCon_StopWWatch .
Hl g s care = b Links _ The System Under Test (SUT) is a part and
=, Defaultconfig ! !tsStDpWah:h_!tsTC_at _pIn_of_Stopiiatch . i
T T copaen g hStopliath ISTC af_pout_of Stpiath is the component being tested. A SUT can
B e oy S o consist of several objects. The SUT is exercised
=t o SPMATE via its public interface operations and events by
] 1:““ 3 ;g;g;;ggﬁg;{:ﬁ;;h the test components.
= fmriaraees I

N

=B StapiatchPlg

=B Classes
+ Button
+ Digpla

=8
5 @ Tirmner Features...
-] Object Mod -
- SystamPkg Delete from Maodel

Create TestArchitecture

Select the class
~StopWatch® in the browser

0 and choose from context
menu ,Create

_ TestArchitecture®. J

a N\
aTesAContaxdts

TCon_StopWWatch

=¥ TestContexts

=i TCon_Stopwatch 1 5UTx
- Links itsStophWatch: StapWatch
= gl SUTs

il itsStophiatch
=i Test Context Diagrams
r)ctructure of TCon Stopatch O 0
] ‘ TestComponentInstances pInT pOutT
%y, TestConfigurations

Have a look on the newly created Test Context Diagram
e .otructure_of TCon_StopWatch “, and view the resulting parts in

the composite class ,TCon_StopWatch® of our test context.

\)

Test Architecture

=R 3 TPk0_ Stophidatch
=1 Components
— =-&1 TPkg_Stop\atch_Comp
=1 Configurations
1%, DefaultConfig
q = jTestCDmpDnents
=g TC_at_pIn_of_Stopiwatch
+-=0 Ports
=g TC_at_pOut_of Stophatch
- Generalizations
+-=0 Ports
+ Statechart
— = 39 TestContexts
=-f9 TCon_StopiWatch
+-L4 Links
=gl SUTs
alb itsStopwatch
-l Test Context Diagrams
#] Structure of TCon Stopbatch

= ‘ TestComponentInstances
z itsTC_at_pIn_of _Stopiatch
itsTC_at_pCut_of Stop\watch
=%y, TestConfigurations
2oy DefaultCaonfig

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

The new configuration under the component
,1Con_StopWatch Comp* describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
Instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

o TestContexds
TCan_StopWWatch

its=StopWatch: Stoptatch

wSUTw

pin

pln

pOut

pOut

1 ocTestEc-mpoln_elntlnstance.TestEc
itsTC_at_pln_of StopWWatch:

1 ocTestComponﬁtlnstance.TestE"E-,
itsTC_at_pOut_of StopWatch:

The automatically created test context represents
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test

- context. TestConductor generated corresponding test

components for ports and associations of the SUT.

The composite class ,TCon_StopWatch® is
the part container for the SUT object and the
created test component objects.

The class ,TC_at pln_of StopWatch®
realizes the required interface ,IKey" and thus
can be connected to the “pIn” port of the
stopwatch class that provides this interface.

The class ,TC_at pOut_of StopWatch”
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.

Adjusting Test Architecture

=151 Interfacefkg
= \ Events
\ evPresskey(int Kewial)
\ evReset()
\ evShow(int m,ink 5, boolea
\ evSkartstopl)
=B Interfaces
H 1Button
B 1isplay
B key

=g TestComponents
= _j TC_ak_pIn_of_StopWatch
=) Dependencies

To use events which are defined in other

T

Mg Lsages InterfacePlkg

-0 Ports
=1, TC_at_pOut_of_Stopiwatch
=) Dependencies

«Usages InterfacePkg
T Generalizations

S|

=0 Porks
(&) Statechart
= 33 TestiZontexts
=1-¥§9 TCon_Stopwatch
="+ Dependencies

(

= j TestComponents

Select Add New->Relations->
Dependency for ,TC_at_plin_
of _StopWatch® and set the

_ dependency to InterfacePkgj

T

|

«Usages InterfacePkg

packages we have to set a usage
dependency. Otherwise the events will not be
found if referred to from another package.

(

=g TestComponents
= (gh TC_at_pIn_of_Stopwakch
=-*s} Dependencies
*s) InterfacePkg

Dependency : InterfacePkg in TC_at_pln

General | Description | Tags | Properties

Mame: InterfacePkyg
Stereotype: Usage
Depends InterfacePkg

Double click InterfacePkg
and set the Stereotype of
the dependency to Usage.

/

_

=L} TestPackages
=% TPkg_StopWatch

[Compaonents

= j TestComponents
TC_ak_pIn_of
TIZZ_at _pout_o

= ﬁi TestZonkexks
& TCon_Skopit'atch

Repeat the same steps for
“TC_at_pOut_of StopWatch”
and “TCon_StopWatch”.

/

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let’s have a look at the test cases. A test case ...

IS a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

IS an operation of a test context that specifies how a
set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

10

Test Case Specification

How to manually create test cases and how to execute them
‘with TestConductor will be discussed in the following sections. The

TCon_SiopW T?hst‘;t;p\g, Ton SiopW different kinds of definitions have their own strengths:
_pln_of Stop Watch: Staph _pOut_of Sta
| | | Sequence diagram test cases can be recorded
| | evShowim =0, 5=0, b = false) | :
| | | automatically or created by hand. In some cases they have
| | | already been specified during the analysis phase of the
ftsTCon.tte_ it project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.
Statechart test cases are a well known and convenient
fTestConductor ASSERT_NAME(Initial" true); means to specify behavior based on states and modes.
¥
final_state Source code test cases are often preferred by

Test Case : Check_SetTime in TCon_StopWatch

General | Description | Implementation | Argumerts | Relations | Tags | Properties

woid Check_SetTime()

oo
o1
oz
o3
04

l// Check that initiglly the time is 0:0

int mins = its3topWatch.getMin();

int secs = its3topWatch.getSec():
TestConductor. ASSERT NAME ("Check initial time", (imins =

F nmow set btime to 03:21 and check that setting of time

A4 the correct time

its3topWatch.secTime (3,21 ;

mins = itsStopWatch.getMin();

secs = itsStopWatch.getSec():

TestConductor. ASSERT_NAME ("Check if time setting is corr
[imins == 3) && (secz == 21])])

experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

11

Test Case: Sequence Diagram |

& TestScenario: Checklnit in TPkg_Sto...

- B)X]

TCon_...:StopiWatch JTC at pln of Sto. | TC at_pOut.
25T
TCan_StopW TCon_Stopwy TCon_Stopy
atch.itsStop atch.itsTC_at atch.itsTC_at
YWatch: StopW _pln_of_Stap _pOut_of_Sto

|
|
[
#-&g Test Context Diagrams
=% TestCases
EI % to_check_init
El sDInstances
=] _Ei TestsScenarios

To manually create a sequence diagram
= test case we have to define a test scenario
which is represented as a sequence diagram
and link it to a test case. TestConductor
simplifies this process with a single command.

(

_

N ﬂ CheckInit
4 N)
=59 TestCDntexts =%, TestCases
ER- 4 TCon Stonvyatch Create SD TestCase ERM - ook init)
: ; ;‘B‘_T_SS Create Flowchart TestCase , SDInstances
4 Test Context Diagrams Create Code TestCase = @ I ;
@ TestComponentinstances Create Statechart TestCase - R
%y TestConfigurations
d ch f h Rename the test case to

Select the test context - and choose from the tc_check_init‘. Rename the
»1Con_StopWatch® in the context menu ,Create SD test scenario to ,Checklnit*
Rhapsody-Browser ... TestCase".. and open it.

_ /L /

12

Test Case: Sequence Diagram Il

=3 RequirementsPkg
=-E Requirements

Requirement : REQ_Init in RequirementsPkg E @
B REQ_Init P |
[E? REQ_Running_1 General | Description | Relations | Tags | Properties
[E? REQ_Running_2
B! REQ_SetTime Mame:

[E? RECQ_Stopping

Stersotype:
B StoptatchPkg
E_‘l SystemPkg Type:
& TutorialPkg D
(2 Profiles Ll
=-E3 TestPackages Refinediin:
=% TPka_Stopiatch Specification:

Requirement

v Bty

(Z Components
j TestComponents
=] 8] TestZontexts
(=9 TCon_Stopwatch| ¢
L Links
{‘ SUTs Locake

After starting the stopwatch, the stopwatch
shall display 0 minutes and 0 seconds (0:0).

test case.

v
>

&g Test Context Diagrams
=% TestCases
=% to_check_init()
E—“J', SDInstances
=] H, TestObjectives
L REQ_Tnit

Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_Init” is indeed fulfilled by
the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

(

= ’L: Testzases
ER P 1= chieck init
E] .

tingProfile OfflineTestResult

TestCbjective

TestScenario

Select the test case and
select “Add New ->
TestingProfile ->

_ TestObjective”

[Depends on:

& Select Model Element E|
=B Requirements -
‘ e o

E-! REC_Running
EY REQ_Stopping
£ stopwatchPka 4

[o |

Cancel |

Select requirement “REQ_Init”
e as target of the test objective”

NG J

-

\

=% TestCases

=R to_check_init
E_';'. S0Instances

=Wl TestObjectives
d, EENm

By TestScenarios

The test objective now links
the test case to the
requirement “REQ_ Init”.

/

Test Case: Sequence Diagram Il

B TestScenario: Checkinit in TPkg_StopWat... [|[O])X]

TCon_...StopWyatch

LT C at_pln_of Stophd.

L TC_at_pOut.,

Define action and reaction of the system
under test. We will specify the ,Checklnit"
scenario, where the SUT shall emit event

‘evShow” with current time 0:0 after starting

«3UTs
TCon_Stopw TCon_StopW TCon_Stop'W
atch.itsStop atch.itsTC_at atch.itsTC_at
Watch: Stophy _pln_of_Stop _pOut_of_Sto

| evshow(m=0s=0,b= trueJ

|

the SUT. This output shall be generated
automatically by the SUT, since no further
input is needed for that.

b
< >
4 N [N)
«5UTs
TCon__StopW TCon__StopW TCon__StopW <SUTs
atch.itsStop atch.itsTC_at atch.itsTC_at TEon Storv TCon Stoni o T—y
atch: Stopt pinol_Step pOuol Sto atchjtsStpop atch. EsTCp at atch. ﬁsTCp at
} } } | E'I.I'SI"ID'I.I'I.I'l:rT'I = D. o= D. h = trueJ Watch:|SleW _pIn_of_St_op _pOut_|0f_§t0
‘_‘T‘iShow(m=D,s=D,b=trueJ ‘ | |
‘ T | v evsShowiint int boolean) l l | evshow(m=0,5=0,b=true) I
I
|
Praw the”message Specify argument values
evShow” from the SUT to m =0, s =0, b =true for the That's it already. The test
0 ‘t‘q%test Scom\p/)\;)neﬂt. TC e message. e case specification is
_ PEROLSRRTERR-)L J L J

14

Test Case Execution |

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their
progress and status.

MName
-1 ¥, tr_check_init
By sD_tc_o

Status
Ed FAILED
E3 FAILED

2=l
ot
File/lte... = Line/fProgress
1 0% (0/2)

The status, the final result can be either
,PASSED" or ,FAILED".

The progress displays how many steps are
finished yet. In case of a passed test 100% have
to be achieved.

The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.

/— H3 TCon_Stopiwatch
5 Links
* g SUTs

=%, TestCases

‘ TestCumpDnenﬂ

[SRR S S

_

RPNt check initg)

&g Test Context Diagrams

Features...

Edit TestCase SDInstances
Update TestCase

Build TestCase

Execute TestCase

TestConductor

! E TestCase must be built before execution. Build and Execute now?

CK l l Abbrechen

Y4 N

=B Testcases
o

=i TestCompDnentInstances
#- %y, TestConfigurations
= E’S TesBcenarle
By, chacknit

2=
ST

Marme Line/Progress

Status

File/Ite. ..

To execute a test case, simply right-click the test case and select
“Execute TestCase” from the context menu. In case the test model

- ¥, to_chedk_init
20 tc_0

@ FaleD

[FalED

The test case execution
dialog is a dockable dialog

o needs to be updated and/or the tested executable needs to be e that can be placed e.g.
compiled, a popup window appears in order to update the test case underneath the main
and/or build the executable. AN browser window)

15

Test Case Execution Il

TCon_Stopyy
atch.itsStop
Watch: Stophy

TCon_StopW
atch.itsTC_at
_pln_of _Stop

TCon_Stopy
atch.itsTC_at
_pOut_of Sta

evshow(m=0 s=0 b=false): Event Sending -

F'arameigL values do not match.
I

evShow(m=0,s=0 b=true) |
Sy

Total number of SDs used:

Total number of SD instances in test:

Total number of executed S0 instances:

The test case execution FAILED with
Rhapsody TestConductor. To analyze the

reason TestConductor offers two kind of views.

The HTML-report displays a textual summary
and can be found directly under the test case
in the Rhapsody-Browser. TestConductor
created a debug sequence diagram to display
the error. The red arrow visualizes the faulty
step and the reason. TestConductor expects
the parameter value ,true” for argument “b”,
but observes the value ,false” during actual
test execution. The expected value was not
specified correctly... by accident.

ﬂﬂ EE| 13 Tests -
b &) (2) % b =T Testiases
¥ 6 : : =% tr_check_init()
Marne Status Fi... Line/Progress Hame Status Fi... | LinefFrogress +-El SDInstances
-1¥%, tr_check_init @ FAILED - Testobjectives

-1¥, t_check_init €3 FAILED

Show a5 SO
Add to rodel

To open the debug
sequence diagram right

0 click the item SD_tc_0in
the TestConductor

_ execution dialog...)

Show as SD

Add to model

_

e ... and select “Show as SD” e test case, you can find the
generated html report. Double

In the browser, underneath the

click the report to open it.

L j

16

Test Case Execution Il

MName Status
-1¥, tr_check_init (&) PASSED
Bpso_tc.o (@ PasseD

Fi...

1

The test execution PASSED with .
= Rhapsody TestConductor after we corrected
IOE X the expected parameter value for argument “b”

from “true” to “false” in the test scenario
,Checklnit®. After changing the scenario and
100% (2/2 re-executing the test case, the test case is
passed.

Line/Progress

Refer to the user guide to get
familiar with the extended functionality

2 TestResults
TestScenarios

of TestConductor.
Y TestScenario: Checklnit in TPkg_Stop... Q@
L TCon_....Stopatch L TC &t pln_of_St.| . TC at pOut... i
=%, t_check_init() e b = |
=] <5UT»
* 7 SDIFIStEl.rICE.S TCon_StopWy TCon_Stopvy TCon_Stopwy #é: b
+ E:l TEStDI’:I]EI:tI'I.I'ES atch.itsStop atch.itsTC_at atch.itsTC_at MName Status Fi. % iProgress
¥ Watch: StopWh pln_of Stop pout_of Sto

! === B =% t_check_init @ PASSED
| \ | Hsotro (@ PASSED 1 100% (2/2)

- E:b CheckInit evShowm 0. s=0b= false)‘
r\%|

To correct the test case For argument "o", cha“nge :[,he Re-execute tt]e tes;t sase b_y

: exptected value from “true” to pressing the “Start” button in
open the test scenario :

i “false”. the top right corner of the
;Checkinit' execution dialog
NG O\ ' /

Test Case: Source Code |

To manually create a source code test case
create a code test case and write the test code into
the edit field under the implementation tab of the

Test Case : Check_SetTime in TCon_StopWatch *

General | Description | Implementation | Arguments | Fielations | Tags | Properties

void Check_SetTimel test case. TestConductor provides a set of functions
01 it mine = svameapiaren. soeningys o 0 . like e.g. ,TestConductor ASSERT_NAME® that can
o 122t3EiZuZtifiééiﬂifﬁiﬁﬁiii_éi’inmal — be used to execute checks during test case
e Hhwns 77 01 68 femes T ol execution. If the function “setTime” (line 08) of the
07 /) ne correct tame o CRCK thar setuing of tine dmaces seis stopwatch works as expected, the test case
09 mine o traStopvateh. grkin () passes.
10 =zeps = itaStopWatch.getSec () :
11 TestConductor.AS3SERT NAME ("Check if time setting is correct™,
12 - {(mins == 3] & (secs == 21])): .
< — >
Locate Ok Appl
("« 5 TestContexts _ N[N (- B3 TutorialPkg —)
= @ Tu:::|:|r|Eitu:nr:l'u.."'-.u'.atn:h - . - =B Classes :
: ; ISSI'{FSS --%. TestCases -8 TesttaseClass
o 30 reate 50 Testcase , # %t _chedk nith - e
=%, Tt Create Flowchart TestCase - BTt check time ER= o _check time() T

)

+ Create Code TestCase
+ ‘ T¢ Create Statechart TestCase
+ q)) Test onfigurations

o Select the test context Rename the created test Re_plgce the content of the
edit field under the

02 int secs = itsStopWatch.getSec ()

- o1 .:i.nt, mins = it,sSt,DpI-Iatcil.getHin(]:
03 TestConductor.AISERT NAME ("Check i

»1Con_StopWatch® and case to ,tc_check_time*

implementation tab of the test

choose from the context and open the features :
menu .Create Code dialog. case with the content from the
TestC ;s o “tc_check_time” operation in

_ VAN) U the Tutorial package. D

Source Code Test Case: Execution

> ® % ff Execute the test case with Rhapsody
TestConductor.
Marme Status File/Tteration | Line .
S % 1 check time © PiccT Both assertions evaluate to true and the
W — — o o
{5) Check initial time © PASSED TCon Sto.. 141 | test case passes. Double-clicking an
I7) Check if time setting is correct @ PASSED Tcon Sto.. 148 | | evaluated assertion in the execution
window highlights the assertion in the test
e — | model.
05 mwins = itsStopWatch.gecMin()
09 secs = itsStopWatch.getlec():
TestConductor . AZ3ERT NAME ("Check if time setting is correct™,
11 [fmins == 3] &£& (secs == 21))):
< »
Locate Ok
e a _ N N
=9 TCU Edit TestCase SDInstances = TCc Edit TestCase SDInstances
%5 Update TestCase 5 Update TestCase Marme Status
b Build TestCase : E!i Build TestCase - tc_CheCk_.ti.nTe) © paseeD
+ i—n - H i EN——— & heck |n|t|| tle — @ PE
=% Hecute Testzase ¥ | setting is correct [@) PASSED
-5 fr_check it % to_check_init() tion
- R t_check tir‘r'||ée|:"::| i P tc_check_time()

Select test case
“tc_check_time” and then
select “Build TestCase”
from the context menu.

Select test case
,{c_check_time" and select
“Execute TestCase” from
the context menu.

_

In the execution window,
select the assertion and
double-click “Show Assertion”
in order to highlight the
assertion in the model.

)

19

Test Case: Statecharts |

This is a statechart defining TestCase behavior

In Statechart TestCases you can use ASSERT macros like :
TestConductor ASSERT_MAME(n,g), e.q.
TestConductor ASSENT 5L g T68¢ w0 ™"

For the list of available
or the TestConductar.

fitsTC

¥

state 1

=9 TestContexts

To manually create a statechart test case we

+-Lo Agsociation Ends
+-"y) Dependencies

+- & Operations
#-(&) Statechart

B @ Tags
=89 TCon_StopWatch command.
- Attributes
+-Ly Links
+- & Operations
gl SUTS
+-kg Test Context Diagrams
=%, TestCases

+-# to_check_init?)

=% tc_check_progress{)

="y Dependencies
B <StatechartTestCase» TCSC

tc 0

have to define a test scenario which is represented
- as a statechart and link it to a test case. Technically,
the test case has a dependency to a
TestComponent that contains the statechart.
TestConductor simplifies this process with a single

SR 3 TCon_Stopliatch
g% S Create SD TestCase
< ig Te
=B T

Create Flowchart TestCase w
%, Create Code TestCase N
Create Statechart TestCase
Update TestContext

N

=%, TestCases
% 10_check_init))
- ¥ I rogress i)

w IC check time

Rename the test case to

Select the test context
,1Con_StopWatch* and
select “Create Statechart
TestCase”.

“tc_check_progress”

-

_

- -)

=%, TestCases
- %, tr_check_init()
=%, tc_check_progress)
+-"x) Dependencies

=W TestObijectives
2k m.ﬁ"

%, tc_check_time()

e Add a test objective (using

“Add New -> TestingProfile
->TestObjective”) to

requirement REQ_Running_ﬁ

20

Test Case: Statecharts |l

initial

=

fitsTCan.rtc_init();

#f Check that initially the time is 0:0

int mins = itsStopWatch. getMin();

int secs = itsStopWatch. getSec();

¥ TestConductor ASSERT _NAME("Check initial time",
{imins == 0) && (secs == 0)));

o state_3
—
..—-’-'-FP—‘_’_—
o

#f now start stopwatch

its Stop¥Watch. getPIn{). getinBound{). geninew evPressKey(1));

tm(3200)/

now check if time has elapsed accordingly

int mins = itsStopWatch. getMin();

int secs = itsStopWatch. getSec();

TestConductor ASSERT_NAME("Check elapsed time",
{imins == 0) && (secs == 3)));

fitsTCon.rtc_exit();

Vitalize the statechart in order to execute it with

" TestConductor. The statechart test case first checks

that initially the stopwatch’s time is indeed 0:0. After
starting the stopwatch, the statechart test case
waits a bit more than 3 seconds, and then checks
that indeed 3 seconds should be counted by the
stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody
TestConductor function
»1estConductor. ASSERT _NAME()“. This function
was already used for the code test case in order to
perform code based checks. If both checks are
passed, the complete test case is passed.

/

=83 TutorialPkg
=8 Classes
=B Tesc
#-L Agsoci:

)

=i TCSC_to_0
+-L Associztion Ends
#-"s) Dependencies
- [Operations
#-y Deperc =-(&) Statechart
+- @ Operat FEll StatechartDiagram
=-{Z&) Statechiar - T :
:&v StatechartDian IEA I

Replace the content of the
test component statechart
associated with this test case
with the statechart of the
Tutorial package.

21

Statechart Test Execution

2lx
DROE - -1
MNarme Status File/Tteration = Line
- ¥, to_check_progress () PASSED
13 Check initial time (@ PASSED TOSC to_... 408
Q Check elapsed time () PASSED TCSC to_... 709

M Check that initially the time is 0:0

int mins = itsStopbWatch. gethding;

int secs = itsStopWatch. getSec();

TestConductor ASSERT_MNAME(" Check initial tirme",
((mins == 0) && (secs == 0)));

#f nowe start stopwatch

itsStopWatch. getPIn{). getinBound(). geninew evPresskey(1);

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to

~ true and the test case passes.

L® - check progress()
#o tc_check_time()

0 Select the test case

»{C_check_progress” ...

_

Update TestCasea
Build TestCasze

Execute TestCase

N [Edit TestCase SDinstances 1 N N
Update TestCase |
- —— Mame Status
=&, TestCases) Build TestCase -1¥ t_chedk_progress © PASSED
%0 to_check_init() Ex Edit TestCase SDInstances | {2] Check initial time © PassED

o Check & time

/AN

e ... and choose from
context menu the items
,Build TestCase*
and ,Execute TestCase®.

e In the execution window,
select the assertion and
double-click “Show Assertion”
in order to highlight the
assertion in the model. Wy,

22

Create Test Cases Using Test Case Wizard - SDs

evPresskey

StopWatch myDisplay

(Keyval = 1) I

Create Test Case

Map instance lines to test architecture

Flease select test architecture for test caze:

{E B> >
Con_Stoph/atch

Flease select test case kind

. 23
To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor
test case wizard. For an existing sequence
diagram, the test case wizard creates an analogue
test case with the same message structure as the
original sequence diagram. For an operation, the
test case wizard creates a test case that tests the
chosen operation, for a requirement the test case
wizard creates a test case with the chosen
requirement as the test objective.

(EI 3 TutarialPkg) Create Test Case N (=% ;I’estCases I
B Classes -
H i | il =y SDInstances
= D Seguence Diagrams M inztance lines ta test architecture = SUINStance:
EJ StopW atchRunning TCon_Stopw TCon_Stopw TCon_Stopw
_ atch.itsTC_at atch.itsStap atch.itsTC_at
] Fleaze select test architecture for test caze: _pln_of_Stop Watch: StopW _pQut_af Sto
Rational Rhapsody Gateway <cnew> | T :
Con Sto

“Create TestCase...”.

o Select the sequence diagram e In the test case wizard e “SD_tc_0” has been created
“StopWatchRunning” in the dialog, the test context which is based on a new test
tutorial package and select “TCon_StopWatch” is scenario containing the same

O\

already highlighted. Press messages as the original SD,
OK to proceed.

As a result, a new testcase

but life lines adapted to the test
/L context structure.)

Create Test Cases Using Test Case Wizard -

Operations

#-59 PredefinedTypeslava (REF)
+-£ RequirementsPkg
=59 StopwatchPkg

Test Case : Code_tc_0 in TCon_StopWatch

. 24
The test case wizard can also be used to

- test operations that are defined in the model.

The wizard allows to create three different kinds

=8 Classes General | Description | Implementation | Argurments | Fielations | Tags | Propetties)
- il vt D1 10 of test cases: sequence diagram test cases,
L ?E’Wﬁtﬂ 01 /7 Dass ontucton ASSERD AANE (n, 20, ot statechart test cases or code test cases.
- & operatins 03 /) mon the sins vt aveiTamie maceor see Tesien Independent of the chosen kind of test case, the
Eggg;;% E: A4 or the TestConductor.java file in the insta t d t t II th I t d t.
8 setTime (it mnts) 02 int omz ars - 0 created test case calls the selected operation.
53 o 05 srscagTaech e ine cme_sro 1, oz axg 21 Additionally, the test case already contains a
o 03 Ch ol Do S TeoTConduSTor ASSERTNMEE(TImsiaLT tre) ;g check that can be refined by the user in order to
=-£1 SystemPkg < >)
= & i check the out values of the operation.
L3 I;Z%Scka_g.esm B Locete o
— N N (o% — N
- H stopwatch v Jestoases
* ‘H DEpEﬂdEHEiES Flease select test case kind: - v rap it
+ |_| |_ i"' -= Test Case : Code_tc_0 in TCon_Stopwatch

=@ o

Rational Rhapsody Gateway

Create TestiCase, ..

Code TestCaze

5D TestCase

Code TestCase

TestCase...”

Select operation
“setTime” of class
StopWatch in the browser
and select “Create

Statechart TestCasze

General | Description | Implementation | drguments | Felations | Tags | Propertie:

woid Code_te_0[)

06 int osc arg 1 = O
07 int osc arg 2z = O;
05 itsStopWatch.secTime (osc_arg 1, osc_arg 2);
09 TestConductor.iIFERT NAME ("Initial"”, true):

In the test case wizard
dialog, select “Code
TestCase” as test case
kind and press OK.

o

As a result, a new code test
case has been created that
contains a call to operation
“setTime” and also a dummy

assertion that can be refined.

L j

Debugging Test Cases

MHarme

- ¥, 5D_tr_0
By sD_tc_o

Ml

Status
EXECUTIMG
ACTIVE

TCon_StopWy
atch.itsTC_at
_pln_of_Stop

I
@ I —
N
+

Fil...

1

TCon_StopWy
atch.itsStop
Watch: Stapyy

reset()

]

show(min=0, sec =0, b = falze) |
evShow(m =0, s =0, b = false) |
éhowTime(m =0,5=0,b = false)|

evShow(m =0, 5 =0, b =falze)

i

2=l
) 0[5

Line/Progress

25%

(2/8)

TCon_StopWy
atch.itsTC_at
_pOut_of_Sto

Debugging failed test cases can also be
done with TestConductor. When a test case
fails, one can turn on debug execution mode in
TestConductor’s execution window. After
switching on debug mode, when executing the
test case one can step through it by using the

| “Go Step”, “Go Idle”, etc. buttons of Rhapsody’s

animation toolbar. Additionally, when stepping
through the test case, one can use Rhapsody’s
animation features to inspect animated
statecharts, animated SDs, etc. in order to find
the reason why the test case fails.

® - N N - N\
=% TestCases - aﬁ
+-#, Code_tc_0 P oI
i i S A O . MNarme Status Fil... = Line/Progress

x'_ ool oL MName Stafus Fil... = Line/Progress -¥, 5D .0 EXECUTING
% T "Edit TestCase SDInstances -% S0 0 € FALLED Byoo w0 ACTIVE L S
Update TestCase 5 sp_tc D FAILED 1 s0% (4/8) —
Build TestCase M B> b ! = A F = |!
Execute TestCase
0 Select test case After the test case has e Execute ,thettﬁsag":‘sﬁ,igé’:ltn
“SD_tc_0” and select failed, turn on debug (ytEreSSIng ! e S aI I:IJ on
“Execute TestCase”. execution mode by clicking In the exetcu '?k:‘ a ﬁ?h ?Wt
the debug button in the you an step r\fgug de’ es
execution dialog. case Dy using Rhapsody's
_ L) U animation toolbar. Y.

25

Executing Multiple Test Cases

Executing multiple test cases can be

= |
DROE < -

Marme Status File,/Theration Line/Progress
-1 & TCon_StopWatch & FaILED
-¥, Code_tc D @) PASSED
£ 1nitial @ PassED TCon_Stop... 132
-¥. SD_tc 0 3 FallED
By so_tro 3 FalLED 1 S0% (4/8)
- ¥, tr_check_init @) PASSED
By sp o @ PassED 1 100% (2/2)
-1¥, tc_rheck_progress © PassED
2] check initial time @ Pass= e == 1
1) Chock slapsed time @ PASS Test Context: TCon_StopWatch
“% to_check_time © Pagg| Codetr 0 PASSED
£+ Check initial time @ Pass| S0t 0 FAILED
£ check if time sett.,, @ Pass| to_check_init PASSED
tc_check_progress PASSED
t_check_time PASSED

(Bﬁ'JT
=

I_| ||n|/c\-

‘ TestCarr,
2y TestCon

estContexts _)
Stop\Watch

Create Statechart TestCase

Update TestContext

. Build TestContext
¥ LN ndate TestContext
Build TestContesxt

Execute TestContext

Select the test context
“TCon_StopWatch” and
select “Update
TestContext”. After that,
select “Build TestContext”.)

(539 TestComtexts

B/ Y TCon Stop\waich
'7 Lirks .
ol S .
‘ﬂ 1. Build TestZontext
ERML Crxecute TestContext

Update Testirchitecture

-
= T

q); Test_onmguraTions

e Select the test context

again and press “Execute
TestContext”. All test cases
will be executed one after
the other.

/

done by executing a complete test context or

a complete test package. When a test context
or a test package is executed, all test cases
within the context or test package are executed.
After all test cases have been executed,
TestConductor computes an overall test result
for the test context or the test package.

" 1
Mame Status Fi
- TCon_StopWatch £ FalLED
=¥, Code_tc_D @ PassED
& mitial © PassED Tq
-1¥, 5D_tc_ D 3 FalLED
By sh_tr o @ FAILED 1

The results are shown in the
execution window. As always,
“Show as SD” resp. “Show
assertion” can be used to
show the reasons of failed
test cases.

/

26

Assessing Test Case Requirement Coverage |

S asenisal muolq

To: Requirement Scope: JavaStopWiatch

EY REQ_Init |E"! REQ_Running_2 |E"! REQ_Stopping |E"! REQ_Rurning_1 |E"! REQ_SetTime |
#_ to_check_init 14 REG_Irit
#_ to_check_time
"’r_,- tc_check_progress H REQ_Running_1
%, 50 16 0
."r_,- Code_tc 0

Which requirements are covered by

my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a
requirements coverage test report. A test case
requirements matrix shows the relationship
between test cases and requirements in a
matrix view. A requirements coverage test
report shows the same information, but
presented as a textual report. It can be
generated by ReporterPlus using a predefined
template.

o Select the test package

“TPkg_StopWatch” and
select “Add New ->
TestingProfile ->

_ TestRequirementMatrix”.

(& G TestPackages (" Mame m N [N\
B L R
=3 E TF-|_ -::.1-— -I.'.I—f—|.- To: Requirement Scope: JavaStopiistch
i AU _—WORWSICTT Sterentype: w {Q} - I) _
o B REQnt |B REQ_Running.z |EY |
* D o mpl:lrlerltE g 2 (%, tc_check_int i
Layout: TestRequirementCoverage in T S [T td RECL_Ini
b TestComponants 2 % tc_check_time
o = =
TableMatrix l TestRequirementviatriz SF'C"'“ w % : gc[—)‘:hecnk—pmg'e“
) COpE & | B 5Dt
Annotations » TestResultTable Include Diescendants ["From” Seope) % [, Code_te 0
TestingProfile » TestScenario "o |
= @ JavaStapatch w
Scope: =

e Open the features dialog

of the matrix, rename it to
“‘ReqCoverage”, and set
the “from” scope and the
“to” scope to the complete

_ model “JavaStopWatch”. AN)

When double clicking the
matrix in the browser, the
matrix view shows the
relationship between the test
cases and the requirements.

27

Assessing Test Case Requirement Coverage |l

Datei

o -

~ | Ci\Test itRhapsody7 .5 2yreporterp lusiUserFiles\Cover ageReport. htm

Bearbetten Ansicht Favoriten Extras 7

v 0o suchen - (@I _iLive ~Al=] v Free s [10] | 5 Freeware [10] ¢ |

w @ |@C:\Test it\Rhapsody?.5. 2yreporterplusiUserF.., | | i -

£ C:\Test it\Rhapsody7.5.2\reporterplus\UserFiles\CoverageReport.htm - Windows Inter... Q@@
P~

v

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With

. - uomn - »| REPOItErPlus a requirement coverage report

[%

» | [+

o=

1 Requirement Coverage Report of Mo

All Reguirements
B! Requirement REQ_Init

B Requi tREQ_R 1 N Specificati h h ' f F h
B reabemoingo oy | [ome_|Specificatn caze report shows the same information as the
E! Requirement REQ_SatTima REQ_Init After starting the stopwatch, the stopwatch EC-C;:SCSZ*SW

E Reqguirement REQ_Stopping
[Al Test Cases

Table of Contents
All Requirements

~| can be generated in different formats like Word,
Html, etc. The requirements coverage test

Covered by Test

shall display 0 minutes and 0 seconds (0:0)

requirements coverage matrix, but presented as

REQ_Running_1

After starting the stopwatch, the stopwatch
shall count minutes and seconds.

tc_check_progress

(M Passed)

a textual report. Besides the requirements

REQ_Running_2 | between

After starting the stopwatch, the stopwatch
shall count minutes and seconds. The colon

coverage report, another predefined template

not covered

displayed minutes and seconds shall blink once in
a 1 second time interval.

The stopwatch shall provide a function "SetTime"

REQ_SetTime that sets the current time. not covered
4 ﬂ REQ_Stopping E_’\.’_Flﬁm_[ETLng' pressing the key of the stopwatch not covered I
Applet com/synergex/modeleyeq TOC,DirectNavigator started ' Eigener CompLiter T 100% -

(TestReport.tpl) can be used to generate a
complete test report that contains all details
about test cases, test architectures, etc.

(

Check Model ¥
ReporterPLUS |
e Y——

|

Report on all model elements. ..

Report on selected package. ..

From Rhapsody’s tools
menu, select “ReportPlus
-> Report on all model
elements”.

(re

porterPLUS Wizard : Selec

“What would you like to do?

age
t PowerPoint Presentation

Generate Microsof

Suchenim | () Templates

2] TestReport.tpl
@ TestRequirermentCoverage. ipl
|#] UseCaseDiagramsDetailedRenort. ol

As format, select Html.
After that, select
“TestRequirementCoverage
tpl” as template for the
report to generate.

\

/

\

=1L)

Py

After generating the report,
the report can be viewed with
any browser that can display
Html files.

/

28

Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (5/5])

Operations

covered keySend
EventReceptions

evPresskey
Statechart: StatechartOfButton

ROOT .Running

covered

= 1=

covered

Detailed Coverage Summary of Display {5/5)

Operations

covered

ShowTime

EventReceptions

evShow

covered

Statechart: StatechartOfDisplay
ROOT.running

covered

Besides coverage of the requirements,
an important orthogonal information is which
parts of the model are executed by the test

State cases, i.e, what is the achieved Model

Transition

Transition

Coverage when executing the test cases.
TestConductor can compute this information
during test case execution. When model

coverage computation is turned on, after test
case execution TestConductor adds a model

coverage report to the test cases, test contexts

— etc. that shows the achieved model coverage.

Transition

Transition

Test Package : TPkg_StopWatch in JavaStopwatch [F][&]

General | Description | Relations | Tags | Properties

View afl

ATGTestCase O =
CalloperationsCnlywhenCallstackErmpty
ComputeCoverage
SUT flat

Coveragekind

L T Sy

Open the features dialog
of the test package
“TPkg_StopWatch” and
turn on property
“TestConductor.TestCase.
_ ComputeCoverage”.

/

€ 39 TestContexts

B/ Y TCon Stop\waich
'7 Lirks .
ol S .
‘ﬂ 1. Build TestZontext
ERML Crxecute TestContext

% ,
@ T Update Testirchitecture

q); Test_onmguraTions

Execute the test context
“TCon_StopWatch”.

@ P TestContexts) \

=9 TCon_Stopwatch
= atributes
=4 CoverageResults
- TCon_Stopiivatch
L Links
& Operations
o SUTs
§3 Test Context Diagrar
=%y TestCases
=% Code_te_0()

Detailed Coverage Sun|

Operations

Statechart: StatechartDfButton

= CoverageResults

=T TCon_StopWwatch_ Code - |

After execution has finished,
coverage reports can be
found both for individual test
cases as well as a cumulative
coverage report for the test
context.)

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

highly automates the testing process and can save up
to 80% of test development time compared to
traditional approaches.

More Information ...

For further information, especially
technical news, visit our internet

' em——— information portal or contact one of our
—————— v == o worldwide sale agencies.

1IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

31

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

