Tutorial for TestConductor for RIA

Rhapsody

RIA Tutorial

for

R IBM® Rational® Rhapsody®
_——— = TestConductor Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®
Rhapsody® TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2011 BTC Embedded Systems AG. All
rights reserved.

TestConductor for Rhapsody for Ada

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, and
source code. During execution
TestConductor verifies the results
against the defined requirements.

Rhapsody® Automatic Automatic Automatic

UML Testing Test Test Case Test Case

Architecture

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

StopWatch Application

The StopWatch application, the example

Ada application for this tutorial, models a simple stopwatch.
Make yourself familiar with the use cases of the application.
Open the project ,AdaStopWatch” from the folder
~Samples/AdaSamples/TestConductor” in your Rhapsody
installation, run the component «StopWatchComp», and
use the following input:

Object: 'S toptadatchl0]

Ewent: v ey "

Arquments:

Ma

- To start the application, press “Go” in
ElL

Rhapsody’s animation toolbar.

i Object | myStopwatch{0]
k
ri; Event: | ayfey & To start the stopwatch, generate event
AT “evKey(1)” using the animation toolbar.
N T Val [Edt]
[od KEL:T e = To stop the stopwatch, generate event
E - . - -
“evKey(1)” again using the animation toolbar.
Hiztary:

myStopwatchll]> When running, the stopwatch outputs the
elapsed time in minutes and seconds to the
console. Each second is printed twice, one time
with a colon and 0.5 seconds later without a

colon, similar to a stopwatch with blinking colon.

Generate

n n n n n n
GG e e G G 0 D = = B 3D D

Before testing the model

Before testing the tutorial model, one
has to rebuild the Rhapsody framework. In order to do this,

e G e A e =l @y 90 to Rhapsody’s Code menu and select “Build framework”.

File Edit “iew | Code Layout Tools Window Help
O = g Generate

Re Generate

Edit

Roundirip

Force FRoundtrip

Entire Madel Wiew Dynamic Model Code Associativity
= AdaStopiaiz _

(2 Compor B

(1 Package Rebuild

Open IDE ...
Target
Debug
IDE Options

GenerateMake,/Fun
Clean Redundant Source Files

Build Frarmeswork

3
3

k

This rebuilds Rhapsody’s framework which is needed
before we can test the tutorial model. Please note that this
is only needed once, you don’t have to rebuild the

{ framework again if you want to test other models.

StopWatch Model

The StopWatch model contains the
StopWatch class and its three parts. The first part is a

Stopwatch ~ button that can be used to start and stop the stopwatch.

—_— The second part is the timer that is used in order to count

ssopacin] _ gend Lypatr the elapsed t!me. Th_e '.[hll’d part is the dlsplay that displays
s I e it T the elapsed time. Within the stopwatch the different
Sieyendiey.. L e components are connected via ports and links.
. _— — Additionally, the stopwatch class itself relays both the

e IDispiay] Bominints- start/stop button and the display to its boundaries in order

"5‘°"WT;§%1T;%”YEJ [;“’D&:': to be able to connect an external start/stop button and an

EShowTime(m:in...

external display .

The myStopWatch class represents a

oy StopWatch =] sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”
! RehyKeymyKey that can be used as a start/stop button.
[51_(_ Additionally, it connects the stopwatch to an
Bpressiey(key... |) external display “myDisplay” that displays the
pBtapWatchin | 1 itsStopWWatch: Stophyatch .
—oa% elapsed time.
e
pStDpWatChOuf

1 itshyDisplay: myDispla: & IDisplay
pl
[

IDisplay

System Under Test

Entire Model View = I

8] v atrch

= (1 Components . e o It
-5 Ob]EEt Madel Diagrams SRR Y TPkg Stoplyatch
502 Packages =1 Companents

& 3 InterfacePkg =
- PredefinedTypes (REF) 5 TPkg_SUDpWa.tEh_CDmp
1 5 PredefinedTypeslava (REF) =11 Configurations
=9 RequirementsPkg
% B StopWatthPkg RN DefaultConfig
& B SystemPkg = _} TestComponents
T ‘?%D?EZDD\:PWNE (REF) = g TC_at_pIn_of_Stopwateh
& [TestngProfile (REF) 2 TC_at_pout_of_Stopiwatch

Defining the System Under Test (SUT) is the first K
_step in the test workflow. This tutorial will focus on the
StopWatch class. To define StopWatch to be the SUT, we
have to create a test architecture. The needed
administrative framework will be placed in the folder

.1 estPackages”.

=-Lh TestPackages =
e Bl
= O Mponen e -
FH S s = o Liks | The System Under Test (SUT) is a part and
= %, Defaultconfig L itsStopWatch_itsTC_at_pIn_of_Stoplaatch i i
T T s | i oo ESTPNaIER.ISTC. 1 pOLI.of Stopateh is the component being tested. A SUT can
£ IC at pOut of StopWWatch .y
S Tescmtans i TtsStopiilatch i i i i
2§ oo e ams consist of several objects. The SUT is exercised
L tsStopwatth_isTC_ ¥4 Structure_of_TCon_Stopiwatch a1 ol 1
s Pttt via its public interface operations and events by
b itsStopiiatch itsTC_at_pln_of_Stop\Watch
=Ny I;séé:ssﬁ:;t zwfag;g;n:[z itsTC_atJjOut_Df_Sb:pWatch the test Components-
5 @ TestComponentinstance =%y, TestCanfigurations
z itsTC_at_pIn_of_Stop ‘\) DefauItCDnﬁg
itsTC_at_pOut_of_St__. ...
=%, TestConfigurations I
2y DefaultConfig

AV

=59 StopwiatchPkg

Create Testarchitecture
AT

Select the class
~StopWatch* in the browser

o and choose from context e
menu ,Create

_ TestArchitecture®”. A\

=B Classes TCon_StopWatch
+ Button
* 5 Displa =i TestContexts
: ; Featuras... =-F TCon_Stopiatch 1 «SUTa
+ T . '
+ Dé‘éjelc:nﬁa:gd + '7 Lirks itsStopWWatch: StopWatch
-3 SysterPlg Delete from Model =g SUTs

--id Test Context Diagrams

+ ‘ TestComponentInstances pInT pOutT
+- %y, TestConfigurations

w TestContexts

ol tsStopWwatch

P Siructiure of Toon Stopiatch

Have a look on the newly created Test Context Diagram
»otructure_of TCon_StopWatch “, and view the resulting parts in
the composite class ,TCon_StopWatch” of our test context.

Test Architecture

Ve

—

=- E g § TFkg_Skopiakch

=1 Components
=@ TPka_Stoptwatch_Comp
=] Configurations
-, DefaulkCanfig
= \i TestComponents
= \i TC_ak_pIn_of_SkopWatch
. -0 Ports
=i TC_at_pOut_of _StopWatch
- Generalizations
- Operations
---EI Parts
#-{E) Statechart
=-ff TestContexts
=9 TCon_Stopwiatch
-l Links
-4, SLITs
il itsStopwatch
=& Test Context Diagrams

EI‘ TestComponentInstances

Elq‘), TestConfigurations

...... "l), DefaultConfig

ool Structure_of _TiCon_Stopiiatch

----- itsTC_at_pIn_of_Stopwatch
itsTC_at_pOuk_aof _Stophatch

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test
model besides the design model. After creation the
following elements are visible:

The new configuration under the component
,1Con_StopWatch_Comp* describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
Instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

wTestConte:xts
TCon_StopWWatch

itsStoptWatch: StophWatch

aSUTw

pln

pOut

1 .xTestCompnlﬁlntlnstance,TestCt
itsTC_at_pln_of StopWatch:

1 «TestComponﬁtlnstance.TestE'E,
itsTC_at_pOut_of StopWWatch:

The automatically created test context represents
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test

“context. TestConductor generated corresponding test

components for ports and associations of the SUT.

The composite class ,TCon_StopWatch“is
the part container for the SUT object and the
created test component objects.

The class ,TC _at_pIn_of StopWatch*
realizes the required interface ,IKey* and thus
can be connected to the “pIn” port of the
stopwatch class that provides this interface.

The class ,TC_at_pOut_of StopWatch”
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let's have a look at the test cases. A test case ...

IS a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

IS an operation of a test context that specifies how a
set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

10

Test Case Specification

How to manually create test cases and how to execute them &
with TestConductor will be discussed in the following sections. The

5T
TCon_Stopt/ TCon_Stop e stop | different kinds of definitions have their own strengths:
atch.itsTC_at atch.itsStop atch.itsTC_at
_pln_of_Stop Watch: Stopi _pOut_of Sto

| | | Sequence diagram test cases can be recorded

: |evShuw(m:D,5:D,h:FALl§E) automatically or created by hand. In some cases they have
| M already been specified during the analysis phase of the

| project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and

understanding.

fitsTCon.rtc_init();

Statechart test cases are a well known and convenient

[TestConductor ASSERT_MAME"Initial” true); means to specify behavior based on states and modes.
¥
final state Source code test cases are often preferred by
Operation Bodw: .
06 amciare experienced programmers.
60 st lamecengmi;
09 begin
e e sesseowe |1 SUMMArY TestConductor, the Rhapsody test case
B e Taen T oosrerti=t @Xecution engine, works with all kinds and combinations of
1e pumsal and fseesmlll test case definitions.
16 —-—- 2ow set time to 05:21 and check that setiing of *;
17 -- sets the correct time
13 StopWatchPky. StopWatch. setTime (this itsStoplatch. all,
1a wmins := EtopWatchlkyg. StopWatch. getMinithis. itsStopat
Z0 secs = StopWatchPhyg. ScopWatch. getfecithis. ics8topat
z1 TestConductor. ASSERT NAME ("Check if time setting is «
zz (mins=3) and (secs=Z1));
23 emnd

Test Case: Sequence Diagram |

B! TestScenario: Checklnit in TPkg_Sto... [= |[O]X]

To manually create a sequence diagram

/

TCon_..StopWatch | .. TC at_pln_of Sto.| ..TC_at pOut.. . .
SR SRSl i =P — test case we have to define a test scenario
. which is represented as a sequence diagram
& » . -
TCon_StopW TCon_Stop TCon_Stop and link it to a test case. TestConductor
ﬁgiﬂﬁfg?éﬁﬁv %atpﬁ:-”;ggt_;; % a;g*ﬁ'f;céf; simplifies this process with a single command.
| | |
| | |
|
| | &4 Test Context Diagrams
| | =% TestCazes
| | =% tr_check_init()
! ! Bl SDInstances
= _Ei TestScenarios
N E—'!ID CheckInit
N [N)
=53 TestContexts) 5K TestCases
= 83 - Stopiiatc Lreate SD Testase é‘ L1 check_init()
; ;‘G[T_E; Create Flowchart TestCase , SDINstances
#'l Test Context Diagrams Create Code TestCase e oA
@ TestComponentinstances Create Statechart TestCase - e checkint
%y, TestConfigurations
and choose from the Rename the test case to
Select the test con‘t‘e:xt E(.)ntext ol Cromte 8D tc_check_init. Rename the
»1Con_StopWatch*® in the TestCase® . test scenario to ,Checkinit*
Rhapsody-Browser ...)L Stase-.. JAS and open it.)

12

Test Case: Sequence Diagram Il

=3 RequirementsPkg
= E—'! Requirements
[E¥ REQ_Init

[E? REQ_Running_1

Requirement : REQ_Init in RequirementsPkg

- Determine the test objective of the test

General | Description | Relations | Tags

S0

Propertiez

[E? RECQ_Punning_2

|RED_rit

|

v B %

Flequirerment

[E* REQ_SetTime Mame:
E? REQ_Stopping Stereotype: |
b StopWatchPlkg
B9 SystemPhg Type:
£9 TutorialPkg D
{23 Profiles i
Defined in:
=-E3 TestPackages EAEE| [|
=% TPka_Stopiatch Specification:

D Components
j TestCormponents
(=459 TestConkexts
(=59 TCon_Stopwatch| ¢
L Links B
il SUTs

Locate OK

After starting the stopwatch, the stopwatch
shall display 0 minutes and 0 seconds (0:0).

test case.
i v

& Test Context Diagrams
=%, TestCases
=-#. to_check_init)
E‘ﬂ, SDInstances
= E], TestObjectives
I REQ_Init

case: the SD test case should check that
requirement “REQ_Init” is indeed fulfilled by
v the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

/

= % TestCase

‘ TestObjective

TestScenario

Select the test case and
select “Add New ->
TestingProfile ->

_ TestObjective”

~
Add

Depends on:

M Select Model Element

X]

N

=-El Requirements ~
3 (e -
EY REQ_Running =
E¥ REQ_Stopping
£ stopwatchPka
]9 | Cancel |

Select requirement “REQ _Init”
as target of the test objective”

)

=% TestCases
=-# to_check_init?)
Eﬂ, ShInstances

=k TestObjectives
d [

E‘% TestScenarios

The test objective now links
the test case to the

e requirement “REQ_Init”".

- /

13

Test Case: Sequence Diagram lll

Define action and reaction of the system

under test. We will specify the ,,ChecklInit®

scenario, where the SUT shall emit event
“evShow” with current time 0:0 after starting

galTs
TCon_Stopyy TCon_StopyV TCon_StopWy
atch.its=top atch.itsTC at atch.atsTC at
Watch: Stopy _pln_of Stop _pQut_of Sto

T
evshow(m=0, s=[|] , b=TRUE) |
m

the SUT. This output shall be generated
automatically by the SUT, since no further
input is needed for that.

4 N N
5T
TCon_StopWy TCDn__SmpW TCon__SmpW | | | «SUT»
Vatcthgtgtsmsv atclh ”?Tgt—at amoh 'ttSchéft TCon_Stop¥ | | TCon_StopW | | TCon_Stopyy
= i * ‘pn‘o“ - = u‘|0‘ : evshow(rm=0, 5:[|]. b=TRLIE] | atch.itsStop atch.itsTC at | | atch.itsTC at
message 00 ‘ | Watch: Stopvy _pln_of_Stop _pOut_of_Sto
Feal o I__ | | | |

|
|

Auto Realize
! Add Execution Occurrences |

Draw the message
“evShow” from the SUT to
the test component
“TCon_StopWatch.itsTC_at

Out_of_StopWatch”.
_pOut_of_StopWatc)

Specify argument values

m =0, s =0, b =TRUE for the
e message.

- /

evshow(m=0, 5=[|], b=TRLE) |
m

That's it already. The test
case specification is
complete.

N

14

Test Case Execution |

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their

progress and status.

The status, the final result can be either

2=l
DROE - .E],
Marme Status File/Ite... | Line/Frogress
- ¥, tw_chedk_init €3 FaILED
S0t @ FAILED 1 0% (0/2) to be achieved.

JPASSED" or ,FAILED".

The progress displays how many steps are
finished yet. In case of a passed test 100% have

The buttons in the top right corner of the

execution dialog can be used to control actual
test case execution and will be explained later.

/— 9 TCon_Stop\watch
#- Links
i SUTs
+- kg Test Context Diagrams
=% TestCases
RPN 1. Chock initd
+ ;‘ TestComponent

[- S

TestConductor

Features...
Edit TestCase SDInstances Ok,
Update TestCase

l ’ Abbrachen

~

! E TestCase must be built before execution. Build and Execute now?

Build TestCase

Execute TestCase

To execute a test case, simply right-click the test case and select
“Execute TestCase” from the context menu. In case the test model
needs to be updated and/or the tested executable needs to be
compiled, a popup window appears in order to update the test case
and/or build the executable.

N

)

-

=-%, TestCases
R 1= check_init()
‘ TestComponentInstances
#- %y, TestConfigurations
= By TestSenarios
EY checkinit

MNarme

-1 ¥, tc_check_init
EERa

Sk
DREOE -3 -1
Status Line/Progress

@ FAILED

File/Tte. .

[x] FalLED

The test case execution
dialog is a dockable dialog
that can be placed e.g.
underneath the main
browser window

\

15

Test Case Execution Il

TCon_StopWy TCon_StopW TCon_=StopWy
atch.itsStop atch.itsTC_at atch.itsTC_at
Watch: Stopyy _pln_of_Stop _pOut_of_Sto

[T
evShow(m=0,s=0 ,b=TRUEj

evShnw)fmZD,SZD,hZFALSEj: !Event =ending - F'arame]lter values do nat match.
1

Total nurmber of SDs used:

Total nurmber of SD instances in test:

Total number of executed S0 instances:

The test case execution FAILED with
Rhapsody TestConductor. To analyze the
reason TestConductor offers two kind of views.
The HTML-report displays a textual summary
and can be found directly under the test case in
the Rhapsody-Browser. TestConductor created
a debug sequence diagram to display the error.
The red arrow visualizes the faulty step and the
reason. TestConductor expects the parameter
value , TRUE" for argument “b”, but observes the
value ,FALSE" during actual test execution. The
expected value was not specified correctly... by
accident.

& B ATLED 0% (0/2)
Show as SO
Add to model

To open the debug
sequence diagram right

o click the item SD_tc_0in
the TestConductor

_ execution dialog... AN

Add to model

e ... and select “Show as SD”

x| S| o
RO DICE 1Y Y TestCases
L] ; - =% tr_check_init))
Name Status Fi... | Line/Progress Nime — Bl | Rine Brooress B sDInstances
1%, tr_check_init €3 FAILED =% to_check init @ FALED

Ll TestOhjectives
£l 5f TestResults
z“ TCon_StopWwatch_ to_check_init_0.html
. _Efl'; TestScenarios

In the browser, underneath the
test case, you can find the
generated html report. Double

click the report to open it.
VAN P P Y,

Test Case Execution lll

Mame Status
-1¥, tr_check_init (&) PASSED
Hysotco (@ PASSED

2=l
Y

Fi... Line/Progress

1 100% (2/2)

17

The test execution PASSED with
Rhapsody TestConductor after we corrected
the expected parameter value for argument “b”
from “true” to “false” in the test scenario
,Checkinit®. After changing the scenario and
re-executing the test case, the test case is
passed.

Refer to the user guide to get
familiar with the extended functionality
of TestConductor.

«SUT»
= %___. D:_EhEEk_iﬂithl TCDn__StDpW TCDn__StDpW TCan__StopW =l
4 SOlnstances atch.itsStop atch.itsTC_at atch.itsTC_at b
- a Watch: Stophy _pln_of Stop _pOut_of Sto bl
#-Ll TestObjectives | Name Status Fi. SuLisd/Progress

-5 TestResults
TestScenarios
E—'b CheckInit

To correct the test case
open the test scenario
~ChecklInit".

| |
e\rShUw(m=E’, =0, b=FALSE) |
m

For argument “b”, change the
exptected value from “TRUE”
to “FALSE”.

-1¥%, tr_check_init (&) PASSED

Bpeo tr 0 @ PASSED 1 100% (2/2)

Re-execute the test case by
pressing the “Start” button in
the top right corner of the
execution dialog.

N\ /

Test Case: Source Code |

Operation Bady:

To manually create a source code test case
create a code test case and write the test code into

the edit field under the implementation tab of the
test case. TestConductor provides a set of

0 declare

a7 wins : Integer := 0;

asg secs : Integer -= 0;

0% begin

1a —— Chweck that imitially the time is 0:0

11 mins = StopWatchPky. Stopllatch. getMinithis. itsStopWatch_alll;
1z secs = StopWatchPhy. StopWlatch. getSecithis itsStopWatch_all) ;
13 TestConductor ASSERT NAME ("Check initial time",

14 (mins=0) and {(=zec==0));

15

1s -— zmow sef fime o 05121 and check that setiing of time indesd
17 -— sats the correct time

18 StopWatchPky. StopWatch. setTime (this. itsStopWatch. all , 3,210 -
13 mins := BtopWatchPhg. StoplWatch. getMin(this. itsEtopWatch.all) ;
Z0 secs = EtopWatchPhky. StopWatch. getfecithis. its8topWatch.all) ;
21 TestConductor . AZZERT MAME ("Check if time setting is correct"”,
ZE imins=3) amd (secs=Z1));

23 end;

Z4

functions like e.g.

»1estConductor. ASSERT_NAME" that can be used
to execute checks during test case execution. If the
function “setTime” (line 08) of the stopwatch works
as expected, the test case passes.

(c 9 TestContaxts

= gﬂ TCon_Stopivatch
+-L5 Links
il SUTs
+-mg Te Create 5D TestCase

= "._,- Te Create Flowchart TestCase
»

+ Create Code TestCase
+ ‘ Tt Create Statechart TestCasa
+- %y, TestContigurations

0 Select the test context
»T1Ccon_StopWatch" and
choose from the context

menu ,Create Code
TestCase".

=%, TestCases
#-% tc_check_init()
1% [l

heck_time()

Rename the created test
case to ,tc_check_time*“
and open the features
dialog.

=-E3 TutorialPkg
=B Classes
=8 TestCaseClass
=@ Operations
=}t rheck time()

Replace the content of the
edit field under the
implementation tab of the test

case with the content from the
“tc_check_time” operation in

_ the Tutorial package.)

18

Source Code Test Case: Execution

T2 Execute the test case with Rhapsody

SIOE N TestConductor.
Both assertions evaluate to true and the

Marme Status File/Iteration = Line e
- ¥, tc_check_time © PASSED test case passes. D(_Juble-cllcklng_ an
Check initial time @ PASSED TCon Sto.. 141 evaluated assertion in the execution
Check if time setting is correct @ PASSED TCon Sto.. 148 | |———— window highlights the assertion in the test
model.
-ul‘:n'erauc-n |=fu]u |1
0% begin
10 —=— Check that ipitielly the time iz 0: 0
11 mins = StopWatchPkyg. ScopWatch. getMin(this. itsStopWatch_all) ;
1z secs = StopWatchPkyg. StopWatch. getSec(this.icsStopWatch.all) ;
1z TestConductor ASEERT HAME({"Check initial time",
14 imins=0) and {(secs=0)1;
1t
4 N | N N
=49 TCt Edit TestCase SDinstances = @ TCo Edit TestCase SDInstances
Ij Update TestCase 'j Update TestCase Nime | Status
b T T @ pLild TestCase ¥, tr_check_time © PaSSED
iy Al L ESEoSsE e Exerute TestCase) Check initial time @ PassED
=%, Execute TestCase =% RECUIS TEST-aSe Check if tirme settinc
= IC_check_init #o to_check_init()
L ¥ tc_check tirnéuj"]. i tc_check_time)

Select test case
“tc_check_time” and then
select “Build TestCase”
from the context menu.

Select test case e In the execution window,

tc check time* and select select the assertion and
:E;ecute TestCase” from double-click “Show Assertion”

the context menu in order to highlight the
' assertion in the model.

2N

19

Test Case: Statecharts |

This is a statechart defining TestCase behavior

In Statechart TestCases you can use ASSERT macros like :
TestConductor. ASSERT _MAME(n e, e.g.
TestConductor ASSEN™ &4 TC5C e 07"

20
To manually create a statechart test case we

have to define a test scenario which is represented

- as a statechart and link it to a test case.

For the list of available
or the TestConductar.

L Association Ends
*y) Dependencies

& Operations
(&) Statechart

Technically, the test case has a dependency to a
TestComponent that contains the statechart.

Tags

P =59 TestContexts
initial
=9 TCon_Stopvatch
M atributes
L Lirks
& Operations

b SUTs

fitsTC &l Test Context Diagrams
v =% TestCases
®. to_check_initd)
state_1

=-# tr_check_progress()
="y Dependencies

«StatechartTestCasen» TCSC tc O

TestConductor simplifies this process with a single
command.

Update TestContext

o Select the test context

,T1con_StopWatch* and
select “Create Statechart
TestCase”.

Rename the test case to
“tc_check_progress”

/EI B9 TestContexts i N N 5%, TestCases B -)
= TCon_StopWatch - - :
L iks S =&, Tesh“ases ® to_check_init)
@ 5 Crests SD TestCass :. tr_check_init() =-#* to_check_progress()
Bl T SR i-_check progress)) *y) Dependencies
Create Fl hart Testz o : o
% T STEAE TowEnart Test.ass *o o check timed = TestObjectives
® Create Code TestCase - H m
=] Te =
%T *o to_check_time ()

e Add a test objective (using

“Add New -> TestingProfile
->TestObjective”) to
requirement REQ_Running_b

N\

Test Case:

Statecharts Il

ten100)/
TCon_Stop

atch.rtc_initithis.itsTCon. all);

#Check that initially the time is 0:0
declare
mins : Integer =0,
secs Integer =10,
begin
fing =
StopWWatchPky, StopWatch. getMin(this itsStopWatch. all);
Secs =
StopWatchPky, StopWatch, getSecithis. its StopWatch. all);

TestConductor ASSERT_NAME("Check initial time”,
{{mins=0) and (secs=0));

state_4

MMCon_StopWatch.rtc_exitthis.itsTCaon. all);

tm(BO00) declare
ming : Inte
secs : Integer =10

begin
mins = Stop¥WatchPky. StopWWatch. getMinithis. it

Vitalize the statechart in order to execute it with
TestConductor. The statechart test case first
checks that initially the stopwatch’s time is indeed
0:0. After starting the stopwatch, the statechart test
case waits 6 seconds, and then checks that indeed
more than 3 seconds have been counted by the
stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody
TestConductor function

»restConductor. ASSERT_NAME()“. This function
was already used for the code test case in order to
perform code based checks. If both checks are
passed, the complete test case is passed.

4 N
) =gl TCSC_tc_0
= g%ﬁ;'::g +-L Association Ends
- By Tesc_ ey B *s) Dependencies
5L assock B Operations
#-'y Depenc = Statechart
+ @ Operat YA StatechartDiagram

= Statechiar o - .

Replace the content of the
test component statechart
associated with this test case
with the statechart of the
Tutorial package.

21

Statechart Test Execution

MNarme

- ¥, t_check_progress
Check initial tirme
Check elapsed time

A=l
DROR N -1
Status File/Tteration | Line
©) PASSED
© PaSSED TCSC_ ... 408
© PASSED TCSC .. 709 |
. N . | ks.itsStopy

TestConductar ASSERT_MAMEMCh
min=01 and (se =07

Execute the test case with Rhapsody
TestConductor. Both assertions evaluate to
le and the test case passes.

®, s _check_progress()
® tr_rheck_time()

o Select the test case

.{C_check progress” ...

_

Update TestCase
Build TestCase

Execute TestCase

e ... and choose from
context menu the items

,Build TestCase"

and ,Execute TestCase".

N Edit TestCase SDInstances 4 N
Update TestCase ;
- —— RELI= Status
=%, TestCases Build TestCase -1¥, t_check_progress © PASSED
#o to_check_init() Ex Edit TestCase SDInstances Check initial time O PasSED

In the execution window,
select the assertion and

double-click “Show Assertion”
in order to highlight the

assertion in the model. Y.

22

Create Test Cases Using Test Case Wizard - SDs

mykey

Stopvatch myDisplay

| evPresskey(Keyval = 1) ‘

Create Test Case

I ap instance lines to test architecture

Pleaze select best architecture for test cage:

< e
TCon_Stopwatch

Please select best case kind:

L. 23
To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor
test case wizard. For an existing sequence
diagram, the test case wizard creates an analogue
test case with the same message structure as the
original sequence diagram. For an operation, the
test case wizard creates a test case that tests the
chosen operation, for a requirement the test case
wizard creates a test case with the chosen
requirement as the test objective.

/E £ TutorialPkg N E:reate Test Case N (= % IEStCaSES)
B Claszes =%
=-Z] Sequence Diagrams M irstance lines to test architecture 3 %DIY.WEFE_HEI.E_S
HJ Sto _|||.I'I'l.||-3t|:I'_IF-!.LH_"_Iir||:-| TCan_Stopy TCan_Stap TCan_StopWh
_ atch.itsTC_at atch.itsStop atch.itsTC_at
1 Fleaze select test architecture for test case: _pin_of_Stop Watch: Stoph _pout_of_Sta
Rational Rhapsody Gateway neu | e howin=0,5=0, b=ale) }
Con Sto

o Select the sequence diagram e In the test case wizard e “SD_tc_0" has been created
“StopWatchRunning” in the dialog, the test context which is based on a new test
tutorial package and select “TCon_StopWatch” is scenario containing the same
“Create TestCase...". already highlighted. Press messages as the original SD,

NG

OK to proceed.

As a result, a new testcase

but life lines adapted to the test
/ __ context structure. Y,

Create Test Cases Using Test Case Wizard -

Operations

ﬁ PredefinedTypesAda {REF)
&[] Requirementshkg

The test case wizard can also be used to
test operations that are defined in the model.

L——_Ig SkopWWatch
[#-"5) Dependsncies
L Links 05 begin

B getming 11

2-F3 Stopwatchkg |
=B Classes Operation Body:
- Button 04 -- or the TestConductor.eds file in the imstelletion
% Display 0%
: 0¢ declare

07 ose_arg l: Integer;
028 osc_arg Z: Integer;

Operations 10 StopWatchPky. StopWatch. setTime(this. its8topWarch.all,

The wizard allows to create three different kinds
of test cases: sequence diagram test cases,

statechart test cases or code test cases.

osc_arg l, osc_aryg Z);

E getSec) 12 TestConductor. ASSERT_NAME("Initial",true);
il setTime(Integer m, Inke 13 end;
ﬁ Parts 4| e
#-—0 Ports
[]--@, Timer Locate | Ok | Apply | |

-1 Object Model Diagrams

(B TutarialPkg
{21 Profiles

L% TestPackages

B SystemPkg ‘ ‘

Independent of the chosen kind of test case, the
created test case calls the selected operation.
Additionally, the test case already contains a

check that can be refined by the user in order to

' check the out values of the operation.

T 4 Ty - ™
=8 \Smpwatg ; 7 é :IE_I:I i)
I_=‘| EE_FF‘_EH BrCIes Please select test caze kind: = E:l‘ TEStDb]EEti"."ES
=@ o Rational Rhapsody Gateway Cods TestCase v v U;h_m,g_ setTime
- 5D TestCaze 0% osc_arg 2: Integer:
- Code TestCase 09 begin
Statechart TestCaze 10 StopWatchlke. StopWatch. setTime(this. itsStopla
B . " 11 osec_arg 1, osc_arg Z);
st | Imeld int m [S) 12 TestConductor ASSERT NAME("Initial" trus);
- 13 end;

o Select operation In the test case wizard e AS a rr:esultt), a new C?ddet:}estt
“setTime” of class dialog, select “Code caste nas eelrl1 tcrea N i a
StopWatch in the browser TestCase” as test case Eont _I"j‘_'ns a Cea (I) ope(rja lon
and select “Create kind and press OK. setlime” and also a dummy
TestCase...” assertion that can be refined.

Debugging Test Cases

B
DRONE-
Marme Status Fil... Line/Progress
-¥ oDt 0 EXECUTING
BpSD_tc 0 ACTIVE 1 25% (2/8)
TCon_StopWV TCon_StopWV TCon_StopWy
atch.itsTC_at atch.itsStop atch.itsTC_at
_pln_of_Stap Watch: Stop _pOut_of_Sto
tmB00) at ROOT.Funning.prestate
' b |
LR R R U

”' evShowim = 0, 5 1 0, b = FALSE]
éhuwTime(m = D,ls =0, b=FALSE)

\e\}lwnza,sﬁf 0, b=FALSE)
I
I

Debugging failed test cases can also be
done with TestConductor. When a test case
fails, one can turn on debug execution mode in
TestConductor’s execution window. After
switching on debug mode, when executing the
test case one can step through it by using the
“Go Step”, “Go Idle”, etc. buttons of Rhapsody’s
animation toolbar. Additionally, when stepping
through the test case, one can use Rhapsody’s
animation features to inspect animated
statecharts, animated SDs, etc. in order to find
the reason why the test case fails.

Update TestCase
Build TestCase

Execute TestCasze

= #. TestCases i =l
#- %, Code_tc_00) gl ROk
.- = : & Mame Status Fil... | Line/Progress
W PN Name Statis Fil... Line/Progress =% sD_tro EXECUTING
¥ Edit TestCase SDInstances -¥, 8D tc. 0 3 FaILED U} SD tc_0 ACTIVE 1 5% (2/8)
Hysotr 0 @ FALED 1 50% (4/8)

Mo R 1 2 M F =+ '!

Select test case
“SD_tc_0” and select
“Execute TestCase”.

After the test case has
failed, turn on debug
execution mode by clicking
the debug button in the
execution dialog.

Execute the test case again
by pressing the “Start” button
in the execution dialog. Now
you can step through the test

case by using Rhapsody’s
_ animation toolbar. J

25

Executing Multiple Test Cases

Executing multiple test cases can be
I done by executing a complete test context or
_____ OO%h a complete test package. When a test context
Marme Status File,/Theration Lirne/Progress .
- & TCon_StopWatch @ FaleD or a test package is executed, all test cases
- Code te 0 © rasseD within the context or test package are executed.
Initial @ PassED TCon_Stop... 132
%, S0 te0 @ FALED After all test cases have been executed,
, ?SE—“;—_U . g e S0% (4/%) TestConductor computes an overall test result
o _Cneck_Inl
B 50_tc_0 © PassED 1 1% (@2 for the test context or the test package.
-1¥, t_check_progress @ PassED
Check initial time O PASSTS o L = — 1
Check elapsed time O PASS Test Context: TCon_StopWatch
¥y tc_check_time @ pass| Codete 0 PASSED
Check initial time @ Pass SD_fc 0 FAILED
§2) Check if time setti.. (@ PASS| to_check_init PASSED
te_check_progress PASSED
tc_check_time P&SSED
/. N /=89 TestContexts) N\ /T N
= g fesiContets =59 T':I:IrlEitl:l[:I'I.l"'-.l'Eltlj'I Mame Status =
5 Links - -1 & TCon_StmpWwatch © FalLED
s Sl . ¥
i T Build TestContext -¥, Code_tc_D © PASSED
=% TR Tnitial © PaSSED TG
Y ErEE————— -1¥, SD_tc_D @ FalLED
@ TesCon @ Update TestArchitecture B 50t 0 €@ FAILED 1
AV =Ry Build TestContext *y TesT_onTgUr 00N - C - .
Exatute TestContext The results are shown in the
o e Select the test context execution window. As always,
“Select the test conEext o and bross “Execute “Show as SD” resp. “Show
TCon_StopWatch” and g P assertion” can be used to
select “Update TestContext”. All test .
. show the reasons of failed
TestContext”. After that, cases will be executed one test cases

“R i " after the other.
_ select “Build TestContext”.) U) U)

26

Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a

§ asenisa) awolq

To: Reguirement Scope: JavaStopstch

E' REQ_Irit |E"! REG_Running_2 |E"! REQ_Stopping |E"! REG_Running_1 |E"! REG_SetTime |

. te_check_init

L RED_Irit

. tc_check_time
- te_check_progress

T | e | e

.50 _te O
. Code_te O

El REG_Running_1

requirements coverage test report. A test case
requirements matrix shows the relationship
between test cases and requirements in a
matrix view. A requirements coverage test
report shows the same information, but

presented as a textual report. It can be
generated by ReporterPlus using a predefined

template.
(= 3 TestPackages / Name: [ReqCoverage \ / To: Recuirement Scope: AdaStopvistch \

- . TF'I-:::L E;t|:|":|||_."'._||E,|t|:}'| I O mEqUIreme COopel A=10p! C

EJ’ Stereotype:l j ; - [REQ_Irit ||3 REQ_Funring_1 ||3 F

+-_1 Components o , — B %, locteciount o FEC i

5 :i Testtno mpunents ot ITestHequnementCoverage |nTJ _E :| x [FeG B .
TableMatrix [l TestRequirementiatrix ;Fm? | AdaStopwatch [% ol" - b, REQ_Running_1

. COope: . -
Antotations 2 TestResultTable ¥ Include D%:endants ("From" Scop % x EEE; IcD -
TestingProfile 4 TestScenario "o = Y
Sc:oope: IhdaStopWatch J
¥ Include Descendants ['To" Scope)

0 Open the features dialog of When double clicking the
Select the test package the matrix, rename it to matrix in the browser, the
“TPkg_StopWatch” and “ReqCoverage”, and set matrix view shows the
select “Add New -> the “from” scope and the relationship between the test
TestingProfile -> “to” scope to the complete cases and the requirements.

_ TestRequirementMatrix”. _ model “AdaStopWatch”. AN .

27

Assessing Test Case Requirement Coverage Il

2 C:\Test it\Rhapsody7.5.2\reporterplus\UserFiles\CoverageReport.htm - Windows Inter... E|E|E\

Test Case Reports can be used as an

alternative in order to figure out coverage of

=] All Requirements
B Requirerment REQ_Init

B Requirement REQ_SetTime
B! Requirement REQ_Stopping
[Al Test Cases

4 [

E Requirement REQ_Running_’
B} Requirement REQ_Running_

[Requirement Coverage Report of Mot A” Requirements

@-ﬁ - |@C:\Test it\Rhapsody?.S.2YreporterplusiUserFiles\Cover ageReport. htm V| | X ‘ ‘ P K . .
Datei Bearbeiten Ansicht Faworiten Exfras 7 requlrements Wlth the test Cases. Wlth
M v |57 Suchen ~ 0 j Free MPa [10] v | B Freeware [10] ¥ »| [+ o
T::)f{g? ‘I@C:\Test it\Rhapsndy’TS.2\rep|nlr:'>terplus\U59rF..?lil = = [j’}l 'l lg = E -]:“Selme - E:m'aslv § Reporterplus a' reqUIrement Covera’ge report
Table of Gontents ' ~| can be generated in different formats like Word,

Html, etc. The requirements coverage test

1 Name Specification Case

Covered by Test

2

report shows the same information as the

After starting the stopwatch, the stopwatc te_check_init - -
REQINE | Geptey ® minutes and 0 soconds (o:0) | (M Pase=) requirements coverage matrix, but presented as
ReQ rurning 1 |41t startng the stoprateh, e stopwaten |GG S| g textual report. Besides the requirements

After starting the stopwatch, the stopwatch
shall count minutes and seconds. The colon

displayed minutes and seconds shall blink once in
a 1 second time interval.

REQ_Running_2 | between not covered

coverage report, another predefined template
(TestReport.tpl) can be used to generate a

The stopwatch shall provide a function "SetTime"

REQ_SetTime that sets the current time.

not covered complete test report that contains all details

ﬁ REQ_Stopping E.'\ihjﬂ.[ETLng' pressing the key of the stopwatch

| about test cases, test architectures, etc.

applet comysynerges/modeleyeq,/ TOC/Directavigator started 4 Eigener Computer

#100% -

/

Check Model
FeporterPLUS

NG

‘what would you like to do?

Report on all model elements. .,
Report on selected package...

o From Rhapsody’s tools

menu, select “ReportPlus
-> Report on all model
elements”.

=]

porterPLUS Wizard : Selec

Generate Microsoft PowerPoint Presentation

. EER

\

| All Requirements

Suchen in: |) Templates L |
| €] TestReport. |
E|TestRequirementCaverage. ol
lﬂUseCaseDiagramsDetaiIedRepurt.th et Te =
After generating the report,
As format, select Html. the report can be viewed with

After that, select any browser that can display
“TestRequirementCoverage Html files.

.tpl” as template for the

JAS report to generate.)L)

28

Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (5/5)

Operations

29
Besides coverage of the requirements,

an important orthogonal information is which
parts of the model are executed by the test

| state cases, i.e, what is the achieved Model
| Teten Coverage when executing the test cases.

| Transition

TestConductor can compute this information
during test case execution. When model
coverage computation is turned on, after test
case execution TestConductor adds a model
coverage report to the test cases, test contexts

|ome etc. that shows the achieved model coverage.
| Transition
| Transition
N\ /=89 TestContexts i N\ /& g;‘;ﬁmtﬁéi . ; N\
=% TI:D“E;t':'rjl""ll"'lat':h = AtEribuges Detailed Coverage Sun]
EE Ij Lirks _ = CoverageResults operations
— aih S " E TCon_StopWwatch
General | Description | Relations | Tags | FIUDEWES‘ iﬂ TE E-L,II|I:| TEStCDr'ItE}{t E \EjnkS "
perations
vewdl]- [ERSBL Execute TestContext b SUTs
ATGTestCase O ke x"_ . ’i:& Test Context Diagram
CalloperationsCnlyWhenCallstackEmpty - ‘ T UpdatE TEStﬁ.rEhltEEU_,Ir'E = 5 I?Sg;zseei: 00
p——— 3 2y TEST_ONTIOU A0S =& CoverageResults
|'r_.-r‘(_:_D :Er_a?EKrm_d ________________________ ST flt = @ =M TCon Stopwatch Code i |
Open the features dialog After execution has finished,
of the test package Execute the test ConteXt Coverage reports can be
“TPkg_StopWatch” and TCon_StopWatch”. found both for individual test
turn on property cases as well as a cumulative
“TestConductor.TestCase. coverage report for the test

ComputeCoverage”.)

VAN context. Y.

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

.

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
guality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates for both the
model elements and model code. Developers can easily
and fast analyze reasons for not coved elements.

highly automates the testing process and can save up
to 80% of test development time compared to
traditional approaches.

More Information ...

For further information, especially
technical news, visit our internet

e e information portal or contact one of our
—— =T worldwide sale agencies.

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at

For contact information and guidelines or reference materials that you need for support, read the
For Rational software product news, events, and other information, visit the

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

» What software versions were you running when the problem occurred?

» Do you have logs, traces, or messages that are related to the problem?

» Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

31

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

