Rhapsody

IBM® Rational® Rhapsody® TestConductor Add On

4
User Guide

Rhapsody®

IBI\/I® Rational® Rhapsody®
TestConductor Add On

User Guide

Release 2.4.5

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems

AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed
or implied, are made regarding Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®Automatic Test Generation Add On, and
IBM® Rational® Rhapsody®TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of
their respective owners.

© Copyright 2000-2011 BTC Embedded Systems AG. All rights reserved.

Contents

Contents
.. 6
DOCUMENT STFUCTUI ...ttt 8
Contacting IBM® Rational® SOftware SUPPOIT........ccveiieiiiiiiiiisie e 9
@70 01T 01 o] oSSR 10
INEFOAUCTION ...ttt bbbttt et et bbb enr e e s et eneas 11
Rhapsody
UML TeSHING PFOTIIE ..o 15
SEIUCTUIE OVEIVIBW ...ttt sttt sttt bt e s ettt e bt et nb et et et e neenenne s 15
FUNCLIONAL SPECITICALION.uiitiiiiteiee et 19
USING the TeStiNG PrOTileoo i 30
Model-based
UNIT TESE DEFINITION ..ot et 31
Automatic Test ArchiteCture GENEIALIONcovvieereir et 32
TeSt CaSe DEFINITION. ..ottt ste e be e e eenreeneeneas 44
TESE EXECULION ...ttt b ettt et et e st e sbe b e e reaneenee e 68
OVBIVIBW ...ttt ettt ettt sttt e e s e s be et et e s bt e st e be e Re e ee e R e e st e seeas e e beeEe e st e nbeeseeneeaneaneeneenneeteas 68
LIRS O] 01 T [V L L1 o] ISP 68
TESE CASE EXECULION ...ttt sttt sttt et e st se et st bestenae b e e eneenenneas 74
LIRS O 01 =) B = oL U o PSSR 86
TeSt PACKAGE EXECULION ..ottt ettt 89
ASSErtion Dased tEStING MOUE..........ccuiiiieiiies bbbt 92
Computing Model Coverage during TeSt EXECULION..........cccveveiieiiiiie ettt 104
Computing Code Coverage (only assertion based testing mode).........ccooevvivievecieiese e 109
Computing Code Coverage, Memory Profiling, and Performance Profiling with Rational
TestRealTime during TeSt EXECULION........ccciveiiiiiiie ettt st et saesreetaenre s 111
Integration with CUNIt/CppUnit FrameWOorKccooiiiiiiiiiiieieees e 118
CommaNd LiNg EXECULION.........cccveiiiiiiiie et se ettt te st be e saesteesaesreeseentesneenee e 124
Test Case EXECULION ON TaITELSc.viiiiiteriiite ettt st ene s 126
Driving OPerations CallS..........ooeiiiiieiiiie ettt sae e te e neeseeeneenees 127
TESt MANAGEMENT ...t ne e e e nnr e n e nree s 129
Y T a: o T I I = A 7 - SRS 129
TeStCONAUCTON DIBIOG ..c.veviieieieieet st b et 131

TESTCONAUCTON SEELINGSviuveeeieieiieiiei ettt b e n et aneere s 132

Generating Test Reports with Rhapsody ReporterPLUScoocoviiiiiiieiiieeesese e 143
UsIiNg the TeSTCONAUCLON APcviiii ettt ettt besbe e be e testeeneennas 150
Advanced TeSt DEFINITIONcooiiiieiie e e e 154
Specifying Requirements with SeqUENCe DIagramsccccvevveiiiiieiesiese et 154
Advanced Sequence Diagram Test Definitioncccoov i 181
Black-Box Testing of External Files and LiDraries............cccooviiiiiiieneicieceseeeeeees 215
Using Serialize/Unserialize Functions for User Defined TYPEScccooeiveieieniiniineneseeeeeeeens 220
FallUIe ANAIYSIS ..o ettt be e nneas 223
e VL[R] oTo] 1] Vo SO PS 224
Using TestConductor From ECHPSEooiiiiiiiieeee e 241
Using TestConductor from Rational Quality Manager.............cccooevenininiiininiecee, 243
AUtomatiC TeSt Case GENEIALIONccueiieiieieeie et eie e sie e se e ee e ste e sre e reeneennees 244
AAPPENAIX ..t bbb bbb bbbt e s 246
TestConductor Assert Macros (C/C++), TestConductor assert methods (Java), TestConductor assert
FUNCLIONS (ATA) ...ttt bbbttt ben e e b 246
Syntax for Activation Conditions / Condition Markscccccciviiiiiiiiiiic e 251
TESTCONAUCEON IMIESSAUES .vevveveiteetieiteereestesteesteste et e s teete e besbeeseesteaseesrestaeseesbeessebesteeseesteeseesreateerens 253
LY o3 0] PR 255

Document Structure

This user guide is organized as follows:

.

Chapter 1, Introduction, provides an introduction to IBM® Rational® Rhapsody®
TestConductor Add On through a high-level overview of the main features.

Chapter 2, Rhapsody UML Testing Profile, describes the defined stereotypes
and new terms which can be used for the definition and management of tests.

Chapter 3, Model-based Unit Test Definition, explains how to create Test
Architectures and how to define test cases with sequence diagrams, statecharts,
flow charts, or pure code.

Chapter 4, Test Execution, explains how to build and execute a test
configuration.

Chapter 5, Test Management, guides you through the process of creating and
editing the entire test suite.

Chapter 6, Upgrading old TestConductor Test Cases, describes the process of
upgrading of existing test definitions from older TestConductor versions.

Chapter 7, Advanced Test Definition, describes the powerful features of
sequence diagram test case definition like ordering, parameter mapping, activation
conditions, etc.

Chapter 8, Failure Analysis, explains how to analyze the source of a possible
failure (after you have made design extensions and modifications).

Chapter 9, Automatic Test Generation, explains the new features of Rhapsody
Automatic Test Generation (ATG) and the integration of test cases into the model.

Contacting IBM® Rational® Software Support

IBM Rational Software Support provides you with technical assistance. The IBM Rational
Software Support Home page for Rational products can be found at
http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support,
read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational
Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in
your country (where available). For specific country phone numbers, go to
http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information
that you will need to describe your problem. When describing a problem to an IBM
software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time,
know the answers to these guestions:

What software versions were you running when the problem occurred?
Do you have logs, traces, or messages that are related to the problem?
Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www.ibm.com/planetwide

Conventions

The following table lists the conventions used in the Rhapsody documentation.

Style Description

commandl > The greater-than (>) symbol leads you through the steps in a

command2 menu or key sequence. For example, Add New > Package
means that you should first select Add New, then select
Package from the Add New submenu.

Bold type Bold type indicates items that you should select, such as
buttons or checkboxes in dialog boxes.
For example:
Click Apply

Italic type Italic type is used for emphasis, titles of referenced documents

and new terms.

Courier type

Courier type is used for file names and directory paths, user
input, and code-related items such as instance names and
properties.

<filename>

Angle brackets surround variable names that you should
replace with actual names. For example, you should replace
<filename> with the actual name of a file.

Introduction

Welcome to the User Guide for IBM® Rational® Rhapsody®TestConductor Add On.
TestConductor is part of the Rhapsody Testing Environment which is based on three main
components: “Automatic Test Architecture Generation”, “Automatic Test Case
Execution” and “Automatic Test Case Generation”. These three components are
developed along the UML Testing Profile as implemented in Rhapsody.

Rhapsody® Automatic

UML?%Testing Test Case

Execution

TestConductor supports the two main features “Automatic Test Architecture Generation”
and “Automatic Test Case Execution” of the Rhapsody Testing Environment. The optional

IBM®Rati0naI®Rhapsody®Automatic Test Generation Add On (ATG) supports the
feature “Automatic Test Case Generation”.

In the Rhapsody Testing Environment the implementation of test cases can be chosen out
of:

Sequence diagrams
Statecharts (only Rhapsody in C/C++/Java/Ada)

Flow charts (only Rhapsody in C/C++)
Pure code (only Rhapsody in C/C++/Java/Ada)

* & & o

The Rhapsody Testing Environment provides the ability to test a design against its
requirements. Advantages of using sequence diagrams as test cases are:

Graphical definition

Monitors/drivers

Parameterized sequence diagrams
Color-coded failure sequence diagrams

* & & o

TestConductor is a model based testing environment used to debug and test object-
oriented embedded software designed in Rhapsody. TestConductor supports unit testing as
well as software integration testing based on graphical test definitions using sequence
diagrams. In Rhapsody in C++,Rhapsody in C, Rhapsody in Java, and Rhapsody in Ada
test cases can be defined also by statecharts, flow charts (only C/C++), or pure code.
Using sequence diagram related test cases, TestConductor supports an advanced graphical
failure analysis. These features make it easy to define and execute extensive test suites, as
well as to create complex tests drivers and test monitors. TestConductor supports

10

Rhapsody in C++, Rhapsody in C, Rhapsody in Java and Rhapsody in Ada. Limitations
regarding the different languages can be found in the chapter Restrictions.

Rhapsody UML Testing Profile

The Rhapsody UML Testing Profile contains new terms and stereotypes that can be used
to model test artifacts in Rhapsody. It is based on the official UML Testing Profile.
However, several elements defined in the UML Testing Profile are currently not part of
the Rhapsody Testing Profile, while the Rhapsody Testing Profile contains additional
elements that are not part of the UML Testing Profile. These additional elements are used
for test activities that are not addressed by the UML Testing Profile, for instance stubbing.

Automatic Test Architecture Generation

The automatic test architecture generation - first supporting layer of the Rhapsody
Testing Environment and part of TestConductor — automates the complex task of creating
the test environment for e.g. arbitrary classes of the UML design.

«TestContesxts
testcontext_1

1 *SUTw
tr: BankATh IHardware |1 «TestComponents
— IHardware hwe: HWWErmulataor
/ atmPort hwCom
1AThA AT
bankCom Bank

bankCom | I1Bank
1 #TestComponents
be: BankErmulatar

From the Rhapsody project the user easily initiates the automatic generation of a test
architecture including:

+ Creation of a new test package
¢ Creation of a new test context including
1. System under test (“SUT”)
2. Test components
3. Links between SUT and test components

Test Case Definition

A test case represents the smallest element that can be defined and executed by
TestConductor. A test case describes a sequence of input stimuli and expected behavior, in
order to verify a certain functional behavior of a system under test. Test cases can define
both, black box and white box behavior.

TestConductor supports several ways to define test cases:

¢ Sequence diagrams

11

¢ Statecharts (only Rhapsody in C/C++/Java)
¢ Flow charts (only Rhapsody in C/C++)
¢ Pure code (only Rhapsody in C/C++)

With the optional add-on Rhapsody® Automatic Test Generation (ATG™) for Rhapsody
in C++ test cases can be generated automatically.

Test Case Execution

TestConductor is a test case execution engine and represents the second stage of the
Rhapsody Testing Environment. It enhances the testing capabilities by not only executing
the automatically generated test architecture, but it also offers a test execution analysis
with respect to the expected results. If the test case e.g. is implemented by a sequence
diagram the expected behavior is expressed by

The ordering of defined messages
Parameter values of messages

Messages from SUT to testing components
Specified return values on operation calls

* & o

Using TestConductor

This manual assumes that Rhapsody and TestConductor are already installed on your
system, and that you have a valid license. If you need assistance with installation or
licensing, contact customer support.

To execute tests, TestConductor relies on the compiled and linked model code of the test
architecture. Therefore, the project with the system under test must be in a state such that
you can compile and run the test architecture, just as you must do to use the interactive
simulation capabilities of Rhapsody. If you are using TestConductor with testing mode
“AnimationBased” (property TestConductor.Settings. TestingMode), you must compile the
code of at least the test components with animation instrumentation.

Note: For Rhapsody in Ada, make sure that you rebuild Rhapsody’s framework before
using TestConductor. To rebuild the framework, select “Build framework™ from
Rhapsody’s code menu (after opening an Ada model). You only have to rebuild
the framework once.

Note: If you are using TestConductor with testing mode “AnimationBased” (property
TestConductor.Settings. TestingMode), make sure that you have compiled and
linked an executable component with animation instrumentation.

Note: If you are using TestConductor with testing mode “AnimationBased” (property
TestConductor.Settings. TestingMode), make sure that the properties
CG::0Operation::Animate, CG: :Operation: :AnimateArguments,
CG::Event::Animate, and CG: :Event: :AnimateArguments Of those
messages used for test execution based on sequence diagrams are switched on.

12

Otherwise they are not animated and cannot be tested with TestConductor. Ensure
this for the properties of these relevant messages, and also for their parent class
and package properties.

This guide uses sequence diagrams that are included (or have to be additionally created) in
the CashRegister sample. The chapter Advanced Test Definition uses sequence diagrams
from the PBX sample. Both samples do not provide step-by-step information.

13

Rhapsody
UML Testing Profile

The Rhapsody UML Testing Profile is based on the official UML Testing Profile. It
contains new terms and stereotypes that can be utilized for model testing artifacts in
Rhapsody. A couple of elements defined in the UML Testing Profile are presently not part
of the Rhapsody Testing Profile. However, the Rhapsody Testing Profile includes
supplementary elements that are not part of the UML Testing Profile. Stubbing, for
example, is one of these additional elements that are used for test activities not addressed
by the UML Testing Profile.

For further information on the Rhapsody UML Testing Profile please refer to the
TestConductor Tutorial, where depict examples on the Rhapsody Testing Profile are
provided. Hence, it is recommended to utilize the TestConductor Tutorial for training
purposes prior to going into further detail in this document.

Structure Overview

The Rhapsody Testing Profile is prearranged in three major packages with additional sub-
packages and the TestingProfile stereotype.

¢ Rhapsody UML Testing Profile (UML20TP)
1. TestArchitecture
2. TestBehavior

UML20TP

TestArchitecture TestBehavior

¢ Rhapsody TestConductor (RTC)
1. TestArchitecture
2. TestBehavior

14

RTC |

Testtrchitecture | TosiBenavor
Diagrams

TestDocumentation

¢ Automatic Test Generation (ATG)

ATG

Adding the Testing Profile automatically

The first usage of any TestConductor functionality automatically adds the Rhapsody
Testing Profile to a model. For example this can be done by choosing the Rhapsody menu
entry Tools > TestConductor.

In case the model does not yet contain the actual Rhapsody Testing Profile, TestConductor
can add the missing Rhapsody Testing Profile automatically.

15

TestConductor . |

'i Could not find the Rhapsody TestingProfile in the currently active project, TestConductor cannot be used without this profile.

Select <Yes> to add the Rhapsody TestingProfile to the project, select <No if you do not want the TestingProfile to be added to the project.

Ja I Nein I

Select Yes to add the Rhapsody Testing Profile to the model. Select No to abort this
process.

In case the Rhapsody Testing Profile is unloaded, TestConductor ask to load it.

TestConductor B x|

'i The Rhapsody TestingProfile in the currently active project is unloaded. TestConductor cannot be used without this profile.

Select <Yes:> to load the Rhapsody TestingProfile, select <Mo> if you do not want the TestingProfile to be loaded.

| Ja I Mein |

Select Yes to load the Rhapsody Testing Profile to the model. Select No to abort this
process.

In case a loaded profile already uses the name “TestingProfile” Rhapsody TestConductor
advises the user.

|
f Found a profile with the name "TestingProfile" in the project which is not the Rhapsody TestingProfile. TestConductor cannot be used without the Rhapsody
. TestingProfile.

Select OK. After removing the existing profile with name TestingProfile from the model
redo the action to start Rhapsody TestConductor.

Once the Rhapsody Testing Profile has been loaded into a Rhapsody project by starting
TestConductor the Rhapsody browser window will contain the above stated testing profile
packages and its individual sub-packages as shown in the following picture.

16

=1 Profiles
=3 TestingProfile
-1 Cbject Model Diagrams
=1 Packages
=7 aTG
+-«5» StErectypes
=B RTC
=1 Packages
=-F3 Testarchitecture
=1 Packages
=-E3 Cpplnit
= Cunit
- Diagrams
= TesiRT
+-#5» Stereotypes
- Types
=-F9 TestBehavior
+-#5» Stereotypes
=-B9 TestDocurmertation
- Matrix Layouts
+-#5» Stereotypes
[Table Layouts
=3 urL20TP
=1 Packages
=-F3 Testarchitecture
+-#5» Stereotypes
=-B9 TestBehavior
+-#5» Stereotypes
H-«5» Sterectypes
+ ﬁ Tags

Adding the Testing Profile manually

It is also possible to add the testing profile manually to a model:

* & o o

Open your project in Rhapsody

Select the menu item File > Add to Model...
Select the following Data Type: ‘Package (*.sbs)’
Tick the radio button As Reference

17

Add To Model

Suchen in: I_} TestingProfile_rpy j & £ ED-
DeFauIt.sbs
TestingProfile.shs

¥ &dd Subunits
[Add Dependents
&g Unit

% As Reference

D ateinarne: |TestingF'rofiIe Offnen I
Dateityp: IF'an:kage [*.zbs] j Abbrechen
= _fibrechn | 4
Class [*.cls)
Component [*.crp)
All Diagrams
Al Files [%.7]

Object Model Diagram(®, omd)
Structure Diagram(®. std)

|Jze Casze Diagram [*.ucd) —
Sequence Diagram [*.mac]

Component Diagram [ctd) &

+ Select in Rhapsody installation folder:

‘...\Share\Profiles\TestingProfile\TestingProfile rpy\Te
stingProfile.sbs’

¢ Press Open to install the Rhapsody Testing Profile

Functional Specification

The functional specification of the Rhapsody Testing Profile shall be explained by means
of its structure stated in the previous chapter Structural Overview.

UML Testing Profile (UML20TP) Package

The UML20TP package contains stereotypes and new terms derived from the official
UML Testing Profile. It consists of two major packages:

¢ TestArchitecture and

¢ TestBehavior

as shown in below picture.

18

=5 umLzoTe
=-[_] Packages
=9 Testarchitecture
—|-«5% Stereabypes
5% SUT
5% TestCompanent
5% TeskConfiguration
5% TestiContext
=9 TestBehavior
—|-«5% Stereabypes
5% TestiZase
5% TestObjeckive

TestArchitecture Package
The TestArchitecture package consists of the stereotypes

¢ SUT

¢ TestComponent

¢ TestConfiguration
¢ TestContext

The system under test (SUT) is the component being tested. A SUT can consist of several
objects. The SUT is exercised via its public interface operations and events by the test
components, the test context or the system environment (ENV).

A test component (TestComponent) is a class of a test system. The test component objects
(TestComponentinstances) realizes partially the behavior of a test case. An instance of a
test component may have a set of interfaces which are used to communicate via
connections with other test component instances or with SUT objects. It also may have
primitive operations, so called driver operations (DriverOperations) that can drive SUT
operations or call events of the SUT and so called stub operations (StubOperations) which
are able to generate necessary “stub” return values.

The test configuration (TestConfiguration) is a dependency to a code generation
configuration. Depending on this configuration the code for the complete test context
including its test cases can be generated, built and executed.

A test context (TestContext) describes the context in which test cases are executed. A test
context is responsible for defining the structure of the test system, i.e., which test
component objects and which SUT objects exists and how they are interconnected. The
test component instances and SUT objects are normally parts of a test context. Since test
cases are operations of a test context, a test case can access both the test component
instances and also the SUT objects.

TestBehavior Package
The TestBehavior package contains two stereotypes named

¢ TestCase
¢ TestObjective

19

A test case (TestCase) is a specification of one case to test the system under test including
what to test. It defines the input stimuli and the expected results to be observed. It
implements a test objective. A test case is an operation of a test context (described above).

A test objective (TestObjective) is a named element describing what should be tested. It is
associated to a test case.

20

TestConductor (RTC) Package

The RTC package consists of three major packages: TestArchitecture, TestBehavior and
TestDocumentation as shown in below picture.

=B RTC

=1 Packages
=-B9 Testarchitecture
=1 Packages

+

¥

+

+

B3 CppUnit
B cunit

B3 Diagrams
By TestRT

-5 Stereotypes

w5x Arhiter

=5 Arbiterinstance

«5x Confrolarhiter

«5% jngtantiated

«5% MoConsalespp

«5x ParameterTable

#5¢ replacement

#52 scheduled

«5% Scheduler

w5 SCTCINnstance

«52 shubbed

#5¢ TestAchor

«5¢ TestComponentinstance
«5x TestingConfiguration
«5x TestPackage

5 TestParameter

#5% Use_ParameterTable
#5x LUse_replacement

+-{p Types
—-F9 TestBehavior
=I-«5» Stereotypes

+

¥

«5% CodeCoverageResult
#2x CoverageResult

«z¢ DefaultOperation

«5x DefaultTriggeredCper ation
#52 DriverOperation

5 RTC InstInfo

#2x RTIC_Msglnfo

#5¢ RTC_Reflnfo

«5¢ SDInstance

«=x StatechartTestCase
«5x StubbedOperation
«2x StubOperation

«5x Testaction

#5x TestResult

«52 TestScenario

#5¢ |nrealized

=B TestDocumentation
- Matrix Layouts

= TestRequirementCoverage

=l-#5% StEreotypes

«5¢ TestRequirementiatrix
#5¢ TestResuliTable

=-[# Table Layouts

F TestResultTablz

21

TestArchitecture Package
The TestArchitecture package contains the stereotypes:

¢ Subpackage CppUnit
e CppUnitConfig
e CppUnitContext
¢ Subpackage Cunit
e CUnitConfig
e CUniContext
¢ Subpackage Diagrams
e TestContextDiagram
¢ Subpackage TestRT
e TestRealTime
o TestRealTimeFile
e TestRealTimeResult
Arbiter
Arbiterinstance
ControlArbiter
instantiated
NoConsoleApp
ParameterTable
replacement
scheduled
Scheduler
SCTClnstance
stubbed
TestActor
TestComponentinstance
TestingConfiguration
TestPackage
TestParameter
use_ParameterTable
use_replacement

L R R R R R R R R R SR R N R R S 2

Subpackages CppUnit and CUnit contain stereotypes for the integration of CppUnit and
CUnit testing with Rhapsody.

Stereotype CppUnitContext can be applied to a class and sets some properties for CppUnit
testing integration. You can change a test context to CppUnitContext — and vice versa - by
right-clicking a test context and secting “Change to > CppUnitContext”.

22

Stereotype CppUnitConfig can be applied to a configuration and provides a set of tags for
customization of the CppUnit testing integration with Rhapsody.

Stereotype CUnitContext can be applied to a class and sets some properties for CUnit
testing integration. You can change a test context to CUnitContext — and vice versa - by
right-clicking a test context and secting “Change to > CUnitContext”.

Stereotype CUnitConfig can be applied to a configuration and provides a set of tags for
customization of the CUnit testing integration with Rhapsody.

Subpackage diagrams: A test context diagram (TestContextDiagram) is a structure
diagram that contains the SUT instances, the test component instances and their
interconnections. It is used to define the structure of the test context graphically.

«TestContexts
TCon_CashRegister

1 «SUT»
itsCashRegister: CashRegister

o?

iy

by

1 aTestComponentlr%E‘ance.TestComponent»
itsTC_at_hw:TC_at_hw

x

«TestComponentinstance, TestComponents

itsTC for_itsProduct: TC for_itsProduct

.é_

X «TestComponentinstance, TestComponent»

itsTC for itsCountedProduct: TC for itsCountedProduct

The test context diagram is being generated during the test architecture generation inside
the test context. It is a structure diagram stereotyped with TestContextDiagram.

Subpackage TestRT contains stereotypes used for the integration of IBM Rational Test
RealTime. (for details see section Computing Code Coverage, Memory Profiling, and
Performance Profiling with Rational TestRealTime during Test Execution on page 110

pp.)

23

=3 TestRT
=I-«5x Stereotypes
+-«5» TestRealTime

«iw TestRealTimeFile
«iw TestRealTimeResult

= Types
& RTRT_CaverageBlockDefinition_Type
& RTRT_CaoverageCondition_Type
& RTRT_CaoverageProc_Type
& RTRT _Target_Type

Stereotype TestRealTime can be applied on configurations and provides a set of tags that
can be used to control the kind of instrumentation that shall be performed on that
configuration when using the tool “Rational TestRealTime” together with TestConductor.
See also section Rational TestReal Time.

Stereotype TestRealTimeFile is used to denote TestRealTime data files that are added to
the model by TestConductor. This data files are needed in order to have all TestReal Time
results maintained as part of the model.

Stereotype TestRealTimeResult denotes the result data that is added by TestConductor to
the model after a TestCase execution or a TestContext execution of a configuration that
with stereotype TestRealTime.

The TestRT package contains the types:

RTRT_CoverageBlockDefinition_Type
RTRT_CoverageCondition_Type
RTRT_CoverageProc_Type

¢ RTRT_Target_Type

These four types are used for the integration between TestConductor and TestReal Time.
Users do not have to care about the precise definition of these types.

* & o

Stereotype instantiated is used to label associations that are always instantiated with a
valid link during runtime. TestConductor interprets associations labelled with this
stereotype like links.

Stereotype Arbiter is used by TestConductor for auto generated test components that
control the execution of a SD test case.

Stereotype ArbiterInstance is used by TestConductor for test component instances that are
instances of Arbiter test components.

Stereotype ControlArbiter is used by TestConductor to mark a dependency from a SD test
case to a Arbiter test component that controls the SD test case.

Stereotype instantiated is used to label associations that are always instantiated with a
valid link during runtime. TestConductor interprets associations labelled with this
stereotype like links.

Stereotype NoConsoleApp can be applied to configurations in order to suppress opening a
console when running the application.

Stereotype ParameterTable is used to mark a controlled file as a parameter table definition
that contains values for all external test parameters of a test context.

24

Stereotype replacement is used to mark a dependency from a test component to the
original class that is replaced by the test component in the test architecture.

Stereotype scheduled is used to mark a dependency from a test context to a Scheduler test
component that controls the starting and stopping of test cases of the test context.

Stereotype Scheduler is used to mark an auto generated test component that is used to
control the activation and termination of test cases.

Stereotype SCTClnstance is used to mark a test component instance to be an instance of a
statechart test case test component.

Stereotype stubbed is used to mark an operation of a test component to be stubbed, i.e.,
that the behavior o fthe operation has been changed for testing purposes.

New term TestActor is used for test components that have the role of an actor in the test
architecture. Test actors replace actors for testing purposes.

New term TestComponentinstance is used to specify instances of test components.

Stereotype TestingConfiguration is used to mark a configuration that is used for testing
purposes. The stereotype TestingConfiguration provides several tags that can be used in
order to define specific settings for the generated testing code.

New term TestPackage represents a package that contains testing related model elements,
e.g. other test packages, test contexts or test cases. It allows grouping of multiple test
related elements into one package, and it can be used to separate testing related elements
from design related elements.

Stereotype TestParameter is used to mark an attribute of a test context to be a parameter
that can be controlled by a testing configuration by using a parameter table.

Stereotype use_ParameterTable is used to mark a dependency from a testing
configuration to a parameter tanle in order to specify that the testing configuration shall
apply the linked parameter table for the test parameters of the test context for which the
testing configuration generates code for.

Stereotype use_replacement is used to mark a dependency from a test component instance
to a test component that is a replacement of a design class for testing purposes.

TestBehavior Package
The TestBehavior package is composed of a number of stereotypes like:

CoverageResult
DefaultOperation
DriverOperation
RTC_InstInfo
RTC_Msginfo
RTC_Reflnfo
SDInstance
StatechartTestCase
StubbedOperation
StubOperation

® & 6 O 6 O O o 0 o

25

TestAction
TestResult
TestScenario
Unrealized

* & o o

A CoverageResult is a document that reports which model elements are covered by one or
more TestCases.

A default operation (DefaultOperation) defines the default behavior of an operation of a
test component. A test case in which the behavior of this operation is not explicitly
specified uses this default behavior in the current test case execution.

A driver operation (DriverOperation) is an operation of a test component which is able to
inject input stimuli to the SUT objects. It is generated automatically by TestConductor for
the test component class that calls a message of a SUT object defined in a sequence
diagram. During execution of the test case, TestConductor calls the driver operation, and
as a result the test component stimulates the SUT as it is described in the used sequence
diagram.

The stereotype RTC_InstInfo contains two tags RTC_IgnoreSCBehavior and
RTC_Monitor. When adding this stereotype to an instance line of a test scenario, the user
can set these tags. TestConductor uses these tags when executing the test. If the tag
RTC_IgnoreSCBehavior is set, TestConductor ignores the normal state chart behavior of
the tagged instance. If the tag RTC_Monitor is set, TestConductor just monitors all
messages starting from the tagged instance.

The stereotype RTC_Msginfo contains tags RTC_Monitor, RTC_Receiver, etc. When
adding this stereotype to a message in a test scenario, the user can set these tags. If the tag
RTC_Monitor is set, the tagged message is just monitored by TestConductor. If the tag
RTC_Receiver is set, the tagged value is used as the real receiver instance of the tagged
message. If the tag RTC_DriverCallCode is set, TestConductor generates the string
contained in this tag instead of the standard call code TestConductor generates for driver
operations. If the tag RTC_InitCode is set, TestConductor generates the string contained in
this tag instead of the standard init code TestConductor generates for driver operations. If
the tag RTC_Msgld is set, the specified string is used to reference the message in macros
RTC_ASSERT_SD_NAME. If the tag RTC_StubBodyCode is used, TestConductor
generates the string contained in this tag instead of the standard stub code TestConductor
generates for stub operations. For further information please read the chapter User Defined
Driving Operation Calls (for Rhapsody in C/C++/Java/Ada) at page 204.

The stereotype RTC_RefInfo is used internally for unique identification of messages in
sequence diagrams which are referenced by other sequence diagrams.

A sequence diagram instance (SDInstance) represents one instance of a test scenario.
When using a sequence diagram for testing purposes, several parameters must be defined
that influence the behavior of a test case. A combination of a sequence diagram with such
a set of parameters forms a sequence diagram instance.

Stereotype StatechartTestCase is used to stereotype the dependency of a statechart test
case on the test component owning the statechart defining the test.

A stubbed operation (StubbedOperation) is an operation for which at least one test case
specifies a behavior that is different from the default behavior. The different behavior is
stored in a stub-operation. The stubbed operation decides at runtime depending on the

26

executed test case if either the default behavior should be executed or a specific stub-
operation.

A stub operation (StubOperation) is a replacement of an operation of a test component
class. It realizes the code for an operation call return value specified in the referenced
sequence diagram. The code of the stub operation is generated automatically by
TestConductor.

A test action (TestAction) is an action block that can be placed on life lines in
TestScenarios. There are different kinds of test actions: <InitAction>, <PreCallAction>,
<CallAction>, <PostCallAction>, <StubAction>. Inside these actions, one can place e.g.
assertions to perform complex checks on output values (return or out arguments), or one
can write code that initializes complex input data.

A test result (TestResult) represents an outcome of an execution of a test case. Itisa
textual report that contains detailed information about the test case execution, e.g. if the
test case has passed or failed.

The stereotype TestScenario (test scenario) contains two tags RTC_ActivationCondition
and RTC_SDParameters. When adding this stereotype to a test scenario, the user can set
these tags. With the tag RTC_ActivationCondition the user can specify the activation
condition of the sequence diagram. With the tag RTC_SDParameters the user can set the
parameters of the sequence diagram.

Messages with stereotype Unrealized are filtered out and ignored during test execution.
See also section Ignoring Unrealized Messages.

TestDocumentation Package

The TestDocumentation package contains a Matrix-Layout TestRequirementCoverage and
a Table-Layout TestResultTable in order to present test information in matrix and table
notation.

The layouts are used to define two stereotypes:

¢ TestRequirementMatrix
¢ TestResultTable

A TestRequirementMatrix shows in an array view if and how requirements are tested by
test cases. The left hand side of the array shows all existing test cases. The upper side
shows all the requirements. The cells contain an entry if a TestObjective from the test case
to the requirement exists in the model, for instance from test case Code_tc 0 to
requirement REQL.

% To; Requirement Scope: CppCashRegister I
IVew = s d B Erecl [RReoz |ERRees | Reos |F)REos [ERREQs | [REQ7 | BB RES | B REQO
9 TestContexts ~ S| % Codetco [L REQL
=-f8 TCon_CashRegister = % code o © ol REce
by Links % - -
g SUTs u | % Codete 2 1 REQT
= &g Test Context Diagrams ©w % Code tc 3
= %, TestCases | 1 — -
=%, Code_te_{) 2
=, TestObjectives ®
W REQL o
=-®. Code_te_1() kS
= H T_estohiectives o
Ll REQ4 =
=% Code_tc_2()]
= H, T_astOh]ectlves %
W REQ? =
%, Code_te_30) a & Welcome to. .| i Structure_of._]] testrequiem

27

A TestResultTable shows in a table form the existing test cases and their current result
values. The left column of the table shows all existing test cases. The right column shows
the current test case results, for instance verdict Passed for test case Code_tc_O.

j.. E Marme |Verdict
ve Made! Yiews - o TCaon_CashRegister_ Code_tc_0_0.html ﬁ‘ Passed
+-1gh. TestCompanents ~ S TCon_CashRegister_ Code_tc_1_0.html # Failed
= {9 TestContexts i‘rTCon_CashRegister_Code_tc_Z_D.htmI @ Passed
= 53 TCon_CashRegister -
-1 Links i,'rTCon_CashRegister_Code_tc_S_U.htmI @ Failed
-y SUTs & TCon_CashRegister_0.html @ Failed

+- @ g Test Context Diagrams
--#. TestCases

®. Code_tc_of)

2 Code_kc_1()

2 Code_tc_20)

% Code_kc_3()

¥R

QR

Automatic Test Generation (ATG) Package

The ATG package consists of several stereotypes which are enhancements to the UML
Testing Profile. Using these stereotypes in the model means that the optional add-on
Rhapsody Automatic Test Generation (ATG) is able to interpret defined input/output
interface information and constraints for setting of a test generation configuration.

Mainly two constrained stereotypes are: argRangeConstraint and argValueConstraint.
argRangeConstraint can be used to define value range constraints. argVValueConstraint can
be utilized to define single value constraints of enumerations constraints. These constraints
can be used on operation or event arguments.

Made available are also the interface stereotypes providedInterace and requiredinterface.
Those stereotypes help to remove from the ATG view those classes which are not used as
interface classes.

Furthermore, the ATG package contains a number of type constraint stereotypes that can
be used to define range or value constraints on type definitions. Exemplarily a cutting of
the ATG package is displayed in following figure.

28

=B ata

—|-#5% Stereakypes

+

+

2 O O oy Oy OO oy O OO Oy OO - R o O O R oy O O O oy O = Yy O O = O

For more information about the ATG package and its stereotypes please refer also the

5% argRangeConstraink

5% argvalueConstraink

w5 providedInterface

5% requiredInterface

5% bypeBoalRangeConstraint

5% bypeCharPtrRangeConstraint

5% bypeCharRangeCaonstraint

5% bypeDoubleRangeConstraink

#5% bypelntRangeConstraink

#5% bypelongDoubleRangeConskraint
5% bypelongRangeConskraint

#5% bypedMBooleanRangeConstraint
5% bypeOMStringYalueConskraint

5% bypeRhpBooleanfangeConstraink
#5% bypeRhpCharacterfangeConstraint
#5% bypeRhpIntegerfangeConskraint
#5% bypeRhpPositivRangeConstraink
#5% bypeRhpRealRangeConstraint

5% bypeRhpstringyalueConstr aink

#5% bypeRhpUnlimitedtatur alR angeConstraink
5% bypeshorkRangeConstraink

5% bypelnsignedCharRangeConstraint
#5% bypelinsignedIntRange Constraink
5% bypelinsignedLongRangeConstraint
5% bypelnsignedshortRangeConstraint
5% bypeValueConstraink

Rhapsody Automatic Test Generation (ATG) User Guide.

Using the Testing Profile

The Rhapsody Testing Profile is automatically utilized by Rhapsody TestConductor. The

functionalities of the toolset are explained in the subsequent chapters of this user guide.

29

Model-based
Unit Test Definition

The term unit test is often used within the software development, but interpreted quite
different. Unit tests are performed on differently large software units like simple functions,
simple classes up to complex function libraries. However, the goal of each unit test is in
most cases the same. On the one hand the unit is tested for its functional behavior. On the
other hand often additionally structural analyses are accomplished, in order to find
uncovered (dead) code.

In order to prepare, execute, and assess a unit test several steps are usually performed:
1. Atest architecture (or test harness or test frame) must be constructed

2. Test cases must be defined and implemented

3. Test cases must be executed on the host machine

4

Test cases must be executed on the target machine

Each of the four mentioned steps is usually time consuming and difficult to perform.
TestConductor makes the preparation, execution, and the assessment of tests much easier
by lifting the test process up to the level of UML models, and by offering a high degree of
automation for the steps listed above.

TestConductor supports unit testing on model-level by following the UML Testing Profile.
Therefore TestConductor automates the time consuming and complex task of test
environment creation. The automatic test architecture generation can be used for:

Simple classes (In SysML: Activities, blocks, Viewpoint)
Simple classes with inheritance

Composite classes

Composite classes with inheritance

Objects (In SysML.: Parts)

Files (Modules)

* & 6 O o o

The other complex task of unit testing is the definition of test case or test scenarios,
typically done by writing test code in the same language than the unit to be tested. Model-
based unit testing with TestConductor combines the advantage of graphical test case
definition via sequence diagrams or flow charts with the familiar pure code based test
cases. Using the optional add-on Rhapsody Automatic Test Generation (ATG), you have
also the possibility to perform automatic test case generation.

The next chapters use the CashRegister model known from the Rhapsody “Essential”
Tool Training. The unit test will be done on the CashRegister class.

30

ProductDatabase Overview)

CashRegister | 1. | ProductDatabase «Usage» N BuyOneGetOneFree
" itsProductDatabase

barcode

«SimplifiedAccess»

itsProduct, | *

Product

«Ordered» n
= name:char

= barcodeint
= unitPrice:int

itsProduct
% Product(aBarcodeint,aName:ch. ..

. Product()
%, Product{aProduct Product)

Automatic Test Architecture Generation

Testing units of a Rhapsody model using the Rhapsody Testing Profile requires certain
steps to be repeatedly performed. Therefore TestConductor provides a powerful feature
that creates the complete test architecture automatically. Automatic test architecture
generation means:

* & & 6 o o o

.

Creation of a new test package

Creation of a new test context

Instantiation of the selected SUT class as part of the test context

Creation of test components

Instantiation and 'wiring' of test component instances as parts of the test context
Creation of an adequate code generation configuration

Adding a test configuration (dependency-relation) to the test context referring to
the created code generation configuration

Creation and drawing of a test context diagram

TestArchitecture generation can be customized using property
TestConductor::Settings: :CreateTestArchitectureMode (cf TestConductor
settings “General Properties”, page 133).

If CreateTestArchitectureMode is set to ‘Standard’, then project properties are used in the
generated code generation configuration while ‘Advanced’ opens a dialog that allows
selection of an existing configuration from which all overridden properties. settings, and
scope settings will be inherited

31

Using Classes
For the next steps do the following:

¢

The creation of a test architecture for the class cashrRegister can take place on two

Open the CashRegister Model from the
‘\Samples\CppSamples\TestConductor’ folder.

Browse to the object model diagram folder in the package CashRegisterPkg

Open the object model diagram ProductDatabase Overview

different ways:

¢ Right-click on the CashRegister class in the Rhapsody browser and select

Create TestArchitecture

. BB CashRegisterPka
=B Classes

-
=8 Countedrr
#-8 Product
#-8 ProductDz
=8 TerPercer
-8 ThreeForc
[#- s} Dependencies
Interfaces
Object Model |
B9 CashReqis
ﬂ?l Product O
B9 ProductDz
BY| Special OF
] C_] Sequence Diag
3} E[HardwarePkg
HC: E] InterfacesPkg
i#-£3 PredefinedTypes {
3} E PredefinedTypesC
i m £ RequirementsPkg
-] Profiles

&
=]
=@

[Q BuyOneGetOneFree
#-8 BuyThreeGetOneFree

Features
Features in Mew Window

Add New

Search...
Search inside...
References...

Create Unit

Change to

Open Statechart
Delete Statechart:
Open Main Diagram

Configuration Management

»

Implement Base Classes. ..

Generate
Edit Code
Roundtrip

Edit Type Order...

Associate Image

Delete from Model

Create Testarchitecture

¢ Right-click on the CashRegister class in the object model diagram and select
Create TestArchitecture

32

) 1. | ProductDatabase «Us

itsProductDatabase
Features...

CashRegister

barcode

Open Statechart

Delete Statechart

Hew et Dlagialn «SimplifiedAccess»

MNew Attribute

New Operation itsProduct,_|*

MNew Constructor

o s Product
«Ordereds

Implement Base Classes... E name:char®

oo ae = barcodeint

Edit Code = unitPrice:int

Roundtrip

Open Main Diagram 2, Product{aBarcode:int,aName:ch...

Make an Object % PI’OdUCt()

Display Options ...

2, Product{aProduct Product)

Cut

Copy

Copy With Model

Remove from View
Delete from Model
Format...

Make Default...
Locate

Expand to fit text

Create TestArchitecture

TestConductor automatically creates the complete necessary test architecture which
consists of:

¢ Anew test context diagram with the test context TCon CashRegister
containing the CashRegister object i tsCashRegister itself as SUT and all
necessary test component instances which are derived from the SUT associations
and ports.

33

«TestContext» %
TCon_CashRegister

1 «SUT» % ‘
itsCashRegister:CashRegister {

hw

e

1 <<TestCanpoﬁer1tImtarte,TestCorn|
itsTC_at_hw_of_CashRegister:

x «TestComponentInstance:
itsTC_for_itsCountedProduct_of_CashRegister:

¢ Anew test package TPkg CashRegister which contains all generated test
components, the test context TCon CashRegister with the SUT
itsCashRegister, the test context diagram and the test component instances

ERRYTPkg_CashReqister |
= Components
=] TPkg_CashRegister_Comp
=3 Configurations
#-83 «TestingConfiguration» DefaultConfig
+ (% Events
¢ Objects
L} TestPackages
=% TCon_CashRegister_architecture
(24 Dependencies
= TestComponents
S % CountedProduct
[+ TC_at_hw_of_CashRegister
=49 TestContexts
= 89 TCon_CashRegister
(2 attributes
(2« Dependencies
5 Links
#-(3) Statechart
=4 SUTs
% itsCashRegister
= &3 Test Context Diagrams
&4 Structure_of_TCon_CashRegister
= ‘ TestComponentInstances
itsTC_at_hw_of_CashReqgister
3 itsTC for itsCountedProduct of C
%y, TestConfigurations
% TCon_CashRegister_TestControl

@8-

B85

34

Using Objects

Creating a test architecture on objects is a similar workflow as shown for classes, but in
order to create a test architecture for testing an object, the object can not be directly
instantiated as part of a test context. If an object is instantiated as part of a test context, the
object is moved into another scope and thus be modified. Hence, in order to test provide
test support for the object without modification of the original design, the test contexts just
references the object from the design using directed associations and directed links.

In order to do integration testing on an object, the created test context gets a directed
association to the selected object, which does not modify the object.

«TestContexts
TCon_Radio Object Radio is the System Under Test.
1 RadioPkg::Radi B
itsRadio 1 AL
\
ginstantiated»

The structure diagram defining the structure of a test context is not capable of defining a
link instantiating this association, since this link could only be initiated from without the
test context. In order to be able to later rely on the initialization of the association, the test
context is instrumented with an additional constructor/initializer initializing the
association with the address of the global variable representing the object. Furthermore,
the creation of the constructor/initializer has to take into account the multiplicity of the
object. The implementation of the constructor/initializer is currently limited to Rhapsody
in C/C++. The association is stereotyped with the testing profile stereotype

<<instantiated>>.
Initializer : Init in TCon_Radio
Generall Description Implementation |Arguments| Relalionsl Tags
= £9 TCon_Radio |TCon_Radio_lnit()
+ L Association Ends
- E Operations 01 TCon Radio_setItsRadio (me, &Radio);
W Init() 0z

The test architecture for objects will not care about ports of the object, since the mapping
of these ports to ports of other objects may already be defined in the design. The only way

35

to stimulate an object in a system test architecture is to use the association from the test
context to the object.

Rhapsody offers an alternative to create a test architecture on a selected object. The user
can expose the class of the selected object. For Rhapsody in C++ this alternative will set
the user into the position of applying unit tests to the underlying class of the object under
test. For Rhapsody in C, in general, exposing an object’s class might not be the best
choice, because exposing an object's class massively affects the code representation of
the object's functions.

Note: For Rhapsody in Ada, the user has to set the <<instantiated>> association
manually. This is due to the fact, that global objects are instantiated after
instantiation of the initial instances specified in the Initialization tab of the code
generation configuration's feature dialog. In order to set the associaton manually,
the initialization code entry of the Initailization tab of the code generation
configuration's feature dialog is used, e.g.:
Tpkg_object_0.TCon_object_0.set_itsObject_0(

p_TCon_object_0.all,
Default.RiA_Instances.object_0);
if object_0 is an object of object_0_Class.

Using Files (Modules)

Creating a test architecture on files(to be more precise: modules) is a similar workflow as
shown for objects. Support of modules is useful mostly for Rhapsody in C, since
Rhapsody in C++ only allows external files within the scope of a CG component. Since
modules provide global declarations and definitions, test support for modules is realized
by a test context referring the module using a <<usage>> dependency.

« TestContexts
TCon_extFile_arithmetic File extFile_arithmetic is the System Under Test.
«Files
UsingExternalFile::extFile_arithmetic
———
¢Usages

The declaration of external (source and library) files and testing with TestConductor is
discussed in the chapter Black-Box Testing of External Files and Libraries at page 212.

Using Parts

Only global (i.e. top-level) objects may be tested. There will be no support for testing parts
of composite classes.

36

Updating TestArchitectures

For existing TestArchitectures, TestConductor provides the possibility to automatically

update a TestArchitecture after changes have been made on the SUT class. For instance,

consider the situation depicted in the following example:

«lnterfaces «lnterfaces
11 |2
& f0:void & g0:void
A I
(.,
P1
=S
2

There is a class A that contains a P1 with a required Interface 11 and a provided Interface
12. The interface 11 specifies one operation f() that takes no arguments and has no return

type, and interface 12 specifies an operation g() also without arguments and return type.
When selecting class A as the SUT, TestConductor creates the following TestArchitecture

forit:

« TestContexts
TCon_A

1 «SUT»
itsA A

1

P1T

P1

had
1 ocTestComponentlr‘Et’lance.TestComponent»

itsTC at P1 of A:TC at P1 of A

In the generated TestArchitecture, one TestComponent is created containg an appropriate

port P1 such that the instance of the TestComponent can be linked to the Port P1 of the

37

SUT instance itsA. Now suppose you do some changes on the SUT class A. For instance,
we can add an additional Port P2 with a required Interface 12 to A, and we add a new
operation h to the Interface I1:

«lnterfaces «lnterfaces
11 |2
& g0:void
& f):void
& hi):void
2 I
b1
[ﬁ\
l'_/‘l
2

=
P2 2
1
Because of these design changes, the previously generated TestArchitecture is not
complete any more, In order to get again a complete TestArchitecture TestConductor

provides the capability to update an existing TestArchitecture. To do this, select the
TestContext that should be updated and select “Update TestArchitecture™:

o o Create SD TestCase
«TestContexts Create Flowchart TestCase
TCon_A Create Code TestCase
Create Statechart TestCase
1 «SUT» Update TestContext
tsAA Build TestContext
Execute TestContext
==t (| Update TestArchitecture
P2— P Apply ATG...
m] I
P1
1 cTestComponentl&stﬁnoe.TestComponent»

itsTC at P1 of A:TC at P1 of A

O O a

After applying “Update TestArchitecture”, you get the following updated
TestArchitecture:

38

« TestContexts
TCon_A
1 «SUT»
itsAcA
1 g |
P1 p2
P1 P2
1 .xTestComponentlnét’a‘gtce.TestCompont 1 «TestComponentlnsbﬁce,TeﬁCompone
itsTC_at_P1_of ATC_at_P1_of A itsTC_at_ P2 _of ATC at P2 of A

To update the TestArchitecture accordingly, TestConductor did the following
modifications to the existing TestArchitecture:

1. A second TestComponent is created that is connected to the new Port P2 of the SUT
instance.

2. Since an additional operation was specified for Interface 12, an additional operation h
is added to the TestComponent connected to port P1.

- if, TestComponents
-4 TC_at_P1_of &
-- @ Operations
& f0
& hQ

After these modifications have been made by TestConductor, the TestArchitecture is
complete again.

TestArchitecures for MicroC Models

TestConductor supports testing of MicroC models with a specifically taylored
TestArchitecture generation.

Per default TestConductor restricts code generation component for the generated
TestArchitecture such that all design packages but only the TestPackage containing the
architecture belong to its scope. Setting property
TestConductor::Settings::CreateTestArchitectureMode to ‘Advanced’ allows inheritance
of overridden properties from an already existing configuration

39

Since code generation for MicroC does not regard initialization settings of the
configuration, i.e. no initial instance selection, TestConductor explicitly creates an object
of the test context.

The MicroC profile provides two different initialization modes: ‘CompileTime’ and
‘RunTime’. While ‘RunTime’ is like normal initialization for C models which requires no
specific support by TestConductor, ‘CompileTime’ influences a set of model elements,
such as e.g. accessability of associations. In particular, this affects the generated
initializers of TestContexts for objects (cf. TestArchitecture creation “Using Objects”,
page 35). Consequently, TestArchitectures generated for initialization mode ‘RunTime’
are in general not compilable with ‘CompileTime’ initialization and vice versa.

Note, that this also affects the initializer of TestComponents generated for statechart
TestCases (cf. TestCase Definition with Statecharts, page 50 ff). It is, hence, strictly
recommended to check the initialization mode defined for the project before creation of a
TestArchitecture and to check the initialization mode defined for the referenced
configuration before creation of the first statechart TestCase.

TestArchitecures for Code centric Models

For code centric Rhapsody models, the source code of the SUT is compiled to a library
and the executable with the test harness is linking this library. The code of the SUT library
is not instrumented with animation code and it is built with the code centric property
settings while the test harness contains animation instrumentation.

For the SUT library, it is possible to chose an already existing library of the project or
TestConductor can automatically create a new library CG Component.

The TestConductor sample “CppCarRadio” demonstrates testing of a code centric model.
For the next steps, please open the sample located in folder
“Samples\CppSamples\TestConductor\CppCarRadio”, right click class “Radio” and select
“Create TestArchitecture”. A dialog appears with the options to select an existing library
CG Configuration or to create a new library CG Component and Configuration for the
SUT. If the existing CG Configuration “RadioLib::RadioDebug” is selected, a
TestArchitecture is created with another CG Component and Configuration for the
generation and compilation of the test harness. This CG Configuration has some properties
enabled which are usually disabled in the code centric profile, for example properties
“CG::Relation::AddGenerate” and “CG::Relation::SetGenerate” are enabled and
“CG::Configuration::MainGenerationScheme” is set to “Full”. The scope of the newly
created CG Component contains only the test harness and it has a “Usage” dependency to
the CG Component of the SUT, making sure the needed header files and the library of the
SUT can be found.

If the user selects to create a new CG Component for the SUT library, then TestConductor
creates two CG Components in the TestArchitecture: First a library CG Component
“libSUT” with the scope set to the SUT class and its associations and the default property
settings of the project and second an executable CG Component for the test harness.

After creating the TestArchitecture, the user should revise the settings of the newly created
CG Components and Configurations. It might be necessary for example to add more
model elements to the scope of the CG Components or to modify the options for the
“Additional Sources”, “Include Path” etc. The user has to build the SUT library; for the
CG Configuration “RadioLib::RadioDebug” this can be done by executing the shell script

40

“buildLib.sh” (located on the project folder) in a cygwin shell. The executable of the test
harness can be build using the TestConductor menu functions “Build TestCase”, “Build
TestContext” or “Build TestPackage”.

The TestArchitecture for code centric models can be used the same way as
TestArchitectures for non code centric models, with some restrictions because of the not
animated SUT (internal communication of the SUT cannot be observed).

TestConductor.h, TestConductor_C.h and TestConductor_C.c,
TestConductor.jar, TestConductor.ads and TestConductor.adb

Since Rhapsody 7.1 the testing profile require the test context, test components, and test
component instances to include the TestConductor header file by setting property

CPP _CG.Class.ImpInclude 10 TestingConductor.h. Additionally, TestConductor
adds the path '$ (OMROOT) /. . /TestConductor'to the include-path of the code-
generation component when creating a test architecture.

Component : TPkg_CashRegister_Comp in TPkg_CashRegister [=][X

General I Scope| Descriptionl F!elationsl Tags I Properlies]

Name: ITPkgLCashH eqister_Comp

L
Stereotype: | L‘ _@_l {-Q;_J

Directory: I TPkg_CashReaister_Comp

Libraries: I

el
oy
Additional Sources: | _l
e
|

Standard Headers: |
Include Path: |$(0MRODT)/../TestConductor

-Type
" Library ¢ Executable ¢ Other

Locatel oK | |

To provide an adequate assertion support for Rhapsody in C, a similar header file is
provided and the testing profile was extended, such that test context, test components, and
test component instances automatically include an appropriate TestConductor C.h
header by setting property C cG.Class.ImpInclude t0 TestConductor C.h.In
contrast to the Rhapsody in C++ solution, for Rhapsody in C also an C-Implementation
file was provided, which is linked only once.

41

= C_CG

=l| Class

ImpIncludes TestConductor_C.h
- CPP_CG
=l| Class

ImpIncludes TestConductor.h

For Java, the class “org.btc.TestConductor.TestConductor” is added as specification
include for TestContext and TestComponents.

-l JAYA_CG

=l Class
DescriptionTemplate [* $Description]]1O0[[* @author £
Speclncludes org.btc, TestCanductor, TestConduchor

For Ada, the package “TestConductor” is made visible by adding an appropriate “with”
clause to the implementation of test contexts and test components.

- Ada_CG

-l Class

ImplementationPralog with TestCanductor;

Generate and Build the Test Context

After generation of the new test context you should check whether it is complete and

consistent. Therefore you should generate und build the test context to get information
about potential compile or link warning or errors.

¢ Right-click on the test context TCon CashRegister and select Build
TestContext from the context menu.

E]ﬁ Tenbackages Qeaae'S:‘Ic)’TstC&
3 Create Flowchart TestCase
—--I7% TPkg_CashRegister
£y TPka_CsshReg Create Code TestCase

{{) Components
1), TestComponents
E]$ TestContexts

Create Statechart TestCase
Update TestContext

Build TestContext

Bﬁa TCon_CashRegiste Execute TestContext
<y Links Update TestArchitecture
b SUTs Apply ATG...
g Test Context Diagrams X
‘ TestComponentinstances 15\5
..“m TestConfigurations (e}

If the generate, compile and link procedure are resulting in an executable you are able to
execute it.

42

Test Case Definition

Now test cases for the generated test context can be defined. TestConductor provides four
possible means to define test cases:

Test case definition with pure code (only in C/C++/Java/Ada)
Test case definition via flow charts (only in C/C++)

Test case definition via statecharts (only in C/C++/Java/Ada)
Test case definition via sequence diagrams

* & o o

Test Case Definition with Code

One of the most used means to test units today is writing test cases in the same language
than the application is written. In the C/C++/Java/Ada domain, often the complete test
environment and also the test case are written in C/C++/Java/Ada with the goal of
functional or coverage testing.

With Rhapsody in C/C++/Java/Ada it is also possible to write test cases manually, because
test cases are stereotyped primitive operations of a test context.

Define a Code Test Case
The creation of a new test case is nearly the same than creation of a new operation:

¢ Right-click on the test context TCon CashRegister and select Create Code

TestCase
=- E} TestPackages
E] EJ TPkg_CashRegister Tk Rty Caway
: - {Z3] Components c 5D TesC
-}, TestComponents Create Flowichart TestCase
Create Coce TestCase
S Create Statechart TestCase
- H Links Update TestContext
-4 SUTs Build TestContest

-7 TestContext D Execute TestContext

P R Structure Update TestArchitecture
‘ TestComponer Apply ATG...

- "\) TestConfigurat

¢ Name the new test case “tc_code”

43

= g] TestContexts
= 83 TCon_CashReqister
-l Links
a SUTs
-h'g Test Context Diagrams

E}-"v- TestCases
I

Rt code()

- ‘ TestComponentInstances
-y, TestConfigurations

¢ Open the Features dialog of the new test case and enter the code into the
implementation tab.

Test Case : tc_code in TCon_CashRegister 2%

General | Description Implementation IArguments Relations | Tags | Propetties |

lvoid tc_code(]

il=itsCashRegister. isNoMoreProducts () -
RTC_ASSERT NAME ("check 1.1", il==1):

itsCashRegister.addProduct (new Product (1234, "apple™,100));
iZz=itsCashRegister. isNoMoreProducts ()

RTC_ASSERT NAME ("check_1.2", iz==0):

v
«| | »

Locatel OK | Apply ”

The objective of the test case is to verify whether the function addproduct correctly adds
a product to the bill list (realized by the ordered association i tsProduct).

First, the test case checks whether the bill list is empty. If not, the operation
isNoMoreProduct returns FALSE. In this case the macro RTC_ASSERT NAME
(“check 1.17, il1=1) returns a FAILED to TestConductor. Otherwise the result of the
RTC_ASSERT_NAME macro is PASSED. In the next step a product “apple” is added. At
the end the bill list is checked again.

Note: This test case is using two attributes i1 and i2 of type int. Both attributes have
to be defined within the test context TCon CashRegister.

Note: TestConductor provides several RTC_ASSERT macro types, which can be used
to define assertions within test cases. A detailed description of these macros can
be found in the chapter TestConductor Assert Macro on page 245.

Execute a Code Test Case
Now you are able to execute the test case by doing following steps:

44

¢ Right-click on the test case “tc_code” and select Build TestCase from the context
menu

¢ Right-click on the test case “tc_code” and select Execute TestCase from the

context menu

~l=l

DROE N -1

Mame

Status File/Tteration Line/Progress
-1¥, t_code) PASSED
check_1.1 ©) PASSED TCon_CashRegister.cpp 53
check_1.2 © PasSsSED TCon_CashRegister.cpp 56

The test execution window shows the result of the checked assertions. Both are PASSED

meaning

that the tested behavior is ok.

Further information about test execution and the related results is described under chapter
Test Execution on page 67.

Failure Analysis

in CodeTest Cases

TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

Test Case : Code_tc_0 in TCon_CashRegister

21

General | Description Implementation IArgumentsI Relations | Tags | Properties |

|void Code_te_0[)

<

il=itsCashRegister. isNoMoreProducts()

RTC ASSERT NAME ("check 1.1",
itsCashRegister.addProduct (new Product (1234, "apple™,100));
iZ=itsCashRegister. isNoMoreProductsi():

RTC_ASSERT NAME ("check 1.2",

Locatel 0K | Apply ”

il==1);

iz2==0) 2

|»

Further information about failure analysis can be found in chapter Failure Analysis on

page 222

45

Testing reactive behavior with Code Test Cases

Since code test cases are basically primitive operations of a test context, testing reactive
beahavior, i.e. reaction to events, can not be done without modifications to the test
context. Primitive operations can't wait on events so please make the TextContext an
active object and hence a separate thread. In this case, the thread executing the test context
can be delayed unless the SUT has reacted to an event.

+ Example code in C++;
itsClass 0.GEN(evX());
OXFTDelay (1000) ;
RTC_ASSERT NAME (“reaction”,itsClass_0.IS IN(reaction state));

+ Example code in C:
RiCGEN (& (me->itsClass_0),evX());
RiCOXFDelay (1000) ;
RiCIS IN(&(me->itsClass_0),reaction_ state);

+ Example code in Java:
itsStopWatch.gen (new evPressKey (1)) ;

try {
wait (4000) ;
} catch (Exception e)

{}

TestConductor.ASSERT NAME ("Check state of
stopwatch", itsStopWatch.isIn (ROOT.Running)) ;

Test Case Definition with Flow Charts

A graphical way to describe test cases is by using flow charts. Since test cases are special
operations of a test context you can use flow charts. Flow charts can be used to define the
behavior of primitive operations with Rhapsody.

Define a Flow Chart Test Case

¢ Right-click on the test context TCon CashRegister and select Create
FlowChart TestCase

46

- L3 TestPackages
EJ g‘j TPkg_CashRegister

D Components
. i) TestComponents Create SD TestCase
Create Flowchart T
Create Code TestCase
Create Statechart TestCase
l 3‘ SUTs Update TestContext

= i—i Test Context D Build TestContext

: -'2 Structure ¢ Execute TestContext
. ‘ TestComponery. Update TestArchitecture
[y, TestConfigurats__ APPly ATG...

¢ Name the new test case “tc_flow_chart”
¢ Draw the following flow chart

FlowchatOfTc_flow_chart «FlowCharts

(i1=this->itsCashRegister.isNoMoreProducts();)

RTC_ASSERT_NAME

I
lete8] _f Sochack 24,
Initialization failed",
[i1==1]
this->itsCashRegister.addProduct(new
Product(1234 "apple" 100));

3

i2=this->itsCashRegister.isNoMoreProducts();
RTC_ASSERT_MNAME("check_2.2, Product
succesfully added”, i2==0);

The objective of the test case is the same as used in the code test case above.

47

First, the test case checks whether the bill list is empty. If not, the operation
isNoMoreProduct returns FALSE. In this case the macro RTC ASSERT NAME
(“check 2.1, Initialization failed”, 0) returnsa FAILED to
TestConductor. In the next step a product “apple” is added. At the end the bill list is
checked again

Execute a Flow Chart Test Case
Now you are be able to execute the test case by doing following steps:

¢ Right-click on the test case “tc_flow_chart” and select Build TestCase from the
context menu

¢ Right-click on the test case “tc_flow_chart” and select Execute TestCase from the
context menu

2lxl
Ok
Marme Status File,/Tteration Line/Progress
-1¥, FC_tc_D () PASSED
&) chedk_2.... @ PASSED TCon_CashRegister.cpp 68

The test execution dialog shows the result of the defined assertions. The assertion

“check 2.2, Product successfully added” passed the test, which means that the tested
behavior is ok. Other than in the code test case here you can only see one assertion in the
execution dialog. This is due to the condition connector used in the flow chart. Only when
the condition [1i1==1] iS false, the assertion “check 2.1, Initialization failed” is
executed.

Further information about test execution and the related results is described under chapter
Test Execution on page 67.

Failure Analysis in Flow Chart Test Cases

TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

48

Action : action_2 in FlowchartOfFC_ktc_0 21

General 'Descriptionl Relations | Tags | Properties |

Name: ladbn_2 LI
Stereotype: I LI %I %I
Action

i2=this-»itsCashRegister.isNoMoreProducts(); | I= | Gveridden

RTC_ASSERT _NAME (“check_2.2, Product succesfully added"”, iZ==0):

o

Locatel OK | Apply I|

Further information about failure analysis can be found in chapter Failure Analysis on
page 222.

Testing reactive behavior with Flow Chart Test Cases

Since flow chart test cases are basically primitive operations of a test context, testing
reactive beahavior, i.e. reaction to events, can not be done without modifications to the test
context. Primitive operations can theirselves not wait on events. Thus, the test context has
to be active, i.e. must run in a thread different form the thread executing the SUT. In this
case, the thread executing the test context can be delayed unless the SUT has reacted to an
event.

+ Example code in C++:
itsClass 0.GEN(evX());
OXFTDelay (1000) ;
RTC_ASSERT NAME (“reaction”,itsClass_0.IS IN(reaction state));

+ Example code in C:
RiCGEN (& (me->itsClass_0),evX());
RiCOXFDelay (1000) ;
RiCIS IN(& (me->itsClass_0),reaction_ state);

+ Example code in Java:
itsStopWatch.gen (new evPressKey(1l));

try {

wait (4000) ;
} catch (Exception e)
{1}

TestConductor.ASSERT NAME ("Check state of
stopwatch",itsStopWatch.isIn (ROOT.Running)) ;

49

TestCase Definition with Statecharts

Test cases can alternatively be defined using statecharts. Due to their ability to wait on
timeouts, statechart test cases are particularly suited for testing reactive behavior. In order
to separate test case behavior from possible reactive behavior of the test context, statechart
test cases are defined using specialized test components, which are then dynamically
instantiated for test execution.

Statechart testcases are comprised of the following model elements:
¢ aTestCase, i.e. basically a primitive operation of the test context.
¢ a TestComponent owning the statechart defining the test case behavior.

¢ adependency of the test case on the test component. This dependency is
stereotyped <<StatechartTestCase>>.

This chapter gives a short overview about the usage of statechart test cases. It describes:
¢ How to define a simple statechart test case.
+ How the model is populated for executing a statechart test case.

+ How statechart test cases can be executed.

Define a Statechart Test Case

¢ Right-click on the test context TCon CashRegister and select Create
Statechart TestCase

[;:]--L_.} TestPackages
EJE; TPkg_CashRegister
. [-{{] Components

-1 T Create SD TestCase
= 3’ TestContexts Create Flowchart TestCase
58; TCon_CashRegiste iR WINEpCrig e

c3) I? Links Create Statechart TestCase
[+ %@ SUTs Update TestContext
kg TestContext L Build TestContext

. LY Stucwe_ Execute TestContext

@ TestComponer Updat TestArchitecture
v.‘!) TestConfigurat Apply ATG...

Creation of a statechart test case adds a test case to the test context. This test case has a
dependency on a newly created test component owning the statechart. The test component
has a directed association to the test context, which can be used to refer to parts, variables
and operations of the test context. Upon execution, the statechart test case dynamically
instantiates the test component, initailizes the association and starts statechart execution.

50

Furthermore, the test context needs to be populated with a rtc_init() and a rtc_exit()
operation which are invoked by the statechart. This population is initiated by “Update
TestCase”, “Update TestContext”, and “Update TestPackage”, respectively.

The following figure shows the browser after statechart test case creation:

=-E»

TPkg_CashRegister o

[#-{Z]] Components

13 TestComponents

‘ TC_at_hw_of_CashRegister
TC_for_itsCountedProduct_of_CashRegister
TC_for_itsProduct_of_CashRegister
TCSC_tc 0

[5)-L Association Ends

. L.ly wsTCon

E Operations

() Statechart

TestContexts

=)-£}9 TCon_CashRegister

RcRcRG

; “Vy) «StatechantTestCases TCSC_tc_0
‘ TestComponentlnstances
-»-q) TestConfigurations

¢ Name the new test case “tc_statechart”
+ Draw the following statechart

o1

SERCanONCSC 6. 0)

nkial
RsTCon->ic_ink(
MsTCon->getRsCashRegister()-=-GEN(avSan());
s 1 e 2
m(500)
stae 4
mal
-

JRTC_ASSERT_NAME{'auStan_recehed"”,
RsTCon->getnsCasnRegister()-=1S_IN(acthe));

MRsTCon-=ric_exh();

Execute a Statechart Test Case
Now you are be able to execute the test case by doing following steps:

¢ Right-click on the test case “tc_statechart” and select Update TestCase from the
context menu

¢ Right-click on the test case “tc_statechart” and select Build TestCase from the
context menu

¢ Right-click on the test case “tc_statechart” and select Execute TestCase from the
context men

x|
DROE 31
MNarne Status File/tera... = Line/fProgress
- ¥, Code_tc_D (@ PASSED
evStart_received (&) PASSED TCon_&.cpp 50

The test execution dialog shows the result of the defined assertions. The assertion
“evStart _received” passed the test, which means that the tested behavior is ok.

52

Further information about test execution and the related results is described under chapter
Test Execution on page 67.

Failure Analysis in Statechart Test Cases

TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

Further information about failure analysis can be found in chapter Failure Analysis on
page 222.

Test Case Definition with Sequence Diagrams

Another option to define test cases is by using sequence diagrams. In the context of the
Rhapsody Testing Profile such sequence diagrams are called test scenarios
(TestScenarios). Test scenarios play a dominant role in the TestConductor test process.
They are the graphical means of specifying and defining the tests, and enable
TestConductor to visualize design flaws.

This chapter gives a short overview about the usage of sequence diagram based test cases.
It describes:

How to define a simple sequence diagram test case

How the generation of driver and sub operation works (see also chapter Model
Population on page 58)

¢ How sequence diagram test cases can be executed

Detailed information regarding the usage of the powerful features of sequence diagram
test cases are described in chapter Advanced Test Definition on page 153 ff.

Define a Sequence Diagram Test Case

Driving the SUT using Test Components (only
C/C++/Java/Ada)

¢ Right-click on the test context TCon CashRegister and select Create SD
TestCase

53

- L3 TestPackages
EJ gj TPkg_CashRegister
l D Components
_ & TestComponants
E]& TCon_CashRegiste:

. s Create Code TestCase
e Create Statachant TestCase
(- SUTs Update TestContest

Cl-ig TestContext D pild TearContent
ol Stucurel Bracute TestContext
@ TestComponer Update TestArchitecture
&~ Ay, TestConfigurat Apply ATG...

Note: TestConductor generates a new test case “SD_tc_0()” with a dependency
“SD _tc_0” to a newly generated test scenario “SDTestScenario 0.

E] 83 TestContexts
- =9 TCon_CashRegister
- [Attributes
[#--L Links
I b SUTs
[#-h'g Test Context Diagrams
=%, TestCases
i "v tc_activity_diagram{)
*. tc_code()
- xv te_flow_chart()
-#_ tc_sequence_diagram()
I ‘ TestComponentInstances
[#-%y, TestConfigurations
B 5—5 TestScenarios
- ES SDTestScenario_0

R

¢ Rename the new test case to “tc_SimpleStart”

¢ Rename the new test scenario to “SDSimpleStart”

The generated test scenario looks like the following diagram. It contains lifelines for each

SUT and test component object defined in the test architecture.

SDTestScenario 0) aTestSeenarion
«3UT»

TCon_CashRegis | | TCon_CashRegister. TCon_CashRegister.itsTC TCon_CashRe
ter.itsCashRegist itsTC_for_itsProduct _for_itsCountedProduct:T gister.itsTC_at
er.CashRegister TC_for_itsProduct C_for_itsCountedProduct _hw.TC_at_| Thw

| | | [
| | | |
| | | |

54

¢ Remove the lifelines TCon CashRegister.itsTC For itsProduct and
TCon CashRegister.itsTC for itsCountedProduct from the view,
because these lifelines are not used in the following test scenario

+ Draw the following messages into the test scenario

«SUT»
TCon_CashReqgis TCon_CashRe
ter.itsCashReqgist gister.itsTC_at
er:.CashRegister _hw:TC_at_hw

| evstart() |
R —

-

startSession()

lsthow(ar\:fisg = 0K)
|

In this test scenario the test component TCon CashRegister.itsTC at hw is driving
the SUT with the message evstart (). The expected result is the message shown below

show ().

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “’OK”” will be
converted to “OK”.

The scenario describes the normal way in which objects communicates among each other.
Messages from an environment line are only necessary when messages have to be sent
from the system boundary (e.g. an actor is sending an event to an object of the system).

Driving the SUT using ENV

Note: Driving from ENV is only supported in animation based testing mode
(TestConductor.Settings. TestingMode == AnimationBased)

If you are testing an animated application, inputs can also originate from the ENV life line
in a sequence diagram. To define a sequence diagram test case in such a manner you have
to draw a slightly different test scenario.

¢ Create a new test case as described above
¢ Rename the new test case to “tc_SimpleStartENV”

95

¢ Rename the new test scenario to “SDSimpleStartENV”

Remove the lifelines TCon CashRegister.itsTC For itsProduct and
TCon CashRegister.itsTC for itsCountedProduct from view,
because these lifelines are not used in the following test scenario

Add an ENV line to the test scenario
+ Draw the following messages into the test scenario

*

«SUT»
ENY TCon_CashRegis TCon_CashRe
ter.itsCashRegist gister.itsTC_at
er.CashRegister _hw:TC_at_hw
evStart() l
T s |
e

’ show(aMsg = OK)

T ——

|H‘“‘“-—$
| |

[
|
startSession() :
|
|
|
|

ANNNNNRRAANSRRRRRRRNNNGRN

Execute a Sequence Diagram Test Case
Now you are be able to execute the test case by doing following steps:

¢ Right-click on the test case “tc_SimpleStart” and select Update TestCase from the
context menu

¢ Right-click on the test case “tc_SimpleStart” and select Build TestCase from the
context menu

¢ Right-click on the test case “tc_SimpleStart” and select Execute TestCase from
the context menu — Alternatively you can right-click on test scenario to
“SDSimpleStart” and select “Exceute TestCase of TestScenario” from the context
menu.

¢ The test is executed, and you can see the results in the execution window.

==
DROE- E}
MNarmne Status File/Iteration Line,/Progress
- ¥, tr_sequence_diagram €3 FAILED
By sD_tc_o @ FaILED 1 75% (34

56

Failure Analysis in Sequence Diagram Test Cases
The execution of the test case failed. To find out why you can do the following:

¢ Select the item “SD_tc_0” in the execution dialog and double-click the item.
Alternatively, select the item “SD_tc_0” and select “Show as SD” from the context
menu.

¢ Press Quit

With Show as SD TestConductor has generated a new color coded sequence diagram
which shows the found failure.

TCon_CashRegist TCon_CashReg
er.itsCashRegiste ister.itsTC_at_h
r:CashRegister wiTC_at_hw

evStart() |
]

-

StartSession() |
|

show({aMsg=Ready): Operati!)n Call - In Parameter values do not match.
showi alhsg=0K)

il

|
|

In this case the argument of the show() message sent by the SUT has a different value than
expected. The expected argument value is “aMsg=0K” while the real observed value is
“aMsg=Ready”. The reason for the problem is that we specified an incorrect test scenario
which must be corrected now.

You can change the argument from “OK” to “Ready” in the test scenario
“SDSimpleStart”. Then again perform the steps described above.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

Further information about test execution and the related results is described in chapter Test
Execution on page 67.

Further information about failure analysis can be found in chapter Failure Analysis on
page 222.

S7

Model Population — Create Driver Operations and Stub Operations (for
Rhapsody in C/C++/Java/Ada)

Whenever test components are used to drive input messages of the SUT or to be forced to
return a pre-defined value of an operation call to the test component users have to provide
driver or stub operations for test components.

By using sequence diagram test cases TestConductor automates the generation of driver
operations and stub operations. Simply by choosing the context menu Update TestCase
on test case level, by choosing the context menu Update TestContext on test context
level, or by choosing the context menu Update TestPackage on test package level the
work is done. Choosing one of these menu entries starts the so-called “model population”
process of TestConductor. It analyses each defined sequence diagram instance and the
linked test scenarios to generate necessary driver and stub operations for the test
components.

Driver Operations

Driver operations (DriverOperations) are created for any message going from a test
component to the SUT, except for messages carrying the tag RTC_Monitor, or messages
starting at an instance line with the tag RTC_Monitor. In this case TestConductor assumes
the message should not be driven. Driver operations will be generated only for messages
from sequence diagrams referred by a sequence diagram instance with the mode “driver
and monitor”.

For example look into the generated driver operation of the test case “tc_SimpleStart”:

Driver Operation : tc_sequence_diagram_evStart_1 in TC_at_hw 21

I f‘

Entire Model Yiew — ~

[=-f CashRegister
(] Components
(] Obiject Model Diagrams
{1 Packages
-] Profiles
{1 sequence Diagrams
=3 TestPackages
=y TPkg_CashRegister
{1 Components
B4, TestComponents
g TC_at_bw
= DriverOperations
=B tc_sequence_diagram_evstart_1()
*\) Dependencies
- Operations
#-=Q Ports
-4 SuperClasses

Eenerall Description Implementation IArgumenls Helatior\sl Tags I Properliesl

|vuid tc_sequence_diagram_evStart_1()

Driver Operation generated by TestConductor

Test Case : tc sequence diagram
Message : message 0

The Driver Initialisation Code contains the value of the
message tag TestBehavior::RTC MsgInfo::RTC DriverInitCode,
if the tag value is not empty. Otherwise, the Driver
Initialisation Code is automatically generated.

The Driver Call Code contains the value of the
message tag TestBekavior::RTC MsgInfo::RTC DrivercCallCode,
if the tag value is not empty. Otherwise, the Driver

T

% TC_for_itsCountedProduct Call Code is automatically generated.
1, TC_for_itsProduct AEAE AR A AR AA A A AR AR
-9 TestContexts
=49 TCon_CashRegister 7/
- Attributes // Driver Initialisation Code:
(- Links Y4
g SUTs
[#- k4 Test Context Diagrams o
=% TestCases // Driver Call Code:
-%, te_activity_diagram() 77
#-% te_code()
®-% te_flow_chart() OUT_PORT (hw) ->GEN {evStart ()) ;
®-%, te_sequence_diagram() _';]
-, TestComponentinstances < b
[y, TestConfigurations
=By Testscenarios Locate | 0K | Apply I ‘

Ely sDTestscenario_0

TestConductor analyzed the given test architecture, the ports, and the interfaces, and then
TestConductor generated a new driver operation for the test component TC_at hw called
tc SimpleStart evStart 1 (). Theimplementation tab of this operation shows the
generated code. Beside some comments there is the code line

OUT_PORT (hw) ->GEN (evStart ()) ;

58

This implementation realizes the sending of the message evstart () from the
TestComponentInstance TCon CashRegister.itsTC_at hw through the port hw
to the SUT. During test execution TestConductor will call the driver operation
tc_SimpleStart evStart 1() Which in turn generates the specified input event
evStart () using the port connection (hw).

The name of the driver operation is the concatenation of the name of the test case, “ ”, the
name of the original operation, “ ” and a number to create a unique name. A comment is
generated into the code of the driver operation that contains the identifier of the message
and the name of the test case for which the driver operation was generated. This allows the
user to identify the correct driver operation if he wants to edit it.

In the context of the model-population, the identifier of a message is the value of the tag
TestBehavior::RTC MsgInfo::RTC MsgId. TestConductor generates such an
identifier for a message when needed, using the naming scheme

message <unique number>'.

The visibility of the driver operation will be public, the property
CG.Operation.AnimAllowInvocation of this operation will be set to ”A11” to make
sure this operation can be invoked by TestConductor.

The body of the driver operation consists of a call of the original operation on the SUT
(either on the destination instance itself or via a port, this is derived from the test context).

The values of any input argument for the driven operation call is derived from the
specification in the sequence diagram, the specified return-value(if existent) and the
specified output argument values are stored in local variables. TestConductor makes sure
that the call is done on the correct instance of the SUT if multiple instances of the same
SUT class exist.

If the sequence diagram specifies that the returned value should be checked, the macro
RTC_ASSERT_SD_NAME is used to check if the returned value and the expected
returned value are equal. The same macro is used to check if out or infout argument values
returned by the operation call are as specified in the sequence diagram. If any of these
checks fails the test case fails.

The values of parameters defined for the sequence diagram instance are propagated to the
driver operation this way: If any parameter is used in the argument value- or return value
specification of the operation that should be driven, then in the body of the driver
operation the argument-value or return-value is substituted with the value of the
parameter. A corresponding substitution is taken into account, if sequence diagram
parameter values are used as sequence diagram instance names.

For further information how to customize the driver operation please read the chapter User
Defined Driving Operation Calls (for Rhapsody in C/C++/Java/Ada) at page 204.

Stub Operations

Typically stub operations (StubOperations) are used to return a special return value for an
operation call that is needed to test a special behavior of the SUT that depends on this
return value.

Stub operations are created for any operation call in the sequence diagram going from the
SUT to a test component if a return value (or an out value for an out or in/out argument) is

59

specified for this operation. TestConductor needs the ability to determine and control the
value returned by the operation. On the other hand there might be some calls to the same
operation without a specified return value or the operation is called by a test component on
a test component. Because of this TestConductor has to generate a different body for the
operation, but it must still be possible to call the original operation.

Note: For assertion based testing mode (TestConductor.Settings. TestingMode ==
AssertionBased), for all messages from a SUT life line to a TestComponent life
line, TestConductor creates a stub operation. In assertion based testing mode,
these stubs are needed in order to inform the test case that a specified message has
indeed occurred during test case execution.

To show this in an example you have to do some model changes:

¢ Open the feature dialog of operation show () of class IDisplay in package
InterfacePkg

¢ Change the return type from void to bool

Primitive Operation : show in IDisplay 2%

General |Description| Implementation | Arguments Relationsl Tags | Propevtiesl

|bool show[char” aMsg)

Stereotype: I Z‘ & l %I
Viskiity: [Public |

Type: | Prinitive Operation AT Template
Returns
v Use existing type

Type: |bool o s

Modifiers
([~ Witual [~ Static [~ Inline |~ Constant [V Abstract

¢ Open the feature dialog of operation show () of the test component TC at hw
in package TPkg CashRegister 0

¢ Change the return type from void to bool

Primitive Operation : show in TC_at_hw *) 21

General | Description] |mpiementation| Argumentsl Relalionsl Tags | Propertiesl

|woid show{char* absg)

Name: |show LI
Stereotype: l _‘J (Y I %I
Vishity: [Fublc [~ |
Type: IP[imitive Operation _'_] [~ Template
Retumns
[V Use existing type
Type: LI;QJ

Modifiers
(17 Vitual |7 Static [T Inline [T Constant [~ Abstract

60

¢ Change the implementation of the operation show () from “return”to
“return true”.

Primitive Operation : show in TC_at_hw 0]

Genafall Description Implementation |Argumenls| Helaliunsl Tags | Plopertiesl

|bool show(char® aksg)

oo I/s(-ﬁt-seﬁs(-ﬁfﬁf-s&ﬁs(-ﬁs(-ﬁ(-s&ﬁﬁﬁs(-ﬁfs&ﬁéﬁs(-ﬁs(-set-s&ﬁs(-ﬁs(-ﬁf-éﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁéﬁﬁﬁﬁﬁﬁﬁ -

o1 Tmplementation generated by TestConductor

oz

03 This function body was automatically generated to ensure tha
04 the test component class is not abstract.

D5 o o o6 o o ok o6 ok o6 o o o o o o o e e e e e e e e e e o o o 2 o o o o o o o o
o8

07 return true:;

os

¢ Define a return value false for the message show () in the test scenario
“SimpleStart”.

«SUT»

TCon_CashRegis TCon_CashRe

ter.itsCashRegist gister.itsTC_at

er.CashRegister _hw:TC_at_hw
| evatart() |

startSession()

| false=show(alMsg = OK)

¢ Choose Update TestCase from the context menu of test case “tc_SimpleStart”

61

-9 TestContexts
= 3) TCon_CashReqister
- Attributes
- Links
- SUTs
g Test Context Diagrams
E] #_ TestCases
: #. tc_activity_diagram()
» kc_codel)
A2 tc_flow_chart()
PR c_sequence_diagram()
‘ TestComponentInstances Features
q) TestConfigurations Features in New ‘Window
l E&, TestScenarios

XXy

[+

[+
o

Add New »

Search...
Search inside. ..
References...

Change to »
Edit Test Case

Delete from Madel

Edit TestCase SDInstances

Build TestCase E!

Execute TestCase

The result of the update and model population process can be seen in the Rhapsody
browser (see following figure)

E} 3 TestComponents
g TC_at_hw
=& DefaultOperations
- [original_show(char* aMsq)
EI ﬁ* DriverOperations
- [=-B* tc_sequence_diagram_evStart_1()
- Operations
+-~0 Ports
E) ﬁ; StubbedOperations
- show(char* aMsg)

EI {5+ StubOperations
- - tc_sequence_diagram_stub_show_1{char* aMsg)
-9 SuperClasses

4 IDisplay

4 TPrinter

TestConductor has done some modifications within the test component TC _at hw.
¢ The operation show () has been renamed to original show (..) andis
stereotyped with DefaultOperation.

¢ Anew stub operation tc_SimpleStart stub show 1 () hasbeen
generated. The generated stub operation returns a value false needed for the test
case “tc_SimpleStart” .

62

Stub Operation : tc_sequence_diagram_stub_show_1 in TC_at_hw

2

General | Description Implementation IArgumenlsl Relations | Tags | Propetties |

]bool tc_sequence_diagram_stub_show_1(char” aMsg)

/{'*('éf*k{'*('éf*ﬁ{'*('éés('k{'*('éﬁ)('k{'*kék!'k{'*('éﬁ!'k{'*kékﬁé**ﬁ*kﬁk**ﬁék*é*éﬁ*k*

Stub Operation generated by Testlonductor

Test Case : tc_sequence_diagram
Message : message 1

The Stub Body Code contains the value of the
message tag TestBehkavior::RTC MsgInfo::RTC StubBodyCode,
if the tag value is not empty. Otherwise, the Stub

Body Code is automatically generated.
ﬁ*é*éﬁ#ﬁ*é*éﬁ*ﬁ***#ﬁ*ﬁ{'é*éﬁ*k**k#ﬁ!'k***éﬁ*k**ﬁéﬁﬁé**kéﬁﬁk*éﬁéﬁ*é*éééﬁ/

return (bool)] false:

Locatel 0K | Apply ||

-

o ot
<| | »

¢ A new stubbed operation show () has been generated.

Stubbed Operation : show in TC_at_hw

21X

General | Desciiption Implementation IArgumenlsI Relations | Tags | Properties |

Ibool show(char” aMsg)

/ﬁi-£~i-£~:(-’6!-’6ﬁ*t:('t:('ﬁ:(-ﬁ)(-ﬁ)(-ﬁ'i-ﬁi-£~i-’6:(-’6!-’6tset:(-ﬁ:(-ﬁ)(-é)(-ﬁi-£~iﬁf*f*ﬁ*ﬁ*tiﬁfﬁtitﬁtﬁiﬁf

Stubbed Operation generated by Testlonductor

*kt'f('t('t('#ﬁ#ﬁ’('él('é*k*k*kt'f('f('t('tﬁ#ﬁ’('és('é*k*é*kt'fﬁfﬁtﬁ#ﬁ#ﬁ*é#é*k*k*k*tﬁt/

OMString guid = RTC_ASK("GUID e9dSdébc-9590-4ac3i-94e8-c3cSachbh991") ;
if (guid == "GUID c849f7e0-0bc0-4d8d-8d7c-5h7512812a79") {
OM_RETURN (tc_sequence_diagram_stub_show_1(aMsg)):
¥
OM_RETURN {original_show{aMsg));

Locatel 0K I Apply ”

-

b
< | »

The stubbed operation show () replaces the original operation show () and is called
always when the SUT calls the operation show () on the specified test component. This
operation immediately decides whether the original show message has to be called or if a
stubbed value shall be generated. This behaviour is realized on a per test case and on a per

message basis.

Note: Each message in a sequence diagram has a unique Rhapsody GUID. So

TestConductor is able to uniquely identify each message with in a sequence

diagram.

63

For further information how to customize the stub operation please read the chapter User
Defined Stub Operation Calls (for Rhapsody in C/C++/Java/Ada) at page 209.

Creating test cases with the test case wizard

As an alternative to manually create test cases, one can also automatically create test cases
with the test case wizard.The test case wizard allows to automatically create test cases
based on existing

¢

*

Sequence Diagrams
Operations and Event Receptions
Requirements

In order to create a test cases based on an existing Sequence Diagram, do the
following:

= Inthe browser or in the sequence diagram editor, rightclick the sequence diagram
and select “Create TestCase...”. This opens the test case wizard dialog:

Create Test Case

kap inztance lines to test architecture

Fleaze select test architecture for test caze:

Flease select test case kind:

= Inthe test case wizard dialog, all test architectures (i.e., all test contexts) that are

suitable to map the life lines of the existing sequence diagram to the life lines that
are available in the test architecture (i.e., the life lines of the SUT instances and

the life lines of the test component instances) are listed. A test architecture is
suitable, if

o All life lines of the existing sequence diagram can be mapped to life lines

of SUT instances or test component instances s.t. all specified messages
can occur also between the remapped life lines of the test architecture.

64

o At least one life line of the existing sequence diagram must belong to the
same class (or file/object) as one of the SUT instances of the test
architecture. This rule can be turned on/off by setting the property
“TestConductor.Settings.MapSDToTestArchitectureMode” to “weak”.
By setting this property to “weak”, no existence of a life line that has the
same class as one of the SUT classes is required any more. Only the
specified messages must be possible in the remapped life lines of the test
architecture. This mode allows to remap an existing sequence diagram
also to test architectures that contain completely disjoint classes but
which have at least interfaces that are compatible. The default value for
this property is “strict”.

= If no suitable test architecture is found, the list contains only the element.
<<new>>. When selecting <<new>>, a new dialog will open that lists all classes
of all life lines of the selected sequence diagram. In this dialog, one has to choose
one of the listed classes as the SUT class for the new test architecture. After
pressing ok, a new test architecture will be created for the selected SUT class.

= Asaresult, a new sequence diagram test case will be created that contains the
same messages as the original sequence diagram, but the life lines of the test
architecture.

Sequence Diagram: Animated Scenario s... g@g
CashRegister ProductDatebase Terminal_| " TestScenario: Animated Scenario selecting produ... [= B[]

A | TCon...CashRegister TC.-ProductDatabase| ..TC_at bw.

Animated Scenario selecting products)

CashRegister ProguctDatabase Terminal

tm(100) at ROC
0o i

— l =
[Statsession) I StartSassion)
| Show(aMsg = Ready) show(aMsg = Ready)

>
me100) atROC o

t]

tm(100) a1 ROOT scenanafddin

-
- evBarcode(aCode = 12345)
evBatcode(aCode = 12345) | E ——

ST [entiyProductiacode =/12345)
fdentifyProduct(aCode = 12345)
(] SetProductisCods = 13345)
getProduct(aCode = 12345) addProduct{aProduct = Praduct(1])

| addProduct(aProduct= Product(1) .
=3 Show(aksg = Adding Lyghees)

—~tmi100) 3t ROOT. scenanoAddin
< >

[$howamsg = Adding Lychees)

2. Inorder to create a test cases based on an operation or an event reception, do the
following:

= Inthe browser, select one of the operations or event receptions of a class (or
file/object) and select “Create TestCase...” from the context menu.

= Inthe test case wizard dialog, all test architectures (i.e., all test contexts) that
contains a SUT instance of the class (or file/object) of the selected operation/event
reception are listed. Additionally, the element <<new>> is listed. Furthermore, a
dropdown box can be used to select the kind of test case one wants to create.
Depending of the selection of the test architecture and the test case kind, a new
test case is created and added to the selected test architecture. When <<new>> is
selected, a new test architecture for the class (or file/object) of the selected
operation is created.

65

Create Test Case

b ap instance lines to kest architecture

Fleaze zelect test architecture for best casze:
L4 NEWE

TCon_CazhA egister

Fleaze zelect test caze kind:

S0 TestCaze W

S0 TestCaze

Code TestCaze

Flovechart T etEase
Statechart TestCase Cancel

The created test case already contains a call to the selected operation with
default arguments. Additionally, a dummy assertion is created that can be
refined in order to check out values of the called operation.

3. Inorder to create a test cases based on a requirement, do the following:

= Inthe browser, select a requirement and select “Create TestCase...” from the
context menu.

= Inthe test case wizard dialog, all test architectures (i.e., all test contexts) of the
model are listed. Additionally, the element <<new>> is listed. Furthermore, a
dropdown box can be used to select the kind of test case one wants to create.
Depending of the selection of the test architecture and the test case kind, a new
test case is created and added to the selected test architecture. When <<new>> is
selected, a new test architecture (a subsequent dialogs asks for the class for which
a new test architecture should be created) is created. Furthermore, the original
requirement for which the new test case has been created is linked as a test
objective to the test case.

66

Test Execution

During test execution, TestConductor drives events, operation calls, and dataflows sent
from the test components, test context or environment to SUT objects, and monitors all
messages between objects, actors and environment as specified in the test cases. This
means that TestConductor automatically checks and reports whether the order of messages
sent and received corresponds to the real order in the running application. In addition,
TestConductor monitors the arguments of messages. Since TestConductor checks the
application behavior (against requirements) using animation mechanisms, you must
generate code for the test configuration with animation instrumentation switched on (at
least for test components). See the Rhapsody User Guide for detailed information on
animation settings.

Overview

TestConductor supports several kinds of execution modes

Execution of code test cases

Execution of flow chart test cases
Execution of statechart test cases
Execution of sequence diagram test cases
Execution of a test context

Execution of a test package

Batch mode execution

* & & O o o o

The test execution is visualized with an execution dialog. Depending on the type of test
cases the view and interaction possibilities of the execution dialog slightly differ.

Test Configuration

Prerequisite for each execution of an application is a defined Rhapsody code generation
configuration. This configuration must be compileable and linkable.

Test Configuration for assertion based testing

In assertion based testing mode, a configuration that shall be used for test execution must
have the stereotype <<TestingConfiguration>>. Such a configuration is automatically
generated when using test architecture creation of TestConductor.

67

Test Configuration for animation based testing

This has to be fulfilled also for test execution. By using the automatic test architecture
generation feature of TestConductor a new component and a related configuration is
automatically added to the model for each test context. For example a component
TCon_CashRegister Component and a configuration “DefaultConfig” was generated
automatically for the test context TCon CashRegister.

=-C3 TestPackages
= £y TPka_CashRegister
=L Components
: Eﬂ TCon_CashRegister_Component
=1-{_] Configurations
-, DefaultConfig
=[] Hyperlinks
~[F Edit Main File
3 Edit Makefile

Also the settings for the code generation are done.

Configuration : DefaultConfig in TCon_CashRegister_ Component] 2%

General | Description Initialization |Settings! Checks | Relations | Tags | Properties |

— Initial instances
" Explicit ¢ Derived
- RhapsodyFramework ;'

- TestConductorPkg
= TPkg_CashRegister

[] TC_for_itsProduct
- W] TCon_CashRegister

I TC_at_hw
‘o [[] TC_for_itsCountedProduct J
|

[Generate Code For &ctors

Initialization code

=

o

Locatel OK |Apply ||

68

Note: For test execution the instrumentation mode must be set to animation*, because
TestConductor needs the animation information to observe the behavior of the test
context.

The animation mode is necessary for all elements around the SUT in the test context. In
order to perform (black box) production code testing the animation of the SUT can be
switched off. Thus, the test execution can be done in

+ White box mode
¢ Black box mode

White box mode means that the test context and also the SUT classes are generated with
animation code, while in black box mode the SUT classes are generated without any
animation code information (production code).

White Box Testing (only animation based testing)

White box testing means that the internal behavior of the SUT can be observed. For
example the message startSession () can be observed in white box mode, because the
SUT was generated with animation information.

SDSimpIeStan «TestScenario»
«SUT»
TCon_CashRegister.its_CashRegister: TCon_CashRegister.itsTC_at_hw:
CashRegister TC_at_hw

[I

| svstano

I T [

//ﬂ/

EtartSession() :

I [

lg— [

| show(aMsg = OK) |

e [

| T
T

Build Test Context (White Box)

TestConductor supports the code generation for white box testing via enabling the
animation of the SUT class. To enable white box testing select the property
CPPCG::Class: :Animate Of the SUT class CashRegister.

Except for OfflineTesting, which is aimed at asynchronous testing of non-animated applications.

69

General Descriplion] Attributes Uperations] Ports] Relations] Taags Properties l
View &ll ~
+|ce

+ | ATL

+ EVCDMV
+ CORBA
| CPP_CG

| Class

=l \
" AdditionalBaseClasses ‘
I AdditionalNumberOfInstances \
Moo [N
‘. BaseNumberOfInstances \
\ DeclarationModifier ‘\
| |

Defaultvalue

____NeccrintinnTemnlate

Class : CashRegister in CashRegisterPkg =X

CPP_CG:Class:Animate

The Animate property specifies whether animation code is generated for an element. You can
specify your own animation function using the property CG::Attribute::AnimS erialize0peration.
The semantics of the Animate property is always in favor of the owner settings:

* If a package Animate property is set to Cleared, all the classes owned by the package are not
animated, regardless of the class Animate settings.

relations, and so on) are not animated.

* |f an operation Animate property is set to Cleared, all the arguments are not animated.
* If the AnimateArguments property is set to Cleared, all the arguments are not animated,
regardless of the specific argument Animate property settings.

Default = Checked

Locatel OK Apply | |

2=

* If a class Animate property is set to Cleared, all the elements in the class [attributes, operations, —

| |

70

= £33 TestContexts
-9 TCon_CashRegister
B Attributes
L Links
o SUTs
&4 Test Context Diagrams
*. TestCases
R P8 TestCase Recorded()
+- %y TestCase_simple_star Features
+ ‘ TestComponentInstances Features in New Window
+- %y, TestConfigurations

[F [

- Elf Testscenarios Add New ’
+-F sDTestScenario_0 Sl
+ -E!D SDTestScenario_1 Caarch inside
References...
Change to »
Edit Test Case

Delete from Model

Edit TestCase SDInstances
Update TestCase

Build TestCase
Execute TestCase k

After switching the property you have to build the test case in order to get animated code.
The result of this process is an executable with animation code for the SUT object.
TestConductor will automatically recognize that the SUT shall be tested in white box
mode.

Production Code (Black Box) Testing

Production code or black box testing means that the internal behavior of the SUT can not
be observed by TestConductor. The objective is to test the interface behavior of a SUT.

Note: You can use the same test cases defined for white box testing. In case of black box
testing TestConductor ignores all messages which communicate between SUT
objects. Only the input and output messages are observed.

Black Box Testing (Assertion based testing mode)

If TestConductor is working in assertion based testing mode, black box testing can be
achieved by setting the instrumentation of the testing configuration to “None”.

Build Test Context (Black Box for animation based testing mode)

Rhapsody supports the code generation for black box testing via disabling the animation
of the SUT class. To enable black box testing deselect the property
CPPCG::Class: :Animate Of the SUT class CashRegister.

71

General Descriplion] Attributes Uperations] Ports] Relations] Taags Properties l
View &ll ~
* G

+ | ATL

i+ EVCDMV
+ CORBA
B CPp €6

| Class

=l \
" AdditionalBaseClasses ‘
I AdditionalNumberOfInstances \
Moo [N
‘. BaseNumberOfInstances \
\ DeclarationModifier ‘\
| |

Defaultvalue

____NeccrintinnTemnlate

Class : CashRegister in CashRegisterPkg =X

CPP_CG:Class:Animate

The Animate property specifies whether animation code is generated for an element. You can
specify your own animation function using the property CG::Attribute::AnimS erialize0peration.
The semantics of the Animate property is always in favor of the owner settings:

* If a package Animate property is set to Cleared, all the classes owned by the package are not
animated, regardless of the class Animate settings.

relations, and so on) are not animated.

* |f an operation Animate property is set to Cleared, all the arguments are not animated.
* If the AnimateArguments property is set to Cleared, all the arguments are not animated,
regardless of the specific argument Animate property settings.

Default = Checked

Locatel OK Apply \

* If a class Animate property is set to Cleared, all the elements in the class [attributes, operations, —

| |

2=

72

= £33 TestContexts
-9 TCon_CashRegister
B Attributes
L Links
o SUTs
&4 Test Context Diagrams
*. TestCases
R P8 TestCase Recorded()
+- %y TestCase_simple_star Features
+ ‘ TestComponentInstances Features in New Window
+- %y, TestConfigurations

[F [

- Elf Testscenarios Add New ’
+-F sDTestScenario_0 Sl
+ -E!D SDTestScenario_1 Caarch inside
References...
Change to »
Edit Test Case

Delete from Model

Edit TestCase SDInstances
Update TestCase

Build TestCase
Execute TestCase k

After switching the property you have to build the test case in order to get non animated
code for the SUT. The result of this process is an executable without animated SUT
objects. TestConductor will automatically recognize that the SUT shall be tested in black
box mode.

Test Case Execution

Code based Execution Dialog

Flow chart , code, and statechart test cases are merely code based test cases, because
TestConductor uses the code generation capabilities of Rhapsody’s code generator. The
execution dialog enables you to activate the actual test execution and displays the test
results.

If you have modified your SUT or your test context, you must rebuild the code of the test
context before you start actual test execution.

Execute any test case by using the context menu entry Execute TestCase. The
TestConductor execution dialog will open, and the test case execution will be started.

Test Execution Window

1. TestConductor displays the assertions defined in a code, flow chart, or statechart test
case at run-time of the test case. During test execution new assertions are listed as

73

soon as they are reached and checked by TestConductor. Each line in the dialog
displays information about one particular assertion including the final results, as
shown in the following figure.

2=l
DO <3 1
MNarme Status File,/Tteration Line/Progress

=¥ tc_code (@ PASSED
) check_1.1 @ PaSSED TCon_CashReqgister.cpp 129
) check_1.2 @ PaSSED TCon_CashRegister.cpp 132

After the test case execution has been terminated you can analyze the results of executed
assertions.

Test Information

TestConductor displays information to analyze the test results. The information columns
are as follows:

¢ Name—Displays the name of the assertion checked by TestConductor during test
execution.

¢ File/lteration—Shows information about the source file name in which the
TestConductor assertion is specified. If a SD test case is executed, it shows the
iteration number of the SDInstance.

¢ Line/Progress—Shows information about the code line within the file in which
the assertion is specified. If a SD test case is executed, it shows the progress of the
SD instance.

¢ Result—Shows the result of the assertion. The possible values are PASSED and
FAILED.

Controlling test case execution

The test case execution dialog provides several functions that can be used to control the
test case execution. The functions are available by pressing one of the icons in the top
right corner of the execution dialog.

Sequence Diagram based Execution Dialog

The execution dialog enables you to activate the actual test execution and displays the test
results. You can use test results in order to generate sequence diagrams for further
regression testing or in order to prepare documentation.

If you have modified your SUT or your test context, you must rebuild the code of the test
context before you start test execution.

Context menu entry Execute TestCase of a selected test case opens the execution dialog.
For a sequence diagram that is exclusively referenced by only one test case, the execution
dialog can alternatively be opened using the context menu entry Execute TestCase of

74

TestScenario of the selected sequence diagram. After selecting Execute TestCase, the
execution dialog opens and the test case execution starts.

==
bl & #_\;; h
MNarne Status File/Iteration | Line/Progress
- "} tc_sequence_diagram EXECUTING
By sD_tc_0 ACTIVE 1 0% (0/4)

Test Execution Window

During test case execution, the test execution information is displayed in the test execution
dialog.

1. TestConductor displays the first iterations of sequence diagram instances without
specified ordered predecessors as the initial run-time instances in the execution dialog.
During test execution new run-time instances are listed as soon as their ordered
predecessors or previous iterations have been fully traversed. Each line in the dialog
displays information about one sequence diagram run-time instance, including
intermediate and final results, as shown in the following figure.

2=
DROE 3
MNarme Status File/Tteration | Line/Progress
- ¥, tr_sequence_diagram FAILED
By sD_tc_o FAILED 1 75% (3/4)

Since the test is still running you cannot modify it. However, you can verify the test
configuration, the activation conditions of the sequence diagram instances, and so on.

Test Information

TestConductor displays information to analyze the test results. The information columns
are as follows:

¢ Name—Shows the list of all run-time instances in the order of their appearance in
the test. You can activate sequence diagram instances sequentially (one after
another) or in parallel (independently).

¢ Status—Shows the current states of run-time instances during test execution. The
possible values are “NOT ACTIVE”, “ACTIVE”, “PASSED”, and “FAILED”. In the
example, the entire test executes automatically, until it eventually shows the final
result “(Status - FAILED)”, because TestConductor found an error.

75

.

File/lteration—Shows the absolute number of the currently executed run-time
instance of the sequence diagram instance under consideration. At each point in
time, you can have at most one active run-time instance of an sequence diagram
instance. However, over time you can have infinitely many invocations. In the
example of the “tc_SimpleStart” test, only one run-time instance appears in this
field, because you selected single iteration mode. An arbitrary number of run-time
instances can be created during model execution if the execution mode of an
sequence diagram instance is set to multiple iteration with a concrete number.

Line/Progress—Shows the percentage of message actions that passed successfully
through the tested sequence diagram instance during test execution. A message
action is one of the following:

= Event sending

= Internal event consumption
= Qperation call

= Condition mark validation

For example, every event arrow in an sequence diagram specifies two ordered message
actions. TestConductor displays the progress as “percentage X/Y”. The X stands for the
number of actions that passed; Y stands for all the actions specified in the sequence
diagram. For example, this test failed at 75%, and 3 out of 4 actions passed.

Displaying Test Results

Graphical Test Sequence Diagrams

You can display the test results graphically in order to analyze the states of a run-time
instance at different points in time.

For example, to display a failure in the “tc_SimpleStart”, do the following:

.

To see the graphical representation of the results, select a run-time instance in the
list and select Show as SD from the context menu. A recorded sequence diagram is
displayed, showing the actual order of the messages passed through the model
simulation.

«SUT»
TCon_CashRegiste TCon_CashRegiste
r.itsCashRegister:C r.itsTC_at_hw_of_
ashRegister CashRegister TC_a
t_hw_of_CashRegi

Ié/—-e’vSta;t(L
|

| show(aMsg = OK): Check of in value of argument aMsg failed
|
|

76

The resulting sequence diagram can be used for failure analysis or can be saved for further
documentation.

In the sequence diagram created for a run-time instance, the following messages are
displayed:

¢ Messages that have already occurred in the executed application. Observed
messages are shown in green.
Messages that are missed. Expected but not seen messages are shown in blue.

& A message that has wrongly arrived or parameter values that do not match.
Messages that are observed in not expected order (failure) are shown in red.

A red message indicates a failure. In the resulting exported sequence diagram, a red
message is annotated with a short explanation of the failure, which can be one of the
following:

Sending out of order

Event Sending - Parameter values do not match

Event Sending - Parameter values not in range
Consumption out of order

Event Consumption - Parameter values do not match

Event Consumption - Parameter values not in range
Operation Call out of order

Operation Call - In Parameter values do not match
Operation Call - In Parameter values not in range
Operation Call returned - Return value does not match
Operation Call returned - Out Parameter values do not match
Operation Call returned - Out Parameter values not in range
DataFlow Message - Value does not match

DataFlow Message - Value not in range

DataFlow Message out of order

L I R R I R R R R S SR JEEE SN R R 2

See page 222 for more information about failure analysis.

Automatically adding SDs to the model for failed
SDInstances

Note: In assertion based testing mode, each time you do a “Show as SD”,
TestConductor automatically adds a color coded SD to the model. The color coded SD is
added to the model to the same owner as the original specification SD. By default, the test
case operation is the owner of the specification SD.

Sometimes it is useful that SDs showing failed SDInstances are added automatically to the
model after test case execution, e.g. for documentation purposes if test cases are executed
in batch mode. In order to do this, switch on the property
“TestConductor.TestCase.CreateSDForFailedSDInstance™:

77

=% SD_tc_00

B e ey Test Case : SD_tc_0 in TCon_CashRegister

% SD_tc_10
@ TestComponentinst
“_}; TestConfigurations View &l ~

General] Descriplion] Implementationl Arguments] Relations] Tags

S TestResults

=0

CreateSDForFailedSDInstance .]

. = TestConductor
stScenarios 1 |
SDTestScenario_0 5| TestCase |
e | AnimatedSUT Automatic
| ATGTestCase o
\ CalloperationsOnlyywhenCallstackEmpty jIj
] ComputeCoverage ‘
\

Now, after executing a test case that has switched on this property, TestConductor
automatically adds a SD to the model showing the reason of the test case failure.
Additionally, a dependency is added to the TestResult of the executed test case linking the
TestResult to the added SD. This dependency can be used to navigate directly from the
TestResult to the SDs that have been added for the failed SDInstances.

=" Sequence Diagrams > Sl 21 Sequence Diagram: TEST S
&1 TEST SD_tc_0, Instance SD_tc_0, Iteration 1
- onents i
= TestContexts
= £ TCon_CashRegister 2 TEST SD_tc_0, Instance SD_tc_0, lteratior
- @) CoverageResults *
&8 TCon_CashRegister_TgstContextCoverage || 1® M |[TCon _CashR | [TCon_CashR
o Links > egister.itsCas | | egister.itsTC_
+ @ SUTs) hRegister:Ca | | at_hw_of Cas
+ iﬁ Test Context Diagrams R l evatan()
=% TestCases
+ %, AD_tr_0() o |
+ %, Code_tc_00 n shoMaMsg=Rﬁa!y): Operation Cs
+ % FC_tc_00 show(aMsg=Stop)
5 %, SD_tr_0() =] l—"E
- By SDInstances & | |
By sp_tc 0
= 9f TestResults =} | |
- ST 0 O0.h
= s Dependencies | b | l
= Ny TEST SD_tc_0_ Instarii)) - | |

Abort Test Execution
In order to abort a running test either click the stop icon in the Rhapsody tool bar or click
the abort icon in the test execution window.

Execution Timeout

78

Execution timeout for animation based testing

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for every test case separately via the property

TestConductor: :TestCase: :ExecutionIdleTimeout

In case a timeout is defined and the application does not show any activity for <value of
timeout> seconds the execution of this test case is interrupted. In this case, this test case
will be marked as “timeout” in the result report.

Execution timeout for assertion based testing

In assertion based testing mode, in order to define a timeout for test cases, the scheduler
that actually starts and stops the test case execution must be changed. By default, a
standard scheduler that is autogenerated for a test architecture has the following structure:

&

A
L
=]

initial

| tr(startup Timeout)

startPreTestCase((%}:

| startTestCase_stal @

[else]fupdateTestCase‘u‘arsO}

l evTCFinished

| startPostTestCase (%_)

[testCaseExecutionFinished()]
finished_state

festExecutionExit();

79

Now, in order to have define a test case timeout that works for all executed test cases, add
the following transition to the scheduler with the timeout value you want to have for your
test cases. In the depicted sampel, we choose a timeout value of 3 seconds:

| startTestCase_st: (%;u

tm(3000) || evTCFinished

Test Execution Report

After the execution of a test case has finished and the execution dialog has closed, an
execution report is written into a HTML file. This file is added to the test case as a
controlled file. If a report file already exists it is overwritten. Only the report of the last
test case execution is stored in the model.
=1-%, te_SimpleStart()
=-E sDInstances
- By D te 0
(- TestResults
BEA%g Con_CashReqister
=% Tags
5 6 Verdict

__tc_SimpleStart_0.html

TestConductor also stores a tag Verdict below the linked report file, which stores the result
of the test case execution.

80

Tag : Yerdict in TCon_CashRegister__tc_SimpleStart 0.html

General l Description |

Name: [Verdict L'
Applicable to: Lj

Type: String ;I E.J
Value: IPassed __|

Locatel OK |App|y ”

Possible values are: "Passed", "Failed", "Aborted", "Timeout" and "Undefined" and
“Error”.

A double click on the test result “TCon CashRegister tc SimpleStart 0.html”

opens the linked HTML test report.

81

Test Case Result

Test Case: tc_SimpleStart

16:25:24, Tuesday, March 06, 2007

Environment Info

Test executed on machine: MNBOSC3S

Test executed by user: reanders

Wiindows 2000 / Windows xP
aries, build 805305

2.0, build 552

Used OS version:
Used Rhapsody version:

Uszed TestConductor version:

Tested Project

Project: CashReqister
Active Component: TCon_CashReqgister_0
Active Configuration: DefaultConfig

SDs used in test
TPkg_CashRegister_0::SimpleStart

Summary Info

Total nurmber of S0s used: 1

Total number of S0 instances in test: 1

Total number of executed S0 instances: 1

Total nurmber of PASSED 5D instances: 0 { 0%
Total nurmber of FAILED SD instances: 1 { 100%)
Total number of ACTIVE SD instances: 0 0%)
Total nurmber of NOT ACTIVE 5D instances: 0 {0%)

Detailed Results

SD instance "SD_tc_0"

Iterations: SD_tc_0
Status: failed
Progress: 73% (34

82

Debugging test cases

When a test case fails one can use TestConductor’s debugging capabilities in order to find
out the reason for the fail. In order to turn on test case debugging, one has to turn on
“Debugging mode” in the test case execution window:

Matme Status File/ter... | Line/Prog
- ¥ 5o i1 B FalED
Ep sD_tc_1 3 FAILED 1 60% (2/15)

After turning on debugging mode, one can restart the test case, e.g. by pressing the “Start”
icon in the execution window. In contrast to normal test execution mode, in debugging
mode the test execution does not progress automatically but can be controlled by using
Rhapsody’s animation toolbar. For instance, one can step through the test case by using
multiple “Go Step” commands in the animation toolbar. In the execution window, one can
see the current progress of the test case, and in parallel one can use Rhapsody’s animation
features (e.g. animated sequence diagrams or animated statecharts) to inspect the model
during debugging of the test case. Besides “Go Step”, also all other animation commands
like “Go Idle” etc. are available, e.g. one can add tracer commands etc.

=l " F|animated Animated ... x
v G iﬁ: b i TCDn_C..:CashRegister' TCDn_...:ProductDatabase| L TC at_hw o
Narme Status F Line/Frogress b
-1%, SD_fc_1 EXECUTING > Animated Animated Scenario selecting pre‘ﬂﬁﬁﬁe”amﬂ
Bf SD_tr_1 aCTIVE 1 20% (3/15) [_ —
TCon_CashRegi TCon_CashRegisteri TCon_CashR
ster.itsCashRegi tsCashReqgister.itsPr egister itsTC_
' ster:CashReqist oductDatabase: Prod at_hw_of Cas
- I I evStart()

startSession()

IR N

Using breaks and tracer commands during debugging (only animation based
testing mode)
In debugging mode, in addition to stepping through the test case execution using
Rhapsody’s animation toolbar, one can also define breaks and tracer commands in the test
cases. When a break command is reached, the test case execution is breaked at this
location. When a tracer command is reached, it is simply executed. Both breaks and tracer
commands can be used in all kinds of test cases.

1. Defining breaks and tracer commands in code/flowchart/statechart test cases:

To define a break in a code, flowchart or statechart test case, one has to write the
macro “RTC_BREAK” (C/C++) resp. “TestConductor. BREAK()”. When the test
case execution reaches the break, it is executed and the test case execution is
stopped. One can proceed the test case execution by using Rhapsody’s animation

83

toolbar (e.g. by pressing “Go Step” or “Go Idle” etc.). To execute a specific tracer
command during test case execution, one has to use the macro

“RTC_TRACER _COMMAND(cmd)” (C/C++) resp. the function
“TestConductor. TRACER COMMAND(cmd)”. For details about the supported
syntax of the “cmd” argument please look into Rhapsody’s User Guide. When the
test case execution reaches the specified tracer command, it is simply executed as
any other tracer command that was entered directly in Rhapsody’s animation
toolbar.

2. Defining breaks and tracer commands in sequence diagram test cases:

To define a break in a sequence diagram test case, one has to add a condition on
one of the life lines in the sequence diagram. In the condition, one has to write
“RTC_BREAK”. When executing the test case in debugging mode, the test case
execution stops when the break is reached. In Rhapsody’s animation output tab the
information “Reached TestCase breakpoint™ is printed.

Animated Scenario selecting products }Tesmce”a””

TCaon_CashRenqi TCan_CashRegister.i TCon_CashR
ster.itzCashReqi tsCashRegister.itsPr egisteritsTC
ster:CashReqist oductDatabase:Prod at_hw_of Cas

|
| |
statSession |

| showi(ah=sg = Ready)

t]

| -
| —

: < RTC_BREAK >
| | |
| evBFrcode(aCnde = 12345)

R DR R 4|"\'-|.u-\ |

To define tracer commands in a sequence diagram test case, one has to add a
condition on one of the life lines in the sequence diagram. In the condition, one
has to write “RTC_TRACER COMMAND”. When executing the test case in
debugging mode, the test case execution executes the specified tracer command
when the execution reaches the position of the tracer command.

84

Animated Scenario selecting products slTestSeenarien

TCon_CashRegi TCon_CashRegister. TCon_CashR

ster.itsCashRey itsCashRegister.itsP egister.itsTC

ister: CashRegis roductDatabase:Pro at_trw_of Ca
e\rStart_U_i

I%r‘[SessiunO

show(alzg = Ready)

.._|
o
|

RTC_TRACER_CMD(trace #all all}

evBarcode(aCode = 12348)
| |

Test Context Execution

Starting Test Execution

One kind of batch execution is the execution of a complete test context. It will then
execute all test cases belonging to a test context.

¢ Right-click on the test context TCon CashRegister and select Update
TestContext. This updates all necessary driver and stub operations derived from
the defined sequence diagram test cases within the test context.

¢ Right-click on the test context TCon CashRegister and select Build
TestContext. This re-generates the necessary code for all elements of the test
architecture and starts the compile and link process for the test architecture.

¢ Right-click on the test context TCon CashRegister and select Execute
TestContext. This starts the batch execution for all defined test cases within the
test context.

=L} TestPackages
= S‘ TPkg_CashReqgiste:
#1-(_] Components Cut
+ & TestComponen Copy
= {9 TestContexts
= 8) TCon_Cast Delete from Model

& Attribu
%L Links Create SD TestCase

@b SUTs Create Flowchart TestCase

-8 Test ¢y Create Code TestCase

®, TestCa Update TestContext

‘ TestCa Build TestContext

¥y TestCo
4 9f TestRe Create TestContext

= Ey TestScenarios Update TestArchitecture

Apply ATG. ..

(4] 4]+ &

[+ [+

[+

85

If the user selects a test context and invokes its execution, all test cases of this test context
are executed in a sequence. To terminate the execution of a test context or a test package,

press the abort icon in the test execution window.

Marme Stafs
- & TCon_CashReqister 3 FAILED
- ¥, FC_tc 0 ©) PASSED
§+) check_2.2, Pro... (@ PASSED
- ¥, tr_code ©) PASSED
$+) check_1.1) PaSSED
&) check_1.2 @ PASSED
- ¥, t_sequence_diagram €3 FAILED
By sD_tc_0 3 FAILED

Stopping Test Execution

File,/Tteration

TCon_CashRegister.cpp

TCon_CashRegister.cpp
TCon_CashReqgister.cpp

1

2l =l
&) 3% ti
Line/Progress

76

03
96

75% (34

To terminate the execution of a test context or a test package, press the abort icon in the

test execution window.

Execution Timeout

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for this batch mode execution of test cases individually per test

case. This can be done via the property

TestConductor: :TestCase: :ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of timeout>
seconds the execution of this test case is interrupted and the next test case is started. In this
case, this test case will be marked as “timeout” in the result report.

Ordering of Test Cases

The order of the test cases inside the test context (similar to the “Edit Operations Order”
in the Rhapsody browser) can be changed. In this way you can influence the execution

order of the test cases.

86

Edit Operations Declaration Order -

IV Use Default Order

Cancel |

|_Signature l Return Typel Visibilty l Scope l
tc_activity_diagram() void public instance
tc_code(] void public instance
tc_flow_chart() void public instance
tc_sequence_diagram() void public instance

[own I

Help |

Per default the test cases are sorted and executed in alphabetical order.

Test Execution Report

After execution of each test case its result HTML report is written. The file is added to the

test case as controlled file.

After execution of all test cases an execution report of the test context is written into a

HTML file. The file is added to the test context as controlled file.

E|E} TestPackages

£l TPkg_CashRegister 0
[TestComponents
L——_Igﬂ TestContexts

Elﬁi TCon_CashReqister

[Attribukes
-1 Links

-l SUTs
[

=%, TestCases

=54 TestResults
e G

77 Test Context Diagrams

B-# be_ackivity_diagram()
B-# te_codel)

---"‘-,- kc_SimpleStart)
I:I---‘ TestComponentInstances
E:I---q:g TeskZonfigurations

on_CashReqisker 6. hkml

R

¢ Adouble-click on the test result “TCon_CashRegister 6.html” opensthe

linked test report.

87

Test Context Result

Test Context: TCon_CashRegister

Thu Mar 08 11:24:47 2007

Environment Info

Test executed on machine: MNBOSC38

Test executed by user: rsanders

Used OS5 version: Windows 2000 / Windows XP

Used Rhapsody version: Aries, build 805506

Lged TestConductor version: 2.0, build 542
e |

Project: CashRegister

active Compaonent: TCon_CashRegister_0

Active Configuration: DefaultConfig

Test Context: TCon_CashRegister

to_activity_diagram PASSED

tc_code PASSED

tc_SimpleStart FAILED

Test Package Execution

Starting Test Execution

One kind of batch execution is the execution of a complete test package. It will then
execute all test cases underneath all test contexts belonging to a test package.

¢ Right-click on the test package TPkg CashRegister and select Update
TestPackage. This updates all necessary driver and stub operations derived from
the defined sequence diagram test cases within the test package.

¢ Right-click on the test package TPkg CashRegister and select Build
TestPackage. This re-generates the necessary code for all elements of the test
architectures and starts the compile and link process of all test architectures.

¢ Right-click on the test package TPkg CashRegister and select Execute
TestPackage. This starts the batch execution of all defined test cases within the
test package.

88

=1 L3 TestPackages
SRR 1Pko_CashRegiste
#1-_] Components Configuration Managemeant »
o i TestComponen Format..,
=9 TestContexts Associate Image

= 3’ TCon_Cast _
w1 Atriby Mavigate to DOORS

*|

=g SUTs Copy
+- b Test Ci
%, TestCa

'+ ‘ TestCo Delete From Madel

&)Yy TestCo Update TestContext

+-5f TestRe (Clean TestPackage
= Blg Testscenarios gyiq TestPackage

Execute TestPackaos
Create TestPackage

If you select a test package and invoke its execution, each defined test context of this test
package is executed one after the other. The procedure is almost like the execution of a
test context, except the following differences:

+ If one test context cannot be executed, this test context is skipped, the reason for
the problem is written to the result report, and the next test context is executed.

Stopping Execution

To terminate the execution of a test context or a test package, press the abort icon in the
test execution window.

Execution Timeout

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for this batch mode execution of test cases individually per test
case. This can be done via the property

TestConductor: :TestCase: :ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of timeout>
seconds the execution of this test case is interrupted and the next test case is started. In this
case, this test case will be marked as “inconclusive” in the result report.

Test Execution Report

After the execution of all test cases, the execution report is written into a HTML file. This
file is added to the test package as a controlled file. A report for each test context that has
been executed was also created during execution.

89

=-E3 TestPackages
EIB TPkg_ashRegister_0
[i TestZampanents
-89 TestContexts
-89 TCon_CashRegister
H- [Attributes
-1 Links
gl SUTs

E---xv- TestCases

B be_codef)

[Sf TestResults
-5 TestResults

[#-{_] Test Context Diagrams
- be_activity_diagrami)
% be_Simplestark()

‘ TestComponentInstances
"3 TeskConfigurations

¢ A double click on the test result “Result 0.html” opens the linked test report

Test Package Result

Test Package: TPkg_CashRegister_0

Thu Mar 08 11:31:07 2007

Environment Info

Test executed on machine: MNBOSC3E

Test executed by user: reanders
Uged 05 versgion:
Lsed Rhapsody version:

Used TestConductor version: 2.0, build 548

Windows 2000 /W indows XP
aries, build 805506

Project: CashRegister
Active Component:

Active Configuration: DefaultConfig

Tested Project

TCon_CashRegister_0

Test Package: TPkg_CashRegister_0D

Containing Packages:

Summary: FAILED

Containing Test Contexts:

TCaon_CashReqgister

FAILED

90

Assertion based testing mode

Starting from Rhapsody 7.6, TestConductor supports so-called assertion based testing.
Before Rhapsody 7.6, TestConductor only supports so-called animation based testing. In
animation based testing, the scheduling and arbitration, i.e., the way TestConductor
decides whether a test case is passed or failed, is based on animation messages coming
from Rhapsody’s animation feature. In contrast to this, in assertion based testing, both
scheduling and arbitration of test cases is directly controlled by assertions that are
compiled into the test exectable, i.e., scheduling and arbitration of test cases is
independent from Rhapsody’s animation feature. In general, both animation based testing
and assertion based testing provide the same set of features, however, there are still some
differences because of the underlying testing approach. In this section, we highlight the
characteristics of assertion based testing.

Chosing between testing modes

By default, new projects created with Rhapsody 7.6 are created with testing mode set to
assertion based testing, i.e., the property “TestConductor.Settings. TestingMode” is set to
“AssertionBased”. For test packages that have been created with a Rhapsody version older
than 7.6 this property is set to “AnimationBased”, i.e., for those test packages
TestConductor behaves as in 7.5.3. If you want to switch from one testing mode to another
testing mode manually, please open the TestConductor main dialog by choosing
“TestConductor” from the tools menu. In the upcoming dialog, select the testing mode you
want TestConductor to operate:

Rhapsody TestConductor

Global Settings
CreateT estérchitectureMode

‘}Vsitandarrdr v
MapSDToT estérchitecturelode T Stict v ‘
OverwriteT estContextDiagram e —

| Never v |
TestCaseE xecutionOrder “ T r
sirghlose [ttt WL

Test architecture creation

When creating a test architecture in assertion based testing mode, the created test
architecture is similar to the architecture created in animation based testing mode.
However, there are some differences:

91

1. The created test package contains two sub test packages, one architecture sub
package that actually contains the test context and the test components that are
connected to the SUT, and a control test package that contains an auto generated
scheduler test component and the auto generated arbiter test components that
control the test execution in assertion based testing mode.

=-C3 TestPackages
=% TPkg_CashRegister
#- [Components
f Events
=2 Objects
[§ itsTCan_CashReqgister
[g itsTCon_CashReqgister_Scheduler
= E3 TestPackages
=% TCon_CashRegister_architecture
#- (2« Dependencies
-1, TestComponents
=-f9 TestContexts
=-£ TCon_CashRegister
(2 Attributes
#- (4 Dependencies
#- 5 Links
&= Operations
(3 Statechart
&
&

o SUTs
#4 Test Context Diagrams
=%, TestCases
@-%4 SD_tc_00
& ‘ TestComponentInstances
%y, TestCanfigurations
=M% TCon_CashRegister_TestControl
= g, TestComponents
& :% «hrhiter» CSC_SD_tc_0
& «Scheduler» TCon_CashRegister_Scheduler

2. Inside the top level test package, two static objects are defined. One object is an
instance of the created test context, and one object is an instance of the created
scheduler. Since the top level package is part of the scope of the testing
configuration that is used to generate and build code for the test executable,
always a test context instance and a scheduler instance is defined in the test
executable.

3. The configuration that is created inside the top level test package is used in order
to generate and build the code of the test executable. It is stereotyped with
<<TestingConfiguration>>. A configuration that contains this stereotype provides
several tags that can be used to define several testing options.

Test scheduling with <<Scheduler>> test components

As described in the previous section, when creating a test architecture, a scheduler test
component is generated that is used to control the starting and stopping of test cases. The
scheduler is part of the test executable. By, default, the behavior of the scheduler is
defined by the following statechart:

92

initial

‘ tr(startup Timeout)
| “'
2
startPreTestCase(i)

|

U

| startTestCase_stal (%)

[else]jupdaleTeleaseVars(j;

evTCFinished

startPostTestCase @

<———

[testCaseExecutionFinished()]
finished_state

festExecutionExit();

s

i,

By default, the scheduler parses the command line when the test executable is started.
Based on the specified test cases that shall be executed, the scheduler starts the selected
test case(s). This default behavior can be adjusted according to your needs. For instance, if
you want to e.g. add an automatic timeout mechanism for all test cases you can adjust the
behavior of the scheduler as it is described in section 0.

Test arbitration with <<Arbiter>>test components

If you define the behavior of a test case by using a sequence diagram, in assertion based
testing TestConductor automatically adds a so-called arbiter test component to the control
sub package of your test architecture. An arbiter is a test component that contains the
stereotype <<Arbiter>>. Besides the arbiter class, TestConductor also adds an instance of
the arbiter class to the test context that contains the test case. During runtime, this instance
is used to control the test case execution of the test case to which the arbiter belongs. The
test case and its arbiter are connected by a dependency that contains the stereotype
<<ControlArbiter>>:

93

= -3 TestPackages
= &% TCon_CashReqgister _Architecture
(=« Dependencies
+ 1@ TestComponents
= 59 TestContexts
= #9 TCon_CashRegister
b (= Attributes
(=« Dependencies
&~ Links
(= Operations
(3 Statechart
b SUTs
&3 Test Context Diagrams
% =

+

- 2 > 2 I i - < A+

5 % SD_tc_00
(s Dependencies
. «Confrolarbiter» CSC_SD_tc

u

= &% TCon_CashRegister P¥stControl

=) ormponents
+ «Arbiter» CSC_SD_tc_0
“ Reqgister_Scheduler

(LB . =

Creating test executables with testing configurations

In order to execute test cases in assertion based testing mode, always a test executable is
needed that actually contains the code for the test architecture, the scheduler and all
arbiters. In order to generate the code, a Rhapsody code generation configuration is
created the contains the stereotype <<TestingConfiguration>>. In contrast to animation
based testing mode, in assertion based testing mode, the test executable always contains
all the code that is necessary in order to execute test cases of the test context that belongs
to the testing configuration. In particular, in assertion based testing it is not necessary any
more to have animation turned on for the testing configuration. Both animated and non-
animated configurations can be executed the same way. The stereotype
<<TestingConfiguration>> contains several tags that can be used in order to control how
the test executable is created, and which test execution options should be applied when
executing test cases using that configuration:

94

Configuration : DefaultConfig in TPkg_CashRegister_Comp

General

Degonption | Intiahzation | Settings | Checks

-I| TestArchitecture

Relations | T2gs | Properies

=1 TestingConfiguration
CodeCaverageCptionsFileMame
ComputeCodeCoverage (|
ComputeModelCaver age O
Coveragekind SUT_flat
EnabileOverlnading O
PopulateCompileCommandForCodeCover age
PopulatelnvokeExecutableProperty
RTC_Max_ASSERT 200
Resultverification
rtc_adapter _content
ric_adapter_filename $COMFIGDIR, fricadapt. bet
rtc_assert_dumptafile
ric_assert_dumptofile_kind at_exit
rtc_assert_handling by_id

rtc_assert_mem_code
ric_exit_kind
ric_exit_user_definition
ric_info_filename

by _svsterm_exit

FCONFIGDIR fricinfo. ket

rtc_log_autogenerate

rto_log_filenarme $COMFIGDIR friclog. et
ric_log_kind to_console
rtc_log_user_definition

ric_report_dir SCOMFIGDIR
rtc_result_filename ECOMFIGDIR fricresult.rst
ric_result_handling automatic

ric_testexecution_script_content
ric_testexecution_script_filename
ric_testexecution_script_populate
ric_testexecution_uptodate_check
ric_testreport_script_content_tcase

ric_testreport_script_content_tcontext

ric_testreport_script_filename
ric_testreport_script_populate

Guick Add

"Ceverutable" -resultfile "tric_resultfile" -Io
ECOMNFIGDIR A _run.bat
"RTCINSTALLDIR frepgen -infofile “ginfofil
"$RTCINSTALLDIR frepgen” -infofile "finfofil
$COMFIGDIR M _rep.bat

Marme: Walue: Add

Locate OK

CodeCoverageOptionsFileName

In this tag a filename of a code coverage options filename can be specified. In
the options file, one can specify compiler specific options for controlling the
source code annotation tools that annotate the code of the SUT in order to
compute code coverage achieved by the executed test cases.

95

ComputeCodeCoverage:

If this option is turned on, when executing test cases TestConductor computes
which parts of the code generated for the SUT are covered to what extend.
TestConductor computes statement coverage, decision coverage,
decision/condition coverage and modified condition/decision coverage
(MC/DC). Which parts of the SUT are considered for code coverage can be
controlled by the tag “CoverageKind”. Note: Code coverage is restricted to C
and C++.

Default; false

ComputeModelCoverage:

If this option is turned on, when executing test cases TestConductor computes
which model elements of the SUT are covered. TestConductor computes
which states, transitions and operations are executed by the test cases. Which
parts of the SUT are considered for code coverage can be controlled by the tag
“CoverageKind”. Note: Model coverage is restricted to animated
configurations.

(Default: false)

CoverageKind :

This tag controls which parts of the test architecture is considered by model
coverage and code coverage. The possible values are

= SUT flat: Only the SUT itself is considered.
» SUT hierarchical: The SUT and its parts are considered.

= TestContext_flat: The SUT and all TestComponents are
considered.

= TestContext_hierarchical: The SUT and its parts, and all
TestComponents with all their parts are considered.

(Default: SUT_flat)

PopulateCompileCommandForCodeCoverage :

If this option is turned on, the property “<lang>.<Env>.CCompileCommand”
is automatically populated by TestConductor in order to call the code
instrumentation tools of TestConductor that are needed when computing code
coverage of test cases. If there are propbelms with the automatic population of
this property, please turn off this option and adjust the property
“<lang>.<Env>.CCompileCommand” manually.

(Default: true)

PopulatelnvokeExecutableProperty:

If this option is turned on, when executing test cases from within Rhapsody,
TestConductor automatically overwrites the property

96

“<lang>.<Env>.InvokeExecutable” with the content of the tag
“rtc_testexecution_script filename”.

(Default: true)

RTC_MAX_ASSERT :

The value of this tag defines how much memory TestConductor reserves for
storing the results of executed assertions. The memory for storing the results
of assertions is always defined statically in order to allow test execution on
targets that don’t support dynamic memory allocation. If during test execution
the assertion memory exceeds its limits, TestConductor stops test execution
and logs an error message.

(Default: 200)

ResultVerification:

Test cases can be defined by either sequence diagrams, flowcharts, statecharts
or plain code. Based on the behavior specification of the test case,
TestConductor populates the model with operations and statecharts that
implement the behavior of the test case as specified e.g. by a sequence
diagram. After model population, TestConductor uses Rhapsody’s code
generator in order to generate code from the populated model. Now, if
Rhapsody’s code generator contains an error, a test case execution could yield
the wrong result since TestConductor has used Rhapsody’s code generator to
generate the testing code. In order to prevent such situations, TestConductor
can perform a so-called result verification. Result Verification is a technique
that checks the consistency of a test execution with the test case behavior
specification in Rhapsody. If result verification is turned on, TestConductor
will detect potential errors in Rhapsody’s code generator, thus making sure
that the test case result TestConductor computes is correct even if code
generation errors occurred in the testing code.

(Default: true)

rtc_adapter_content:

This tag allows for defining adapter code, that can be used to realize the
transfer of results from the target to the host. For example, a target debugger
script can be provided in this tag, that reads out the assertion array and dumps
the content of the array to a file on the host.

(Default: empty)

rtc_adapter_filename:

If tag rtc_adapter_content is not empty, then rtc_adapter_content is written to
the denoted file for use in e.g. a target debugger.

(Default: SCONFIGDIR/rtcadapt.txt)

97

rtc_assert_dumptofile:

If turned on, then the contents of the assertion array will be dumped to the file
denoted by tag rtc_assert_resultfilename.
The tag must be turned off if the target does not support files.

(Default: true)

rtc_assert_dumptofile_kind:

This tag controls when the collected assertions are dumped into the result file.
Possivle values are

1. at_exit: assertions are dumped when the test executable exits.

2. after_testcase: assertions are dumped after one test case
execution.

3. Immediately: assertions are dumped immediately when they
are executed.

(Default: at_exit)

rtc_assert_mem_code:

This tag allows for customization of the rtc_assert_id function. Funtion
‘void rtc assert id(int e, int 1n, int nr)’ isdefinedin
in TestConductor_C.c (for C) and TestConductor.h (for C++), respectively.
If rtc_assert_mem_code is empty, the original implementation as provided
by TestConductor is used.

The function takes 3 arguments:

e inte: the value of the assertion expression
e intIn: the linenumber of the assertion in the source code

e int nr: the number of the implementation file according to a
TestConductor-internal numbering of generated files.

TestConductor expects a result file on the host with the following syntax:
Lines ::= €
| Lines Line
Line ::= ASSERTION = nr,In,e

Where & means the empty word, ‘ASSERTION’ , ‘=", and *,” are token and
nr, In, e are integer values according to the arguments of rtc_assert_id. (in
reversed order).

For simplicity, arbitrary text lines not starting with ‘ASSERTION’ may be
contained in the result file but are ignored.

Using rtc_assert_mem_code , the implementation of rtc_assert_id can be
customized in any way that produces a result file in correct syntax on the host,
e.g. sending the values via serial connection to a serial port server application
on the host that creates the result file.

98

(Default: empty)

rtc_exit_kind:
This tag controls how the test executable shall be exited. Possible values are:
i. by_system_exit: The test executable exits by calling “exit”.

ii.User_defined: The test executable exits by executing the content of
the tag “rtc_exit user_ definition”.

(Default: by_system_exit)
rtc_exit_user_definition:

In this tag you can specify a code sequence that shall be executed when the
test executable exits. This can be useful e.g. for targets that need a special way
for correctly terminating executables.

(Default: empty)
rtc_info_filename:

This tag specifies the name of the so-called info file that is used by
TestConductor in order to generate some test case related information into a
file, e.g. name and id of test cases. The info file is used by the reporting tool
repgen in order to generate execution reports.

(Default: $SCONFIGDIR/rtcinfo.txt)

rtc_log_autogenerate

If this tag is turned on, TestConductor automatically adds log messages to the
test executable. The log messages give information e.g. which test case is
currently executed. Based on the value of the tag “rtc_log kind”, the generated
log messages are either printed to the console or to a log file or both.

(Default: true)
rtc_log_filename

This tag specifies the name of the log file that can be generated by the test
executable. If the file is generated or not during test execution depends on the
value of the tag “rtc_log kind”.

(Default: $SCONFIGDIR/rtclog.txt)
rtc_log_kind

This tag specifies how log messages should be treated inside the test
executable. The possible values are

e to_console: log messages are printed to the console

99

o to_file: log messages are printed to the file specified in the tag
“rtc_log_filename”.

e to_console_and file: log messages are printed to the console and are
logged into the file specified in the tag “rtc_log_filename”

o user_defined: when log messages are executed, the code entered in the tag
“rtc_log_user_definition” is executed.

(Default: to_console)
rtc_log_user_definition:

In this tag you can specify a code sequence that is executed in the test
executable when a log message is specified. The specified code sequence will
be executed if the value of the tag “rtc_log kind” is set to “user_defined”.

(Default: empty)
rtc_report_dir

This tag specifies to which directory TestConductor generates the execution
reports after test case execution.

(Default: $SCONFIGDIR)

rtc_result_filename:

This tag denotes the file from which TestConductor will read the result of test
case execution. If tag rtc_assert_dumptofile is set to true, then the results
will automatically be written into this file.

(Default: $CONFIGDIR/rtcresult.txt)

rtc_result_handling:

This tag specifies how test execution results are treated in the test executable.
Possible values are

e automatic: if set to automatic, TestConductor automatically reads in test
results after test execution.

e Manual: if set to manual, TestConductor does not automatically reads in
test results after test case execution.

rtc_testexecution_script_content

This tag specifies the content of the script file that is used by TestConductor to
call the test executable. The tag contains the options for the test executable
that e.g. are used to select the test case that shall be executed.

(Default: "$executable™ -resultfile "$rtc_resultfile” -logfile "$rtc_logfile" -
tcontext $tcontext -tcase $tcase)

rtc_testexecution_script_filename

This tag specifies the name of the script file that is used in order to call the test
executable.

100

(Default: $CONFIGDIR/tc_run.bat)

rtc_testexecution_script_populate

This tag specifies whether the content of the file specified in the tag
“rtc_testexecution_script_filename” is populated with the content specified in
the tag “rtc_testexecution script_content”.

(Default: true)
rtc_testreport_script_content_tcase

This tag specifies the content of the script file that is used by TestConductor to
generate html execution reports for test cases from the test results computed
by the test executable. The tag contains the options for the repgen tool that are
used in order to generate the html reports for test cases.

(Default: "$RTCINSTALLDIR/repgen” -infofile "Sinfofile" -resultfile
"$resultfile" -outdirectory "$RTCREPDIR" -tcontext $fulltcontext -tcase
$fulltcase)

rtc_testreport_script_content_tcontext

This tag specifies the content of the script file that is used by TestConductor to
generate html execution reports for test contexts from the test results
computed by the test executable. The tag contains the options for the repgen
tool that are used in order to generate the html reports for test contexts..

(Default: "$RTCINSTALLDIR/repgen” -infofile "$infofile" -resultfile
"$resultfile" -outdirectory "$RTCREPDIR" -tcontext $fulltcontext)

rtc_testreport_script_filename

This tag specifies the name of the script file that is used by TestConductor in
order to generate html reports based on the execution results computed by the
test executable.

(Default: SCONFIGDIR/tc_rep.bat)
rtc_testreport_script_populate

If this tag is turned on, the content of the file specified in the tag
“rtc_testreport_script_filename” is populated with the content of the tag
“rtc_testreport_script_content tcase”, if a test case is executed, and with the
content of the tag “rtc_testreport script content tcontext”, if a test context is
executed.

(Default: true)

101

Executing test cases in assertion based testing

After the test executable has been built, either individual test cases or complete test
contexts can be executed. The execution is invoked the same way as for animation
based testing. When invoking a test case from within Rhapsody, TestConductor calls
the script specified in the tag “rtc_testexecution_script filename” that actually calls
the test executable with the parameters that select the test case that shall be executed.
The chosen test case is executed, and after termination the results are dumped into the
result file specified in the tag “rtc_result filename”. However, this result file only
contains the raw results, i.e., the outcome of the assertions that have been executed
during test execution. In order to generate a complete test execution report based on
these raw results, TestConductor uses the tool “repgen”. After test execution, when the
raw results have been computed by the test executable, TestConductor calls the script
that is specified in the tag “rtc_testreport_script filename”. This script actually calls
repgen with the correct parameters in order to generate both an xml report and an html
report that shows the detailed test results. The generated xml report is only used
internally by TestConductor in order to present the execution results in the test
execution GUI when working withni Rhapsody. In summary, in assertion based
testing, test execution and test reporting is a process seperated into 2 steps:

e test cases are executed by calling the test executable with the correct
parameters. The test executable computes raw test results.

e Based on the raw test results, a call of the repgen tool with the correct
parameters generates readable html reports based on these raw results.

Both of these steps can either be done from within Rhapsody (the same way as for
animation based testing) or outside of Rhapsody.

Performing result verification for test case execution

When operating in assertion based testing mode, TestConductor provides the option to
perform a so-called result verification after test case execution. This feature is turned
on if the tag “ResultVerification” of the testing configuration is turned on. When
result verification is turned on, after test case execution TestConductor checks if the
raw results written to the result file by the test executable is consistent with the
graphical behavior description in Rhapsody (either as sequence diagram, statechart, or
flowchart). For a behavior description provided as plain code no result verification is
performed. For graphical behavior description provided as a sequence diagram,
TestConductor populates the model with a statechart that represents the possible
allowed execution sequences specified in the sequence diagram. The result
verification check made by TestConductor is independent from Rhapsody’s code
generator, and can be used in order to detect defects of Rhapsody’s code generator that
may influence the test case execution results. By using result verification,
TestConductor makes sure that the test execution results computed by TestConductor
are ALWAYS correct, even in case of errors in Rhapsody’s code generator that may
affect the correctness of the testing source code that is used to buid the test executable.
The result verification is able to detect e.g. the following potential code generation
problems that may influence the test execution result:

e The code generator wrongly ignores transitions or states in a statechart

e The code generator wrongly takes additional transitions in a statechart

102

The code generator fires statechart transitions in wrong order
The code generator wrongly ignores transitions or actions in a flowchart
The code generator wrongly takes additional transitions in a flowcharts

The code generator fires flowchart transitions in wrong order

When result verification is turned on (by default), the generated html test execution
result always contains the information if result verification was enabled or not, and if
it was successful or not. In case result verification was enabled and it was not
successful, the test case status is automatically set to “Error”.

TestCase Result

TestCase: SD_with_alt

Friday, May 13, 2011 09:00:51

cruromentiformaton |
Test executed on machine: TSY
Test executed by user: User
Used operating system version: Windows 2000 / Windows XP
Used Rhapsody version: 7.6, build 2063218
Used TestConductor version: 2.4.4, build 2481
Tested Project
Project: CModelCodeCoverage
Active Code Generation Component: TPkg_Calc_Comp
Active Code Generation Configuration: CodeCoverageConfig

SequenceDiagram used in TestCase
’ TPkg_Calc::TCon_Calc_architecture:: TCon_Calc.SD_with_alt: :SDTestScenario_0

SDInstance 'SD_tc_0'
Status: PASSED
Progress: 100% (F/7)

Result Verification ‘

’ Result verification successful

Computing Model Coverage during Test Execution

When executing TestCases, i.e., either individual TestCases, a TestContext or a
TestPackage, TestConductor provides the possibility to compute which model parts of the
SUT are executed during the execution of the TestCases. This information is provided by
an HTML report that is created and added to the model after the execution of the test
cases. The report contains information about accumulated coverage of states, transitions,
events and operations (except constructors and destructors) of all SUT classes used in the
TestArchitecture.

103

Computing Model Coverage for single Test Cases

For animation based testing (TestConductor.Settings. TestingMode == AnimationBased),
to compute the model coverage of single test cases, switch on the property
“TestConductor.TestCase.ComputeCoverage”:

3-E3 TestPackages
=] g‘, TPkg_CszshRegister

[#-{Z]) Components

{‘ TestComponents

’ E}--ﬁ) TCon_CashRegist
[#-L Links
- SUTs
[+ kg Test Context
E~-".,~ TestCases
‘ TestCompons

Y, TesConbon

Test Case: SD_tc_0 in TCon_CashRegister

GmaallD&emphmlhtplemeﬂtahonlArgunediselabm
View All ~

T N

[=l| TestConductor
[Fl| TestCase

CreateSDForFailedSDInstance O

For assertion based testing, switch on tag “ComputeModelCoverage” of the testing

configuration:

=-E3 TestPackages
=7y TPkg_CashRegister
=3 Components
=-¢¥ TPkg_CashRegister_Comp
=3 Configurations

=8 «TestingConfiguration» DefaultConfig

(s Dependencies
7 Hyperlinks

Configuration : DefaultConfig in TPkg_CashRegister_Comp

(2 Tags

2 Events | General | Description | Initialization | Settings | Checks | Relalions‘ Tags lProperti(

& (2 Objects \
=-Cd TestPackages
=% TCon_CashRegister_archity
“s Dependencies
(] TestComponents
9 TestContexts
#- (2 TestRequirementiatrix
&[5 TCon_CashRegister_TestC

/= TestArchitecture

.

=] TestingConfiguration

iw

ComputeModelCoverage ‘
CoverageKind | SUT_flat

Now, each time you execute the test case, in addition to the test case execution
report, TestConductor creates a model coverage report and adds it to the model:

104

Coverage Summary

TestPackage: TFkg_CashReqgister \
TestContext: TCon_CashRegister |
TestCase: SO_tc_0 ‘

I Detailed Coverage Summary of CashRegister (6/25) '

dantfyProduct
addProduct
startSession
erdSession
generateTcket
sNoMoreProducts
removeLastProduct
" - covere countProducts
= % SD_tc_00 EventReceptions
= ‘ (;OVGF eResults covers evStart
F-*1TCon_CashRegister
+ By SDInstances EREEE corcod
+ 9 TestResults | rotcovered JERSE
| ot covered [ERCERNS
ot coverec SSRGS
ST - o
Statechart: StatechartOfCashRegister
ROOT.idle State
ROOT active State
i 0 Tra'rsib'un?
2 Transition |
6 Transition
1 Transition
3 Transition |
5 Transition |
7 Transition |
8 Transition |
4 Transition |

Choosing the Coverage Kind for Model Coverage

TestConductor supports four different kinds of coverage measures, which can be chosen
using property TestConductor.TestCase.CoverageKind (if

TestConductor.Settings. TestingMode == AnimationBased) or tag “CoverageKind” of the
testing configuration (if TestConductor.Settings.TestingMode == AssertionBased)

¢ SUT flat (Default): Only coverage of the toplevel class of the SUT is measured,
i.e. states, transitions, and operations of parts of the SUT are not considered.
Coverage of model elements of test components is also not measured.

¢ SUT hierachical : Coverage of the SUT is measured in a hierarchical manner, i.e.
also states, transitions, and operations of parts of the SUT are hierarchically

105

regarded for coverage measure. Coverage of model elements of test components
is again not measured.

¢ TestContext flat : Coverage is measured in terms of all states, transitions, and
operations defined at the first decomposition level of the test context, i.e. all
states, transitions, and operations of the direct parts of the test context are
considered.

¢ TestContext hierarchical : all states, transitions, and operations in the hierarchal
structure of the test context are considered in coverage measure.

51-EF TestPackages

=) [y TPka_CashRegister Genetall Desctiptionl Implementationl Arguments l Relationsl Tags

- Components View Al ~

&3] 3 TestComponents — ,,_..:.

Elfb TestContexts I=I| TestConductor

B- TCon_CashReg

.{‘ SUTs AnimatedSUT Automatic
R e i e S E] S
 a%, o ColcpemsioenilymnCbinci copty ([
‘ TestCompx
[+ q} TestConfig CoverageKind ISUT flat

E—‘s TestScenarios The L
I C‘:ea. t;‘%DFqFa:iedSDInstance | [SUT hiesaechical
= TestConteoz flat
o EMRRTRNRT o LestContact hierarchical

Computing cumulative Model Coverage for TestContexts

To compute the model coverage for TestContexts, for at least one of the TestCases of the
TestContext the property “TestConductor.TestCase.ComputeCoverage” must be switched
on (if TestConductor.Settings. TestingMode == AnimationBased) or the tag
“ComputeModelCoverage” (if TestConductor.Settings. TestingMode == AssertionBased)
must be turned on. However, if the property is switched on for more than one test case of
the TestContext, TestConductor computes the cumulative coverage of all executed test
cases that have switched on this property and stores the result as a coverage report
underneath the TestContext. In order to compute the cumulative coverage of all test cases
of a TestContext this property has to be switched on for all test cases belonging to the
TestContext. A simple way to do it is to set the property directly for the TestPackage that
contains the TestContext:

106

H
-
E
!

B~ L} TestPackages

@™
-
E

o
i
3

%

. g‘ SUTs
#-hg TestCe
E "v TestCa:
: %, sD
- ‘ TestCo
- &~ “) TestCot
. H‘ TeSrmatag CreateSDForFailedSDInstance O

Now, when executing the complete TestContext, a coverage report is generated for each of
the contained test cases, and a cumulative coverage report is generated for the

TestContext:
Detailed Coverage Summary of CashRegister (8/25) '
Operations
dentifyProduct
addProduct
- @ TestContexts startSession
- & TCon_CashRegister endSession
- CoverageResults generataTicket
TCon_CashRegister_TestContext EEEGIEERE isNoMoreProducts
+ 4 Links
@ g SUTs Eeida == e movelastProduct
+ &3 Test Context Diagrams O countProducts
= %, TestCases
S EventReoeptlons
=%, AD_tc_00
+- 8| Activity Diagram evotart
= Q CoverageResults evBarcode

& TCon_CashRegister__ AD_| [y =

| S TestResults
e
& CoverageResults evkey

i
l‘(xo

& TCon_CashRegister__Code = [EiSwemmmy . .
+- o TestResults =
= %, FC_tc_00) Statechart: StatechartOfCashRegister
- @ CoverageResults ROOT.idle State
_ & TCon_CashRegister__FC_t ROOT active State
+ B| Flowchart 0 Transition
+ TestObjectives
+- 5 TestResults 2 Transition
=% SD_tr_0() 6 Transition
-1 @ CoverageResults 1 Transition
_ @ TCon_CashRegister__SD_f
3 Transition
5 Transition
ot covered g Transition
not coverad 8 Transition
; Tarstin,

Computing cumulative Model Coverage for TestPackages

Analogously to computing the cumulative coverage of TestContexts, TestConductor also
provides the possibility to compute the cumulative coverage of TestPackages. To compute

107

the model coverage for TestPackages, for at least one of the TestCases of the TestPackage
the property “TestConductor.TestCase.ComputeCoverage” must be switched on.
However, if the property is switched on for more than one test case of the TestPackage,
TestConductor computes the cumulative coverage of all executed test cases that have
switched on this property and stores the result as a coverage report underneath the
TestPackage. In order to compute the cumulative coverage of all test cases of a
TestPackage this property has to be switched on for all test cases belonging to the
TestPackage. A simple way to do it is to set the property directly for the TestPackage for
which the cumulative coverage shall be computed.

Computing Code Coverage (only assertion based
testing mode)

Besides computing model coverage of test cases, TestConductor can also compute the
achieved code coverage of test cases (for C and C++ only). In order to turn on code
coverage, the tag “ComputeCodeCoverage” of the testing configuration must be turned on:

- Components
#- () Object Model Diagrams
#- (0 Packages
#- (2 Profiles
=-E} TestPackages
=% TPkg_Calc
=2-0 CBmponents -/ TestArchitecture
=-g¥] TPkg_Calc_Comp
=+ Configurations
=8 «TestingConfiguration» CodeCoverageConfig
(>« Dependencies
#-#7 Hyperlinks
@32 Tags

Configuration : CodeCoverageConfig in TPkg_Calc_Comp

General | Description I Initialization Setlings‘ Checks »Relations‘ Tags | Properties

- TestingCanticuseti

ComputeCodeCoverage

Compur e L1
CoverageKind SUT_flat

If this option is turned on, when building test cases TestConductor instruments the test
executable s.t. during test execution code coverage information is computed. After test
case execution, the computed results are added as an html report to the model. The result
report both contains summary information (e.g. percentage of statement coverage,
decision/condition coverage, modified condition/decision coverage (MC/DC)) as well as
detailed information about each source line.

Similar to model coverage, four different kinds of coverage measures are supported and
can be chosen by setting the tag “CoverageKind” of the testing configuration. For details,
see previous section “Choosing the Coverage Kind for Model Coverage”.

Additional options for code coverage can be specified using an xml file. The location of
the file has to be entered in the tag “CodeCoverageOptionsFileName” of the testing
configuration. Supported for this tag is the full path of the options file or a path relative to
the folder with the generated code (location of the Makefile).

The options file can be used to

A Define additional files which shall be instrumented for code coverage (Note:
Supported are only files generated for model elements)

A Specify include paths
A Specify defined macros

A Specify details of the used compiler and compile environment

108

A template of the options file showing the supported options is located in the
TestConductor installation folder: File “TCCodeAnnotationOptions.xml”.

©) Analysis Report - Mozilla Firefox = [B][X]

File Edit View History Bookmarks Tools Help
v c (5] ,;] file:///C: /qa_Libra/newsamples/check/CModelCodeCaverage/TCon .7 ~ @- ! tomize)7
[8] Most Visited P Erste Schritte 5| Aktuelle Nachrichten - ...

|] Analysis Report + ~

Coverage Report

Environment Info Table Of Contents Global Statistics Source Code

Global Statistics —

Quick Links

Coverage Statistics
Coverage Item Statistics
Statement, Decision, Condition
C/DC and MC/DC, Function, Switch-Case
Relational Operator, Down Cast, Division By Zero
Coverage Entity Statistics

Coverage Statistics

Goals Covered

Statement Coverage 45 27 60%
Decision Coverage 10 4 40%
Condition Coverage 1] 0 n.a.
Condition/Decision Coverage 21 10| 47.6%
Modified Condition/Decision Coverage 21 10| 47.6%

109

©) Analysis Report - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help
@ v c & (A ﬂle:/f’jc:f’qa_Libra/newsampIes/check/CModeICodeCoverage/T Con 1.9 ~ E\~ ’-
|21 Most Visited ¥ Erste Schritte 5 Aktuelle Nachrichten - ...

| '] Analysis Report + -

Coverage Report

Environment Info Table Of Contents Global Statistics Source Code

7/ A

11 /*## auto generated */
12 #include " i

13 /### link itsDisplay */
14 ginclude " b

15 /### package Default */

/*## class Calc */
/4 auto generated */
static void cleanUpRelations(Calc* const me);

[S e
S 0@ a o

1 woid Calc_Init(Calc* const me)

7 2lb {
7 22 me->nun_vals = 0;
7 23 ne->nun_vals_max = 100;
7 24 ne->itsDisplay = NULL;
25)
6
i 27 woid Calc_Cleanup(Calc* const me)
| 0] 27 {
[0] 28 cleanUpRelations (me) ;
29" }
30
31 /*## operation addVal (double) */
i 32 int Calc_addVal(Calc* const me, double val)
405 32b {
33 /*#[operation addVal (double) #/
34 int ret;
405 T - 35 if ((me->num_vals) < (me->num_vals_max))
404 35h {
AnA ne wm rraliianlma s vralal o oeend

For an example that shows how to use code coverage for C, please try sample
“CModelCodeCoverage” in the folder
<samples/csamples/TestConductor/CmodelCodeCoverage>.

For an example that shows how to use code coverage for C++, please try sample
“CppModelCodeCoverage” in the folder
<samples/csamples/TestConductor/CppmodelCodeCoverage>.

Restrictions regarding applicability of code coverage computation can be found in the
document <doc/pdf_docs/CodeCoverage_Limitations.pdf>.

Computing Code Coverage, Memory Profiling, and
Performance Profiling with Rational
TestRealTime during Test Execution

When executing TestCases, either individual TestCases or a TestContext, TestConductor
provides the possibility to apply functionality of the tool Rational TestRealTime (TestRT)
during the execution of the TestCases with TestConductor. The result information
computed by TestReal Time is provided by a specific controlled file that is added to the
model after the execution of the test cases. When double-clicking that file, TestRealTime
opens and shows the results computed during TestCase execution, for instance code
coverage, memory profiling, or performance profiling information.

110

The integration of TestConductor with TestRT is realized using a set of stereotypes. These
stereotypes are defined in subpackage RTC::TestArchitecture::TestRT of the
TestingProfile.

=-[Fy TesRT

E] «S» Stereotypes

© [#]-¢5» TestRealTime
L-4S» TestRealTimeFile

: : ~#5% TestRealTimeResult

=< Types
.. & RTRT_CoverageBlockDefinition_Type
- & RTRT_CoverageCondition_Type
- & RTRT_CoverageProc_Type
‘. & RTRT _Target Type

Stereotype TestRealTime can be applied on configurations and provides a set of tags that
can be used to control the kind of instrumentation that shall be performed on that
configuration when using the tool “Rational TestRealTime” together with TestConductor.
See also section Rational TestRealTime.

Stereotype TestRealTimeFile is used to denote TestRealTime data files that are added to
the model by TestConductor. This data files are needed in order to have all TestReal Time
results maintained as part of the model.

Stereotype TestRealTimeResult denotes the result data that is added by TestConductor to
the model after a TestCase execution or a TestContext execution of a configuration that
with stereotype TestRealTime.

The TestArchitecture package contains the types:

RTRT_CoverageBlockDefinition_Type
RTRT_CoverageCondition_Type
RTRT_CoverageProc_Type

¢ RTRT_Target_Type

These four types are used for the integration between TestConductor and TestReal Time.
Users do not have to care about the precise definition of these types.

* & o

Applying Rational TestRealTime during Test Execution

In order to apply TestRealTime on TestCases and TestContexts, you have to do the
following steps:

1. Set the stereotype <<TestRealTime>> to the TestConfiguration of the TestContext on
which TestRealTime should be applied:

111

g] TGP BT EYUlE LS

Configuration : DefaultConfig in TPkg_CashR

+-_1 Profiles
=L} TestPackages
=y TPkg_CashReqister General | Description | Initialization | Settings || Check

=-(C1 Companents _
- TPkg_CashRegister_Compl| | "M==

= Configurations Stereolipe: | TestRealTime

¥, DefaultConfig PSS

DefaultCanfig

1, TestComponents ™ COREA Client in CopProfile

=49 TestContexts [~ CORBA Server in CopProfile
[~ MoFramewark in CppPrafile
| EclipseConfiguration in PredefinedTy,

=89 TCon_CashRegister

+-d8 CoverageResults

+-5 Links

=g SUTs

+-0d Test Context Diagrams

=% TestCases

£ ‘ TestComponentinstances
%y TestConfigurations

2y, DefaultCaonfig

The stereotype <<TestReal Time>> is part of the Rhapsody UML Testing Profile.

Select the TestRT options you want to apply during TestCase execution. In order to do
this, switch to the “Tags” tab of the configuration features dialog. The following tags
can be used to select the TestRT options that should be applied during TestCase
execution:

— b LA L] AT LA e o] TS e L]

Configuration : DefaultConfig in TPkg_CashRegister_Comp

tire Model Wiew

+-57 PredefinedTypesCpp (REF)

+-F RequirementsPkg

+-F Tutorial_Prerequisits
+-1 Profiles
=L TestPackages

=% TPkg_CashRegister

=-E Components
= # TPkg_CashRegister_Comp

General | Dezcrption | Initislization | Settings | Checks | Relations | Tags

-1 TestArchitecture
-l TestRealTime
Instrumentedriles

=-{1 Configurations . InstrumentedFilesAutoset
#-%, «TestRealTime» DefaultConfig eMakeF |
- (igh TestComponents IrvoketakeFileAutoset
= ﬁi TestContexts RTRT_CoverageBlockDefinition IMPLICIT
= ﬁJgon_CashRegistﬂlar RTRT_CoverageCall a
+ CoverageResults o
2L, Links RTRT_CaverageCondition off
+ ;‘ SUTs RTRT_CoverageProc off
= :’1 Test Context Diagrams RTRT_MermaoryPrafiling O
+- TestCazses .
- ‘ TestComponentinstances RTRT_PerformanceProfiling I:I
2%y, TestConfigurations RTRT_Target cvisuald
-y DefaultConfig RTRT Trare O
3t TestResults RTRT_UsellserOptions O

- Sf TestResults
+- g TestsScenarios

RTRET_UserOptions

e InstrumentedFiles:

In this setting the files (separated by commas) which are to be instrumented
by Rational TestRealTime are specified. Per default the setting is filled
automatically by TestConductor (choosing the files belonging to the SUT
objects). However, the user can manually specify the list of files, if the setting
"InstrumentedFilesAutoset” is turned off.

e InstrumentedFilesAutoset:

If this setting is turned on, the setting "InstrumentedFiles" will be filled by
TestConductor automatically (default). If the setting is turned off, it is in the
user's responsibility to manually fill the setting "InstrumentedFiles".

112

InvokeMakeFileAutoset

If this setting is turned off, the property
"<lang>.<compile_env>.InvokeMakefile" is no longer modified by
TestConductor, and no settings specified here are passed to the Rational Test
RealTime instrumentation. The user has to manually specify all settings in the
property "<lang>.<compile_env>.InvokeMakefile". This setting allows the user
to work with targets not yet supported by TestConductor out-of-the-box by
using user-defined makefiles or invoke.makefile-scripts.

RTRT_CoverageBlockDefinition

With these settings the user can influence whether and with which parameters
the 'BLOCK' option is used in the Rational Test RealTime instrumentation. The
'BLOCK' option only instruments simple blocks. Use the 'IMPLICIT' or
'DECISION' (these are equivalent) option to instrument implicit blocks
(unwritten else instructions), as well as simple blocks. Use the 'LOGICAL'
parameter to instrument logical blocks (loops), as well as the simple and
implicit blocks. For detailed information about this TestRT command and the
parameters see the Rational Test RealTime documentation.

RTRT_CoverageCall

With these settings the user can influence whether the 'CALL' command is
used in the Rational Test RealTime instrumentation (to instrument function
calls). For detailed information about this command and the parameters see
the Rational Test RealTime documentation.

RTRT_CoverageCondition

With these settings the user can influence whether and with which parameters
the 'COND' command is used in the Rational Test RealTime instrumentation.
If 'COND' is used without parameters, the TestRT Instrumentor instruments
basic conditions. The parameter values '"MODIFIED' or 'COMPOUND' are
equivalent settings that allow measuring the modified and compound
conditions. The parameter value 'FORCEEVALUATION' instruments forced
conditions. For detailed information about this command and the parameters
see the Rational Test RealTime documentation.

RTRT_CoverageProc

With these settings the user can influence whether and with which parameters
the 'PROC' command is used in the Rational Test RealTime instrumentation. If
‘PROC’ is used without parameters (default setting), then procedure inputs
(functions) are instrumented. When set to 'RET", then procedure inputs,
outputs, and terminal instructions are instrumented. For detailed information
about this command and the parameters see the Rational Test RealTime
documentation.

RTRT_MemoryProfiling

If this setting is turned on, it activates instrumentation for the Memory Profiling
analysis feature of Rational TestRealTime. For detailed information about this
TestRT feature see the Rational Test RealTime documentation.

RTRT_PerformanceProfiling
If this setting is turned on, it activates instrumentation for the Performance

Profiling analysis feature of Rational TestRealTime. For detailed information
about this TestRT feature see the Rational Test RealTime documentation.

113

e RTRT_Target

This setting specifies the Test Realtime target deployment port. Currently
supported out-of-the-box by TestConductor are ‘cvisual6' and ‘cvisual8'.

e RTRT Trace

If this setting is turned on, it activates instrumentation for the Runtime Tracing
analysis feature of Rational TestRealTime. For detailed information about this
TestRT feature see the Rational Test RealTime documentation.

e RTRT_UseUserOptions

If this setting is turned on, the contents of setting "UserOptions" are used as
instrumentation options by TestRT. All other instrumentation settings
(including "InstrumentedFiles") above are ignored

e RTRT_UserOptions
User-defined Options which will be used for the instrumentation by TestRT.

Note: if you do not manually set any of the above listed settings, then TestConductor will
control TestRT with the default settings.

Applying TestRealTime on single Test Cases

After you have set the stereotype <<TestRealTime>> to the configuration that shall be
executed, and after you have selected the TestRT options in the “Tags” tab, you are now
ready to execute a single TestCase. In order to do this, simply select the TestCase and
select “Execute TestCase”. TestConductor detects that you want to execute a

<<TestReal Time>> configuration which requires TestRealTime specific instrumentation.
TestConductor asks if it should update the configuration properties such that the required
TestRealTime instrumentation will be performed. Select “OK” in order to set the
configuration properties correctly, and to rebuild the application with the right
configuration properties:

= I TPkg_CashRegister Edit Test Case
=1 Components
= E TPkg_CashRec Mavigate to DOORS
=1 Configuratiar
+ <<'?EstRE cut
- TestComponents Copy
=43 TestContexts

=P TCon_CashRegi pgjete from Model
+|- g CoverageRes

-5 Links Telelogic Rhapsody Gateway
gl SUTs Edit TestCase SDInstances

+--bg Test Context
o %, Test"ases Lpdate TestZase

-, Code_tc_ Build TestCase

+-® FC_tr_O Execute TestCase
5%,

+ ‘ TestComponentInstances w IF

114

= Iy TPkg_CashRegister
={1 Campanents
=-#4 TPkg_CashRegister_Comp
= Configurations
#-%, «TestRealTime» DefaultConfig
#- (g TestComponents
=49 TestContexts TestConductor
=9 TCon_CashRegister
[) CoverageResults

Test Context Diagrams
© TestCases

Cade 00
FC_tc_0i

oK l [Abbrechen

aaa«".‘_ﬂ,
q*q*q*

! : TestCase must be updated and built before execution, Update, Build and Execute now?

SD_tc_0()

Note: You can perform an explicit update of the configuration properties according to the
TestRealTime settings in the “Tags” tab of the configuration by selecting “Update
TestCase” or “Update TestContext”. When TestConductor has updated the configuration
properties, and after rebuilding the application, the TestCase execution starts. When the

TestCase execution has finished, e.g. after executing and closing the execut

ion dialog of a

sequence diagram TestCase, the computed TestRealTime results are automatically added
to the model. The results are denoted as <<TestReal TimeResult>> elements in the
browser. When double-clicking this element, TestReal Time opens and shows the

computed results:

E-%, TestCases
%%, Code_tc_00)
5% FC_te_00)
=%, SD_te_o{)
=] Contralled Files
éz sTestRealTimeFle» SO_tc_0_0.fdc
«TestRealTimeFies SD_kc_0_0.ko
® ﬁ CoverageResulks

[+ SDInstances
[TestObjectives
= TestRealTimsRasults
) Flle Edt View Project Buld CodeCoverage Tools Window Help =18
DS ERE@ o M =@ \?M L L 3 Xl v|_§|«n’|ﬂgemux=d;|M‘) 4 ’!,,U ohossre[c[elit]cwm u[
R ME <] > 0T RS 6% e [06 & & ota o home]
4| P suPae | o CoeCovarme |
5 - CaFioa o [y setings..
- & CASHREGISTER CPP Giabal Coverage [o ®TCon Casheoie 0
o ikgviewer
100
90
80
70
w60
? 50 I Statement blocks
§ w B Decisiont
30
20
10
0
z a2

In addition to the TestRealTimeResult elements in the browser, TestConductor also adds

several controlled files to the model that are stereotyped with the stereotype

<<TestRealTimeFile>>. These files are necessary in order to maintain all TestRealTime

results in a self-contained way as part of the model.

115

Applying TestRealTime on TestContexts

After you have set the stereotype <<TestRealTime>> to the configuration that shall be
executed, and after you have selected the TestRT options in the “Tags” tab, you are now
ready to execute a TestContext. In order to do this, simply select the TestContext you want
to execute and select “Execute TestContext”. TestConductor detects that you want to
execute a <<TestRealTime>> configuration which requires TestRealTime specific
instrumentation. TestConductor asks if it should update the configuration properties such
that the required TestRealTime instrumentation will be performed. Select “OK” in order to
set the configuration properties correctly, and to rebuild the application with the right
configuration properties:

& G} TestPackages Lreate SU | estiase
=% TPkg_CashRegister Create Flowchart TestCase
=1 Components Create Code TestCase
=-§d TPkg_CashRegit | ndate Testoontext
=1 Configurations .
2, «TestRea Build TestContext
j TestCoamponents Sttt
=59 TestContexts Update Testarchitecture
=9 TCon_CashReqgister
ag CoverageResults
L Links
Wb SUTs v

=9 TestContexts
R~ heu o=t TestConductor

& CoverageResults
L Links
b SUTs A TestContext must be updated and built before execution, Update, Build and Execute now?
&l Test Context Diagra
=% TestCases

*2 Code_tc_00) l oK] l shbrechen

® FC_tc_00)

% SD_tc_00)

Note: You can perform an explicit update of the configuration properties according to the
TestRealTime settings in the “Tags” tab of the configuration by selecting “Update
TestCase” or “Update TestContext”. When TestConductor has updated the configuration
properties, and after rebuilding the application, the TestCase execution starts. After all
TestCases of the selected TestContext have been executed, the TestRealTime results are
automatically added to the model. The results are denoted as <<TestReal TimeResult>>
elements in the browser. When double-clicking this element, TestReal Time opens and
shows the computed results. Since all TestCases of the selected TestContext have been
executed, the TestReal TimeResult contains the accumulated results of all executed
TestCases, for instance if you have 3 TestCases tcl, tc2, tc3, then the TestReal TimeResult
contains the accumulated results of tcl, tc2 and tc3:

116

=15 TestContexts
= 83 TCon_CashRegister
=1 Contralled Files
! (_3 «TestRealTimeFiles TCon_CashRegister _0.Fdc
.:':) «TestRealTimeFiles TCon_CashRegister 0.t
+- .ﬂ CoverageResults
+- "+ Dependencies
L, Links
& Operations
wb 5UTs
&g Test Context Disgrams
% TestCases
% TestComponentinstances
. TestConfigurations
- 8% TestRealTimeResults

F=-E-E-E -

TCon_CashRegster 0, xip
— =T T
=l5]
4 Fle Edit View Project Buld CodeCoverage Tooks Window Help =8
IEEL - Y I =@ \IP" o |k QY| |[F el 6 %[]e 96 w8 Fe[c[[EL[cHu
2o -mE < Jruf[®irws s X m~ Slc0o6¢F Emrrei]
A g statae | 4 Code Cover | —
= (3 Root o Epanm.
o @M‘SHREGISTER CPP Global Coverage m
o iigviewer

50 B Statement blocks
B Decisions

Coverage %

In addition to the TestRealTimeResult element in the browser, TestConductor also adds
several controlled files to the model that are stereotyped with the stereotype
<<TestRealTimeFile>>. These files are necessary in order to maintain all TestRealTime
results in a self-contained way as part of the model.

Integration with CUnit/CppUnit Framework

In the area of testing, CUnit and CppUnit frameworks have become de-facto standards in
recent years. Many developers and companies have already organized their testing
process using these frameworks. In order to ease migration to a model driven development
approach, TestConductor offers a test integration for Rhapsody with the CUnit and
CppUnit frameworks.

¢ CUnit integration has been developed and tested using CUnit-2.1-0.
¢ CppUnit integration has been developed and tested using cppunit-1.12.1.

This integration is realized using stereotypes defined in the TestingProfile. The stereotypes
for CUnit integration are defined in subpackage RTC::TestArchitecture::CUnit, whereas
the sterotypes for CppUnit integration are defined in subpackage
RTC::TestArchitecture::CppUnit.

117

Stereotypes for CUnit integration

Stereotype CUnitContext can be applied to a class and sets some properties for CUnit
testing integration. You can change a test context to CUnitContext — and vice versa - by
right-clicking a test context and secting “Change to > CUnitContext”.

Stereotype CUnitConfig can be applied to a configuration and provides a set of tags for
customization of CUnit testing integration with Rhapsody. CUnitConfig overrides
property CG.Configuration.StartFrameworkInMainThread, s.t. the Rhapsody framework
ist started in a new thread and control returns to the main thread. Right after starting the
framework either a single test case is invoked or all test cases of the test context (only for
CUnitContextExecutionKind == NoRestart).

“Update TestCase”, “Update TestContext”, and “Update TestPackage” with respect to a
CUnitContext (refering to a confioguration stereotyped <<CUnitConfig>>) will
instrument the CUnitContext with a set of operations:

¢ int cunit_init()—CUnit requires an initialization and a cleanup function for each
test suite. These functions are provided by TestConductor as prototypes, which
can be used to add application or test specific code.

int cunit_clean()--the test suite cleanup function.

void cunitmain(char* tc_name)—the main function for CUnit testing. The
function consists of :

o aframework initialization part

e atest suite specific part — i.e. a CUnitContext specific part

e atestoutputter definition part

¢ and a execution and result computation part — refered to as tail
Each of these parts can be customized using a tag of the <<CUnitConfig>>
configuration.

¢ <testcontext-type>* setTestContext(<testcontext-type>* context)—Since test
cases may not have arguments in the CUnit framework,, they can not be invoked
with the ‘me’-pointer by the test context. Hence, a static variable is required, that
allows access to the test context data structure within test cases. Test cases can get
access to this data structure using the test context function ‘theTestContext()’.
Function ‘setTestContext()’ sets a static pointer variable, which then can be
returned by ‘theTestContext()’.

<testcontext-type>* theTestContext()— see above.

Init()—initializer that, in particular, invokes ‘setTestContext()’ with the ‘me’-
pointer in order to enable access to the test context data structure from within test
cases (see above).

The customization tags of stereotype CUnitConfig are:

¢ CUnitContextExecutionKind-- Possible values: ‘RestartExecutable’,”NoRestart’.
This tag defines whether the application is restarted for each testcase, or all test
cases are executed within a single invokation of the application. Default is
‘RestartExecutable’.

¢ CuUnitIncludePath—defines the path to the headers of the CUnit framework. For
path definition, a symbolic variable SCUNITINSTALLDIR can be used. This

118

symbolic variable is textually substituted by the contents of tag CUnitInstallDir
upon “Update TestCase”, “UpdateTestContext”, and “Update TestPackage”,
respectively. Default: “SCUNITINSTALLDIR/CUnit/Headers”.

¢ CuUnitInstallDir—the full path to the installation directory of the CUnit
framework. For definition of the path, envronment variables, e.g.
“$(CUNITHOME)” can be used . Default: “§(CUNITHOME)”.

¢ CUnitLibPath—the full path to the CUnit framework library file. Default:
“$CUNITINSTALLDIR/CUnit/lib/CUnit.lib”.

¢ CUnitMainlnit— the initialization part of the cunitmain() function that will be
generated by “Update TestCase”, “Update TestContext”, and “Update
TestPackage”, respectively. For the default, please consult the TestingProfile.

¢ CUnitMainOutputter— test outputter specific initializations.
Default: “SRTCAUTOGENERATE”. If CUnitMainOutputter contains exactly this
string, TestConductor will automatically generate the respective code according to
the chosen output format.

¢ CUnitMainTail— defines the execution and result computation part of
‘cunitmain()’. For the default, please consult the TestingProfile.

¢ CUnitReportKind—possible values: ‘xml’, ‘html’, ‘text’. This tag defines the
result report format. Default: ‘html’

+ InvokeExecutable—the content of this tag will be written to property
C_CG.Configuration.<activeEnvironment> and defines how the application will be
invoked.

Default: “$executable $TestCase”, where “$TestCase” will be textually substituted
by the “Update ...” functionality with the name of the selected test case or “all”, if a
test context is going to be executed.

¢ PostFrameworkThreadSegment— the contents of this tag will be written to
property CG.Configuration.PostFrameworkThreadSegment. Using this tag it can
be customized how ‘cunitmain()’ will b invoked. Default: “char* tcname = argv[1];
cunitmain(tcname);”

¢ ReportFilename— the filename prefix of the report generated by CUnit. Default:
“$CONFIGDIR/report”, where “SCONFIGDIR” is a symbolic variable denoting
the code generation configuration refered to by the test context. “SCONFIGDIR”
will be textually replaced by the “Update ...” functionality.

¢ ResultFilename— the filename for the overall ‘pass/fail” result. A CUnit test case
execution passes, iff all executed assertions pass; a CUnitContext execution passes,
iff all test cases pass; a TestPackage passes, iff all CUnitContexts pass.
Default : “SCONFIGDIR/result.txt”

¢ XSLTFile--- full path to the xslt file using which a html report can be generated
from a CUnit xml report.
Default : “SCUNITINSTALLDIR/Share/CUnit-Run.xsl”

Stereotypes for CppUnit integration

Stereotype CppUnitContext can be applied to a class and sets some properties for CppUnit
testing integration. You can change a test context to CppUnitContext — and vice versa - by
right-clicking a test context and secting “Change to > CppUnitContext”.

119

Stereotype CppUnitConfig can be applied to a configuration and provides a set of tags for
customization of CppUnit testing integration with Rhapsody. CppUnitConfig overrides
property CG.Configuration.StartFrameworkInMainThread, s.t. the Rhapsody framework
ist started in a new thread and control returns to the main thread. Right after starting the
framework either a single test case is invoked or all test cases of the test context (only for
CppUnitContextExecutionKind == NoRestart).

“Update TestCase”, “Update TestContext”, and “Update TestPackage” with respect to a
CppUnitContext (refering to a confioguration stereotyped <<CppUnitConfig>>) will
instrument the CppUnitContext with a set of operations:

.

void setUp()—CppUnit requires an initialization and a cleanup function for each
test case/test suite. These functions are provided by TestConductor as prototypes,
which can be used to add application or test specific code.

void tearDown()--the test suite cleanup function.

void cppunitmain(char* tc_name)—the main function for CppUnit testing. The
function consists of :

o aframework initialization part

e atest suite specific part — i.e. a CppUnitContext specific part
e atestoutputter definition part

¢ and a execution and result computation part — refered to as tail

Each of these parts can be customized using a tag of the <<CUnitConfig>>
configuration.

The customization tags of stereotype CppUnitConfig are:

.

CppUnitContextExecutionKind-- Possible values:
‘RestartExecutable’,’NoRestart’. This tag defines whether the application is
restarted for each testcase, or all test cases are executed within a single invokation
of the application. Default is ‘RestartExecutable’.

CppUnitincludePath—defines the path to the headers of the CppUnit framework.
For path definition, a symbolic variable SCPPUNITINSTALLDIR can be used.
This symbolic variable is textually substituted by the contents of tag
CppUnitlnstallDir upon “Update TestCase”, “UpdateTestContext”, and “Update
TestPackage”, respectively. Default: “SCPPUNITINSTALLDIR/include”.

CppUnitinstallDir—the full path to the installation directory of the CppUnit
framework. For definition of the path, envronment variables, e.g.
“$(CPPUNITHOME)” can be used . Default: “$(CPPUNITHOME)”.
CppUnitLibPath—the full path to the CppUnit framework library file. Default:
“$CPPUNITINSTALLDIR/lib/CppUnit.lib”.

CppUnitMainlnit— the initialization part of the cppunitmain() function that will
be generated by “Update TestCase”, “Update TestContext”, and “Update
TestPackage”, respectively. For the default, please consult the TestingProfile.
CppUnitMainOutputter— — test outputter specific initializations.

Default: “SRTCAUTOGENERATE”. If CUnitMainOutputter contains exactly this
string, TestConductor will automatically generate the respective code according to
the chosen output format.

CppUnitMainTail— defines the execution and result computation part of
‘cppunitmain()’. For the default, please consult the TestingProfile.

120

¢ CppUnitReportKind—possible values: ‘xml’, ‘html’, ‘text’,’compilertext’. This
tag defines the result report format. Default: ‘html’

¢ InvokeExecutable—the content of this tag will be written to property
CPP_CG.Configuration.<activeEnvironment> and defines how the application will
be invoked.
Default: “$executable $TestCase”, where “$TestCase” will be textually substituted
by the “Update ...” functionality with the name of the selected test case or “all”, if a
test context is going to be executed.

¢ PostFrameworkThreadSegment— the contents of this tag will be written to
property CG.Configuration.PostFrameworkThreadSegment. Using this tag it can
be customized how ‘cunitmain()’ will b invoked.
Default: “p_$TestContext->cppunitmain(argv[1]);”, where the term
“$TestContext” will be textually substituted by TestConductor upon “Update ...”.

¢ ReportFilename— the filename prefix of the report generated by CppUnit.
Default: “SCONFIGDIR/report”, where “SCONFIGDIR” is a symbolic variable
denoting the code generation configuration refered to by the test context.
“$CONFIGDIR” will be textually replaced by the “Update ...” functionality.

¢ ResultFilename— the filename for the overall ‘pass/fail’ result. A CppUnit test
case execution passes, iff all executed assertions pass; a CppUnitContext execution
passes, iff all test cases pass; a TestPackage passes, iff all CppUnitContexts pass.
Default : “SCONFIGDIR/result.txt”

¢ XSLTFile--- full path to the xslt file using which a html report can be generated
from a CppUnit xml report.
Default : “SCPPUNITINSTALLDIR/contrib/xml-xsl/report.xsl”

Test Definition for CUnit/CppUnit

Code and flow chart test cases can be used very similar to their normal usage. Instead of
the RTC_ASSERT macros, for CUnit and CppUnit, CU_ASSERT macros and
CPPUNIT_ASSERT macros, respectively, are used.

For CUnit also statechart test cases can be used similarly to their normal usage with
TestConductor, except for using CU_ASSERT macros instead of RTC_ASSERT macros.

For CppUnit, usage of statechart test cases requires some manual adaptions of the test
context and the statechart defining the test. The necessary adaptions are explained below.
We recommend using code and flow chart test cases also for testing reactive behavior (cf.
Testing reactive behavior with Code Test Cases, Testing reactive behavior with Flow
Chart Test Cases on page 46 pp.).

Both, CUnit integration as well as CppUnit integration do currently not support SD test
cases.

Using Statechart Test Cases with CppUnit

In the CppUnit framework assertions like CPPUNIT_ASSERT are realized by throwing
an exception,when an assertion fails. This exception is caught by the framework and the
failed assertion is reported. The entire mechanism relies on the assumption that the test
case is executed in the same thread as the framework. CppUnit integration with
TestConductor utilizes a test context as test fixture, i.e. the CppUnit framework is
executed in the thread of the CppUnitContext. Statechart test cases are realized using a
separate test component owning the statechart, s.t. the statechart is exceuted in the thread
of the test component. Since these threads are in general not the same, it is necessary to

121

catch exceptions within the statechart and add failures to the testresult maintained by the

CppUnitContext.
Necessary modifications for statechart test cases with CppUnit:
1. Add public attributes

¢ CppUnit::TestSuite* suiteOf Tests

¢ CppUnit::TestResult* theTestResult

to CppUnitContext

2. Overwrite tag CppUnitMainlnit:

CPPUNIT NS::TestResult testresult;

CPPUNIT NS::TestResultCollector collectedresults;
testresult.addListener (&collectedresults) ;
std::ofstream outfile;

// Original: local variable
[* CppUnit::TestSuite *suiteOfTests = new
CppUnit::TestSuite ("S$STestContext") ;*/

//NEW: use CppUnitContext attribute
this->suiteOfTests = new
CppUnit: :TestSuite ("$TestContext") ;

CPPUNIT NS::TestRunner *testrunner = new
CPPUNIT NS::TestRunner () ;

//NEW: initialize attribute of CppUnitContext
theTestResult = &testresult;

3. add “cppunit/TestResult.h” to property CPP_CG.Class.ImpIncludes of test

component refered to by <<StatechartTestCase>> dependency of statechart test case

4 . Instead of simply using e.g.

CPPUNIT_ASSERT (
itsTCon->getItsCalculator()->get_result op()==42),

in atransition action, you now should write:

CPPUNIT NS::Test* current tcase = 0;
CppUnitVector<CPPUNIT NS::Test*>& alltests =
(CppUnitVector<CPPUNIT NS::Test*>&)
(itsTCon->suiteOfTests->getTests());
CppUnitVector<CPPUNIT NS::Test*>::iterator it =
alltests.begin();

while (it != alltests.end()) {
if ((*it)->getName ()=="SC _tc 0") {
current tcase = *it;
}
++it;

122

}
try A
CPPUNIT_ASSERT(
itsTCon->getItsCalculator()->get _result op()==42);

}
catch (CPPUNIT NS::Exception e) {
itsTCon->getTheTestResult () ->addFailure (
current tcase,
new CPPUNIT NS::Exception(e));

Command Line Execution

TestConductor can update, build, and execute test cases, test contexts or test packages
from the command line. Command line execution can either be performed by using the
command line feature of rhapsody.exe or by using rhapsodycl.exe.

Command Line Syntax for rhapsody.exe

You can use following syntax to execute tests from the command line:

e “<Rhapsody executable>” <model file> -cmd=call "rtc
TC COMMAND TC ELEMENT" -cmd=save —cmd=exit

where TC_COMMAND is one of the following testconductor commands
e update_build_execute

= performs an update, then a build, and then an execute on the
specifed test element.

e update_build

= performs a build, and then an execute on the specifed test element.
e update

= performs an update on the specifed test element.
e build_execute

= performs a build and then an execute on the specified test element

e build

= performs a build on the specifed test element.
e execute

= performs an execute on the specifed test element.
e clean

= performs a clean on the specifed test element.

and TC_ELEMENT is either “all” or the full pathname of a test case, a test context
or a test package.

Note: -cmd=save needs to be defined in order to permanently actualize the link to the
HTML test result report (controlled file) and the Verdict tag under it. At this time

123

older test result files will not be overwritten, but a new file with an incremented
number will be created. In case the model will not be saved before exiting, still the
old or none result file will be referenced.

Examples:

¢ “<full Rhapsody path>\Rhapsody.exe” D:\
CppCashRegister rpy\ CppCashRegister.rpy —-cmd=call “rtc
update build execute
TPkg CashRegister::TCon CashRegister::tc SimpleStart” -
cmd=save
updates, builds, and then executes the test case “tc_SimpleStart” of the model
CashRegister.

¢ “<full Rhapsody path>\Rhapsody.exe” D:\
CppCashRegister rpy\ CppCashRegister.rpy —cmd=call
“execute TPkg CashRegister::TCon CashRegister” -cmd=save
executes the test context TCon CashRegister of the model CashRegister

¢ “<full Rhapsody path>\Rhapsody.exe” D:\ CppCashRegister_rpy\
CppCashRegister.rpy —cmd=call “rtc build_execute TPkg_ CashRegister” -
cmd=save
builds and executes the test package TPkg_CashRegister of the model
CashRegister.

Command Line Syntax for rhapsodycl.exe

If you run the command line version of rhapsody, rhapsodycl.exe, you can execute the
same TestConductor commands as for rhapsody.exe. In rhapsodycl.exe, the
TestConducror commands are invoked by specifying

e -cmd=call “rtc TC COOMAND TC ELEMENT”

in the command line prompt of rhapsodycl.exe. TC_COMMAND can be one of the
following testconductor commands:

e update_build_execute

= performs an update, then a build, and then an execute on the
specifed test element.

e update_build

= performs a build, and then an execute on the specifed test element.
e update

= performs an update on the specifed test element.

124

e Dbuild_execute
= performs a build and then an execute on the specified test element

e build

= performs a build on the specifed test element.
e execute

= performs an execute on the specifed test element.
e clean

= performs a clean on the specifed test element.

and TC_ELEMENT is either “all” or the full pathname of a test case, a test context or a
test package.

Examples (we assume that rhapsodycl.exe is already started):

e %> -cmd=call “rtc update build execute
TPkg CashRegister::TCon CashRegister::tc SimpleStart”

updates, builds, and then executes the test case “tc_SimpleStart” of the model
CashRegister.

e "> —cmd=call “execute
TPkg CashRegister::TCon CashRegister”

executes the test context TCon CashRegister of the model CashRegister

Test Execution Report

After test execution all test reports are written in the same manner as described under
“Test Case Execution”, ”Test Context Execution” and “Test Package Execution”.

Test Case Execution on Targets

In addition to executing test cases on the host environment, test cases can also be executed
on the target environment. The necessary steps are target environment specific and are
further described in the following documents:

¢ Testing_with_RTC_on_a_Linux_Target.pdf (Linux)
¢ Testing_with_RTC on_a VxWorks_Target.pdf (VxWorks)

125

Information about testing non-animated applications asynchronously with TestConductor
can be found in section Offline Testing on page Fehler! Textmarke nicht definiert. pp.

Driving Operations Calls

Driving Operation Calls (for Rhapsody in C/C++/Java/Ada)

To be able to call operation calls from the environment in TestConductor, we have to set
the Enable Operation Calls option in the dialog Advanced Instrumentation Settings as
Public, Protected or All and recompile/rebuild the model.

Advanced Instrumentation Settings 3

-~ Trace
vV Arguments

[V Dperations

vV Attributes IV Events
[V Relations

Enable Operation Calls: IPUth v I

~ Instrumentation Scope

" Al Elements
% Selected Elements

[# [Default
5 v
MyClass
| oK I Cancel

x|

This setting controls the property CG:Operation:AnimAllowInvocation. Following
are the details of the options that can be used:

* & & o

All—enable calls in all cases

None (Default)—do not enable calls
Public—enable calls if operation is public
Protected—enable calls if operation is public or protected

126

127

Test Management

TestConductor is a fully integrated add-on solution for Rhapsody. All relevant test data
like the test architecture, test cases and their test scenarios, test configurations and test
results are stored in the model. Navigation to all the elements can be done via the usual
capabilities of the Rhapsody browser.

Managing Test Data

With this tight integration you have all the possibilities you already know from other
elements like classes, package and so on, e.g.:

¢ Copy, paste, delete

+ Create units for test components, test context, SUT and test component instances

Load / unload test packages, test components, test context, SUT and test
component instances

¢ Requirements management
+ Configuration management
Documentation

Linking Test Case to Requirements

Test cases can be linked to their requirements which are defined in the model. This can be
done by using test objectives (TestObjective) to link model elements to the related
requirements.

¢ Add a new test objective to the test case “tc_SimpleStart” and select the
requirement from the listed model elements.

128

El; TestContexts
(=49 TCon_CashRegister
- Attributes
- Links
- SUTs
[Test Context Diagrams
E1-%, TestCases
BBy te_activity_diagram()

#. te_code()
te_flow_chart()
= v".__v- tc_sequence_diagram(]
, SDInstances Features
: S TestResults Features in New Window
‘ TestComponentInstances -
Coq : . Add New Dependency
RS) TestConfigurations S
[5 TestResults et Denvam.:n
= E& TestScenarios Searchiceide Constraint
Comment
References... :
Requirement
Change to » Controlled File
Edit Test Case Hypetlink
Delete from Model Activity Diagram

Edit TestCase SDInstances
Update TestCase

Build TestCase

Execute TestCase

Cancel | Help l

The result is a new test objective REQ1 as an element of test case “tc_SimpleStart” which

is linked to its requirement REQ1.

=-L3 TestPackages
=Ly TPka_CashRegister_0
@ TestComponents
=} 8‘ TestContexts
= £9 TCon_CashRegister
- Attributes
L Links
- SUTs
) Test Context Diagrams
B---"y TestCases
E] . tc_activity_diagram()
. te_code)
=} #. te_SimpleStart()
-l sbinstances
E} Q TestObjectives
_ [S TestResults
‘ TestComponentInstances
“) TestConfigurations
[5 TestResults
[+ E& TestScenarios
&£y TPka_GuiHardware_0

TestConductor Dialog

The TestConductor main dialog provides some global TestConductor settings and help
functions by selecting Tools > TestConductor from the Rhapsody tools menu:

Rhapsody TestConductor @

Help
Global Settings
CreateT estérchitectureMode { Standard vJ
MapSDTaoTestarchitecturetode \Strict vril
OvenwriteT estContextDiagram [Never vJ

TestCaseE xecutionOrder LEE °ﬂ§ef,0,1 df,[ﬂ

TestingMode [M :J

The dialog offers the possibility to set some global TestConductor settings and to open
TestConductor’s tutorial by selecting Help > Tutorial. The global settings that can be
changed in this dialog are explained in the next section TestConductor Settings.

130

TestConductor Settings

TestConductor provides a range of global and also test case specific settings. The settings
are in most cases stored as properties in the model.

TestConductor

SDInstance
Executionlterations
Executioniode
ExecutionOrder
Pararmeteryalues

Settings
Acknow ledgespplyvChanges
CreateTestarchitectiureiMode
MapSDToTestArchitectureMode
Cwverwrite TestContextDiagram
TestCaseExecutionCrder

TestCase
AnimatedsSUT
ATGETestCase
CalloperationsOnlywhenCallstackEmpty
ComputeCover age
Coveragekind
CreateShForFailedShlnstance
ExecuteTestWithTracer
ExecutionanimationStartedTimeout
ExecutionanimationStoppedTimeout
ExecutionFirstIdleTimeout
ExecutionldleTimeout
MultipleConditionCheck
ResetdppBeforeStartTest
TerminatesppOnuitTest
Tolerances
U=a0r_RETURM
WriteTestExecutionLogFile

1
Mlonitor
Linear

Standard
Strict

Mever
BrowrserCrder

ALtomatic

O
O
SUT flat
O
O

20
20
20

o
=2

]

KEO

OO

131

Sequence Diagram Properties (only animation based testing mode)

TestConductor provides settings concerning the usage and interpretation of sequence
diagrams during test case execution. All following properties are the settings for the dialog
Define Test:

Name of Test:

e
Cancel
Description of Test:

SDInstances in Test: wecute Ti

Add SDInstance l

Details of SDInstance -
SDInstance Name:
ll Apply SDInstance I

Sequence Diagram:
] LI Parameter Mapping |

Execute SDInstance as: ¢ Monitor Only ¢ Driver and Monitor € Black Box

SD Interpretation (Order): ¢ Partial " Linear
i~ Execution Mode -
@+ Single Iteration M : . o
|‘ ax # of Multiple Iterations (0 == infinite)
" Multiple Iterations
" Ordered Predecessor

Activation Condition:

-Description of SDInstance:

These settings have to be done via properties on SDInstance level. Open the Feature
dialog of a sequence diagram instance, select the Properties tab, switch in the dropdown
combo box View to All and navigate to the metaclass TestConductor: :SDInstance

= SDInstance
ExecutionIterations 1
ExecutionMode | Monitor
ExecutionOrder Linear
Parametertalues

TestConductor: :SDInstance: :ExecutionIterations

132

The required number of run-time instances can be set to multiple iterations with a concrete
number.

Note: This property should not be set directly. Please use the Multiple Iterations setting
in the Define Test dialog.

TestConductor: :SDInstance: :ExecutionMode

Driver invokes automatic driving of model execution after the test has been activated.
TestConductor automatically injects events into the running Rhapsody model according to
the specified sequence diagram. Monitor invokes manual driving of model execution.
This means that, during test execution, you must inject input events manually using the
Rhapsody animation tool or the project GUI (when available). TestConductor monitors the
reception of these events and internal messages between system objects. Blackbox
considers only those messages that originate at the system border (to be driven by
TestConductor) or that go to the system border (to be monitored by TestConductor).

Note: This property should not be set directly. Please use the corresponding Execute
SDInstance as: setting in the Define Test dialog.

TestConductor: :SDInstance: :ExecutionOrder

Linear—specifies that TestConductor should monitor the sequence diagram under test
assuming that all events and messages are arranged in a strict sequence. The vertical
drawing order of messages in sequence diagrams is used to compute an absolute sequence
of events and messages (each message in the in sequence diagram has a unique
predecessor and successor). Partial—specifies that TestConductor should monitor only
the order of events located on the same line (instance line or message arrow).

Note: This property should not be set directly. Please use the corresponding SD
Interpretation (Order): setting in the Define Test dialog.

TestConductor: :SDInstance: :ParameterValues
For a parameterized Rhapsody sequence diagram, map its parameters to concrete values.

Note: This property shall not be set directly. Please use the button Parameter Mapping
in the Define Test dialog.

General Properties

TestConductor provides some general settings that change the general behavior of
TestConductor. These settings have to be done via properties on test package level. Open
the Feature dialog of a test package, select the Properties tab, switch in the dropdown

133

combo box View to All and navigate to the metaclass TestConductor: :Settings

-/ TestConductor

-l Settings
Acknow ledgespplyChanges
Create Testarchitecturetode Standard
MapShToTestarchitecturetlode Sirict
Cwverwr ite TestContextDiagram Mever
TestzaseExecutionCrder BrowserCrder

TestConductor::Settings: :AcknowledgeApplyChanges

If this property is switched on, TestConductor requires an explicit acknowledge from the
user each time a SDInstance has been changed. If the property is switched off, changes of
SDInstances are acknowledged implicitly.

By default this property is switched on.

(50
Mame of Test: R
Itc_SimpIeS Lart 4|

Cancel |

Tolerances |
Erecute Test |

Description of Test:

Bl

SDInstances in Test:

Remove SDnstance |
) B Cancel discards changes. Really cancel®
— Details af SDInstance L}
SDInstance Mame:
ISD_tc_‘I Ja I Mein | Apply SDInstance |
Sequence Diagran:
I SimpleStart in TPkg_CashRegister 0 j
Execute SDInstance as: Monitor Orly € Driver and Monitar € Black Boy

5D Interpretation [Order: ¢ Partial @ Linear

r Execution Mode
@ Single Iberation
™ Multiple Iterations
{7 Ordered Predecessor: I

|D bd ax 3 of Multiple lterations [0 == infinite]

Activation Condition:
|THUE

— Description of SDInstance:

Parameter Mapping |
=
=
=

TestConductor::Settings: :CreateTestArchitectureMode

This property controls the behavior of the TestConductor function “Create
TestArchitecture”. If this property is set to “Standard”, each time “Create
TestArchitecture” is performed TestConductor creates a component and a configuration

134

for the newly created TestArchitecture using the default property settings for components
and configurations. If the property is set to “Advanced”, each time “Create
TestArchitecture” is performed TestConductor opens a dialog which allows to specify
from which of the existing components/configurations the property values of the newly
created component/configuration shall be derived.

By default this property has the value “Standard”.

TestConductor: :Settings: :MapSDToTestArchitectureMode

This property controls the behavior of the test case wizard when a test case is created for
an existing sequence diagram. If the value of this property is set to “Strict”, only those test
architectures are considered to be suitable for the new test case that contain at least on
SUT instance of one of the classes of the life lines of the original sequence diagram. If the
value of this property is set to “Weak”™, also all test architectures are considered to be
suitable that does not contain a SUT instance of one of the classes of the life lines of the
original sequence diagram, but for which the same message exchange is possible as in the
original sequence diagram.

TestConductor::Settings::overwriteTestContextDiagram

This property controls the creation of TestContextDiagrams when performing an “Update
TestArchitecture” on a TestContext. If this property is set to “Never”, each time “Update
TestArchitecture” is performed a new TestContextDiagram is added to the existing
TestContextDiagrams, i.e., existing TestContextDiagrams are not overwritten. If this
property is set to “askUser”, each time “Update TestArchitecture” is performed
TestConductor asks if an existing TestContextDiagram shall be replaced with a new one.
If this property is set to “Always”, each time “Update TestArchitecture” is performed
TestConductor replaces an existing TestContextDiagram with a new one.

By default this property has the value “Never”.

TestConductor::Settings::TestCaseExecutionOrder

This property controls the execution order of TestCases when executing a TestContext.
Possible values are “BrowserOrder” and “DeclarationOrder” , where “BrowserOrder”
defines that TestCases areb executed in the same order as they are displayed in the
browser. “DeclarationOrder” defines execution in a user defined order. The declaration
order can be specified by right-clicking “TestCases” and selecting “Edit TestCases Order”
form the context menu.

By default this property has the value “BrowserOrder”.

135

=-E§ TestPackages
=- g" TPkg_CashRegister
E} C] Components
. ﬂ TPkg_CashRegister_Comp
B- {:j Configurations
- ‘\ DefaultConfig
(g}, TestComponents
E} 3) TestContexts
= 3; TCon_CashRegister
[+l Links
& SUTs
[+-hg Test Contest Disgrams

. @)%, SD_tc_
- ‘, TestComponentlnstances
[y, TestConfigurations
. E‘S TestScenarios

“Edit TestCases Order” opens a dialog using which the order of TestCases can be defined:

Edit Operations Declaration Order : _)ﬂ

™ Use Default Order

|_Signature l Return Typel Visipilty I .Scope I U I

gg tc 001[1] voig DuE:!c instance
tc Vol public Instance
Code tc 0N void oublic instance M

0K Cancel I Help I

136

TestConductor::Settings: :TestingMode

By default, new projects created with Rhapsody 7.6 are created with testing mode set to
assertion based testing, i.e., the property “TestConductor.Settings. TestingMode” is set to
“AssertionBased”. For test packages that have been created with a Rhapsody version older
than 7.6 this property is set to “AnimationBased”, i.e., for those test packages
TestConductor behaves as in 7.5.3. If you want to switch from one testing mode to another
testing mode manually, please open the TestConductor main dialog by choosing
“TestConductor” from the tools menu. In the upcoming dialog, select the testing mode you
want TestConductor to operate:

Rhapsody TestConductor

Global Settings
CreateT estérchitectureMode ‘}ASAtanaarAd” 7 v: :
MapSDToTestdrchitectureMode ‘.Strict |
OverwriteT estContextDiagram = |
| Never 8
TestCaseExecutionOrder [BrowserDrder. BRI
Testighode [Rssetiontased)L Lo

Test Context Properties

Also some properties for test contexts can be set by the user. In order to change these
properties, open the Feature dialog of a test context, select the Properties tab, switch in
the dropdown combo box View to All and navigate to the metaclass

TestConductor: :TestContext

- TestConductor

=l TestContext
TestContextExecution_PostTestCaseOperation
TestContextExecution_PreTestCaseOperation
TestContexiExecution_RestartExecutable

TestConductor::TestContext::TestContextExecution RestartExecutable

If this property is checked (true), for each test case during execution of the test context, the
executable of the test context is restarted. If the property is not checked (false), the test
cases are executed without restarting the executable after the previous test case has
finished its execution.

137

TestConductor: :TestContext::TestContextExecution PreTestCaseOperation

If this property contains a name of an operation of the test context, for each test case
during execution of the test context, before a test case is executed the operation specified
in this property is called automatically. In the operation specified in this property, one can
initialize or reset some variables that are needed in the subsequent test case execution.

TestConductor: :TestContext::TestContextExecution PostTestCaseOperation

If this property contains a name of an operation of the test context, for each test case
during execution of the test context, after a test case is executed the operation specified in
this property is called automatically. In the operation specified in this property, one can
reset some variables that are needed in the subsequent test case execution.

Test Case Properties (only animation based testing mode)

Also some properties for test cases can be set by the user. Some of these properties are set
directly by using the execution dialog, some properties you may set using the feature
dialog of a test case. Open the Feature dialog of a test case, select the Properties tab,

switch in the dropdown combo box View to All and navigate to the metaclass
TestConductor: :TestCase

-/ TestConductor

=l TestCase
animatedsSUT Atomatic
ATGTestCase O
CalloperationsCnlyWwhenCallstackE mpty
CamputeCoverage O
Coveragekind SUT flat
CreateSOForFailedSDInstance O
ExecuteTestwithTracer O
ExecutionanimationStartedTimeout 20
ExecutionanimationStoppedTimeout 20
ExecutionFirstIdleTimeout 20
ExecutionldleTimeout 600
MultipleConditionChedk O
ResetsppReforeStartTest
TerminatesppOnuitTest
Tolerances
UseOM_RETURN O
\WiriteTestExecutionLogFile O

TestConductor: :TestCase: :AnimatedSUT

138

This property controls the assumptions of TestConductor concerning the animation of the
SUT classes. Depending on the fact that the SUT classes are animated or not,
TestConductor uses different execution algorithms to control the execution of test cases
that are needed in order to execute test cases properly. If this property is set to
“Automatic”, TestConductor tries to automatically deduce if the SUT contains animation
code or not, and chooses the right execution algorithm accordingly. If the property is set to
“true”, TestConductor assumes that the SUT classes contain animation code. If the
property is set to false, TestConductor assumes that there is no animation code for the
SUT classes.

Per default the property is set to “Automatic”.

TestConductor: :TestCase: :ATGTestCase

Normally TestConductor injects messages that are defined in a sequence diagram without
time delays directly one after the other. In case this property is enabled, TestConductor
waits with injection of messages until the system is idle.

This property is enabled automatically for test cases created and exported by ATG.

Per default the property is disabled.

TestConductor:TestCase:CallOperationsOnlyWhenCallstackEmpty

If this property is checked, TestConductor delays operation calls that refer to inputs of
TestConductor so that these operation calls are made only when the call stack of the focus
thread is empty.

If the property is cleared, all operation calls are made by TestConductor immediately even
if the call stack of the focus thread is not empty.

Per default the property is disabled.

TestConductor: :TestCase: :ComputeCoverage

In case this property is enabled, TestConductor automatically computes and reports the
model coverage achieved when executing the test cases.

Per default the property is disabled.

TestConductor::TestCase: :CoverageKind

If TestConductor: :TestCase: :ComputeCoverage is enabled, CoverageKind
defines how the coverage will be measured:

TestConductor supports four different kinds of coverage measures:

¢ SUT flat: Only coverage of the toplevel class of the SUT is measured, i.e. states,
transitions, and operations of parts of the SUT are not considered. Coverage of
model elements of test components is also not measured.

139

¢ SUT hierachical : Coverage of the SUT is measured in a hierarchical manner, i.e.
also states, transitions, and operations of parts of the SUT are hierarchically
regarded for coverage measure. Coverage of model elements of test components
is again not measured.

¢ TestContext flat : Coverage is measured in terms of all states, transitions, and
operations defined at the first decomposition level of the test context, i.e. all
states, transitions, and operations of the direct parts of the test context are
considered.

¢ TestContext hierarchical : all states, transitions, and operations in the hierarchal
structure of the test context are considered in coverage measure.

Per default the property is set to “SUT flat"..

TestConductor: :TestCase: :CreateSDForFailedSDInstance

In case this property is enabled, TestConductor automatically creates a failure sequence
diagram (Show as SD) and stores it in the model.

Per default the property is disabled.

TestConductor: :TestCase: :ExecuteTestWithTracer

In case this property enabled, the execution of this test case will be done with activated
tracer (trace #all all).

Per default the property is disabled.

TestConductor: :TestCase: :ExecutionAnimationStartedTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
connect to Rhapsody. If the application does not connect to Rhapsody within the specified
time, the test case execution is aborted. The default value is 20 seconds.

TestConductor: :TestCase: :ExecutionAnimationStoppedTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
terminate after receiving the terminate command from TestConductor. If the application
does not terminate within the specified time, TestConductor simply proceeds. The default
value is 20 seconds.

TestConductor: :TestCase: :ExecutionFirstIdleTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
become idle after giving the first “Go Idle” command. If the application does not become
idle within the specified time, the test case execution is aborted. The default value is 20
seconds.

TestConductor: :TestCase: :ExecutionIdleTimeOut

In case a timeout is defined (> 0) and the application does not show any activity for the
defined timeout (in seconds) the execution of this test case is interrupted.

140

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value in the testing profile is 600 seconds.

Setting this property to zero means that no timeout is enabled.

TestConductor: :TestCase::MultipleConditionCheck

TestConductor can be configured to check the reached condition and following conditions
without system activity, until one condition mark evaluates to FaALSE. To change the
default TestConductor behaviour change the property

TestConductor: :TestCase: :MultipleConditionCheck Of the test case to TRUE.
For further information read the chapter Condition Marks at page 163.

Per default the property is FALSE.

TestConductor: :TestCase: :ResetAppBeforeStartTest

In case this property is enabled, TestConductor will reset the application to the initial state
of the model for each test case execution. Normally this property is set using the test
execution dialog for sequence diagram based test cases.

Per default the property is enabled.

Note: This property is available for sequence diagram test cases only. This property is
currently not interpreted for source code, flow chart and statechart test cases.

TestConductor: :TestCase: :TerminateAppOnQuitTest

This property controls the behavior of TestConductor after quitting a test. In case this
property is enabled, the application terminates after quitting the test. Otherwise only
TestConductor quits.

Per default the property is enabled.

Note: This property is available for sequence diagram test cases only. This property is
currently not interpreted for source code, flow chart and statechart test cases.

TestConductor::TestCase::Tolerances

This property is an internal property where TestConductor stores tolerance definitions
defined in the sequence diagram test definition dialog. User should not set this property
directly.

Note: This property should not be set directly. Please use the corresponding Tolerances
button in the Define Test dialog.

TestConductor::TestCase: :UseOM RETURN

In case this property is enabled, TestConductor checks return values by evaluating a
specific animation message that is generated by the application if the operation whose

141

return value should be checked uses the animation macro OM_RETURN. If this property
is disabled, TestConductor can only check return values for operation calls that originate
from TestComponents.

Per default the property is disabled.

TestConductor::TestCase::WriteTestExecutionLogFile

TestConductor generates a log file of the test case execution if this property is enabled.
TestConductor stores this log file (RTC_1og.txt) into the folder c: \tmp. The folder
must exist and the user must have write access to this folder.

Per default the property is disabled.

Generating Test Reports with Rhapsody
ReporterPLUS

Rhapsody ReporterPLUS is a reporting engine. The user is able to customize the content
and style of a Rhapsody ReporterPLUS report by specifying a template. Rhapsody
TestConductor delivers the test report template (TestReport.tpl) and the test
requirement coverage report template (TestRequirementCoverage.tpl), which will
be installed in the folder “reporterplus\Template” in your Rhapsody installation.

A C:\Dokumente und Einstellungen\tschriefer\Desktop\Cash\Reports\TPkg_CashRegister. htm - Microsoft Internet E... E]@
I

Datei Bearbeiten Ansicht Favoriten Extras ? T

@Zurﬁck > ﬂ @ jj /7\'Suchen \‘T/"Ai'ngavoriten @? v /’.] - 7! ﬁ

Adresse | €] C:\Dokumente und Einstellungenitschriefer|Desktop|CashiReportsiTPka_CashRegister.htm v . Wechselnzu Links >

____TableorContents Test Report of Model CppCashRegister
=M Test Report of Model Cp hRegister
= B TCon_CashRegister (Report created at 7/17/2007 at 16:41:04)
(L] System Under Test (SUT)
(L] TestComponent Instances
(L] Test Context Diagrams

E (3 TestCases Project CppCashRegister.rpy
& TestCaseAD_te 0 T — C:\Programme\Telelogic\Rhapsody 7.1
& TestCase Code_tc_0 Y |\Samples\CppSamples\TestConductor\CppCashRegister

& TestCasesD_tc_0
@ TestCase aty_tc_002
@ TestCase aty_tc_003

Language |C++

This is the CashRegister exercise model for the
Rhapsody TestConductor and ATG tutorial. It is

& TestCase atg_te_004 . .. |based on the model from M.W.Richardson and shows
& TestCase aty_tc_006 Deseription | .0 11ain aspects of the Testing Profile

@ TestCase aty_tc_007 implementation firstly delivered with

@ TestCase aty_tc_008 Rhapsody TestConductor 2.0,

@ TestCase atg_tc_009
§ TestCase aty_tc_010
@ TestCaseaty_tc_013
& TestCase aty_tc_014

B TestCase atg_tc_015 This document contains the test contexts
§ TestCase aty_tc_016 - - - -
B Testcaseatg_tc_017 TCon_CashRegister |in TPkg_CashRegister:: TCon_CashRegister

HEHFHEHEEREEBEEBE

E TestCasetestcase_3

é&‘] Applet com/synergex/modeleyeqfTOC/DirectMavigator started :J Arbeitsplatz

Note: The report templates currently will not show pictures of subscenarios or linked
subscenarios of test cases. Only the top level diagrams of scenarios and flow
charts are currently displayed.

142

Executing the Test Report

To execute the test report template on the model containing test data:

¢ In case you want to create the report only for a selected test package and the
containing test packages, select in the Rhapsody browser a test package and choose
from the menu Tools > ReporterPLUS > Report on selected package...
=-C3 TestPackages
=59
- -] Components
#-[_]] Sequence Diagrams
) 1‘ TestComponents
=19 TestContexts
=9 TCon_CashRegister

5 Window Help

TestingProfile » V57 5;3' vI = J{ ¢
] EU*‘ ‘:fllﬁ_gjﬂjﬁlﬂ_
< Object Model Diagram = e
(W RE 1= .
f Structure Diagram X | B B .
Activity Diagram E T ﬁ
L@ AR <
Statechart L O A B ‘ T @Arial Unice I_

I Sequence Diagram
Use Case Diagram
Collaboration Diagram
Component Diagram
Deployment Diagram

Browser

L Main Diagram

4 Check Model

[ReporterPLUS Report on all model elements...
Report on model | Reporto ed package. ..
| Le
Import XMI into Rhapsody Create/Edit template with ReporterPLUS. ..

Export XMI from Rhapsody

¢ In case you want to create the report for all test packages in the model choose from
the menu Tools > ReporterPLUS > Report on all model elements...

¢ In the Rhapsody ReporterPLUS wizard Select Task specify the export file format
your report shall be displayed in and click Next>.

143

ReporterPLUS Wizard : Select Task

What would you like to do?

Generate HTML Page
Generate Microsoft PowerPoint Presentation
Generate Microsoft Word Document

Generate RTF File
Generate Text File

I Weiter > IZI;

Abbrechen

)

¢ Inthe Rhapsody ReporterPLUS wizard Select Template check the currently active

template. In case the template “TestReport.tpl” is not active click on

open it from the folder “reporterplus\Templates” in your Rhapsody
installation folder and click Next>.

Open Template

2

see o

PIX]

Template Description

Suchen in: I 19 Templates L] e &k B~
[ﬂRequirementsTab!e.tpl & TestReport.tpl

["ﬂ Rhapsody HTML Exporter.tpl TestRequirementCoverage.tpl

L'ﬂ SequenceDiagramwithClasses. tpl Typ: TPL-Datei .tpl
L’E]Statechart.tpl Geandert am: 11.09.2007 21:04
E]SysMLreport.tpl Grafe: 33,0KB

|i] TestRadio_original.tpl

< >
Dateiname:]Tes!Flepon.tpl
Dateityp: ITempIale files [*.tpl) __v_] Abbrechen |

This template uses the TestingProfile to &
provide the underlying stereotypes to B
generate a document.

The main sections the document
produces are in the following order [if they
exist]

1/ Test Context Informations

2/ System Under Test [SUT)

3/ Test Component Instances

4/ Test Context Diagrams

5/ Test Case Execution Summary

6/ Test Case General Informations

7/ Test Case Implementation(-diagrams)

The document produced is hyperlinked

¢ The Rhapsody ReporterPLUS wizard Confirmation gives an overview about the
selected options. Click the button <Back to change the options. Click Generate to
start the execution of the Rhapsody ReporterPLUS report generation.

144

ReporterPLUS Wizard : Confirmation @

You want to :
Generate HTML Page
Using template

C:A\Programme’T elelogichRhapsody 7.1%reporterplushTemplateshTestReport.tp
From model

C:A\ProgrammeT elelogichRhapsody 7.1%5 ampleshCppS amples\ T estConductor
\With scope

TPkg_CashRegister:Packagd

< ‘ : :

¢ Zuriick I Fertig stellen;l Abbrechen
b

¢ Inthe dialog Generate Document specify a path and a name for the document to
generate and click the button Generate.

Generate Document @

Speichem ID Reports ~| & &5 B3

Dateiname: | TPkg_CashRegister |
Dateityp: ~ |HTML Page (* html:* htm) | Abbrechen|

7

+ Rhapsody ReporterPLUS will show the progress during creating the document and
start the corresponding application to show the test report.

145

ReporterPLUS @

Loading Use-Cases of Package ATG_TestCase. 14

Cancel

Using the HTML Test Report

The created HTML test report is divided into two sections, the table of Contents on the left
side and the content section on right side. Dependent of the selected item on the left side,

the corresponding section of the report will

be shown on the right side.

Note: The HTML report will only be displayed correct in the internet browsers and
versions, which are shown at report startup.

Note: The table of contents will only be shown in a HTML report. To display the table

of contents Java must be installed. In case these requirements are not fulfilled,

please select another export file format like Microsoft Word.

SRER] Test Report of Model C
= B TCon_CashRegister
] System Under Test (SUT)
(] Test Component Instances
(] TestContext Diagrams

Table of Contents _| Test Report of Model CppCashRegister

(Report created at 7/17/2007 at 16:41:04)

CppCashRegister.rpy

C:\Programme\Telelogic\Rhapsody 7.1
\Samples\CppSamples\TestConductor\CppCashRegister

E (] TestCases Project
S TestCaseAD_tc_0 y
@ TestCase Code_tc_0 Directory
= @ TestCaseSD_tc_0

Language

C++

*u Scenario SD_tc_0
S TestCase atg_te_002
@ TestCase atg_tc_003 s
§ TestCase aty_tc_004 Description
§ TestCase atg_tc_006
§ Testcase atg_tc_007

This is the CashReqgister exercise model for the
Rhapsody TestConductor and ATG tutorial, It is
based on the model from M.W.Richardson and shows
the main aspects of the Testing Profile
implementation firstly delivered with

Rhapsody TestConductor 2.0,

@ TestCase atg_tc_008
& TestCase atg_tc_009
§ TestCase atg_tc_010
§ TestCase atg_tc_013

& TestCase atg_tc_015

B TestCase atg_te_014 This document contains the test contexts

§ TestCaseatg_tc_017
@ TestCasetestcase_3

HEHEHEEREEEHEEHBEE

B TestcCase atg_tc_016 TCon_cCashRegister |in TPkg_CashRegister:: TCon_CashRegister

The first page gives an overview about the loaded model and the contained text contexts.
This page is reachable from the highest entry of the table of contents.

146

Conceptual this report lists all test contexts of the specified test package(s) during
creation. For each test context you will find information about

the system under test

the test component instances

the test context diagrams

the test cases and their execution status

* & o o

Each test context and the sub-items are reachable by clicking on the corresponding item in
the table of content. Click on the plus to extend the tree structure.

Using the Test Requirement Coverage Report

Table of Contents A” Requ|re ments i
(] Requirement Coverage
B8] Al Requirements
[All Test Cases Name Specification gg‘s’:r‘?d by Test
Check that each preset can be set to
the r:\'nnlmuré] ar;d mhamrl?urr:l freguency for FCWhiteBox_002 Le
CD_whiteBox_002 sach:waveband.:Checkithat:thege (M Failed)
= = presets are remembered even after the
radio has been switched off and then
back on.
Check that if the user starts to setup a
CD_whiteBox_003 preset that if they don't complete the. AT EESRsd
setup then after 8 seconds the setup is
cancelled.
Check that the display indicates the
CD_wWhiteBox_004 correct frequency, waveband and also | not covered
the "M" symbal.
Radio
y . (Il not
REQOO1 4 radio needs to be designed. executed)
The radio should be able to tune to four
REQOD2 different Wavebands:, LW, MW, SW & |not covered
< | FM. v
Table of Contents All Test Cases i
(L Requirement Coverage
(1 All Requirements Tast
] A 3 Name Description Test Objective Execution
Result
Check that the radio
: cannot be tuned to a Requirement_CD_WhiteBox_001
ebwhiteBox:001a frequency outside of the | {Requirement) M Passed
limits for LW waveband.
Check that the radio
. cannot be tuned to a Requirement_CD_WhiteBox_001 .
ChwhiteBoz:001b frequency outside of the | {Requirement) M Failed
limits for My waveband.
Check that the radio
S cannot be tuned to a Requirement_CD_WhiteBox_001
CoWhiteBors001c frequency outside of the | {Requirement) M Passed
limits for SW waveband.
Check that the radio
; cannot be tuned to a Requirement_CD_WhiteBox_001
CDWhiteBox_001d frequency outside of the | (Requirement) M Passed
limits for FM waveband.
Check that each preset
can be set to the minimum
and maximum frequency
for each waveband. Check X
FCwhiteBox_002 |that these presets are CD—WhItBBOX—DUQ . Failed
(Requirement)
remembered even after
the radio has been
switched off and then
< _.] back on. v

147

Execute the test requirement coverage template (TestRequirementCoverage.tpl) to
get a statement about the relation between a requirement and the corresponding test cases,
which cover a requirement in the model. The testing profile defines the stereotype
<<TestObjective>> which shall be used to setup a relation between a test case and a
requirement, which it covers. In general a test objective is a stereotyped dependency,
which can link on every element in the model.

- 33 TestContexts
- 83 TCon_Radio
+ L4 Association Ends
+ E Operations
+- & & Test Context Diagrams
- %, TestCases
- %, CDWhiteBox_001a()
- g TestObjectives
Il Requirement_CD_WhiteBox_001
+- o TestResults
#_ CDWhiteBox_001b()
=kl TestObjectives
L Requirement_CD_WhiteBox_001

This requirement coverage report focus especially on the dependency between a
requirement and a test case. The test requirement coverage report gives another view on
the model. At a glance the user is able to verify, that e.g. the requirement
“Requirement CD WhiteBox 001” is covered by the test cases CDWhiteBox 001la,
CDWhiteBox 001b, CDWhiteBox 001lc and CDWhiteBox 001d, where
CDWhiteBox 001b is currently FATLED and in result the requirement
“Requirement CD WhiteBox 001” is not fulfilled.

=

~
Table of Contents When the Radio is switched on, it should
[Requirement Coverage REQD18 tune to the previous Waveband and not covered
All Requirements Frequency.
[([All TestCases CDWhiteBox_001a
(Il Passed)
CDWhiteBox_001b
Check that the radio cannot be tuned to (Ml Failed)
Requirement_CD_WhiteBox_001 | a frequency outside of the limits for CDWhiteBox 001c
each waveband. | Passed)_
CDWhiteBox_001d
(Il Passed)

SDWhiteBox_001

Check that the radio can be switched (Ml Passed)

SD_WhiteBox_001 kg

Check that when the radio is switched

on, that it remembers the waveband SDWhiteBox_002

SD_WhiteBox2002 and frequency that had previously been (. Aborted)
selected.
Check that the Radio can be (Sﬁwnh‘;tteeox_DUB
SD_WhiteBox_003 automatically tuned forwards and
executed)
backwards.
4 ‘ﬂ v

In opposite to the view “All Requirements”, the report also shows a table with “All Test
Cases” of the model. The “All Test Cases” view is assistant to check, whether a test case
has a test objective.

148

Some items in HTML report e.g. requirements, test cases test results etc. are linked, so the
user can easily browse to more detailed information pages.

Requirement Requirement_CD_WhiteBox_001

Description no description
AR Check that the radio cannot be tuned to a frequency outside of the limits
Specification
for each waveband.
Package Radio_TestPlan
Full Path RequirementsPkg: : Radio_TestPlan.Requirement_CD_WhiteBox_001
Covered by CDWhiteBox_001a (@l Passed), CDWhiteBox_001b (M Failed),
Test Case CDWhiteBox_001c (Jl Passed), CDWhiteBox_001d (§l Passed),
: : Anchored CDWhiteBox_001a {Operation), CDWhiteBox_001b (Operation),
Requirement_CD_WhiteBox_001 Elements CDWhiteBox_001c (Operation), CDWhiteBox_001d (Operation),

Customizing the Test Report

The test report template is customizable to fit specific users requirements. Follow the
Rhapsody ReporterPLUS documentation how to adapt it to your needs.

Using the TestConductor API

Similar to Rhapsody, TestConductor provides an API that can be used to access
TestConductor functionality from

e VBA Scripts
e Programs using the Rhapsody COM API
e Programs using the Rhapsody Java API

In order to use the TestConductor API the Rhapsody API function
“IRPApplication::runHelper(String)”” must be used. In order to apply this function
correctly, one has to provide as an argument a valid TestConductor command.
Additionally, before the “runHelper” function can be executed, an appropriate model
element (e.g. a TestCase) must be selected by using the Rhapsody API. A typical
sequence would look as follows (using VBA):

Set app = GetObject(, "rhapsody.Application")

Set proj = getProject()

Set testcase = proj.findElementsByFullName("TestPackageA.TestContextB.TestCaseC")
‘ highlight the selected element

testcase.highLightElement();

‘ now one can execute a TestConductor command

app.runHelper(“Execute TestCase Sync”)

149

The sample “CppSamples/TestConductor/TestConductorAPI” shows how to access the
TestConductor API from within VBA scripts and Java programs. Additionally, the sample
“CppSamples/TestConductor/CppTestAutomationSample” shows how to use the APl in
order to automate your testing workflows..

Available TestConductor APl Commands

The following TestConductor APl commands are available and can be called by using the
“runHelper” Rhapsody API function:

Applicable to TestCase elements:

“Edit TestCase SDInstances”
“Update TestCase”

“Build TestCase”

“Execute TestCase”

o Performs asynchronous TestCase execution, i.e., the function returns
immediately and the execution of the TestCase is performed in a
separate thread. The API script has to ensure itself (e.g. by waiting a
specified amount of time) that the TestCase execution has finished
before additional TestConductor APl commands can be executed.

“Execute TestCase Sync”

o Performs synchronous TestCase execution, i.e., the function returns
only after the execution of the TestCase has finished. This ensures
that subsequent TestConductor APl commands are only performed
after the TestCase execution has finished. This is the preferred way of
executing TestCases via the TestConductor API.

Applicable to TestContext elements

“Create SD TestCase”
“Create Flowchart TestCase”
“Create Code TestCase”
“Update TestContext”
“Build TestContext”
“Execute TestContext”

o Performs asynchronous TestContext execution, i.e., the function
returns immediately and the execution of the TestContext is
performed in a separate thread. The API script has to ensure itself
(e.g. by waiting a specified amount of time) that the TestContext
execution has finished before additional TestConductor API
commands can be executed.

“Execute TestContext Sync”

150

o Performs synchronous TestContext execution, i.e., the function
returns only after the execution of the TestContext has finished. This
ensures that subsequent TestConductor APl commands are only
performed after the TestContext execution has finished. This is the
preferred way of executing TestContexts via the TestConductor API.

e “Execute TestPackage”

e “Update TestArchitecture”
Applicable to TestPackage elements

e “Create TestContext”

e “Update TestPackage”

e “Clean TestPackage”

e “Build TestPackage”

e “Execute TestPackage”

o Performs asynchronous TestPackage execution, i.e., the function
returns immediately and the execution of the TestPackage is
performed in a separate thread. The API script has to ensure itself
(e.g. by waiting a specified amount of time) that the TestPackage
execution has finished before additional TestConductor API
commands can be executed.

e “Execute TestPackage Sync”

o Performs synchronous TestPackage execution, i.e., the function
returns only after the execution of the TestPackage has finished. This
ensures that subsequent TestConductor APl commands are only
performed after the TestContext execution has finished. This is the
preferred way of executing TestPackages via the TestConductor API.

Applicable to Class elements

e “Create TestArchitecture”

Defining Callbacks for TestConductor functions

In addition to using the TestConductor API directly, one can also execute automated
scripts after certain TestConductor actions like e.g. creating test architectures. In order to
do this, one can use triggered helpers as provided by Rhapsody. For instance, to specify
that after test architecture creation a certain helper should be activated automatically, one
has to do the following steps:

e Define a helper with the Helper Trigger “After Add Element”. The helper can
be implemented e.g. using a VBA script or by an external program that uses
the Rhapsody API.

151

‘Menu content:

......

......

Create TestArchitecture
Clean TestComponent
Update Testarchitecture
Execute TestContext Sync
Execute TestPackage Sync
Load TestResults

Set RTC SilentMode

Reset RTC SilentMode
MyHelper

1=

Helper parameters

Maodule: |[Modulel

Macro name: ! ShowSomething
Applicable To: |

Project Type: |

Helper Trigger: | After Add Element

Type
(O Extemal program (%) VBA macro

Walt tor completion

Show in Tools menu

0K

J |

Apply

][Cancel]

e Now, when doing “Create TestArchitecture”, after the test architecture has
been created the specified helper is invoked automatically.

Besides “Create TestArchitecture”, helpers with helper trigger “After Add Element” are
also invoked automatically for all other TestConductor functions that create new elements,

like e.g. “Create Code TestCase”.

152

Advanced Test Definition

Specifying Requirements with Sequence Diagrams

Sequence diagrams play a dominant role in the TestConductor test process. They are a key
means for the graphical specification of tests, and enable TestConductor to visualize
design flaws.

Graphical Feature Support

TestConductor supports the standard UML sequence diagram elements, as available in the
Rhapsody sequence diagram editor. However, some of these elements are not yet fully
supported.

TestConductor supports the following graphical features:

.

Test component lines, which specify classes with driver operations or stub
operations

Test context lines, which specify the boundary of the system under test including
their test components

Environment lines, which specify the boundary of a system under test (only
animation based testing mode)

Actor instance lines for reactive actor classes (those containing state charts). These
classes represent external behaviour against the system under test.

Obiject instance lines, which specify the communication behaviour inside the
system under test

Horizontal and slanted message arcs between object instances (including actor
instances), which specify events, triggered operations, operation calls, and their
argument values. Unspecified messages (messages with realization unspecified)
and unrealized message (messages with Stereotype unrealized) are ignored.

Messages to itself, which specify that the source and the target of events and
operation calls is the same object instance.

Dataflow messages among object instances.

Condition marks, which specify synchronization points in a sequence diagram
(only animation based testing mode)

Events originating at the environment axis, which specify that external events
trigger the system under test.

LN

Only assertion based testing mode: Interaction operators “opt”, “alt”, “loop”,

LN

“break”, “consider”, “parallel”

Synchronous and Asynchronous Messages

Rhapsody supports the concepts of synchronous and asynchronous messages. Both of
these concepts can be used when you define and execute tests.

153

h 4

EvOfHook)
wDialTane(

% mEsmsesceney . g o
avDigitDial2d(D gitzﬁ' Digit1)

E'vF: elease

evDigitDia ed{EigiLre caivergligit2)

-! _~ _________________ l'

Note the following:

+ Only event messages, which are asynchronous, can be interfered by another
message.

+ Operation calls are synchronous and do not admit any interference.

TestConductor associates for every event message in a sequence diagram two actions—
sending and receiving. In opposite to event messages TestConductor associates only one
action to operation calls and dataflows. During a test execution with TestConductor, you
can drive a specified sequence diagram and monitor (in the execution dialog) the total
number of actions and those that passed successfully.

Linear and Partial Order (only animation based testing mode)
TestConductor can interpret a sequence diagram either in linear order or in partial order
mode. To understand why partial order interpretation of sequence diagrams is sometimes
necessary to specify monitors, consider the following example. Assume that the
companies Companya and CompanyB want to set up a conference call. You want to
monitor the situation that both parties are eventually connected to the conference call. The
following sequence diagram specifies that each party dials a conference ca11nr ().
Regardless of the order the parties dial and connect, the monitor must be fulfilled
whenever both parties have connected. In the sequence diagram every message CallNr ()
specifies two ordered actions:

¢ Sendingthe CallNr () eventby a party

¢ Consumption of the Cal1Nr () event by the telephone corresponding to the
calling party

154

BTC BTC_Telephone IBM IBM_Telephone

| CallNr()

/
L

If you had only linearly ordered monitor sequence diagrams, you could not express the
required independency of the connection order. Note that there are six possible dialing-
and-connection orders for the parties:

(CompanyA Dial - CompanyB Dial - CompanyA Connect -
CompanyB Connect)

(CompanyA Dial - CompanyB Dial - CompanyB Connect -
CompanyA Connect)

(CompanyA Dial - CompanyA Connect - CompanyB Dial -
CompanyB Connect)

(CompanyB Dial - CompanyA Dial - CompanyB Connect -
CompanyA Connect)

(CompanyB Dial - CompanyA Dial - CompanyA Connect -
CompanyB Connect)

(CompanyB Dial - CompanyB Connect - CompanyA Dial -
CompanyA Connect)

Every sequence diagram interpreted in linear order could specify only one of these
possible connection orders (for example, the linear order of the connections shown in the
sequence diagram considered above is “CompanyA Dial - CompanyB Dial -
CompanyB Connect - CompanyA Connect”, because the evaluation order is from top
to bottom). Hence, with linear order you must define six different monitor sequence
diagrams. Note that five of these monitors would lead to a failure during testing; only one
would pass in every test execution. If you interpret this sequence diagram in partial order,
it represents all the possible (six) orders. This is due to the fact that you do not enforce any
order between pair wise independent sending and receiving of the ca11nr () events.
Sending and receiving of an event on the Companys side is independent from the
CompanyAsme.

Test execution with partial order might result in extreme compilation times.
TestConductor has a facility to interrupt the execution when it takes too long.

155

x|
Ok
MNarmne Status File/Iteration
’f Regression_Test_Tel... MOT EXECUTEC

Prepaning TestCasze Execution... Pleaze W ait.
TestCaze containg SDInstance(z] with partial arder or
blackbox mode.

T estCaze Compilation may take a long time.

To abart press Quit Button, -

By pressing the “Abort” icon in the icon toolbar aborts the compilation and test case
execution.

Note: Partial order set together with the driver and monitor option implies that driving
the input events is independent from monitoring the internal messages. To avoid
the arising nondeterminism, TestConductor first drives inputs and then monitors
internal messages. TestConductor chooses one valid order of messages to be
driven (in particular, this order changes in general when the same sequence
diagram test case is executed repeatedly). Such nondeterminism does not exist
for linear order interpretation, because it is a precise order between all messages in
a sequence diagram. Also note that there is no nondeterminism for monitor only,
because you decide when you inject all inputs, and TestConductor monitors
internal messages as they appear in the running model.

Parameters

One of the most important aspects of reusing sequence diagrams is the possibility to
parameterize them. By using parameters such as “X” and “Y” as object names for
sequence diagram instances, all combinations of objects of the corresponding classes can
be treated within one sequence diagram. You must instantiate these parameters with
different concrete objects of the system.

Parameters are used to specify sequence diagrams, which can be used as test patterns or as
generic sequence diagrams in test definitions. Parameterized sequence diagrams can be
used more than once in the same test configuration, or they can be used in various contexts
in different test configurations. Parameters can be applied for instance names and for
argument lists of events and operations. Instance names in a Rhapsody sequence diagram
must be either concrete names or parameters. For example, if an instance line is labelled
“X1:Telephone”, x1 IS a parameterized object instance name of class Telephone that
will be mapped to a concrete object instance name when the sequence diagram is
instantiated as part of a test definition. In other words, x1 can be mapped to PBx[0] -
>itsTelephone [0]. Parameters are useful when you are defining multiple tests with a
similar structure, such as the PBX sample where Telephone 1 can connect to
Telephones 2, 3, and 4. Using parameters, you can specify sets of similar tests by

156

specifying one common sequence diagram for these cases. To manually generate multiple
test cases, simply bind the sequence diagram parameters to various concrete values.

In the following example, the sequence diagram contains the parameters caller,
receiversLine, receiver, nrl, and nr2. The first three parameters represent
parameterized instance hames, whereas the last two describe attribute values for
parameterized events. Due to the concept of parameters, this sequence diagram can be
used as a test pattern to specify and execute caller-receiver tests for the pairs of
telephones. This is done by instantiating the sequence diagram several times.

=0l x|

E‘ TestScenario: Ringing_Another_Party *

ENY I caller:TeIephone| receivers . elLi.. |l7re...:TeIephone|

ENV caller:Teleph receiversLine: receiver: Telep
one Line hone

Z l I I

% evDigitDialed{Digit=nr1) ‘ | |

7 | | |

A -

% evDigitDialed(Digit=nr2) | | |

7

Z] | evRing() |

7 —

Z | |

7

7 | l

’ =&
|

2
«| | »

Defining Parameters

TestConductor supports test definitions based on sequence diagrams, whose instances
either have a concrete or parameterized name. Parameterized name means that it is not a
valid, or concrete, object name as usually used in Rhapsody. You can also use an
anonymous class name that is without a concrete name or parameter. In this case, in
accordance with Rhapsody, the class name is internally expanded to the unique concrete
object instance. During test execution, sequence diagrams are animated in relation to the
default names. Note that parameters have no default values. You can specify parameters
for a sequence diagram by declaring them in the Tag RTC_SDParameter which is
available for each test scenario sequence diagram.

To declare parameters for a sequence diagram do the following:
1. Open a Rhapsody sequence diagram in a Rhapsody project.

2. Inthe names pane, specify the objects names of the classes Telephone and Line.
Give a parameterized name, such as caller:Telephone. Give the concrete names
for another instance depicted in the sequence diagram like PBX[0] -
>itsTelephone[0]: Telephone. YOu can leave an instance “anonymous” like
Line. Rhapsody considers such a specification as a concrete class instance with the
default name PBX[0]-> itsLine[0]:Line.

157

— —
Eny callerTplepho receiversLine: receiver.Telep
ne Line hone

7 | 1 l
7 eDigitDialed(Digit=nr1) | | |
7

7

Z evDigitDialed(Digit=nr2) : i :
7

Z | | evRing() [
7 | [2

3. Inthe Rhapsody browser, click on the cross beside of the name of the test scenario
sequence diagram to open the tag view.

EE—") _Té:stScenarios

-4y Animated Capture_all_Telephones_0
-4y Answering_Call

-y Calling_Busy_Phone

- Receive_¥X

=4 FE?ruging_Aru:nther_F'.art';.n'

- B Tags

- RTC_ActivationCondition
b RTC_SDParameters
@-E stub_OFfHook

-4 Stub_Ring

-k X _calls_Y

de % calls_¥_when_offhook

4. Open the Feature dialog of the corresponding RTC_SDParamters tag
5. Click into the Value field and type the name of the parameter.

Tag : RTC_SDParameters in Ringing_Another_Party 21

General I Description |

Name: lRTC_SDParamelers LI
Applicable to: Jid

Type: Sting i [g'
Value: lnr1 2 caller receiver receiversLine _'

Note: Make sure that you type the identical names of parameters as specified in the
current sequence diagram. TestConductor cannot determine misspelling.

Note: TestConductor adds properties to the sequence diagrams when models are opened,
in case these properties were not added before. This is why existing models with
sequence diagrams are marked as changed (red icon) along with the sequence
diagrams when projects are loaded for the first time after TestConductor was
installed.

158

If a sequence diagram contains two or more parameters, separate their names using
commas, then click OK. The following figure shows how to specify multiple parameters.

You can apply parameters to message argument lists to specify more flexible, generic
sequence diagrams as templates in test definitions. Parameterized arguments of messages
are used, for example, when input stimuli correspond to parameterized object names in the
same sequence diagram or in the same test configuration.

To extend the parameter list of a sequence diagram with parameterized arguments, do the
following:

1. Open the sequence diagram in the Rhapsody sequence diagram editor and specify
event or operation arguments as parameters inserting their parameterized names in the
object pane. As an example, in the following figure, values of the pigit argument of
the evDigitDialed event are specified as parameters nr1 and nr2

ENY callerTelepho receiversLine: receiver:Telep
ne Line hone

Z 1 | |

7/ eDigitDialed(Digit=nr1) | ! |

. | | |

2 5%

é evDigitDialed(Digitnr2) | ' |

7

22 i | evRing() |

7 | | g

2. Using the Rhapsody browser, open the Feature dialog of the corresponding
RTC_SDParamters tag and extend the list of the parameters typing “nr1, nr2” in
addition to the existing parameters in the Value field.

3. Click OK to accept the change of the parameter list.

The specification defined with the generic “Ringing_Another Party” sequence diagram,
says that whenever a calling telephone is taken off the hook and dials an extension, the
receiving telephone rings. Note that the sequence diagram does not specify which
telephone is calling, which one is the receiver, nor the extension dialed.

Parameter Mapping

You can consider Rhapsody sequence diagrams with parameters as “classes of sequence
diagrams”, whereas sequence diagrams with parameters mapped to real objects represent
“instances of sequence diagram classes.” One parameterized sequence diagram can be
used in various contexts: in different test configurations, or in the same test configuration
with different parameter mappings. It catches several requirements similar in structure
(order of messages) and different only in the names of the involved instances.

As an example, the “Ringing_Another Party” sequence diagram can specify that
Telephone 1 calls Telephone 4. To do this, map its parameters to the following
object names in the PBX model:

caller: PBX[0]->itsTelephone[0]
receiversLine: PBX[0]->itsLine[3]

159

receiver: PBX[0]->itsTelephone[3]
nrl: 1
nr2: 4

The following table lists the extension for each telephone.

Telephone Extension
Telephone 1 11
Telephone 2 12
Telephone 3 13
Telephone 4 14

In this example, mapping parameter nr2 to 3 instead of 4 leads to the “concrete”
specification corresponding to “Whenever Telephone 1 dials the extension of Telephone 3,
Telephone 4 rings”. TestConductor will show that this specification cannot be met by the
real behaviour of the model.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “’OK”” will be
converted to “OK”.

Using Time Interval for Delay Driving from Environment and
TestComponents

TestConductor provides capabilities to automatically drive messages (events, operations or
triggered operations) with a certain delay. Users can specify that TestConductor should
drive external messages or messages from a TestComponent to the SUT with a certain
time delay. Whenever a message must be driven, users can specify that TestConductor
waits for a certain amount of time (ms, sec, min) in order to delay actual message
generation. This is expressed on the sending instance line (either the system border or a
TestComponent) with the time interval notation of the sequence diagram editor.

Note: TestConductor will regard only time intervals between messages, if driving
messages are defined from the ENV line and the time interval definition is also
specified on the ENV line or if driving messages are defined from a
TestComponent instance line and the time interval definition is specified on the
same TestComponent instance line.

Any Time Interval on a SUT isnatnce line will be ignored.

Time delays will be specified with the time interval notation in sequence diagrams.
TestConductor supports time intervals if they are associated with system border or
TestComponent instance lines. The label of a time interval specifies the time unit (ms,
sec, min)and atime value. Essentially, there are two slightly different Time Interval
annotations with a slightly different execution semantics. The first variant uses the
following syntax:

Syntax: > 5 sec

160

Here, TestConductor must wait at least 5 seconds before it may drive the next message.
Other time interval formats are “> 500 ms” and “> 5 min”. TestConductor creates a
timer in the tested application which elapes after the amount of time specified in the Time
Interval.

The start point of a time interval is always associated with the next message point above
the time interval (on any instance line). The end point of a time interval is always
associated with the next message point below the time interval (again on any instance

line).
PB PB PB PB
gv__ffHook()
Z el gl
2 =5
A lOpenConnectioh()
S
ORRRG O'penConnectiph()
ga‘vOr:gmateCa‘)
evDialTone()) — —o_ |
- I—
Z i
/_e'legltDlaIed(,D git=1)
o
Z T
o

After driving evOffHook () and observing evoriginatecall () TestConductor must
wait 5 seconds before it may drive evDigitDialed (Digit=1) .

TestConductor must monitor all system reactions before evbigitDialed (Digit=1),
including evDialTone ().

The second variant of Time Intervals are those which uses the following syntax for time
annotations:

Syntax: >> 5 sec

When using this syntax, in contrast to the “> 5 sec” case TestConductor does not create an
own application timer when starting the time interval. Instead TestConductor will use the
time of the tested application. As a result, TestConductor will only proceed if the tested
application time increases at least the specified amount of time. In contrast to the “> 5 sec”
syntax TestConductor may proceed later than the specified amount of time, since the
tested application time might increase to a larger amount of time than the specified time
interval.

TestConductor also allows that time intervals overlap if several messages to be driven are
constrained via time intervals. This means, TestConductor will manage several timers for
the driven messages at the same time, no matter if they are specified on the same instance
line or on different instance lines. For every time interval there always exists a unique
predecessor and successor message to be driven in the sequence diagram.

Activation Conditions (only animation based testing mode)

Activation conditions are used to specify the point in time during model execution when
sequence diagram instances become activated. You can use activation conditions to model
a predecessor order between several sequence diagram instances in a test definition.
Activation conditions can specify a starting point of sequence diagram instance

161

simulation, such as event sending or event receiving, which in turn can be a result of the
behavior defined by another sequence diagram. TestConductor supports conditional
expressions for events and conditions in the following form:

ObjectName->CondName (Parameters)

In this syntax:

¢ ObjectName isa parameterized or concrete name of a class instance or an ENV
(environment variable), which can be represented by the system border.

CondName is a particular kind of event, state, or method action.

Parameters IS a state of a state chart, or the name of an event or method, and
the receiver of this event or method, depending on the CondName.

The exact syntax is described under Syntax for Activation Conditions / Condition Marks
(see page 250) in the appendix.

Note: Rhapsody does not perform any static syntax checks on these conditions.

You can associate exactly one activation condition with every sequence diagram. The
trivial activation conditions are TRUE and FALSE. Every sequence diagram instance used
in a test inherits the activation condition specified in the property dialog of the sequence
diagram.

Defining an Activation Condition

Activation conditions are stored as additional tag RTC_ActivationCondition in the
corresponding test scenario sequence diagram. Activation conditions can be defined with
respect to the condition language definition, as follows:

1. Inthe Rhapsody browser, click on the cross beside of the name of the test scenario
sequence diagram to open the tag view.

=) E"p TestScenarios

Lo y, Animated Capture_All_Telephones_0
&y Answering_Call

&'y Calling_Busy_Phone

&y Receive_¥X
Ringing_Anaother_Party
%, Tags

L % RTC_ActivationCondition

|- -

[T

RTC_SDParameters
Stub_OFfHook
Stub_Ring
% _calls_Y
r, %_calls_¥_when_offhook

2. Open the Feature dialog of the corresponding RTC_ActivationCondition tag

3. Click into the Value field and type the condition. You can specify one activation
condition.

162

Test Scenario : SDTestScenario_0 in SD_with_alt

| General | Descripion | Rielations | Tags | Properties|

= TestBehavior

i TestScenario _
RTC_ActivationCondition . TRUE

|| | | RTC_SDParameters

5. Click OK.

Note: To make activation conditions visible in the sequence diagram, you can draw
notes with their descriptions.

Condition Marks (only animation based testing mode)

TestConductor enables you to specify conditions for condition marks on instance lines
with the same syntax as activation conditions. Condition marks in sequence diagrams can
play the following two roles:

+ Synchronize several sequence diagram instances executed concurrently.
+ Specify a stubbing behaviour which can appear during execution.

As an example, you can add the following condition mark for the instance of the class
Line inthe “Ringing Another Party" sequence diagram:

receiversLine->IsIn (ROOT.InService)

Sequence Diagram: Ringing_Another_Party Hi=] B3

caller: receivers receiver
Telephone Line:Line Telephone

|»

evOffHook()

evDigitDialed(Digit=nr1)

evDigitDialed(Digit=nr2)

-

recei ersﬂ@!@ﬂn%ewic

evRing()

NANANNNRANANNNNN

e
< [

Testing the requirements specified by this sequence diagram, TestConductor will drive the
first three events. After that, it will proceed only if the condition of the condition mark has
the value TRUE. Otherwise, some other activities in the system must be performed to

163

change the value of the condition. You can specify these activities using other sequence
diagrams driven by TestConductor. They can also be driven manually, if it has not been
yet implemented as a part of the system. Changing the value of the specified condition to
TRUE Will trigger TestConductor to continue monitoring and driving this sequence
diagram.

In case there are two or more condition marks defined in a row, TestConductor will check
the first only. TestConductor will evaluate each of the following condition marks with a
new system activity, if the previous condition mark was TRUE. This is the default
TestConductor behaviour.

TestConductor can be configured to check the reached condition and following conditions
without system activity, till one condition mark evaluates to FALSE. To change the default
TestConductor behaviour change the property

TestConductor: :TestCase: :MultipleConditionCheck Of the test case from
FALSE t0 TRUE.

Test Case : atg_tc_002 in TCon_CashRegister

General] Description | Implementation | Arguments | Relations | Te

View all ~

=!| TestConductor

='| TestCase 7
ATGTestCase O
CalloperationsOnlywhenCallstackEmpty D
CreateSDForFailedsDInstance O
ExecuteTestWithTracer O

ExecutionIdleTimeout

0
MultipleConditionCheck
i

ResetappBeforeStartTest

Note: TestConductor will ignore condition marks during test execution when the syntax
of the condition mark is not valid.

Preconditions (for SysML/Harmony)

For SysML/HARMONY models, i.e for SysML models that contain the HARMONY
profile, TestConductor provides a special kind of condition, so-called preconditions. With
preconditions, in SysML/HARMONY maodels one can set attributes of SUTs to specifed
values. This is useful whenever the behavior of the SUT depends on values of local
attributes. In order to define a precondition in a test scenario, add a condition on the life
line of the SUT instance that contains the attribute, and specify the value the attribute
should have:

164

«3UTs

TCon_AitsfA

TCon_AitsTC
_for_itsB_naf_
ATC for_itsB

=precond=
i1=12
51 ="Peter"

In the example depicted above, a precondition is specified that defines value “12” for the

attribute “11” and value “Peter” for attribute “s1” of block A. When executing the test
case, and TestConductor reaches the precondition, it sets the specified values for the
attributes. When the test case continues, now the behavior of the SUT reflects the new
values for the attributes. Currently, the usage of preconditions is restricted to
SysML/HARMONY models. If multiple attributes should be set by a precondition, the
attribute value specification must be separated by newlines in the condition mark.

Use Cases of Activation Conditions

This section describes some examples that use activation conditions. The main three
purposes of activation conditions are as follows:

+ To specify the starting point of sequence diagram simulation.

¢ To specify that one sequence diagram can be activated only when another sequence

diagram has already been activated or fully traversed (during simulation).

Specifying the Starting Point of Simulation

Activation conditions specify a point in time when the corresponding sequence diagrams

must be activated. Consider the parameterized “Answering_Call” sequence diagram

shown in the following figure:

165

= Sequence Diagram: Answering_Call

teCEIver: receivers
Telephone Line:Line

Activation Condition
versLine-=EventSent(receiver evRing())A
receiver-=lsin(ROOT| Ready. |dle)

re

evOffHook()

¥

evAnswerCall()

L 4

NI

-

This sequence diagram can be used to test, whether any telephone can properly answer a
call. This property will be checked starting in the system state specified in its activation
condition:

¢ When the object defined as receiversLine has sent the event evRing () to
the corresponding Telephone receiver.

¢ When the object defined as receiver stays in its basic state Idle.

Specifying Ordered Predecessors (only animation based
testing mode)

Through activation conditions, you can define a predecessing order between instances of
different sequence diagrams checked during the same test execution.

Example 1: Exact Predecessing
Consider two sequence diagrams that will be stimulated one after another:

¢ “Ringing_Another Party” (shown on page 157)
¢ “Receive X", shown in the following figure:

166

Sequence Diagram: Receive_X !E]E I

receiver; receiversLine:Line
Telephone
// A
/ Activation Conditipn: i
% receiversLine->EyentSent(receiver, evRing())
/g!OﬁHook@

evAnswerCall()

NN

alk()

evTalk()

nHook()

SN

B2kl

|

Note that the exact order can be set only between “concrete” sequence diagram instances,
rather than parameterized sequence diagrams. Consider the following parameter mapping
for the “Receive X sequence diagram:

receiver: PBX[0]->itsTelephone[2]
receiversLine: PBX[0]->itsLine[2]

The activation condition of this sequence diagram specifies the starting point when Line
3 has sent the evRing eventto its Telephone 3. This condition can become TRUE
when the corresponding instance of the “Ringing_Another Party” sequence diagram (with
the similar parameter mapping) has been fully traversed.

Although the sequence diagrams “Ringing Another Party” and “Receive X have similar
parameter names—receiver and receiversLine—they can be mapped to different
values. In such a case, two sequence diagram instances will be unordered. Therefore,
parameter names in sequence diagrams can be considered as local variables with values in
the scope of the corresponding sequence diagrams.

Example 2: Interleaving the Execution of Two Sequence Diagrams

The following two sequence diagrams are activated during a test execution one after
another:

The “X _calls_Y” sequence diagram, shown in the following figure:

167

Sequence Diagram: X_calls_Y H=] B3

caller: callers
Telephone Line:Line

|»

Activation Condition i
| MNOT (callersLine-=EventReceived(caller, evRing ()

% evOfiHook()

K evDialTone()
/igitDiaIed(Digit:recei\fersDigitl)
/efaigitDialed(Digit:reteiversl:ligitzg
Z evRelease()

s

[~]<]

This can be used to test whether any telephone can start and finish a communication.
Moreover, this property will be checked only starting from the specified state of the
system—when the object defined as callersLine has not received the event evRing
from the corresponding telephone caller.

An instance of the “Receive X" sequence diagram, described on before can be activated
after the corresponding instance of the “X calls Y” sequence diagram has been partially
traversed. To obtain this order between sequence diagram instances, the mapping for the
parameters receiversDigitl and receiversDigit2 from the “X calls Y”
sequence diagram must correspond to the extension number of the Line name mapped to
the parameter receiversLine from the “Receive X” sequence diagram.

Note that the predecessing order is defined implicitly. During test execution, containing
instances of these two sequence diagrams, Test Conductor first activates an instance of
“X calls_Y”, drive the events evOf fHook, evDigitDialed, and monitor the event
evDialTone. After driving the event evDigitDialed (Digit= receiversDigit2),
TestConductor activates the corresponding instance of the “Receive X" sequence
diagram. It monitors the event evRelease only after the instance of the “Receive X”
sequence diagram has been fully traversed. The exact order of the sequence diagram
instance execution is derived from the system behaviour, but is also bounded by the
activation condition.

Specifying Return Values and Output Values

Users can specify expected return values and output values for operation calls. To specify
a return value for an operation, open features dialog of an operation in a sequence
diagram. Specify the expected return value in the Return Value field.

168

Message : op_int B
General I Propeties |
k MName: |up_inr L‘
Stereotype: | _v_]
Mezsage Type: I Frimitve Op=ration L‘
Sequerce: |2
Arguments: [a=[3.4],b=2,c = In:3;0ut3
Fetum alus: |4 -
Realization. |5 = Features.“!
= Gerder A -
= e A T Return Value 4
pcscliption:
Locatcl OK | Apply ”
Consider operation 4 =op int(a = [3..4], b = 2, ¢ = In:9;0ut:3) inthe

following sequence diagram. It returns integer values. Assume we specify integer value 4
as the return value.

' sequence Diagramc sd_A in Default
i
|

/W' il -
d=op intfz=[3.4/b=2 c=In30ul3)

// 4 |

-

-

FINT I

TestConductor will monitor the actual values as specified in the dialog when an operation
call returns and will check if the actual return value conforms to the specified value or not.

Note:

Using Macro oM RETURN () : TestConductor is using Rhapsody’s animation
capabilities to perform test execution. If an operation returns a value then this
value is by default not animated in Rhapsody. In order to get animation
information about returning operations it is mandatory to use a special Rhapsody
macro OM_RETURN () instead of statement return() for the purpose of test
execution. The macro is pre-defined in “\Share\LangCpp\aom\aommacro.h”.
In the above example suppose that operation body of op int (int a, int b,
int c) simply contains one statement ,,return 4; . This must be replaced by
OM_RETURN (4) ; to be able to check such return values with TestConductor.
Since this special macro is only needed for testing purposed it is already
embedded into #i fdef-statements. The #i fdef statement guarantees that the

169

macro is only used for testing purposes, while the standard return-statement is
used when generating non-animated code.

Note: Using Macro oM RETURN vOID: If an operation returns with a void value, then
TestConductor can check that the return indeed happens when using
OM_RETURN_ VOID.

Note: Using Macro OMREPLY(): Triggered operations returning values is realized

using reply().TestConductor can check that the return indeed happens when using
OMREPLY () .

Note: output parameters of type uchar and 1long double are not supported.

Note: range specification for return values (e.g. " [1..4]") are not supported.

If an actual return value does not conform to a specified value, then a red message is
drawn. The message is labelled with

"<Specified operation and its parameter> Operation Call returned -
Return value does not match. Expected values are: <Expected

operation and its parameter list>"
For example:

“4=o0p int (a=1,b=2,c=3) Operation Call returned - Return value does
not match. Expected values are: 5=op_int (a=1,b=2,c=3)".

Note: If we have pointer types or structures as output and infout parameter types then
serialization functions must be added to the macro in order to be able to test the
value with TestConductor.

Note: If we have pointer types or structures as return types then serialization functions
must be added to the return macro in order to be able to test the value with
TestConductor

Specification of the Output and in/out Values

Suppose we consider an operationm (int pl, int p2, int p3, int p4), where pl
and p2 are input parameters and p3 is an output parameter, and p4 is an in/out parameter.
In a sequence diagram users can specify the expected input parameter values and the
expected output and infout parameter values. Output and in/out Test Execution parameters
are realized with call-by-reference. For instance, a sequence diagram message "m (p1= 3,
p2 = 5, p3 = 7, p4 = 9)" specifies that operation m () is called in the model with
input values p1=3 and p2=5, and with references to p3 and p4, i.e. m (3, 5, &p3, &p4).
Note that sp4 is an in/out parameter and hence is used as an input in the operation m () ,
too. Here, sp4 provides the value '9' for the call. The call returns with value p3=7 and
p4="2.

The infout parameter is specified in a sequence diagram with both input and output
parameters. The format of specifying an in/out parameter is

<parameter> = In:<in value>;Out:<out value>

170

Message "m(pl = 3, p2 = 5, p3 = 7, p4 =In:9;0ut:12)" specifiesthatm () is
called with "Input pl1=3”, "Input p2=5”, "in/out p4=9”.Messagem() returns
with "output p3=7, in/out p4=12". Both values for in/out parameter p4, the input

part and the output part are specified.

Output value checking can not be done for operations which originate from the
environment line and are generated by TestConductor. Checking of output values is
supported for all operations that originate from TestComponents, and for all operations
that do not start at the environment line and whose called operation uses OM_RETURN to
return values to the caller.

Users can record animated sequence diagrams. The animated sequence diagrams trace the
parameter values when operations are called, but they do not show the values of output
and in/out parameters when operations return. Hence, animated sequence diagrams can not
be used to check values of output parameters and in/out parameters. Users have to modify
animated sequence diagrams in order to extend it with relevant output information which
is not provided by Rhapsody's sequence diagram animation.

Suppose we consider an operationm (int pl, int p2, int p3, int p4), where pl
and p2 are input parameters and p3 is an output parameter, and p4 is an in/out parameter.
An animated sequence diagram might show "m(pl = 3, p2 = 5, p3 = *, p4 =
9)". In order to check output parameter p3 and the output value of p4 whenm () returns
users must add the required information. Example: "m (p1 = 3, p2 = 5, p3 = 7, p4
= In:9;0ut:12)".

Note: Out or infout values are only taken into account by TestConductor if also a return
value is given in the message specification (value or “don’t care”-star). That must
also be done for operations that do not have a specified return type (void
operations). Hence, the In:..;Out:... specification should only be used if a return
value has been defined, too. Otherwise the test execution will fail.

Note: Out values for some specific out arguments are currently not usable if the
corresponding setting of the property CPP_CG:: Type::Out specifies a pointer-type
instead of a reference-type.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

Ignoring Unrealized Messages

Messages with stereotype unrealized are filtered out and ignored in the test execution.

171

General I Pioperties I

Name: [eeDiftiook]

Stereotype: [unrealized =

Mezsage Type: | Even

Sequerce: |1

Aiganents: |
Retum Yalus: |
Realzaion: | # | Featuve&..' =
2 S S ¢ L
Gerder CYSTEM_EORDER Stereotype Unrealized

[Im (N

Receiver: PBR[D]>ilsTelephonel0] Telephone

Descipticn:

-

Locate | oK | Appiy ||

Open the Features dialog of the message then specify Stereotype as Unrealized. When
you are executing the test, we get a user warning that the message is ignored in the test
execution.

Note: TestConductor only supports single-stereotyped elements, but not yet elements
with multiple stereotypes.

Reference Sequence Diagram

Interaction occurrences and their corresponding reference sequence diagrams are specified
within Rhapsody. Defining tests with TestConductor is not affected by interaction
occurrences, since interaction occurrences are features inside sequence diagrams, while
tests are defined on the basis of sequence diagrams listed in the Rhapsody browser. If
sequence diagrams used in a TestConductor test contain interaction occurrences, then this
is not relevant for the test definition but it clearly has impact on the test execution.

TestConductor will substitute interaction occurrences with the scenarios specified in the
corresponding reference sequence diagrams for test execution. For TestConductor, it is
logically the same if users specify a scenario within one sequence diagram or if the
scenario is specified with interaction occurrences and reference sequence diagrams.
Whenever an interaction occurrence is reached, then the scenario as specified in the
reference sequence diagram is tested. Test control starts with the main sequence diagram,
and when a reference sequence diagram is reached, the control goes into a reference
sequence diagram, and as the execution of the reference sequence diagram is completed,
the control returns back into the main sequence diagram.

Consider the following main sequence diagram, “SD_A”, which has a reference to the
sequence diagram, “SD_B”.

172

Sequence Diagram: S5D_A =
PEX0)-= BA[0]»itsLine[0]: FBAD]-> PEA0)-= FBX0]-=» FEXN0)->
itsTelephone[0): Lina isCallRouter itsConnection[0]: itsLine[1]:Line itsTelephone[1]:
///t\EﬁHoolo \){ ‘ ‘ :I
ref EuRlngO
sD_B Ty
@gitbialed(blgi = 1)
evOTgitDialed(Digit= 2)

f“‘“-- T

?’/ R'm__ ewDigitDialed(Digit+ 1)

7 i

? e.\flgitDiaie_qEE)igit £ 2) |

/ "~ ~a

/ Iy mvDigitDialed(Digit= 1)

% Ny T

? evDigitDialeEEﬁ'iM____

Vo T~] hd
4| 7

This interaction occurrence refers to a sequence diagram with name “SD_B”, as seen
below.

OpenConnection)

DpenConnection)

e:rDriuinaieCaIIO
—_—

—_—

ewlialTone

_--"',J-H-—-,

FBX0]-> FBX[0}-=itsLine[d]: PBEXO}-= FBX[O}-=
itsTelephonejd): Line itsCallRouter: itsConnection[0]:
-
EvOniginateCall) —
____________)

In the sample sequence diagrams above testing sequence diagram “SD_A” with reference
sequence diagram “SD B” leads to the same result as if the interaction occurrence would

have been replaced with the scenario in “SD_B”.

The scenario which is going to be tested is:

—EvOffHook
—EvOriginateCall
— OpenConnection
— OpenConnection
—EvOriginateCall

(SD_A)
(SD_B)
(SD_B)
(SD_B)
(SD_B)

173

—EvDialTone (SD_B)

—EvRing (SD_A)
—EvDigitDialed (SD_A)
—EvDigitDialed (SD_A)
—EvDigitDialed (SD_A)

Note: Interaction occurrences are drawn on lifelines. Those lifelines have to be
contained in the reference sequence diagram.

TestConductor does not care if:

+ reference sequence diagram does not contain the same life lines as surrounded by
the interaction occurrence

reference sequence diagram contains fewer life lines
reference sequence diagram contains more life lines
reference sequence diagram contains other life lines

TestConductor just considers the provided life lines and the specified messages as relevant
test scenario and expects exactly those messages when the SUT is executed. For instance,
if the above shown sequence diagram “SD_B” does not contain the life line to the right
hand side, then message evoriginatecCall going to this life line is not part of the test.

Show As SD draws one new sequence diagram with all the messages which have been
monitored (green colour) or which are supposed to be monitored (blue colour), and also
failed messages (red colour). If a test contains a sequence diagram with one or more
interaction occurrences, then TestConductor draws still only one new sequence diagram
which shows all the relevant messages of the main sequence diagram and also the
messages from the entire referenced sequence diagram.

| case a TestConductor test is executed in linear order a situation which must be taken care
of is, when there is an additional message on the same level as of the reference sequence
diagram. Consider sequence diagram “SD_A” with the interaction occurrence. To the right
hand side of the interaction occurrence there is an additional message evRring, which is
independent from the interaction occurrence. In partial order execution this will be
considered as parallel. In linear order execution, TestConductor must determine a total
order on all messages. In sequence diagrams without interaction occurrences, this order is
determined graphically from top to bottom in a sequence diagram. In the case above, the
graphical order between messages in “SD_B” and between evRing is not specified.
Hence, TestConductor can not establish a total order based on the graphical information.
In this situation, TestConductor follows the following rules:

1. TestConductor considers all messages from top to bottom in total order unless the
upper boundary (graphically) of an interaction occurrence is reached.

2. Then all messages in the reference sequence diagrams are considered in total order

3. Then the messages to the right hand and left hand side of an interaction occurrence are
considered in total order (if those messages do exist).

174

4. If reference sequence diagrams contain new interaction occurrences then the same
rules apply.

If several interaction occurrences appear in one sequence diagram then the same rules
apply, i.e. there is a total order on interaction occurrences which is derived from the
graphical order.

If an interaction occurrence is not yet realized by a reference sequence diagram, then this
interaction occurrence is ignored for actual test execution.

If reference sequence diagrams are used to specify lifeline decomposition, then this is also
ignored by TestConductor for test execution.

Life Line and Part Decomposition

Life Line Decomposition Support for Testing (only
animation based testing mode)

Life line decomposition and their corresponding reference sequence diagrams are
specified in Rhapsody. For instance, consider sequence diagram “MainSD” (Figure 1)
which references “RefSD” (Figure 2).

The system border life line specifies the environment of the sequence diagram. Here, we
have four messages from the system border going to a logical object Te10. Te10 has not
been realized to a concrete class or object in the model. It is just a logical name for an
arbitrary telephone (<unspecified>). Itisadecomposed life line. We set the
decomposed life line to “RefSD” as shown in the diagram. Messages evOf fHook,
evDigitDialed and evOnHook () are sentto Te10 (the messages are also
<unspecified>). The MappingPolicy property of its life line is set to
ObjectAndDerivedFromRefSD.

175

Teld
ref RefSD

evOffHa ol

wDigitDiale diDigit = 1)
Hhialed(Digit = 21

/

ewRing()

evdfHo ol

OnHaak

b

f

A Y

=l ClassifierRole

ewflerting

r |

ewdnznerCall

=10] x|
PBXNI]-*
t=Telephone[1];

=

PBXD]-*
itsLine[1]:Line

rwRingl

ewhlering

ewhnsmerCall

L]
[=
[RersD > %

MappingPalicy

<

ObjactnndDerivadFrnrrRaFSD_-:D

Figure I . MainSD

In the “RefSD”, we can see that the messages that come from the system border of this
“RefSD” do match with the messages in the “MainSD” (evOffHook (),
evDigitDialed (), evOnHook ()).In the “MainSD”, these messages go from the
system border to the Te10 life line. Te10 is internally realized by the concrete objects

PBX[0]->itsTelephone[0],

PBX[0]->itsLine[0]

and PBX[O0]-

>itsConnection[0] Which also exchange some internal messages.

176

FPB=[D]-= FPBX[D]-=itsLine]0]: PBX0]-=
itsTelephone[0]: Line itsConnection[0]:

e OffH ook -

[ewOriginatecalg)

OpenConneaction)

//

evdriginateCalll

/” euDiaITuner \
“
whigithialed(Digif= 13
{%Waled([)igi =2)
\ ewDigithialediDigit= 1)
g\x\
i evDigitDW: 7

evbigithialediDigit
. ~

evmw
%

7 N

1)

2)

/CEJEHOD“O
f/ ___‘—‘——e.
avReleasel)
.-/ h\—‘__‘—‘____‘ﬁl::Iu:\:-:nl:a-nn.-:n:»d:iu:\nli)
eviloze(Source = 1)
7 R

DizconnechSource = 1)

.] =l

Fioure 2 : RefSD

We consider only the “MainSD” while defining the test in TestConductor. For actual test
execution, TestConductor will execute the “MainSD” and check if the messages sent
to/from Te10 in the “MainSD” are received/sent by any of the instances in the “RefSD”.
TestConductor knows only senders/receivers of the “RefSD”, i.e., TestConductor knows
only the instances in the “RefSD” but TestConductor does not know about the internal
messages between the instances in the “RefSD”. When message are sent to/from Te10 in
the “MainSD”, Testconductor only checks if these messages are received/sent by the
instances present in the “RefSD”.

In the sample, testing “MainSD” with reference sequence diagram “RefSD” leads to the
following order of messages that will be checked by TestConductor

¢ System border sends evOffHook () to Tel0 in the MainSD
¢ evOffHook () isreceived by one of the instances in the RefSD

177

* & O & o o o

*

Note:

System border sends evDigitDialed (Digit = 1) to TelO inthe MainSD

evDigitDialed (Digit = 1) is received by one of the instances in the
RefSD

System border sends evDigitDialed (Digit = 2) to TelO inthe MainSD

evDigitDialed (Digit = 2) is received by one of the instances in the
RefSD

evRing () is sent by one of the instances in the RefSD

evRing () isreceived by PBX[0]->itsLine[1] in MainSD
Messages evRing () and evAlerting () occur in the MainSD
evAlerting () sentby PBX[0]->itsline[1] to TelO in MainSD
evAlerting () isreceived by one of the instances in the RefSD
Messages evOffHook () and evAnswerCall () occur in the MainSD

evAnswerCall () sentby PBX[0]->itsline[1] issentto TelO in
MainSD

evAnswerCall () isreceived by one of the instances in the RefSD
System border sends evOnHook () to TelO inthe MainSD
One of the instances in the RefSD receives evOnHook () in RefSD

Limitation - Type of message arguments going to decomposed life lines are not
known. All arguments are treated as input arguments.

In order to drive messages that are directed to decomposed life lines, a receiver instance
must be specified. Open the features dialog of the decomposed life line, click on Tags tab,
add a new tag RTC_receiver (if not available) and also a value like Telephone[0] as
shown in Figure 3.

Eenerdl Relations Tags lPrupartiesI

RTC_receiver I Telephone(0

Figure 3 : Features dialog

The following rules are applied by TestConductor in order to drive those messages.
1. If an instance line is not decomposed

¢ not realized messages to such a life line are filtered out with a warning
¢ if the life line is not realized the test is not executed

178

2. If a life line is decomposed into ObjectAndItsParts

+ if the life line is not realized the test is not executed

if the life line is realized then for each driven message the tag RTC_receiver is
used to define the proper receiver of the message.

¢ if the tag is not defined then the message is sent to the instance the life line is
realized to.

3. If an instance line is decomposed into ObjectAndDerivedFromSD

tag RTC_receiver is used to define the receiver instance of driven messages

if the tag is not defined then the message is sent to the instance the life line is
realized to

+ if the tag is not defined and the message is not realized then the message is filtered
out

4. If an instance line is decomposed into Smart

¢ if areference sequence diagram has been defined then see 3.
¢ otherwise see 2.

179

Part Decomposition Support for Testing

PBX

OffHook

\\\[\\

e Originatz Call])

%
?
“
“
/ e
7 g
/ ew Originatz Call))
“
%
Z
“
“
? =
O Hookt)
;&_\\
? —_h—__—_—__—_’

General | Helatimsl Tags I F'mpertiesl

M ame: I _|_I

Stereotype: I

[
Realization: CLQ_ FEXinFPbfka > 7]
-

Decomposed: I{Unspaciiad}

- Generall Felations | Tags Froperties
Description:

Filker
|_ © Al Commen © Overtidden © Locally Overridden

= Animation
El| Classifierfiole

__________ DisplayMessagasToself | Al
MappingPolicy ¢ objectandltsParts

Figure : ObjectSD

Life lines can represent objects and its parts. Consider the Sequence diagram “ObjectSD”
above. In the features tab for life line PBX, we have class pBx as Realization and
ObjectAndlItsParts as MappingPolicy. Instance line PBX represents object pex and its
parts. evOffHook () and evOnHook () are sent to the parts of pex from the environment.
TestConductor treats these messages as going to object pBx or any of it parts.
evOriginateCall () isan internal message of pBx, which is sent between the internal
parts of pBx. In other words, TestConductor takes a black box view for life lines with part
decomposition.

Advanced Sequence Diagram Test Definition

The TestConductor test definition dialog enables you to define and configure advanced
sequence diagram test cases. Using the dialog box, you can define a name of the test, a
description and you can add several sequence diagram instances to the test case. The
sequence diagram instances are marked as Monitor Only, Driver and Monitor or Black-
Box and parameters are bound to concrete values. In addition, for every sequence diagram
instance, you choose the interpretation order (Linear or Partial) and execution mode. The

180

Execution Mode specifies whether the sequence diagram instance must be tested one time
or repeatedly in a cycle. You can order sequence diagram instances with Single Iteration
or in an Ordered Predecessor order.

heinetest =I5
Name of Test:

Itestcase_1
Description of Test:

ﬂ Tolerances '
SDInstances in Test: Evecute Tiest l

Add SDInstance |

Eemave SBlnstance

— Details of SDInstance
SDInstance Name:

I Apply SBInstance |

Sequence Diagram:

I _'_l Parameter i appinag I

Execute SDInstance as: &7 Monitor Unly. € Driver and tMornitor. 47 Black-Bow

SD Interpretation (Order): ¢ Partial € Linear
Execution Mode
" Single lteration : . s
||] Max # of Multiple Iterations [0 == infinite]
= Multiple lterations Y [
" (rdered Predecessor; I LI

Activation Condition:

’, Description of SDInstance:

Bk

Defining a Sequence Diagram Test

There are four steps in defining a test using the Define Test dialog:
1. Create the sequence diagram test case.

2. Define a new sequence diagram instance.

3. Map the parameters.

4. Close the dialog.

The following sections describe these steps in detail.

Creating a Sequence Diagram Test Case
There are three possible ways to define a sequence diagram test case:

181

1. Right-click on the test context and select Create SD TestCase. This creates
automatically a new test scenario sequence diagram with lifelines of all classes (SUT
and test components) of the test context.

2. Right-click on the test context and select Add New > TestingProfile > TestCase.

For the second way you have to use the Define Test dialog (shown on page 181). Use
sequence diagrams could be sequence diagrams from the analysis phase, a recorded
animated sequence diagram from manually driven animation, or a newly drawn test
scenario sequence diagram.

Adding a New Sequence Diagram Instance

When you add an sequence diagram instance to a test case definition, you select and
reference a sequence diagram from the Rhapsody repository, define a name for that
particular instance in the test configuration, and bind the parameters to concrete values (if
parameters are used in the sequence diagram). TestConductor automatically extracts the
defined activation condition of the referenced sequence diagram from the Rhapsody
repository and displays it in read-only mode in the text field.

To add a sequence diagram instance to the list, do the following:
1. Inthe Define Test dialog box, click Add SD Instance.

2. The fields SD-Instance Name, Sequence Diagram, and Description of SD-Instance,
and the radio buttons Execution Mode, SD Interpretation (Order), and Execute
SD-Instance become enabled so that you can enter data.

3. Inthe SD-Instance Name field, type a descriptive name. For example, “Tel 1 calls
Tel 2”.

4. The Sequence Diagram drop down list includes all the sequence diagrams from all
packages specified in the project. From this list, select one sequence diagram. The
following figure shows the list of sequence diagrams for the PBX example.

— Details of SD-Instance

SD-Instance Name:
Tel1 calls Tel 2

Sequence Diagram:

s L

¥_calls Y

Receive_X
X_calls_Y_when_offhook
Answering_Call

‘Rinaing Another Party

Stub_Ring
Capture_All_Telephones b
£ Grdered Bredesesson|

Note: You do not have to save the sequence diagrams before using them to define and
execute tests because the created sequence diagrams are immediately part of the
model. The read-only field Activation Condition shows the corresponding value

182

for the specified sequence diagram. You can change this value by editing the tag
RTC_ActivationCondition of the corresponding sequence diagram.

5. In the field Execute SD-Instance as, select one of the following options:

.

Driver and Monitor—Invokes automatic driving of model execution after the test
has been activated. In other words, TestConductor automatically injects events into
the running Rhapsody model according to the specified sequence diagram.

Monitor Only—Invokes manual driving of model execution. This means that,
during test execution, you must inject input events manually using the Rhapsody
animation tool or the project GUI (when available). TestConductor monitors the
reception of these events and internal messages between system objects.

Black-Box—Considers only those messages that originate at the system border (to
be driven by TestConductor) or that go to the system border (to be monitored by
TestConductor). The remaining messages are not considered because they are
internal to the system.

6. Inthe field SD Interpretation (Order) select one of the following options:

*

Linear—Specifies that TestConductor should monitor the sequence diagram under
test assuming that all events and messages are arranged in a strict sequence. The
vertical drawing order of messages in sequence diagrams is used to compute an
absolute sequence of events and messages (each message in the sequence diagram
has a unique predecessor and successor).

Partial—Specifies that TestConductor should monitor only the order of events
located on the same line (instance line or message arrow).

Note that partial order set together with driver and monitor implies that driving the
input events is independent from monitoring the internal messages. To avoid the
arising nondeterminism, TestConductor first drives inputs and then monitors
internal messages. TestConductor chooses one valid order of messages to be
driven (in particular, this order changes in general when the same sequence
diagram test case is executed repeatedly). Such nondeterminism does not exist
for linear order interpretation, because it is a precise order between all messages in
a sequence diagram. See chapter Linear and Partial Order (on page 154), for the
explanation of partial order. Note that there is no nondeterminism for monitor only,
because you decide when you inject all inputs, and TestConductor monitors
internal messages as they appear in the running model.

7. In the Execution Mode field, select one of the radio buttons:

.

.

Single Iteration—Drives the sequence diagram instance only once. TestConductor
will generate only one run-time instance of the sequence diagram.

Multiple Iteration—Drives the sequence diagram instance in a cycle. This option
is defaulted to 0 which implies infinite execution of an sequence diagram instance
if the activation condition of the corresponding sequence diagram is set to TRUE.
When a concrete number is supplied here, it implies the number of times the
sequence diagram instance will be executed. In batch mode execution, the number
10 helps to avoid infinite looping of tests.

Ordered Predecessor—Specifies the execution order between two sequence
diagram instances. From the drop-down list, select an available sequence diagram

183

instance that must be executed before the current sequence diagram instance is
activated.

8. If desired, specify a description in the Description of SD-Instance field. This field
does not influence test execution, but can be used to describe the purpose of the
specific sequence diagram instance.

Mapping Parameters

For a parameterized Rhapsody sequence diagram, map its parameters to concrete values as
follows:

1. Click Parameter Mapping to display the parameter mapping list for the sequence
diagram. For a “concrete” sequence diagram, this list is empty. The following figure
shows the parameter list for the Te1 1 calls Te1l 2 sequence diagram.

Parameter Mapping List for Tel 1 calls Tel 2 !Em

Parameter l Value l
receiversLine

receiver

caller

nrl

nre

Close |

2. Double-click on the name of the parameter to map. The Define Parameter dialog is
displayed, which enables you to bind the parameter to a concrete value in the current
sequence diagram instance.

3. Inthe Value field, type an object name of the corresponding class, or a value for a
message argument.

i Define Parameter [X]
Parameter: Walue:
Ire-:eiver:sLine IPBX[D]—}»itsLineﬂ]

| (1] I Cancel l

Click OK to add the specified parameter value to the list of the parameter mappings or
click Cancel to discard the changes.

3. Repeat Step 2 and Step 3 to bind all the parameters in the list to concrete values. The
following figure shows the completed list.

184

Parameter Mapping List for Tel 1 calls Tel 2 !lﬂﬂ

Parameter I Yalue |
receiversLing PBX[0]-»itzLine[1]

receiver PEX[0]-»itsT elephone(1]

caller PBH[0]-»itzT elephone]0]

nrl 1

nre 2

Close I

5. Click Apply to bind the values to the parameters and dismiss the dialog, or click
Close to dismiss the dialog without binding the parameters to new values. You return
to the Define Test dialog.

6. To add the current definition of the created sequence diagram instance to the test, click
Apply SD. The sequence diagram instance is accepted as part of the test
configuration.

If you do not apply the instance to the test, but continue with another sequence diagram
instance, TestConductor automatically applies the first instance for you. If you dismiss the
complete test case definition dialog, the sequence diagram instance definition is discarded.

Note: For each sequence diagram in the repository, you can add many sequence diagram
instances to a test (for example, with different parameter values). At any time, you
can easily modify any of the information specified for a given test. For example,
you could add other sequence diagram instances, or specify another instance
testing mode.

Tolerances
Don’t Care Values

In some cases you might not be interested in checking actual parameter values. If

& Messages carry values that change whenever you re-run your application (sensor
values, etc.). TestConductor should not compare the actual values with the
specified values.

¢ Message parameter is a pointer to a structure. TestConductor can not compare the
actual values in the structure.

+ Some specific parameter values are not interesting at all for your test. You can
switch on/off monitoring and checking of actual parameter values. For every
message playing a role in your test you specify don’t care either

For a whole test, or
¢ For asingle message instances in the used scenarios.

You can even switch on/off monitoring of parameter values for every single parameter of
a message

185

1 NN A il

| e w————

To specify tolerances as don’t care values:

¢ Replace the parameter values for message instances in the sequence diagrams with
the “*“ symbol (see picture above), or

¢ Press the Tolerances button within the Define Test dialog

Define Test s B3
osaess | | [—

Tolerances >

Tolerances

PbxPkg.evDigitDialed

- int Digit
PbxPka::Connection.NextDigit
- int Digit

The table lists all messages of all sequence diagrams used in the test

The don’t care values in the table ‘override’ concrete values in sequence diagrams
Double-click on a parameter to set/unset ‘*’ for the parameter

Double-click on a message to set/unset ‘*’ for all parameters of the message
Click on (Un-)Set All “*” to set/unset ‘*’ for all parameters of all messages
Don'’t care information are stored with the test

* & & 6 o o o

Show As SD also shows use of don’t care values

Don’t care **’ can also be assigned to the variables used in sequence diagrams. Open the
parameter mapping window and assign **’ to the variables which you want to set as don’t
care which is equivalent to specifying ’*’ in the sequence diagram.

186

Parameter Mapping List for hhh [(]]

Parameter | Value |
nl 4]
n2

Don’t Care Value

Aoy | Close |

Note: Do not use ‘*’ for messages that are driven by TestConductor!

Note: You must not inject an event into your application with ‘*’ as value for an input
parameter

Range Setting

Range setting allows monitoring and checking if concrete values of message instances are
in a given specified range. Checking ranges is required if messages have parameters that
carry values which deviate from run to run. Speed and temperature are good examples
since it is unlikely that the values are always the same. Usually temperature is in a certain
range, e.g. between 36.5 and 36. 9 degree Celsius for humans. Users must be able to
specify that they do not care about specific single values, but about certain value ranges
throughout testing. Similar to *don’t care’ settings shown in the previous section, we use
the same Tolerances dialog to specify the ranges also.

1. For every single message instance in a sequence diagram users can specify which
parameter should be treated as range of values. A special notation will be used to
indicate ranges instead of specific values. Notation:

[<lower value> .. <upper value>]

Users can express "m (pl=1, p2=*, p3=[1.5 .. 1.7])"to state that p1 must equals
'1', p2 is "don't care", p3 must be in the range between '1.5"and '1.7'". In the PBX model,
we could use the range of [0. .47 for the digit of the message evDigitDialed in
specified sequence diagram.

Note: lower_value and upper_value may be of scalar types like integer, 1ong,
double étc.

187

Séquence Diagram: Tolerances _ (O] m

PBX[0]-> ‘ PBX[0]-> PBX[0]-> PBX[0})-= PBX[(
itsTelephone[0]: itsLine[0]:Line itsCallRouter: itsConnection[0]: | | itsLine[’
T T T T E—; [
g\:OlelrmaleCaI!(] B
evDialTone() —_h_’“x-—“_q__“
o il Hx“‘%—)
e

/evDigitDialed(Digit|= 1
év’b?gnmgigd(oigit =i

T pDigitDialedDigit 5[0 4) -g—f— | Rance
o S R — | : =
g PP W —— Setting
EvDigitDi _4_>-_|g| F[0.. - — P
o, ~g in SD

S evDigitDialed(Digit 3 1)
\""--A >N""--__
_* -—______—_\
gvDigitDialed(DigT{t £

N DialingDone()

.

‘/[\\l ‘_| . ;

2. Alternatively, users may want to specify one specific range of values for a given
message parameter for a whole test. This might for instance be desired if a certain
measured sensor value globally must be in a certain range. E.g. a measured
temperature must always be in the range between 0 and 100 degree celsius. Otherwise
it is considered to be an error. For the PBX model, we set the range of [0..4] for the
digit of the message evbigitDialed () inthe Tolerances dialog as shown below.

Parameters | Tolerances |

PbxPka.evDigitDialed

- int Digit [0.. 4]

PbxPkg::Connection. NextDigit 7 2

e Range Setting
%Pkg.evClose ~

- int Source for the whole

PbxPkg::Connection.Disconnect o)

- int Source test

(Un setal ™| ok | cencel | Hep |

The range for the messages which has a parameter as a variable can also be specified
in the parameter mapping dialog as shown in the figure below. If we have n1 and n2
as variables in the sequence diagram, we can set the range for variables in the
parameter setting dialog.

188

<evDigitDialed(Digit= 1)
%ex?ﬁi’g;ﬁ@@]gd(f)lg\t 2)
B evDigitDialed(Digit 5 n1)

Range Setting

gvD;gibi‘éhd@lgzt = n2)
i Don’t care
g}l_DlgltDialed(Dmit 3 g@ttillq ill

~l S

N T e = Parameter
Parameter Mapping List for hhh
Parameter [Value |
nl 0.4
n2 x
7
K1
Apply Close
Tolerances

Users may want to specify a tolerance for a message parameter for the whole test. Suppose
that a model contains a message M (temperature p). Inarecorded animated sequence
diagram several instances of M might occur, because temperature is measured periodically.
E.g. M(p=27.6), M(p=29.2), M(p=31.1), etc. If such a recorded sequence diagram
is used for a test, the user must either manually specify a range of values for every single
message instance of M in the recorded sequence diagram, €.g. M (p=[27.4..27.9]1),
M(p=[29.0..29.8]1), M(p=[31.0..31.5]) orwe could define a global tolerance for
parameter p of message M in the whole test, e.g. "p = +-0.5", meaning that the concrete
values in the message instance might have a deviation of '+0. 5' from the specified values.

Note: Tolerances can be specified on a per test basis in the table. Users cannot specify
parameter tolerances in the sequence diagram.

Note: Tolerances cannot be specified in the parameter mapping dialog.

Note: Tolerances apply to both the parameter values and to parameter ranges.

Setting the tolerance of *+-2" for the parameter digit in the PBX model is shown in the
following figure. Message evDigitDialed (Digit = 1) iSseen by TestConductor as

evDigitDialed(Digit = [-1 .. 3]),whichisarange of ’+2” and
evDigitDialed (Digit = 2) isseen by TestConductor as evDigitDialed (Digit =
[0 .. 471),whichis arange of ’+2” as specified as the tolerance.

189

Tolerances ' x|

Parameters | Tolerances |
PbxPkg.evDigitDialed
- int Digit 2
PbxPkg::Connection. NextDigit
- int Digit
PbxPkg.evClose SR TI
- int Source Range ot ' o
Pb_kag::Connection.Disconnect set tor ‘[he Dlglt
- int Source =
Un] Set Al [ok | cancel | Hep |
/
? BEJenConnection |
? ev Originate Call()
% evDialTone() “‘“‘—a____‘ o
Z P T
7 .
7
ge\vg::gialed(niﬂ =1) |
v Bigat Dialed(Digit = 2) 5 enConnection -~
ﬁ"\ T ; vOriginateCallQ) =
75 M by Digit Dialed(Digit = 1) 7z : el i
% A R ; evDialTone = E
& ’%?vniéﬁ'matgggDig =2) ; 3 // ‘%——»b%—___)
% B Eggng«Dcaled(Dlgﬂ =1) ,e’uD|gxtD|aled(Dng|;=1)
% e e, DigitDialed(DigitF2)
4 eA_\f-gftD'a'edff"m-'ilhﬁ N /§ E3D|g|t0|aled(0|gi'#[-1,,3})
f ""\\ e el BTgitRialed(Digit=(0. 4])
Z \‘_\ 4 \""-'»»A__ EvDigitDialed(Digite[-1..3])
b e
g \; —*'EVDigi!Dizledfl’)‘i’g’r&:{llf_lll
7 i N
Z 4 \”\\ i Dialing
7 7 L
% ; .\\\ extDie=
7 7 ~
7 7 ~
Z % ™~
4 ? Dialing
[|
2 extDis
7
? umbe
7
// Conne:

Priority rules for the Tolerances

TestConductor will apply priority rules on the parameter values for test execution in the
following order:

1. Ifinthe Tolerances table a parameter is set as don't care "™*' this will be applied for test
execution

2. If don’t care’*’ is set in the sequence diagram, this will be applied

3. If arange of values has been specified in the Tolerances dialog, it will be applied for
test execution

4. If atolerance has been specified in the Tolerances dialog this will be applied for test
execution

190

5. Range setting in the parameter mapping dialog or the range setting in the sequence
diagram will be applied.

6. Next the value setting in the parameter mapping window or values as specified in the
sequence diagrams are used for testing

Note: Value ranges and tolerances can not be applied to messages driven by
TestConductor, since driving always requires concrete values.

Note: Value ranges and tolerances can be used only for pre-defined scalar types int,
long, float, etc.such that TestConductor can apply standard compare
operations (<, >, =) for the checking.

Note: Ranges of values and tolerances can not be applied to structured types or user
defined enumeration types.

Syntax for Tolerances

The syntax for specifying don’t care values, range values and tolerances is as follows:

¢ Don’t care: *
¢+ Range value: [<lower value> .. <upper value>]
¢ Tolerances: <tolerance value>

where lower_value and upper_value and tolerance_value can be of pre-defined scalar
types int, long, float, etc. such that TestConductor can apply standard compare
operations (<, >, =) for the checking. While don’t care values and range values can be
specified in specification sequence diagrams, in the Parameter mapping dialog and in the
Tolerances dialog, tolerance values can be specified only in the Tolerances dialog.

Exiting the Define Test Dialog Box

There are two ways to exit the Define Test dialog:

¢ Click OK to save the test.
If you click OK, TestConductor automatically adds all your test modifications to
the current model.
Alternatively, you can add the current test to the model and exit the editor by
pressing Enter, but only if the Description of Test and Description of SD-
instance fields are not currently active. If you press Enter in the description fields,
it adds a line-feed in the description.

Note that the TestConductor dialog accepts any test definition, even if it is
incomplete (for example, you did not specify a sequence diagram instance). If you
try to execute an incomplete test configuration, TestConductor displays an error
message.

¢ Click Cancel to discard the test.
To ignore all changes made during the test definition session, click Cancel.
TestConductor prompts you to confirm the lost changes; click Yes.

191

Note: It is not longer possible to execute tests directly from the Define Test dialog.

Use Cases of Sequence Diagram Test Cases

This section shows some sample test cases including different combinations of sequence
diagram instance settings (execution mode, sequence diagram interpretation order with
monitor or driver), as well as combinations of different sequence diagram instances to be
executed in one test with different modes.

Simple Monitor

This example explains how to define a simple watchdog. The following figure shows a
test configuration with independent sequence diagram instances to be driven manually,
infinitely many times. TestConductor monitors whether the computed order of messages
corresponds to that specified in the sequence diagrams.

Define Test [_ [T %]
Name of Test: T
et [T

Cancel I
Description of Test:

|A|l Telephones call Telephone[0] independently jl o — I
SD-nstances in Test: Execute Test I

Tel3 calls Tell
Teld calls Tell Add SDnstance I
Remove SD—InslanoeI
- Details of SD-Instance
SD-Instance Name:

ITeIZ calls Tell Apply SD-Instance I

Sequence Diagram:

IA telephone calls Telephone()_Variables 3 Parameter Mapping I

Execute SD-Instance as: ¢ Monitor Only ¢ Driver and Monitor ¢ Black-Box

SD Interpretation [Order): ' Partial ' Linear

Execution Mode

€ Single lteration [T Max# of Multiple Iterations (0 == infirite) ‘

' Multiple Iterations

¢ Ordered Predecessar: | Parameter Mapping List for Tel2 calls Tell I B |
oAt o Parameter | Value |

Activation Condition:

IT::I; o & caller PEX[0]->itsT elephone[1]

{Descriglion of SD-Instance: ——

Apply I Close

To define this watchdog, do the following:

1. Modify the “A telephone calls Telephone[0]” sequence diagram to make it generic:

192

¢ In the sequence diagram editor, replace the concrete object name
PBX[0]-> itsTelephone[1l]:Telephone with the parameter
caller:Telephone.

2. Select in the Rhapsody browser the test scenario “A telephone calls
Telephone0 Variables” and click on the cross beside of the name of the test scenario
sequence diagram to open the tag view.

= E—% TestScenarios
+-F& 4 telephone calls Telephonen
- 4% A telephone calls Telephone0_Variables
= g Tags
RTC_ActivationCondition
RTC SDParameters

, Answering_Call

, Answering_Call_without_AC

, Receive_X

, Ringing_Another_Party

, Stub_after_animation

, Stub_Ring

y %_Calls_Y

S R S R S R S R SRR A R K

3. Open the Feature dialog of the RTC_SDParamters tag

4. Select the General tab, click into the Value field and type caller, the name of the
parameter.

Tag:RTC_SDParameters in A telephone calls Telephone0 *

General I Description |

Name: lHTC_SDParameters Ll
Applicable to: I _J

Type: |String LI _I
Value: |caller I _I

Locate OK I Apply

5. Apply the changes and close the Feature dialog

To define a new test case and connect the sequence diagram, do the following:

6. Select the test context and choose from the context menu Add New > TestingProfile
> TestCase

7. Rename the newly created test case to “All_call Tell”

193

8. Select the test case “All_call Tell” and choose from the context menu Edit TestCase
SDInstance

9. Verify the name of the test “All call Tell” and add the description “All telephones call
Telephone[0] independently.”

10. Click Add SD-Instance. Type the name of the sequence diagram instance “Tel2 calls
Tell” and select the sequence diagram “A telephone calls Telephone[0]” from the
drop-down list.

11. Select the following radio buttons:
Monitor Only execution
Partial order, to set manual driving

Multiple Iteration, to have TestConductor check this property several times
during test execution

12. Click Parameter Mapping to display the list of parameters for the sequence diagram
and double-click caller.

13. Insert the formal name of Telephone 2, “PBX[0]->itsTelephone[1]”, then click OK.

14. In the Parameter Mapping List, click Apply to bind the parameter with the concrete
name.

15. If desired, add a description of the sequence diagram instance in the field at the
bottom of the dialog box. For example, you could describe the requirements specified
in the corresponding sequence diagram.

16. Click Apply SD-Instance. TestConductor adds the specified sequence diagram
instance to the SD-Instances in Test list.

17. Repeat Step 1 to Step 6 to create two other sequence diagram instances with similar
settings and parameter mappings that correspond to Telephone 3 and Telephone
4,

The completed test checks that Telephones 2, 3,and 4 can call Telephone 1 inany
order. You can execute the test infinitely many times by injecting events manually, as
specified in the “A telephone calls Telephone[0]” sequence diagram.

Automatic Driver

This example shows how to define an automatic driver with several independent sequence
diagram instances. The following figure shows a test configuration with independent
sequence diagram instances of the “X_calls_Y” sequence diagram (see page 168) and the
“Receive X" sequence diagram (see page 167). You specify the implicit order enforced
between some of the sequence diagram instances using the activation conditions and
parameter mappings. TestConductor drives events sent from the environment axis and
monitors whether the order of “internal” messages corresponds to that specified in the
sequence diagrams.

194

Define Test

. Independent Calls |

Tel2 receives a call
Teld receives a call

Parameter Mapping List for Tell calls Tel2

receiversDighl

ecciversDigh2 2

calersline FBEX[0]->ksLine|0]
caller PB4[0]> k=T eleohone(0]

Mapping the parameters of the “X calls X" sequence diagram to different concrete names
for different sequence diagram instances makes these sequence diagram instances
completely independent. To define the automatically driven independent calls test, add
four sequence diagram instances with the settings described in the following summary of
the test.

195

&} Independent Calls_info.txt - Notepad - (O] X]
File Edit Format Help

TEST: mMainfolder\Independent Calls .
COMMENT: "Two telephones call other two telephones at the same time" T
INSTAMCES:

1. Tell calls Tel2
COMMENT : ""
DEFINITION:
sSb <X_calls_y>, DRIVER, LINEAR, SINGLE ITERATION
AC <NOT(callersLine->EventReceived(caller,evRing()))>
PARAMETERS :
receiverspigitl = 1,
receiverspigit2 = 2,
callersLine = pBX[0]->itsLine[0],
caller = PBX[0]->itsTelephone[0]

2. Tel3 calls Teld
COMMENT: ""
DEFINITION:
SD <x_calls_¥>, DRIVER, LINEAR, SINGLE ITERATION
AC <NOT(callersLine->EventReceived(caller,evRing()))>
PARAMETERS :
recejverspigitl = 1,
receiverspigit2 = 4,
callersLine = PBX[0]->itsLine[2],
caller = pPBX[0]->itsTelephone[2]

3. Tel2 receives a call
COMMENT : ™"
DEFINITION:
SD <Receive_X>, DRIVER, LINEAR, SINGLE ITERATION
AC <receiversLine->Eventsent(receiver,evring())>
PARAMETERS :
receiversLine = PBX[0]->itsLine[1],
receiver = PBX[0]->itsTelephone[1]

4. Teld receives a call
COMMENT : ™"
DEFINITION:
SD <Receive_x>, DRIVER, LIMNEAR, SINGLE ITERATION
AC <receiversLine->EventSent(receiver,evRing())>
PARAMETERS:
receiversLine = PEX[0]->itsLine[3],
receiver = PBX[0]->itsTelephone([3]

L |

This test checks that Telephone 1 can call Telephone 2, and Telephone 3 can call
Telephone 4 independently at the same time. In addition, it checks that Telephones
2 and 4 can reply and complete calls independently. The test can be executed only one
time due to the selected Single Iteration for all SD instances in the test configuration.
Setting Multiple Iteration to 0, with driver and monitor mode can lead to infinite test
execution. In this case, you should specify adequate activation conditions for the
corresponding sequence diagrams.

Ordered SD Instances

Using activation conditions, you can specify a predecessor order implicitly. This order
might depend on the parameter mapping, and is an order of sequence diagram instance
activations. For example, during execution of the test described in the previous section, the
“Tel2 receives a call” sequence diagram instance is activated before the “Tell calls Tel2

196

SD” instance has been fully traversed. The following example shows the usage of explicit
ordering of sequence diagram instances within a test configuration.

Note: Currently, TestConductor does not support ordered predecessors with multiple
iterations.

The “Calling_All Telephones” test configuration contains the following instances:

¢ Fourinstances (Receiver 1,Receiver 2,Receiver 3,and
Receiver 4)ofthe “Answering Call” sequence diagram. These sequence
diagram instances are specified as driver and monitor with linear order and
multiple iterations. They have disjointed parameter mappings (different concrete
names bound to their parameters).

¢ Six instances of the “Ringing Another Party” sequence diagram (see the section
“Condition Marks™). They are set as driver and monitor with linear order. They
specify calls from Telephone 1 to Telephones 2, 3, and 4, and from
Telephone 4 toTelephones 1, 2,and 3 with predecessor order as
follows:

The “Tel 1 calls Tel 2” sequence diagram instance has single iteration.

The “Tel 1 calls Tel 3” sequence diagram instance has “Tel 1 calls Tel 2” as
its Ordered Predecessor.
The “Tel 1 calls Tel 4” sequence diagram instance has “Tel 1 calls Tel 3” as
its Ordered Predecessor.
The “Tel_4 calls Tel 1" sequence diagram instance has “Tel 1 calls Tel 4” as
its Ordered Predecessor.

The “Tel_4 calls Tel 2” sequence diagram instance has “Tel 4 calls Tel 1” as
its Ordered Predecessor.

The “Tel 4 calls Tel 3 sequence diagram instance has “Tel 4 calls Tel 2” as
its Ordered Predecessor.

The following figure shows the corresponding settings in the Define Test dialog.

197

Define Test - []x]

Name of Test:

’Calling_All_Telephones
Cancel I

Description of Test:

|Tel_1 calls everybody and Tel_4 calls everybody 3 T iraes I
SD-nstances in Test: Execute Test I

Receiver_1

Receiver_2 j
Receiver_3 Add SD-Instance I

Receiver 4

d Remove SD-nstance |

1 Details of SD-Instance
SD-Instance Name:

ITeI_ 1 calls Tel 2 Apply SD-Instance |

Sequence Diagram:

| Ringing_¬her_Party L’ Parameter Mapping |

Execute SDnstance as: ¢ Monitor Only % Driver and Monitor Black-Box

SD Interpretation (Order): ¢ Partial & Linear
*Execfmon MOd? Parameter Mapping List for Tel_1 calls Tel_2 =11 X]
& Single Iteration 'D— Ma
c Multiple Iterations Parameter | Value |
£ oErEd Bredesesson I receiversLine PBX[0]->itsLine[1]
receiver PEX[0]->itsT elephone(1]
Activation Condition: nirl 1
Icalbw-)lslr(HDOT.Read;.ldle] cazﬂel ;BX[O]->ilsTelephone[D]
n

’> Description of SD-Instance:

During test execution, each of the last five sequence diagram instances can be activated
only when the following two conditions are fulfilled:

& The sequence diagram instance specified in the test configuration as its predecessor
has been fully traversed (passed or failed).

+ Its activation condition becomes TRUE.

The specified test checks the following:

Telephone 1 can call all other telephones consecutively.
Telephone 4 can call all other telephones consecutively.

Telephones 1, 2, 3,and 4 can answer calls as many times as they get the
event evRing (as specified in the activation condition of the “Answering_Call”
sequence diagram).

Driver-Assisted Monitor
The following examples show how to use driver-assisted monitors.

Example 1: Monitors and Drivers Specified as Sequence Diagram

198

This example shows how to define a combination of drivers and monitors. The
“Driver_Assisted Monitor” test configuration contains instances of the “Receive X
sequence diagram (see page 167) and the “X _calls_Y” sequence diagram (see page 168).
The sequence diagram instances have the following settings:

*

*

Four instances (Receive 1,Receive 2,Receive 3,and Receive 4)of
the “ReceiveX” sequence diagram are specified as driver and monitor with linear
order and multiple iteration. Their parameter mappings correspond to
Telephones 1,2,3,and 4 and Lines 1, 2, 3, and 4, respectively.

Four instances (“Tel 1 calls Tel 27,“Tel 2 calls Tel 3”,“Tel 3
calls Tel 4”,and “Tel 4 calls Tel 1”)ofthe “X calls_Y” sequence
diagram are specified as monitor only with partial order, single iteration, and the
corresponding parameter mappings. The following figure shows the example of the
parameter mapping for the “Tel 2 calls Tel 3” sequence diagram instance.

Define Test =S B3

Namz of Test

ID:iwar_.éssisred_Monm: K
Canzel
Deseription of Teast:
IT elephones call each oiher = | Tolerances
=
S0-Inslancss in Test: Execute Test
F:ece;ver_Z _‘_I
E:Z:x::ﬁ _J 4dd SD-Insfancs
Tel 1 calls Tel 2

I - | Fenove SD-Insiance

—Details of SD-Instance
SD4nstance Name

ITBI_Q call: Tel_3 Apply SD-Instance

Sequence Diagram:

I}"-I_cal:,_Y ;l Paramezter Mapping

Execute SO-Instancz as: % MenitorOnly C Driver and Moriitor Black-Box
SO Interpeelation [Dider): % Pattial " Linear
Execation Mode
" Single lleration ; s

& : |rJ Max ¥ of Multiple llerations [0 == infiite
€ Mubicle lterations []
& Ord=red Predecessor. |TcL1 calls Tel_2

IR A

&clivation Condtion:

INUT[oauan'nc->E ventReceived(calerevRingf)))
(e T el e s P arameter Mapping List for Tel_2 calls Tel_3

“ Pararreter I Yalie I
ieceversDigh] 1
| receiverzDigh2 3
calersLine PBX[0]>isLing1)
caler PBX[0] > k=T elephone(1]
Apoly Close

The test checks that every telephone can call the next telephone, and the telephone can
reply and finish the communication. This test can be done for every specified pair of the
telephones, independent of the order of the pairs. During test execution, you must drive

199

the model manually, as specified in the instances of the “X calls_Y” sequence diagram.

TestConductor completes the execution of the instances of the “Receive_X” sequence

diagram whenever they have been activated.

Example 2: Unspecified Manual Driving

You can drive your model manually in an order not specified in any sequence diagram.

This means that you do not check this part of a behaviour. For example, you can specify
only communications between actor instances and internal objects when the actors have

behaviour (code has been generated for them). The following sequence diagram shows
such a specification for a new model. In this case, the new events evsuspend and
evRestart aresenttothe Line class fromthe Administrator actor.

Sequence Diagram: testActor

B or]|

User caller callersLine: Administrator
Telephone Line
evSuspend{y =
& evRestart()
L
/ evOffHook)
o o
evDialTone
, evﬁi’gv!Q[_aled(Diglt:‘l)
o T
evDigitDialediBigit=nr
¥ el
evﬁ.ele‘sg_o

4|‘

O]

The following “Check Administrator” test configuration defines a driver with an instance
of the “testActor” sequence diagram.

200

TEST: Check Administrator
COMMENT: "First Administrator sends events to Line 1.
After that User can make a call from Telephone 1."

INSTANCES :

1. Tel1 calls Tel2
COMMENT = """
DEFINITION:
SD <testActor>, DRIVER, LINEAR, SINGLE ITERATION
AC <TRUE>
PARAMETERS :
callersLine = PBX[8]->itsLine[8],
caller = PBX[8]->itsTelephone[8],
nr2 = 2

This test checks that a new feature added to the system as the Administrator behaviour
does not change the main behaviour of the model (in other words, User can make a call as
previously specified). During test execution, you must inject input events for
Administrator and User to stimulate them to send events specified in the “testActor”
sequence diagram. TestConductor monitors all messages between the actors and internal
objects specified in the sequence diagram under test.

Choosing Between Alternatives in a Cycle

The predecessor ordering of sequence diagram instances provides a means to construct a
tree or a forest (set of trees) of the related sequence diagram instances, but does not allow
any cycle or choice between alternatives. Activation conditions/condition marks serve as
another way to set causal dependencies between sequence diagram instances. The
following test configuration explains how to combine predecessor ordering with multiple
iteration to specify cycles with choice.

Consider the “X _and Y call together” sequence diagram, with partial order
interpretation.

201

Sequence Diagram: X_and_Y_call_together

caller1 callersLinel: callersLine2 caller2:
Telephone Line Line Telephone

-~

ENYV- “E,,:\\l caller2, E\i"_’m ook())

ENV- Eﬁ: callgr1, PVT':W ook()))
o bbb Gt 0 : evOriginateCall() |

S

evOrnginateCall()

!

evDigitDialed(Digit=1)

i

 evDigitDialed(Digit=1)

|

evDigitDialed(Digit=nr2)

evDigitDialed{Digit=nr1)

—

=

The specification says that two telephones can dial any numbers independently of each
other whenever the environment sends them the evoffHook event. If these telephones
call each other (specified by the corresponding mapping of the parameters nr1 and nr2),
the continuation depends on the order in which you have injected events from the
environment to the telephones. A callee can be busy or answer the call.

The “Stop_Busy_Call” sequence diagram, shown in the following figure, specifies that a
caller put the telephone on the hook if it gets the evBusy event. The “Busy or Free” test
includes instances of the “X _and Y call together” sequence diagram, the

“Stop_Busy Call” sequence diagram, and the “Answering_Call” sequence diagram.

Sequence Diagram: Stop_Busy Call [H[=] E3

caller:
Telephone

|»

-~ T ~ .
cLine->E¢antSent(calletevBusy())

i
—

evOnHook()

RS TR I

5
[

-~
R

The following figure shows the corresponding settings in the Define Test dialog.

202

Define Test

" Parameter Mapping List for Tel2 and Tel3 call

calersLine? FBX[0}>ksLine[2]
caller! PBX[0}> kT eleshone]1]
calerd PBX[0]>isT elephone]2)
nri 3

nr2 Z

calerslinel PBRX[0)>ksLine[1]

The following information file of the test case definition summarizes the complete test
description.

TEST: MainFolder\Busy_or_Free\
CommENT: “Tel2 and Tel3 cell each cther at the same or different

Time.
Chack whether a <211 free or busy.”

INSTANCES:

1. Telz stops
CommENT: "
DEFINITION:
SD <STOP_Busy_Call>, DRIVER, LINEAR, MULTIPLE ITERATIONS
2C <TRUE>
PARAMETERS :
cLine = PEX[O]-)'IISL‘lne[lE‘,
caller = PBX[0]->itsTelephone[1]

2. Te13 stops
COMMENT : "
DEFINITION:
5D <Stop_Busy Call>, DRIVER, LINEAR, MULTIPLE ITERATIONS
AC <TRUE>
PARAMETERS :
cLine = pEx[0]-ritsLine[2],
caller = PBX[0]->itsTelephonel2]

3. Tel2 answers
COMMENT : ™"
DEFINTTION:
SD <Answering_Calls, DRIVER, LINEAR, MULTIPLE ITERATIONS
AC <recelversiine->es(recelver, evRing())>
PARAMETERS @
receiversLine = PBX[0]->itsLine[1],
recelver = pex[0]->TrsTelephone[1.

4. Tel3 answers
COMMENT : "
DEFINITION:
SD <Answering_Calls, DRIVER, LINEAR, MULTIPLE ITERATIONS
AC <receiversLine->Es(receiver, evRing())>
TERS:
receiversLine = pEX[0]->itsLina[2],
receiver = PEX[0]->itsTelephone[2]

5. Tel2 and Tel3 call
COMMENT : "
DEFINITION:
sb ex_and_v_call_togathers, MOMITOR, PARTIAL, MULTIPLE
ITERATIONS
AC <TRUE>
PARAMETERS @
callersLine2 - pBx[0]-»itsLine[2],

callerl = PBx[O]-)‘_ItsreWephoneP],
caller2 = pPax[0]->itsTelephona[2],
nrl - 2,
nr2 =2

callersiinel = P8X[0]-»itsLinall]

203

The test checks the following:

¢ Telephone 2 and Telephone 3 call each other independently.
¢ |Ifacallee (Telephone 2 or Telephone 3)is free, it answers the call.
¢ If acallee is busy, the caller hangs up.

You can execute the test continuously, injecting events to Telephone 2 and Telephone
3. TestConductor monitors the “Te12 and Tel3 call” sequence diagram instance and
drives the remaining ones, selecting those relevant to the current situation. Note that the
instance of the “X_and Y _call together” sequence diagram is the predecessor for the
remaining four instances in the test configuration. This means that the sequence diagram
instances “Tel2 stops”, “Tel3 stops”, “Tel2 answers”, and “Tel3 answers” can
be activated only after the Te12 and Te13 call instance has been activated and partially
traversed. This order (and the choice between alternatives) is specified with the activation
conditions and Condition Marks, but become valid only after the parameters have been
bound to the corresponding names.

User Defined Driving Operation Calls (for Rhapsody in
C/C++/Java/Ada)

The default implementation of a driver operation generated by TestConductor may be
overwritten and customized by the user, by stereotyping the message with stereotype
<<RTC MsgInfo>> in the sequence diagram and setting the corresponding values for the
tags

TestBehavior::RTC MsgInfo::RTC DriverCallCode,
TestBehavior::RTC MsgInfo::RTC DriverCallCodeAdditional
TestBehavior::RTC MsgInfo::RTC DriverInitCode,
TestBehavior::RTC MsgInfo::RTC DriverInitCodeAdditional

Message : evStart

Generall Description| Relations Tags]Ploperlies

- TestBehavior

-l RTC_MsgInfo
RTC_DriverCallCode
RTC_DriverCallCodeadditional
RTC_DriverInitCode
RTC_DriverInitCodeAdditional
RTC_Monitor O
RTC_Msgld
RTC_Receiver
RTC_StubBodyCode

204

Usually, if the user modifies driver operations in the model, then this information is lost if
the user updates a test case. The user can influence the generated code for driver
operations and stub operations. Using the tags

TestBehavior::RTC MsgInfo::RTC DriverCallCode,
TestBehavior::RTC MsgInfo::RTC DriverCallCodeAdditional,

TestBehavior::RTC MsgInfo::RTC DriverInitCode,
TestBehavior::RTC MsgInfo::RTC DriverInitCodeAdditional

the content of these tags is not lost during update of a test case.

The value for RTC_DriverInitCode is taken as the beginning of the driver operation
body containing the initialization of necessary variables, whereas the value for

RTC DriverCallCode is taken as the trailing part of the driver operation body
containing the call of the function to be driven.

Driver Operation : SD_tc_0_evBarcode_1in TC_at_hw

General | Description Implementation IArguments Relations | Tags | Properties |
Ivoid SD_tc_0_evBarcode_1[)
01 /ﬁfﬁﬁ*ﬁﬁ*ﬁﬁ*ﬁﬁ*ﬁé*ﬁfﬁﬁfﬁﬁ*ﬁﬁiﬁf*ﬁé*ﬁéﬁﬁ*ﬁﬁ*ﬁ(*ﬁﬁiﬁé*ﬁéﬁﬁfﬁﬁfﬁﬁ*ﬁﬁiﬁf*ﬁ -~
oz DriverOperation generated by Testlonductor
o3
04 TestCase : SD tc 0
05 Message : message 2
06 =
o7 The Driver Initialisation Code contains the value of tkhe
08 Message Tag TestBehavior::RTC MsgInfo::RTC DriverInitlode,
a9 if the Tag value is not empty. Otherwise, the Driver
10 Initialisation Code is automatically generated.
11
12 The Driver Call Code contains the value of the
13 Message Tag TestBehavior::RTC MsgInfo::RTC DriverCalllode,
14 if the tag value is not empty. Otherwise, the Driver
15 Call Code is automatically generated. P
16 fﬁfﬁ{-fﬁ**é**é*fﬁfﬁéfﬁé*é**é**é**é*ﬁéfﬁ*fﬁ{-*é;(-fé**é*fﬁfﬁéfﬁé*fﬁ*é**é*f‘/
17
18777 —/—/—————————————————————
19(// Driver Initialisation Code:
20| /e e e e
21
2z[int osc_arg 1 = 12345;
23[F7F———— e
24| // Driver Call Code:
25| /e e
26
27(OUT_PORT (hw) ->GEN (evBarcode (osc_arg_1)):
28
i
< I 2l
Locate

Note that both properties can be overwritten separately by the user. In case the user wants
to customize the initialization section only, only the property RTC DriverInitCode has
to be overwritten; TestConductor will continue to automatically generate the code for the

driver call section (and vice versa).

The value for RTC_DriverInitCodeAdditional istaken as additional initialization
code that is generated in addition to the initialization code generated by TestConductor.

205

The content of this tag is generated directly after the auto generated initialization code.
Similarly, the value for RTC DriverCallCodeAdditional is taken as additional call
code that is generated in addition to the auto generated call code. The content of this tag is
generated directly after the auto generated call code.

RTC DriverInitCode and RTC_DriverlnitCodeAdditional

The user can influence the initialization of arguments before the message is driven using
the tags RTC DriverInitCode and RTC DriverInitCodeAdditional. To do this
uses have to add the stereotype RTC MsgInfo to the SD message. This adds automatically
the tags RTC DriverInitCode and RTC DriverInitCodeAdditional to the
message. The user can fill these tags with code which will be used as initialization code of
the driver operation when the test case is updated. Important is that the context of

RTC DriverInitCode completely replaces the initialization code that would be
generated by TestConductor automatically, whereas the content of

RTC DriverInitCodeAdditional issimply added to the auto generated initialization
code.

In some cases it is advisable that the user copies all or the needed parts of the
automatically generated driver initialization code section and paste it into the tag
RTC DriverInitCode before starting to implement his own changes.

Message : evBarcode

Genetal] Description] Relations Tags IProperliesl
3 x

=/ TestBehavior

=l RTC_Msglnfo
RTC_DriverCallCode
I 1
RTC_Monitor O 1
RTC_Msgld message_2 |
RTC_Receiver
RTC_StubBodyCode Q

Quick Add ; ’

i_ Name: I Value: | Add
TR R R R feste {L‘ Locate | OK

RTC_DriverCallCode and RTC_DriverCallCodeAdditional

The user can also influence the call of the driven operation using the tags

RTC DriverCallCode and RTC DrivercCallCodeAdditional. To do this he users have
to add the stereotype RTC MsgInfo to the sequence diagram message. This adds
automatically the tags RTC DriverCallCode and RTC DriverCallCodeAdditional
to the message. The user can fill these tags with code which will be executed after the
initialization of arguments. Important is that the content of RTC DriverCallCode
completely replaces the code that would be used to invoke the driven operation if
TestConductor generated the code automatically, whereas the content of

RTC DriverCallCodeAdditional issimply added to the auto generated call code.

206

Note, in this scenario the user has has the responsiblitythat the sequence diagram test case
is indeed executable after customization. Basically, the specified message of the sequence
diagram test case, which now is present as source code, has to be represendted in the user
defined code.

In some cases it is advisable that the user copies all or the needed parts of the
automatically generated driver call code section and paste it into the tag
RTC DriverDriverCode before starting to implement his own changes.

Message : evBarcode

General | Description | Relations Tags]Proper!ies

= TestBehavior
=l RTC_Msglnfo

RTC_DriverCallCode |
B S L S S RTC_DriverInitCode int osc_arg_1 = 1234% l
// Driver Call Code: RTC_Monitor D

RTC_Msgld message_2 m
OUT PORT (hw) —>GEN (evBarcode cut RTC_Receiver
| RTC_StubBodyCode

Paste [!

Clean TestComponent

Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of a test component at once.
To clean a test component select the test component und choose from the context menu
the item Clean TestComponent.

207

- s\% TestComponents

- & [

-3 Defal Features
+ E‘; ol Features in New Window

+ E" Drivel
+ E Operd
+-=0 Ports Search...

- Stubk Search inside. ..
= References...

Add New >

--B Stubc
+-B 5l Create Unit
+- G sl
542 Suped Change to ’
+- i@ TC for_it Configuration Management »
+-1qd, TC for_it
= 3) TestContexts Implement Base Classes. ..
= £ TCon_Ca:
G ks o
+-gg SUTs| O o€
4. 4% Test ¢ Roundtrip

",
=% TestC Edit Type Order...
+ al

al Associate Image

Delete from Madel

&Il Clean TestComponent
o atgrreroue) L)

- -
o R K

Clean TestPackage

Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of all test components of a
TestPackage at once. Furthermore, Clean TestPackage also deletes all results and
coverage results from the TestPackage.

To clean a test package select the test package und choose from the context menu the item
Clean TestPackage.

To regenerate the driver an stub operations select the test case or the test context or the test
package and choose from the context menu the item Update
TestCase/TestContext/TestPackage.

Deleting User Defined Driver Operation Calls

TestConductor uses user defined operation calls if the tags

TestBehavior::RTC MsgInfo::RTC DriverInitCode and
TestBehavior::RTC MsgInfo::RTC DriverCallCode are not empty, even if the
tags are overwritten. To delete the user defined operation call and use the auto generated
driver operations from TestConductor, reset the tags to delete the content of the tag.

208

Message : evStart

General | Description | Relations Taas IProperties

=/ TestBehavior
=| RTC_Msglnfo
RTC_DriverCallCode | RTC_ASSERT_SD_NAME ("SD_tc

RTC_DriverInitCode %

RTC_Monitor

User Defined Stub Operation Calls (for Rhapsody in
C/C++/Java/Ada)

Stub operations are created for any operation call in the sequence diagram going from the
SUT to a test component if the following items are all true:

¢ areturn value (or a returned value for an out or infout argument) is specified for
this operation

¢ thetag TestConductor: :RTC MsgInfo::RTCMonitor for the sequence
diagram message is set to false

¢ thetag TestConductor: :RTCInstInfo: :RTCMonitor for the To-sequence
diagram instance line is false

TestCondoctor needs the ability to determine and control the value returned by the
operation. On the other hand there might be calls to the same operation without a specified
return value or the operation is called by a test component on a test component: because of
this TestCondoctor has to generate a different body for the operation, but it must still be
possible to call the original operation.

To ensure this, TestCondoctor creates a copy of the original operation with the name
orginal followed by the operations name, having the same signature. In the
implementation body of this so called DefaultOperation the original function is called
non-virtually. For every occurrence of the operation where it should be stubbed, a new
operation is added to the test component with the same signature of the original operation.
This so called StubOperation returns the specified return value, out and in/out arguments.
The name of the stub operation is the concatenation of the name of the test case, the string
“ stub_”, the name of the original operation followed by a number to make it unique.

The body of the original operation is deleted completely and a new implementation is
generated this way: The operation does a call to a special TestCondoctor operation and
uses the oMstring value returned by TestCondoctor in a switch statement to select which
operation should be called. If a stub operation has to be invoked TestCondoctor returns its
GUID, if the original operation has to be called TestCondoctor returns an empty string.

209

Stubbed Operation ;: show irE_at_hw

General] Description Implementation]Alguments Relalionsl Tags [Properties

|void show(char” aMsq)

01 ftétfététéﬁtétféfétfﬁtétéﬁtétfététfﬁtéééﬁtétfététfﬁtéééﬁtétfététfﬁtééé -
oz tubbedOperation generated by Testlonductor

03

Dq ;ésé)é»}*;és(-*»}*;és(-*»}*;és(-*»II-;és(-*»}**'-s(-*»II-;és(-*»}**'-:(-*»ZI-:ésé*»}*:e':é*é*f**é*:&é*é*:&é*é*:&é*é/
as

06 OMString guid = RTC_ASK("GUID d2dé67cd6-7106-453f-ae73-7783£c788£2b")
07 if (guid == "GUID 99986f0c-2d31-4b80-9408-d001064dAc974")

0s 5D_tc 0 stub_show_1{alsg):

(u}=] OM_RETURN_VOID;

10 }

11 else

12 if (guid == "GUID ec6185e8-332£-4030-92al-24ccdf4fifda™) ¢

13 5D_tc 0 _stub_show_ 2 (allsg)

14 OM_RETURN_VOID:

15 1}

16 original_show(aMsg):

17 OM_RETURN_VOID;

18

<| l o
Locate OK p

The actual values of formal parameters defined for the sequence diagram or sequence
diagram instance are propagated to the stub operation this way: If any parameter is used in
the return value or out or infout arguments of the operation that has to be stubbed, then in
the body of the stub operation this parameter is exchanged with the value of the parameter.

RTC_StubBodyCode

Normally, if the user modifies stub operations in the model, then this information is lost if
the user updates a test case. The user can influence the code of the stub using the tag

RTC_ StubBodyCode. To do this he has to add the stereotype <<RTC MsgInfo>>to the
sequence diagram message, this adds automatically the tag RTC StubBodyCode to the
message. The user can fill this tag with code which will be used as body of the stub
operation when the test case is updated. Important is that this code completely replaces the
body that would be generated by TestConductor automatically.

An important limitation is: only virtual operations can be stubbed. Since the SUT is
implemented, in the SUT code operations of other design classes are called. For instance,
a class a which is the SUT class may call a operation “f” of a class B. Now, in a given test
architecture, a new test component class BT is introduced that inherits from B in order to
be able to use an instance of class BT instead of an instance of class B directly. However,
the SUT code still calls the operation “£” of B, since the SUT code remains untouched.
But when “£” is a virtual operation, the virtual dispatching mechanism of UML ensures
that the most specialized variant of the operation is called, i.e., if class BT implements a
new version of the called operation “£”, then this function is called. This function can be
stubbed, since it is defined in the testing component sT. However, if the SUT calls a non-
virtual function, it cannot be stubbed since this operation is in general not defined in a
testing component.

If an operation is stubbed multiple times in the same test component in the same sequence
diagram instance, then for each occurrence an individual stub operation is generated.

210

If an operation is stubbed multiple times in the same test component in the same SUT in
different test cases respectively sequence diagram instances, then for each occurrence an
individual stub operation is generated.

Tip: Incase TestConductor has not created stub operations for a sequence diagram
message, the at the beginning mentioned conditions are not fulfilled. To “inspire”
TestCondutor to create such stubbing functionality anyhow, the user can define
“*” ag expected return value for the sequence diagram message followed by an
update on the test case. In some cases TestConductor will then create the
customizable stubbing functionality as shown in the above picture.

Clean TestComponent
Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of a test component at once.
To clean a test component select the test component und choose from the context menu
the item Clean TestComponent.

- } TestComponents

SRC §7C_at_h
--E33 Defal Features
+ G ot Features in New Window

+- & Drivel
+- & Oper:
+-=0 Ports| gearch..,

- stubt Search inside. ..

= References...

Add New 4

- Stubd
+- G sl Create Unit
+ G sl
4.4 Super Change to >
+-ig TC_for it configuration Management »
+ -1, TC_For_it
- £33 TestContexts Implement Base Classes...
= £ TCon_Ca:
!l
+-g SUTs ysooe

569 Test { Roundtrip
=1 TestC et Type Order...

+ "!_v' al
+-%, al Associate Image
+R
. Delete from Model
+ x.g |
CRPE | Clean TestComponent
+-% atgrreruory A

Clean TestPackage

Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of all test components of a
TestPackage at once. To clean a test package select the test package und choose from the
context menu the item Clean TestPackage.

211

To regenerate the driver an stub operations select the test case or the test context or the test
package and choose from the context menu the item Update
TestCase/TestContext/TestPackage.

Deleting User Defined Stub Operation Calls

TestConductor uses user defined operation calls if the tags

TestBehavior::RTC MsgInfo::RTC_StubBodyCode are not empty, even if the tags
are overwritten. To delete the user defined operation call and use the auto generated stub
operations from TestConductor, reset the tags to delete the content of the tag.

Using Test Actions in SD Test Cases

In the previous section, the tags of the <<RTC_Msglnfo>> stereotype have been used in order
to customize the driver code and stub code generation of TestConductor. Alternatively, the
same can be done in a more graphical fashion by using so-called test actions. A test action is
an action that can be placed on one of the test component life lines in the sequence diagram.
The test action contains code that is considered by TestConductor when the model is
populated with test code, and it can be used to e.g.

.

*

.

*

create complex input data
access e.g. gobal variables of the test architecture
create complex checks for complex output values

define complex behavior of stubs

In order to support the use cases mentioned above, TestConductor provides the following
kinds of test actions:

.

A general test action: a general test action is a sequence of statements that is executed by
TestConductor if test execution reaches the test action. In order to define a general test
action, just add a test action block to one one the test component lifelines in the test
scenario. In contrast to the message-related test actions described further below, a general
test action is not related to another message in the test scenario.

<InitAction>: An init action is a test action that can be used to initialize test data. The code
contained in the init action is handled as the tag RTC DriverInitCode Of the stereotype
<<RTC_MsglInfo>> (cf. section “RTC_DriverInitCode and

RTC DriverlnitCodeAdditional” on page 201).

<PreCallAction>: A pre call action is a test action that can be used to either initialize test
data or to do some other test related activities before a message is sent from a test
component to a SUT instance. The code contained in the pre call action is handled as the
tag RTC_ DriverInitCodeAdditional Of the stereotype <<RTC_Msginfo>> (cf.
section “RTC_DriverIlnitCode and RTC_DriverlnitCodeAdditional” on page 201).

<CallAction>: A call action is a test action that can be used to call a particular operation ot
to send a particular event. The code contained in the call action is handled as the tag

RTC DriverCallCode Of the stereotype <<RTC_Msglinfo>> (cf. section
“RTC_DriverCallCode and RTC DriverCallCodeAdditional” on page 202).

212

¢ <PostCallAction>: A post call action is a test action that can be used to perform any kind

of actions after a particular call to an operation or a sending of an event, e.g. code for
checking output values of the called operation. The code contained in the call action is
handled as the tag RTC DriverCallCodeAdditional Of the stereotype
<<RTC_MsgInfo>> (cf. section “RTC_DriverCallCode and

RTC DriverCallCodeAdditional” on page 202).

¢ <StubAction>: A stub action is a test action that can be used to define the behavior of

stubbed operations, e.g. checking arguments of the called operation or returning specific
values. The code contained in the stub action is handled as the tag "RTC StubBodyCode"
of the stereotype <<RTC_ MsgInfo>> (cf. section “RTC StubBodyCode” on page 205).

In order to add a test action to a sequence diagram test case, do the following:
¢ On the test scenario toolbar, select the the test action icon

¢ Place the test action on one of the test component life lines in the test scenario

ﬂSDTestScenariu_Z M. X ESDTestScenariD_l in TPk... ﬂ
...:TC_at_inpurt_uf_A| TCon_AitsdA | TC at_outport_of.. | Select
¢SUT A Stamp Mode
TCon_A.itsTC TCon_A.itsh: TCon_A itsTC
%_at_inpuﬂl_uf_ % A _at_outport_of Instance Line
ATC _at_inpor _ATC at_out

Systern Border

p——

fﬂlnimctiun} T
int osc_arg_1=11;
OM5String osc_arg_2 = "Bob”;

Message
Reply Message
Create Arrow

Diestroy Arrow

Execution Occurrence

Timeout
\\i‘rlt..o.ijret; __/ | Cancelled Timeout
Tirne Interval
l =2i="5="7 __! DiataFlomw
il Partition Line
ﬂostCallActiom \ I conditon fark
|

RTC_ASSERT_MNAME("Check of
ret: ", osc_ret == 99);

M : ~ |99=g2(i=*, s=%
—— ™

Interaction Cccurrence
Interaction Operator

Operand Separator
Lost Message

B LTHBO=0+ i Gttt & t D0 &3

[+]

[.
< CallAction _\
(QUT_PORT(ingor)->fl (asc_arg_1)I I Found Message .
osc_arg_2); D=L LT
e e —y | | < TestaAction ’
B T ———
| |

[f1{i=17, s="0laf")

[
-

[

After adding the test actions to the test scenario, one has to update the test case (select

“Update TestCase” on the test case. After the update, the test actions are populated into
the driver operations and stub operations in the model. For instance, the <PostCallAction>

in the test scenario depicted above is populated to the driver operation for the message
“f2” that is specified directly above the <PostCallAction>:

213

General | Description | Implementation | Arguments | Felations | Tags | Properties
void SD_te_2 2 1[)

a7 S

28 osc_ret = OUT PORT(inport)-»fZ(osc_arg 1, osc_arg Z):

29 RTC_ASSERT 3D NAME ("3D_tc_ 2", "message 0", "Check of ret: ", osc_ret == 99);

30

v

< >
Locate CK

After building the test case, the test case can be executed. The code in the test actions is
executed when the test case reaches the specified test actions. For instance, the assertion
specified in the <PostCallAction> of the test scenario depicted above in executed directly
after the message “f2” was called on the SUT. If the assertion fails, after doing “Show as
SD” one can see that the specified assertion has failed.

As an example of how to use test actions for specifying the behavior of SD test cases,
please have a look at the sample “CppTestActions” in the folder
“Samples/CppSamples/TestConductor”

Using Interaction operators in sequence diagram test cases (only
assertion based testing mode)
In assertion based testing mode (if TestConductor.Settings. TestingMode ==

AssertionBased), so-called interaction operators can be used in specifying the behavior of
a test case. TestConductor supports the following SD interaction operators

e Opt

o Alt

e Loop

e Break

e Consider
o Parallel

As an example of how to use interaction operators for specifying the behavior of SD test
cases, please have a look at the sample “CSDOperators” in the folder
“Samples/Csamples/TestConductor”

Black-Box Testing of External Files and Libraries

TestConductor comes with the C++ sample CppTestingExternalFiles. This project
contains the package PkgUseExternalFiles, Where two files are defined. The declared
external file ExternalFile ArithmeticCPP consists of a source file
arithmetic.cpp and the corresponding header file arithmetic.h. The file
Externallib LogicLib consist of the library LogicLib.1ib and a corresponding
header file LogicLib.h. Further information on how to define files can be found in the
Rhapsody User Guide.

214

-I- £ PkaUseExternalFiles
+-B Classes
+-[@ Comments
+ (] Components
= [ﬁ Files
- B ExternalFile_arithmeticCPP
= E Functions
& divide(int argument_0,int argument_1)
& multiply(int argument_0,int argument_1)
& subtractint argument_0,int argument_1)
& summate(int argument_0,int argument_1)
=] @ ExternalLib_LogicLib
= E Functions
& landiint a,int b)
& INot(int a)
& lor{int a,int b)
& IXor{int a,int b)

Open the feature dialog of a file, select the Properties tab and browse the overwritten
properties of ExternalFile ArithmeticCPP.

File : ExternalFile_ArithmeticCPP in PkgUseExternalFiles

General] Description | Yariables | Functions Relationsl Tags Properties

View Overridden ~

- CG

| Class
FileMame ExternalSrcarithmetic
UseAsExternal

=/ Operation .

. EnableInMethodBroker A

=/ CPP_CG

=l Class
Animate im|

CG.Class.UseAsExternal is setto TRUE.

CG.Class.FileName determines the basename of the referenced external file. This
property defines ExternalFile ArithmeticCPP toreferto arithmetic.h inthe
project's Externalsrc-directory.

CPP_CG.Class.Animate IS set to FALSE. Whatever the library or the external source
file contains Rhapsody animated code, the property has to be set to FALSE. Setting this
property to FALSE means, that the file, which will become in this example the SUT, will
not be animated. Furthermore, disabling the animation of the SUT means to perform a
black-box test.

215

In order to use external header and implementation in code-generation, component
UseExternalFiles defines the additional include-path . . /. .", which refers to the
project's root-directory. The implementation of the external functions is made available to
code-generation by defining additional source
"../../ExternalSrc/arithmetic.cpp". In order to link the library the configuration
UseExternalFiles: :Default defines under Libraries
“../../LogicLib/NotInstrumented/LogicLib.1lib”.

To use this example and the provided test cases in the test packages

TPkg ExternalFile ArithmeticCPP and TPkg Externallib LogicLib the user
has first to generate/build the LogicLib.Lib and the header file LogicLib.h. Browse
the package PkgLogicLib, set the containing configuration

LogicLib: :NotInstrumented active and build the configuration by using the
Generate/Make/Run button.

Test Packages

The example comes with pre-defined test architecture for the file
ExternalFile ArithmeticCPP. The test architecture was created as follows:

For testing external file ExternalFile ArithmeticCPP, select
ExternalFile ArithmeticCPP and choose Create TestArchitecture in the context
menu. A new test package TPkg ExternalFile ArithmeticCPP Will be created

«TestContexts
TCon_ExternalFile_ArithmeticCPP File ExternalFile_ArithmeticCPP is the System Under Test.
«Files
PkgUseExternalFiles::ExternalFile_ArithmeticCPP
A
«Usage»

In order to make test context
TPkg ExternalFile ArithmeticCPP::TCon ExternalFile ArithmeticCPP

compilable and linkable, the user has to modify code generation component
TPkg ExternalFile ArithmeticCPP::TPkg ExternalFile ArithmeticCPP _C

omp:

1. enter"../../ExternalSrc/arithmetic.cpp" into entry Additional Sources in
the General tab.

2. extend the include path in entry Include Path to
"$ (OMROOT) /. ./TestConductor,../.."

216

Component : TPkg_ExternalFile_arithmeticCPP_Comp in TPkg_ExternalFile_arithmeticcPP [=][X]

General IScopel Description | Relations | Tags | Properties

Name: ITF’kg_E steralFile_arithmeticCPP_Comp

Stereatype: | _v_I —%_I
Directory: ITPkgLE sternalFile_arithmeticCPP_Comp

Libraries: I

Additional Sources: |._;‘../E sternalSrc/arithmetic.cpp
Standard Headers: |

b Bl

Include Path: |$(OMROOT)/../TestConductor,../..

-Type
" Library Executable ¢ Other

" Locate I oK | Apply I |

The example comes with a pre-defined test architecture for the file
ExternalFile ArithmeticCPP and the library Externallib LogicLib. Also the
following sequence diagram test cases have already been defined:

¢TestContexts
TCon_ExternalFile_Arithme ExternalFile_Arit
ticCPP[0]: TCon_ExternalFil hmeticCPP
e_ArithmeticCPP

| 42=summate(argument_0=11 argument_1 =31)$:
| 42=multiply{argument_0=6 argument_1=7) bl

| 42=subtract(argument_0=53 argument_1=11) "I

| 42=divide(argument_0=966 ,argument_1=23) '.I

| |
| O=divide(argument_0=0,argument_1=42) bl
| |

To execute the test case sD tc 0 select the test case in the Rhapsody browser and choose
from the context menu Update Test Case, Build Test Case, Execute Test Case. In the
TestConductor execution dialog click on the button Activate Test. TestConductor shows
that the test case sp_tc_0 passed. For further information select in the TestConductor
execution dialog the entry sp_tc_0 and click on the button Show as SD. The animated

217

sequence diagram displays the text execution result and states, that all return values
occurred as specified.

TCon_ExternalFile_Arithme ExternalFile_Arit
ticCPP[0]: TCon_ExternalFil hmeticCPP
e_ArithmeticCPP

| summate(argument_0=11 argument_1=31): Check of return value passed.
| multiply{argument_0=6 argument_1=7): Check oé!eturn value passed.
i subtract{argument_0=53 argument_1=11): Checgvf return value passed.

: divide(argument_0=966 argument_1=23): Check of return value passed.
! divide(argument_0=0 argument_1=42): Check of réturn value passed.

Now execute the test case SD_tc 0 in the test context TCon Externallib LogicLib.
The test will fail and the Show As SD sequence diagram will state, that the check of the
return value failed.

TCon_Externa Externallib_L
ILib_LogicLib[ogicLib
0]:TCon_Exte
| lAnd(a=10,b=42): Check of return value passed.
| 10r{a=0,b=13): Check of return value psﬂsed.
i [Xor(a=1,b=13): Check of return value pagsed.
: INot{a=0): Check of return value failed.

| et

Open the test scenario sbTestScenario 0 of testcase SD_tc 0 in the test context
TCon ExternallLib LogicLib.

¢TestContexts

TCon_Externa Externallib_L
ILib_LogicLib] ogicLib
0]:TCon_Exte

| 1=I1And{a=10,b=42)

! 1=10r(a=0,b=13)

|
 D=IXor(a=1,b=13)
|

| 0=INot(a=0)

I BN S NN

The expected value in the expression “0=1Not (a=0) " is wrong. The correct return value
has to be “1=1Not (a=0) ”. Correct the test scenario and re-run the test. It will pass.

218

Using Serialize/Unserialize Functions for User
Defined Types

Rhapsody can animate (display) the values of simple types and one-dimensional arrays.
However, if you want to animate a more complex type, the type must be converted to a
string (char *) for Rhapsody to display it. This can be done generally in two different
ways, either by using auto-generated serialization/unserialization functions or by using
manually defined serialization/unserialization functions.

Using auto generated serialization /unserialization functions

For enum types and structure types that are explicitly defined in the model, Rhapsody
provides the possibility to use automatically generated serialization/unserialization
functions in order to display values of these types e.g. in animated sequence diagrams. In
order to use the auto generated serialization/unserialization functions for a specific type
that is defined in the model, the property “<Lang>.Type.GenerateSerializationFunctions”
must be set to “SerializationAndUnserialization”:

= (0 Packages Type : person in Default (%]
=B Default B
B Classes General | Description | Attibutes | Felations | Tags |F'f0I:"3ftiES
N Events
=< Types View Ovenidden ~
& farbe Sl CPP_CG
=€ person _
= B atributes Tvpe
= name GenerateSerializationFunctions | SerializationandUnserialization
= alter

If this property is set correctly, for arguments with enum type one can use the literals of
the enum definition in the test scenarios, and for arguments with structure type one can
specify each attribute defined in the structure type. The following test scenario shows two
message “f” and “g” that both have two arguments, one of enum type and one of a
structure type:

TCon_ A itsA; TCon_ A itsTC
A, _far_itsB_of_
ATC far_itsB

ficolor = red, person={ name = Peter , age = 33

|
|
Iﬂ

p |

|

| glcolor = red, person ={ name = Peter , age =33 1) .J
| |
| |

Using manually defined serialization /unserialization functions

Besides using the auto generated serialization/unserialization functions of Rhapsody, one
can also manually define serialization/unserialization functions. These functions are global

219

instrumentation functions, that takes one argument of the type you want to display, and
returns a char *. Further information can be found in the chapter Guidelines for Writing
Serialization Functions of the Rhapsody User Guide. The usage of serialization functions
for Testing is demonstrated by the sample model
“Samples/CppSamples/TestConductor/CppListUsage”. Please note that serialization
functions can only be used for testing purposes if the type that should be serialized is
selected directly as an “existing type” in Rhapsody. If only the type signature is used to
specify the type of an argument type or return type, serialization functions cannot be used
for testing.

In case of non fault tolerant programming of these (un-)serialize function the
application/model may probably work during normal operation, but can crash, if the user
executes a test case on the same model. The following example shows a Sting32 type.

Type : String32 in TypesPkg

General | Description Details I Relations | Tags | Properties |

Basic type: Ichar
Multiplicity: |32

™ Constant

™ Reference

Locate | OK | Apply I

The user defined the following serialize function:

Function : serializeString32 in TypesPkg

General | Description Implementation I.é.rgumentsl Relations | Tags | Properties |

[char" serializeString32[(const Sting32 aString)

01 char?® str = (char *)malloc(sizeof (char) *33):;
02 strepy (str, aString):

03

04 return str;

0s

And connected it correctly to the corresponding property

220

Type : String32 in TypesPkg

General | Description | Details | Relations | Tags ~ Properties I
View Common ~
&l cpp_cG
= Type |
\ AnimSerializeOperation | serializeString32

‘ AnimUnserializeOperation

During normal operation everything will work properly. But during execution of a test
case on the unchanged model the execution will crash.

Microsoft Visual C++ Debug Library
6 Debug Error!

Program: ...delle\ TCU\TCon_Telephone_0\DefaultConfigiTCon_Telephone_0.exe

DAMAGE: after Normal block (#50977) at 0x00521398.

(Press Retry to debug the application)

| Abbrechen I ‘\Wiederholen Ignorieren

The reason for the crash is the serialization function for String32, it causes a crash if it is
called with a not initialized string. If TestConductor registers as an observer the
framework notifies TestConductor about operation calls. To do this the framework
serializes the arguments of the constructor (== conversion to string).

If the serialize function for String32 is modified this way the application will not crash:

Function : serializeString32 in TypesPkg

General] Description Implementation lArgumentsl Relationsl Tags I F’roperties]

Ichar" senializeSting32[const Sting32 aString)

01 char?® str = (char *)malloc(sizeof (char) *33):;
02 for (int i = 0; i1 < 32; i++)

03 str[i] = aString[i]:

04

05 str[32] = '\O';

06 return str;

221

Fallure Analysis

TestConductor detects and reports a failure if a message contained in the message set of a
sequence diagram does not appear in the specified order or if a RTC_ASSERT isn’t
fulfilled during test execution. A message from the message set is specified by its name,
the value(s) of its argument(s), the names of sending and receiving objects.

Failure analysis is an important but sometimes difficult task. This is due to the fact that
industrial-sized models show very complex behavior, with many messages flowing during
test execution.

All possible failures monitored by TestConductor can be caused:

1. By errors in the model — the computed model behavior does not meet requirements
specified by an sequence diagram

2. By inconsistencies in the test configuration or/and in the requirements

In case of using sequence diagrams for test definitions, the task of model debugging is
simplified by using TestConductor’s graphical failure reports. You can use a combination
of diverse Rhapsody analysis capabilities (for example, state chart animation, sequence
diagram animation, and sequence diagram comparison) with TestConductor to show test
executions as sequence diagrams. The colors and percentage information in the Execute
Test dialog are useful indicators in determining where the failure occurred.

Remember that during model execution TestConductor ignores all messages which are not
specified in the sequence diagram instances of the executed test. This implies that
TestConductor meets failure in the following two cases:

3. The real order of message actions during model execution does not correspond to
specifications in sequence diagram instances.

4. The real argument values of messages during model execution do not correspond to
those specified in sequence diagram instances.

During test compilation, TestConductor translates every sequence diagram instance into
internal sequence(s) of message actions specified in the sequence diagram instance. As
you activate a test, TestConductor starts the model execution and creates the first iteration
copies of sequence diagram instances without specified ordered predecessors as the
original run-time instances. During test execution, TestConductor checks the activation
condition of each created run-time instance until it gets value TRUE (that is a run-time
instance becomes active). After that, TestConductor checks every messages appearing in
the model execution. For every currently active run-time instances from the Execute Test
dialog, it compares the following:

1. Whether the current message belongs to the message set of the corresponding
sequence diagram.

222

2. Whether all message actions preceding the current message in the corresponding run-
time instance have already occurred.

If the first condition does not hold, TestConductor ignores the current message. If both
conditions hold, TestConductor marks the current message as green. If only the first
condition is fulfilled — one or more actions preceding current one in the corresponding
run-time instance have not yet appeared in the model execution — TestConductor creates a
red message, reports failure and stops to traverse the run-time instance with erroneous
message action. After that it continues to generate run-time instances with respect to the
specified execution mode, check activation conditions and new message actions.

Failure Reporting

TestConductor draws a green horizontal message arrow for operation calls that have been
monitored. Events that have been monitored in-order are drawn as slanted messages as in
sequence diagram animation. The starting point of the slanted message is where the event
has been sent. The end point refers to the point where this event must be consumed
according to the original sequence diagram specification.

Note: In our green, blue, red approach one could consider the dashed line as half-green
(event has been sent) and half-blue (consumption not yet monitored).

Following classes of errors can be detected by TestConductor:
Sending out of order

Event Sending - Parameter values do not match

Event Sending - Parameter values not in range
Consumption out of order

Event Consumption - Parameter values do not match
Event Consumption - Parameter values not in range
Operation Call out of order

Operation Call - In Parameter values do not match

© © N o o & 0w doE

Operation Call - In Parameter values not in range

=
o

. Operation Call returned - Return value does not match

=
(=Y

. Operation Call returned - Out Parameter values do not match

[EY
N

. Operation Call returned - Out Parameter values not in range

=Y
w

. DataFlow Message - Value does not match
. DataFlow Message - Value not in range

. DataFlow Message out of order

. Assertion failed

el
o o1

223

TestConductor draws a red horizontal message to visualize a failure. The red arrow refers
to a point where a message was monitored out-of-order or where parameter values did not
match. The red message is labeled with a text (M() represents the failed message):

M():Sending out of order

M():Event Sending - Parameter values do not match

M():Event Sending - Parameter values not in range
M():Consumption out of order

M():Event Consumption - Parameter values do not match
M():Event Consumption - Parameter values not in range
M():Operation Call out of order

M():Operation Call - In Parameter values do not match
M():Operation Call - In Parameter values not in range
M():Operation Call returned - Return value does not match
M():Operation Call returned - Out Parameter values do not match
M():Operation Call returned - Out Parameter values not in range
M():DataFlow Message - Value does not match

M():DataFlow Message - Value not in range

M():DataFlow Message out of order

M():Assertion <SD_instance_X: message Y> failed

® & & 6 6 6 O O O O O O O o 0 o

TestConductor draws blue messages for messages that have not yet monitored, neither
sending nor consumption of events. Such a drawn sequence diagram contains the original
sequence diagram specification used for the test. All green and blue messages represent
the messages of the original sequence diagram. Green and blue messages, together with
the red arrow make failure analysis much easier. If the red message is erased, then the
drawn sequence diagram can be used to reproduce the same failure.

Note: Red messages can not be erased automatically from a failure sequence diagram used
in a new test. Workaround is to erase it manually if such a sequence diagram shall
be used in a test. Following samples explain the failure cases.

Event sending out-of-order

224

PBX[0]-> PBX[0}-> PBX[0}-> PEX[0}->
itsTelephone[D]: itsLine[0]:Line itsCallRouter: itsConnection[0]:

/evOffHookQ
s 9
/ Wmuo
N 7 —~ .
? OpenConnection()
7
? OpenConnection
7
? evDialTone()
s “kvoriginateCallg
7 P -
7z & T
? /’/' -_-‘—_“-h—“‘—-___
s A >
PBX[0]-> PBX[0]-> PBEX[0]-> PBX[0})->
itsTelephone[0]: itsLine[0]:Line itsCallRouter: itsConnection[0]:
fégOﬁHookQ 3
pvOriginateCall()
2 xﬁ‘"“%>
? DpenConnection()
8
? OpenConnection
? evOriginateCall(): Sending out of orde
£ evDialTone()
é evOriginateCall()
“ [
s [T

In this example, according to the specification: TestConductor must

Monitor the self message OpenConnection ()
Monitor the operation call openConnection ()
Monitor the sending of evDialTone ()
Monitor the sending of evoriginateCall ()

Eal o

TestConductor sees, sending of event evoriginateCall () occurs before the sending of
evDialTone (). Thus TestConductor gives the warning “sending out of order”.

Event sending in-order, but parameter values do not match

225

AN

v OftHook()
ew Originate Call()
Dpen Connection()

pen Connectio
by Originate Call()

evDialTone()

AULIIUTRTRTTRRNRNRNY

\\\]\\

tl= 1)
; Digit Dialed(Dignt|= 1)

o g Digit Dia igit|=

7

2 mﬂmm\)
é

/\:OffHookQ 3

% v Originate Call()

7

% DpenConnection()

7

/ Dpen Connecti L

; gy Onginate CallQ)

Z ev DialTone()

Z \h
%& Digit [ialed(Digg =13

“

Digit Dialed(Digit2)
ev Digit Dialed(Diggd1): Event sent but|not yet consumed
#v Digit Dialed(Di —' 1) Evert Sending b Parameter valued do not matoh
2w Digit Dialed(Dign3 1)

ANNRNANRNNGY

In this example, according to the specification, TestConductor must monitor the event
evDigitDialed (Digit = 1), but TestConductor is seeing evbigitDialed (Digit
= 2). Thus TestConductor reports a failure “Event Sending -Parameters values
do not match”

226

Event sending in-order, but parameter values not in range

PBX[0]-> PBX[0]-> PBX[0]-> PBX[D]->
tsTelephone[D): itsLine[D):Line itsCallRouter: its Connection[0]:
Telephone CallRouter Connection
ey OffHook()

ev Originate Call()
DpenConnection()

penConnection
by Originate Call()

ev DialTone()

vDigitDiaIed(DigI =1)
W =2)

SV ANSUARANS RO SRRRNNTRNN |

AU

PEX[0]> PBX[O}> PEX[O}-> PEX[0}->

itsTelephone[0]: || itsLine[O]:Line itsCallRouter:| |itsConnection[0]:
1 T T T

OgenCOnnectiongI

evOriginateCall()

evDialTone()

R

DigitDialed{Digit31)
DigitDialed(Digit52)
evDigitDialed{Digit31): Event Sending + Parameter values| not in range
evDigitDialed(Digits [3..5])
evDigitDialed(Digit= [3..5])

evDigitDialed(Digits [3..5])

ESNNRANARNEEANSNRNRNNY

In this example, according to the specification, TestConductor must monitor the event
evDigitDialed (Digit = 1), but TestConductor is seeing evDigitDialed (Digit
= [3..5]). Thus TestConductor reports a failure “Event Sending - Parameters
values not in range’.

227

Event consumption out-of-order

PBX[0]-> PBX[0]-=itsLine[0]: PBX[0]-= FBX[0]-=
itsTelephone[D]: Line itsCallRouter: itsConnection[0]:
Telephone CallRouter Connection
/evafHool()
‘4 evOriginateCall()
g penConnection()
% penConnection()
; vOriginateCall()
evDialTone(]
7 ~
% L_‘,.ﬂ'ﬂ-‘ q—-"‘-u___q-
/. T
PBX[0]-= PBX[0]-> PBX[0]-> FBX[0]->
itsTelephone[d]: itsLine[d]:Line itsCallRouter: itsConnection[0]:
Talephone CallRouter Connection
<& OttH o ok()

awDial e(): Event sent bu

A,

evOriginateCall()

i

o

-~

*F,.ﬂ"

t not yet consumed

DpenCaonnection()

penConnection

evOriginateCall(:
.-b‘-_

-,

evDrigir‘T;t‘ét'auo:

Event sent but not

Consumption out

et consumed

arder

-,

e ™

'*-b___‘*

In this example, according to the specification, TestConductor must monitor

g w N

. The operation call openConnection ()
. The sending of evOriginateCall ()
. The sending of evbialTone ()

. The consumption of evDialTone ()

. The consumption of evOriginateCall ()

TestConductor sees consumption of evoriginatecall () before the consumption of
evDialTone (). Thus TestConductor gives the warning “Consumption out of

order”,

228

Event consumption in-order, but parameter values do not match

PBX[0]-> PBX[0D]-> PBX[D]-> PBX[0]-=
itsTelephone[0]: itsLine[0]:Line itsCallRouter: itsConnection[0]:
Telephone CallRouter Connection

vwDigitDialed(Diglt= 1)

vWDith)

B
evDigitDialed(Digitj= 1)
™

N

;

/

/

evDigitDraled(Digit= 2)
™

B -3

\ evDigitDialed(Digitj= 1)
e [P

\\J ‘“_ﬂ_&

bvDigitDialed(Digit
——__———_

AANNNNNNNNNNNNNNNNNNNN

DialingDone()
oy

PBX[0]-> PBX[D]-» PBX[D]-» PBX[D]->
tsTelephone[0]: itsline[0]:Line itsCallRouter: itsConnection[0]:
Telephone CallRouter Connection

Digit Dialed(Digit=1)
4% Digit Dialed(Digit=2)
e Digit Dialed(Digit=1)

2 Wd(nig' 7

Z *h

/// v Digit Dialed(Digit=1): Event sent bt not yet consumed
v

? evDigEEié? Digit=2): BEvent sent but not wet consumed
,;’/' b LIt i _%Eie::‘t,‘ons mption - Parameter values do not match
‘<, —

o

2 ialing Done)

A

s

awt Dint Niat=1%

Figure 1: SD with message “Event Consumption — Parameter value do not match”

In this example, according to the specification, TestConductor must monitor

The sending of evDigitDialed (Digit=1)
The sending of evDigitDialed (Digit=2)
The consumption of evDigitDialed (Digit=2)
The consumption of evDigitDialed (Digit=1)

Ealh o

229

TestConductor sees, event consumption of evDigitDialed () came in-order, but the
value of the parameter does not match. Thus TestConductor gives the warning “Event
Consumption - Parameter values do not match”.

Event consumption in-order, but parameter values not in range

PBX[0]-= PBX[0]-= PBX[0}-= PBX[0]-=
itsTelephone[0]: | itsLine[0]:.Line itsCallRouter:| |itsConnection[0]:
Telanhnne | CallRnuter “nnnartinn
/7 D|g|tD|aled(DIC|t- 1)
//QDTg»tlmaled(Dlglt-)

evDigitDialed(Digil=")

/A

evDigitBjaled{Digil=*)

\\evDigitDialed(DigH =[0.]

evDigitDialed(Bugil = [2..3])
____ﬂ‘—-—u—._h

a_.\v_\:‘%)\&

k\\\\\\\\\\\\\\\\\\\)gn

[lajingDoneO

PBX[0]-> PBX[D]-> PBX[D]-> PBX[D]->
itsTelephone[D]: | itsline[D]:Line itsCallRouter:| |itsConnection[D]:
Telephone | CallRouter Connection

Digit Dialed(Digit=1)
Digit Dialed(Digit=2)

e Digit Dialed(Digi’ b |
e Digit Dialed(Digit=")
\\\ ev Digit Dialed(DigitF [0..1]): Event sent but not yet consumed

E.

i

git Dial=d(DigitF [2..3]): Ewvent seft but not yet consumed
\\rl'ﬂl Event Consymption - Parameter walues not in range

™~

., /.,, 7

DialingDone()

Next Digit(Digit=1)

ANNRNNRRNRRR NN SRR RRANNRN

In this example, according to the specification, TestConductor must monitor

1. Thesending of evDigitDialed (Digit=[0..1])

230

1
2..30)
0..11)

3. The consumption of evDigitDialed (Dlglt

2. Thesending of evDigitDialed (Digit=[2..3
[
4. The consumption of evbigitDialed (Digit=]

TestConductor sees, event consumption of evDigitDialed () came in-order, but the
values in the event consumption does not fall in range specified. Thus TestConductor
gives the warning “Event Consumption - Parameter values not in range”.

Operation call out-of-order

231

PBX[0]-> PBX[0]-> PBX[D]-> PBX[O]-»
itsTelephone[D]: itsline[0]:Line itsCallRouter: itsConnection[0]
Telephone CallRouter Connection
;,//eu OffHook()
/—__h____“‘———;. [
//, kv Originate Call()
Z
% Dpen Connection(]
o
? gv Originate Call()
///' ﬁb?rr@ounectioni%
o ev DialTone() P
e
Z
¥

OffHook()

B

ev Onginate Call()

H—b_x-'_

ev DialTone()

"-_,__*

Ev Originate Call()

DpenConnection(]

Dpen Connection‘;

Dpen action

: Operation call oy

g

it of order

The self message OpenConnection ()

2. Thesending of evOriginateCall ()
3. The operation call openConnection ()

In this example, according to the specification above, TestConductor must monitor

Operation call openConnection () from Line to CallRouter should occur after
sending of the event evoriginateCall () .
“Operation Call out of Order”.

Thus TestConductor reports the failure

232

Operation call in-order, but parameter values do not match

SANNANRRRNRN

i

/

uDigitDialed(Dig'J =1
v Digit Dialed(Digr

ey Digit Dialed(Digit

ey Digit di Digit

ANNARNRRANGANRARNRNNNRNN

Jn

\av Digit Dialedi Digit

By Digit Dialed(g

—

ev DialTone(]

]

Epen Connaction }]
v Originate Call()

/

=‘|)

=2)

\ Dialing Donel)

\\ ";ln Digit(Digit = 2)

\‘{i—jina Donen

. Evert sent but|not yet consumed
ialing Done()
ext Digit(Digit=1): Operation Call - In Parameter values do not match

et Digit(Digit=2)

ext Digit(Digit=2)

Figure 2: SD with message “Operation call — In Parameter value do not match”

In this example, according to the

specification, TestConductor

1. Should monitor the operation call bialingDone ()

233

2. Must monitor the operation call NextDigit (Digit=2)

TestConductor sees that operation call NextDigit (Digit=1) instead of operation call
NextDigit (Digit=2). Here the operation call has come in order but the parameter
value is incorrect. Thus TestConductor gives the warning “Operation Call:In
Parameter values do not match”.

Operation call in-order, but parameter values not in range

? Jpen Connection
ev DialTone

i "

%

¢

7

v Digit Dialed(Dig'J =1)
v Digit Qialed(Digr

/

7}
/f

ev Digit Dialed(Digit F 1)

e Digit diDigit F 2

=
ey Digit Dialed(Digit £ 1)

ANAANNANGSSRRENRARNRNRNN

w\w
By Digit Dialed(O '-\11\
\ Dialing Done)
e, et Digit(Digit = 2)
ialina Done)

[0]-= FBX[0]-= PBX[0]-> PBX[0]-*
hone[0]: itsLine[D]:Line itsCallRouter: itsConnection[0]:

evDigitDialed(Digit§2)

A

evDigitDialed(Digits

-

)

evDigitDialed(Digi

™

--Event sent but not yet consumed

ialingDona()

extDigit{Digit=1): Operation Call - In Parameter values not in range

~ extDigit(Digit= [3..4])

234

In this example, according to the specification, TestConductor

1. Should monitor the operation call DialingDone ()
2. Must monitor the operation call NextDigit (Digit=2)

TestConductor expects operation call NextDigit (Digit=[3..4]) as specified in the
tolerance in the test definition, but sees operation call NextDigit (Digit=2) whichis
out of the range. Here the operation call has come in order but the parameter value is
incorrect. Thus TestConductor gives the warning “Operation Call:In Parameter
values not in range”.

Operation call returned - Return value does not match

A
I

B=op_inta=1,b=2 c=In9;0ut3)

SN

-
L)

“W=op_long(a=1,b=2, c=In9;0ut3)

ANNNNYA

op_int(a=" b=" ¢=0)

‘ A=op_intla=1,b=2,¢c=3) Operation Call returned - Return value does not match. Expected values are: S=op_intla=1.b

pp_long(a=" b=" c=0)

op_double(a=* b=" c=") %

Here TestConductor expects a return value of 5 as of the specification but sees a 4. Thus
TestConductor gives the warning message “4=op int (a=1,b=2,c=3) Operation
Call returned - Return value does not match. Expected values are:

5=op int(a=1,b=2,c=3)"

235

Operation call returned - Out Parameter values do not match

10

d=op intta=3 b=2c=1In90ut3)

—_
L=

d=op_long{a=1,h=2c=In90ut3)

ANNRNTEANNNNNE

#10

/7 pp_int@=" b=~ c=9)

2 !

7

7

ok

; A=op_int(a=1b=2 ¢=3) Operation Call retumed - Out Parameter values do not match. Expected values are: 4=op_int(a=3 b=2 ¢=3)
P4

ki

; pp_long(a=" b="¢=9)

7

7/

/7

#10

; pp_double(a=* b="0=*)
7

Fd

Figure 3: SD with message “Operation call returned — Out Parameter value do not match”

Here TestConductor expects a value of 3 as of the specification but sees 1. Thus
TestConductor gives the warning message “4=op int (a=1,b=2,c=3) Operation
Call returned - Out Parameter values do not match. Expected values
are: 4=op_int(a=3,b=2,c=3)"

236

Operation call returned - Out Parameter values not in range

A
|
/w10
/ 4jop_int(a= [3.4],b=2 ¢c=In9;0ut:3)
76010
Z 4=ap_long(a=1,b= 2, ¢=In:9;0ut:3)
o
A
70
/ pp_int(a=" b=" c=0)
7
Zs
% f=op_int(a=1.b=2,0=3) Operation Call retumed - Out Parameter values not in range. Expected values are: 4=op_int(a= [3..4].b=2,0=3)
Z
Z pp_long(a=" b=" c=9)
7z
7
Z0
& 4 pp_double(@=* b="c=%)

Here TestConductor expects the value in the range of [3..4] as of the specification but

sees 1. Thus TestConductor gives the warning message “4=op int (a=1,b=2, c=3)
Operation Call returned - Out Parameter values not in range.

Expected values are: 4=op int(a= [3..4],b=2,c=3)"

DataFlow Message - Value does not match

TCon_class_0.its TCon_class_0.its TCon_class_0.its
Class_0O:class_0 TC_at_x_of _clas TC_at_y_of clas

s_0:TC_at_x_of_ s_0.TC_at_y_of_

o 0 o 0
xs] il

TestConductor expects dataflow ‘y=8’ but actually observed ‘y=7".

237

DataFlow Message - Value not in range

TCon_class_0.its TCon_class_0.its TCon_class_0.its
Class_0:class_0 TC_at_x_of_clas TC_at_y_of clas
s_0:TC_at_x_of_ s_0.TC_at_y_of_
o N o n
___________ xS “T
y=14.8 oo
........... x=1 |
F!_:_ 7: DataFlow !“.??TL‘{Q?: Value notin 3’.]96-
y =[8..10]

TestConductor expects y to be within range [8..10] but actually observed ‘y=7’, i.e.
outside the expected range.

DataFlow Message out of order

TCon_class_0.its TCon_class_0.its TCon_class_0.its TCon_class_0.its
Class_0:class_0 TC_at_x_of_clas TC_at_y_of clas TC_at_z_of _clas
s _0:TC_at_x_of_ s _0:TC_at_y_of_ s 0:TC_at_z of_

= =

TestConductor expects dataflow order ‘z=6’ before ‘y=6’ but avtually observed ‘y=6’
before ‘z=6’.

238

Assertion failed

T
TS on_aits_a, TCon_ A itsTo
T _for_itsEr To_F
Sr_it=E5

I I
| |
| e F=fi=5a |
| |
! |

TCon_Alits_A TCon_A itsTC
N _for_itsB:TC_f
or_itsB
f(i=5): Assertion <SD_tc_O:message_0> failed.

fli=5) Operation Call did not return yet. |

When using test components to call operation from a SUT, TestConductor can observe
return values from this operation via an assert marco. TestConductor automatically
generates the RTC_ASSERT_SD macro in the driver operation of the test component:

/=
// Driver Initialisation Code:

=
int osc_ret;

int osc _arg 1 = 5;
Tt
// Driver Call Code:

=
osc_ret = itsA->f(osc_arg 1);

RTC ASSERT _SD("SD_tc 0", "message 0",osc ret==7);

In this test scenario TestConductor expects a return value of 7 when calling f(I=5)
on the SUT, but the actual returned value is different. Thus,
TestConductor gives the warning message “Assertion <SD tc_ O:message 0>“.
The second message “f (i=5) Operation Call did not return yet.”
Occurs, because TestConductor interrupts the execution after detecting a failing assertion.

239

Using TestConductor
from Eclipse

As an alternative to the standalone Rhapsody application, Rhapsody can also be used
directly from Eclipse (v. “eclipse_platform_user guide.pdf” in doc/pdfbooks). Also
TestConductor can be used directly from Eclipse. In general, all TestConductor
functionality can be used when working with Eclipse. Similar to the standalone Rhapsody
application, almost all TestConductor functionality is available in context menus of
Rhapsody elements, and this holds also when working from Eclipse as can be seen in the
following picture:

& Rhapsody Debug - Eclipse SDK

File Edit Mavigate Search Project Run Code Generator Tools Window Help

- B i DFE H-0-Q- 0 -
i | Model Browser 52 & = 0O
Features...
Entire Model Yiew Options ~
1 Packages Add Mew v
[Profiles
[Settings Cut
=-Cd TestPackages Copy Cir

=& TPkg_CashRegister
[companents
j TestComponents

=9 TestContexts Delete from Model Del
=9 TCon_CashRegister ~ Change to 3
5 Links Refactor C
b SUTs
id Test Context Diagr Mavigate 4
=-#* TestCases
L) Code_tc_00) Populate Flowchart

%, SD_tc_00) Locate in Code Cir A+
‘ TestComponentIn
%y, TestConfiguration:
[JavaStop\watch (RO)

Edit Test Case

Debug =2 == \ariables
% Y Roundtrip

oy

Edit TestCase SOInstances
Update TestCase

Build TestCase

Execute Testzase

Rational Rhapsody Gatewayyopen

However, there are some differences that needs to be considered when using
TestConductor from Eclipse:

240

In contrast to executing TestConductor from the standalone Rhapsody
application, the test execution windows of TestConductor are not always in
front of the Eclipse main window. Selecting the Eclipse main window may
hide the TestConductor test execution windows.

In Eclipse, when creating a new test architecture, TestConductor
automatically creates a new Eclipse configuration instead of a normal

Rhapsody configuration. Additionally, TestConductor automatically launches

the Eclipse New Project Wizard that can be used to create a new Eclipse
project that is connected to the created Eclipse configuration.

241

Using TestConductor
from Rational Quality
Manager

TestConductor test cases can be referenced and executed from Rational Quality Manager.
A detailed description how to integrate Rational Quality Manager and TestConductor can
be found

e For RQM 2.x in the document “RQM_2.0_TestConductorAdapter HowTo.pdf” in
doc/pdfbooks.

e For RQM 3.x in the document “RQMTestConductorAdapter HowTo.pdf” in
doc/pdfbooks.

242

Automatic Test Case
Generation

Rhapsody ATG is the Automatic Test Generation engine in the Rhapsody Testing
Environment. The general intention of this tool is to generate test cases in order to
thoroughly verify the functionality of the system under test. This capability completes the

use cases of Rhapsody® TestConductor™ described above.

Il Rhapsody in C++ Automatic Test Generation - Test Generation Configuration: Configuration_01
File Edit Tools Help

- “\ TCon_CashRegister_0_DefaultConfig using TCon_CashRegister_0::DefaultConfig 28/28 8/9 74/74
Configuration_01 28/28 8/9 74/74
- % CashRegister in CashReqisterPkg 2020 8/9 65/65
— & Operations 8/8 7/8 54/54
ﬁ’ addProduct in CashRegisterPkg::CashRegister 0/0 4/4
+ E’ countProducts in CashRegisterPkg::CashRegister 22 88
+ E’ generateTicket in CashReqisterPkg::CashRegister 2/2 20§20
+ HidentiFyProduct in CashRegisterPkq::CashRegister 11 4/4
ﬁ’ isNoMoreProducts in CashReqisterPkg::CashRegister 0f0 171
+ E’ removelastProduct in CashRegisterPkg::CashRegister 1/1 6/6
ﬁ’ startSession in CashRegisterPkg::CashRegister 0/0 11
—- @ endsession in CashRegisterPkg::CashRegister 1/2 1010
@‘ endSession (MCDC 1)
@ endSession (MCDC 2)
+- Y states 3/3 ojo 1)1
F Y Transitions 949 11 10{10
+ @’ ProductDatabase in CashRegisterPkg 2/2 0/0 9/9
+ alnterfacestg 6/6

General [Interface Definition] Coverage Definition]

Settings

Name:]Configuration_m

Test Case Generation Timeout [min) |1

¥ Delete existing SDs/Tests when exporting

¥V Minimize SDs/Tests when exporting
Export to:
ITPkg_CashHegister_lJ::TCon_CashRegiste lj

Coverage Summary

Model Element Coverage 28
=]
MCDC Coverage 9
[- (- I
Statement Coverage 74
=i]

Description

An UML model specified in Rhapsody is used as basis for generating the test cases. An in

depth automatic white box model analysis is performed in order to gain detailed
knowledge of the internal structure and behavior of the UML model. This knowledge is
used for the computation of a large number of test cases. Test cases are sequences of
external stimuli and expected system reactions over time. They can be used in order to
apply unit testing (class testing) as well as for black box integration testing. Test cases are
stored in formats which enable tests to be executed in a wide range of specific target and

testing environments.

243

(@ Rhapsody in C++ by Telelogic - [TestScenario: ATG_TestCase.7 in TPkg_CashRegister::TPkg_CashRegister_TCon_CashRegister... @@@
% File Edit View Code Layout Tools Window Help -] &Y X

NEEsREC 82 2 MGED x| |[RaBOB B[|2 |02 0% 8
[M ! @ ¢ |TCon_CashRedister_Componentin T v || DefaultConfia ~|) BN
3] g ENY l TCon_Ca.A,:TC_at_hwi A,.:CashP\egisterI

3 ‘ ATG_TestCase? J «TestScenarion
T QTQ
+ ATG_TestCase.27 ~ -
#-5p ATG TestCase.3 # ENV TCon_CashR TCon_CashR
s ATG_TestCase.4 egister.itsTC_ egister.itsCas
i } ATG_TestCase.6 at_hwTC_at hRegister:Cas
+ ATG_TestCase.7 — e
+ ATG_TestCase.8 | evStart() |
+-Ey ATG_TestCase.9 ’ﬂ
+ Li TestComponents
=39 TestContexts show(aMsg = "Ready") |
= 8) TCon_CashRegister
[+ Attributes
3 E Links | evBarcode(aCode = 1b345)
+ g SUTs | ;|

+-h& Test Context Diagrams
=%, TestCases
atg_tc_002()
*. atg_tc_003()
% atg_tc_004()
#, atg_tc_006()
atg_tc_007()
= EJ‘) SDInstances
Bl ATG_TestCase.007
+-%, atg_tc_008() J
+ %, atg_tc_009() < | i

2 ; w. R . sk ke NINA il > = 7 %ATG_TeSlC&.,-I

shu&(aMsg = "Lychees")

ANANANANANANNANANANNANNANRNNNNNNNN

L £ o C R C R)

BED =04 |E22t9% § t

Features of Rhapsody Automatic Test Generation (ATG):

Model-based test case generation for Rhapsody in C++ models
Structural testing, also referred to as coverage testing

Model coverage, statement coverage, MC/DC coverage
Incremental creation of test suites

Export of test cases into test formats and testing environments
Generation of statistics and reports

Easy interfacing with third-party coverage measurement tools

® & & O o o o

244

Appendix

TestConductor Assert Macros (C/C++),
TestConductor assert methods (Java),
TestConductor assert functions (Ada)

As described in chapter Test Case Definition with Code on page 43 and in chapter Test
Case Definition with Flow Charts on page 46 and in chapter TestCase Definition with
Statecharts on page 50, pre-defined assertion macros are used to get results from a test
case execution.

TestConductor defines several assertion macros (C/C++) listed below. Each macro might
have one up to four arguments with the following notation:

n = Name of the assertion (String, e.g. ,,Check 1)

e, el, e2=DBoolean Expression (e.g. i !'= 23)

p = text of message printed in the sequence diagram

sd_instance_name = Reference to the instance name of the sequence diagram

msgid = Reference to the message id of a message in the sequence diagram

¢ RTC_ASSERT (e)
Assertion with default name e. The assertion is PASSED, if the result of the
boolean expression is TRUE (e!=0), otherwise the assertion FAILED.

¢ RTC_ASSERT_FATAL (e)
Assertion with default name e. The assertion is PASSED, if the result of the
boolean expression is TRUE (e!=0), otherwise the assertion FAILED. If it is failed,
the test case is aborted immediately without executing further assertions.

¢ RTC_ASSERT_NAME (n, e)
Named assertion. The user can define the name of the assertion within the
argument n. The assertion is PASSED, if the result of the boolean expression is
TRUE (e ! =0), otherwise the assertion FAILED.

¢ RTC_ASSERT_NAME FATAL(n, e)
Named fatal assertion. The user can define the name of the assertion within the
argument n. The assertion is PASSED, if the result of the boolean expression is
TRUE (e !=0), otherwise the assertion FAILED. If it is failed, the test case is
aborted immediately without executing further assertions.

¢ RTC_ASSERT_SD (sd_instance name, msgid, e)
Assertion that can be used within a sequence diagram. If such an assertion is used

245

in e.g. a driver operation or a stub operation, and sd_instance name refers to
a sequence diagram instance, and msgid refers to a message id of a message in the
sequence diagram of the sequence diagram instance, then the assertion is executed
and attached to the specified message.

RTC_ASSERT_SD_NAME (sd_instance name, msgid, p, e)

Similar to RTC_ASSERT_SD. The user has to define the string argument p, which
will be concatenated with the result of the assert macro (PASSED, FAILED etc.)
and printed as result message, e.g. “Check of return value failed.”

RTC_ASSERT_TRUE (n, e)
This assertion is PASSED, if e == TRUE. Otherwise the result of the assertion is
FAILED.

RTC_ASSERT _FALSE (n, e)
This assertion is PASSED, if e == FALSE. Otherwise the result of the assertion
is FAILED.

RTC_ASSERT EQUAL (n, el, e2)
This assertion is PASSED, if e1 == e2. Otherwise the result of the assertion is
FAILED.

RTC_ASSERT_NOT_EQUAL (n, el, e2)
This assertion is PASSED, if e1 !'= e2. Otherwise the result of the assertion is
FAILED.

RTC_ASSERT PTR_EQUAL (n, el, e2)
This assertion is PASSED, if pointer e1 and pointer e2 are equal (e1 == e2).
Otherwise the result of the assertion is FAILED.

RTC_ASSERT PTR_NOT EQUAL (n, el, e2)
This assertion is PASSED, if pointer e1 and pointer e2 not equal (e1 != e2).
Otherwise the result of the assertion is FAILED.

RTC_ASSERT PTR_NULL (n, el)
This assertion is PASSED, if the pointer e1 is NULL. Otherwise the result of the
assertion is FAILED.

RTC_ASSERT_PTR_NOT_NULL (n, el)
This assertion is PASSED, if the pointer is not NULL. Otherwise the result of the
assertion is FAILED.

246

RTC_ASSERT_CPTRSTRING_EQUAL (n, el, e2)
This assertion is PASSED, if the string compare is equal (strcmp (el1,e2)
0). Otherwise the result of the assertion is FAILED.

RTC_ASSERT_CPTRSTRING_NOT_EQUAL (n, el, e2)
This assertion is PASSED, if the string compare is not equal (strcmp (el, e2)
!="0). Otherwise the result of the assertion is FAILED.

RTC_ASSERT_STRING_EQUAL (n, el, e2)
This assertion is PASSED, if the comparison of the strings e1 and e2 is equal (el
== e2). Otherwise the result of the assertion is FAILED.

RTC_ASSERT_STRING_NOT_EQUAL (n, el, e2)
This assertion is PASSED, if the comparison of the strings e1 and e2 is not equal
(el !'= e2). Otherwise the result of the assertion is FAILED.

For Java, TestConductor defines several assertion methods in the class TestConductor.
The following methods are available for Java (the semantics is analogues to the C/C++
macros):

*

¢

public static void ASSERT_NAME(String n, boolean p)

public static void ASSERT_SD(String s, String n, boolean p)

public static void ASSERT_SD_NAME(String s, String n, String m, boolean p)
public static void ASSERT (boolean e)

public static void ASSERT_TRUE(String n, boolean e)

public static void ASSERT_FALSE(String n, boolean e)

public static void ASSERT _EQUAL(String n, boolean el, boolean e2)

public static void ASSERT_NOT_EQUAL(String n, boolean el, boolean e2)
public static void ASSERT_STRING_EQUAL(String n, String e1, String e2)

public static void ASSERT_STRING_NOT_EQUAL(String n, String el, String
e2)

For Ada, TestConductor defines several assertion procedures in the package
TestConductor. The following procedures are available for Ada (the semantics is
analogues to the C/C++ macros):

procedure ASSERT_NAME(n : in String; p : in BOOLEAN; sfile : String := File;
iline : integer := Line);

247

e procedure ASSERT_NAME_FATAL(n : in String; p : in BOOLEAN; sfile :
String := File; iline : integer := Line);

e procedure ASSERT_SD(s : in String; n : in String; p : in BOOLEAN; sfile : String
:= File; iline : integer := Line);

e procedure ASSERT_SD _NAME(s : in String; n : in String; m : in String; p: in
BOOLEAN,; sfile : String := File; iline : integer := Line);

e procedure ASSERT (e : in BOOLEAN,; sfile : String := File; iline : integer :=
Line);

e procedure ASSERT_TRUE(n : in String; e : in boolean; sfile : String := File; iline
. integer := Line);

e procedure ASSERT_FALSE(n : in String; e : in boolean; sfile : String := File;
iline : integer := Line);

e procedure ASSERT_EQUAL(n : in String; el : in boolean; €2 : in boolean; sfile :
String := File; iline : integer := Line);

e procedure ASSERT_NOT_EQUAL(n : in String; el : in boolean; €2 : in boolean;
sfile : String := File; iline : integer := Line);

e procedure ASSERT_STRING_EQUAL(n : in String; el : in String; €2 : in String;
sfile : String := File; iline : integer := Line);

e procedure ASSERT_STRING_NOT_EQUAL(n : in String; el : in String; €2 : in
String; sfile : String := File; iline : integer := Line);

Using IntelliVisor for TestConductor Assert Macros

TestConductor supports the usage of the IntelliVisor functionality of Rhapsody. To be
able to use this for the defined TestConductor Assert Macros, you have to prepare
Rhapsody’s site.prp file. Please do the following steps:

¢ Close Rhapsody if it is open.

248

¢ Copy the file rtc.prp from the ..\TestConductor folder to the ..\Share\Properties
folder of your Rhapsody installation.

Open the site.prp file and add Include "rtc.prp".
+ Save the site.prp file and open Rhapsody.

Using Ctrl+Space in a code based test case definition (Flowchart TestCase or Code
TestCase) the known IntelliVisor list box opens. With the modifications above you are
able to select one of the defined TestConductor Assert Macros. Selecting one of the
macros also shows a hint that gives you information about the parameters of the macro.

® RTC_ASSERT_CPTRSTRING_EQUAL ~
® RTC_ASSERT_CPTRSTRING_MOT_EQUAL

® RTC_ASSERT_EQUAL

® RTC_ASSERT_FALSE

ERTC_ASSERT MAME Wissertion macra; RTC_ASSERT_MAME(«assertion
= RTC_ASSERT _MOT_EQUAL prames, bool-sxpr)

® RTC_ASSERT_PTR_EQUAL
® RTC_ASSERT_PTR_NOT_EQUAL ¥
£ >

A double-click on the macro adds this to the code. For example you have chosen the
RTC_ASSERT_NAME macro the following code will be added:

RTC_ASSERT NAME ["assertion name', hool-expr]:

Now you have to replace the string “assertion name” and the expression to that expression
you want to check.

249

Syntax for Activation Conditions / Condition Marks

TestConductor uses the following scheme of event activation conditions:

ObjectNamel->eventAction (ObjectName2, eventName)

The scheme of a state activation condition can be represented as follows:

ObjectName->stateAction (stateName)

The scheme of a method activation condition is as follows:

ObjectNamel->methodAction (ObjectName2, methodName)

In this syntax:

L4
L4

eventAction is EventSent or EventReceived

stateAction is StateEntered, StateExited or IsIn

¢ methodAction IS MethodCalled or MethodReturned

Note:

The syntax of the activation condition is case sensitive. TestConductor checks
only the syntax and not for static semantics.

For example:

*

PBX[0]->itsLine[0]->EventSent (PBX[0]-
>itsTelephone[0],evRing())

This activation condition is TRUE at the moment when object PBX [0] -
>itsLine[0] sends the eventevRing () to object PBX[0]->
itsTelephone[0]. Inasequence diagram, this corresponds to the origin of the
message arrow.

PBX[0]->itsLine[0]->EventReceived (PBX[0]->
itsTelephone[0],evDialTone ())

This activation condition is TRUE at the moment when the object
PBX[0]->itsTelephone[0] receivesthe event evDialTone () from
object PBX[0]->itsLine[0]. In asequence diagram, this corresponds to the
end point of the message arrow.

line->MethodCalled(callRouter, OpenConnection())
The activation condition is TRUE at the moment when the 11ine object calls the
OpenConnection () method of the call1Router object.

line->MethodReturned (callRouter,OpenConnection())
The activation condition is TRUE at the moment when the cal1Router object
returns the openConnection () operation call to the 1ine object.

telephone->StateEntered (ROOT.Ready.Calling)
The activation condition is TRUE at the moment when object telephone enters its
“Calling” state chart state.

250

¢ telephone->StateExited (ROOT.Ready.Calling)
The activation condition is TRUE at the moment when the telephone object exits
its “Calling” state chart state.

¢ telephone->IsIn(ROOT.Ready.Calling)
The activation condition is TRUE as long as the telephone object is in its
“Calling” state chart state.

Note: You must specify the full state chart state name (the state path), e.g.
“ROOT.Ready.Calling.” You can combine these expressions with AND, OR, and

NOT.
For example:
(NOT (callersLine->EventReceived(caller,evRing()))) OR

(caller->StateEntered (ROOT.Ready.Idle))

Do not use two different event conditions with the conjunction AND as a combined
activation condition. Such expressions can never have the value TRUE, because
TestConductor and the Rhapsody animation tool work sequentially. At most, one event
can be sent or received at every point in time. In addition, be careful when combining
several state conditions by the conjunction AND: every object can stay in one “basic” state
at every point in time, if its state chart does not contain a hierarchical state with orthogonal
components. In addition, you can use the name ENV as an object name to specify event
sending to and receiving from the system’s environment.

Activation conditions use the following shortcuts:

¢ ES for EventSent; ER for EventReceived
¢ MC forMethodCalled; MR for MethodReturned
¢ SE for StateEntered; SX for stateExited; II for IsIn

251

TestConductor Messages

Errors/Warnings regarding messages in Sequence Diagrams

Some sequence diagram features are not supported by TestConductor. They will be
ignored and a warning comes up, but the test will be executed.

® & & O 6 6 6 O O O o 0 o

Timeouts will be ignored.

Cancelled timeouts will be ignored.

Reply messages will be ignored.

Execution occurrences will be ignored.

Rhapsody in C initializers will be ignored.

Rhapsody in C++/ Rhapsody in Java constructors will be ignored.
Rhapsody in C cleanup operations will be ignored.

Rhapsody in C++/ Rhapsody in Java destructors will be ignored.
<name> : Unspecified messages will be ignored.

<name> : Unrealized messages to an internal instance will be ignored.
Messages with wrong syntax will also be ignored in test execution:
Condition : <name> is not a valid expression.

Time interval with a lower bound of 0 will be ignored.

Time intervals are only supported on system border. Other time intervals will be
ignored.

<name> : Wrong syntax of time interval. Time interval will be ignored.

Time intervals are only allowed for driver or black box tests. In monitor tests time
intervals will be ignored.

<name> : Method not supported by method broker. Remove message from
sequence diagram. (only Rhapsody in Java)

Errors Regarding Complete Sequence Diagrams and Test (test will
not be executed)
In Rhapsody in Java a method broker is needed to drive operation calls/triggered

operations. If there is no method broker in the model or if the method broker is not valid
anymore due to changes in the model, the test will not be executed.

.

Sequence diagram contains operation calls from environment (only for Rhapsody
in Java).

You must create a method broker in order to run this
test. Please press "Create MethodBroker" in the
TestConductor dialog to create a MethodBroker and
rebuild your active configuration.

Sequence diagram contains operation calls from environment (only for Rhapsody
in Java).

The MethodBroker for the active configuration is not
valid any more. Please press "Create MethodBroker" in

252

the TestConductor dialog to create a new MethodBroker
and rebuild your active configuration.

In a black box test only messages from or to the system border are used for the test.
If a sequence diagram only has internal or unsupported messages, a black box test
will not be executed.

SD has only internal Messages or unsupported elements.
Black-Box test will not be executed.

If a sequence diagram is empty or only has unsupported messages, the test will not
be executed

SD contains only unsupported elements. Compilation
aborted. SD without any constructs is not supported.

In some cases executing a test with a sequence diagram which hat more than 2000
messages leads to a crash due to a small stack size. In this case, please refer to the
release notes how to increase the stack size of your system.

Due to the actual size of this SD, test execution can
lead to a crash. In such a case, please contact support
to get a patch or refer to the release notes and use
the mentioned workaround.

If two messages of a sequence diagram start/end at the same point TestConductor
can not get correct information about the messages so the compilation fails. If this
happens, make sure that there is only one message starting/ending on each message
point.

TEST: <name>

Sequence Diagram: <name>

ERROR: Compilation error - Test will not be executed.
This error can have different reasons. Known reasons
are:

- Sequence Diagram contains a time interval beginning
or ending on other message points.

- Sequence Diagram contains unspecified messages.

If the activation condition of a test has the wrong syntax the test will not be
executed.

TEST: <name>

Sequence Diagram: <name>

ERROR: Syntax error in activation condition
<ActivationCondition>

Another message arrow detected between start point and end point of operation.
TEST: <name>

Sequence Diagram: <name>

Another message arrow detected between start point and
end point of

Operation <name>.

This is not supported by TestConductor.

To execute the test, please move start/end points of
other messages above or below the message arrow of

253

<name>.

If there is an unspecified message in the specification sequence diagram
<Message name>: Unrealized Messages to an internal
instance will be ignored.

If there is an unrealized message in the specification sequence diagram
<Message name>: Messages with Stereotype <unrealized>
will be ignored.

If the specification sequence diagram has an unspecified class

TEST: <test name>

Sequence Diagram: <name>

Class of Instance <class name> is unspecified. Test
will not be executed.

Restrictions

TestConductor supports Rhapsody in C/C++/Java/Ada with its existing and with its new
features. The most important limitations are:

Assertion based testing mode is only supported for RhapsodyC and RhapsodyC++.
Code coverage computation with TestConductor is only supported for RhapsodyC.

Code, flow chart (only C/C++), and statechart test cases only for Rhapsody in
C/C++/Java/Ada

Automatic sequence diagram based model population for test components only for
Rhapsody in C++, C, Java and Ada

Black box production code test case execution only for Rhapsody in C++ and C
OfflineTesting only for Rhapsody in C/C++
Code Coverage Computation with Test Real Time integration only for C/C++

Limitations of design elements (sequence diagrams)
Currently, TestConductor does not support the following sequence diagram features:

* & 6 O o o o

Create arrow

Destroy arrow

Reply message

Timeout

Cancelled timeouts
Constraints

Language for condition marks

Condition marks must obey the same syntax as activation conditions. Currently, simple
expressions with equality or inequality are not yet allowed in activation conditions and
condition marks.

254

Note:

TestConductor will ignore condition marks during test execution when the syntax
of the condition mark is not valid.

If you use these unsupported features in a sequence diagram, TestConductor ignores them
during test execution.

Functional Limitations

All TestConductor features are available for Rhapsody in C++, C, Java and Ada.
Rhapsody Automatic Test Generation (ATG) is only available for Rhapsody in C++. For
TestConductor, the most important limitations are

*

Code, flow chart (only C/C++), and statechart test cases only for Rhapsody in
C/C++/Java/Ada.

Automatic sequence diagram based model population (automatic generation of
driver and stub operations) for test components only for Rhapsody
C/C++/Java/Ada.

Black box production code test case execution only for Rhapsody in C/C++.
OfflineTesting only for Rhapsody in C/C++.
Full automatic test architecture support only for Rhapsody in C/C++/Java/Ada.

Beside the listed important limitation there are some other know limitations:

*

Obsolete profiles (ATGProfile, TestingProfile_CPP, TestingProfile_C,
TestingProfile_Java, TestingProfile_Ada) must be deleted from models manually.

The “Update” functionality available in the context menu of a test package, test
context and test case as well as “Create Flowchart TestCase*, “Create Code
TestCase” , “Create Statechart TestCase” for a test context is only applicable to
Rhapsody in C/C++/Java/Ada. The context menu entries are enabled for other
languages, but TestConductor will raise a warning dialog or a warning message in
this case.

Only virtual operations can be stubbed.

TestConductor cannot generate stubs for triggered operations.

TestConductor cannot generate stubs, if the signature of overwritten operations in
an inheritance hierarchy do not syntactically match to the related operation in the
base class (for instance, due to different typedef-types to the same base type)

The auto-generated code for driver- or stub-operations could be semantically
incorrect, if non-default values for the properties CPP_CG: : {Class,
Type}::{In, Out, InOut} areused. Note that incorrectly generated code
could be overwritten by setting the tag RTC_DriverCallCode, RTCDriverInitCode
respectively RTC_StubBodyCode.

If a TestComponent instance is linked to a SUT using a qualified association
relation, Rhapsody does not generate code to implement the link. TestConductor
can not generate driver operations for messages, which use such a link.

Building SUT for black-box testing requires an animation property change in the
design model.

255

¢ Auto created operations are not animated and cannot be used in test cases: due to a
limitation in the Rhapsody animation, auto generated operations like getter/setter
for class attributes are not animated during execution, they do not appear in
animated sequence diagrams and observers don't get notifications about these
messages (even if the property CG:CGGeneral :GeneratedCodeInBrowser iS
setto true).

256

