IBM Rational Rhapsody
Developer for Ada Reverse
Engineering Add On

Notices

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer
the products, services, or features discussed in this document in other countries. Consult your local
IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send written license inquiries to:

IBM Director of Licensing IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome
Minato-ku Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION “AS 1S” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you. ii This information could
include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you. Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the information which
has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

1 Rogers Street

Cambridge, Massachusetts 02142 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application programming interface
for the operating platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. 1997,
20009.

IBM, the IBM logo, ibm.com, Rhapsody, and Statemate are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both. These
and other IBM trademarked terms are marked on their first occurrence in this information with the
appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at
the time this information was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available on the Web at

www.ibm.com/legal/copytrade.html.

Table of Contents

INOTICES ..ottt e e e et e et e et e e s bt e sateesaaeesateesateesateeseteesateesebeesateeseseesasesssteesasessneesresies 2
INTRODUCTION. ... oottt ettt ettt e et ettt e st e e st este e st e e satee s beesateesbessaesstessbesstessaneessbeesnrensres 6
OVERVIEW. ...ttt ettt oottt ettt e e e ettt e et e e et e e e s ae e e et e e e eaeeeeaae e saeesatteeeteessbesssataesaseesreeeseeeas 6
THE USER INTERFAGCE ...ttt ettt et e st et e e st e st e e st e eeete e s et e e s abeeesteesreeeees 6
CHOOSING THE FILES TO REVERSE ENGINEERcitttiiiiiiiiiiiiiiiiiieiiietteeieteeeeetesesesesessssssssssssssssssssssssesine 6
SEIECHING DIFBCIOMIES ...ttt bbb bbbt b e bbbt b st b 7

RS T=] (=T 1] Vo T SO R 7

(] = 1 (0] N LS RRPRTRTRPPRRRPRI 7
CUSTOMIZING REVERSE ENGINEERING RULESETcooiciiiiiiie ettt 10
INSTALL “ADA TO UML 1.3” TRANSFORMATION RULESETitttitiiiiiiiiieieieieierereieieesrsesesrsesesrsrsesrsers. 10
RUN OR DEBUG A RULESET IN RULESCOMPOSERuuviiiiiiiiiiiitiiii e seiittiet e e s s s sittiee s e e s s s sibbbanseeessssannns 11
MANAGE ADA MODELS IN RULESCOMPOSER MODELS VIEWuuuuiiiiiiiiiiiiiiiiiiiirissssssssasssanans 13
Read Ada source files or an Ada model XMI filecoovviiiiiiiiice e 13

Save an Ada Model aS an XM FIlE......coueii it 14

APPENDIX A: ADA TO UML MAPPING ...t 15

Introduction

The IBM Rational Rhapsody Developer for Ada Reverse Engineering Add On is a helper application
for Rhapsody® that parses a collection of Ada files and generates a UML model from it.

Overview

Opens a project into IBM Rational Rhapsody Developer for Ada. From the "Tools" menu, a choice is
available labeled "Reverse Engineer Ada Source Files". Selecting this menu item opens a window
that allows you to select the files or directories to reverse engineer. After the selection is made, the
files are parsed, and new UML objects are created in the current Rhapsody project.

The User Interface

The process of selecting files to reverse engineer is done using the Reverse Engineering Add On
window. The window is shown below:

R IBM Rational Rhapsody Developer for Ada Reverse Engineering Add On

Filz
Marne Subdirectories Filker Marne Directory Extension
Add Directary. .. Add File. ..
Options Camments

EBlank Lings Between: |0
[] Create Instance Attribukes Import External Packages Crverwrite Existing Elements

EBlank Lines After: 1
[]replace External Packages [] Wisualization Cnily [5kip #ll Checks (Fastest) Include Post comments
[Impart as Ada &3 Preserve folders as packages S slines Belferes |
Include SPARK Annokations
Parent Package
(@Y=
() Existing
() "Default”

() "ada_Reverse"

Cukpuk Log

I Skart l ’ Close]

Figure 1. The Reverse Engineering Application.

Choosing the Files to Reverse Engineer

You can choose directories or individual files to reverse engineer from any location accessible from
your machine.

Selecting Directories

To select a directory, push the "Add Directory" button in the upper left portion of the window.

Mame Subdirectories | Filter
Chzodius | M |*.ada;*.adb;*.a...|

Add Directory

Figure 2: Selecting a Directory.

You are then presented with a directory chooser dialog box. After selecting a directory, the
"Subdirectories" and "Filter" columns are editable. Checking the "Subdirectories" checkbox will
include all files in all subdirectories of the selected directory. The text entered in the "Filter" column
will be used to filter the set of files found in the directory (and subdirectories). The filter should be of
the form "<pattern>;<pattern>;..." where each pattern can contain any number of "*" (to match any
number of characters) or "?" (to match any single character).

Selecting Files

To select an individual file, push the "Add File" button in the upper right portion of the window

Mame Directory Extension
test adh [pritermp | ack |
Add File

Figure 3: Selecting a File.

You are then presented with a multi-selection file chooser dialog box. After making a selection, the
table will show the file name, the parent directory, and the extension.

Options
There are several options that control the operation of the reverse engineering engine.

Create Instance Attributes : In the process of creating UML types, the algorithm searches for a
public or private type with the same name as the Ada Package and a “ t” suffix. If a type is not
found, it takes the first record type definition encountered and assigns it as the record type that
should represent the UML Class. As such, a UML type is not created for it, but instead the record
elements are taken as instance variables of the class. If this behavior is not desired, the checkbox
should be unselected.

Import External Packages : If one of the source files read has a "With" clause to an Ada package
that is not part of the sources being reverse engineered, that Ada package is considered to be
external, and has it's "CG:Class:UseAsExternal" property set to true. This will prevent any code
from being generated for this Ada package or any of its contained elements when doing forward
generation. If this check box is not checked, these external packages will not be brought into the
Rhapsody model.

Overwrite Existing Elements : If the model already contains a model element which is the same as
the one being imported, checking this option will overwrite the version in the model.

Replace External Packages : If the model contains a model element which is the same as the one
being imported, and the model element has the "CG:Class:UseAsExternal" property set to true,
checking this option will replace the external element with the one being imported. However, any
dependencies to the external element will be moved to the new element.

Visualization Only : This option is used if source code needs to be imported into Rhapsody, but the
model must not be regenerated, in order to keep source unchanged. The property
"CG:Class:UseAsExternal" is set to true. By this way, user will be able to use sources in its models,
without regenerate them.

Skip All Checks : If this option is checked, the checks for existing elements in Rhapsody are
skipped. This can be a noticeable performance enhancement for large models.

Preserve folders as packages : if this option is checked, folders of file system will be represented as
packages into Rhapsody model. Ada packages are represented by rhapsody classes. Classes are
located in the package which represents its folder’s specifications. The first package in Rhapsody
model is the folder selected in the “selecting directories” window”.

Blank Lines Between : When looking for comments associated to an Ada construct (type, variable,
package, etc...), this option determines how many blank lines are allowed in the comment block to
still have it considered as part of the comment for element. In the example below, if this value is set
to 0, typeB will only have a 1 line comment (“typeB comment line 2”), while if the value is set to 1,
both comment lines will be taken. TypeA will always have 2 lines in its comment.

-- typeA commentl
-—- typeA comment?2
type typeA;

-- typeB comment line 1

-- typeB comment line 2

type typeB;

Figure 4: Sample Comment.

Blank Lines After : This option determines how many blank lines can appear before an Ada
construct (type, variable, package, etc...) and still have the comment lines above be associated to
the element. In the following example, if the value is set to 0, only typeA will have a comment. If
the value is set to 1, typeB will also have a comment because there is only 1 blank line between the
comment and the declaration.

-— typeA commentl

-- typeA comment?2

type typeA;

-- typeB comment line 1

-- typeB comment line 2

type typeB;

Figure 5: Sample Comment.

Include Post Comments : This option determines if comment lines that appear after an Ada
construct (type, variable, package, etc...) are associated to the element. The “Blank Lines Before”
option indicates how many blank lines are permitted to appear between the element and it's post
comment. In the above example, if "Include Post Comments” is set to true, typeA will have the “—
type B comment line 1” and “—type B comment line 2" comments associated with it. In the case
where “Blank Lines After” is set to 2, those two comment lines will be associated to typeB instead.
This is because the pre-comments take precedence in the case when the post-comments rule and
the pre-comments rule are valid.

Reverse SPARK Annotations : This option is used to reverse engineer SPARK annotations.
SPARK annotations are reverse engineered into the appropriate tags on the model elements. In
order to have SPARK annotations reversed, the “Include Post Comments” option must be enabled.

Forward Generation Style : This option indicates the style that will be used for the Ada files that will
be generated from the resulting Rhapsody model. The setting of this option is used to set the
"Ada_CG.Component.AdaVersion" property on the active component in Rhapsody to the same
value.

Select Parent Package : This option determines the package in Rhapsody where the new elements
will be placed. If the selected package does not exist, it will be created. To specify a subpackage of
a parent package, use the Rhapsody notation; e.g. "ParentPackage::ChildPackage".

Hidden properties

Hidden properties can be set in some specific use cases to create a model with a different patern.
In order to activate those properties, it must be set manually in the file AdaRevEng/RiAReverse.ini.
If not set, the default value of this property is false.

renamedPackagelnDependency : If this property is set to “true”, then the renamed package will not
create nested package with a renamed dependency. The renamed package will be modelized into a
usage dependency by setting the property Ada_CG.dependency.GenerateRenamesPackage to
“true”. If the property is not present in the file or set to “false”, then the renamed package will create
a nested package (old implementation).

constantAsType : this property enables reversing Ada constants into Rhapsody types. In this case
the type has the stereotype “constant”. This enable code generator to generate constants in more
appropriate location. This property is active if it is present in the file AdaRevEng/RiAReverse.ini and
is equal to “true”.

typeAsClass : this property enables reversing Ada types into Rhapsody class with a specific
stereotype. The types which can be reversed in a class are subtypes, range types, array types, and
variant record types. (enum and record types are still reversed into Rhapsody types.)

Customizing Reverse Engineering Ruleset

The same rules-based technology used for Rhapsody in Ada is available for Reverse Engineering.
With this feature, the user has full control over his Ada profile used for modeling. The reverse
engineering engine can be modified to represent Ada source code in a format best-suited for the
user, and the code generation can be adapted to generate the appropriate Ada source code from
this representation.

Install “Ada to Uml 1.3” transformation ruleset

New rules can be developed by user, but the best way is to customize official Ada Reverse
Engineering tool.

One sample available in RulesComposer contains exactly the same functions as those performed
by the official tool.

Proceed as follow:
e Selectin RulesComposer the menu item: New > Example,
e Inthe New Example window, choose RulesComposer Sample and press Next,

e In the Import RulesComposer Sample window, expand Rhapsody Rulesets node and
choose Ada Reverse Engineering and press Next,

¢ In the next window, only one sample is proposed, press Finish.

In the Project Explorer you will find the project the com.sodius.ria.reverse.rules.ada2uml:

[Project Explorer &2 %5 Scripts | % Plug-ins 0§ T 0
2 12 com.sodius. mdw.ria.reverse.rules. adazum
=5 sre
+- M com.sodius, mdw.riareverse.rules, adazuml
#hreadme.html
+-= JRE System Library [jdk 1.6.0_15]
+ = RulesCompaoser Required Libraries
adazumllaunch
a8 build. properties
RiAReverse.ini

File ./src/readme.html introduces this sample and explains how to deploy the ruleset in the official
Ada Reverse Engineering tool.

You will find main entry point Ada2UML.mqr in package:
com.sodius.ria.reverse.rules.ada2umi

Physical path is:
src/com/sodius/mdw/ria/reverse/rules/ada2uml/Ada2UML.mqr

This module will help you understand how works the transformation and the reversion of Ada
sources. | invite you to launch this ruleset under RulesComposer debugger to understand details
of this transformation.

Run or debug a ruleset in RulesComposer

You will find in online Help more details how to run and debug ruleset (Help > Help Contents), here |
will precise only parameters required for this transformation.

Proceed as follow:
e Select in RulesComposer the menu item: Run > Run Configuration...

e In window Run Configurations, expand RulesComposer node and choose configuration

ada2uml;
Create, manage, and run configurations ; a
Create a configuration that will launch a RulesComposer evaluation,

CEx &3 Mame: |ada2um| |

|type filter text | =
— & Main 9= Arguments | 2k JRE | % Classpath | B» Source | 2 Common
ATL Compatibiity

€ ATL Transformation Project
& Eclipse Applcation | com.sodius, mdw.ria.reverse.rules.adazuml |
Java Applet

Java Application
Ju Jnit ®Rule O Template

Ju Uit Plug-in Test | com.sodius. mdw.ria.reverse.rules.ada2uml Ada2UML. adaZum| |

4 OSGI Frameawork,

IMain element

= (I RulesComposer Parameters
(D adazum Marne Type valLe

29a (i) Ada Ada files -
Eu (outy UL 1.3 XML 1.2 - ${project_loc:com. sodius. mdw.ria.reverse.rules.adazl
W=propertiesFath String RiAReverse.ini
4 | 33

Filter matched 10 of 10 items

@ RUN l l Close

e On the right in Main tab, in Parameters grid, select input parameter “a (in)“ (first line), this
opens a hew window: Properties:

R Properties |—_|@®

Select a model

—— @ MNew model O Recent maodel

@ oK] [Cancel

e Choose the model reader Ada file if you want to read some Ada code source files or an
XMl file if you have saved an Ada model in this format.

e Select second output parameter “u (out)” and choose the model writer XMI 1.2:

® Properties |:|@®

Select a model writer: (@) Mew model () Recent maodel

= B UML L3
[=ML 1.0
& XMLl
g1 1,2

File: | %4 project_loc:com.sodius, mdu.ria.reverse rules.ada2uml Pout. xmi |

’Browse File System...] [Browse Workspace...]

CK H Cancel]

e Don’t change anything for the last third input parameter “propertyPath”. This parameter
defines the Ada Reverse Engineering configuration use by this transformation.

e This configuration RiAReverse.ini is the same provided in Ada Reverse Engineering tool.
e Press Run to save parameters and to start process of transformation.

e The launch configuration will automatically display the window Ada Reverse to select
source files:

Ada Reverse

Ada files selection
Select Ada files to import

Filter
|*.ada;*.adb;*.ads

Subdirectories

|v]

Narrie
C:\Program Files\B... |

| Add Directory... |

Mame Directory Extension
[oK] [Cancel]

e The RulesComposer Console view will display the result of process:

[progress]
[progress]
[progress]

[progress]
[progress]

Evaluation of adaZuml
Reading Ada files
Reading Multiple Ada files

Writing XMI 1.2 -\com.sodius.mdw.ria.reverse.rules.ada2uml\out.xmi

Done.

Debug process is similar:
e Select in RulesComposer the menu item: Run > Debug Configuration...

e In window Debug Configurations, expand RulesComposer node and choose
configuration ada2uml.

e After, proceed as above for Run Configurations.

Manage Ada models in RulesComposer Models view
Read Ada source files or an Ada model XMl file

In Models view, a metamodel model Ada is provided:

%3 Models 2
i Ada
B Ada Syntax
2 Ecore
2 Excel
B MATLAE
2 Relational
3 Rhapsody 7.5.3
2 Simulink
7 Statemate 4.3
1 Tau 4.3.0
B UMl 1.3
B UMl 21

Right click on this metamodel and select command Open Model...

This action opens window Open Model similar to the Properties window that proposes to select a
Ada reader:

R Open Model |:|®

Open a model

o

Open an existing model.

Select a model reader:

= Ada -~
28 Ada files
28 %M

1 Ada Syntax v

@ [Finish H Cancel]

Choose Ada files or an Ada model XMl file.

Save an Ada model as an XMl file

Select the Ada model in RulesComposer:
1 AdazumL. mar A Ada fles &3

[Ada] Ada files

Types Instances
Display types Z 7 Display instances

B Library [1]

H Cperation [1]

H CperationParameter [1]
H Package [2]

H RecordDeclaration [1]
B Simplevariable [1]

H Type [2]

B TypeAccessType [1]

In main menu, select command File > Save as...

Select a model
wiiter:

= 8 Ada
[%Ml 2,1

(@ New madel (O Recent model

File: | |

lBrowse File System...] lBrowse Workspace...]

@ Cancel

Choose an XMl file in file system or in the workspace.

Appendix A: Adato UML Mapping

All Ada constructs get reverse engineered into UML model elements, except for pragmas, which
are skipped.

The following rules detail the mapping from Ada to UML.

Ada UML

A UML Class is created. It's “Ada_CG.Class.GenerateAccessType”
property is set to “None”, and the
“Ada_CG.Class.GenerateRecordType” property set to “False”.

If the “Create Instance Variables” option is selected, and a record
type is found, the “Ada_CG.Class.RecrodTypeName” property is set
to the name of the record type, and the “Ada_CG.Class.Visibility”

Ada Package property is set to the visibility of the record type.

If no record type is created, then a static class is created by setting
“Ada_CG.Class.IsStatic” to true.

If the Ada package is not being reverse engineered, but is only
referred to by the source files, the “CG.Class.UseAsExternal’
property will be set to “True”, if and only if all contained packages are
also external.

Name Name
. Sets the “Ada_CG.Class.isNested” property to “True” if the

Nesting .

package is nested.

N Sets the “Ada_CG.Class.NestingVisibility” property. (Only if the

Visibility .

package is a nested package).
Elaboration Code Sets the “Ada_CG.Class.InitializationCode” property.

A <<Renames>> dependency will be created to the Class being
Renames

renamed.
Specification Sets the “Ada_CG.File.SpecificationHeader” property.
Comment
Implementation Sets the “Ada_CG.File.ImplementationHeader” property.
Comment

All functions and procedures create static operations in Rhapsody.

Function or Procedure If the subprogram is “separate”, the operation will be given the

<<separate>> stereotype.

Name Name

The return type will result in the creation of a new locally-defined

Function return type anonymouse type in Rhapsody.

Local declarations Sets the “Ada_CG.Operation.LocalVariablesDeclaration” property.

A <<Renames>> dependency will be created to the operation

Renames :
being renamed.

Ada UML
Body Sets the implementation field.
Visibility Ada_CG.Class.ImplementationEpilog
Argument Argument
Name Name
The type will result in the creation of a new locally-defined
Type .
anonymous type in Rhapsody.
The passing mode will be set on the argument if it is “in”, “out”, or
Passing mode “inout”. If the mode is “access”, the passing mode will be set to
“in”, and the “Ada_CG.Argument.AsAccess” to “True”.

Context Statement

Dependency

A <<Usage>> dependency is created with the

“With” clause “CG.Dependency.UsageType” property set to Specification or
Implmentation based on where the “With” clause appears.
“Use” clause Sets the “Ada_CG.Dependency.CreateUseStatement” property to

“Use”.

“Use type” clause

Creates a <<Usage>> dependency to the target type, and sets the
“Ada_CG.Dependency.CreateUseStatement” to “UseType”.

Types and Subtype Type
Name Name
Declaration Declaration

Representation Clause

Every representation clause (for example “for Byte’Size use 8;”)
becomes a type in UML. The name of the type is the same as its
represented type with a “RepresentationClause” suffix. If the
representation clause has a qualifying attribute (in this case “Size”), it
is appended as well. In this example, the new type is named
“Byte_Size RepresentationClause”. This new type will have a

<<represents>> dependency to the underlying type.

Protected Object and Type

Every protected object and protected type will become a type in UML.
The name of the type will be the name of the protected object. The
declaration will be the entire declaration of the protected object. This
type will be stereotyped “RE_Protected_Object”.

The protected object body will also become a separate type with the
name equal to the name of the protected object with a “_body”
appended. The entire body declaration will be used in the UML type
declaration as well. This type will be stereotyped
“RE_Protected_Object_Body”.

The declaration type will have a <<body>> dependency to the body
type.

Task and Task Type

Every task and task type will become a type in UML. The name of the
type will be the name of the task. The declaration will be the entire
declaration of the task. This type will be stereotyped “RE_Task”.

The task body will also become a separate type with the name equal
to the name of the task with a “_body” appended. The entire body

Ada UML
declaration will be used in the UML type declaration as well. This
type will be stereotyped “RE_Task_Body”.
The declaration type will have a <<body>> dependency to the body
type.
A variable in an Ada package will create a static attribute in UML. The
Variable attribute will have both the “CG.Attribute.AccessorGenerate” and
“CG.Attribute.MutatorGenerate” properties set to false.
Name Name
The type will result in the creation of a new locally-defined
Type .
anonymous type in Rhapsody.
A <<Renames>> dependency will be created to the variable being
Renames
renamed.
Initial value Initial value
Visibility The “Ada_CG.Attribute.Visibility” property is set to public, private

or body.

Generic Package

Template Class

Generic formal
parameters

Each generic formal parameter becomes an argument of the
template class. The name of the UML argument will become the
name of Ada formal. The declaration of the argument will be the
entire formal parameter declaration.

Package Instantiation

Class Instantiation with a <<binds>> dependency to the generic class

Instantiation
parameters

Class instantiation parameters

Generic Operation

Template Operation

Generic formal
parameters

Each generic formal parameter becomes an argument of the
template operation. The name of the UML argument will become
the name of Ada formal. The declaration of the argument will be
the entire formal parameter declaration.

Operation Instantiation

An operation instantiation will create an Operation in Rhapsody, and
this operation will have a <<binds>> dependency to the generic
operation that it instantiates.

