utorial for TestConductor for RIC

Rhapsody

RiIC Tutorial

for

R IBM® Rational® Rhapsody”®
_———— = TestConductor Add On

Rhapsody

License Agreement

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without
notice, and BTC Embedded Systems AG assumes no
responsibility for any errors which may appear herein. No
warranties, either expressed or implied, are made regarding
Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®
Automatic Test Generation Add On, and IBM® Rational®
Rhapsody®TestConductor Add On are registered trademarks
of IBM Corporation.

All other product or company names mentioned herein may be
trademarks or registered trademarks of their respective
owners.

© Copyright 2000-2011 BTC Embedded Systems AG. Al
rights reserved.

TestConductor for Rhapsody for C

In this tutorial we would like to give you an
impression of the Rhapsody Testing
Environment, which goes beyond current
embedded software testing technologies; it
ensures that the system can be continuously
tested throughout the design process. The
Testing Environment and its parts seamlessly
integrate in Rhapsody UML and guide the user
through the complex process of test
preparation, execution and result analysis.

TestConductor is the test
execution and verification engine in
the Rhapsody Testing Environment. It
executes test cases defined by
sequence diagrams, statecharts, flow
charts and source code. During
execution TestConductor verifies the
results against the defined
requirements.

Rhapsody® Automatic Automatic Automatic

Test
Architecture

UML Testing Test Case Test Case

Profile Generation Generation Execution

IBM® Rational® Rhapsody® Testing Environment

StopWatch Application

The StopWatch application, the example

C application for this tutorial, models a simple stopwatch.
Make yourself familiar with the use cases of the application.
Open the project ,,CStopWatch® from the folder
~>amples/CSamples/TestConductor® in your Rhapsody
installation, run the component «StopWatchComp», and
use the following input:

Obiect | myStopwatch(d]

Ewvent: evkoey "

Arguments:

i To start the application, press “Go” in

ke

colon, similar to a stopwatch with blinking colon.

Rhapsody’s animation toolbar.
" Object | mpStopwiatchld]
1zkar
astl BV [evkey r To start the stopwatch, generate event
Sy i “evKey(1)” using the animation toolbar.
M ame -El:lit
[6d Kewal To stop the stopwatch, generate event
“‘evKey(1)” again using the animation toolbar.
Higtory:
myStopwatch{0]> R When running, the stopwatch outputs the
9 elapsed time in minutes and seconds to the
1 console. Each second is printed twice, one time
=2 . .
i 2 with a colon and 0.5 seconds later without a
'3
.
4
=L
5

StopWatch Model

The StopWatch model contains the
StopWatch class and its three parts. The first part is a

StopWatch button that can be used to start and stop the stopwatch.
_ The second part is the timer that is used in order to count
1 itsButton Button &
Opl_n[eEn pButton the elapsed time. The third part is the display that displays
IKey | R [?B_Utf—m utton | tsTimerTimer =| | the elapsed time. Within the stopwatch the different
rressKEe- A S v components are connected via ports and links. Additionally,
7 : Eevéaﬂsmpo the stopwatch class itself relays both the start/stop button
p)cn_ut[ooy fsbisslay. Display Display iy | BevReset) and the display to its boundaries in order to be able to
IDisplay n [E{]gy— connect an external start/stop button and an external
& evShowim:int,sin... d|Sp|ay .
The myStopWatch class represents a
oy StopWateh = sample instantiation of the StopWatch class. It
connects a stopwatch to an external key “myKey”
! ebReyrgey |, that can be used as a start/stop button.
ey Additionally, it connects the stopwatch to an
E presskey(Keyvalint)vaid pin |1 itsStopwatch: Stop'iatch external d|Sp|ay “myDiSpIay” that diSpIayS the
IKe elapsed time.
Out setTimelm:int,s:int):voi
1 itshyDisplay: myDisplay & _%4‘115 Hime(mint s erd
b1 [Display
[—O—
Display

System Under Test

Entire Model View

:

g
firedTypes (REF)
® ypesC (REF)
& £ RequirementsPkg
® £ StopywatchPkg
® £ SysterPkg

= L TPkg_StopWwatch
= (1 Components
=51 TPkg_Stopiwatch_Comp

=@ SUTs
4 itsStopiwateh
= &% Test Context Diagrams
& _of_TCon

¥l Struchr

=Dy T”Pkg_Smp\Natch
=0 Camponents
=g TPkg_Stopiwatch_Comp

=2 Events
(2 Ohjects
=L TestPackages

Defining the System Under Test (SUT) is the first

= [Configurations

=% TCon_Stopwatch_Architecture

H-(2a Dependencies ”TeStPaCkageS“ -

= TestComponents
3 TC_at_pln_of_StopWwatch
* TC_at_pOut_of_Stopbitatch
=9 TestContexts
=i TCon_Stopiwatch
H-= Atributes
(4 Dependencies
#-=5 Links
#-(2) Statechart
g SUTs
il IEEStOphAEtch
=-&g Test Context Diagrams
&3 Structure_of_TCon_StopWwatch
=@ TestCorporentinstances
itsTC_at_pIn_of_StopWatch
itsTC_at_pOut_of_Stopvvatch
+-%y, TestConfigurations

+-{% TCon_Stop\watch_TestControl

step in the test workflow. This tutorial will focus on the
StopWatch class. To define StopWatch to be the SUT, we
& B <TestngConfiguration» Defaultconfi have to create a test architecture. The needed
administrative framework will be placed in the folder

The System Under Test (SUT) is a part and
is the component being tested. A SUT can
consist of several objects. The SUT is exercised
via its public interface operations and events by
the test components.

=B StapiatchPlg

N[

=B Classes
Y Button
A Displa =39 TestContexts
: B Timer Features... = 5‘ TCDr.W_SU:IpWab:h
-1 Object Mad o #-15 Lirtks
£ SystermPkg Delete from Maodel =i SUTS

Create TestArchitecture

Select the class
,StopWatch® in the browser Have a look on the newly created Test Context Diagram
0 and choose from context e

menu ,Create

TestArchitecture®. AN

il itsStophiatch

=-&g Test Context Diagrarms
(}cructire_of TCon Stopiiat - -
+ ‘ TestComponentInstances |
) pin pOut
%y, TestConfigurations

o TestContests
TCon_StopYvatch

1 «SUT=
itsStopYvatch: Stoptatch

.otructure_of TCon_StopWatch “, and view the resulting parts in
the composite class ,TCon_StopWatch® of our test context.

Test Architecture

-

=
=

=-L# TestPackages
=8 1 TRko_Stop\iatch
=~ Components
=g | TPkg_StopWWatch_Comp
= [Configurations
+-53 «TestingConfiguration: DefaultConfig
+ % Everts
+-[% Ohjects
=-L# TestPackages
=Ly TCon_Stopiwatch_architecture
22 Dependencies
= TestComponents
+ TC_at_pln_of_Stop\Watch
+ TC_at_pOut_of_StopWWatch
=49 TestContexts
=49 TCon_StopWwatch
= Atributes
21 Dependencies
5 Lirks
#-(2) Statechart
- i SUTs
al itsStopvatch
-4 Test Context Diagrams
#d Structure_of_TCon_Stoptwatch
= ‘ TestComponentinstances
s itsTC_at_pln_of_Stoptwatch
i=TC_at_pCut_of_Stop\watch
+- %y TestConfigurations
[y TCon_Stopiwatch_TestControl

The automatically created test architecture is
completely represented in the browser and seamlessly
integrates into Rhapsody; think of it as an independent test

" model besides the design model. After creation the

following elements are visible:

The new configuration under the component
»1 Pkg_StopWatch_Comp*® describes the
collection of test components and SUT objects
and their interconnections when a test case is
started.

A test component is a class of a test system.
Test component objects (test component
Instances) realize partially the behavior of a test
case. A test component might have a set of
interfaces via which it might communicate via
connections with other test components or with
SUT objects.

A test context describes the context in which
test cases are executed. It is responsible for
defining the structure of the test system. The test
components and SUT objects are normally parts
of a test context.

Test Context

The automatically created test context represents
the formal structure of the test system. TestConductor
analyzed the model structure in consideration of the
selected SUT and proposed a test structure, which is
visualized in the test context diagram inside the test
context. TestConductor generated corresponding test
components for ports and associations of the SUT.

a TestContexts
TCon_StopWWatch

The composite class ,TCon_StopWatch® is

1 wSUTm
itsStopWatch: Stophvatch

1 1

pln pOut

pln

pQut

1 «Tes’t‘l:"éumponen 1 aTes’l‘C’n‘:umpm%
itsTC_at_pln_of itsTC_at_pOut

the part container for the SUT object and the
created test component objects.

The class ,TC_at pln_of StopWatch®
realizes the required interface ,IKey" and thus
can be connected to the “pIn” port of the
stopwatch class that provides this interface.

The class ,TC_at pOut_of StopWatch”
provides realizations for the interface “IDisplay”
and thus can be connected to the “pOut” port of
the stopwatch class.

Test Cases

Test cases are the soul of a test system. Until now we created a complete test
architecture around the SUT with a few mouse clicks in less than a minute. The
established and reviewed test system is linkable and runable. Well, the body works,
let’s have a look at the test cases. A test case ...

IS a specification of one case to test the system
including what to test, with which inputs, and what the
expected outcomes are. It is defined in terms of stimuli
injected to SUT objects and observations coming from
SUT objects.

IS an operation of a test context that specifies how a
set of cooperating test components interact with the
SUT.

can be specified as sequence diagrams, statecharts,
flow charts and source code.

can be generated automatically by using
TestConductor’s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

Test Case Specification

How to manually create test cases and how to execute them
with TestConductor will be discussed in the following sections. The
different kinds of definitions have their own strengths:

«5UT
TCon_Stapi® TCon_Stapy?y
atch.itsTC_at atch.itsStop
_pln_of Stop YWatch: StopW

Test Case : check_set_time in TCon_StopWatch

TCon_StopW
atch.itsTC_at
_pOut_of Sto

evshow(m=0, =0, b=FALS E]

woid TCon_Stophwatch_check_zet_time(]

General | Description | Implementation | &rguments | Relations | Tags | Properties

mins =
secs =

l// Check tkat initizlly the time iz 00

int wins = StopWatch getMini(& (me->its3topWatch)):
int secs = StopWatch getlec (& (me->its3topWatch)):
RTC_A3SERT NANE ("Check initial time",

[(mins == 0) && (secs == 0)1)11):

A4 mow set time to 03:21 and check that setting of
A4 time indeed sets the correct time

FtopWatch setTime (£ (me->itsdtopWateh), 3, 21);
StopWatch getMin(& (me->its3topWatch));
StopWatch getdec (& (me->itsdtopWatch));
RTC_A3SERT NAME ("Check if time setting is correct”,

[(mins == 3) && (secs == 21)1);

MCon_StopWatch_rtc_init{me-=itsTCony;

¥
final

/RTC_ASSERT_NAME("Initial",1);

Sequence diagram test cases can be recorded
automatically or created by hand. In some cases they have
already been specified during the analysis phase of the
project, and define the actions and reactions of the SUT.
The graphical formalism boosts the readability and
understanding.

Flow chart test cases also benefit from their graphical
nature, but in contrast to sequence diagrams, the use of
complex data types (structs) and control structures (if-then-
else) is supported out-of-the-box.

Statechart test cases are a well known and convenient
means to specify behavior based on states and modes.

Source code test cases are often preferred by
experienced programmers.

In summary TestConductor, the Rhapsody test case
execution engine, works with all kinds and combinations of
test case definitions.

10

Test Case: Sequence Diagram |

E“ TestScenario: Check_Init in TPka StopWaich_1

To manually create a sequence diagram

TG af_pln_of | TCo. StopWatch| . TC at_pOut... test case we have to define a test scenario
which is represented as a sequence diagram
«SUT» and link it to a test case. TestConductor
TCon_Stopy | | TCon_Stop¥ | | TCon_Stopyy simplifies this process with a single command.
atch.itsTC_at atch.it=Stop atch.itsTC_at
_pln_of Stop Watch: StopW | | _pOut_of Sto
| | |
| | # 4 Test Context Diagrams
| | =-*. TestCases
=% to_check_init?)
B SDInstances
=] _Ei TestsScenarios
N ﬂ CheckInit
4 N [N

L Link

b SUTs

4 Test Context Diagrams
‘ TestComponentnstances
%y TestConfigurations

Select the test context
,1Con_StopWatch® in the
Rhapsody-Browser ...

N J

4)

=% TestCases

Create SD TestiCase

ERF - check init)
Create Flowchart TestCase Shinstances
Create Code TestCase E-5 TIIESEEFIEIHDS
Create Statechart TestCase - 5y Checkinit

Rename the test case to

»IC_check_init“. Rename the
context menu ,Create SD . u
“ test scenario to ,Checklnit
TestCase”..

... and choose from the

9 JANS and open it. D

11

Test Case: Sequence Diagram Il

=57 RequirementsPkg
== Requirernents
11 REQ_Init
[11] REQ_Running_1
1L REQ_Running_2
|t 4 REQ_SetTime
1bdl REQ_Stopping
£7 StopwatzhPkg
£7 SystemPkg
£7 TutorialPkg
) Profiles
=L TestPackages
=% TPkg_StopiMatch
0 Components
¥ Events
- Objects

Requirement : REQ_Init in RequirementsPkg

=% TestPackages

General | Description | Relations | Tags | Properties

v B

Mame: REQ_Init
Stereatype:
Type:

1D:

Requirement

Defined in:

Specification:

After starting the stopwatch, the stopwatch
shall display O minutes and 0 seconds (0:0).

Locate OK

163

v

= % TCon_StopWatch_architecture

s Dependencies
TestComponents
-9 TestContesxts

=9 TCon_Stopiatch

= attributes

(24 Dependencies

5 Links
(*2) Statechart
i SUTs

&y Test Context Diagrams

=-% TestCases

=% 5D_tc 00
EY spinstances
= Testohjectives
W REQ_Init

test case.

Determine the test objective of the test
case: the SD test case should check that
requirement “REQ_Init” is indeed fulfilled by
the stopwatch class. To make explicit that the
SD test case shall verify this particular
requirement, a test objective is added to the

(

= ’L: Testzases
ER P 1= chieck init
E] .

tingProfile

Select the test case and
select “Add New ->
TestingProfile ->
TestObjective”

Depends on:

OfflineTestResult
TestCbjective
TestScenario

& Select Model Element E|

‘ =Bl Requirements s
= (=W

E-! REC_Running
EY REQ_Stopping
£ stopwatchPka 4

[o |

Cancel |

Select requirement “REQ_Init”
as target of the test objective”

/

-

\

=% TestCases

=R to_check_init
E_';'. S0Instances

=Wl TestObjectives
d, EENm

By TestScenarios

The test objective now links
the test case to the
requirement “REQ_ Init”.

/

12

Test Case: Sequence Diagram Il

E“ TestScenario: Check_Init in TPkg_StopWaich_1 *

Define action and reaction of the system

under test. We will specify the ,Checklnit"
scenario, where the SUT shall emit event

LTC at_pin_of | TCo..Stopiatch LTC at_pOut.. “evShow” with current time 0:0 after starting
the SUT. This output shall be generated
«SUTs automatically by the SUT, since no further
TCon_Stop¥ | [TCon_Stop'w/ TCon_Stop'W input is needed for that.
atch.itsTC_at atch.itsStop atch.itsTC_at
_pln_of Stop YWatch: Stophhy _pOut_of Sto
| evShow(m=0, =0, b=TRLIE) |
| | |
4 N N)
«5UT»
TCon_StopW TCon_StopWy «5UTe
atch.itsStop atch.itsTC_at TCDn__SmpW TCon__StopW TCDn__SmpW
Watch: Stopi pOut_of_Sto atch.itsTC_at atch.itsStop atch.itsTC_at
= T _pln_of_Stop Watch: Stopiy’ _pOut_of Sto

evShow(m=0, =0, b=TRUE) I

| Features... |

Select Message

r | v evshowint,int, RiCBoolean)
G

Draw the message
“‘evShow” from the SUT to
the test component “TCon_
StopWatch.itsTC_at_pOut_

of StopWatch”.
_olop)

evShow(m=0, s=0, b=TRUE) |
| |
| |

Specify argument values
m =0, s =0, b = TRUE for the
message.

/

That’s it already. The test

| evShow(m=0, s=0, b=TRLUE) :
| S
e case specification is

complete.

N J

13

Test Case Execution |

Execute the test case with Rhapsody TestConductor.
The execute dialog lists all executed test scenarios, their
progress and status.

MName
-1 ¥, tr_check_init
By sD_tc_o

Status
Ed FAILED
E3 FAILED

2=l
ot
File/lte... = Line/fProgress
1 0% (0/2)

The status, the final result can be either
,PASSED" or ,FAILED".

The progress displays how many steps are
finished yet. In case of a passed test 100% have
to be achieved.

The buttons in the top right corner of the
execution dialog can be used to control actual
test case execution and will be explained later.

/— H3 TCon_Stopiwatch
5 Links
* g SUTs

=%, TestCases

‘ TestCumpDnenﬂ

[SRR S S

_

RPNt check initg)

&g Test Context Diagrams

Features...

Edit TestCase SDInstances
Update TestCase

Build TestCase

Execute TestCase

TestConductor

! E TestCase must be built before execution. Build and Execute now?

CK l l Abbrechen

Y4 N

=B Testcases
o

=i TestCompDnentInstances
#- %y, TestConfigurations
= E’S TesBcenarle
By, chacknit

2=
ST

Marme Line/Progress

Status

File/Ite. ..

To execute a test case, simply right-click the test case and select
“Execute TestCase” from the context menu. In case the test model

- ¥, to_chedk_init
20 tc_0

@ FaleD

[FalED

The test case execution
dialog is a dockable dialog

o needs to be updated and/or the tested executable needs to be e that can be placed e.g.
compiled, a popup window appears in order to update the test case underneath the main
and/or build the executable. AN browser window)

14

Test Case Execution Il

The test case execution FAILED with

«SUT»
TCon_stop Toon. Stop TCon_stop Rhapsody TestConductor. To analyze the
Watch.itsSto Watch.itsTC Watch itsTC reason TestConductor offers two kind of views.
pWWatch;Sto _at_pln_of_ _at_plut_of

The HTML-report displays a textual summary
| and can be found directly under the test case
| evShow(m =0, s = 0, b = TRUEY: Check of in value okgrgurment b failed in the RhapSOdy-BrOWSGr. TestConductor

| 7] created a debug sequence diagram to display
| the error. The red arrow visualizes the faulty

| step and the reason. TestConductor expects

the parameter value ,TRUE" for argument *b”,
SDInstance 'SD_tc_0° but observes the value ,FALSE" during actual
Status: FAILED test execution. The expected value was not
Progress: 0% ©/2) specified correctly... by accident.
4 N [N I
DROE ?}ﬂ DECE éﬂ =% TestCases)
)) =% to_check_init))
Marme Status Fi... LinefPngress Name Status Fi... | Line/Progress —EI_]I; SDInstances
- %, tr_check_init €3 FAILED =% te_check it @ FAILED I TestObijectives
£ Eela JIED 1 0% (0/2) — - E%f TestResults
Show as SD Sy &5 E5 Sod Toon_Stopwatch_ fe_check_init_0.htrl
Add to rodel Add to model . _EH; TestScenarios

To open the debug

sequence diagram right In the browser, underneath the
click the item SD tc 0in e ... and select “Show as SD” e test case, you can find the
the TestConductor generated html report. Double

click the report to open it.

9 execution dialog. ..) U)L J

Test Case Execution Il

16

The test execution PASSED with

MName Status
-1¥, tr_check_init (&) PASSED
Bpso_tc.o (@ PasseD

Fi...

1

= Rhapsody TestConductor after we corrected
SIOE the expected parameter value for argument “b”
from “TRUE” to “FALSE” in the test scenario
,Checklnit®. After changing the scenario and
100% (2/2) re-executing the test case, the test case is
passed.

Line/Progress

Refer to the user guide to get
familiar with the extended functionality

= TestScenarios

To correct the test case
o open the test scenario

,Checklnit".

of TestConductor.
E.. TestScenario: Check_[nit in TPkg_StopWatch
= H_.‘___ b:_l:hEl:k_ir-litCl TCon_StopWat. . Stopiatch LTS at_pStop..| TC at_pSto.., FE

+ Hj ShInstances 35 &
¥ E:l T tDI:l t +SUTs -

- es Jectives TCan_Stop'V TCon_StopW | | TCon_StopW Harme Status Fi. /Frogress
T 2o atch.itsStop atch.itsTC_at atch.itsTC _at - ¥ it check init PASSED

= TEStRESUltE Watch: Stopyy _pStopWatch _pStopWatchl I —theck_ni O

i I I Biso_tco @ PasseD 1 100% (2/2)

evShaw(m=0, e=0, b=FALSE)| |

| | |

\ | |
For argument “b”, change the Re-execute the test case by
exptected value from “TRUE” pressing the “Start” button in
to “FALSE”. the top right corner of the

execution dialog.
N L J

)

Test Case: Source Code |

Test Case : check_set_time in TCon_StopWatch

General | Description | Implementation | Arguments | Relations | Tags || Properties

void TCon_Stopw atch_check_set_timme(]

I/,f Check thkat initizlly the time is 0:0
int mins = JtopWatch getMin s (me->its3topWatch)) ;
int secs = StopWatch getlec (& (we-ritsStopWatch)):
RTC ASSERT MNAHME ("Check initial time",

[fmins == 0) &£ (secs == 011):

A4 now set time to 03:21 and check that setting of
A4 time indeed sets the correct time

StopWatch setTime (& (me->itsStopWatch), 3, 21):
wmins = StopWatch getMin(& (me->its3topWatch)):

secs = StopWatch getSec (& (we->itsitopWatch))
RTC_AZZERT MNAME ("Check if time setting is correct™,

17
To manually create a source code test case

create a code test case and write the test code into
the edit field under the implementation tab of the
test case. TestConductor provides a set of macros
like e.g. ,RTC_ASSERT_NAME" that can be used
to execute checks during test case execution. If the
function “StopWatch_setTime” works as expected,
the test case passes.

[(mins == 3) && ([(=secs == 21))):
/— B TestContexts i N N N
=W *3 Ton_Stopliatch _)
5 Links 5%, TastCases - =53 TutorialPhkg
+ gl SUTs | " heck ini =B dasses
+-hg Te Create SD TestCase x . L_chec —Ilt --B CodeTestCase
= %, Te Create Flowchart TestCase | T tc_check_time() =)
+ *.'_, Create Code TestCase = ':'I:IEI’EItIIIII'IS .
@ Te Create Statechart TestCase o
+- %y, Test_onhigurations
o Select the test context e Rename the created test e Rde'?lfaclil thedcort1rt]ent of the
,TCon_StopWatch“ and case to ,tc_check_time* ed I e utnt.er) eb e test
choose from the context and open the features imp em’fr?t?] lon at Otf e ?rs]
menu ,Create Code dialog. case with the content from the

TestCase®.

“tc_check_time” operation in
the Tutorial package.
AN packad Y,

Source Code Test Case Execution

> ® % ff Execute the test case with Rhapsody
" -y e — TestConductor.
ame 5 ile/Tteration | Line .
%, & check time © PiccT Both assertions evaluate to .tru_e and the
{5 check initial time © Pessep Toonsw. 141 [l t€Stcase passes. Double-clicking an
I3 Check if time setting is correct @ PASSED TCon Sto.. 148 evaluated assertion in the execution
window highlights the assertion in the test
—— model.
A4 nmow set time to 03:21 and check that setting of
A4 time ipdeed sets the correct time
StopWatch setTime (& (me->its3topWateh), 3, 21):
mins = StopWatch geclin(&(me->itsdtopWacch))
secs = 3topllatch getlec (& (me->its3topWatch)) ;
BETC AZZERT NAME ("Check if time setcting is correct'™,
[(mins == 3) && ([(secs == 21)1):
4 N _ N N
=9 TCU Edit TestCase SDInstances =9 TCr Edit TestCase SDinstances
%5 Update TestCase : 5 Update TestCase Narre | Status
e § e @ pLild TestCase -1¥, t_check_time © PasSED
cEpy BHIE (EShasE Hig p————— {5) Check initial time © PasSED
--%, Execute TestCase SRW Evecute Testiase B ¢
75 £ % to_check_init()
+- % ER Mt check _time()

In the execution window,
select the assertion and

Select test case

Select test case

“tc_check_time” and then
select “Build TestCase”
from the context menu.

,{C_check_ time“ and select
“Execute TestCase” from
the context menu.

_

double-click “Show Assertion”
in order to highlight the
assertion in the model.

Test Case: Flow Charts |

In Flowchart TestCases you can use ASSERT macros like :
RTC_ASSERT_MNAMEN.e), e.q.

RTC_ASSERT MAME({"Check 1", me-=zistClass_1. attribute_x == 42);
For the list of available macros see TestConductor UserGuide
or the testconductor_Coh file in the installation directory

;

RTC_ASSERT_MAME("Initial",1);

To manually create a flow chart test case we
have to define a test scenario which is represented
as a flow chart and link it to a test case.

TestConductor simplifies this process with a single

command.

=-F. TestCases

+-% be_check_init))
+-% te_check_kimel)
=-#. te_check_kime_FC0)

+ E FlawwchartOfTe_check_kime_FiC
+ ‘ TeskComponentInstances
4 N 4
= [TestContexts B Test Context Dia
N T T T = grams
=B R TCon_StopWWatch Create 50 TestCase i Structure_of_TCon_Stopwatch
#l-o Links Features. =-*, TestCases
-y SUTs Add Mew Create Code TeskCase #- %y tc_check init()
= iﬂ Test Context % ke check, tllTIEl::l
89 Structure, Cut Create Statechart TestCase L%, P—————
=%, TestCases Copy -

o Select the test context e ... and choose from the e Rename the created test case
»1Con_CashRegister” in context to ,tc_check_time_FC* and
the Rhapsody-Browser ... menu ,Create Flowchart open the flow chart.

TestCase®.
\ NG _

\

19

Test Case: Flow Charts I

L]

}

int mins = StopWWatch_getMin(&(me-=itsStopy¥atchl);
int secs = Stop¥Watch_getSec(&(me-=>itsStopWWatch));

RTC_ASSERT MAME('Check initial time", {(mins == 0 && (secs == O}j);

.

StopWWatch_setTime{&(me-=itsStopWWatch), 3, 21);
ming = StopWatch_gethdin&ime-=its StopWatch));
secs = StopWatch_getSec(&(me-=itsStopWWatch);

[rnins == 3] [el=e]

RTC_ASSERT_MAME("Check if time setting is correct”,
((ming == 3) && (secs == 2100},

‘ P 1

o

Define the flow chart in order to execute it with
TestConductor. The Rhapsody-TestConductor-

- macro ,RTC_ASSERT NAME" takes a name-

parameter and a condition. If the conditions
[mins==3] and [secs==21] evaluate to true the test
case will pass.

Obviously the flow chart test case is very similar to
the source code test case we discussed some
pages before. The difference in comparison with
the source code test case is the graphical nature of
this test case.

4 N

= ﬁ TukarialPkg
=B Classes
-8 CodeTestCase
-8 FlowchartTestCase
= E Cperations

Replace the content of the
o flow chart of the test case with

the content from the flow

chart in the Tutorial Package.

\ /

20

Flow Chart Test Case Execution

MName

Skatus
-1 ¥_ to_check_time_FC [2) PASSED
¢+ Check initial time @ PassED

Q Check if time setting is correct () PASSED

-1x EXxecute the test case with Rhapsody
vo= %% & TestConductor.

File/Ikeration Line/Progress

The ,RTC_ASSERT_NAME"® macro

TCon_SkopiWatch.c 161
TCon_Stop\atch.c 172

[mins == 3] [else]

¥ —

O O
RTC_ASSERT_MNAME("Check if time setting is correct”,
((mins == 3) && (=secs == 217));

m]

O O

(

N
& § Test Context Diagrams ot Teditas
= ":_; TestCases
. ko_check_init() Execute TestCase k
“;_,- tc_check_timer) Build TestCase
PR check_time FCO Execute TestCase
Select the test case ... and choose from
tc check time FC“... context menu the items
a - ,Build TestCase*
and ,Execute TestCase®.
NG

evaluates to true and the test case passes.

Mame Status File/Tte
-1¥, tc_check_time_FC © PassED
£+ check initial time © PASSED TCon_3
Q Check if time setting is correct JRnSEN Lon_3

Shiw Assertion

e In the execution window,

select the assertion and
double-click “Show Assertion”
in order to highlight the

assertion in the model.
_ /

21

Test Case: Statecharts |

This is a statechart defining TestCase behavior

In Statechart TestCases you can use ASSERT macros like :
TestConductor ASSERT_MAME(n,g), e.q.
TestConductor ASSENT 5L g T68¢ w0 ™"

For the list of available
or the TestConductar.

fitsTC

¥

state 1

=9 TestContexts

To manually create a statechart test case we

+-Lo Agsociation Ends
+-"y) Dependencies

+- & Operations
#-(&) Statechart

B @ Tags
=89 TCon_StopWatch command.
- Attributes
+-Ly Links
+- & Operations
gl SUTS
+-kg Test Context Diagrams
=%, TestCases

+-# to_check_init?)

=% tc_check_progress{)

="y Dependencies
B <StatechartTestCase» TCSC

tc 0

have to define a test scenario which is represented
- as a statechart and link it to a test case. Technically,
the test case has a dependency to a
TestComponent that contains the statechart.
TestConductor simplifies this process with a single

SR 3 TCon_Stopliatch
g% S Create SD TestCase
< ig Te
=B T

Create Flowchart TestCase w
%, Create Code TestCase N
Create Statechart TestCase
Update TestContext

N

=%, TestCases
% 10_check_init))
- ¥ I rogress i)

w IC check time

Rename the test case to

Select the test context
,1Con_StopWatch* and
select “Create Statechart
TestCase”.

“tc_check_progress”

-

_

=%, TestCases

- -)

% tr_check_init()
=%, tc_check_progress)
+-"x) Dependencies

=W TestObijectives
2k m.ﬁ"

%, tc_check_time()

Add a test objective (using
“Add New -> TestingProfile
->TestObjective”) to
requirement REQ_Running_1

)

22

Test Case: Statecharts |l

;l Define the statechart in order to execute it with
TestConductor. The statechart test case first checks
¢ that initially the stopwatch’s time is indeed 0:0. After
it st 0 starting the stopwatch, the statechart test case
P = Sami o huach) waits a bit more than 3 seconds, and then checks
(mins == 0) &% (secs == O that indeed 3 seconds should be counted by the
stopwatch during that period. To execute the
checks the statechart test case uses the Rhapsody
G PR T e Tt _pln_oF. St tch g, vresskey(1) TestConductor macro ,RTC_ASSERT NAME®

again. If both checks are passed, the complete test

skate_4 .
case is passed.
/ = _:‘ TESC 0 0 \' / I Transition : 3 in statechart_0
= & TutorialPkg + I—| Association Ends] General | Description | Tags | Properties
=8 Classes +-"x) Dependencias s Name
=By Tesc et @@ Operations Stereolype v
* I._' ASSOCE o Statechart e TCShart o .]
o Depenc ISl StatechartDiagram
+ E Operai}; = Pl ey " ctate 1 Trigger : evTCStartin TPkg_Stopwatch w
=& Statechart = -
i)l StatechartDiagram] e
= T . Locate 04
o Replace the content of the e Add “evTCStart” as trigger of
test component statechart the transition from state
associated with this test case “initial” to state “state_1”
with the statechart of the

9 Tutorial package.) _ /

Statechart Test Case Execution

Execute the test case with Rhapsody

A=
b =i§;b

TestConductor. Both assertions evaluate to
true and the test case passes.

Marme Status File/Tteration Line[oae s
- ¥, tr_check_progress @ PASSED _
£+ check initial time () PaSSED TCSC_tr_.. 408
. tm(3200)/
Q Check E|~5|PSEE| tirne O PASSED TCSC_D:_- " F09 f;nn(gw c%eck if time has elapsed accordingly
int mins = StopWWatch_getMin{me->itsStopWWatch];
int secs = StopWWatch_getSecime-=itsStopWatchy);
RTC_ASSERT MAME('Check elapsed time",
¥ {imins == 0) && (secs == 3)));
]
fCon_StopWWatch_rtc_exit(me-=itsTCon];
/ \ / Edit TestCase SDinstances) / \
Update TestCase |
- —— Marme Status
=&, TestCases) Build TestCase -1¥ t_chedk_progress © PASSED
%0 to_check_init() Ex Edit TestCase SDInstances | {2] Check initial time © PassED
o '-_check_progress() Update TestCasea
X :
v tr_check_time () Build TestCasze
Execute TestCaze
0 Select the test e ... and choose from e In the execution window,
te e‘;\ E estcase context menu the items select the assertion and
»1C_Check_progress: ... ,Build TestCase“ double-click “Show Assertion”
and ,Execute TestCase®. in order to highlight the
_ AN AN assertion in the model. Wy,

24

Create Test Cases Using Test Case Wizard - SDs

imykey

StopWatch :myDisplay

| evShow(m=0, =0, b=FAL3E) |

| evPresskey(KeyVal=1) |

Create Test Case

I ap instance lines to test architecture

Flease select test architecture for test caze:

Flease select test case kind:

. 25
To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor
test case wizard. For an existing sequence
diagram, the test case wizard creates an analogue
test case with the same message structure as the
original sequence diagram. For an operation, the
test case wizard creates a test case that tests the
chosen operation, for a requirement the test case
wizard creates a test case with the chosen
requirement as the test objective.

(EI 3 TutarialPkg) Create Test Case N (=% ;I’estCases I
B Classes 4
= D Sequence Diaarams Map instance lines to test architecture Ep S0Instances

TCon Sto

tutorial package and select
“Create TestCase...”.

o Select the sequence diagram e In the test case wizard e “SD_tc_0” has been created
“StopWatchRunning” in the dialog, the test context which is based on a new test
“TCon_StopWatch” is scenario containing the same

already highlighted. Press messages as the original SD,

O\

Fleaze select test architecture for test caze:

Rational Rhapsody Gateway <newn>

OK to proceed.

=k Testobjectives

TCon_StopWV TCon_Stopyy TCon_StopW

atch.itsTC_at atch.itsStop atch.itsTC_at
_pin_of_Stop Watch: StopyV _pOut_of_Sto
} | evShow(m=0, s=0, b=FALSE) }
| T

As a result, a new testcase

but life lines adapted to the test
/L context structure.)

Create Test Cases Using Test Case Wizard -
Operations

. 26
The test case wizard can also be used to

| _ test operations that are defined in the model.

J: %Efoqpu\i\rfea:lilt:;kg General | Description | Implementation | Argumerts | Relations | Tags | Properties The leard aIIOWS to Create th ree dlﬁerent klnds
- ?%“;j;m vid TCon_Stopwiatch_Code_tc_0] of test cases: sequence diagram test cases,
t% :”'\,s’ksh e nsaenn o ey o MTERT macres Jike : B statechart test cases or codg test cases.
=8 cpasen [e e e s Independent of the chosen kind of test case, the
eEMin
EgetSec%) S4 or the testconductor C.h file in the installation dir Created teSt Case Ca"S the Selected Operatlon
sekTimedink m,int s int osc ar : a0 .
> 0 Fas int osc:arij;_ | Additionally, the test case already contains a
, S Rrc sssERT e (e check that can be refined by the user in order to
| 3 8 SHeck bl igrns n " check the out values of the operation.
= ﬁ TutorialPkg loeEe ex
. N [N (BR i) N\
= §+ Eb:quab:E _ - :un:_IZI]
. : Li%r':!"an BNCIes . Flease select test caze kind: = E:l TEStDtI]'EEti'I.I'ES
= E Cl RatiDnal RhapSDd'y' Gatewa':," Code TestCase = emmenls Relations | Tags || Properties

5D TestCase

Create TestiCase, ..

Code TestCaze void TCon_Stopwatch_Code_tc_0[)

Statechart TestCase int osc_arg 1;
int osc_arg 2:

— RTC, ASSIRE HAKE mmieintn, 1y o
Select operation e In the test case wizard e As aresult, a new code test
“setTime” of class dialog, select “Code case has been created t_hat
StopWatch in the browser TestCase” as test case Sontqlns ,? call to operation
and select “Create kind and press OK. setTw_ne and also a dur_nmy
TestCase. " assertion that can be refined.

\ AN L j

Debugging Test Cases

Mame Status Fil...
- ¥, s0_tc.D EXECUTIMG
BpsD_tc_0 ACTIVE 1
TCon_Stop'W TCon_Stopi®y
atch.itsTC_at atch.itsStop
_pln_of_Stop Watch: Stopvy
| reset()
|
|
L S s o Mg

I

) show(m =0,5=0,b=FALSE) I
| Eow(m=0,s=ﬂ,h=FALSE) :
%\Nﬂme(m =0,5=0,b=FALSE)|

o

2=l
) 0[5

Line/Progress

25%

(2/8)

TCon_StopW
atch.itsTC_at
_pOut_of_Sto

Debugging failed test cases can also be
done with TestConductor. When a test case
fails, one can turn on debug execution mode in
TestConductor’s execution window. After
switching on debug mode, when executing the
test case one can step through it by using the
“Go Step”, “Go Idle”, etc. buttons of Rhapsody’s
animation toolbar. Additionally, when stepping
through the test case, one can use Rhapsody’s
animation features to inspect animated
statecharts, animated SDs, etc. in order to find
the reason why the test case fails.

® - N N - N\
=% TestCases - aﬁ
+-#, Code_tc_0 P oI
i i S A O . MNarme Status Fil... = Line/Progress

x'_ ool oL MName Stafus Fil... = Line/Progress -¥, 5D .0 EXECUTING
% T "Edit TestCase SDInstances -% S0 0 € FALLED Byoo w0 ACTIVE L S
Update TestCase 5 sp_tc D FAILED 1 s0% (4/8) —
Build TestCase M B> b ! = A F = |!
Execute TestCase
0 Select test case After the test case has e Execute ,thettﬁsag":‘sﬁ,igé’:ltn
“SD_tc_0” and select failed, turn on debug (ytEreSSIng ! e S a|1 I:IJ on
“Execute TestCase”. execution mode by clicking In the exetcu '?r:‘ a ﬁ?h ?Wt
the debug button in the you an step r\fgug de’ es
execution dialog. case Dy using Rhapsody's
_ L) U animation toolbar. Y.

27

Executing Multiple Test Cases

Executing multiple test cases can be

1= .
o done by executing a complete test context or
Narme Status File/lteration | Line/Progress a complete test package. When a test context
"% TCon_Stopitiatch © raueo or a test package is executed, all test cases
-1¥, Code_tc_0 @ PassED = p g ’
£ ritial © PASSED TCon Stop. 132 within the context or test package are executed.
=l B FaILED
B 5ot 0 O raeo 1 0% &5 After all test cases have been executed,
=% tc_check_init @ PassED TestConductor computes an overall test result
Hy sDtc_o @ PasSED 1 100% (2/2)
L% & chock progess @ PASSD for the test context or the test package.
7] Check initial time @ Pass ; — ;)
B Check clapecd tme @ Pace Test Context: TCon_StopwWatch
- %, t_theck_time © pags| 9o 0 PASSED
2] Check initial time @ Pasg| SPE 0 FAILED
§7] Check if tirne setti., (@ Pass) tt_chedk_init PASSED
tc_check_progress PASSED
tc_check_time PASSED
/B 5’3 TestContexts \ @ 3‘ "-""H' \ / \
S8 4 TCon_Stopiiatch = Lo S el Name Status Fi
L | inbe 5 Links . - & TCon_StopWwatch © FalLED
i+ Create Statechart TestCase ﬁ ?t Build Test—ontext -1¥, Code_tr D @ PassED
Update TestContext %,) A D Tnitial @ PassSED TC]
=% Build TestCantext = I Execute Testiaor "=’""'t -%. =D 0 © FAlLED
T‘;Sttcc—l__'l::r Update TestContext @ 1 Update Testarchitecture) B S0_tr 0 @1 FAILED 1

2y TestCon

Build TestContesxt

Execute TestContext

Select the test context
“TCon_StopWatch” and
select “Update
TestContext”. After that,
select “Build TestContext”.

q); Test_onmguraTions

e Select the test context

again and press “Execute
TestContext”. All test cases
will be executed one after
the other.

/

The results are shown in the
execution window. As always,
“Show as SD” resp. “Show
assertion” can be used to
show the reasons of failed
test cases.

/

28

Assessing Test Case Requirement Coverage |

Which requirements are covered by

my test cases? This important question can
be answered either by using a test case
requirements matrix or by generating a

S asenisal muolq

To: Requirement Scope: JavaStopWiatch

€r TestPackages
=2 ¥ TFkg_Stop'\watch

+-(_] Componerts

- 1dh TestComponents
TahleMatrix 4
Annotations 4
TestingFrofile 4

TestResultTable
TestScenario

TestRequirementiatriz

o Select the test package

“TPkg_StopWatch” and
select “Add New ->
TestingProfile ->

_ TestRequirementMatrix”.

EY REQ_Init |E"! REQ_Running_2 |E"! REQ_Stopping |E"! REQ_Rurning_1 |E"! REQ_SetTime |
#_ to_check_init 14 REG_Irit
#_ to_check_time
"’r_,- tc_check_progress H REQ_Running_1
%, 50 16 0
."r_,- Code_tc 0

requirements coverage test report. A test case
requirements matrix shows the relationship
between test cases and requirements in a
matrix view. A requirements coverage test
report shows the same information, but

presented as a textual report. It can be
generated by ReporterPlus using a predefined

Ihclude Descendants ["Ta" Scope]

Open the features dialog
of the matrix, rename it to
“‘ReqCoverage”, and set

the
ntol’

“from” scope and the
scope to the complete

model “C_StopWatch”.

template.
/ Mame: ReqCoverage \

Stereatype: B %
Layout: TestRequirementCoverage in T %
“Fram”
Sc[ggne: C_Stopwatch [

Include Descendants ["From"' Scope)
Ta C_Stopiwatch "
Scope:

)

~

To: Requirement Scope: JavaStopiatch

A

B REQnt |B REQ_Running.z |EY |

%, te_check_init

1 REC_Init

o te_check_time
% to_check_progress

;o esenisal wolq
¥ %[% | %

%, SD_tc 0
%, Code_te 0

When double clicking the
matrix in the browser, the
matrix view shows the
relationship between the test
cases and the requirements.

)

29

Assessing Test Case Requirement Coverage |l

Datei

o -

~ | Ci\Test itRhapsody7 .5 2yreporterp lusiUserFiles\Cover ageReport. htm

Bearbetten Ansicht Favoriten Extras 7

v 0o suchen - (@I _iLive ~Al=] v Free s [10] | 5 Freeware [10] ¢ |

w @ |@C:\Test it\Rhapsody?.5. 2yreporterplusiUserF.., | | i -

£ C:\Test it\Rhapsody7.5.2\reporterplus\UserFiles\CoverageReport.htm - Windows Inter... Q@@
P~

v

Test Case Reports can be used as an
alternative in order to figure out coverage of
requirements with the test cases. With

. - uomn - »| REPOItErPlus a requirement coverage report

[%

» | [+

o=

1 Requirement Coverage Report of Mo

All Reguirements
B! Requirement REQ_Init

B Requi tREQ_R 1 N Specificati h h ' f F h
B reabemoingo oy | [ome_|Specificatn caze report shows the same information as the
E! Requirement REQ_SatTima REQ_Init After starting the stopwatch, the stopwatch EC-C;:SCSZ*SW

E Reqguirement REQ_Stopping
[Al Test Cases

Table of Contents
All Requirements

~| can be generated in different formats like Word,
Html, etc. The requirements coverage test

Covered by Test

shall display 0 minutes and 0 seconds (0:0)

requirements coverage matrix, but presented as

REQ_Running_1

After starting the stopwatch, the stopwatch
shall count minutes and seconds.

tc_check_progress

(M Passed)

a textual report. Besides the requirements

REQ_Running_2 | between

After starting the stopwatch, the stopwatch
shall count minutes and seconds. The colon

coverage report, another predefined template

not covered

displayed minutes and seconds shall blink once in
a 1 second time interval.

The stopwatch shall provide a function "SetTime"

REQ_SetTime that sets the current time. not covered
4 ﬂ REQ_Stopping E_’\.’_Flﬁm_[ETLng' pressing the key of the stopwatch not covered I
Applet com/synergex/modeleyeq TOC,DirectNavigator started ' Eigener CompLiter T 100% -

(TestReport.tpl) can be used to generate a
complete test report that contains all details
about test cases, test architectures, etc.

(

Check Model ¥
ReporterPLUS |
e Y——

|

Report on all model elements. ..

Report on selected package. ..

From Rhapsody’s tools
menu, select “ReportPlus
-> Report on all model
elements”.

(re

porterPLUS Wizard : Selec

“What would you like to do?

age
t PowerPoint Presentation

Generate Microsof

Suchenim | () Templates

2] TestReport.tpl
@ TestRequirermentCoverage. ipl
|#] UseCaseDiagramsDetailedRenort. ol

As format, select Html.
After that, select
“TestRequirementCoverage
tpl” as template for the
report to generate.

\

/

\

=1L)

Py

After generating the report,
the report can be viewed with
any browser that can display
Html files.

/

30

Assessing Test Case Model Coverage

Detailed Coverage Summary of Button (2/5)

BEEEE Besides coverage of the requirements,

not covered EERS=)

EventReceptions an important orthogonal information is which
not covered JRIZEEEE parts of the model are executed by the test

StateChart: statechart_3

Stte cases, i.e, what is the achieved Model
et Coverage when executing the test cases.
TestConductor can compute this information

Detailed Coverage Summary of Display {4/5)

Dperations during test case execution. When model
covered [T coverage computation is turned on, after test

EventReceptions

covered [case execution TestConductor adds a model
o coverage report to the test cases, test contexts

Coveread OOT.running State B

covered [Transition etc. that shows the achieved model coverage.

not covered [ER Transition

KEI 3‘ Test“ontexts) \ @ P TestContexts) _\

Configuration : DefaultConfig in TPkg_StopWatch_Comp = 53 TI:I:IT'IEitl:l[:I'l_u"'-_l'Eltlj'l =] TECT&S‘EEB\’:‘“
General | Description | Initislization | Settings | Checks | Relations | Tags | Properties |—| Links BQCDVBI’B ==1=] Operations
; ' i s 0P
. EL‘E ?t Build TestConbext L Links covered ShowTime
=l TestArchitecture % - E Operations .
-1 TestingConfiguration =5 I Execute TestContext ﬁ?UTtSc . EventReceptions
CormputeCodeCover| [W) g - L e — Sh
CompuishodolCond BT Update Testirchitecture 2 "é Iesctfézsist o i ENVSNOY
Coveragekind SUT_hierarchical 2y TEST_OMTIQUr STIarS - gveraeResultS
TCon _Stopiatch Code tr |
0 On the tags tab of the After execution has finished,
Configuration’ turn on Execute the test context coverage reports can be
“ComputeModelCoverage” TCon_StopWatch”. found both for individual test
and set “CoverageKind” to cases as well as a cumulative
“SUT _hierarchical” coverage report for the test

_) U) U context. D

Assessing Test Case Code Coverage |

32
~ Besides coverage of the requirements
and model elements, an important additional
information is to what extend the code of the
SUT generated by Rhapsody’s code generator
is executed, i.e, which Code Coverage is
achieved when executing the test cases.
TestConductor can compute this information

Table Of Contents Source Code

Environment Info

Coverage Statistics

Goals Covered

Statement Coverage 70 43| 61.4% - -

5= G - e during test case execution. When code

Conditi C] u] A, 1 1

St ___ oo nel coverage co_mputatlon Is turned on, after test
Modified Condition/Decision Coverage 20] 7] 3m%] case execution TestConductor adds a code

coverage report to the test cases, test contexts
etc. that shows the achieved code coverage.

/ =4 TestContexts B \ / \ \

Configuration : Release in TPkg_Stopwatch_Comp

= TCC Featres.., =-{7% TPkg_Stopwatch
+ ::J =10 CDmpDnents General | Description | Initialization | Settings | Checks | Relations | Tags | Properties
- [Add New 3] K h
| =5 '.I'.F' g_StopWatch_Comp 1
oogH St Strg+x =0 Configurations :
=02 Sy crkc +- 8 «TestingConfiguration: DefaultCanfig - T“t‘_‘mh't'?':t“re_
i ! _ EMesk «TestingConfiquration? Release TestingConfigLration
- Delete from Model - CormputeCodeCaoverage
% | estiases ComputeModelCoverage O
* ‘ LestComponeninstances Coveragekind SUT_hierarchical

=y TestConﬁEurations
q.m

G Delete the test e e On the tags tab og the
configuration dependency Create a copy of the configuration, turn off
“DefaultConfig” rhapsody configuration “ComputeModelCoverage”
underneath the test “‘DefaultConfig”, rename it and turn on
context. to “Release” and make it “ComputeCodeCoverage”.
_) U the active configuration.) LU D

Assessing Test Case Code Coverage |l

Coverage Report

Environment Info Table Of Contents Global Statistics

95 void StopWatch_Destroy(StopWatch® const me)
95k {
95 if (me!=NULL)

a7 :

98 StopUatch_Cleanupfme) ;

ag '

100 freeime);

oLy

-» 103 FRiCBoolean JtopWatch_startBehavior (JtopWUatch* const me)

Source Code

The Code Coverage report contains
detailed information to what extend the code of
the SUT has been executed by the test cases.
The report contains both a summary about the
achieved coverage (e.g. statement coverage)
as well as detailed information about each

Enwire . T Source Code) . ”
Cover I Do single line of code. The source code view
ovel 108 done &= Dlspla;_startEEhavlur & mef>1tlesplaY’ 8 1 1
Taer siorebenavior e e stestmem contains color coded presentations about the
108 done &= RiCReactive_startBehavior(s(me->ric_reactive)): ..
T R coverage status of statements, decisions and
Stat [} 111 RiCTask_start(s(me-rric_task)); 0 43 61.4%% .-, .
e I s 2| conditions of the tested code.
Condition —o.o,wott?? 0 0 n.a.
Condition/Decision Coverage 20 7| 35%
Modified Condition/Decision Coverage 20 7l 35%
4 N\ (= & TestContexts N\ [= [TCon_Stopwatch_architecture)
SR TCon_Stopiifatrh -1 Dependencies
815 Links + TestComponents
| mstrurmentation = i S " il P
&3 ¢ Build TestContext =6 TestCaontexts

| nztrumentation b ode:; Mone

On the settings tab of the
configuration, set
Instrumentation Mode to
“‘None”.

=%y, l Execute TestContext
- i 1 Update Testarchitecture

=83 TCon_Stopiwatch
+-= Attributes
=-lip, CodeCoverageResults

+- %y TEST_ONTIQUr STI0nS

e Select the test context

again and do “Update
TestContext”, “Build
TestContext” and then

“Execute TestContext”.

£

After test case execution has
finished, by double clicking
the code coverage element in

the browser you can open the
code coverage report.

L j

33

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

generates complete, immediately executable test
architectures in shortest time with a few mouse clicks.

makes it for the first time possible to implement cyclically
quality assurance measures in early phases of the
development.

increases substantially the planning reliability for
projects, because design errors and subsequent errors
will be recognized very early.

makes statements about the coverage rates of
requirements, model elements and generated source
code. Developers can easily and fast analyze reasons
for not covered elements.

highly automates the testing process and can save up
to 80% of test development time compared to
traditional approaches.

More Information ...

For further information, especially
technical news, visit our internet

' em——— information portal or contact one of our
—————— v == o worldwide sale agencies.

1IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational
products can be found at http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific
country phone numbers, go to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.
When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

* What software versions were you running when the problem occurred?

* Do you have logs, traces, or messages that are related to the problem?

* Can you reproduce the problem? If so, what steps do you take to reproduce it?

* Is there a workaround for the problem? If so, be prepared to describe the workaround.

35

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

