

XMI Toolkit
for Rhapsody

Mapping Rules Overview

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 2/20

Notices

© Copyright IBM Corporation 1997, 2009.
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
This information was developed for products and services offered in the U.S.A. IBM may not
offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available
in your area. Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send written license inquiries to:

IBM Director of Licensing IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the
IBM Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome
Minato-ku Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions. Therefore, this
statement may not apply to you. ii This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the information herein; these changes
will be incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any time
without notice.
Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at those
Web sites are not part of the materials for this IBM product and use of those Web sites is at
your own risk.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you. Licensees of this program who wish to
have information about it for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142 U.S.A.

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 3/20

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.
The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.
Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results may vary. Users
of this document should verify the applicable data for their specific environment.
Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.
This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample programs
are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp.
1997, 2009.
IBM, the IBM logo, ibm.com, Rhapsody, and Statemate are trademarks or registered
trademarks of International Business Machines Corporation in the United States, other
countries, or both. These and other IBM trademarked terms are marked on their first
occurrence in this information with the appropriate symbol (® or ™), indicating US registered
or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at www.ibm.com/legal/copytrade.html.

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 4/20

1. INTRODUCTION

This document outlines the rules governing the mapping of Rhapsody models to UML Models using XMI 1.3
and XMI 2.1. It is mainly targeted for users working in the field of model driven engineering.

2. CONVENTIONS

In UML 2.1, tagged values do not exist anymore. They are replaced by a combination of Stereotypes and
Properties applicable to stereotyped elements.
In this document, we use the following notations:

MetaType <<Stereotype>> Denotes an instance of the metatype “MetaType” to which we apply
the stereotype “Stereotype”

(<<Stereotype>>) Metatype
name[=value]

For XMI 2.1, indicates that the property with the name “name”,
derived from the application of the stereotype “Stereotype” on the
current element is created, with an optional value of“value”.

<Metatype>* Indicates a of elements of the metatype

<Metatype1|Metatype2> Indicates an alternative between metatype1 and metatype2

All stereotypes used for representing Rhapsody specific modeling concepts are grouped in a profile named
“RhapsodyProfile”

All Stereotypes used for representing Rhapsody properties are in the profile “RhpProperties”

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 5/20

3. RULES

The rules are grouped by diagram type so that users using a subset of the diagram types available in UML can
concentrate on the rules they are more specifically interested in.

3.1. Object Model Diagram

Rhapsody Model Element UML 1.3 UML 2.1

IRPProject Model Model

IRPPackage Package Package

+ <<RhpTopLevelClass>> Classifier
TopLevelClass 1

IRPClass

1. <IRPDiagram>
behavioralDiagrams

2. <IRPClass>*
nestedClassifiers

3. <IPRType>* types

4. <IRPGeneralization>*
generalizations

Class

1. <Behavior>

2. <ModelElement>*
ownedElement (subset)

3. <ModelElement>*
ownedElement (subset)

4. <Generalization>*
generalization

Class

1. <Behavior> classifierBehavior

2. <Classifier>* nestedClassfiers

3. <Classifier>* nestedClassfiers

4. <Generalization|InterfaceRealization>*
generalization|interfaceRealization

IRPActor Actor Class <<RhpActor>>2

Interface
(IRPClass<<interface>>)

Interface Interface

IRPModelElement

1. description

2. <Tags>*

3. <Properties>*

ModelElement

1. TaggedValue desciption

2. <TaggedValue>*

3. <TaggedValue>*

NamedElement

1. (<<RhpModelElement>>) String
Description

2. <Property>*

3. <Property>*3

IRPType(Struct) DataType DataType <<RhpStruct>>

IRPType(Union) DataType DataType <<RhpUnion>>

IRPType(Typedef)

1. typeDefBaseType

2. isTypedefReference

3. typedefMultiplicity

DataType

1. Dependency to
typeDefBaseType

2. TaggedValue isReference

DataType <<RhpTypeDef>>

1. <Property> baseType4

2. (<<RhpAttribute>>) Boolean isReference
= true

3. baseType.lowerValue,

1 This class allows to add classifier features to the UML Package
2 In Rhapsody, an Actor can have the same features as a Class. In order to map these features to UML 2.1, the Rhapsody
Actor is mapped to a Class with a stereotype <<RhpActor>>.
3 Tags not exist in UML 2.1 which suggests using Stereotype with properties. For same reasons, rhapsody.Properties are
mapped to properties of applied stereotypes. All Stereotypes of Rhapsody Properties are nested in a Package “RhpProperties”

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 6/20

4. isTypedefOrdered

5. isTypedefConstant

3. taggedValue multiplicity

4. taggedValue isOrdered

5. taggedValue isConstant

baseType.upperValue

4. baseType.isOrdered

5. baseType.isReadOnly

IRPType(Language)

1. TaggedValue declaration

DataType

1. TaggedValue declaration

DataType <<RhpLanguage>>

IRPType(Enumeration)

• <IRPEnumerationLiteral
>* enumerationLiterals

Enumeration

• <EnumerationLiteral
>* literal

Enumeration

• <EnumerationLiteral>* ownedLiteral

IRPEnumerationLiteral

• Name

• Value

EnumerationLiteral

• Name

• N/A

EnumerationLiteral

• Name

• <LiteralString> specification

3.2. Features

Rhapsody Model Element UML 1.3 UML 2.1

IRPOperation

1. <RPParameter>* arguments

2. Boolean constant

3. Boolean isStatic

4. Boolean isAbstract

5. IRPClassifier returnType

6. IRPFlowchart flowchart

7. isCtor=true

8. isDtor=true

Operation

1. <Parameter>* parameter

2. taggedValue
isConstant=”true” if true

3. String ownerScope (static
| instance)

4. Boolean isAbstract

5. <Parameter>* parameter
kind= return

6. Statemachine behavior

7. TaggedValue initalizer

8. N/A

Operation

1. <Parameter>* ownedParameter

2. Boolean isQuery

3. Boolean isStatic

4. Boolean isAbstract

5. <Parameter>* ownedParameter

 Direction = return5

6. <Behavior> method

7. <<RhpConstructor>>
+ CreationEvent6

8. <<RhpDestructor>>
+ DestructionEvent

IRPEvent

1. <Attribute>* arguments

2. <IRPEvent> eventBase

Reception SignalEvent + Signal

1. <Property>* ownedAttribute

2. <Generalization> generalization

IRPEventReception Reception

4 From Rhapsody to UML2.1, an attribute of the DataType, is created with the name baseType. This attribute has all features
needed for expressing a TypeDef
5 Return value of an Operation is a parameter with the directionKind “return”.
6 This kind of events can be used in Sequence Diagram to express the creation or destruction of an instance.

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 7/20

IRPAttribute

1. String Multiplicity

2. Initial value

3. Boolean Constant

4. Boolean IsStatic

5. String visibility (public,
protected, private)

6. Boolean isReference

Attribute

1. TaggedValue Multiplicity

2. Expression
Attribute.initialValue

3. taggedValue
isConstant=”true” if true

4. String ownerScope
(static|instance)

5. String visibility

6. taggedValue
isReference=”true” if true

Property

1. lowerValue, upperValue

2. Expression Property.defaultValue

3. Boolean isReadOnly

4. Boolean isStatic

5. String visibility

6. (<<RhpAttribute>>) Boolean
isReference=true

IRPRelation

1. String multiplicity

2. String qualifier

3. isNavigable

4. Enumeration relationType
(Aggregation, Composition,
Association)

5. otherClass

AssociationEnd

1. Multiplicity exported as
Multiplicity instance

2. <Attribute>* qualifier

3. Boolean isNavigable

4. AggregationKind
aggregation (Aggregate,
Composite, None)

5. Classifier type

Property

• Association7 (if not an AssociationClass)

1. Property is an instance of
MultiplicityElement

2. <Property>* qualifier

3. if true : owner=ofClass
if false : owner=association(ownedEnds)8

4. AggregationKind aggregation (Shared,
Composite, None)

5. type

IRPAssociationClass

1. IRPRelation End1

2. IRPRelation End2

AssociationClass.

1., 2. <AssociationEnd>*
connection

AssociationClass

1., 2. <Property>* ownedEnd

7 Properties are linked into association.memberEnds
8 In UML 2.1, a non navigable end is owned by the association

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 8/20

3.3. Generalization

Rhapsody Model Element UML 1.3 UML 2.1

IRPGeneralization Generalization Generalization|InterfaceRealization

a) If (general Classifier not an Interface) and
(derived Classifier not an Interface)
<Generalization>* generalization

else if (generalClassifier is an Interface) and (
derivedClassifier is an Interface)

<Generalization>* generalization

else if (general Classifier is an Interface) and
(derivedClassifier is an Interface)

<InterfaceRealization>* interfaceRealization9

b) If general Classifier GC is a template and
derived Classifier DC is also template then the
template signature of DC redefines the one of
GC

3.4. Templates and template instantiations

Rhapsody Model Element UML 1.3 UML 2.1

IRPOperation|IRPClassifier

1. <RPTemplateParameter>*
templateParameters

2. RPTemplateInstantiation ti

a. <RPTemplateInstantiatio
nParameters>*
templateInstantiationPara
meters

Operation|Classifier

1. <TemplateParameter>
* templateParameter

2. Binding

a. <Parameter>
* argument

Operation|Classifier

1. TemplateSignature|RedefinableTemplateS
ignature

a. <ClassifierTemplateParameter>*
ownedParameter

2. TemplateBinding

a. <TemplateParameterSubstitution
>* templateParameterSubstition

3.5. Annotations

Rhapsody Model Element UML 1.3 UML 2.1

IRPComment

1. String name

2. String specification

Comment

1. name10

2. String body |

Comment

1. (<<RhpComment>>) String name11

2. String body | Expression specification

9 In rhapsody, Interfaces are created by applying a Sterotype “Interface” on a Class. A Class generalizing this
interface will realize it. In UML 2.1 this kind of relationship is expressed by InterfaceRealization
10 In UML 1.3, Comment derives from ModelElement, which has a name
11 In UML 2.1, Comment has no name

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 9/20

3. RPModelElement Owner

4. <RPModelElement>*
anchoredElements

BooleanExpression
body

3. Dependency with
“commentOwner”
tagValue to owner

4. <ModelElement>*
annotatedElement

3. ownedComment association

4. <Element>* annotatedElement

IRPRequirement

1. requirementID

2. specification

<<requirement>>
comment

Constraint

1. (<<RhpRequirement>>) String
requirementID

2. specification

IRPConstraint

1. RPModelElement Owner

2. specification

Constraint

1. <<constraintOwner>
> dependency to
Owner

Constraint

1. PackagedElement nestedPackage

2. specification

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 10/20

3.6. Statechart

Rhapsody Model Element UML 1.3 UML 2.1

IRPStateMachine

• IRPState rootState

StateMachine

• State top

StateMachine
or ProtocolStateMachine12

• <Region>* region

IRPConnector

1. isConditionConnector = true

2. isDiagramConnector = true

3. isForkConnector = true

4. isJoinConnector = true

5. isJunctionConnector = true

6. isHistoryConnector = true

7. isStubConnector

8. isTerminationConnector =
true

PseudoState

1. kind = “branch”

2. S1=>DC=>S2 =
S1=>S213

3. kind = “fork”

4. kind = “join”

5. S1=>JC=>S2 = S1=>S214

6. kind = “deepHistory”

7. S1=>SC=>S2 = S1=>S215

8. kind = “final”

PseudoState

1. kind = Choice

2. kind = Junction

3. kind = Fork

4. kind = Join

5. kind = Junction

6. kind = DeepHistory

7. ConnectionPointReference / PseudoState
pair16

8. kind = Terminate

IRPState

1. String stateType

• stateType = “Or”
<Vertex>*
subStateVertices

• stateType=”And”
<State>* subStates

• stateType=”LocalTermi
nation”

• stateType ="EventState"

2. String entryAction

3. String exitAction

4. <IRPTransition>*
incomings/outgoings

5. Statechart nestedStatechart

StateVertex

1. N/A

• SimpleState

• CompositeState
<StateVertex>*
subVertex

• FinalState

• CallState

2. ActionSequence entry

3. ActionSequence exit

4. <Transition>*
transitions17

5. SubactivityState
submachine

Vertex

1. N/A

• State
region

• State
<region>* regions18

• FinalState

• <<RhpSendAction>> State

o (<<RhpSendAction>>)
Element target

o (<<RhpRequirement>>)
Element event

2. Activity entry

3. Activity exit

12 If the owner is an instance of Interface.
13 Transitively resolved
14 transitively resolved
15 transitively resolved
16 If a Rhaposdy enter/exit point EEP’ of a submachineState S has a matching Rhapsody enter/exit point EEP’’
inside the submachine SM of S then EEP’ is mapped to a UML ConnectionPointReference and EEP’’ is mapped
to a UML enter/exit point PseudoState

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 11/20

4. <Transition>* transitions19

5. StateMachine submachine

IRPTransition

1. isDefaultTransition = 0

2. IRPAction itsAction

3. IRPGuard itsGuard

4. IRPTrigger itsTrigger

5. IRPStateVertex itsSource

6. IRPStateVertex itsTarget

Transition

1. N/A

2. Action effect

3. Guard guard

4. Event trigger

5. StateVertex source

6. StateVertex target

Transition

1. N/A

2. Activity effect

3. Constraint guard

4. Trigger trigger

5. Vertex source

6. Vertex target

IRPTransition

• isDefaultTransition = 1

PseudoState

• Kind = “initial”

Transition (From
InitialNode to target of
transition)

PseudoState

• Kind = “initial”

Transition (From InitialNode to target of
transition)

IRPAction

String body

Action | UninterpretedAction

ActionExpression script

OpaqueBehavior

String body

IRPTrigger(isOperation)

• InterfaceItem operation

CallEvent Trigger

• Event event20

IRPTrigger(isTimeout)

• body21

TimeEvent Trigger

• TimeEvent event

o LiteralString when

IRPTrigger(isEvent) Signal Trigger

• SignalEvent event

3.7. Activity Diagram22

Rhapsody Model Element UML 1.3 UML 2.1

IRPFlowchart

1. Owner instanceof

ActivityGraph

1. Context = Operation

Activity

1. Context = Class owing the operation that

17 Owned by the statemachine they are defined in.
18 Each region has a top level state representing the matching rhapsody component state
19 Owned by the region they are defined in.
20 Actual metatype is one of (CreationEvent|DestructionEvent|SendOperationEvent event|SignalEvent) depending on
whether the oepration is a constructor, destructor, regula roperation or triggered operation.
21 Timeouts use the format “tm(time)”
22 In Rhapsody, a Flowchart can own severals Flowcharts through subactivity, and severals defaultTransitions through Block.
But in UML 2.1, an Activity Diagram doesn’t allow this kind of hierarchy, just partitions through ActivityPartition

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 12/20

IRPOperation

2. Owner instanceof IRPClass

2. Context = Class owning
the activity diagram

owns the activity

2. Context = Class owning the activity
diagram

IRPSwimlane Partition ActivityPartition

IRPState(isRoot)23 InitialNode

IRPState(LocalTermination)24

• entryAction

• exitAction

 ActivityFinalNode

• (<<RhpFinalNode>>)String
entryAction

• (<<RhpFinalNode>>)String exitAction

IRPState

1. stateType=”Action”

• String entryAction

2. stateType=”Block”

3. stateType=”SubActivity”25

4. stateType=”ReferenceActivit
y”

• Flowchart
referenceToActivity

5. stateType=”LocalTerminatio
n”

• entryAction

• exitAction

StateVertex

1. ActionState

2. CompositeState

• <StateVertex>
subVertex

3. SubActivityState

4. SimpleState

5. FinalState

ActivityNode

1. OpaqueAction

• <String> body

2. ActivityPartition

• MergeNode entryState
(containedNode)

• MergeNode exitState
(containedNode)26

3. Only the block is mapped (see Block
mapping). All transitions from/to this
element are changed from/to the block

4. OpaqueAction

• (<<RhpReferenceActivity>>)String
referenceToActivity

5. OpaqueAction/ActivityFinalAction27

• (<<RhpFinalNode>>)String
entryAction

• (<<RhpFinalNode>>)String exitAction

IRPObjectNode

• ModelElement represents

ObjectFlowState

• Classifier type

ActivityParameterNode

• Type type

IRPTransition

• (Target OR Source)

Transition

N/A

ActivityEdge

• ObjectFlow

23 If his owner is the full flowChart
24 If his owner is the full flowChart
25 A subactivity contains a Block
26 In UML 2.1, an ActivityPartition is not a State. We can’t have transitions from and to this Element. In order to map
rhapsody transitions, we create two nodes, an entry node and an exit node where transitions can link to.
27 An ActivityFinalAction expresses the final action of all the Activity. A LocalTermination can not be map to an
ActivityFinalAction if the state is in a Block or a SubActivity

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 13/20

instance of ObjectFlow

• else

1. IRPAction itsAction

2. IRPGuard itsGuard

3. IRPTrigger itsTrigger

4. IRPStateVertex itsSource

5. IRPStateVertex itsTarget

1. Action effect

2. Guard guard

3. Event trigger

4. StateVertex source

5. StateVertex target

• ControlFlow

1. (<<RhpActivityEdge>>)String action
<OpaqueBehavior>

2. <LiteralString> guard

3. (<<RhpActivityEdge>>) String trigger

4. ActivityNode source

5. ActivityNode target

IRPTransition

isDefaultTransition = 1

PseudoState

Kind = “initial”

Transition (From InitialNode
to target of transition)

Like another Transition

IRPConnector

1. isDiagramConnector = true

2. isForkConnector = true

3. isJoinConnector = true

4. isJunctionConnector = true

5. isTerminationConnector =
true

Pseudostate

1. S1=>DC=>S2 =
S1=>S2

2. kind = “fork”

3. kind = “join”

4. S1=>JC=>S2 =
S1=>S2

5. kind = “final”

ControlNode

1. MergeNode

2. ForkNode

3. JoinNode

4. MergeNode

3.8. Collaboration/Interaction diagrams

Rhapsody Model Element UML 1.3 UML 2.1

IRPCollaboration

1. <RPAssociationRole>*
associations

2. <RPClassifierRole>*
classifier

3. <RPMessage>* message

4. <RPMessagePoint>*
messagePoints

a. From a message

b. From
interactionOccurren
ce

Collaboration

1. <AssociationRole>*
ownedElement

2. Collection<ClassifierRole
>* ownedElement

3. Interaction

<Interaction>*
message

4. Interaction

<Interaction>*
message28

5. N/A

Interaction
<<RhpCollaborationDiagram>> |
<<RhpSequenceDiagram>>29

1. <Connector>

2. <Lifeline> lifeline

3. <Message> message

4. Collection

a. MessageOccurrenceSpecificationq

b. InteractionUse

c. CombinedFragment

5. ExecutionSpecification

28 With a tagged value for keeping track of messages order.
29 It depends of the owner of the Collaboration

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 14/20

c. From
interactionOperator

5. ExecutionOccurrence

IRPMessage

1. IRPAssociationRole
communicationConnection

2. IRPClassifierRole source

3. IRPClassifierRole target

4. String sequenceNumber

5. String timerValue

6. <String>*
actualParameterList

7. String messageType

a. Constructor

b. Destructor

c. Operation | Trigger |
Triggered

• IRPInterfaceI
tem
formalInterfa
ceItem

d. Event

• IRPInterfaceI
tem
formalInterfa
ceItem

e. <Other>

Message

1. AssociationRole
CommunicationConnectio
n

2. Classifier sender

3. Classifier receiver

4. TaggedValue
“SequenceNumber”

5. TaggedValue”TimerValu
e”

6. <Argument>*
actualArgument

7. Action action

a) CreateAction

b) TerminateAction

c) CallAction

• Operati
on
operatio
n

d) SendAction

• Signal
signal

e) UninterpretedAc
tion

Message<<RhpMessage>>

1. Connector connector

2. MessageOccurrenceSpecification
messageEnd

3. MessageOccurrenceSpecification
messageEnd

4. (<<RhpMessage>>)String
SequenceNumber

5. (<<RhpMessage>>)String TimerValue

6. N/A

7. <MessageSort>messageSort

a. MessageSort.CreateMessage

b. MessageSort.DeleteMessage

c. Else : MessageSort.SynchCall

IRPAssociationRole

• <RPRelation>*
formalRelations

• <RPClassifierRole>*
classifierRoles

AssociationRole

• Association base

o <AssociationEnd
Role>*
connection

• N/A

Connector

• Association type

o <ConnectorEnd>* end

• ConnectorEnd end

o End.role

IRPClassifierRole

1. IRPClassifier
formalClassifier

ClassifierRole

1. Classifier base

2. String Name

Lifeline

1. Property Role
 type=formalClassifier

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 15/20

2. String roleType

3. IRPSequenceDiagram
referencedSequenceDiagram

3. N/A

3.9. Components/Deployment Diagrams

Rhapsody Model Element UML 1.3 UML 2.1

Component + Artifact30 IRPComponent

1. additionalSources:String

2. buildType=Executable

3. buildType=Library

4. files:File

5. includePath:String

6. libraries:String

7. nestedComponents:Com
ponent

8. path:String

9. scopeBySelectedElemen
ts:Boolean

10. scopeElements:ModelEl
ement

11. standardHeaders:String

7. ownedClassifiers:Classifiers

1. <<RhpComponentArtifact>>.
additionalSources

2. Applying <<executable>>

3. Applying <<library>>

4. nestedArtifacts:Artifact

5. <<RhpComponentArtifact>>.
includePath

6. <<RhpComponentArtifact>>.
libraries

8. <<RhpComponentArtifact>>.
path

9. <<RhpComponentArtifact>>.
scopeAllElements

10. manifestation:Manifestation

11. <<RhpComponentArtifact>
>.standardHeaders

IRPFile

1. elements :
ModelElement

2. fileFragments :
FileFragment

3. files : File

4. fileType=FileKind

5. path

 <<file>>Artifact

1. manifestation:Manifestation

2. nestedArtifact:Artifact

3. nestedArtifact:Artifact

4. <<RhpFile>>.fileType

5. fileName:String = path+name

30 Some components features are mapped in a nested artefact named “DefaultComponentArtifact” of the UML
Component. It applies a stereotype “RhpComponentArtifact” to distinguish it from other nested files.

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 16/20

IRPFileFragment

1. fragmentElement :
ModelElement

2. fragmentText : String

3. fragmentType : String

4. name

 <<RhpFile>>Artifact (with isFragment=true)

1. manifestation:Manifestation

2. <<RhpFile>>.fragmentText

3. <<RhpFile>>.fragmentType

4. name

IRPComponentInstance

1. componentType :
Component

2. node : Node

 Deployment

1. deployedArtifact(=DefaultComponentArtifact)

2. location : DeploymentTarget

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 17/20

Sequence Diagram

Rhapsody Model Element UML 1.3 UML 2.1

IRPInteractionOccurrence

• referenceSequenceDiagr
am

N/A InteractionUse

• refersTo

IRPExecutionSpecification N/A ExecutionSpecification

IRPInteractionOperator

• <InteractionOperand>*
interactionOperands

• String interactionType

N/A CombinedFragment<<RhpInteractionOperator>
>

• <InteractionOperand>* operand

• (<<RhpInteractionOperator>>)String
interactionType

IRPInteractionOperand N/A InteractionOperand

3.10. Flows and FlowItems

Rhapsody Model Element UML 1.3 UML 2.1

IRPFlow

1. <RPModelElement>*
Conveyed

2. String Direction

3. ModelElement End1

4. ModelElement End2

5. Port End1Port

6. Port End2Port

N/A InformationFlow

1. conveyed

a. If instance of classifier
conveyed = conveyed

b. Else
conveyed =InformationItem
+Dependency<<RhpRepresented>
>31

2. N/A

3. Dependency realization32

4. Dependency realization.33

IRPFlowItem

• <ModelElement>*
represented

N/A InformationFlowItem

• Same transformation than conveyed in
InformationFlow

31 If mapped element is not a classifier, we create a InformationItem with a dependency to this element
32 The relationship between the source and target of the flow in Rhapsody is mapped to a <<RhpFlow>> dependency
between their UML 2.1 counterparts.
33 Source and target depend on the feature direction in IRPFlow

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 18/20

3.11. UseCase Diagram

Rhapsody Model Element UML 1.3 UML 2.1

IRPUseCase

1. <String>* extensionPoints

2. <SequenceDiagram>*
describingDiagrams

UseCase

1. <ExtensionPoints>*
extensionPoint

2. <Dependency<<Realizes>>>34

UseCase

1. <ExtensionPoints>* extensionPoint

2. Collection<
(<<RhpUseCase>>)Interaction
describingDiagrams

3.12. Ports

Rhapsody Model Element UML 1.3 UML 2.1

IRPClass (with ports)

<RPPort>* ports

N/A Class|Interface

<Port>* ownedPort | ownedAttribute35

IRPPort

1. RPClass Contract

2. Bool isBehavioral

3. Bool isReversed

4. <RPClass>*
providedInterfaces

5. <RPClass>*
requiredInterfaces

N/A Port

1. Class <<RhpContract>> type36

2. Boolean isBehavioral

3. (<<RhpPort>>) Boolean isReversed

4. <Interface>* provided37

5. <Interface>* required38

3.13. Instances & Links

Rhapsody Model Element UML 1.3 UML 2.1

IRPInstance

1. RPClassifier otherClass

2. <RPLink>* outLinks

• Relation instantiates

• Instance to

Instance

1. <Classifier>* classifier

2. <Link>* ownedLink

3. <AttributeLink>* slots
AttributeLink.value.Name

InstanceSpecification<<RhpInstance>>

(Part of nesting Classifier)

(<<RhpInstance>>)Property specifiedPart39

1. Classifier classifier

2. <Slot>* slot

34 The suppliers are the collaborations representing the sequence diagrams
35 In UML2.1 an Interface does not have the ownedPort feature, so Ports are contained through ownedAttribute feature
36 The Rhapsody contract is mapped to the type of the port. If the contract is implicit, a new UML class is created to hold it.
37 Provided Interfaces come from the Interfaces implemented by the contract class. For each Rhapsody provided interface, a
UML interfaceRealization relationship is created between the UML Port type and the UML provided interface. The list of
required Interfaces
38 In Rhapsody, there is a <<Usage>> dependency created between the port contract and each of its required interface. This
<<Usage>> dependency is mapped to a Usage relationship in UML and the list of required interfaces in UML 2.0 is derived
from the list of Usage relationships starting from the UML port
39 If the Instance is owned by a Package, it will be a part of its TopLevelClass.

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 19/20

3. <RPAttributeValue>*Attribu
teValues

• Attribute Attribute

• String Value

4. RPOperation instantiatedBy

5. <String>*
ListOfInitializerArguments

6. ObjectAsObjectType

4. Dependency with
“instantiatedBy” tagValue
to constructor

5. <TaggedValue>*
(ArgumentName,Argume
ntValue) defined on the
“instantiatedBy”
dependency

• Property definingFeature

• <InstanceValue>* values

3. <Slot>* slot

• Property definingFeature

• <LiteralString> values

4. N/A

5. N/A

6. Class<<RhpImplicitType>>

IRPBlock Instance

TaggedValue
“isBlock”=”true”

IRPLink

1. RPRelation instantiates

2. RPLink other

3. RPRelation from

4. RPRelation to

5. Port fromPort

6. Port toPort

7. String end1Multiplicity

8. String end1Name

9. end2Multiplicity

10. end2Name

Link

1. Association association

2. N/A

3. <LinkEnd>* connection
(member)

4. <LinkEnd>* connection
(member)

5. N/A

6. N/A

7. LinkEnd multiplicity

8. LinkEnd name

9. LinkEnd multiplicity

10. LinkEnd name

Connector

1. Association type

2. N/A

3. <ConnectorEnd>* end (member)

a. ConnectableElement role

b. Property PartWithPort

4. <ConnectorEnd>* end (member)

a. ConnectableElement role

b. Property PartWithPort40

5. 3.b

6. 4.b

7. a ConnectorEnd is a MultiplicityElement

8. name of end in 3.

9. a ConnectorEnd is a MultiplicityElement

10. name of end in 4.

40 partWithPort references the part (Instance) of a classifier
1. If a connector end is attached to a port of the containing classifier, partWithPort will be empty.
2. If a connector end references both a role and a partWithPort, then the role must be a port that is defined by the type of

the partWithPort.
3. The property held in self.partWithPort must not be a Port.

XMI Toolkit for Rhapsody: Mapping Rules Overview Page 20/20

4. UML 2.1 RESTRICTIONS

There are some known restrictions in the UML2.1 support. They are detailed hereafter

4.1. Export restrictions
The following Rhapsody constructs are not exported

- Structure diagrams
- Deployment diagrams

4.2. Import restrictions
The following Rhapsody constructs are either not imported,or imported with slight adjustments..

Not imported

- Collaboration diagrams
- InteractionUse elements in sequence diagrams

Adjustments
- Blocks are imported as instances

See User Guide for more details about XMI Toolkit limitations.

