

IBM® Rational® Rhapsody® TestConductor Add On

User Guide

Rhapsody®

 IBM
®

 Rational
®

 Rhapsody
®

TestConductor Add On

 User Guide

 Release 2.4.4

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated

into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,

optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,

BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems

AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed

or implied, are made regarding Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM
®
 Rational

®
 Rhapsody

®
, IBM

®
 Rational

®
 Rhapsody

®
 Automatic Test Generation Add On, and

IBM
®
 Rational

®
 Rhapsody

®
 TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of

their respective owners.

© Copyright 2000-2011 BTC Embedded Systems AG. All rights reserved.

Appendix

IBM
®

 Rational
®

Rhapsody
®

 TestConductor Add On

 5

 Contents

Contents ... 5

Document Structure ... 10

Contacting IBM
®
 Rational

®
 Software Support ... 11

Conventions... 12

Introduction .. 13

Rhapsody UML Testing Profile ... 17

Structure Overview ... 17
Adding the Testing Profile automatically ... 18
Adding the Testing Profile manually .. 20

Functional Specification .. 21
UML Testing Profile (UML20TP) Package ... 21

TestArchitecture Package ... 22
TestBehavior Package .. 22

TestConductor (RTC) Package ... 24
TestArchitecture Package ... 25
TestBehavior Package .. 28
TestDocumentation Package .. 30

Automatic Test Generation (ATG) Package ... 31

Using the Testing Profile .. 32

Model-based Unit Test Definition .. 33

Automatic Test Architecture Generation .. 34
Using Classes .. 35
Using Objects .. 38
Using Files (Modules) .. 39
Using Parts .. 39
Updating TestArchitectures .. 40
TestArchitecures for MicroC Models ... 42
TestArchitecures for Code centric Models ... 43
TestConductor.h, TestConductor_C.h and TestConductor_C.c, TestConductor.jar,

TestConductor.ads and TestConductor.adb .. 44
Generate and Build the Test Context .. 45

Test Case Definition .. 46
Test Case Definition with Code .. 46

Define a Code Test Case .. 46
Execute a Code Test Case .. 47
Failure Analysis in CodeTest Cases ... 48
Testing reactive behavior with Code Test Cases .. 49

Test Case Definition with Flow Charts ... 49

Define a Flow Chart Test Case ... 49
Execute a Flow Chart Test Case ... 51
Failure Analysis in Flow Chart Test Cases .. 51
Testing reactive behavior with Flow Chart Test Cases .. 52

TestCase Definition with Statecharts .. 53
Define a Statechart Test Case ... 53
Execute a Statechart Test Case ... 55
Failure Analysis in Statechart Test Cases... 56

Test Case Definition with Sequence Diagrams .. 56
Define a Sequence Diagram Test Case .. 56
Execute a Sequence Diagram Test Case... 59
Failure Analysis in Sequence Diagram Test Cases .. 60
Model Population – Create Driver Operations and Stub Operations (for Rhapsody in

C/C++/Java/Ada) .. 61
Creating test cases with the test case wizard .. 67

Test Execution ... 70

Overview ... 70

Test Configuration .. 70
Test Configuration for assertion based testing.. 70
Test Configuration for animation based testing .. 71
White Box Testing (only animation based testing) ... 72

Build Test Context (White Box) ... 72
Production Code (Black Box) Testing .. 74

Black Box Testing (Assertion based testing mode).. 74
Build Test Context (Black Box for animation based testing mode) ... 74

Test Case Execution .. 76
Code based Execution Dialog ... 76

Test Execution Window ... 76
Test Information ... 77
Controlling test case execution ... 77

Sequence Diagram based Execution Dialog ... 77
Test Execution Window ... 78
Test Information ... 78
Displaying Test Results .. 79

Abort Test Execution .. 81
Execution Timeout .. 81

Execution timeout for animation based testing .. 82
Execution timeout for assertion based testing .. 82

Test Execution Report .. 83
Debugging test cases ... 86

Using breaks and tracer commands during debugging (only animation based testing mode) . 86

Test Context Execution ... 88
Starting Test Execution ... 88
Stopping Test Execution ... 89
Execution Timeout .. 89
Ordering of Test Cases ... 89
Test Execution Report .. 90

Test Package Execution .. 91
Starting Test Execution ... 91
Stopping Execution ... 92
Execution Timeout .. 92
Test Execution Report .. 92

Assertion based testing mode .. 94
Chosing between testing modes .. 94
Test architecture creation .. 94
Test scheduling with <<Scheduler>> test components .. 95
Test arbitration with <<Arbiter>> test components ... 96
Creating test executables with testing configurations ... 97
Executing test cases in assertion based testing ... 104
Performing result verification for test case execution .. 105

Computing Model Coverage during Test Execution ... 106
Computing Model Coverage for single Test Cases (animation based testing mode) 106

Choosing the Coverage Kind for Model Coverage .. 108
Computing cumulative Model Coverage for TestContexts .. 109
Computing cumulative Model Coverage for TestPackages .. 110

Computing Code Coverage (only assertion based testing mode) .. 111

Computing Code Coverage, Memory Profiling, and Performance Profiling with Rational

TestRealTime during Test Execution .. 113
Applying Rational TestRealTime during Test Execution ... 114
Applying TestRealTime on single Test Cases .. 116
Applying TestRealTime on TestContexts ... 118

Integration with CUnit/CppUnit Framework .. 120
Stereotypes for CUnit integration ... 120
Stereotypes for CppUnit integration ... 122
Test Definition for CUnit/CppUnit ... 124

Using Statechart Test Cases with CppUnit... 124

Command Line Execution ... 125
Command Line Syntax ... 125
Test Execution Report .. 127

Test Case Execution on Targets .. 127

Driving Operations Calls ... 127
Driving Operation Calls (for Rhapsody in C/C++/Java/Ada) ... 127

Test Management ... 129

Managing Test Data .. 129
Linking Test Case to Requirements .. 129

TestConductor Dialog ... 131

TestConductor Settings ... 132
Sequence Diagram Properties (only animation based testing mode) .. 133
General Properties .. 134
Test Context Properties ... 138
Test Case Properties (only animation based testing mode) .. 139

Generating Test Reports with Rhapsody ReporterPLUS .. 143
Executing the Test Report.. 144
Using the HTML Test Report ... 147
Using the Test Requirement Coverage Report ... 148
Customizing the Test Report .. 150

Using the TestConductor API ... 150
Available TestConductor API Commands.. 151
Defining Callbacks for TestConductor functions ... 152

Advanced Test Definition .. 154

Specifying Requirements with Sequence Diagrams ... 154
Graphical Feature Support .. 154

Synchronous and Asynchronous Messages .. 154
Linear and Partial Order (only animation based testing mode) .. 155

Parameters ... 157
Defining Parameters ... 158
Parameter Mapping .. 160

Using Time Interval for Delay Driving from Environment and TestComponents 161
Activation Conditions (only animation based testing mode) .. 162

Defining an Activation Condition .. 163
Condition Marks (only animation based testing mode) .. 164
Preconditions (for SysML/Harmony) ... 165
Use Cases of Activation Conditions ... 166

Specifying Return Values and Output Values .. 169
Ignoring Unrealized Messages .. 172
Reference Sequence Diagram ... 173
Life Line and Part Decomposition .. 176

Advanced Sequence Diagram Test Definition .. 181
Defining a Sequence Diagram Test .. 182

Creating a Sequence Diagram Test Case .. 182
Adding a New Sequence Diagram Instance ... 183
Mapping Parameters ... 185
Tolerances .. 186
Exiting the Define Test Dialog Box ... 192

Use Cases of Sequence Diagram Test Cases .. 193
Simple Monitor ... 193
Automatic Driver .. 195
Ordered SD Instances ... 197
Driver-Assisted Monitor ... 199
Choosing Between Alternatives in a Cycle .. 202

User Defined Driving Operation Calls (for Rhapsody in C/C++/Java/Ada) 205
RTC_DriverInitCode and RTC_DriverInitCodeAdditional ... 207
RTC_DriverCallCode and RTC_DriverCallCodeAdditional ... 207
Clean TestComponent .. 208
Clean TestPackage ... 209
Deleting User Defined Driver Operation Calls .. 209

User Defined Stub Operation Calls (for Rhapsody in C/C++/Java/Ada) 210
RTC_StubBodyCode .. 211
Clean TestComponent .. 212
Clean TestPackage ... 212
Deleting User Defined Stub Operation Calls ... 213

Using Test Actions in SD Test Cases ... 213
Using Interaction operators in sequence diagram test cases (only assertion based testing mode)

 .. 215

Black-Box Testing of External Files and Libraries ... 215
Test Packages ... 217

Using Serialize/Unserialize Functions for User Defined Types ... 220
Using auto generated serialization /unserialization functions ... 220
Using manually defined serialization /unserialization functions .. 220

Failure Analysis .. 223

Failure Reporting .. 224
Event sending out-of-order ... 225
Event sending in-order, but parameter values do not match ... 226
Event sending in-order, but parameter values not in range .. 228

Event consumption out-of-order ... 229
Event consumption in-order, but parameter values do not match ... 230
Event consumption in-order, but parameter values not in range .. 231
Operation call out-of-order ... 232
Operation call in-order, but parameter values do not match ... 234
Operation call in-order, but parameter values not in range .. 235
Operation call returned - Return value does not match .. 236
Operation call returned - Out Parameter values do not match .. 237
Operation call returned - Out Parameter values not in range .. 238
DataFlow Message - Value does not match .. 238
DataFlow Message - Value not in range ... 239
DataFlow Message out of order .. 239
Assertion failed ... 240

Using TestConductor from Eclipse ... 241

Using TestConductor from Rational Quality Manager .. 243

Automatic Test Case Generation .. 244

Appendix ... 246

TestConductor Assert Macros (C/C++), TestConductor assert methods (Java), TestConductor assert

functions (Ada).. 246
Using IntelliVisor for TestConductor Assert Macros ... 249

Syntax for Activation Conditions / Condition Marks ... 251

TestConductor Messages .. 253
Errors/Warnings regarding messages in Sequence Diagrams... 253
Errors Regarding Complete Sequence Diagrams and Test (test will not be executed) 253

Restrictions .. 255
Limitations of design elements (sequence diagrams) ... 255
Functional Limitations .. 256

 Document Structure

This user guide is organized as follows:

 Chapter 1, Introduction, provides an introduction to IBM
®
 Rational

®
 Rhapsody

®

TestConductor Add On through a high-level overview of the main features.

 Chapter 2, Rhapsody UML Testing Profile, describes the defined stereotypes

and new terms which can be used for the definition and management of tests.

 Chapter 3, Model-based Unit Test Definition, explains how to create Test

Architectures and how to define test cases with sequence diagrams, statecharts,

flow charts, or pure code.

 Chapter 4, Test Execution, explains how to build and execute a test

configuration.

 Chapter 5, Test Management, guides you through the process of creating and

editing the entire test suite.

 Chapter 6, Upgrading old TestConductor Test Cases, describes the process of

upgrading of existing test definitions from older TestConductor versions.

 Chapter 7, Advanced Test Definition, describes the powerful features of

sequence diagram test case definition like ordering, parameter mapping, activation

conditions, etc.

 Chapter 8, Failure Analysis, explains how to analyze the source of a possible

failure (after you have made design extensions and modifications).

 Chapter 9, Automatic Test Generation, explains the new features of Rhapsody

Automatic Test Generation (ATG) and the integration of test cases into the model.

 Contacting IBM
®
 Rational

®
 Software Support

IBM Rational Software Support provides you with technical assistance. The IBM Rational

Software Support Home page for Rational products can be found at

http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support,

read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational

Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in

your country (where available). For specific country phone numbers, go to

http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information

that you will need to describe your problem. When describing a problem to an IBM

software support specialist, be as specific as possible and include all relevant background

information so that the specialist can help you solve the problem efficiently. To save time,

know the answers to these questions:

What software versions were you running when the problem occurred?

Do you have logs, traces, or messages that are related to the problem?

Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www.ibm.com/planetwide

 Conventions
The following table lists the conventions used in the Rhapsody documentation.

Style Description

command1 >

command2

The greater-than (>) symbol leads you through the steps in a

menu or key sequence. For example, Add New > Package

means that you should first select Add New, then select

Package from the Add New submenu.

Bold type Bold type indicates items that you should select, such as

buttons or checkboxes in dialog boxes.

For example:

Click Apply

Italic type Italic type is used for emphasis, titles of referenced documents

and new terms.

Courier type Courier type is used for file names and directory paths,

user input, and code-related items such as instance names and

properties.

<filename> Angle brackets surround variable names that you should

replace with actual names. For example, you should replace

<filename> with the actual name of a file.

 Introduction

Welcome to the User Guide for IBM
®
 Rational

®
 Rhapsody

®
 TestConductor Add On.

TestConductor is part of the Rhapsody Testing Environment which is based on three main

components: ―Automatic Test Architecture Generation‖, ―Automatic Test Case

Execution‖ and ―Automatic Test Case Generation‖. These three components are

developed along the UML Testing Profile as implemented in Rhapsody.

TestConductor supports the two main features ―Automatic Test Architecture Generation‖

and ―Automatic Test Case Execution‖ of the Rhapsody Testing Environment. The optional

IBM
®

Rational
®

Rhapsody
®
 Automatic Test Generation Add On (ATG) supports the

feature ―Automatic Test Case Generation‖.

In the Rhapsody Testing Environment the implementation of test cases can be chosen out

of:

 Sequence diagrams

 Statecharts (only Rhapsody in C/C++/Java/Ada)

 Flow charts (only Rhapsody in C/C++)

 Pure code (only Rhapsody in C/C++/Java/Ada)

The Rhapsody Testing Environment provides the ability to test a design against its

requirements. Advantages of using sequence diagrams as test cases are:

 Graphical definition

 Monitors/drivers

 Parameterized sequence diagrams

 Color-coded failure sequence diagrams

TestConductor is a model based testing environment used to debug and test object-

oriented embedded software designed in Rhapsody. TestConductor supports unit testing as

well as software integration testing based on graphical test definitions using sequence

diagrams. In Rhapsody in C++,Rhapsody in C, Rhapsody in Java, and Rhapsody in Ada

test cases can be defined also by statecharts, flow charts (only C/C++), or pure code.

Using sequence diagram related test cases, TestConductor supports an advanced graphical

failure analysis. These features make it easy to define and execute extensive test suites, as

well as to create complex tests drivers and test monitors. TestConductor supports

Rhapsody in C++, Rhapsody in C, Rhapsody in Java and Rhapsody in Ada. Limitations

regarding the different languages can be found in the chapter Restrictions.

Rhapsody UML Testing Profile

The Rhapsody UML Testing Profile contains new terms and stereotypes that can be used

to model test artifacts in Rhapsody. It is based on the official UML Testing Profile.

However, several elements defined in the UML Testing Profile are currently not part of

the Rhapsody Testing Profile, while the Rhapsody Testing Profile contains additional

elements that are not part of the UML Testing Profile. These additional elements are used

for test activities that are not addressed by the UML Testing Profile, for instance stubbing.

Automatic Test Architecture Generation

The automatic test architecture generation - first supporting layer of the Rhapsody

Testing Environment and part of TestConductor – automates the complex task of creating

the test environment for e.g. arbitrary classes of the UML design.

From the Rhapsody project the user easily initiates the automatic generation of a test

architecture including:

 Creation of a new test package

 Creation of a new test context including

1. System under test (―SUT‖)

2. Test components

3. Links between SUT and test components

Test Case Definition

A test case represents the smallest element that can be defined and executed by

TestConductor. A test case describes a sequence of input stimuli and expected behavior, in

order to verify a certain functional behavior of a system under test. Test cases can define

both, black box and white box behavior.

TestConductor supports several ways to define test cases:

 Sequence diagrams

 Statecharts (only Rhapsody in C/C++/Java)

 Flow charts (only Rhapsody in C/C++)

 Pure code (only Rhapsody in C/C++)

With the optional add-on Rhapsody® Automatic Test Generation (ATG™) for Rhapsody

in C++ test cases can be generated automatically.

Test Case Execution

TestConductor is a test case execution engine and represents the second stage of the

Rhapsody Testing Environment. It enhances the testing capabilities by not only executing

the automatically generated test architecture, but it also offers a test execution analysis

with respect to the expected results. If the test case e.g. is implemented by a sequence

diagram the expected behavior is expressed by

 The ordering of defined messages

 Parameter values of messages

 Messages from SUT to testing components

 Specified return values on operation calls

Using TestConductor

This manual assumes that Rhapsody and TestConductor are already installed on your

system, and that you have a valid license. If you need assistance with installation or

licensing, contact customer support.

To execute tests, TestConductor relies on the compiled and linked model code of the test

architecture. Therefore, the project with the system under test must be in a state such that

you can compile and run the test architecture, just as you must do to use the interactive

simulation capabilities of Rhapsody. If you are using TestConductor with testing mode

―AnimationBased‖ (property TestConductor.Settings.TestingMode), you must compile the

code of at least the test components with animation instrumentation.

Note: For Rhapsody in Ada, make sure that you rebuild Rhapsody‘s framework before

using TestConductor. To rebuild the framework, select ―Build framework‖ from

Rhapsody‘s code menu (after opening an Ada model). You only have to rebuild

the framework once.

Note: If you are using TestConductor with testing mode ―AnimationBased‖ (property

TestConductor.Settings.TestingMode), make sure that you have compiled and

linked an executable component with animation instrumentation.

Note: If you are using TestConductor with testing mode ―AnimationBased‖ (property

TestConductor.Settings.TestingMode), make sure that the properties

CG::Operation::Animate, CG::Operation::AnimateArguments,

CG::Event::Animate, and CG::Event::AnimateArguments of those

messages used for test execution based on sequence diagrams are switched on.

Otherwise they are not animated and cannot be tested with TestConductor. Ensure

this for the properties of these relevant messages, and also for their parent class

and package properties.

This guide uses sequence diagrams that are included (or have to be additionally created) in

the CashRegister sample. The chapter Advanced Test Definition uses sequence diagrams

from the PBX sample. Both samples do not provide step-by-step information.

 Rhapsody
UML Testing Profile

The Rhapsody UML Testing Profile is based on the official UML Testing Profile. It

contains new terms and stereotypes that can be utilized for model testing artifacts in

Rhapsody. A couple of elements defined in the UML Testing Profile are presently not part

of the Rhapsody Testing Profile. However, the Rhapsody Testing Profile includes

supplementary elements that are not part of the UML Testing Profile. Stubbing, for

example, is one of these additional elements that are used for test activities not addressed

by the UML Testing Profile.

For further information on the Rhapsody UML Testing Profile please refer to the

TestConductor Tutorial, where depict examples on the Rhapsody Testing Profile are

provided. Hence, it is recommended to utilize the TestConductor Tutorial for training

purposes prior to going into further detail in this document.

 Structure Overview
The Rhapsody Testing Profile is prearranged in three major packages with additional sub-

packages and the TestingProfile stereotype.

 Rhapsody UML Testing Profile (UML20TP)

1. TestArchitecture

2. TestBehavior

 Rhapsody TestConductor (RTC)

1. TestArchitecture

2. TestBehavior

 Automatic Test Generation (ATG)

 Adding the Testing Profile automatically

The first usage of any TestConductor functionality automatically adds the Rhapsody

Testing Profile to a model. For example this can be done by choosing the Rhapsody menu

entry Tools > TestConductor.

In case the model does not yet contain the actual Rhapsody Testing Profile, TestConductor

can add the missing Rhapsody Testing Profile automatically.

Select Yes to add the Rhapsody Testing Profile to the model. Select No to abort this

process.

In case the Rhapsody Testing Profile is unloaded, TestConductor ask to load it.

Select Yes to load the Rhapsody Testing Profile to the model. Select No to abort this

process.

In case a loaded profile already uses the name ―TestingProfile‖ Rhapsody TestConductor

advises the user.

Select OK. After removing the existing profile with name TestingProfile from the model

redo the action to start Rhapsody TestConductor.

Once the Rhapsody Testing Profile has been loaded into a Rhapsody project by starting

TestConductor the Rhapsody browser window will contain the above stated testing profile

packages and its individual sub-packages as shown in the following picture.

 Adding the Testing Profile manually

It is also possible to add the testing profile manually to a model:

 Open your project in Rhapsody

 Select the menu item File > Add to Model…

 Select the following Data Type: ‗Package (*.sbs)‘

 Tick the radio button As Reference

 Select in Rhapsody installation folder:

‗...\Share\Profiles\TestingProfile\TestingProfile_rpy\Te

stingProfile.sbs‘

 Press Open to install the Rhapsody Testing Profile

 Functional Specification
The functional specification of the Rhapsody Testing Profile shall be explained by means

of its structure stated in the previous chapter Structural Overview.

 UML Testing Profile (UML20TP) Package

The UML20TP package contains stereotypes and new terms derived from the official

UML Testing Profile. It consists of two major packages:

 TestArchitecture and

 TestBehavior

 as shown in below picture.

 TestArchitecture Package

The TestArchitecture package consists of the stereotypes

 SUT

 TestComponent

 TestConfiguration

 TestContext

The system under test (SUT) is the component being tested. A SUT can consist of several

objects. The SUT is exercised via its public interface operations and events by the test

components, the test context or the system environment (ENV).

A test component (TestComponent) is a class of a test system. The test component objects

(TestComponentInstances) realizes partially the behavior of a test case. An instance of a

test component may have a set of interfaces which are used to communicate via

connections with other test component instances or with SUT objects. It also may have

primitive operations, so called driver operations (DriverOperations) that can drive SUT

operations or call events of the SUT and so called stub operations (StubOperations) which

are able to generate necessary ―stub‖ return values.

The test configuration (TestConfiguration) is a dependency to a code generation

configuration. Depending on this configuration the code for the complete test context

including its test cases can be generated, built and executed.

A test context (TestContext) describes the context in which test cases are executed. A test

context is responsible for defining the structure of the test system, i.e., which test

component objects and which SUT objects exists and how they are interconnected. The

test component instances and SUT objects are normally parts of a test context. Since test

cases are operations of a test context, a test case can access both the test component

instances and also the SUT objects.

 TestBehavior Package

The TestBehavior package contains two stereotypes named

 TestCase

 TestObjective

A test case (TestCase) is a specification of one case to test the system under test including

what to test. It defines the input stimuli and the expected results to be observed. It

implements a test objective. A test case is an operation of a test context (described above).

A test objective (TestObjective) is a named element describing what should be tested. It is

associated to a test case.

 TestConductor (RTC) Package

The RTC package consists of three major packages: TestArchitecture, TestBehavior and

TestDocumentation as shown in below picture.

 TestArchitecture Package

The TestArchitecture package contains the stereotypes:

 Subpackage CppUnit

 CppUnitConfig

 CppUnitContext

 Subpackage Cunit

 CUnitConfig

 CUniContext

 Subpackage Diagrams

 TestContextDiagram

 Subpackage TestRT

 TestRealTime

 TestRealTimeFile

 TestRealTimeResult

 Arbiter

 ArbiterInstance

 ControlArbiter

 instantiated

 NoConsoleApp

 ParameterTable

 replacement

 scheduled

 Scheduler

 SCTCInstance

 stubbed

 TestActor

 TestComponentInstance

 TestingConfiguration

 TestPackage

 TestParameter

 use_ParameterTable

 use_replacement

Subpackages CppUnit and CUnit contain stereotypes for the integration of CppUnit and

CUnit testing with Rhapsody.

Stereotype CppUnitContext can be applied to a class and sets some properties for CppUnit

testing integration. You can change a test context to CppUnitContext – and vice versa - by

right-clicking a test context and secting ―Change to > CppUnitContext‖.

Stereotype CppUnitConfig can be applied to a configuration and provides a set of tags for

customization of the CppUnit testing integration with Rhapsody.

Stereotype CUnitContext can be applied to a class and sets some properties for CUnit

testing integration. You can change a test context to CUnitContext – and vice versa - by

right-clicking a test context and secting ―Change to > CUnitContext‖.

Stereotype CUnitConfig can be applied to a configuration and provides a set of tags for

customization of the CUnit testing integration with Rhapsody.

Subpackage diagrams: A test context diagram (TestContextDiagram) is a structure

diagram that contains the SUT instances, the test component instances and their

interconnections. It is used to define the structure of the test context graphically.

The test context diagram is being generated during the test architecture generation inside

the test context. It is a structure diagram stereotyped with TestContextDiagram.

Subpackage TestRT contains stereotypes used for the integration of IBM Rational Test

RealTime. (for details see section Computing Code Coverage, Memory Profiling, and

Performance Profiling with Rational TestRealTime during Test Execution on page 113

pp.)

Stereotype TestRealTime can be applied on configurations and provides a set of tags that

can be used to control the kind of instrumentation that shall be performed on that

configuration when using the tool ―Rational TestRealTime‖ together with TestConductor.

See also section Rational TestRealTime.

Stereotype TestRealTimeFile is used to denote TestRealTime data files that are added to

the model by TestConductor. This data files are needed in order to have all TestRealTime

results maintained as part of the model.

Stereotype TestRealTimeResult denotes the result data that is added by TestConductor to

the model after a TestCase execution or a TestContext execution of a configuration that

with stereotype TestRealTime.

The TestRT package contains the types:

 RTRT_CoverageBlockDefinition_Type

 RTRT_CoverageCondition_Type

 RTRT_CoverageProc_Type

 RTRT_Target_Type

These four types are used for the integration between TestConductor and TestRealTime.

Users do not have to care about the precise definition of these types.

Stereotype instantiated is used to label associations that are always instantiated with a

valid link during runtime. TestConductor interprets associations labelled with this

stereotype like links.

Stereotype Arbiter is used by TestConductor for auto generated test components that

control the execution of a SD test case.

Stereotype ArbiterInstance is used by TestConductor for test component instances that are

instances of Arbiter test components.

Stereotype ControlArbiter is used by TestConductor to mark a dependency from a SD test

case to a Arbiter test component that controls the SD test case.

Stereotype instantiated is used to label associations that are always instantiated with a

valid link during runtime. TestConductor interprets associations labelled with this

stereotype like links.

Stereotype NoConsoleApp can be applied to configurations in order to suppress opening a

console when running the application.

Stereotype ParameterTable is used to mark a controlled file as a parameter table definition

that contains values for all external test parameters of a test context.

Stereotype replacement is used to mark a dependency from a test component to the

original class that is replaced by the test component in the test architecture.

Stereotype scheduled is used to mark a dependency from a test context to a Scheduler test

component that controls the starting and stopping of test cases of the test context.

Stereotype Scheduler is used to mark an auto generated test component that is used to

control the activation and termination of test cases.

Stereotype SCTCInstance is used to mark a test component instance to be an instance of a

statechart test case test component.

Stereotype stubbed is used to mark an operation of a test component to be stubbed, i.e.,

that the behavior o fthe operation has been changed for testing purposes.

New term TestActor is used for test components that have the role of an actor in the test

architecture. Test actors replace actors for testing purposes.

New term TestComponentInstance is used to specify instances of test components.

Stereotype TestingConfiguration is used to mark a configuration that is used for testing

purposes. The stereotype TestingConfiguration provides several tags that can be used in

order to define specific settings for the generated testing code.

New term TestPackage represents a package that contains testing related model elements,

e.g. other test packages, test contexts or test cases. It allows grouping of multiple test

related elements into one package, and it can be used to separate testing related elements

from design related elements.

Stereotype TestParameter is used to mark an attribute of a test context to be a parameter

that can be controlled by a testing configuration by using a parameter table.

Stereotype use_ParameterTable is used to mark a dependency from a testing

configuration to a parameter tanle in order to specify that the testing configuration shall

apply the linked parameter table for the test parameters of the test context for which the

testing configuration generates code for.

Stereotype use_replacement is used to mark a dependency from a test component instance

to a test component that is a replacement of a design class for testing purposes.

 TestBehavior Package

The TestBehavior package is composed of a number of stereotypes like:

 CoverageResult

 DefaultOperation

 DriverOperation

 RTC_InstInfo

 RTC_MsgInfo

 RTC_RefInfo

 SDInstance

 StatechartTestCase

 StubbedOperation

 StubOperation

 TestAction

 TestResult

 TestScenario

 Unrealized

A CoverageResult is a document that reports which model elements are covered by one or

more TestCases.

A default operation (DefaultOperation) defines the default behavior of an operation of a

test component. A test case in which the behavior of this operation is not explicitly

specified uses this default behavior in the current test case execution.

A driver operation (DriverOperation) is an operation of a test component which is able to

inject input stimuli to the SUT objects. It is generated automatically by TestConductor for

the test component class that calls a message of a SUT object defined in a sequence

diagram. During execution of the test case, TestConductor calls the driver operation, and

as a result the test component stimulates the SUT as it is described in the used sequence

diagram.

The stereotype RTC_InstInfo contains two tags RTC_IgnoreSCBehavior and

RTC_Monitor. When adding this stereotype to an instance line of a test scenario, the user

can set these tags. TestConductor uses these tags when executing the test. If the tag

RTC_IgnoreSCBehavior is set, TestConductor ignores the normal state chart behavior of

the tagged instance. If the tag RTC_Monitor is set, TestConductor just monitors all

messages starting from the tagged instance.

The stereotype RTC_MsgInfo contains tags RTC_Monitor, RTC_Receiver, etc. When

adding this stereotype to a message in a test scenario, the user can set these tags. If the tag

RTC_Monitor is set, the tagged message is just monitored by TestConductor. If the tag

RTC_Receiver is set, the tagged value is used as the real receiver instance of the tagged

message. If the tag RTC_DriverCallCode is set, TestConductor generates the string

contained in this tag instead of the standard call code TestConductor generates for driver

operations. If the tag RTC_InitCode is set, TestConductor generates the string contained in

this tag instead of the standard init code TestConductor generates for driver operations. If

the tag RTC_MsgId is set, the specified string is used to reference the message in macros

RTC_ASSERT_SD_NAME. If the tag RTC_StubBodyCode is used, TestConductor

generates the string contained in this tag instead of the standard stub code TestConductor

generates for stub operations. For further information please read the chapter User Defined

Driving Operation Calls (for Rhapsody in C/C++/Java/Ada) at page 205.

The stereotype RTC_RefInfo is used internally for unique identification of messages in

sequence diagrams which are referenced by other sequence diagrams.

A sequence diagram instance (SDInstance) represents one instance of a test scenario.

When using a sequence diagram for testing purposes, several parameters must be defined

that influence the behavior of a test case. A combination of a sequence diagram with such

a set of parameters forms a sequence diagram instance.

Stereotype StatechartTestCase is used to stereotype the dependency of a statechart test

case on the test component owning the statechart defining the test.

A stubbed operation (StubbedOperation) is an operation for which at least one test case

specifies a behavior that is different from the default behavior. The different behavior is

stored in a stub-operation. The stubbed operation decides at runtime depending on the

executed test case if either the default behavior should be executed or a specific stub-

operation.

A stub operation (StubOperation) is a replacement of an operation of a test component

class. It realizes the code for an operation call return value specified in the referenced

sequence diagram. The code of the stub operation is generated automatically by

TestConductor.

A test action (TestAction) is an action block that can be placed on life lines in

TestScenarios. There are different kinds of test actions: <InitAction>, <PreCallAction>,

<CallAction>, <PostCallAction>, <StubAction>. Inside these actions, one can place e.g.

assertions to perform complex checks on output values (return or out arguments), or one

can write code that initializes complex input data.

A test result (TestResult) represents an outcome of an execution of a test case. It is a

textual report that contains detailed information about the test case execution, e.g. if the

test case has passed or failed.

The stereotype TestScenario (test scenario) contains two tags RTC_ActivationCondition

and RTC_SDParameters. When adding this stereotype to a test scenario, the user can set

these tags. With the tag RTC_ActivationCondition the user can specify the activation

condition of the sequence diagram. With the tag RTC_SDParameters the user can set the

parameters of the sequence diagram.

Messages with stereotype Unrealized are filtered out and ignored during test execution.

See also section Ignoring Unrealized Messages.

 TestDocumentation Package

The TestDocumentation package contains a Matrix-Layout TestRequirementCoverage and

a Table-Layout TestResultTable in order to present test information in matrix and table

notation.

The layouts are used to define two stereotypes:

 TestRequirementMatrix

 TestResultTable

A TestRequirementMatrix shows in an array view if and how requirements are tested by

test cases. The left hand side of the array shows all existing test cases. The upper side

shows all the requirements. The cells contain an entry if a TestObjective from the test case

to the requirement exists in the model, for instance from test case Code_tc_0 to

requirement REQ1.

A TestResultTable shows in a table form the existing test cases and their current result

values. The left column of the table shows all existing test cases. The right column shows

the current test case results, for instance verdict Passed for test case Code_tc_0.

 Automatic Test Generation (ATG) Package

The ATG package consists of several stereotypes which are enhancements to the UML

Testing Profile. Using these stereotypes in the model means that the optional add-on

Rhapsody Automatic Test Generation (ATG) is able to interpret defined input/output

interface information and constraints for setting of a test generation configuration.

Mainly two constrained stereotypes are: argRangeConstraint and argValueConstraint.

argRangeConstraint can be used to define value range constraints. argValueConstraint can

be utilized to define single value constraints of enumerations constraints. These constraints

can be used on operation or event arguments.

Made available are also the interface stereotypes providedInterace and requiredInterface.

Those stereotypes help to remove from the ATG view those classes which are not used as

interface classes.

Furthermore, the ATG package contains a number of type constraint stereotypes that can

be used to define range or value constraints on type definitions. Exemplarily a cutting of

the ATG package is displayed in following figure.

For more information about the ATG package and its stereotypes please refer also the

Rhapsody Automatic Test Generation (ATG) User Guide.

 Using the Testing Profile
The Rhapsody Testing Profile is automatically utilized by Rhapsody TestConductor. The

functionalities of the toolset are explained in the subsequent chapters of this user guide.

 Model-based
Unit Test Definition

The term unit test is often used within the software development, but interpreted quite

different. Unit tests are performed on differently large software units like simple functions,

simple classes up to complex function libraries. However, the goal of each unit test is in

most cases the same. On the one hand the unit is tested for its functional behavior. On the

other hand often additionally structural analyses are accomplished, in order to find

uncovered (dead) code.

In order to prepare, execute, and assess a unit test several steps are usually performed:

1. A test architecture (or test harness or test frame) must be constructed

2. Test cases must be defined and implemented

3. Test cases must be executed on the host machine

4. Test cases must be executed on the target machine

Each of the four mentioned steps is usually time consuming and difficult to perform.

TestConductor makes the preparation, execution, and the assessment of tests much easier

by lifting the test process up to the level of UML models, and by offering a high degree of

automation for the steps listed above.

TestConductor supports unit testing on model-level by following the UML Testing

Profile. Therefore TestConductor automates the time consuming and complex task of test

environment creation. The automatic test architecture generation can be used for:

 Simple classes (In SysML: Activities, blocks, Viewpoint)

 Simple classes with inheritance

 Composite classes

 Composite classes with inheritance

 Objects (In SysML: Parts)

 Files (Modules)

The other complex task of unit testing is the definition of test case or test scenarios,

typically done by writing test code in the same language than the unit to be tested. Model-

based unit testing with TestConductor combines the advantage of graphical test case

definition via sequence diagrams or flow charts with the familiar pure code based test

cases. Using the optional add-on Rhapsody Automatic Test Generation (ATG), you have

also the possibility to perform automatic test case generation.

The next chapters use the CashRegister model known from the Rhapsody “Essential”

Tool Training. The unit test will be done on the CashRegister class.

 Automatic Test Architecture Generation
Testing units of a Rhapsody model using the Rhapsody Testing Profile requires certain

steps to be repeatedly performed. Therefore TestConductor provides a powerful feature

that creates the complete test architecture automatically. Automatic test architecture

generation means:

 Creation of a new test package

 Creation of a new test context

 Instantiation of the selected SUT class as part of the test context

 Creation of test components

 Instantiation and 'wiring' of test component instances as parts of the test context

 Creation of an adequate code generation configuration

 Adding a test configuration (dependency-relation) to the test context referring to

the created code generation configuration

 Creation and drawing of a test context diagram

TestArchitecture generation can be customized using property

TestConductor::Settings::CreateTestArchitectureMode (cf TestConductor

settings ―General Properties‖, page 134).

If CreateTestArchitectureMode is set to ‗Standard‘, then project properties are used in the

generated code generation configuration while ‗Advanced‘ opens a dialog that allows

selection of an existing configuration from which all overridden properties. settings, and

scope settings will be inherited

 Using Classes

For the next steps do the following:

 Open the CashRegister Model from the

‗\Samples\CppSamples\TestConductor‘ folder.

 Browse to the object model diagram folder in the package CashRegisterPkg

 Open the object model diagram ProductDatabase Overview

The creation of a test architecture for the class CashRegister can take place on two

different ways:

 Right-click on the CashRegister class in the Rhapsody browser and select

Create TestArchitecture

 Right-click on the CashRegister class in the object model diagram and select

Create TestArchitecture

TestConductor automatically creates the complete necessary test architecture which

consists of:

 A new test context diagram with the test context TCon_CashRegister

containing the CashRegister object itsCashRegister itself as SUT and all

necessary test component instances which are derived from the SUT associations

and ports.

 A new test package TPkg_CashRegister which contains all generated test

components, the test context TCon_CashRegister with the SUT

itsCashRegister, the test context diagram and the test component instances

 Using Objects

Creating a test architecture on objects is a similar workflow as shown for classes, but in

order to create a test architecture for testing an object, the object can not be directly

instantiated as part of a test context. If an object is instantiated as part of a test context, the

object is moved into another scope and thus be modified. Hence, in order to test provide

test support for the object without modification of the original design, the test contexts just

references the object from the design using directed associations and directed links.

In order to do integration testing on an object, the created test context gets a directed

association to the selected object, which does not modify the object.

The structure diagram defining the structure of a test context is not capable of defining a

link instantiating this association, since this link could only be initiated from without the

test context. In order to be able to later rely on the initialization of the association, the test

context is instrumented with an additional constructor/initializer initializing the

association with the address of the global variable representing the object. Furthermore,

the creation of the constructor/initializer has to take into account the multiplicity of the

object. The implementation of the constructor/initializer is currently limited to Rhapsody

in C/C++. The association is stereotyped with the testing profile stereotype

<<instantiated>>.

The test architecture for objects will not care about ports of the object, since the mapping

of these ports to ports of other objects may already be defined in the design. The only way

to stimulate an object in a system test architecture is to use the association from the test

context to the object.

Rhapsody offers an alternative to create a test architecture on a selected object. The user

can expose the class of the selected object. For Rhapsody in C++ this alternative will set

the user into the position of applying unit tests to the underlying class of the object under

test. For Rhapsody in C, in general, exposing an object’s class might not be the best

choice, because exposing an object's class massively affects the code representation of

the object's functions.

Note: For Rhapsody in Ada, the user has to set the <<instantiated>> association

manually. This is due to the fact, that global objects are instantiated after

instantiation of the initial instances specified in the Initialization tab of the code

generation configuration's feature dialog. In order to set the associaton manually,

the initialization code entry of the Initailization tab of the code generation

configuration's feature dialog is used, e.g.:
Tpkg_object_0.TCon_object_0.set_itsObject_0(
 p_TCon_object_0.all,
 Default.RiA_Instances.object_0);
if object_0 is an object of object_0_Class.

 Using Files (Modules)

Creating a test architecture on files(to be more precise: modules) is a similar workflow as

shown for objects. Support of modules is useful mostly for Rhapsody in C, since

Rhapsody in C++ only allows external files within the scope of a CG component. Since

modules provide global declarations and definitions, test support for modules is realized

by a test context referring the module using a <<Usage>> dependency.

The declaration of external (source and library) files and testing with TestConductor is

discussed in the chapter Black-Box Testing of External Files and Libraries at page 213.

 Using Parts

Only global (i.e. top-level) objects may be tested. There will be no support for testing parts

of composite classes.

 Updating TestArchitectures

For existing TestArchitectures, TestConductor provides the possibility to automatically

update a TestArchitecture after changes have been made on the SUT class. For instance,

consider the situation depicted in the following example:

There is a class A that contains a P1 with a required Interface I1 and a provided Interface

I2. The interface I1 specifies one operation f() that takes no arguments and has no return

type, and interface I2 specifies an operation g() also without arguments and return type.

When selecting class A as the SUT, TestConductor creates the following TestArchitecture

for it:

In the generated TestArchitecture, one TestComponent is created containg an appropriate

port P1 such that the instance of the TestComponent can be linked to the Port P1 of the

SUT instance itsA. Now suppose you do some changes on the SUT class A. For instance,

we can add an additional Port P2 with a required Interface I2 to A, and we add a new

operation h to the Interface I1:

Because of these design changes, the previously generated TestArchitecture is not

complete any more, In order to get again a complete TestArchitecture TestConductor

provides the capability to update an existing TestArchitecture. To do this, select the

TestContext that should be updated and select ―Update TestArchitecture‖:

After applying ―Update TestArchitecture‖, you get the following updated

TestArchitecture:

To update the TestArchitecture accordingly, TestConductor did the following

modifications to the existing TestArchitecture:

1. A second TestComponent is created that is connected to the new Port P2 of the SUT

instance.

2. Since an additional operation was specified for Interface I2, an additional operation h

is added to the TestComponent connected to port P1.

After these modifications have been made by TestConductor, the TestArchitecture is

complete again.

 TestArchitecures for MicroC Models

TestConductor supports testing of MicroC models with a specifically taylored

TestArchitecture generation.

Per default TestConductor restricts code generation component for the generated

TestArchitecture such that all design packages but only the TestPackage containing the

architecture belong to its scope. Setting property

TestConductor::Settings::CreateTestArchitectureMode to ‗Advanced‘ allows inheritance

of overridden properties from an already existing configuration

Since code generation for MicroC does not regard initialization settings of the

configuration, i.e. no initial instance selection, TestConductor explicitly creates an object

of the test context.

The MicroC profile provides two different initialization modes: ‗CompileTime‘ and

‗RunTime‘. While ‗RunTime‘ is like normal initialization for C models which requires no

specific support by TestConductor, ‗CompileTime‘ influences a set of model elements,

such as e.g. accessability of associations. In particular, this affects the generated

initializers of TestContexts for objects (cf. TestArchitecture creation ―Using Objects‖,

page 38). Consequently, TestArchitectures generated for initialization mode ‗RunTime‘

are in general not compilable with ‗CompileTime‘ initialization and vice versa.

Note, that this also affects the initializer of TestComponents generated for statechart

TestCases (cf. TestCase Definition with Statecharts, page 53 ff). It is, hence, strictly

recommended to check the initialization mode defined for the project before creation of a

TestArchitecture and to check the initialization mode defined for the referenced

configuration before creation of the first statechart TestCase.

 TestArchitecures for Code centric Models

For code centric Rhapsody models, the source code of the SUT is compiled to a library

and the executable with the test harness is linking this library. The code of the SUT library

is not instrumented with animation code and it is built with the code centric property

settings while the test harness contains animation instrumentation.

For the SUT library, it is possible to chose an already existing library of the project or

TestConductor can automatically create a new library CG Component.

The TestConductor sample ―CppCarRadio‖ demonstrates testing of a code centric model.

For the next steps, please open the sample located in folder

―Samples\CppSamples\TestConductor\CppCarRadio‖, right click class ―Radio‖ and select

―Create TestArchitecture‖. A dialog appears with the options to select an existing library

CG Configuration or to create a new library CG Component and Configuration for the

SUT. If the existing CG Configuration ―RadioLib::RadioDebug‖ is selected, a

TestArchitecture is created with another CG Component and Configuration for the

generation and compilation of the test harness. This CG Configuration has some properties

enabled which are usually disabled in the code centric profile, for example properties

―CG::Relation::AddGenerate‖ and ―CG::Relation::SetGenerate‖ are enabled and

―CG::Configuration::MainGenerationScheme‖ is set to ―Full‖. The scope of the newly

created CG Component contains only the test harness and it has a ―Usage‖ dependency to

the CG Component of the SUT, making sure the needed header files and the library of the

SUT can be found.

If the user selects to create a new CG Component for the SUT library, then TestConductor

creates two CG Components in the TestArchitecture: First a library CG Component

―libSUT‖ with the scope set to the SUT class and its associations and the default property

settings of the project and second an executable CG Component for the test harness.

After creating the TestArchitecture, the user should revise the settings of the newly created

CG Components and Configurations. It might be necessary for example to add more

model elements to the scope of the CG Components or to modify the options for the

―Additional Sources‖, ―Include Path‖ etc. The user has to build the SUT library; for the

CG Configuration ―RadioLib::RadioDebug‖ this can be done by executing the shell script

―buildLib.sh‖ (located on the project folder) in a cygwin shell. The executable of the test

harness can be build using the TestConductor menu functions ―Build TestCase‖, ―Build

TestContext‖ or ―Build TestPackage‖.

The TestArchitecture for code centric models can be used the same way as

TestArchitectures for non code centric models, with some restrictions because of the not

animated SUT (internal communication of the SUT cannot be observed).

 TestConductor.h, TestConductor_C.h and TestConductor_C.c,
TestConductor.jar, TestConductor.ads and TestConductor.adb

Since Rhapsody 7.1 the testing profile require the test context, test components, and test

component instances to include the TestConductor header file by setting property

CPP_CG.Class.ImpInclude to TestingConductor.h. Additionally, TestConductor

adds the path '$(OMROOT)/../TestConductor' to the include-path of the code-

generation component when creating a test architecture.

To provide an adequate assertion support for Rhapsody in C, a similar header file is

provided and the testing profile was extended, such that test context, test components, and

test component instances automatically include an appropriate TestConductor_C.h

header by setting property C_CG.Class.ImpInclude to TestConductor_C.h. In

contrast to the Rhapsody in C++ solution, for Rhapsody in C also an C-Implementation

file was provided, which is linked only once.

For Java, the class ―org.btc.TestConductor.TestConductor‖ is added as specification

include for TestContext and TestComponents.

For Ada, the package ―TestConductor‖ is made visible by adding an appropriate ―with‖

clause to the implementation of test contexts and test components.

 Generate and Build the Test Context

After generation of the new test context you should check whether it is complete and

consistent. Therefore you should generate und build the test context to get information

about potential compile or link warning or errors.

 Right-click on the test context TCon_CashRegister and select Build

TestContext from the context menu.

If the generate, compile and link procedure are resulting in an executable you are able to

execute it.

 Test Case Definition
Now test cases for the generated test context can be defined. TestConductor provides four

possible means to define test cases:

 Test case definition with pure code (only in C/C++/Java/Ada)

 Test case definition via flow charts (only in C/C++)

 Test case definition via statecharts (only in C/C++/Java/Ada)

 Test case definition via sequence diagrams

 Test Case Definition with Code

One of the most used means to test units today is writing test cases in the same language

than the application is written. In the C/C++/Java/Ada domain, often the complete test

environment and also the test case are written in C/C++/Java/Ada with the goal of

functional or coverage testing.

With Rhapsody in C/C++/Java/Ada it is also possible to write test cases manually, because

test cases are stereotyped primitive operations of a test context.

 Define a Code Test Case

The creation of a new test case is nearly the same than creation of a new operation:

 Right-click on the test context TCon_CashRegister and select Create Code

TestCase

 Name the new test case ―tc_code‖

 Open the Features dialog of the new test case and enter the code into the

implementation tab.

The objective of the test case is to verify whether the function addProduct correctly adds

a product to the bill list (realized by the ordered association itsProduct).

First, the test case checks whether the bill list is empty. If not, the operation

isNoMoreProduct returns FALSE. In this case the macro RTC_ASSERT_NAME

(“check_1.1”, i1=1) returns a FAILED to TestConductor. Otherwise the result of the

RTC_ASSERT_NAME macro is PASSED. In the next step a product ―apple‖ is added. At

the end the bill list is checked again.

Note: This test case is using two attributes i1 and i2 of type int. Both attributes have

to be defined within the test context TCon_CashRegister.

Note: TestConductor provides several RTC_ASSERT macro types, which can be used

to define assertions within test cases. A detailed description of these macros can

be found in the chapter TestConductor Assert Macro on page 246.

 Execute a Code Test Case

Now you are able to execute the test case by doing following steps:

 Right-click on the test case ―tc_code‖ and select Build TestCase from the context

menu

 Right-click on the test case ―tc_code‖ and select Execute TestCase from the

context menu

The test execution window shows the result of the checked assertions. Both are PASSED

meaning that the tested behavior is ok.

Further information about test execution and the related results is described under chapter

Test Execution on page 70.

 Failure Analysis in CodeTest Cases

TestConductor lists in the execution dialog all executed assertions. To display the

corresponding assertion, select in the execution dialog the item name in the column Name

and press the button Show Assertion.

Further information about failure analysis can be found in chapter Failure Analysis on

page 223.

 Testing reactive behavior with Code Test Cases

Since code test cases are basically primitive operations of a test context, testing reactive

beahavior, i.e. reaction to events, can not be done without modifications to the test

context. Primitive operations can't wait on events so please make the TextContext an

active object and hence a separate thread. In this case, the thread executing the test context

can be delayed unless the SUT has reacted to an event.

 Example code in C++:
itsClass_0.GEN(evX());

OXFTDelay(1000);

RTC_ASSERT_NAME(“reaction”,itsClass_0.IS_IN(reaction_state));

 Example code in C:
RiCGEN(&(me->itsClass_0),evX());

RiCOXFDelay(1000);

RiCIS_IN(&(me->itsClass_0),reaction_state);

 Example code in Java:
itsStopWatch.gen(new evPressKey(1));

try {

 wait(4000);

} catch(Exception e)

{ }

TestConductor.ASSERT_NAME("Check state of

stopwatch",itsStopWatch.isIn(ROOT.Running));

 Test Case Definition with Flow Charts

A graphical way to describe test cases is by using flow charts. Since test cases are special

operations of a test context you can use flow charts. Flow charts can be used to define the

behavior of primitive operations with Rhapsody.

 Define a Flow Chart Test Case

 Right-click on the test context TCon_CashRegister and select Create

FlowChart TestCase

 Name the new test case ―tc_flow_chart‖

 Draw the following flow chart

The objective of the test case is the same as used in the code test case above.

First, the test case checks whether the bill list is empty. If not, the operation

isNoMoreProduct returns FALSE. In this case the macro RTC_ASSERT_NAME

(“check_2.1, Initialization failed”, 0) returns a FAILED to

TestConductor. In the next step a product ―apple‖ is added. At the end the bill list is

checked again

 Execute a Flow Chart Test Case

Now you are be able to execute the test case by doing following steps:

 Right-click on the test case ―tc_flow_chart‖ and select Build TestCase from the

context menu

 Right-click on the test case ―tc_flow_chart‖ and select Execute TestCase from the

context menu

The test execution dialog shows the result of the defined assertions. The assertion

―check_2.2, Product successfully added‖ passed the test, which means that the tested

behavior is ok. Other than in the code test case here you can only see one assertion in the

execution dialog. This is due to the condition connector used in the flow chart. Only when

the condition [i1==1] is false, the assertion ―check_2.1, Initialization failed‖ is

executed.

Further information about test execution and the related results is described under chapter

Test Execution on page 70.

 Failure Analysis in Flow Chart Test Cases

TestConductor lists in the execution dialog all executed assertions. To display the

corresponding assertion, select in the execution dialog the item name in the column Name

and press the button Show Assertion.

Further information about failure analysis can be found in chapter Failure Analysis on

page 223.

 Testing reactive behavior with Flow Chart Test Cases

Since flow chart test cases are basically primitive operations of a test context, testing

reactive beahavior, i.e. reaction to events, can not be done without modifications to the test

context. Primitive operations can theirselves not wait on events. Thus, the test context has

to be active, i.e. must run in a thread different form the thread executing the SUT. In this

case, the thread executing the test context can be delayed unless the SUT has reacted to an

event.

 Example code in C++:
itsClass_0.GEN(evX());

OXFTDelay(1000);

RTC_ASSERT_NAME(“reaction”,itsClass_0.IS_IN(reaction_state));

 Example code in C:
RiCGEN(&(me->itsClass_0),evX());

RiCOXFDelay(1000);

RiCIS_IN(&(me->itsClass_0),reaction_state);

 Example code in Java:
itsStopWatch.gen(new evPressKey(1));

try {

 wait(4000);

} catch(Exception e)

{ }

TestConductor.ASSERT_NAME("Check state of

stopwatch",itsStopWatch.isIn(ROOT.Running));

 TestCase Definition with Statecharts

Test cases can alternatively be defined using statecharts. Due to their ability to wait on

timeouts, statechart test cases are particularly suited for testing reactive behavior. In order

to separate test case behavior from possible reactive behavior of the test context, statechart

test cases are defined using specialized test components, which are then dynamically

instantiated for test execution.

Statechart testcases are comprised of the following model elements:

 a TestCase , i.e. basically a primitive operation of the test context.

 a TestComponent owning the statechart defining the test case behavior.

 a dependency of the test case on the test component. This dependency is

stereotyped <<StatechartTestCase>>.

This chapter gives a short overview about the usage of statechart test cases. It describes:

 How to define a simple statechart test case.

 How the model is populated for executing a statechart test case.

 How statechart test cases can be executed.

 Define a Statechart Test Case

 Right-click on the test context TCon_CashRegister and select Create

Statechart TestCase

Creation of a statechart test case adds a test case to the test context. This test case has a

dependency on a newly created test component owning the statechart. The test component

has a directed association to the test context, which can be used to refer to parts, variables

and operations of the test context. Upon execution, the statechart test case dynamically

instantiates the test component, initailizes the association and starts statechart execution.

Furthermore, the test context needs to be populated with a rtc_init() and a rtc_exit()

operation which are invoked by the statechart. This population is initiated by ―Update

TestCase‖, ―Update TestContext‖, and ―Update TestPackage‖, respectively.

The following figure shows the browser after statechart test case creation:

 Name the new test case ―tc_statechart‖

 Draw the following statechart

 Execute a Statechart Test Case

Now you are be able to execute the test case by doing following steps:

 Right-click on the test case ―tc_statechart‖ and select Update TestCase from the

context menu

 Right-click on the test case ―tc_statechart‖ and select Build TestCase from the

context menu

 Right-click on the test case ―tc_statechart‖ and select Execute TestCase from the

context men

The test execution dialog shows the result of the defined assertions. The assertion

―evStart_received‖ passed the test, which means that the tested behavior is ok.

Further information about test execution and the related results is described under chapter

Test Execution on page 70.

 Failure Analysis in Statechart Test Cases

TestConductor lists in the execution dialog all executed assertions. To display the

corresponding assertion, select in the execution dialog the item name in the column Name

and press the button Show Assertion.

Further information about failure analysis can be found in chapter Failure Analysis on

page 223.

 Test Case Definition with Sequence Diagrams

Another option to define test cases is by using sequence diagrams. In the context of the

Rhapsody Testing Profile such sequence diagrams are called test scenarios

(TestScenarios). Test scenarios play a dominant role in the TestConductor test process.

They are the graphical means of specifying and defining the tests, and enable

TestConductor to visualize design flaws.

This chapter gives a short overview about the usage of sequence diagram based test cases.

It describes:

 How to define a simple sequence diagram test case

 How the generation of driver and sub operation works (see also chapter Model

Population on page 61)

 How sequence diagram test cases can be executed

Detailed information regarding the usage of the powerful features of sequence diagram

test cases are described in chapter Advanced Test Definition on page 154 ff.

 Define a Sequence Diagram Test Case

Driving the SUT using Test Components (only
C/C++/Java/Ada)

 Right-click on the test context TCon_CashRegister and select Create SD

TestCase

Note: TestConductor generates a new test case ―SD_tc_0()‖ with a dependency

―SD_tc_0‖ to a newly generated test scenario ―SDTestScenario_0‖.

 Rename the new test case to ―tc_SimpleStart‖

 Rename the new test scenario to ―SDSimpleStart‖

The generated test scenario looks like the following diagram. It contains lifelines for each

SUT and test component object defined in the test architecture.

 Remove the lifelines TCon_CashRegister.itsTC_For_itsProduct and

TCon_CashRegister.itsTC_for_itsCountedProduct from the view,

because these lifelines are not used in the following test scenario

 Draw the following messages into the test scenario

In this test scenario the test component TCon_CashRegister.itsTC_at_hw is driving

the SUT with the message evStart(). The expected result is the message shown below

show().

Note: During execution parameter values containing quotes will consistently be

stripped, e.g. the expression ―OK‖ will be converted to OK and ―‖OK‖‖ will be

converted to ―OK‖.

The scenario describes the normal way in which objects communicates among each other.

Messages from an environment line are only necessary when messages have to be sent

from the system boundary (e.g. an actor is sending an event to an object of the system).

Driving the SUT using ENV

Note: Driving from ENV is only supported in animation based testing mode

(TestConductor.Settings.TestingMode == AnimationBased)

If you are testing an animated application, inputs can also originate from the ENV life line

in a sequence diagram. To define a sequence diagram test case in such a manner you have

to draw a slightly different test scenario.

 Create a new test case as described above

 Rename the new test case to ―tc_SimpleStartENV‖

 Rename the new test scenario to ―SDSimpleStartENV‖

 Remove the lifelines TCon_CashRegister.itsTC_For_itsProduct and

TCon_CashRegister.itsTC_for_itsCountedProduct from view,

because these lifelines are not used in the following test scenario

 Add an ENV line to the test scenario

 Draw the following messages into the test scenario

 Execute a Sequence Diagram Test Case

Now you are be able to execute the test case by doing following steps:

 Right-click on the test case ―tc_SimpleStart‖ and select Update TestCase from the

context menu

 Right-click on the test case ―tc_SimpleStart‖ and select Build TestCase from the

context menu

 Right-click on the test case ―tc_SimpleStart‖ and select Execute TestCase from

the context menu – Alternatively you can right-click on test scenario to

―SDSimpleStart‖ and select ―Exceute TestCase of TestScenario‖ from the context

menu.

 The test is executed, and you can see the results in the execution window.

 Failure Analysis in Sequence Diagram Test Cases

The execution of the test case failed. To find out why you can do the following:

 Select the item ―SD_tc_0‖ in the execution dialog and double-click the item.

Alternatively, select the item ―SD_tc_0‖ and select ―Show as SD‖ from the context

menu.

 Press Quit

With Show as SD TestConductor has generated a new color coded sequence diagram

which shows the found failure.

In this case the argument of the show() message sent by the SUT has a different value than

expected. The expected argument value is ―aMsg=OK‖ while the real observed value is

―aMsg=Ready‖. The reason for the problem is that we specified an incorrect test scenario

which must be corrected now.

You can change the argument from ―OK‖ to ―Ready‖ in the test scenario

―SDSimpleStart‖. Then again perform the steps described above.

Note: During execution parameter values containing quotes will consistently be

stripped, e.g. the expression ―OK‖ will be converted to OK and ―‖OK‖‖ will be

converted to ―OK‖.

Further information about test execution and the related results is described in chapter Test

Execution on page 70.

Further information about failure analysis can be found in chapter Failure Analysis on

page 223.

 Model Population – Create Driver Operations and Stub Operations (for
Rhapsody in C/C++/Java/Ada)

Whenever test components are used to drive input messages of the SUT or to be forced to

return a pre-defined value of an operation call to the test component users have to provide

driver or stub operations for test components.

By using sequence diagram test cases TestConductor automates the generation of driver

operations and stub operations. Simply by choosing the context menu Update TestCase

on test case level, by choosing the context menu Update TestContext on test context

level, or by choosing the context menu Update TestPackage on test package level the

work is done. Choosing one of these menu entries starts the so-called ―model population‖

process of TestConductor. It analyses each defined sequence diagram instance and the

linked test scenarios to generate necessary driver and stub operations for the test

components.

Driver Operations

Driver operations (DriverOperations) are created for any message going from a test

component to the SUT, except for messages carrying the tag RTC_Monitor, or messages

starting at an instance line with the tag RTC_Monitor. In this case TestConductor assumes

the message should not be driven. Driver operations will be generated only for messages

from sequence diagrams referred by a sequence diagram instance with the mode ―driver

and monitor‖.

For example look into the generated driver operation of the test case ―tc_SimpleStart‖:

TestConductor analyzed the given test architecture, the ports, and the interfaces, and then

TestConductor generated a new driver operation for the test component TC_at_hw called

tc_SimpleStart_evStart_1(). The implementation tab of this operation shows the

generated code. Beside some comments there is the code line

OUT_PORT(hw)->GEN(evStart());

This implementation realizes the sending of the message evStart() from the

TestComponentInstance TCon_CashRegister.itsTC_at_hw through the port hw

to the SUT. During test execution TestConductor will call the driver operation

tc_SimpleStart_evStart_1() which in turn generates the specified input event

evStart() using the port connection (hw).

The name of the driver operation is the concatenation of the name of the test case, ―_‖, the

name of the original operation, ―_‖ and a number to create a unique name. A comment is

generated into the code of the driver operation that contains the identifier of the message

and the name of the test case for which the driver operation was generated. This allows the

user to identify the correct driver operation if he wants to edit it.

In the context of the model-population, the identifier of a message is the value of the tag

TestBehavior::RTC_MsgInfo::RTC_MsgId. TestConductor generates such an

identifier for a message when needed, using the naming scheme

'message_<unique_number>'.

The visibility of the driver operation will be public, the property

CG.Operation.AnimAllowInvocation of this operation will be set to ‖All‖ to make

sure this operation can be invoked by TestConductor.

The body of the driver operation consists of a call of the original operation on the SUT

(either on the destination instance itself or via a port, this is derived from the test context).

The values of any input argument for the driven operation call is derived from the

specification in the sequence diagram, the specified return-value(if existent) and the

specified output argument values are stored in local variables. TestConductor makes sure

that the call is done on the correct instance of the SUT if multiple instances of the same

SUT class exist.

If the sequence diagram specifies that the returned value should be checked, the macro

RTC_ASSERT_SD_NAME is used to check if the returned value and the expected

returned value are equal. The same macro is used to check if out or in/out argument values

returned by the operation call are as specified in the sequence diagram. If any of these

checks fails the test case fails.

The values of parameters defined for the sequence diagram instance are propagated to the

driver operation this way: If any parameter is used in the argument value- or return value

specification of the operation that should be driven, then in the body of the driver

operation the argument-value or return-value is substituted with the value of the

parameter. A corresponding substitution is taken into account, if sequence diagram

parameter values are used as sequence diagram instance names.

For further information how to customize the driver operation please read the chapter User

Defined Driving Operation Calls (for Rhapsody in C/C++/Java/Ada) at page 205.

Stub Operations

Typically stub operations (StubOperations) are used to return a special return value for an

operation call that is needed to test a special behavior of the SUT that depends on this

return value.

Stub operations are created for any operation call in the sequence diagram going from the

SUT to a test component if a return value (or an out value for an out or in/out argument) is

specified for this operation. TestConductor needs the ability to determine and control the

value returned by the operation. On the other hand there might be some calls to the same

operation without a specified return value or the operation is called by a test component on

a test component. Because of this TestConductor has to generate a different body for the

operation, but it must still be possible to call the original operation.

Note: For assertion based testing mode (TestConductor.Settings.TestingMode ==

AssertionBased), for all messages from a SUT life line to a TestComponent life

line, TestConductor creates a stub operation. In assertion based testing mode,

these stubs are needed in order to inform the test case that a specified message has

indeed occurred during test case execution.

To show this in an example you have to do some model changes:

 Open the feature dialog of operation show() of class IDisplay in package
InterfacePkg

 Change the return type from void to bool

 Open the feature dialog of operation show() of the test component TC_at_hw

in package TPkg_CashRegister_0

 Change the return type from void to bool

 Change the implementation of the operation show() from ―return‖ to

―return true‖.

 Define a return value false for the message show() in the test scenario

―SimpleStart‖.

 Choose Update TestCase from the context menu of test case ―tc_SimpleStart‖

The result of the update and model population process can be seen in the Rhapsody

browser (see following figure)

TestConductor has done some modifications within the test component TC_at_hw.

 The operation show() has been renamed to original_show(..) and is

stereotyped with DefaultOperation.

 A new stub operation tc_SimpleStart_stub_show_1() has been

generated. The generated stub operation returns a value false needed for the test

case ―tc_SimpleStart‖ .

 A new stubbed operation show() has been generated.

The stubbed operation show() replaces the original operation show() and is called

always when the SUT calls the operation show() on the specified test component. This

operation immediately decides whether the original show message has to be called or if a

stubbed value shall be generated. This behaviour is realized on a per test case and on a per

message basis.

Note: Each message in a sequence diagram has a unique Rhapsody GUID. So

TestConductor is able to uniquely identify each message with in a sequence

diagram.

For further information how to customize the stub operation please read the chapter User

Defined Stub Operation Calls (for Rhapsody in C/C++/Java/Ada) at page 210.

 Creating test cases with the test case wizard

As an alternative to manually create test cases, one can also automatically create test cases

with the test case wizard.The test case wizard allows to automatically create test cases

based on existing

 Sequence Diagrams

 Operations and Event Receptions

 Requirements

1. In order to create a test cases based on an existing Sequence Diagram, do the

following:

 In the browser or in the sequence diagram editor, rightclick the sequence diagram

and select ―Create TestCase…‖. This opens the test case wizard dialog:

 In the test case wizard dialog, all test architectures (i.e., all test contexts) that are

suitable to map the life lines of the existing sequence diagram to the life lines that

are available in the test architecture (i.e., the life lines of the SUT instances and

the life lines of the test component instances) are listed. A test architecture is

suitable, if

 All life lines of the existing sequence diagram can be mapped to life lines

of SUT instances or test component instances s.t. all specified messages

can occur also between the remapped life lines of the test architecture.

 At least one life line of the existing sequence diagram must belong to the

same class (or file/object) as one of the SUT instances of the test

architecture. This rule can be turned on/off by setting the property

―TestConductor.Settings.MapSDToTestArchitectureMode‖ to ―weak‖.

By setting this property to ―weak‖, no existence of a life line that has the

same class as one of the SUT classes is required any more. Only the

specified messages must be possible in the remapped life lines of the test

architecture. This mode allows to remap an existing sequence diagram

also to test architectures that contain completely disjoint classes but

which have at least interfaces that are compatible. The default value for

this property is ―strict‖.

 If no suitable test architecture is found, the list contains only the element.

<<new>>. When selecting <<new>>, a new dialog will open that lists all classes

of all life lines of the selected sequence diagram. In this dialog, one has to choose

one of the listed classes as the SUT class for the new test architecture. After

pressing ok, a new test architecture will be created for the selected SUT class.

 As a result, a new sequence diagram test case will be created that contains the

same messages as the original sequence diagram, but the life lines of the test

architecture.

2. In order to create a test cases based on an operation or an event reception, do the

following:

 In the browser, select one of the operations or event receptions of a class (or

file/object) and select ―Create TestCase…‖ from the context menu.

 In the test case wizard dialog, all test architectures (i.e., all test contexts) that

contains a SUT instance of the class (or file/object) of the selected operation/event

reception are listed. Additionally, the element <<new>> is listed. Furthermore, a

dropdown box can be used to select the kind of test case one wants to create.

Depending of the selection of the test architecture and the test case kind, a new

test case is created and added to the selected test architecture. When <<new>> is

selected, a new test architecture for the class (or file/object) of the selected

operation is created.

The created test case already contains a call to the selected operation with

default arguments. Additionally, a dummy assertion is created that can be

refined in order to check out values of the called operation.

3. In order to create a test cases based on a requirement, do the following:

 In the browser, select a requirement and select ―Create TestCase…‖ from the

context menu.

 In the test case wizard dialog, all test architectures (i.e., all test contexts) of the

model are listed. Additionally, the element <<new>> is listed. Furthermore, a

dropdown box can be used to select the kind of test case one wants to create.

Depending of the selection of the test architecture and the test case kind, a new

test case is created and added to the selected test architecture. When <<new>> is

selected, a new test architecture (a subsequent dialogs asks for the class for which

a new test architecture should be created) is created. Furthermore, the original

requirement for which the new test case has been created is linked as a test

objective to the test case.

 Test Execution

During test execution, TestConductor drives events, operation calls, and dataflows sent

from the test components, test context or environment to SUT objects, and monitors all

messages between objects, actors and environment as specified in the test cases. This

means that TestConductor automatically checks and reports whether the order of messages

sent and received corresponds to the real order in the running application. In addition,

TestConductor monitors the arguments of messages. Since TestConductor checks the

application behavior (against requirements) using animation mechanisms, you must

generate code for the test configuration with animation instrumentation switched on (at

least for test components). See the Rhapsody User Guide for detailed information on

animation settings.

 Overview
TestConductor supports several kinds of execution modes

 Execution of code test cases

 Execution of flow chart test cases

 Execution of statechart test cases

 Execution of sequence diagram test cases

 Execution of a test context

 Execution of a test package

 Batch mode execution

The test execution is visualized with an execution dialog. Depending on the type of test

cases the view and interaction possibilities of the execution dialog slightly differ.

 Test Configuration
Prerequisite for each execution of an application is a defined Rhapsody code generation

configuration. This configuration must be compileable and linkable.

 Test Configuration for assertion based testing

In assertion based testing mode, a configuration that shall be used for test execution must

have the stereotype <<TestingConfiguration>>. Such a configuration is automatically

generated when using test architecture creation of TestConductor.

 Test Configuration for animation based testing

This has to be fulfilled also for test execution. By using the automatic test architecture

generation feature of TestConductor a new component and a related configuration is

automatically added to the model for each test context. For example a component

TCon_CashRegister_Component and a configuration ―DefaultConfig‖ was generated

automatically for the test context TCon_CashRegister.

Also the settings for the code generation are done.

Note: For test execution the instrumentation mode must be set to animation
1
, because

TestConductor needs the animation information to observe the behavior of the test

context.

The animation mode is necessary for all elements around the SUT in the test context. In

order to perform (black box) production code testing the animation of the SUT can be

switched off. Thus, the test execution can be done in

 White box mode

 Black box mode

White box mode means that the test context and also the SUT classes are generated with

animation code, while in black box mode the SUT classes are generated without any

animation code information (production code).

 White Box Testing (only animation based testing)

White box testing means that the internal behavior of the SUT can be observed. For

example the message startSession() can be observed in white box mode, because the

SUT was generated with animation information.

 Build Test Context (White Box)

TestConductor supports the code generation for white box testing via enabling the

animation of the SUT class. To enable white box testing select the property

CPPCG::Class::Animate of the SUT class CashRegister.

1
 Except for OfflineTesting, which is aimed at asynchronous testing of non-animated applications.

After switching the property you have to build the test case in order to get animated code.

The result of this process is an executable with animation code for the SUT object.

TestConductor will automatically recognize that the SUT shall be tested in white box

mode.

 Production Code (Black Box) Testing

Production code or black box testing means that the internal behavior of the SUT can not

be observed by TestConductor. The objective is to test the interface behavior of a SUT.

Note: You can use the same test cases defined for white box testing. In case of black box

testing TestConductor ignores all messages which communicate between SUT

objects. Only the input and output messages are observed.

 Black Box Testing (Assertion based testing mode)

If TestConductor is working in assertion based testing mode, black box testing can be

achieved by setting the instrumentation of the testing configuration to ―None‖.

 Build Test Context (Black Box for animation based testing mode)

Rhapsody supports the code generation for black box testing via disabling the animation

of the SUT class. To enable black box testing deselect the property

CPPCG::Class::Animate of the SUT class CashRegister.

After switching the property you have to build the test case in order to get non animated

code for the SUT. The result of this process is an executable without animated SUT

objects. TestConductor will automatically recognize that the SUT shall be tested in black

box mode.

 Test Case Execution

 Code based Execution Dialog

Flow chart , code, and statechart test cases are merely code based test cases, because

TestConductor uses the code generation capabilities of Rhapsody‘s code generator. The

execution dialog enables you to activate the actual test execution and displays the test

results.

If you have modified your SUT or your test context, you must rebuild the code of the test

context before you start actual test execution.

Execute any test case by using the context menu entry Execute TestCase. The

TestConductor execution dialog will open, and the test case execution will be started.

 Test Execution Window

1. TestConductor displays the assertions defined in a code, flow chart, or statechart test

case at run-time of the test case. During test execution new assertions are listed as

soon as they are reached and checked by TestConductor. Each line in the dialog

displays information about one particular assertion including the final results, as

shown in the following figure.

After the test case execution has been terminated you can analyze the results of executed

assertions.

 Test Information

TestConductor displays information to analyze the test results. The information columns

are as follows:

 Name—Displays the name of the assertion checked by TestConductor during test

execution.

 File/Iteration—Shows information about the source file name in which the

TestConductor assertion is specified. If a SD test case is executed, it shows the

iteration number of the SDInstance.

 Line/Progress—Shows information about the code line within the file in which

the assertion is specified. If a SD test case is executed, it shows the progress of the

SD instance.

 Result—Shows the result of the assertion. The possible values are PASSED and

FAILED.

 Controlling test case execution

The test case execution dialog provides several functions that can be used to control the

test case execution. The functions are available by pressing one of the icons in the top

right corner of the execution dialog.

 Sequence Diagram based Execution Dialog

The execution dialog enables you to activate the actual test execution and displays the test

results. You can use test results in order to generate sequence diagrams for further

regression testing or in order to prepare documentation.

If you have modified your SUT or your test context, you must rebuild the code of the test

context before you start test execution.

Context menu entry Execute TestCase of a selected test case opens the execution dialog.

For a sequence diagram that is exclusively referenced by only one test case, the execution

dialog can alternatively be opened using the context menu entry Execute TestCase of

TestScenario of the selected sequence diagram. After selecting Execute TestCase, the

execution dialog opens and the test case execution starts.

 Test Execution Window

During test case execution, the test execution information is displayed in the test execution

dialog.

1. TestConductor displays the first iterations of sequence diagram instances without

specified ordered predecessors as the initial run-time instances in the execution dialog.

During test execution new run-time instances are listed as soon as their ordered

predecessors or previous iterations have been fully traversed. Each line in the dialog

displays information about one sequence diagram run-time instance, including

intermediate and final results, as shown in the following figure.

Since the test is still running you cannot modify it. However, you can verify the test

configuration, the activation conditions of the sequence diagram instances, and so on.

 Test Information

TestConductor displays information to analyze the test results. The information columns

are as follows:

 Name—Shows the list of all run-time instances in the order of their appearance in

the test. You can activate sequence diagram instances sequentially (one after

another) or in parallel (independently).

 Status—Shows the current states of run-time instances during test execution. The

possible values are ―NOT ACTIVE‖, ―ACTIVE‖, ―PASSED‖, and ―FAILED‖. In the

example, the entire test executes automatically, until it eventually shows the final

result ―(Status - FAILED)‖, because TestConductor found an error.

 File/Iteration—Shows the absolute number of the currently executed run-time

instance of the sequence diagram instance under consideration. At each point in

time, you can have at most one active run-time instance of an sequence diagram

instance. However, over time you can have infinitely many invocations. In the

example of the ―tc_SimpleStart‖ test, only one run-time instance appears in this

field, because you selected single iteration mode. An arbitrary number of run-time

instances can be created during model execution if the execution mode of an

sequence diagram instance is set to multiple iteration with a concrete number.

 Line/Progress—Shows the percentage of message actions that passed successfully

through the tested sequence diagram instance during test execution. A message

action is one of the following:

 Event sending

 Internal event consumption

 Operation call

 Condition mark validation

For example, every event arrow in an sequence diagram specifies two ordered message

actions. TestConductor displays the progress as ―percentage X/Y‖. The X stands for the

number of actions that passed; Y stands for all the actions specified in the sequence

diagram. For example, this test failed at 75%, and 3 out of 4 actions passed.

 Displaying Test Results

Graphical Test Sequence Diagrams

You can display the test results graphically in order to analyze the states of a run-time

instance at different points in time.

For example, to display a failure in the ―tc_SimpleStart‖, do the following:

 To see the graphical representation of the results, select a run-time instance in the

list and select Show as SD from the context menu. A recorded sequence diagram is

displayed, showing the actual order of the messages passed through the model

simulation.

The resulting sequence diagram can be used for failure analysis or can be saved for further

documentation.

In the sequence diagram created for a run-time instance, the following messages are

displayed:

 Messages that have already occurred in the executed application. Observed

messages are shown in green.

 Messages that are missed. Expected but not seen messages are shown in blue.

 A message that has wrongly arrived or parameter values that do not match.

Messages that are observed in not expected order (failure) are shown in red.

A red message indicates a failure. In the resulting exported sequence diagram, a red

message is annotated with a short explanation of the failure, which can be one of the

following:

 Sending out of order

 Event Sending - Parameter values do not match

 Event Sending - Parameter values not in range

 Consumption out of order

 Event Consumption - Parameter values do not match

 Event Consumption - Parameter values not in range

 Operation Call out of order

 Operation Call - In Parameter values do not match

 Operation Call - In Parameter values not in range

 Operation Call returned - Return value does not match

 Operation Call returned - Out Parameter values do not match

 Operation Call returned - Out Parameter values not in range

 DataFlow Message - Value does not match

 DataFlow Message - Value not in range

 DataFlow Message out of order

See page 223 for more information about failure analysis.

Automatically adding SDs to the model for failed
SDInstances

Note: In assertion based testing mode, each time you do a ―Show as SD‖,

TestConductor automatically adds a color coded SD to the model. The color coded SD is

added to the model to the same owner as the original specification SD. By default, the test

case operation is the owner of the specification SD.

Sometimes it is useful that SDs showing failed SDInstances are added automatically to the

model after test case execution, e.g. for documentation purposes if test cases are executed

in batch mode. In order to do this, switch on the property

―TestConductor.TestCase.CreateSDForFailedSDInstance‖:

Now, after executing a test case that has switched on this property, TestConductor

automatically adds a SD to the model showing the reason of the test case failure.

Additionally, a dependency is added to the TestResult of the executed test case linking the

TestResult to the added SD. This dependency can be used to navigate directly from the

TestResult to the SDs that have been added for the failed SDInstances.

 Abort Test Execution

In order to abort a running test either click the stop icon in the Rhapsody tool bar or click

the abort icon in the test execution window.

 Execution Timeout

 Execution timeout for animation based testing

The testing profile defines a global timeout, which can be overwritten for every test

package, test context and test case. This default value is 600 seconds.

You may define a timeout for every test case separately via the property

TestConductor::TestCase::ExecutionIdleTimeout

In case a timeout is defined and the application does not show any activity for <value of

timeout> seconds the execution of this test case is interrupted. In this case, this test case

will be marked as ―timeout‖ in the result report.

 Execution timeout for assertion based testing

In assertion based testing mode, in order to define a timeout for test cases, the scheduler

that actually starts and stops the test case execution must be changed. By default, a

standard scheduler that is autogenerated for a test architecture has the following structure:

Now, in order to have define a test case timeout that works for all executed test cases, add

the following transition to the scheduler with the timeout value you want to have for your

test cases. In the depicted sampel, we choose a timeout value of 3 seconds:

 Test Execution Report

After the execution of a test case has finished and the execution dialog has closed, an

execution report is written into a HTML file. This file is added to the test case as a

controlled file. If a report file already exists it is overwritten. Only the report of the last

test case execution is stored in the model.

TestConductor also stores a tag Verdict below the linked report file, which stores the result

of the test case execution.

Possible values are: "Passed", "Failed", "Aborted", "Timeout" and "Undefined" and

―Error‖.

A double click on the test result ―TCon_CashRegister__tc_SimpleStart_0.html”

opens the linked HTML test report.

 Debugging test cases

When a test case fails one can use TestConductor‘s debugging capabilities in order to find

out the reason for the fail. In order to turn on test case debugging, one has to turn on

―Debugging mode‖ in the test case execution window:

After turning on debugging mode, one can restart the test case, e.g. by pressing the ―Start‖

icon in the execution window. In contrast to normal test execution mode, in debugging

mode the test execution does not progress automatically but can be controlled by using

Rhapsody‘s animation toolbar. For instance, one can step through the test case by using

multiple ―Go Step‖ commands in the animation toolbar. In the execution window, one can

see the current progress of the test case, and in parallel one can use Rhapsody‘s animation

features (e.g. animated sequence diagrams or animated statecharts) to inspect the model

during debugging of the test case. Besides ―Go Step‖, also all other animation commands

like ―Go Idle‖ etc. are available, e.g. one can add tracer commands etc.

 Using breaks and tracer commands during debugging (only animation
based testing mode)

In debugging mode, in addition to stepping through the test case execution using

Rhapsody‘s animation toolbar, one can also define breaks and tracer commands in the test

cases. When a break command is reached, the test case execution is breaked at this

location. When a tracer command is reached, it is simply executed. Both breaks and tracer

commands can be used in all kinds of test cases.

1. Defining breaks and tracer commands in code/flowchart/statechart test cases:

To define a break in a code, flowchart or statechart test case, one has to write the

macro ―RTC_BREAK‖ (C/C++) resp. ―TestConductor.BREAK()‖. When the test

case execution reaches the break, it is executed and the test case execution is

stopped. One can proceed the test case execution by using Rhapsody‘s animation

toolbar (e.g. by pressing ―Go Step‖ or ―Go Idle‖ etc.). To execute a specific tracer

command during test case execution, one has to use the macro

―RTC_TRACER_COMMAND(cmd)‖ (C/C++) resp. the function

―TestConductor.TRACER_COMMAND(cmd)‖. For details about the supported

syntax of the ―cmd‖ argument please look into Rhapsody‘s User Guide. When the

test case execution reaches the specified tracer command, it is simply executed as

any other tracer command that was entered directly in Rhapsody‘s animation

toolbar.

2. Defining breaks and tracer commands in sequence diagram test cases:

To define a break in a sequence diagram test case, one has to add a condition on

one of the life lines in the sequence diagram. In the condition, one has to write

―RTC_BREAK‖. When executing the test case in debugging mode, the test case

execution stops when the break is reached. In Rhapsody‘s animation output tab the

information ―Reached TestCase breakpoint‖ is printed.

To define tracer commands in a sequence diagram test case, one has to add a

condition on one of the life lines in the sequence diagram. In the condition, one

has to write ―RTC_TRACER_COMMAND‖. When executing the test case in

debugging mode, the test case execution executes the specified tracer command

when the execution reaches the position of the tracer command.

 Test Context Execution

 Starting Test Execution

One kind of batch execution is the execution of a complete test context. It will then

execute all test cases belonging to a test context.

 Right-click on the test context TCon_CashRegister and select Update

TestContext. This updates all necessary driver and stub operations derived from

the defined sequence diagram test cases within the test context.

 Right-click on the test context TCon_CashRegister and select Build

TestContext. This re-generates the necessary code for all elements of the test

architecture and starts the compile and link process for the test architecture.

 Right-click on the test context TCon_CashRegister and select Execute

TestContext. This starts the batch execution for all defined test cases within the

test context.

If the user selects a test context and invokes its execution, all test cases of this test context

are executed in a sequence. To terminate the execution of a test context or a test package,

press the abort icon in the test execution window.

 Stopping Test Execution

To terminate the execution of a test context or a test package, press the abort icon in the

test execution window.

 Execution Timeout

The testing profile defines a global timeout, which can be overwritten for every test

package, test context and test case. This default value is 600 seconds.

You may define a timeout for this batch mode execution of test cases individually per test

case. This can be done via the property

TestConductor::TestCase::ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of

timeout> seconds the execution of this test case is interrupted and the next test case is

started. In this case, this test case will be marked as ―timeout‖ in the result report.

 Ordering of Test Cases

The order of the test cases inside the test context (similar to the ―Edit Operations Order‖

in the Rhapsody browser) can be changed. In this way you can influence the execution

order of the test cases.

Per default the test cases are sorted and executed in alphabetical order.

 Test Execution Report

After execution of each test case its result HTML report is written. The file is added to the

test case as controlled file.

After execution of all test cases an execution report of the test context is written into a

HTML file. The file is added to the test context as controlled file.

 A double-click on the test result ―TCon_CashRegister_6.html” opens the

linked test report.

 Test Package Execution

 Starting Test Execution

One kind of batch execution is the execution of a complete test package. It will then

execute all test cases underneath all test contexts belonging to a test package.

 Right-click on the test package TPkg_CashRegister and select Update

TestPackage. This updates all necessary driver and stub operations derived from

the defined sequence diagram test cases within the test package.

 Right-click on the test package TPkg_CashRegister and select Build

TestPackage. This re-generates the necessary code for all elements of the test

architectures and starts the compile and link process of all test architectures.

 Right-click on the test package TPkg_CashRegister and select Execute

TestPackage. This starts the batch execution of all defined test cases within the

test package.

If you select a test package and invoke its execution, each defined test context of this test

package is executed one after the other. The procedure is almost like the execution of a

test context, except the following differences:

 If one test context cannot be executed, this test context is skipped, the reason for

the problem is written to the result report, and the next test context is executed.

 Stopping Execution

To terminate the execution of a test context or a test package, press the abort icon in the

test execution window.

 Execution Timeout

The testing profile defines a global timeout, which can be overwritten for every test

package, test context and test case. This default value is 600 seconds.

You may define a timeout for this batch mode execution of test cases individually per test

case. This can be done via the property

TestConductor::TestCase::ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of

timeout> seconds the execution of this test case is interrupted and the next test case is

started. In this case, this test case will be marked as ―inconclusive‖ in the result report.

 Test Execution Report

After the execution of all test cases, the execution report is written into a HTML file. This

file is added to the test package as a controlled file. A report for each test context that has

been executed was also created during execution.

 A double click on the test result ―Result_0.html” opens the linked test report

 Assertion based testing mode
Starting from Rhapsody 7.6, TestConductor supports so-called assertion based testing.

Before Rhapsody 7.6, TestConductor only supports so-called animation based testing. In

animation based testing, the scheduling and arbitration, i.e., the way TestConductor

decides whether a test case is passed or failed, is based on animation messages coming

from Rhapsody‘s animation feature. In contrast to this, in assertion based testing, both

scheduling and arbitration of test cases is directly controlled by assertions that are

compiled into the test exectable, i.e., scheduling and arbitration of test cases is

independent from Rhapsody‘s animation feature. In general, both animation based testing

and assertion based testing provide the same set of features, however, there are still some

differences because of the underlying testing approach. In this section, we highlight the

characteristics of assertion based testing.

 Chosing between testing modes

By default, new projects created with Rhapsody 7.6 are created with testing mode set to

assertion based testing, i.e., the property ―TestConductor.Settings.TestingMode‖ is set to

―AssertionBased‖. For test packages that have been created with a Rhapsody version older

than 7.6 this property is set to ―AnimationBased‖, i.e., for those test packages

TestConductor behaves as in 7.5.3. If you want to switch from one testing mode to another

testing mode manually, please open the TestConductor main dialog by choosing

―TestConductor‖ from the tools menu. In the upcoming dialog, select the testing mode you

want TestConductor to operate:

 Test architecture creation

When creating a test architecture in assertion based testing mode, the created test

architecture is similar to the architecture created in animation based testing mode.

However, there are some differences:

1. The created test package contains two sub test packages, one architecture sub

package that actually contains the test context and the test components that are

connected to the SUT, and a control test package that contains an auto generated

scheduler test component and the auto generated arbiter test components that

control the test execution in assertion based testing mode.

2. Inside the top level test package, two static objects are defined. One object is an

instance of the created test context, and one object is an instance of the created

scheduler. Since the top level package is part of the scope of the testing

configuration that is used to generate and build code for the test executable,

always a test context instance and a scheduler instance is defined in the test

executable.

3. The configuration that is created inside the top level test package is used in order

to generate and build the code of the test executable. It is stereotyped with

<<TestingConfiguration>>. A configuration that contains this stereotype provides

several tags that can be used to define several testing options.

 Test scheduling with <<Scheduler>> test components

As described in the previous section, when creating a test architecture, a scheduler test

component is generated that is used to control the starting and stopping of test cases. The

scheduler is part of the test executable. By, default, the behavior of the scheduler is

defined by the following statechart:

By default, the scheduler parses the command line when the test executable is started.

Based on the specified test cases that shall be executed, the scheduler starts the selected

test case(s). This default behavior can be adjusted according to your needs. For instance, if

you want to e.g. add an automatic timeout mechanism for all test cases you can adjust the

behavior of the scheduler as it is described in section 0.

 Test arbitration with <<Arbiter>> test components

If you define the behavior of a test case by using a sequence diagram, in assertion based

testing TestConductor automatically adds a so-called arbiter test component to the control

sub package of your test architecture. An arbiter is a test component that contains the

stereotype <<Arbiter>>. Besides the arbiter class, TestConductor also adds an instance of

the arbiter class to the test context that contains the test case. During runtime, this instance

is used to control the test case execution of the test case to which the arbiter belongs. The

test case and its arbiter are connected by a dependency that contains the stereotype

<<ControlArbiter>>:

 Creating test executables with testing configurations

In order to execute test cases in assertion based testing mode, always a test executable is

needed that actually contains the code for the test architecture, the scheduler and all

arbiters. In order to generate the code, a Rhapsody code generation configuration is

created the contains the stereotype <<TestingConfiguration>>. In contrast to animation

based testing mode, in assertion based testing mode, the test executable always contains

all the code that is necessary in order to execute test cases of the test context that belongs

to the testing configuration. In particular, in assertion based testing it is not necessary any

more to have animation turned on for the testing configuration. Both animated and non-

animated configurations can be executed the same way. The stereotype

<<TestingConfiguration>> contains several tags that can be used in order to control how

the test executable is created, and which test execution options should be applied when

executing test cases using that configuration:

 ComputeCodeCoverage:

If this option is turned on, when executing test cases TestConductor computes

which parts of the code generated for the SUT are covered to what extend.

TestConductor computes statement coverage, decision coverage,

decision/condition coverage and modified condition/decision coverage

(MC/DC). Which parts of the SUT are considered for code coverage can be

controlled by the tag ―CoverageKind‖. Note: Code coverage is restricted to

RhapsodyC and Microsoft compilers.

Default: false

 ComputeModelCoverage:

If this option is turned on, when executing test cases TestConductor computes

which model elements of the SUT are covered. TestConductor computes

which states, transitions and operations are executed by the test cases. Which

parts of the SUT are considered for code coverage can be controlled by the tag

―CoverageKind‖. Note: Model coverage is restricted to animated

configurations.

(Default: false)

 CoverageKind :

This tag controls which parts of the test architecture is considered by model

coverage and code coverage. The possible values are

 SUT_flat: Only the SUT itself is considered.

 SUT_hierarchical: The SUT and its parts are considered.

 TestContext_flat: The SUT and all TestComponents are

considered.

 TestContext_hierarchical: The SUT and its parts, and all

TestComponents with all their parts are considered.

(Default: SUT_flat)

 PopulateCompileCommandForCodeCoverage :

If this option is turned on, the property ―<lang>.<Env>.CCompileCommand‖

is automatically populated by TestConductor in order to call the code

instrumentation tools of TestConductor that are needed when computing code

coverage of test cases. If there are propbelms with the automatic population of

this property, please turn off this option and adjust the property

―<lang>.<Env>.CCompileCommand‖ manually.

(Default: true)

 PopulateInvokeExecutableProperty:

If this option is turned on, when executing test cases from within Rhapsody,

TestConductor automatically overwrites the property

―<lang>.<Env>.InvokeExecutable‖ with the content of the tag

―rtc_testexecution_script_filename‖.

(Default: true)

 RTC_MAX_ASSERT :

The value of this tag defines how much memory TestConductor reserves for

storing the results of executed assertions. The memory for storing the results

of assertions is always defined statically in order to allow test execution on

targets that don‘t support dynamic memory allocation. If during test execution

the assertion memory exceeds its limits, TestConductor stops test execution

and logs an error message.

(Default: 200)

 ResultVerification:

Test cases can be defined by either sequence diagrams, flowcharts, statecharts

or plain code. Based on the behavior specification of the test case,

TestConductor populates the model with operations and statecharts that

implement the behavior of the test case as specified e.g. by a sequence

diagram. After model population, TestConductor uses Rhapsody‘s code

generator in order to generate code from the populated model. Now, if

Rhapsody‘s code generator contains an error, a test case execution could yield

the wrong result since TestConductor has used Rhapsody‘s code generator to

generate the testing code. In order to prevent such situations, TestConductor

can perform a so-called result verification. Result Verification is a technique

that checks the consistency of a test execution with the test case behavior

specification in Rhapsody. If result verification is turned on, TestConductor

will detect potential errors in Rhapsody‘s code generator, thus making sure

that the test case result TestConductor computes is correct even if code

generation errors occurred in the testing code.

(Default: true)

 rtc_adapter_content:

This tag allows for defining adapter code, that can be used to realize the

transfer of results from the target to the host. For example, a target debugger

script can be provided in this tag, that reads out the assertion array and dumps

the content of the array to a file on the host.

(Default: empty)

 rtc_adapter_filename:

If tag rtc_adapter_content is not empty, then rtc_adapter_content is written to

the denoted file for use in e.g. a target debugger.

(Default: $CONFIGDIR/rtcadapt.txt)

 rtc_assert_dumptofile:

If turned on, then the contents of the assertion array will be dumped to the file

denoted by tag rtc_assert_resultfilename.

The tag must be turned off if the target does not support files.

(Default: true)

 rtc_assert_dumptofile_kind:

This tag controls when the collected assertions are dumped into the result file.

Possivle values are

1. at_exit: assertions are dumped when the test executable exits.

2. after_testcase: assertions are dumped after one test case

execution.

3. Immediately: assertions are dumped immediately when they

are executed.

(Default: at_exit)

 rtc_assert_mem_code:

This tag allows for customization of the rtc_assert_id function. Funtion

‗void rtc_assert_id(int e, int ln, int nr)‘ is defined in

in TestConductor_C.c (for C) and TestConductor.h (for C++), respectively.

If rtc_assert_mem_code is empty, the original implementation as provided

by TestConductor is used.

The function takes 3 arguments:

 int e : the value of the assertion expression

 int ln : the linenumber of the assertion in the source code

 int nr : the number of the implementation file according to a

TestConductor-internal numbering of generated files.

TestConductor expects a result file on the host with the following syntax:

Lines ::=

| Lines Line

Line ::= ASSERTION = nr,ln,e

Where means the empty word, ‗ASSERTION‘ , ‗=‘ , and ‗,‘ are token and

nr, ln, e are integer values according to the arguments of rtc_assert_id. (in

reversed order).

For simplicity, arbitrary text lines not starting with ‗ASSERTION‘ may be

contained in the result file but are ignored.

Using rtc_assert_mem_code , the implementation of rtc_assert_id can be

customized in any way that produces a result file in correct syntax on the host,

e.g. sending the values via serial connection to a serial port server application

on the host that creates the result file.

(Default: empty)

 rtc_exit_kind:

This tag controls how the test executable shall be exited. Possible values are:

i. by_system_exit: The test executable exits by calling ―exit‖.

ii. User_defined: The test executable exits by executing the content of

the tag ―rtc_exit_user_definition‖.

(Default: by_system_exit)

 rtc_exit_user_definition:

In this tag you can specify a code sequence that shall be executed when the

test executable exits. This can be useful e.g. for targets that need a special way

for correctly terminating executables.

(Default: empty)

 rtc_info_filename:

This tag specifies the name of the so-called info file that is used by

TestConductor in order to generate some test case related information into a

file, e.g. name and id of test cases. The info file is used by the reporting tool

repgen in order to generate execution reports.

(Default: $CONFIGDIR/rtcinfo.txt)

 rtc_log_autogenerate

If this tag is turned on, TestConductor automatically adds log messages to the

test executable. The log messages give information e.g. which test case is

currently executed. Based on the value of the tag ―rtc_log_kind‖, the

generated log messages are either printed to the console or to a log file or both.

(Default: true)

 rtc_log_filename

This tag specifies the name of the log file that can be generated by the test

executable. If the file is generated or not during test execution depends on the

value of the tag ―rtc_log_kind‖.

(Default: $CONFIGDIR/rtclog.txt)

 rtc_log_kind

This tag specifies how log messages should be treated inside the test

executable. The possible values are

 to_console: log messages are printed to the console

 to_file: log messages are printed to the file specified in the tag

―rtc_log_filename‖.

 to_console_and_file: log messages are printed to the console and are

logged into the file specified in the tag ―rtc_log_filename‖

 user_defined: when log messages are executed, the code entered in the tag

―rtc_log_user_definition‖ is executed.

(Default: to_console)

 rtc_log_user_definition:

In this tag you can specify a code sequence that is executed in the test

executable when a log message is specified. The specified code sequence will

be executed if the value of the tag ―rtc_log_kind‖ is set to ―user_defined‖.

(Default: empty)

 rtc_report_dir

This tag specifies to which directory TestConductor generates the execution

reports after test case execution.

(Default: $CONFIGDIR)

 rtc_result_filename:

This tag denotes the file from which TestConductor will read the result of test

case execution. If tag rtc_assert_dumptofile is set to true, then the results

will automatically be written into this file.

(Default: $CONFIGDIR/rtcresult.txt)

 rtc_result_handling:

This tag specifies how test execution results are treated in the test executable.

Possible values are

 automatic: if set to automatic, TestConductor automatically reads in test

results after test execution.

 Manual: if set to manual, TestConductor does not automatically reads in

test results after test case execution.

 rtc_testexecution_script_content

This tag specifies the content of the script file that is used by TestConductor to

call the test executable. The tag contains the options for the test executable

that e.g. are used to select the test case that shall be executed.

(Default: "$executable" -resultfile "$rtc_resultfile" -logfile "$rtc_logfile" -

tcontext $tcontext -tcase $tcase)

 rtc_testexecution_script_filename

This tag specifies the name of the script file that is used in order to call the test

executable.

(Default: $CONFIGDIR/tc_run.bat)

 rtc_testexecution_script_populate

This tag specifies whether the content of the file specified in the tag

―rtc_testexecution_script_filename‖ is populated with the content specified in

the tag ―rtc_testexecution_script_content‖.

(Default: true)

 rtc_testreport_script_content_tcase

This tag specifies the content of the script file that is used by TestConductor to

generate html execution reports for test cases from the test results computed

by the test executable. The tag contains the options for the repgen tool that are

used in order to generate the html reports for test cases.

(Default: "$RTCINSTALLDIR/repgen" -infofile "$infofile" -resultfile

"$resultfile" -outdirectory "$RTCREPDIR" -tcontext $fulltcontext -tcase

$fulltcase)

 rtc_testreport_script_content_tcontext

This tag specifies the content of the script file that is used by TestConductor to

generate html execution reports for test contexts from the test results

computed by the test executable. The tag contains the options for the repgen

tool that are used in order to generate the html reports for test contexts..

(Default: "$RTCINSTALLDIR/repgen" -infofile "$infofile" -resultfile

"$resultfile" -outdirectory "$RTCREPDIR" -tcontext $fulltcontext)

 rtc_testreport_script_filename

This tag specifies the name of the script file that is used by TestConductor in

order to generate html reports based on the execution results computed by the

test executable.

(Default: $CONFIGDIR/tc_rep.bat)

 rtc_testreport_script_populate

If this tag is turned on, the content of the file specified in the tag

―rtc_testreport_script_filename‖ is populated with the content of the tag

―rtc_testreport_script_content_tcase‖, if a test case is executed, and with the

content of the tag ―rtc_testreport_script_content_tcontext‖, if a test context is

executed.

(Default: true)

 Executing test cases in assertion based testing

After the test executable has been built, either individual test cases or complete test

contexts can be executed. The execution is invoked the same way as for animation

based testing. When invoking a test case from within Rhapsody, TestConductor calls

the script specified in the tag ―rtc_testexecution_script_filename‖ that actually calls

the test executable with the parameters that select the test case that shall be executed.

The chosen test case is executed, and after termination the results are dumped into the

result file specified in the tag ―rtc_result_filename‖. However, this result file only

contains the raw results, i.e., the outcome of the assertions that have been executed

during test execution. In order to generate a complete test execution report based on

these raw results, TestConductor uses the tool ―repgen‖. After test execution, when the

raw results have been computed by the test executable, TestConductor calls the script

that is specified in the tag ―rtc_testreport_script_filename‖. This script actually calls

repgen with the correct parameters in order to generate both an xml report and an html

report that shows the detailed test results. The generated xml report is only used

internally by TestConductor in order to present the execution results in the test

execution GUI when working withni Rhapsody. In summary, in assertion based

testing, test execution and test reporting is a process seperated into 2 steps:

 test cases are executed by calling the test executable with the correct

parameters. The test executable computes raw test results.

 Based on the raw test results, a call of the repgen tool with the correct

parameters generates readable html reports based on these raw results.

Both of these steps can either be done from within Rhapsody (the same way as for

animation based testing) or outside of Rhapsody.

 Performing result verification for test case execution

When operating in assertion based testing mode, TestConductor provides the option to

perform a so-called result verification after test case execution. This feature is turned

on if the tag ―ResultVerification‖ of the testing configuration is turned on. When

result verification is turned on, after test case execution TestConductor checks if the

raw results written to the result file by the test executable is consistent with the

graphical behavior description in Rhapsody (either as sequence diagram, statechart, or

flowchart). For a behavior description provided as plain code no result verification is

performed. For graphical behavior description provided as a sequence diagram,

TestConductor populates the model with a statechart that represents the possible

allowed execution sequences specified in the sequence diagram. The result

verification check made by TestConductor is independent from Rhapsody‘s code

generator, and can be used in order to detect defects of Rhapsody‘s code generator that

may influence the test case execution results. By using result verification,

TestConductor makes sure that the test execution results computed by TestConductor

are ALWAYS correct, even in case of errors in Rhapsody‘s code generator that may

affect the correctness of the testing source code that is used to buid the test executable.

The result verification is able to detect e.g. the following potential code generation

problems that may influence the test execution result:

 The code generator wrongly ignores transitions or states in a statechart

 The code generator wrongly takes additional transitions in a statechart

 The code generator fires statechart transitions in wrong order

 The code generator wrongly ignores transitions or actions in a flowchart

 The code generator wrongly takes additional transitions in a flowcharts

 The code generator fires flowchart transitions in wrong order

When result verification is turned on (by default), the generated html test execution

result always contains the information if result verification was enabled or not, and if

it was successful or not. In case result verification was enabled and it was not

successful, the test case status is automatically set to ―Error‖.

 Computing Model Coverage during Test
Execution

When executing TestCases, i.e., either individual TestCases, a TestContext or a

TestPackage, TestConductor provides the possibility to compute which model parts of the

SUT are executed during the execution of the TestCases. This information is provided by

an HTML report that is created and added to the model after the execution of the test

cases. The report contains information about accumulated coverage of states, transitions,

events and operations (except constructors and destructors) of all SUT classes used in the

TestArchitecture.

 Computing Model Coverage for single Test Cases (animation
based testing mode)

For animation based testing (TestConductor.Settings.TestingMode == AnimationBased),

to compute the model coverage of single test cases, switch on the property

―TestConductor.TestCase.ComputeCoverage‖:

For assertion based testing, switch on tag ―ComputeModelCoverage‖ of the testing

configuration:

Now, each time you execute the test case, in addition to the test case execution

report,TestConductor creates a model coverage report and adds it to the model:

 Choosing the Coverage Kind for Model Coverage

TestConductor supports four different kinds of coverage measures, which can be chosen

using property TestConductor.TestCase.CoverageKind (if

TestConductor.Settings.TestingMode == AnimationBased) or tag ―CoverageKind‖ of the

testing configuration (if TestConductor.Settings.TestingMode == AssertionBased)

 SUT flat (Default): Only coverage of the toplevel class of the SUT is measured,

i.e. states, transitions, and operations of parts of the SUT are not considered.

Coverage of model elements of test components is also not measured.

 SUT hierachical : Coverage of the SUT is measured in a hierarchical manner, i.e.

also states, transitions, and operations of parts of the SUT are hierarchically

regarded for coverage measure. Coverage of model elements of test components

is again not measured.

 TestContext flat : Coverage is measured in terms of all states, transitions, and

operations defined at the first decomposition level of the test context, i.e. all

states, transitions, and operations of the direct parts of the test context are

considered.

 TestContext hierarchical : all states, transitions, and operations in the hierarchal

structure of the test context are considered in coverage measure.

 Computing cumulative Model Coverage for TestContexts

To compute the model coverage for TestContexts, for at least one of the TestCases of the

TestContext the property ―TestConductor.TestCase.ComputeCoverage‖ must be switched

on (if TestConductor.Settings.TestingMode == AnimationBased) or the tag

―ComputeModelCoverage‖ (if TestConductor.Settings.TestingMode == AssertionBased)

must be turned on. However, if the property is switched on for more than one test case of

the TestContext, TestConductor computes the cumulative coverage of all executed test

cases that have switched on this property and stores the result as a coverage report

underneath the TestContext. In order to compute the cumulative coverage of all test cases

of a TestContext this property has to be switched on for all test cases belonging to the

TestContext. A simple way to do it is to set the property directly for the TestPackage that

contains the TestContext:

Now, when executing the complete TestContext, a coverage report is generated for each of

the contained test cases, and a cumulative coverage report is generated for the

TestContext:

 Computing cumulative Model Coverage for TestPackages

Analogously to computing the cumulative coverage of TestContexts, TestConductor also

provides the possibility to compute the cumulative coverage of TestPackages. To compute

the model coverage for TestPackages, for at least one of the TestCases of the TestPackage

the property ―TestConductor.TestCase.ComputeCoverage‖ must be switched on.

However, if the property is switched on for more than one test case of the TestPackage,

TestConductor computes the cumulative coverage of all executed test cases that have

switched on this property and stores the result as a coverage report underneath the

TestPackage. In order to compute the cumulative coverage of all test cases of a

TestPackage this property has to be switched on for all test cases belonging to the

TestPackage. A simple way to do it is to set the property directly for the TestPackage for

which the cumulative coverage shall be computed.

 Computing Code Coverage (only assertion based
testing mode)

Besides computing model coverage of test cases, TestConductor can also compute the

achieved code coverage of test cases (only available for RhapsodyC and Microsoft

cmpilers). In order to turn on code coverage, the tag ―ComputeCodeCoverage‖ of the

testing configuration must be turned on:

When this option is turned on, when building test cases TestConductor instruments the test

excutable s.t. during test execution code coverage information is computed. After test case

execution, the computed results are added as an html report to the model. The result report

both contains summary information (e.g. percentage of statement coverage,

decision/conditon coverage, modified condition/decision coverage (MC/DC)) as well as

detailed information about each source line.

For an example that shows how to use code coverage, please try sample

―CmodelCodeCoverage‖ in the folder

<samples/csamples/TestConductor/CmodelCodeCoverage>.

 Computing Code Coverage, Memory Profiling,
and Performance Profiling with Rational
TestRealTime during Test Execution

When executing TestCases, either individual TestCases or a TestContext, TestConductor

provides the possibility to apply functionality of the tool Rational TestRealTime (TestRT)

during the execution of the TestCases with TestConductor. The result information

computed by TestRealTime is provided by a specific controlled file that is added to the

model after the execution of the test cases. When double-clicking that file, TestRealTime

opens and shows the results computed during TestCase execution, for instance code

coverage, memory profiling, or performance profiling information.

The integration of TestConductor with TestRT is realized using a set of stereotypes. These

stereotypes are defined in subpackage RTC::TestArchitecture::TestRT of the

TestingProfile.

Stereotype TestRealTime can be applied on configurations and provides a set of tags that

can be used to control the kind of instrumentation that shall be performed on that

configuration when using the tool ―Rational TestRealTime‖ together with TestConductor.

See also section Rational TestRealTime.

Stereotype TestRealTimeFile is used to denote TestRealTime data files that are added to

the model by TestConductor. This data files are needed in order to have all TestRealTime

results maintained as part of the model.

Stereotype TestRealTimeResult denotes the result data that is added by TestConductor to

the model after a TestCase execution or a TestContext execution of a configuration that

with stereotype TestRealTime.

The TestArchitecture package contains the types:

 RTRT_CoverageBlockDefinition_Type

 RTRT_CoverageCondition_Type

 RTRT_CoverageProc_Type

 RTRT_Target_Type

These four types are used for the integration between TestConductor and TestRealTime.

Users do not have to care about the precise definition of these types.

 Applying Rational TestRealTime during Test Execution

In order to apply TestRealTime on TestCases and TestContexts, you have to do the

following steps:

1. Set the stereotype <<TestRealTime>> to the TestConfiguration of the TestContext on

which TestRealTime should be applied:

The stereotype <<TestRealTime>> is part of the Rhapsody UML Testing Profile.

2. Select the TestRT options you want to apply during TestCase execution. In order to do

this, switch to the ―Tags‖ tab of the configuration features dialog. The following tags

can be used to select the TestRT options that should be applied during TestCase

execution:

 InstrumentedFiles:

In this setting the files (separated by commas) which are to be instrumented
by Rational TestRealTime are specified. Per default the setting is filled
automatically by TestConductor (choosing the files belonging to the SUT
objects). However, the user can manually specify the list of files, if the setting
"InstrumentedFilesAutoset" is turned off.

 InstrumentedFilesAutoset:

If this setting is turned on, the setting "InstrumentedFiles" will be filled by
TestConductor automatically (default). If the setting is turned off, it is in the
user's responsibility to manually fill the setting "InstrumentedFiles".

 InvokeMakeFileAutoset

If this setting is turned off, the property
"<lang>.<compile_env>.InvokeMakefile" is no longer modified by
TestConductor, and no settings specified here are passed to the Rational Test
RealTime instrumentation. The user has to manually specify all settings in the
property "<lang>.<compile_env>.InvokeMakefile". This setting allows the user
to work with targets not yet supported by TestConductor out-of-the-box by
using user-defined makefiles or invoke.makefile-scripts.

 RTRT_CoverageBlockDefinition

With these settings the user can influence whether and with which parameters
the 'BLOCK' option is used in the Rational Test RealTime instrumentation. The
'BLOCK' option only instruments simple blocks. Use the 'IMPLICIT' or
'DECISION' (these are equivalent) option to instrument implicit blocks
(unwritten else instructions), as well as simple blocks. Use the 'LOGICAL'
parameter to instrument logical blocks (loops), as well as the simple and
implicit blocks. For detailed information about this TestRT command and the
parameters see the Rational Test RealTime documentation.

 RTRT_CoverageCall

With these settings the user can influence whether the 'CALL' command is
used in the Rational Test RealTime instrumentation (to instrument function
calls). For detailed information about this command and the parameters see
the Rational Test RealTime documentation.

 RTRT_CoverageCondition

With these settings the user can influence whether and with which parameters
the 'COND' command is used in the Rational Test RealTime instrumentation.
If 'COND' is used without parameters, the TestRT Instrumentor instruments
basic conditions. The parameter values 'MODIFIED' or 'COMPOUND' are
equivalent settings that allow measuring the modified and compound
conditions. The parameter value 'FORCEEVALUATION' instruments forced
conditions. For detailed information about this command and the parameters
see the Rational Test RealTime documentation.

 RTRT_CoverageProc

With these settings the user can influence whether and with which parameters
the 'PROC' command is used in the Rational Test RealTime instrumentation. If
„PROC‟ is used without parameters (default setting), then procedure inputs
(functions) are instrumented. When set to 'RET'‟, then procedure inputs,
outputs, and terminal instructions are instrumented. For detailed information

about this command and the parameters see the Rational Test RealTime
documentation.

 RTRT_MemoryProfiling

If this setting is turned on, it activates instrumentation for the Memory Profiling
analysis feature of Rational TestRealTime. For detailed information about this
TestRT feature see the Rational Test RealTime documentation.

 RTRT_PerformanceProfiling

If this setting is turned on, it activates instrumentation for the Performance
Profiling analysis feature of Rational TestRealTime. For detailed information
about this TestRT feature see the Rational Test RealTime documentation.

 RTRT_Target

This setting specifies the Test Realtime target deployment port. Currently
supported out-of-the-box by TestConductor are 'cvisual6' and 'cvisual8'.

 RTRT_Trace

If this setting is turned on, it activates instrumentation for the Runtime Tracing
analysis feature of Rational TestRealTime. For detailed information about this
TestRT feature see the Rational Test RealTime documentation.

 RTRT_UseUserOptions

If this setting is turned on, the contents of setting "UserOptions" are used as
instrumentation options by TestRT. All other instrumentation settings
(including "InstrumentedFiles") above are ignored

 RTRT_UserOptions

User-defined Options which will be used for the instrumentation by TestRT.

Note: if you do not manually set any of the above listed settings, then TestConductor will

control TestRT with the default settings.

 Applying TestRealTime on single Test Cases

After you have set the stereotype <<TestRealTime>> to the configuration that shall be

executed, and after you have selected the TestRT options in the ―Tags‖ tab, you are now

ready to execute a single TestCase. In order to do this, simply select the TestCase and

select ―Execute TestCase‖. TestConductor detects that you want to execute a

<<TestRealTime>> configuration which requires TestRealTime specific instrumentation.

TestConductor asks if it should update the configuration properties such that the required

TestRealTime instrumentation will be performed. Select ―OK‖ in order to set the

configuration properties correctly, and to rebuild the application with the right

configuration properties:

Note: You can perform an explicit update of the configuration properties according to the

TestRealTime settings in the ―Tags‖ tab of the configuration by selecting ―Update

TestCase‖ or ―Update TestContext‖. When TestConductor has updated the configuration

properties, and after rebuilding the application, the TestCase execution starts. When the

TestCase execution has finished, e.g. after executing and closing the execution dialog of a

sequence diagram TestCase, the computed TestRealTime results are automatically added

to the model. The results are denoted as <<TestRealTimeResult>> elements in the

browser. When double-clicking this element, TestRealTime opens and shows the

computed results:

In addition to the TestRealTimeResult elements in the browser, TestConductor also adds

several controlled files to the model that are stereotyped with the stereotype

<<TestRealTimeFile>>. These files are necessary in order to maintain all TestRealTime

results in a self-contained way as part of the model.

 Applying TestRealTime on TestContexts

After you have set the stereotype <<TestRealTime>> to the configuration that shall be

executed, and after you have selected the TestRT options in the ―Tags‖ tab, you are now

ready to execute a TestContext. In order to do this, simply select the TestContext you want

to execute and select ―Execute TestContext‖. TestConductor detects that you want to

execute a <<TestRealTime>> configuration which requires TestRealTime specific

instrumentation. TestConductor asks if it should update the configuration properties such

that the required TestRealTime instrumentation will be performed. Select ―OK‖ in order to

set the configuration properties correctly, and to rebuild the application with the right

configuration properties:

Note: You can perform an explicit update of the configuration properties according to the

TestRealTime settings in the ―Tags‖ tab of the configuration by selecting ―Update

TestCase‖ or ―Update TestContext‖. When TestConductor has updated the configuration

properties, and after rebuilding the application, the TestCase execution starts. After all

TestCases of the selected TestContext have been executed, the TestRealTime results are

automatically added to the model. The results are denoted as <<TestRealTimeResult>>

elements in the browser. When double-clicking this element, TestRealTime opens and

shows the computed results. Since all TestCases of the selected TestContext have been

executed, the TestRealTimeResult contains the accumulated results of all executed

TestCases, for instance if you have 3 TestCases tc1, tc2, tc3, then the TestRealTimeResult

contains the accumulated results of tc1, tc2 and tc3:

In addition to the TestRealTimeResult element in the browser, TestConductor also adds

several controlled files to the model that are stereotyped with the stereotype

<<TestRealTimeFile>>. These files are necessary in order to maintain all TestRealTime

results in a self-contained way as part of the model.

 Integration with CUnit/CppUnit Framework
In the area of testing, CUnit and CppUnit frameworks have become de-facto standards in

recent years. Many developers and companies have already organized their testing

process using these frameworks. In order to ease migration to a model driven development

approach, TestConductor offers a test integration for Rhapsody with the CUnit and

CppUnit frameworks.

 CUnit integration has been developed and tested using CUnit-2.1-0.

 CppUnit integration has been developed and tested using cppunit-1.12.1.

This integration is realized using stereotypes defined in the TestingProfile. The stereotypes

for CUnit integration are defined in subpackage RTC::TestArchitecture::CUnit, whereas

the sterotypes for CppUnit integration are defined in subpackage

RTC::TestArchitecture::CppUnit.

 Stereotypes for CUnit integration

Stereotype CUnitContext can be applied to a class and sets some properties for CUnit

testing integration. You can change a test context to CUnitContext – and vice versa - by

right-clicking a test context and secting ―Change to > CUnitContext‖.

Stereotype CUnitConfig can be applied to a configuration and provides a set of tags for

customization of CUnit testing integration with Rhapsody. CUnitConfig overrides

property CG.Configuration.StartFrameworkInMainThread, s.t. the Rhapsody framework

ist started in a new thread and control returns to the main thread. Right after starting the

framework either a single test case is invoked or all test cases of the test context (only for

CUnitContextExecutionKind == NoRestart).

―Update TestCase‖, ―Update TestContext‖, and ―Update TestPackage‖ with respect to a

CUnitContext (refering to a confioguration stereotyped <<CUnitConfig>>) will

instrument the CUnitContext with a set of operations:

 int cunit_init()—CUnit requires an initialization and a cleanup function for each

test suite. These functions are provided by TestConductor as prototypes, which

can be used to add application or test specific code.

 int cunit_clean()--the test suite cleanup function.

 void cunitmain(char* tc_name)—the main function for CUnit testing. The

function consists of :

 a framework initialization part

 a test suite specific part – i.e. a CUnitContext specific part

 a testoutputter definition part

 and a execution and result computation part – refered to as tail

Each of these parts can be customized using a tag of the <<CUnitConfig>>

configuration.

 <testcontext-type>* setTestContext(<testcontext-type>* context)—Since test

cases may not have arguments in the CUnit framework,, they can not be invoked

with the ‗me‘-pointer by the test context. Hence, a static variable is required, that

allows access to the test context data structure within test cases. Test cases can get

access to this data structure using the test context function ‗theTestContext()‘.

Function ‗setTestContext()‘ sets a static pointer variable, which then can be

returned by ‗theTestContext()‘.

 <testcontext-type>* theTestContext()— see above.

 Init()—initializer that, in particular, invokes ‗setTestContext()‘ with the ‗me‘-

pointer in order to enable access to the test context data structure from within test

cases (see above).

The customization tags of stereotype CUnitConfig are:

 CUnitContextExecutionKind-- Possible values: ‗RestartExecutable‘,‘NoRestart‘.

This tag defines whether the application is restarted for each testcase, or all test

cases are executed within a single invokation of the application. Default is

‗RestartExecutable‘.

 CUnitIncludePath—defines the path to the headers of the CUnit framework. For

path definition, a symbolic variable $CUNITINSTALLDIR can be used. This

symbolic variable is textually substituted by the contents of tag CUnitInstallDir

upon ―Update TestCase‖, ―UpdateTestContext‖, and ―Update TestPackage‖,

respectively. Default: ―$CUNITINSTALLDIR/CUnit/Headers‖.

 CUnitInstallDir—the full path to the installation directory of the CUnit

framework. For definition of the path, envronment variables, e.g.

―$(CUNITHOME)‖ can be used . Default: ―$(CUNITHOME)‖.

 CUnitLibPath—the full path to the CUnit framework library file. Default:

―$CUNITINSTALLDIR/CUnit/lib/CUnit.lib‖.

 CUnitMainInit— the initialization part of the cunitmain() function that will be

generated by ―Update TestCase‖, ―Update TestContext‖, and ―Update

TestPackage‖, respectively. For the default, please consult the TestingProfile.

 CUnitMainOutputter— test outputter specific initializations.

Default: ―$RTCAUTOGENERATE‖. If CUnitMainOutputter contains exactly this

string, TestConductor will automatically generate the respective code according to

the chosen output format.

 CUnitMainTail— defines the execution and result computation part of

‗cunitmain()‘. For the default, please consult the TestingProfile.

 CUnitReportKind—possible values: ‗xml‘, ‗html‘, ‗text‘. This tag defines the

result report format. Default: ‗html‘

 InvokeExecutable—the content of this tag will be written to property

C_CG.Configuration.<activeEnvironment> and defines how the application will be

invoked.

Default: ―$executable $TestCase‖, where ―$TestCase‖ will be textually substituted

by the ―Update ...‖ functionality with the name of the selected test case or ―all‖, if a

test context is going to be executed.

 PostFrameworkThreadSegment— the contents of this tag will be written to

property CG.Configuration.PostFrameworkThreadSegment. Using this tag it can

be customized how ‗cunitmain()‘ will b invoked. Default: ―char* tcname = argv[1];

cunitmain(tcname);‖

 ReportFilename— the filename prefix of the report generated by CUnit. Default:

―$CONFIGDIR/report‖, where ―$CONFIGDIR‖ is a symbolic variable denoting

the code generation configuration refered to by the test context. ―$CONFIGDIR‖

will be textually replaced by the ―Update ...‖ functionality.

 ResultFilename— the filename for the overall ‗pass/fail‘ result. A CUnit test case

execution passes, iff all executed assertions pass; a CUnitContext execution passes,

iff all test cases pass; a TestPackage passes, iff all CUnitContexts pass.

Default : ―$CONFIGDIR/result.txt‖

 XSLTFile--- full path to the xslt file using which a html report can be generated

from a CUnit xml report.

Default : ―$CUNITINSTALLDIR/Share/CUnit-Run.xsl‖

 Stereotypes for CppUnit integration

Stereotype CppUnitContext can be applied to a class and sets some properties for CppUnit

testing integration. You can change a test context to CppUnitContext – and vice versa - by

right-clicking a test context and secting ―Change to > CppUnitContext‖.

Stereotype CppUnitConfig can be applied to a configuration and provides a set of tags for

customization of CppUnit testing integration with Rhapsody. CppUnitConfig overrides

property CG.Configuration.StartFrameworkInMainThread, s.t. the Rhapsody framework

ist started in a new thread and control returns to the main thread. Right after starting the

framework either a single test case is invoked or all test cases of the test context (only for

CppUnitContextExecutionKind == NoRestart).

―Update TestCase‖, ―Update TestContext‖, and ―Update TestPackage‖ with respect to a

CppUnitContext (refering to a confioguration stereotyped <<CppUnitConfig>>) will

instrument the CppUnitContext with a set of operations:

 void setUp()—CppUnit requires an initialization and a cleanup function for each

test case/test suite. These functions are provided by TestConductor as prototypes,

which can be used to add application or test specific code.

 void tearDown()--the test suite cleanup function.

 void cppunitmain(char* tc_name)—the main function for CppUnit testing. The

function consists of :

 a framework initialization part

 a test suite specific part – i.e. a CppUnitContext specific part

 a testoutputter definition part

 and a execution and result computation part – refered to as tail

Each of these parts can be customized using a tag of the <<CUnitConfig>>

configuration.

The customization tags of stereotype CppUnitConfig are:

 CppUnitContextExecutionKind-- Possible values:

‗RestartExecutable‘,‘NoRestart‘. This tag defines whether the application is

restarted for each testcase, or all test cases are executed within a single invokation

of the application. Default is ‗RestartExecutable‘.

 CppUnitIncludePath—defines the path to the headers of the CppUnit framework.

For path definition, a symbolic variable $CPPUNITINSTALLDIR can be used.

This symbolic variable is textually substituted by the contents of tag

CppUnitInstallDir upon ―Update TestCase‖, ―UpdateTestContext‖, and ―Update

TestPackage‖, respectively. Default: ―$CPPUNITINSTALLDIR/include‖.

 CppUnitInstallDir—the full path to the installation directory of the CppUnit

framework. For definition of the path, envronment variables, e.g.

―$(CPPUNITHOME)‖ can be used . Default: ―$(CPPUNITHOME)‖.

 CppUnitLibPath—the full path to the CppUnit framework library file. Default:

―$CPPUNITINSTALLDIR/lib/CppUnit.lib‖.

 CppUnitMainInit— the initialization part of the cppunitmain() function that will

be generated by ―Update TestCase‖, ―Update TestContext‖, and ―Update

TestPackage‖, respectively. For the default, please consult the TestingProfile.

 CppUnitMainOutputter— — test outputter specific initializations.

Default: ―$RTCAUTOGENERATE‖. If CUnitMainOutputter contains exactly this

string, TestConductor will automatically generate the respective code according to

the chosen output format.

 CppUnitMainTail— defines the execution and result computation part of

‗cppunitmain()‘. For the default, please consult the TestingProfile.

 CppUnitReportKind—possible values: ‗xml‘, ‗html‘, ‗text‘,‘compilertext‘. This

tag defines the result report format. Default: ‗html‘

 InvokeExecutable—the content of this tag will be written to property

CPP_CG.Configuration.<activeEnvironment> and defines how the application will

be invoked.

Default: ―$executable $TestCase‖, where ―$TestCase‖ will be textually substituted

by the ―Update ...‖ functionality with the name of the selected test case or ―all‖, if a

test context is going to be executed.

 PostFrameworkThreadSegment— the contents of this tag will be written to

property CG.Configuration.PostFrameworkThreadSegment. Using this tag it can

be customized how ‗cunitmain()‘ will b invoked.

Default: ―p_$TestContext->cppunitmain(argv[1]);‖, where the term

―$TestContext‖ will be textually substituted by TestConductor upon ―Update ...‖.

 ReportFilename— the filename prefix of the report generated by CppUnit.

Default: ―$CONFIGDIR/report‖, where ―$CONFIGDIR‖ is a symbolic variable

denoting the code generation configuration refered to by the test context.

―$CONFIGDIR‖ will be textually replaced by the ―Update ...‖ functionality.

 ResultFilename— the filename for the overall ‗pass/fail‘ result. A CppUnit test

case execution passes, iff all executed assertions pass; a CppUnitContext execution

passes, iff all test cases pass; a TestPackage passes, iff all CppUnitContexts pass.

Default : ―$CONFIGDIR/result.txt‖

 XSLTFile--- full path to the xslt file using which a html report can be generated

from a CppUnit xml report.

Default : ―$CPPUNITINSTALLDIR/contrib/xml-xsl/report.xsl‖

 Test Definition for CUnit/CppUnit

Code and flow chart test cases can be used very similar to their normal usage. Instead of

the RTC_ASSERT macros, for CUnit and CppUnit, CU_ASSERT macros and

CPPUNIT_ASSERT macros, respectively, are used.

For CUnit also statechart test cases can be used similarly to their normal usage with

TestConductor, except for using CU_ASSERT macros instead of RTC_ASSERT macros.

For CppUnit, usage of statechart test cases requires some manual adaptions of the test

context and the statechart defining the test. The necessary adaptions are explained below.

We recommend using code and flow chart test cases also for testing reactive behavior (cf.

Testing reactive behavior with Code Test Cases, Testing reactive behavior with Flow

Chart Test Cases on page 49 pp.).

Both, CUnit integration as well as CppUnit integration do currently not support SD test

cases.

 Using Statechart Test Cases with CppUnit

In the CppUnit framework assertions like CPPUNIT_ASSERT are realized by throwing

an exception,when an assertion fails. This exception is caught by the framework and the

failed assertion is reported. The entire mechanism relies on the assumption that the test

case is executed in the same thread as the framework. CppUnit integration with

TestConductor utilizes a test context as test fixture, i.e. the CppUnit framework is

executed in the thread of the CppUnitContext. Statechart test cases are realized using a

separate test component owning the statechart, s.t. the statechart is exceuted in the thread

of the test component. Since these threads are in general not the same, it is necessary to

catch exceptions within the statechart and add failures to the testresult maintained by the

CppUnitContext.

Necessary modifications for statechart test cases with CppUnit:

1. Add public attributes

 CppUnit::TestSuite* suiteOfTests

 CppUnit::TestResult* theTestResult

to CppUnitContext

2. Overwrite tag CppUnitMainInit:

CPPUNIT_NS::TestResult testresult;

CPPUNIT_NS::TestResultCollector collectedresults;

testresult.addListener(&collectedresults);

std::ofstream outfile;

// Original: local variable

/* CppUnit::TestSuite *suiteOfTests = new

 CppUnit::TestSuite("$TestContext");*/

//NEW: use CppUnitContext attribute

this->suiteOfTests = new

 CppUnit::TestSuite("$TestContext");

CPPUNIT_NS::TestRunner *testrunner = new

CPPUNIT_NS::TestRunner();

//NEW: initialize attribute of CppUnitContext

theTestResult = &testresult;

3. add ―cppunit/TestResult.h‖ to property CPP_CG.Class.ImpIncludes of test

component refered to by <<StatechartTestCase>> dependency of statechart test case

4. Instead of simply using e.g.

CPPUNIT_ASSERT(

 itsTCon->getItsCalculator()->get_result_op()==42),

in a transition action, you now should write:

CPPUNIT_NS::Test* current_tcase = 0;

CppUnitVector<CPPUNIT_NS::Test*>& alltests =

 (CppUnitVector<CPPUNIT_NS::Test*>&)

 (itsTCon->suiteOfTests->getTests());

CppUnitVector<CPPUNIT_NS::Test*>::iterator it =

alltests.begin();

while (it != alltests.end()) {

 if((*it)->getName()=="SC_tc_0") {

 current_tcase = *it;

 }

 ++it;

}

try {

 CPPUNIT_ASSERT(

 itsTCon->getItsCalculator()->get_result_op()==42);

}

catch (CPPUNIT_NS::Exception e) {

 itsTCon->getTheTestResult()->addFailure(

 current_tcase,

 new CPPUNIT_NS::Exception(e));

}

 Command Line Execution
A test case, a test context and a test package can also be executed from the command line.

TestConductor executes the chosen element similarly to the execution described above.

Also all defined tests within a model can be executed from the command line.

 Command Line Syntax

You can use following syntax to execute tests from the command line:

 “<Rhapsody executable>” <model file> -cmd=call "rtc run

all" -cmd=save

will execute all top level test packages defined in the model.

 “<Rhapsody executable>” <model file> -cmd=call "rtc run

<testpath>" -cmd=save

will execute only the test which is in the path <testpath>

Note: -cmd=save needs to be defined in order to permanently actualize the link to the

HTML test result report (controlled file) and the Verdict tag under it. At this time

older test result files will not be overwritten, but a new file with an incremented

number will be created. In case the model will not be saved before exiting, still the

old or none result file will be referenced.

The <testpath> is the path in the model hierarchy where each element is separated with a

dot (<TestPackage>.<TestContext>.<TestCase>)

Examples:

 “<full Rhapsody path>\Rhapsody.exe” D:\
CppCashRegister_rpy\ CppCashRegister.rpy –cmd=call “rtc
run TPkg_CashRegister.TCon_CashRegister.tc_SimpleStart”
-cmd=save

executes the test case ―tc_SimpleStart‖ of the model CashRegister

 “<full Rhapsody path>\Rhapsody.exe” D:\
CppCashRegister_rpy\ CppCashRegister.rpy –cmd=call “rtc
run TPkg_CashRegister.TCon_CashRegister” -cmd=save

executes the test context TCon_CashRegister of the model CashRegister

 “<full Rhapsody path>\Rhapsody.exe” D:\
CppCashRegister_rpy\ CppCashRegister.rpy –cmd=call “rtc
run TPkg_CashRegister” -cmd=save

executes the test package TPkg_CashRegister of the model CashRegister

Note: For the execution of test cases you have to prepare a compiled and linked

executable for each test context you want to execute and test.

Note: Please exit Rhapsody manually after you finished the test and before you run the

next batch command from the DOS prompt.

In order to automatically shut down Rhapsody after the execution of a test package, test

context or test case from the DOS prompt use the exit command. For instance,

 “<Rhapsody executable>” <model file>-cmd=call "rtc run

all" -cmd=save –cmd=exit

will execute all top level test packages defined in the model, and close both,

TestConductor and Rhapsody.

Command line execution with hidden user interfaces can also be executed from the DOS

prompt with the following command. This executes the tests without bringing up the

Rhapsody window or TestConductor dialog.

 “<Rhapsody executable>” -hiddenui <model file> -

cmd=call "rtc run_hiddenui all" -cmd=save -cmd=exit

will execute all top level test packages defined in the model without showing any

user interface.

 “<Rhapsody executable>” -hiddenui <model file> -

cmd=call "rtc run_hiddenui <testpath>" -cmd=save -

cmd=exit

will execute only the tests in the path <testpath> without showing any user

interface.

Note: After test execution using the option -hiddenui, TestConductor and Rhapsody

will only be closed automatically, if you have also specified –cmd=exit.

 Test Execution Report

After test execution all test reports are written in the same manner as described under

―Test Case Execution‖, ‖Test Context Execution‖ and ―Test Package Execution‖.

 Test Case Execution on Targets
In addition to executing test cases on the host environment, test cases can also be executed

on the target environment. The necessary steps are target environment specific and are

further described in the following documents:

 Testing_with_RTC_on_a_Linux_Target.pdf (Linux)

 Testing_with_RTC_on_a_VxWorks_Target.pdf (VxWorks)

Information about testing non-animated applications asynchronously with TestConductor

can be found in section Offline Testing on page Fehler! Textmarke nicht definiert. pp.

 Driving Operations Calls

 Driving Operation Calls (for Rhapsody in C/C++/Java/Ada)

To be able to call operation calls from the environment in TestConductor, we have to set

the Enable Operation Calls option in the dialog Advanced Instrumentation Settings as

Public, Protected or All and recompile/rebuild the model.

This setting controls the property CG:Operation:AnimAllowInvocation. Following

are the details of the options that can be used:

 None (Default)—do not enable calls

 Public—enable calls if operation is public

 Protected—enable calls if operation is public or protected

 All—enable calls in all cases

 Test Management

TestConductor is a fully integrated add-on solution for Rhapsody. All relevant test data

like the test architecture, test cases and their test scenarios, test configurations and test

results are stored in the model. Navigation to all the elements can be done via the usual

capabilities of the Rhapsody browser.

 Managing Test Data
With this tight integration you have all the possibilities you already know from other

elements like classes, package and so on, e.g.:

 Copy, paste, delete

 Create units for test components, test context, SUT and test component instances

 Load / unload test packages, test components, test context, SUT and test

component instances

 Requirements management

 Configuration management

 Documentation

 Linking Test Case to Requirements

Test cases can be linked to their requirements which are defined in the model. This can be

done by using test objectives (TestObjective) to link model elements to the related

requirements.

 Add a new test objective to the test case ―tc_SimpleStart‖ and select the

requirement from the listed model elements.

The result is a new test objective REQ1 as an element of test case ―tc_SimpleStart‖ which

is linked to its requirement REQ1.

 TestConductor Dialog
The TestConductor main dialog provides some global TestConductor settings and help

functions by selecting Tools > TestConductor from the Rhapsody tools menu:

The dialog offers the possibility to set some global TestConductor settings and to open

TestConductor‘s tutorial by selecting Help > Tutorial. The global settings that can be

changed in this dialog are explained in the next section TestConductor Settings.

 TestConductor Settings
TestConductor provides a range of global and also test case specific settings. The settings

are in most cases stored as properties in the model.

 Sequence Diagram Properties (only animation based testing
mode)

TestConductor provides settings concerning the usage and interpretation of sequence

diagrams during test case execution. All following properties are the settings for the dialog

Define Test:

These settings have to be done via properties on SDInstance level. Open the Feature

dialog of a sequence diagram instance, select the Properties tab, switch in the dropdown

combo box View to All and navigate to the metaclass TestConductor::SDInstance

TestConductor::SDInstance::ExecutionIterations

The required number of run-time instances can be set to multiple iterations with a concrete

number.

Note: This property should not be set directly. Please use the Multiple Iterations setting

in the Define Test dialog.

TestConductor::SDInstance::ExecutionMode

Driver invokes automatic driving of model execution after the test has been activated.

TestConductor automatically injects events into the running Rhapsody model according to

the specified sequence diagram. Monitor invokes manual driving of model execution.

This means that, during test execution, you must inject input events manually using the

Rhapsody animation tool or the project GUI (when available). TestConductor monitors the

reception of these events and internal messages between system objects. Blackbox

considers only those messages that originate at the system border (to be driven by

TestConductor) or that go to the system border (to be monitored by TestConductor).

Note: This property should not be set directly. Please use the corresponding Execute

SDInstance as: setting in the Define Test dialog.

TestConductor::SDInstance::ExecutionOrder

Linear—specifies that TestConductor should monitor the sequence diagram under test

assuming that all events and messages are arranged in a strict sequence. The vertical

drawing order of messages in sequence diagrams is used to compute an absolute sequence

of events and messages (each message in the in sequence diagram has a unique

predecessor and successor). Partial—specifies that TestConductor should monitor only

the order of events located on the same line (instance line or message arrow).

Note: This property should not be set directly. Please use the corresponding SD

Interpretation (Order): setting in the Define Test dialog.

TestConductor::SDInstance::ParameterValues

For a parameterized Rhapsody sequence diagram, map its parameters to concrete values.

Note: This property shall not be set directly. Please use the button Parameter Mapping

in the Define Test dialog.

 General Properties

TestConductor provides some general settings that change the general behavior of

TestConductor. These settings have to be done via properties on test package level. Open

the Feature dialog of a test package, select the Properties tab, switch in the dropdown

combo box View to All and navigate to the metaclass TestConductor::Settings

TestConductor::Settings::AcknowledgeApplyChanges

If this property is switched on, TestConductor requires an explicit acknowledge from the

user each time a SDInstance has been changed. If the property is switched off, changes of

SDInstances are acknowledged implicitly.

By default this property is switched on.

TestConductor::Settings::CreateTestArchitectureMode

This property controls the behavior of the TestConductor function ―Create

TestArchitecture‖. If this property is set to ―Standard‖, each time ―Create

TestArchitecture‖ is performed TestConductor creates a component and a configuration

for the newly created TestArchitecture using the default property settings for components

and configurations. If the property is set to ―Advanced‖, each time ―Create

TestArchitecture‖ is performed TestConductor opens a dialog which allows to specify

from which of the existing components/configurations the property values of the newly

created component/configuration shall be derived.

By default this property has the value ―Standard‖.

TestConductor::Settings::MapSDToTestArchitectureMode

This property controls the behavior of the test case wizard when a test case is created for

an existing sequence diagram. If the value of this property is set to ―Strict‖, only those test

architectures are considered to be suitable for the new test case that contain at least on

SUT instance of one of the classes of the life lines of the original sequence diagram. If the

value of this property is set to ―Weak‖, also all test architectures are considered to be

suitable that does not contain a SUT instance of one of the classes of the life lines of the

original sequence diagram, but for which the same message exchange is possible as in the

original sequence diagram.

TestConductor::Settings::overwriteTestContextDiagram

This property controls the creation of TestContextDiagrams when performing an ―Update

TestArchitecture‖ on a TestContext. If this property is set to ―Never‖, each time ―Update

TestArchitecture‖ is performed a new TestContextDiagram is added to the existing

TestContextDiagrams, i.e., existing TestContextDiagrams are not overwritten. If this

property is set to ―askUser‖, each time ―Update TestArchitecture‖ is performed

TestConductor asks if an existing TestContextDiagram shall be replaced with a new one.

If this property is set to ―Always‖, each time ―Update TestArchitecture‖ is performed

TestConductor replaces an existing TestContextDiagram with a new one.

By default this property has the value ―Never‖.

TestConductor::Settings::TestCaseExecutionOrder

This property controls the execution order of TestCases when executing a TestContext.

Possible values are ―BrowserOrder‖ and ―DeclarationOrder‖ , where ―BrowserOrder‖

defines that TestCases areb executed in the same order as they are displayed in the

browser. ―DeclarationOrder‖ defines execution in a user defined order. The declaration

order can be specified by right-clicking ―TestCases‖ and selecting ―Edit TestCases Order‖

form the context menu.

By default this property has the value ―BrowserOrder‖.

―Edit TestCases Order‖ opens a dialog using which the order of TestCases can be defined:

TestConductor::Settings::TestingMode

By default, new projects created with Rhapsody 7.6 are created with testing mode set to

assertion based testing, i.e., the property ―TestConductor.Settings.TestingMode‖ is set to

―AssertionBased‖. For test packages that have been created with a Rhapsody version older

than 7.6 this property is set to ―AnimationBased‖, i.e., for those test packages

TestConductor behaves as in 7.5.3. If you want to switch from one testing mode to another

testing mode manually, please open the TestConductor main dialog by choosing

―TestConductor‖ from the tools menu. In the upcoming dialog, select the testing mode you

want TestConductor to operate:

 Test Context Properties

Also some properties for test contexts can be set by the user. In order to change these

properties, open the Feature dialog of a test context, select the Properties tab, switch in

the dropdown combo box View to All and navigate to the metaclass
TestConductor::TestContext

TestConductor::TestContext::TestContextExecution_RestartExecutable

If this property is checked (true), for each test case during execution of the test context, the

executable of the test context is restarted. If the property is not checked (false), the test

cases are executed without restarting the executable after the previous test case has

finished its execution.

TestConductor::TestContext::TestContextExecution_PreTestCaseOperation

If this property contains a name of an operation of the test context, for each test case

during execution of the test context, before a test case is executed the operation specified

in this property is called automatically. In the operation specified in this property, one can

initialize or reset some variables that are needed in the subsequent test case execution.

TestConductor::TestContext::TestContextExecution_PostTestCaseOperation

If this property contains a name of an operation of the test context, for each test case

during execution of the test context, after a test case is executed the operation specified in

this property is called automatically. In the operation specified in this property, one can

reset some variables that are needed in the subsequent test case execution.

 Test Case Properties (only animation based testing mode)

Also some properties for test cases can be set by the user. Some of these properties are set

directly by using the execution dialog, some properties you may set using the feature

dialog of a test case. Open the Feature dialog of a test case, select the Properties tab,

switch in the dropdown combo box View to All and navigate to the metaclass
TestConductor::TestCase

TestConductor::TestCase::AnimatedSUT

This property controls the assumptions of TestConductor concerning the animation of the

SUT classes. Depending on the fact that the SUT classes are animated or not,

TestConductor uses different execution algorithms to control the execution of test cases

that are needed in order to execute test cases properly. If this property is set to

―Automatic‖, TestConductor tries to automatically deduce if the SUT contains animation

code or not, and chooses the right execution algorithm accordingly. If the property is set to

―true‖, TestConductor assumes that the SUT classes contain animation code. If the

property is set to false, TestConductor assumes that there is no animation code for the

SUT classes.

Per default the property is set to ―Automatic‖.

TestConductor::TestCase::ATGTestCase

Normally TestConductor injects messages that are defined in a sequence diagram without

time delays directly one after the other. In case this property is enabled, TestConductor

waits with injection of messages until the system is idle.

This property is enabled automatically for test cases created and exported by ATG.

Per default the property is disabled.

TestConductor:TestCase:CallOperationsOnlyWhenCallstackEmpty

If this property is checked, TestConductor delays operation calls that refer to inputs of

TestConductor so that these operation calls are made only when the call stack of the focus

thread is empty.

If the property is cleared, all operation calls are made by TestConductor immediately even

if the call stack of the focus thread is not empty.

Per default the property is disabled.

TestConductor::TestCase::ComputeCoverage

In case this property is enabled, TestConductor automatically computes and reports the

model coverage achieved when executing the test cases.

Per default the property is disabled.

TestConductor::TestCase::CoverageKind

If TestConductor::TestCase::ComputeCoverage is enabled, CoverageKind

defines how the coverage will be measured:

TestConductor supports four different kinds of coverage measures:

 SUT flat: Only coverage of the toplevel class of the SUT is measured, i.e. states,

transitions, and operations of parts of the SUT are not considered. Coverage of

model elements of test components is also not measured.

 SUT hierachical : Coverage of the SUT is measured in a hierarchical manner, i.e.

also states, transitions, and operations of parts of the SUT are hierarchically

regarded for coverage measure. Coverage of model elements of test components

is again not measured.

 TestContext flat : Coverage is measured in terms of all states, transitions, and

operations defined at the first decomposition level of the test context, i.e. all

states, transitions, and operations of the direct parts of the test context are

considered.

 TestContext hierarchical : all states, transitions, and operations in the hierarchal

structure of the test context are considered in coverage measure.

 Per default the property is set to ―SUT flat"..

TestConductor::TestCase::CreateSDForFailedSDInstance

In case this property is enabled, TestConductor automatically creates a failure sequence

diagram (Show as SD) and stores it in the model.

Per default the property is disabled.

TestConductor::TestCase::ExecuteTestWithTracer

In case this property enabled, the execution of this test case will be done with activated

tracer (trace #all all).

Per default the property is disabled.

TestConductor::TestCase::ExecutionAnimationStartedTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to

connect to Rhapsody. If the application does not connect to Rhapsody within the specified

time, the test case execution is aborted. The default value is 20 seconds.

TestConductor::TestCase::ExecutionAnimationStoppedTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to

terminate after receiving the terminate command from TestConductor. If the application

does not terminate within the specified time, TestConductor simply proceeds. The default

value is 20 seconds.

TestConductor::TestCase::ExecutionFirstIdleTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to

become idle after giving the first ―Go Idle‖ command. If the application does not become

idle within the specified time, the test case execution is aborted. The default value is 20

seconds.

TestConductor::TestCase::ExecutionIdleTimeOut

In case a timeout is defined (> 0) and the application does not show any activity for the

defined timeout (in seconds) the execution of this test case is interrupted.

The testing profile defines a global timeout, which can be overwritten for every test

package, test context and test case. This default value in the testing profile is 600 seconds.

Setting this property to zero means that no timeout is enabled.

TestConductor::TestCase::MultipleConditionCheck

TestConductor can be configured to check the reached condition and following conditions

without system activity, until one condition mark evaluates to FALSE. To change the

default TestConductor behaviour change the property

TestConductor::TestCase::MultipleConditionCheck of the test case to TRUE.

For further information read the chapter Condition Marks at page 164.

Per default the property is FALSE.

TestConductor::TestCase::ResetAppBeforeStartTest

In case this property is enabled, TestConductor will reset the application to the initial state

of the model for each test case execution. Normally this property is set using the test

execution dialog for sequence diagram based test cases.

Per default the property is enabled.

Note: This property is available for sequence diagram test cases only. This property is

currently not interpreted for source code, flow chart and statechart test cases.

TestConductor::TestCase::TerminateAppOnQuitTest

This property controls the behavior of TestConductor after quitting a test. In case this

property is enabled, the application terminates after quitting the test. Otherwise only

TestConductor quits.

Per default the property is enabled.

Note: This property is available for sequence diagram test cases only. This property is

currently not interpreted for source code, flow chart and statechart test cases.

TestConductor::TestCase::Tolerances

This property is an internal property where TestConductor stores tolerance definitions

defined in the sequence diagram test definition dialog. User should not set this property

directly.

Note: This property should not be set directly. Please use the corresponding Tolerances

button in the Define Test dialog.

TestConductor::TestCase::UseOM_RETURN

In case this property is enabled, TestConductor checks return values by evaluating a

specific animation message that is generated by the application if the operation whose

return value should be checked uses the animation macro OM_RETURN. If this property

is disabled, TestConductor can only check return values for operation calls that originate

from TestComponents.

Per default the property is disabled.

TestConductor::TestCase::WriteTestExecutionLogFile

TestConductor generates a log file of the test case execution if this property is enabled.

TestConductor stores this log file (RTC_log.txt) into the folder C:\tmp. The folder

must exist and the user must have write access to this folder.

Per default the property is disabled.

 Generating Test Reports with Rhapsody
ReporterPLUS

Rhapsody ReporterPLUS is a reporting engine. The user is able to customize the content

and style of a Rhapsody ReporterPLUS report by specifying a template. Rhapsody

TestConductor delivers the test report template (TestReport.tpl) and the test

requirement coverage report template (TestRequirementCoverage.tpl), which will

be installed in the folder ―reporterplus\Template‖ in your Rhapsody installation.

Note: The report templates currently will not show pictures of subscenarios or linked

subscenarios of test cases. Only the top level diagrams of scenarios and flow

charts are currently displayed.

 Executing the Test Report

To execute the test report template on the model containing test data:

 In case you want to create the report only for a selected test package and the

containing test packages, select in the Rhapsody browser a test package and choose

from the menu Tools > ReporterPLUS > Report on selected package…

 In case you want to create the report for all test packages in the model choose from

the menu Tools > ReporterPLUS > Report on all model elements…

 In the Rhapsody ReporterPLUS wizard Select Task specify the export file format

your report shall be displayed in and click Next>.

 In the Rhapsody ReporterPLUS wizard Select Template check the currently active

template. In case the template ―TestReport.tpl‖ is not active click on ―…‖,

open it from the folder ―reporterplus\Templates‖ in your Rhapsody

installation folder and click Next>.

 The Rhapsody ReporterPLUS wizard Confirmation gives an overview about the

selected options. Click the button <Back to change the options. Click Generate to

start the execution of the Rhapsody ReporterPLUS report generation.

 In the dialog Generate Document specify a path and a name for the document to

generate and click the button Generate.

 Rhapsody ReporterPLUS will show the progress during creating the document and

start the corresponding application to show the test report.

 Using the HTML Test Report

The created HTML test report is divided into two sections, the table of Contents on the left

side and the content section on right side. Dependent of the selected item on the left side,

the corresponding section of the report will be shown on the right side.

Note: The HTML report will only be displayed correct in the internet browsers and

versions, which are shown at report startup.

Note: The table of contents will only be shown in a HTML report. To display the table

of contents Java must be installed. In case these requirements are not fulfilled,

please select another export file format like Microsoft Word.

The first page gives an overview about the loaded model and the contained text contexts.

This page is reachable from the highest entry of the table of contents.

Conceptual this report lists all test contexts of the specified test package(s) during

creation. For each test context you will find information about

 the system under test

 the test component instances

 the test context diagrams

 the test cases and their execution status

Each test context and the sub-items are reachable by clicking on the corresponding item in

the table of content. Click on the plus to extend the tree structure.

 Using the Test Requirement Coverage Report

Execute the test requirement coverage template (TestRequirementCoverage.tpl) to

get a statement about the relation between a requirement and the corresponding test cases,

which cover a requirement in the model. The testing profile defines the stereotype

<<TestObjective>> which shall be used to setup a relation between a test case and a

requirement, which it covers. In general a test objective is a stereotyped dependency,

which can link on every element in the model.

This requirement coverage report focus especially on the dependency between a

requirement and a test case. The test requirement coverage report gives another view on

the model. At a glance the user is able to verify, that e.g. the requirement

―Requirement_CD_WhiteBox_001‖ is covered by the test cases CDWhiteBox_001a,

CDWhiteBox_001b, CDWhiteBox_001c and CDWhiteBox_001d, where

CDWhiteBox_001b is currently FAILED and in result the requirement

―Requirement_CD_WhiteBox_001‖ is not fulfilled.

In opposite to the view ―All Requirements‖, the report also shows a table with ―All Test

Cases‖ of the model. The ―All Test Cases‖ view is assistant to check, whether a test case

has a test objective.

Some items in HTML report e.g. requirements, test cases test results etc. are linked, so the

user can easily browse to more detailed information pages.

 Customizing the Test Report

The test report template is customizable to fit specific users requirements. Follow the

Rhapsody ReporterPLUS documentation how to adapt it to your needs.

 Using the TestConductor API
Similar to Rhapsody, TestConductor provides an API that can be used to access

TestConductor functionality from

 VBA Scripts

 Programs using the Rhapsody COM API

 Programs using the Rhapsody Java API

In order to use the TestConductor API the Rhapsody API function

―IRPApplication::runHelper(String)‖ must be used. In order to apply this function

correctly, one has to provide as an argument a valid TestConductor command.

Additionally, before the ―runHelper‖ function can be executed, an appropriate model

element (e.g. a TestCase) must be selected by using the Rhapsody API. A typical

sequence would look as follows (using VBA):

…

Set app = GetObject(, "rhapsody.Application")

Set proj = getProject()

Set testcase = proj.findElementsByFullName("TestPackageA.TestContextB.TestCaseC")

„ highlight the selected element

testcase.highLightElement();

„ now one can execute a TestConductor command

app.runHelper(“Execute TestCase Sync”)

…

The sample ―CppSamples/TestConductor/TestConductorAPI‖ shows how to access the

TestConductor API from within VBA scripts and Java programs. Additionally, the sample

―CppSamples/TestConductor/CppTestAutomationSample‖ shows how to use the API in

order to automate your testing workflows..

 Available TestConductor API Commands

The following TestConductor API commands are available and can be called by using the

―runHelper‖ Rhapsody API function:

 Applicable to TestCase elements:

 ―Edit TestCase SDInstances‖

 ―Update TestCase‖

 ―Build TestCase‖

 ―Execute TestCase‖

o Performs asynchronous TestCase execution, i.e., the function returns

immediately and the execution of the TestCase is performed in a

separate thread. The API script has to ensure itself (e.g. by waiting a

specified amount of time) that the TestCase execution has finished

before additional TestConductor API commands can be executed.

 ―Execute TestCase Sync‖

o Performs synchronous TestCase execution, i.e., the function returns

only after the execution of the TestCase has finished. This ensures

that subsequent TestConductor API commands are only performed

after the TestCase execution has finished. This is the preferred way of

executing TestCases via the TestConductor API.

Applicable to TestContext elements

 ―Create SD TestCase‖

 ―Create Flowchart TestCase‖

 ―Create Code TestCase‖

 ―Update TestContext‖

 ―Build TestContext‖

 ―Execute TestContext‖

o Performs asynchronous TestContext execution, i.e., the function

returns immediately and the execution of the TestContext is

performed in a separate thread. The API script has to ensure itself

(e.g. by waiting a specified amount of time) that the TestContext

execution has finished before additional TestConductor API

commands can be executed.

 ―Execute TestContext Sync‖

o Performs synchronous TestContext execution, i.e., the function

returns only after the execution of the TestContext has finished. This

ensures that subsequent TestConductor API commands are only

performed after the TestContext execution has finished. This is the

preferred way of executing TestContexts via the TestConductor API.

 ―Execute TestPackage‖

 ―Update TestArchitecture‖

Applicable to TestPackage elements

 ―Create TestContext‖

 ―Update TestPackage‖

 ―Clean TestPackage‖

 ―Build TestPackage‖

 ―Execute TestPackage‖

o Performs asynchronous TestPackage execution, i.e., the function

returns immediately and the execution of the TestPackage is

performed in a separate thread. The API script has to ensure itself

(e.g. by waiting a specified amount of time) that the TestPackage

execution has finished before additional TestConductor API

commands can be executed.

 ―Execute TestPackage Sync‖

o Performs synchronous TestPackage execution, i.e., the function

returns only after the execution of the TestPackage has finished. This

ensures that subsequent TestConductor API commands are only

performed after the TestContext execution has finished. This is the

preferred way of executing TestPackages via the TestConductor API.

Applicable to Class elements

 ―Create TestArchitecture‖

 Defining Callbacks for TestConductor functions

In addition to using the TestConductor API directly, one can also execute automated

scripts after certain TestConductor actions like e.g. creating test architectures. In order to

do this, one can use triggered helpers as provided by Rhapsody. For instance, to specify

that after test architecture creation a certain helper should be activated automatically, one

has to do the following steps:

 Define a helper with the Helper Trigger ―After Add Element‖. The helper can

be implemented e.g. using a VBA script or by an external program that uses

the Rhapsody API.

 Now, when doing ―Create TestArchitecture‖, after the test architecture has

been created the specified helper is invoked automatically.

Besides ―Create TestArchitecture‖, helpers with helper trigger ―After Add Element‖ are

also invoked automatically for all other TestConductor functions that create new elements,

like e.g. ―Create Code TestCase‖.

 Advanced Test Definition

 Specifying Requirements with Sequence
Diagrams

Sequence diagrams play a dominant role in the TestConductor test process. They are a key

means for the graphical specification of tests, and enable TestConductor to visualize

design flaws.

 Graphical Feature Support

TestConductor supports the standard UML sequence diagram elements, as available in the

Rhapsody sequence diagram editor. However, some of these elements are not yet fully

supported.

TestConductor supports the following graphical features:

 Test component lines, which specify classes with driver operations or stub

operations

 Test context lines, which specify the boundary of the system under test including

their test components

 Environment lines, which specify the boundary of a system under test (only

animation based testing mode)

 Actor instance lines for reactive actor classes (those containing state charts). These

classes represent external behaviour against the system under test.

 Object instance lines, which specify the communication behaviour inside the

system under test

 Horizontal and slanted message arcs between object instances (including actor

instances), which specify events, triggered operations, operation calls, and their

argument values. Unspecified messages (messages with realization unspecified)

and unrealized message (messages with Stereotype unrealized) are ignored.

 Messages to itself, which specify that the source and the target of events and

operation calls is the same object instance.

 Dataflow messages among object instances.

 Condition marks, which specify synchronization points in a sequence diagram

(only animation based testing mode)

 Events originating at the environment axis, which specify that external events

trigger the system under test.

 Only assertion based testing mode: Interaction operators ―opt‖, ―alt‖, ―loop‖,

―break‖, ―consider‖, ―parallel‖

 Synchronous and Asynchronous Messages

Rhapsody supports the concepts of synchronous and asynchronous messages. Both of

these concepts can be used when you define and execute tests.

Note the following:

 Only event messages, which are asynchronous, can be interfered by another

message.

 Operation calls are synchronous and do not admit any interference.

TestConductor associates for every event message in a sequence diagram two actions—

sending and receiving. In opposite to event messages TestConductor associates only one

action to operation calls and dataflows. During a test execution with TestConductor, you

can drive a specified sequence diagram and monitor (in the execution dialog) the total

number of actions and those that passed successfully.

 Linear and Partial Order (only animation based testing mode)

TestConductor can interpret a sequence diagram either in linear order or in partial order

mode. To understand why partial order interpretation of sequence diagrams is sometimes

necessary to specify monitors, consider the following example. Assume that the

companies CompanyA and CompanyB want to set up a conference call. You want to

monitor the situation that both parties are eventually connected to the conference call. The

following sequence diagram specifies that each party dials a conference CallNr().

Regardless of the order the parties dial and connect, the monitor must be fulfilled

whenever both parties have connected. In the sequence diagram every message CallNr()

specifies two ordered actions:

 Sending the CallNr() event by a party

 Consumption of the CallNr() event by the telephone corresponding to the

calling party

If you had only linearly ordered monitor sequence diagrams, you could not express the

required independency of the connection order. Note that there are six possible dialing-

and-connection orders for the parties:

(CompanyA_Dial - CompanyB_Dial - CompanyA_Connect -

CompanyB_Connect)

(CompanyA_Dial - CompanyB_Dial - CompanyB_Connect -

CompanyA_Connect)

(CompanyA_Dial - CompanyA_Connect - CompanyB_Dial -

CompanyB_Connect)

(CompanyB_Dial - CompanyA_Dial - CompanyB_Connect -

CompanyA_Connect)

(CompanyB_Dial - CompanyA_Dial - CompanyA_Connect -

CompanyB_Connect)

(CompanyB_Dial - CompanyB_Connect - CompanyA_Dial -

CompanyA_Connect)

Every sequence diagram interpreted in linear order could specify only one of these

possible connection orders (for example, the linear order of the connections shown in the

sequence diagram considered above is “CompanyA_Dial - CompanyB_Dial -

CompanyB_Connect - CompanyA_Connect”, because the evaluation order is from top

to bottom). Hence, with linear order you must define six different monitor sequence

diagrams. Note that five of these monitors would lead to a failure during testing; only one

would pass in every test execution. If you interpret this sequence diagram in partial order,

it represents all the possible (six) orders. This is due to the fact that you do not enforce any

order between pair wise independent sending and receiving of the CallNr() events.

Sending and receiving of an event on the CompanyB side is independent from the

CompanyA side.

Test execution with partial order might result in extreme compilation times.

TestConductor has a facility to interrupt the execution when it takes too long.

By pressing the ―Abort‖ icon in the icon toolbar aborts the compilation and test case

execution.

Note: Partial order set together with the driver and monitor option implies that driving

the input events is independent from monitoring the internal messages. To avoid

the arising nondeterminism, TestConductor first drives inputs and then monitors

internal messages. TestConductor chooses one valid order of messages to be

driven (in particular, this order changes in general when the same sequence

diagram test case is executed repeatedly). Such nondeterminism does not exist

for linear order interpretation, because it is a precise order between all messages

in a sequence diagram. Also note that there is no nondeterminism for monitor

only, because you decide when you inject all inputs, and TestConductor monitors

internal messages as they appear in the running model.

 Parameters

One of the most important aspects of reusing sequence diagrams is the possibility to

parameterize them. By using parameters such as ―X‖ and ―Y‖ as object names for

sequence diagram instances, all combinations of objects of the corresponding classes can

be treated within one sequence diagram. You must instantiate these parameters with

different concrete objects of the system.

Parameters are used to specify sequence diagrams, which can be used as test patterns or as

generic sequence diagrams in test definitions. Parameterized sequence diagrams can be

used more than once in the same test configuration, or they can be used in various contexts

in different test configurations. Parameters can be applied for instance names and for

argument lists of events and operations. Instance names in a Rhapsody sequence diagram

must be either concrete names or parameters. For example, if an instance line is labelled

―X1:Telephone‖, X1 is a parameterized object instance name of class Telephone that

will be mapped to a concrete object instance name when the sequence diagram is

instantiated as part of a test definition. In other words, X1 can be mapped to PBX[0]-

>itsTelephone[0]. Parameters are useful when you are defining multiple tests with a

similar structure, such as the PBX sample where Telephone 1 can connect to

Telephones 2, 3, and 4. Using parameters, you can specify sets of similar tests by

specifying one common sequence diagram for these cases. To manually generate multiple

test cases, simply bind the sequence diagram parameters to various concrete values.

In the following example, the sequence diagram contains the parameters caller,

receiversLine, receiver, nr1, and nr2. The first three parameters represent

parameterized instance names, whereas the last two describe attribute values for

parameterized events. Due to the concept of parameters, this sequence diagram can be

used as a test pattern to specify and execute caller-receiver tests for the pairs of

telephones. This is done by instantiating the sequence diagram several times.

 Defining Parameters

TestConductor supports test definitions based on sequence diagrams, whose instances

either have a concrete or parameterized name. Parameterized name means that it is not a

valid, or concrete, object name as usually used in Rhapsody. You can also use an

anonymous class name that is without a concrete name or parameter. In this case, in

accordance with Rhapsody, the class name is internally expanded to the unique concrete

object instance. During test execution, sequence diagrams are animated in relation to the

default names. Note that parameters have no default values. You can specify parameters

for a sequence diagram by declaring them in the Tag RTC_SDParameter which is

available for each test scenario sequence diagram.

To declare parameters for a sequence diagram do the following:

1. Open a Rhapsody sequence diagram in a Rhapsody project.

2. In the names pane, specify the objects names of the classes Telephone and Line.

Give a parameterized name, such as caller:Telephone. Give the concrete names

for another instance depicted in the sequence diagram like PBX[0]-

>itsTelephone[0]: Telephone. You can leave an instance ―anonymous‖ like

Line. Rhapsody considers such a specification as a concrete class instance with the

default name PBX[0]-> itsLine[0]:Line.

3. In the Rhapsody browser, click on the cross beside of the name of the test scenario

sequence diagram to open the tag view.

4. Open the Feature dialog of the corresponding RTC_SDParamters tag

5. Click into the Value field and type the name of the parameter.

Note: Make sure that you type the identical names of parameters as specified in the

current sequence diagram. TestConductor cannot determine misspelling.

Note: TestConductor adds properties to the sequence diagrams when models are opened,

in case these properties were not added before. This is why existing models with

sequence diagrams are marked as changed (red icon) along with the sequence

diagrams when projects are loaded for the first time after TestConductor was

installed.

If a sequence diagram contains two or more parameters, separate their names using

commas, then click OK. The following figure shows how to specify multiple parameters.

You can apply parameters to message argument lists to specify more flexible, generic

sequence diagrams as templates in test definitions. Parameterized arguments of messages

are used, for example, when input stimuli correspond to parameterized object names in the

same sequence diagram or in the same test configuration.

To extend the parameter list of a sequence diagram with parameterized arguments, do the

following:

1. Open the sequence diagram in the Rhapsody sequence diagram editor and specify

event or operation arguments as parameters inserting their parameterized names in the

object pane. As an example, in the following figure, values of the Digit argument of

the evDigitDialed event are specified as parameters nr1 and nr2

2. Using the Rhapsody browser, open the Feature dialog of the corresponding

RTC_SDParamters tag and extend the list of the parameters typing ―nr1,nr2‖ in

addition to the existing parameters in the Value field.

3. Click OK to accept the change of the parameter list.

The specification defined with the generic ―Ringing_Another_Party‖ sequence diagram,

says that whenever a calling telephone is taken off the hook and dials an extension, the

receiving telephone rings. Note that the sequence diagram does not specify which

telephone is calling, which one is the receiver, nor the extension dialed.

 Parameter Mapping

You can consider Rhapsody sequence diagrams with parameters as ―classes of sequence

diagrams‖, whereas sequence diagrams with parameters mapped to real objects represent

―instances of sequence diagram classes.‖ One parameterized sequence diagram can be

used in various contexts: in different test configurations, or in the same test configuration

with different parameter mappings. It catches several requirements similar in structure

(order of messages) and different only in the names of the involved instances.

As an example, the ―Ringing_Another_Party‖ sequence diagram can specify that

Telephone 1 calls Telephone 4. To do this, map its parameters to the following

object names in the PBX model:

caller: PBX[0]->itsTelephone[0]

receiversLine: PBX[0]->itsLine[3]

receiver: PBX[0]->itsTelephone[3]

nr1: 1

nr2: 4

The following table lists the extension for each telephone.

Telephone Extension

Telephone 1 11

Telephone 2 12

Telephone 3 13

Telephone 4 14

In this example, mapping parameter nr2 to 3 instead of 4 leads to the ―concrete‖

specification corresponding to ―Whenever Telephone 1 dials the extension of Telephone 3,

Telephone 4 rings‖. TestConductor will show that this specification cannot be met by the

real behaviour of the model.

Note: During execution parameter values containing quotes will consistently be

stripped, e.g. the expression ―OK‖ will be converted to OK and ―‖OK‖‖ will be

converted to ―OK‖.

 Using Time Interval for Delay Driving from Environment and
TestComponents

TestConductor provides capabilities to automatically drive messages (events, operations or

triggered operations) with a certain delay. Users can specify that TestConductor should

drive external messages or messages from a TestComponent to the SUT with a certain

time delay. Whenever a message must be driven, users can specify that TestConductor

waits for a certain amount of time (ms, sec, min) in order to delay actual message

generation. This is expressed on the sending instance line (either the system border or a

TestComponent) with the time interval notation of the sequence diagram editor.

Note: TestConductor will regard only time intervals between messages, if driving

messages are defined from the ENV line and the time interval definition is also

specified on the ENV line or if driving messages are defined from a

TestComponent instance line and the time interval definition is specified on the

same TestComponent instance line.

Any Time Interval on a SUT isnatnce line will be ignored.

Time delays will be specified with the time interval notation in sequence diagrams.

TestConductor supports time intervals if they are associated with system border or

TestComponent instance lines. The label of a time interval specifies the time unit (ms,

sec, min) and a time value. Essentially, there are two slightly different Time Interval

annotations with a slightly different execution semantics. The first variant uses the

following syntax:

Syntax: > 5 sec

Here, TestConductor must wait at least 5 seconds before it may drive the next message.

Other time interval formats are “> 500 ms” and ―> 5 min”. TestConductor creates a

timer in the tested application which elapes after the amount of time specified in the Time

Interval.

The start point of a time interval is always associated with the next message point above

the time interval (on any instance line). The end point of a time interval is always

associated with the next message point below the time interval (again on any instance

line).

After driving evOffHook() and observing evOriginateCall() TestConductor must

wait 5 seconds before it may drive evDigitDialed(Digit=1).

TestConductor must monitor all system reactions before evDigitDialed(Digit=1),

including evDialTone().

The second variant of Time Intervals are those which uses the following syntax for time

annotations:

Syntax: >> 5 sec

When using this syntax, in contrast to the ―> 5 sec‖ case TestConductor does not create an

own application timer when starting the time interval. Instead TestConductor will use the

time of the tested application. As a result, TestConductor will only proceed if the tested

application time increases at least the specified amount of time. In contrast to the ―> 5 sec‖

syntax TestConductor may proceed later than the specified amount of time, since the

tested application time might increase to a larger amount of time than the specified time

interval.

TestConductor also allows that time intervals overlap if several messages to be driven are

constrained via time intervals. This means, TestConductor will manage several timers for

the driven messages at the same time, no matter if they are specified on the same instance

line or on different instance lines. For every time interval there always exists a unique

predecessor and successor message to be driven in the sequence diagram.

 Activation Conditions (only animation based testing mode)

Activation conditions are used to specify the point in time during model execution when

sequence diagram instances become activated. You can use activation conditions to model

a predecessor order between several sequence diagram instances in a test definition.

Activation conditions can specify a starting point of sequence diagram instance

simulation, such as event sending or event receiving, which in turn can be a result of the

behavior defined by another sequence diagram. TestConductor supports conditional

expressions for events and conditions in the following form:

ObjectName->CondName(Parameters)

In this syntax:

 ObjectName is a parameterized or concrete name of a class instance or an ENV

(environment variable), which can be represented by the system border.

 CondName is a particular kind of event, state, or method action.

 Parameters is a state of a state chart, or the name of an event or method, and

the receiver of this event or method, depending on the CondName.

The exact syntax is described under Syntax for Activation Conditions / Condition Marks

(see page 251) in the appendix.

Note: Rhapsody does not perform any static syntax checks on these conditions.

You can associate exactly one activation condition with every sequence diagram. The

trivial activation conditions are TRUE and FALSE. Every sequence diagram instance used

in a test inherits the activation condition specified in the property dialog of the sequence

diagram.

 Defining an Activation Condition

Activation conditions are stored as additional tag RTC_ActivationCondition in the

corresponding test scenario sequence diagram. Activation conditions can be defined with

respect to the condition language definition, as follows:

1. In the Rhapsody browser, click on the cross beside of the name of the test scenario

sequence diagram to open the tag view.

2. Open the Feature dialog of the corresponding RTC_ActivationCondition tag

3. Click into the Value field and type the condition. You can specify one activation

condition.

5. Click OK.

Note: To make activation conditions visible in the sequence diagram, you can draw

notes with their descriptions.

 Condition Marks (only animation based testing mode)

TestConductor enables you to specify conditions for condition marks on instance lines

with the same syntax as activation conditions. Condition marks in sequence diagrams can

play the following two roles:

 Synchronize several sequence diagram instances executed concurrently.

 Specify a stubbing behaviour which can appear during execution.

As an example, you can add the following condition mark for the instance of the class

Line in the ―Ringing_Another_Party" sequence diagram:

receiversLine->IsIn(ROOT.InService)

Testing the requirements specified by this sequence diagram, TestConductor will drive the

first three events. After that, it will proceed only if the condition of the condition mark has

the value TRUE. Otherwise, some other activities in the system must be performed to

change the value of the condition. You can specify these activities using other sequence

diagrams driven by TestConductor. They can also be driven manually, if it has not been

yet implemented as a part of the system. Changing the value of the specified condition to

TRUE will trigger TestConductor to continue monitoring and driving this sequence

diagram.

In case there are two or more condition marks defined in a row, TestConductor will check

the first only. TestConductor will evaluate each of the following condition marks with a

new system activity, if the previous condition mark was TRUE. This is the default

TestConductor behaviour.

TestConductor can be configured to check the reached condition and following conditions

without system activity, till one condition mark evaluates to FALSE. To change the default

TestConductor behaviour change the property

TestConductor::TestCase::MultipleConditionCheck of the test case from

FALSE to TRUE.

Note: TestConductor will ignore condition marks during test execution when the syntax

of the condition mark is not valid.

 Preconditions (for SysML/Harmony)

For SysML/HARMONY models, i.e for SysML models that contain the HARMONY

profile, TestConductor provides a special kind of condition, so-called preconditions. With

preconditions, in SysML/HARMONY models one can set attributes of SUTs to specifed

values. This is useful whenever the behavior of the SUT depends on values of local

attributes. In order to define a precondition in a test scenario, add a condition on the life

line of the SUT instance that contains the attribute, and specify the value the attribute

should have:

In the example depicted above, a precondition is specified that defines value ―12‖ for the

attribute ―i1‖ and value ―Peter‖ for attribute ―s1‖ of block A. When executing the test

case, and TestConductor reaches the precondition, it sets the specified values for the

attributes. When the test case continues, now the behavior of the SUT reflects the new

values for the attributes. Currently, the usage of preconditions is restricted to

SysML/HARMONY models. If multiple attributes should be set by a precondition, the

attribute value specification must be separated by newlines in the condition mark.

 Use Cases of Activation Conditions

This section describes some examples that use activation conditions. The main three

purposes of activation conditions are as follows:

 To specify the starting point of sequence diagram simulation.

 To specify that one sequence diagram can be activated only when another sequence

diagram has already been activated or fully traversed (during simulation).

Specifying the Starting Point of Simulation

Activation conditions specify a point in time when the corresponding sequence diagrams

must be activated. Consider the parameterized ―Answering_Call‖ sequence diagram

shown in the following figure:

This sequence diagram can be used to test, whether any telephone can properly answer a

call. This property will be checked starting in the system state specified in its activation

condition:

 When the object defined as receiversLine has sent the event evRing() to

the corresponding Telephone receiver.

 When the object defined as receiver stays in its basic state Idle.

Specifying Ordered Predecessors (only animation based
testing mode)

Through activation conditions, you can define a predecessing order between instances of

different sequence diagrams checked during the same test execution.

Example 1: Exact Predecessing

Consider two sequence diagrams that will be stimulated one after another:

 ―Ringing_Another_Party‖ (shown on page 158)

 ―Receive_X‖, shown in the following figure:

Note that the exact order can be set only between ―concrete‖ sequence diagram instances,

rather than parameterized sequence diagrams. Consider the following parameter mapping

for the ―Receive_X‖ sequence diagram:

receiver: PBX[0]->itsTelephone[2]

receiversLine: PBX[0]->itsLine[2]

The activation condition of this sequence diagram specifies the starting point when Line

3 has sent the evRing event to its Telephone 3. This condition can become TRUE

when the corresponding instance of the ―Ringing_Another_Party‖ sequence diagram (with

the similar parameter mapping) has been fully traversed.

Although the sequence diagrams ―Ringing_Another_Party‖ and ―Receive_X‖ have similar

parameter names—receiver and receiversLine—they can be mapped to different

values. In such a case, two sequence diagram instances will be unordered. Therefore,

parameter names in sequence diagrams can be considered as local variables with values in

the scope of the corresponding sequence diagrams.

Example 2: Interleaving the Execution of Two Sequence Diagrams

The following two sequence diagrams are activated during a test execution one after

another:

The ―X_calls_Y‖ sequence diagram, shown in the following figure:

This can be used to test whether any telephone can start and finish a communication.

Moreover, this property will be checked only starting from the specified state of the

system—when the object defined as callersLine has not received the event evRing

from the corresponding telephone caller.

An instance of the ―Receive_X‖ sequence diagram, described on before can be activated

after the corresponding instance of the ―X_calls_Y‖ sequence diagram has been partially

traversed. To obtain this order between sequence diagram instances, the mapping for the

parameters receiversDigit1 and receiversDigit2 from the ―X_calls_Y‖

sequence diagram must correspond to the extension number of the Line name mapped to

the parameter receiversLine from the ―Receive_X‖ sequence diagram.

Note that the predecessing order is defined implicitly. During test execution, containing

instances of these two sequence diagrams, Test Conductor first activates an instance of

―X_calls_Y‖, drive the events evOffHook, evDigitDialed, and monitor the event

evDialTone. After driving the event evDigitDialed(Digit= receiversDigit2),

TestConductor activates the corresponding instance of the ―Receive_X‖ sequence

diagram. It monitors the event evRelease only after the instance of the ―Receive_X‖

sequence diagram has been fully traversed. The exact order of the sequence diagram

instance execution is derived from the system behaviour, but is also bounded by the

activation condition.

 Specifying Return Values and Output Values

Users can specify expected return values and output values for operation calls. To specify

a return value for an operation, open features dialog of an operation in a sequence

diagram. Specify the expected return value in the Return Value field.

Consider operation 4 =op_int(a = [3..4], b = 2, c = In:9;Out:3) in the

following sequence diagram. It returns integer values. Assume we specify integer value 4

as the return value.

TestConductor will monitor the actual values as specified in the dialog when an operation

call returns and will check if the actual return value conforms to the specified value or not.

Note: Using Macro OM_RETURN(): TestConductor is using Rhapsody‘s animation

capabilities to perform test execution. If an operation returns a value then this

value is by default not animated in Rhapsody. In order to get animation

information about returning operations it is mandatory to use a special Rhapsody

macro OM_RETURN() instead of statement return() for the purpose of test

execution. The macro is pre-defined in “\Share\LangCpp\aom\aommacro.h”.

In the above example suppose that operation body of op_int(int a, int b,

int c) simply contains one statement „return 4;―. This must be replaced by

OM_RETURN(4); to be able to check such return values with TestConductor.

Since this special macro is only needed for testing purposed it is already

embedded into #ifdef-statements. The #ifdef statement guarantees that the

macro is only used for testing purposes, while the standard return-statement is

used when generating non-animated code.

Note: Using Macro OM_RETURN_VOID: If an operation returns with a void value, then

TestConductor can check that the return indeed happens when using

OM_RETURN_VOID.

Note: Using Macro OMREPLY(): Triggered operations returning values is realized

using reply().TestConductor can check that the return indeed happens when using
OMREPLY().

Note: output parameters of type uchar and long double are not supported.

Note: range specification for return values (e.g. "[1..4]") are not supported.

If an actual return value does not conform to a specified value, then a red message is

drawn. The message is labelled with

"<Specified operation and its parameter> Operation Call returned -

Return value does not match. Expected values are: <Expected

operation and its parameter list>”.

For example:

―4=op_int(a=1,b=2,c=3) Operation Call returned - Return value does

not match. Expected values are: 5=op_int(a=1,b=2,c=3)‖.

Note: If we have pointer types or structures as output and in/out parameter types then

serialization functions must be added to the macro in order to be able to test the

value with TestConductor.

Note: If we have pointer types or structures as return types then serialization functions

must be added to the return macro in order to be able to test the value with

TestConductor

Specification of the Output and in/out Values

Suppose we consider an operation m(int p1, int p2, int p3, int p4), where p1

and p2 are input parameters and p3 is an output parameter, and p4 is an in/out parameter.

In a sequence diagram users can specify the expected input parameter values and the

expected output and in/out parameter values. Output and in/out Test Execution parameters

are realized with call-by-reference. For instance, a sequence diagram message "m(p1= 3,

p2 = 5, p3 = 7, p4 = 9)" specifies that operation m() is called in the model with

input values p1=3 and p2=5, and with references to p3 and p4, i.e. m(3,5,&p3,&p4).

Note that &p4 is an in/out parameter and hence is used as an input in the operation m(),

too. Here, &p4 provides the value '9' for the call. The call returns with value p3=7 and

p4=?.

The in/out parameter is specified in a sequence diagram with both input and output

parameters. The format of specifying an in/out parameter is

<parameter> = In:<in_value>;Out:<out_value>

Message "m(p1 = 3, p2 = 5, p3 = 7, p4 =In:9;Out:12)" specifies that m() is

called with "Input p1=3”, "Input p2=5”, "in/out p4=9”. Message m() returns

with "Output p3=7, in/out p4=12‖. Both values for in/out parameter p4, the input

part and the output part are specified.

Output value checking can not be done for operations which originate from the

environment line and are generated by TestConductor. Checking of output values is

supported for all operations that originate from TestComponents, and for all operations

that do not start at the environment line and whose called operation uses OM_RETURN to

return values to the caller.

Users can record animated sequence diagrams. The animated sequence diagrams trace the

parameter values when operations are called, but they do not show the values of output

and in/out parameters when operations return. Hence, animated sequence diagrams can not

be used to check values of output parameters and in/out parameters. Users have to modify

animated sequence diagrams in order to extend it with relevant output information which

is not provided by Rhapsody's sequence diagram animation.

Suppose we consider an operation m(int p1, int p2, int p3, int p4), where p1

and p2 are input parameters and p3 is an output parameter, and p4 is an in/out parameter.

An animated sequence diagram might show "m(p1 = 3, p2 = 5, p3 = *, p4 =

9)". In order to check output parameter p3 and the output value of p4 when m() returns

users must add the required information. Example: "m(p1 = 3, p2 = 5, p3 = 7, p4

= In:9;Out:12)".

Note: Out or in/out values are only taken into account by TestConductor if also a return

value is given in the message specification (value or ―don‘t care‖-star). That must

also be done for operations that do not have a specified return type (void

operations). Hence, the In:..;Out:… specification should only be used if a return

value has been defined, too. Otherwise the test execution will fail.

Note: Out values for some specific out arguments are currently not usable if the

corresponding setting of the property CPP_CG::Type::Out specifies a pointer-type

instead of a reference-type.

Note: During execution parameter values containing quotes will consistently be

stripped, e.g. the expression ―OK‖ will be converted to OK and ―‖OK‖‖ will be

converted to ―OK‖.

 Ignoring Unrealized Messages

Messages with stereotype unrealized are filtered out and ignored in the test execution.

Open the Features dialog of the message then specify Stereotype as Unrealized. When

you are executing the test, we get a user warning that the message is ignored in the test

execution.

Note: TestConductor only supports single-stereotyped elements, but not yet elements

with multiple stereotypes.

 Reference Sequence Diagram

Interaction occurrences and their corresponding reference sequence diagrams are specified

within Rhapsody. Defining tests with TestConductor is not affected by interaction

occurrences, since interaction occurrences are features inside sequence diagrams, while

tests are defined on the basis of sequence diagrams listed in the Rhapsody browser. If

sequence diagrams used in a TestConductor test contain interaction occurrences, then this

is not relevant for the test definition but it clearly has impact on the test execution.

TestConductor will substitute interaction occurrences with the scenarios specified in the

corresponding reference sequence diagrams for test execution. For TestConductor, it is

logically the same if users specify a scenario within one sequence diagram or if the

scenario is specified with interaction occurrences and reference sequence diagrams.

Whenever an interaction occurrence is reached, then the scenario as specified in the

reference sequence diagram is tested. Test control starts with the main sequence diagram,

and when a reference sequence diagram is reached, the control goes into a reference

sequence diagram, and as the execution of the reference sequence diagram is completed,

the control returns back into the main sequence diagram.

Consider the following main sequence diagram, ―SD_A‖, which has a reference to the

sequence diagram, ―SD_B‖.

This interaction occurrence refers to a sequence diagram with name ―SD_B‖, as seen

below.

In the sample sequence diagrams above testing sequence diagram ―SD_A‖ with reference

sequence diagram ―SD_B‖ leads to the same result as if the interaction occurrence would

have been replaced with the scenario in ―SD_B‖.

The scenario which is going to be tested is:

– EvOffHook (SD_A)

– EvOriginateCall (SD_B)

– OpenConnection (SD_B)

– OpenConnection (SD_B)

– EvOriginateCall (SD_B)

– EvDialTone (SD_B)

– EvRing (SD_A)

– EvDigitDialed (SD_A)

– EvDigitDialed (SD_A)

– EvDigitDialed (SD_A)

...

Note: Interaction occurrences are drawn on lifelines. Those lifelines have to be

contained in the reference sequence diagram.

TestConductor does not care if:

 reference sequence diagram does not contain the same life lines as surrounded by

the interaction occurrence

 reference sequence diagram contains fewer life lines

 reference sequence diagram contains more life lines

 reference sequence diagram contains other life lines

TestConductor just considers the provided life lines and the specified messages as relevant

test scenario and expects exactly those messages when the SUT is executed. For instance,

if the above shown sequence diagram ―SD_B‖ does not contain the life line to the right

hand side, then message evOriginateCall going to this life line is not part of the test.

Show As SD draws one new sequence diagram with all the messages which have been

monitored (green colour) or which are supposed to be monitored (blue colour), and also

failed messages (red colour). If a test contains a sequence diagram with one or more

interaction occurrences, then TestConductor draws still only one new sequence diagram

which shows all the relevant messages of the main sequence diagram and also the

messages from the entire referenced sequence diagram.

I case a TestConductor test is executed in linear order a situation which must be taken care

of is, when there is an additional message on the same level as of the reference sequence

diagram. Consider sequence diagram ―SD_A‖ with the interaction occurrence. To the right

hand side of the interaction occurrence there is an additional message evRing, which is

independent from the interaction occurrence. In partial order execution this will be

considered as parallel. In linear order execution, TestConductor must determine a total

order on all messages. In sequence diagrams without interaction occurrences, this order is

determined graphically from top to bottom in a sequence diagram. In the case above, the

graphical order between messages in ―SD_B‖ and between evRing is not specified.

Hence, TestConductor can not establish a total order based on the graphical information.

In this situation, TestConductor follows the following rules:

1. TestConductor considers all messages from top to bottom in total order unless the

upper boundary (graphically) of an interaction occurrence is reached.

2. Then all messages in the reference sequence diagrams are considered in total order

3. Then the messages to the right hand and left hand side of an interaction occurrence are

considered in total order (if those messages do exist).

4. If reference sequence diagrams contain new interaction occurrences then the same

rules apply.

If several interaction occurrences appear in one sequence diagram then the same rules

apply, i.e. there is a total order on interaction occurrences which is derived from the

graphical order.

If an interaction occurrence is not yet realized by a reference sequence diagram, then this

interaction occurrence is ignored for actual test execution.

If reference sequence diagrams are used to specify lifeline decomposition, then this is also

ignored by TestConductor for test execution.

 Life Line and Part Decomposition

Life Line Decomposition Support for Testing (only
animation based testing mode)

Life line decomposition and their corresponding reference sequence diagrams are

specified in Rhapsody. For instance, consider sequence diagram ―MainSD‖ (Figure 1)

which references ―RefSD‖ (Figure 2).

The system border life line specifies the environment of the sequence diagram. Here, we

have four messages from the system border going to a logical object Tel0. Tel0 has not

been realized to a concrete class or object in the model. It is just a logical name for an

arbitrary telephone (<unspecified>). It is a decomposed life line. We set the

decomposed life line to ―RefSD‖ as shown in the diagram. Messages evOffHook,

evDigitDialed and evOnHook() are sent to Tel0 (the messages are also

<unspecified>). The MappingPolicy property of its life line is set to

ObjectAndDerivedFromRefSD.

In the ―RefSD‖, we can see that the messages that come from the system border of this

―RefSD‖ do match with the messages in the ―MainSD‖ (evOffHook(),

evDigitDialed(), evOnHook()). In the ―MainSD‖, these messages go from the

system border to the Tel0 life line. Tel0 is internally realized by the concrete objects
PBX[0]->itsTelephone[0], PBX[0]->itsLine[0] and PBX[0]-

>itsConnection[0] which also exchange some internal messages.

We consider only the ―MainSD‖ while defining the test in TestConductor. For actual test

execution, TestConductor will execute the ―MainSD‖ and check if the messages sent

to/from Tel0 in the ―MainSD‖ are received/sent by any of the instances in the ―RefSD‖.

TestConductor knows only senders/receivers of the ―RefSD‖, i.e., TestConductor knows

only the instances in the ―RefSD‖ but TestConductor does not know about the internal

messages between the instances in the ―RefSD‖. When message are sent to/from Tel0 in

the ―MainSD‖, Testconductor only checks if these messages are received/sent by the

instances present in the ―RefSD‖.

In the sample, testing ―MainSD‖ with reference sequence diagram ―RefSD‖ leads to the

following order of messages that will be checked by TestConductor

 System border sends evOffHook() to Tel0 in the MainSD

 evOffHook() is received by one of the instances in the RefSD

 System border sends evDigitDialed(Digit = 1) to Tel0 in the MainSD

 evDigitDialed(Digit = 1) is received by one of the instances in the

RefSD

 System border sends evDigitDialed(Digit = 2) to Tel0 in the MainSD

 evDigitDialed(Digit = 2) is received by one of the instances in the

RefSD

 evRing() is sent by one of the instances in the RefSD

 evRing() is received by PBX[0]->itsLine[1] in MainSD

 Messages evRing() and evAlerting() occur in the MainSD

 evAlerting() sent by PBX[0]->itsline[1] to Tel0 in MainSD

 evAlerting() is received by one of the instances in the RefSD

 Messages evOffHook() and evAnswerCall() occur in the MainSD

 evAnswerCall() sent by PBX[0]->itsline[1] is sent to Tel0 in

MainSD

 evAnswerCall() is received by one of the instances in the RefSD

 System border sends evOnHook() to Tel0 in the MainSD

 One of the instances in the RefSD receives evOnHook() in RefSD

Note: Limitation - Type of message arguments going to decomposed life lines are not

known. All arguments are treated as input arguments.

In order to drive messages that are directed to decomposed life lines, a receiver instance

must be specified. Open the features dialog of the decomposed life line, click on Tags tab,

add a new tag RTC_receiver (if not available) and also a value like Telephone[0] as

shown in Figure 3.

The following rules are applied by TestConductor in order to drive those messages.

1. If an instance line is not decomposed

 not realized messages to such a life line are filtered out with a warning

 if the life line is not realized the test is not executed

2. If a life line is decomposed into ObjectAndItsParts

 if the life line is not realized the test is not executed

 if the life line is realized then for each driven message the tag RTC_receiver is

used to define the proper receiver of the message.

 if the tag is not defined then the message is sent to the instance the life line is

realized to.

3. If an instance line is decomposed into ObjectAndDerivedFromSD

 tag RTC_receiver is used to define the receiver instance of driven messages

 if the tag is not defined then the message is sent to the instance the life line is

realized to

 if the tag is not defined and the message is not realized then the message is filtered

out

4. If an instance line is decomposed into Smart

 if a reference sequence diagram has been defined then see 3.

 otherwise see 2.

Part Decomposition Support for Testing

Life lines can represent objects and its parts. Consider the Sequence diagram ―ObjectSD‖

above. In the features tab for life line PBX, we have class PBX as Realization and

ObjectAndItsParts as MappingPolicy. Instance line PBX represents object PBX and its

parts. evOffHook() and evOnHook() are sent to the parts of PBX from the environment.

TestConductor treats these messages as going to object PBX or any of it parts.

evOriginateCall() is an internal message of PBX, which is sent between the internal

parts of PBX. In other words, TestConductor takes a black box view for life lines with part

decomposition.

 Advanced Sequence Diagram Test Definition
The TestConductor test definition dialog enables you to define and configure advanced

sequence diagram test cases. Using the dialog box, you can define a name of the test, a

description and you can add several sequence diagram instances to the test case. The

sequence diagram instances are marked as Monitor Only, Driver and Monitor or Black-

Box and parameters are bound to concrete values. In addition, for every sequence diagram

instance, you choose the interpretation order (Linear or Partial) and execution mode. The

Execution Mode specifies whether the sequence diagram instance must be tested one time

or repeatedly in a cycle. You can order sequence diagram instances with Single Iteration

or in an Ordered Predecessor order.

 Defining a Sequence Diagram Test

There are four steps in defining a test using the Define Test dialog:

1. Create the sequence diagram test case.

2. Define a new sequence diagram instance.

3. Map the parameters.

4. Close the dialog.

The following sections describe these steps in detail.

 Creating a Sequence Diagram Test Case

There are three possible ways to define a sequence diagram test case:

1. Right-click on the test context and select Create SD TestCase. This creates

automatically a new test scenario sequence diagram with lifelines of all classes (SUT

and test components) of the test context.

2. Right-click on the test context and select Add New > TestingProfile > TestCase.

For the second way you have to use the Define Test dialog (shown on page 182). Use

sequence diagrams could be sequence diagrams from the analysis phase, a recorded

animated sequence diagram from manually driven animation, or a newly drawn test

scenario sequence diagram.

 Adding a New Sequence Diagram Instance

When you add an sequence diagram instance to a test case definition, you select and

reference a sequence diagram from the Rhapsody repository, define a name for that

particular instance in the test configuration, and bind the parameters to concrete values (if

parameters are used in the sequence diagram). TestConductor automatically extracts the

defined activation condition of the referenced sequence diagram from the Rhapsody

repository and displays it in read-only mode in the text field.

To add a sequence diagram instance to the list, do the following:

1. In the Define Test dialog box, click Add SD Instance.

2. The fields SD-Instance Name, Sequence Diagram, and Description of SD-Instance,

and the radio buttons Execution Mode, SD Interpretation (Order), and Execute

SD-Instance become enabled so that you can enter data.

3. In the SD-Instance Name field, type a descriptive name. For example, ―Tel 1 calls

Tel 2‖.

4. The Sequence Diagram drop down list includes all the sequence diagrams from all

packages specified in the project. From this list, select one sequence diagram. The

following figure shows the list of sequence diagrams for the PBX example.

Note: You do not have to save the sequence diagrams before using them to define and

execute tests because the created sequence diagrams are immediately part of the

model. The read-only field Activation Condition shows the corresponding value

for the specified sequence diagram. You can change this value by editing the tag

RTC_ActivationCondition of the corresponding sequence diagram.

5. In the field Execute SD-Instance as, select one of the following options:

 Driver and Monitor—Invokes automatic driving of model execution after the test

has been activated. In other words, TestConductor automatically injects events into

the running Rhapsody model according to the specified sequence diagram.

 Monitor Only—Invokes manual driving of model execution. This means that,

during test execution, you must inject input events manually using the Rhapsody

animation tool or the project GUI (when available). TestConductor monitors the

reception of these events and internal messages between system objects.

 Black-Box—Considers only those messages that originate at the system border (to

be driven by TestConductor) or that go to the system border (to be monitored by

TestConductor). The remaining messages are not considered because they are

internal to the system.

6. In the field SD Interpretation (Order) select one of the following options:

 Linear—Specifies that TestConductor should monitor the sequence diagram under

test assuming that all events and messages are arranged in a strict sequence. The

vertical drawing order of messages in sequence diagrams is used to compute an

absolute sequence of events and messages (each message in the sequence diagram

has a unique predecessor and successor).

 Partial—Specifies that TestConductor should monitor only the order of events

located on the same line (instance line or message arrow).

Note that partial order set together with driver and monitor implies that driving the

input events is independent from monitoring the internal messages. To avoid the

arising nondeterminism, TestConductor first drives inputs and then monitors

internal messages. TestConductor chooses one valid order of messages to be

driven (in particular, this order changes in general when the same sequence

diagram test case is executed repeatedly). Such nondeterminism does not exist

for linear order interpretation, because it is a precise order between all messages in

a sequence diagram. See chapter Linear and Partial Order (on page 155), for the

explanation of partial order. Note that there is no nondeterminism for monitor only,

because you decide when you inject all inputs, and TestConductor monitors

internal messages as they appear in the running model.

7. In the Execution Mode field, select one of the radio buttons:

 Single Iteration—Drives the sequence diagram instance only once. TestConductor

will generate only one run-time instance of the sequence diagram.

 Multiple Iteration—Drives the sequence diagram instance in a cycle. This option

is defaulted to 0 which implies infinite execution of an sequence diagram instance

if the activation condition of the corresponding sequence diagram is set to TRUE.

When a concrete number is supplied here, it implies the number of times the

sequence diagram instance will be executed. In batch mode execution, the number

10 helps to avoid infinite looping of tests.

 Ordered Predecessor—Specifies the execution order between two sequence

diagram instances. From the drop-down list, select an available sequence diagram

instance that must be executed before the current sequence diagram instance is

activated.

8. If desired, specify a description in the Description of SD-Instance field. This field

does not influence test execution, but can be used to describe the purpose of the

specific sequence diagram instance.

 Mapping Parameters

For a parameterized Rhapsody sequence diagram, map its parameters to concrete values as

follows:

1. Click Parameter Mapping to display the parameter mapping list for the sequence

diagram. For a ―concrete‖ sequence diagram, this list is empty. The following figure

shows the parameter list for the Tel 1 calls Tel 2 sequence diagram.

2. Double-click on the name of the parameter to map. The Define Parameter dialog is

displayed, which enables you to bind the parameter to a concrete value in the current

sequence diagram instance.

3. In the Value field, type an object name of the corresponding class, or a value for a

message argument.

Click OK to add the specified parameter value to the list of the parameter mappings or

click Cancel to discard the changes.

3. Repeat Step 2 and Step 3 to bind all the parameters in the list to concrete values. The

following figure shows the completed list.

5. Click Apply to bind the values to the parameters and dismiss the dialog, or click

Close to dismiss the dialog without binding the parameters to new values. You return

to the Define Test dialog.

6. To add the current definition of the created sequence diagram instance to the test,

click Apply SD. The sequence diagram instance is accepted as part of the test

configuration.

If you do not apply the instance to the test, but continue with another sequence diagram

instance, TestConductor automatically applies the first instance for you. If you dismiss the

complete test case definition dialog, the sequence diagram instance definition is discarded.

Note: For each sequence diagram in the repository, you can add many sequence diagram

instances to a test (for example, with different parameter values). At any time, you

can easily modify any of the information specified for a given test. For example,

you could add other sequence diagram instances, or specify another instance

testing mode.

 Tolerances

Don’t Care Values

In some cases you might not be interested in checking actual parameter values. If

 Messages carry values that change whenever you re-run your application (sensor

values, etc.). TestConductor should not compare the actual values with the

specified values.

 Message parameter is a pointer to a structure. TestConductor can not compare the

actual values in the structure.

 Some specific parameter values are not interesting at all for your test. You can

switch on/off monitoring and checking of actual parameter values. For every

message playing a role in your test you specify don‘t care either

 For a whole test, or

 For a single message instances in the used scenarios.

You can even switch on/off monitoring of parameter values for every single parameter of

a message

To specify tolerances as don‘t care values:

 Replace the parameter values for message instances in the sequence diagrams with

the ‗*‗ symbol (see picture above), or

 Press the Tolerances button within the Define Test dialog

 The table lists all messages of all sequence diagrams used in the test

 The don‘t care values in the table ‗override‘ concrete values in sequence diagrams

 Double-click on a parameter to set/unset ‗*‘ for the parameter

 Double-click on a message to set/unset ‗*‘ for all parameters of the message

 Click on (Un-)Set All “*” to set/unset ‗*‘ for all parameters of all messages

 Don‘t care information are stored with the test

 Show As SD also shows use of don‘t care values

Don‘t care ‘*‘ can also be assigned to the variables used in sequence diagrams. Open the

parameter mapping window and assign ‘*‘ to the variables which you want to set as don‘t

care which is equivalent to specifying ‘*‘ in the sequence diagram.

Note: Do not use ‗*‘ for messages that are driven by TestConductor!

Note: You must not inject an event into your application with ‗*‘ as value for an input

parameter

Range Setting

Range setting allows monitoring and checking if concrete values of message instances are

in a given specified range. Checking ranges is required if messages have parameters that

carry values which deviate from run to run. Speed and temperature are good examples

since it is unlikely that the values are always the same. Usually temperature is in a certain

range, e.g. between 36.5 and 36.9 degree Celsius for humans. Users must be able to

specify that they do not care about specific single values, but about certain value ranges

throughout testing. Similar to ‘don‘t care‘ settings shown in the previous section, we use

the same Tolerances dialog to specify the ranges also.

1. For every single message instance in a sequence diagram users can specify which

parameter should be treated as range of values. A special notation will be used to

indicate ranges instead of specific values. Notation:

[<lower_value> .. <upper_value>]

Users can express "m(p1=1, p2=*, p3=[1.5 .. 1.7])" to state that p1 must equals

'1', p2 is "don't care", p3 must be in the range between '1.5' and '1.7'. In the PBX model,

we could use the range of [0..4] for the digit of the message evDigitDialed in

specified sequence diagram.

Note: lower_value and upper_value may be of scalar types like integer, long,

double etc.

2. Alternatively, users may want to specify one specific range of values for a given

message parameter for a whole test. This might for instance be desired if a certain

measured sensor value globally must be in a certain range. E.g. a measured

temperature must always be in the range between 0 and 100 degree celsius. Otherwise

it is considered to be an error. For the PBX model, we set the range of [0..4] for the

digit of the message evDigitDialed() in the Tolerances dialog as shown below.

 The range for the messages which has a parameter as a variable can also be specified

in the parameter mapping dialog as shown in the figure below. If we have n1 and n2

as variables in the sequence diagram, we can set the range for variables in the

parameter setting dialog.

Tolerances

Users may want to specify a tolerance for a message parameter for the whole test. Suppose

that a model contains a message M(temperature p). In a recorded animated sequence

diagram several instances of M might occur, because temperature is measured periodically.

E.g. M(p=27.6), M(p=29.2), M(p=31.1), etc. If such a recorded sequence diagram

is used for a test, the user must either manually specify a range of values for every single

message instance of M in the recorded sequence diagram, e.g. M(p=[27.4..27.9]),

M(p=[29.0..29.8]), M(p=[31.0..31.5]) or we could define a global tolerance for

parameter p of message M in the whole test, e.g. "p = +-0.5", meaning that the concrete

values in the message instance might have a deviation of '±0.5' from the specified values.

Note: Tolerances can be specified on a per test basis in the table. Users cannot specify

parameter tolerances in the sequence diagram.

Note: Tolerances cannot be specified in the parameter mapping dialog.

Note: Tolerances apply to both the parameter values and to parameter ranges.

Setting the tolerance of ‘+-2‘ for the parameter digit in the PBX model is shown in the

following figure. Message evDigitDialed(Digit = 1) is seen by TestConductor as

evDigitDialed(Digit = [-1 .. 3]), which is a range of ‘±2‘ and

evDigitDialed(Digit = 2) is seen by TestConductor as evDigitDialed(Digit =

[0 .. 4]), which is a range of ‘±2‘ as specified as the tolerance.

Priority rules for the Tolerances

TestConductor will apply priority rules on the parameter values for test execution in the

following order:

1. If in the Tolerances table a parameter is set as don't care '*' this will be applied for test

execution

2. If don‘t care‘*‘ is set in the sequence diagram, this will be applied

3. If a range of values has been specified in the Tolerances dialog, it will be applied for

test execution

4. If a tolerance has been specified in the Tolerances dialog this will be applied for test

execution

5. Range setting in the parameter mapping dialog or the range setting in the sequence

diagram will be applied.

6. Next the value setting in the parameter mapping window or values as specified in the

sequence diagrams are used for testing

Note: Value ranges and tolerances can not be applied to messages driven by

TestConductor, since driving always requires concrete values.

Note: Value ranges and tolerances can be used only for pre-defined scalar types int,

long, float, etc. such that TestConductor can apply standard compare

operations (<, >, =) for the checking.

Note: Ranges of values and tolerances can not be applied to structured types or user

defined enumeration types.

Syntax for Tolerances

The syntax for specifying don‘t care values, range values and tolerances is as follows:

 Don‘t care: *

 Range value: [<lower_value> .. <upper_value>]

 Tolerances: <tolerance_value>

where lower_value and upper_value and tolerance_value can be of pre-defined scalar

types int, long, float, etc. such that TestConductor can apply standard compare

operations (<, >, =) for the checking. While don‘t care values and range values can be

specified in specification sequence diagrams, in the Parameter mapping dialog and in the

Tolerances dialog, tolerance values can be specified only in the Tolerances dialog.

 Exiting the Define Test Dialog Box

There are two ways to exit the Define Test dialog:

 Click OK to save the test.

If you click OK, TestConductor automatically adds all your test modifications to

the current model.

Alternatively, you can add the current test to the model and exit the editor by

pressing Enter, but only if the Description of Test and Description of SD-

instance fields are not currently active. If you press Enter in the description fields,

it adds a line-feed in the description.

Note that the TestConductor dialog accepts any test definition, even if it is

incomplete (for example, you did not specify a sequence diagram instance). If you

try to execute an incomplete test configuration, TestConductor displays an error

message.

 Click Cancel to discard the test.

To ignore all changes made during the test definition session, click Cancel.

TestConductor prompts you to confirm the lost changes; click Yes.

Note: It is not longer possible to execute tests directly from the Define Test dialog.

 Use Cases of Sequence Diagram Test Cases

This section shows some sample test cases including different combinations of sequence

diagram instance settings (execution mode, sequence diagram interpretation order with

monitor or driver), as well as combinations of different sequence diagram instances to be

executed in one test with different modes.

 Simple Monitor

This example explains how to define a simple watchdog. The following figure shows a

test configuration with independent sequence diagram instances to be driven manually,

infinitely many times. TestConductor monitors whether the computed order of messages

corresponds to that specified in the sequence diagrams.

To define this watchdog, do the following:

1. Modify the ―A telephone calls Telephone[0]‖ sequence diagram to make it generic:

 In the sequence diagram editor, replace the concrete object name

PBX[0]-> itsTelephone[1]:Telephone with the parameter

caller:Telephone.

2. Select in the Rhapsody browser the test scenario ―A telephone calls

Telephone0_Variables‖ and click on the cross beside of the name of the test scenario

sequence diagram to open the tag view.

3. Open the Feature dialog of the RTC_SDParamters tag

4. Select the General tab, click into the Value field and type caller, the name of the

parameter.

5. Apply the changes and close the Feature dialog

To define a new test case and connect the sequence diagram, do the following:

6. Select the test context and choose from the context menu Add New > TestingProfile

> TestCase

7. Rename the newly created test case to ―All_call_Tel1‖

8. Select the test case ―All_call_Tel1‖ and choose from the context menu Edit TestCase

SDInstance

9. Verify the name of the test ―All call Tel1‖ and add the description ―All telephones call

Telephone[0] independently.‖

10. Click Add SD-Instance. Type the name of the sequence diagram instance ―Tel2 calls

Tel1‖ and select the sequence diagram ―A telephone calls Telephone[0]‖ from the

drop-down list.

11. Select the following radio buttons:

Monitor Only execution

Partial order, to set manual driving

Multiple Iteration, to have TestConductor check this property several times

during test execution

12. Click Parameter Mapping to display the list of parameters for the sequence diagram

and double-click caller.

13. Insert the formal name of Telephone 2, ―PBX[0]->itsTelephone[1]‖, then click OK.

14. In the Parameter Mapping List, click Apply to bind the parameter with the concrete

name.

15. If desired, add a description of the sequence diagram instance in the field at the

bottom of the dialog box. For example, you could describe the requirements specified

in the corresponding sequence diagram.

16. Click Apply SD-Instance. TestConductor adds the specified sequence diagram

instance to the SD-Instances in Test list.

17. Repeat Step 1 to Step 6 to create two other sequence diagram instances with similar

settings and parameter mappings that correspond to Telephone 3 and Telephone

4.

The completed test checks that Telephones 2, 3, and 4 can call Telephone 1 in any

order. You can execute the test infinitely many times by injecting events manually, as

specified in the ―A telephone calls Telephone[0]‖ sequence diagram.

 Automatic Driver

This example shows how to define an automatic driver with several independent sequence

diagram instances. The following figure shows a test configuration with independent

sequence diagram instances of the ―X_calls_Y‖ sequence diagram (see page 169) and the

―Receive_X‖ sequence diagram (see page 168). You specify the implicit order enforced

between some of the sequence diagram instances using the activation conditions and

parameter mappings. TestConductor drives events sent from the environment axis and

monitors whether the order of ―internal‖ messages corresponds to that specified in the

sequence diagrams.

Mapping the parameters of the ―X_calls_X‖ sequence diagram to different concrete names

for different sequence diagram instances makes these sequence diagram instances

completely independent. To define the automatically driven independent calls test, add

four sequence diagram instances with the settings described in the following summary of

the test.

This test checks that Telephone 1 can call Telephone 2, and Telephone 3 can call

Telephone 4 independently at the same time. In addition, it checks that Telephones

2 and 4 can reply and complete calls independently. The test can be executed only one

time due to the selected Single Iteration for all SD instances in the test configuration.

Setting Multiple Iteration to 0, with driver and monitor mode can lead to infinite test

execution. In this case, you should specify adequate activation conditions for the

corresponding sequence diagrams.

 Ordered SD Instances

Using activation conditions, you can specify a predecessor order implicitly. This order

might depend on the parameter mapping, and is an order of sequence diagram instance

activations. For example, during execution of the test described in the previous section, the

―Tel2 receives a call‖ sequence diagram instance is activated before the ―Tel1 calls Tel2

SD‖ instance has been fully traversed. The following example shows the usage of explicit

ordering of sequence diagram instances within a test configuration.

Note: Currently, TestConductor does not support ordered predecessors with multiple

iterations.

The ―Calling_All_Telephones‖ test configuration contains the following instances:

 Four instances (Receiver_1, Receiver_2, Receiver_3, and

Receiver_4) of the ―Answering_Call‖ sequence diagram. These sequence

diagram instances are specified as driver and monitor with linear order and

multiple iterations. They have disjointed parameter mappings (different concrete

names bound to their parameters).

 Six instances of the ―Ringing_Another_Party‖ sequence diagram (see the section

―Condition Marks‖). They are set as driver and monitor with linear order. They

specify calls from Telephone 1 to Telephones 2, 3, and 4, and from

Telephone 4 to Telephones 1, 2, and 3 with predecessor order as

follows:

 The ―Tel_1 calls Tel_2‖ sequence diagram instance has single iteration.

 The ―Tel_1 calls Tel_3‖ sequence diagram instance has ―Tel_1 calls Tel_2‖ as

its Ordered Predecessor.

 The ―Tel_1 calls Tel_4‖ sequence diagram instance has ―Tel_1 calls Tel_3‖ as

its Ordered Predecessor.

 The ―Tel_4 calls Tel_1‖ sequence diagram instance has ―Tel_1 calls Tel_4‖ as

its Ordered Predecessor.

 The ―Tel_4 calls Tel_2‖ sequence diagram instance has ―Tel_4 calls Tel_1‖ as

its Ordered Predecessor.

 The ―Tel_4 calls Tel_3‖ sequence diagram instance has ―Tel_4 calls Tel_2‖ as

its Ordered Predecessor.

The following figure shows the corresponding settings in the Define Test dialog.

During test execution, each of the last five sequence diagram instances can be activated

only when the following two conditions are fulfilled:

 The sequence diagram instance specified in the test configuration as its predecessor

has been fully traversed (passed or failed).

 Its activation condition becomes TRUE.

The specified test checks the following:

 Telephone 1 can call all other telephones consecutively.

 Telephone 4 can call all other telephones consecutively.

 Telephones 1, 2, 3, and 4 can answer calls as many times as they get the

event evRing (as specified in the activation condition of the ―Answering_Call‖

sequence diagram).

 Driver-Assisted Monitor

The following examples show how to use driver-assisted monitors.

Example 1: Monitors and Drivers Specified as Sequence Diagram

This example shows how to define a combination of drivers and monitors. The

―Driver_Assisted_Monitor‖ test configuration contains instances of the ―Receive_X‖

sequence diagram (see page 168) and the ―X_calls_Y‖ sequence diagram (see page 169).

The sequence diagram instances have the following settings:

 Four instances (Receive_1, Receive_2, Receive_3, and Receive_4) of

the ―Receive_X‖ sequence diagram are specified as driver and monitor with linear

order and multiple iteration. Their parameter mappings correspond to

Telephones 1, 2, 3, and 4 and Lines 1, 2, 3, and 4, respectively.

 Four instances (―Tel_1 calls Tel_2‖, ―Tel_2 calls Tel_3‖, ―Tel_3

calls Tel_4‖, and ―Tel_4 calls Tel_1‖) of the ―X_calls_Y‖ sequence

diagram are specified as monitor only with partial order, single iteration, and the

corresponding parameter mappings. The following figure shows the example of the

parameter mapping for the ―Tel_2 calls Tel_3‖ sequence diagram instance.

The test checks that every telephone can call the next telephone, and the telephone can

reply and finish the communication. This test can be done for every specified pair of the

telephones, independent of the order of the pairs. During test execution, you must drive

the model manually, as specified in the instances of the ―X_calls_Y‖ sequence diagram.

TestConductor completes the execution of the instances of the ―Receive_X‖ sequence

diagram whenever they have been activated.

Example 2: Unspecified Manual Driving

You can drive your model manually in an order not specified in any sequence diagram.

This means that you do not check this part of a behaviour. For example, you can specify

only communications between actor instances and internal objects when the actors have

behaviour (code has been generated for them). The following sequence diagram shows

such a specification for a new model. In this case, the new events evSuspend and

evRestart are sent to the Line class from the Administrator actor.

The following ―Check Administrator‖ test configuration defines a driver with an instance

of the ―testActor‖ sequence diagram.

This test checks that a new feature added to the system as the Administrator behaviour

does not change the main behaviour of the model (in other words, User can make a call as

previously specified). During test execution, you must inject input events for

Administrator and User to stimulate them to send events specified in the ―testActor‖

sequence diagram. TestConductor monitors all messages between the actors and internal

objects specified in the sequence diagram under test.

 Choosing Between Alternatives in a Cycle

The predecessor ordering of sequence diagram instances provides a means to construct a

tree or a forest (set of trees) of the related sequence diagram instances, but does not allow

any cycle or choice between alternatives. Activation conditions/condition marks serve as

another way to set causal dependencies between sequence diagram instances. The

following test configuration explains how to combine predecessor ordering with multiple

iteration to specify cycles with choice.

Consider the ―X_and_Y_call_together‖ sequence diagram, with partial order

interpretation.

The specification says that two telephones can dial any numbers independently of each

other whenever the environment sends them the evOffHook event. If these telephones

call each other (specified by the corresponding mapping of the parameters nr1 and nr2),

the continuation depends on the order in which you have injected events from the

environment to the telephones. A callee can be busy or answer the call.

The ―Stop_Busy_Call‖ sequence diagram, shown in the following figure, specifies that a

caller put the telephone on the hook if it gets the evBusy event. The ―Busy_or_Free‖ test

includes instances of the ―X_and_Y_call_together‖ sequence diagram, the

―Stop_Busy_Call‖ sequence diagram, and the ―Answering_Call‖ sequence diagram.

The following figure shows the corresponding settings in the Define Test dialog.

The following information file of the test case definition summarizes the complete test

description.

The test checks the following:

 Telephone 2 and Telephone 3 call each other independently.

 If a callee (Telephone 2 or Telephone 3) is free, it answers the call.

 If a callee is busy, the caller hangs up.

You can execute the test continuously, injecting events to Telephone 2 and Telephone

3. TestConductor monitors the “Tel2 and Tel3 call” sequence diagram instance and

drives the remaining ones, selecting those relevant to the current situation. Note that the

instance of the ―X_and_Y_call_together‖ sequence diagram is the predecessor for the

remaining four instances in the test configuration. This means that the sequence diagram

instances ―Tel2 stops‖, ―Tel3 stops‖, ―Tel2 answers‖, and ―Tel3 answers‖ can

be activated only after the Tel2 and Tel3 call instance has been activated and partially

traversed. This order (and the choice between alternatives) is specified with the activation

conditions and Condition Marks, but become valid only after the parameters have been

bound to the corresponding names.

 User Defined Driving Operation Calls (for Rhapsody in
C/C++/Java/Ada)

The default implementation of a driver operation generated by TestConductor may be

overwritten and customized by the user, by stereotyping the message with stereotype

<<RTC_MsgInfo>> in the sequence diagram and setting the corresponding values for the

tags

TestBehavior::RTC_MsgInfo::RTC_DriverCallCode,

TestBehavior::RTC_MsgInfo::RTC_DriverCallCodeAdditional,

TestBehavior::RTC_MsgInfo::RTC_DriverInitCode,

TestBehavior::RTC_MsgInfo::RTC_DriverInitCodeAdditional,

Usually, if the user modifies driver operations in the model, then this information is lost if

the user updates a test case. The user can influence the generated code for driver

operations and stub operations. Using the tags

TestBehavior::RTC_MsgInfo::RTC_DriverCallCode,
TestBehavior::RTC_MsgInfo::RTC_DriverCallCodeAdditional,

TestBehavior::RTC_MsgInfo::RTC_DriverInitCode,

TestBehavior::RTC_MsgInfo::RTC_DriverInitCodeAdditional,

the content of these tags is not lost during update of a test case.

The value for RTC_DriverInitCode is taken as the beginning of the driver operation

body containing the initialization of necessary variables, whereas the value for

RTC_DriverCallCode is taken as the trailing part of the driver operation body

containing the call of the function to be driven.

Note that both properties can be overwritten separately by the user. In case the user wants

to customize the initialization section only, only the property RTC_DriverInitCode has

to be overwritten; TestConductor will continue to automatically generate the code for the

driver call section (and vice versa).

The value for RTC_DriverInitCodeAdditional is taken as additional initialization

code that is generated in addition to the initialization code generated by TestConductor.

The content of this tag is generated directly after the auto generated initialization code.

Similarly, the value for RTC_DriverCallCodeAdditional is taken as additional call

code that is generated in addition to the auto generated call code. The content of this tag is

generated directly after the auto generated call code.

 RTC_DriverInitCode and RTC_DriverInitCodeAdditional

The user can influence the initialization of arguments before the message is driven using

the tags RTC_DriverInitCode and RTC_DriverInitCodeAdditional. To do this

uses have to add the stereotype RTC_MsgInfo to the SD message. This adds

automatically the tags RTC_DriverInitCode and RTC_DriverInitCodeAdditional

to the message. The user can fill these tags with code which will be used as initialization

code of the driver operation when the test case is updated. Important is that the context of

RTC_DriverInitCode completely replaces the initialization code that would be

generated by TestConductor automatically, whereas the content of

RTC_DriverInitCodeAdditional is simply added to the auto generated initialization

code.

In some cases it is advisable that the user copies all or the needed parts of the

automatically generated driver initialization code section and paste it into the tag

RTC_DriverInitCode before starting to implement his own changes.

 RTC_DriverCallCode and RTC_DriverCallCodeAdditional

The user can also influence the call of the driven operation using the tags

RTC_DriverCallCode and RTC_DriverCallCodeAdditional. To do this he users have

to add the stereotype RTC_MsgInfo to the sequence diagram message. This adds

automatically the tags RTC_DriverCallCode and RTC_DriverCallCodeAdditional

to the message. The user can fill these tags with code which will be executed after the

initialization of arguments. Important is that the content of RTC_DriverCallCode

completely replaces the code that would be used to invoke the driven operation if

TestConductor generated the code automatically, whereas the content of

RTC_DriverCallCodeAdditional is simply added to the auto generated call code.

Note, in this scenario the user has has the responsiblitythat the sequence diagram test case

is indeed executable after customization. Basically, the specified message of the sequence

diagram test case, which now is present as source code, has to be represendted in the user

defined code.

In some cases it is advisable that the user copies all or the needed parts of the

automatically generated driver call code section and paste it into the tag

RTC_DriverDriverCode before starting to implement his own changes.

 Clean TestComponent

Driver and stub operations can be deleted manually, but TestConductor provides the

functionality to delete the automatically generated operations of a test component at once.

To clean a test component select the test component und choose from the context menu

the item Clean TestComponent.

 Clean TestPackage

Driver and stub operations can be deleted manually, but TestConductor provides the

functionality to delete the automatically generated operations of all test components of a

TestPackage at once. Furthermore, Clean TestPackage also deletes all results and

coverage results from the TestPackage.

To clean a test package select the test package und choose from the context menu the item

Clean TestPackage.

To regenerate the driver an stub operations select the test case or the test context or the test

package and choose from the context menu the item Update

TestCase/TestContext/TestPackage.

 Deleting User Defined Driver Operation Calls

TestConductor uses user defined operation calls if the tags

TestBehavior::RTC_MsgInfo::RTC_DriverInitCode and

TestBehavior::RTC_MsgInfo::RTC_DriverCallCode are not empty, even if the

tags are overwritten. To delete the user defined operation call and use the auto generated

driver operations from TestConductor, reset the tags to delete the content of the tag.

 User Defined Stub Operation Calls (for Rhapsody in
C/C++/Java/Ada)

Stub operations are created for any operation call in the sequence diagram going from the

SUT to a test component if the following items are all true:

 a return value (or a returned value for an out or in/out argument) is specified for

this operation

 the tag TestConductor::RTC_MsgInfo::RTCMonitor for the sequence

diagram message is set to false

 the tag TestConductor::RTCInstInfo::RTCMonitor for the To-sequence

diagram instance line is false

TestCondoctor needs the ability to determine and control the value returned by the

operation. On the other hand there might be calls to the same operation without a specified

return value or the operation is called by a test component on a test component: because of

this TestCondoctor has to generate a different body for the operation, but it must still be

possible to call the original operation.

To ensure this, TestCondoctor creates a copy of the original operation with the name

orginal_ followed by the operations name, having the same signature. In the

implementation body of this so called DefaultOperation the original function is called

non-virtually. For every occurrence of the operation where it should be stubbed, a new

operation is added to the test component with the same signature of the original operation.

This so called StubOperation returns the specified return value, out and in/out arguments.

The name of the stub operation is the concatenation of the name of the test case, the string

―_stub_‖, the name of the original operation followed by a number to make it unique.

The body of the original operation is deleted completely and a new implementation is

generated this way: The operation does a call to a special TestCondoctor operation and

uses the OMString value returned by TestCondoctor in a switch statement to select which

operation should be called. If a stub operation has to be invoked TestCondoctor returns its

GUID, if the original operation has to be called TestCondoctor returns an empty string.

The actual values of formal parameters defined for the sequence diagram or sequence

diagram instance are propagated to the stub operation this way: If any parameter is used in

the return value or out or in/out arguments of the operation that has to be stubbed, then in

the body of the stub operation this parameter is exchanged with the value of the parameter.

 RTC_StubBodyCode

Normally, if the user modifies stub operations in the model, then this information is lost if

the user updates a test case. The user can influence the code of the stub using the tag

RTC_StubBodyCode. To do this he has to add the stereotype <<RTC_MsgInfo>> to the

sequence diagram message, this adds automatically the tag RTC_StubBodyCode to the

message. The user can fill this tag with code which will be used as body of the stub

operation when the test case is updated. Important is that this code completely replaces the

body that would be generated by TestConductor automatically.

An important limitation is: only virtual operations can be stubbed. Since the SUT is

implemented, in the SUT code operations of other design classes are called. For instance,

a class A which is the SUT class may call a operation ―f‖ of a class B. Now, in a given test

architecture, a new test component class BT is introduced that inherits from B in order to

be able to use an instance of class BT instead of an instance of class B directly. However,

the SUT code still calls the operation ―f‖ of B, since the SUT code remains untouched.

But when ―f‖ is a virtual operation, the virtual dispatching mechanism of UML ensures

that the most specialized variant of the operation is called, i.e., if class BT implements a

new version of the called operation ―f‖, then this function is called. This function can be

stubbed, since it is defined in the testing component BT. However, if the SUT calls a non-

virtual function, it cannot be stubbed since this operation is in general not defined in a

testing component.

If an operation is stubbed multiple times in the same test component in the same sequence

diagram instance, then for each occurrence an individual stub operation is generated.

If an operation is stubbed multiple times in the same test component in the same SUT in

different test cases respectively sequence diagram instances, then for each occurrence an

individual stub operation is generated.

Tip: In case TestConductor has not created stub operations for a sequence diagram

message, the at the beginning mentioned conditions are not fulfilled. To ―inspire‖

TestCondutor to create such stubbing functionality anyhow, the user can define

―*‖ as expected return value for the sequence diagram message followed by an

update on the test case. In some cases TestConductor will then create the

customizable stubbing functionality as shown in the above picture.

 Clean TestComponent

Driver and stub operations can be deleted manually, but TestConductor provides the

functionality to delete the automatically generated operations of a test component at once.

To clean a test component select the test component und choose from the context menu

the item Clean TestComponent.

 Clean TestPackage

Driver and stub operations can be deleted manually, but TestConductor provides the

functionality to delete the automatically generated operations of all test components of a

TestPackage at once. To clean a test package select the test package und choose from the

context menu the item Clean TestPackage.

To regenerate the driver an stub operations select the test case or the test context or the test

package and choose from the context menu the item Update

TestCase/TestContext/TestPackage.

 Deleting User Defined Stub Operation Calls

TestConductor uses user defined operation calls if the tags

TestBehavior::RTC_MsgInfo::RTC_StubBodyCode are not empty, even if the tags

are overwritten. To delete the user defined operation call and use the auto generated stub

operations from TestConductor, reset the tags to delete the content of the tag.

 Using Test Actions in SD Test Cases

In the previous section, the tags of the <<RTC_MsgInfo>> stereotype have been used in order

to customize the driver code and stub code generation of TestConductor. Alternatively, the

same can be done in a more graphical fashion by using so-called test actions. A test action is

an action that can be placed on one of the test component life lines in the sequence diagram.

The test action contains code that is considered by TestConductor when the model is

populated with test code, and it can be used to e.g.

 create complex input data

 access e.g. gobal variables of the test architecture

 create complex checks for complex output values

 define complex behavior of stubs

In order to support the use cases mentioned above, TestConductor provides the following

kinds of test actions:

 <InitAction>: An init action is a test action that can be used to initialize test data. The code

contained in the init action is handled as the tag RTC_DriverInitCode of the stereotype

<<RTC_MsgInfo>> (cf. section ―RTC_DriverInitCode and

RTC_DriverInitCodeAdditional‖ on page 201).

 <PreCallAction>: A pre call action is a test action that can be used to either initialize test

data or to do some other test related activities before a message is sent from a test

component to a SUT instance. The code contained in the pre call action is handled as the

tag RTC_DriverInitCodeAdditional of the stereotype <<RTC_MsgInfo>> (cf.

section ―RTC_DriverInitCode and RTC_DriverInitCodeAdditional‖ on page 201).

 <CallAction>: A call action is a test action that can be used to call a particular operation ot

to send a particular event. The code contained in the call action is handled as the tag

RTC_DriverCallCode of the stereotype <<RTC_MsgInfo>> (cf. section

―RTC_DriverCallCode and RTC_DriverCallCodeAdditional‖ on page 202).

 <PostCallAction>: A post call action is a test action that can be used to perform any kind

of actions after a particular call to an operation or a sending of an event, e.g. code for

checking output values of the called operation. The code contained in the call action is

handled as the tag RTC_DriverCallCodeAdditional of the stereotype

<<RTC_MsgInfo>> (cf. section ―RTC_DriverCallCode and

RTC_DriverCallCodeAdditional‖ on page 202).

 <StubAction>: A stub action is a test action that can be used to define the behavior of

stubbed operations, e.g. checking arguments of the called operation or returning specific

values. The code contained in the stub action is handled as the tag "RTC_StubBodyCode"

of the stereotype <<RTC_MsgInfo>> (cf. section ―RTC_StubBodyCode‖ on page 205).

In order to add a test action to a sequence diagram test case, do the following:

 On the test scenario toolbar, select the the test action icon

 Place the test action on one of the test component life lines in the test scenario

After adding the test actions to the test scenario, one has to update the test case (select

―Update TestCase‖ on the test case. After the update, the test actions are populated into

the driver operations and stub operations in the model. For instance, the <PostCallAction>

in the test scenario depicted above is populated to the driver operation for the message

―f2‖ that is specified directly above the <PostCallAction>:

After building the test case, the test case can be executed. The code in the test actions is

executed when the test case reaches the specified test actions. For instance, the assertion

specified in the <PostCallAction> of the test scenario depicted above in executed directly

after the message ―f2‖ was called on the SUT. If the assertion fails, after doing ―Show as

SD‖ one can see that the specified assertion has failed.

 Using Interaction operators in sequence diagram test cases
(only assertion based testing mode)

In assertion based testing mode (if TestConductor.Settings.TestingMode ==

AssertionBased), so-called interaction operators can be used in specifying the behavior of

a test case. TestConductor supports the following SD interaction operators

 Opt

 Alt

 Loop

 Break

 Consider

 Parallel

As an example of how to use interaction operators for specifying the behavior of SD test

cases, please have a look at the sample ―CSDOperators‖ in the folder

―Samples/Csamples/TestConductor‖

 Black-Box Testing of External Files and Libraries
TestConductor comes with the C++ sample CppTestingExternalFiles. This project

contains the package PkgUseExternalFiles, where two files are defined. The declared

external file ExternalFile_ArithmeticCPP consists of a source file

arithmetic.cpp and the corresponding header file arithmetic.h. The file

ExternalLib_LogicLib consist of the library LogicLib.lib and a corresponding

header file LogicLib.h. Further information on how to define files can be found in the

Rhapsody User Guide.

Open the feature dialog of a file, select the Properties tab and browse the overwritten

properties of ExternalFile_ArithmeticCPP.

CG.Class.UseAsExternal is set to TRUE.

CG.Class.FileName determines the basename of the referenced external file. This

property defines ExternalFile_ArithmeticCPP to refer to arithmetic.h in the

project's ExternalSrc-directory.

CPP_CG.Class.Animate is set to FALSE. Whatever the library or the external source

file contains Rhapsody animated code, the property has to be set to FALSE. Setting this

property to FALSE means, that the file, which will become in this example the SUT, will

not be animated. Furthermore, disabling the animation of the SUT means to perform a

black-box test.

In order to use external header and implementation in code-generation, component

UseExternalFiles defines the additional include-path "../..", which refers to the

project's root-directory. The implementation of the external functions is made available to

code-generation by defining additional source

"../../ExternalSrc/arithmetic.cpp". In order to link the library the configuration

UseExternalFiles::Default defines under Libraries

―../../LogicLib/NotInstrumented/LogicLib.lib‖.

To use this example and the provided test cases in the test packages

TPkg_ExternalFile_ArithmeticCPP and TPkg_ExternalLib_LogicLib the user

has first to generate/build the LogicLib.Lib and the header file LogicLib.h. Browse

the package PkgLogicLib, set the containing configuration

LogicLib::NotInstrumented active and build the configuration by using the

Generate/Make/Run button.

 Test Packages

The example comes with pre-defined test architecture for the file

ExternalFile_ArithmeticCPP. The test architecture was created as follows:

For testing external file ExternalFile_ArithmeticCPP, select

ExternalFile_ArithmeticCPP and choose Create TestArchitecture in the context

menu. A new test package TPkg_ ExternalFile_ArithmeticCPP will be created

In order to make test context
TPkg_ExternalFile_ArithmeticCPP::TCon_ExternalFile_ArithmeticCPP

compilable and linkable, the user has to modify code generation component
TPkg_ExternalFile_ArithmeticCPP::TPkg_ExternalFile_ArithmeticCPP_C

omp:

1. enter "../../ExternalSrc/arithmetic.cpp" into entry Additional Sources in

the General tab.

2. extend the include path in entry Include Path to

"$(OMROOT)/../TestConductor,../.."

The example comes with a pre-defined test architecture for the file

ExternalFile_ArithmeticCPP and the library ExternalLib_LogicLib. Also the

following sequence diagram test cases have already been defined:

To execute the test case SD_tc_0 select the test case in the Rhapsody browser and choose

from the context menu Update Test Case, Build Test Case, Execute Test Case. In the

TestConductor execution dialog click on the button Activate Test. TestConductor shows

that the test case SD_tc_0 passed. For further information select in the TestConductor

execution dialog the entry SD_tc_0 and click on the button Show as SD. The animated

sequence diagram displays the text execution result and states, that all return values

occurred as specified.

Now execute the test case SD_tc_0 in the test context TCon_ExternalLib_LogicLib.

The test will fail and the Show As SD sequence diagram will state, that the check of the

return value failed.

Open the test scenario SDTestScenario_0 of test case SD_tc_0 in the test context

TCon_ExternalLib_LogicLib.

The expected value in the expression ―0=lNot(a=0)‖ is wrong. The correct return value

has to be ―1=lNot(a=0)‖. Correct the test scenario and re-run the test. It will pass.

 Using Serialize/Unserialize Functions for User
Defined Types

Rhapsody can animate (display) the values of simple types and one-dimensional arrays.

However, if you want to animate a more complex type, the type must be converted to a

string (char *) for Rhapsody to display it. This can be done generally in two different

ways, either by using auto-generated serialization/unserialization functions or by using

manually defined serialization/unserialization functions.

 Using auto generated serialization /unserialization functions

For enum types and structure types that are explicitly defined in the model, Rhapsody

provides the possibility to use automatically generated serialization/unserialization

functions in order to display values of these types e.g. in animated sequence diagrams. In

order to use the auto generated serialization/unserialization functions for a specific type

that is defined in the model, the property ―<Lang>.Type.GenerateSerializationFunctions‖

must be set to ―SerializationAndUnserialization‖:

If this property is set correctly, for arguments with enum type one can use the literals of

the enum definition in the test scenarios, and for arguments with structure type one can

specify each attribute defined in the structure type. The following test scenario shows two

message ―f‖ and ―g‖ that both have two arguments, one of enum type and one of a

structure type:

 Using manually defined serialization /unserialization functions

Besides using the auto generated serialization/unserialization functions of Rhapsody, one

can also manually define serialization/unserialization functions. These functions are global

instrumentation functions, that takes one argument of the type you want to display, and

returns a char *. Further information can be found in the chapter Guidelines for Writing

Serialization Functions of the Rhapsody User Guide. The usage of serialization functions

for Testing is demonstrated by the sample model

―Samples/CppSamples/TestConductor/CppListUsage‖. Please note that serialization

functions can only be used for testing purposes if the type that should be serialized is

selected directly as an ―existing type‖ in Rhapsody. If only the type signature is used to

specify the type of an argument type or return type, serialization functions cannot be used

for testing.

In case of non fault tolerant programming of these (un-)serialize function the

application/model may probably work during normal operation, but can crash, if the user

executes a test case on the same model. The following example shows a Sting32 type.

The user defined the following serialize function:

And connected it correctly to the corresponding property

During normal operation everything will work properly. But during execution of a test

case on the unchanged model the execution will crash.

The reason for the crash is the serialization function for String32, it causes a crash if it is

called with a not initialized string. If TestConductor registers as an observer the

framework notifies TestConductor about operation calls. To do this the framework

serializes the arguments of the constructor (== conversion to string).

If the serialize function for String32 is modified this way the application will not crash:

 Failure Analysis

TestConductor detects and reports a failure if a message contained in the message set of a

sequence diagram does not appear in the specified order or if a RTC_ASSERT isn‘t

fulfilled during test execution. A message from the message set is specified by its name,

the value(s) of its argument(s), the names of sending and receiving objects.

Failure analysis is an important but sometimes difficult task. This is due to the fact that

industrial-sized models show very complex behavior, with many messages flowing during

test execution.

All possible failures monitored by TestConductor can be caused:

1. By errors in the model − the computed model behavior does not meet requirements

specified by an sequence diagram

2. By inconsistencies in the test configuration or/and in the requirements

In case of using sequence diagrams for test definitions, the task of model debugging is

simplified by using TestConductor‘s graphical failure reports. You can use a combination

of diverse Rhapsody analysis capabilities (for example, state chart animation, sequence

diagram animation, and sequence diagram comparison) with TestConductor to show test

executions as sequence diagrams. The colors and percentage information in the Execute

Test dialog are useful indicators in determining where the failure occurred.

Remember that during model execution TestConductor ignores all messages which are not

specified in the sequence diagram instances of the executed test. This implies that

TestConductor meets failure in the following two cases:

3. The real order of message actions during model execution does not correspond to

specifications in sequence diagram instances.

4. The real argument values of messages during model execution do not correspond to

those specified in sequence diagram instances.

During test compilation, TestConductor translates every sequence diagram instance into

internal sequence(s) of message actions specified in the sequence diagram instance. As

you activate a test, TestConductor starts the model execution and creates the first iteration

copies of sequence diagram instances without specified ordered predecessors as the

original run-time instances. During test execution, TestConductor checks the activation

condition of each created run-time instance until it gets value TRUE (that is a run-time

instance becomes active). After that, TestConductor checks every messages appearing in

the model execution. For every currently active run-time instances from the Execute Test

dialog, it compares the following:

1. Whether the current message belongs to the message set of the corresponding

sequence diagram.

2. Whether all message actions preceding the current message in the corresponding run-

time instance have already occurred.

If the first condition does not hold, TestConductor ignores the current message. If both

conditions hold, TestConductor marks the current message as green. If only the first

condition is fulfilled − one or more actions preceding current one in the corresponding

run-time instance have not yet appeared in the model execution − TestConductor creates a

red message, reports failure and stops to traverse the run-time instance with erroneous

message action. After that it continues to generate run-time instances with respect to the

specified execution mode, check activation conditions and new message actions.

 Failure Reporting
TestConductor draws a green horizontal message arrow for operation calls that have been

monitored. Events that have been monitored in-order are drawn as slanted messages as in

sequence diagram animation. The starting point of the slanted message is where the event

has been sent. The end point refers to the point where this event must be consumed

according to the original sequence diagram specification.

Note: In our green, blue, red approach one could consider the dashed line as half-green

(event has been sent) and half-blue (consumption not yet monitored).

Following classes of errors can be detected by TestConductor:

1. Sending out of order

2. Event Sending - Parameter values do not match

3. Event Sending - Parameter values not in range

4. Consumption out of order

5. Event Consumption - Parameter values do not match

6. Event Consumption - Parameter values not in range

7. Operation Call out of order

8. Operation Call - In Parameter values do not match

9. Operation Call - In Parameter values not in range

10. Operation Call returned - Return value does not match

11. Operation Call returned - Out Parameter values do not match

12. Operation Call returned - Out Parameter values not in range

13. DataFlow Message - Value does not match

14. DataFlow Message - Value not in range

15. DataFlow Message out of order

16. Assertion failed

TestConductor draws a red horizontal message to visualize a failure. The red arrow refers

to a point where a message was monitored out-of-order or where parameter values did not

match. The red message is labeled with a text (M() represents the failed message):

 M():Sending out of order

 M():Event Sending - Parameter values do not match

 M():Event Sending - Parameter values not in range

 M():Consumption out of order

 M():Event Consumption - Parameter values do not match

 M():Event Consumption - Parameter values not in range

 M():Operation Call out of order

 M():Operation Call - In Parameter values do not match

 M():Operation Call - In Parameter values not in range

 M():Operation Call returned - Return value does not match

 M():Operation Call returned - Out Parameter values do not match

 M():Operation Call returned - Out Parameter values not in range

 M():DataFlow Message - Value does not match

 M():DataFlow Message - Value not in range

 M():DataFlow Message out of order

 M():Assertion <SD_instance_X: message Y> failed

TestConductor draws blue messages for messages that have not yet monitored, neither

sending nor consumption of events. Such a drawn sequence diagram contains the original

sequence diagram specification used for the test. All green and blue messages represent

the messages of the original sequence diagram. Green and blue messages, together with

the red arrow make failure analysis much easier. If the red message is erased, then the

drawn sequence diagram can be used to reproduce the same failure.

Note: Red messages can not be erased automatically from a failure sequence diagram used

in a new test. Workaround is to erase it manually if such a sequence diagram shall

be used in a test. Following samples explain the failure cases.

 Event sending out-of-order

In this example, according to the specification: TestConductor must

 Monitor the self message OpenConnection()

 Monitor the operation call OpenConnection()

 Monitor the sending of evDialTone()

 Monitor the sending of evOriginateCall()

TestConductor sees, sending of event evOriginateCall() occurs before the sending of

evDialTone(). Thus TestConductor gives the warning ―Sending out of order‖.

 Event sending in-order, but parameter values do not match

In this example, according to the specification, TestConductor must monitor the event

evDigitDialed(Digit = 1), but TestConductor is seeing evDigitDialed(Digit

= 2). Thus TestConductor reports a failure ―Event Sending -Parameters values

do not match‖

 Event sending in-order, but parameter values not in range

In this example, according to the specification, TestConductor must monitor the event

evDigitDialed(Digit = 1), but TestConductor is seeing evDigitDialed(Digit

= [3..5]). Thus TestConductor reports a failure ―Event Sending - Parameters

values not in range‖.

 Event consumption out-of-order

In this example, according to the specification, TestConductor must monitor

1. The operation call OpenConnection()

2. The sending of evOriginateCall()

3. The sending of evDialTone()

4. The consumption of evDialTone()

5. The consumption of evOriginateCall()

TestConductor sees consumption of evOriginateCall() before the consumption of

evDialTone(). Thus TestConductor gives the warning “Consumption out of

order‖.

 Event consumption in-order, but parameter values do not
match

 Figure 1: SD with message “Event Consumption – Parameter value do not match”

In this example, according to the specification, TestConductor must monitor

 The sending of evDigitDialed(Digit=1)

 The sending of evDigitDialed(Digit=2)

 The consumption of evDigitDialed(Digit=2)

 The consumption of evDigitDialed(Digit=1)

TestConductor sees, event consumption of evDigitDialed() came in-order, but the

value of the parameter does not match. Thus TestConductor gives the warning ―Event

Consumption - Parameter values do not match‖.

 Event consumption in-order, but parameter values not in
range

In this example, according to the specification, TestConductor must monitor

 The sending of evDigitDialed(Digit=[0..1])

 The sending of evDigitDialed(Digit=[2..3])

 The consumption of evDigitDialed(Digit=[2..3])

 The consumption of evDigitDialed(Digit=[0..1])

TestConductor sees, event consumption of evDigitDialed() came in-order, but the

values in the event consumption does not fall in range specified. Thus TestConductor

gives the warning ―Event Consumption - Parameter values not in range‖.

 Operation call out-of-order

In this example, according to the specification above, TestConductor must monitor

1. The self message OpenConnection()

2. The sending of evOriginateCall()

3. The operation call openConnection()

Operation call OpenConnection() from Line to CallRouter should occur after

sending of the event evOriginateCall(). Thus TestConductor reports the failure

―Operation Call out of Order‖.

 Operation call in-order, but parameter values do not match

 Figure 2: SD with message “Operation call – In Parameter value do not match”

In this example, according to the specification, TestConductor

1. Should monitor the operation call DialingDone()

2. Must monitor the operation call NextDigit(Digit=2)

TestConductor sees that operation call NextDigit(Digit=1) instead of operation call

NextDigit(Digit=2). Here the operation call has come in order but the parameter

value is incorrect. Thus TestConductor gives the warning ―Operation Call:In

Parameter values do not match‖.

 Operation call in-order, but parameter values not in range

In this example, according to the specification, TestConductor

 Should monitor the operation call DialingDone()

 Must monitor the operation call NextDigit(Digit=2)

TestConductor expects operation call NextDigit(Digit=[3..4]) as specified in the

tolerance in the test definition, but sees operation call NextDigit(Digit=2) which is

out of the range. Here the operation call has come in order but the parameter value is

incorrect. Thus TestConductor gives the warning ―Operation Call:In Parameter

values not in range‖.

 Operation call returned - Return value does not match

Here TestConductor expects a return value of 5 as of the specification but sees a 4. Thus

TestConductor gives the warning message ―4=op_int(a=1,b=2,c=3) Operation
Call returned - Return value does not match. Expected values are:

5=op_int(a=1,b=2,c=3)‖

 Operation call returned - Out Parameter values do not match

 Figure 3: SD with message “Operation call returned – Out Parameter value do not match”

Here TestConductor expects a value of 3 as of the specification but sees 1. Thus

TestConductor gives the warning message ―4=op_int(a=1,b=2,c=3) Operation
Call returned – Out Parameter values do not match. Expected values

are: 4=op_int(a=3,b=2,c=3)‖

 Operation call returned - Out Parameter values not in range

Here TestConductor expects the value in the range of [3..4] as of the specification but

sees 1. Thus TestConductor gives the warning message ―4=op_int(a=1,b=2,c=3)
Operation Call returned - Out Parameter values not in range.

Expected values are: 4=op_int(a= [3..4],b=2,c=3)‖

 DataFlow Message - Value does not match

TestConductor expects dataflow ‗y=8‘ but actually observed ‗y=7‘.

 DataFlow Message - Value not in range

TestConductor expects y to be within range [8..10] but actually observed ‗y=7‘, i.e.

outside the expected range.

 DataFlow Message out of order

TestConductor expects dataflow order ‗z=6‘ before ‗y=6‘ but avtually observed ‗y=6‘

before ‗z=6‘.

 Assertion failed

When using test components to call operation from a SUT, TestConductor can observe

return values from this operation via an assert marco. TestConductor automatically

generates the RTC_ASSERT_SD macro in the driver operation of the test component:

//---

// Driver Initialisation Code:

//---

int osc_ret;

int osc_arg_1 = 5;

//---

// Driver Call Code:

//---

osc_ret = itsA->f(osc_arg_1);

RTC_ASSERT_SD("SD_tc_0","message_0",osc_ret==7);

In this test scenario TestConductor expects a return value of 7 when calling f(I=5)

on the SUT, but the actual returned value is different. Thus,

TestConductor gives the warning message ―Assertion <SD_tc_0:message_0>“.

The second message “f(i=5) Operation Call did not return yet.‖

Occurs, because TestConductor interrupts the execution after detecting a failing assertion.

 Using TestConductor
from Eclipse

As an alternative to the standalone Rhapsody application, Rhapsody can also be used

directly from Eclipse (v. ―eclipse_platform_user_guide.pdf‖ in doc/pdfbooks). Also

TestConductor can be used directly from Eclipse. In general, all TestConductor

functionality can be used when working with Eclipse. Similar to the standalone Rhapsody

application, almost all TestConductor functionality is available in context menus of

Rhapsody elements, and this holds also when working from Eclipse as can be seen in the

following picture:

However, there are some differences that needs to be considered when using

TestConductor from Eclipse:

 In contrast to executing TestConductor from the standalone Rhapsody

application, the test execution windows of TestConductor are not always in

front of the Eclipse main window. Selecting the Eclipse main window may

hide the TestConductor test execution windows.

 In Eclipse, when creating a new test architecture, TestConductor

automatically creates a new Eclipse configuration instead of a normal

Rhapsody configuration. Additionally, TestConductor automatically launches

the Eclipse New Project Wizard that can be used to create a new Eclipse

project that is connected to the created Eclipse configuration.

 Using TestConductor
from Rational Quality

Manager
TestConductor test cases can be referenced and executed from Rational Quality Manager.

A detailed description how to integrate Rational Quality Manager and TestConductor can

be found in the document ―RQMTestConductorAdapter_HowTo.pdf‖ in doc/pdfbooks.

 Automatic Test Case
Generation

Rhapsody ATG is the Automatic Test Generation engine in the Rhapsody Testing

Environment. The general intention of this tool is to generate test cases in order to

thoroughly verify the functionality of the system under test. This capability completes the

use cases of Rhapsody® TestConductor™ described above.

An UML model specified in Rhapsody is used as basis for generating the test cases. An in-

depth automatic white box model analysis is performed in order to gain detailed

knowledge of the internal structure and behavior of the UML model. This knowledge is

used for the computation of a large number of test cases. Test cases are sequences of

external stimuli and expected system reactions over time. They can be used in order to

apply unit testing (class testing) as well as for black box integration testing. Test cases are

stored in formats which enable tests to be executed in a wide range of specific target and

testing environments.

Features of Rhapsody Automatic Test Generation (ATG):

 Model-based test case generation for Rhapsody in C++ models

 Structural testing, also referred to as coverage testing

 Model coverage, statement coverage, MC/DC coverage

 Incremental creation of test suites

 Export of test cases into test formats and testing environments

 Generation of statistics and reports

 Easy interfacing with third-party coverage measurement tools

 Appendix

 TestConductor Assert Macros (C/C++),
TestConductor assert methods (Java),
TestConductor assert functions (Ada)

As described in chapter Test Case Definition with Code on page 46 and in chapter Test

Case Definition with Flow Charts on page 49 and in chapter TestCase Definition with

Statecharts on page 53, pre-defined assertion macros are used to get results from a test

case execution.

TestConductor defines several assertion macros (C/C++) listed below. Each macro might

have one up to four arguments with the following notation:

n = Name of the assertion (String, e.g. „Check 1―)

e, e1, e2 = Boolean Expression (e.g. i != 23)

p = text of message printed in the sequence diagram

sd_instance_name = Reference to the instance name of the sequence diagram

msgid = Reference to the message id of a message in the sequence diagram

 RTC_ASSERT (e)

Assertion with default name e. The assertion is PASSED, if the result of the

boolean expression is TRUE (e!=0), otherwise the assertion FAILED.

 RTC_ASSERT_FATAL (e)

Assertion with default name e. The assertion is PASSED, if the result of the

boolean expression is TRUE (e!=0), otherwise the assertion FAILED. If it is failed,

the test case is aborted immediately without executing further assertions.

 RTC_ASSERT_NAME (n, e)

Named assertion. The user can define the name of the assertion within the

argument n. The assertion is PASSED, if the result of the boolean expression is

TRUE (e!=0), otherwise the assertion FAILED.

 RTC_ASSERT_NAME _FATAL(n, e)

Named fatal assertion. The user can define the name of the assertion within the

argument n. The assertion is PASSED, if the result of the boolean expression is

TRUE (e!=0), otherwise the assertion FAILED. If it is failed, the test case is

aborted immediately without executing further assertions.

 RTC_ASSERT_SD (sd_instance_name, msgid, e)

Assertion that can be used within a sequence diagram. If such an assertion is used

in e.g. a driver operation or a stub operation, and sd_instance_name refers to

a sequence diagram instance, and msgid refers to a message id of a message in the

sequence diagram of the sequence diagram instance, then the assertion is executed

and attached to the specified message.

 RTC_ASSERT_SD_NAME (sd_instance_name, msgid, p, e)

Similar to RTC_ASSERT_SD. The user has to define the string argument p, which

will be concatenated with the result of the assert macro (PASSED, FAILED etc.)

and printed as result message, e.g. ―Check of return value failed.‖

 RTC_ASSERT_TRUE (n, e)

This assertion is PASSED, if e == TRUE. Otherwise the result of the assertion is

FAILED.

 RTC_ASSERT_FALSE (n, e)

This assertion is PASSED, if e == FALSE. Otherwise the result of the assertion

is FAILED.

 RTC_ASSERT_EQUAL (n, e1, e2)

This assertion is PASSED, if e1 == e2. Otherwise the result of the assertion is

FAILED.

 RTC_ASSERT_NOT_EQUAL (n, e1, e2)

This assertion is PASSED, if e1 != e2. Otherwise the result of the assertion is

FAILED.

 RTC_ASSERT_PTR_EQUAL (n, e1, e2)

This assertion is PASSED, if pointer e1 and pointer e2 are equal (e1 == e2).

Otherwise the result of the assertion is FAILED.

 RTC_ASSERT_PTR_NOT_EQUAL (n, e1, e2)

This assertion is PASSED, if pointer e1 and pointer e2 not equal (e1 != e2).

Otherwise the result of the assertion is FAILED.

 RTC_ASSERT_PTR_NULL (n, e1)

This assertion is PASSED, if the pointer e1 is NULL. Otherwise the result of the

assertion is FAILED.

 RTC_ASSERT_PTR_NOT_NULL (n, e1)

This assertion is PASSED, if the pointer is not NULL. Otherwise the result of the

assertion is FAILED.

 RTC_ASSERT_CPTRSTRING_EQUAL (n, e1, e2)

This assertion is PASSED, if the string compare is equal (strcmp(e1,e2) ==

0). Otherwise the result of the assertion is FAILED.

 RTC_ASSERT_CPTRSTRING_NOT_EQUAL (n, e1, e2)

This assertion is PASSED, if the string compare is not equal (strcmp(e1,e2)

!= 0). Otherwise the result of the assertion is FAILED.

 RTC_ASSERT_STRING_EQUAL (n, e1, e2)

This assertion is PASSED, if the comparison of the strings e1 and e2 is equal (e1

== e2). Otherwise the result of the assertion is FAILED.

 RTC_ASSERT_STRING_NOT_EQUAL (n, e1, e2)

This assertion is PASSED, if the comparison of the strings e1 and e2 is not equal

(e1 != e2). Otherwise the result of the assertion is FAILED.

For Java, TestConductor defines several assertion methods in the class TestConductor.

The following methods are available for Java (the semantics is analogues to the C/C++

macros):

 public static void ASSERT_NAME(String n, boolean p)

 public static void ASSERT_SD(String s, String n, boolean p)

 public static void ASSERT_SD_NAME(String s, String n, String m, boolean p)

 public static void ASSERT(boolean e)

 public static void ASSERT_TRUE(String n, boolean e)

 public static void ASSERT_FALSE(String n, boolean e)

 public static void ASSERT_EQUAL(String n, boolean e1, boolean e2)

 public static void ASSERT_NOT_EQUAL(String n, boolean e1, boolean e2)

 public static void ASSERT_STRING_EQUAL(String n, String e1, String e2)

 public static void ASSERT_STRING_NOT_EQUAL(String n, String e1, String

e2)

For Ada, TestConductor defines several assertion procedures in the package

TestConductor. The following procedures are available for Ada (the semantics is

analogues to the C/C++ macros):

 procedure ASSERT_NAME(n : in String; p : in BOOLEAN; sfile : String := File;

iline : integer := Line);

 procedure ASSERT_NAME_FATAL(n : in String; p : in BOOLEAN; sfile :

String := File; iline : integer := Line);

 procedure ASSERT_SD(s : in String; n : in String; p : in BOOLEAN; sfile : String

:= File; iline : integer := Line);

 procedure ASSERT_SD_NAME(s : in String; n : in String; m : in String; p: in

BOOLEAN; sfile : String := File; iline : integer := Line);

 procedure ASSERT(e : in BOOLEAN; sfile : String := File; iline : integer :=

Line);

 procedure ASSERT_TRUE(n : in String; e : in boolean; sfile : String := File; iline

: integer := Line);

 procedure ASSERT_FALSE(n : in String; e : in boolean; sfile : String := File;

iline : integer := Line);

 procedure ASSERT_EQUAL(n : in String; e1 : in boolean; e2 : in boolean; sfile :

String := File; iline : integer := Line);

 procedure ASSERT_NOT_EQUAL(n : in String; e1 : in boolean; e2 : in boolean;

sfile : String := File; iline : integer := Line);

 procedure ASSERT_STRING_EQUAL(n : in String; e1 : in String; e2 : in String;

sfile : String := File; iline : integer := Line);

 procedure ASSERT_STRING_NOT_EQUAL(n : in String; e1 : in String; e2 : in

String; sfile : String := File; iline : integer := Line);

 Using IntelliVisor for TestConductor Assert Macros

TestConductor supports the usage of the IntelliVisor functionality of Rhapsody. To be

able to use this for the defined TestConductor Assert Macros, you have to prepare

Rhapsody‘s site.prp file. Please do the following steps:

 Close Rhapsody if it is open.

 Copy the file rtc.prp from the ..\TestConductor folder to the ..\Share\Properties

folder of your Rhapsody installation.

 Open the site.prp file and add Include "rtc.prp".

 Save the site.prp file and open Rhapsody.

Using Ctrl+Space in a code based test case definition (Flowchart TestCase or Code

TestCase) the known IntelliVisor list box opens. With the modifications above you are

able to select one of the defined TestConductor Assert Macros. Selecting one of the

macros also shows a hint that gives you information about the parameters of the macro.

A double-click on the macro adds this to the code. For example you have chosen the

RTC_ASSERT_NAME macro the following code will be added:

Now you have to replace the string ―assertion name‖ and the expression to that expression

you want to check.

 Syntax for Activation Conditions / Condition
Marks

TestConductor uses the following scheme of event activation conditions:

ObjectName1->eventAction(ObjectName2,eventName)

The scheme of a state activation condition can be represented as follows:

ObjectName->stateAction(stateName)

The scheme of a method activation condition is as follows:

ObjectName1->methodAction(ObjectName2,methodName)

In this syntax:

 eventAction is EventSent or EventReceived

 stateAction is StateEntered, StateExited or IsIn

 methodAction is MethodCalled or MethodReturned

Note: The syntax of the activation condition is case sensitive. TestConductor checks

only the syntax and not for static semantics.

For example:

 PBX[0]->itsLine[0]->EventSent(PBX[0]-

>itsTelephone[0],evRing())

This activation condition is TRUE at the moment when object PBX[0]-

>itsLine[0] sends the event evRing() to object PBX[0]->

itsTelephone[0]. In a sequence diagram, this corresponds to the origin of the

message arrow.

 PBX[0]->itsLine[0]->EventReceived(PBX[0]->

itsTelephone[0],evDialTone())

This activation condition is TRUE at the moment when the object

PBX[0]->itsTelephone[0] receives the event evDialTone() from

object PBX[0]->itsLine[0]. In a sequence diagram, this corresponds to the

end point of the message arrow.

 line->MethodCalled(callRouter,OpenConnection())

The activation condition is TRUE at the moment when the line object calls the

OpenConnection() method of the callRouter object.

 line->MethodReturned(callRouter,OpenConnection())

The activation condition is TRUE at the moment when the callRouter object

returns the OpenConnection() operation call to the line object.

 telephone->StateEntered(ROOT.Ready.Calling)

The activation condition is TRUE at the moment when object telephone enters its

―Calling‖ state chart state.

 telephone->StateExited(ROOT.Ready.Calling)

The activation condition is TRUE at the moment when the telephone object exits

its ―Calling‖ state chart state.

 telephone->IsIn(ROOT.Ready.Calling)

The activation condition is TRUE as long as the telephone object is in its

―Calling‖ state chart state.

Note: You must specify the full state chart state name (the state path), e.g.

―ROOT.Ready.Calling.‖ You can combine these expressions with AND, OR, and

NOT.

For example:

(NOT (callersLine->EventReceived(caller,evRing()))) OR

(caller->StateEntered(ROOT.Ready.Idle))

Do not use two different event conditions with the conjunction AND as a combined

activation condition. Such expressions can never have the value TRUE, because

TestConductor and the Rhapsody animation tool work sequentially. At most, one event

can be sent or received at every point in time. In addition, be careful when combining

several state conditions by the conjunction AND: every object can stay in one ―basic‖ state

at every point in time, if its state chart does not contain a hierarchical state with orthogonal

components. In addition, you can use the name ENV as an object name to specify event

sending to and receiving from the system‘s environment.

Activation conditions use the following shortcuts:

 ES for EventSent; ER for EventReceived

 MC for MethodCalled; MR for MethodReturned

 SE for StateEntered; SX for StateExited; II for IsIn

 TestConductor Messages

 Errors/Warnings regarding messages in Sequence Diagrams

Some sequence diagram features are not supported by TestConductor. They will be

ignored and a warning comes up, but the test will be executed.

 Timeouts will be ignored.

 Cancelled timeouts will be ignored.

 Reply messages will be ignored.

 Execution occurrences will be ignored.

 Rhapsody in C initializers will be ignored.

 Rhapsody in C++/ Rhapsody in Java constructors will be ignored.

 Rhapsody in C cleanup operations will be ignored.

 Rhapsody in C++/ Rhapsody in Java destructors will be ignored.

 <name> : Unspecified messages will be ignored.

 <name> : Unrealized messages to an internal instance will be ignored.

 Messages with wrong syntax will also be ignored in test execution:

 Condition : <name> is not a valid expression.

 Time interval with a lower bound of 0 will be ignored.

 Time intervals are only supported on system border. Other time intervals will be

ignored.

 <name> : Wrong syntax of time interval. Time interval will be ignored.

 Time intervals are only allowed for driver or black box tests. In monitor tests time

intervals will be ignored.

 <name> : Method not supported by method broker. Remove message from

sequence diagram. (only Rhapsody in Java)

 Errors Regarding Complete Sequence Diagrams and Test (test
will not be executed)

In Rhapsody in Java a method broker is needed to drive operation calls/triggered

operations. If there is no method broker in the model or if the method broker is not valid

anymore due to changes in the model, the test will not be executed.

 Sequence diagram contains operation calls from environment (only for Rhapsody

in Java).
You must create a method broker in order to run this

test. Please press "Create MethodBroker" in the

TestConductor dialog to create a MethodBroker and

rebuild your active configuration.

 Sequence diagram contains operation calls from environment (only for Rhapsody

in Java).
The MethodBroker for the active configuration is not

valid any more. Please press "Create MethodBroker" in

the TestConductor dialog to create a new MethodBroker

and rebuild your active configuration.

 In a black box test only messages from or to the system border are used for the test.

If a sequence diagram only has internal or unsupported messages, a black box test

will not be executed.
SD has only internal Messages or unsupported elements.

Black-Box test will not be executed.

 If a sequence diagram is empty or only has unsupported messages, the test will not

be executed
SD contains only unsupported elements. Compilation

aborted. SD without any constructs is not supported.

 In some cases executing a test with a sequence diagram which hat more than 2000

messages leads to a crash due to a small stack size. In this case, please refer to the

release notes how to increase the stack size of your system.
Due to the actual size of this SD, test execution can

lead to a crash. In such a case, please contact support

to get a patch or refer to the release notes and use

the mentioned workaround.

 If two messages of a sequence diagram start/end at the same point TestConductor

can not get correct information about the messages so the compilation fails. If this

happens, make sure that there is only one message starting/ending on each message

point.
TEST: <name>

Sequence Diagram: <name>

ERROR: Compilation error - Test will not be executed.

This error can have different reasons. Known reasons

are:

- Sequence Diagram contains a time interval beginning

or ending on other message points.

- Sequence Diagram contains unspecified messages.

 If the activation condition of a test has the wrong syntax the test will not be

executed.
TEST: <name>

Sequence Diagram: <name>

ERROR: Syntax error in activation condition

<ActivationCondition>

 Another message arrow detected between start point and end point of operation.
TEST: <name>

Sequence Diagram: <name>

Another message arrow detected between start point and

end point of

Operation <name>.

This is not supported by TestConductor.

To execute the test, please move start/end points of

other messages above or below the message arrow of

<name>.

 If there is an unspecified message in the specification sequence diagram
<Message_name>: Unrealized Messages to an internal

instance will be ignored.

 If there is an unrealized message in the specification sequence diagram
<Message_name>: Messages with Stereotype <unrealized>

will be ignored.

 If the specification sequence diagram has an unspecified class
TEST: <test_name>

Sequence Diagram: <name>

Class of Instance <class_name> is unspecified. Test

will not be executed.

 Restrictions
TestConductor supports Rhapsody in C/C++/Java/Ada with its existing and with its new

features. The most important limitations are:

 Assertion based testing mode is only supported for RhapsodyC and RhapsodyC++.

 Code coverage computation with TestConductor is only supported for RhapsodyC.

 Code, flow chart (only C/C++), and statechart test cases only for Rhapsody in

C/C++/Java/Ada

 Automatic sequence diagram based model population for test components only for

Rhapsody in C++, C, Java and Ada

 Black box production code test case execution only for Rhapsody in C++ and C

 OfflineTesting only for Rhapsody in C/C++

 Code Coverage Computation with Test RealTime integration only for C/C++

 Limitations of design elements (sequence diagrams)

Currently, TestConductor does not support the following sequence diagram features:

 Create arrow

 Destroy arrow

 Reply message

 Timeout

 Cancelled timeouts

 Constraints

 Language for condition marks

Condition marks must obey the same syntax as activation conditions. Currently, simple

expressions with equality or inequality are not yet allowed in activation conditions and

condition marks.

Note: TestConductor will ignore condition marks during test execution when the syntax

of the condition mark is not valid.

If you use these unsupported features in a sequence diagram, TestConductor ignores them

during test execution.

 Functional Limitations

All TestConductor features are available for Rhapsody in C++, C, Java and Ada.

Rhapsody Automatic Test Generation (ATG) is only available for Rhapsody in C++. For

TestConductor, the most important limitations are

 Code, flow chart (only C/C++), and statechart test cases only for Rhapsody in

C/C++/Java/Ada.

 Automatic sequence diagram based model population (automatic generation of

driver and stub operations) for test components only for Rhapsody

C/C++/Java/Ada.

 Black box production code test case execution only for Rhapsody in C/C++.

 OfflineTesting only for Rhapsody in C/C++.

 Full automatic test architecture support only for Rhapsody in C/C++/Java/Ada.

Beside the listed important limitation there are some other know limitations:

 Obsolete profiles (ATGProfile, TestingProfile_CPP, TestingProfile_C,

TestingProfile_Java, TestingProfile_Ada) must be deleted from models manually.

 The ―Update‖ functionality available in the context menu of a test package, test

context and test case as well as ―Create Flowchart TestCase―, ―Create Code

TestCase‖ , ―Create Statechart TestCase‖ for a test context is only applicable to

Rhapsody in C/C++/Java/Ada. The context menu entries are enabled for other

languages, but TestConductor will raise a warning dialog or a warning message in

this case.

 Only virtual operations can be stubbed.

 TestConductor cannot generate stubs for triggered operations.

 TestConductor cannot generate stubs, if the signature of overwritten operations in

an inheritance hierarchy do not syntactically match to the related operation in the

base class (for instance, due to different typedef-types to the same base type)

 The auto-generated code for driver- or stub-operations could be semantically

incorrect, if non-default values for the properties CPP_CG::{Class,

Type}::{In, Out, InOut} are used. Note that incorrectly generated code

could be overwritten by setting the tag RTC_DriverCallCode, RTCDriverInitCode

respectively RTC_StubBodyCode.

 If a TestComponent instance is linked to a SUT using a qualified association

relation, Rhapsody does not generate code to implement the link. TestConductor

can not generate driver operations for messages, which use such a link.

 Building SUT for black-box testing requires an animation property change in the

design model.

 Auto created operations are not animated and cannot be used in test cases: due to a

limitation in the Rhapsody animation, auto generated operations like getter/setter

for class attributes are not animated during execution, they do not appear in

animated sequence diagrams and observers don't get notifications about these

messages (even if the property CG:CGGeneral:GeneratedCodeInBrowser is

set to true).

