
Tutorial for TestConductor and ATG for RiC++

RiC++ Tutorial

for

IBM
®

Rational
®

Rhapsody
®

TestConductor Add On

and

IBM
®

Rational
®

Rhapsody
®

Automatic Test Generation Add On

2

License Agreement

No part of this publication may be reproduced, transmitted,

stored in a retrieval system, nor translated into any human or

computer language, in any form or by any means, electronic,

mechanical, magnetic, optical, chemical, manual or otherwise,

without the prior written permission of the copyright owner,

BTC Embedded Systems AG.

The information in this publication is subject to change without

notice, and BTC Embedded Systems AG assumes no

responsibility for any errors which may appear herein. No

warranties, either expressed or implied, are made regarding

Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®

Automatic Test Generation Add On, and IBM® Rational®

Rhapsody®TestConductor Add On are registered trademarks

of IBM Corporation.

All other product or company names mentioned herein may be

trademarks or registered trademarks of their respective

owners.

© Copyright 2000-2011 BTC Embedded Systems AG. All

rights reserved.

3

TestConductor is the test

execution and verification engine in

the Rhapsody Testing Environment. It

executes test cases defined by

sequence diagrams, flow charts,

statecharts, and source code. During

execution TestConductor verifies the

results against the defined

requirements.

Rhapsody ATG is the Automatic

Test Generation engine in the

Rhapsody Testing Environment. In

order to thoroughly verify the

functionality of the System Under Test

(SUT), it uses the UML model

information as well as the generated

source code as basis for analysis,

and creates executable test cases

with high coverage rates.

In this tutorial we would like to give you an

impression of the Rhapsody Testing

Environment, which goes beyond current

embedded software testing technologies; it

ensures that the system can be continuously

tested throughout the design process. The

Testing Environment and its parts seamlessly

integrate in Rhapsody UML and guide the user

through the complex process of test

preparation, execution and result analysis.

TestConductor and Automatic Test Generation

IBM® Rational® Rhapsody® Testing Environment

Rhapsody®

UML Testing

Profile

Automatic

Test

Architecture

Generation

Automatic

Test Case

Generation

Automatic

Test Case

Execution

4

CashRegister Application

To create a new shopping basket

send the event evStart to

ApplicationFramework[0]->itsCashRegister.

To add an product to the shopping basket send

the event evBarcode to ApplicationFramework[0]

->itsCashRegister. The event evBarcode needs

the product code as argument. The product

database knows codes between 12344 and

12349.

To remove the last added product from the

shopping basket send the event evRemove to

ApplicationFramework[0]->itsCashRegister.

To print the bill send the event evEnd to

ApplicationFramework[0]->itsCashRegister.

The CashRegister application, the example

C++ application for this tutorial, models a simple cash

register. Make yourself familiar with the use cases of the

application. Open the project „CppCashRegister“ from the

folder „Samples/CppSamples/TestConductor“ in your

Rhapsody installation, run the component

«CashRegisterNoGui», and use the following input:

5

CashRegister Model

The ApplicationFramework class initialises

its parts itsCashRegister of type CashRegister

and itsTerminal of type Terminal. The link

between the parts ensures the bi-directional

communication over the port hw.

The CashRegister class is able to manage

the list of products the user wants to buy. View

the provided state chart to get familiar with event

processing and state changes.

The Terminal class provides the interfaces

IPrinter and IDisplay. Imagine the Terminal class

as an input/output terminal, which is able to

process keyboard inputs and displays the

progress and the bill.

The CashRegister model mainly contains the

CashRegister class, a list of selected products, and a

product database class with a list of all products ordered

by barcode numbers. The model delegates all input and

output messages to classes with interfaces of IDisplay,

IPrinter, IBarcode and IKeyboard. These classes are

connected by a port named „hw“ to the CashRegister-

class.

6

System Under Test

The System Under Test (SUT) is a part and

is the component being tested. A SUT can

consist of several objects. The SUT is exercised

via its public interface operations and events by

the test components.

Defining the System Under Test (SUT) is the first

step in the test workflow. This tutorial will focus on the

CashRegister class. To define CashRegister to be the SUT,

we have to create a test architecture. The needed

administrative framework will be placed in the folder

„TestPackages“.

1 2

Select the class

„CashRegister“ in the

browser and choose from

context menu „Create

TestArchitecture“.

Have a look on the newly created Test Context Diagram

„Structure_of_TCon_CashRegister“, and view the resulting parts in

the composite class „TCon_CashRegister“ of our test context.

7

Test Architecture

The new configuration under the component

„TCon_CashRegister_Component“ describes the

collection of test components and SUT objects

and their interconnections when a test case is

started.

A test component is a class of a test system.

Test component objects (test component

instances) realize partially the behavior of a test

case. A test component might have a set of

interfaces via which it might communicate via

connections with other test components or with

SUT objects.

A test context describes the context in which

test cases are executed. It is responsible for

defining the structure of the test system. The test

components and SUT objects are normally parts

of a test context.

The automatically created test architecture is

completely represented in the browser and seamlessly

integrates into Rhapsody; think of it as an independent test

model besides the design model. After creation the

following elements are visible:

8

Test Context

The composite class

„TCon_CashRegister“ is the part container

for the SUT object and the created test

component objects.

The class „TC_at_hw“ realizes the required

interfaces „IDisplay“ and „IPrinter“ of port „hw“.

Using ports as a high-grade encapsulation

mechanism will result in clean test architectures.

The class „TC_for_itsCountedProduct“ is a

derivation of the design class „CountedProduct“.

It is generated due to its association to the

CashRegister class.

The automatically created test context represents

the formal structure of the test system. TestConductor

analyzed the model structure in consideration of the

selected SUT and proposed a test structure, which is

visualized in the test context diagram inside the test

context. TestConductor generated corresponding test

components for ports and associations of the SUT.

9

Test Cases

is a specification of one case to test the system including what

to test, with which inputs, and what the expected outcomes are.

It is defined in terms of stimuli injected to SUT objects and

observations coming from SUT objects.

is an operation of a test context that specifies how a set of

cooperating test components interact with the SUT.

can be specified as sequence diagrams, flow charts,

statecharts, and source code.

can be generated automatically by using TestConductor‟s test

case wizard.

can be generated automatically with the Rhapsody Automatic

Test Generation (ATG).

can be recorded as animated sequence diagrams.

can be created by hand.

Test cases are the soul of a test system. Until now we created a complete test

architecture around the SUT with a few mouse clicks in less than a minute. The

established and reviewed test system is linkable and runable. Well, the body works,

let„s have a look at the test cases. A test case ...

10

Test Case Specification

Sequence diagram test cases can be recorded

automatically or created by hand. In some cases they have

already been specified during the analysis phase of the

project, and define the actions and reactions of the SUT.

The graphical formalism boosts the readability and

understanding.

Flow chart test cases also benefit from their graphical

nature, but in contrast to sequence diagrams the use of

complex data types (structs) and control structures (if-then-

else) is supported out-of-the-box.

Statechart test cases are a well known and convenient

means to specify behavior based on states and modes.

Source code test cases are often preferred by

experienced programmers.

In summary TestConductor, the Rhapsody test case

execution engine, works with all kinds and combinations of

test case definitions.

How to manually create test cases and how to execute them

with TestConductor will be discussed in the following sections. The

different kinds of definitions have their own strengths:

11

Test Case: Sequence Diagram I

To manually create a sequence diagram

test case we have to define a test scenario

which is represented as a sequence diagram

and link it to a test case. TestConductor

simplifies this process with a single command.

1 2 3
Select the test context

„TCon_CashRegister“ in the

Rhapsody-Browser ...

... and choose from the

context menu „Create SD

TestCase“..

Rename the test case to

„TestCase_simple_start“.

Rename the test scenario to

„simple_start“ and open it.

12

Test Case: Sequence Diagram II

Determine the test objective of the test

case: the SD test case should check that

requirement “REQ1” is indeed fulfilled by the

CashRegister class. To make explicit that the

SD test case shall verify this particular

requirement, a test objective is added to the

test case.

1 2 3
Select the test case and

select “Add New ->

TestingProfile ->

TestObjective”

Select requirement “REQ1” as

target of the test objective”

The test objective now links

the test case to the

requirement “REQ_Init”.

13

Test Case: Sequence Diagram III

Determine the involved objects for the

desired test scenario and remove not needed

instance lines from the view in order to

establish action and reaction between

remaining instances.

1 2
Select the instance line

„itsTC_for_itsCountedProduct

“ and remove it from view.

Arrange the remaining

instance lines „itsTC_at_hw“

and „itsCashRegister“.

14

Test Case: Sequence Diagram IV

Define action and reaction of the system

under test. We will specify the „simple_start“

scenario, where the user sends the event

evStart() to the SUT, and the SUT shall react

with a status message show(aMsg).

TestConductor, the execution engine, shall act

as as driver for evStart(), and as observer for

show(aMsg). Driving means to simulate e.g.

the users activity during test execution by

automatically sending the message to the SUT

in order to provocate a reaction. The test will

pass, if TestConductor observes the specified

reaction from the SUT. Otherwise it will fail.

1 2 3

Draw the driving message

„evStart()“ from

„itsTC_at_hw“ to the SUT

„itsCashRegister“.

Draw the message „show()“

from the SUT

„itsCashRegister“ to

„itsTC_at_hw“ such that it can

be observed.

Specify the parameter aMsg

by editing the label of show()

to „show(aMsg = OK)“.

15

Test Case Execution I

The status, the final result can be either „PASSED“

or „FAILED“.

The progress displays how many steps are finished

yet. In case of a passed test 100% have to be

achieved.

The buttons in the top right corner of the execution

dialog can be used to control actual test case

execution and will be explained later.

Execute the test case with Rhapsody TestConductor.

The execute dialog lists all executed test scenarios, their

progress and status.

1 2

To open the test case with TestConductor select the test case

„TestCase_simple_start“ and choose from the context menu the items

„Update TestCase“, „Build TestCase“, and „Execute TestCase“. The

Rhapsody TestConductor execution dialog will open.

The test case execution dialog

is a dockable dialog that can

be placed e.g. underneath the

main browser window.

16

Test Case Execution II

1 2 3

To open the debug

sequence diagram right

click the item SD_tc_0 in

the TestConductor

execution dialog…

... and select “Show as SD”

In the browser, below the

test cases, you can find the

generated html report.

Double click the report to

open it.

The test case execution FAILED with

Rhapsody TestConductor. To analyze the

reason TestConductor offers two kind of

views. The HTML-report displays a textual

summary and can be found directly under the

test case in the Rhapsody-Browser.

TestConductor created a debug sequence

diagram to display the error. The red arrow

visualizes the faulty step and the reason.

TestConductor expects the parameter value

„OK“, but observes the value „Ready“ during

test execution. The expected value was not

specified correctly... by accident.

17

Test Case Execution III

Refer to the user guide to get

familiar with the extended functionality

of TestConductor.

1 2 3
To correct the test case

open the test scenario

„simple_start“.

Respecify the „show“-

message parameter value

from „OK“ to „Ready“ and

close the test scenario.

Re-execute the test case by

pressing the “Start” button in

the top right corner of the

execution dialog.

The test execution PASSED with Rhapsody

TestConductor after we corrected the expected

parameter value for argument “aMsg” from

“OK” to “Ready” in the test scenario

„simple_start“. After changing the scenario and

re-executing the test case, the test case is

passed.

18

Test Case: Source Code I

1 2 3Select the test context

„TCon_CashRegister“ and

choose from the context

menu „Create Code

TestCase“.

Rename the created test

case to „TestCase_

code_assert“ and open the

feature dialog.

Replace the content of the

edit field under the

implementation tab of the test

case with the content from the

comment field and press

„OK“.

To manually create a source code test case
create a code test case and write the test code into

the edit field under the implementation tab of the

test case. The Rhapsody-TestConductor-macro

„RTC_ASSERT_NAME“ takes a name-parameter

and a condition. If the condition

(„isNoMoreProducts“) evals to true the test case will

pass.

19

Source Code Test Case: Execution

1 2 3Create in the test context

„TCon_CashRegister“ the

two integer attributes „i1“

and „i2“.

Select

„TestCase_code_assert“

and choose build and

execute from the context

menu.

In the execution window,

select the assertion and

double-click “Show Assertion”

in order to highlight the

assertion in the model.

Execute the test case with Rhapsody

TestConductor.

Both assertions evaluate to true and the

test case passes. Double-clicking an

evaluated assertion in the execution

window highlights the assertion in the test

model.

20

Test Case: Flow Charts I

1 2 3Select the test context

„TCon_CashRegister“ in

the Rhapsody-Browser ...

... and choose from the

context

menu „Create Flowchart

TestCase“.

Rename the created test case

to „TestCase_Flow_Chart“

and open the flow chart.

To manually create a flow chart test case we

have to define a test scenario which is represented

as a flow chart and link it to a test case.

TestConductor simplifies this process with a single

command.

21

Test Case: Flow Charts II

Replace the content of the

flow chart of the test case with

the content from the flow

chart in Package „Tutorial_

Prerequisits“.

Define the flow chart in order to execute it with

TestConductor. The Rhapsody-TestConductor-

macro „RTC_ASSERT_NAME“ takes a name-

parameter and a condition. If the conditions [i1==1]

and [i2==0] evaluate to true the test case will pass.

Obviously the flow chart test case is very similar to

the source code test case we discussed some

pages before. The difference in comparison with

the source code test case is the graphical nature of

this test case.

1

22

Flow Charts Test Execution

1 2 3Select the test case

„TestCase_Flow_Chart“ ...

... and choose from

context menu the items

„Build TestCase“

and „Execute TestCase“.

In the execution window,

select the assertion and

double-click “Show Assertion”

in order to highlight the

assertion in the model.

Execute the test case with

Rhapsody TestConductor. The

„RTC_ASSERT_NAME“-macro

evals to true and the test case

passes.

23

Test Case: Statecharts I

1 2 3Select the test context

„TCon_CashRegister“ and

select “Create Statechart

TestCase”.

Rename the test case to

“TestCase_statechart”

To manually create a statechart test case we

have to define a test scenario which is represented

as a statechart and link it to a test case. Technically,

the test case has a dependency to a

TestComponent that contains the statechart.

TestConductor simplifies this process with a single

command.

Add a test objective (using

“Add New -> TestingProfile

->TestObjective”) to

requirement REQ_2

24

Test Case: Statecharts II

Replace the content of the

test component statechart

associated with this test case

with the statechart of the

Tutorial package.

Define the statechart in order to execute it with

TestConductor. The statechart test case first starts

the CashRegister by sending event evStart. After

sending this event, the test case waits 1 second.

After 1 second has elapsed, the test case checks if

the CashRegister has changed its state from idle to

active after receiving the event evStart. If both

checks are passed, the complete test case is

passed.

1 Add “evTCStart” as trigger of

the transition from state

“initial” to state “state_1”

2

25

Statechart Test Case Execution

1 2 3Select the test case

„TestCase_statechart“ ...

... and choose from

context menu the items

„Build TestCase“

and „Execute TestCase“.

In the execution window,

select the assertion and

double-click “Show Assertion”

in order to highlight the

assertion in the model.

Execute the test case with Rhapsody

TestConductor. Both assertions evaluate to

true and the test case passes.

26

Create Test Cases Using Test Case Wizard - SDs

1 2 3Select the sequence diagram

“scenario_simple_start” in

the tutorial package and

select “Create TestCase…”.

In the test case wizard

dialog, the test context

“TCon_CashRegister” is

already highlighted. Press

OK to proceed.

As a result, a new test case

“SD_tc_0” has been created

which is based on a new test

scenario containing the same

messages as the original SD,

but life lines adapted to the

test context structure.

To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor

test case wizard. For an existing sequence

diagram, the test case wizard creates an analogue

test case with the same message structure as the

original sequence diagram. For an operation, the

test case wizard creates a test case that tests the

chosen operation, for a requirement the test case

wizard creates a test case with the chosen

requirement as the test objective.

27

Create Test Cases Using Test Case Wizard -
Operations

1 2 3Select operation

“countProducts” of class

CashRegister in the

browser and select

“Create TestCase…”

In the test case wizard

dialog, select “Code

TestCase” as test case

kind and press OK.

As a result, a new code test

case has been created that

contains a call to operation

“countProducts” and also a

dummy assertion that can be

refined.

The test case wizard can also be used to

test operations that are defined in the model.

The wizard allows to create four different kinds

of test cases: sequence diagram test cases,

statechart test cases, flow chart test cases or

code test cases. Independent of the chosen

kind of test case, the created test case calls the

selected operation. Additionally, the test case

already contains a check that can be refined by

the user in order to check the out values of the

operation.

28

Debugging Test Cases

1 2 3Select test case

“SD_tc_0” and select

“Execute TestCase”.

After the test case has

failed, turn on debug

execution mode by clicking

the debug button in the

execution dialog.

Execute the test case again

by pressing the “Start” button

in the execution dialog. Now

you can step through the test

case by using Rhapsody‟s

animation toolbar.

Debugging failed test cases can also be

done with TestConductor. When a test case

fails, one can turn on debug execution mode in

TestConductor‟s execution window. After

switching on debug mode, when executing the

test case one can step through it by using the

“Go Step”, “Go Idle”, etc. buttons of Rhapsody‟s

animation toolbar. Additionally, when stepping

through the test case, one can use Rhapsody‟s

animation features to inspect animated

statecharts, animated SDs, etc. in order to find

the reason why the test case fails.

29

Executing Multiple Test Cases

1 2 3Select the test context

“TCon_CashRegister” and

select “Update

TestContext”. After that,

select “Build TestContext”.

Select the test context

again and press “Execute

TestContext”. All test cases

will be executed one after

the other.

The results are shown in the

execution window. As always,

“Show as SD” resp. “Show

assertion” can be used to

show the reasons of failed

test cases.

Executing multiple test cases can be

done by executing a complete test context or

a complete test package. When a test context

or a test package is executed, all test cases

within the context or test package are executed.

After all test cases have been executed,

TestConductor computes an overall test result

for the test context or the test package.

30

Assessing Test Case Requirement Coverage I

1 2 3Select the test package

“TPkg_CashRegister” and

select “Add New ->

TestingProfile ->

TestRequirementMatrix”.

Open the features dialog

of the matrix, rename it to

“ReqCoverage”, and set

the “from” scope and the

“to” scope to the complete

model “CppCashRegister”.

When double clicking the

matrix in the browser, the

matrix view shows the

relationship between the test

cases and the requirements.

Which requirements are covered by

my test cases? This important question

can be answered either by using a test case

requirements matrix or by generating a

requirements coverage test report. A test

case requirements matrix shows the

relationship between test cases and

requirements in a matrix view. A

requirements coverage test report shows

the same information, but presented as a

textual report. It can be generated by

ReporterPlus using a predefined template.

31

Assessing Test Case Requirement Coverage II

1 2 3From Rhapsody‟s tools

menu, select “ReportPlus

-> Report on all model

elements”.

As format, select Html.

After that, select

“TestRequirementCoverage

.tpl” as template for the

report to generate.

After generating the report,

the report can be viewed with

any browser that can display

Html files.

Test Case Reports can be used as an

alternative in order to figure out coverage of

requirements with the test cases. With

ReporterPlus a requirement coverage report

can be generated in different formats like Word,

Html, etc. The requirements coverage test

report shows the same information as the

requirements coverage matrix, but presented as

a textual report. Besides the requirements

coverage report, another predefined template

(TestReport.tpl) can be used to generate a

complete test report that contains all details

about test cases, test architectures, etc.

32

Assessing Test Case Model Coverage

1 2 3On the tags tab of the

configuration, turn on

“ComputeModelCoverage”.

Execute the test context

“TPkg_CashRegister”.

After execution has finished,

coverage reports can be

found both for individual test

cases as well as a

cumulative coverage report

for the test context.

Besides coverage of the requirements,
an important orthogonal information is which

parts of the model are executed by the test

cases, i.e, what is the achieved Model

Coverage when executing the test cases.

TestConductor can compute this information

during test case execution. When model

coverage computation is turned on, after test

case execution TestConductor adds a model

coverage report to the test cases, test contexts

etc. that shows the achieved model coverage.

33

Automatic Generation of Test Cases

An ATG configuration represents a saveable

combination of properties, which gives

reproducible test cases. Furthermore, think of a

spotlight which highlights only a small part of the

SUT; with more configurations you have more

light from different views.

To automatically create sequence diagram test

cases open the „Rhapsody Automatic Test Generation“.

In the main ATG dialog the user is able to adjust

properties, which mainly affect the test case generation

process. A new ATG configuration was created.

2
Select the test context

„TCon_CashRegister“ and

choose from context menu

„Apply ATG...“. The ATG

main dialog appears.

1 Before working with ATG, do a

“Clean TestPackage” on the

top level test package

“TPkg_CashRegister”

34

ATG Settings “General”

1 2 3Rename the configuration

to „Configuration_01“.

Check the option „Delete

existing SDs/Tests when

exporting“.

Check the option

„Minimize SDs/Tests

when exporting“.

The General tab of ATG defines the name of the

configuration and provides a description box to notice its

purpose.

The Timout field tells ATG how much time to spend finding

the best coverage. The default is one minute. Increase the

value when dealing with complex models.

The selected option Delete existing SDs/Tests when

exporting prevents duplicated sequence diagrams in the

model when re-exporting test cases from ATG.

The selected option Minimize SDs/Tests when exporting
results in efficient and compact sets of test cases.

35

ATG Settings “Coverage Definition”

1 2 3By default, the option

“Model Element

Coverage” is selected.

Since we are only

interested in the model

coverage of class

CashRegister, uncheck

coverage of Product and

ProductDatabase

The Coverage Definition tab of ATG

defines the target classes and events ATG will

analyze in terms of the defined SUT. In this

tutorial ATG shall cover all model elements

from the class „CashRegister“.

The selected option Model Element

Coverage tells ATG to generate test

cases that shall cover all operations,

states and transitions of the selected

classes.

By default, the class of

the SUT of the test

context, CashRegister, is

selected.

36

ATG Settings “Input Interface”

ATG sets the SUT as default input instance

(TCon_CashRegister.itsCashRegister) automatically.

The evBarcode has a constraint to consider a lowest

and a highest value for the parameter aCode. ATG

recognizes such restrictions and adopts them as defined

in the Model.

The „Input Interface“-Section under the Interface Definition

tab defines the operations and events ATG is allowed to call

on the SUT and the test components. TestConductor, the

execution engine, will later act as driver for theses operations

and events. In this tutorial ATG shall be able to call all

available and usable elements of the CashRegister-instance

and the ProductDatabase-instance.

1 2
By default, all operations & events of CashRegister are

selected as inputs. Since we just want to stimulate the

Cashregister via events, please uncheck all operations.

Verify that the incorporated

instance

„TCon_CashRegister.

itsCashRegister“ is noted

and all options are active.

37

ATG Traced Instances and Messages

In a black-box environment only

messages coming from the SUT will be

observed.

In a white-box environment all

messages from the SUT and messages

inside the SUT will be observerd. After

you finished this tutorial try to

incorporate an instance of CashRegister

under this section (it„s notation is equal

to that in the „Input Interface“-section).

ATG will trace additional messages from

inside the SUT like „startSession()“,

„identifyProduct()“ and „addProduct()“ in

the test cases, which will not be shown

in an black-box environment.

The „Traced Instances and Messages“-

Section under the Interface Definition tab of ATG defines

the operations and events ATG has to trace on an

incorporated instance. TestConductor, the execution engine,

will later act as observer for theses operations and events.

In this tutorial ATG shall trace all needed elements of the

TC_at_hw-instance in a black-box environment. In case you

like to have white-box test cases incorporate a

CashRegister-instance.

1 ATG proposes to incorporate an instance of „CountedProduct“ and

“Tcon_CashRegister”. Delete these default settings from the text

field before further using ATG.

38

ATG Test Case Generation

1 2 3To start the ATG engine

select „Configuration_01“

and choose

from the context menu

„Generate Test Cases“.

Check that ATG reaches

100% model element

coverage.

Details about which

elements are covered

resp. not covered can be

seen in the coverage

browser underneath the

ATG configuration.

To Generate TestCases start the ATG

engine. ATG shows the coverage results in

percent well-defined for model element

coverage (100%). The coverage browser on

the left shows details about which model

elements are covered resp. not covered.

The results ATG generates can be

evaluated (e.g. in order to check why

certain model elements are not covered)

and the test cases can be exported to

Rhapsody as sequence diagrams.

39

ATG Test Case Export

1 2 3Select „Configuration_01“

and choose from the

context menu „Export

Test Cases to Rhapsody“.

Close the ATG-Dialog and

analyze the new items in

„TestScenarios“

and „TestCases“ in the

Rhapsody-Browser.

Open for example the

TestScenario

„ATG_TestCase.8“ and

examine the driving and

observed events.

The export of test cases is a fully

automated task in ATG. The resulting test

cases are stereotyped primitive operations and

will be shown in the browser folder

„TestCases“. Test cases are linked to test

scenarios, which are stored in a new folder

„TestScenarios“.

All test cases are reproducible. Once the

model has changed you can delete the

corresponding test case items in order to

re-generate and re-export them from an

ATG-Configuration.

40

Automatic Execution of ATG Test Cases

Executing test cases with Rhapsody

TestConductor means nothing less than to replay a

defined scenario. The scenarios (saved in the folder

TestScenarios) are specified as actions and

reactions in sequence diagrams (or activity

diagrams or source code). During execution

TestConductor acts as driver and observer. In the

Scenario „ATG_TestCase.8“ it drives the event

evStart and expects the parameterized reaction

show. It drives the event evBarcode and expects...

quite easy and very powerful.

1 2To open TestConductor select the test case „atg_tc_008“, and

choose from the context menu the items „Update TestCase“, „Build

TestCase“ and „Execute TestCase“.

Select „Show as SD” to

view the used ATG test

scenario.

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor and Automatic Test Generation (ATG)

 generates complete, immediately executable test

architectures in shortest time with a few mouse clicks.

 makes it for the first time possible to implement cyclically

quality assurance measures in early phases of the

development.

 increases substantially the planning reliability for

projects, because design errors and subsequent errors

will be recognized very early.

 makes statements about the coverage rates for both the

model elements and model code. Developers can easily

and fast analyze reasons for not coved elements.

 highly automates the testing process and can save up

to 80% of test development time compared to

traditional approaches.

Appendix I

Testing a Rhapsody Component!

43

Generate Test Architecture

1 2 3Select the root package

„CPPCashRegister“ and

choose from the context menu

„Add New -> TestingProfile-

>TestPackage“.

Select the created test

package and choose from

the context menu „Add

New -> TestingProfile ->

TestContext“.

Rename the created test

package to

„TPkg_ComponentTest“

and the created test

context to

„TCon_ComponentTest“.

To manually create a test architecture
for the component test, insert a new test

package and a new test context. It is not

necessary to define a SUT and test components.

We will use the pre-defined component

«CashRegisterNoGui» and its configuration

«Debug»; activate this configuration before you

proceed. This test validates the complete model

running in a production configuration against its

requirements. Here, the SUT is the complete

component.

44

Link SD to Test Case

1 2 3Select the test context

„TCon_ComponentTest“ and

choose from the context

menu „Add New ->

TestingProfile -> TestCase“.

Rename the created test

case to

„TestCase_Purchase_

with_remove“.

Select the test case

„TestCase_

Purchase_with_remove“

and choose from context

menu the item „Edit

TestCase SDInstances“.

To link an existing sequence

(requirement) diagram to a test case
create a test case and open the dialog „Define

Test“.

In the dialog „Define Test“ the user can

specify properties concerning

the execution of sequence diagram

test cases. Refer the user guide to get

familar with the properties and their effect

during test case execution.

45

Test Case Property Definition

1 2 3
Press „Add SDInstance“ and

write in the field „SDInstance

Name“ the text

„Purchase_with_remove“.

Select the item

„SDPurchase_with_remov

e“ from the drop-down

combobox in the field

„Sequence Diagram“.

Select the „Driver and

Monitor“ option and apply all

changes by pressing „OK“.

The dialog closes.

Define the properties of a test case in

order to use an existing sequence diagram. In

the dialog „Define Test“ specify the sequence

diagram, switch to linear driving and apply the

changes. We use the sequence diagram

„SDPurchase_with_remove“ from the

specification phase of the CashRegister

project, which specifies a complete purchase

process.

46

Passed Test Execution

1 2 3
... and choose from

context menu the items

„Update TestCase“, „Build

TestCase“ and „Execute

TestCase“.

The test case runs and

passes as expected.

The test execution PASSED with

Rhapsody TestConductor.

Set as active component

“CashRegisterNoGui”.

Select the test case

“TestCase_Purchase_with

_ remove”.

Appendix II

Generating test reports with Rhapsody ReporterPLUS!

48

Test Report Generation I

In opposite to the Rhapsody TestConductor

HTML Test Result Report every ReporterPLUS

template can be customized to fit the users

needs.

To generate a test report with Rhapsody

ReporterPLUS select a test package in the Rhapsody

browser and start the ReporterPLUS wizard. After all

needed options are selected ReporterPLUS will start to

collect information and displays it in a well arranged style

in different formats as listed in the figure.

1 2
... and choose from the „Tools“ menu „ReporterPLUS -> Report on

selected package...“ to create a report for the selected test

package. In case a report for all test packages in the model shall

be created, choose the menu item „Report on all model

elements...“

Select the test package

„TPkg_CashRegister“ in the

Rhapsody browser ...

49

Test Report Generation II

1 2 3Click on the Button „...“ to

browse the test report

template.

Select the template

„TestReport.tpl“ in the folder

„reporterplus\Templates“ in

your Rhapsody installation

and choose „Next>“.

Select the export format and choose the

test report template, which has been installed

with Rhapsody TestConductor in the

ReporterPLUS template directory. This

template uses the TestingProfile to provide the

underlying stereotypes to generate a

document.

Select the export

document format

„Generate HTML Page“

and choose „Next>“.

50

Test Report Generation III

1 2 3

ReporterPLUS will collect

information from you

model and start the

corresponding application

for the selected export file

format to display.

Discover the browseable

information in the report.

Select a linked item in the

left section to display the

corresponding

information.

Specify the report file name and execute

Rhapsody ReporterPLUS to display

information about the defined parts of your

model.

Finish the ReporterPLUS

wizard, name the export

file in the „Generate

Document“ dialog and

select „Generate“.

The HTML export format we use for

this example needs Microsoft Internet

Explorer (or Netscape Navigator) with

installed Java virtual machine. In case

the virtual machine is not installed, the

browser will ask to install it automatically

from the internet.

51

More Information …

For further information, especially

technical news, visit our internet

information portal or contact one of our

worldwide sale agencies.

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational

products can be found at http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific

country phone numbers, go to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.

When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background

information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

• What software versions were you running when the problem occurred?

• Do you have logs, traces, or messages that are related to the problem?

• Can you reproduce the problem? If so, what steps do you take to reproduce it?

• Is there a workaround for the problem? If so, be prepared to describe the workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

