
Tutorial for TestConductor for RiJ

RiJ Tutorial

for

IBM
®

Rational
®

Rhapsody
®

TestConductor Add On

2

License Agreement

No part of this publication may be reproduced, transmitted,

stored in a retrieval system, nor translated into any human or

computer language, in any form or by any means, electronic,

mechanical, magnetic, optical, chemical, manual or otherwise,

without the prior written permission of the copyright owner,

BTC Embedded Systems AG.

The information in this publication is subject to change without

notice, and BTC Embedded Systems AG assumes no

responsibility for any errors which may appear herein. No

warranties, either expressed or implied, are made regarding

Rhapsody software and its fitness for any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody®

Automatic Test Generation Add On, and IBM® Rational®

Rhapsody®TestConductor Add On are registered trademarks

of IBM Corporation.

All other product or company names mentioned herein may be

trademarks or registered trademarks of their respective

owners.

© Copyright 2000-2011 BTC Embedded Systems AG. All

rights reserved.

3

TestConductor is the test

execution and verification engine in

the Rhapsody Testing Environment. It

executes test cases defined by

sequence diagrams, statecharts, and

source code. During execution

TestConductor verifies the results

against the defined requirements.

In this tutorial we would like to give you an

impression of the Rhapsody Testing

Environment, which goes beyond current

embedded software testing technologies; it

ensures that the system can be continuously

tested throughout the design process. The

Testing Environment and its parts seamlessly

integrate in Rhapsody UML and guide the user

through the complex process of test

preparation, execution and result analysis.

TestConductor for Rhapsody for Java

IBM® Rational® Rhapsody® Testing Environment

Rhapsody®

UML Testing

Profile

Automatic

Test

Architecture

Generation

Automatic

Test Case

Generation

Automatic

Test Case

Execution

4

StopWatch Application

To start the application, press “Go” in

Rhapsody‟s animation toolbar.

To start the stopwatch, generate event

“evKey(1)” using the animation toolbar.

To stop the stopwatch, generate event

“evKey(1)” again using the animation toolbar.

When running, the stopwatch outputs the

elapsed time in minutes and seconds to the

console. Each second is printed twice, one time

with a colon and 0.5 seconds later without a

colon, similar to a stopwatch with blinking colon.

The StopWatch application, the example

Java application for this tutorial, models a simple stopwatch.

Make yourself familiar with the use cases of the application.

Open the project „JavaStopWatch“ from the folder

„Samples/JavaSamples/TestConductor“ in your Rhapsody

installation, run the component «StopWatchComp», and

use the following input:

5

StopWatch Model

The myStopWatch class represents a

sample instantiation of the StopWatch class. It

connects a stopwatch to an external key “myKey”

that can be used as a start/stop button.

Additionally, it connects the stopwatch to an

external display “myDisplay” that displays the

elapsed time.

The StopWatch model contains the

StopWatch class and its three parts. The first part is a

button that can be used to start and stop the stopwatch.

The second part is the timer that is used in order to count

the elapsed time. The third part is the display that displays

the elapsed time. Within the stopwatch the different

components are connected via ports and links. Additionally,

the stopwatch class itself relays both the start/stop button

and the display to its boundaries in order to be able to

connect an external start/stop button and an external

display .

6

System Under Test

The System Under Test (SUT) is a part and

is the component being tested. A SUT can

consist of several objects. The SUT is exercised

via its public interface operations and events by

the test components.

Defining the System Under Test (SUT) is the first

step in the test workflow. This tutorial will focus on the

StopWatch class. To define StopWatch to be the SUT, we

have to create a test architecture. The needed

administrative framework will be placed in the folder

„TestPackages“.

1 2

Select the class

„StopWatch“ in the browser

and choose from context

menu „Create

TestArchitecture“.

Have a look on the newly created Test Context Diagram

„Structure_of_TCon_StopWatch “, and view the resulting parts in

the composite class „TCon_StopWatch“ of our test context.

7

Test Architecture

The new configuration under the component

„TCon_StopWatch_Comp“ describes the

collection of test components and SUT objects

and their interconnections when a test case is

started.

A test component is a class of a test system.

Test component objects (test component

instances) realize partially the behavior of a test

case. A test component might have a set of

interfaces via which it might communicate via

connections with other test components or with

SUT objects.

A test context describes the context in which

test cases are executed. It is responsible for

defining the structure of the test system. The test

components and SUT objects are normally parts

of a test context.

The automatically created test architecture is

completely represented in the browser and seamlessly

integrates into Rhapsody; think of it as an independent test

model besides the design model. After creation the

following elements are visible:

8

Test Context

The composite class „TCon_StopWatch“ is

the part container for the SUT object and the

created test component objects.

The class „TC_at_pIn_of_StopWatch“
realizes the required interface „IKey“ and thus

can be connected to the “pIn” port of the

stopwatch class that provides this interface.

The class „TC_at_pOut_of_StopWatch“
provides realizations for the interface “IDisplay”

and thus can be connected to the “pOut” port of

the stopwatch class.

The automatically created test context represents

the formal structure of the test system. TestConductor

analyzed the model structure in consideration of the

selected SUT and proposed a test structure, which is

visualized in the test context diagram inside the test

context. TestConductor generated corresponding test

components for ports and associations of the SUT.

9

Adjusting Test Architecture

To use events which are defined in other

packages we have to set a usage

dependency. Otherwise the events will not be

found if referred to from another package.

1 2 3

Select Add New->Relations->

Dependency for „TC_at_pIn_

of_ StopWatch“ and set the

dependency to InterfacePkg.

Double click InterfacePkg

and set the Stereotype of

the dependency to Usage.

Repeat the same steps for

“TC_at_pOut_of_StopWatch”

and “TCon_StopWatch”.

10

Test Cases

is a specification of one case to test the system

including what to test, with which inputs, and what the

expected outcomes are. It is defined in terms of stimuli

injected to SUT objects and observations coming from

SUT objects.

is an operation of a test context that specifies how a

set of cooperating test components interact with the

SUT.

can be specified as sequence diagrams, statecharts,

and source code.

can be generated automatically by using

TestConductor‟s test case wizard.

can be recorded as animated sequence diagrams.

can be created by hand.

Test cases are the soul of a test system. Until now we created a complete test

architecture around the SUT with a few mouse clicks in less than a minute. The

established and reviewed test system is linkable and runable. Well, the body works,

let„s have a look at the test cases. A test case ...

11

Test Case Specification

Sequence diagram test cases can be recorded

automatically or created by hand. In some cases they have

already been specified during the analysis phase of the

project, and define the actions and reactions of the SUT.

The graphical formalism boosts the readability and

understanding.

Statechart test cases are a well known and convenient

means to specify behavior based on states and modes.

Source code test cases are often preferred by

experienced programmers.

In summary TestConductor, the Rhapsody test case

execution engine, works with all kinds and combinations of

test case definitions.

How to manually create test cases and how to execute them

with TestConductor will be discussed in the following sections. The

different kinds of definitions have their own strengths:

12

Test Case: Sequence Diagram I

To manually create a sequence diagram

test case we have to define a test scenario

which is represented as a sequence diagram

and link it to a test case. TestConductor

simplifies this process with a single command.

1 2 3
Select the test context

„TCon_StopWatch“ in the

Rhapsody-Browser ...

... and choose from the

context menu „Create SD

TestCase“..

Rename the test case to

„tc_check_init“. Rename the

test scenario to „CheckInit“

and open it.

13

Test Case: Sequence Diagram II

Determine the test objective of the test

case: the SD test case should check that

requirement “REQ_Init” is indeed fulfilled by

the stopwatch class. To make explicit that the

SD test case shall verify this particular

requirement, a test objective is added to the

test case.

1 2 3
Select the test case and

select “Add New ->

TestingProfile ->

TestObjective”

Select requirement “REQ_Init”

as target of the test objective”

The test objective now links

the test case to the

requirement “REQ_Init”.

14

Test Case: Sequence Diagram III

Define action and reaction of the system

under test. We will specify the „CheckInit“

scenario, where the SUT shall emit event

“evShow” with current time 0:0 after starting

the SUT. This output shall be generated

automatically by the SUT, since no further

input is needed for that.

1 2 3

Draw the message

“evShow” from the SUT to

the test component

“TCon_StopWatch.itsTC_at

_pOut_of_StopWatch”.

Specify argument values

m = 0, s = 0, b = true for the

message.
That‟s it already. The test

case specification is

complete.

15

Test Case Execution I

The status, the final result can be either

„PASSED“ or „FAILED“.

The progress displays how many steps are

finished yet. In case of a passed test 100% have

to be achieved.

The buttons in the top right corner of the

execution dialog can be used to control actual

test case execution and will be explained later.

Execute the test case with Rhapsody TestConductor.

The execute dialog lists all executed test scenarios, their

progress and status.

1 2

To execute a test case, simply right-click the test case and select

“Execute TestCase” from the context menu. In case the test model

needs to be updated and/or the tested executable needs to be

compiled, a popup window appears in order to update the test case

and/or build the executable.

The test case execution

dialog is a dockable dialog

that can be placed e.g.

underneath the main

browser window

16

Test Case Execution II

1 2 3

To open the debug

sequence diagram right

click the item SD_tc_0 in

the TestConductor

execution dialog…

... and select “Show as SD”
In the browser, underneath the

test case, you can find the

generated html report. Double

click the report to open it.

The test case execution FAILED with

Rhapsody TestConductor. To analyze the

reason TestConductor offers two kind of views.

The HTML-report displays a textual summary

and can be found directly under the test case

in the Rhapsody-Browser. TestConductor

created a debug sequence diagram to display

the error. The red arrow visualizes the faulty

step and the reason. TestConductor expects

the parameter value „true“ for argument “b”,

but observes the value „false“ during actual

test execution. The expected value was not

specified correctly... by accident.

17

Test Case Execution III

Refer to the user guide to get

familiar with the extended functionality

of TestConductor.

1 2 3
To correct the test case

open the test scenario

„CheckInit“.

For argument “b”, change the

exptected value from “true” to

“false”.

Re-execute the test case by

pressing the “Start” button in

the top right corner of the

execution dialog.

The test execution PASSED with

Rhapsody TestConductor after we corrected

the expected parameter value for argument “b”

from “true” to “false” in the test scenario

„CheckInit“. After changing the scenario and

re-executing the test case, the test case is

passed.

18

Test Case: Source Code I

1 2 3Select the test context

„TCon_StopWatch“ and

choose from the context

menu „Create Code

TestCase“.

Rename the created test

case to „tc_check_time“

and open the features

dialog.

Replace the content of the

edit field under the

implementation tab of the test

case with the content from the

“tc_check_time” operation in

the Tutorial package.

To manually create a source code test case
create a code test case and write the test code into

the edit field under the implementation tab of the

test case. TestConductor provides a set of functions

like e.g. „TestConductor.ASSERT_NAME“ that can

be used to execute checks during test case

execution. If the function “setTime” (line 08) of the

stopwatch works as expected, the test case

passes.

19

Source Code Test Case: Execution

1 2 3Select test case

“tc_check_time” and then

select “Build TestCase”

from the context menu.

Select test case

„tc_check_time“ and select

“Execute TestCase” from

the context menu.

In the execution window,

select the assertion and

double-click “Show Assertion”

in order to highlight the

assertion in the model.

Execute the test case with Rhapsody

TestConductor.

Both assertions evaluate to true and the

test case passes. Double-clicking an

evaluated assertion in the execution

window highlights the assertion in the test

model.

20

Test Case: Statecharts I

1 2 3Select the test context

„TCon_StopWatch“ and

select “Create Statechart

TestCase”.

Rename the test case to

“tc_check_progress”

To manually create a statechart test case we

have to define a test scenario which is represented

as a statechart and link it to a test case. Technically,

the test case has a dependency to a

TestComponent that contains the statechart.

TestConductor simplifies this process with a single

command.

Add a test objective (using

“Add New -> TestingProfile

->TestObjective”) to

requirement REQ_Running_1

21

Test Case: Statecharts II

Replace the content of the

test component statechart

associated with this test case

with the statechart of the

Tutorial package.

Vitalize the statechart in order to execute it with

TestConductor. The statechart test case first checks

that initially the stopwatch‟s time is indeed 0:0. After

starting the stopwatch, the statechart test case

waits a bit more than 3 seconds, and then checks

that indeed 3 seconds should be counted by the

stopwatch during that period. To execute the

checks the statechart test case uses the Rhapsody

TestConductor function

„TestConductor.ASSERT_NAME()“. This function

was already used for the code test case in order to

perform code based checks. If both checks are

passed, the complete test case is passed.

1

22

Statechart Test Execution

1 2 3Select the test case

„tc_check_progress“ ...

... and choose from

context menu the items

„Build TestCase“

and „Execute TestCase“.

In the execution window,

select the assertion and

double-click “Show Assertion”

in order to highlight the

assertion in the model.

Execute the test case with Rhapsody

TestConductor. Both assertions evaluate to

true and the test case passes.

23

Create Test Cases Using Test Case Wizard - SDs

1 2 3Select the sequence diagram

“StopWatchRunning” in the

tutorial package and select

“Create TestCase…”.

In the test case wizard

dialog, the test context

“TCon_StopWatch” is

already highlighted. Press

OK to proceed.

As a result, a new testcase

“SD_tc_0” has been created

which is based on a new test

scenario containing the same

messages as the original SD,

but life lines adapted to the test

context structure.

To create a test case based on existing

sequence diagrams, operations or

requirements, you can use the TestConductor

test case wizard. For an existing sequence

diagram, the test case wizard creates an analogue

test case with the same message structure as the

original sequence diagram. For an operation, the

test case wizard creates a test case that tests the

chosen operation, for a requirement the test case

wizard creates a test case with the chosen

requirement as the test objective.

24

Create Test Cases Using Test Case Wizard -
Operations

1 2 3Select operation

“setTime” of class

StopWatch in the browser

and select “Create

TestCase…”

In the test case wizard

dialog, select “Code

TestCase” as test case

kind and press OK.

As a result, a new code test

case has been created that

contains a call to operation

“setTime” and also a dummy

assertion that can be refined.

The test case wizard can also be used to

test operations that are defined in the model.

The wizard allows to create three different kinds

of test cases: sequence diagram test cases,

statechart test cases or code test cases.

Independent of the chosen kind of test case, the

created test case calls the selected operation.

Additionally, the test case already contains a

check that can be refined by the user in order to

check the out values of the operation.

25

Debugging Test Cases

1 2 3Select test case

“SD_tc_0” and select

“Execute TestCase”.

After the test case has

failed, turn on debug

execution mode by clicking

the debug button in the

execution dialog.

Execute the test case again

by pressing the “Start” button

in the execution dialog. Now

you can step through the test

case by using Rhapsody‟s

animation toolbar.

Debugging failed test cases can also be

done with TestConductor. When a test case

fails, one can turn on debug execution mode in

TestConductor‟s execution window. After

switching on debug mode, when executing the

test case one can step through it by using the

“Go Step”, “Go Idle”, etc. buttons of Rhapsody‟s

animation toolbar. Additionally, when stepping

through the test case, one can use Rhapsody‟s

animation features to inspect animated

statecharts, animated SDs, etc. in order to find

the reason why the test case fails.

26

Executing Multiple Test Cases

1 2 3Select the test context

“TCon_StopWatch” and

select “Update

TestContext”. After that,

select “Build TestContext”.

Select the test context

again and press “Execute

TestContext”. All test cases

will be executed one after

the other.

The results are shown in the

execution window. As always,

“Show as SD” resp. “Show

assertion” can be used to

show the reasons of failed

test cases.

Executing multiple test cases can be

done by executing a complete test context or

a complete test package. When a test context

or a test package is executed, all test cases

within the context or test package are executed.

After all test cases have been executed,

TestConductor computes an overall test result

for the test context or the test package.

27

Assessing Test Case Requirement Coverage I

1 2 3Select the test package

“TPkg_StopWatch” and

select “Add New ->

TestingProfile ->

TestRequirementMatrix”.

Open the features dialog

of the matrix, rename it to

“ReqCoverage”, and set

the “from” scope and the

“to” scope to the complete

model “JavaStopWatch”.

When double clicking the

matrix in the browser, the

matrix view shows the

relationship between the test

cases and the requirements.

Which requirements are covered by

my test cases? This important question can

be answered either by using a test case

requirements matrix or by generating a

requirements coverage test report. A test case

requirements matrix shows the relationship

between test cases and requirements in a

matrix view. A requirements coverage test

report shows the same information, but

presented as a textual report. It can be

generated by ReporterPlus using a predefined

template.

28

Assessing Test Case Requirement Coverage II

1 2 3From Rhapsody‟s tools

menu, select “ReportPlus

-> Report on all model

elements”.

As format, select Html.

After that, select

“TestRequirementCoverage

.tpl” as template for the

report to generate.

After generating the report,

the report can be viewed with

any browser that can display

Html files.

Test Case Reports can be used as an

alternative in order to figure out coverage of

requirements with the test cases. With

ReporterPlus a requirement coverage report

can be generated in different formats like Word,

Html, etc. The requirements coverage test

report shows the same information as the

requirements coverage matrix, but presented as

a textual report. Besides the requirements

coverage report, another predefined template

(TestReport.tpl) can be used to generate a

complete test report that contains all details

about test cases, test architectures, etc.

29

Assessing Test Case Model Coverage

1 2 3Open the features dialog

of the test package

“TPkg_StopWatch” and

turn on property

“TestConductor.TestCase.

ComputeCoverage”.

Execute the test context

“TCon_StopWatch”.

After execution has finished,

coverage reports can be

found both for individual test

cases as well as a cumulative

coverage report for the test

context.

Besides coverage of the requirements,
an important orthogonal information is which

parts of the model are executed by the test

cases, i.e, what is the achieved Model

Coverage when executing the test cases.

TestConductor can compute this information

during test case execution. When model

coverage computation is turned on, after test

case execution TestConductor adds a model

coverage report to the test cases, test contexts

etc. that shows the achieved model coverage.

Conclusion

The high-grade automation in the Rhapsody Testing Environment with

TestConductor

 generates complete, immediately executable test

architectures in shortest time with a few mouse clicks.

 makes it for the first time possible to implement cyclically

quality assurance measures in early phases of the

development.

 increases substantially the planning reliability for

projects, because design errors and subsequent errors

will be recognized very early.

 makes statements about the coverage rates for both the

model elements and model code. Developers can easily

and fast analyze reasons for not coved elements.

 highly automates the testing process and can save up

to 80% of test development time compared to

traditional approaches.

31

More Information …

For further information, especially

technical news, visit our internet

information portal or contact one of our

worldwide sale agencies.

IBM® Rational® Software Support provides you with technical assistance. The IBM Rational Software Support Home page for Rational

products can be found at http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support, read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in your country (where available). For specific

country phone numbers, go to http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information that you will need to describe your problem.

When describing a problem to an IBM software support specialist, be as specific as possible and include all relevant background

information so that the specialist can help you solve the problem efficiently. To save time, know the answers to these questions:

• What software versions were you running when the problem occurred?

• Do you have logs, traces, or messages that are related to the problem?

• Can you reproduce the problem? If so, what steps do you take to reproduce it?

• Is there a workaround for the problem? If so, be prepared to describe the workaround.

http://www.ibm.com/software/rational/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational
http://www.ibm.com/planetwide

