
Enterprise COBOL for z/OS

Language Reference

Version 4 Release 1

SC23-8528-00

���

Enterprise COBOL for z/OS

Language Reference

Version 4 Release 1

SC23-8528-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

615.

First Edition (December 2007)

This edition applies to Version 4 Release 1 of IBM Enterprise COBOL for z/OS (program number 5655-S71) and to

all subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using

the correct edition for the level of the product.

You can order publications online at www.ibm.com/shop/publications/order/, or order by phone or fax. IBM

Software Manufacturing Solutions takes publication orders between 8:30 a.m. and 7:00 p.m. Eastern Standard Time

(EST). The phone number is (800)879-2755. The fax number is (800)445-9269.

You can also order publications through your IBM representative or the IBM branch office that serves your locality.

© Copyright International Business Machines Corporation 1991, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables xi

Preface xiii

About this publication xiii

Accessing softcopy documentation and support

information xiii

Accessibility xiii

How to read the syntax diagrams xiv

IBM extensions xvii

Obsolete language elements xvii

DBCS notation xviii

Acknowledgment xviii

Summary of changes xix

Version 4 Release 1 (December 2007) xix

How to send your comments xix

Part 1. COBOL language structure . . 1

Chapter 1. Characters 3

Chapter 2. Character sets and code

pages 5

Character encoding units 5

Single-byte code pages 6

EBCDIC DBCS code pages 6

Unicode UTF-16 7

Chapter 3. Character-strings 9

COBOL words with single-byte characters 9

User-defined words with DBCS characters 10

User-defined words 10

System-names 12

Function-names 12

Reserved words 12

Figurative constants 13

Special registers 15

ADDRESS OF 17

DEBUG-ITEM 17

JNIENVPTR 18

LENGTH OF 18

LINAGE-COUNTER 19

RETURN-CODE 20

SHIFT-OUT and SHIFT-IN 21

SORT-CONTROL 21

SORT-CORE-SIZE 22

SORT-FILE-SIZE 22

SORT-MESSAGE 22

SORT-MODE-SIZE 23

SORT-RETURN 23

TALLY 23

WHEN-COMPILED 24

XML-CODE 24

XML-EVENT 25

XML-NAMESPACE 30

XML-NNAMESPACE 31

XML-NAMESPACE-PREFIX 32

XML-NNAMESPACE-PREFIX 33

XML-NTEXT 33

XML-TEXT 34

Literals 35

Alphanumeric literals 35

Numeric literals 38

DBCS literals 39

National literals 41

PICTURE character-strings 43

Comments 43

Chapter 4. Separators 45

Rules for separators 45

Chapter 5. Sections and paragraphs . . 49

Sentences, statements, and entries 49

Entries 49

Clauses 50

Sentences 50

Statements 50

Phrases 50

Chapter 6. Reference format 51

Sequence number area 51

Indicator area 51

Area A 52

Division headers 52

Section headers 52

Paragraph headers or paragraph names 52

Level indicators (FD and SD) or level-numbers

(01 and 77) 53

DECLARATIVES and END DECLARATIVES . . 53

End program, end class, and end method

markers 53

Area B 53

Entries, sentences, statements, clauses 54

Continuation lines 54

Area A or Area B 56

Level-numbers 56

Comment lines 56

Compiler-directing statements 57

Debugging lines 57

Pseudo-text 57

Blank lines 57

Chapter 7. Scope of names 59

Types of names 59

External and internal resources 61

Resolution of names 62

Names within programs 62

Names within a class definition 63

© Copyright IBM Corp. 1991, 2007 iii

||

||

 | |
 | |
 | |

Chapter 8. Referencing data names,

copy libraries, and procedure division

names 65

Uniqueness of reference 65

Qualification 65

Identical names 66

References to COPY libraries 66

References to procedure division names 66

References to data division names 67

Condition-name 70

Index-name 71

Index data item 71

Subscripting 71

Reference modification 74

Function-identifier 77

Data attribute specification 78

Chapter 9. Transfer of control 79

Chapter 10. Millennium Language

Extensions and date fields 81

Millennium Language Extensions syntax 81

Terms and concepts 82

Date field 82

Nondate 83

Century window 83

Part 2. COBOL source unit

structure 85

Chapter 11. COBOL program structure 87

Nested programs 89

Conventions for program-names 90

Chapter 12. COBOL class definition

structure 93

Chapter 13. COBOL method definition

structure 97

Part 3. Identification division 99

Chapter 14. Identification division . . 101

PROGRAM-ID paragraph 104

CLASS-ID paragraph 107

General rules 107

Inheritance 107

FACTORY paragraph 108

OBJECT paragraph 108

METHOD-ID paragraph 108

Method signature 108

Method overloading, overriding, and hiding . . 108

Optional paragraphs 109

Part 4. Environment division . . . 111

Chapter 15. Configuration section . . 113

SOURCE-COMPUTER paragraph 114

OBJECT-COMPUTER paragraph 114

SPECIAL-NAMES paragraph 116

ALPHABET clause 119

SYMBOLIC CHARACTERS clause 121

CLASS clause 122

CURRENCY SIGN clause 123

DECIMAL-POINT IS COMMA clause 124

REPOSITORY paragraph 124

General rules 125

Identifying and referencing a class 125

Chapter 16. Input-Output section . . . 127

FILE-CONTROL paragraph 128

SELECT clause 132

ASSIGN clause 132

Assignment name for environment variable . . 133

Environment variable contents for a QSAM file 134

Environment variable contents for a

line-sequential file 135

Environment variable contents for a VSAM file 135

RESERVE clause 136

ORGANIZATION clause 137

File organization 137

PADDING CHARACTER clause 139

RECORD DELIMITER clause 140

ACCESS MODE clause 140

File organization and access modes 141

Access modes 141

Relationship between data organizations and

access modes 141

RECORD KEY clause 142

ALTERNATE RECORD KEY clause 143

RELATIVE KEY clause 144

PASSWORD clause 145

FILE STATUS clause 145

I-O-CONTROL paragraph 146

RERUN clause 148

SAME AREA clause 149

SAME RECORD AREA clause 150

SAME SORT AREA clause 151

SAME SORT-MERGE AREA clause 151

MULTIPLE FILE TAPE clause 151

APPLY WRITE-ONLY clause 152

Part 5. Data division 153

Chapter 17. Data division overview 155

File section 156

Working-storage section 157

Local-storage section 158

Linkage section 159

Data units 159

File data 159

Program data 160

Method data 160

Factory data 160

Instance data 160

Data relationships 160

iv Enterprise COBOL for z/OS V4.1 Language Reference

Levels of data 161

Levels of data in a record description entry . . 161

Special level-numbers 163

Indentation 163

Classes and categories of group items 163

Classes and categories of data 164

Category descriptions 166

Alignment rules 168

Character-string and item size 169

Signed data 170

Operational signs 170

Editing signs 170

Chapter 18. Data division--file

description entries 171

File section 176

EXTERNAL clause 176

GLOBAL clause 177

BLOCK CONTAINS clause 177

RECORD clause 179

Format 1 179

Format 2 180

Format 3 180

LABEL RECORDS clause 181

VALUE OF clause 182

DATA RECORDS clause 182

LINAGE clause 182

LINAGE-COUNTER special register 184

RECORDING MODE clause 184

CODE-SET clause 185

Chapter 19. Data division--data

description entry 187

Format 1 187

Format 2 188

Format 3 188

Level-numbers 188

BLANK WHEN ZERO clause 190

DATE FORMAT clause 190

Semantics of windowed date fields 191

Restrictions on using date fields 192

EXTERNAL clause 195

GLOBAL clause 196

JUSTIFIED clause 196

GROUP-USAGE clause 197

OCCURS clause 198

Fixed-length tables 199

ASCENDING KEY and DESCENDING KEY

phrases 200

INDEXED BY phrase 201

Variable-length tables 202

OCCURS DEPENDING ON clause 203

PICTURE clause 205

Symbols used in the PICTURE clause 205

Character-string representation 209

Data categories and PICTURE rules 210

PICTURE clause editing 216

Simple insertion editing 217

Special insertion editing 218

Fixed insertion editing 218

Floating insertion editing 219

Zero suppression and replacement editing . . . 220

REDEFINES clause 222

REDEFINES clause considerations 223

REDEFINES clause examples 224

Undefined results 225

RENAMES clause 225

SIGN clause 227

SYNCHRONIZED clause 229

Slack bytes 231

Slack bytes within records 231

Slack bytes between records 233

USAGE clause 234

Computational items 236

DISPLAY phrase 238

DISPLAY-1 phrase 239

FUNCTION-POINTER phrase 239

INDEX phrase 239

NATIONAL phrase 240

OBJECT REFERENCE phrase 240

POINTER phrase 241

PROCEDURE-POINTER phrase 242

NATIVE phrase 243

VALUE clause 243

Format 1 243

Format 2 245

Format 3 248

Part 6. Procedure division 249

Chapter 20. Procedure division

structure 253

Requirements for a method procedure division . . 254

The procedure division header 255

The USING phrase 256

RETURNING phrase 258

References to items in the linkage section . . . 258

Declaratives 259

Procedures 260

Arithmetic expressions 261

Arithmetic operators 262

Arithmetic with date fields 264

Conditional expressions 267

Simple conditions 267

Class condition 267

Condition-name condition 269

Relation conditions 271

General relation conditions 271

Data pointer relation conditions 280

Procedure-pointer and function-pointer relation

conditions 281

Object-reference relation conditions 282

Sign condition 283

Switch-status condition 284

Complex conditions 284

Negated simple conditions 285

Combined conditions 285

Abbreviated combined relation conditions . . . 287

Statement categories 290

Imperative statements 290

Contents v

Conditional statements 292

Delimited scope statements 293

Explicit scope terminators 293

Implicit scope terminators 294

Compiler-directing statements 294

Statement operations 294

CORRESPONDING phrase 294

GIVING phrase 296

ROUNDED phrase 296

SIZE ERROR phrases 296

Arithmetic statements 298

Arithmetic statement operands 298

Data manipulation statements 299

Input-output statements 300

Common processing facilities 300

Chapter 21. Procedure division

statements 307

ACCEPT statement 308

Data transfer 308

System date-related information transfer . . . 310

DATE, DATE YYYYMMDD, DAY, DAY

YYYYDDD, DAY-OF-WEEK, and TIME 310

ADD statement 313

ROUNDED phrase 315

SIZE ERROR phrases 315

CORRESPONDING phrase (format 3) 315

END-ADD phrase 316

ALTER statement 317

Segmentation considerations 317

CALL statement 319

USING phrase 321

BY REFERENCE phrase 322

BY CONTENT phrase 322

BY VALUE phrase 323

RETURNING phrase 324

ON EXCEPTION phrase 325

NOT ON EXCEPTION phrase 325

ON OVERFLOW phrase 325

END-CALL phrase 326

CANCEL statement 327

CLOSE statement 329

Effect of CLOSE statement on file types . . . 330

COMPUTE statement 333

ROUNDED phrase 334

SIZE ERROR phrases 334

END-COMPUTE phrase 334

CONTINUE statement 335

DELETE statement 336

Sequential access mode 336

Random or dynamic access mode 337

END-DELETE phrase 337

DISPLAY statement 338

DIVIDE statement 341

ROUNDED phrase 344

REMAINDER phrase 344

SIZE ERROR phrases 344

END-DIVIDE phrase 345

ENTRY statement 346

USING phrase 346

EVALUATE statement 347

END-EVALUATE phrase 348

Determining values 348

Comparing selection subjects and objects . . . 349

Executing the EVALUATE statement 350

EXIT statement 351

EXIT METHOD statement 352

EXIT PROGRAM statement 353

GOBACK statement 354

GO TO statement 355

Unconditional GO TO 355

Conditional GO TO 355

Altered GO TO 356

MORE-LABELS GO TO 356

IF statement 357

END-IF phrase 357

Transferring control 358

Nested IF statements 358

INITIALIZE statement 359

REPLACING phrase 360

INITIALIZE statement rules 360

INSPECT statement 362

TALLYING phrase (formats 1 and 3) 365

REPLACING phrase (formats 2 and 3) 366

BEFORE and AFTER phrases (all formats) . . . 367

CONVERTING phrase (format 4) 367

Data flow 369

Comparison cycle 369

Example of the INSPECT statement 370

INVOKE statement 372

USING phrase 374

BY VALUE phrase 374

RETURNING phrase 375

ON EXCEPTION phrase 376

NOT ON EXCEPTION phrase 376

END-INVOKE phrase 376

Interoperable data types for COBOL and Java 377

Miscellaneous argument types for COBOL and

Java 378

MERGE statement 380

ASCENDING/DESCENDING KEY phrase . . 381

COLLATING SEQUENCE phrase 382

USING phrase 383

GIVING phrase 383

OUTPUT PROCEDURE phrase 384

MERGE special registers 385

Segmentation considerations 385

MOVE statement 386

Elementary moves 387

Moves involving file record areas 392

Group moves 392

MULTIPLY statement 394

ROUNDED phrase 396

SIZE ERROR phrases 396

END-MULTIPLY phrase 396

OPEN statement 397

General rules 399

Label records 399

OPEN statement notes 400

PERFORM statement 403

Basic PERFORM statement 403

END-PERFORM 405

vi Enterprise COBOL for z/OS V4.1 Language Reference

PERFORM with TIMES phrase 405

PERFORM with UNTIL phrase 406

PERFORM with VARYING phrase 407

Varying identifiers 408

Varying two identifiers 409

Varying three identifiers 411

Varying more than three identifiers 411

Varying phrase rules 412

READ statement 413

KEY IS phrase 414

AT END phrases 414

INVALID KEY phrases 415

END-READ phrase 415

Multiple record processing 415

Sequential access mode 415

Random access mode 418

Dynamic access mode 418

READ statement notes: 419

RELEASE statement 420

RETURN statement 422

AT END phrases 423

END-RETURN phrase 423

REWRITE statement 424

INVALID KEY phrases 425

END-REWRITE phrase 425

Reusing a logical record 425

Sequential files 425

Indexed files 425

Relative files 426

SEARCH statement 427

Serial search 428

Binary search 430

Search statement considerations 432

AT END and WHEN phrases 433

NEXT SENTENCE 433

END-SEARCH phrase 433

SET statement 434

Format 1: SET for basic table handling 434

Format 2: SET for adjusting indexes 435

Format 3: SET for external switches 436

Format 4: SET for condition-names 437

Format 5: SET for USAGE IS POINTER data

items 437

Format 6: SET for procedure-pointer and

function-pointer data items 438

Format 7: SET for USAGE OBJECT REFERENCE

data items 440

SORT statement 441

ASCENDING KEY and DESCENDING KEY

phrases 442

DUPLICATES phrase 443

COLLATING SEQUENCE phrase 444

USING phrase 444

INPUT PROCEDURE phrase 445

GIVING phrase 445

OUTPUT PROCEDURE phrase 446

SORT special registers 447

Segmentation considerations 447

START statement 448

KEY phrase 448

INVALID KEY phrases 449

END-START phrase 449

Indexed files 449

Relative files 450

STOP statement 451

STRING statement 452

ON OVERFLOW phrases 454

END-STRING phrase 454

Data flow 455

SUBTRACT statement 457

ROUNDED phrase 459

SIZE ERROR phrases 459

CORRESPONDING phrase (format 3) 459

END-SUBTRACT phrase 460

UNSTRING statement 461

DELIMITED BY phrase 463

INTO phrase 464

POINTER phrase 464

TALLYING IN phrase 464

ON OVERFLOW phrases 464

END-UNSTRING phrase 465

Data flow 465

Example of the UNSTRING statement 467

WRITE statement 469

ADVANCING phrase 471

END-OF-PAGE phrases 472

INVALID KEY phrases 473

END-WRITE phrase 474

WRITE for sequential files 474

WRITE for indexed files 476

WRITE for relative files 476

XML GENERATE statement 478

Nested XML GENERATE or XML PARSE

statements 483

Operation of XML GENERATE 483

Format conversion of elementary data 484

Trimming of generated XML data 485

XML element name and attribute name

formation 486

XML PARSE statement 487

Nested XML GENERATE or XML PARSE

statements 491

Control flow 491

Part 7. Intrinsic functions 493

Chapter 22. Intrinsic functions 495

Specifying a function 495

Function definition and evaluation 496

Types of functions 496

Rules for usage 497

Arguments 498

Examples 500

ALL subscripting 500

Function definitions 502

ACOS 506

ANNUITY 506

ASIN 507

ATAN 507

CHAR 507

COS 508

Contents vii

CURRENT-DATE 508

DATE-OF-INTEGER 510

DATE-TO-YYYYMMDD 510

DATEVAL 511

DAY-OF-INTEGER 512

DAY-TO-YYYYDDD 513

DISPLAY-OF 514

FACTORIAL 515

INTEGER 516

INTEGER-OF-DATE 516

INTEGER-OF-DAY 517

INTEGER-PART 517

LENGTH 518

LOG 519

LOG10 519

LOWER-CASE 520

MAX 520

MEAN 521

MEDIAN 522

MIDRANGE 522

MIN 523

MOD 524

NATIONAL-OF 524

NUMVAL 525

NUMVAL-C 526

ORD 528

ORD-MAX 529

ORD-MIN 529

PRESENT-VALUE 530

RANDOM 530

RANGE 531

REM 532

REVERSE 532

SIN 533

SQRT 533

STANDARD-DEVIATION 534

SUM 534

TAN 535

UNDATE 535

UPPER-CASE 536

VARIANCE 536

WHEN-COMPILED 537

YEAR-TO-YYYY 538

YEARWINDOW 539

Part 8. Compiler-directing

statements 541

Chapter 23. Compiler-directing

statements 543

BASIS statement 543

CBL (PROCESS) statement 544

*CONTROL (*CBL) statement 544

Source code listing 546

Object code listing 546

Storage map listing 546

COPY statement 546

SUPPRESS phrase 549

REPLACING phrase 549

Replacement and comparison rules 550

DELETE statement 553

EJECT statement 554

ENTER statement 554

INSERT statement 555

READY or RESET TRACE statement 556

REPLACE statement 556

Continuation rules for pseudo-text 558

Comparison operation 558

REPLACE statement notes 558

SERVICE LABEL statement 559

SERVICE RELOAD statement 560

SKIP statements 560

TITLE statement 561

USE statement 562

EXCEPTION/ERROR declarative 562

Precedence rules for nested programs 564

LABEL declarative 564

DEBUGGING declarative 566

Appendix A. IBM extensions 569

Appendix B. Compiler limits 581

Appendix C. EBCDIC and ASCII

collating sequences 585

EBCDIC collating sequence 585

US English ASCII code page 588

Appendix D. Source language

debugging 593

Debugging lines 593

Debugging sections 593

DEBUG-ITEM special register 594

Activate compile-time switch 594

Activate object-time switch 594

Appendix E. Reserved words 595

Appendix F. ASCII considerations . . . 609

Environment division 609

OBJECT-COMPUTER and SPECIAL-NAMES

paragraphs 609

FILE-CONTROL paragraph 610

I-O-CONTROL paragraph 610

Data division 610

FD Entry: CODE-SET clause 611

Data description entries 611

Procedure division 611

Appendix G. Industry specifications 613

Notices 615

Programming interface information 616

Trademarks 616

Glossary 619

List of resources 647

viii Enterprise COBOL for z/OS V4.1 Language Reference

Index 651

Contents ix

x Enterprise COBOL for z/OS V4.1 Language Reference

Tables

 1. Basic COBOL character set 3

 2. DEBUG-ITEM subfield contents 18

 3. XML events and associated special register

contents 26

 4. Separators 45

 5. Meanings of environment names 118

 6. Types of files 128

 7. Classes and categories of group items 164

 8. Class, category, and usage of elementary

data items 165

 9. Classes and categories of functions 165

10. Classes and categories of literals 165

11. Where national group items are processed as

groups 198

12. PICTURE clause symbol meanings 206

13. Numeric types 211

14. Data categories 217

15. SYNCHRONIZE clause effect on other

language elements 229

16. Relation test references for condition-names 247

17. Binary and unary operators 262

18. Valid arithmetic symbol pairs 263

19. Results of using date fields in addition 264

20. Results of using date fields in subtraction 265

21. Storing arithmetic results that involve date

fields when ON SIZE ERROR is specified . 266

22. Valid forms of the class condition for

different types of data items 269

23. Relational operators and their meanings 272

24. Comparisons involving data items and

literals 274

25. Comparisons involving figurative constants 275

26. Comparisons for index-names and index

data items 279

27. Comparisons with date fields 280

28. Permissible comparisons for USAGE

POINTER, NULL, and ADDRESS OF . . . 281

29. Logical operators and their meanings 284

30. Combined conditions—permissible element

sequences 286

31. Logical operators and evaluation results of

combined conditions 286

32. Abbreviated combined conditions:

permissible element sequences 289

33. Abbreviated combined conditions:

unabbreviated equivalents 290

34. Exponentiation size error conditions 297

35. How the composite of operands is

determined 298

36. File status key values and meanings 301

37. Sequential files and CLOSE statement

phrases 331

38. Indexed and relative file types and CLOSE

statement phrases 331

39. Line-sequential file types and CLOSE

statement phrases 331

40. Meanings of key letters for sequential file

types 331

41. Treatment of the content of data items 368

42. Interoperable Java and COBOL data types 377

43. Interoperable COBOL and Java array and

String data types 378

44. COBOL miscellaneous argument types and

corresponding Java types 379

45. COBOL literal argument types and

corresponding Java types 379

46. Valid and invalid elementary moves 390

47. Moves involving date fields 392

48. Availability of a file 400

49. Permissible statements for sequential files 401

50. Permissible statements for indexed and

relative files 401

51. Permissible statements for line-sequential

files 401

52. Sending and receiving fields for format-1

SET statement 435

53. Sending and receiving fields for format-5

SET statement 438

54. Character positions examined when

DELIMITED BY is not specified 466

55. Meanings of environment-names in

SPECIAL NAMES paragraph 476

56. Table of functions 503

57. Execution of debugging declaratives 567

58. IBM extension language elements 569

59. Compiler limits 581

60. EBCDIC collating sequence 585

61. ASCII collating sequence 588

62. Reserved words 595

© Copyright IBM Corp. 1991, 2007 xi

|
||

xii Enterprise COBOL for z/OS V4.1 Language Reference

Preface

About this publication

This publication describes the COBOL language supported by IBM® Enterprise

COBOL for z/OS®, referred to in this document as Enterprise COBOL.

See the IBM Enterprise COBOL for z/OS Programming Guide for information and

examples that will help you write, compile, and debug programs and classes.

Accessing softcopy documentation and support information

Enterprise COBOL provides Portable Document Format (PDF) and BookManager®

versions of the library on the product site at www.ibm.com/software/awdtools/
cobol/zos/library/.

You can check that Web site for the latest editions of the documents. In the

BookManager version of a document, the content of some tables and syntax

diagrams might be aligned improperly due to variations in the display technology.

Support information is also available on the product site at www.ibm.com/
software/awdtools/cobol/zos/support/.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The accessibility

features in z/OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS enable users to do the following tasks:

v Use assistive technology products such as screen readers and screen magnifier

software.

v Operate specific or equivalent features by using only the keyboard.

v Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products work with the user interfaces that are found in

z/OS. For specific guidance information, consult the documentation for the

assistive technology product that you use to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces by using TSO/E or ISPF. For information

about accessing TSO/E and ISPF interfaces, refer to the following publications:

v z/OS TSO/E Primer at http://publib.boulder.ibm.com/cgi-bin/bookmgr/
BOOKS/IKJ4P100

v z/OS TSO/E User’s Guide at http://publib.boulder.ibm.com/cgi-bin/bookmgr/
BOOKS/IKJ4C230/APPENDIX1.3

v z/OS ISPF User’s Guide Volume I at http://publib.boulder.ibm.com/cgi-bin/
bookmgr/BOOKS/ISPZUG30

© Copyright IBM Corp. 1991, 2007 xiii

|
|

These guides describe how to use TSO/E and ISPF, including the use of keyboard

shortcuts or function keys (PF keys). Each guide includes the default settings for

the PF keys and explains how to modify their functions.

Accessibility of this document

The English-language XHTML format of this document that will be provided in

the IBM System z™ Enterprise Development Tools & Compilers Information Center

at http://publib.boulder.ibm.com/infocenter/pdthelp/index.jsp is accessible to

visually impaired individuals who use a screen reader.

To enable your screen reader to accurately read syntax diagrams, source code

examples, and text that contains the period or comma picture symbols, you must

set the screen reader to speak all punctuation.

How to read the syntax diagrams

Use the following description to read the syntax diagrams in this document:

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The >>--- symbol indicates the beginning of a syntax diagram.

The ---> symbol indicates that the syntax diagram is continued on the next line.

The >--- symbol indicates that the syntax diagram is continued from the

previous line.

The --->< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >---

symbol and end with the ---> symbol.

v Required items appear on the horizontal line (the main path).

Format

�� STATEMENT required item ��

v Optional items appear below the main path.

Format

�� STATEMENT

optional item
 ��

v When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

xiv Enterprise COBOL for z/OS V4.1 Language Reference

Format

�� STATEMENT required choice 1

required choice 2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

Format

�� STATEMENT

optional choice 1

optional choice 2

 ��

v An arrow returning to the left above the main line indicates an item that can be

repeated.

Format

��

STATEMENT

�

repeatable item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items, or repeat a single choice.

v Variables appear in italic lowercase letters (for example, parmx). They represent

user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

Preface xv

Format

��

(1)

STATEMENT

(2)

identifier-1

literal-1

�

(3)

item

1

�

�

�

(4)

TO

identifier-3

ROUNDED

�

�
 (5)

SIZE ERROR

imperative-statement-1

ON

�

�
(6)

END-STATEMENT

 ��

item 1:

 identifier-2

literal-2

arithmetic-expression-1

Notes:

1 The STATEMENT keyword must be specified and coded as shown.

2 This operand is required. Either identifier-1 or literal-1 must be coded.

3 The item 1 fragment is optional; it can be coded or not, as required by the

application. If item 1 is coded, it can be repeated with each entry separated

by one or more COBOL separators. Entry selections allowed for this

fragment are described at the bottom of the diagram.

4 The operand identifier-3 and associated TO keyword are required and can

be repeated with one or more COBOL separators separating each entry.

Each entry can be assigned the keyword ROUNDED.

5 The ON SIZE ERROR phrase with associated imperative-statement-1 is

optional. If the ON SIZE ERROR phrase is coded, the keyword ON is

optional.

6 The END-STATEMENT keyword can be coded to end the statement. It is

not a required delimiter.

xvi Enterprise COBOL for z/OS V4.1 Language Reference

IBM extensions

IBM extensions generally add features, syntax, or rules that are not specified in the

ANSI and ISO COBOL standards that are listed in Appendix G, “Industry

specifications,” on page 613. In this document, the term Standard COBOL 85 refers

to those standards.

Extensions range from minor relaxation of rules to major capabilities, such as XML

support, Unicode support, object-oriented COBOL for Java™ interoperability, and

DBCS character handling.

The rest of this document describes the complete language without identifying

extensions. You will need to review Appendix A, “IBM extensions,” on page 569

and the compiler options that are described in the Enterprise COBOL Programming

Guide if you want to use only standard language elements.

Obsolete language elements

Obsolete language elements are elements that are categorized as obsolete in

Standard COBOL 85. Those elements are not part of Standard COBOL 2002.

This does not imply that IBM will remove Standard COBOL 85 obsolete elements

from a future release of Enterprise COBOL.

The following are language elements that Standard COBOL 85 categorized as

obsolete:

v ALTER statement

v AUTHOR paragraph

v Comment entry

v DATA RECORDS clause

v DATE-COMPILED paragraph

v DATE-WRITTEN paragraph

v DEBUG-ITEM special register

v Debugging sections

v ENTER statement

v GO TO without a specified procedure-name

v INSTALLATION paragraph

v LABEL RECORDS clause

v MEMORY SIZE clause

v MULTIPLE FILE TAPE clause

v RERUN clause

v REVERSED phrase

v SECURITY paragraph

v Segmentation module

v STOP literal format of the STOP statement

v USE FOR DEBUGGING declarative

v VALUE OF clause

v The figurative constant ALL literal with a length greater than one, when the

figurative constant is associated with a numeric or numeric-edited item

Preface xvii

DBCS notation

Double-Byte Character Set (DBCS) strings in literals, comments, and user-defined

words are delimited by shift-out and shift-in characters. In this document, the

shift-out delimiter is represented pictorially by the < character, and the shift-in

character is represented pictorially by the > character. The single-byte EBCDIC

codes for the shift-out and shift-in delimiters are X’0E’ and X’0F’, respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol

denotes contiguous shift-in and shift-out characters.

DBCS characters are shown in this form: D1D2D3. Latin alphabet characters in

DBCS representation are shown in this form: .A.B.C. The dots that precede the

letters represent the hexadecimal value X’42’.

Notes

v In EBCDIC DBCS data containing mixed single-byte and double-byte characters,

double-byte character strings are delimited by shift-out and shift-in characters.

v In ASCII DBCS data containing mixed single-byte and double-byte characters,

double-byte character strings are not delimited by shift-out and shift-in

characters.

Acknowledgment

The following extract from Government Printing Office Form Number

1965-0795689 is presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and

specifications in whole or in part, using ideas taken from this report as the

basis for an instruction manual or for any other purpose is free to do so.

However, all such organizations are requested to reproduce this section as

part of the introduction to the document. Those using a short passage, as in a

book review, are requested to mention COBOL in acknowledgment of the

source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or

group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the

COBOL Committee as to the accuracy and functioning of the programming

system and language. Moreover, no responsibility is assumed by any

contributor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL. Inquiries

concerning the procedures for proposing changes should be directed to the

Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:

v FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for

the UNIVAC(R) I and II, Data Automation Systems copyrighted 1958, 1959,

by Sperry Rand Corporation

v IBM Commercial Translator, Form No. F28-8013, copyrighted 1959 by IBM

v FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

xviii Enterprise COBOL for z/OS V4.1 Language Reference

have specifically authorized the use of this material in whole or in part, in the

COBOL specifications. Such authorization extends to the reproduction and

use of COBOL specifications in programming manuals or similar publications.

Note: The Conference on Data Systems Languages (CODASYL), mentioned above,

is no longer in existence.

Summary of changes

This section lists the key changes that have been made to Enterprise COBOL for

z/OS in Version 4. The latest technical changes are marked by a vertical bar (|) in

the left margin in the PDF and BookManager versions.

Version 4 Release 1 (December 2007)

v A new compiler option, XMLPARSE, makes it possible to choose between

parsing with the parser that is available with the COBOL library (for

compatibility with Enterprise COBOL for z/OS Version 3) or with the z/OS

XML System Services parser.

v New XML PARSE capabilities are available when you parse a document with the

z/OS XML System Services parser:

– Namespaces and namespace prefixes are processed using new special

registers and new XML events.

– You can specify the document encoding using the ENCODING phrase of the

XML PARSE statement.

– You can parse documents that are encoded in Unicode UTF-8.

– The RETURNING NATIONAL phrase enables you to receive XML document

fragments in Unicode UTF-16 regardless of the original encoding of an XML

document.

– You can parse documents that reside in a data set or parse very large

documents a buffer at a time.
v The XML GENERATE statement has been enhanced:

– You can specify a namespace using the NAMESPACE phrase, and a

namespace prefix to be applied to each element using the

NAMESPACE-PREFIX phrase.

– You can specify the code page of the generated document using the

ENCODING phrase.

– XML documents can now be generated in UTF-8 as well as in UTF-16 or

various EBCDIC code pages.

– The WITH ATTRIBUTES phrase causes eligible elementary items to be

expressed as attributes rather than as child elements in the generated XML.

– The WITH XML-DECLARATION phrase causes an XML declaration to be

generated.

How to send your comments

Your feedback is important in helping us to provide accurate, high-quality

information. If you have comments about this document or any other

documentation for this product, contact us in one of the following ways:

v Fill out the Readers’ Comment Form at the back of this document, and return it

by mail or give it to an IBM representative. If there is no form at the back of this

document, address your comments to:

Preface xix

|
|

|

|
|
|
|

|
|

|
|

|
|

|

|
|
|

|
|

|

|
|
|

|
|

|
|

|
|

|
|

IBM Corporation

Reader Comments

DTX/E269

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

v Use the Online Readers’ Comments Form at www.ibm.com/software/awdtools/
rcf/.

v Send your comments to the following e-mail address: comments@us.ibm.com

Be sure to include the name of the document, the publication number of the

document, the version of the product, and, if applicable, the specific location (for

example, page number or section heading) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way that IBM believes appropriate without

incurring any obligation to you.

xx Enterprise COBOL for z/OS V4.1 Language Reference

Part 1. COBOL language structure

Chapter 1. Characters 3

Chapter 2. Character sets and code pages . . . 5

Character encoding units 5

Single-byte code pages 6

EBCDIC DBCS code pages 6

USAGE DISPLAY 6

USAGE DISPLAY-1 6

Unicode UTF-16 7

Chapter 3. Character-strings 9

COBOL words with single-byte characters 9

User-defined words with DBCS characters 10

User-defined words 10

System-names 12

Function-names 12

Reserved words 12

Figurative constants 13

Special registers 15

ADDRESS OF 17

DEBUG-ITEM 17

JNIENVPTR 18

LENGTH OF 18

LINAGE-COUNTER 19

RETURN-CODE 20

SHIFT-OUT and SHIFT-IN 21

SORT-CONTROL 21

SORT-CORE-SIZE 22

SORT-FILE-SIZE 22

SORT-MESSAGE 22

SORT-MODE-SIZE 23

SORT-RETURN 23

TALLY 23

WHEN-COMPILED 24

XML-CODE 24

XML-EVENT 25

XML-NAMESPACE 30

XML-NNAMESPACE 31

XML-NAMESPACE-PREFIX 32

XML-NNAMESPACE-PREFIX 33

XML-NTEXT 33

XML-TEXT 34

Literals 35

Alphanumeric literals 35

Basic alphanumeric literals 35

Alphanumeric literals with DBCS characters 36

Hexadecimal notation for alphanumeric

literals 37

Null-terminated alphanumeric literals . . . 38

Numeric literals 38

Rules for floating-point literal values 39

DBCS literals 39

Where DBCS literals can be used 40

National literals 41

Basic national literals 41

Hexadecimal notation for national literals . . 42

Where national literals can be used 43

PICTURE character-strings 43

Comments 43

Chapter 4. Separators 45

Rules for separators 45

Chapter 5. Sections and paragraphs 49

Sentences, statements, and entries 49

Entries 49

Clauses 50

Sentences 50

Statements 50

Phrases 50

Chapter 6. Reference format 51

Sequence number area 51

Indicator area 51

Area A 52

Division headers 52

Section headers 52

Paragraph headers or paragraph names 52

Level indicators (FD and SD) or level-numbers

(01 and 77) 53

DECLARATIVES and END DECLARATIVES . . 53

End program, end class, and end method

markers 53

Area B 53

Entries, sentences, statements, clauses 54

Continuation lines 54

Continuation of alphanumeric and national

literals 54

Area A or Area B 56

Level-numbers 56

Comment lines 56

Compiler-directing statements 57

Debugging lines 57

Pseudo-text 57

Blank lines 57

Chapter 7. Scope of names 59

Types of names 59

External and internal resources 61

Resolution of names 62

Names within programs 62

Names within a class definition 63

Chapter 8. Referencing data names, copy

libraries, and procedure division names 65

Uniqueness of reference 65

Qualification 65

Qualification rules 66

Identical names 66

References to COPY libraries 66

References to procedure division names 66

© Copyright IBM Corp. 1991, 2007 1

||
||
||
||

References to data division names 67

Simple data reference 67

Identifiers 68

Condition-name 70

Index-name 71

Index data item 71

Subscripting 71

Subscripting using data-names 73

Subscripting using index-names (indexing) . . 73

Relative subscripting 74

Reference modification 74

Evaluation of operands 76

Reference modification examples 77

Function-identifier 77

Data attribute specification 78

Chapter 9. Transfer of control 79

Chapter 10. Millennium Language Extensions

and date fields 81

Millennium Language Extensions syntax 81

Terms and concepts 82

Date field 82

Windowed date field 82

Expanded date field 82

Year-last date field 82

Date format 82

Compatible date field 83

Nondate 83

Century window 83

2 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 1. Characters

The most basic and indivisible unit of the COBOL language is the character. The

basic character set includes the letters of the Latin alphabet, digits, and special

characters. In the COBOL language, individual characters are joined to form

character-strings and separators. Character-strings and separators, then, are used to

form the words, literals, phrases, clauses, statements, and sentences that form the

language.

The basic characters used in forming character-strings and separators in source

code are shown in Table 1.

For certain language elements, the basic character set is extended with the EBCDIC

Double-Byte Character Set (DBCS).

DBCS characters can be used in forming user-defined words.

The content of alphanumeric literals, comment lines, and comment entries can

include any of the characters in the computer’s compile-time character set, and can

include both single-byte and DBCS characters.

Runtime data can include any characters from the runtime character set of the

computer. The runtime character set of the computer can include alphanumeric

characters, DBCS characters, and national characters. National characters are

represented in UTF-16, a 16-bit encoding form of Unicode.

When the NSYMBOL (NATIONAL) compiler option is in effect, literals identified

by the opening delimiter N″ or N’ are national literals and can contain any

single-byte or double-byte characters, or both, that are valid for the compile-time

code page in effect (either the default code page or the code page specified for the

CODEPAGE compiler option). Characters contained in national literals are

represented as national characters at run time.

For details, see “User-defined words with DBCS characters” on page 10, “DBCS

literals” on page 39, and “National literals” on page 41.

 Table 1. Basic COBOL character set

Character Meaning

 Space

+ Plus sign

- Minus sign or hyphen

* Asterisk

/ Forward slash or solidus

= Equal sign

$ Currency sign1

, Comma

; Semicolon

. Decimal point or period

" Quotation mark2

© Copyright IBM Corp. 1991, 2007 3

Table 1. Basic COBOL character set (continued)

Character Meaning

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

’ Apostrophe

A - Z Alphabet (uppercase)

a - z Alphabet (lowercase)

0 - 9 Numeric characters

1. The currency sign is the character with the value X’5B’, regardless of the code page in

effect. The assigned graphic character can be the dollar sign or a local currency sign.

2. The quotation mark is the character with the value X’7F’.

4 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 2. Character sets and code pages

A character set is a set of letters, numbers, special characters, and other elements

used to represent information. A character set is independent of a coded

representation. A coded character set is the coded representation of a set of

characters, where each character is assigned a numerical position, called a code

point, in the encoding scheme. ASCII and EBCDIC are examples of types of coded

character sets. Each variation of ASCII or EBCDIC is a specific coded character set.

The term code page refers to a coded character set. Each code page that IBM defines

is identified by a code page name, for example IBM-1252, and a coded character set

identifier (CCSID), for example 1252.

Enterprise COBOL provides the CODEPAGE compiler option for specifying a

coded character set for use at compile time and run time for code-page-sensitive

elements, such as:

v The encoding of literals in the source program

v The default encoding for data items described with USAGE DISPLAY or

DISPLAY-1

v The default encoding for XML parsing and XML generation

Some COBOL operations can override the encoding established by the CODEPAGE

compiler option, for example:

v The DISPLAY-OF and NATIONAL-OF intrinsic functions can specify a CCSID as

argument-2.

v The XML PARSE and XML GENERATE statements can specify a code page in

the ENCODING phrase.

See the Enterprise COBOL Programming Guide for further details of the CODEPAGE

compiler option.

If you do not specify a code page, the default is code page IBM-1140, CCSID 1140.

The encoding of national data is not affected by the CODEPAGE compiler option.

The encoding for national literals and data items described with usage NATIONAL

is UTF-16BE (big endian), CCSID 1200. A reference to UTF-16 in this document is a

reference to UTF-16BE.

Character encoding units

A character encoding unit (or encoding unit) is the unit of data that COBOL treats as

a single character at run time. In this document, the terms character and character

position refer to a single encoding unit.

The size of an encoding unit for data items and literals depends on the USAGE

clause of the data item or the category of the literal as follows:

v For data items described with USAGE DISPLAY and for alphanumeric literals,

an encoding unit is 1 byte, regardless of the code page used and regardless of

the number of bytes used to represent a given graphic character.

v For data items described with USAGE DISPLAY-1 (DBCS data items) and for

DBCS literals, an encoding unit is 2 bytes.

© Copyright IBM Corp. 1991, 2007 5

|
|
|

|

|
|

|

|
|

|
|

|
|

|
|

v For data items described with USAGE NATIONAL and for national literals, an

encoding unit is 2 bytes.

The relationship between a graphic character and an encoding unit depends on the

type of code page used for the data item or literal. The following are the types of

runtime code pages:

v Single-byte EBCDIC

v EBCDIC DBCS

v Unicode UTF-16

See the following sections for the details of each type of code page.

Single-byte code pages

You can use single-byte characters encoded in an EBCDIC code page in data items

described with USAGE DISPLAY and in literals of category alphanumeric. An

encoding unit is 1 byte and each graphic character is represented in 1 byte. For

these data items and literals, you need not be concerned with encoding units.

EBCDIC DBCS code pages

USAGE DISPLAY

You can use a mixture of single-byte and double-byte EBCDIC characters in data

items described with USAGE DISPLAY and in literals of category alphanumeric.

Double-byte characters must be delimited by shift-out and shift-in characters. An

encoding unit is 1 byte and the size of a graphic character is 1 byte or 2 bytes.

When alphanumeric data items or literals contain DBCS data, programmers are

responsible for ensuring that operations do not unintentionally separate the

multiple encoding units that form a graphic character. Care should be taken with

reference modification, and truncation during moves should be avoided. The

COBOL runtime system does not check for a split between the encoding units that

form a graphic character or for the loss of shift-out or shift-in codes.

To avoid problems, you can convert alphanumeric literals and data items described

with usage DISPLAY to national data (UTF-16) by moving the data items or literals

to data items described with usage NATIONAL or by using the NATIONAL-OF

intrinsic function. You can then perform operations on the national data with less

concern for splitting graphic characters. You can convert the data back to USAGE

DISPLAY by using the DISPLAY-OF intrinsic function.

USAGE DISPLAY-1

You can use double-byte characters of an EBCDIC DBCS code page in data items

described with USAGE DISPLAY-1 and in literals of category DBCS. An encoding

unit is 2 bytes and each graphic character is represented in a single 2-byte

encoding unit. For these data items and literals, you need not be concerned with

encoding units.

6 Enterprise COBOL for z/OS V4.1 Language Reference

Unicode UTF-16

You can use UTF-16 in data items described with USAGE NATIONAL. National

literals are stored as UTF-16 characters regardless of the code page used for the

source program. An encoding unit for data items of usage NATIONAL and

national literals is 2 bytes.

For most of the characters in UTF-16, a graphic character is one encoding unit.

Characters converted to UTF-16 from an EBCDIC, ASCII, or EUC code page are

represented in one UTF-16 encoding unit. Some of the other graphic characters in

UTF-16 are represented by a surrogate pair or a combining character sequence. A

surrogate pair consists of two encoding units (4 bytes). A combining character

sequence consists of a base character and one or more combining marks or a

sequence of one or more combining marks (4 bytes or more, in 2-byte increments).

In data items of usage NATIONAL, each 2-byte encoding unit is treated as a

character.

When national data contains surrogate pairs or combining character sequences,

programmers are responsible for ensuring that operations on national characters do

not unintentionally separate the multiple encoding units that form a graphic

character. Care should be taken with reference modification, and truncation during

moves should be avoided. The COBOL runtime system does not check for a split

between the encoding units that form a graphic character.

Chapter 2. Character sets and code pages 7

8 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 3. Character-strings

A character-string is a character or a sequence of contiguous characters that forms a

COBOL word, a literal, a PICTURE character-string, or a comment-entry. A

character-string is delimited by separators.

A separator is a string of contiguous characters used to delimit character strings.

Separators are described in detail under Chapter 4, “Separators,” on page 45.

Character strings and certain separators form text words. A text word is a character

or a sequence of contiguous characters (possibly continued across lines) between

character positions 8 and 72 inclusive in source text, library text, or pseudo-text.

For more information about pseudo-text, see “Pseudo-text” on page 57.

Source text, library text, and pseudo-text can be written in single-byte EBCDIC

and, for some character-strings, DBCS. (The compiler cannot process source code

written in ASCII or Unicode.)

You can use single-byte and double-byte character-strings to form the following:

v COBOL words

v Literals

v Comment text

You can use only single-byte characters to form PICTURE character-strings.

COBOL words with single-byte characters

A COBOL word is a character-string that forms a user-defined word, a

system-name, or a reserved word. The maximum size of a COBOL user-defined

word is 30 bytes. The number of characters that can be specified depends on the

code page indicated by the compile-time locale.

Except for arithmetic operators and relation characters, each character of a COBOL

word is selected from the following set:

v Latin uppercase letters A through Z

v Latin lowercase letters a through z

v digits 0 through 9

v - (hyphen)

The hyphen cannot appear as the first or last character in such words. Most

user-defined words (all except section-names, paragraph-names, priority-numbers,

and level-numbers) must contain at least one alphabetic character. Priority numbers

and level numbers need not be unique; a given specification of a priority-number

or level-number can be identical to any other priority-number or level-number.

In COBOL words (but not in the content of alphanumeric, DBCS, and national

literals), each lowercase single-byte alphabetic letter is considered to be equivalent

to its corresponding single-byte uppercase alphabetic letter.

The following rules apply for all COBOL words:

© Copyright IBM Corp. 1991, 2007 9

v A reserved word cannot be used as a user-defined word or as a system-name.

v The same COBOL word, however, can be used as both a user-defined word and

as a system-name. The classification of a specific occurrence of a COBOL word is

determined by the context of the clause or phrase in which it occurs.

User-defined words with DBCS characters

The following are the rules for forming user-defined words with DBCS characters:

Contained characters

DBCS user-defined words can contain only double-byte characters, and

must contain at least one DBCS character that is not in the set A through Z,

a through z, 0 through 9, and hyphen (DBCS representation of these

characters has X’42’ in the first byte).

 DBCS user-defined words can contain characters that correspond to

single-byte EBCDIC characters and those that do not correspond to

single-byte EBCDIC characters. DBCS characters that correspond to

single-byte EBCDIC characters follow the normal rules for COBOL

user-defined words; that is, the characters A - Z, a - z, 0 - 9, and the

hyphen (-) are allowed. The hyphen cannot appear as the first or last

character. Any of the DBCS characters that have no corresponding

single-byte EBCDIC character can be used in DBCS user-defined words.

Uppercase and lowercase letters

In COBOL words, each lowercase single-byte encoded character ″a″

through ″z″ is considered to be equivalent to its corresponding single-byte

encoded uppercase character. DBCS-encoded uppercase and lowercase

letters are not equivalent.

Value range

DBCS user-defined words can contain characters whose values range from

X’41’ to X’FE’ for both bytes.

Maximum length

14 characters

Continuation

Words formed with DBCS characters cannot be continued across lines.

Use of shift-out and shift-in characters

DBCS user-defined words begin with a shift-out character and end with a

shift-in character.

User-defined words

The following sets of user-defined words are supported. The second column

indicates whether DBCS characters are allowed in words of a given set.

 User-defined word DBCS characters allowed?

Alphabet-name Yes

Class-name (of data) Yes

Condition-name Yes

Data-name Yes

File-name Yes

Index-name Yes

10 Enterprise COBOL for z/OS V4.1 Language Reference

User-defined word DBCS characters allowed?

Level-numbers: 01–49, 66, 77, 88 No

Library-name No

Mnemonic-name Yes

Object-oriented class-name No

Paragraph-name Yes

Priority-numbers: 00–99 No

Program-name No

Record-name Yes

Section-name Yes

Symbolic-character Yes

Text-name No

The maximum length of a user-defined word is 30 bytes, except for level-numbers

and priority-numbers. Level-numbers and priority numbers must each be a

one-digit or two-digit integer.

A given user-defined word can belong to only one of these sets, except that a given

number can be both a priority-number and a level-number. Each user-defined

word within a set must be unique, except for priority-numbers and level-numbers

and except as specified in Chapter 8, “Referencing data names, copy libraries, and

procedure division names,” on page 65.

The following types of user-defined words can be referenced by statements and

entries in the program in which the user-defined word is declared:

v Paragraph-name

v Section-name

The following types of user-defined words can be referenced by any COBOL

program, provided that the compiling system supports the associated library or

other system and that the entities referenced are known to that system:

v Library-name

v Text-name

The following types of names, when they are declared within a configuration

section, can be referenced by statements and entries in the program that contains

the configuration section or in any program contained within that program:

v Alphabet-name

v Class-name

v Condition-name

v Mnemonic-name

v Symbolic-character

The function of each user-defined word is described in the clause or statement in

which it appears.

Chapter 3. Character-strings 11

System-names

A system-name is a character string that has a specific meaning to the system. There

are three types of system-names:

v Computer-name

v Language-name

v Implementor-name

There are three types of implementor-names:

v Environment-name

v External-class-name

v Assignment-name

The meaning of each system-name is described with the format in which it

appears.

Computer-name can be written in DBCS characters, but the other system-names

cannot.

Function-names

A function-name specifies the mechanism provided to determine the value of an

intrinsic function. The same word, in a different context, can appear in a program

as a user-defined word or a system-name. For a list of function-names and their

definitions, see Table 56 on page 503.

Reserved words

A reserved word is a character-string with a predefined meaning in a COBOL source

unit. Reserved words are listed in Appendix E, “Reserved words,” on page 595.

There are six types of reserved words:

v Keywords

v Optional words

v Figurative constants

v Special character words

v Special object identifiers

v Special registers

Keywords

Keywords are reserved words that are required within a given clause,

entry, or statement. Within each format, such words appear in uppercase

on the main path.

Optional words

Optional words are reserved words that can be included in the format of a

clause, entry, or statement in order to improve readability. They have no

effect on the execution of the program.

Figurative constants

See “Figurative constants” on page 13.

12 Enterprise COBOL for z/OS V4.1 Language Reference

Special character words

There are two types of special character words, which are recognized as

special characters only when represented in single-byte characters:

v Arithmetic operators: + - / * **

See “Arithmetic expressions” on page 261.

v Relational operators: < > = <= >=

See “Conditional expressions” on page 267.

Special object identifiers

COBOL provides two special object identifiers, SELF and SUPER:

SELF A special object identifier that you can use in the procedure

division of a method. SELF refers to the object instance used to

invoke the currently executing method. You can specify SELF only

in places that are explicitly listed in the syntax diagrams.

SUPER

A special object identifier that you can use in the procedure

division of a method only as the object identifier in an INVOKE

statement. When used in this way, SUPER refers to the object

instance used to invoke the currently executing method. The

resolution of the method to be invoked ignores any methods

declared in the class definition of the currently executing method

and methods defined in any class derived from that class. Thus,

the method invoked is inherited from an ancestor class.

Special registers

See “Special registers” on page 15.

Figurative constants

Figurative constants are reserved words that name and refer to specific constant

values. The reserved words for figurative constants and their meanings are:

ZERO, ZEROS, ZEROES

Represents the numeric value zero (0) or one or more occurrences of the

character zero, depending on context.

 When the figurative constant ZERO, ZEROS, or ZEROES is used in a

context that requires an alphanumeric character, an alphanumeric character

zero is used. When the context requires a national character zero, a

national character zero is used (value NX’0030’). When the context cannot

be determined, an alphanumeric character zero is used.

SPACE, SPACES

Represents one or more blanks or spaces. SPACE is treated as an

alphanumeric literal when used in a context that requires an alphanumeric

character, as a DBCS literal when used in a context that requires a DBCS

character, and as a national literal when used in a context that requires a

national character. The EBCDIC DBCS space character has the value

X’4040’, and the national space character has the value NX’0020’.

HIGH-VALUE, HIGH-VALUES

Represents one or more occurrences of the character that has the highest

ordinal position in the collating sequence used.

 HIGH-VALUE is treated as an alphanumeric literal in a context that

requires an alphanumeric character. For alphanumeric data with the

Chapter 3. Character-strings 13

EBCDIC collating sequence, the value is X’FF’. For other alphanumeric

data, the value depends on the collating sequence in effect.

HIGH-VALUE is treated as a national literal when used in a context that

requires a national literal. The value is national character NX’FFFF’.

When the context cannot be determined, an alphanumeric context is

assumed and the value X’FF’ is used.

Usage note: You should not use HIGH-VALUE (or a value assigned from

HIGH-VALUE) in a way that results in conversion between one data

representation and another. X’FF’ does not represent a valid EBCDIC

character, and NX’FFFF’ does not represent a valid national character.

Conversion of either the alphanumeric or the national HIGH-VALUE

representation to another representation results in a substitution character.

For example, conversion of X’FF’ to UTF-16 would give a substitution

character, not NX’FFFF’.

LOW-VALUE, LOW-VALUES

Represents one or more occurrences of the character that has the lowest

ordinal position in the collating sequence used.

 LOW-VALUE is treated as an alphanumeric literal in a context that requires

an alphanumeric character. For alphanumeric data with the EBCDIC

collating sequence, the value is X’00’. For other alphanumeric data, the

value depends on the collating sequence in effect.

LOW-VALUE is treated as a national literal when used in a context that

requires a national literal. The value is national character NX’0000’.

When the context cannot be determined, an alphanumeric context is

assumed and the value X’00’ is used.

QUOTE, QUOTES

Represents one or more occurrences of:

v The quotation mark character ("), if the QUOTE compiler option is in

effect

v The apostrophe character (’), if the APOST compiler option is in effect

QUOTE or QUOTES represents an alphanumeric character when used in a

context that requires an alphanumeric character, and represents a national

character when used in a context that requires a national character. The

national character value of quotation mark is NX’0022’. The national

character value of apostrophe is NX’0027’.

QUOTE and QUOTES cannot be used in place of a quotation mark or an

apostrophe to enclose an alphanumeric literal.

ALL literal

literal can be an alphanumeric literal, a DBCS literal, a national literal, or a

figurative constant other than the ALL literal.

 When literal is not a figurative constant, ALL literal represents one or more

occurrences of the string of characters that compose the literal.

When literal is a figurative constant, the word ALL has no meaning and is

used only for readability.

The figurative constant ALL literal must not be used with the CALL,

INSPECT, INVOKE, STOP, or STRING statements.

14 Enterprise COBOL for z/OS V4.1 Language Reference

symbolic-character

Represents one or more of the characters specified as a value of the

symbolic-character in the SYMBOLIC CHARACTERS clause of the

SPECIAL-NAMES paragraph.

 symbolic-character always represents an alphanumeric character; it can be

used in a context that requires a national character only when implicit

conversion of alphanumeric to national characters is defined. (It can be

used, for example, in a MOVE statement where the receiving item is of

class national because implicit conversion is defined when the sending

item is alphanumeric and the receiving item is national.)

NULL, NULLS

Represents a value used to indicate that data items defined with USAGE

POINTER, USAGE PROCEDURE-POINTER, USAGE FUNCTION-
POINTER, USAGE OBJECT REFERENCE, or the ADDRESS OF special

register do not contain a valid address. NULL can be used only where

explicitly allowed in the syntax formats. NULL has the value zero.

The singular and plural forms of NULL, ZERO, SPACE, HIGH-VALUE,

LOW-VALUE, and QUOTE can be used interchangeably. For example, if

DATA-NAME-1 is a five-character data item, each of the following statements moves

five spaces to DATA-NAME-1:

MOVE SPACE TO DATA-NAME-1

MOVE SPACES TO DATA-NAME-1

MOVE ALL SPACES TO DATA-NAME-1

When the rules of COBOL permit any one spelling of a figurative constant name,

any alternative spelling of that figurative constant name can be specified.

You can use a figurative constant wherever literal appears in a syntax diagram,

except where explicitly prohibited. When a numeric literal appears in a syntax

diagram, only the figurative constant ZERO (or ZEROS or ZEROES) can be used.

Figurative constants are not allowed as function arguments except in an arithmetic

expression, where the expression is an argument to a function.

The length of a figurative constant depends on the context of its use. The following

rules apply:

v When a figurative constant is specified in a VALUE clause or associated with a

data item (for example, when it is moved to or compared with another item), the

length of the figurative constant character-string is equal to 1 or the number of

character positions in the associated data item, whichever is greater.

v When a figurative constant, other than the ALL literal, is not associated with

another data item (for example, in a CALL, INVOKE, STOP, STRING, or

UNSTRING statement), the length of the character-string is one character.

Special registers

Special registers are reserved words that name storage areas generated by the

compiler. Their primary use is to store information produced through specific

COBOL features. Each such storage area has a fixed name, and must not be

defined within the program.

For programs with the recursive attribute, for programs compiled with the

THREAD option, and for methods, storage for the following special registers is

allocated on a per-invocation basis:

Chapter 3. Character-strings 15

v ADDRESS-OF

v RETURN-CODE

v SORT-CONTROL

v SORT-CORE-SIZE

v SORT-FILE-SIZE

v SORT-MESSAGE

v SORT-MODE-SIZE

v SORT-RETURN

v TALLY

v XML-CODE

v XML-EVENT

For the first call to a program after a cancel of that program, or for a method

invocation, the compiler initializes the special register fields to their initial values.

For the following four cases:

v Programs that have the INITIAL clause specified

v Programs that have the RECURSIVE clause specified

v Programs compiled with the THREAD option

v Methods

the following special registers are reset to their initial value on each program or

method entry:

v RETURN-CODE

v SORT-CONTROL

v SORT-CORE-SIZE

v SORT-FILE-SIZE

v SORT-MESSAGE

v SORT-MODE-SIZE

v SORT-RETURN

v TALLY

v XML-CODE

v XML-EVENT

Further, in the above four cases, values set in ADDRESS OF special registers persist

only for the span of the particular program or method invocation.

In all other cases, the special registers will not be reset; they will be unchanged

from the value contained on the previous CALL or INVOKE.

Unless otherwise explicitly restricted, a special register can be used wherever a

data-name or identifier that has the same definition as the implicit definition of the

special register can be used. Implicit definitions, if applicable, are given in the

specification of each special register.

You can specify an alphanumeric special register in a function wherever an

alphanumeric argument to a function is allowed, unless specifically prohibited.

If qualification is allowed, special registers can be qualified as necessary to provide

uniqueness. (For more information, see “Qualification” on page 65.)

16 Enterprise COBOL for z/OS V4.1 Language Reference

ADDRESS OF

The ADDRESS OF special register references the address of a data item in the

linkage section, the local-storage section, or the working-storage section.

For 01 and 77 level items in the linkage section, the ADDRESS OF special register

can be used as either a sending item or a receiving item. For all other operands,

the ADDRESS OF special register can be used only as a sending item.

The ADDRESS OF special register is implicitly defined as USAGE POINTER.

A function-identifier is not allowed as the operand of the ADDRESS OF special

register.

DEBUG-ITEM

The DEBUG-ITEM special register provides information for a debugging

declarative procedure about the conditions that cause debugging section execution.

DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.

 02 DEBUG-LINE PICTURE IS X(6).

 02 FILLER PICTURE IS X VALUE SPACE.

 02 DEBUG-NAME PICTURE IS X(30).

 02 FILLER PICTURE IS X VALUE SPACE.

 02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.

 02 FILLER PICTURE IS X VALUE SPACE.

 02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.

 02 FILLER PICTURE IS X VALUE SPACE.

 02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.

 02 FILLER PICTURE IS X VALUE SPACE.

 02 DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces. The

contents of the DEBUG-ITEM subfields are updated according to the rules for the

MOVE statement, with one exception: DEBUG-CONTENTS is updated as if the

move were an alphanumeric-to-alphanumeric elementary move without conversion

of data from one form of internal representation to another.

After updating, the contents of the DEBUG-ITEM subfields are:

DEBUG-LINE

The source-statement sequence number (or the compiler-generated

sequence number, depending on the compiler option chosen) that caused

execution of the debugging section.

DEBUG-NAME

The first 30 characters of the name that caused execution of the debugging

section. Any qualifiers are separated by the word ’OF’.

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3

If the DEBUG-NAME is subscripted or indexed, the occurrence number of

each level is entered in the respective DEBUG-SUB-n. If the item is not

subscripted or indexed, these fields remain as spaces. You must not

reference the DEBUG-ITEM special register if your program uses more

than three levels of subscripting or indexing.

DEBUG-CONTENTS

Data is moved into DEBUG-CONTENTS, as shown in the following table.

Chapter 3. Character-strings 17

Table 2. DEBUG-ITEM subfield contents

Cause of debugging

section execution

Statement referred to in

DEBUG-LINE

Contents of

DEBUG-NAME

Contents of

DEBUG-CONTENTS

procedure-name-1 ALTER

reference

ALTER statement procedure-name-1 procedure-name-n in TO

PROCEED TO phrase

GO TO procedure-name-n GO TO statement procedure-name-n Spaces

procedure-name-n in SORT or

MERGE input/output

procedure

SORT or MERGE statement procedure-name-n ″SORT INPUT″, ″SORT

OUTPUT″, or ″MERGE

OUTPUT″ (as applicable)

PERFORM statement

transfer of control

This PERFORM statement procedure-name-n ″PERFORM LOOP″

procedure-name-n in a USE

procedure

Statement causing USE

procedure execution

procedure-name-n ″USE PROCEDURE″

Implicit transfer from a

previous sequential

procedure

Previous statement

executed in previous

sequential procedure1

procedure-name-n ″FALL THROUGH″

First execution of first

nondeclarative procedure

Line number of first

nondeclarative

procedure-name

Name of first

nondeclarative procedure

″START PROGRAM″

1. If this procedure is preceded by a section header, and control is passed through the section header, the statement

number refers to the section header.

JNIENVPTR

The JNIENVPTR special register references the Java Native Interface (JNI)

environment pointer. The JNI environment pointer is used in calling Java callable

services.

JNIENVPTR is implicitly defined as USAGE POINTER, and cannot be specified as

a receiving data item.

For information about using JNIENVPTR and JNI callable services, see the

Enterprise COBOL Programming Guide.

LENGTH OF

The LENGTH OF special register contains the number of bytes used by a data

item.

LENGTH OF creates an implicit special register that contains the current byte

length of the data item referenced by the identifier.

For data items described with usage DISPLAY-1 (DBCS data items) and data items

described with usage NATIONAL, each character occupies 2 bytes of storage.

LENGTH OF can be used in the procedure division anywhere a numeric data item

that has the same definition as the implied definition of the LENGTH OF special

register can be used. The LENGTH OF special register has the implicit definition:

USAGE IS BINARY PICTURE 9(9).

If the data item referenced by the identifier contains the GLOBAL clause, the

LENGTH OF special register is a global data item.

18 Enterprise COBOL for z/OS V4.1 Language Reference

The LENGTH OF special register can appear within either the starting character

position or the length expressions of a reference-modification specification.

However, the LENGTH OF special register cannot be applied to any operand that

is reference-modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special

register is allowed in a function where an integer argument is allowed.

If the LENGTH OF special register is used as the argument to the LENGTH

function, the result is always 4, independent of the argument specified for

LENGTH OF.

If the ADDRESS OF special register is used as the argument to the LENGTH

special register, the result is always 4, independent of the argument specified for

ADDRESS OF.

LENGTH OF cannot be either of the following:

v A receiving data item

v A subscript

When the LENGTH OF special register is used as a parameter on a CALL

statement, it must be passed BY CONTENT or BY VALUE.

When a table element is specified, the LENGTH OF special register contains the

length in bytes of one occurrence. When referring to a table element, the element

name need not be subscripted.

A value is returned for any identifier whose length can be determined, even if the

area referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with

the LENGTH OF phrase. For example:

MOVE LENGTH OF A TO B

DISPLAY LENGTH OF A, A

ADD LENGTH OF A TO B

CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

The intrinsic function LENGTH can also be used to obtain the length of a data

item. For data items of usage NATIONAL, the length returned by the LENGTH

function is the number of national character positions, rather than bytes; thus the

LENGTH OF special register and the LENGTH intrinsic function have different

results for data items of usage NATIONAL. For all other data items, the result is

the same.

LINAGE-COUNTER

A separate LINAGE-COUNTER special register is generated for each FD entry that

contains a LINAGE clause. When more than one is generated, you must qualify

each reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is one of the

following:

v If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same

PICTURE and USAGE as that data-name.

Chapter 3. Character-strings 19

v If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item

with the same number of digits as that integer.

For more information, see “LINAGE clause” on page 182.

The value in LINAGE-COUNTER at any given time is the line number at which

the device is positioned within the current page. LINAGE-COUNTER can be

referred to in procedure division statements; it must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated

file is executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this

file. (See “WRITE statement” on page 469.)

If the file description entry for a sequential file contains the LINAGE clause and

the EXTERNAL clause, the LINAGE-COUNTER data item is an external data item.

If the file description entry for a sequential file contains the LINAGE clause and

the GLOBAL clause, the LINAGE-COUNTER data item is a global data item.

You can specify the LINAGE-COUNTER special register wherever an integer

argument to a function is allowed.

RETURN-CODE

The RETURN-CODE special register can be used to pass a return code to the

calling program or operating system when the current COBOL program ends.

When a COBOL program ends:

v If control returns to the operating system, the value of the RETURN-CODE

special register is passed to the operating system as a user return code. The

supported user return code values are determined by the operating system, and

might not include the full range of RETURN-CODE special register values.

v If control returns to a calling program, the value of the RETURN-CODE special

register is passed to the calling program. If the calling program is a COBOL

program, the RETURN-CODE special register in the calling program is set to the

value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:

01 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the

GLOBAL clause in the outermost program.

The following are examples of how to set the RETURN-CODE special register:

v COMPUTE RETURN-CODE = 8.

v MOVE 8 to RETURN-CODE.

The RETURN-CODE special register does not return a value from an invoked

method or from a program that uses CALL ... RETURNING. For more information,

see “INVOKE statement” on page 372 or “CALL statement” on page 319.

You can specify the RETURN-CODE special register in a function wherever an

integer argument is allowed.

20 Enterprise COBOL for z/OS V4.1 Language Reference

The RETURN-CODE special register does not return information from a service

call for a Language Environment® callable service. For more information, see the

Enterprise COBOL Programming Guide and the Language Environment Programming

Guide.

SHIFT-OUT and SHIFT-IN

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as

alphanumeric data items of the format:

01 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"0E".

01 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"0F".

When used in nested programs, these special registers are implicitly defined with

the global attribute in the outermost program.

These special registers represent EBCDIC shift-out and shift-in control characters,

which are unprintable characters.

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function

wherever an alphanumeric argument is allowed.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN cannot

be used in place of the keyboard control characters when you are defining DBCS

user-defined words or specifying EBCDIC DBCS literals.

Following is an example of how SHIFT-OUT and SHIFT-IN might be used:

DATA DIVISION.

WORKING-STORAGE.

01 DBCSGRP.

 05 SO PIC X.

 05 DBCSITEM PIC G(3) USAGE DISPLAY-1.

 05 SI PIC X.

...

PROCEDURE DIVISION.

 MOVE SHIFT-OUT TO SO

 MOVE G"<D1D2D3>" TO DBCSITEM

 MOVE SHIFT-IN TO SI

 DISPLAY DBCSGRP

SORT-CONTROL

The SORT-CONTROL special register is the name of an alphanumeric data item

that is implicitly defined as:

01 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD".

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

This register contains the ddname of the data set that holds the control statements

used to improve the performance of a sorting or merging operation.

You can provide a DD statement for the data set identified by the

SORT-CONTROL special register. Enterprise COBOL will attempt to open the data

set at execution time. Any error will be diagnosed with an informational message.

You can specify the SORT-CONTROL special register in a function wherever an

alphanumeric argument is allowed.

Chapter 3. Character-strings 21

The SORT-CONTROL special register is not necessary for a successful sorting or

merging operation.

The sort control file takes precedence over the SORT special registers.

SORT-CORE-SIZE

The SORT-CORE-SIZE special register is the name of a binary data item that you

can use to specify the number of bytes of storage available to the sort utility. It has

the implicit definition:

01 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

SORT-CORE-SIZE can be used in place of the MAINSIZE or RESINV control

statements in the sort control file:

v The ’MAINSIZE=’ option control statement keyword is equivalent to

SORT-CORE-SIZE with a positive value.

v The ’RESINV=’ option control statement keyword is equivalent to

SORT-CORE-SIZE with a negative value.

v The ’MAINSIZE=MAX’ option control statement keyword is equivalent to

SORT-CORE-SIZE with a value of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an

integer argument is allowed.

SORT-FILE-SIZE

The SORT-FILE-SIZE special register is the name of a binary data item that you can

use to specify the estimated number of records in the sort input file, file-name-1. It

has the implicit definition:

01 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

SORT-FILE-SIZE is equivalent to the ’FILSZ=Ennn’ control statement in the sort

control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an

integer argument is allowed.

SORT-MESSAGE

The SORT-MESSAGE special register is the name of an alphanumeric data item

that is available to both sort and merge programs.

The SORT-MESSAGE special register has the implicit definition:

01 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT".

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

22 Enterprise COBOL for z/OS V4.1 Language Reference

You can use the SORT-MESSAGE special register to specify the ddname of a data

set that the sort utility should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on

the ’MSGDDN=’ control statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an

alphanumeric argument is allowed.

SORT-MODE-SIZE

The SORT-MODE-SIZE special register is the name of a binary data item that you

can use to specify the length of variable-length records that occur most frequently.

It has the implicit definition:

01 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

SORT-MODE-SIZE is equivalent to the ’SMS=’ control statement in the sort control

file.

You can specify the SORT-MODE-SIZE special register in a function wherever an

integer argument is allowed.

SORT-RETURN

The SORT-RETURN special register is the name of a binary data item and is

available to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:

01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

The SORT-RETURN special register contains a return code of 0 (successful) or 16

(unsuccessful) at the completion of a sort or merge operation. If the sort or merge

is unsuccessful and there is no reference to this special register anywhere in the

program, a message is displayed on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or

input/output procedure to terminate a sort or merge operation before all records

are processed. The operation is terminated on the next input or output function for

the sort or merge operation.

You can specify the SORT-RETURN special register in a function wherever an

integer argument is allowed.

TALLY

The TALLY special register is the name of a binary data item that has the following

definition:

01 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO.

Chapter 3. Character-strings 23

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer

argument is allowed.

WHEN-COMPILED

The WHEN-COMPILED special register contains the date at the start of the

compilation. WHEN-COMPILED is an alphanumeric data item that has the implicit

definition:

01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

The WHEN-COMPILED special register has the format:

MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 15 October 2007,

WHEN-COMPILED would contain the value 10/15/0714.04.00.

WHEN-COMPILED can be used only as the sending field in a MOVE statement.

WHEN-COMPILED special register data cannot be reference-modified.

The compilation date and time can also be accessed with the intrinsic function

WHEN-COMPILED (see “WHEN-COMPILED” on page 537). That function

supports four-digit year values and provides additional information.

XML-CODE

The XML-CODE special register is used for the following purposes:

v To communicate status between the XML parser and the processing procedure

that was identified in an XML PARSE statement

v To indicate either that an XML GENERATE statement executed successfully or

that an exception occurred during XML generation

The XML-CODE special register has the implicit definition:

01 XML-CODE PICTURE S9(9) USAGE BINARY VALUE 0.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

When the XML parser encounters an XML event, it sets XML-CODE and then

passes control to the processing procedure. For all events except an EXCEPTION

event, XML-CODE contains zero when the processing procedure receives control.

For an EXCEPTION event, the parser sets XML-CODE to an exception code that

indicates the nature of the exception. XML PARSE exception codes are discussed in

the Enterprise COBOL Programming Guide.

24 Enterprise COBOL for z/OS V4.1 Language Reference

You can set XML-CODE before returning to the parser, as follows:

v To -1, after a normal event, to indicate that the parser is to terminate

immediately without processing any remaining XML document text, and

without causing an EXCEPTION event.

v To 0, when the XMLPARSE(COMPAT) compiler option is in effect, after an

EXCEPTION event for which continuation is allowed, to indicate that the parser

is to continue processing. The parser attempts to continue processing the XML

document, but results are undefined.

v To 1, when the XMLPARSE(XMLSS) compiler option is in effect, to indicate after

an END-OF-INPUT event that the next segment of the document is ready for

parsing. (You must leave XMLCODE set to 0 when the processing procedure has

no more segments to return.)

v To a code page identifier after an encoding conflict exception, in some cases

when the XMLPARSE(COMPAT) compiler option is in effect. See the Enterprise

COBOL Programming Guide for details.

If you set XML-CODE to any other value before returning to the parser, results are

undefined.

When the parser returns control to the XML PARSE statement, XML-CODE

contains the most recent value set by the processing procedure or the parser. In

some cases, the parser overrides the value set by the processing procedure.

At termination of an XML GENERATE statement, XML-CODE contains either zero,

indicating successful completion of XML generation, or a nonzero error code,

indicating that an exception occurred during XML generation. XML GENERATE

exception codes are detailed in the Enterprise COBOL Programming Guide.

XML-EVENT

The XML-EVENT special register communicates event information from the XML

parser to the processing procedure identified in the XML PARSE statement. Before

passing control to the processing procedure, the XML parser sets the XML-EVENT

special register to the name of the XML event. The specific events and the

associated special registers that are set depend on the setting of the XMLPARSE

compiler option, XMLPARSE(XMLSS) or XMLPARSE(COMPAT).

The parser uses the following special registers when XMLPARSE(XMLSS) is in

effect:

v XML-CODE

v XML-EVENT

v XML-TEXT or XML-NTEXT

v XML-NAMESPACE or XML-NNAMESPACE

v XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX

The parser uses the following special registers when XMLPARSE(COMPAT) is in

effect:

v XML-CODE

v XML-EVENT

v XML-TEXT or XML-NTEXT

The parser sets XML-NTEXT to associated XML text when the XML document is in

a national data item, and sets XML-TEXT when the XML document is in an

Chapter 3. Character-strings 25

|

|
|
|
|

|
|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|
|

alphanumeric data item. When the XMLPARSE(COMPAT) compiler option is in

effect, the parser sets XML-NTEXT to the text of any numeric character reference

(for events ATTRIBUTE-NATIONAL-CHARACTER and CONTENT-NATIONAL-
CHARACTER) regardless of the type of the XML document data item.

When the XMLPARSE(XMLSS) compiler option is in effect, the parser sets

XML-NNAMESPACE and XML-NNAMESPACE-PREFIX when the XML document

is in a national data item and when the RETURNING NATIONAL phrase is

specified in the XMLPARSE statement; otherwise, the parser sets

XML-NAMESPACE and XML-NAMESPACE-PREFIX.

Table 3 shows XML events and special register contents for parsing with the

XMLPARSE(XMLSS) and XMLPARSE(COMPAT) options.

XML-EVENT has the implicit definition:

01 XML-EVENT USAGE DISPLAY PICTURE X(30) VALUE SPACE.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

XML-EVENT cannot be used as a receiving data item.

 Table 3. XML events and associated special register contents

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

ATTRIBUTE-CHARACTER n/a5 XML-TEXT or XML-NTEXT

contains the single character that

corresponds with the predefined

entity reference in the attribute

value.

ATTRIBUTE-CHARACTERS XML-TEXT or XML-NTEXT contains

the value within quotation marks or

apostrophes.

XML-TEXT or XML-NTEXT

contains the value within

quotation marks or apostrophes.

This can be a substring of the

attribute value if the value

includes an entity reference.

ATTRIBUTE-NAME For attribute names that are not in a

namespace, XML-TEXT or

XML-NTEXT contains the attribute

name.

For attributes with names in a

nondefault namespace, attribute names

are always prefixed and have the form:

prefix:local-part = ″AttValue″.

XML-TEXT or XML-NTEXT contains

the local-part, XML-NAMESPACE or

XML-NNAMESPACE contains the

namespace identifier, and

XML-NAMESPACE-PREFIX or

XML-NNAMESPACE-PREFIX contains

the prefix.

XML-TEXT or XML-TEXT

contains the attribute name (the

string to the left of the equal

sign).

26 Enterprise COBOL for z/OS V4.1 Language Reference

|
|
|
|

|
|
|
|
|

|
|

||

|||

|||
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

ATTRIBUTE-NATIONAL-
CHARACTER

n/a5

(A numeric character reference that has

no corresponding code point in the

target coded character set is replaced

with hyphen-minus.)

Regardless of the type of the

XML document, XML-TEXT is

empty with length zero and

XML-NTEXT contains the single

national character that

corresponds with the numeric

character reference2.

COMMENT XML-TEXT or XML-NTEXT contains

the text of the comment between the

opening character sequence ″<!--″ and

the closing character sequence ″-->″.

XML-TEXT or XML-NTEXT

content is the same as for

XMLPARSE(XMLSS).

CONTENT-CHARACTER n/a5 XML-TEXT or XML-NTEXT

contains the single character that

corresponds with the predefined

entity reference in the element

content.

CONTENT-CHARACTERS XML-TEXT or XML-NTEXT contains

the character content of the element

between start and end tags.

XML-TEXT or XML-NTEXT

contains the character content of

the element between start and

end tags. This can be a substring

of the character content if the

content includes an entity

reference or another element.

CONTENT-NATIONAL-CHARACTER n/a5

(A numeric character reference that has

no corresponding code point in the

target coded character set is replaced

with hyphen-minus.)

Regardless of the type of the

XML document, XML-TEXT is

empty with length zero and

XML-NTEXT contains the single

national character that

corresponds with the numeric

character reference.2.

DOCUMENT-TYPE-DECLARATION XML-TEXT or XML-NTEXT contains

the name of the root element, as

specified in the document type

delcaration.

XML-TEXT or XML-NTEXT

contains the entire document type

declaration, including the

opening and closing character

sequences, ″<!DOCTYPE″ and

″>″.

ENCODING-DECLARATION XML-TEXT or XML-NTEXT contains

the value, between quotation marks or

apostrophes, of the encoding

declaration in the XML declaration.

XML-TEXT or XML-NTEXT

content is the same as for

XMLPARSE(XMLSS).

END-OF-CDATA-SECTION All XML special registers except

XML-CODE and XML-EVENT are

empty with length zero.

XML-TEXT or XML-NTEXT

contains the string ″]]>″.

END-OF-DOCUMENT All XML special registers except

XML-CODE and XML-EVENT are

empty with length zero.

XML-TEXT or XML-NTEXT

content is the same as for

XMLPARSE(XMLSS).

Chapter 3. Character-strings 27

|

|||

|
|
|

|
|
|
|

|
|
|
|
|
|
|

||
|
|
|

|
|
|

|||
|
|
|
|

||
|
|

|
|
|
|
|
|
|

||

|
|
|
|

|
|
|
|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|

||
|
|

|
|

||
|
|

|
|
|

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

END-OF-ELEMENT XML-TEXT or XML-NTEXT contains

the local part of the end element tag or

empty element tag name.

If the element name is in a nondefault

namespace, XML-NAMESPACE or

XML-NNAMESPACE contains the

namespace identifier.

If the element name is in a namespace

and is prefixed (of the form

prefix:local-part), XML-NAMESPACE-
PREFIX or XML-NNAMESPACE-
PREFIX contains the prefix.

XML-TEXT or XML-NTEXT

contains the name of the end

element tag or empty element

tag.

END-OF-INPUT All XML special registers except

XML-CODE and XML-EVENT are

empty with length zero.

To parse an additional segment of an

XML document, move the next

segment to identifier-1 and set

XML-CODE to 1.

n/a6

EXCEPTION XML-CODE contains the unique error

code that identifies the exception.

XML-TEXT or XML-NTEXT contains

the document fragment up to the point

of the error or anomaly that caused the

exception.4

All other XML special registers are

empty with length zero.

XML-CODE contains the unique

error code that identifies the

exception.3

XML-TEXT or XML-NTEXT

contains the part of the document

that was successfully scanned, up

to and including the point at

which the exception was

detected.

NAMESPACE-DECLARATION XML-TEXT and XML-NTEXT are both

empty with length zero.

XML-NAMESPACE or

XML-NNAMESPACE contains the

declared namespace identifier. If the

namespace is ″undeclared″ by

specifying the empty string,

XML-NAMESPACE and

XML-NNAMESPACE are empty with

length zero.

XML-NAMESPACE-PREFIX or

XML-NNAMESPACE-PREFIX contains

the prefix if the namespace declaration

is of the form xmlns:prefix =

″namespace-identifier″; otherwise, if the

declaration is for the default

namespace and thus the attribute name

is xmlns, XML-NAMESPACE-PREFIX

and XML-NNAMESPACE-PREFIX are

both empty with length zero.

n/a6

(ATTRIBUTE-NAME and

ATTRIBUTE-CHARACTERS

events are signaled instead.)

28 Enterprise COBOL for z/OS V4.1 Language Reference

|

|||

||
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

||
|
|

|
|
|
|

|

||
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

PROCESSING-INSTRUCTION-DATA XML-TEXT or XML-NTEXT contains

the rest of the processing instruction

(after the target name), not including

the closing sequence ″?>″, but

including trailing, and not leading,

white space characters.

XML-TEXT or XML-NTEXT

content is the same as for

XMLPARSE(XMLSS).

PROCESSING-INSTRUCTION-
TARGET

XML-TEXT or XML-NTEXT contains

the processing instruction target name,

which occurs immediately after the

processing instruction opening

sequence, ″<?″.

XML-TEXT or XML-NTEXT

content is the same as for

XMLPARSE(XMLSS).

STANDALONE-DECLARATION XML-TEXT or XML-NTEXT contains

the value, between quotation marks or

apostrophes (″yes″ or ″no″), of the

stand-alone declaration in the XML

declaration.

XML-TEXT or XML-NTEXT

content is the same as for

XMLPARSE(XMLSS).

START-OF-CDATA-SECTION All XML special registers except

XML-CODE and XML-EVENT are

empty with length zero.

XML-TEXT or XML-NTEXT

contains the string ″<![CDATA[″.

START-OF-DOCUMENT All XML special registers except

XML-CODE and XML-EVENT are

empty with length zero.

XML-TEXT or XML-NTEXT

contains the entire document.

START-OF-ELEMENT XML-TEXT or XML-NTEXT contains

the local part of the start element tag

name or the local part of the empty

element tag name.

If the element name is in a namespace,

XML-NAMESPACE or

XML-NNAMESPACE contains the

namespace identifier.

If the element name is in a namespace

and is prefixed (of the form

prefix:local-part, XML-NAMESPACE-
PREFIX or XML-NNAMESPACE-
PREFIX contains the prefix.

XML-TEXT or XML-NTEXT

contains the name of the start

element tag or empty element

tag, also known as the element

type.

UNKNOWN-REFERENCE-IN-
ATTRIBUTE

n/a5 XML-TEXT or XML-NTEXT

contains the entity reference

name, not including the ″&″ and

″;″ delimiters.

UNKNOWN-REFERENCE-IN-
CONTENT

n/a5

For XMLPARSE(XMLSS), the parser

might signal event

UNRESOLVED-REFERENCE instead.

XML-TEXT or XML-NTEXT

contains the entity reference

name, not including the ″&″ and

″;″ delimiters.

UNRESOLVED-REFERENCE XML-TEXT or XML-NTEXT contains

the entity name from XML content, not

including the ″&″ and ″;″ delimiters.

See ″Unresolved references″ below for

additional details.

n/a6

(The parser signals

UNKNOWN-REFERENCE-IN-
CONTENT instead.)

Chapter 3. Character-strings 29

|

|||

||
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

||
|
|
|
|

|
|
|

||
|
|

|
|

||
|
|

|
|

||
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
||
|
|
|

|
|
|

|
|
|

|
|
|
|

||
|
|

|
|

|

|
|
|

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

VERSION-INFORMATION XML-TEXT or XML-NTEXT contains

the value, between quotation marks or

apostrophes, of the version information

in the XML declaration.

XML-TEXT or XML-NTEXT

content is the same as for

XMLPARSE(XMLSS).

1. For all events except EXCEPTION, XML-CODE contains zero. Unless stated otherwise, the namespace XML

registers (XML-NAMESPACE, XML-NNAMESPACE, XML-NAMESPACE-PREFIX, and XML-NNAMESPACE-
PREFIX) are empty and have length zero.

2. National characters with scalar values greater than 65,535 (NX″FFFF″) are represented using two encoding units

(a ″surrogate pair″). Programmers are responsible for ensuring that operations on the content of XML-NTEXT do

not split the pair of encoding units that together form a graphic character, thereby forming invalid data.

3. For XMLPARSE(COMPAT), exceptions for encoding conflicts are signaled before parsing begins. For these

exceptions, XML-TEXT or XML-NTEXT is either zero length or contains only the encoding declaration value

from the document. See the Enterprise COBOL Programming Guide for information about XML exception codes.

4. If an END-OF-INPUT XML event previously occurred and the processing procedure provided a new document

segment, XML-TEXT or XML-NTEXT contains only the new segment.

If the anomaly occurs before parsing begins (for example, the encoding specification is invalid), XML-TEXT or

XML-NTEXT are empty with length zero.

The fragment might or might not include the anomaly. For a duplicate attribute name, for example, the fragment

includes the incorrect attribute. For an invalid character, the fragment includes document text up to, but not

including, the invalid character.

5. n/a. Not applicable; occurs only with XMLPARSE(COMPAT).

6. n/a. Not applicable; occurs only wtih XMLPARSE(XMLSS).

Unresolved References:

An unresolved entity reference is a reference to the name of an entity that has no

declaration in the document type definition (DTD).

If the XML document does not contain a document type declaration (<!DOCTYPE

...>), an unresolved entity reference in character content results in an EXCEPTION

XML event. To cause the parser to signal an UNRESOLVED-REFERENCE event for

an unresolved reference in character data, instead of an EXCEPTION event, include

at least a minimal document type declaration in the XML document; for example:

 <!DOCTYPE rootName>

The parser always signals an EXCEPTION XML event for unresolved references in

attribute values, even when the document includes a document type declaration.

XML-NAMESPACE

The XML-NAMESPACE special register is defined during XML parsing to contain

the identifier of the namespace, if any, associated with the name in XML-TEXT for

XML events START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME,

and to contain the declared namespace identifier for XML event

NAMESPACE-DECLARATION.

The parser sets XML-NAMESPACE to the identifier of the namespace associated

with a name before transferring control to the processing procedure when the

operand of the XML PARSE statement is an alphanumeric data item and the

RETURNING NATIONAL phrase is not specified in the XML PARSE statement.

30 Enterprise COBOL for z/OS V4.1 Language Reference

|

|||

||
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|

|
|

|

|
|

|
|
|
|
|

|

|
|

|

|
|
|
|
|

|
|
|
|

To use XML-NAMESPACE, you must compile with the XMLPARSE(XMLSS)

compiler option.

XML-NAMESPACE is an elementary data item of category alphanumeric. The

length of XML-NAMESPACE can vary from 0 through 32,768 bytes. The length at

run time is the length of the contained namespace identifier.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

XML-NAMESPACE has a length of zero for:

v The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML

events if there is no namespace associated with a name

v The NAMESPACE-DECLARATION XML event if the namespace is undeclared by

specifying the empty string

v All other XML events

When XML-NAMESPACE is set, the XML-NNAMESPACE special register has a

length of zero. At any given time, only one of the two special registers

XML-NAMESPACE and XML-NNAMESPACE has a nonzero length.

Use the LENGTH function or the LENGTH OF special register to determine the

number of bytes that XML-NAMESPACE contains.

XML-NAMESPACE cannot be used as a receiving item.

XML-NNAMESPACE

The XML-NNAMESPACE special register is defined during XML parsing to

contain the identifier of the namespace, if any, associated with the name in

XML-NTEXT for XML events START-OF-ELEMENT, END-OF-ELEMENT, and

ATTRIBUTE-NAME, and to contain the declared namespace identifier for XML

event NAMESPACE-DECLARATION.

The parser sets XML-NNAMESPACE to the identifier of the namespace associated

with a name before transferring control to the processing procedure when the

RETURNING NATIONAL phrase is specified in the XML PARSE statement or the

operand of the XML PARSE statement is a national data item.

To use XML-NNAMESPACE, you must compile with the XMLPARSE(XMLSS)

compiler option.

XML-NNAMESPACE is an elementary data item of category national. The length

of XML-NNAMESPACE can vary from 0 through 16,384 national characters (0

through 32,768 bytes). The length at run time is the length of the contained

namespace identifier.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

XML-NNAMESPACE has a length of zero for:

Chapter 3. Character-strings 31

|
|

|
|
|

|

|
|

|

|
|

|
|

|

|
|
|

|
|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|
|

|

v The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML

events, if there is no namespace associated with a name

v The NAMESPACE-DECLARATION XML event if the namespace is undeclared by

specifying the empty string

v All other XML events

When XML-NNAMESPACE is set, the XML-NAMESPACE special register has a

length of zero. At any given time, only one of the two special registers

XML-NNAMESPACE and XML-NAMESPACE has a nonzero length.

Use the LENGTH function to determine the number of national character positions

that XML-NNAMESPACE contains; use the LENGTH OF special register to

determine the number of bytes.

XML-NNAMESPACE cannot be used as a receiving item.

XML-NAMESPACE-PREFIX

The XML-NAMESPACE-PREFIX special register is defined during XML parsing to

contain the prefix, if any, of the name in XML-TEXT for XML events

START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME, and to

contain the local attribute name for XML event NAMESPACE-DECLARATION.

The namespace prefix is used as an alias for the complete namespace identifier.

The parser sets XML-NAMESPACE-PREFIX before transferring control to the

processing procedure when the operand of the XML PARSE statement is an

alphanumeric data item and the RETURNING NATIONAL phrase is not specified.

To use XML-NAMESPACE-PREFIX, you must compile with the

XMLPARSE(XMLSS) compiler option.

XML-NAMESPACE-PREFIX is an elementary data item of category national. The

length of XML-NAMESPACE-PREFIX can vary from 0 through 4,096 bytes. The

length at run time is the length of the contained namespace prefix.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

XML-NAMESPACE-PREFIX has a length of zero for:

v The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML

events if the name does not have a prefix

v The NAMESPACE-DECLARATION XML event if the declaration is for the

default namespace, in which case the namespace declaration attribute name is

not prefixed.

v All other XML events

When XML-NAMESPACE-PREFIX is set, the XML-NNAMESPACE-PREFIX special

register has a length of zero. At any given time, only one of the two special

registers XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX has a

nonzero length.

32 Enterprise COBOL for z/OS V4.1 Language Reference

|
|

|
|

|

|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|

|

|
|

|
|
|

|

|
|
|
|

Use the LENGTH function or the LENGTH OF special register to determine the

number of bytes that XML-NAMESPACE-PREFIX contains.

XML-NAMESPACE-PREFIX cannot be used as a receiving item.

XML-NNAMESPACE-PREFIX

The XML-NNAMESPACE-PREFIX special register is defined during XML parsing

to contain the prefix, if any, of the name in XML-NTEXT for XML events

START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME, and to

contain the local attribute name for XML event NAMESPACE-DECLARATION.

The namespace prefix is used as an alias for the complete namespace identifier.

The parser sets XML-NNAMESPACE-PREFIX before transferring control to the

processing procedure when the operand of the XML PARSE statement is a national

data item or the RETURNING NATIONAL phrase is specified in the XML PARSE

statement.

To use XML-NNAMESPACE-PREFIX, you must compile with the

XMLPARSE(XMLSS) compiler option.

XML-NNAMESPACE-PREFIX is an elementary data item of category national. The

length of XML-NNAMESPACE-PREFIX can vary from 0 through 2048 national

character positions (0 through 4096 bytes). The length at run time is the length of

the contained namespace prefix.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

XML-NNAMESPACE-PREFIX has a length of zero for:

v The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML

events if the name does not have a prefix

v NAMESPACE-DECLARATION XML event if the declaration is for the default

namespace, in which case the namespace declaration attribute name is not

prefixed.

v All other XML events

When XML-NNAMESPACE-PREFIX is set, the XML-NAMESPACE-PREFIX special

register has a length of zero. At any given time, only one of the two special

registers XML-NNAMESPACE-PREFIX and XML-NAMESPACE-PREFIX has a

nonzero length.

Use the LENGTH function to determine the number of national character positions

that XML-NNAMESPACE contains; use the LENGTH OF special register to

determine the number of bytes.

XML-NNAMESPACE-PREFIX cannot be used as a receiving item.

XML-NTEXT

The XML-NTEXT special register is defined during XML parsing to contain

document fragments that are represented in usage NATIONAL.

Chapter 3. Character-strings 33

|
|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|
|

|

|
|

|
|
|

|

|
|
|
|

|
|
|

|

XML-NTEXT is an elementary data item of category national of the length of the

contained XML document fragment. The length of XML-NTEXT can vary from 0

through 67,090,431 national character positions. The maximum byte length is

134,180,862.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

The parser sets XML-NTEXT to the document fragment associated with an event

before transferring control to the processing procedure in these cases:

v When the operand of the XML PARSE statement is a data item of category

national or the RETURNING NATIONAL phrase is specified in the XML PARSE

statement

v For the ATTRIBUTE-NATIONAL-CHARACTER event

v For the CONTENT-NATIONAL-CHARACTER event

When XML-NTEXT is set, the XML-TEXT special register has a length of zero. At

any given time, only one of the two special registers XML-NTEXT and XML-TEXT

has a nonzero length.

Use the LENGTH function to determine the number of national characters that

XML-NTEXT contains. Use the LENGTH OF special register to determine the

number of bytes, rather than the number of national characters, that XML-NTEXT

contains.

XML-NTEXT cannot be used as a receiving item.

XML-TEXT

The XML-TEXT special register is defined during XML parsing to contain

document fragments that are represented in usage DISPLAY.

XML-TEXT is an elementary data item of category alphanumeric of the length of

the contained XML document fragment. The length of XML-TEXT can vary from 0

through 134,180,862 bytes.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the

global attribute in the outermost program.

The parser sets XML-TEXT to the document fragment associated with an event

before transferring control to the processing procedure when the operand of the

XML PARSE statement is an alphanumeric data item and the RETURNING

NATIONAL phrase is not specified in the XML PARSE statement, except for the

ATTRIBUTE-NATIONAL-CHARACTER event and the CONTENT-NATIONAL-
CHARACTER event.

When XML-TEXT is set, the XML-NTEXT special register has a length of zero. At

any given time, only one of the two special registers XML-NTEXT and XML-TEXT

has a nonzero length.

34 Enterprise COBOL for z/OS V4.1 Language Reference

|

|
|

|

|
|

Use the LENGTH function or the LENGTH OF special register for XML-TEXT to

determine the number of bytes that XML-TEXT contains.

XML-TEXT cannot be used as a receiving item.

Literals

A literal is a character-string whose value is specified either by the characters of

which it is composed or by the use of a figurative constant. (See “Figurative

constants” on page 13.) For descriptions of the different types of literals, see:

v “Alphanumeric literals”

v “DBCS literals” on page 39

v “National literals” on page 41

v “Numeric literals” on page 38

Alphanumeric literals

Enterprise COBOL provides several formats of alphanumeric literals:

v Format 1: “Basic alphanumeric literals”

v Format 2: “Alphanumeric literals with DBCS characters” on page 36

v Format 3: “Hexadecimal notation for alphanumeric literals” on page 37

v Format 4: “Null-terminated alphanumeric literals” on page 38

Basic alphanumeric literals

Basic alphanumeric literals can contain any character in a single-byte EBCDIC

character set.

The following is the format for a basic alphanumeric literal:

 Format 1: Basic alphanumeric literals

"single-byte-characters"

’single-byte-characters’

The enclosing quotation marks or apostrophes are excluded from the literal when

the program is compiled.

An embedded quotation mark or apostrophe must be represented by a pair of

quotation marks ("") or a pair of apostrophes (’’), respectively, when it is the

character used as the opening delimiter. For example:

"THIS ISN""T WRONG"

’THIS ISN’’T WRONG’

The delimiter character used as the opening delimiter for a literal must be used as

the closing delimiter for that literal. For example:

’THIS IS RIGHT’

"THIS IS RIGHT"

’THIS IS WRONG"

You can use apostrophes or quotation marks as the literal delimiters independent

of the APOST/QUOTE compiler option.

Chapter 3. Character-strings 35

Any punctuation characters included within an alphanumeric literal are part of the

value of the literal.

The maximum length of an alphanumeric literal is 160 bytes. The minimum length

is 1 byte.

Alphanumeric literals are in the alphanumeric data class and category. (Data

classes and categories are described in “Classes and categories of data” on page

164.)

Alphanumeric literals with DBCS characters

When the DBCS compiler option is in effect, the characters X’0E’ and X’0F’ in an

alphanumeric literal will be recognized as shift codes for DBCS characters. That is,

the characters between paired shift codes will be recognized as DBCS characters.

Unlike an alphanumeric literal compiled under the NODBCS option, additional

syntax rules apply to DBCS characters in an alphanumeric literal.

Alphanumeric literals with DBCS characters have the following format:

 Format 2: Alphanumeric literals with DBCS characters

"mixed-SBCS-and-DBCS-characters"

’mixed-SBCS-and-DBCS-characters’

" or ’ The opening and closing delimiter. The closing delimiter must match the

opening delimiter.

mixed-SBCS-and-DBCS-characters

Any mix of single-byte and DBCS characters.

 Shift-out and shift-in control characters are part of the literal and must be

paired. They must contain zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for single-byte characters in the literal follow the rules for

basic alphanumeric literals. The syntax rules for DBCS characters in the

literal follow the rules for DBCS literals.

The move and comparison rules for alphanumeric literals with DBCS characters

are the same as those for any alphanumeric literal.

The length of an alphanumeric literal with DBCS characters is its byte length,

including the shift control characters. The maximum length is limited by the

available space on one line in Area B. An alphanumeric literal with DBCS

characters cannot be continued.

An alphanumeric literal with DBCS characters is of the alphanumeric category.

Alphanumeric literals with DBCS characters cannot be used:

v As a literal in the following:

– ALPHABET clause

– ASSIGN clause

– CALL statement program-ID

– CANCEL statement

– CLASS clause

36 Enterprise COBOL for z/OS V4.1 Language Reference

– CURRENCY SIGN clause

– END PROGRAM marker

– ENTRY statement

– PADDING CHARACTER clause

– PROGRAM-ID paragraph

– RERUN clause

– STOP statement
v As the external class-name for an object-oriented class

v As the basis-name in a BASIS statement

v As the text-name in a COPY statement

v As the library-name in a COPY statement

Enterprise COBOL statements process alphanumeric literals with DBCS characters

without sensitivity to the shift codes and character codes. The use of statements

that operate on a byte-to-byte basis (for example, STRING and UNSTRING) can

result in strings that are not valid mixtures of single-byte EBCDIC and DBCS

characters. See the Enterprise COBOL Programming Guide for more information

about using alphanumeric literals and data items with DBCS characters in

statements that operate on a byte-by-byte basis.

Hexadecimal notation for alphanumeric literals

Hexadecimal notation can be used for alphanumeric literals. Hexadecimal notation

has the following format:

 Format 3: Hexadecimal notation for alphanumeric literals

X"hexadecimal-digits"

X’hexadecimal-digits’

X" or X’

The opening delimiter for the hexadecimal notation of an alphanumeric

literal.

" or ’ The closing delimiter for the hexadecimal notation of an alphanumeric

literal. If a quotation mark is used in the opening delimiter, a quotation

mark must be used as the closing delimiter. Similarly, if an apostrophe is

used in the opening delimiter, an apostrophe must be used as the closing

delimiter.

Hexadecimal digits are characters in the range ’0’ to ’9’, ’a’ to ’f’, and ’A’ to ’F’,

inclusive. Two hexadecimal digits represent one character in a single-byte character

set (EBCDIC or ASCII). Four hexadecimal digits represent one character in a DBCS

character set. A string of EBCDIC DBCS characters represented in hexadecimal

notation must be preceded by the hexadecimal representation of a shift-out control

character (X’0E’) and followed by the hexadecimal representation of a shift-in

control character (X’0F’). An even number of hexadecimal digits must be specified.

The maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any alphanumeric literal. The

opening delimiter (X" or X’) cannot be split across lines.

The DBCS compiler option has no effect on the processing of hexadecimal notation

of alphanumeric literals.

Chapter 3. Character-strings 37

An alphanumeric literal in hexadecimal notation has data class and category

alphanumeric. Hexadecimal notation for alphanumeric literals can be used

anywhere alphanumeric literals can be used.

See also “Hexadecimal notation for national literals” on page 42.

Null-terminated alphanumeric literals

Alphanumeric literals can be null-terminated, with the following format:

 Format 4: Null-terminated alphanumeric literals

Z"mixed-characters"

Z’mixed-characters’

Z" or Z’

The opening delimiter for a null-terminated alphanumeric literal. Both

characters of the opening delimiter (Z" or Z’) must be on the same source

line.

" or ’ The closing delimiter for a null-terminated alphanumeric literal.

 If a quotation mark is used in the opening delimiter, a quotation mark

must be used as the closing delimiter. Similarly, if an apostrophe is used in

the opening delimiter, an apostrophe must be used as the closing delimiter.

mixed-characters

Can be any of the following:

v Solely single-byte characters

v Mixed single-byte and DBCS characters

v Solely DBCS characters

However, you cannot specify the single-byte character with the value X’00’.

X’00’ is the null character automatically appended to the end of the literal.

The content of the literal is otherwise subject to the same rules and

restrictions as an alphanumeric literal with DBCS characters (format 2).

The length of the string of characters in the literal content can be 0 to 159 bytes.

The actual length of the literal includes the terminating null character, and is a

maximum of 160 bytes.

A null-terminated alphanumeric literal has data class and category alphanumeric.

It can be used anywhere an alphanumeric literal can be used except that

null-terminated literals are not supported in ALL literal figurative constants.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns

the number of bytes in the literal prior to but not including the terminating null.

(The LENGTH special register does not support literal operands.)

Numeric literals

A numeric literal is a character-string whose characters are selected from the digits 0

through 9, a sign character (+ or -), and the decimal point. If the literal contains no

decimal point, it is an integer. (In this documentation, the word integer appearing

in a format represents a numeric literal of nonzero value that contains no sign and

no decimal point, except when other rules are included with the description of the

format.) The following rules apply:

38 Enterprise COBOL for z/OS V4.1 Language Reference

v If the ARITH(COMPAT) compiler option is in effect, one through 18 digits are

allowed. If the ARITH(EXTEND) compiler option is in effect, one through 31

digits are allowed.

v Only one sign character is allowed. If included, it must be the leftmost character

of the literal. If the literal is unsigned, it is a positive value.

v Only one decimal point is allowed. If a decimal point is included, it is treated as

an assumed decimal point (that is, as not taking up a character position in the

literal). The decimal point can appear anywhere within the literal except as the

rightmost character.

The value of a numeric literal is the algebraic quantity expressed by the characters

in the literal. The size of a numeric literal is equal to the number of digits specified

by the user.

Numeric literals can be fixed-point or floating-point numbers.

Rules for floating-point literal values

The format and rules for floating-point literals are listed below.

Format

��

+

-

 mantissaE

+

-

 exponent ��

v The sign is optional before the mantissa and the exponent; if you omit the sign,

the compiler assumes a positive number.

v The mantissa can contain between one and 16 digits. A decimal point must be

included in the mantissa.

v The exponent is represented by an E followed by an optional sign and one or

two digits.

v The magnitude of a floating-point literal value must fall between 0.54E-78 and

0.72E+76. For values outside of this range, an E-level diagnostic is produced and

the value is replaced by either 0 or 0.72E+76, respectively.

Numeric literals are in the numeric data class and category. (Data classes and

categories are described under “Classes and categories of data” on page 164.)

DBCS literals

The formats and rules for DBCS literals are listed below.

 Format for DBCS literals

G"<DBCS-characters>"

G’<DBCS-characters>’

N"<DBCS-characters>"

N’<DBCS-characters>’

G", G’, N", or N’

Opening delimiters.

Chapter 3. Character-strings 39

N" and N’ identify a DBCS literal when the NSYMBOL(DBCS) compiler

option is in effect. They identify a national literal when the

NSYMBOL(NATIONAL) compiler option is in effect, and the rules

specified in “National literals” on page 41 apply.

The opening delimiter must be followed immediately by a shift-out control

character.

For literals with opening delimiter N" or N’, when embedded quotes or

apostrophes are specified as part of DBCS characters in a DBCS literal, a

single embedded DBCS quote or apostrophe is represented by two DBCS

quotes or apostrophes. If a single embedded DBCS quote or apostrophe is

found, an E-level compiler message will be issued and a second embedded

DBCS quote or apostrophe will be assumed.

< Represents the shift-out control character (X’0E’)

> Represents the shift-in control character (X’0F’)

" or ’ The closing delimiter. If a quotation mark is used in the opening delimiter,

a quotation mark must be used as the closing delimiter. Similarly, if an

apostrophe is used in the opening delimiter, an apostrophe must be used

as the closing delimiter.

 The closing delimiter must appear immediately after the shift-in control

character.

DBCS-characters

DBCS-characters can be one or more characters in the range of X’00’

through X’FF’ for either byte. Any value will be accepted in the content of

the literal, although whether it is a valid value at run time depends on the

CCSID in effect for the CODEPAGE compiler option.

Maximum length

28 characters

Continuation rules

Cannot be continued across lines

Where DBCS literals can be used

DBCS literals can be used in the following places:

v Data division

– In the VALUE clause of data description entries that define a data item of

class DBCS.

– In the VALUE OF clause of file description entries.
v Procedure division

– In a relation condition when the comparand is a DBCS data item, an

elementary data item of class national, a national group item, or an

alphanumeric group item

– As an argument passed BY CONTENT in a CALL statement

– In the DISPLAY and EVALUATE statements

– In the following statements:

- INITIALIZE; for details, see “INITIALIZE statement” on page 359.

- INSPECT; for details, see “INSPECT statement” on page 362.

- MOVE; for details, see “MOVE statement” on page 386.

- STRING; for details, see “STRING statement” on page 452.

40 Enterprise COBOL for z/OS V4.1 Language Reference

- UNSTRING, for details, see “UNSTRING statement” on page 461.
– In figurative constant ALL

– As an argument to the NATIONAL-OF intrinsic function
v Compiler-directing statements COPY, REPLACE, and TITLE

National literals

Enterprise COBOL provides the following national literal formats:

v “Basic national literals”

v “Hexadecimal notation for national literals” on page 42

Basic national literals

The following are the format and rules for basic national literals.

 Format 1: Basic national literals

N"character-data"

N’character-data’

When the NSYMBOL(NATIONAL) compiler option is in effect, the opening

delimiter N" or N’ identifies a national literal. A national literal is of the class and

category national.

When the NSYMBOL(DBCS) compiler option is in effect, the opening delimiter N"

or N’ identifies a DBCS literal, and the rules specified in “DBCS literals” on page

39 apply.

N" or N’

Opening delimiters. The opening delimiter must be coded as single-byte

characters. It cannot be split across lines.

" or ’ The closing delimiter. The closing delimiter must be coded as a single-byte

character. If a quotation mark is used in the opening delimiter, it must be

used as the closing delimiter. Similarly, if an apostrophe is used in the

opening delimiter, it must be used as the closing delimiter.

 To include the quotation mark or apostrophe used in the opening delimiter

in the content of the literal, specify a pair of quotation marks or

apostrophes, respectively. Examples:

N’This literal’’s content includes an apostrophe’

N’This literal includes ", which is not used in the opening delimiter’

N"This literal includes "", which is used in the opening delimiter"

character-data

The source text representation of the content of the national literal.

character-data can include any combination of EBCDIC single-byte

characters and double-byte characters encoded in the Coded Character Set

ID (CCSID) specified by the CODEPAGE compiler option.

 DBCS characters in the content of the literal must be delimited by shift-out

and shift-in control characters.

Maximum length

The maximum length of a national literal is 80 character positions,

excluding the opening and closing delimiters. If the source content of the

literal contains one or more DBCS characters, the maximum length is

limited by the available space in Area B of a single source line.

Chapter 3. Character-strings 41

The literal must contain at least one character. Each single-byte character in

the literal counts as one character position and each DBCS character in the

literal counts as one character position. Shift-in and shift-out delimiters for

DBCS characters are not counted.

Continuation rules

When the content of the literal includes DBCS characters, the literal cannot

be continued. When the content of the literal does not include DBCS

characters, normal continuation rules apply.

The source text representation of character-data is automatically converted to

UTF-16 for use at run time (for example, when the literal is moved to or compared

with a data item of category national).

Hexadecimal notation for national literals

The following are the format and rules for the hexadecimal notation format of

national literals.

 Format 2: Hexadecimal notation for national literals

NX"hexadecimal-digits"

NX’hexadecimal-digits’

The hexadecimal notation format of national literals is not affected by the

NSYMBOL compiler option.

NX" or NX’

Opening delimiters. The opening delimiter must be represented in

single-byte characters. It must not be split across lines.

" or ’ The closing delimiter. The closing delimiter must be represented as a

single-byte character.

 If a quotation mark is used in the opening delimiter, a quotation mark

must be used as the closing delimiter. Similarly, if an apostrophe is used in

the opening delimiter, an apostrophe must be used as the closing delimiter.

hexadecimal-digits

Hexadecimal digits in the range ’0’ to ’9’, ’a’ - f’, and ’A’ to ’F’, inclusive.

Each group of four hexadecimal digits represents a single national

character and must represent a valid code point in UTF-16. The number of

hexadecimal digits must be a multiple of four.

Maximum length

The length of a national literal in hexadecimal notation must be from four

to 320 hexadecimal digits, excluding the opening and closing delimiters.

The length must be a multiple of four.

Continuation rules

Normal continuation rules apply.

The content of a national literal in hexadecimal notation is stored as national

characters. The resulting content has the same meaning as a basic national literal

that specifies the same national characters.

A national literal in hexadecimal notation has data class and category national and

can be used anywhere that a basic national literal can be used.

42 Enterprise COBOL for z/OS V4.1 Language Reference

Where national literals can be used

National literals can be used:

v In a VALUE clause associated with a data item of class national or a VALUE

clause associated with a condition-name for a conditional variable that is defined

with usage NATIONAL

v In figurative constant ALL

v In a relation condition

v In the WHEN phrase of a format-2 SEARCH statement (binary search)

v In the ALL, LEADING, or FIRST phrase of an INSPECT statement

v In the BEFORE or AFTER phrase of an INSPECT statement

v In the DELIMITED BY phrase of a STRING statement

v In the DELIMITED BY phrase of an UNSTRING statement

v As the method-name in a METHOD-ID paragraph, an END METHOD marker,

and an INVOKE statement

v As an argument passed BY CONTENT in the CALL statement

v As an argument passed BY VALUE in an INVOKE or CALL statement

v In the DISPLAY and EVALUATE statements

v As a sending item in the following procedural statements:

– INITIALIZE

– INSPECT

– MOVE

– STRING

– UNSTRING
v In the argument list to the following intrinsic functions:

DISPLAY-OF, LENGTH, LOWER-CASE, MAX, MIN, ORD-MAX, ORD-MIN,

REVERSE, and UPPER-CASE

v In the compiler-directing statements COPY, REPLACE, and TITLE

A national literal can be used only as specified in the detailed rules in this

document.

PICTURE character-strings

A PICTURE character-string is composed of the currency symbol and certain

combinations of characters in the COBOL character set. PICTURE character-strings

are delimited only by the separator space, separator comma, separator semicolon,

or separator period.

A chart of PICTURE clause symbols appears in Table 12 on page 206.

Comments

A comment is a character-string that can contain any combination of characters from

the character set of the computer. It has no effect on the execution of the program.

There are two forms of comments:

Comment entry (identification division)

This form is described under “Optional paragraphs” on page 109.

Chapter 3. Character-strings 43

Comment line (any division)

This form is described under “Comment lines” on page 56.

Character-strings that form comments can contain DBCS characters or a

combination of DBCS and single-byte EBCDIC characters.

Multiple comment lines that contain DBCS strings are allowed. The embedding of

DBCS characters in a comment line must be done on a line-by-line basis. Words

containing those characters cannot be continued to a following line. No syntax

checking for valid strings is provided in comment lines.

44 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 4. Separators

A separator is a character or a string of two or more contiguous characters that

delimits character-strings. The separators are shown in the following table.

 Table 4. Separators

Separator Meaning

b1 Space

,b1 Comma

.b1 Period

;b1 Semicolon

(Left parenthesis

) Right parenthesis

: Colon

"b1 Quotation mark

’b1 Apostrophe

X" Opening delimiter for a hexadecimal format alphanumeric literal

X’ Opening delimiter for a hexadecimal format alphanumeric literal

Z" Opening delimiter for a null-terminated alphanumeric literal

Z’ Opening delimiter for a null-terminated alphanumeric literal

N" Opening delimiter for a national literal2

N’ Opening delimiter for a national literal2

NX" Opening delimiter for a hexadecimal format national literal

NX’ Opening delimiter for a hexadecimal format national literal

G" Opening delimiter for a DBCS literal

G’ Opening delimiter for a DBCS literal

== Pseudo-text delimiter

1. b represents a blank.

2. N" and N’ are the opening delimiter for a DBCS literal when the NSYMBOL(DBCS)

compiler option is in effect.

Rules for separators

In the following description, {} (curly braces) enclose each separator, and b

represents a space. Anywhere a space is used as a separator or as part of a

separator, more than one space can be used.

Space {b}

A space can immediately precede or follow any separator except:

v The opening pseudo-text delimiter, where the preceding space is

required.

v Within quotation marks. Spaces between quotation marks are considered

part of the alphanumeric literal; they are not considered separators.

© Copyright IBM Corp. 1991, 2007 45

Period {.b}, Comma {,b}, Semicolon {;b}

A separator comma is composed of a comma followed by a space. A

separator period is composed of a period followed by a space. A separator

semicolon is composed of a semicolon followed by a space.

 The separator period must be used only to indicate the end of a sentence,

or as shown in formats. The separator comma and separator semicolon can

be used anywhere the separator space is used.

v In the identification division, each paragraph must end with a separator

period.

v In the environment division, the SOURCE-COMPUTER,

OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL

paragraphs must each end with a separator period. In the

FILE-CONTROL paragraph, each file-control entry must end with a

separator period.

v In the data division, file (FD), sort/merge file (SD), and data description

entries must each end with a separator period.

v In the procedure division, separator commas or separator semicolons can

separate statements within a sentence and operands within a statement.

Each sentence and each procedure must end with a separator period.

Parentheses { (} ... {) }

Except in pseudo-text, parentheses can appear only in balanced pairs of left

and right parentheses. They delimit subscripts, a list of function

arguments, reference-modifiers, arithmetic expressions, or conditions.

Colon { : }

The colon is a separator and is required when shown in general formats.

Quotation marks {"} ... {"}

An opening quotation mark must be immediately preceded by a space or a

left parenthesis. A closing quotation mark must be immediately followed

by a separator space, comma, semicolon, period, right parenthesis, or

pseudo-text delimiter. Quotation marks must appear as balanced pairs.

They delimit alphanumeric literals, except when the literal is continued

(see “Continuation lines” on page 54).

Apostrophes {’} ... {’}

An opening apostrophe must be immediately preceded by a space or a left

parenthesis. A closing apostrophe must be immediately followed by a

separator space, comma, semicolon, period, right parenthesis, or

pseudo-text delimiter. Apostrophes must appear as balanced pairs. They

delimit alphanumeric literals, except when the literal is continued (see

“Continuation lines” on page 54).

Null-terminated literal delimiters {Z"} ... {"}, {Z’} ... {’}

The opening delimiter must be immediately preceded by a space or a left

parenthesis. The closing delimiter must be immediately followed by a

separator space, comma, semicolon, period, right parenthesis, or

pseudo-text delimiter.

DBCS literal delimiters {G"} ... {"}, {G’} ... {’}, {N"} ... {"}, {N’} ... {’}

The opening delimiter must be immediately preceded by a space or a left

parenthesis. The closing delimiter must be immediately followed by a

separator space, comma, semicolon, period, right parenthesis, or

pseudo-text delimiter. N" and N’ are DBCS literal delimiters when the

NSYMBOL(DBCS) compiler option is in effect.

46 Enterprise COBOL for z/OS V4.1 Language Reference

National literal delimiters {N"} ... {"}, {N’} ... {’}, {NX"} ... {"}, {NX’} ... {’}

The opening delimiter must be immediately preceded by a space or a left

parenthesis. The closing delimiter must be immediately followed by a

separator space, comma, semicolon, period, right parenthesis, or

pseudo-text delimiter. N" and N’ are DBCS literal delimiters when the

NSYMBOL(DBCS) compiler option is in effect.

Pseudo-text delimiters {b==} ... {==b}

An opening pseudo-text delimiter must be immediately preceded by a

space. A closing pseudo-text delimiter must be immediately followed by a

separator space, comma, semicolon, or period. Pseudo-text delimiters must

appear as balanced pairs. They delimit pseudo-text. (See “COPY statement”

on page 546.)

Any punctuation character included in a PICTURE character-string, a comment

character-string, or an alphanumeric literal is not considered a punctuation

character, but is part of the character-string or literal.

Chapter 4. Separators 47

48 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 5. Sections and paragraphs

Sections and paragraphs define a program. Sections and paragraphs are

subdivided into sentences, statements, and entries (see “Sentences, statements, and

entries”). Sentences are subdivided into statements (see “Statements” on page 50),

and statements are subdivided into phrases (see “Phrases” on page 50). Entries are

subdivided into clauses (see “Clauses” on page 50) and phrases.

For more information about sections, paragraphs, and statements, see “Procedures”

on page 260.

Sentences, statements, and entries

Unless the associated rules explicitly state otherwise, each required clause or

statement must be written in the sequence shown in its format. If optional clauses

or statements are used, they must be written in the sequence shown in their

formats. These rules are true even for clauses and statements treated as comments.

The syntactical hierarchy follows this form:

v Identification division

– Paragraphs

- Entries

v Clauses
v Environment division

– Sections

- Paragraphs

v Entries

– Clauses

- Phrases
v Data division

– Sections

- Entries

v Clauses

– Phrases
v Procedure division

– Sections

- Paragraphs

v Sentences

– Statements

- Phrases

Entries

An entry is a series of clauses that ends with a separator period. Entries are

constructed in the identification, environment, and data divisions.

© Copyright IBM Corp. 1991, 2007 49

Clauses

A clause is an ordered set of consecutive COBOL character-strings that specifies an

attribute of an entry. Clauses are constructed in the identification, environment,

and data divisions.

Sentences

A sentence is a sequence of one or more statements that ends with a separator

period. Sentences are constructed in the procedure division.

Statements

A statement specifies an action to be taken by the program. Statements are

constructed in the procedure division. For descriptions of the different types of

statements, see:

v “Imperative statements” on page 290

v “Conditional statements” on page 292

v Chapter 7, “Scope of names,” on page 59

v Chapter 23, “Compiler-directing statements,” on page 543

Phrases

Each clause or statement in a program can be subdivided into smaller units called

phrases.

50 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 6. Reference format

COBOL source text must be written in COBOL reference format. Reference format

consists of the following areas in a 72-character line:

Sequence number area

Columns 1 through 6

Indicator area

Column 7

Area A

Columns 8 through 11

Area B

Columns 12 through 72

The figure below illustrates reference format for a COBOL source line.

Sequence number area

The sequence number area can be used to label a source statement line. The

content of this area can consist of any character in the character set of the

computer.

Indicator area

Use the indicator area to specify:

v The continuation of words or alphanumeric literals from the previous line onto

the current line

v The treatment of text as documentation

v Debugging lines

See “Continuation lines” on page 54, “Comment lines” on page 56, and

“Debugging lines” on page 57.

The indicator area can be used for source listing formatting. A slash (/) placed in

the indicator column causes the compiler to start a new page for the source listing,

and the corresponding source record to be treated as a comment. The effect can be

dependent on the LINECOUNT compiler option. For information about the

LINECOUNT compiler option, see the Enterprise COBOL Programming Guide.

© Copyright IBM Corp. 1991, 2007 51

Area A

The following items must begin in Area A:

v Division headers

v Section headers

v Paragraph headers or paragraph names

v Level indicators or level-numbers (01 and 77)

v DECLARATIVES and END DECLARATIVES

v End program, end class, and end method markers

Division headers

A division header is a combination of words, followed by a separator period, that

indicates the beginning of a division:

v IDENTIFICATION DIVISION.

v ENVIRONMENT DIVISION.

v DATA DIVISION.

v PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a procedure

division header) must be immediately followed by a separator period. Except for

the USING phrase, no text can appear on the same line.

Section headers

In the environment and procedure divisions, a section header indicates the

beginning of a series of paragraphs. For example:

INPUT-OUTPUT SECTION.

In the data division, a section header indicates the beginning of an entry; for

example:

FILE SECTION.

LINKAGE SECTION.

LOCAL-STORAGE SECTION.

WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph headers or paragraph names

A paragraph header or paragraph name indicates the beginning of a paragraph.

In the environment division, a paragraph consists of a paragraph header followed

by one or more entries. For example:

OBJECT-COMPUTER. computer-name.

In the procedure division, a paragraph consists of a paragraph-name followed by

one or more sentences.

52 Enterprise COBOL for z/OS V4.1 Language Reference

Level indicators (FD and SD) or level-numbers (01 and 77)

A level indicator can be either FD or SD. It must begin in Area A and be followed

by a space. (See “File section” on page 176.) A level-number that must begin in

Area A is a one- or two-digit integer with a value of 01 or 77. It must be followed

by a space or separator period.

DECLARATIVES and END DECLARATIVES

DECLARATIVES and END DECLARATIVES are keywords that begin and end the

declaratives part of the source unit.

In the procedure division, each of the keywords DECLARATIVES and END

DECLARATIVES must begin in Area A and be followed immediately by a

separator period; no other text can appear on the same line. After the keywords

END DECLARATIVES, no text can appear before the following section header. (See

“Declaratives” on page 259.)

End program, end class, and end method markers

The end markers are a combination of words followed by a separator period that

indicates the end of a COBOL program, method, class, factory, or object definition.

For example:

END PROGRAM program-name.

END CLASS class-name.

END METHOD "method-name".

END OBJECT.

END FACTORY.

For programs

program-name must be identical to the program-name of the corresponding

PROGRAM-ID paragraph. Every COBOL program, except an outermost

program that contains no nested programs and is not followed by another

batch program, must end with an END PROGRAM marker.

For classes

class-name must be identical to the class-name in the corresponding

CLASS-ID paragraph.

For methods

method-name must be identical to the method-name in the corresponding

METHOD-ID paragraph.

For object paragraphs

There is no name in an object paragraph header or in its end marker. The

syntax is simply END OBJECT.

For factory paragraphs

There is no name in a factory paragraph header or in its end marker. The

syntax is simply END FACTORY.

Area B

The following items must begin in Area B:

v Entries, sentences, statements, and clauses

v Continuation lines

Chapter 6. Reference format 53

Entries, sentences, statements, clauses

The first entry, sentence, statement, or clause begins on either the same line as the

header or paragraph-name that it follows, or in Area B of the next nonblank line

that is not a comment line. Successive sentences or entries either begin in Area B of

the same line as the preceding sentence or entry, or in Area B of the next nonblank

line that is not a comment line.

Within an entry or sentence, successive lines in Area B can have the same format

or can be indented to clarify program logic. The output listing is indented only if

the input statements are indented. Indentation does not affect the meaning of the

program. The programmer can choose the amount of indentation, subject only to

the restrictions on the width of Area B. See also Chapter 5, “Sections and

paragraphs,” on page 49.

Continuation lines

Any sentence, entry, clause, or phrase that requires more than one line can be

continued in Area B of the next line that is neither a comment line nor a blank line.

The line being continued is a continued line; the succeeding lines are continuation

lines. Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character

of the preceding line is assumed to be followed by a space.

The following cannot be continued:

v DBCS user-defined words

v DBCS literals

v Alphanumeric literals containing DBCS characters

v National literals containing DBCS characters

However, alphanumeric literals and national literals in hexadecimal notation can be

continued regardless of the kind of characters expressed in hexadecimal notation.

All characters that make up an opening literal delimiter must be on the same line.

For example, Z", G", N", NX", or X".

Both characters that make up the pseudo-text delimiter separator ″==″ must be on

the same line.

If there is a hyphen in the indicator area of a line, the first nonblank character of

the continuation line immediately follows the last nonblank character of the

continued line without an intervening space.

Continuation of alphanumeric and national literals

Alphanumeric and national literals can be continued only when there are no DBCS

characters in the content of the literal.

The following rules apply to alphanumeric and national literals that do not contain

DBCS characters:

v If the continued line contains an alphanumeric or national literal without a

closing quotation mark, all spaces at the end of the continued line (through

column 72) are considered to be part of the literal. The continuation line must

54 Enterprise COBOL for z/OS V4.1 Language Reference

contain a hyphen in the indicator area, and the first nonblank character must be

a quotation mark. The continuation of the literal begins with the character

immediately following the quotation mark.

v If an alphanumeric or national literal that is to be continued on the next line has

as its last character a quotation mark in column 72, the continuation line must

start with two consecutive quotation marks. This will result in a single quotation

mark as part of the value of the literal.

If the last character on the continued line of an alphanumeric or national literal

is a single quotation mark in Area B, the continuation line can start with a single

quotation mark. This will result in two consecutive literals instead of one

continued literal.

The rules are the same when an apostrophe is used instead of a quotation mark in

delimiters.

If you want to continue a literal such that the continued lines and the continuation

lines are part of one literal:

v Code a hyphen in the indicator area of each continuation line.

v Code the literal value using all columns of each continued line, up to and

including column 72. (Do not terminate the continued lines with a single

quotation mark followed by a space.)

v Code a quotation mark before the first character of the literal on each

continuation line.

v Terminate the last continuation line with a single quotation mark followed by a

space.

In the following examples, the number and size of literals created are indicated

below the example:

|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..

000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK

 - "LLLLLLLLLLMMMMMMMMMM"

v Literal 000001 is interpreted as one alphanumeric literal that is 120 bytes long.

Each character between the starting quotation mark and up to and including

column 72 of continued lines is counted as part of the literal.
|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..

000003 N"AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

 - "GGGGGGGGGG"

v Literal 000003 is interpreted as one national literal that is 60 national character

positions in length (120 bytes). Each character between the starting quotation

mark and the ending quotation mark on the continued line is counted as part of

the literal. Although single-byte characters are entered, the value of the literals is

stored as national characters.
|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..

000005 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK

 - "LLLLLLLLLLMMMMMMMMMM"

v Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at

the end of each continued line are counted as part of the literal because the

continued lines do not end with a quotation mark.
|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..

000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"

 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK"

 - "LLLLLLLLLLMMMMMMMMMM"

Chapter 6. Reference format 55

v Literal 000010 is interpreted as three separate literals that have lengths of 50, 50,

and 20, respectively. The quotation mark with the following space terminates the

continued line. Only the characters within the quotation marks are counted as

part of the literals. Literal 000010 is not valid as a VALUE clause literal for

non-level-88 data items.

To code a continued literal where the length of each continued part of the literal is

less than the length of Area B, adjust the starting column such that the last

character of the continued part is in column 72.

Area A or Area B

The following items can begin in either Area A or Area B:

v Level-numbers

v Comment lines

v Compiler-directing statements

v Debugging lines

v Pseudo-text

Level-numbers

A level-number that can begin in Area A or B is a one- or two-digit integer with a

value of 02 through 49, 66, or 88. A level-number that must begin in Area A is a

one- or two-digit integer with a value of 01 or 77. A level-number must be

followed by a space or a separator period. For more information, see

“Level-numbers” on page 188.

Comment lines

A comment line is any line with an asterisk (*) or slash (/) in the indicator area

(column 7) of the line. The comment can be written anywhere in Area A and Area

B of that line, and can consist of any combination of characters from the character

set of the computer.

Comment lines can be placed anywhere in a program, method, or class definition.

Comment lines placed before the identification division header must follow any

control cards (for example, PROCESS or CBL).

Important: Comments intermixed with control cards could nullify some of the

control cards and cause them to be diagnosed as errors.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or

a slash (/) in the indicator area.

An asterisk (*) comment line is printed on the next available line in the output

listing. The effect can be dependent on the LINECOUNT compiler option. For

information about the LINECOUNT compiler option, see the Enterprise COBOL

Programming Guide. A slash (/) comment line is printed on the first line of the next

page, and the current page of the output listing is ejected.

The compiler treats a comment line as documentation, and does not check it

syntactically.

56 Enterprise COBOL for z/OS V4.1 Language Reference

Compiler-directing statements

Most compiler-directing statements, including COPY and REPLACE, can start in

either Area A or Area B.

BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE, EJECT, INSERT, SKIP1,

SKIP2, SKIP3, and TITLE statements can also start in Area A or Area B.

Debugging lines

A debugging line is any line with a D (or d) in the indicator area of the line.

Debugging lines can be written in the environment division (after the

OBJECT-COMPUTER paragraph), the data division, and the procedure division. If

a debugging line contains only spaces in Area A and Area B, it is considered a

blank line.

See ″WITH DEBUGGING MODE″ in “SOURCE-COMPUTER paragraph” on page

114.

Pseudo-text

The character-strings and separators that comprise pseudo-text can start in either

Area A or Area B. If, however, there is a hyphen in the indicator area (column 7) of

a line that follows the opening pseudo-text delimiter, Area A of the line must be

blank, and the rules for continuation lines apply to the formation of text words.

See “Continuation lines” on page 54 for details.

Blank lines

A blank line contains nothing but spaces in column 7 through column 72. A blank

line can appear anywhere in a program.

Chapter 6. Reference format 57

58 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 7. Scope of names

A user-defined word names a data resource or a COBOL programming element.

Examples of named data resources are a file, a data item, or a record. Examples of

named programming elements are a program, a paragraph, a method, or a class

definition. The sections below define the types of names in COBOL and explain

where the names can be referenced:

v “Types of names”

v “External and internal resources” on page 61

v “Resolution of names” on page 62

Types of names

In addition to identifying a resource, a name can have global or local attributes.

Some names are always global, some names are always local, and some names are

either local or global depending on specifications in the program in which the

names are declared.

For programs

A global name can be used to refer to the resource with which it is

associated both:

v From within the program in which the global name is declared

v From within any other program that is contained in the program that

declares the global name

Use the GLOBAL clause in the data description entry to indicate that a

name is global. For more information about using the GLOBAL clause, see

“GLOBAL clause” on page 177.

A local name can be used only to refer to the resource with which it is

associated from within the program in which the local name is declared.

By default, if a data-name, a file-name, a record-name, or a condition-name

declaration in a data description entry does not include the GLOBAL

clause, the name is local.

For methods

All names declared in methods are implicitly local.

For classes

Names declared in a class definition are global to all the methods

contained in that class definition.

For object paragraphs

Names declared in the data division of an object paragraph are global to

the methods contained in that object paragraph.

For factory paragraphs

Names declared in the data division of a factory paragraph are global to

the methods contained in that factory paragraph.

Restriction: Specific rules sometimes prohibit specifying the GLOBAL clause for

certain data description, file description, or record description entries.

© Copyright IBM Corp. 1991, 2007 59

The following list indicates the names that you can use and whether the name can

be local or global:

data-name

data-name assigns a name to a data item.

 A data-name is global if the GLOBAL clause is specified either in the data

description entry that declares the data-name or in another entry to which

that data description entry is subordinate.

file-name

file-name assigns a name to a file connector.

 A file-name is global if the GLOBAL clause is specified in the file

description entry for that file-name.

record-name

record-name assigns a name to a record.

 A record-name is global if the GLOBAL clause is specified in the record

description that declares the record-name, or in the case of record

description entries in the file section, if the GLOBAL clause is specified in

the file description entry for the file name associated with the record

description entry.

condition-name

condition-name associates a value with a conditional variable.

 A condition-name that is declared in a data description entry is global if

that entry is subordinate to another entry that specifies the GLOBAL

clause.

A condition-name that is declared within the configuration section is

always global.

program-name

program-name assigns a name to an external or internal (nested) program.

For more information, see “Conventions for program-names” on page 90.

 A program-name is neither local nor global. For more information, see

“Conventions for program-names” on page 90.

method-name

method-name assigns a name to a method. method-name must be specified as

the content of an alphanumeric literal or a national literal.

section-name

section-name assigns a name to a section in the procedure division.

 A section-name is always local.

paragraph-name

paragraph-name assigns a name to a paragraph in the procedure division.

 A paragraph-name is always local.

basis-name

basis-name specifies the name of source text that is be included by the

compiler into the source unit. For details, see “BASIS statement” on page

543.

library-name

library-name specifies the COBOL library that the compiler uses for

including COPY text. For details, see “COPY statement” on page 546.

60 Enterprise COBOL for z/OS V4.1 Language Reference

text-name

text-name specifies the name of COPY text to be included by the compiler

into the source unit. For details, see “COPY statement” on page 546.

alphabet-name

alphabet-name assigns a name to a specific character set or collating

sequence, or both, in the SPECIAL-NAMES paragraph of the environment

division.

 An alphabet-name is always global.

class-name (of data)

class-name assigns a name to the proposition in the SPECIAL-NAMES

paragraph of the environment division for which a truth value can be

defined.

 A class-name is always global.

class-name (object-oriented)

class-name assigns a name to an object-oriented class or subclass.

mnemonic-name

mnemonic-name assigns a user-defined word to an implementer-name.

 A mnemonic-name is always global.

symbolic-character

symbolic-character specifies a user-defined figurative constant.

 A symbolic-character is always global.

index-name

index-name assigns a name to an index associated with a specific table.

 If a data item that possesses the global attribute includes a table accessed

with an index, that index also possesses the global attribute. In addition,

the scope of that index-name is identical to the scope of the data-name that

includes the table.

External and internal resources

The storage associated with a data item or a file connector can be external or

internal to the program or method in which the resource is declared.

A data item or file connector is external if the storage associated with that resource

is associated with the run unit rather than with any particular program or method

within the run unit. An external resource can be referenced by any program or

method in the run unit that describes the resource. References to an external

resource from different programs or methods using separate descriptions of the

resource are always to the same resource. In a run unit, there is only one

representation of an external resource.

A resource is internal if the storage associated with that resource is associated only

with the program or method that describes the resource.

External and internal resources can have either global or local names.

A data record described in the working-storage section is given the external

attribute by the presence of the EXTERNAL clause in its data description entry.

Any data item described by a data description entry subordinate to an entry that

describes an external record also attains the external attribute. If a record or data

Chapter 7. Scope of names 61

item does not have the external attribute, it is part of the internal data of the

program or method in which it is described.

Two programs or methods in a run unit can reference the same file connector in

the following circumstances:

v An external file connector can be referenced from any program or method that

describes that file connector.

v If a program is contained within another program, both programs can refer to a

global file connector by referring to an associated global file-name either in the

containing program or in any program that directly or indirectly contains the

containing program.

Two programs or methods in a run unit can reference common data in the

following circumstances:

v The data content of an external data record can be referenced from any program

or method provided that program or method has described that data record.

v If a program is contained within another program, both programs can refer to

data that possesses the global attribute either in the program or in any program

that directly or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not

contain the EXTERNAL clause or to a sort-merge file description entry, as well as

any data items described subordinate to the data description entries for such

records, are always internal to the program or method that describes the file-name.

If the EXTERNAL clause is included in the file description entry, the data records

and the data items attain the external attribute.

Resolution of names

The rules for resolution of names depend on whether the names are specified in a

program or in a class definition.

Names within programs

When a program, program B, is directly contained within another program,

program A, both programs can define a condition-name, a data-name, a file-name,

or a record-name using the same user-defined word. When such a duplicated name

is referenced in program B, the following steps determine the referenced resource

(these rules also apply to classes and contained methods):

1. The referenced resource is identified from the set of all names that are defined

in program B and all global names defined in program A and in any programs

that directly or indirectly contain program A. The normal rules for qualification

and any other rules for uniqueness of reference are applied to this set of names

until one or more resources is identified.

2. If only one resource is identified, it is the referenced resource.

3. If more than one resource is identified, no more than one resource can have a

name local to program B. If zero or one of the resources has a name local to

program B, the following rules apply:

v If the name is declared in program B, the resource in program B is the

referenced resource.

v If the name is not declared in program B, the referenced resource is:

– The resource in program A if the name is declared in program A

62 Enterprise COBOL for z/OS V4.1 Language Reference

– The resource in the containing program if the name is declared in the

program that contains program A

This rule is applied to further containing programs until a valid resource is

found.

Names within a class definition

Within a class definition, resources can be defined within the following units:

v The factory data division

v The object data division

v A method data division

If a resource is defined with a given name in the data division of an object

definition, and there is no resource defined with the same name in an instance

method of that object definition, a reference to that name from an instance method

is a reference to the resource in the object data division.

If a resource is defined with a given name in the data division of a factory

definition, and there is no resource defined with the same name in a factory

method of that factory definition, a reference to that name from a factory method

is a reference to the resource in the factory data division.

If a resource is defined within a method, any reference within the method to that

resource name is always a reference to the resource in the method.

The normal rules for qualification and uniqueness of reference apply when the

same name is associated with more than one resource within a given method data

division, object data division, or factory data division.

Chapter 7. Scope of names 63

64 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 8. Referencing data names, copy libraries, and

procedure division names

References can be made to external and internal resources. References to data and

procedures can be either explicit or implicit. The following sections:

v “Uniqueness of reference”

v “Data attribute specification” on page 78

contain the rules for qualification and for explicit and implicit data references.

Uniqueness of reference

Every user-defined name in a COBOL program is assigned by the user to name a

resource for solving a data processing problem. To use a resource, a statement in a

COBOL program must contain a reference that uniquely identifies that resource.

To ensure uniqueness of reference, a user-defined name can be qualified. A

subscript is required for unique reference to a table element, except as specified in

“Subscripting” on page 71. A data-name or function-name, any subscripts, and the

specified reference-modifier uniquely reference a data item defined by reference

modification.

When the same name has been assigned in separate programs to two or more

occurrences of a resource of a given type, and when qualification by itself does not

allow the references in one of those programs to differentiate between the

identically named resources, then certain conventions that limit the scope of names

apply. The conventions ensure that the resource identified is that described in the

program containing the reference. For more information about resolving

program-names, see “Resolution of names” on page 62.

Unless otherwise specified by the rules for a statement, any subscripts and

reference modification are evaluated only once as the first step in executing that

statement.

Qualification

A name that exists within a hierarchy of names can be made unique by specifying

one or more higher-level names in the hierarchy. The higher-level names are called

qualifiers, and the process by which such names are made unique is called

qualification.

Qualification is specified by placing one or more phrases after a user-specified

name, with each phrase made up of the word IN or OF followed by a qualifier. (IN

and OF are logically equivalent.)

In any hierarchy, the data-name associated with the highest level must be unique if

it is referenced, and cannot be qualified.

© Copyright IBM Corp. 1991, 2007 65

You must specify enough qualification to make the name unique; however, it is not

always necessary to specify all the levels of the hierarchy. For example, if there is

more than one file whose records contain the field EMPLOYEE-NO, but only one of the

files has a record named MASTER-RECORD:

v EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO.

v EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary.

Qualification rules

The rules for qualifying a name are:

v A name can be qualified even though it does not need qualification except in a

REDEFINES clause, in which case it must not be qualified.

v Each qualifier must be of a higher level than the name it qualifies and must be

within the same hierarchy.

v If there is more than one combination of qualifiers that ensures uniqueness, any

of those combinations can be used.

Identical names

When programs are directly or indirectly contained within other programs, each

program can use identical user-defined words to name resources. A program

references the resources that that program describes rather than the same-named

resources described in another program, even if the names are different types of

user-defined words.

These same rules apply to classes and their contained methods.

References to COPY libraries

Format

�� text-name-1

IN

library-name-1

OF

 ��

If library-name-1 is not specified, SYSLIB is assumed as the library name.

For rules on referencing COPY libraries, see “COPY statement” on page 546.

References to procedure division names

66 Enterprise COBOL for z/OS V4.1 Language Reference

Format 1

�� paragraph-name-1

IN

section-name-1

OF

 ��

Format 2

�� section-name-1 ��

Procedure division names that are explicitly referenced in a program must be

unique within a section. A section-name is the highest and only qualifier available

for a paragraph-name and must be unique if referenced. (Section-names are

described under “Procedures” on page 260.)

If explicitly referenced, a paragraph-name must not be duplicated within a section.

When a paragraph-name is qualified by a section-name, the word SECTION must

not appear. A paragraph-name need not be qualified when referred to within the

section in which it appears. A paragraph-name or section-name that appears in a

program cannot be referenced from any other program.

References to data division names

This section discusses the following types of references:

v “Simple data reference”

v “Identifiers” on page 68

Simple data reference

The most basic method of referencing data items in a COBOL program is simple

data reference, which is data-name-1 without qualification, subscripting, or reference

modification. Simple data reference is used to reference a single elementary or

group item.

Format

�� data-name-1 ��

data-name-1

Can be any data description entry.

 data-name-1 must be unique in a program.

Chapter 8. Referencing data names, copy libraries, and procedure division names 67

Identifiers

When used in a syntax diagram in this information, the term identifier refers to a

valid combination of a data-name or function-identifier with its qualifiers,

subscripts, and reference-modifiers as required for uniqueness of reference. Rules

for identifiers associated with a format can however specifically prohibit

qualification, subscripting, or reference modification.

The term data-name refers to a name that must not be qualified, subscripted, or

reference modified unless specifically permitted by the rules for the format.

v For a description of qualification, see “Qualification” on page 65.

v For a description of subscripting, see “Subscripting” on page 71.

v For a description of reference modification, see “Reference modification” on

page 74.

Format 1

��

data-name-1

�

IN

data-name-2

OF

IN

file-name-1

OF

�

�

�

(

subscript

)

 �

�
(

leftmost-character-position

:

)

length

 ��

data-name-1, data-name-2

Can be a record-name.

file-name-1

Must be identified by an FD or SD entry in the data division.

 file-name-1 must be unique within this program.

68 Enterprise COBOL for z/OS V4.1 Language Reference

Format 2

��

condition-name-1

data-name-1

�

IN

data-name-2

OF

�

�
IN

file-name-1

OF

 ��

Format 3

�� LINAGE-COUNTER

IN

file-name-2

OF

 ��

data-name-1, data-name-2

Can be a record-name.

condition-name-1

Can be referenced by statements and entries either in the program that

contains the configuration section or in a program contained within that

program.

file-name-1

Must be identified by an FD or SD entry in the data division.

 Must be unique within this program.

LINAGE-COUNTER

Must be qualified each time it is referenced if more than one file

description entry that contains a LINAGE clause has been specified in the

source unit.

file-name-2

Must be identified by the FD or SD entry in the data division. file-name-2

must be unique within this program.

Duplication of data-names must not occur in those places where the data-names

cannot be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose

level-number is 01 that includes the EXTERNAL clause must not be the same

data-name specified for any other data description entry that includes the

EXTERNAL clause.

In the same data division, the data description entries for any two data items for

which the same data-name is specified must not include the GLOBAL clause.

Chapter 8. Referencing data names, copy libraries, and procedure division names 69

Data division names that are explicitly referenced must either be uniquely defined

or made unique through qualification. Unreferenced data items need not be

uniquely defined. The highest level in a data hierarchy (a data item associated with

a level indicator (FD or SD in the file section) or with level-number 01) must be

uniquely named if referenced. Data items associated with level-numbers 02

through 49 are successively lower levels of the hierarchy.

Condition-name

Format 1: condition-name in data division

��

condition-name-1

�

IN

data-name-1

OF

IN

file-name-1

OF

�

�

�

(

subscript

)

 ��

Format 2: condition-name in SPECIAL-NAMES paragraph

��

condition-name-1

�

IN

mnemonic-name-1

OF

��

condition-name-1

Can be referenced by statements and entries either in the program that

contains the definition of condition-name-1, or in a program contained

within that program.

 If explicitly referenced, a condition-name must be unique or be made

unique through qualification or subscripting (or both) except when the

scope of names by itself ensures uniqueness of reference.

If qualification is used to make a condition-name unique, the associated

conditional variable can be used as the first qualifier. If qualification is

used, the hierarchy of names associated with the conditional variable itself

must be used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any

of its condition-names also requires the same combination of subscripting.

70 Enterprise COBOL for z/OS V4.1 Language Reference

In this information, condition-name refers to a condition-name qualified or

subscripted, as necessary.

data-name-1

Can be a record-name.

file-name-1

Must be identified by an FD or SD entry in the data division.

 file-name-1 must be unique within this program.

mnemonic-name-1

For information about acceptable values for mnemonic-name-1, see

“SPECIAL-NAMES paragraph” on page 116.

Index-name

An index-name identifies an index. An index can be regarded as a private special

register that the compiler generates for working with a table. You name an index

by specifying the INDEXED BY phrase in the OCCURS clause that defines a table.

You can use an index-name in only the following language elements:

v SET statements

v PERFORM statements

v SEARCH statements

v Subscripts

v Relation conditions

An index-name is not the same as the name of an index data item, and an

index-name cannot be used like a data-name.

Index data item

An index data item is a data item that can hold the value of an index. You define

an index data item by specifying the USAGE IS INDEX clause in a data description

entry. The name of an index data item is a data-name. An index data item can be

used anywhere a data-name or identifier can be used, unless stated otherwise in

the rules of a particular statement. You can use the SET statement to save the value

of an index (referenced by index-name) in an index data item.

Subscripting

Subscripting is a method of providing table references through the use of

subscripts. A subscript is a positive integer whose value specifies the occurrence

number of a table element.

Chapter 8. Referencing data names, copy libraries, and procedure division names 71

Format

��

condition-name-1

data-name-1

�

IN

data-name-2

OF

�

�
IN

file-name-1

OF

 �

�

�

(

integer-1

)

ALL

data-name-3

+

integer-2

-

index-name-1

+

integer-3

-

��

condition-name-1

The conditional variable for condition-name-1 must contain an OCCURS

clause or must be subordinate to a data description entry that contains an

OCCURS clause.

data-name-1

Must contain an OCCURS clause or must be subordinate to a data

description entry that contains an OCCURS clause.

data-name-2, file-name-1

Must name data items or records that contain data-name-1.

integer-1

Can be signed. If signed, it must be positive.

data-name-3

Must be a numeric elementary item representing an integer.

 data-name-3 can be qualified. data-name-3 cannot be a windowed date field.

index-name-1

Corresponds to a data description entry in the hierarchy of the table being

referenced that contains an INDEXED BY phrase that specifies that name.

integer-2, integer-3

Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any

qualification for the name of the table element. The number of subscripts in such a

reference must equal the number of dimensions in the table whose element is

being referenced. That is, there must be a subscript for each OCCURS clause in the

hierarchy that contains the data-name including the data-name itself.

72 Enterprise COBOL for z/OS V4.1 Language Reference

When more than one subscript is required, they are written in the order of

successively less inclusive dimensions of the data organization. If a

multidimensional table is thought of as a series of nested tables and the most

inclusive or outermost table in the nest is considered to be the major table with the

innermost or least inclusive table being the minor table, the subscripts are written

from left to right in the order major, intermediate, and minor.

For example, if TABLE-THREE is defined as:

01 TABLE-THREE.

 05 ELEMENT-ONE OCCURS 3 TIMES.

 10 ELEMENT-TWO OCCURS 3 TIMES.

 15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:

ELEMENT-THREE (2 2 1)

Subscripted references can also be reference modified. See the third example under

“Reference modification examples” on page 77. A reference to an item must not be

subscripted unless the item is a table element or an item or condition-name

associated with a table element.

Each table element reference must be subscripted except when such reference

appears:

v In a USE FOR DEBUGGING statement

v As the subject of a SEARCH statement

v In a REDEFINES clause

v In the KEY is phrase of an OCCURS clause

The lowest permissible occurrence number represented by a subscript is 1. The

highest permissible occurrence number in any particular case is the maximum

number of occurrences of the item as specified in the OCCURS clause.

Subscripting using data-names

When a data-name is used to represent a subscript, it can be used to reference

items within different tables. These tables need not have elements of the same size.

The same data-name can appear as the only subscript with one item and as one of

two or more subscripts with another item. A data-name subscript can be qualified;

it cannot be subscripted or indexed. For example, valid subscripted references to

TABLE-THREE, assuming that SUB1, SUB2, and SUB3 are all items subordinate to

SUBSCRIPT-ITEM, include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,

 SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting using index-names (indexing)

Indexing allows such operations as table searching and manipulating specific

items. To use indexing, you associate one or more index-names with an item

whose data description entry contains an OCCURS clause. An index associated

with an index-name acts as a subscript, and its value corresponds to an occurrence

number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated

with its table, is an optional part of the OCCURS clause. There is no separate entry

Chapter 8. Referencing data names, copy libraries, and procedure division names 73

to describe the index associated with index-name. At run time, the contents of the

index corresponds to an occurrence number for that specific dimension of the table

with which the index is associated.

The initial value of an index at run time is undefined, and the index must be

initialized before it is used as a subscript. An initial value is assigned to an index

with one of the following:

v The PERFORM statement with the VARYING phrase

v The SEARCH statement with the ALL phrase

v The SET statement

The use of an integer or data-name as a subscript that references a table element or

an item within a table element does not cause the alteration of any index

associated with that table.

An index-name can be used to reference any table. However, the element length of

the table being referenced and of the table that the index-name is associated with

should match. Otherwise, the reference will not be to the same table element in

each table, and you might get runtime errors.

Data that is arranged in the form of a table is often searched. The SEARCH

statement provides facilities for producing serial and nonserial searches. It is used

to search for a table element that satisfies a specific condition and to adjust the

value of the associated index to indicate that table element.

To be valid during execution, an index value must correspond to a table element

occurrence of neither less than one, nor greater than the highest permissible

occurrence number.

For more information about index-names, see “Index-name” on page 71 and

“INDEXED BY phrase” on page 201.

Relative subscripting

In relative subscripting, the name of a table element is followed by a subscript of the

form data-name or index-name followed by the operator + or -, and a positive or

unsigned integer literal.

The operators + and - must be preceded and followed by a space. The value of the

subscript used is the same as if the index-name or data-name had been set up or

down by the value of the integer. The use of relative indexing does not cause the

program to alter the value of the index.

Reference modification

Reference modification defines a data item by specifying a leftmost character and

optional length for the data item.

74 Enterprise COBOL for z/OS V4.1 Language Reference

Format: reference modification

��

�

 data-name-1

FUNCTION

function-name-1

(

argument-1

)

 �

� (leftmost-character-position :)

length
 ��

data-name-1

Must reference a data item described explicitly or implicitly with usage

DISPLAY, DISPLAY-1, or NATIONAL. A national group item is processed

as an elementary data item of category national.

 data-name-1 can be qualified or subscripted. data-name-1 cannot be a

windowed date field.

function-name-1

Must reference an alphanumeric or national function.

leftmost-character-position

Must be an arithmetic expression. The evaluation of leftmost-character-
position must result in a positive nonzero integer that is less than or equal

to the number of characters in the data item referenced by data-name-1.

 The evaluation of leftmost-character-position must not result in a windowed

date field.

length Must be an arithmetic expression.

 The evaluation of length must result in a positive nonzero integer.

The evaluation of length must not result in a windowed date field.

The sum of leftmost-character-position and length minus the value 1 must be

less than or equal to the number of character positions in data-name-1. If

length is omitted, the length used will be equal to the number of character

positions in data-name-1 plus 1, minus leftmost-character-position.

For usages DISPLAY-1 and NATIONAL, each character position occupies 2 bytes.

Reference modification operates on whole character positions and not on the

individual bytes of the characters in usages DISPLAY-1 and NATIONAL. For usage

DISPLAY, reference modification operates as though each character were a

single-byte character.

Unless otherwise specified, reference modification is allowed anywhere an

identifier or function-identifier that references a data item or function with the

same usage as the reference-modified data item is permitted.

Each character position referenced by data-name-1 or function-name-1 is assigned an

ordinal number incrementing by one from the leftmost position to the rightmost

position. The leftmost position is assigned the ordinal number one. If the data

description entry for data-name-1 contains a SIGN IS SEPARATE clause, the sign

position is assigned an ordinal number within that data item.

Chapter 8. Referencing data names, copy libraries, and procedure division names 75

If data-name-1 is described with usage DISPLAY and category numeric,

numeric-edited, alphabetic, alphanumeric-edited, or external floating-point,

data-name-1 is operated upon for purposes of reference modification as if it were

redefined as a data item of category alphanumeric with the same size as the data

item referenced by data-name-1.

If data-name-1 is described with usage NATIONAL and category numeric,

numeric-edited, national-edited, or external floating-point, data-name-1 is operated

upon for purposes of reference modification as if it were redefined as a data item

of category national with the same size as the data item referenced by data-name-1.

If data-name-1 is a national group item, data-name-1 is processed as an elementary

data item of category national.

If data-name-1 is an expanded date field, then the result of reference modification is

a nondate.

Reference modification creates a unique data item that is a subset of data-name-1 or

a subset of the value referenced by function-name-1 and its arguments, if any. This

unique data item is considered an elementary data item without the JUSTIFIED

clause.

When a function is reference-modified, the unique data item has class, category,

and usage national if the type of the function is national; otherwise, it has class

and category alphanumeric and usage display.

When data-name-1 is reference-modified, the unique data item has the same class,

category, and usage as that defined for the data item referenced by data-name-1

except that:

v If data-name-1 has category national-edited, the unique data item has category

national.

v If data-name-1 has usage NATIONAL and category numeric-edited, numeric, or

external floating-point, the unique data item has category national.

v If data-name-1 has usage DISPLAY, and category numeric-edited,

alphanumeric-edited, numeric, or external floating-point, the unique data item

has category alphanumeric.

v If data-name-1 references an alphanumeric group item, the unique data item is

considered to have usage DISPLAY and category alphanumeric.

v If data-name-1 references a national group item, the unique data item has usage

NATIONAL and category national.

If length is not specified, the unique data item created extends from and includes

the character position identified by leftmost-character-position up to and including

the rightmost character position of the data item referenced by data-name-1.

Evaluation of operands

Reference modification for an operand is evaluated as follows:

v If subscripting is specified for the operand, the reference modification is

evaluated immediately after evaluation of the subscript.

v If subscripting is not specified for the operand, the reference modification is

evaluated at the time subscripting would be evaluated if subscripts had been

specified.

76 Enterprise COBOL for z/OS V4.1 Language Reference

Reference modification examples

The following statement transfers the first 10 characters of the data-item referenced

by WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).

77 FIRST-NAME PIC X(10).

...

 MOVE WHOLE-NAME(1:10) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced

by WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).

77 LAST-NAME PIC X(15).

...

 MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third

occurrence of TAB to the variable SUFFIX.

01 TABLE-1.

 02 TAB OCCURS 10 TIMES PICTURE X(5).

77 SUFFIX PICTURE X(2).

...

 MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.

Function-identifier

A function-identifier is a sequence of character strings and separators that uniquely

references the data item that results from the evaluation of a function.

Format

�� FUNCTION function-name-1

�

(

argument-1

)

 �

�
reference-modifier

 ��

argument-1

Must be an identifier, literal (other than a figurative constant), or arithmetic

expression.

 For more information, see Chapter 22, “Intrinsic functions,” on page 495.

function-name-1

function-name-1 must be one of the intrinsic function names.

reference-modifier

Can be specified only for functions of the type alphanumeric or national.

A function-identifier that makes reference to an alphanumeric or national function

can be specified anywhere that a data item of category alphanumeric or category

national, respectively, can be referenced and where references to functions are not

specifically prohibited, except as follows:

Chapter 8. Referencing data names, copy libraries, and procedure division names 77

v As a receiving operand of any statement

v Where a data item is required to have particular characteristics (such as class

and category, size, sign, and permissible values) and the evaluation of the

function according to its definition and the particular arguments specified would

not have these characteristics

A function-identifier that makes reference to an integer or numeric function can be

used wherever an arithmetic expression can be used.

Data attribute specification

Explicit data attributes are data attributes that you specify in COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data

attribute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If USAGE is omitted

and the symbol N is not specified in the PICTURE clause, the default is USAGE

DISPLAY, which is the implicit data attribute. When PICTURE symbol N is used,

USAGE DISPLAY-1 is the default when the NSYMBOL(DBCS) compiler option is

in effect; USAGE NATIONAL is the default when the NSYMBOL(NATIONAL)

compiler option is in effect. These are implicit data attributes.

78 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 9. Transfer of control

In the procedure division, unless there is an explicit control transfer or there is no

next executable statement, program flow transfers control from statement to

statement in the order in which the statements are written. This normal program

flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements,

implicit transfer of control also occurs when the normal flow is altered without the

execution of a procedure branching statement. The following examples show

implicit transfers of control, overriding statement-to-statement transfer of control:

v After execution of the last statement of a procedure that is executed under

control of another COBOL statement, control implicitly transfers. (COBOL

statements that control procedure execution are, for example, MERGE,

PERFORM, SORT, and USE.) Further, if a paragraph is being executed under the

control of a PERFORM statement that causes iterative execution, and that

paragraph is the first paragraph in the range of that PERFORM statement, an

implicit transfer of control occurs between the control mechanism associated

with that PERFORM statement and the first statement in that paragraph for each

iterative execution of the paragraph.

v During SORT or MERGE statement execution, control is implicitly transferred to

an input or output procedure.

v During XML PARSE statement execution, control is implicitly transferred to a

processing procedure.

v During execution of any COBOL statement that causes execution of a declarative

procedure, control is implicitly transferred to that procedure.

v At the end of execution of any declarative procedure, control is implicitly

transferred back to the control mechanism associated with the statement that

caused its execution.

COBOL also provides explicit control transfers through the execution of any

procedure branching, program call, or conditional statement. (Lists of procedure

branching and conditional statements are contained in “Statement categories” on

page 290.)

Definition: The term next executable statement refers to the next COBOL statement

to which control is transferred, according to the rules given above. There is no next

executable statement under the following circumstances:

v When the program contains no procedure division

v Following the last statement in a declarative section when the paragraph in

which it appears is not being executed under the control of some other COBOL

statement

v Following the last statement in a program or method when the paragraph in

which it appears is not being executed under the control of some other COBOL

statement in that program

v Following the last statement in a declarative section when the statement is in the

range of an active PERFORM statement executed in a different section and this

last statement of the declarative section is not also the last statement of the

procedure that is the exit of the active PERFORM statement

v Following a STOP RUN statement or EXIT PROGRAM statement that transfers

control outside the COBOL program

© Copyright IBM Corp. 1991, 2007 79

v Following a GOBACK statement that transfers control outside the COBOL

program

v Following an EXIT METHOD statement that transfers control outside the

COBOL method

v The end program or end method marker

When there is no next executable statement and control is not transferred outside

the COBOL program, the program flow of control is undefined unless the program

execution is in the nondeclarative procedures portion of a program under control

of a CALL statement, in which case an implicit EXIT PROGRAM statement is

executed.

Similarly, if control reaches the end of the procedure division of a method and

there is no next executable statement, an implicit EXIT METHOD statement is

executed.

80 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 10. Millennium Language Extensions and date fields

Many applications use two digits rather than four digits to represent the year in

date fields, and assume that these values represent years from 1900 to 1999. This

compact date format works well for the 1900s, but it does not work for the year

2000 and beyond because these applications interpret ″00″ as 1900 rather than 2000,

producing incorrect results.

The millennium language extensions are designed to allow applications that use

two-digit years to continue performing correctly in the year 2000 and beyond, with

minimal modification to existing code. This is achieved using a technique known

as windowing, which removes the assumption that all two-digit year fields

represent years from 1900 to 1999. Instead, windowing enables two-digit year

fields to represent years within a 100-year range known as a century window.

For example, if a two-digit year field contains the value 15, many applications

would interpret the year as 1915. However, with a century window of 1960–2059,

the year would be interpreted as 2015.

The millennium language extensions provide support for the most common

operations on date fields: comparisons, moving and storing, and incrementing and

decrementing. This support is limited to date fields of certain formats; for details,

see “DATE FORMAT clause” on page 190.

For information about supported operations and restrictions when using date

fields, see “Restrictions on using date fields” on page 192.

Millennium Language Extensions syntax

The millennium language extensions introduce the following language elements:

v The DATE FORMAT clause in data description entries, which defines data items

as date fields.

v The following intrinsic functions:

DATEVAL

Converts a nondate to a date field.

UNDATE

Converts a date field to a nondate.

YEARWINDOW

Returns the first year of the century window specified by the

YEARWINDOW compiler option.

For details on using the millennium language extensions in applications, see the

Enterprise COBOL Programming Guide.

The millennium language extensions have no effect unless your program is

compiled using the DATEPROC compiler option and the century window is

specified by the YEARWINDOW compiler option.

© Copyright IBM Corp. 1991, 2007 81

Terms and concepts

This documents uses the following terms when referring to the millennium

language extensions:

v “Date field”

v “Nondate” on page 83

v “Century window” on page 83

Date field

A date field can be any of the following:

v A data item whose data description entry includes a DATE FORMAT clause

v A value returned by one of the following intrinsic functions:

– DATE-OF-INTEGER

– DATE-TO-YYYYMMDD

– DATEVAL

– DAY-OF-INTEGER

– DAY-TO-YYYYDDD

– YEAR-TO-YYYY

– YEARWINDOW
v The conceptual data items DATE, DATE YYYYMMDD, DAY, or DAY YYYYDDD

of the ACCEPT statement

v The result of certain arithmetic operations (for details, see “Arithmetic with date

fields” on page 264)

The term date field refers to both expanded date fields and windowed date fields.

Windowed date field

A windowed date field is a date field that contains a windowed year. A windowed year

consists of two digits, representing a year within the century window.

Expanded date field

An expanded date field is a date field that contains an expanded year. An expanded

year consists of four digits.

The main use of expanded date fields is to provide correct results when these are

used in combination with windowed date fields; for example, where migration to

four-digit year dates is not complete. If all the dates in an application use

four-digit years, there is no need to use the millennium language extensions.

Year-last date field

A year-last date field is a date field whose DATE FORMAT clause specifies one or

more Xs preceding the YY or YYYY. Year-last date fields are supported in a limited

number of operations, typically involving another date with the same (year-last)

date format, or a nondate.

Date format

Date format refers to the date pattern of a date field, specified either:

82 Enterprise COBOL for z/OS V4.1 Language Reference

v Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function

argument-2

v Implicitly, by statements and intrinsic functions that return date fields.

Compatible date field

The meaning of the term compatible, when applied to date fields, depends on the

COBOL division in which the date field occurs:

Data division

Two date fields are compatible if they have identical USAGE and meet at

least one of the following conditions:

v They have the same date format.

v Both are windowed date fields, where one consists only of a windowed

year, DATE FORMAT YY.

v Both are expanded date fields, where one consists only of an expanded

year, DATE FORMAT YYYY.

v One has DATE FORMAT YYXXXX, the other, YYXX.

v One has DATE FORMAT YYYYXXXX, the other, YYYYXX.

A windowed date field can be subordinate to an expanded date group data

item. The two date fields are compatible if the subordinate date field has

USAGE DISPLAY, starts 2 bytes after the start of the group expanded date

field, and the two fields meet at least one of the following conditions:

v The subordinate date field has a DATE FORMAT pattern with the same

number of Xs as the DATE FORMAT pattern of the group date field.

v The subordinate date field has DATE FORMAT YY.

v The group date field has DATE FORMAT YYYYXXXX and the

subordinate date field has DATE FORMAT YYXX.

Procedure division

Two date fields are compatible if they have the same date format except

for the year part, which can be windowed or expanded. For example, a

windowed date field with DATE FORMAT YYXXX is compatible with:

v Another windowed date field with DATE FORMAT YYXXX

v An expanded date field with DATE FORMAT YYYYXXX

Nondate

A nondate can be any of the following:

v A data item whose date description entry does not include the DATE FORMAT

clause

v A date field that has been converted using the UNDATE function

v A literal

v A reference-modified date field

v The result of certain arithmetic operations that can include date field operands;

for example, the difference between two compatible date fields

Century window

A century window is a 100-year interval within which any two-digit year is unique.

There are several ways to specify a century window in a COBOL program:

Chapter 10. Millennium Language Extensions and date fields 83

v For windowed date fields, a century window is specified by the YEARWINDOW

compiler option.

v For windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD,

and YEAR-TO-YYYY, a century window is specified by argument-2.

84 Enterprise COBOL for z/OS V4.1 Language Reference

Part 2. COBOL source unit structure

Chapter 11. COBOL program structure 87

Nested programs 89

Conventions for program-names 90

Rules for program-names 90

Chapter 12. COBOL class definition structure . . 93

Chapter 13. COBOL method definition structure 97

© Copyright IBM Corp. 1991, 2007 85

86 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 11. COBOL program structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested programs

A nested program is a program that is contained in another program.

Contained programs can reference some of the resources of the programs

that contain them. If program B is contained in program A, it is directly

contained if there is no program contained in program A that also contains

program B. Program B is indirectly contained in program A if there exists a

program contained in program A that also contains program B. For more

information about nested programs, see “Nested programs” on page 89

and the Enterprise COBOL Programming Guide.

Object program

An object program is a set or group of executable machine language

instructions and other material designed to interact with data to provide

problem solutions. An object program is generally the machine language

result of the operation of a COBOL compiler on a source program. The

term object program also refers to the methods that result from compiling

a class definition.

Run unit

A run unit is one or more object programs that interact with one another

and that function at run time as an entity to provide problem solutions.

Sibling program

Sibling programs are programs that are directly contained in the same

program.

With the exception of the COPY and REPLACE statements and the end program

marker, the statements, entries, paragraphs, and sections of a COBOL source

program are grouped into the following four divisions:

v Identification division

v Environment division

v Data division

v Procedure division

The end of a COBOL source program is indicated by the END PROGRAM marker.

If there are no nested programs, the absence of additional source program lines

also indicates the end of a COBOL program.

Following is the format for the entries and statements that constitute a separately

compiled COBOL source program.

© Copyright IBM Corp. 1991, 2007 87

Format: COBOL source program

�� IDENTIFICATION

ID
 DIVISION. PROGRAM-ID

.
 program-name-1 �

�
RECURSIVE

IS

INITIAL

PROGRAM

.

identification-division-content
 �

�
ENVIRONMENT DIVISION.

environment-division-content
 �

�
DATA DIVISION.

data-division-content

PROCEDURE DIVISION.

procedure-division-content
 �

�

�

END PROGRAM

program-name-1.

Nested

source

program

 ��

nested source program:

 IDENTIFICATION

ID
 DIVISION. PROGRAM-ID

.
 program-name-2 �

�
COMMON

IS

INITIAL

PROGRAM

INITIAL

COMMON

.

identification-division-content
 �

�
ENVIRONMENT DIVISION.

environment-division-content
 �

�
DATA DIVISION.

data-division-content

PROCEDURE DIVISION.

procedure-division-content
 �

�

�

| nested source program |

 END PROGRAM program-name-2.

A sequence of separate COBOL programs can also be input to the compiler. The

following is the format for the entries and statements that constitute a sequence of

source programs (batch compile).

88 Enterprise COBOL for z/OS V4.1 Language Reference

Format: sequence of COBOL source programs

��

�

COBOL-source-program

��

END PROGRAM program-name

An end program marker separates each program in the sequence of

programs. program-name must be identical to a program-name declared in a

preceding program-ID paragraph.

 program-name can be specified either as a user-defined word or in an

alphanumeric literal. Either way, program-name must follow the rules for

forming program-names. program-name cannot be a figurative constant. Any

lowercase letters in the literal are folded to uppercase.

An end program marker is optional for the last program in the sequence

only if that program does not contain any nested source programs.

Nested programs

A COBOL program can contain other COBOL programs, which in turn can contain

still other COBOL programs. These contained programs are called nested programs.

Nested programs can be directly or indirectly contained in the containing program.

Nested programs are not supported for programs compiled with the THREAD

option.

In the following code fragment, program Outer-program directly contains program

Inner-1. Program Inner-1 directly contains program Inner-1a, and Outer-program

indirectly contains Inner-1a:

Id division.

Program-id. Outer-program.

 Procedure division.

 Call "Inner-1".

 Stop run.

Id division.

 Program-id. Inner-1

 ...

 Call Inner-1a.

 Stop run.

 Id division.

 Program-id. Inner-1a.

 ...

 End Inner-1a.

 End Inner-1.

End Outer-program.

The following figure describes a more complex nested program structure with

directly and indirectly contained programs.

Chapter 11. COBOL program structure 89

Conventions for program-names

The program-name of a program is specified in the PROGRAM-ID paragraph of

the program’s identification division. A program-name can be referenced only by

the CALL statement, the CANCEL statement, the SET statement, or the END

PROGRAM marker. Names of programs that constitute a run unit are not

necessarily unique, but when two programs in a run unit are identically named, at

least one of the programs must be directly or indirectly contained within another

separately compiled program that does not contain the other of those two

programs.

A separately compiled program and all of its directly and indirectly contained

programs must have unique program-names within that separately compiled

program.

Rules for program-names

The following rules define the scope of a program-name:

v If the program-name is that of a program that does not possess the COMMON

attribute and that program is directly contained within another program, that

program-name can be referenced only by statements included in that containing

program.

v If the program-name is that of a program that does possess the COMMON

attribute and that program is directly contained within another program, that

program-name can be referenced only by statements included in the containing

90 Enterprise COBOL for z/OS V4.1 Language Reference

program and any programs directly or indirectly contained within that

containing program, except that program possessing the COMMON attribute

and any programs contained within it.

v If the program-name is that of a program that is separately compiled, that

program-name can be referenced by statements included in any other program

in the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:

v If one of two programs that have the same name as that specified in the CALL

statement is directly contained within the program that includes the CALL

statement, that program is called.

v If one of two programs that have the same name as that specified in the CALL

statement possesses the COMMON attribute and is directly contained within

another program that directly or indirectly contains the program that includes

the CALL statement, that common program is called unless the calling program

is contained within that common program.

v Otherwise, the separately compiled program is called.

The following rules apply to referencing a program-name of a program that is

contained within another program. For this discussion, Program-A contains

Program-B and Program-C; Program-C contains Program-D and Program-F; and

Program-D contains Program-E.

If Program-D does not possess the COMMON attribute, then Program-D can be

referenced only by the program that directly contains Program-D, that is,

Program-C.

Chapter 11. COBOL program structure 91

If Program-D does possess the COMMON attribute, then Program-D can be

referenced by Program-C (because Program-C contains Program-D) and by any

programs contained in Program-C except for programs contained in Program-D. In

other words, if Program-D possesses the COMMON attribute, Program-D can be

referenced in Program-C and Program-F but not by statements in Program-E,

Program-A, or Program-B.

92 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 12. COBOL class definition structure

Enterprise COBOL provides object-oriented syntax to facilitate interoperation of

COBOL and Java programs.

You can use object-oriented syntax to:

v Define classes, with methods and data implemented in COBOL

v Create instances of Java or COBOL classes

v Invoke methods on Java or COBOL objects

v Write classes that inherit from Java classes or from other COBOL classes

v Define and invoke overloaded methods

Basic Java-oriented object capabilities are accessed directly through COBOL

language. Additional capabilities are available to the COBOL programmer by

calling services through the Java Native Interface (JNI), as described in the

Enterprise COBOL Programming Guide.

Java programs can be multithreaded, and Java interoperation requires toleration of

asynchronous signals. Therefore, to mix COBOL with these Java programs, you

must use the thread enablement provided by the THREAD compiler option, as

described in the Enterprise COBOL Programming Guide.

Java String data is represented at run time in Unicode. The Unicode support

provided in Enterprise COBOL with the national data type enables COBOL

programs to exchange String data with Java.

The following are the entities and concepts used in object-oriented COBOL for Java

interoperability:

Class The entity that defines operations and state for zero, one, or more object

instances and defines operations and state for a common object (a factory

object) that is shared by multiple object instances.

 You create object instances using the NEW operand of the COBOL

INVOKE statement or using a Java class instance creation expression.

Object instances are automatically freed by the Java runtime system’s

garbage collection when they are no longer in use. You cannot explicitly

free individual objects.

Instance method

Procedural code that defines one of the operations supported for the object

instances of a class. Instance methods introduced by a COBOL class are

defined within the object paragraph of the class definition.

 COBOL instance methods are equivalent to public nonstatic methods in

Java.

You execute instance methods on a particular object instance by using a

COBOL INVOKE statement or a Java method invocation expression.

Instance data

Data that defines the state of an individual object instance. Instance data in

a COBOL class is defined in the working-storage section of the data

division within the object paragraph of a class definition.

© Copyright IBM Corp. 1991, 2007 93

COBOL instance data is equivalent to private nonstatic member data in a

Java class.

The state of an object also includes the state of the instance data

introduced by inherited classes. Each instance object has its own copy of

the instance data defined within its class definition and its own copy of the

instance data defined in inherited classes.

You can access COBOL object instance data only from within COBOL

instance methods defined in the class definition that defines the data.

You can initialize object instance data with VALUE clauses or you can

write an instance method to perform custom initialization.

Factory method, static method

Procedural code that defines one of the operations supported for the

common factory object of the class. COBOL factory methods are defined

within the factory paragraph of a class definition. Factory methods are

associated with a class, not with any individual instance object of the class.

 COBOL factory methods are equivalent to public static methods in Java.

You execute COBOL factory methods from COBOL using an INVOKE

statement that specifies the class-name as the first operand. You execute

them from a Java program using a static method invocation expression.

A factory method cannot operate directly on instance data of its class, even

though the data is described in the same class definition; a factory method

must invoke instance methods to act on instance data.

COBOL factory methods are typically used to define customized methods

that create object instances. For example, you can code a customized

factory method that accepts initial values as parameters, creates an instance

object using the NEW operand of the INVOKE statement, and then invokes

a customized instance method passing those initial values as arguments for

use in initializing the instance object.

Factory data, static data

Data associated with a class, rather than with an individual object instance.

COBOL factory data is defined in the working-storage section of the data

division within the factory paragraph of a class definition.

 COBOL factory data is equivalent to private static data in Java.

There is a single copy of factory data for a class. Factory data is associated

only with the class and is shared by all object instances of the class. It is

not associated with any particular instance object. A factory data item

might be used, for example, to keep a count of the number of instance

objects that have been created.

You can access COBOL factory data only within COBOL factory methods

defined in the same class definition.

Inheritance

Inheritance is a mechanism whereby a class definition (the inheriting class)

acquires the methods, data descriptions, and file descriptions written in

another class definition (the inherited class). When two classes in an

inheritance relationship are considered together, the inheriting class is the

subclass (or derived class or child class); the inherited class is the superclass

(or parent class). The inheriting class also indirectly acquires the methods,

data descriptions, and file descriptions that the parent class inherited from

its parent class.

94 Enterprise COBOL for z/OS V4.1 Language Reference

A COBOL class must inherit from exactly one parent class, which can be

implemented in COBOL or Java.

Every COBOL class must inherit directly or indirectly from the

java.lang.Object class.

Instance variable

An individual data item defined in the data division of an object

paragraph.

Java Native Interface (JNI)

A facility of Java designed for interoperation with non-Java programs.

Java Native Interface (JNI) environment pointer

A pointer used to obtain the address of the JNI environment structure used

for calling JNI services. The COBOL special register JNIENVPTR is

provided for referencing the JNI environment pointer.

Object reference

A data item that contains information used to identify and reference an

individual object. An object reference can refer to an object that is an

instance of a Java or COBOL class.

Subclass

A class that inherits from another class; also called a derived class or child

class of the inherited class.

Superclass

A class that is inherited by another class; also called a parent class of the

inheriting class.

With the exception of the COPY and REPLACE statements and the END CLASS

marker, the statements, entries, paragraphs, and sections of a COBOL class

definition are grouped into the following structure:

v Identification division

v Environment division (configuration section only)

v Factory definition

– Identification division

– Data division

– Procedure division (containing one or more method definitions)
v Object definition

– Identification division

– Data division

– Procedure division (containing one or more method definitions)

The end of a COBOL class definition is indicated by the END CLASS marker.

The following is the format for a COBOL class definition.

Chapter 12. COBOL class definition structure 95

Format: COBOL class definition

�� IDENTIFICATION

ID
 DIVISION. CLASS-ID . class-name-1 INHERITS class-name-2 . �

�
other-identification-division-content

 �

� ENVIRONMENT DIVISION. class-environment-division-content Factory-definition �

� Object-definition

END CLASS

class-name-1.
 ��

Factory-definition:

 IDENTIFICATION

ID
 DIVISION. FACTORY.

DATA DIVISION.

factory-data-division-content
 �

�

�

PROCEDURE DIVISION.

method-definition

 END FACTORY.

Object-definition:

 IDENTIFICATION

ID
 DIVISION. OBJECT.

DATA DIVISION.

object-data-division-content
 �

�

�

PROCEDURE DIVISION.

method-definition

 END OBJECT.

END CLASS

Specifies the end of a class definition.

END FACTORY

Specifies the end of a factory definition.

END OBJECT

Specifies the end of an object definition.

96 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 13. COBOL method definition structure

A COBOL method definition describes a method. You can specify method

definitions only within the factory paragraph and the object paragraph of a class

definition.

With the exception of COPY and REPLACE statements and the END METHOD

marker, the statements, entries, paragraphs, and sections of a COBOL method

definition are grouped into the following four divisions:

v Identification division

v Environment division (input-output section only)

v Data division

v Procedure division

The end of a COBOL method definition is indicated by the END METHOD marker.

The following is the format for a COBOL method definition.

Format: method definition

�� IDENTIFICATION

ID
 DIVISION. METHOD-ID method-name-1

.

.
 �

�
other-identification-division-content

 �

�
ENVIRONMENT DIVISION.

method-environment-division-content
 �

�
DATA DIVISION.

method-data-division-content
 �

�
method-procedure-division-header.

method-procedure-division-content

 �

� END METHOD method-name-1. ��

METHOD-ID

Identifies a method definition. See “METHOD-ID paragraph” on page 108

for details.

method-procedure-division-header

Indicates the start of the procedure division and identifies method

parameters and the returning item, if any. See “The procedure division

header” on page 255 for details.

END METHOD

Specifies the end of a method definition.

© Copyright IBM Corp. 1991, 2007 97

Methods defined in an object definition are instance methods. An instance method in

a given class can access:

v Data defined in the data division of the object paragraph of that class (instance

data)

v Data defined in the data division of that instance method (method data)

An instance method cannot directly access instance data defined in a parent class,

factory data defined in its own class, or method data defined in another method of

its class. It must invoke a method to access such data.

Methods defined in a factory definition are factory methods. A factory method in a

given class can access:

v Data defined in the data division of the factory paragraph of that class (factory

data)

v Data defined in the data division of that factory method (method data)

A factory method cannot directly access factory data defined in a parent class,

instance data defined in its own class, or method data defined in another method

of its class. It must invoke a method to access such data.

Methods can be invoked from COBOL programs and methods, and they can be

invoked from Java programs. A method can execute an INVOKE statement that

directly or indirectly invokes itself. Therefore, COBOL methods are implicitly

recursive (unlike COBOL programs, which support recursion only if the

RECURSIVE attribute is specified in the program-ID paragraph.)

98 Enterprise COBOL for z/OS V4.1 Language Reference

Part 3. Identification division

Chapter 14. Identification division 101

PROGRAM-ID paragraph 104

CLASS-ID paragraph 107

General rules 107

Inheritance 107

FACTORY paragraph 108

OBJECT paragraph 108

METHOD-ID paragraph 108

Method signature 108

Method overloading, overriding, and hiding . . 108

Method overloading 108

Method overriding (for instance methods) 109

Method hiding (for factory methods) . . . 109

Optional paragraphs 109

© Copyright IBM Corp. 1991, 2007 99

100 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 14. Identification division

The identification division must be the first division in each COBOL source

program, factory definition, object definition, and method definition. The

identification division names the program, class, or method and identifies the

factory definition and object definition. The identification division can include the

date a program, class, or method was written, the date of compilation, and other

such documentary information.

Program IDENTIFICATION DIVISION

For a program, the first paragraph of the identification division must be

the PROGRAM-ID paragraph. The other paragraphs are optional and can

appear in any order.

Class IDENTIFICATION DIVISION

For a class, the first paragraph of the identification division must be the

CLASS-ID paragraph. The other paragraphs are optional and can appear in

any order.

Factory IDENTIFICATION DIVISION

A factory IDENTIFICATION DIVISION contains only a factory paragraph

header.

Object IDENTIFICATION DIVISION

An object IDENTIFICATION DIVISION contains only an object paragraph

header.

Method IDENTIFICATION DIVISION

For a method, the first paragraph of the identification division must be the

METHOD-ID paragraph. The other paragraphs are optional and can

appear in any order.

The following is the format for a program IDENTIFICATION DIVISION.

© Copyright IBM Corp. 1991, 2007 101

Format: program identification division

�� IDENTIFICATION

ID
 DIVISION. PROGRAM-ID

.
 program-name �

�
RECURSIVE

IS

COMMON

PROGRAM

INITIAL

INITIAL

COMMON

.
 �

�

�

AUTHOR

.

comment-entry

 �

�

�

INSTALLATION

.

comment-entry

 �

�

�

DATE-WRITTEN

.

comment-entry

 �

�

�

DATE-COMPILED.

comment-entry

 �

�

�

SECURITY

.

comment-entry

 ��

The following is the format for a class IDENTIFICATION DIVISION.

102 Enterprise COBOL for z/OS V4.1 Language Reference

Format: class identification division

�� IDENTIFICATION DIVISION. CLASS-ID. class-name-1

ID DIVISION.
 �

� INHERITS class-name-2.

�

AUTHOR

.

comment-entry

 �

�

�

INSTALLATION

.

comment-entry

 �

�

�

DATE-WRITTEN

.

comment-entry

 �

�

�

DATE-COMPILED.

comment-entry

 �

�

�

SECURITY

.

comment-entry

 ��

The following is the format for a factory IDENTIFICATION DIVISION.

Format: factory identification division

�� IDENTIFICATION

ID
 DIVISION. FACTORY. ��

The following is the format for an object IDENTIFICATION DIVISION.

Chapter 14. Identification division 103

Format: object identification division

�� IDENTIFICATION

ID
 DIVISION. OBJECT. ��

The following is the format for a method IDENTIFICATION DIVISION.

Format: method identification division

�� IDENTIFICATION

ID
 DIVISION. METHOD-ID method-name-1

.

.
 �

�

�

AUTHOR

.

comment-entry

 �

�

�

INSTALLATION

.

comment-entry

 �

�

�

DATE-WRITTEN

.

comment-entry

 �

�

�

DATE-COMPILED.

comment-entry

 �

�

�

SECURITY

.

comment-entry

 ��

PROGRAM-ID paragraph

The PROGRAM-ID paragraph specifies the name by which the program is known

and assigns selected program attributes to that program. It is required and must be

the first paragraph in the identification division.

program-name

A user-defined word or alphanumeric literal, but not a figurative constant,

104 Enterprise COBOL for z/OS V4.1 Language Reference

that identifies your program. It must follow the following rules of

formation, depending on the setting of the PGMNAME compiler option:

PGMNAME(COMPAT)

The name can be up to 30 characters in length.

 Only the hyphen, digits 0-9, and alphabetic characters are allowed

in the name when it is specified as a user-defined word.

At least one character must be alphabetic.

The hyphen cannot be used as the first or last character.

If program-name is an alphanumeric literal, the rules for the name

are the same except that the extension characters $, #, and @ can be

included in the name of the outermost program.

PGMNAME (LONGUPPER)

If program-name is a user-defined word, it can be up to 30

characters in length.

 If program-name is an alphanumeric literal, the literal can be up to

160 characters in length. The literal cannot be a figurative constant.

Only the hyphen, digit, and alphabetic characters are allowed in

the name.

At least one character must be alphabetic.

The hyphen cannot be used as the first or last character.

PGMNAME (LONGMIXED)

program-name must be specified as a literal. It cannot be a figurative

constant.

 The name can be up to 160 characters in length. The literal cannot

be a figurative constant.

program-name can consist of any character in the range X’41’ to

X’FE’.

For information about the PGMNAME compiler option and how the compiler

processes the names, see the Enterprise COBOL Programming Guide.

RECURSIVE

An optional clause that allows COBOL programs to be recursively

reentered.

 You can specify the RECURSIVE clause only on the outermost program of

a compilation unit. Recursive programs cannot contain nested

subprograms.

If the RECURSIVE clause is specified, program-name can be recursively

reentered while a previous invocation is still active. If the RECURSIVE

clause is not specified, an active program cannot be recursively reentered.

The working-storage section of a recursive program defines storage that is

statically allocated and initialized on the first entry to a program and is

available in a last-used state to any of the recursive invocations.

The local-storage section of a recursive program (as well as a nonrecursive

program) defines storage that is automatically allocated, initialized, and

deallocated on a per-invocation basis.

Chapter 14. Identification division 105

Internal file connectors that correspond to an FD in the file section of a

recursive program are statically allocated. The status of internal file

connectors is part of the last-used state of a program that persists across

invocations.

The following language elements are not supported in a recursive

program:

v ALTER

v GO TO without a specified procedure-name

v RERUN

v SEGMENT-LIMIT

v USE FOR DEBUGGING

The RECURSIVE clause is required for programs compiled with the

THREAD option.

COMMON

Specifies that the program named by program-name is contained (that is,

nested) within another program and can be called from siblings of the

common program and programs contained within them. The COMMON

clause can be used only in nested programs. For more information about

conventions for program names, see “Conventions for program-names” on

page 90.

INITIAL

Specifies that when program-name is called, program-name and any programs

contained (nested) within it are placed in their initial state. The initial

attribute is not supported for programs compiled with the THREAD

option.

 A program is in the initial state:

v The first time the program is called in a run unit

v Every time the program is called, if it possesses the initial attribute

v The first time the program is called after the execution of a CANCEL

statement that references the program or a CANCEL statement that

references a program that directly or indirectly contains the program

v The first time the program is called after the execution of a CALL

statement that references a program that possesses the initial attribute

and that directly or indirectly contains the program

When a program is in the initial state, the following occur:

v The program’s internal data contained in the working-storage section is

initialized. If a VALUE clause is used in the description of the data item,

the data item is initialized to the defined value. If a VALUE clause is not

associated with a data item, the initial value of the data item is

undefined.

v Files with internal file connectors associated with the program are not in

the open mode.

v The control mechanisms for all PERFORM statements contained in the

program are set to their initial states.

v An altered GO TO statement contained in the program is set to its initial

state.

For the rules governing nonunique program names, see “Rules for

program-names” on page 90.

106 Enterprise COBOL for z/OS V4.1 Language Reference

CLASS-ID paragraph

The CLASS-ID paragraph specifies the name by which the class is known and

assigns selected attributes to that class. It is required and must be the first

paragraph in a class identification division.

class-name-1

A user-defined word that identifies the class. class-name-1 can optionally

have an entry in the REPOSITORY paragraph of the configuration section

of the class definition.

INHERITS

A clause that defines class-name-1 to be a subclass (or derived class) of

class-name-2 (the parent class). class-name-1 cannot directly or indirectly

inherit from class-name-1.

class-name-2

The name of a class inherited by class-name-1. You must specify class-name-2

in the REPOSITORY paragraph of the configuration section of the class

definition.

General rules

class-name-1 and class-name-2 must conform to the normal rules of formation for a

COBOL user-defined word, using single-byte characters.

See “REPOSITORY paragraph” on page 124 for details on specifying a class-name

that is part of a Java package or for using non-COBOL naming conventions for

class-names.

You cannot include a class definition in a sequence of programs or other class

definitions in a single compilation group. Each class must be specified as a

separate source file; that is, a class definition cannot be included in a batch

compile.

Inheritance

Every method available on instances of a class is also available on instances of any

subclass directly or indirectly derived from that class. A subclass can introduce

new methods that do not exist in the parent or ancestor class and can override a

method from the parent or ancestor class. When a subclass overrides an existing

method, it defines a new implementation for that method, which replaces the

inherited implementation.

The instance data of class-name-1 is the instance data declared in class-name-2

together with the data declared in the working-storage section of class-name-1.

Note, however, that instance data is always private to the class that introduces it.

The semantics of inheritance are as defined by Java. All classes must be derived

directly or directly from the java.lang.Object class.

Java supports single inheritance; that is, no class can inherit directly from more

than one parent. Only one class-name can be specified in the INHERITS phrase of

a class definition.

Chapter 14. Identification division 107

FACTORY paragraph

The factory IDENTIFICATION DIVISION introduces the factory definition, which

is the portion of a class definition that defines the factory object of the class. A

factory object is the single common object that is shared by all object instances of the

class.

The factory definition contains factory data and factory methods.

OBJECT paragraph

The object IDENTIFICATION DIVISION introduces the object definition, which is

the portion of a class definition that defines the instance objects of the class.

The object definition contains object data and object methods.

METHOD-ID paragraph

The METHOD-ID paragraph specifies the name by which a method is known and

assigns selected attributes to that method. The METHOD-ID paragraph is required

and must be the first paragraph in a method identification division.

method-name-1

An alphanumeric literal or national literal that contains the name of the

method. The name must conform to the rules of formation for a Java

method name. Method names are used directly, without translation. The

method name is processed in a case-sensitive manner.

Method signature

The signature of a method consists of the name of the method and the number and

types of the formal parameters to the method as specified in the procedure

division USING phrase.

Method overloading, overriding, and hiding

COBOL methods can be overloaded, overridden, or hidden, based on the rules of the

Java language.

Method overloading

Method names that are defined for a class are not required to be unique. (The set

of methods defined for a class includes the methods introduced by the class

definition and the methods inherited from parent classes.)

Method names defined for a class must have unique signatures. Two methods

defined for a class and that have the same name but different signatures are said to

be overloaded.

The type of the method return value, if any, is not included in the method

signature.

108 Enterprise COBOL for z/OS V4.1 Language Reference

A class must not define two methods with the same signature but different return

value types, or with the same signature but where one method specifies a return

value and the other does not.

The rules for overloaded method definitions and resolution of overloaded method

invocations are based on the corresponding rules for Java.

Method overriding (for instance methods)

An instance method in a subclass overrides an instance method with the same name

that is inherited from a parent class if the two methods have the same signature.

When a method overrides an instance method defined in a parent class, the

presence or absence of a method return value (the procedure division

RETURNING data-name) must be consistent in the two methods. Further, when

method return values are specified, the return values in the overridden method

and the overriding method must have identical data types.

An instance method must not override a factory method in a COBOL parent class,

or a static method in a Java parent class.

Method hiding (for factory methods)

A factory method is said to hide any and all methods with the same signature in

the superclasses of the method definition that would otherwise be accessible. A

factory method must not hide an instance method.

Optional paragraphs

These optional paragraphs in the identification division can be omitted:

AUTHOR

Name of the author of the program.

INSTALLATION

Name of the company or location.

DATE-WRITTEN

Date the program was written.

DATE-COMPILED

Date the program was compiled.

SECURITY

Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of

characters from the character set of the computer. The comment-entry is written in

Area B on one or more lines.

The paragraph name DATE-COMPILED and any comment-entry associated with it

appear in the source code listing with the current date inserted. For example:

DATE-COMPILED. 11/30/07.

Comment-entries serve only as documentation; they do not affect the meaning of

the program. A hyphen in the indicator area (column 7) is not permitted in

comment-entries.

Chapter 14. Identification division 109

You can include DBCS character strings as comment-entries in the identification

division of your program. Multiple lines are allowed in a comment-entry that

contains DBCS character strings.

A DBCS character string must be preceded by a shift-out control character and

followed by a shift-in control character. For example:

AUTHOR. <.A.U.T.H.O.R.-.N.A.M.E>, XYZ CORPORATION

DATE-WRITTEN. <.D.A.T.E>

When a comment-entry that is contained on multiple lines uses DBCS characters,

shift-out and shift-in characters must be paired on a line.

110 Enterprise COBOL for z/OS V4.1 Language Reference

Part 4. Environment division

Chapter 15. Configuration section 113

SOURCE-COMPUTER paragraph 114

OBJECT-COMPUTER paragraph 114

SPECIAL-NAMES paragraph 116

ALPHABET clause 119

SYMBOLIC CHARACTERS clause 121

CLASS clause 122

CURRENCY SIGN clause 123

DECIMAL-POINT IS COMMA clause 124

REPOSITORY paragraph 124

General rules 125

Identifying and referencing a class 125

Chapter 16. Input-Output section 127

FILE-CONTROL paragraph 128

SELECT clause 132

ASSIGN clause 132

Assignment name for environment variable . . 133

Environment variable contents for a QSAM file 134

Environment variable contents for a

line-sequential file 135

Environment variable contents for a VSAM file 135

RESERVE clause 136

ORGANIZATION clause 137

File organization 137

Sequential organization 137

Indexed organization 138

Relative organization 138

Line-sequential organization 138

PADDING CHARACTER clause 139

RECORD DELIMITER clause 140

ACCESS MODE clause 140

File organization and access modes 141

Access modes 141

Relationship between data organizations and

access modes 141

RECORD KEY clause 142

ALTERNATE RECORD KEY clause 143

RELATIVE KEY clause 144

PASSWORD clause 145

FILE STATUS clause 145

I-O-CONTROL paragraph 146

RERUN clause 148

SAME AREA clause 149

SAME RECORD AREA clause 150

SAME SORT AREA clause 151

SAME SORT-MERGE AREA clause 151

MULTIPLE FILE TAPE clause 151

APPLY WRITE-ONLY clause 152

© Copyright IBM Corp. 1991, 2007 111

112 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 15. Configuration section

The configuration section is an optional section for programs and classes, and can

describe the computer environment on which the program or class is compiled and

executed.

Program configuration section

The configuration section can be specified only in the environment division

of the outermost program of a COBOL source program.

 You should not specify the configuration section in a program that is

contained within another program. The entries specified in the

configuration section of a program apply to any program contained within

that program.

Class configuration section

Specify the configuration section in the environment division of a class

definition. The repository paragraph can be specified in the environment

division of a class definition.

 Entries in a class configuration section apply to the entire class definition,

including all methods introduced by that class.

Method configuration section

The input-output section can be specified in a method configuration

section. The entries apply only to the method in which the configuration

section is specified.

Format:

�� CONFIGURATION SECTION.

source-computer-paragraph
 �

�
object-computer-paragraph

special-names-paragraph
 �

�
repository-paragraph

 ��

The configuration section can:

v Relate IBM-defined environment-names to user-defined mnemonic names

v Specify the collating sequence

v Specify a currency sign value, and the currency symbol used in the PICTURE

clause to represent the currency sign value

v Exchange the functions of the comma and the period in PICTURE clauses and

numeric literals

v Relate alphabet-names to character sets or collating sequences

v Specify symbolic characters

v Relate class-names to sets of characters

© Copyright IBM Corp. 1991, 2007 113

v Relate object-oriented class names to external class-names and identify

class-names that can be used in a class definition or program

SOURCE-COMPUTER paragraph

The SOURCE-COMPUTER paragraph describes the computer on which the source

text is to be compiled.

Format

�� SOURCE-COMPUTER.

computer-name

.

DEBUGGING MODE

WITH

 ��

computer-name

A system-name. For example:

IBM-system

WITH DEBUGGING MODE

Activates a compile-time switch for debugging lines written in the source

text.

 A debugging line is a statement that is compiled only when the

compile-time switch is activated. Debugging lines allow you, for example,

to check the value of a data-name at certain points in a procedure.

To specify a debugging line in your program, code a D in column 7

(indicator area). You can include successive debugging lines, but each must

have a D in column 7, and you cannot break character strings across lines.

All your debugging lines must be written so that the program is

syntactically correct, whether the debugging lines are compiled or treated

as comments.

The presence or absence of the DEBUGGING MODE clause is logically

determined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the environment division (after the

OBJECT-COMPUTER paragraph), and in the data and procedure divisions.

If a debugging line contains only spaces in Area A and in Area B, the

debugging line is treated the same as a blank line.

All of the SOURCE-COMPUTER paragraph is syntax checked, but only the WITH

DEBUGGING MODE clause has an effect on the execution of the program.

OBJECT-COMPUTER paragraph

The OBJECT-COMPUTER paragraph specifies the system for which the object

program is designated.

114 Enterprise COBOL for z/OS V4.1 Language Reference

Format

�� OBJECT-COMPUTER. �

�
computer-name

entry

1

.

MEMORY

integer

WORDS

SIZE

CHARACTERS

MODULES

 ��

entry 1:

SEQUENCE

alphabet-name

PROGRAM

COLLATING

IS

 �

�
SEGMENT-LIMIT

priority-number

IS

computer-name

A system-name. For example:

IBM-system

MEMORY SIZE integer

integer specifies the amount of main storage needed to run the object

program. The MEMORY SIZE clause is syntax checked but has no effect on

the execution of the program.

PROGRAM COLLATING SEQUENCE IS alphabet-name

The collating sequence used in this program is the collating sequence

associated with the specified alphabet-name.

 The collating sequence pertains to this program and to any programs that

this program might contain.

PROGRAM COLLATING SEQUENCE determines the truth value of the

following alphanumeric comparisons:

v Those explicitly specified in relation conditions

v Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any

merge or sort keys described with usage DISPLAY, unless the COLLATING

SEQUENCE phrase is specified in the MERGE or SORT statement.

The PROGRAM COLLATING SEQUENCE clause does not apply to DBCS

data items or data items of usage NATIONAL.

If the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC

collating sequence is used. (See Appendix C, “EBCDIC and ASCII collating

sequences,” on page 585.)

SEGMENT-LIMIT IS

The SEGMENT-LIMIT clause is syntax checked but has no effect on the

execution of the program.

priority-number

An integer ranging from 1 through 49. All sections with priority-numbers 0

Chapter 15. Configuration section 115

through 49 are fixed permanent segments. See “Procedures” on page 260

for a description of priority-numbers and segmentation support.

 Segmentation is not supported for programs compiled with the THREAD

option.

All of the OBJECT-COMPUTER paragraph is syntax checked, but only the

PROGRAM COLLATING SEQUENCE clause has an effect on the execution of the

program.

SPECIAL-NAMES paragraph

The SPECIAL-NAMES paragraph:

v Relates IBM-specified environment-names to user-defined mnemonic-names

v Relates alphabet-names to character sets or collating sequences

v Specifies symbolic characters

v Relates class names to sets of characters

v Specifies one or more currency sign values and defines a picture symbol to

represent each currency sign value in PICTURE clauses

v Specifies that the functions of the comma and decimal point are to be

interchanged in PICTURE clauses and numeric literals

The clauses in the SPECIAL-NAMES paragraph can appear in any order.

116 Enterprise COBOL for z/OS V4.1 Language Reference

Format: SPECIAL-NAMES paragraph

��

SPECIAL-NAMES.

�

environment-name-1

mnemonic-name-1

IS

environment-name-2

mnemonic-name-2

entry

1

IS

entry

1

�

�

�

�

ALPHABET

alphabet-name-1

STANDARD-1

IS

STANDARD-2

NATIVE

EBCDIC

literal-1

phrase

1

 �

�

�

SYMBOLIC

symbolic

CHARACTERS

IN

alphabet-name-2

 �

�

�

�

CLASS

class-name-1

literal-4

IS

THROUGH

literal-5

THRU

 �

�

�

CURRENCY

literal-6

SIGN

IS

PICTURE

SYMBOL

literal-7

WITH

 �

�
DECIMAL-POINT

COMMA

IS

(1)

.

 ��

Notes:

1 This separator period is optional when no clauses are selected. If you use any clauses, you must

code the period after the last clause.

Chapter 15. Configuration section 117

Fragments

�� ��

entry 1:

 ON condition-1

STATUS

IS

OFF

condition-2

STATUS

IS

OFF

condition-2

STATUS

IS

ON

condition-1

STATUS

IS

phrase 1:

�

THROUGH

literal-2

THRU

ALSO

literal-3

symbolic:

�

�

�

symbolic-character-1

integer-1

ARE

IS

environment-name-1

System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are shown in the following table.

 Table 5. Meanings of environment names

environment-

name-1 Meaning Allowed in

SYSIN

SYSIPT

System logical input unit ACCEPT

SYSOUT

SYSLIST

SYSLST

System logical output unit DISPLAY

SYSPUNCH

SYSPCH

System punch device DISPLAY

CONSOLE Console ACCEPT and DISPLAY

C01 through C12 Skip to channel 1 through channel

12, respectively

WRITE ADVANCING

CSP Suppress spacing WRITE ADVANCING

118 Enterprise COBOL for z/OS V4.1 Language Reference

Table 5. Meanings of environment names (continued)

environment-

name-1 Meaning Allowed in

S01 through S05 Pocket select 1 through 5 on

punch devices

WRITE ADVANCING

AFP-5A Advanced Function Printing™ WRITE ADVANCING

environment-name-2

A 1-byte user-programmable status indicator (UPSI) switch. Valid

specifications for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1, mnemonic-name-2

mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for

user-defined names. mnemonic-name-1 can be used in ACCEPT, DISPLAY,

and WRITE statements. mnemonic-name-2 can be referenced only in the SET

statement. mnemonic-name-2 can qualify condition-1 or condition-2 names.

 Mnemonic-names and environment-names need not be unique. If you

choose a mnemonic-name that is also an environment-name, its definition

as a mnemonic-name will take precedence over its definition as an

environment-name.

ON STATUS IS, OFF STATUS IS

UPSI switches process special conditions within a program, such as

year-beginning or year-ending processing. For example, at the beginning of

the procedure division, an UPSI switch can be tested; if it is ON, the

special branch is taken. (See “Switch-status condition” on page 284.)

condition-1, condition-2

Condition-names follow the rules for user-defined names. At least one

character must be alphabetic. The value associated with the

condition-name is considered to be alphanumeric. A condition-name can be

associated with the on status or off status of each UPSI switch specified.

 In the procedure division, the UPSI switch status is tested through the

associated condition-name. Each condition-name is the equivalent of a

level-88 item; the associated mnemonic-name, if specified, is considered the

conditional variable and can be used for qualification.

Condition-names specified in the SPECIAL-NAMES paragraph of a

containing program can be referenced in any contained program.

ALPHABET clause

The ALPHABET clause provides a means of relating an alphabet-name to a

specified character code set or collating sequence.

The related character code set or collating sequence can be used for alphanumeric

data, but not for DBCS or national data.

ALPHABET alphabet-name-1 IS

alphabet-name-1 specifies a collating sequence when used in:

v The PROGRAM COLLATING SEQUENCE clause of the object-computer

paragraph

v The COLLATING SEQUENCE phrase of the SORT or MERGE statement

alphabet-name-1 specifies a character code set when used in:

Chapter 15. Configuration section 119

v The FD entry CODE-SET clause

v The SYMBOLIC CHARACTERS clause

STANDARD-1

Specifies the ASCII character set.

STANDARD-2

Specifies the International Reference Version of ISO/IEC 646, 7-bit

coded character set for information interchange.

NATIVE

Specifies the native character code set. If the ALPHABET clause is

omitted, EBCDIC is assumed.

EBCDIC

Specifies the EBCDIC character set.

literal-1, literal-2, literal-3

Specifies that the collating sequence for alphanumeric data is

determined by the program, according to the following rules:

v The order in which literals appear specifies the ordinal number,

in ascending sequence, of the characters in this collating

sequence.

v Each numeric literal specified must be an unsigned integer.

v Each numeric literal must have a value that corresponds to a

valid ordinal position within the collating sequence in effect.

See Appendix C, “EBCDIC and ASCII collating sequences,” on

page 585 for the ordinal numbers for characters in the

single-byte EBCDIC and ASCII collating sequences.

v Each character in an alphanumeric literal represents that actual

character in the character set. (If the alphanumeric literal

contains more than one character, each character, starting with

the leftmost, is assigned a successively ascending position within

this collating sequence.)

v Any characters that are not explicitly specified assume positions

in this collating sequence higher than any of the explicitly

specified characters. The relative order within the collating

sequence of these unspecified characters is their relative order in

the collating sequence indicated by the COLLSEQ compiler

option.

v Within one alphabet-name clause, a given character must not be

specified more than once.

v Each alphanumeric literal associated with a THROUGH or ALSO

phrase must be one character in length.

v When the THROUGH phrase is specified, the contiguous

characters in the native character set beginning with the

character specified by literal-1 and ending with the character

specified by literal-2 are assigned successively ascending

positions in this collating sequence.

This sequence can be either ascending or descending within the

original native character set. That is, if ″Z″ THROUGH ″A″ is

specified, the ascending values, left-to-right, for the uppercase

letters are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

120 Enterprise COBOL for z/OS V4.1 Language Reference

v When the ALSO phrase is specified, the characters specified as

literal-1, literal-3, ... are assigned to the same position in this

collating sequence. For example, if you specify:

"D" ALSO "N" ALSO "%"

the characters D, N, and % are all considered to be in the same

position in the collating sequence.

v When the ALSO phrase is specified and alphabet-name-1 is

referenced in a SYMBOLIC CHARACTERS clause, only literal-1

is used to represent the character in the character set.

v The character that has the highest ordinal position in this

collating sequence is associated with the figurative constant

HIGH-VALUE. If more than one character has the highest

position because of specification of the ALSO phrase, the last

character specified (or defaulted to when any characters are not

explicitly specified) is considered to be the HIGH-VALUE

character for procedural statements such as DISPLAY and as the

sending field in a MOVE statement. (If the ALSO phrase

example given above were specified as the high-order characters

of this collating sequence, the HIGH-VALUE character would be

%.)

v The character that has the lowest ordinal position in this

collating sequence is associated with the figurative constant

LOW-VALUE. If more than one character has the lowest position

because of specification of the ALSO phrase, the first character

specified is the LOW-VALUE character. (If the ALSO phrase

example given above were specified as the low-order characters

of the collating sequence, the LOW-VALUE character would be

D.)

When literal-1, literal-2, or literal-3 is specified, the alphabet-name

must not be referred to in a CODE-SET clause (see “CODE-SET

clause” on page 185).

literal-1, literal-2, and literal-3 must be alphanumeric or numeric

literals. All must have the same category. A floating-point literal, a

national literal, a DBCS literal, or a symbolic-character figurative

constant must not be specified.

SYMBOLIC CHARACTERS clause

SYMBOLIC CHARACTERS symbolic-character-1

Provides a means of specifying one or more symbolic characters.

symbolic-character-1 is a user-defined word and must contain at least one

alphabetic character. The same symbolic-character can appear only once in

a SYMBOLIC CHARACTERS clause. The symbolic character can be a

DBCS user-defined word.

 The SYMBOLIC CHARACTERS clause is applicable only to single-byte

character sets. Each character represented is an alphanumeric character.

The internal representation of symbolic-character-1 is the internal

representation of the character that is represented in the specified character

set. The following rules apply:

v The relationship between each symbolic-character-1 and the corresponding

integer-1 is by their position in the SYMBOLIC CHARACTERS clause.

Chapter 15. Configuration section 121

The first symbolic-character-1 is paired with the first integer-1; the second

symbolic-character-1 is paired with the second integer-1; and so forth.

v There must be a one-to-one correspondence between occurrences of

symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC

CHARACTERS clause.

v If the IN phrase is specified, integer-1 specifies the ordinal position of the

character that is represented in the character set named by

alphabet-name-2. This ordinal position must exist.

v If the IN phrase is not specified, symbolic-character-1 represents the

character whose ordinal position in the native character set is specified

by integer-1.

Ordinal positions are numbered starting from 1.

CLASS clause

CLASS class-name-1 IS

Provides a means for relating a name to the specified set of characters

listed in that clause. class-name-1 can be referenced only in a class

condition. The characters specified by the values of the literals in this

clause define the exclusive set of characters of which this class consists.

 The class-name in the CLASS clause can be a DBCS user-defined word.

literal-4, literal-5

Must be category numeric or alphanumeric, and both must be of the same

category.

 If numeric, literal-4 and literal-5 must be unsigned integers and must have

a value that is greater than or equal to 1 and less than or equal to the

number of characters in the alphabet specified. Each number corresponds

to the ordinal position of each character in the single-byte EBCDIC or

ASCII collating sequence.

If alphanumeric, literal-4 and literal-5 are an actual single-byte EBCDIC

character.

literal-4 and literal-5 must not specify a symbolic-character figurative

constant. If the value of the alphanumeric literal contains multiple

characters, each character in the literal is included in the set of characters

identified by class-name.

Floating-point literals cannot be used in the CLASS clause.

If the alphanumeric literal is associated with a THROUGH phrase, the

literal must be one character in length.

THROUGH, THRU

THROUGH and THRU are equivalent. If THROUGH is specified,

class-name includes those characters that begin with the value of

literal-4 and that end with the value of literal-5. In addition, the

characters specified by a THROUGH phrase can be in either

ascending or descending order.

122 Enterprise COBOL for z/OS V4.1 Language Reference

CURRENCY SIGN clause

The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE

character-strings contain a currency symbol. A currency symbol represents a currency

sign value that is:

v Inserted in such data items when they are used as receiving items

v Removed from such data items when they are used as sending items for a

numeric or numeric-edited receiver

Typically, currency sign values identify the monetary units stored in a data item.

For example: ’$’, ’EUR’, ’CHF’, ’JPY’, ’HK$’, ’HKD’, or X’9F’ (hexadecimal code

point in some EBCDIC code pages for ph conref=″lrsymbols.dita#lrm/euro″>, the

Euro currency sign). For details on programming techniques for handling the Euro,

see the Enterprise COBOL Programming Guide.

The CURRENCY SIGN clause specifies a currency sign value and the currency

symbol used to represent that currency sign value in a PICTURE clause.

The SPECIAL-NAMES paragraph can contain multiple CURRENCY SIGN clauses.

Each CURRENCY SIGN clause must specify a different currency symbol. Unlike all

other PICTURE clause symbols, currency symbols are case sensitive. For example,

’D’ and ’d’ specify different currency symbols.

CURRENCY SIGN IS literal-6

literal-6 must be an alphanumeric literal. literal-6 must not be a figurative

constant or a null-terminated literal. literal-6 must not contain a DBCS

character.

 If the PICTURE SYMBOL phrase is not specified, literal-6:

v Specifies both a currency sign value and the currency symbol for this

currency sign value

v Must be a single character

v Must not be any of the following:

– Digits 0 through 9

– Alphabetic characters A, B, C, D, E, G, N, P, R, S, V, X, Z, their

lowercase equivalents, or the space

– Special characters + - , . * / ; () " = ’ (plus sign, minus sign, comma,

period, asterisk, slash, semicolon, left parenthesis, right parenthesis,

quotation mark, equal sign, apostrophe)
v Can be one of the following lowercase alphabetic characters: f, h, i, j, k, l,

m, o, q, t, u, w, y

If the PICTURE SYMBOL phrase is specified, literal-6:

v Specifies a currency sign value. literal-7 in the PICTURE SYMBOL phrase

specifies the currency symbol for this currency sign value.

v Can consist of one or more characters.

v Must not contain any of the following:

– Digits 0 through 9

– Special characters + - . ,

PICTURE SYMBOL literal-7

Specifies a currency symbol that can be used in a PICTURE clause to

represent the currency sign value specified by literal-6.

Chapter 15. Configuration section 123

literal-7 must be an alphanumeric literal consisting of one single-byte

character. literal-7 must not be any of the following:

v A figurative constant

v Digits 0 through 9

v Alphabetic characters A, B, C, D, E, G, N, P, R, S, V, X, Z, their lowercase

equivalents, or the space

v Special characters + - , . * / ; () " = ’

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY

compiler options are ignored. If the CURRENCY SIGN clause is not specified and

the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the

default currency sign value and currency symbol. For more information about the

CURRENCY and NOCURRENCY compiler options, see the Enterprise COBOL

Programming Guide.

DECIMAL-POINT IS COMMA clause

DECIMAL-POINT IS COMMA

Exchanges the functions of the period and the comma in PICTURE

character-strings and in numeric literals.

REPOSITORY paragraph

The REPOSITORY paragraph is used in a program or class definition to identify all

the object-oriented classes that are intended to be referenced in that program or

class definition. Optionally, the REPOSITORY paragraph defines associations

between class-names and external class-names.

Format: REPOSITORY paragraph

��

�

 REPOSITORY.

CLASS

class-name-1

external-class-name-1

IS

java-array-class-reference

 ��

class-name-1

A user-defined word that identifies the class.

external-class-name-1

An alphanumeric literal containing a name that enables a COBOL program

to define or access classes with class-names that are defined using Java

rules of formation.

 The name must conform to the rules of formation for a fully qualified Java

class-name. If the class is part of a Java package, external-class-name-1 must

specify the fully qualified name of the package, followed by a period,

followed by the simple name of the Java class.
See Java Language Specification, Second Edition, by Gosling et al., for Java

class-name formation rules.

124 Enterprise COBOL for z/OS V4.1 Language Reference

java-array-class-reference

A reference that enables a COBOL program to access a class that represents

an array object, where the elements of the array are themselves objects.

java-array-class-reference must be an alphanumeric literal with content in the

following format:

Format

�� jobjectArray

:

external-class-name-2
 ��

jobjectArray

Specifies a Java object array class.

: A required separator when external-class-name-2 is specified. The

colon must not be preceded or followed by space characters.

external-class-name-2

The external class-name of the type of the elements of the array.

external-class-name-2 must follow the same rules of formation as

external-class-name-1.

When the repository entry specifies jobjectArray without the colon

separator and external-class-name-2, the elements of the object array are of

type java.lang.Object.

General rules

1. All referenced class-names must have an entry in the repository paragraph of

the COBOL program or class definition that contains the reference. You can

specify a given class-name only once in a given repository paragraph.

2. In program definitions, the repository paragraph can be specified only in the

outermost program.

3. The repository paragraph of a COBOL class definition can optionally contain an

entry for the name of the class itself, but this entry is not required. Such an

entry can be used to specify an external class-name that uses non-COBOL

characters or that specifies a fully package-qualified class-name when a COBOL

class is to be part of a Java package.

4. Entries in a class repository paragraph apply to the entire class definition,

including all methods introduced by that class. Entries in a program repository

paragraph apply to the entire program, including its contained programs.

Identifying and referencing a class

An external-class-name is used to identify and reference a given class from outside

the class definition that defines the class. The external class-name is determined by

using the contents of external-class-name-1, external-class-name-2, or class-name-1 (as

specified in the repository paragraph of a class), as described below:

1. external-class-name-1 and external-class-name-2 are used directly, without

translation. They are processed in a case-sensitive manner.

2. class-name-1 is used if external-class-name-1 or java-array-class-reference is not

specified. To create an external name that identifies the class and conforms to

Java rules of formation, class-name-1 is processed as follows:

Chapter 15. Configuration section 125

v The name is converted to uppercase.

v Hyphens are translated to zero.

v If the first character of the name is a digit, it is converted as follows:

– Digits 1 though 9 are changed to A through I.

– 0 is changed to J.

The class can be implemented in Java or COBOL.

When referencing a class that is part of a Java package, external-class-name-1 must

be specified and must give the fully qualified Java class-name.

For example, the repository entry

Repository.

 Class JavaException is "java.lang.Exception"

defines local class-name JavaException for referring to the fully qualified

external-class-name ″java.lang.Exception.″

When defining a COBOL class that is to be part of a Java package, specify an entry

in the repository paragraph of that class itself, giving the full Java

package-qualified name as the external class-name.

126 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 16. Input-Output section

The input-output section of the environment division contains two paragraphs:

v FILE-CONTROL paragraph

v I-O-CONTROL paragraph

The exact contents of the input-output section depend on the file organization and

access methods used. See “ORGANIZATION clause” on page 137 and “ACCESS

MODE clause” on page 140.

Program input-output section

The same rules apply to program and method I-O sections.

Class input-output section

The input-output section is not valid for class definitions.

Method input-output section

The same rules apply to program and method I-O sections.

Format: input-output section

��

INPUT-OUTPUT SECTION.

FILE-CONTROL.

�

file-control-paragraph

�

�

�

I-O-CONTROL.

i-o-control-paragraph

.

 ��

FILE-CONTROL

The keyword FILE-CONTROL identifies the file-control paragraph. This

keyword can appear only once, at the beginning of the FILE-CONTROL

paragraph. It must begin in Area A and be followed by a separator period.

 The keyword FILE-CONTROL and the period can be omitted if no

file-control-paragraph is specified and there are no files defined in the

program.

file-control-paragraph

Names the files and associates them with the external data sets.

 Must begin in Area B with a SELECT clause. It must end with a separator

period. See “FILE-CONTROL paragraph” on page 128.

file-control-paragraph can be omitted if there are no files defined in the

program, even if the FILE-CONTROL keyword is specified.

I-O-CONTROL

The keyword I-O-CONTROL identifies the I-O-CONTROL paragraph.

© Copyright IBM Corp. 1991, 2007 127

i-o-control-paragraph

Specifies information needed for efficient transmission of data between the

external data set and the COBOL program. The series of entries must end

with a separator period. See “I-O-CONTROL paragraph” on page 146.

FILE-CONTROL paragraph

The FILE-CONTROL paragraph associates each file in the COBOL program with

an external data set, and specifies file organization, access mode, and other

information.

The following are the formats for the FILE-CONTROL paragraph:

v Sequential file entries

v Indexed file entries

v Relative file entries

v Line-sequential file entries

The table below lists the different type of files available to programs and methods.

 Table 6. Types of files

File organization Access method

Sequential QSAM, VSAM1

Relative VSAM1

Indexed VSAM1

Line sequential2 Text stream I-O

1. VSAM does not support HFS files.

2. Line-sequential support is limited to HFS files.

The FILE-CONTROL paragraph begins with the word FILE-CONTROL followed

by a separator period. It must contain one and only one entry for each file

described in an FD or SD entry in the data division.

Within each entry, the SELECT clause must appear first. The other clauses can

appear in any order, except that the PASSWORD clause for indexed files, if

specified, must immediately follow the RECORD KEY or ALTERNATE RECORD

KEY data-name with which it is associated.

128 Enterprise COBOL for z/OS V4.1 Language Reference

Format 1: sequential-file-control-entry

��

SELECT

OPTIONAL

file-name-1

�

ASSIGN

assignment-name-1

TO

�

�
RESERVE

integer

AREA

AREAS

SEQUENTIAL

ORGANIZATION

IS

 �

�
PADDING

data-name-5

CHARACTER

IS

literal-2

 �

�
RECORD DELIMITER

STANDARD-1

IS

assignment-name-2

ACCESS

SEQUENTIAL

MODE

IS

 �

�
PASSWORD

data-name-6

IS

STATUS

data-name-1

FILE

IS

data-name-8

 �

� . ��

Chapter 16. Input-Output section 129

Format 2: indexed-file-control-entry

��

SELECT

OPTIONAL

file-name-1

�

ASSIGN

assignment-name-1

TO

�

�
RESERVE

integer

AREA

AREAS

ORGANIZATION

IS

 INDEXED �

�
ACCESS

SEQUENTIAL

MODE

IS

RANDOM

DYNAMIC

 RECORD data-name-2

KEY

IS
 �

�

PASSWORD

data-name-6

IS

�

entry

1

�

�
STATUS

data-name-1

FILE

IS

data-name-8

 . ��

entry 1:

 ALTERNATE

RECORD

KEY

IS
 data-name-3

DUPLICATES

WITH

 �

�
PASSWORD

data-name-7

IS

130 Enterprise COBOL for z/OS V4.1 Language Reference

Format 3: relative-file-control-entry

��

SELECT

OPTIONAL

file-name-1

�

ASSIGN

assignment-name-1

TO

�

�
RESERVE

integer

AREA

AREAS

ORGANIZATION

IS

 RELATIVE �

�
ACCESS

SEQUENTIAL

MODE

IS

RELATIVE

data-name-4

KEY

IS

RANDOM

RELATIVE

data-name-4

DYNAMIC

KEY

IS

 �

�
PASSWORD

data-name-6

IS

STATUS

data-name-1

FILE

IS

data-name-8

 �

� . ��

Format 4: line-sequential-file-control-entry

��

SELECT

OPTIONAL

file-name-1

�

ASSIGN

assignment-name-1

TO

�

� LINE SEQUENTIAL

ORGANIZATION

IS

ACCESS

SEQUENTIAL

MODE

IS

 �

�
STATUS

data-name-1

FILE

IS

 . ��

Chapter 16. Input-Output section 131

SELECT clause

The SELECT clause identifies a file in the COBOL program to be associated with

an external data set.

SELECT OPTIONAL

Can be specified only for files opened in the input, I-O, or extend mode.

You must specify SELECT OPTIONAL for those input files that are not

necessarily available each time the object program is executed. For more

information, see the Enterprise COBOL Programming Guide.

file-name-1

Must be identified by an FD or SD entry in the data division. A file-name

must conform to the rules for a COBOL user-defined name, must contain

at least one alphabetic character, and must be unique within this program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can

follow the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all

file-control entries in the run unit that reference this file connector must have the

same specification for the OPTIONAL phrase.

ASSIGN clause

The ASSIGN clause associates the name of a file in a program with the actual

external name of the data file.

assignment-name-1

Identifies the external data file. It can be specified as a name or as an

alphanumeric literal.

 assignment-name-1 is not the name of a data item, and assignment-name-1

cannot be contained in a data item. It is just a character string.

Any assignment-name after the first is syntax checked, but has no effect on

the execution of the program.

assignment-name-1 has the following formats:

Format: assignment-name for QSAM files

��

label-

S-
 name ��

Format: assignment-name for VSAM sequential file

��

label-
 AS- name ��

132 Enterprise COBOL for z/OS V4.1 Language Reference

Format: assignment-name for line-sequential, VSAM indexed, or VSAM

relative file

��

label-
 name ��

label- Documents (for the programmer) the device and device class to which a

file is assigned. It must end in a hyphen; the specified value is not

otherwise checked. It has no effect on the execution of the program. If

specified, it must end with a hyphen.

S- For QSAM files, the S- (organization) field can be omitted.

AS- For VSAM sequential files, the AS- (organization) field must be specified.

 For VSAM indexed and relative files, the organization field must be

omitted.

name A required field that specifies the external name for this file.

 It must be either the name specified in the DD statement for this file or the

name of an environment variable that contains file allocation information.

For details on specifying an environment variable, see “Assignment name

for environment variable.”

name must conform to the following rules of formation:

v If assignment-name-1 is a user-defined word:

– The name can contain from one to eight characters.

– The name can contain the characters A-Z, a-z, and 0-9.

– The leading character must be alphabetic.
v If assignment-name-1 is a literal:

– The name can contain from one to eight characters.

– The name can contain the characters A-Z, a-z, 0-9, @, #, and $.

– The leading character must be alphabetic.

For both user-defined words and literals, the compiler folds name to

uppercase to form the ddname for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external

file connector, all file-control entries in the run unit that reference this file

connector must have a consistent specification for assignment-name-1 in the ASSIGN

clause. For QSAM files and VSAM indexed and relative files, the name specified

on the first assignment-name-1 must be identical. For VSAM sequential files, it must

be specified as AS-name.

Assignment name for environment variable

The name component of assignment-name-1 is initially treated as a ddname. If no file

has been allocated using this ddname, then name is treated as an environment

variable.

Chapter 16. Input-Output section 133

The environment variable name must be defined using only uppercase because the

COBOL compiler automatically folds the external file-name to uppercase.

If this environment variable exists and contains a valid PATH or DSN option

(described below), then the file is dynamically allocated using the information

supplied by that option.

If the environment variable does not contain a valid PATH or DSN option or if the

dynamic allocation fails, then attempting to open the file results in file status 98.

The contents of the environment variable are checked at each OPEN statement. If a

file was dynamically allocated by a previous OPEN statement and the contents of

the environment variable have changed since the previous OPEN, then the

previous allocation is dynamically deallocated prior to dynamically reallocating the

file using the options currently set in the environment variable.

When the run unit terminates, the COBOL runtime system automatically

deallocates all automatically generated dynamic allocations.

Environment variable contents for a QSAM file

For a QSAM file, the environment variable must contain either a DSN or a PATH

option in the format shown below.

Format: environment variable for QSAM files, DSN option

�� DSN(data-set-name)

(member-name)

NEW

OLD

SHR

MOD

TRACKS

CYL

 �

�
SPACE(nnn,mmmm)

VOL(volume-serial)

UNIT(type)
 �

�
KEEP

DELETE

CATALOG

UNCATALOG

STORCLAS(storage-class)
 �

�
MGMTCLAS(management-class)

DATACLAS(data-class)
 ��

data-set-name must be fully qualified. The data set must not be a temporary data

set; that is, it must not start with an ampersand.

After data-set-name or member-name, the data set attributes can follow in any order.

The options that follow DSN (such as NEW or TRACKS) must be separated by a

comma or by one or more blanks.

134 Enterprise COBOL for z/OS V4.1 Language Reference

Blanks at the beginning and end of the environment variable contents are ignored.

You must not code blanks within the parentheses or between a keyword and the

left parenthesis that immediately follows the keyword.

COBOL does not provide a default for data set disposition (NEW, OLD, SHR, or

MOD); however, your operating system might provide one. To avoid unexpected

results when opening the file, you should always specify NEW, OLD, SHR, or

MOD with the DSN option when you use environment variables for dynamic

allocation of QSAM files.

For information about specifying the values of the data set attributes, see the

description of the DD statement in the z/OS MVS™ JCL Reference.

Format: environment variable for QSAM files, PATH option

�� PATH(path-name) ��

path-name must be an absolute path name; that is, it must begin with a slash. For

more information about specifying path-name, see the description of the PATH

parameter in z/OS MVS JCL Reference.

Blanks at the beginning and end of the environment variable contents are ignored.

You must not code blanks within the parentheses or between a keyword and the

left parenthesis that immediately follows the keyword.

Environment variable contents for a line-sequential file

For a line-sequential file, the environment variable must contain a PATH option in

the following format:

Format: environment variable for line-sequential files

�� PATH(path-name) ��

path-name must be an absolute path name; that is, it must begin with a slash. For

more information about specifying path-name, see the description of the PATH

parameter in z/OS MVS JCL Reference.

Blanks at the beginning and end of the environment variable contents are ignored.

You must not code blanks within the parentheses or between a keyword and the

left parenthesis that immediately follows the keyword.

Environment variable contents for a VSAM file

For an indexed, relative, or sequential VSAM file, the environment variable must

contain a DSN option in the following format:

Chapter 16. Input-Output section 135

Format: environment variable for VSAM files, DSN option

�� DSN(data-set-name)

OLD

SHR

 ��

data-set-name specifies the data set name for the base cluster. data-set-name must be

fully qualified and must reference an existing predefined and cataloged VSAM

data set.

If an indexed file has alternate indexes, then additional environment variables

must be defined that contain DSN options (as above) for each of the alternate

index paths. The names of these environment variables must follow the same

naming convention as used for alternate index ddnames. That is:

v The environment variable name for each alternate index path is formed by

concatenating the base cluster environment variable name with an integer,

beginning with 1 for the path associated with the first alternate index and

incrementing by 1 for the path associated with each successive alternate index.

(For example, if the environment variable name for the base cluster is CUST,

then the environment variable names for the alternate indexes would be CUST1,

CUST2, ..., .)

v If the length of the base cluster environment variable name is already eight

characters, then the environment variable names for the alternate indexes are

formed by truncating the base cluster portion of the environment variable name

on the right to reduce the concatenated result to eight characters. (For example,

if the environment variable name for the base cluster is DATAFILE, then the

environment variable names for the alternate clusters would be DATAFIL1,

DATAFIL2, ..., .)

The options that follow DSN (such as SHR) must be separated by a comma or by

one or more blanks.

Blanks at the beginning and end of the environment variable contents are ignored.

You must not code blanks within the parentheses or between a keyword and the

left parenthesis that immediately follows the keyword.

COBOL does not provide a default for data set disposition (OLD or SHR);

however, your operating system might provide one. To avoid unexpected results

when opening the file, you should always specify OLD or SHR with the DSN

option when you use environment variables for dynamic allocation of VSAM files.

RESERVE clause

The RESERVE clause allows the user to specify the number of input/output

buffers to be allocated at run time for the files.

The RESERVE clause is not supported for line-sequential files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from

the DD statement. If none is specified, the system default is taken.

136 Enterprise COBOL for z/OS V4.1 Language Reference

If the file connector referenced by file-name-1 in the SELECT clause is an external

file connector, all file-control entries in the run unit that reference this file

connector must have the same value for the integer specified in the RESERVE

clause.

ORGANIZATION clause

The ORGANIZATION clause identifies the logical structure of the file. The logical

structure is established at the time the file is created and cannot subsequently be

changed.

You can find a discussion of the different ways in which data can be organized

and of the different access methods that you can use to retrieve the data under

“File organization and access modes” on page 141.

ORGANIZATION IS SEQUENTIAL (format 1)

A predecessor-successor relationship among the records in the file is

established by the order in which records are placed in the file when it is

created or extended.

ORGANIZATION IS INDEXED (format 2)

The position of each logical record in the file is determined by indexes

created with the file and maintained by the system. The indexes are based

on embedded keys within the file’s records.

ORGANIZATION IS RELATIVE (format 3)

The position of each logical record in the file is determined by its relative

record number.

ORGANIZATION IS LINE SEQUENTIAL (format 4)

A predecessor-successor relationship among the records in the file is

established by the order in which records are placed in the file when it is

created or extended. A record in a LINE SEQUENTIAL file can consist only

of printable characters.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION

IS SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external

file connector, the same organization must be specified for all file-control entries in

the run unit that reference this file connector.

File organization

You establish the organization of the data when you create a file. Once the file has

been created, you can expand the file, but you cannot change the organization.

Sequential organization

The physical order in which the records are placed in the file determines the

sequence of records. The relationships among records in the file do not change,

except that the file can be extended. Records can be fixed length or variable length;

there are no keys.

Each record in the file except the first has a unique predecessor record; and each

record except the last has a unique successor record.

Chapter 16. Input-Output section 137

Indexed organization

Each record in the file has one or more embedded keys (referred to as key data

items); each key is associated with an index. An index provides a logical path to

the data records according to the contents of the associated embedded record key

data items. Indexed files must be direct-access storage files. Records can be fixed

length or variable length.

Each record in an indexed file must have an embedded prime key data item. When

records are inserted, updated, or deleted, they are identified solely by the values of

their prime keys. Thus, the value in each prime key data item must be unique and

must not be changed when the record is updated. You tell COBOL the name of the

prime key data item in the RECORD KEY clause of the file-control paragraph.

In addition, each record in an indexed file can contain one or more embedded

alternate key data items. Each alternate key provides another means of identifying

which record to retrieve. You tell COBOL the name of any alternate key data items

on the ALTERNATE RECORD KEY clause of the file-control paragraph.

The key used for any specific input-output request is known as the key of reference.

Relative organization

Think of the file as a string of record areas, each of which contains a single record.

Each record area is identified by a relative record number; the access method stores

and retrieves a record based on its relative record number. For example, the first

record area is addressed by relative record number 1 and the 10th is addressed by

relative record number 10. The physical sequence in which the records were placed

in the file has no bearing on the record area in which they are stored, and thus no

effect on each record’s relative record number. Relative files must be direct-access

files. Records can be fixed length or variable length.

Line-sequential organization

In a line-sequential file, each record contains a sequence of characters that ends

with a record delimiter. The delimiter is not counted in the length of the record.

When a record is written, any trailing blanks are removed prior to adding the

record delimiter. The characters in the record area from the first character up to

and including the added record delimiter constitute one record and are written to

the file.

When a record is read, characters are read one at a time into the record area until:

v The first record delimiter is encountered. The record delimiter is discarded and

the remainder of the record is filled with spaces.

v The entire record area is filled with characters. If the first unread character is the

record delimiter, it is discarded. Otherwise, the first unread character becomes

the first character read by the next READ statement.

v End-of-file is encountered. The remainder of the record area is filled with spaces.

Records written to line-sequential files must consist of data items described as

USAGE DISPLAY or DISPLAY-1 or a combination of DISPLAY and DISPLAY-1

items. A zoned decimal data item either must be unsigned or, if signed, must be

declared with the SEPARATE CHARACTER phrase.

138 Enterprise COBOL for z/OS V4.1 Language Reference

|

A line-sequential file must contain only printable characters and the following

control characters:

v Alarm (X’2F’)

v Backspace (X’16’)

v Form feed (X’0C’)

v New-line (X’15’)

v Carriage-return (X’0D’)

v Horizontal tab (X’05’)

v Vertical tab (X’0B’)

v DBCS shift-out (X’0E’)

v DBCS shift-in (X’0F’)

New-line characters are processed as record delimiters. Other control characters are

treated by COBOL as part of the data for the records in the file.

The following are not supported for line-sequential files:

v APPLY WRITE-ONLY clause

v CODE-SET clause

v DATA RECORDS clause

v LABEL RECORDS clause

v LINAGE clause

v I-O phrase of the OPEN statement

v PADDING CHARACTER clause

v RECORD CONTAINS 0 clause

v RECORD CONTAINS clause format 2 (for example: RECORD CONTAINS 100 to

200 CHARACTERS)

v RECORD DELIMITER clause

v RECORDING MODE clause

v RERUN clause

v RESERVE clause

v REVERSED phrase of the OPEN statement

v REWRITE statement

v VALUE OF clause of file description entry

v WRITE ... AFTER ADVANCING mnemonic-name

v WRITE ... AT END-OF-PAGE

v WRITE ... BEFORE ADVANCING

PADDING CHARACTER clause

The PADDING CHARACTER clause specifies a character to be used for block

padding on sequential files.

data-name-5

Must be defined in the data division as a one-character data item of

category alphabetic, alphanumeric, or national, and must not be defined in

the file section. data-name-5 can be qualified.

literal-2

Must be a one-character alphanumeric literal or national literal.

Chapter 16. Input-Output section 139

For external files, data-name-5, if specified, must reference an external data item.

The PADDING CHARACTER clause is syntax checked, but has no effect on the

execution of the program.

RECORD DELIMITER clause

The RECORD DELIMITER clause indicates the method of determining the length

of a variable-length record on an external medium. It can be specified only for

variable-length records.

STANDARD-1

If STANDARD-1 is specified, the external medium must be a magnetic tape

file.

assignment-name-2

Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but has no effect on the

execution of the program.

ACCESS MODE clause

The ACCESS MODE clause defines the manner in which the records of the file are

made available for processing. If the ACCESS MODE clause is not specified,

sequential access is assumed.

For sequentially accessed relative files, the ACCESS MODE clause does not have to

precede the RELATIVE KEY clause.

ACCESS MODE IS SEQUENTIAL

Can be specified in all formats.

Format 1: sequential

Records in the file are accessed in the sequence established when

the file is created or extended. Format 1 supports only sequential

access.

Format 2: indexed

Records in the file are accessed in the sequence of ascending record

key values according to the collating sequence of the file.

Format 3: relative

Records in the file are accessed in the ascending sequence of

relative record numbers of existing records in the file.

Format 4: line-sequential

Records in the file are accessed in the sequence established when

the file is created or extended. Format 4 supports only sequential

access.

ACCESS MODE IS RANDOM

Can be specified in formats 2 and 3 only.

Format 2: indexed

The value placed in a record key data item specifies the record to

be accessed.

140 Enterprise COBOL for z/OS V4.1 Language Reference

Format 3: relative

The value placed in a relative key data item specifies the record to

be accessed.

ACCESS MODE IS DYNAMIC

Can be specified in formats 2 and 3 only.

Format 2: indexed

Records in the file can be accessed sequentially or randomly,

depending on the form of the specific input-output statement used.

Format 3: relative

Records in the file can be accessed sequentially or randomly,

depending on the form of the specific input-output request.

File organization and access modes

File organization is the permanent logical structure of the file. You tell the computer

how to retrieve records from the file by specifying the access mode (sequential,

random, or dynamic). For details on the access methods and data organization, see

Table 6 on page 128.

Sequentially organized data can be accessed only sequentially; however, data that

has indexed or relative organization can be accessed in any of the three access

modes.

Access modes

Sequential-access mode

Allows reading and writing records of a file in a serial manner; the order

of reference is implicitly determined by the position of a record in the file.

Random-access mode

Allows reading and writing records in a programmer-specified manner; the

control of successive references to the file is expressed by specifically

defined keys supplied by the user.

Dynamic-access mode

Allows the specific input-output statement to determine the access mode.

Therefore, records can be processed sequentially or randomly or both.

For external files, every file-control entry in the run unit that is associated with

that external file must specify the same access mode. In addition, for relative file

entries, data-name-4 must reference an external data item, and the RELATIVE KEY

phrase in each associated file-control entry must reference that same external data

item.

Relationship between data organizations and access modes

This section discusses which access modes are valid for each type of data

organization.

Sequential files

Files with sequential organization can be accessed only sequentially. The

sequence in which records are accessed is the order in which the records

were originally written.

Line-sequential files

Same as for sequential files (described above).

Chapter 16. Input-Output section 141

Indexed files

All three access modes are allowed.

 In the sequential access mode, the sequence in which records are accessed

is the ascending order of the record key value. The order of retrieval

within a set of records that have duplicate alternate record key values is

the order in which records were written into the set.

In the random access mode, you control the sequence in which records are

accessed. A specific record is accessed by placing the value of its key or

keys in the RECORD KEY data item (and the ALTERNATE RECORD KEY

data item). If a set of records has duplicate alternate record key values,

only the first record written is available.

In the dynamic access mode, you can change as needed from sequential

access to random access by using appropriate forms of input-output

statements.

Relative files

All three access modes are allowed.

 In the sequential access mode, the sequence in which records are accessed

is the ascending order of the relative record numbers of all records that

exist within the file.

In the random access mode, you control the sequence in which records are

accessed. A specific record is accessed by placing its relative record number

in the RELATIVE KEY data item; the RELATIVE KEY must not be defined

within the record description entry for the file.

In the dynamic access mode, you can change as needed from sequential

access to random access by using appropriate forms of input-output

statements.

RECORD KEY clause

The RECORD KEY clause (format 2) specifies the data item within the record that

is the prime RECORD KEY for an indexed file. The values contained in the prime

RECORD KEY data item must be unique among records in the file.

data-name-2

The prime RECORD KEY data item.

 data-name-2 must be described within a record description entry associated

with the file. The key can have any of the following data categories:

v Alphanumeric

v Numeric

v Numeric-edited (with usage DISPLAY or NATIONAL)

v Alphanumeric-edited

v Alphabetic

v External floating-point (with usage DISPLAY or NATIONAL)

v Internal floating-point

v DBCS

v National

v National-edited

Regardless of the category of the key data item, the key is treated as an

alphanumeric item. The collation order of the key is determined by the

142 Enterprise COBOL for z/OS V4.1 Language Reference

item’s binary value order when the key is used for locating a record or for

setting the file position indicator associated with the file.

data-name-2 cannot be a windowed date field.

data-name-2 must not reference a group item that contains a

variable-occurrence data item. data-name-2 can be qualified.

If the indexed file contains variable-length records, data-name-2 need not be

contained within the minimum record size specified for the file. That is,

data-name-2 can exceed the minimum record size, but this is not

recommended.

The data description of data-name-2 and its relative location within the

record must be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need be

described in only one of those record description entries. The identical character

positions referenced by data-name-2 in any one record description entry are

implicitly referenced as keys for all other record description entries for that file.

For files defined with the EXTERNAL clause, all file description entries in the run

unit that are associated with the file must have data description entries for

data-name-2 that specify the same relative location in the record and the same

length.

ALTERNATE RECORD KEY clause

The ALTERNATE RECORD KEY clause (format 2) specifies a data item within the

record that provides an alternative path to the data in an indexed file.

data-name-3

An ALTERNATE RECORD KEY data item.

 data-name-3 must be described within a record description entry associated

with the file. The key can have any of the following data categories:

v Alphanumeric

v Numeric

v Numeric-edited (with usage DISPLAY or NATIONAL)

v Alphanumeric-edited

v Alphabetic

v External floating-point (with usage DISPLAY or NATIONAL)

v Internal floating-point

v DBCS

v National

v National-edited

Regardless of the category of the key data item, the key is treated as an

alphanumeric item. The collation order of the key is determined by the

item’s binary value order when the key is used for locating a record or for

setting the file position indicator associated with the file.

data-name-3 cannot be a windowed date field.

data-name-3 must not reference a group item that contains a

variable-occurrence data item. data-name-3 can be qualified.

Chapter 16. Input-Output section 143

If the indexed file contains variable-length records, data-name-3 need not be

contained within the minimum record size specified for the file. That is,

data-name-3 can exceed the minimum record size, but this is not

recommended.

If the file has more than one record description entry, data-name-3 need be

described in only one of these record description entries. The identical

character positions referenced by data-name-3 in any one record description

entry are implicitly referenced as keys for all other record description

entries of that file.

The data description of data-name-3 and its relative location within the

record must be the same as those used when the file was defined. The

number of alternate record keys for the file must also be the same as that

used when the file was created.

The leftmost character position of data-name-3 must not be the same as the

leftmost character position of the prime RECORD KEY or of any other

ALTERNATE RECORD KEY.

If the DUPLICATES phrase is not specified, the values contained in the

ALTERNATE RECORD KEY data item must be unique among records in the file.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE

RECORD KEY data item can be duplicated within any records in the file. In

sequential access, the records with duplicate keys are retrieved in the order in

which they were placed in the file. In random access, only the first record written

in a series of records with duplicate keys can be retrieved.

For files defined with the EXTERNAL clause, all file description entries in the run

unit that are associated with the file must have data description entries for

data-name-3 that specify the same relative location in the record and the same

length. The file description entries must specify the same number of alternate

record keys and the same DUPLICATES phrase.

RELATIVE KEY clause

The RELATIVE KEY clause (format 3) identifies a data-name that specifies the

relative record number for a specific logical record within a relative file.

data-name-4

Must be defined as an unsigned integer data item whose description does

not contain the PICTURE symbol P. data-name-4 must not be defined in a

record description entry associated with this relative file. That is, the

RELATIVE KEY is not part of the record. data-name-4 can be qualified.

 data-name-4 cannot be a windowed date field.

data-name-4 is required for ACCESS IS SEQUENTIAL only when the START

statement is to be used. It is always required for ACCESS IS RANDOM

and ACCESS IS DYNAMIC. When the START statement is issued, the

system uses the contents of the RELATIVE KEY data item to determine the

record at which sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued,

the value is ignored and processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify

the RELATIVE KEY clause for that file.

144 Enterprise COBOL for z/OS V4.1 Language Reference

For external files, data-name-4 must reference an external data item, and the

RELATIVE KEY phrase in each associated file-control entry must reference

that same external data item in each case.

The ACCESS MODE IS RANDOM clause must not be specified for

file-names specified in the USING or GIVING phrase of a SORT or MERGE

statement.

PASSWORD clause

The PASSWORD clause controls access to files.

data-name-6, data-name-7

Password data items. Each must be defined in the working-storage section

of the data division as a data item of category alphabetic, alphanumeric, or

alphanumeric-edited. The first eight characters are used as the password; a

shorter field is padded with blanks to eight characters. Each password data

item must be equivalent to one that is externally defined.

When the PASSWORD clause is specified, at object time the PASSWORD data item

must contain a valid password for this file before the file can be successfully

opened.

Format 1 considerations:

The PASSWORD clause is not valid for QSAM sequential files.

Format 2 and 3 considerations:

The PASSWORD clause, if specified, must immediately follow the RECORD KEY

or ALTERNATE RECORD KEY data-name with which it is associated.

For indexed files that have been completely predefined to VSAM, only the

PASSWORD data item for the RECORD KEY need contain the valid password

before the file can be successfully opened at file creation time.

For any other type of file processing (including the processing of dynamic calls at

file creation time through a COBOL runtime subroutine), every PASSWORD data

item for the file must contain a valid password before the file can be successfully

opened, regardless of whether all paths to the data are used in this object program.

For external files, data-name-6 and data-name-7 must reference external data items.

The PASSWORD clauses in each associated file-control entry must reference the

same external data items.

FILE STATUS clause

The FILE STATUS clause monitors the execution of each input-output operation for

the file.

When the FILE STATUS clause is specified, the system moves a value into the file

status key data item after each input-output operation that explicitly or implicitly

refers to this file. The value indicates the status of execution of the statement. (See

the file status key description under “Common processing facilities” on page 300.)

Chapter 16. Input-Output section 145

data-name-1

The file status key data item can be defined in the working-storage,

local-storage, or linkage section as one of the following:

v A two-character data item of category alphanumeric

v A two-character data item of category national

v A two-digit data item of category numeric with usage DISPLAY or

NATIONAL (an external decimal data item)

data-name-1 must not contain the PICTURE symbol ’P’.

data-name-1 can be qualified.

The file status key data item must not be variably located; that is, the data

item cannot follow a data item that contains an OCCURS DEPENDING

ON clause.

data-name-8

Must be defined as an alphanumeric group item of 6 bytes in the

working-storage section or linkage section of the data division.

 Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS,

RRDS).

data-name-8 holds the 6-byte VSAM return code, which is composed as

follows:

v The first 2 bytes of data-name-8 contain the VSAM return code in binary

format. The value for this code is defined (by VSAM) as 0, 8, or 12.

v The next 2 bytes of data-name-8 contain the VSAM function code in binary

format. The value for this code is defined (by VSAM) as 0, 1, 2, 3, 4, or

5.

v The last 2 bytes of data-name-8 contain the VSAM feedback code in binary

format. The code value is 0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.

If FILE STATUS is returned without having called VSAM, data-name-8 is

zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM

status return code information is available without transformation in the

currently defined COBOL FILE STATUS code. User identification and

handling of exception conditions are allowed at the same level as that

defined by VSAM.

Function code and feedback code are set if and only if the return code is set to

a nonzero value. If they are referenced when the return code is set to zero,

the contents of the fields are not dependable.

Values in the return code, function code, and feedback code fields are defined

by VSAM. There are no COBOL additions, deletions, or modifications to

the VSAM definitions.

For more information, see DFSMS™ Macro Instructions for Data Sets.

I-O-CONTROL paragraph

The I-O-CONTROL paragraph of the input-output section specifies when

checkpoints are to be taken and the storage areas to be shared by different files.

This paragraph is optional in a COBOL program.

146 Enterprise COBOL for z/OS V4.1 Language Reference

The keyword I-O-CONTROL can appear only once, at the beginning of the

paragraph. The word I-O-CONTROL must begin in Area A and must be followed

by a separator period.

The order in which I-O-CONTROL paragraph clauses are written is not significant.

The I-O-CONTROL paragraph ends with a separator period.

Format: QSAM- i-o-control-entry

��

�

�

�

 RERUN assignment-name-1 phrase 1

ON

file-name-1

EVERY

SAME

file-name-3

RECORD

AREA

FOR

file-name-4

(1)

MULTIPLE FILE

file-name-5

TAPE

CONTAINS

POSITION

integer-2

(1)

APPLY WRITE-ONLY

file-name-2

ON

 ��

phrase 1:

 integer-1 RECORDS

END

REEL

OF

UNIT

 file-name-1

OF

Notes:

1 The MULTIPLE FILE clause and APPLY WRITE-ONLY clause are not supported for VSAM files.

Format: VSAM- i-o-control-entry

��

�

 RERUN assignment-name-1 phrase 1

ON

file-name-1

EVERY

SAME

file-name-3

RECORD

AREA

FOR

file-name-4

 ��

phrase 1:

 integer-1 RECORDS file-name-1

OF

Chapter 16. Input-Output section 147

Format: line-sequential-i-o-control-entry

��

�

SAME

file-name-3

file-name-4

RECORD

AREA

FOR

��

Format: sort/merge-i-o-control-entry

��

RERUN

assignment-name-1

ON

 �

�

�

SAME

RECORD

phrase

1

SORT

AREA

FOR

SORT-MERGE

��

phrase 1:

 file-name-3

�

file-name-4

RERUN clause

The RERUN clause specifies that checkpoint records are to be taken. Subject to the

restrictions given with each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint

method required for complete compliance to Standard COBOL 85, see the

Enterprise COBOL Programming Guide.

Do not use the RERUN clause:

v For files described with the EXTERNAL clause

v In programs with the RECURSIVE clause specified

v In programs compiled with the THREAD option

v In methods

file-name-1

Must be a sequentially organized file.

148 Enterprise COBOL for z/OS V4.1 Language Reference

VSAM and QSAM considerations:

The file named in the RERUN clause must be a file defined in the same

program as the I-O-CONTROL paragraph, even if the file is defined as

GLOBAL.

assignment-name-1

The external data set for the checkpoint file. It must not be the same

assignment-name as that specified in any ASSIGN clause throughout the

entire program, including contained and containing programs.

 For QSAM files, assignment-name-1 has the format:

Format: assignment-name for QSAM files

��

label-

S-
 name ��

The QSAM file must reside on a tape or direct access device. See also

Appendix F, “ASCII considerations,” on page 609.

SORT/MERGE considerations:

When the RERUN clause is specified in the I-O-CONTROL paragraph,

checkpoint records are written at logical intervals determined by the

sort/merge program during execution of each SORT or MERGE statement

in the program. When the RERUN clause is omitted, checkpoint records

are not written.

There can be only one SORT/MERGE I-O-CONTROL paragraph in a

program, and it cannot be specified in contained programs. It will have a

global effect on all SORT and MERGE statements in the program unit.

EVERY integer-1 RECORDS

A checkpoint record is to be written for every integer-1 records in

file-name-1 that are processed.

 When multiple integer-1 RECORDS phrases are specified, no two of them

can specify the same value for file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify

assignment-name-1.

EVERY END OF REEL/UNIT

A checkpoint record is to be written whenever end-of-volume for

file-name-1 occurs. The terms REEL and UNIT are interchangeable.

 When multiple END OF REEL/UNIT phrases are specified, no two of

them can specify the same value for file-name-1.

The END OF REEL/UNIT phrase can be specified only if file-name-1 is a

sequentially organized file.

SAME AREA clause

The SAME AREA clause specifies that two or more files that do not represent sort

or merge files are to use the same main storage area during processing.

Chapter 16. Input-Output section 149

The files named in a SAME AREA clause need not have the same organization or

access.

file-name-3, file-name-4

Must be specified in the file-control paragraph of the same program.

file-name-3 and file-name-4 must not reference a file that is defined with the

EXTERNAL clause.
v For QSAM files, the SAME clause is treated as documentation.

v For VSAM files, the SAME clause is treated as if equivalent to the SAME

RECORD AREA clause.

More than one SAME AREA clause can be included in a program. However:

v A specific file-name must not appear in more than one SAME AREA clause.

v If one or more file-names of a SAME AREA clause appear in a SAME RECORD

AREA clause, all the file-names in that SAME AREA clause must appear in that

SAME RECORD AREA clause. However, the SAME RECORD AREA clause can

contain additional file-names that do not appear in the SAME AREA clause.

v The rule that in the SAME AREA clause only one file can be open at one time

takes precedence over the SAME RECORD AREA rule that all the files can be

open at the same time.

SAME RECORD AREA clause

The SAME RECORD AREA clause specifies that two or more files are to use the

same main storage area for processing the current logical record.

The files named in a SAME RECORD AREA clause need not have the same

organization or access.

file-name-3, file-name-4

Must be specified in the file-control paragraph of the same program.

file-name-3 and file-name-4 must not reference a file that is defined with the

EXTERNAL clause.

All of the files can be open at the same time. A logical record in the shared storage

area is considered to be both of the following:

v A logical record of each opened output file in the SAME RECORD AREA clause

v A logical record of the most recently read input file in the SAME RECORD

AREA clause

More than one SAME RECORD AREA clause can be included in a program.

However:

v A specific file-name must not appear in more than one SAME RECORD AREA

clause.

v If one or more file-names of a SAME AREA clause appear in a SAME RECORD

AREA clause, all the file-names in that SAME AREA clause must appear in that

SAME RECORD AREA clause. However, the SAME RECORD AREA clause can

contain additional file-names that do not appear in the SAME AREA clause.

v The rule that in the SAME AREA clause only one file can be open at one time

takes precedence over the SAME RECORD AREA rule that all the files can be

open at the same time.

v If the SAME RECORD AREA clause is specified for several files, the record

description entries or the file description entries for these files must not include

the GLOBAL clause.

150 Enterprise COBOL for z/OS V4.1 Language Reference

v The SAME RECORD AREA clause must not be specified when the RECORD

CONTAINS 0 CHARACTERS clause is specified.

The files named in the SAME RECORD AREA clause need not have the same

organization or access.

SAME SORT AREA clause

The SAME SORT AREA clause is syntax checked but has no effect on the execution

of the program.

file-name-3, file-name-4

Must be specified in the file-control paragraph of the same program.

file-name-3 and file-name-4 must not reference a file that is defined with the

EXTERNAL clause.

When the SAME SORT AREA clause is specified, at least one file-name specified

must name a sort file. Files that are not sort files can also be specified. The

following rules apply:

v More than one SAME SORT AREA clause can be specified. However, a given

sort file must not be named in more than one such clause.

v If a file that is not a sort file is named in both a SAME AREA clause and in one

or more SAME SORT AREA clauses, all the files in the SAME AREA clause must

also appear in that SAME SORT AREA clause.

v Files named in a SAME SORT AREA clause need not have the same organization

or access.

v Files named in a SAME SORT AREA clause that are not sort files do not share

storage with each other unless they are named in a SAME AREA or SAME

RECORD AREA clause.

v During the execution of a SORT or MERGE statement that refers to a sort or

merge file named in this clause, any nonsort or nonmerge files associated with

file-names named in this clause must not be in the open mode.

SAME SORT-MERGE AREA clause

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA

clause (see “SAME SORT AREA clause”).

MULTIPLE FILE TAPE clause

The MULTIPLE FILE TAPE clause (format 1) specifies that two or more files share

the same physical reel of tape.

This clause is syntax checked, but has no effect on the execution of the program.

The function is performed by the system through the LABEL parameter of the DD

statement.

Chapter 16. Input-Output section 151

APPLY WRITE-ONLY clause

The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for

files that have standard sequential organization, have variable-length records, and

are blocked. If you specify this phrase, the buffer is truncated only when the space

available in the buffer is smaller than the size of the next record. Otherwise, the

buffer is truncated when the space remaining in the buffer is smaller than the

maximum record size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2

Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file

description entries. For an alternate method of achieving the APPLY WRITE-ONLY

results, see the description of the AWO compiler option in the Enterprise COBOL

Programming Guide.

152 Enterprise COBOL for z/OS V4.1 Language Reference

Part 5. Data division

Chapter 17. Data division overview 155

File section 156

Working-storage section 157

Local-storage section 158

Linkage section 159

Data units 159

File data 159

Program data 160

Method data 160

Factory data 160

Instance data 160

Data relationships 160

Levels of data 161

Levels of data in a record description entry . . 161

Special level-numbers 163

Indentation 163

Classes and categories of group items 163

Classes and categories of data 164

Category descriptions 166

Alphabetic 166

Alphanumeric 166

Alphanumeric-edited 166

DBCS 166

External floating-point 167

Internal floating-point 167

National 167

National-edited 167

Numeric 167

Numeric-edited 168

Alignment rules 168

Character-string and item size 169

Signed data 170

Operational signs 170

Editing signs 170

Chapter 18. Data division--file description

entries 171

File section 176

EXTERNAL clause 176

GLOBAL clause 177

BLOCK CONTAINS clause 177

RECORD clause 179

Format 1 179

Format 2 180

Format 3 180

LABEL RECORDS clause 181

VALUE OF clause 182

DATA RECORDS clause 182

LINAGE clause 182

LINAGE-COUNTER special register 184

RECORDING MODE clause 184

CODE-SET clause 185

Chapter 19. Data division--data description

entry 187

Format 1 187

Format 2 188

Format 3 188

Level-numbers 188

BLANK WHEN ZERO clause 190

DATE FORMAT clause 190

Semantics of windowed date fields 191

Date trigger values 192

Restrictions on using date fields 192

Combining the DATE FORMAT clause with

other clauses 192

Group items that are date fields 193

Language elements that treat date fields as

nondates 194

Language elements that do not accept

windowed date fields as arguments 194

Language elements that do not accept date

fields as arguments 195

EXTERNAL clause 195

GLOBAL clause 196

JUSTIFIED clause 196

GROUP-USAGE clause 197

OCCURS clause 198

Fixed-length tables 199

ASCENDING KEY and DESCENDING KEY

phrases 200

INDEXED BY phrase 201

Variable-length tables 202

OCCURS DEPENDING ON clause 203

PICTURE clause 205

Symbols used in the PICTURE clause 205

P symbol 208

Currency symbol 209

Character-string representation 209

Data categories and PICTURE rules 210

Alphabetic items 210

Numeric items 211

Numeric-edited items 212

Alphanumeric items 212

Alphanumeric-edited items 213

DBCS items 213

National items 214

National-edited items 214

External floating-point items 215

PICTURE clause editing 216

Simple insertion editing 217

Special insertion editing 218

Fixed insertion editing 218

Floating insertion editing 219

Representing floating insertion editing . . . 220

Zero suppression and replacement editing . . . 220

Representing zero suppression 221

REDEFINES clause 222

REDEFINES clause considerations 223

REDEFINES clause examples 224

Undefined results 225

RENAMES clause 225

© Copyright IBM Corp. 1991, 2007 153

SIGN clause 227

SYNCHRONIZED clause 229

Slack bytes 231

Slack bytes within records 231

Slack bytes between records 233

USAGE clause 234

Computational items 236

DISPLAY phrase 238

DISPLAY-1 phrase 239

FUNCTION-POINTER phrase 239

INDEX phrase 239

NATIONAL phrase 240

OBJECT REFERENCE phrase 240

POINTER phrase 241

PROCEDURE-POINTER phrase 242

NATIVE phrase 243

VALUE clause 243

Format 1 243

Rules for literal values 244

Format 2 245

Rules for condition-name entries 246

Format 3 248

154 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 17. Data division overview

This overview describes the structure of the data division for programs, object

definitions, factory definitions, and methods. Each section in the data division has

a specific logical function within a COBOL program, object definition, factory

definition, or method and can be omitted when that logical function is not needed.

If included, the sections must be written in the order shown. The data division is

optional.

Program data division

The data division of a COBOL source program describes, in a structured

manner, all the data to be processed by the program.

Object data division

The object data division contains data description entries for instance object

data (instance data). Instance data is defined in the working-storage section

of the object paragraph of a class definition.

Factory data division

The factory data division contains data description entries for factory object

data (factory data). Factory data is defined in the working-storage section

of the factory paragraph of a class definition.

Method data division

A method data division contains data description entries for data accessible

within the method. A method data division can contain a local-storage

section or a working-storage section, or both. The term method data applies

to both. Method data in local-storage is dynamically allocated and

initialized on each invocation of the method; method data in

working-storage is static and persists across invocations of the method.

© Copyright IBM Corp. 1991, 2007 155

Format: program and method data division

�� DATA DIVISION. �

�

�

�

FILE SECTION.

file-description-entry

record-description-entry

 �

�

�

WORKING-STORAGE SECTION.

record-description-entry

data-item-description-entry

 �

�

�

LOCAL-STORAGE SECTION.

record-description-entry

data-item-description-entry

 �

�

�

LINKAGE SECTION.

record-description-entry

data-item-description-entry

 ��

Format: object and factory data division

�� DATA DIVISION.

�

WORKING-STORAGE SECTION.

record-description-entry

data-item-description-entry

 ��

File section

The file section defines the structure of data files. The file section must begin with

the header FILE SECTION, followed by a separator period.

file-description-entry

Represents the highest level of organization in the file section. It provides

information about the physical structure and identification of a file, and

gives the record-names associated with that file. For the format and the

156 Enterprise COBOL for z/OS V4.1 Language Reference

clauses required in a file description entry, see Chapter 18, “Data

division--file description entries,” on page 171.

record-description-entry

A set of data description entries (described in Chapter 19, “Data

division--data description entry,” on page 187) that describe the particular

records contained within a particular file.

 A record in the file section must be described as an alphanumeric group

item, a national group item, or an elementary data item of class alphabetic,

alphanumeric, DBCS, national, or numeric.

More than one record description entry can be specified; each is an

alternative description of the same record storage area.

Data areas described in the file section are not available for processing unless the

file that contains the data area is open.

A method file section can define external files only. A single run-unit-level file

connector is shared by all programs and methods that contain a declaration of a

given external file.

Working-storage section

The working-storage section describes data records that are not part of data files

but are developed and processed by a program or method. It also describes data

items whose values are assigned in the source program or method and do not

change during execution of the object program.

The working-storage section must begin with the section header

WORKING-STORAGE SECTION, followed by a separator period.

Program working-storage

The working-storage section for programs (and methods) can also describe

external data records, which are shared by programs and methods

throughout the run unit. All clauses that are used in record descriptions in

the file section and also the VALUE and EXTERNAL clauses (which might

not be specified in record description entries in the file section) can be used

in record descriptions in the working-storage section.

Method working-storage

A single copy of the working-storage for a method is statically allocated on

the first invocation of the method and persists in a last-used state for the

duration of the run unit. The same copy is used whenever the method is

invoked regardless of which object instance the method is invoked upon.

 If a VALUE clause is specified on a method working-storage data item, the

data item is initialized to the VALUE clause value on the first invocation.

If the EXTERNAL clause is specified on a data description entry in a

method working-storage section, a single copy of the storage for that data

item is allocated once for the duration of the run unit. That storage is

shared by all programs and methods in the run unit that contain a

definition for the external data item.

Object working-storage

The data described in the working-storage section of an object paragraph is

object instance data, usually called instance data. A separate copy of

instance data is statically allocated for each object instance when the object

Chapter 17. Data division overview 157

is instantiated. Instance data persists in a last-used state until the object

instance is freed by the Java runtime system.

 Instance data can be initialized by VALUE clauses specified in data

declarations or by logic specified in an instance method.

Factory working-storage

The data described in the working-storage section of a factory paragraph is

factory data. A single copy of factory data is statically allocated when the

factory object for the class is created. Factory data persists in a last-used

state for the duration of the run unit.

 Factory data can be initialized by VALUE clauses specified in data

declarations or by logic specified in a factory method.

The working-storage section contains record description entries and data

description entries for independent data items, called data item description entries.

record-description-entry

Data entries in the working-storage section that bear a definite hierarchic

relationship to one another must be grouped into records structured by

level number. See Chapter 19, “Data division--data description entry,” on

page 187 for more information.

data-item-description-entry

Independent items in the working-storage section that bear no hierarchic

relationship to one another need not be grouped into records provided that

they do not need to be further subdivided. Instead, they are classified and

defined as independent elementary items. Each is defined in a separate

data-item description entry that begins with either the level number 77 or

01. See Chapter 19, “Data division--data description entry,” on page 187 for

more information.

Local-storage section

The local-storage section defines storage that is allocated and freed on a

per-invocation basis. On each invocation, data items defined in the local-storage

section are reallocated. Each data item that has a VALUE clause is initialized to the

value specified in that clause.

For nested programs, data items defined in the local-storage section are allocated

upon each invocation of the containing outermost program. However, each data

item is reinitialized to the value specified in its VALUE clause each time the nested

program is invoked.

For methods, a separate copy of the data defined in local-storage is allocated and

initialized on each invocation of the method. The storage allocated for the data is

freed when the method returns.

Data items defined in the local-storage section cannot specify the EXTERNAL

clause.

The local-storage section must begin with the header LOCAL-STORAGE SECTION,

followed by a separator period.

You can specify the local-storage section in recursive programs, in nonrecursive

programs, and in methods.

158 Enterprise COBOL for z/OS V4.1 Language Reference

Method local-storage content is the same as program local-storage content except

that the GLOBAL clause has no effect (because methods cannot be nested).

Linkage section

The linkage section describes data made available from another program or

method.

record-description-entry

See “Working-storage section” on page 157 for a description.

data-item-description-entry

See “Working-storage section” on page 157 for a description.

Record description entries and data item description entries in the linkage section

provide names and descriptions, but storage within the program or method is not

reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the linkage section

with the following exceptions:

v You cannot specify the VALUE clause for items other than level-88 items.

v You cannot specify the EXTERNAL clause.

You can specify the GLOBAL clause in the linkage section. The GLOBAL clause

has no effect for methods, however.

Data units

Data is grouped into the following conceptual units:

v File data

v Program data

v Method data

v Factory data

v Instance data

File data

File data is contained in files. (See “File section” on page 176.) A file is a collection

of data records that exist on some input-output device. A file can be considered as

a group of physical records; it can also be considered as a group of logical records.

The data division describes the relationship between physical and logical records.

A physical record is a unit of data that is treated as an entity when moved into or

out of storage. The size of a physical record is determined by the particular

input-output device on which it is stored. The size does not necessarily have a

direct relationship to the size or content of the logical information contained in the

file.

A logical record is a unit of data whose subdivisions have a logical relationship. A

logical record can itself be a physical record (that is, be contained completely

within one physical unit of data); several logical records can be contained within

one physical record, or one logical record can extend across several physical

records.

Chapter 17. Data division overview 159

File description entries specify the physical aspects of the data (such as the size

relationship between physical and logical records, the size and names of the logical

records, labeling information, and so forth).

Record description entries describe the logical records in the file (including the

category and format of data within each field of the logical record), different values

the data might be assigned, and so forth.

After the relationship between physical and logical records has been established,

only logical records are made available to you. For this reason, a reference in this

information to ″records″ means logical records, unless the term ″physical records″

is used.

Program data

Program data is created by a program instead of being read from a file.

The concept of logical records applies to program data as well as to file data.

Program data can thus be grouped into logical records, and be defined by a series

of record description entries. Items that need not be so grouped can be defined in

independent data description entries (called data item description entries).

Method data

Method data is defined in the data division of a method and is processed by the

procedural code in that method. Method data is organized into logical records and

independent data description entries in the same manner as program data.

Factory data

Factory data is defined in the data division in the factory paragraph of a class

definition and is processed by procedural code in the factory methods of that class.

Factory data is organized into logical records and independent data description

entries in the same manner as program data.

There is one factory object for a given class in a run unit, and therefore only one

instance of factory data in a run unit for that class.

Instance data

Instance data is defined in the data division in the object paragraph of a class

definition and is processed by procedural code in the instance methods of that

class. Instance data is organized into logical records and independent data

description entries in the same manner as program data.

There is one copy of instance data in each object instance of a given class. There

can be many object instances for a given class. Each has its own separate copy of

instance data.

Data relationships

The relationships among all data to be used in a program are defined in the data

division through a system of level indicators and level-numbers.

160 Enterprise COBOL for z/OS V4.1 Language Reference

A level indicator, with its descriptive entry, identifies each file in a program. Level

indicators represent the highest level of any data hierarchy with which they are

associated. FD is the file description level indicator and SD is the sort-merge file

description level indicator.

A level-number, with its descriptive entry, indicates the properties of specific data.

Level-numbers can be used to describe a data hierarchy; they can indicate that this

data has a special purpose. Although they can be associated with (and subordinate

to) level indicators, they can also be used independently to describe internal data

or data common to two or more programs. (See “Level-numbers” on page 188 for

level-number rules.)

Levels of data

After a record has been defined, it can be subdivided to provide more detailed

data references.

For example, in a customer file for a department store, one complete record could

contain all data that pertains to one customer. Subdivisions within that record

could be, for example, customer name, customer address, account number,

department number of sale, unit amount of sale, dollar amount of sale, previous

balance, and other pertinent information.

The basic subdivisions of a record (that is, those fields not further subdivided) are

called elementary items. Thus a record can be made up of a series of elementary

items or can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items

can be combined into group items. Groups can also be combined into a more

inclusive group that contains one or more subgroups. Thus within one hierarchy of

data items, an elementary item can belong to more than one group item.

A system of level-numbers specifies the organization of elementary and group

items into records. Special level-numbers are also used to identify data items used

for special purposes.

Levels of data in a record description entry

Each group and elementary item in a record requires a separate entry, and each

must be assigned a level-number.

A level-number is a one-digit or two-digit integer between 01 and 49, or one of

three special level-numbers: 66, 77, or 88. The following level-numbers are used to

structure records:

01 This level-number specifies the record itself, and is the most inclusive

level-number possible. A level-01 entry can be either an alphanumeric

group item, a national group item, or an elementary item. The level

number must begin in Area A.

02 through 49

These level-numbers specify group and elementary items within a record.

They can begin in Area A or Area B. Less inclusive data items are assigned

higher (not necessarily consecutive) level-numbers in this series.

Chapter 17. Data division overview 161

The relationship between level-numbers within a group item defines the hierarchy

of data within that group.

A group item includes all group and elementary items that follow it until a

level-number less than or equal to the level-number of that group is encountered.

The following figure illustrates a group wherein all groups immediately

subordinate to the level-01 entry have the same level-number.

You can also define groups with subordinate items that have different

level-numbers for the same level in the hierarchy. For example, 05 EMPLOYEE-NAME

and 04 EMPLOYEE-ADDRESS in EMPLOYEE-RECORD below define the same level in the

hierarchy. The compiler renumbers the levels in a relative fashion, as shown in

MAP output.

01 EMPLOYEE-RECORD.

 05 EMPLOYEE-NAME.

 10 FIRST-NAME PICTURE X(10).

 10 LAST-NAME PICTURE X(10).

 04 EMPLOYEE-ADDRESS.

 08 STREET PICTURE X(10).

 08 CITY PICTURE X(10).

The following record description entry defines the same data hierarchy as the

preceding record description entry:

162 Enterprise COBOL for z/OS V4.1 Language Reference

|
|

01 EMPLOYEE-RECORD.

 02 EMPLOYEE-NAME.

 03 FIRST-NAME PICTURE X(10).

 03 LAST-NAME PICTURE X(10).

 02 EMPLOYEE-ADDRESS.

 03 STREET PICTURE X(10).

 03 CITY PICTURE X(10).

Elementary items can be specified at any level within the hierarchy.

Special level-numbers

Special level-numbers identify items that do not structure a record. The special

level-numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup

previously defined data items. (For details, see “RENAMES clause” on

page 225.)

77 Identifies data item description entries that are independent

working-storage, local-storage, or linkage section items; they are not

subdivisions of other items and are not subdivided themselves. Level-77

items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular

value of a conditional variable. (For details, see “VALUE clause” on page

243.)

Level-77 and level-01 entries in the working-storage, local-storage, and linkage

sections that are referenced in a program or method must be given unique

data-names because level-77 and level-01 entries cannot be qualified. Subordinate

data-names that are referenced in the program or method must be either uniquely

defined, or made unique through qualification. Unreferenced data-names need not

be uniquely defined.

Indentation

Successive data description entries can begin in the same column as preceding

entries, or can be indented.

Indentation is useful for documentation but does not affect the action of the

compiler.

Classes and categories of group items

Enterprise COBOL has two types of groups: alphanumeric groups and national

groups.

Groups that do not specify a GROUP-USAGE clause are alphanumeric groups. An

alphanumeric group has class and category alphanumeric and is treated as though

its usage were DISPLAY, regardless of the representation of the elementary data

items that are contained within the group. In many operations, such as moves and

compares, alphanumeric groups are treated as though they were elementary items

of category alphanumeric, except that no editing or conversion of data

representation takes place. In other operations, such as MOVE CORRESPONDING

and ADD CORRESPONDING, the subordinate data items are processed as

separate elementary items.

Chapter 17. Data division overview 163

|
|
|
|
|
|
|

National groups are defined by a GROUP-USAGE clause with the NATIONAL

phrase at the group level. All subordinate data items must be explicitly or

implicitly described with usage NATIONAL, and subordinate groups must be

explicitly or implicitly described with GROUP-USAGE NATIONAL.

Unless stated otherwise, a national group item is processed exactly as though it

were an elementary data item of usage national, class and category national,

described with PICTURE N(m), where m is the length of the group in national

character positions. Because national groups contain only national characters, data

is converted as necessary for moves and compares. The compiler ensures proper

truncation and padding. In other operations, such as MOVE CORRESPONDING

and ADD CORRESPONDING, the subordinate data items are processed as

separate elementary items. See “GROUP-USAGE clause” on page 197 for details.

The table below summarizes the classes and categories of group items.

 Table 7. Classes and categories of group items

Group description Class of group

Category of

group

USAGE of

elementary

items within a

group

USAGE of a

group

Without a

GROUP-USAGE

clause

Alphanumeric Alphanumeric

(even though the

elementary items

in the group can

have any

category)

Any Treated as

DISPLAY

when usage is

relevant

With explicit or

implicit

GROUP-USAGE

clause

National National NATIONAL NATIONAL

Classes and categories of data

Most data and all literals used in a COBOL program are divided into classes and

categories. Data classes are groupings of data categories. Data categories are

determined by the attributes of data description entries or function definitions, as

described in “Category descriptions” on page 166.

The following elementary data items do not have a class and category:

v Index data items

v Items described with USAGE POINTER, USAGE FUNCTION-POINTER, USAGE

PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

All other types of elementary data items have a class and category as shown in

Table 8 on page 165.

A function references an elementary data item and belongs to the data class and

category associated with the type of the function, as shown in Table 9 on page 165.

164 Enterprise COBOL for z/OS V4.1 Language Reference

Literals have a class and category as shown in Table 10. Figurative constants

(except NULL) have a class and category that depends on the literal or value

represented by the figurative constant in the context of its use. For details, see

“Figurative constants” on page 13.

All group items have a class and category, even if the subordinate elementary

items belong to another class and category. For the classification of group items,

see “Classes and categories of group items” on page 163.

 Table 8. Class, category, and usage of elementary data items

Class Category Usage

Alphabetic Alphabetic DISPLAY

Alphanumeric Alphanumeric DISPLAY

Alphanumeric-edited DISPLAY

Numeric-edited DISPLAY

DBCS DBCS DISPLAY-1

National National NATIONAL

National-edited NATIONAL

Numeric-edited NATIONAL

Numeric Numeric DISPLAY (type zoned decimal)

NATIONAL (type national decimal)

PACKED-DECIMAL (type internal

decimal)

COMP-3 (type internal decimal)

BINARY

COMP

COMP-4

COMP-5

Internal floating-point COMP-1

COMP-2

External floating-point DISPLAY

NATIONAL

 Table 9. Classes and categories of functions

Function type Class and category

Alphanumeric Alphanumeric

National National

Integer Numeric

Numeric Numeric

 Table 10. Classes and categories of literals

Literal Class and category

Alphanumeric

(including hexadecimal formats)

Alphanumeric

DBCS DBCS

Chapter 17. Data division overview 165

Table 10. Classes and categories of literals (continued)

Literal Class and category

National

(including hexadecimal formats)

National

Numeric

(fixed-point and floating-point)

Numeric

Category descriptions

The category of a data item is established by the attributes of its data description

entry (such as its PICTURE character-string or USAGE clause) or by its function

definition. The meaning of each category is given below.

Alphabetic

A data item is described as category alphabetic by its PICTURE character-string.

For PICTURE character-string details, see “Alphabetic items” on page 210.

A data item of category alphabetic is referred to as an alphabetic data item.

Alphanumeric

Each of the following is a data item of category alphanumeric:

v An elementary data item described as alphanumeric by its PICTURE

character-string. For PICTURE character-string details, see “Alphanumeric items”

on page 212.

v An alphanumeric group item.

v An alphanumeric function.

v The following special registers:

– DEBUG-ITEM

– SHIFT-OUT

– SHIFT-IN

– SORT-CONTROL

– SORT-MESSAGE

– WHEN-COMPILED

– XML-EVENT

– XML-TEXT

Alphanumeric-edited

A data item is described as category alphanumeric-edited by its PICTURE

character-string. For PICTURE character-string details, see “Alphanumeric-edited

items” on page 213.

A data item of category alphanumeric-edited is referred to as an

alphanumeric-edited data item.

DBCS

A data item is described as category DBCS by its PICTURE character-string and

the NSYMBOL(DBCS) compiler option or by an explicit USAGE DISPLAY-1 clause.

For PICTURE character-string details, see “DBCS items” on page 213.

166 Enterprise COBOL for z/OS V4.1 Language Reference

A data item of category DBCS is referred to as a DBCS data item.

External floating-point

A data item is described as category external floating-point by its PICTURE

character-string. For PICTURE character-string details, see “External floating-point

items” on page 215. An external floating-point data item can be described with

USAGE DISPLAY or USAGE NATIONAL.

When the usage is DISPLAY, the item is referred to as a display floating-point data

item.

When the usage is NATIONAL, the item is referred to as a national floating-point

data item.

An external floating-point data item is of class numeric and, unless specifically

excluded, is included in a reference to a numeric data item.

Internal floating-point

A data item is described as category internal floating-point by a USAGE clause

with the COMP-1 or COMP-2 phrase.

A data item of category internal floating-point is referred to as an internal

floating-point data item. An internal floating-point data item is of class numeric

and, unless specifically excluded, is included in a reference to a numeric data item.

National

Each of the following is a data item of category national:

v A data item that is described as category national by its PICTURE

character-string and the NSYMBOL(NATIONAL) compiler option or by an

explicit USAGE NATIONAL clause. For PICTURE character-string details, see

“National items” on page 214.

v A group item explicitly or implicitly described with a GROUP-USAGE

NATIONAL clause.

v A national function.

v The special register XML-NTEXT.

National-edited

A data item is described as category national-edited by its PICTURE

character-string. For PICTURE character-string details, see “National-edited items”

on page 214.

A data item of category national-edited is referred to as a national-edited data

item.

Numeric

Each of the following is a data item of category numeric:

v An elementary data item described as numeric by its PICTURE character-string

and not described with a BLANK WHEN ZERO clause. For PICTURE

character-string details, see “Numeric items” on page 211.

v An elementary data item described with one of the following usages:

Chapter 17. Data division overview 167

– BINARY, COMPUTATIONAL, COMPUTATIONAL-4, COMPUTATIONAL-5,

COMP, COMP-4, or COMP-5

– PACKED-DECIMAL, COMPUTATIONAL-3, or COMP-3
v A special register of numeric type:

– LENGTH OF

– LINAGE-COUNTER

– RETURN-CODE

– SORTCORE-SIZE

– SORT-FILE-SIZE

– SORT-MODE-SIZE

– SORT-RETURN

– TALLY

– XML-CODE
v A numeric function.

v An integer function.

A data item of category numeric is referred to as a numeric data item.

Numeric-edited

Each of the following is a data item of category numeric-edited:

v A data item described as numeric-edited by its PICTURE character-string. For

PICTURE character-string details, see “Numeric-edited items” on page 212.

v A data item described as numeric by its PICTURE character-string and described

with a BLANK WHEN ZERO clause.

Alignment rules

The standard alignment rules for positioning data in an elementary item depend

on the category of a receiving item (that is, an item into which the data is moved;

see “Elementary moves” on page 387).

Numeric

For numeric receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,

truncated or padded with zeros. (An assumed decimal point is one that

has logical meaning but that does not exist as an actual character in the

data.)

2. If an assumed decimal point is not explicitly specified, the receiving

item is treated as though an assumed decimal point is specified

immediately to the right of the field. The data is then treated according

to the preceding rule.

Numeric-edited

The data is aligned on the decimal point, and (if necessary) truncated or

padded with zeros at either end except when editing causes replacement of

leading zeros.

Internal floating-point

A decimal point is assumed immediately to the left of the field. The data is

then aligned on the leftmost digit position that follows the decimal point,

with the exponent adjusted accordingly.

168 Enterprise COBOL for z/OS V4.1 Language Reference

External floating-point

The data is aligned on the leftmost digit position; the exponent is adjusted

accordingly.

Alphanumeric, alphanumeric-edited, alphabetic, DBCS

For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary)

truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above

rule is modified as described in “JUSTIFIED clause” on page 196.

National, national-edited

For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary)

truncated or padded with default Unicode spaces (NX’0020’) at the

right. Truncation occurs at the boundary of a national character

position.

2. If the JUSTIFIED clause is specified for this receiving item, the above

rule is modified as described in “JUSTIFIED clause” on page 196.

Character-string and item size

For items described with a PICTURE clause, the size of an elementary item is

expressed in source code by the number of character positions described in the

PICTURE character-string and a SIGN clause (if applicable). Storage size, however,

is determined by the actual number of bytes the item occupies as determined by

the combination of its PICTURE character-string, SIGN IS SEPARATE clause (if

specified), and USAGE clause.

For items described with USAGE DISPLAY (categories alphabetic, alphanumeric,

alphanumeric-edited, numeric-edited, numeric, and external floating-point), 1 byte

of storage is reserved for each character position described by the item’s PICTURE

character-string and SIGN IS SEPARATE clause (if applicable).

For items described with USAGE DISPLAY-1 (category DBCS), 2 bytes of storage

are reserved for each character position described by the item’s PICTURE

character-string.

For items described with USAGE NATIONAL (categories national, national-edited,

numeric-edited, numeric, and external floating-point), 2 bytes of storage are

reserved for each character position described by the item’s PICTURE

character-string and SIGN IS SEPARATE clause (if specified).

For internal floating-point items, the size of the item in storage is determined by its

USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the

item; USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

Normally, when an arithmetic item is moved from a longer field into a shorter one,

the compiler truncates the data to the number of digits represented in the shorter

item’s PICTURE character-string by truncating leading digits. For example, if a

sending field with PICTURE S99999 that contains the value +12345 is moved to a

BINARY receiving field with PICTURE S99, the data is truncated to +45. For

additional information, see “USAGE clause” on page 234.

The TRUNC compiler option can affect the value of a binary numeric item. For

information about TRUNC, see the Enterprise COBOL Programming Guide.

Chapter 17. Data division overview 169

Signed data

There are two categories of algebraic signs used in COBOL: operational signs and

editing signs.

Operational signs

Operational signs are associated with signed numeric items, and indicate their

algebraic properties. The internal representation of an algebraic sign depends on

the item’s USAGE clause, its SIGN clause (if present), and the operating

environment. (For further details about the internal representation, see the

Enterprise COBOL Programming Guide.) Zero is considered a unique value regardless

of the operational sign. An unsigned field is always assumed to be either positive

or zero.

Editing signs

Editing signs are associated with numeric-edited items. Editing signs are PICTURE

symbols that identify the sign of the item in edited output.

170 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 18. Data division--file description entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description (SD)

Entry for sort/merge files) represents the highest level of organization in the file

section. The order in which the optional clauses follow the FD or SD entry is not

important.

© Copyright IBM Corp. 1991, 2007 171

Format 1: sequential file description entry

�� FD file-name-1

EXTERNAL

IS

GLOBAL

IS

 �

�
BLOCK

integer-2

CHARACTERS

CONTAINS

integer-1

TO

RECORDS

 �

�
RECORD

integer-3

CONTAINS

CHARACTERS

integer-4

TO

integer-5

CONTAINS

CHARACTERS

clause

1

DEPENDING

data-name-1

ON

 �

�

�

LABEL

RECORD

STANDARD

IS

OMITTED

RECORDS

ARE

data-name-2

 �

�

�

VALUE OF

system-name-1

data-name-3

IS

literal-1

�

DATA

RECORD

data-name-4

IS

RECORDS

ARE

 �

�
LINAGE

data-name-5

clause

2

IS

integer-8

LINES

RECORDING

mode

MODE

IS

 �

�
CODE-SET

alphabet-name

IS

 . ��

clause 1:

IS
 VARYING

IN

SIZE

integer-6

FROM

TO

integer-7

CHARACTERS

clause 2:

FOOTING

data-name-6

WITH

AT

integer-9

TOP

data-name-7

LINES

AT

integer-10

 �

�
BOTTOM

data-name-8

LINES

AT

integer-11

172 Enterprise COBOL for z/OS V4.1 Language Reference

Format 2: relative or indexed file description entry

�� FD file-name-1

EXTERNAL

IS

GLOBAL

IS

 �

�
BLOCK

integer-2

CHARACTERS

CONTAINS

integer-1

TO

RECORDS

 �

�
RECORD

integer-3

CONTAINS

CHARACTERS

integer-4

TO

integer-5

CONTAINS

CHARACTERS

clause

1

DEPENDING

data-name-1

ON

 �

�
LABEL

RECORD

STANDARD

IS

OMITTED

RECORDS

ARE

 �

�

�

VALUE OF

system-name-1

data-name-3

IS

literal-1

 �

�

�

DATA

RECORD

data-name-4

IS

RECORDS

ARE

 . ��

clause 1:

IS
 VARYING

IN

SIZE

integer-6

FROM

TO

integer-7

CHARACTERS

Chapter 18. Data division--file description entries 173

Format 3: line-sequential file description entry

�� FD file-name-1

EXTERNAL

IS

GLOBAL

IS

 �

�
RECORD

integer-3

CONTAINS

CHARACTERS

clause

1

DEPENDING

data-name-1

ON

 . ��

clause 1:

IS
 VARYING

IN

SIZE

integer-6

FROM

TO

integer-7

CHARACTERS

174 Enterprise COBOL for z/OS V4.1 Language Reference

Format 4: sort/merge file description entry

�� SD file-name-1

RECORD

integer-3

CONTAINS

CHARACTERS

integer-4

TO

integer-5

CONTAINS

CHARACTERS

clause

1

DEPENDING

data-name-1

ON

 �

�

�

DATA

RECORD

data-name-4

IS

RECORDS

ARE

 �

�
BLOCK

integer-2

CHARACTERS

CONTAINS

integer-1

TO

RECORDS

 �

�

�

LABEL

RECORD

STANDARD

IS

OMITTED

RECORDS

ARE

data-name-2

 �

�

�

VALUE OF

system-name-1

data-name-3

IS

literal-1

 �

�
LINAGE

data-name-5

clause

2

IS

integer-8

LINES

CODE-SET

alphabet-name

IS

 . ��

clause 1:

IS
 VARYING

IN

SIZE

integer-6

FROM

TO

integer-7

CHARACTERS

clause 2:

FOOTING

data-name-6

WITH

AT

integer-9

TOP

data-name-7

LINES

AT

integer-10

 �

�
BOTTOM

data-name-8

LINES

AT

integer-11

Chapter 18. Data division--file description entries 175

File section

The file section must contain a level-indicator for each input and output file:

v For all files except sort/merge files, the file section must contain an FD entry.

v For each sort or merge file, the file section must contain an SD entry.

file-name

Must follow the level indicator (FD or SD), and must be the same as that

specified in the associated SELECT clause. file-name must adhere to the

rules of formation for a user-defined word; at least one character must be

alphabetic. file-name must be unique within this program.

 One or more record description entries must follow file-name. When more

than one record description entry is specified, each entry implies a

redefinition of the same storage area.

The clauses that follow file-name are optional, and they can appear in any

order.

FD (formats 1, 2, and 3)

The last clause in the FD entry must be immediately followed by a

separator period.

SD (format 4)

An SD entry must be written for each sort or merge file in the program.

The last clause in the SD entry must be immediately followed by a

separator period.

 The following example illustrates the file section entries needed for a sort

or merge file:

SD SORT-FILE.

01 SORT-RECORD PICTURE X(80).

A record in the file section must be described as an alphanumeric group item, a

national group item, or an elementary item of class alphabetic, alphanumeric,

DBCS, national, or numeric.

EXTERNAL clause

The EXTERNAL clause specifies that a file connector is external, and permits

communication between two programs by the sharing of files. A file connector is

external if the storage associated with that file is associated with the run unit

rather than with any particular program within the run unit. An external file can

be referenced by any program in the run unit that describes the file. References to

an external file from different programs that use separate descriptions of the file

are always to the same file. In a run unit, there is only one representative of an

external file.

In the file section, the EXTERNAL clause can be specified only in file description

entries.

The records appearing in the file description entry need not have the same name in

corresponding external file description entries. In addition, the number of such

records need not be the same in corresponding file description entries.

176 Enterprise COBOL for z/OS V4.1 Language Reference

Use of the EXTERNAL clause does not imply that the associated file-name is a

global name. See the Enterprise COBOL Programming Guide for specific information

about the use of the EXTERNAL clause.

GLOBAL clause

The GLOBAL clause specifies that the file connector named by a file-name is a

global name. A global file-name is available to the program that declares it and to

every program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry

for that file-name. A record-name is global if the GLOBAL clause is specified in the

record description entry by which the record-name is declared or, in the case of

record description entries in the file section, if the GLOBAL clause is specified in

the file description entry for the file-name associated with the record description

entry. For details on using the GLOBAL clause, see the Enterprise COBOL

Programming Guide.

Two programs in a run unit can reference global file connectors in the following

circumstances:

v An external file connector can be referenced from any program that describes

that file connector.

v If a program is contained within another program, both programs can refer to a

global file connector by referring to an associated global file-name either in the

containing program or in any program that directly or indirectly contains the

containing program.

BLOCK CONTAINS clause

The BLOCK CONTAINS clause specifies the size of the physical records.

The CHARACTERS phrase indicates that the integer specified in the BLOCK

CONTAINS clause reflects the number of bytes in the record. For example, if you

have a block with 10 DBCS characters or 10 national characters, the BLOCK

CONTAINS clause should say BLOCK CONTAINS 20 CHARACTERS.

If the records in the file are not blocked, the BLOCK CONTAINS clause can be

omitted. When it is omitted, the compiler assumes that records are not blocked.

Even if each physical record contains only one complete logical record, coding

BLOCK CONTAINS 1 RECORD would result in fixed blocked records.

The BLOCK CONTAINS clause can be omitted when the associated file-control

entry specifies a VSAM file. The concept of blocking has no meaning for VSAM

files. The BLOCK CONTAINS clause is syntax checked but has no effect on the

execution of the program.

For external files, the value of all BLOCK CONTAINS clauses of corresponding

external files must match within the run unit. This conformance is in terms of

bytes and does not depend upon whether the value was specified as

CHARACTERS or as RECORDS.

integer-1, integer-2

Must be nonzero unsigned integers. They specify:

Chapter 18. Data division--file description entries 177

CHARACTERS

Specifies the number of bytes required to store the physical record,

no matter what USAGE the data items have within the data record.

 If only integer-2 is specified, it specifies the exact number of bytes

in the physical record. When integer-1 and integer-2 are both

specified, they represent the minimum and maximum number of

bytes in the physical record, respectively.

integer-1 and integer-2 must include any control bytes and padding

contained in the physical record. (Logical records do not include

padding.)

The CHARACTERS phrase is the default. CHARACTERS must be

specified when:

v The physical record contains padding.

v Logical records are grouped so that an inaccurate physical record

size could be implied. For example, suppose you describe a

variable-length record of 100 bytes, yet each time you write a

block of 4, one 50-byte record is written followed by three

100-byte records. If the RECORDS phrase were specified, the

compiler would calculate the block size as 420 bytes instead of

the actual size, 370 bytes. (This calculation includes block and

record descriptors.)

RECORDS

Specifies the number of logical records contained in each physical

record.

 The compiler assumes that the block size must provide for integer-2

records of maximum size, and provides any additional space

needed for control bytes.

BLOCK CONTAINS 0 can be specified for QSAM files. If BLOCK CONTAINS 0 is

specified for a QSAM file, then:

v The block size is determined at run time from the DD parameters or the data set

label. If the RECORD CONTAINS 0 CHARACTERS clause is specified and the

BLOCK CONTAINS 0 CHARACTERS clause is specified (or omitted), the block

size is determined at run time from the DD parameters or the data set label of

the file. For output data sets, with either of the above conditions, the DCB used

by Language Environment will have a zero block size value. If you do not

specify a block size value, the operating system might select a

system-determined block size (SDB). See the operating system specifications for

further information about SDB.

BLOCK CONTAINS can be omitted for SYSIN files and for SYSOUT files. The

blocking is determined by the operating system.

The BLOCK CONTAINS clause is syntax checked but has no effect on the

execution of the program when specified under an SD.

The BLOCK CONTAINS clause cannot be used with the RECORDING MODE U

clause.

178 Enterprise COBOL for z/OS V4.1 Language Reference

RECORD clause

When the RECORD clause is used, the record size must be specified as the number

of bytes needed to store the record internally, regardless of the USAGE of the data

items contained within the record.

For example, if you have a record with 10 DBCS characters, the RECORD clause

should say RECORD CONTAINS 20 CHARACTERS. For a record with 10 national

characters, the RECORD clause should say the same, RECORD CONTAINS 20

CHARACTERS.

The size of a record is determined according to the rules for obtaining the size of a

group item. (See “USAGE clause” on page 234 and “SYNCHRONIZED clause” on

page 229.)

When the RECORD clause is omitted, the compiler determines the record lengths

from the record descriptions. When one of the entries within a record description

contains an OCCURS DEPENDING ON clause, the compiler uses the maximum

value of the variable-length item to calculate the number of bytes needed to store

the record internally.

If the associated file connector is an external file connector, all file description

entries in the run unit that are associated with that file connector must specify the

same maximum number of bytes.

The following sections describe the formats of the RECORD clause:

v “Format 1,” fixed-length records

v “Format 2” on page 180, fixed-length or variable-length records

v “Format 3” on page 180, variable-length records

Format 1

Format 1 specifies the number of bytes for fixed-length records.

Format 1

�� RECORD

CONTAINS
 integer-3

CHARACTERS
 ��

integer-3

Must be an unsigned integer that specifies the number of bytes contained

in each record in the file.

 The RECORD CONTAINS 0 CHARACTERS clause can be specified for

input QSAM files containing fixed-length records; the record size is

determined at run time from the DD statement parameters or the data set

label. If, at run time, the actual record is larger than the 01 record

description, then only the 01 record length is available. If the actual record

is shorter, then only the actual record length can be referred to. Otherwise,

uninitialized data or an addressing exception can be produced.

Chapter 18. Data division--file description entries 179

Usage note: If the RECORD CONTAINS 0 clause is specified, then the

SAME AREA, SAME RECORD AREA, or APPLY WRITE-ONLY clauses

cannot be specified.

Do not specify the RECORD CONTAINS 0 clause for an SD entry.

Format 2

Format 2 specifies the number of bytes for either fixed-length or variable-length

records. Fixed-length records are obtained when all 01 record description entry

lengths are the same. The format-2 RECORD CONTAINS clause is never required,

because the minimum and maximum record lengths are determined from the

record description entries.

Format 2

�� RECORD

CONTAINS
 integer-4 TO integer-5

CHARACTERS
 ��

integer-4, integer-5

Must be unsigned integers. integer-4 specifies the size of the smallest data

record, and integer-5 specifies the size of the largest data record.

Format 3

Format 3 is used to specify variable-length records.

Format 3

�� RECORD

IS
 VARYING

IN

SIZE

integer-6

FROM

 �

�
TO

integer-7

CHARACTERS

DEPENDING

data-name-1

ON

 ��

integer-6

Specifies the minimum number of bytes to be contained in any record of

the file. If integer-6 is not specified, the minimum number of bytes to be

contained in any record of the file is equal to the least number of bytes

described for a record in that file.

integer-7

Specifies the maximum number of bytes in any record of the file. If

integer-7 is not specified, the maximum number of bytes to be contained in

any record of the file is equal to the greatest number of bytes described for

a record in that file.

180 Enterprise COBOL for z/OS V4.1 Language Reference

The number of bytes associated with a record description is determined by the

sum of the number of bytes in all elementary data items (excluding redefinitions

and renamings), plus any implicit FILLER due to synchronization. If a table is

specified:

v The minimum number of table elements described in the record is used in the

summation above to determine the minimum number of bytes associated with

the record description.

v The maximum number of table elements described in the record is used in the

summation above to determine the maximum number of bytes associated with

the record description.

If data-name-1 is specified:

v data-name-1 must be an elementary unsigned integer.

v data-name-1 cannot be a windowed date field.

v The number of bytes in the record must be placed into the data item referenced

by data-name-1 before any RELEASE, REWRITE, or WRITE statement is executed

for the file.

v The execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement

or the unsuccessful execution of a READ or RETURN statement does not alter

the content of the data item referenced by data-name-1.

v After the successful execution of a READ or RETURN statement for the file, the

contents of the data item referenced by data-name-1 indicate the number of bytes

in the record just read.

During the execution of a RELEASE, REWRITE, or WRITE statement, the number

of bytes in the record is determined by the following conditions:

v If data-name-1 is specified, by the content of the data item referenced by

data-name-1

v If data-name-1 is not specified and the record does not contain a variable

occurrence data item, by the number of bytes positions in the record

v If data-name-1 is not specified and the record contains a variable occurrence data

item, by the sum of the fixed position and that portion of the table described by

the number of occurrences at the time of execution of the output statement

During the execution of a READ ... INTO or RETURN ... INTO statement, the

number of bytes in the current record that participate as the sending data items in

the implicit MOVE statement is determined by the following conditions:

v If data-name-1 is specified, by the content of the data item referenced by

data-name-1

v If data-name-1 is not specified, by the value that would have been moved into

the data item referenced by data-name-1 had data-name-1 been specified

LABEL RECORDS clause

The LABEL RECORDS clause indicates the presence or absence of labels. If it is not

specified for a file, label records for that file must conform to the system label

specifications.

For VSAM files, the LABEL RECORDS clause is syntax checked, but has no effect

on the execution of the program. COBOL label processing, therefore, is not

performed.

Chapter 18. Data division--file description entries 181

STANDARD

Labels conforming to system specifications exist for this file.

 STANDARD is permitted for mass storage devices and tape devices.

OMITTED

No labels exist for this file.

 OMITTED is permitted for tape devices.

data-name-2

User labels are present in addition to standard labels. data-name-2 specifies

the name of a user label record. data-name-2 must appear as the subject of a

record description entry associated with the file.

A LABEL RECORDS clause under an SD is syntax checked, but has no effect on

the execution of the program.

VALUE OF clause

The VALUE OF clause describes an item in the label records associated with the

file.

data-name-3

Should be qualified when necessary, but cannot be subscripted. It must be

described in the working-storage section. It cannot be described with the

USAGE IS INDEX clause.

literal-1

Can be numeric or alphanumeric, or a figurative constant of category

numeric or alphanumeric. Cannot be a floating-point literal.

The VALUE OF clause is syntax checked, but has no effect on the execution of the

program.

DATA RECORDS clause

The DATA RECORDS clause is syntax checked but serves only as documentation

for the names of data records associated with the file.

data-name-4

The names of record description entries associated with the file.

The data-name need not have an associated 01 level number record description

with the same name.

LINAGE clause

The LINAGE clause specifies the depth of a logical page in number of lines.

Optionally, it also specifies the line number at which the footing area begins and

the top and bottom margins of the logical page. (The logical page and the physical

page cannot be the same size.)

The LINAGE clause is effective for sequential files opened as OUTPUT or

EXTEND.

182 Enterprise COBOL for z/OS V4.1 Language Reference

All integers must be unsigned. All data-names must be described as unsigned

integer data items.

data-name-5, integer-8

The number of lines that can be written or spaced on this logical page. The

area of the page that these lines represent is called the page body. The value

must be greater than zero.

WITH FOOTING AT

integer-9 or the value of the data item in data-name-6 specifies the first line

number of the footing area within the page body. The footing line number

must be greater than zero, and not greater than the last line of the page

body. The footing area extends between those two lines.

LINES AT TOP

integer-10 or the value of the data item in data-name-7 specifies the number

of lines in the top margin of the logical page. The value can be zero.

LINES AT BOTTOM

integer-11 or the value of the data item in data-name-8 specifies the number

of lines in the bottom margin of the logical page. The value can be zero.

The following figure illustrates the use of each phrase of the LINAGE clause.

The logical page size specified in the LINAGE clause is the sum of all values

specified in each phrase except the FOOTING phrase. If the LINES AT TOP phrase

is omitted, the assumed value for the top margin is zero. Similarly, if the LINES AT

BOTTOM phrase is omitted, the assumed value for the bottom margin is zero.

Each logical page immediately follows the preceding logical page, with no

additional spacing provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page

body (integer-8 or data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,

integer-9, integer-10, and integer-11, if specified, are used to determine the page

body, first footing line, top margin, and bottom margin of the logical page for this

file. (See the figure above.) These values are then used for all logical pages printed

for this file during a given execution of the program.

Chapter 18. Data division--file description entries 183

At the time an OPEN statement with the OUTPUT phrase is executed for the file,

data-name-5, data-name-6, data-name-7, and data-name-8 determine the page body,

first footing line, top margin, and bottom margin for the first logical page only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed

or a page overflow condition occurs, the values of data-name-5, data-name-6,

data-name-7, and data-name-8 if specified, are used to determine the page body, first

footing line, top margin, and bottom margin for the next logical page.

If an external file connector is associated with this file description entry, all file

description entries in the run unit that are associated with this file connector must

have:

v A LINAGE clause, if any file description entry has a LINAGE clause

v The same corresponding values for integer-8, integer-9, integer-10, and integer-11,

if specified

v The same corresponding external data items referenced by data-name-5,

data-name-6, data-name-7, and data-name-8

See “ADVANCING phrase” on page 471 for the behavior of carriage control

characters in external files.

A LINAGE clause under an SD is syntax checked, but has no effect on the

execution of the program.

LINAGE-COUNTER special register

For information about the LINAGE-COUNTER special register, see

“LINAGE-COUNTER” on page 19.

RECORDING MODE clause

The RECORDING MODE clause specifies the format of the physical records in a

QSAM file. The clause is ignored for a VSAM file.

Permitted values for RECORDING MODE are:

Recording mode F (fixed)

All the records in a file are the same length and each is wholly contained

within one block. Blocks can contain more than one record, and there is

usually a fixed number of records for each block. In this mode, there are

no record-length or block-descriptor fields.

Recording mode V (variable)

The records can be either fixed-length or variable-length, and each must be

wholly contained within one block. Blocks can contain more than one

record. Each data record includes a record-length field and each block

includes a block-descriptor field. These fields are not described in the data

division. They are each 4 bytes long and provision is automatically made

for them. These fields are not available to you.

Recording mode U (fixed or variable)

The records can be either fixed-length or variable-length. However, there is

only one record for each block. There are no record-length or

block-descriptor fields.

184 Enterprise COBOL for z/OS V4.1 Language Reference

You cannot use RECORDING MODE U if you are using the BLOCK

CONTAINS clause.

Recording mode S (spanned)

The records can be either fixed-length or variable-length, and can be larger

than a block. If a record is larger than the remaining space in a block, a

segment of the record is written to fill the block. The remainder of the

record is stored in the next block (or blocks, if required). Only complete

records are made available to you. Each segment of a record in a block,

even if it is the entire record, includes a segment-descriptor field, and each

block includes a block-descriptor field. These fields are not described in the

data division; provision is automatically made for them. These fields are

not available to you.

When recording mode S is used, the BLOCK CONTAINS CHARACTERS clause

must be used. Recording mode S is not allowed for ASCII files.

If the RECORDING MODE clause is not specified for a QSAM file, the Enterprise

COBOL compiler determines the recording mode as follows:

F The compiler determines the recording mode to be F if the largest level-01

record associated with the file is not greater than the block size specified in

the BLOCK CONTAINS clause, and you do one of the following:

v Use the RECORD CONTAINS integer clause. (For more information, see

the Enterprise COBOL Compiler and Runtime Migration Guide.)

v Omit the RECORD clause and make sure that all level-01 records

associated with the file are the same size and none contains an OCCURS

DEPENDING ON clause.

V The compiler determines the recording mode to be V if the largest level-01

record associated with the file is not greater than the block size specified in

the BLOCK CONTAINS clause, and you do one of the following:

v Use the RECORD IS VARYING clause.

v Omit the RECORD clause and make sure that all level-01 records

associated with the file are not the same size or some contain an

OCCURS DEPENDING ON clause.

v Use the RECORD CONTAINS integer-1 TO integer-2 clause, with integer-1

the minimum length and integer-2 the maximum length of the level-01

records associated with the file. The two integers must be different, with

values matching minimum and maximum length of either different

length records or records with an OCCURS DEPENDING ON clause.

S The compiler determines the recording mode to be S if the maximum block

size is smaller than the largest record size.

U Recording mode U is never obtained by default. The RECORDING MODE

U clause must be explicitly specified to get recording mode U.

CODE-SET clause

The CODE-SET clause specifies the character code used to represent data on a

magnetic tape file. When the CODE-SET clause is specified, an alphabet-name

identifies the character code convention used to represent data on the input-output

device.

alphabet-name must be defined in the SPECIAL-NAMES paragraph as

STANDARD-1 (for ASCII-encoded files), STANDARD-2 (for ISO 7-bit encoded

Chapter 18. Data division--file description entries 185

files), EBCDIC (for EBCDIC-encoded files), or NATIVE. When NATIVE is specified,

the CODE-SET clause is syntax checked but has no effect on the execution of the

program.

The CODE-SET clause also specifies the algorithm for converting the character

codes on the input-output medium from and to the internal EBCDIC character set.

When the CODE-SET clause is specified for a file, all data in the file must have

USAGE DISPLAY; and if signed numeric data is present, it must be described with

the SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed for

the file.

If the associated file connector is an external file connector, all CODE-SET clauses

in the run unit that are associated with the file connector must have the same

character set.

The CODE-SET clause is valid only for magnetic tape files.

The CODE-SET clause is syntax checked but has no effect on the execution of the

program when specified under an SD.

186 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 19. Data division--data description entry

A data description entry specifies the characteristics of a data item. In the sections

that follow, sets of data description entries are called record description entries. The

term data description entry refers to data and record description entries.

Data description entries that define independent data items do not make up a

record. These entries are known as data item description entries.

Data description entries have three general formats, which are described in the

following sections:

v “Format 1”

v “Format 2” on page 188

v “Format 3” on page 188

All data description entries must end with a separator period.

Format 1

Format 1 is used for data description entries in all data division sections.

Format 1: data description entry

�� level-number

data-name-1

FILLER

redefines-clause

blank-when-zero-clause
 �

�
external-clause

global-clause

group-usage-clause

justified-clause
 �

�
occurs-clause

picture-clause

sign-clause

synchronized-clause
 �

�
usage-clause

value-clause

date-format-clause
 ��

The clauses can be written in any order, with two exceptions:

v data-name-1 or FILLER, if specified, must immediately follow the level-number.

v When the REDEFINES clause is specified, it must immediately follow

data-name-1 or FILLER, if either is specified. If data-name-1 or FILLER is not

specified, the REDEFINES clause must immediately follow the level-number.

The level-number in format 1 can be any number in the range 01–49, or 77.

A space, a comma, or a semicolon must separate clauses.

© Copyright IBM Corp. 1991, 2007 187

Format 2

Format 2 regroups previously defined items.

Format 2: renames

�� 66 data-name-1 renames-clause. ��

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,

level-77, or level-88 entry.

All level-66 entries associated with one record must immediately follow the last

data description entry in that record.

See “RENAMES clause” on page 225 for further details.

Format 3

Format 3 describes condition-names.

Format 3: condition-name

�� 88 condition-name-1 value-clause. ��

condition-name-1

A user-specified name that associates a value, a set of values, or a range of

values with a conditional variable.

 Level-88 entries must immediately follow the data description entry for the

conditional variable with which the condition-names are associated.

Format 3 can be used to describe elementary items, national group items, or

alphanumeric group items. Additional information about condition-name entries

can be found under “VALUE clause” on page 243 and “Condition-name condition”

on page 269.

Level-numbers

The level-number specifies the hierarchy of data within a record, and identifies

special-purpose data entries. A level-number begins a data description entry, a

renamed or redefined item, or a condition-name entry. A level-number has an

integer value between 1 and 49, inclusive, or one of the special level-number

values 66, 77, or 88.

188 Enterprise COBOL for z/OS V4.1 Language Reference

Format

�� level-number

data-name-1

FILLER

 ��

level-number

01 and 77 must begin in Area A and be followed either by a separator

period or by a space followed by its associated data-name, FILLER, or

appropriate data description clause.

 Level numbers 02 through 49 can begin in Areas A or B and must be

followed by a space or a separator period.

Level numbers 66 and 88 can begin in Areas A or B and must be followed

by a space.

Single-digit level-numbers 1 through 9 can be substituted for

level-numbers 01 through 09.

Successive data description entries can start in the same column as the first

entry or can be indented according to the level-number. Indentation does

not affect the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any

number of spaces to the right of Area A. The extent of indentation to the

right is limited only by the width of Area B.

For more information, see “Levels of data” on page 161.

data-name-1

Explicitly identifies the data being described.

 data-name-1, if specified, identifies a data item used in the program.

data-name-1 must be the first word following the level-number.

The data item can be changed during program execution.

data-name-1 must be specified for level-66 and level-88 items. It must also

be specified for any entry containing the GLOBAL or EXTERNAL clause,

and for record description entries associated with file description entries

that have the GLOBAL or EXTERNAL clauses.

FILLER

A data item that is not explicitly referred to in a program. The keyword

FILLER is optional. If specified, FILLER must be the first word following

the level-number.

 The keyword FILLER can be used with a conditional variable if explicit

reference is never made to the conditional variable but only to values that

it can assume. FILLER cannot be used with a condition-name.

In a MOVE CORRESPONDING statement or in an ADD

CORRESPONDING or SUBTRACT CORRESPONDING statement, FILLER

items are ignored. In an INITIALIZE statement, elementary FILLER items

are ignored.

If data-name-1 or the FILLER clause is omitted, the data item being described is

treated as though FILLER had been specified.

Chapter 19. Data division--data description entry 189

BLANK WHEN ZERO clause

The BLANK WHEN ZERO clause specifies that an item contains only spaces when

its value is zero.

Format

�� BLANK

WHEN
 ZERO

ZEROS

ZEROES

 ��

The BLANK WHEN ZERO clause may be specified only for an elementary item

described by its picture character string as category numeric-edited or numeric,

without the picture symbol S or *. These items must be described, either implicitly

or explicitly, as USAGE DISPLAY or USAGE NATIONAL.

A BLANK WHEN ZERO clause that is specified for an item defined as numeric by

it picture character string defines the item as category numeric-edited.

The BLANK WHEN ZERO clause must not be specified for date fields.

DATE FORMAT clause

The DATE FORMAT clause specifies that a data item is a windowed or expanded

date field:

Windowed date fields

Contain a windowed (two-digit) year, specified by a DATE FORMAT

clause that contains YY.

Expanded date fields

Contain an expanded (four-digit) year, specified by a DATE FORMAT

clause that contains YYYY.

If the NODATEPROC compiler option is in effect, the DATE FORMAT clause is

syntax checked but has no effect on the execution of the program. NODATEPROC

disables date processing. The rules and restrictions described in this reference for

the DATE FORMAT clause and date fields apply only if the DATEPROC compiler

option is in effect.

The DATE FORMAT clause must not be specified for a data item described with

USAGE NATIONAL.

Format

�� DATE FORMAT

IS
 date-pattern ��

190 Enterprise COBOL for z/OS V4.1 Language Reference

date-pattern is a character string, such as YYXXXX, that represents a windowed or

expanded year optionally followed or preceded by one to four characters

representing other parts of a date such as the month and day:

 Date-pattern string Specifies that the data item contains

YY A windowed (two-digit) year

YYYY An expanded (four-digit) year

X A single character; for example, a digit representing a semester or quarter (1–4)

XX Two characters; for example, digits representing a month (01–12)

XXX Three characters; for example, digits representing a day of the year (001–366)

XXXX Four characters; for example, two digits representing a month (01–12) and two digits

representing a day of the month (01–31)

For an introduction to date fields and related terms, see Chapter 10, “Millennium

Language Extensions and date fields,” on page 81. For details on using date fields

in applications, see Enterprise COBOL Programming Guide.

Semantics of windowed date fields

Windowed date fields undergo automatic expansion relative to the century

window when they are used as operands in arithmetic expressions or arithmetic

statements. However, the result of incrementing or decrementing a windowed date

is still treated as a windowed date for further computation, comparison, and

storing.

When used in the following situations, windowed date fields are treated as if they

were converted to expanded date format:

v Operands in subtractions in which the other operand is an expanded date

v Operands in relation conditions

v Sending fields in arithmetic or MOVE statements

The details of the conversion to expanded date format depend on whether the

windowed date field is numeric or alphanumeric.

Given a century window starting year of 19nn, the year part (yy) of a numeric

windowed date field is treated as if it were expanded as follows:

v If yy is less than nn, then add 2000 to yy.

v If yy is equal to or greater than nn, then add 1900 to yy.

For signed numeric windowed date fields, this means that there can be two

representations of some years. For instance, windowed year values 99 and -01 are

both treated as 1999, since 1900 + 99 = 2000 + -01.

Alphanumeric windowed date fields are treated in a similar manner, but use a

prefix of 19 or 20 instead of adding 1900 or 2000.

For example, when used as an operand of a relation condition, a windowed date

field defined by:

01 DATE-FIELD DATE FORMAT YYXXXX PICTURE 9(6)

 VALUE IS 450101.

is treated as if it were an expanded date field with a value of:

Chapter 19. Data division--data description entry 191

v 19450101, if the century window starting year is 1945 or earlier

v 20450101, if the century window starting year is later than 1945

Date trigger values

When the DATEPROC(TRIG) compiler option is in effect, expansion of windowed

date fields is sensitive to certain trigger or limit values in the windowed date field.

For alphanumeric windowed date fields, these special values are LOW-VALUE,

HIGH-VALUE, and SPACE. For alphanumeric and numeric windowed date fields

with at least one X in the DATE FORMAT clause (that is, windowed date fields

other than just a windowed year), values of all zeros or all nines are also treated as

triggers.

The all-zero value is intended to act as a date earlier than any valid date. The

purpose of the all-nines value is to behave like a date later than any valid date.

When a windowed date field contains a trigger in this way, it is expanded as if the

trigger value were copied to the century part of the expanded date result, rather

than inferring 19 or 20 as the century value.

This special trigger expansion is done when a windowed date field is used either

as an operand in a relation condition or as the sending field in an arithmetic or

MOVE statement. Trigger expansion is not done when windowed date fields are

used as operands in arithmetic expressions, but can be applied to the final

windowed date result of an arithmetic expression.

Restrictions on using date fields

The following sections describe restrictions on using date fields in these contexts:

v DATE FORMAT clauses combined with other clauses

v Group items consisting only of a date field

v Language elements that treat date fields as nondates

v Language elements that do not accept date fields as arguments

For restrictions on using date fields in other contexts, see:

v “Arithmetic with date fields” on page 264

v “Comparison of date fields” on page 279

v “ADD statement” on page 313

v “SUBTRACT statement” on page 457

v “MOVE statement” on page 386

Combining the DATE FORMAT clause with other clauses

The following phrases are the only phrases of the USAGE clause that can be

combined with the DATE FORMAT clause:

v BINARY

v COMPUTATIONAL1

v COMPUTATIONAL-3

v COMPUTATIONAL-4

v DISPLAY

v PACKED-DECIMAL

192 Enterprise COBOL for z/OS V4.1 Language Reference

1USAGE COMPUTATIONAL cannot be combined with the DATE FORMAT clause

if the TRUNC(BIN) compiler option is in effect.

The PICTURE character-string must specify the same number of characters or

digits as the DATE FORMAT clause. For alphanumeric date fields, the only

PICTURE character-string symbols allowed are A, 9, and X, with at least one X. For

numeric date fields, the only PICTURE character-string symbols allowed are 9 and

S.

The following clauses are not allowed for a data item defined with DATE

FORMAT:

v BLANK WHEN ZERO

v JUSTIFIED

v SEPARATE CHARACTER phrase of the SIGN clause

The EXTERNAL clause is not allowed for a windowed date field or a group item

that contains a windowed date field subordinate item.

Some restrictions apply when combining the following clauses with DATE

FORMAT:

v “REDEFINES clause” on page 222

v “VALUE clause” on page 243

Group items that are date fields

If a group item is defined with a DATE FORMAT clause, then the following

restrictions apply:

v The elementary items in the group must all be USAGE DISPLAY.

v The length of the group item must be the same number of characters as the

date-pattern in the DATE FORMAT clause.

v If the group consists solely of a date field with USAGE DISPLAY, and both the

group and the single subordinate item have DATE FORMAT clauses, then the

DATE FORMAT clauses must be identical.

v If the group item contains subordinate items that subdivide the group, then the

following restrictions apply:

– If a named (not FILLER) subordinate item consists of exactly the year part of

the group item date field and has a DATE FORMAT clause, then the DATE

FORMAT clause must be YY or YYYY with the same number of year

characters as the group item.

– If the group item is a Gregorian date with a DATE FORMAT clause of

YYXXXX, YYYYXXXX, XXXXYY, or XXXXYYYY, and a named subordinate

date data item consists of the year and month part of the Gregorian date, then

its DATE FORMAT clause must be YYXX, YYYYXX, XXYY, or XXYYYY,

respectively (or, for a group date format of YYYYXXXX, a subordinate date

format of YYXX as described below).

– A windowed date field can be subordinate to an expanded date field group

item if the subordinate item starts two characters after the group item, neither

date is in year-last format, and the date format of the subordinate item either

has no Xs or has the same number of Xs following the Ys as the group item,

or is YYXX under a group date format of YYYYXXXX.

– The only subordinate items that can have a DATE FORMAT clause are those

that define the year part of the group item, the windowed part of an

Chapter 19. Data division--data description entry 193

expanded date field group item, or the year and month part of a Gregorian

date group item, as discussed in the above restrictions.

For example, the following defines a valid group item:

01 YYMMDD DATE FORMAT YYXXXX.

 02 YYMM DATE FORMAT YYXX.

 03 YY DATE FORMAT YY PICTURE 99.

 03 PICTURE 99.

 02 DD PICTURE 99.

Language elements that treat date fields as nondates

If date fields are used in the following language elements, they are treated as

nondates. That is, the DATE FORMAT is ignored, and the content of the date data

item is used without undergoing automatic expansion.

v In the environment division file-control paragraph:

– SELECT ... ASSIGN USING data-name

– SELECT ... PASSWORD IS data-name

– SELECT ... FILE STATUS IS data-name
v In data division entries:

– LABEL RECORD IS data-name

– LABEL RECORDS ARE data-name

– LINAGE IS data-name FOOTING data-name TOP data-name BOTTOM

data-name
v In class conditions

v In sign conditions

v In DISPLAY statements

Language elements that do not accept windowed date fields as

arguments

Windowed date fields cannot be used as:

v A data-name in the following formats of the environment division file-control

paragraph:

– SELECT ... RECORD KEY IS

– SELECT ... ALTERNATE RECORD KEY IS

– SELECT ... RELATIVE KEY IS
v A data-name in the RECORD IS VARYING DEPENDING ON clause of a data

division file description (FD) or sort description (SD) entry

v The object of an OCCURS DEPENDING ON clause of a data division data

definition entry

v The key in an ASCENDING KEY or DESCENDING KEY phrase of an OCCURS

clause of a data division data definition entry

v Any data-name or identifier in the following statements:

– CANCEL

– GO TO ... DEPENDING ON

– INSPECT

– SET

– SORT

– STRING

– UNSTRING

194 Enterprise COBOL for z/OS V4.1 Language Reference

v In the CALL statement, as the identifier containing the program-name

v In the INVOKE statement, as the identifier specifying the object on which the

method is invoked, or the identifier containing the method name

v Identifiers in the TIMES and VARYING phrases of the PERFORM statement

(windowed date fields are allowed in the PERFORM conditions)

v An identifier in the VARYING phrase of a serial (format-1) SEARCH statement,

or any identifier in a binary (format-2) SEARCH statement (windowed date

fields are allowed in the SEARCH conditions)

v An identifier in the ADVANCING phrase of the WRITE statement

v Arguments to intrinsic functions, except the UNDATE intrinsic function

Windowed date fields can be used as ascending or descending keys in MERGE

and SORT statements, with some restrictions. For details, see “MERGE statement”

on page 380 and “SORT statement” on page 441.

Language elements that do not accept date fields as arguments

Neither windowed date fields nor expanded date fields can be used:

v In the DIVIDE statement, except as an identifier in the GIVING or REMAINDER

clause

v In the MULTIPLY statement, except as an identifier in the GIVING clause

(Date fields cannot be used as operands in division or multiplication.)

EXTERNAL clause

The EXTERNAL clause specifies that the storage associated with a data item is

associated with the run unit rather than with any particular program or method

within the run unit. An external data item can be referenced by any program or

method in the run unit that describes the data item. References to an external data

item from different programs or methods using separate descriptions of the data

item are always to the same data item. In a run unit, there is only one

representative of an external data item.

The EXTERNAL clause can be specified only on data description entries whose

level-number is 01. It can be specified only on data description entries that are in

the working-storage section of a program or method. It cannot be specified in

linkage section or file section data description entries. Any data item described by

a data description entry subordinate to an entry that describes an external record

also attains the external attribute. Indexes in an external data record do not possess

the external attribute.

The data contained in the record named by the data-name clause is external and

can be accessed and processed by any program or method in the run unit that

describes and, optionally, redefines it. This data is subject to the following rules:

v If two or more programs or methods within a run unit describe the same

external data record, each record-name of the associated record description

entries must be the same, and the records must define the same number of

bytes. However, a program or method that describes an external record can

contain a data description entry including the REDEFINES clause that redefines

the complete external record, and this complete redefinition need not occur

identically in other programs or methods in the run unit.

Chapter 19. Data division--data description entry 195

v Use of the EXTERNAL clause does not imply that the associated data-name is a

global name.

GLOBAL clause

The GLOBAL clause specifies that a data-name is available to every program

contained within the program that declares it, as long as the contained program

does not itself have a declaration for that name. All data-names subordinate to or

condition-names or indexes associated with a global name are global names.

A data-name is global if the GLOBAL clause is specified either in the data

description entry by which the data-name is declared or in another entry to which

that data description entry is subordinate. The GLOBAL clause can be specified in

the working-storage section, the file section, the linkage section, and the

local-storage section, but only in data description entries whose level-number is 01.

In the same data division, the data description entries for any two data items for

which the same data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program that

describes a global name can reference that name without describing it again.

Two programs in a run unit can reference common data in the following

circumstances:

v The data content of an external data record can be referenced from any program

that describes the data record as external.

v If a program is contained within another program, both programs can refer to

data that possesses the global attribute either in the containing program or in

any program that directly or indirectly contains the containing program.

JUSTIFIED clause

The JUSTIFIED clause overrides standard positioning rules for receiving items of

category alphabetic, alphanumeric, DBCS, or national.

Format

�� JUSTIFIED

JUST

RIGHT
 ��

You can specify the JUSTIFIED clause only at the elementary level. JUST is an

abbreviation for JUSTIFIED, and has the same meaning.

You cannot specify the JUSTIFIED clause:

v For data items of category numeric, numeric-edited, alphanumeric-edited, or

national-edited

v For edited DBCS items

v For index data items

196 Enterprise COBOL for z/OS V4.1 Language Reference

v For items described as USAGE FUNCTION-POINTER, USAGE POINTER,

USAGE PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

v For external floating-point or internal floating-point items

v For date fields

v With level-66 (RENAMES) and level-88 (condition-name) entries

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at

the rightmost character position in the receiving item. Also:

v If the sending item is larger than the receiving item, the leftmost character

positions are truncated.

v If the sending item is smaller than the receiving item, the unused character

positions at the left are filled with spaces. For a DBCS item, each unused

position is filled with a DBCS space (X’4040’); for an item described with usage

NATIONAL, each unused position is filled with the default Unicode space

(NX’0020’); otherwise, each unused position is filled with an alphanumeric

space.

If you omit the JUSTIFIED clause, the rules for standard alignment are followed

(see “Alignment rules” on page 168).

The JUSTIFIED clause does not affect initial settings as determined by the VALUE

clause.

GROUP-USAGE clause

A GROUP-USAGE clause with the NATIONAL phrase specifies that the group

item defined by the entry is a national group item. A national group item contains

national characters in all subordinate data items and subordinate group items.

Format

�� GROUP-USAGE NATIONAL

IS
 ��

When GROUP-USAGE NATIONAL is specified:

v The subject of the entry is a national group item. The class and category of a

national group are national.

v A USAGE clause must not be specified for the subject of the entry. A USAGE

NATIONAL clause is implied.

v A USAGE NATIONAL clause is implied for any subordinate elementary data

items that are not described with a USAGE NATIONAL clause.

v All subordinate elementary data items must be explicitly or implicitly described

with USAGE NATIONAL.

v Any signed numeric data items must be described with the SIGN IS SEPARATE

clause.

v A GROUP-USAGE NATIONAL clause is implied for any subordinate group

items that are not described with a GROUP-USAGE NATIONAL clause.

Chapter 19. Data division--data description entry 197

v All subordinate group items must be explicitly or implicitly described with a

GROUP-USAGE NATIONAL clause.

v The JUSTIFIED clause must not be specified.

Unless stated otherwise, a national group item is processed as though it were an

elementary data item of usage national, class and category national, described with

PICTURE N(m), where m is the length of the group in national character positions.

Usage note: When you use national groups, the compiler can ensure proper

truncation and padding of group items for statements such as MOVE and

INSPECT. Groups defined without a GROUP-USAGE NATIONAL clause are

alphanumeric groups. The content of alphanumeric groups, including any national

characters, is treated as alphanumeric data, possibly leading to invalid truncation

or mishandling of national character data.

The table below summarizes the cases where a national group item is processed as

a group item.

 Table 11. Where national group items are processed as groups

Language feature Processing of national group items

Name qualification The name of a national group item can be used to qualify the names of

elementary data items and subordinate group items in the national group. The

rules of qualification for a national group are the same as the rules of

qualification for an alphanumeric group.

RENAMES clause The rules for a national group item specified in the THROUGH phrase are the

same as the rules for an alphanumeric group item specified in the THROUGH

phrase. The result is an alphanumeric group item.

CORRESPONDING phrase A national group item is processed as a group in accordance with the rules of

the CORRESPONDING phrase. Elementary data items within a national group

are processed the same as they would be if defined within an alphanumeric

group.

INITIALIZE statement A national group item is processed as a group in accordance with the rules of

the INITIALIZE statement. Elementary items within the national group are

initialized the same as they would be if defined within an alphanumeric

group.

XML GENERATE statement A national group item specified in the FROM phrase is processed as a group in

accordance with the rules of the XML GENERATE statement. Elementary items

within the national group are processed the same as they would be if defined

within an alphanumeric group.

OCCURS clause

The data division clauses used for table handling are the OCCURS clause and the

USAGE IS INDEX clause. For the USAGE IS INDEX description, see “USAGE

clause” on page 234.

The OCCURS clause specifies tables whose elements can be referred to by indexing

or subscripting. It also eliminates the need for separate entries for repeated data

items.

Formats for the OCCURS clause include fixed-length tables and variable-length

tables.

198 Enterprise COBOL for z/OS V4.1 Language Reference

The subject of an OCCURS clause is the data-name of the data item that contains

the OCCURS clause. Except for the OCCURS clause itself, data description clauses

used with the subject apply to each occurrence of the item described.

Whenever the subject of an OCCURS clause or any data-item subordinate to it is

referenced, it must be subscripted or indexed, with the following exceptions:

v When the subject of the OCCURS clause is used as the subject of a SEARCH

statement

v When the subject or a subordinate data item is the object of the

ASCENDING/DESCENDING KEY phrase

v When the subordinate data item is the object of the REDEFINES clause

When subscripted or indexed, the subject refers to one occurrence within the table.

When not subscripted or indexed, the subject references the entire table.

The OCCURS clause cannot be specified in a data description entry that:

v Has a level number of 01, 66, 77, or 88.

v Describes a redefined data item. (However, a redefined item can be subordinate

to an item that contains an OCCURS clause.) See “REDEFINES clause” on page

222.

Fixed-length tables

Fixed-length tables are specified using the OCCURS clause. Because seven

subscripts or indexes are allowed, six nested levels and one outermost level of the

format-1 OCCURS clause are allowed. The format-1 OCCURS clause can be

specified as subordinate to the OCCURS DEPENDING ON clause. In this way, a

table of up to seven dimensions can be specified.

Format 1: fixed-length tables

�� OCCURS integer-2

TIMES
 �

�

�

�

ASCENDING

data-name-2

DESCENDING

KEY

IS

�

�

�

INDEXED

index-name-1

BY

 ��

Chapter 19. Data division--data description entry 199

integer-2

The exact number of occurrences. integer-2 must be greater than zero.

ASCENDING KEY and DESCENDING KEY phrases

Data is arranged in ascending or descending order, depending on the keyword

specified, according to the values contained in data-name-2. The data-names are

listed in their descending order of significance.

The order is determined by the rules for comparison of operands (see “Relation

conditions” on page 271). The ASCENDING KEY and DESCENDING KEY data

items are used in OCCURS clauses and the SEARCH ALL statement for a binary

search of the table element.

data-name-2

Must be the name of the subject entry or the name of an entry subordinate

to the subject entry. data-name-2 cannot be a windowed date field.

data-name-2 can be qualified.

 If data-name-2 names the subject entry, that entire entry becomes the

ASCENDING KEY or DESCENDING KEY and is the only key that can be

specified for this table element.

If data-name-2 does not name the subject entry, then data-name-2:

v Must be subordinate to the subject of the table entry itself

v Must not be subordinate to, or follow, any other entry that contains an

OCCURS clause

v Must not contain an OCCURS clause

data-name-2 must not have subordinate items that contain OCCURS

DEPENDING ON clauses.

When the ASCENDING KEY or DESCENDING KEY phrase is specified, the

following rules apply:

v Keys must be listed in decreasing order of significance.

v The total number of keys for a given table element must not exceed 12.

v The data in the table must be arranged in ascending or descending sequence

according to the collating sequence in use.

v The key must be described with one of the following usages:

– BINARY

– DISPLAY

– DISPLAY-1

– NATIONAL

– PACKED-DECIMAL

– COMPUTATIONAL

– COMPUTATIONAL-1

– COMPUTATIONAL-2

– COMPUTATIONAL-3

– COMPUTATIONAL-4

– COMPUTATIONAL-5
v A key described with usage NATIONAL can have one of the following

categories: national, national-edited, numeric-edited, numeric, or external

floating-point.

200 Enterprise COBOL for z/OS V4.1 Language Reference

v The sum of the lengths of all the keys associated with one table element must

not exceed 256.

v If a key is specified without qualifiers and it is not a unique name, the key will

be implicitly qualified with the subject of the OCCURS clause and all qualifiers

of the OCCURS clause subject.

The following example illustrates the specification of ASCENDING KEY data

items:

WORKING-STORAGE SECTION.

01 TABLE-RECORD.

 05 EMPLOYEE-TABLE OCCURS 100 TIMES

 ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO

 INDEXED BY A, B.

 10 EMPLOYEE-NAME PIC X(20).

 10 EMPLOYEE-NO PIC 9(6).

 10 WAGE-RATE PIC 9999V99.

 10 WEEK-RECORD OCCURS 52 TIMES

 ASCENDING KEY IS WEEK-NO INDEXED BY C.

 15 WEEK-NO PIC 99.

 15 AUTHORIZED-ABSENCES PIC 9.

 15 UNAUTHORIZED-ABSENCES PIC 9.

 15 LATE-ARRIVALS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, and the key for

WEEK-RECORD is subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in

ascending order of WAGE-RATE, and in ascending order of EMPLOYEE-NO

within WAGE-RATE. Records in WEEK-RECORD must be arranged in ascending

order of WEEK-NO. If they are not, results of any SEARCH ALL statement are

unpredictable.

INDEXED BY phrase

The INDEXED BY phrase specifies the indexes that can be used with a table. A

table without an INDEXED BY phrase can be referred to through indexing by

using an index-name associated with another table. See “Subscripting using

index-names (indexing)” on page 73.

Indexes normally are allocated in static memory associated with the program that

contains the table. Thus indexes are in the last-used state when a program is

reentered. However, in the following cases, indexes are allocated on a

per-invocation basis. Thus you must set the value of the index on every entry for

indexes on tables in the following sections:

v The local-storage section

v The working-storage section of a class definition (object instance variables)

v The linkage section of:

– Methods

– Programs compiled with the RECURSIVE clause

– Programs compiled with the THREAD option

Indexes specified in an external data record do not possess the external attribute.

index-name-1

Each index-name specifies an index to be created by the compiler for use

by the program. These index-names are not data-names and are not

Chapter 19. Data division--data description entry 201

identified elsewhere in the COBOL program; instead, they can be regarded

as private special registers for the use of this object program only. They are

not data and are not part of any data hierarchy.

 Unreferenced index names need not be uniquely defined.

In one table entry, up to 12 index-names can be specified.

If a data item that possesses the global attribute includes a table accessed

with an index, that index also possesses the global attribute. Therefore, the

scope of an index-name is the same as that of the data-name that names

the table in which the index is defined.

Variable-length tables

Variable-length tables are specified using the OCCURS DEPENDING ON clause.

Format 2: variable-length tables

�� OCCURS

integer-1

TO
 integer-2

TIMES
 DEPENDING

ON
 �

�

data-name-1

�

�

ASCENDING

data-name-2

DESCENDING

KEY

IS

�

�

�

INDEXED

index-name-1

BY

 ��

integer-1

The minimum number of occurrences.

 The value of integer-1 must be greater than or equal to zero; it must also be

less than the value of integer-2.

If integer-1 is omitted, a value of 1 is assumed and the keyword TO must

also be omitted.

integer-2

The maximum number of occurrences.

 integer-2 must be greater than integer-1.

The length of the subject item is fixed. Only the number of repetitions of the subject

item is variable.

202 Enterprise COBOL for z/OS V4.1 Language Reference

OCCURS DEPENDING ON clause

The OCCURS DEPENDING ON clause specifies variable-length tables.

data-name-1

Identifies the object of the OCCURS DEPENDING ON clause; that is, the

data item whose current value represents the current number of

occurrences of the subject item. The contents of items whose occurrence

numbers exceed the value of the object are undefined.

 The object of the OCCURS DEPENDING ON clause (data-name-1) must

describe an integer data item. The object cannot be a windowed date field.

The object of the OCCURS DEPENDING ON clause must not occupy any

storage position within the range of the table (that is, any storage position

from the first character position in the table through the last character

position in the table).

The object of the OCCURS DEPENDING ON clause cannot be variably

located; the object cannot follow an item that contains an OCCURS

DEPENDING ON clause.

If the OCCURS clause is specified in a data description entry included in a

record description entry that contains the EXTERNAL clause, data-name-1,

if specified, must reference a data item that possesses the external attribute.

data-name-1 must be described in the same data division as the subject of

the entry.

If the OCCURS clause is specified in a data description entry subordinate

to one that contains the GLOBAL clause, data-name-1, if specified, must be

a global name. data-name-1 must be described in the same data division as

the subject of the entry.

All data-names used in the OCCURS clause can be qualified; they cannot be

subscripted or indexed.

At the time that the group item, or any data item that contains a subordinate

OCCURS DEPENDING ON item or that follows but is not subordinate to the

OCCURS DEPENDING ON item, is referenced, the value of the object of the

OCCURS DEPENDING ON clause must fall within the range integer-1 through

integer-2.

When a group item that contains a subordinate OCCURS DEPENDING ON item is

referred to, the part of the table area used in the operation is determined as

follows:

v If the object is outside the group, only that part of the table area that is specified

by the object at the start of the operation is used.

v If the object is included in the same group and the group data item is referenced

as a sending item, only that part of the table area that is specified by the value

of the object at the start of the operation is used in the operation.

v If the object is included in the same group and the group data item is referenced

as a receiving item, the maximum length of the group item is used in the

operation.

The following statements are affected by the maximum length rule:

v ACCEPT identifier (format 1 and 2)

v CALL ... USING BY REFERENCE identifier

Chapter 19. Data division--data description entry 203

v INVOKE ... USING BY REFERENCE identifier

v MOVE ... TO identifier

v READ ... INTO identifier

v RELEASE identifier FROM ...

v RETURN ... INTO identifier

v REWRITE identifier FROM ...

v STRING ... INTO identifier

v UNSTRING ... INTO identifier DELIMITER IN identifier

v WRITE identifier FROM ...

If a variable-length group item is not followed by a nonsubordinate item, the

maximum length of the group is used when it appears as the identifier in CALL ...

USING BY REFERENCE identifier. Therefore, the object of the OCCURS

DEPENDING ON clause does not need to be set unless the group is variably

located.

If the group item is followed by a nonsubordinate item, the actual length, rather

than the maximum length, is used. At the time the subject of entry is referenced, or

any data item subordinate or superordinate to the subject of entry is referenced,

the object of the OCCURS DEPENDING ON clause must fall within the range

integer-1 through integer-2.

Certain uses of the OCCURS DEPENDING ON clause result in complex OCCURS

DEPENDING ON (ODO) items. The following constitute complex ODO items:

v A data item described with an OCCURS DEPENDING ON clause that is

followed by a nonsubordinate elementary data item, described with or without

an OCCURS clause

v A data item described with an OCCURS DEPENDING ON clause that is

followed by a nonsubordinate group item

v A group item that contains one or more subordinate items described with an

OCCURS DEPENDING ON clause

v A data item described with an OCCURS clause or an OCCURS DEPENDING

ON clause that contains a subordinate data item described with an OCCURS

DEPENDING ON clause (a table that contains variable-length elements)

v An index-name associated with a table that contains variable-length elements

The object of an OCCURS DEPENDING ON clause cannot be a nonsubordinate

item that follows a complex ODO item.

Any nonsubordinate item that follows an item described with an OCCURS

DEPENDING ON clause is a variably located item. That is, its location is affected by

the value of the OCCURS DEPENDING ON object.

When implicit redefinition is used in a File Description (FD) entry, subordinate

level items can contain OCCURS DEPENDING ON clauses.

The INDEXED BY phrase can be specified for a table that has a subordinate item

that contains an OCCURS DEPENDING ON clause.

For more information about complex OCCURS DEPENDING ON, see the

Enterprise COBOL Programming Guide.

204 Enterprise COBOL for z/OS V4.1 Language Reference

The ASCENDING KEY phrase, the DESCENDING KEY phrase, and the INDEXED

BY clause are described under “Fixed-length tables” on page 199.

PICTURE clause

The PICTURE clause specifies the general characteristics and editing requirements

of an elementary item.

Format

�� PICTURE

PIC

IS
 character-string ��

PICTURE or PIC

The PICTURE clause must be specified for every elementary item except

the following:

v Index data items

v The subject of the RENAMES clause

v Items described with USAGE POINTER, USAGE FUNCTION-POINTER,

USAGE PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

v Internal floating-point data items

In these cases, use of the PICTURE clause is prohibited.

The PICTURE clause can be specified only at the elementary level.

PIC is an abbreviation for PICTURE and has the same meaning.

character-string

character-string is made up of certain COBOL characters used as picture

symbols. The allowable combinations determine the category of the

elementary data item.

 character-string can contain a maximum of 50 characters.

Symbols used in the PICTURE clause

Any punctuation character that appears within the PICTURE character-string is not

considered a punctuation character, but rather is a PICTURE character-string

symbol.

When specified in the SPECIAL-NAMES paragraph, DECIMAL-POINT IS

COMMA exchanges the functions of the period and the comma in PICTURE

character-strings and in numeric literals.

The lowercase letters that correspond to the uppercase letters that represent the

following PICTURE symbols are equivalent to their uppercase representations in a

PICTURE character-string:

A, B, E, G, N, P, S, V, X, Z, CR, DB

All other lowercase letters are not equivalent to their corresponding uppercase

representations.

Chapter 19. Data division--data description entry 205

Table 12 defines the meaning of each PICTURE clause symbol. The heading Size

indicates how the item is counted in determining the number of character positions

in the item. The type of the character positions depends on the USAGE clause

specified for the item, as follows:

 Usage Type of character positions Number of bytes per character

DISPLAY Alphanumeric 1

DISPLAY-1 DBCS 2

NATIONAL National 2

All others Conceptual Not applicable

 Table 12. PICTURE clause symbol meanings

Symbol Meaning Size

A A character position that can contain only a letter

of the Latin alphabet or a space.

Each ’A’ is counted as one character position in

the size of the data item.

B For usage DISPLAY, a character position into

which an alphanumeric space is inserted.

For usage DISPLAY-1, a character position into

which a DBCS space is inserted.

For usage NATIONAL, a character position into

which a national space is inserted.

Each ’B’ is counted as one character position in the

size of the data item.

E Marks the start of the exponent in an external

floating-point item. For additional details of

external floating-point items, see “Data categories

and PICTURE rules” on page 210.

Each ’E’ is counted as one character position in the

size of the data item.

G A DBCS character position. Each ’G’ is counted as one character position in

the size of the data item.

N A DBCS character position when specified with

usage DISPLAY-1 or when usage is unspecified

and the NSYMBOL(DBCS) compiler option is in

effect.

For category national, a national character position

when specified with usage NATIONAL or when

usage is unspecified and the

NSYMBOL(NATIONAL) compiler option is in

effect.

For category national-edited, a national character

position.

Each ’N’ is counted as one character position in

the size of the data item.

P An assumed decimal scaling position. Used to

specify the location of an assumed decimal point

when the point is not within the number that

appears in the data item. See “P symbol” on page

208 for further details.

Not counted in the size of the data item. Scaling

position characters are counted in determining the

maximum number of digit positions in

numeric-edited items or in items that are used as

arithmetic operands.

The size of the value is the number of digit

positions represented by the PICTURE

character-string.

206 Enterprise COBOL for z/OS V4.1 Language Reference

Table 12. PICTURE clause symbol meanings (continued)

Symbol Meaning Size

S An indicator of the presence (but not the

representation, and not necessarily the position) of

an operational sign. An operational sign indicates

whether the value of an item involved in an

operation is positive or negative.

Not counted in the size of the elementary item,

unless an associated SIGN clause specifies the

SEPARATE CHARACTER phrase (which would be

counted as one character position).

V An indicator of the location of the assumed

decimal point. Does not represent a character

position.

When the assumed decimal point is to the right of

the rightmost symbol in the string, the V is

redundant.

Not counted in the size of the elementary item.

X A character position that can contain any

allowable character from the alphanumeric

character set of the computer.

Each ’X’ is counted as one character position in the

size of the data item.

Z A leading numeric character position. When that

position contains a zero, a space character replaces

the zero.

Each ’Z’ is counted as one character position in the

size of the data item.

9 A character position that contains a numeral. Each nine specifies one decimal digit in the value

of the item. For usages DISPLAY and NATIONAL,

each nine is counted as one character position in

the size of the data item.

0 A character position into which the numeral zero

is inserted.

Each zero is counted as one character position in

the size of the data item.

/ A character position into which the slash character

is inserted.

Each slash character is counted as one character

position in the size of the data item.

, A character position into which a comma is

inserted.

Each comma is counted as one character position

in the size of the data item.

. An editing symbol that represents the decimal

point for alignment purposes. In addition, it

represents a character position into which a period

is inserted.

Each period is counted as one character position in

the size of the data item.

+

-

CR

DB

Editing sign control symbols. Each represents the

character position into which the editing sign

control symbol is placed.

Each character used in the editing sign symbol is

counted as one character position in the size of the

data item.

* A check protect symbol: a leading numeric

character position into which an asterisk is placed

when that position contains a zero.

Each asterisk is counted as one character position

in the size of the item.

cs cs can be any valid currency symbol. A currency

symbol represents a character position into which

a currency sign value is placed. The default

currency symbol is the character assigned the

value X’5B’ in the code page in effect at compile

time. In this document, the default currency

symbol is represented by the dollar sign ($) and cs

stands for any valid currency symbol. For details,

see “Currency symbol” on page 209.

The first occurrence of a currency symbol adds the

number of characters in the currency sign value to

the size of the data item. Each subsequent

occurrence adds one character position to the size

of the data item.

Chapter 19. Data division--data description entry 207

The following figure shows the sequences in which picture symbols can be

specified to form picture character-strings. More detailed explanations of PICTURE

clause symbols follow the figure.

P symbol

The symbol P specifies a scaling position and implies an assumed decimal point

(to the left of the Ps if the Ps are leftmost PICTURE characters; to the right of the

Ps if the Ps are rightmost PICTURE characters). The assumed decimal point

symbol V is redundant as either the leftmost or rightmost character within such a

PICTURE description.

208 Enterprise COBOL for z/OS V4.1 Language Reference

The symbol P can be specified only as a continuous string of Ps in the leftmost or

rightmost digit positions within a PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-string

contains the symbol P, the algebraic value of the data item is used rather than the

actual character representation of the data item. This algebraic value assumes the

decimal point in the prescribed location and zero in place of the digit position

specified by the symbol P. The size of the value is the number of digit positions

represented by the PICTURE character-string. These operations are any of the

following:

v Any operation that requires a numeric sending operand

v A MOVE statement where the sending operand is numeric and its PICTURE

character-string contains the symbol P

v A MOVE statement where the sending operand is numeric-edited and its

PICTURE character-string contains the symbol P, and the receiving operand is

numeric or numeric-edited

v A comparison operation where both operands are numeric

In all other operations, the digit positions specified with the symbol P are ignored

and are not counted in the size of the operand.

Currency symbol

The currency symbol in a picture character-string is represented by the default

currency symbol $ or by a single character specified either in the CURRENCY

compiler option or in the CURRENCY SIGN clause in the SPECIAL-NAMES

paragraph of the environment division.

Although the default currency symbol is represented by $ in this document, the

actual default currency symbol is the character with the value X’5B’ in the EBCDIC

code page in effect at compile time.

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY

compiler options are ignored. If the CURRENCY SIGN clause is not specified and

the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the

default currency sign value and currency symbol. For more information about the

CURRENCY SIGN clause, see “CURRENCY SIGN clause” on page 123. For more

information about the CURRENCY and NOCURRENCY compiler options, see the

Enterprise COBOL Programming Guide.

A currency symbol can be repeated within the PICTURE character-string to specify

floating insertion. Different currency symbols must not be used in the same

PICTURE character-string.

Unlike all other picture symbols, currency symbols are case sensitive. For example,

’D’ and ’d’ specify different currency symbols.

A currency symbol can be used only to define a numeric-edited item with USAGE

DISPLAY.

Character-string representation

Symbols that can appear more than once

The following symbols can appear more than once in one PICTURE

character-string:

Chapter 19. Data division--data description entry 209

A B G N P X Z 9 0 / , + – * cs

At least one of the symbols A, G, N, X, Z, 9, or *, or at least two of the

symbols +, –, or cs must be present in a PICTURE string.

An unsigned nonzero integer enclosed in parentheses immediately

following any of these symbols specifies the number of consecutive

occurrences of that symbol.

Example: The following two PICTURE clause specifications are equivalent:

PICTURE IS $99999.99CR

PICTURE IS $9(5).9(2)CR

Symbols that can appear only once

The following symbols can appear only once in one PICTURE

character-string:

E S V . CR DB

Except for the PICTURE symbol V, each occurrence of any of the above

symbols in a given PICTURE character-string represents an occurrence of

that character or set of allowable characters in the data item.

Data categories and PICTURE rules

The allowable combinations of PICTURE symbols determine the data category of

the item:

v Alphabetic

v Numeric

v Numeric-edited

v Alphanumeric

v Alphanumeric-edited

v DBCS

v External floating-point

v National

v National-edited

Note: Category internal floating point is defined by a USAGE clause that specifies

the COMP-1 or COMP-2 phrase.

Alphabetic items

The PICTURE character-string can contain only the symbol A.

The content of the item must consist only of letters of the Latin alphabet and the

space character.

Other clauses:

USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal containing only

alphabetic characters, SPACE, or a symbolic-character as the value of a figurative

constant.

210 Enterprise COBOL for z/OS V4.1 Language Reference

Numeric items

Types of numeric items are:

v Binary

v Packed decimal (internal decimal)

v Zoned decimal (external decimal)

v National decimal (external decimal)

The type of a numeric item is defined by the usage clause as shown in the table

below.

 Table 13. Numeric types

Type USAGE clause

Binary BINARY, COMP, COMP-4, or COMP-5

Internal decimal PACKED-DECIMAL, COMP-3

Zoned decimal (external decimal) DISPLAY

National decimal (external decimal) NATIONAL

For numeric date fields, the PICTURE character-string can contain only the

symbols 9 and S. For all other numeric fields, the PICTURE character-string can

contain only the symbols 9, P, S, and V.

The symbol S can be written only as the leftmost character in the PICTURE

character-string.

The symbol V can be written only once in a given PICTURE character-string.

For binary items, the number of digit positions must range from 1 through 18

inclusive. For packed decimal and zoned decimal items the number of digit

positions must range from 1 through 18, inclusive, when the ARITH(COMPAT)

compiler option is in effect, or from 1 through 31, inclusive, when the

ARITH(EXTEND) compiler option is in effect.

For numeric date fields, the number of digit positions must match the number of

characters specified by the DATE FORMAT clause.

If unsigned, the contents of the item in standard data format must contain a

combination of the Arabic numerals 0-9. If signed, it can also contain a +, -, or

other representation of the operational sign.

Examples of valid ranges:

 PICTURE Valid range of values

 9999 0 through 9999

 S99 -99 through +99

 S999V9 -999.9 through +999.9

 PPP999 0 through .000999

S999PPP -1000 through -999000 and

 +1000 through +999000 or zero

Other clauses:

The USAGE of the item can be DISPLAY, NATIONAL, BINARY,

COMPUTATIONAL, PACKED-DECIMAL, COMPUTATIONAL-3,

COMPUTATIONAL-4, or COMPUTATIONAL-5.

Chapter 19. Data division--data description entry 211

For signed numeric items described with usage NATIONAL, the SIGN IS

SEPARATE clause must be specified or implied.

The NUMPROC and TRUNC compiler options can affect the use of numeric data

items. For details, see the Enterprise COBOL Programming Guide.

Numeric-edited items

The PICTURE character-string can contain the following symbols:

B P V Z 9 0 / , . + - CR DB * cs

The combinations of symbols allowed are determined from the PICTURE clause

symbol order allowed (see the figure in “Symbols used in the PICTURE clause” on

page 205), and the editing rules (see “PICTURE clause editing” on page 216).

The following rules apply:

v Either the BLANK WHEN ZERO clause must be specified for the item, or the

string must contain at least one of the following symbols:

B / Z 0 , . * + - CR DB cs

v Only one of the following symbols can be written in a given PICTURE

character-string:

+ - CR DB

v If the ARITH(COMPAT) compiler option is in effect, then the number of digit

positions represented in the character-string must be in the range 1 through 18,

inclusive. If the ARITH(EXTEND) compiler option is in effect, then the number

of digit positions represented in the character-string must be in the range 1

through 31, inclusive.

v The total number of character positions in the string (including editing-character

positions) must not exceed 249.

v The contents of those character positions representing digits in standard data

format must be one of the 10 Arabic numerals.

Other clauses:

USAGE DISPLAY or NATIONAL must be specified or implied.

If the usage of the item is DISPLAY, any associated VALUE clause must specify an

alphanumeric literal or a figurative constant. The value is assigned without editing.

If the usage of the item is NATIONAL, any associated VALUE clause must specify

an alphanumeric literal, a national literal, or a figurative constant. The value is

assigned without editing.

Alphanumeric items

The PICTURE character-string must consist of either of the following:

v One or more occurrences of the symbol X.

v Combinations of the symbols A, X, and 9. (A character-string containing all As

or all 9s does not define an alphanumeric item.)

The item is treated as if the character-string contained only the symbol X.

The contents of the item in standard data format can be any allowable characters

from the character set of the computer.

212 Enterprise COBOL for z/OS V4.1 Language Reference

Other clauses:

USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal or one of the

following figurative constants:

v ZERO

v SPACE

v QUOTE

v HIGH-VALUE

v LOW-VALUE

v symbolic-character

v ALL alphanumeric-literal

Alphanumeric-edited items

The PICTURE character-string can contain the following symbols:

A X 9 B 0 /

The string must contain at least one A or X, and at least one B or 0 (zero) or /.

The contents of the item in standard data format must be two or more characters

from the character set of the computer.

Other clauses:

USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal or or one of

the following figurative constants:

v ZERO

v SPACE

v QUOTE

v HIGH-VALUE

v LOW-VALUE

v symbolic-character

v ALL alphanumeric-literal

The literal is treated exactly as specified; no editing is done.

DBCS items

The PICTURE character-string can contain the symbols G, G and B, or N. Each G,

B, or N represents a single DBCS character position.

Any associated VALUE clause must contain a DBCS literal, the figurative constant

SPACE, or the figurative constant ALL DBCS-literal.

Other clauses:

When PICTURE symbol G is used, USAGE DISPLAY-1 must be specified. When

PICTURE symbol N is used and the NSYMBOL(DBCS) compiler option is in effect,

USAGE DISPLAY-1 is implied if the USAGE clause is omitted.

Chapter 19. Data division--data description entry 213

National items

The PICTURE character-string can contain one or more occurrences of the picture

symbol N.

These rules apply when the NSYMBOL(NATIONAL) compiler option is in effect or

the USAGE NATIONAL clause is specified. In the absence of a USAGE

NATIONAL clause, if the NSYMBOL(DBCS) compiler option is in effect, picture

symbol N represents a DBCS character and the rules of the PICTURE clause for a

DBCS item apply.

Each N represents a single national character position.

Any associated VALUE clause must specify an alphanumeric literal, a national

literal, or one of the following figurative constants:

v ZERO

v SPACE

v QUOTE

v HIGH-VALUE

v LOW-VALUE

v symbolic-character

v ALL alphanumeric-literal

v ALL national-literal

Other clauses:

Only the NATIONAL phrase can be specified in the USAGE clause. When

PICTURE symbol N is used and the NSYMBOL(NATIONAL) compiler option is in

effect, USAGE NATIONAL is implied if the usage clause is omitted.

The following clauses can be used:

v JUSTIFIED

v EXTERNAL

v GLOBAL

v OCCURS

v REDEFINES

v RENAMES

v SYNCHRONIZED

The following clauses cannot be used:

v BLANK WHEN ZERO

v SIGN

v DATE FORMAT

National-edited items

The PICTURE character-string must contain the following:

v At least one symbol N, and

v At least one of the symbols B 0 (zero) or / (slash)

Each symbol represents a single national character position.

214 Enterprise COBOL for z/OS V4.1 Language Reference

Any associated VALUE clause must specify an alphanumeric literal, a national

literal, or one of the following figurative constants:

v ZERO

v SPACE

v QUOTE

v HIGH-VALUE

v LOW-VALUE

v symbolic-character

v ALL alphanumeric-literal

v ALL national-literal

The literal is treated exactly as specified; no editing is done.

The NSYMBOL(NATIONAL) compiler option has no effect on the definition of a

data item of category national-edited.

Other clauses:

USAGE NATIONAL must be specified or implied.

The following clauses can be used:

v JUSTIFIED

v EXTERNAL

v GLOBAL

v OCCURS

v REDEFINES

v RENAMES

v SYNCHRONIZED

The following clauses cannot be used:

v BLANK WHEN ZERO

v SIGN

v DATE FORMAT

External floating-point items

Format

�� +

-
 mantissaE +

-
 exponent ��

+ or - A sign character must immediately precede both the mantissa and the

exponent.

 A + sign indicates that a positive sign will be used in the output to

represent positive values and that a negative sign will represent negative

values.

Chapter 19. Data division--data description entry 215

A - sign indicates that a blank will be used in the output to represent

positive values and that a negative sign will represent negative values.

Each sign position occupies one byte of storage.

mantissa

The mantissa can contain the symbols:

9 . V

An actual decimal point can be represented with a period (.) while an

assumed decimal point is represented by a V.

Either an actual or an assumed decimal point must be present in the

mantissa; the decimal point can be leading, embedded, or trailing.

The mantissa can contain from 1 to 16 numeric characters.

E Indicates the exponent.

exponent

The exponent must consist of the symbol 99.

Example: Pic -9v9(9)E-99

The DISPLAY phrase of the USAGE clause and a floating-point picture

character-string define the item as a display floating-point data item.

The NATIONAL phrase of the USAGE clause and a floating-point picture

character-string define the item as a national floating-point data item.

For items defined with usage DISPLAY, each picture symbol except V defines one

alphanumeric character position in the item.

For items defined with usage NATIONAL, each picture symbol except V defines

one national character position in the item.

Other clauses:

The DISPLAY phrase or the NATIONAL phrase of the USAGE clause must be

specified or implied.

The OCCURS, REDEFINES, and RENAMES clauses can be associated with external

floating-point items.

The SIGN clause is accepted as documentation and has no effect on the

representation of the sign.

The SYNCHRONIZED clause is treated as documentation.

The following clauses are invalid with external floating-point items:

v BLANK WHEN ZERO

v JUSTIFIED

v VALUE

PICTURE clause editing

There are two general methods of editing in a PICTURE clause:

v Insertion editing:

216 Enterprise COBOL for z/OS V4.1 Language Reference

– Simple insertion

– Special insertion

– Fixed insertion

– Floating insertion
v Suppression and replacement editing:

– Zero suppression and replacement with asterisks

– Zero suppression and replacement with spaces

The type of editing allowed for an item depends on its data category. The type of

editing that is valid for each category is shown in the following table. cs indicates

any valid currency symbol.

 Table 14. Data categories

Data category Type of editing Insertion symbol

Alphabetic None None

Numeric None None

Numeric-edited Simple insertion

Special insertion

Fixed insertion

Floating insertion

Zero suppression

Replacement

B 0 / ,

.

cs + - CR DB

cs + -

Z *

Z * + - cs

Alphanumeric None None

Alphanumeric-edited Simple insertion B 0 /

DBCS Simple insertion B

External floating-point Special insertion .

National None None

National-edited Simple insertion B 0 /

Types of editing are described in the following sections:

v “Simple insertion editing”

v “Special insertion editing” on page 218

v “Fixed insertion editing” on page 218

v “Floating insertion editing” on page 219

v “Zero suppression and replacement editing” on page 220

Simple insertion editing

This type of editing is valid for alphanumeric-edited, numeric-edited, and DBCS

items.

Each insertion symbol is counted in the size of the item, and represents the

position within the item where the equivalent character is to be inserted. For

edited DBCS items, each insertion symbol (B) is counted in the size of the item and

represents the position within the item where the DBCS space is to be inserted.

Chapter 19. Data division--data description entry 217

For example:

 PICTURE Value of data Edited result

X(10)/XX ALPHANUMER01 ALPHANUMER/01

X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC

99,B999,B000 1234 01,b234,b0001

99,999 12345 12,345

GGBBGG D1D2D3D4 D1D2bbbbD3D41

Notes:

1. The symbol b represents a space.

Special insertion editing

This type of editing is valid for either numeric-edited items or external

floating-point items.

The period (.) is the special insertion symbol; it also represents the actual decimal

point for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the

position within the item where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but

not both, must be specified in one PICTURE character-string.

For example:

 PICTURE Value of data Edited result

 999.99 1.234 001.23

 999.99 12.34 012.34

 999.99 123.45 123.45

 999.99 1234.5 234.50

 +999.99E+99 12345 +123.45E+02

Fixed insertion editing

This type of editing is valid only for numeric-edited items. The following insertion

symbols are used:

v cs

v + - CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing-sign control

symbol can be specified in a PICTURE character-string.

Unless it is preceded by a + or - symbol, the currency symbol must be the first

character in the character-string.

When either + or - is used as a symbol, it must be the first or last character in the

character-string.

218 Enterprise COBOL for z/OS V4.1 Language Reference

When CR or DB is used as a symbol, it must occupy the rightmost two character

positions in the character-string. If these two character positions contain the

symbols CR or DB, the uppercase letters are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data

item, as shown below:

 Editing symbol in PICTURE

character-string

Result: data item positive or

zero Result: data item negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

For example:

 PICTURE Value of data Edited result

 999.99+ +6555.556 555.55+

 +9999.99 -6555.555 -6555.55

 9999.99 +1234.56 1234.56

 $999.99 -123.45 $123.45

 -$999.99 -123.456 -$123.45

 -$999.99 +123.456 $123.45

 $9999.99CR +123.45 $0123.45

 $9999.99CR -123.45 $0123.45DB

Floating insertion editing

This type of editing is valid only for numeric-edited items.

The following symbols are used:

cs + -

Within one PICTURE character-string, these symbols are mutually exclusive as

floating insertion characters.

Floating insertion editing is specified by using a string of at least two of the

allowable floating insertion symbols to represent leftmost character positions into

which the actual characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the

leftmost limit at which the actual character can appear in the data item. The

rightmost floating insertion symbol represents the rightmost limit at which the

actual character can appear.

The second leftmost floating insertion symbol in the character-string represents the

leftmost limit at which numeric data can appear within the data item. Nonzero

numeric data can replace all characters at or to the right of this limit.

Chapter 19. Data division--data description entry 219

Any simple-insertion symbols (B 0 / ,) within or to the immediate right of the

string of floating insertion symbols are considered part of the floating

character-string. If the period (.) special-insertion symbol is included within the

floating string, it is considered to be part of the character-string.

To avoid truncation, the minimum size of the PICTURE character-string must be:

v The number of character positions in the sending item, plus

v The number of nonfloating insertion symbols in the receiving item, plus

v One character position for the floating insertion symbol

Representing floating insertion editing

In a PICTURE character-string, there are two ways to represent floating insertion

editing and thus two ways in which editing is performed:

1. Any or all leading numeric character positions to the left of the decimal point

are represented by the floating insertion symbol. When editing is performed, a

single floating insertion character is placed to the immediate left of the first

nonzero digit in the data, or of the decimal point, whichever is farther to the

left. The character positions to the left of the inserted character are filled with

spaces.

If all numeric character positions in the PICTURE character-string are

represented by the insertion character, then at least one of the insertion

characters must be to the left of the decimal point.

2. All the numeric character positions are represented by the floating insertion

symbol. When editing is performed, then:

v If the value of the data is zero, the entire data item will contain spaces.

v If the value of the data is nonzero, the result is the same as in rule 1.

For example:

 PICTURE Value of data Edited result

 $$$$.99 .123 $.12

 $$$9.99 .12 $0.12

 $,$$$,999.99 -1234.56 $1,234.56

 +,+++,999.99 -123456.789 -123,456.78

 $$,$$$,$$$.99CR -1234567 $1,234,567.00CR

 ++,+++,+++.+++ 0000.00

Zero suppression and replacement editing

This type of editing is valid only for numeric-edited items.

In zero suppression editing, the symbols Z and * are used. These symbols are

mutually exclusive in one PICTURE character-string.

The following symbols are mutually exclusive as floating replacement symbols in

one PICTURE character-string:

Z * + - cs

220 Enterprise COBOL for z/OS V4.1 Language Reference

Specify zero suppression and replacement editing with a string of one or more of

the allowable symbols to represent leftmost character positions in which zero

suppression and replacement editing can be performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the

string of floating editing symbols are considered part of the string. If the period (.)

special insertion symbol is included within the floating editing string, it is

considered to be part of the character-string.

Representing zero suppression

In a PICTURE character-string, there are two ways to represent zero suppression,

and two ways in which editing is performed:

1. Any or all of the leading numeric character positions to the left of the decimal

point are represented by suppression symbols. When editing is performed, the

replacement character replaces any leading zero in the data that appears in the

same character position as a suppression symbol. Suppression stops at the

leftmost character:

v That does not correspond to a suppression symbol

v That contains nonzero data

v That is the decimal point
2. All the numeric character positions in the PICTURE character-string are

represented by the suppression symbols. When editing is performed and the

value of the data is nonzero, the result is the same as in the preceding rule. If

the value of the data is zero, then:

v If Z has been specified, the entire data item will contain spaces.

v If * has been specified, the entire data item except the actual decimal point

will contain asterisks.

For example:

 PICTURE Value of data Edited result

 ****.** 0000.00 ****.**

 ZZZZ.ZZ 0000.00

 ZZZZ.99 0000.00 .00

 ****.99 0000.00 ****.00

 ZZ99.99 0000.00 00.00

 Z,ZZZ.ZZ+ +123.456 123.45+

 *,***.**+ -123.45 **123.45-

 ,*,***.**+ +12345678.9 12,345,678.90+

 $Z,ZZZ,ZZZ.ZZCR +12345.67 $ 12,345.67

$B*,***,***.**BBDB -12345.67 $ ***12,345.67 DB

Do not specify both the asterisk (*) as a suppression symbol and the BLANK

WHEN ZERO clause for the same entry.

Chapter 19. Data division--data description entry 221

REDEFINES clause

The REDEFINES clause allows you to use different data description entries to

describe the same computer storage area.

Format

�� level-number

data-name-1

FILLER

 REDEFINES data-name-2 ��

(level-number, data-name-1, and FILLER are not part of the REDEFINES clause, and

are included in the format only for clarity.)

When specified, the REDEFINES clause must be the first entry following

data-name-1 or FILLER. If data-name-1 or FILLER is not specified, the REDEFINES

clause must be the first entry following the level-number.

data-name-1, FILLER

Identifies an alternate description for the data area identified by

data-name-2; data-name-1 is the redefining item or the REDEFINES subject.

 Neither data-name-1 nor any of its subordinate entries can contain a VALUE

clause.

data-name-2

Identifies the redefined item or the REDEFINES object.

 The data description entry for data-name-2 can contain a REDEFINES

clause.

The data description entry for data-name-2 cannot contain an OCCURS

clause. However, data-name-2 can be subordinate to an item whose data

description entry contains an OCCURS clause; in this case, the reference to

data-name-2 in the REDEFINES clause must not be subscripted.

Neither data-name-1 nor data-name-2 can contain an OCCURS DEPENDING ON

clause.

data-name-1 and data-name-2 must have the same level in the hierarchy; however,

the level numbers need not be the same. Neither data-name-1 nor data-name-2 can

be defined with level number 66 or 88.

data-name-1 and data-name-2 can each be described with any usage.

Redefinition begins at data-name-1 and ends when a level-number less than or

equal to that of data-name-1 is encountered. No entry that has a level-number

numerically lower than those of data-name-1 and data-name-2 can occur between

these entries. In the following example:

05 A PICTURE X(6).

05 B REDEFINES A.

 10 B-1 PICTURE X(2).

 10 B-2 PICTURE 9(4).

05 C PICTURE 99V99.

222 Enterprise COBOL for z/OS V4.1 Language Reference

A is the redefined item, and B is the redefining item. Redefinition begins with B and

includes the two subordinate items B-1 and B-2. Redefinition ends when the

level-05 item C is encountered.

If the GLOBAL clause is used in the data description entry that contains the

REDEFINES clause, only data-name-1 (the redefining item) possesses the global

attribute. For example, in the following description, only item B possesses the

GLOBAL attribute:

05 A PICTURE X(6).

05 B REDEFINES A GLOBAL PICTURE X(4).

The EXTERNAL clause must not be specified in the same data description entry as

a REDEFINES clause.

If the redefined data item (data-name-2) is declared to be an external data record,

the size of the redefining data item (data-name-1) must not be greater than the size

of the redefined data item. If the redefined data item is not declared to be an

external data record, there is no such constraint.

The following example shows that the redefining item, B, can occupy more storage

than the redefined item, A. The size of storage for the REDEFINED clause is

determined in number of bytes. Item A occupies 6 bytes of storage and item B, a

data item of category national, occupies 8 bytes of storage.

05 A PICTURE X(6).

05 B REDEFINES A GLOBAL PICTURE N(4).

One or more redefinitions of the same storage area are permitted. The entries that

give the new descriptions of the storage area must immediately follow the

description of the redefined area without intervening entries that define new

character positions. Multiple redefinitions can, but need not, all use the data-name

of the original entry that defined this storage area. For example:

 05 A PICTURE 9999.

 05 B REDEFINES A PICTURE 9V999.

 05 C REDEFINES A PICTURE 99V99.

Also, multiple redefinitions can use the name of the preceding definition as shown

in the following example:

 05 A PICTURE 9999.

 05 B REDEFINES A PICTURE 9V999.

 05 C REDEFINES B PICTURE 99V99.

When more than one level-01 entry is written subordinate to an FD entry, a

condition known as implicit redefinition occurs. That is, the second level-01 entry

implicitly redefines the storage allotted for the first entry. In such level-01 entries,

the REDEFINES clause must not be specified.

When the data item implicitly redefines multiple 01-level records in a file

description (FD) entry, items subordinate to the redefining or redefined item can

contain an OCCURS DEPENDING ON clause.

REDEFINES clause considerations

When an area is redefined, all descriptions of the area are always in effect; that is,

redefinition does not supersede a previous description. Thus, if B REDEFINES C has

been specified, either of the two procedural statements MOVE X TO B or MOVE Y TO C

could be executed at any point in the program. In the first case, the area described

Chapter 19. Data division--data description entry 223

as B would receive the value and format of X. In the second case, the same physical

area (described now as C) would receive the value and format of Y. Note that if the

second statement is executed immediately after the first, the value of Y replaces the

value of X in the one storage area.

The usage of a redefining data item need not be the same as that of a redefined

item. This does not, however, cause any change in the format or content of existing

data. For example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.

05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.

05 A PICTURE S99 USAGE COMPUTATIONAL-4.

Redefining B does not change the bit configuration of the data in the storage area.

Therefore, the following two statements produce different results:

ADD B TO A

ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the

second statement, the value -3848 is added to A (because C has USAGE

COMPUTATIONAL-4), and the bit configuration of the storage area has the binary

value -3848. This example demonstrates how the improper use of redefinition can

give unexpected or incorrect results.

REDEFINES clause examples

The REDEFINES clause can be specified for an item within the scope of

(subordinate to) an area that is redefined. In the following example, WEEKLY-PAY

redefines SEMI-MONTHLY-PAY (which is within the scope of REGULAR-EMPLOYEE, while

REGULAR-EMPLOYEE is redefined by TEMPORARY-EMPLOYEE).

05 REGULAR-EMPLOYEE.

 10 LOCATION PICTURE A(8).

 10 GRADE PICTURE X(4).

 10 SEMI-MONTHLY-PAY PICTURE 9999V99.

 10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY

 PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

 10 LOCATION PICTURE A(8).

 10 FILLER PICTURE X(6).

 10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a

redefining item, as shown for CODE-H REDEFINES HOURLY-PAY in the following

example:

05 REGULAR-EMPLOYEE.

 10 LOCATION PICTURE A(8).

 10 GRADE PICTURE X(4).

 10 SEMI-MONTHLY-PAY PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

 10 LOCATION PICTURE A(8).

 10 FILLER PICTURE X(6).

 10 HOURLY-PAY PICTURE 99V99.

 10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

Data items within an area can be redefined without changing their lengths. For

example:

05 NAME-2.

 10 SALARY PICTURE XXX.

 10 SO-SEC-NO PICTURE X(9).

 10 MONTH PICTURE XX.

224 Enterprise COBOL for z/OS V4.1 Language Reference

05 NAME-1 REDEFINES NAME-2.

 10 WAGE PICTURE XXX.

 10 EMP-NO PICTURE X(9).

 10 YEAR PICTURE XX.

Data item lengths and types can also be respecified within an area. For example:

05 NAME-2.

 10 SALARY PICTURE XXX.

 10 SO-SEC-NO PICTURE X(9).

 10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.

 10 WAGE PICTURE 999V999.

 10 EMP-NO PICTURE X(6).

 10 YEAR PICTURE XX.

Data items can also be respecified with a length that is greater than the length of

the redefined item. For example:

05 NAME-2.

 10 SALARY PICTURE XXX.

 10 SO-SEC-NO PICTURE X(9).

 10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.

 10 WAGE PICTURE 999V999.

 10 EMP-NO PICTURE X(6).

 10 YEAR PICTURE X(4).

This does not change the length of the redefined item NAME-2.

Undefined results

Undefined results can occur when:

v A redefining item is moved to a redefined item (that is, if B REDEFINES C and the

statement MOVE B TO C is executed).

v A redefined item is moved to a redefining item (that is, if B REDEFINES C and the

statement MOVE C TO B is executed).

RENAMES clause

The RENAMES clause specifies alternative and possibly overlapping groupings of

elementary data items.

Format

�� 66 data-name-1 RENAMES data-name-2

THROUGH

data-name-3

THRU

 ��

The special level-number 66 must be specified for data description entries that

contain the RENAMES clause. (Level-number 66 and data-name-1 are not part of

the RENAMES clause, and are included in the format only for clarity.)

Chapter 19. Data division--data description entry 225

One or more RENAMES entries can be written for a logical record. All RENAMES

entries associated with one logical record must immediately follow that record’s

last data description entry.

data-name-1

Identifies an alternative grouping of data items.

 A level-66 entry cannot rename a level-01, level-77, level-88, or another

level-66 entry.

data-name-1 cannot be used as a qualifier; it can be qualified only by the

names of level indicator entries or level-01 entries.

data-name-2, data-name-3

Identify the original grouping of elementary data items; that is, they must

name elementary or group items within the associated level-01 entry and

must not be the same data-name. Both data-names can be qualified.

 data-name-2 and data-name-3 can each reference any of the following:

v An elementary data item

v An alphanumeric group item

v A national group item

When data-name-2 or data-name-3 references a national group item, the

referenced item is processed as a group (not as an elementary data item of

category national).

The OCCURS clause must not be specified in the data entries for

data-name-2 and data-name-3, or for any group entry to which they are

subordinate. In addition, the OCCURS DEPENDING clause must not be

specified for any item defined between data-name-2 and data-name-3.

The keywords THROUGH and THRU are equivalent.

When the THROUGH phrase is specified:

v data-name-1 defines an alphanumeric group item that includes all the elementary

items that:

– Start with data-name-2 if it is an elementary item, or the first elementary item

within data-name-2 if it is a group item

– End with data-name-3 if it is an elementary item, or the last elementary item

within data-name-3 if it is an alphanumeric group item or national group item
v The storage area occupied by the starting item through the ending item becomes

the storage area occupied by data-name-1.

Usage note: The group defined with the THROUGH phrase can include data items

of usage NATIONAL.

The leftmost character position in data-name-3 must not precede the leftmost

character position in data-name-2, and the rightmost character position in

data-name-3 must not precede the rightmost character position in data-name-2. This

means that data-name-3 cannot be totally subordinate to data-name-2.

When the THROUGH phrase is not specified:

v The storage area occupied by data-name-2 becomes the storage area occupied by

data-name-1.

v All of the data attributes of data-name-2 become the data attributes for

data-name-1. That is:

226 Enterprise COBOL for z/OS V4.1 Language Reference

– When data-name-2 is an alphanumeric group item, data-name-1 is an

alphanumeric group item.

– When data-name-2 is a national group item, data-name-1 is a national group

item.

– When data-name-2 is an elementary item, data-name-1 is an elementary item.

The following figure illustrates valid and invalid RENAMES clause specifications.

SIGN clause

The SIGN clause specifies the position and mode of representation of the

operational sign for the signed numeric item to which it applies.

Chapter 19. Data division--data description entry 227

The SIGN clause is required only when an explicit description of the properties or

position of the operational sign is necessary.

Format

��

SIGN

IS

 LEADING

TRAILING

SEPARATE

CHARACTER

 ��

The SIGN clause can be specified only for the following items:

v An elementary numeric data item of usage DISPLAY or NATIONAL that is

described with an S in its picture character string, or

v A group item that contains at least one such elementary entry as a subordinate

item

When the SIGN clause is specified at the group level, that SIGN clause applies

only to subordinate signed numeric elementary data items of usage DISPLAY or

NATIONAL. Such a group can also contain items that are not affected by the SIGN

clause. If the SIGN clause is specified for a group or elementary entry that is

subordinate to a group item that has a SIGN clause, the SIGN clause for the

subordinate entry takes precedence for that subordinate entry.

The SIGN clause is treated as documentation for external floating-point items.

When the SIGN clause is specified without the SEPARATE phrase, USAGE

DISPLAY must be specified explicitly or implicitly. When SIGN IS SEPARATE is

specified, either USAGE DISPLAY or USAGE NATIONAL can be specified.

If you specify the CODE-SET clause in an FD entry, any signed numeric data

description entries associated with that file description entry must be described

with the SIGN IS SEPARATE clause.

If the SEPARATE CHARACTER phrase is not specified, then:

v The operational sign is presumed to be associated with the LEADING or

TRAILING digit position, whichever is specified, of the elementary numeric data

item. (In this instance, specification of SIGN IS TRAILING is the equivalent of

the standard action of the compiler.)

v The character S in the PICTURE character string is not counted in determining

the size of the item (in terms of standard data format characters).

If the SEPARATE CHARACTER phrase is specified, then:

v The operational sign is presumed to be the LEADING or TRAILING character

position, whichever is specified, of the elementary numeric data item. This

character position is not a digit position.

v The character S in the PICTURE character string is counted in determining the

size of the data item (in terms of standard data format characters).

v + is the character used for the positive operational sign.

v - is the character used for the negative operational sign.

228 Enterprise COBOL for z/OS V4.1 Language Reference

The SEPARATE CHARACTER phrase cannot be specified for a date field.

SYNCHRONIZED clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on a

natural boundary in storage.

Format

�� SYNCHRONIZED

SYNC

LEFT

RIGHT

 ��

SYNC is an abbreviation for SYNCHRONIZED and has the same meaning.

The SYNCHRONIZED clause is never required, but can improve performance on

some systems for binary items used in arithmetic.

The SYNCHRONIZED clause can be specified for elementary items and for

level-01 group items, in which case every elementary item within the group item is

synchronized.

LEFT Specifies that the elementary item is to be positioned so that it will begin

at the left character position of the natural boundary in which the

elementary item is placed.

RIGHT

Specifies that the elementary item is to be positioned such that it will

terminate on the right character position of the natural boundary in which

it has been placed.

When specified, the LEFT and the RIGHT phrases are syntax checked but have no

effect on the execution of the program.

The length of an elementary item is not affected by the SYNCHRONIZED clause.

The following table lists the effect of the SYNCHRONIZE clause on other language

elements.

 Table 15. SYNCHRONIZE clause effect on other language elements

Language element Comments

OCCURS clause When specified for an item within the scope of an OCCURS clause,

each occurrence of the item is synchronized.

USAGE DISPLAY or

PACKED-DECIMAL

Each item is syntax checked, but the SYNCHRONIZED clause has

no effect on execution.

USAGE NATIONAL Each item is syntax checked, but the SYNCHRONIZED clause has

no effect on execution.

Chapter 19. Data division--data description entry 229

Table 15. SYNCHRONIZE clause effect on other language elements (continued)

Language element Comments

USAGE BINARY or

COMPUTATIONAL

When the item is the first elementary item subordinate to an item

that contains a REDEFINES clause, the item must not require the

addition of unused character positions.

When the synchronized clause is not specified for a subordinate

data item (one with a level number of 02 through 49):

v The item is aligned at a displacement that is a multiple of 2

relative to the beginning of the record if its USAGE is BINARY

and its PICTURE is in the range of S9 through S9(4).

v The item is aligned at a displacement that is a multiple of 4

relative to the beginning of the record if its USAGE is BINARY

and its PICTURE is in the range of S9(5) through S9(18), or its

USAGE is INDEX.

When SYNCHRONIZED is not specified for binary items, no space

is reserved for slack bytes.

USAGE POINTER,

PROCEDURE-
POINTER,

FUNCTION-
POINTER, OBJECT

REFERENCE

The data is aligned on a fullword boundary.

USAGE

COMPUTATIONAL-1

The data is aligned on a fullword boundary.

USAGE

COMPUTATIONAL-2

The data is aligned on a doubleword boundary.

USAGE

COMPUTATIONAL-3

The data is treated the same as the SYNCHRONIZED clause for a

PACKED-DECIMAL item.

USAGE

COMPUTATIONAL-4

The data is treated the same as the SYNCHRONIZED clause for a

COMPUTATIONAL item.

USAGE

COMPUTATIONAL-5

The data is treated the same as the SYNCHRONIZED clause for a

COMPUTATIONAL item.

DBCS and external

floating-point items

Each item is syntax checked, but the SYNCHRONIZED clause has

no effect on execution.

REDEFINES clause For an item that contains a REDEFINES clause, the data item that

is redefined must have the proper boundary alignment for the data

item that redefines it. For example, if you write the following, be

sure that data item A begins on a fullword boundary:

02 A PICTURE X(4).

02 B REDEFINES A PICTURE S9(9) BINARY SYNC.

In the file section, the compiler assumes that all level-01 records that contain

SYNCHRONIZED items are aligned on doubleword boundaries in the buffer. You

must provide the necessary slack bytes between records to ensure alignment when

there are multiple records in a block.

In the working-storage section, the compiler aligns all level-01 entries on a

doubleword boundary.

230 Enterprise COBOL for z/OS V4.1 Language Reference

For the purposes of aligning binary items in the linkage section, all level-01 items

are assumed to begin on doubleword boundaries. Therefore, if you issue a CALL

statement, such operands of any USING phrase within it must be aligned

correspondingly.

Slack bytes

There are two types of slack bytes:

v Slack bytes within records: unused character positions that precede each

synchronized item in the record

v Slack bytes between records: unused character positions added between blocked

logical records

Slack bytes within records

For any data description that has binary items that are not on their natural

boundaries, the compiler inserts slack bytes within a record to ensure that all

SYNCHRONIZED items are on their proper boundaries.

Because it is important that you know the length of the records in a file, you need

to determine whether slack bytes are required and, if so, how many bytes the

compiler will add. The algorithm the compiler uses is as follows:

v The total number of bytes occupied by all elementary data items that precede

the binary item are added together, including any slack bytes previously added.

v This sum is divided by m, where:

– m = 2 for binary items of four-digit length or less

– m = 4 for binary items of five-digit length or more and for

COMPUTATIONAL-1 data items

– m = 4 for data items described with USAGE INDEX, USAGE POINTER,

USAGE PROCEDURE-POINTER, USAGE OBJECT REFERENCE, or USAGE

FUNCTION-POINTER

– m = 8 for COMPUTATIONAL-2 data items
v If the remainder (r) of this division is equal to zero, no slack bytes are required.

If the remainder is not equal to zero, the number of slack bytes that must be

added is equal to m - r.

These slack bytes are added to each record immediately following the elementary

data item that precedes the binary item. They are defined as if they constitute an

item with a level-number equal to that of the elementary item that immediately

precedes the SYNCHRONIZED binary item, and are included in the size of the

group that contains them.

For example:

01 FIELD-A.

 05 FIELD-B PICTURE X(5).

 05 FIELD-C.

 10 FIELD-D PICTURE XX.

 [10 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]

 10 FIELD-E COMPUTATIONAL PICTURE S9(6) SYNC.

01 FIELD-L.

 05 FIELD-M PICTURE X(5).

 05 FIELD-N PICTURE XX.

 [05 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]

 05 FIELD-O.

 10 FIELD-P COMPUTATIONAL PICTURE S9(6) SYNC.

Chapter 19. Data division--data description entry 231

Slack bytes can also be added by the compiler when a group item is defined with

an OCCURS clause and contains within it a SYNCHRONIZED binary data item. To

determine whether slack bytes are to be added, the following action is taken:

v The compiler calculates the size of the group, including all the necessary slack

bytes within a record.

v This sum is divided by the largest m required by any elementary item within the

group.

v If r is equal to zero, no slack bytes are required. If r is not equal to zero, m - r

slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the group item that

contains the OCCURS clause. For example, a record defined as follows will appear

in storage, as shown, in the figure after the record:

01 WORK-RECORD.

 05 WORK-CODE PICTURE X.

 05 COMP-TABLE OCCURS 10 TIMES.

 10 COMP-TYPE PICTURE X.

 [10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]

 10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.

 10 COMP-HOURS PICTURE S9(3) COMP SYNC.

 10 COMP-NAME PICTURE X(5).

In order to align COMP-PAY and COMP-HOURS on their proper boundaries, the

compiler added 2 slack bytes within the record.

In the previous example, without further adjustment, the second occurrence of

COMP-TABLE would begin 1 byte before a doubleword boundary, and the alignment

of COMP-PAY and COMP-HOURS would not be valid for any occurrence of the table

after the first. Therefore, the compiler must add slack bytes at the end of the

group, as though the record had been written as follows:

01 WORK-RECORD.

 05 WORK-CODE PICTURE X.

 05 COMP-TABLE OCCURS 10 TIMES.

 10 COMP-TYPE PICTURE X.

 [10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]

 10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.

 10 COMP-HOURS PICTURE S9(3) COMP SYNC.

 10 COMP-NAME PICTURE X(5).

 [10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]

232 Enterprise COBOL for z/OS V4.1 Language Reference

In this example, the second and each succeeding occurrence of COMP-TABLE begins 1

byte beyond a doubleword boundary. The storage layout for the first occurrence of

COMP-TABLE will now appear as shown in the following figure:

Each succeeding occurrence within the table will now begin at the same relative

position as the first.

Slack bytes between records

If the file contains blocked logical records that are to be processed in a buffer, and

any of the records contain binary entries for which the SYNCHRONIZED clause is

specified, you can improve performance by adding any needed slack bytes

between records for proper alignment.

The lengths of all the elementary data items in the record, including all slack bytes,

are added. (For variable-length records, it is necessary to add an additional 4 bytes

for the count field.) The total is then divided by the highest value of m for any one

of the elementary items in the record.

If r (the remainder) is equal to zero, no slack bytes are required. If r is not equal to

zero, m - r slack bytes are required. These slack bytes can be specified by writing a

level-02 FILLER at the end of the record.

Consider the following record description:

01 COMP-RECORD.

 05 A-1 PICTURE X(5).

 05 A-2 PICTURE X(3).

 05 A-3 PICTURE X(3).

 05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

 05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.

 05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2, and A-3 totals 11. B-1 is a four-digit

COMPUTATIONAL item and 1 slack byte must therefore be added before B-1.

With this byte added, the number of bytes that precede B-2 totals 14. Because B-2

is a COMPUTATIONAL item of five digits in length, 2 slack bytes must be added

before it. No slack bytes are needed before B-3.

The revised record description entry now appears as:

Chapter 19. Data division--data description entry 233

01 COMP-RECORD.

 05 A-1 PICTURE X(5).

 05 A-2 PICTURE X(3).

 05 A-3 PICTURE X(3).

 [05 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]

 05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

 [05 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]

 05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.

 05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but from the rules above, it appears

that m = 4 and r = 2. Therefore, to attain proper alignment for blocked records, you

must add 2 slack bytes at the end of the record.

The final record description entry appears as:

01 COMP-RECORD.

 05 A-1 PICTURE X(5).

 05 A-2 PICTURE X(3).

 05 A-3 PICTURE X(3).

 [05 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]

 05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

 [05 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]

 05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.

 05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

 05 FILLER PICTURE XX. [SLACK BYTES YOU ADD]

USAGE clause

The USAGE clause specifies the format in which data is represented in storage.

234 Enterprise COBOL for z/OS V4.1 Language Reference

Format 1

��

USAGE

IS

 BINARY

(1)

NATIVE

COMP

NATIVE

COMP-1

NATIVE

COMP-2

NATIVE

COMP-3

NATIVE

COMP-4

NATIVE

COMP-5

NATIVE

COMPUTATIONAL

NATIVE

COMPUTATIONAL-1

NATIVE

COMPUTATIONAL-2

NATIVE

COMPUTATIONAL-3

NATIVE

COMPUTATIONAL-4

NATIVE

COMPUTATIONAL-5

NATIVE

DISPLAY

NATIVE

DISPLAY-1

NATIVE

INDEX

NATIONAL

NATIVE

objref

phrase

PACKED-DECIMAL

NATIVE

POINTER

PROCEDURE-POINTER

FUNCTION-POINTER

 ��

objref phrase:

 OBJECT REFERENCE

class-name-1

Notes:

1 NATIVE is treated as a comment in all phrases for which NATIVE is

shown in the USAGE clause.

The USAGE clause can be specified for a data description entry with any

level-number other than 66 or 88.

When specified at the group level, the USAGE clause applies to each elementary

item in the group. The usage of elementary items must not contradict the usage of

a group to which the elementary items belongs.

Chapter 19. Data division--data description entry 235

A USAGE clause must not be specified in a group level entry for which a

GROUP-USAGE NATIONAL clause is specified.

When a GROUP-USAGE NATIONAL clause is specified or implied for a group

level entry, USAGE NATIONAL must be specified or implied for every elementary

item within the group. For details, see “GROUP-USAGE clause” on page 197.

When the USAGE clause is not specified at either the group or elementary level, a

usage clause is implied with:

v Usage DISPLAY when the PICTURE clause contains only symbols other than G

or N

v Usage NATIONAL when the PICTURE clause contains only one or more of the

symbol N and the NSYMBOL(NATIONAL) compiler option is in effect

v Usage DISPLAY-1 when the PICTURE clause contains one or more of the symbol

N and the NSYMBOL(DBCS) compiler option is in effect

For data items defined with the DATE FORMAT clause, only usage DISPLAY and

COMP-3 (or its equivalents, COMPUTATIONAL-3 and PACKED-DECIMAL) are

allowed. For details, see “Combining the DATE FORMAT clause with other

clauses” on page 192.

Computational items

A computational item is a value used in arithmetic operations. It must be numeric.

If a group item is described with a computational usage, the elementary items

within the group have that usage.

The maximum length of a computational item is 18 decimal digits, except for a

PACKED-DECIMAL item. If the ARITH(COMPAT) compiler option is in effect,

then the maximum length of a PACKED-DECIMAL item is 18 decimal digits. If the

ARITH(EXTEND) compiler option is in effect, then the maximum length of a

PACKED-DECIMAL item is 31 decimal digits.

The PICTURE of a computational item can contain only:

9 One or more numeric character positions

S One operational sign

V One implied decimal point

P One or more decimal scaling positions

COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point)

cannot have PICTURE strings.

BINARY

Specified for binary data items. Such items have a decimal equivalent

consisting of the decimal digits 0 through 9, plus a sign. Negative numbers

are represented as the two’s complement of the positive number with the

same absolute value.

 The amount of storage occupied by a binary item depends on the number

of decimal digits defined in its PICTURE clause:

 Digits in PICTURE clause Storage occupied

1 through 4 2 bytes (halfword)

236 Enterprise COBOL for z/OS V4.1 Language Reference

Digits in PICTURE clause Storage occupied

5 through 9 4 bytes (fullword)

10 through 18 8 bytes (doubleword)

Binary data is big-endian: the operational sign is contained in the leftmost

bit.

BINARY, COMPUTATIONAL, and COMPUTATIONAL-4 data items can be

affected by the TRUNC compiler option. For information about the effect

of this compiler option, see the Enterprise COBOL Programming Guide.

PACKED-DECIMAL

Specified for internal decimal items. Such an item appears in storage in

packed decimal format. There are two digits for each character position,

except for the trailing character position, which is occupied by the

low-order digit and the sign. Such an item can contain any of the digits 0

through 9, plus a sign, representing a value not exceeding 18 decimal

digits.

 The sign representation uses the same bit configuration as the 4-bit sign

representation in zoned decimal fields. For details, see the Enterprise

COBOL Programming Guide.

COMPUTATIONAL or COMP (binary)

This is the equivalent of BINARY. The COMPUTATIONAL phrase is

synonymous with BINARY.

COMPUTATIONAL-1 or COMP-1 (floating-point)

Specified for internal floating-point items (single precision). COMP-1 items

are 4 bytes long.

COMPUTATIONAL-2 or COMP-2 (long floating-point)

Specified for internal floating-point items (double precision). COMP-2

items are 8 bytes long.

COMPUTATIONAL-3 or COMP-3 (internal decimal)

This is the equivalent of PACKED-DECIMAL.

COMPUTATIONAL-4 or COMP-4 (binary)

This is the equivalent of BINARY.

COMPUTATIONAL-5 or COMP-5 (native binary)

These data items are represented in storage as binary data. The data items

can contain values up to the capacity of the native binary representation (2,

4, or 8 bytes), rather than being limited to the value implied by the

number of nines in the picture for the item (as is the case for USAGE

BINARY data). When numeric data is moved or stored into a COMP-5

item, truncation occurs at the binary field size rather than at the COBOL

picture size limit. When a COMP-5 item is referenced, the full binary field

size is used in the operation.

 The TRUNC(BIN) compiler option causes all binary data items (USAGE

BINARY, COMP, COMP-4) to be handled as if they were declared USAGE

COMP-5.

The following table shows several picture character strings, the resulting

storage representation, and the range of values for data items described

with USAGE COMP-5.

Chapter 19. Data division--data description entry 237

Picture Storage representation Numeric values

S9(1) through S9(4) Binary halfword (2 bytes) -32768 through +32767

S9(5) through S9(9) Binary fullword (4 bytes) -2,147,483,648 through

+2,147,483,647

S9(10) through S9(18) Binary doubleword (8 bytes) -9,223,372,036,854,775,808

through

+9,223,372,036,854,775,807

9(1) through 9(4) Binary halfword (2 bytes) 0 through 65535

9(5) through 9(9) Binary fullword (4 bytes) 0 through 4,294,967,295

9(10) through 9(18) Binary doubleword (8 bytes) 0 through

18,446,744,073,709,551,615

The picture for a COMP-5 data item can specify a scaling factor (that is,

decimal positions or implied integer positions). In this case, the maximal

capacities listed in the table above must be scaled appropriately. For

example, a data item described with PICTURE S99V99 COMP-5 is

represented in storage as a binary halfword, and supports a range of

values from -327.68 to +327.67.

USAGE NOTE: When the ON SIZE ERROR phrase is used on an

arithmetic statement and a receiver is defined with USAGE COMP-5, the

maximum value that the receiver can contain is the value implied by the

item’s decimal PICTURE character-string. Any attempt to store a value

larger than this maximum will result in a size error condition.

DISPLAY phrase

The data item is stored in character form, one character for each 8-bit byte. This

corresponds to the format used for printed output. DISPLAY can be explicit or

implicit.

USAGE IS DISPLAY is valid for the following types of items:

v Alphabetic

v Alphanumeric

v Alphanumeric-edited

v Numeric-edited

v External floating-point

v External decimal

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited items are

discussed in “Data categories and PICTURE rules” on page 210.

External decimal items with USAGE DISPLAY are sometimes referred to as zoned

decimal items. Each digit of a number is represented by a single byte. The 4

high-order bits of each byte are zone bits; the 4 high-order bits of the low-order

byte represent the sign of the item. The 4 low-order bits of each byte contain the

value of the digit.

If the ARITH(COMPAT) compiler option is in effect, then the maximum length of

an external decimal item is 18 digits. If the ARITH(EXTEND) compiler option is in

effect, then the maximum length of an external decimal item is 31 digits.

238 Enterprise COBOL for z/OS V4.1 Language Reference

The PICTURE character-string of an external decimal item can contain only:

v One or more of the symbol 9

v The operational-sign, S

v The assumed decimal point, V

v One or more of the symbol P

DISPLAY-1 phrase

The DISPLAY-1 phrase defines an item as DBCS. The data item is stored in

character form, with each character occupying 2 bytes of storage.

FUNCTION-POINTER phrase

The FUNCTION-POINTER phrase defines an item as a function-pointer data item. A

function-pointer data item can contain the address of a procedure entry point.

A function-pointer is a 4-byte elementary item. Function-pointers have the same

capabilities as procedure-pointers, but are 4 bytes in length instead of 8 bytes.

Function-pointers are thus more easily interoperable with C function pointers.

A function-pointer can contain one of the following addresses or can contain

NULL:

v The primary entry point of a COBOL program, defined by the PROGRAM-ID

paragraph of the outermost program

v An alternate entry point of a COBOL program, defined by a COBOL ENTRY

statement

v An entry point in a non-COBOL program

A VALUE clause for a function-pointer data item can contain only NULL or

NULLS.

A function-pointer can be used in the same contexts as a procedure-pointer, as

defined in “PROCEDURE-POINTER phrase” on page 242.

INDEX phrase

A data item defined with the INDEX phrase is an index data item.

An index data item is a 4-byte elementary data item (not necessarily connected with

any table) that can be used to save index-name values for future reference.

Through a SET statement, an index data item can be assigned an index-name

value. Such a value corresponds to the occurrence number in a table.

Direct references to an index data item can be made only in a SEARCH statement,

a SET statement, a relation condition, the USING phrase of the procedure division

header, or the USING phrase of the CALL or ENTRY statement.

An index data item can be part of an alphanumeric group item that is referenced

in a MOVE statement or an input/output statement.

An index data item saves values that represent table occurrences, yet is not

necessarily defined as part of any table. There is no conversion of values when an

index data item is referenced in the following circumstances:

Chapter 19. Data division--data description entry 239

v directly in a SEARCH or SET statement

v indirectly in a MOVE statement

v indirectly in an input or output statement

An index data item cannot be a conditional variable.

The DATE FORMAT, JUSTIFIED, PICTURE, BLANK WHEN ZERO, or VALUE

clauses cannot be used to describe a group item or elementary items described

with the USAGE IS INDEX clause.

SYNCHRONIZED can be used with USAGE IS INDEX to obtain efficient use of the

index data item.

NATIONAL phrase

The NATIONAL phrase defines an item whose content is represented in storage in

UTF-16 (CCSID 1200). The class and category of the data item depend on the

picture symbols that are specified in the associated PICTURE clause.

OBJECT REFERENCE phrase

A data item defined with the OBJECT REFERENCE phrase is an object reference.

class-name-1

An optional class name.

 You must declare class-name-1 in the REPOSITORY paragraph in the

configuration section of the containing class or outermost program.

If specified, class-name-1 indicates that data-name-1 always refers to an

object-instance of class class-name-1 or a class derived from class-name-1.

Important: The programmer must ensure that the referenced object meets

this requirement; violations are not diagnosed.

If class-name-1 is not specified, the object reference can refer to an object of

any class. In this case, data-name-1 is a universal object reference.

You can specify data-name-1 within an alphanumeric group item without

affecting the semantics of the group item. There is no conversion of values

or other special handling of the object references when statements are

executed that operate on the group. The group continues to behave as an

alphanumeric group item.

An object reference can be defined in any section of the data division of a factory

definition, object definition, method, or program. An object-reference data item can

be used in only:

v A SET statement (format 7 only)

v A relation condition

v An INVOKE statement

v The USING or RETURNING phrase of an INVOKE statement

v The USING or RETURNING phrase of a CALL statement

v A program procedure division or ENTRY statement USING or RETURNING

phrase

v A method procedure division USING or RETURNING phrase

240 Enterprise COBOL for z/OS V4.1 Language Reference

Object-reference data items:

v Are ignored in CORRESPONDING operations

v Are unaffected by INITIALIZE statements

v Can be the subject or object of a REDEFINES clause

v Cannot be a conditional variable

v Can be written to a file (but upon subsequent reading of the record the content

of the object reference is undefined)

A VALUE clause for an object-reference data item can contain only NULL or

NULLS.

You can use the SYNCHRONIZED clause with the USAGE OBJECT REFERENCE

clause to obtain efficient alignment of the object-reference data item.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses

cannot be used to describe group or elementary items defined with the USAGE

OBJECT REFERENCE clause.

POINTER phrase

A data item defined with USAGE IS POINTER is a pointer data item. A pointer data

item is a 4-byte elementary item.

You can use pointer data items to accomplish limited base addressing. Pointer data

items can be compared for equality or moved to other pointer items.

A pointer data item can be used only:

v In a SET statement (format 5 only)

v In a relation condition

v In the USING phrase of a CALL statement, an ENTRY statement, or the

procedure division header

Pointer data items can be part of an alphanumeric group that is referred to in a

MOVE statement or an input/output statement. However, if a pointer data item is

part of a group, there is no conversion of values when the statement is executed.

A pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS POINTER to obtain efficient use of

the pointer data item.

A VALUE clause for a pointer data item can contain only NULL or NULLS.

A pointer data item cannot be a conditional variable.

A pointer data item does not belong to any class or category.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses

cannot be used to describe group or elementary items defined with the USAGE IS

POINTER clause.

Pointer data items are ignored in the processing of a CORRESPONDING phrase.

Chapter 19. Data division--data description entry 241

A pointer data item can be written to a data set, but upon subsequent reading of

the record that contains the pointer, the address contained might no longer

represent a valid pointer.

USAGE IS POINTER is implicitly specified for the ADDRESS OF special register.

For more information, see the Enterprise COBOL Programming Guide.

PROCEDURE-POINTER phrase

The PROCEDURE-POINTER phrase defines an item as a procedure-pointer data item.

A procedure-pointer data item is an 8-byte elementary item.

A procedure-pointer can contain one of the following addresses or can contain

NULL:

v The primary entry point of a COBOL program as defined by the program-ID

paragraph of the outermost program of a compilation unit

v An alternate entry point of a COBOL program as defined by a COBOL ENTRY

statement

v An entry point in a non-COBOL program

A procedure-pointer data item can be used only:

v In a SET statement (format 6 only)

v In a CALL statement

v In a relation condition

v In the USING phrase of an ENTRY statement or the procedure division header

Procedure-pointer data items can be compared for equality or moved to other

procedure-pointer data items.

Procedure-pointer data items can be part of a group that is referred to in a MOVE

statement or an input/output statement. However, there is no conversion of values

when the statement is executed. If a procedure-pointer data item is written to a

data set, subsequent reading of the record that contains the procedure-pointer can

result in an invalid value in the procedure-pointer.

A procedure-pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS PROCEDURE-POINTER to obtain

efficient alignment of the procedure-pointer data item.

The GLOBAL, EXTERNAL, and OCCURS clause can be used with USAGE IS

PROCEDURE-POINTER.

A VALUE clause for a procedure-pointer data item can contain only NULL or

NULLS.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses

cannot be used to describe group or elementary items defined with the USAGE IS

PROCEDURE-POINTER clause.

A procedure-pointer data item cannot be a conditional variable.

A procedure-pointer data item does not belong to any class or category.

242 Enterprise COBOL for z/OS V4.1 Language Reference

Procedure-pointer data items are ignored in CORRESPONDING operations.

NATIVE phrase

The NATIVE phrase is syntax checked, but has no effect on the execution of the

program.

VALUE clause

The VALUE clause specifies the initial contents of a data item or the values

associated with a condition-name. The use of the VALUE clause differs depending

on the data division section in which it is specified.

A VALUE clause that is used in the file section or the linkage section in an entry

other than a condition-name entry is syntax checked, but has no effect on the

execution of the program.

In the working-storage section and the local-storage section, the VALUE clause can

be used in condition-name entries or in specifying the initial value of any data

item. The data item assumes the specified value at the beginning of program

execution. If the initial value is not explicitly specified, the value is unpredictable.

Format 1

Format 1: literal value

�� VALUE

IS
 literal ��

Format 1 specifies the initial value of a data item. Initialization is independent of

any BLANK WHEN ZERO or JUSTIFIED clause that is specified.

A format-1 VALUE clause specified in a data description entry that contains or is

subordinate to an OCCURS clause causes every occurrence of the associated data

item to be assigned the specified value. Each structure that contains the

DEPENDING ON phrase of the OCCURS clause is assumed to contain the

maximum number of occurrences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains

or is subordinate to an entry that contains either an EXTERNAL or a REDEFINES

clause. This rule does not apply to condition-name entries.

A format-1 VALUE clause can be specified for an elementary data item or for a

group item. When the VALUE clause is specified at the group level, the group area

is initialized without consideration for the subordinate entries within the group. In

addition, a VALUE clause must not be specified for subordinate entries within the

group.

For group items, the VALUE clause must not be specified if any subordinate

entries contain a JUSTIFIED or SYNCHRONIZED clause.

Chapter 19. Data division--data description entry 243

If the VALUE clause is specified for an alphanumeric group, all subordinate items

must be explicitly or implicitly described with USAGE DISPLAY.

The VALUE clause must not conflict with other clauses in the data description

entry or in the data description of that entry’s hierarchy.

The functions of the editing characters in a PICTURE clause are ignored in

determining the initial value of the item described. However, editing characters are

included in determining the size of the item. Therefore, any editing characters

must be included in the literal. For example, if the item is defined as PICTURE

+999.99 and the value is to be +12.34, then the VALUE clause should be specified

as VALUE ″+012.34″.

A VALUE clause cannot be specified for external floating-point items.

A data item cannot contain a VALUE clause if the prior data item contains an

OCCURS clause with the DEPENDING ON phrase.

Rules for literal values

v Wherever a literal is specified, a figurative constant can be substituted, in

accordance with the rules specified in “Figurative constants” on page 13.

v If the item is class numeric, the VALUE clause literal must be numeric. If the

literal defines the value of a working-storage item or local-storage item, the

literal is aligned according to the rules for numeric moves, with one additional

restriction: The literal must not have a value that requires truncation of nonzero

digits. If the literal is signed, the associated PICTURE character-string must

contain a sign symbol.

v With some exceptions, numeric literals in a VALUE clause must have a value

within the range of values indicated by the PICTURE clause for the item. For

example, for PICTURE 99PPP, the literal must be zero or within the range 1000

through 99000. For PICTURE PPP99, the literal must be within the range 0.00000

through 0.00099.

The exceptions are the following:

– Data items described with usage COMP-5 that do not have a picture symbol

P in their PICTURE clause

– When the TRUNC(BIN) compiler option is in effect, data items described with

usage BINARY, COMP, or COMP-4 that do not have a picture symbol P in

their PICTURE clause

A VALUE clause for these items can have a value up to the capacity of the

native binary representation.
v If the VALUE clause is specified for an elementary alphabetic, alphanumeric,

alphanumeric-edited, or numeric-edited item described with usage DISPLAY, the

VALUE clause literal must be an alphanumeric literal or a figurative constant.

The literal is aligned according to the alphanumeric alignment rules, with one

additional restriction: the number of characters in the literal must not exceed the

size of the item.

v If the VALUE clause is specified for an elementary national, national-edited, or

numeric-edited item described with usage NATIONAL, the VALUE clause literal

must be a national or alphanumeric literal or a figurative constant as specified in

“Figurative constants” on page 13. The value of an alphanumeric literal is

converted from its source code representation to UTF-16 representation. The

literal is aligned according to the national alignment rules, with one additional

restriction: the number of characters in the literal must not exceed the size, in

character positions, of the item.

244 Enterprise COBOL for z/OS V4.1 Language Reference

v If the VALUE clause is specified at the group level for an alphanumeric group,

the literal must be an alphanumeric literal or a figurative constant as specified in

“Figurative constants” on page 13, other than ALL national-literal. The size of the

literal must not exceed the size of the group item.

v If the VALUE clause is specified at the group level for a national group, the

literal can be an alphanumeric literal, a national literal, or one of the figurative

constants ZERO, SPACE, QUOTES, HIGH-VALUE, LOW-VALUE, symbolic

character, ALL national-literal, or ALL -literal. The value of an alphanumeric literal

is converted from its source code representation to UTF-16 representation. Each

figurative constant represents a national character value. The size of the literal

must not exceed the size of the group item.

v A VALUE clause associated with a DBCS item must contain a DBCS literal, the

figurative constant SPACE, or the figurative constant ALL DBCS-literal. The

length of the literal must not exceed the size indicated by the data item’s

PICTURE clause.

v A VALUE clause that specifies a national literal can be associated only with a

data item of class national.

v A VALUE clause that specifies a DBCS literal can be associated only with a data

item of class DBCS.

v A VALUE clause associated with a COMPUTATIONAL-1 or

COMPUTATIONAL-2 (internal floating-point) item must specify a floating-point

literal. In addition, the figurative constant ZERO and both integer and decimal

forms of the zero literal can be specified in a floating-point VALUE clause.

For information about floating-point literal values, see “Rules for floating-point

literal values” on page 39.

Format 2

Format 2: condition-name value

�� 88 condition-name-1 VALUE

IS

VALUES

ARE

 �

�

�

literal-1

THROUGH

literal-2

THRU

.

��

This format associates a value, values, or ranges of values with a condition-name.

Each such condition-name requires a separate level-88 entry. Level-number 88 and

the condition-name are not part of the format-2 VALUE clause itself. They are

included in the format only for clarity.

condition-name-1

A user-specified name that associates a value with a conditional variable. If

the associated conditional variable requires subscripts or indexes, each

Chapter 19. Data division--data description entry 245

procedural reference to the condition-name must be subscripted or indexed

as required for the conditional variable.

 Condition-names are tested procedurally in condition-name conditions (see

“Conditional expressions” on page 267).

literal-1

Associates the condition-name with a single value.

 The class of literal-1 must be a valid class for assignment to the associated

conditional variable.

literal-1 THROUGH literal-2

Associates the condition-name with at least one range of values. When the

THROUGH phrase is used, literal-1 must be less than literal-2, unless the

associated data item is a non-year-last windowed date field. For details, see

“Rules for condition-name entries.”

 literal-1 and literal-2 must be of the same class. The class of literal-1 and

literal-2 must be a valid class for assignment to the associated conditional

variable.

When literal-1 and literal-2 are DBCS literals, the range of DBCS values

specified by the THROUGH phrase is based on the binary collating

sequence of the hexadecimal values of the DBCS characters.

When literal-1 and literal-2 are national literals, the range of national

character values specified by the THROUGH phrase is based on the binary

collating sequence of the hexadecimal values of the national characters

represented by the literals.

If the associated conditional variable is of class DBCS, literal-1 and literal-2

must be DBCS literals. The figurative constant SPACE or the figurative

constant ALL DBCS-literal can be specified.

If the associated conditional variable is of class national, literal-1 and

literal-2 must be either both national literals or both alphanumeric literals

for a given condition-name. The figurative constants ZERO, SPACE,

QUOTE, HIGH-VALUE, LOW-VALUE, symbolic-character, ALL

national-literal, or ALL literal can be specified.

Rules for condition-name entries

v The VALUE clause is required in a condition-name entry, and must be the only

clause in the entry. Each condition-name entry is associated with a preceding

conditional variable. Thus every level-88 entry must always be preceded either

by the entry for the conditional variable or by another level-88 entry when

several condition-names apply to one conditional variable. Each such level-88

entry implicitly has the PICTURE characteristics of the conditional variable.

v A space, a separator comma, or a separator semicolon must separate successive

operands.

Each entry must end with a separator period.

v The keywords THROUGH and THRU are equivalent.

v The condition-name entries associated with a particular conditional variable

must immediately follow the conditional variable entry. The conditional variable

can be any elementary data description entry except the following:

– Another condition-name

– A RENAMES clause (level-66 item)

– An item described with USAGE IS INDEX

246 Enterprise COBOL for z/OS V4.1 Language Reference

– An item described with USAGE POINTER, USAGE PROCEDURE-POINTER,

USAGE FUNCTION-POINTER, or USAGE OBJECT REFERENCE
v Condition-names can be specified both at the group level and at subordinate

levels within an alphanumeric group or national group.

v When the condition-name is specified for an alphanumeric group data

description entry:

– The value of literal-1 (or literal-1 and literal-2) must be specified as an

alphanumeric literal or figurative constant.

– The group can contain items of any usage.
v When the condition-name is specified for a national group data description

entry:

– The value of literal-1 (or literal-1 and literal-2) must be specified as an

alphanumeric literal, a national literal, or a figurative constant.

– The group can contain only items of usage national, as specified for the

“GROUP-USAGE clause” on page 197.
v When the condition-name is associated with an alphanumeric group data

description entry or a national group data description entry:

– The size of each literal value must not exceed the sum of the sizes of all the

elementary items within the group.

– No element within the group can contain a JUSTIFIED or SYNCHRONIZED

clause.
v Relation tests implied by the definition of a condition-name are performed in

accordance with the rules referenced in the table below.

 Table 16. Relation test references for condition-names

Type of conditional variable Relation condition rules

Alphanumeric group item “Group comparisons” on page 278

National group item (treated as elementary data

item of class national)

“National comparisons” on page 276

Elementary data item of class alphanumeric “Alphanumeric comparisons” on page

275

Elementary data item of class national “National comparisons” on page 276

Elementary data item of class numeric “Numeric comparisons” on page 277

Elementary data item of class DBCS “DBCS comparisons” on page 276

v A VALUE clause that specifies a national literal can be associated with a

condition-name defined only for a data item of class national.

v A VALUE clause that specifies a DBCS literal can be associated with a

condition-name defined only for a data item of class DBCS.

v The literals in a condition-name entry for an elementary data item of class

national or a national group item must be either national literals or

alphanumeric literals, and literal-1 and literal-2 must be of the same class. For

alphanumeric groups or elementary data items of other classes, the type of

literal must be consistent with the data type of the conditional variable. In the

following example:

– CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables.

The PICTURE associated with COUNTY-NO limits the condition-name value

to a two-digit numeric literal.

The PICTURE associated with CITY limits the condition-name value to a

three-character alphanumeric literal.

Chapter 19. Data division--data description entry 247

– The associated condition-names are level-88 entries.

Any values for the condition-names associated with CITY-COUNTY-INFO

cannot exceed five characters.

Because this is an alphanumeric group item, the literal must be alphanumeric.
 05 CITY-COUNTY-INFO.

 88 BRONX VALUE "03NYC".

 88 BROOKLYN VALUE "24NYC".

 88 MANHATTAN VALUE "31NYC".

 88 QUEENS VALUE "41NYC".

 88 STATEN-ISLAND VALUE "43NYC".

 10 COUNTY-NO PICTURE 99.

 88 DUTCHESS VALUE 14.

 88 KINGS VALUE 24.

 88 NEW-YORK VALUE 31.

 88 RICHMOND VALUE 43.

 10 CITY PICTURE X(3).

 88 BUFFALO VALUE "BUF".

 88 NEW-YORK-CITY VALUE "NYC".

 88 POUGHKEEPSIE VALUE "POK".

 05 POPULATION...

v If the item is a windowed date field, the following restrictions apply:

– For alphanumeric conditional variables:

- Both literal-1 and literal-2 (if specified) must be alphanumeric literals of the

same length as the conditional variable.

- The literals must not be specified as figurative constants.

- If literal-2 is specified, both literals must contain only decimal digits.
– If the YEARWINDOW compiler option is specified as a negative integer,

literal-2 must not be specified.

– If literal-2 is specified, literal-1 must be less than literal-2 after applying the

century window specified by the YEARWINDOW compiler option. That is,

the expanded date value of literal-1 must be less than the expanded date

value of literal-2.

For more information about using condition-names with windowed date fields,

see “Condition-name conditions and windowed date field comparisons” on page

270.

Format 3

Format 3: NULL value

�� VALUE

IS
 NULL

NULLS
 ��

This format assigns an invalid address as the initial value of an item defined as

USAGE POINTER, USAGE PROCEDURE POINTER, or USAGE

FUNCTION-POINTER. It also assigns an invalid object reference as the initial

value of an item defined as USAGE OBJECT REFERENCE.

VALUE IS NULL can be specified only for elementary items described implicitly or

explicitly as USAGE POINTER, USAGE PROCEDURE-POINTER, USAGE

FUNCTION-POINTER, or USAGE OBJECT REFERENCE.

248 Enterprise COBOL for z/OS V4.1 Language Reference

Part 6. Procedure division

Chapter 20. Procedure division structure . . . 253

Requirements for a method procedure division . . 254

The procedure division header 255

The USING phrase 256

RETURNING phrase 258

References to items in the linkage section . . . 258

Declaratives 259

Procedures 260

Arithmetic expressions 261

Arithmetic operators 262

Arithmetic with date fields 264

Addition that involves date fields 264

Subtraction that involves date fields 265

Storing arithmetic results that involve date

fields 265

Conditional expressions 267

Simple conditions 267

Class condition 267

Condition-name condition 269

Condition-name conditions and windowed

date field comparisons 270

Relation conditions 271

General relation conditions 271

Alphanumeric comparisons 275

DBCS comparisons 276

National comparisons 276

Numeric comparisons 277

Group comparisons 278

Comparison of index-names and index data

items 278

Comparison of date fields 279

Data pointer relation conditions 280

Procedure-pointer and function-pointer relation

conditions 281

Object-reference relation conditions 282

Sign condition 283

Date fields in sign conditions 283

Switch-status condition 284

Complex conditions 284

Negated simple conditions 285

Combined conditions 285

Order of evaluation of conditions 286

Order of evaluation: 287

Abbreviated combined relation conditions . . . 287

Using parentheses 288

Statement categories 290

Imperative statements 290

Arithmetic 290

Data movement 290

Ending 291

Input-output 291

Ordering 291

Procedure-branching 291

Program or method linkage 291

Table-handling 292

Conditional statements 292

Arithmetic 292

Data movement 292

Decision 292

Input-output 292

Ordering 293

Program or method linkage 293

Table-handling 293

Delimited scope statements 293

Explicit scope terminators 293

Implicit scope terminators 294

Compiler-directing statements 294

Statement operations 294

CORRESPONDING phrase 294

GIVING phrase 296

ROUNDED phrase 296

SIZE ERROR phrases 296

Arithmetic statements 298

Arithmetic statement operands 298

Size of operands 298

Overlapping operands 299

Multiple results 299

Data manipulation statements 299

Overlapping operands 299

Input-output statements 300

Common processing facilities 300

File status key 300

Invalid key condition 304

INTO and FROM phrases 305

File position indicator 306

Chapter 21. Procedure division statements . . 307

ACCEPT statement 308

Data transfer 308

System date-related information transfer . . . 310

DATE, DATE YYYYMMDD, DAY, DAY

YYYYDDD, DAY-OF-WEEK, and TIME 310

ADD statement 313

ROUNDED phrase 315

SIZE ERROR phrases 315

CORRESPONDING phrase (format 3) 315

END-ADD phrase 316

ALTER statement 317

Segmentation considerations 317

CALL statement 319

USING phrase 321

BY REFERENCE phrase 322

BY CONTENT phrase 322

BY VALUE phrase 323

RETURNING phrase 324

ON EXCEPTION phrase 325

NOT ON EXCEPTION phrase 325

ON OVERFLOW phrase 325

END-CALL phrase 326

CANCEL statement 327

CLOSE statement 329

Effect of CLOSE statement on file types . . . 330

© Copyright IBM Corp. 1991, 2007 249

COMPUTE statement 333

ROUNDED phrase 334

SIZE ERROR phrases 334

END-COMPUTE phrase 334

CONTINUE statement 335

DELETE statement 336

Sequential access mode 336

Random or dynamic access mode 337

END-DELETE phrase 337

DISPLAY statement 338

DIVIDE statement 341

ROUNDED phrase 344

REMAINDER phrase 344

SIZE ERROR phrases 344

END-DIVIDE phrase 345

ENTRY statement 346

USING phrase 346

EVALUATE statement 347

END-EVALUATE phrase 348

Determining values 348

Comparing selection subjects and objects . . . 349

Executing the EVALUATE statement 350

EXIT statement 351

EXIT METHOD statement 352

EXIT PROGRAM statement 353

GOBACK statement 354

GO TO statement 355

Unconditional GO TO 355

Conditional GO TO 355

Altered GO TO 356

MORE-LABELS GO TO 356

IF statement 357

END-IF phrase 357

Transferring control 358

Nested IF statements 358

INITIALIZE statement 359

REPLACING phrase 360

INITIALIZE statement rules 360

INSPECT statement 362

TALLYING phrase (formats 1 and 3) 365

REPLACING phrase (formats 2 and 3) 366

BEFORE and AFTER phrases (all formats) . . . 367

CONVERTING phrase (format 4) 367

Data flow 369

Comparison cycle 369

Example of the INSPECT statement 370

INVOKE statement 372

USING phrase 374

BY VALUE phrase 374

Conformance requirements for arguments 374

RETURNING phrase 375

Conformance requirements for the

RETURNING item 375

ON EXCEPTION phrase 376

NOT ON EXCEPTION phrase 376

END-INVOKE phrase 376

Interoperable data types for COBOL and Java 377

Miscellaneous argument types for COBOL and

Java 378

MERGE statement 380

ASCENDING/DESCENDING KEY phrase . . 381

COLLATING SEQUENCE phrase 382

USING phrase 383

GIVING phrase 383

OUTPUT PROCEDURE phrase 384

MERGE special registers 385

Segmentation considerations 385

MOVE statement 386

Elementary moves 387

Elementary move rules 388

Valid and invalid elementary moves 390

Moves involving date fields 391

Moves involving file record areas 392

Group moves 392

MULTIPLY statement 394

ROUNDED phrase 396

SIZE ERROR phrases 396

END-MULTIPLY phrase 396

OPEN statement 397

General rules 399

Label records 399

OPEN statement notes 400

PERFORM statement 403

Basic PERFORM statement 403

END-PERFORM 405

PERFORM with TIMES phrase 405

PERFORM with UNTIL phrase 406

PERFORM with VARYING phrase 407

Varying identifiers 408

Varying two identifiers 409

Varying three identifiers 411

Varying more than three identifiers 411

Varying phrase rules 412

READ statement 413

KEY IS phrase 414

AT END phrases 414

INVALID KEY phrases 415

END-READ phrase 415

Multiple record processing 415

Sequential access mode 415

Sequential files 416

Multivolume QSAM files 417

Indexed or relative files 417

Random access mode 418

Indexed files 418

Relative files 418

Dynamic access mode 418

READ statement notes: 419

RELEASE statement 420

RETURN statement 422

AT END phrases 423

END-RETURN phrase 423

REWRITE statement 424

INVALID KEY phrases 425

END-REWRITE phrase 425

Reusing a logical record 425

Sequential files 425

Indexed files 425

Relative files 426

SEARCH statement 427

Serial search 428

VARYING phrase 429

250 Enterprise COBOL for z/OS V4.1 Language Reference

WHEN phrase (serial search) 430

Binary search 430

WHEN phrase (binary search) 431

Search statement considerations 432

AT END and WHEN phrases 433

NEXT SENTENCE 433

END-SEARCH phrase 433

SET statement 434

Format 1: SET for basic table handling 434

Format 2: SET for adjusting indexes 435

Format 3: SET for external switches 436

Format 4: SET for condition-names 437

Format 5: SET for USAGE IS POINTER data

items 437

Format 6: SET for procedure-pointer and

function-pointer data items 438

Format 7: SET for USAGE OBJECT REFERENCE

data items 440

SORT statement 441

ASCENDING KEY and DESCENDING KEY

phrases 442

DUPLICATES phrase 443

COLLATING SEQUENCE phrase 444

USING phrase 444

INPUT PROCEDURE phrase 445

GIVING phrase 445

OUTPUT PROCEDURE phrase 446

SORT special registers 447

Segmentation considerations 447

START statement 448

KEY phrase 448

INVALID KEY phrases 449

END-START phrase 449

Indexed files 449

Relative files 450

STOP statement 451

STRING statement 452

ON OVERFLOW phrases 454

END-STRING phrase 454

Data flow 455

SUBTRACT statement 457

ROUNDED phrase 459

SIZE ERROR phrases 459

CORRESPONDING phrase (format 3) 459

END-SUBTRACT phrase 460

UNSTRING statement 461

DELIMITED BY phrase 463

Delimiter with two or more characters . . . 463

Two or more delimiters 463

INTO phrase 464

POINTER phrase 464

TALLYING IN phrase 464

ON OVERFLOW phrases 464

When an overflow condition occurs 465

When an overflow condition does not occur 465

END-UNSTRING phrase 465

Data flow 465

Values at the end of execution of the

UNSTRING statement 467

Example of the UNSTRING statement 467

WRITE statement 469

ADVANCING phrase 471

ADVANCING phrase rules 471

LINAGE-COUNTER rules 472

END-OF-PAGE phrases 472

INVALID KEY phrases 473

END-WRITE phrase 474

WRITE for sequential files 474

Multivolume files 475

Punch function files with the IBM 3525 . . . 475

Print function files 475

Advanced Function Printing 476

WRITE for indexed files 476

WRITE for relative files 476

XML GENERATE statement 478

Nested XML GENERATE or XML PARSE

statements 483

Operation of XML GENERATE 483

Format conversion of elementary data 484

Trimming of generated XML data 485

XML element name and attribute name

formation 486

XML PARSE statement 487

Nested XML GENERATE or XML PARSE

statements 491

Control flow 491

Part 6. Procedure division 251

252 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 20. Procedure division structure

The procedure division is an optional division.

Program procedure division

The program procedure division consists of optional declaratives, and

procedures that contain sections, paragraphs, sentences, and statements.

Factory procedure division

The factory procedure division contains only factory method definitions.

Object procedure division

The object procedure division contains only object method definitions.

Method procedure division

A method procedure division consists of optional declaratives, and

procedures that contain sections, paragraphs, sentences, and statements. A

method can INVOKE other methods, be recursively invoked, and issue a

CALL to a program. A method procedure division cannot contain nested

programs or methods.

 For additional details on a method procedure division, see “Requirements

for a method procedure division” on page 254.

© Copyright IBM Corp. 1991, 2007 253

Format: procedure division

�� procedure-division-header

factory-or-object-procedure-division-header

method-procedure-division-header

 �

�

�

(1)

DECLARATIVES.

sect

.

use-statement

para

END DECLARATIVES.

 �

�

�

(2)

section-name

SECTION

.

para

(3)

priority-number

��

sect:

 section-name SECTION

(3)

priority-number

para:

�

�

paragraph-name.

sentence

Notes:

1 The USE statement is described under “USE statement” on page 562

2 Section-name can be omitted. If you omit section-name, paragraph-name can be omitted.

3 Priority-numbers are not valid for methods, recursive programs, or programs compiled with the

THREAD option.

Requirements for a method procedure division

When using a method procedure division:

v You can use the EXIT METHOD statement or the GOBACK statement to return

control to the invoking method or program. An implicit EXIT METHOD

statement is generated as the last statement of every method procedure division.

For details on the EXIT METHOD statement, see “EXIT METHOD statement” on

page 352.

254 Enterprise COBOL for z/OS V4.1 Language Reference

v You can use the STOP RUN statement (which terminates the run unit) in a

method.

v You can use the RETURN-CODE special register within a method procedure

division to access return codes from subprograms that are called with the CALL

statement, but the RETURN-CODE value is not returned to the invoker of the

current method. Use the procedure division RETURNING data name to return a

value to the invoker of the current method. For details, see the discussion of

RETURNING data-name-2 under “The procedure division header.”

You cannot specify the following statements or clauses in a method procedure

division:

v ALTER

v ENTRY

v EXIT PROGRAM

v GO TO without a specified procedure name

v SEGMENT-LIMIT

v USE FOR DEBUGGING

The procedure division header

The procedure division, if specified, is identified by one of the following headers,

depending on whether you are specifying a program, a factory definition, an object

definition, or a method definition.

The following is the format for a procedure division header in a program.

Format: program procedure division header

�� PROCEDURE DIVISION �

�

�

�

USING

data-name-1

REFERENCE

BY

VALUE

BY

 �

�
RETURNING

data-name-2
 . ��

The following is the format for a procedure division header in a factory paragraph

or object paragraph.

Chapter 20. Procedure division structure 255

Format: factory and object procedure division header

�� PROCEDURE DIVISION. ��

The following is the format for a procedure division header in a method.

Format: method procedure division header

�� PROCEDURE DIVISION

�

�

USING

VALUE

data-name-1

BY

 �

�
RETURNING

data-name-2
 ��

The USING phrase

The USING phrase specifies the parameters that a program or method receives

when the program is called or the method is invoked.

The USING phrase is valid in the procedure division header of a called

subprogram or invoked method entered at the beginning of the nondeclaratives

portion. Each USING identifier must be defined as a level-01 or level-77 item in the

linkage section of the called subprogram or invoked method.

In a called subprogram entered at the first executable statement following an

ENTRY statement, the USING phrase is valid in the ENTRY statement. Each

USING identifier must be defined as a level-01 or level-77 item in the linkage

section of the called subprogram.

However, a data item specified in the USING phrase of the CALL statement can be

a data item of any level in the data division of the calling COBOL program or

method. A data item specified in the USING phrase of an INVOKE statement can

be a data item of any level in the data division of the invoking COBOL program or

method.

A data item in the USING phrase of the procedure division header can have a

REDEFINES clause in its data description entry.

It is possible to call COBOL programs from non-COBOL programs or to pass user

parameters from a system command to a COBOL main program. COBOL methods

can be invoked only from Java or COBOL.

The order of appearance of USING identifiers in both calling and called

subprograms, or invoking methods or programs and invoked methods, determines

the correspondence of single sets of data available to both. The correspondence is

256 Enterprise COBOL for z/OS V4.1 Language Reference

positional and not by name. For calling and called subprograms, corresponding

identifiers must contain the same number of bytes although their data descriptions

need not be the same.

For index-names, no correspondence is established. Index-names in calling and

called programs, or invoking method or program and invoked methods, always

refer to separate indexes.

The identifiers specified in a CALL USING or INVOKE USING statement name the

data items available to the calling program or invoking method or program that

can be referred to in the called program or invoked method. These items can be

defined in any data division section.

A given identifier can appear more than once in a procedure division USING

phrase. The last value passed to it by a CALL or INVOKE statement is used.

The BY REFERENCE or BY VALUE phrase applies to all parameters that follow

until overridden by another BY REFERENCE or BY VALUE phrase.

BY REFERENCE (for programs only)

When an argument is passed BY CONTENT or BY REFERENCE, BY

REFERENCE must be specified or implied for the corresponding formal

parameter on the PROCEDURE or ENTRY USING phrase.

 BY REFERENCE is the default if neither BY REFERENCE nor BY VALUE is

specified.

If the reference to the corresponding data item in the CALL statement

declares the parameter to be passed BY REFERENCE (explicit or implicit),

the program executes as if each reference to a USING identifier in the

called subprogram procedure division is replaced by a reference to the

corresponding USING identifier in the calling program.

If the reference to the corresponding data item in the CALL statement

declares the parameter to be passed BY CONTENT, the value of the item is

moved when the CALL statement is executed and placed into a

system-defined storage item that possesses the attributes declared in the

linkage section for data-name-1. The data description of each parameter in

the BY CONTENT phrase of the CALL statement must be the same,

meaning no conversion or extension or truncation, as the data description

of the corresponding parameter in the USING phrase of the procedure

division header.

BY VALUE

When an argument is passed BY VALUE, the value of the argument is

passed, not a reference to the sending data item. The receiving subprogram

or method has access only to a temporary copy of the sending data item.

Any modifications made to the formal parameters that correspond to an

argument passed BY VALUE do not affect the argument.

 Parameters specified in the USING phrase of a method procedure division

header must be passed to the method BY VALUE.

See the Enterprise COBOL Programming Guide for examples that illustrate

these concepts.

data-name-1

data-name-1 must be a level-01 or level-77 item in the linkage section.

Chapter 20. Procedure division structure 257

When data-name-1 is an object reference in a method procedure division

header, an explicit class-name must be specified in the data description

entry for that object reference; that is, data-name-1 must not be a universal

object reference.

For methods, the parameter data types are restricted to the data types that

are interoperable between COBOL and Java, as listed in “Interoperable

data types for COBOL and Java” on page 377.

RETURNING phrase

The RETURNING phrase specifies a data item that is to receive the program or

method result.

data-name-2

data-name-2 is the RETURNING data item. data-name-2 must be a level-01

or level-77 item in the linkage section.

 In a method procedure division header, the data type of data-name-2 must

be one of the types supported for Java interoperation, as listed in

“Interoperable data types for COBOL and Java” on page 377.

The RETURNING data item is an output-only parameter. On entry to the

method, the initial state of the RETURNING data item has an undefined

and unpredictable value. You must initialize the PROCEDURE DIVISION

RETURNING data item before you reference its value. The value that is

returned to the invoking routine is the value that the data item has at the

point of exit from the method. See “RETURNING phrase” on page 375 for

further details on conformance requirements for the INVOKE RETURNING

identifier and the method RETURNING data item.

Do not use the procedure division RETURNING phrase in:

v Programs that contain the ENTRY statement.

v Nested programs.

v Main programs: Results of specifying procedure division RETURNING

on a main program are undefined. You should specify the procedure

division RETURNING phrase only on called subprograms. For main

programs, use the RETURN-CODE special register to return a value to

the operating environment.

References to items in the linkage section

Data items defined in the linkage section of the called program or invoked method

can be referenced within the procedure division of that program if and only if they

satisfy one of the following conditions:

v They are operands of the USING phrase of the procedure division header or the

ENTRY statement.

v They are operands of SET ADDRESS OF, CALL ... BY REFERENCE ADDRESS

OF, or INVOKE ... BY REFERENCE ADDRESS OF.

v They are defined with a REDEFINES or RENAMES clause, the object of which

satisfies the above conditions.

v They are items subordinate to any item that satisfies the condition in the rules

above.

v They are condition-names or index-names associated with data items that satisfy

any of the above conditions.

258 Enterprise COBOL for z/OS V4.1 Language Reference

Declaratives

Declaratives provide one or more special-purpose sections that are executed when

an exceptional condition occurs.

When declarative sections are specified, they must be grouped at the beginning of

the procedure division and the entire procedure division must be divided into

sections.

Each declarative section starts with a USE statement that identifies the section’s

function. The series of procedures that follow specify the actions that are to be

taken when the exceptional condition occurs. Each declarative section ends with

another section-name followed by a USE statement, or with the keywords END

DECLARATIVES.

The entire group of declarative sections is preceded by the keyword

DECLARATIVES written on the line after the procedure division header. The

group is followed by the keywords END DECLARATIVES. The keywords

DECLARATIVES and END DECLARATIVES must each begin in Area A and be

followed by a separator period. No other text can appear on the same line.

In the declaratives part of the procedure division, each section header must be

followed by a separator period, and must be followed by a USE statement

followed by a separator period. No other text can appear on the same line.

The USE statement has three formats, discussed in these sections:

v “EXCEPTION/ERROR declarative” on page 562

v “DEBUGGING declarative” on page 566

v “LABEL declarative” on page 564

The USE statement itself is never executed; instead, the USE statement defines the

conditions that execute the succeeding procedural paragraphs, which specify the

actions to be taken. After the procedure is executed, control is returned to the

routine that activated it.

A declarative procedure can be performed from a nondeclarative procedure.

A nondeclarative procedure can be performed from a declarative procedure.

A declarative procedure can be referenced in a GO TO statement in a declarative

procedure.

A nondeclarative procedure can be referenced in a GO TO statement in a

declarative procedure.

You can include a statement that executes a previously called USE procedure that

is still in control. However, to avoid an infinite loop, you must be sure there is an

eventual exit at the bottom.

The declarative procedure is exited when the last statement in the procedure is

executed.

Chapter 20. Procedure division structure 259

Procedures

Within the procedure division, a procedure consists of:

v A section or a group of sections

v A paragraph or group of paragraphs

A procedure-name is a user-defined name that identifies a section or a paragraph.

Section

A section-header optionally followed by one or more paragraphs.

Section-header

A section-name followed by the keyword SECTION, optionally

followed by a priority-number, followed by a separator period.

 Section-headers are optional after the keywords END

DECLARATIVES or if there are no declaratives.

Section-name

A user-defined word that identifies a section. A referenced

section-name, because it cannot be qualified, must be unique

within the program in which it is defined.

Priority-number

An integer or a positive signed numeric literal ranging in value

from 0 through 99. Priority-number identifies a fixed segment or an

independent segment that is to contain the section.

Sections in the declaratives portion must contain priority numbers in the

range of 0 through 49.

You cannot specify priority-numbers:

v In a method definition

v In a program that is declared with the RECURSIVE attribute

v In a program compiled with the THREAD compiler option

A section ends immediately before the next section header, or at the end of

the procedure division, or, in the declaratives portion, at the keywords

END DECLARATIVES.

Segments

A segment consists of all sections in a program that have the same

priority-number. Priority-number determines whether a section is stored in

a fixed segment or an independent segment at run time.

 Segments with a priority-number of 0 through 49 are fixed segments.

Segments with a priority-number of 50 through 99 are independent

segments.

The type of segment (fixed or independent) controls the segmentation

feature.

In fixed segments, procedures are always in last-used state. In independent

segments, procedures are in initial state each time the segment receives

control from a segment with a different priority-number, except when the

transfer of control results from the execution of a GOBACK or EXIT

PROGRAM statement. Restrictions on the use of ALTER, SORT, and

MERGE statements in independent segments are described under those

statements.

260 Enterprise COBOL for z/OS V4.1 Language Reference

Enterprise COBOL does not support the overlay feature of the Standard

COBOL 85 segmentation module.

Paragraph

A paragraph-name followed by a separator period, optionally followed by

one or more sentences.

 Paragraphs must be preceded by a period because paragraphs always

follow either the identification division header, a section, or another

paragraph, all of which must end with a period.

Paragraph-name

A user-defined word that identifies a paragraph. A

paragraph-name, because it can be qualified, need not be unique.

 If there are no declaratives (format 2), a paragraph-name is not

required in the procedure division.

A paragraph ends immediately before the next paragraph-name or section

header, or at the end of the procedure division, or, in the declaratives

portion, at the keywords END DECLARATIVES.

Paragraphs need not all be contained within sections, even if one or more

paragraphs are so contained.

Sentence

One or more statements terminated by a separator period.

Statement

A syntactically valid combination of identifiers and symbols (literals,

relational-operators, and so forth) beginning with a COBOL verb.

Identifier

The word or words necessary to make unique reference to a data item,

optionally including qualification, subscripting, indexing, and

reference-modification. In any procedure division reference (except the

class test), the contents of an identifier must be compatible with the class

specified through its PICTURE clause, otherwise results are unpredictable.

Execution begins with the first statement in the procedure division, excluding

declaratives. Statements are executed in the order in which they are presented for

compilation, unless the statement rules dictate some other order of execution.

The end of the procedure division is indicated by one of the following:

v An identification division header that indicates the start of a nested source

program

v An END PROGRAM, END METHOD, END FACTORY, or END OBJECT marker

v The physical end of a program; that is, the physical position in a source program

after which no further source program lines occur

Arithmetic expressions

Arithmetic expressions are used as operands of certain conditional and arithmetic

statements.

An arithmetic expression can consist of any of the following:

1. An identifier described as a numeric elementary item (including numeric

functions)

2. A numeric literal

Chapter 20. Procedure division structure 261

3. The figurative constant ZERO

4. Identifiers and literals, as defined in items 1, 2, and 3, separated by arithmetic

operators

5. Two arithmetic expressions, as defined in items 1, 2, 3, or 4, separated by an

arithmetic operator

6. An arithmetic expression, as defined in items 1, 2, 3, 4, or 5, enclosed in

parentheses

Any arithmetic expression can be preceded by a unary operator.

Identifiers and literals that appear in arithmetic expressions must represent either

numeric elementary items or numeric literals on which arithmetic can be

performed.

If an exponential expression is evaluated as both a positive and a negative number,

the result is always the positive number. For example, the square root of 4:

4 ** 0.5

is evaluated as +2 and -2. Enterprise COBOL always returns +2.

If the value of an expression to be raised to a power is zero, the exponent must

have a value greater than zero. Otherwise, the size error condition exists. In any

case where no real number exists as the result of an evaluation, the size error

condition exists.

Arithmetic operators

Five binary arithmetic operators and two unary arithmetic operators (as shown in

Table 17) can be used in arithmetic expressions. These operators are represented by

specific characters that must be preceded and followed by a space.

 Table 17. Binary and unary operators

Binary operator Meaning Unary operator Meaning

+ Addition + Multiplication by +1

- Subtraction - Multiplication by -1

* Multiplication

/ Division

** Exponentiation

Limitation: Exponents in fixed-point exponential expressions cannot contain more

than nine digits. The compiler will truncate any exponent with more than nine

digits. In the case of truncation, the compiler will issue a diagnostic message if the

exponent is a literal or constant; if the exponent is a variable or data-name, a

diagnostic is issued at run time.

Parentheses can be used in arithmetic expressions to specify the order in which

elements are to be evaluated.

Expressions within parentheses are evaluated first. When expressions are contained

within nested parentheses, evaluation proceeds from the least inclusive to the most

inclusive set.

262 Enterprise COBOL for z/OS V4.1 Language Reference

When parentheses are not used, or parenthesized expressions are at the same level

of inclusiveness, the following hierarchic order is implied:

1. Unary operator

2. Exponentiation

3. Multiplication and division

4. Addition and subtraction

Parentheses either eliminate ambiguities in logic where consecutive operations

appear at the same hierarchic level, or modify the normal hierarchic sequence of

execution when this is necessary. When the order of consecutive operations at the

same hierarchic level is not completely specified by parentheses, the order is from

left to right.

An arithmetic expression can begin only with a left parenthesis, a unary operator,

or an operand (that is, an identifier or a literal). It can end only with a right

parenthesis or an operand. An arithmetic expression must contain at least one

reference to an identifier or a literal.

There must be a one-to-one correspondence between left and right parentheses in

an arithmetic expression, with each left parenthesis placed to the left of its

corresponding right parenthesis.

If the first operator in an arithmetic expression is a unary operator, it must be

immediately preceded by a left parenthesis if that arithmetic expression

immediately follows an identifier or another arithmetic expression.

The following table shows permissible arithmetic symbol pairs. An arithmetic

symbol pair is the combination of two such symbols in sequence. In the table:

Yes Indicates a permissible pairing.

No Indicates that the pairing is not permitted.

 Table 18. Valid arithmetic symbol pairs

Identifier or

literal

second

symbol

* / ** + -

second

symbol

Unary + or

unary -

second

symbol

(second

symbol

) second

symbol

Identifier or

literal first

symbol

No Yes No No Yes

* / ** + -

first symbol

Yes No Yes Yes No

Unary + or

unary - first

symbol

Yes No No Yes No

(

first symbol

Yes No Yes Yes No

)

first symbol

No Yes No No Yes

Chapter 20. Procedure division structure 263

Arithmetic with date fields

Arithmetic operations that include a date field are restricted to:

v Adding a nondate to a date field

v Subtracting a nondate from a date field

v Subtracting a date field from a compatible date field

Date field operands are compatible if they have the same date format except for

the year part, which can be windowed or expanded.

The following operations are not allowed:

v Any operation between incompatible dates

v Adding two date fields

v Subtracting a date field from a nondate

v Unary minus applied to a date field

v Division, exponentiation, or multiplication of or by a date field

v Arithmetic expressions that specify a year-last date field

v Arithmetic statements that specify a year-last date field, except as a receiving

data item when the sending field is a nondate

The sections below describe the result of using date fields in the supported

addition and subtraction operations.

For more information about using date fields in arithmetic operations, see:

v “ADD statement” on page 313

v “COMPUTE statement” on page 333

v “SUBTRACT statement” on page 457

Usage notes

v Arithmetic operations treat date fields as numeric items; they do not recognize

any date-specific internal structure. For example, adding 1 to a windowed date

field that contains the value 991231 (which might be used in an application to

represent December 31, 1999) results in the value 991232, not 000101.

v When used as operands in arithmetic expressions or arithmetic statements,

windowed date fields are automatically expanded according to the century

window specified by the YEARWINDOW compiler option. When the

DATEPROC(TRIG) compiler option is in effect, this expansion is sensitive to

trigger values in the windowed date field. For details of both regular and

trigger-sensitive windowed expansion, see “Semantics of windowed date fields”

on page 191.

Addition that involves date fields

The following table shows the result of using a date field with a compatible

operand in an addition.

 Table 19. Results of using date fields in addition

 Nondate second operand Date field second operand

Nondate first operand Nondate Date field

Date field first operand Date field Not allowed

264 Enterprise COBOL for z/OS V4.1 Language Reference

For details on how a result is stored in a receiving field, see “Storing arithmetic

results that involve date fields.”

Subtraction that involves date fields

The following table shows the result of using a date field with a compatible

operand in the subtraction:

first operand - second operand

In a SUBTRACT statement, these operands appear in the reverse order:

SUBTRACT second operand FROM first operand

 Table 20. Results of using date fields in subtraction

 Nondate second operand Date field second operand

Nondate first operand Nondate Not allowed

Date field first operand Date field Nondate

Storing arithmetic results that involve date fields

The following statements perform arithmetic, then store the result, or sending field,

into one or more receiving fields:

v ADD

v COMPUTE

v DIVIDE

v MULTIPLY

v SUBTRACT

In a MULTIPLY statement, only GIVING identifiers can be date fields. In a DIVIDE

statement, only GIVING identifiers or the REMAINDER identifier can be date

fields.

Any windowed date fields that are operands of the arithmetic expression or

statement are treated as if they were expanded before use, as described under

“Semantics of windowed date fields” on page 191.

If the sending field is a date field, then the receiving field must be a compatible

date field. That is, both fields must have the same date format, except for the year

part, which can be windowed or expanded.

If the ON SIZE ERROR clause is not specified on the statement, the store operation

follows the existing COBOL rules for the statement and proceeds as if the receiving

and sending fields (after any automatic expansion of windowed date field

operands or result) were both nondates.

Table 21 on page 266 shows how these statements store the value of a sending field

in a receiving field, where either field can be a date field. The section uses the

following terms to describe how the store is performed:

Nonwindowed

The statement performs the store with no special date-sensitive size error

processing, as described under “SIZE ERROR phrases” on page 296.

Chapter 20. Procedure division structure 265

Windowed with nondate sending field

The nondate sending field is treated as a windowed date field compatible

with the windowed date receiving field, but with the year part

representing the number of years since 1900. (This representation is similar

to a windowed date field with a base year of 1900, except that the year

part is not limited to a positive number of at most two digits.) The store

proceeds as if this assumed year part of the sending field were expanded

by adding 1900 to it.

Windowed with date sending field

The store proceeds as if all windowed date field operands had been

expanded as necessary, so that the sending field is a compatible expanded

date field.

Size error processing: For both kinds of sending field, if the assumed or actual

year part of the sending field falls within the century window, the sending field is

stored in the receiving field after removing the century component of the year part.

That is, the low-order or rightmost two digits of the expanded year part are

retained and the high-order or leftmost two digits are discarded.

If the year part does not fall within the century window, then the receiving field is

unmodified, and the size error imperative statement is executed when any

remaining arithmetic operations are complete.

For example:

77 DUE-DATE PICTURE 9(5) DATE FORMAT YYXXX.

77 IN-DATE PICTURE 9(8) DATE FORMAT YYYYXXX VALUE 1995001.

 ...

 COMPUTE DUE-DATE = IN-DATE + 10000

 ON SIZE ERROR imperative-statement

 END-COMPUTE

The sending field is an expanded date field representing January 1, 2005.

Assuming that 2005 falls within the century window, the value stored in

DUE-DATE is 05001; that is, the sending value of 2005001 without the century

component 20.

Size error processing and trigger values: If the DATEPROC(TRIG) compiler option

is in effect and the sending field contains a trigger value (either zero or all nines),

the size error imperative statement is executed and the result is not stored in the

receiving field.

A nondate is considered to have a trigger value of all nines if it has a nine in every

digit position of its assumed date format. Thus for a receiving date format of

YYXXX, the nondate value 99,999 is a trigger but the values 9,999 and 999,999 are

not, although the larger value of 999,999 will cause a size error anyway.

 Table 21. Storing arithmetic results that involve date fields when ON SIZE ERROR is

specified

 Nondate sending field Date field sending field

Nondate receiving field Nonwindowed Not allowed

Windowed date field

receiving field

Windowed Windowed

Expanded date field

receiving field

Nonwindowed Nonwindowed

266 Enterprise COBOL for z/OS V4.1 Language Reference

Conditional expressions

A conditional expression causes the object program to select alternative paths of

control, depending on the truth value of a test. Conditional expressions are

specified in EVALUATE, IF, PERFORM, and SEARCH statements.

A conditional expression can be specified in either simple conditions or complex

conditions. Both simple and complex conditions can be enclosed within any

number of paired parentheses; the parentheses do not change whether the

condition is simple or complex.

Simple conditions

There are five simple conditions:

v Class condition

v Condition-name condition

v Relation condition

v Sign condition

v Switch-status condition

A simple condition has a truth value of either true or false.

Class condition

The class condition determines whether the content of a data item is alphabetic,

alphabetic-lower, alphabetic-upper, numeric, DBCS, KANJI, or contains only the

characters in the set of characters specified by the CLASS clause as defined in the

SPECIAL-NAMES paragraph of the environment division.

Format

�� identifier-1

IS

NOT
 NUMERIC

ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name

DBCS

KANJI

 ��

identifier-1

Must reference a data item described with one of the following usages:

v DISPLAY, NATIONAL, COMPUTATIONAL-3, or PACKED-DECIMAL

when NUMERIC is specified

v DISPLAY-1 when DBCS or KANJI is specified

v DISPLAY or NATIONAL when ALPHABETIC, ALPHABETIC-UPPER, or

ALPHABETIC-LOWER is specified

v DISPLAY when class-name is specified

Must not be of class alphabetic when NUMERIC is specified.

Chapter 20. Procedure division structure 267

Must not be of class numeric when ALPHABETIC, ALPHABETIC-UPPER,

or ALPHABETIC-LOWER is specified.

Table 22 on page 269 lists the forms of class condition that are valid for

each type of identifier.

If identifier-1 is a function-identifier, it must reference an alphanumeric or

national function.

An alphanumeric group item can be used in a class condition where an

elementary alphanumeric item can be used, except that the NUMERIC class

condition cannot be used if the group contains one or more signed

elementary items.

When identifier-1 is described with usage NATIONAL, the class-condition

tests for the national character representation of the characters associated

with the specified character class. For example, specifying a class condition

of the form IF national-item IS ALPHABETIC is a test for the lowercase

and uppercase letters Latin capital letter A through Latin capital letter Z

and the space, as represented in national characters. Specifying IF

national-item is NUMERIC is a test for the characters 0 through 9.

NOT When used, NOT and the next keyword define the class test to be executed

for truth value. For example, NOT NUMERIC is a truth test for

determining that the result of a NUMERIC class test is false (in other

words, the item contains data that is nonnumeric).

NUMERIC

identifier-1 consists entirely of the characters 0 through 9, with or without

an operational sign.

 If its PICTURE does not contain an operational sign, the identifier being

tested is determined to be numeric only if the contents are numeric and an

operational sign is not present.

If its PICTURE does contain an operational sign, the identifier being tested

is determined to be numeric only if the item is an elementary item, the

contents are numeric, and a valid operational sign is present.

Usage note: Valid operational signs are determined from the setting of the

NUMCLS installation option and the NUMPROC compiler option. For

more information, see the Enterprise COBOL Programming Guide .

ALPHABETIC

identifier-1 consists entirely of any combination of the lowercase or

uppercase Latin alphabetic characters A through Z and the space.

ALPHABETIC-LOWER

identifier-1 consists entirely of any combination of the lowercase Latin

alphabetic characters a through z and the space.

ALPHABETIC-UPPER

identifier-1 consists entirely of any combination of the uppercase Latin

alphabetic characters A through Z and the space.

class-name

identifier-1 consists entirely of the characters listed in the definition of

class-name in the SPECIAL-NAMES paragraph.

DBCS identifier-1 consists entirely of DBCS characters.

268 Enterprise COBOL for z/OS V4.1 Language Reference

A range check is performed on the item for valid character representation.

The valid range is X’41’ through X’FE’ for both bytes of each DBCS

character and X’4040’ for the DBCS blank.

KANJI

identifier-1 consists entirely of DBCS characters.

 A range check is performed on the item for valid character representation.

The valid range is from X’41’ through X’7E’ for the first byte, from X’41’

through X’FE’ for the second byte, and X’4040’ for the DBCS blank.

 Table 22. Valid forms of the class condition for different types of data items

Type of data item

referenced by identifier-1 Valid forms of the class condition

Alphabetic ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name

NOT ALPHABETIC

NOT ALPHABETIC-LOWER

NOT ALPHABETIC-UPPER

NOT class-name

Alphanumeric,

alphanumeric-edited, or

numeric-edited

ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

NUMERIC

class-name

NOT ALPHABETIC

NOT ALPHABETIC-LOWER

NOT ALPHABETIC-UPPER

NOT NUMERIC

NOT class-name

External-decimal

or internal-decimal

NUMERIC NOT NUMERIC

DBCS DBCS

KANJI

NOT DBCS

NOT KANJI

National NUMERIC

ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

NOT NUMERIC

NOT ALPHABETIC

NOT ALPHABETIC-LOWER

NOT ALPHABETIC-UPPER

Numeric NUMERIC

class-name

NOT NUMERIC

NOT class-name

Condition-name condition

A condition-name condition tests a conditional variable to determine whether its

value is equal to any values that are associated with the condition-name.

Format

�� condition-name-1 ��

A condition-name is used in conditions as an abbreviation for the relation

condition. The rules for comparing a conditional variable with a condition-name

value are the same as those specified for relation conditions.

If condition-name-1 has been associated with a range of values (or with several

ranges of values), the conditional variable is tested to determine whether its value

Chapter 20. Procedure division structure 269

falls within the ranges, including the end values. The result of the test is true if one

of the values that corresponds to the condition-name equals the value of its

associated conditional variable.

Condition-names are allowed for alphanumeric, DBCS, national, and floating-point

data items, as well as others, as defined for the condition-name format of the

VALUE clause.

The following example illustrates the use of conditional variables and

condition-names:

01 AGE-GROUP PIC 99.

 88 INFANT VALUE 0.

 88 BABY VALUE 1, 2.

 88 CHILD VALUE 3 THRU 12.

 88 TEENAGER VALUE 13 THRU 19.

AGE-GROUP is the conditional variable; INFANT, BABY, CHILD, and TEENAGER

are condition-names. For individual records in the file, only one of the values

specified in the condition-name entries can be present.

The following IF statements can be added to the above example to determine the

age group of a specific record:

IF INFANT... (Tests for value 0)

IF BABY... (Tests for values 1, 2)

IF CHILD... (Tests for values 3 through 12)

IF TEENAGER... (Tests for values 13 through 19)

Depending on the evaluation of the condition-name condition, alternative paths of

execution are taken by the object program.

Condition-name conditions and windowed date field

comparisons

If the conditional variable is a windowed date field, the values associated with its

condition-names are treated like values of the windowed date field. That is, they

are treated as if they were converted to expanded date format, as described under

“Semantics of windowed date fields” on page 191.

For example, given YEARWINDOW(1945), a century window of 1945–2044, and

the following definition:

05 DATE-FIELD PIC 9(6) DATE FORMAT YYXXXX.

 88 DATE-TARGET VALUE 051220.

a value of 051220 in DATE-FIELD would cause the following condition to be true:

IF DATE-TARGET...

because the value associated with DATE-TARGET and the value of DATE-FIELD

would both be treated as if they were prefixed by ″20″ before comparison.

However, the following condition would be false:

IF DATE-FIELD = 051220...

because in a comparison with a windowed date field, literals are treated as if they

were prefixed by ″19″ regardless of the century window. So the above condition

effectively becomes:

IF 20051220 = 19051220...

270 Enterprise COBOL for z/OS V4.1 Language Reference

For more information about using windowed date fields in conditional expressions,

see “Comparison of date fields” on page 279.

Relation conditions

A relation condition specifies the comparison of two operands. The relational

operator that joins the two operands specifies the type of comparison. The relation

condition is true if the specified relation exists between the two operands; the

relation condition is false if the specified relation does not exist.

Comparisons are defined for the following:

v Two operands of class alphabetic

v Two operands of class alphanumeric

v Two operands of class DBCS

v Two operands of class national

v Two operands of class numeric

v Two operands of different classes where each operand is one of the classes

alphabetic, alphanumeric, or national

v Two operands where one is a numeric integer and the other is class

alphanumeric or national

v Two operands where one is class DBCS and the other is class national

v Comparisons involving indexes or index data items

v Two data pointer operands

v Two procedure pointer operands

v Two function pointer operands

v Two object reference operands

v An alphanumeric group and any operand that has usage DISPLAY, DISPLAY-1,

or NATIONAL

The following relation condition formats are defined:

v A general relation condition, for comparisons that involve only data items,

literals, index-names, or index data items. For details, see “General relation

conditions.”

v A data pointer relation condition. For details, see “Data pointer relation

conditions” on page 280.

v A program pointer relation condition, for comparison of procedure pointers or

function pointers. For details, see “Procedure-pointer and function-pointer

relation conditions” on page 281.

v An object-reference relation condition. For details, see “Object-reference relation

conditions” on page 282.

General relation conditions

A general relation condition compares two operands, either of which can be an

identifier, literal, arithmetic expression, or index-name.

Chapter 20. Procedure division structure 271

Format 1: general relation condition

�� operand-1

IS
 GREATER

NOT

THAN

>

LESS

THAN

<

EQUAL

TO

=

GREATER

OR EQUAL

THAN

TO

>=

LESS

OR EQUAL

THAN

TO

<=

 operand-2 ��

operand-1

The subject of the relation condition. Can be an identifier, literal,

function-identifier, arithmetic expression, or index-name.

operand-2

The object of the relation condition. Can be an identifier, literal,

function-identifier, arithmetic expression, or index-name.

An alphanumeric literal can be enclosed in parentheses within a relation condition.

The relation condition must contain at least one reference to an identifier.

The relational operators, shown in Table 23, specify the type of comparison to be

made. Each relational operator must be preceded and followed by a space. The

two characters of the relational operators >= and <= must not have a space

between them.

 Table 23. Relational operators and their meanings

Relational operator Can be written Meaning

IS GREATER THAN IS > Greater than

IS NOT GREATER THAN IS NOT > Not greater than

IS LESS THAN IS < Less than

IS NOT LESS THAN IS NOT < Not less than

IS EQUAL TO IS = Equal to

IS NOT EQUAL TO IS NOT = Not equal to

IS GREATER THAN OR EQUAL

TO

IS >= Is greater than or equal to

IS LESS THAN OR EQUAL TO IS <= Is less than or equal to

In a general relation condition, data items, literals, and figurative constants of class

alphabetic, alphanumeric, DBCS, national, and numeric are compared using the

following comparison types:

272 Enterprise COBOL for z/OS V4.1 Language Reference

Comparison type Meaning

Alphanumeric Comparison of the alphanumeric character value of two

operands

DBCS Comparison of the DBCS character value of two operands

National Comparison of the national character value of two operands

Numeric Comparison of the algebraic value of two operands

Group Comparison of the alphanumeric character value of two

operands, where one or both operands is an alphanumeric

group item

Table 24 on page 274 and Table 25 on page 275 show the permissible pairs for

comparisons with different types of operands. The comparison type is indicated at

the row and column intersection for permitted comparisons, using the following

key:

Alph Comparison of alphanumeric characters (further described in

“Alphanumeric comparisons” on page 275)

DBCS Comparison of DBCS characters (further described in “DBCS comparisons”

on page 276)

Nat Comparison of national characters (further described in “National

comparisons” on page 276)

Num Comparison of algebraic value (further described in “Numeric

comparisons” on page 277)

Group Comparison of alphanumeric characters involving an alphanumeric group

(further described in “Group comparisons” on page 278)

(Int) Integer items only (combined with comparison type Alph, Nat, Num, or

Group)

Blank Comparison is not allowed

For rules and restrictions for comparisons involving year-last date fields, see

“Comparison of date fields” on page 279.

For rules and restrictions for comparisons involving index-names and index data

items, see “Comparison of index-names and index data items” on page 278.

Introduction to Table 24 on page 274: This table is organized in the following

manner:

v In the first column, under ″Type of data item or literal″, each row identifies a

type of operand. In some cases, the type of operand references a grouping of

operands that have common properties for comparison. For example, the row for

″Alphanumeric character items″ references all the types of operands that are

listed in the cell, as follows:

– Data items of category:

- Alphanumeric

- Alphanumeric- edited

- Numeric-edited with usage DISPLAY
– Alphanumeric functions

v Subsequent column headings refer to the a type of operand or a grouping of

operands. For example, the column heading ″Alphabetic and alphanumeric

Chapter 20. Procedure division structure 273

character items″ refers to the types of operands identified as ″Alphabetic data

items″ and all the types of operands that are grouped under the operand titled

″Alphanumeric character items″.

v Literals are listed as a type of operand only in the first column. They do not

appear as column headings because literals cannot be used as both operands of

a relation condition.

 Table 24. Comparisons involving data items and literals

Type of data item or literal

Alpha-

numeric

group

items

Alpha-

betic and

alpha-

numeric

character

items

Zoned

decimal

items

Native

numeric

items

Alpha-

numeric

floating-

point

items

National

character

items

National

decimal

items

National

floating-

point

items

DBCS

items

Alphanumeric group item Group Group Group

(Int)

 Group Group Group

(Int)

Group Group

Alphabetic data items Group Alph Alph

(Int)

 Alph Nat Alph (Int) Nat

Alphanumeric character

items:

v Data items of category:

– Alphanumeric

– Alphanumeric- edited

– Numeric-edited with

usage DISPLAY

v Alphanumeric functions

Group Alph Alph

(Int)

 Alph Nat Alph (Int) Nat

Alphanumeric literals Group Alph Alph

(Int)

 Alph Nat Alph (Int) Nat

Numeric literals Group

(Int)

Alph (Int) Num Num Num Nat (Int) Num Num

Zoned decimal data items Group

(Int)

Alph (Int) Num Num Num Nat (Int) Num Num

Native numeric items:

v Binary

v Arithmetic expression

v Internal decimal

v Internal floating-point

Numeric and integer

intrinsic functions

 Num Num Num Num Num

Display floating-point

items

Group Alph Num Num Num Nat Num Num

Floating-point literals Num Num Num Num Num

National character items:

v Data items of category:

– National

– National- edited

– Numeric- edited with

usage NATIONAL

v National intrinsic

functions

v National groups (treated

as elementary item)

Group Nat Nat (Int) Nat Nat Nat (Int) Nat Nat

National literals Group Nat Nat (Int) Nat Nat Nat (Int) Nat Nat

National decimal items Group

(Int)

Alph (Int) Num Num Num Nat (Int) Num Num

274 Enterprise COBOL for z/OS V4.1 Language Reference

Table 24. Comparisons involving data items and literals (continued)

Type of data item or literal

Alpha-

numeric

group

items

Alpha-

betic and

alpha-

numeric

character

items

Zoned

decimal

items

Native

numeric

items

Alpha-

numeric

floating-

point

items

National

character

items

National

decimal

items

National

floating-

point

items

DBCS

items

National floating-point

items

Group Nat Num Num Num Nat Num Num

DBCS data items Group Nat DBCS

DBCS literals Group Nat DBCS

 Table 25. Comparisons involving figurative constants

 Figurative constant

Alpha-

numeric

group

items

Alpha-

betic and

alpha-

numeric

character

items

Zoned

decimal

items

Native

numeric

items

Alpha-

numeric

floating

point

items

National

character

items

National

decimal

items

National

floating

point

items

DBCS

items

ZERO Group Alph Num Num Num Nat Num Num

SPACE Group Alph Alph (Int) Alph Nat Alph (Int) Nat DBCS

HIGH-VALUE,

LOW-VALUE

QUOTE

Group Alph Alph (Int) Alph Nat Alph (Int) Nat

Symbolic character Group Alph Alph (Int) Alph Nat Alph (Int) Nat

ALL alphanumeric literal Group Alph Alph (Int) Alph Nat Alph (Int) Nat

ALL national literal Group Nat Nat (Int) Nat Nat Nat (Int) Nat Nat

ALL DBCS literal Group Nat DBCS

Alphanumeric comparisons

An alphanumeric comparison is a comparison of the single-byte character values of

two operands.

When one of the operands is neither class alphanumeric nor class alphabetic, that

operand is processed as follows:

v A display floating-point data item is treated as though it were a data item of

category alphanumeric, rather than as a numeric value.

v A zoned decimal integer operand is treated as though it were moved to a

temporary elementary data item of category alphanumeric with a length the

same as the number of digits in the integer, according to the rules of the MOVE

statement.

When the ZWB compiler option is in effect, the unsigned value of the integer

operand is moved to the temporary data item. When the NOZWB compiler

option is specified, the signed value is moved to the temporary data item. See

the Enterprise COBOL Programming Guide for more details about the ZWB

(NOZWB) compiler option.

Comparison then proceeds with the temporary data item of category

alphanumeric.

Comparison of two alphanumeric operands:

Alphanumeric comparisons are made with respect to the collating sequence of the

character set in use as follows:

Chapter 20. Procedure division structure 275

v For the EBCDIC character set, the EBCDIC collating sequence is used.

v For the ASCII character set, the ASCII collating sequence is used. (See

Appendix C, “EBCDIC and ASCII collating sequences,” on page 585.)

v When the PROGRAM COLLATING SEQUENCE clause is specified in the

object-computer paragraph, the collating sequence used is the one associated in

the special-names paragraph with the specified alphabet-name.

The size of each operand is the total number of character positions in that operand;

the size affects the result of the comparison. There are two cases to consider:

Operands of equal size

Characters in corresponding positions of the two operands are compared,

beginning with the leftmost character and continuing through the

rightmost character.

 If all pairs of characters through the last pair evaluate as equal, the

operands are equal.

If a pair of unequal characters is encountered, the characters are tested to

determine their relative positions in the collating sequence. The operand

that contains the character higher in the sequence is considered the greater

operand.

Operands of unequal size

If the operands are of unequal size, the comparison is made as though the

shorter operand were extended to the right with enough spaces to make

the operands equal in size.

The higher collating value is determined using the hexadecimal value of

characters.

DBCS comparisons

A DBCS comparison is a comparison of two DBCS operands; the following rules

apply:

v If the DBCS operands are not the same length, the comparison is made as

though the shorter operand were padded on the right with DBCS spaces to the

length of the longer operand.

v The comparison is based on the binary collating sequence of the hexadecimal

values of the DBCS characters.

National comparisons

A national comparison is a comparison of the national character value of two

operands of class national.

When the relation condition specifies an operand that is not class national, that

operand is converted to a data item of category national before the comparison.

The following list describes the conversion of operands to category national.

DBCS A DBCS operand is treated as though it were moved to a temporary data

item of category national of the same length as the DBCS operand. DBCS

characters are converted to the corresponding national characters. The

source code page used for the conversion is the one in effect for the

CODEPAGE compiler option when the source code was compiled.

276 Enterprise COBOL for z/OS V4.1 Language Reference

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited with usage

DISPLAY

The operand is treated as though it were moved to a temporary data item

of category national of the length needed to represent the number of

character positions in that operand. Alphanumeric characters are converted

to the corresponding national characters. The source code page used for

the conversion is the one in effect for the CODEPAGE compiler option

when the source code was compiled.

Numeric integer

A numeric integer operand is treated as though it were moved to a

temporary data item of category alphanumeric of a length the same as the

number of digits in the integer. The unsigned value is used. The resulting

temporary data item is then converted as an alphanumeric operand.

External floating-point

A display floating-point item is treated as though it were a data item of

category alphanumeric, rather than as a numeric value, and then converted

as an alphanumeric operand.

 A national floating-point item is treated as though it were a data item of

category national, rather than as a numeric value.

The implicit moves for the conversions are carried out in accordance with the rules

of the MOVE statement.

The resulting category national data item is used in the comparison of two national

operands.

Comparison of two national operands:

If the operands are of unequal length, the comparison proceeds as though the

shorter operand were padded on the right with the default national space character

(NX’0020’) to make the operands of equal length. The comparison then proceeds

according to the rules for the comparison of operands of equal length.

If the operands are of equal length, the comparison proceeds by comparing

corresponding national character positions in the two operands, starting from the

leftmost position, until either unequal national characters are encountered or the

rightmost national character position is reached, whichever comes first. The

operands are determined to be equal if all corresponding national characters are

equal.

The first-encountered unequal national character in the operands is compared to

determine the relation of the operands. The operand that contains the national

character with the higher collating value is the greater operand.

The higher collating value is determined using the hexadecimal value of

characters.

The PROGRAM COLLATING SEQUENCE clause has no effect on comparisons of

national operands.

Numeric comparisons

A numeric comparison is a comparison of the algebraic value of two operands of

class numeric.

Chapter 20. Procedure division structure 277

When the algebraic values of numeric operands are compared:

v The length (number of digits) of the operands is not significant.

v The usage of the operands is not significant.

v Unsigned numeric operands are considered positive.

v All zero values compare equal; the presence or absence of a sign does not affect

the result.

The behavior of numeric comparisons depends on the setting of the NUMPROC

compiler option. For details, see the Enterprise COBOL Programming Guide.

Group comparisons

A group comparison is a comparison of the alphanumeric character values of two

operands.

For the comparison operation, each operand is treated as though it were an

elementary data item of category alphanumeric of the same size as the operand, in

bytes. The comparison then proceeds as for two elementary operands of category

alphanumeric, as described in “Alphanumeric comparisons” on page 275.

Usage note: There is no conversion of data for group comparisons. The comparison

operates on bytes of data without regard to data representation. The result of

comparing an elementary item or literal operand to an alphanumeric group item is

predictable when that operand and the content of the group item have the same

data representation.

Comparison of index-names and index data items

Comparisons involving index-names, index data items, or both conform to the

following rules:

v The comparison of two index-names is actually the comparison of the

corresponding occurrence numbers.

v In the comparison of an index-name with a data item (other than an index data

item), or in the comparison of an index-name with a literal, the occurrence

number that corresponds to the value of the index-name is compared with the

data item or literal.

v In the comparison of an index-name with an arithmetic expression, the

occurrence number that corresponds to the value of the index-name is compared

with the arithmetic expression.

Because an integer function can be used wherever an arithmetic expression can

be used, you can compare an index-name to an integer or numeric function.

v In the comparison of an index data item with an index-name or another index

data item, the actual values are compared without conversion. Results of any

other comparison involving an index data item are undefined.

Valid comparisons for index-names and index data items are shown in the

following table.

278 Enterprise COBOL for z/OS V4.1 Language Reference

Table 26. Comparisons for index-names and index data items

Operands

compared Index-name

Index data

item

Data-name

(numeric

integer only)

Literal

(numeric

integer only)

Arithmetic

Expression

Index-name Compare

occurrence

number

Compare

without

conversion

Compare

occurrence

number with

content of

referenced

data item

Compare

occurrence

number with

literal

Compare

occurrence

number with

arithmetic

expression

Index data

item

Compare

without

conversion

Compare

without

conversion

Invalid Invalid Invalid

Comparison of date fields

Date fields can be alphanumeric category, zoned decimal, or internal decimal; the

existing rules for the validity and comparison type (numeric or alphanumeric)

apply. For example, an alphanumeric date field cannot be compared with an

internal decimal date field. In addition to these rules, two date fields can be

compared only if they are compatible; they must have the same date format except

for the year part, which can be windowed or expanded.

For year-last date fields, the only comparisons that are supported are IS EQUAL

TO and IS NOT EQUAL TO between two year-last date fields with identical date

formats, or between a year-last date field and a nondate.

Table 27 on page 280 shows supported comparisons for nonyear-last date fields.

This table uses the following terms to describe how the comparisons are

performed:

Nonwindowed

The comparison is performed with no windowing, as if the operands were

both nondates.

Windowed

The comparison is performed as if:

1. Any windowed date field in the relation were expanded according to

the century window specified by the YEARWINDOW compiler option,

as described under “Semantics of windowed date fields” on page 191.

This expansion is sensitive to trigger values in the date field

comparand if the DATEPROC(TRIG) compiler option is in effect.

2. Any repetitive alphanumeric figurative constant were expanded to the

size of the windowed date field with which it is compared, giving an

alphanumeric nondate comparand. Repetitive alphanumeric figurative

constants include ZERO (in an alphanumeric context), SPACE,

LOW-VALUE, HIGH-VALUE, QUOTE and ALL literal.

3. Any nondate operands were treated as if they had the same date

format as the date field, but with a base year of 1900.

If the DATEPROC(NOTRIG) compiler option is in effect, the

comparison is performed as if the nondate operand were expanded by

assuming 19 for the century part of the expanded year.

If the DATEPROC(TRIG) compiler option is in effect, the comparison is

sensitive to date trigger values in the nondate operand. For

Chapter 20. Procedure division structure 279

alphanumeric operands, these trigger values are LOW-VALUE,

HIGH-VALUE, and SPACE. For alphanumeric and numeric operands

compared with windowed date fields with at least one X in the DATE

FORMAT clause (that is, windowed date fields other than just a

windowed year), values of all zeros or all nines are also treated as

triggers. If a nondate operand contains a trigger value, the comparison

proceeds as if the nondate operand were expanded by copying the

trigger value to the assumed century part of the expanded year. If the

nondate operand does not contain a trigger value, the century part of

the expanded year is assumed to be 19.

The comparison is then performed according to normal COBOL rules.

Alphanumeric comparisons are not changed to numeric comparisons by

the prefixing of the century value.

 Table 27. Comparisons with date fields

Nondate

second operand

Windowed

date field

second operand

Expanded

date field

second operand

Nondate

first operand

Nonwindowed Windowed1 Nonwindowed

Windowed date field

first operand

Windowed1 Windowed Windowed

Expanded date field

first operand

Nonwindowed Windowed Nonwindowed

1. When compared with windowed date fields, nondates are assumed to contain a

windowed year relative to 1900. For details, see item 3 under the definition of

″Windowed″ comparison.

Relation conditions can contain arithmetic expressions. For information about the

treatment of date fields in arithmetic expressions, see “Arithmetic with date fields”

on page 264.

Data pointer relation conditions

Only EQUAL and NOT EQUAL are allowed as relational operators when

specifying pointer data items. Pointer data items are items defined explicitly as

USAGE POINTER, or are ADDRESS OF special registers, which are implicitly

defined as USAGE POINTER.

The operands are equal if the two addresses used in the comparison would both

result in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH

format-1 statements. It is not allowed in SEARCH format-2 (SEARCH ALL)

statements because there is no meaningful ordering that can be applied to pointer

data items.

280 Enterprise COBOL for z/OS V4.1 Language Reference

Format 2: data-pointer relation condition

�� ADDRESS OF identifier-1

identifier-2

NULL

NULLS

IS

NOT
 EQUAL

TO

=

 �

� ADDRESS OF identifier-3

identifier-4

NULL

NULLS

 ��

identifier-1, identifier-3

Can specify any level item defined in the linkage section, except 66 and 88.

identifier-2, identifier-4

Must be described as USAGE POINTER.

NULL, NULLS

Can be used only if the other operand is defined as USAGE POINTER.

That is, NULL=NULL is not allowed.

The following table summarizes the permissible comparisons for USAGE

POINTER, NULL, and ADDRESS OF.

 Table 28. Permissible comparisons for USAGE POINTER, NULL, and ADDRESS OF

USAGE POINTER

second operand

ADDRESS OF

second operand

NULL or NULLS

second operand

USAGE POINTER

first operand

Yes Yes Yes

ADDRESS OF

first operand

Yes Yes Yes

NULL/NULLS

first operand

Yes Yes No

Yes Comparison allowed only for EQUAL, NOT EQUAL

No No comparison allowed

Procedure-pointer and function-pointer relation conditions

Only EQUAL and NOT EQUAL are allowed as relational operators when

specifying procedure-pointer or function-pointer data items in a relation condition.

Procedure-pointer data items are defined explicitly as USAGE

PROCEDURE-POINTER. Function-pointer data items are defined explicitly as

USAGE FUNCTION-POINTER.

The operands are equal if the two addresses used in the comparison would both

result in the same storage location.

Chapter 20. Procedure division structure 281

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH

format-1 statements. It is not allowed in SEARCH format-2 (SEARCH ALL)

statements, because there is no meaningful ordering that can be applied to

procedure-pointer data items.

Format 3: procedure-pointer and function-pointer relation condition

��

identifier-1

NULL

NULLS

IS

NOT
 EQUAL

TO

=

identifier-2

NULL

NULLS

 ��

identifier-1, identifier-2

Must be described as USAGE PROCEDURE-POINTER or USAGE

FUNCTION-POINTER. identifier-1 and identifier-2 need not be described the

same.

NULL, NULLS

Can be used only if the other operand is defined as USAGE

FUNCTION-POINTER or USAGE PROCEDURE-POINTER. That is,

NULL=NULL is not allowed.

Object-reference relation conditions

A data item of usage OBJECT REFERENCE can be compared for equality or

inequality with another data item of usage OBJECT REFERENCE or with NULL,

NULLS, or SELF.

Format 4: object-reference relation condition

�� object-reference-identifier-1

SELF

NULL

NULLS

IS

NOT
 EQUAL

TO

=

 �

� object-reference-identifier-2

SELF

NULL

NULLS

 ��

A comparison with SELF is allowed only in a method.

Two object-references compare equal only if the data items identify the same

object.

282 Enterprise COBOL for z/OS V4.1 Language Reference

Sign condition

The sign condition determines whether the algebraic value of a numeric operand is

greater than, less than, or equal to zero.

Format: sign condition

�� operand-1

IS

NOT
 POSITIVE

NEGATIVE

ZERO

 ��

operand-1

Must be defined as a numeric identifier, or as an arithmetic expression that

contains at least one reference to a variable. operand-1 can be defined as a

floating-point identifier.

 The operand is:

v POSITIVE if its value is greater than zero

v NEGATIVE if its value is less than zero

v ZERO if its value is equal to zero

An unsigned operand is either POSITIVE or ZERO.

NOT One algebraic test is executed for the truth value of the sign condition. For

example, NOT ZERO is regarded as true when the operand tested is

positive or negative in value.

The results of the sign condition test depend on the setting of the NUMPROC

compiler option. For details, see the Enterprise COBOL Programming Guide.

Date fields in sign conditions

The operand in a sign condition can be a date field, but is treated as a nondate for

the sign condition test. Thus if the operand is an identifier of a windowed date

field, date windowing is not done, so the sign condition can be used to test a

windowed date field for an all-zero value.

However, if the operand is an arithmetic expression, then any windowed date

fields in the expression will be expanded during the computation of the arithmetic

result prior to using the result for the sign condition test.

For example, given that:

v Identifier WIN-DATE is defined as a windowed date field and contains a value

of zero

v Compiler option DATEPROC is in effect

v Compiler option YEARWINDOW (starting-year) is in effect, with a starting-year

other than 1900

then this sign condition would evaluate to true:

WIN-DATE IS ZERO

whereas this sign condition would evaluate to false:

Chapter 20. Procedure division structure 283

WIN-DATE + 0 IS ZERO

Switch-status condition

The switch-status condition determines the on or off status of an UPSI switch.

Format

�� condition-name ��

condition-name

Must be defined in the special-names paragraph as associated with the on

or off value of an UPSI switch. (See “SPECIAL-NAMES paragraph” on

page 116.)

The switch-status condition tests the value associated with condition-name. (The

value is considered to be alphanumeric.) The result of the test is true if the UPSI

switch is set to the value (0 or 1) corresponding to condition-name.

Complex conditions

A complex condition is formed by combining simple conditions, combined

conditions, or complex conditions with logical operators, or negating those

conditions with logical negation.

Each logical operator must be preceded and followed by a space. The following

table shows the logical operators and their meanings.

 Table 29. Logical operators and their meanings

Logical

operator Name Meaning

AND Logical

conjunction

The truth value is true when both conditions are true.

OR Logical

inclusive OR

The truth value is true when either or both conditions are

true.

NOT Logical

negation

Reversal of truth value (the truth value is true if the

condition is false).

Unless modified by parentheses, the following is the order of precedence (from

highest to lowest):

1. Arithmetic operations

2. Simple conditions

3. NOT

4. AND

5. OR

The truth value of a complex condition (whether parenthesized or not) is the truth

value that results from the interaction of all the stated logical operators on either of

the following:

284 Enterprise COBOL for z/OS V4.1 Language Reference

v The individual truth values of simple conditions

v The intermediate truth values of conditions logically combined or logically

negated

A complex condition can be either of the following:

v A negated simple condition

v A combined condition (which can be negated)

Negated simple conditions

A simple condition is negated through the use of the logical operator NOT.

Format

�� NOT condition-1 ��

The negated simple condition gives the opposite truth value of the simple

condition. That is, if the truth value of the simple condition is true, then the truth

value of that same negated simple condition is false, and vice versa.

Placing a negated simple condition within parentheses does not change its truth

value. That is, the following two statements are equivalent:

NOT A IS EQUAL TO B.

NOT (A IS EQUAL TO B).

Combined conditions

Two or more conditions can be logically connected to form a combined condition.

Format

��

condition-1

�

AND

condition-2

OR

��

The condition to be combined can be any of the following:

v A simple-condition

v A negated simple-condition

v A combined condition

v A negated combined condition (that is, the NOT logical operator followed by a

combined condition enclosed in parentheses)

v A combination of the preceding conditions that is specified according to the

rules in the following table

Chapter 20. Procedure division structure 285

Table 30. Combined conditions—permissible element sequences

Combined

condition

element

Left

most

When not leftmost, can

be immediately

preceded by:

Right

most

When not rightmost, can

be immediately

followed by:

simple-

condition

Yes OR

NOT

AND

(

Yes OR

AND

)

OR

AND

No simple-condition

)

No simple-condition

NOT

(

NOT Yes OR

AND

(

No simple-condition

(

(Yes OR

NOT

AND

(

No simple-condition

NOT

(

) No simple-condition

)

Yes OR

AND

)

Parentheses are never needed when either ANDs or ORs (but not both) are used

exclusively in one combined condition. However, parentheses might be needed to

modify the implicit precedence rules to maintain the correct logical relation of

operators and operands.

There must be a one-to-one correspondence between left and right parentheses,

with each left parenthesis to the left of its corresponding right parenthesis.

The following table illustrates the relationships between logical operators and

conditions C1 and C2.

 Table 31. Logical operators and evaluation results of combined conditions

Value

for C1

Value

for C2

C1

AND

C2

C1 OR

C2

NOT

(C1

AND

C2)

NOT

C1

AND

C2

NOT

(C1

OR

C2)

NOT C1

OR C2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True

Order of evaluation of conditions

Parentheses, both explicit and implicit, define the level of inclusiveness within a

complex condition. Two or more conditions connected by only the logical operators

AND or OR at the same level of inclusiveness establish a hierarchical level within

a complex condition. Therefore an entire complex condition is a nested structure of

hierarchical levels, with the entire complex condition being the most inclusive

hierarchical level.

286 Enterprise COBOL for z/OS V4.1 Language Reference

Within this context, the evaluation of the conditions within an entire complex

condition begins at the left of the condition. The constituent connected conditions

within a hierarchical level are evaluated in order from left to right, and evaluation

of that hierarchical level terminates as soon as a truth value for it is determined,

regardless of whether all the constituent connected conditions within that

hierarchical level have been evaluated.

Values are established for arithmetic expressions and functions if and when the

conditions that contain them are evaluated. Similarly, negated conditions are

evaluated if and when it is necessary to evaluate the complex condition that they

represent. For example:

NOT A IS GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE

is evaluated as if parenthesized as follows:

(NOT (A IS GREATER THAN B)) OR

(((A + B) IS EQUAL TO C) AND (D IS POSITIVE))

Order of evaluation:

1. (NOT (A IS GREATER THAN B)) is evaluated, giving some intermediate truth

value, t1. If t1 is true, the combined condition is true, and no further evaluation

takes place. If t1 is false, evaluation continues as follows.

2. (A + B) is evaluated, giving some intermediate result, x.

3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth value, t2. If t2 is

false, the combined condition is false, and no further evaluation takes place. If

t2 is true, the evaluation continues as follows.

4. (D IS POSITIVE) is evaluated, giving some intermediate truth value, t3. If t3 is

false, the combined condition is false. If t3 is true, the combined condition is

true.

Abbreviated combined relation conditions

When relation-conditions are written consecutively, any relation-condition after the

first can be abbreviated in one of two ways:

v Omission of the subject

v Omission of the subject and relational operator

Format

�� relation-condition �

�

�

AND

object

OR

NOT

relational-operator

��

In any consecutive sequence of relation-conditions, both forms of abbreviation can

be specified. The abbreviated condition is evaluated as if:

1. The last stated subject is the missing subject.

Chapter 20. Procedure division structure 287

2. The last stated relational operator is the missing relational operator.

The resulting combined condition must comply with the rules for element

sequences in combined conditions, as shown in “Combined conditions” on page

285.

If NOT is immediately followed by GREATER THAN, >, LESS THAN, <, EQUAL

TO, or =, then the NOT participates as part of the relational operator. NOT in any

other position is considered a logical operator (and thus results in a negated

relation condition).

Using parentheses

You can use parentheses in combined relation conditions to specify an intended

order of evaluation. Using parentheses can also help improve the readability of

conditional expressions.

The following rules govern the use of parentheses in abbreviated combined

relation conditions:

 1. Parentheses can be used to change the order of evaluation of the logical

operators AND and OR.

 2. The word NOT participates as part of the relational operator when it is

immediately followed by GREATER THAN, >, LESS THAN, <, EQUAL TO, or

=.

 3. NOT in any other position is considered a logical operator and thus results in

a negated relation condition. If you use NOT as a logical operator, only the

relation condition immediately following the NOT is negated; the negation is

not propagated through the abbreviated combined relation condition along

with the subject and relational operator.

 4. The logical NOT operator can appear within a parenthetical expression that

immediately follows a relational operator.

 5. When a left parenthesis appears immediately after the relational operator, the

relational operator is distributed to all objects enclosed in the parentheses. In

the case of a ″distributed″ relational operator, the subject and relational

operator remain current after the right parenthesis which ends the

distribution. The following three restrictions apply to cases where the

relational operator is distributed throughout the expression:

a. A simple condition cannot appear within the scope of the distribution.

b. Another relational operator cannot appear within the scope of the

distribution.

c. The logical operator NOT cannot appear immediately after the left

parenthesis, which defines the scope of the distribution.
 6. Evaluation proceeds from the least to the most inclusive condition.

 7. There must be a one-to-one correspondence between left and right

parentheses, with each left parenthesis to the left of its corresponding right

parenthesis. If the parentheses are unbalanced, the compiler inserts a

parenthesis and issues an E-level message. However, if the compiler-inserted

parenthesis results in the truncation of the expression, you will receive an

S-level diagnostic message.

 8. The last stated subject is inserted in place of the missing subject.

 9. The last stated relational operator is inserted in place of the missing relational

operator.

10. Insertion of the omitted subject or relational operator ends when:

288 Enterprise COBOL for z/OS V4.1 Language Reference

a. Another simple condition is encountered.

b. A condition-name is encountered.

c. A right parenthesis is encountered that matches a left parenthesis that

appears to the left of the subject.
11. In any consecutive sequence of relation conditions, you can use both

abbreviated relation conditions that contain parentheses and those that do not.

12. Consecutive logical NOT operators cancel each other and result in an S-level

message. Note, however, that an abbreviated combined relation condition can

contain two consecutive NOT operators when the second NOT is part of a

relational operator. For example, you can abbreviate the first condition as the

second condition listed below.

A = B and not A not = C

A = B and not not = C

The following table summarizes the rules for forming an abbreviated combined

relation condition.

 Table 32. Abbreviated combined conditions: permissible element sequences

Combined

condition

element Left- most

When not leftmost, can be

immediately preceded by: Right- most

When not rightmost, can be

immediately followed by:

Subject Yes NOT

(

No Relational operator

Object No Relational operator

AND

OR

NOT

(

Yes AND

OR

)

Relational

operator

No Subject

AND

OR

NOT

No Object

(

AND

OR

No Object

)

No Object

Relational operator

NOT

(

NOT Yes AND

OR

(

No Subject

Object

Relational operator

(

(Yes Relational operator

AND

OR

NOT

(

No Subject

Object

NOT

(

) No Object

)

Yes AND

OR

)

The following table shows examples of abbreviated combined relation conditions,

with and without parentheses, and their unabbreviated equivalents.

Chapter 20. Procedure division structure 289

Table 33. Abbreviated combined conditions: unabbreviated equivalents

Abbreviated combined relation condition Equivalent

A = B AND NOT < C OR D ((A = B) AND (A NOT < C)) OR (A NOT < D)

A NOT > B OR C (A NOT > B) OR (A NOT > C)

NOT A = B OR C (NOT (A = B)) OR (A = C)

NOT (A = B OR < C) NOT ((A = B) OR (A < C))

NOT (A NOT = B AND C AND NOT D) NOT ((((A NOT = B) AND (A NOT = C)) AND (NOT

(A NOT = D))))

Statement categories

There are four categories of COBOL statements:

v “Imperative statements”

v “Conditional statements” on page 292

v “Delimited scope statements” on page 293

v “Compiler-directing statements” on page 294

Imperative statements

An imperative statement either specifies an unconditional action to be taken by the

program or is a conditional statement terminated by its explicit scope terminator

(see “Delimited scope statements” on page 293). A series of imperative statements

can be specified wherever an imperative statement is allowed. A conditional

statement that is terminated by its explicit scope terminator is also classified as an

imperative statement (see “Delimited scope statements” on page 293). The

following lists contain the COBOL imperative statements.

Arithmetic

v ADD1

v COMPUTE1

v DIVIDE1

v MULTIPLY1

v SUBTRACT1

1. Without the ON SIZE ERROR or the NOT ON SIZE ERROR phrase.

Data movement

v ACCEPT (DATE, DAY, DAY-OF-WEEK, TIME)

v INITIALIZE

v INSPECT

v MOVE

v SET

v STRING2

v UNSTRING2

v XML GENERATE8

v XML PARSE8

2. Without the ON OVERFLOW or the NOT ON OVERFLOW phrase.

290 Enterprise COBOL for z/OS V4.1 Language Reference

8. Without the ON EXCEPTION or NOT ON EXCEPTION phrase.

Ending

v STOP RUN

v EXIT PROGRAM

v EXIT METHOD

v GOBACK

Input-output

v ACCEPT identifier

v CLOSE

v DELETE3

v DISPLAY

v OPEN

v READ4

v REWRITE3

v START3

v STOP literal

v WRITE5

3. Without the INVALID KEY or the NOT INVALID KEY phrase.

4. Without the AT END or NOT AT END, and INVALID KEY or NOT INVALID

KEY phrases.

5. Without the INVALID KEY or NOT INVALID KEY, and END-OF-PAGE or NOT

END-OF-PAGE phrases.

Ordering

v MERGE

v RELEASE

v RETURN6

v SORT

6. Without the AT END or NOT AT END phrase.

Procedure-branching

v ALTER

v EXIT

v GO TO

v PERFORM

Program or method linkage

v CALL7

v CANCEL

v INVOKE

7. Without the ON OVERFLOW phrase, and without the ON EXCEPTION or NOT

ON EXCEPTION phrase.

Chapter 20. Procedure division structure 291

Table-handling

v SET

Conditional statements

A conditional statement specifies that the truth value of a condition is to be

determined and that the subsequent action of the object program is dependent on

this truth value. (See “Conditional expressions” on page 267.) The following lists

contain COBOL statements that become conditional when a condition (for example,

ON SIZE ERROR or ON OVERFLOW) is included and when the statement is not

terminated by its explicit scope terminator.

Arithmetic

v ADD ... ON SIZE ERROR

v ADD ... NOT ON SIZE ERROR

v COMPUTE ... ON SIZE ERROR

v COMPUTE ... NOT ON SIZE ERROR

v DIVIDE ... ON SIZE ERROR

v DIVIDE ... NOT ON SIZE ERROR

v MULTIPLY ... ON SIZE ERROR

v MULTIPLY ... NOT ON SIZE ERROR

v SUBTRACT ... ON SIZE ERROR

v SUBTRACT ... NOT ON SIZE ERROR

Data movement

v STRING ... ON OVERFLOW

v STRING ... NOT ON OVERFLOW

v UNSTRING ... ON OVERFLOW

v UNSTRING ... NOT ON OVERFLOW

v XML GENERATE ... ON EXCEPTION

v XML GENERATE ... NOT ON EXCEPTION

v XML PARSE ... ON EXCEPTION

v XML PARSE ... NOT ON EXCEPTION

Decision

v IF

v EVALUATE

Input-output

v DELETE ... INVALID KEY

v DELETE ... NOT INVALID KEY

v READ ... AT END

v READ ... NOT AT END

v READ ... INVALID KEY

v READ ... NOT INVALID KEY

v REWRITE ... INVALID KEY

v REWRITE ... NOT INVALID KEY

v START ... INVALID KEY

v START ... NOT INVALID KEY

292 Enterprise COBOL for z/OS V4.1 Language Reference

v WRITE ... AT END-OF-PAGE

v WRITE ... NOT AT END-OF-PAGE

v WRITE ... INVALID KEY

v WRITE ... NOT INVALID KEY

Ordering

v RETURN ... AT END

v RETURN ... NOT AT END

Program or method linkage

v CALL ... ON OVERFLOW

v CALL ... ON EXCEPTION

v CALL ... NOT ON EXCEPTION

v INVOKE ... ON EXCEPTION

v INVOKE ... NOT ON EXCEPTION

Table-handling

v SEARCH

Delimited scope statements

In general, a DELIMITED SCOPE statement uses an explicit scope terminator to

turn a conditional statement into an imperative statement. The resulting imperative

statement can then be nested. Explicit scope terminators can also be used to

terminate the scope of an imperative statement. Explicit scope terminators are

provided for all COBOL statements that can have conditional phrases.

Unless explicitly specified otherwise, a delimited scope statement can be specified

wherever an imperative statement is allowed by the rules of the language.

Explicit scope terminators

An explicit scope terminator marks the end of certain procedure division statements.

A conditional statement that is delimited by its explicit scope terminator is

considered an imperative statement and must follow the rules for imperative

statements.

These are the explicit scope terminators:

v END-ADD

v END-CALL

v END-COMPUTE

v END-DELETE

v END-DIVIDE

v END-EVALUATE

v END-IF

v END-INVOKE

v END-MULTIPLY

v END-PERFORM

v END-READ

v END-RETURN

Chapter 20. Procedure division structure 293

v END-REWRITE

v END-SEARCH

v END-START

v END-STRING

v END-SUBTRACT

v END-UNSTRING

v END-WRITE

v END-XML

Implicit scope terminators

At the end of any sentence, an implicit scope terminator is a separator period that

terminates the scope of all previous statements not yet terminated.

An unterminated conditional statement cannot be contained by another statement.

Except for nesting conditional statements within IF statements, nested statements

must be imperative statements and must follow the rules for imperative

statements. You should not nest conditional statements.

Compiler-directing statements

Statements that direct the compiler to take a specified action are discussed in

Chapter 23, “Compiler-directing statements,” on page 543.

Statement operations

COBOL statements perform the following types of operations:

v Arithmetic

v Data manipulation

v Input/output

v Procedure branching

There are several phrases common to arithmetic and data manipulation statements,

such as:

v CORRESPONDING phrase

v GIVING phrase

v ROUNDED phrase

v SIZE ERROR phrases

CORRESPONDING phrase

The CORRESPONDING (CORR) phrase causes ADD, SUBTRACT, and MOVE

operations to be performed on elementary data items of the same name if the

alphanumeric group item or national group item to which they belong is specified.

A national group is processed as a group item when the CORRESPONDING

phrase is used.

294 Enterprise COBOL for z/OS V4.1 Language Reference

Both identifiers that follow the keyword CORRESPONDING must name group

items. In this discussion, these identifiers are referred to as identifier-1 and

identifier-2. identifier-1 references the sending group item. identifier-2 references the

receiving group item.

Two subordinate data items, one from identifier-1 and one from identifier-2,

correspond if the following conditions are true:

v In an ADD or SUBTRACT statement, both of the data items are elementary

numeric data items. Other data items are ignored.

v In a MOVE statement, at least one of the data items is an elementary item, and

the move is permitted by the move rules.

v The two subordinate items have the same name and the same qualifiers up to

but not including identifier-1 and identifier-2.

v The subordinate items are not identified by the keyword FILLER.

v Neither identifier-1 nor identifier-2 is described as a level 66, 77, or 88 item, and

neither is described as an index data item. Neither identifier-1 nor identifier-2 can

be reference-modified.

v Neither identifier-1 nor identifier-2 is described with USAGE POINTER, USAGE

FUNCTION-POINTER, USAGE PROCEDURE-POINTER, or USAGE OBJECT

REFERENCE.

v The subordinate items do not include a REDEFINES, RENAMES, OCCURS,

USAGE INDEX, USAGE POINTER, USAGE PROCEDURE-POINTER, USAGE

FUNCTION-POINTER, or USAGE OBJECT REFERENCE clause in their

descriptions.

However, identifier-1 and identifier-2 themselves can contain or be subordinate to

items that contain a REDEFINES or OCCURS clause in their descriptions.

v The name of each subordinate data item that satisfies these conditions is unique

after application of implicit qualifiers.

identifier-1, identifier-2, or both can be subordinate to a FILLER item.

For example, consider two data hierarchies defined as follows:

05 ITEM-1 OCCURS 6.

 10 ITEM-A PIC S9(3).

 10 ITEM-B PIC +99.9.

 10 ITEM-C PIC X(4).

 10 ITEM-D REDEFINES ITEM-C PIC 9(4).

 10 ITEM-E USAGE COMP-1.

 10 ITEM-F USAGE INDEX.

05 ITEM-2.

 10 ITEM-A PIC 99.

 10 ITEM-B PIC +9V9.

 10 ITEM-C PIC A(4).

 10 ITEM-D PIC 9(4).

 10 ITEM-E PIC 9(9) USAGE COMP.

 10 ITEM-F USAGE INDEX.

If ADD CORR ITEM-2 TO ITEM-1(x) is specified, ITEM-A and ITEM-A(x), ITEM-B and

ITEM-B(x), and ITEM-E and ITEM-E(x) are considered to be corresponding and are

added together. ITEM-C and ITEM-C(x) are not included because they are not

numeric. ITEM-D and ITEM-D(x) are not included because ITEM-D(x) includes a

REDEFINES clause in its data description. ITEM-F and ITEM-F(x) are not included

because they are index data items. Note that ITEM-1 is valid as either identifier-1 or

identifier-2.

Chapter 20. Procedure division structure 295

If any of the individual operations in the ADD CORRESPONDING statement

produces a size error condition, imperative-statement-1 in the ON SIZE ERROR

phrase is not executed until all of the individual additions are completed.

GIVING phrase

The value of the identifier that follows the word GIVING is set equal to the

calculated result of the arithmetic operation. Because this identifier is not involved

in the computation, it can be a numeric-edited item.

ROUNDED phrase

After decimal point alignment, the number of places in the fraction of the result of

an arithmetic operation is compared with the number of places provided for the

fraction of the resultant identifier.

When the size of the fractional result exceeds the number of places provided for its

storage, truncation occurs unless ROUNDED is specified. When ROUNDED is

specified, the least significant digit of the resultant identifier is increased by 1

whenever the most significant digit of the excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause that contains

rightmost Ps and when the number of places in the calculated result exceeds the

number of integer positions specified, rounding or truncation occurs relative to the

rightmost integer position for which storage is allocated.

In a floating-point arithmetic operation, the ROUNDED phrase has no effect; the

result of a floating-point operation is always rounded. For more information on

floating-point arithmetic expressions, see the Enterprise COBOL Programming Guide.

When the ARITH(EXTEND) compiler option is in effect, the ROUNDED phrase is

not supported for arithmetic receivers with 31 digit positions to the right of the

decimal point. For example, neither X nor Y below is valid as a receiver with the

ROUNDED phrase:

01 X PIC V31.

01 Y PIC P(30)9(1).

 . . .

 COMPUTE X ROUNDED = A + B

 COMPUTE Y ROUNDED = A - B

Otherwise, the ROUNDED phrase is fully supported for extended-precision

arithmetic statements.

SIZE ERROR phrases

A size error condition can occur in four different ways:

v When the absolute value of the result of an arithmetic evaluation, after decimal

point alignment, exceeds the largest value that can be contained in the result

field.

v When division by zero occurs.

v When the result of an arithmetic statement is stored in a windowed date field

and the year of the result falls outside the century window. For example, given

YEARWINDOW(1940) (which specifies a century window of 1940–2039), the

following SUBTRACT statement causes a size error:

296 Enterprise COBOL for z/OS V4.1 Language Reference

01 WINDOWED-YEAR DATE FORMAT YY PICTURE 99

 VALUE IS 50.

 ...

 SUBTRACT 20 FROM WINDOWED-YEAR

 ON SIZE ERROR imperative-statement

The size error occurs because the result of the subtraction, a windowed date

field, has an effective year value of 1930, which falls outside the century

window. For details on how windowed date fields are treated as if they were

converted to expanded date format, see “Subtraction that involves date fields”

on page 265.

For more information about how size errors can occur when using date fields,

see “Storing arithmetic results that involve date fields” on page 265.

v In an exponential expression, as indicated in the following table:

 Table 34. Exponentiation size error conditions

Size error

Action taken when a SIZE

ERROR clause is present

Action taken when a SIZE

ERROR clause is not

present

Zero raised to zero power The SIZE ERROR imperative

is executed.

The value returned is 1, and

a message is issued.

Zero raised to a negative

number

The SIZE ERROR imperative

is executed.

The program is terminated

abnormally.

A negative number raised to

a fractional power

The SIZE ERROR imperative

is executed.

The absolute value of the

base is used, and a message

is issued.

The size error condition applies only to final results, not to any intermediate

results.

If the resultant identifier is defined with usage BINARY, COMPUTATIONAL,

COMPUTATIONAL-4, or COMPUTATIONAL-5, the largest value that the resultant

data item can contain is the value implied by the item’s decimal PICTURE

character-string, regardless of the TRUNC compiler option in effect.

If the ROUNDED phrase is specified, rounding takes place before size error

checking.

When a size error occurs, the subsequent action of the program depends on

whether the ON SIZE ERROR phrase is specified.

If the ON SIZE ERROR phrase is not specified and a size error condition occurs,

truncation rules apply and the value of the affected resultant identifier is

computed.

If the ON SIZE ERROR phrase is specified and a size error condition occurs, the

value of the resultant identifier affected by the size error is not altered; that is, the

error results are not placed in the receiving identifier. After completion of the

execution of the arithmetic operation, the imperative statement in the ON SIZE

ERROR phrase is executed, control is transferred to the end of the arithmetic

statement, and the NOT ON SIZE ERROR phrase, if specified, is ignored.

For ADD CORRESPONDING and SUBTRACT CORRESPONDING statements, if

an individual arithmetic operation causes a size error condition, the ON SIZE

ERROR imperative statement is not executed until all the individual additions or

subtractions have been completed.

Chapter 20. Procedure division structure 297

If the NOT ON SIZE ERROR phrase has been specified and, after execution of an

arithmetic operation, a size error condition does not exist, the NOT ON SIZE

ERROR phrase is executed.

When both the ON SIZE ERROR and NOT ON SIZE ERROR phrases are specified,

and the statement in the phrase that is executed does not contain any explicit

transfer of control, then if necessary an implicit transfer of control is made after

execution of the phrase to the end of the arithmetic statement.

Arithmetic statements

The arithmetic statements are used for computations. Individual operations are

specified by the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. These

individual operations can be combined symbolically in a formula that uses the

COMPUTE statement.

Arithmetic statement operands

The data descriptions of operands in an arithmetic statement need not be the same.

Throughout the calculation, the compiler performs any necessary data conversion

and decimal point alignment.

Size of operands

If the ARITH(COMPAT) compiler option is in effect, the maximum size of each

operand is 18 decimal digits. If the ARITH(EXTEND) compiler option is in effect,

the maximum size of each operand is 31 decimal digits.

The composite of operands is a hypothetical data item resulting from aligning the

operands at the decimal point and then superimposing them on one another.

If the ARITH(COMPAT) compiler option is in effect, the composite of operands can

be a maximum of 30 digits. If the ARITH(EXTEND) compiler option is in effect,

the composite of operands can be a maximum of 31 digits.

The following table shows how the composite of operands is determined for

arithmetic statements:

 Table 35. How the composite of operands is determined

Statement Determination of the composite of operands

SUBTRACT

ADD

Superimposing all operands in a given statement except those following the

word GIVING

MULTIPLY Superimposing all receiving data items

DIVIDE Superimposing all receiving data items except the REMAINDER data item

COMPUTE Restriction does not apply

For example, assume that each item is defined as follows in the data division:

A PICTURE 9(7)V9(5).

B PICTURE 9(11)V99.

C PICTURE 9(12)V9(3).

If the following statement is executed, the composite of operands consists of 17

decimal digits:

298 Enterprise COBOL for z/OS V4.1 Language Reference

ADD A B TO C

It has the following implicit description:

COMPOSITE-OF-OPERANDS PICTURE 9(12)V9(5).

In the ADD and SUBTRACT statements, if the composite of operands is 30 digits

or less with the ARITH(COMPAT) compiler option, or 31 digits or less with the

ARITH(EXTEND) compiler option, the compiler ensures that enough places are

carried so that no significant digits are lost during execution.

In all arithmetic statements, it is important to define data with enough digits and

decimal places to ensure the desired accuracy in the final result. For more

information, see the section on intermediate results in the Enterprise COBOL

Programming Guide.

Overlapping operands

When operands in an arithmetic statement share part of their storage (that is, when

the operands overlap), the result of the execution of such a statement is

unpredictable.

Multiple results

When an arithmetic statement has multiple results, execution conceptually

proceeds as follows:

1. The statement performs all arithmetic operations to find the result to be placed

in the receiving items, and stores that result in a temporary location.

2. A sequence of statements transfers or combines the value of this temporary

result with each single receiving field. The statements are considered to be

written in the same left-to-right order in which the multiple results are listed.

For example, executing the following statement:

ADD A, B, C, TO C, D(C), E.

is equivalent to executing the following series of statements:

ADD A, B, C GIVING TEMP.

ADD TEMP TO C.

ADD TEMP TO D(C).

ADD TEMP TO E.

In the above example, TEMP is a compiler-supplied temporary result field. When

the addition operation for D(C) is performed, the subscript C contains the new

value of C.

Data manipulation statements

The following COBOL statements move and inspect data: ACCEPT, INITIALIZE,

INSPECT, MOVE, READ, RELEASE, RETURN, REWRITE, SET, STRING,

UNSTRING, WRITE, XML PARSE, and XML GENERATE.

Overlapping operands

When the sending and receiving fields of a data manipulation statement share a

part of their storage (that is, when the operands overlap), the result of the

execution of such a statement is unpredictable.

Chapter 20. Procedure division structure 299

Input-output statements

COBOL input-output statements transfer data to and from files stored on external

media, and also control low-volume data that is obtained from or sent to an

input/output device.

In COBOL, the unit of file data made available to the program is a record. You

need only be concerned with such records. Provision is automatically made for

such operations as the movement of data into buffers, internal storage, validity

checking, error correction (where feasible), blocking and deblocking, and

volume-switching procedures.

The description of the file in the environment division and the data division

governs which input-output statements are allowed in the procedure division.

Permissible statements for sequential files are shown in Table 49 on page 401, and

permissible statements for indexed files and relative files are shown in Table 50 on

page 401 .

Common processing facilities

There are several common processing facilities that apply to more than one

input-output statement. The common processing facilities provided are:

v “File status key”

v “Invalid key condition” on page 304

v “INTO and FROM phrases” on page 305

v “File position indicator” on page 306

Discussions in the following sections use the terms volume and reel. The term

volume refers to all non-unit-record input-output devices. The term reel applies only

to tape devices. Treatment of direct-access devices in the sequential access mode is

logically equivalent to the treatment of tape devices.

File status key

If the FILE STATUS clause is specified in the file-control entry, a value is placed in

the specified file status key (the two-character data item named in the FILE

STATUS clause) during execution of any request on that file; the value indicates

the status of that request. The value is placed in the file status key before execution

of any EXCEPTION/ERROR declarative, INVALID KEY phrase, or AT END phrase

associated with the request.

There are two file status key data-names. One is described by data-name-1 in the

FILE STATUS clause of the file-control entry. This is a two-character data item with

the first character known as file status key 1 and the second character known as

file status key 2. The combinations of possible values and their meanings are

shown in Table 36 on page 301.

The other file status key is described by data-name-8 in the FILE STATUS clause of

the file-control entry. data-name-8 does not apply to QSAM files. For more

information about data-name-8, see “FILE STATUS clause” on page 145.

300 Enterprise COBOL for z/OS V4.1 Language Reference

Table 36. File status key values and meanings

High-
order

digit Meaning

Low-
order

digit Meaning

0 Successful

completion

0 No further information

2 This file status value applies only to indexed files with

alternate keys that allow duplicates.

The input-output statement was successfully executed,

but a duplicate key was detected. For a READ

statement, the key value for the current key of

reference was equal to the value of the same key in the

next record within the current key of reference. For a

REWRITE or WRITE statement, the record just written

created a duplicate key value for at least one alternate

record key for which duplicates are allowed.

4 A READ statement was successfully executed, but the

length of the record being processed did not conform

to the fixed file attributes for that file.

5 An OPEN statement is successfully executed but the

referenced optional file is unavailable at the time the

OPEN statement is executed. The file has been created

if the open mode is I-O or EXTEND. This does not

apply to VSAM sequential files.

7 For a CLOSE statement with the NO REWIND,

REEL/UNIT, or FOR REMOVAL phrase or for an

OPEN statement with the NO REWIND phrase, the

referenced file was on a non-reel/unit medium.

1 At-end

condition

0 A sequential READ statement was attempted and no

next logical record existed in the file because the end of

the file had been reached. Or the first READ was

attempted on an optional input file that was

unavailable.

4 A sequential READ statement was attempted for a

relative file, and the number of significant digits in the

relative record number was larger than the size of the

relative key data item described for the file.

Chapter 20. Procedure division structure 301

Table 36. File status key values and meanings (continued)

High-
order

digit Meaning

Low-
order

digit Meaning

2 Invalid key

condition

1 A sequence error exists for a sequentially accessed

indexed file. The prime record key value was changed

by the program between the successful execution of a

READ statement and the execution of the next

REWRITE statement for that file. Or the ascending

requirements for successive record key values were

violated.

2 An attempt was made to write a record that would

create a duplicate key in a relative file. Or an attempt

was made to write or rewrite a record that would

create a duplicate prime record key or a duplicate

alternate record key without the DUPLICATES phrase

in an indexed file.

3 An attempt was made to randomly access a record that

does not exist in the file. Or a START or random READ

statement was attempted on an optional input file that

was unavailable.

4 An attempt was made to write beyond the externally

defined boundaries of a relative or indexed file. Or a

sequential WRITE statement was attempted for a

relative file and the number of significant digits in the

relative record number was larger than the size of the

relative key data item described for the file.

3 Permanent

error

condition

0 No further information

4 A permanent error exists because of a boundary

violation; an attempt was made to write beyond the

externally defined boundaries of a sequential file.

5 An OPEN statement with the INPUT, I-O, or EXTEND

phrase was attempted on a nonoptional file that was

unavailable.

7 An OPEN statement was attempted on a file that

would not support the open mode specified in the

OPEN statement. Possible violations are:

v The EXTEND or OUTPUT phrase was specified but

the file would not support write operations.

v The I-O phrase was specified but the file would not

support the input and output operations permitted.

v The INPUT phrase was specified but the file would

not support read operations.

8 An OPEN statement was attempted on a file previously

closed with lock.

9 The OPEN statement was unsuccessful because a

conflict was detected between the fixed file attributes

and the attributes specified for that file in the program.

These attributes include the organization of the file

(sequential, relative, or indexed), the prime record key,

the alternate record keys, the code set, the maximum

record size, the record type (fixed or variable), and the

blocking factor.

302 Enterprise COBOL for z/OS V4.1 Language Reference

Table 36. File status key values and meanings (continued)

High-
order

digit Meaning

Low-
order

digit Meaning

4 Logic error

condition

1 An OPEN statement was attempted for a file in the

open mode.

2 A CLOSE statement was attempted for a file not in the

open mode.

3 For a mass storage file in the sequential access mode,

the last input-output statement executed for the

associated file prior to the execution of a REWRITE

statement was not a successfully executed READ

statement.

For relative and indexed files in the sequential access

mode, the last input-output statement executed for the

file prior to the execution of a DELETE or REWRITE

statement was not a successfully executed READ

statement.

4 A boundary violation exists because an attempt was

made to rewrite a record to a file and the record was

not the same size as the record being replaced. Or an

attempt was made to write or rewrite a record that was

larger than the largest or smaller than the smallest

record allowed by the RECORD IS VARYING clause of

the associated file-name.

6 A sequential READ statement was attempted on a file

open in the input or I-O mode and no valid next

record had been established because:

v The preceding READ statement was unsuccessful but

did not cause an at-end condition.

v The preceding READ statement caused an at-end

condition.

7 The execution of a READ statement was attempted on

a file not open in the input or I-O mode.

8 The execution of a WRITE statement was attempted on

a file not open in the I-O, output, or extend mode.

9 The execution of a DELETE or REWRITE statement

was attempted on a file not open in the I-O mode.

Chapter 20. Procedure division structure 303

Table 36. File status key values and meanings (continued)

High-
order

digit Meaning

Low-
order

digit Meaning

9 Implementor-
defined

condition

0 v For multithreading only: A CLOSE of a VSAM or

QSAM file was attempted on a thread that did not

open the file.

v Without multithreading: For VSAM only: See the

information about VSAM return codes in the

Enterprise COBOL Programming Guide.

1 For VSAM only: Password failure

2 Logic error

3 For all files, except QSAM: Resource unavailable

5 For all files except QSAM: Invalid or incomplete file

information

6 For VSAM file: An OPEN statement with the OUTPUT

phrase was attempted, or an OPEN statement with the

I-O or EXTEND phrase was attempted for an optional

file but no DD statement was specified for the file.

For QSAM file: An OPEN statement with the OUTPUT

phrase was attempted, or an OPEN statement with the

I-O or EXTEND phrase was attempted for an optional

file but no DD statement was specified for the file and

the CBLQDA(OFF) runtime option was specified.

7 For VSAM only: OPEN statement execution successful:

File integrity verified

8 Open failed due to the invalid contents of an

environment variable specified in a SELECT ... ASSIGN

clause or due to dynamic allocation failure. For more

information about the contents of environment

variables, see “ASSIGN clause” on page 132.

Invalid key condition

The invalid key condition can occur during execution of a START, READ, WRITE,

REWRITE, or DELETE statement. When an invalid key condition occurs, the

input-output statement that caused the condition is unsuccessful.

When the invalid key condition is recognized, actions are taken in the following

order:

1. If the FILE STATUS clause is specified in the file-control entry, a value is placed

into the file status key to indicate an invalid key condition, as shown in

Table 36 on page 301.

2. If the INVALID KEY phrase is specified in the statement that caused the

condition, control is transferred to the INVALID KEY imperative statement.

Any EXCEPTION/ERROR declarative procedure specified for this file is not

executed. Execution then continues according to the rules for each statement

specified in the imperative statement.

3. If the INVALID KEY phrase is not specified in the input-output statement for a

file and an applicable EXCEPTION/ERROR procedure exists, that procedure is

executed. The NOT INVALID KEY phrase, if specified, is ignored.

304 Enterprise COBOL for z/OS V4.1 Language Reference

Both the INVALID KEY phrase and the EXCEPTION/ERROR procedure can be

omitted.

If the invalid key condition does not exist after execution of the input-output

operation, the INVALID KEY phrase is ignored, if specified, and the following

actions are taken:

v If an exception condition that is not an invalid key condition exists, control is

transferred according to the rules of the USE statement following the execution

of any USE AFTER EXCEPTION procedure.

v If no exception condition exists, control is transferred to the end of the

input-output statement or the imperative statement specified in the NOT

INVALID KEY phrase, if it is specified.

INTO and FROM phrases

The INTO and FROM phrases are valid for READ, RETURN, RELEASE, REWRITE,

and WRITE statements.

You must specify an identifier that is the name of an entry in the working-storage

section or the linkage section, or of a record description for another previously

opened file.

Format: INTO and FROM phrases of input-output statements

�� READ file-name-1

RETURN

RECORD

INTO

identifier-1

RELEASE

record-name-1

REWRITE

FROM

identifier-1

WRITE

 ��

v record-name-1 and identifier-1 must not refer to the same storage area.

v If record-name-1 or identifier-1 refers to a national group item, the item is

processed as an elementary data item of category national.

v The INTO phrase can be specified in a READ or RETURN statement.

The result of the execution of a READ or RETURN statement with the INTO

phrase is equivalent to the application of the following rules in the order

specified:

– The execution of the same READ or RETURN statement without the INTO

phrase.

– The current record is moved from the record area to the area specified by

identifier-1 according to the rules for the MOVE statement without the

CORRESPONDING phrase. The size of the current record is determined by

rules specified in the RECORD clause. If the file description entry contains a

RECORD IS VARYING clause, the implied move is a group move. The

implied MOVE statement does not occur if the execution of the READ or

RETURN statement was unsuccessful. Any subscripting or

reference-modification associated with identifier-1 is evaluated after the record

has been read or returned and immediately before it is moved to the data

item. The record is available in both the record area and the data item

referenced by identifier-1.

Chapter 20. Procedure division structure 305

v The FROM phrase can be specified in a RELEASE, REWRITE, or WRITE

statement.

The result of the execution of a RELEASE, REWRITE, or WRITE statement with

the FROM phrase is equivalent to the execution of the following statements in

the order specified:

1. MOVE identifier-1 TO record-name-1

2. The same RELEASE, REWRITE, or WRITE statement without the FROM

phrase

After the execution of the RELEASE, REWRITE or WRITE statement is complete,

the information in the area referenced by identifier-1 is available even though the

information in the area referenced by record-name-1 is unavailable, except as

specified by the SAME RECORD AREA clause.

File position indicator

The file position indicator is a conceptual entity used in this document to facilitate

exact specification of the next record to be accessed within a given file during

certain sequences of input-output operations. The setting of the file position

indicator is affected only by the OPEN, CLOSE, READ and START statements. The

concept of a file position indicator has no meaning for a file opened in the output

or extend mode.

306 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 21. Procedure division statements

Statements, sentences, and paragraphs in the procedure division are executed

sequentially except when a procedure branching statement such as EXIT, GO TO,

PERFORM, GOBACK, or STOP is used.

© Copyright IBM Corp. 1991, 2007 307

ACCEPT statement

The ACCEPT statement transfers data or system date-related information into the

data area referenced by the specified identifier. There is no editing or error

checking of the incoming data.

Data transfer

Format 1: data transfer

�� ACCEPT identifier-1

FROM

mnemonic-name-1

environment-name

 ��

Format 1 transfers data from an input source into the data item referenced by

identifier-1 (the receiving area). When the FROM phrase is omitted, the system

input device is assumed.

Format 1 is useful for exceptional situations in a program when operator

intervention (to supply a given message, code, or exception indicator) is required.

The operator must of course be supplied with the appropriate messages with

which to reply.

identifier-1

The receiving area. Can be:

v An alphanumeric group item

v A national group item

v An elementary data item of usage DISPLAY, DISPLAY-1, or NATIONAL

A national group item is processed an an elementary data item of category

national.

mnemonic-name-1

Specifies the input device. mnemonic-name-1 must be associated in the

SPECIAL-NAMES paragraph with an environment-name. See

“SPECIAL-NAMES paragraph” on page 116.

v System input device

The length of a data transfer is the same as the length of the record on

the input device, with a maximum of 32,760 bytes.

The system input device is read until the receiving area is filled or EOF

is encountered. If the length of the receiving area is not an even multiple

of the system input device record length, the final record will be

truncated as required. If EOF is encountered after data has been moved

and before the receiving area has been filled, the receiving area is

padded with spaces of the appropriate representation for the receiving

area. If EOF is encountered before any data has been moved to the

receiving area, padding will not take place and the contents of the

receiving area are unchanged. Each input record is concatenated with the

previous input record.

308 Enterprise COBOL for z/OS V4.1 Language Reference

If the input record is of a fixed-length format, the entire input record is

used. No editing is performed to remove trailing or leading blanks.

If the input record is of the variable-length format, the actual record

length is used to determine the amount of data received. With

variable-format records, the Record Definition Word (RDW) is removed

from the beginning of the input record. Only the actual input data is

transferred to identifier-1.

If the data item referenced by identifier-1 is of usage national, data is

transferred without conversion and without checking for validity. The

input data is assumed to be in UTF-16 format.

v Console

1. A system-generated message code is automatically displayed,

followed by the literal AWAITING REPLY.

The maximum length of an input message is 114 characters.

2. Execution is suspended.

3. After the message code (the same code as in item 1) is entered from

the console and recognized by the system, ACCEPT statement

execution is resumed. The message is moved to the receiving area

and left-justified regardless of its PICTURE clause.

If identifier-1 references a data item of usage NATIONAL, the

message is converted from the native code page representation to

national character representation. The native code page is the one

that was specified by the CODEPAGE compiler option when the

source code was compiled.

The ACCEPT statement is terminated if any of the following occurs:

– No data is received from the console; for example, if the operator

hits the Enter key.

– The receiving data item is filled with data.

– Fewer than 114 characters of data are entered.

If 114 bytes of data are entered and the receiving area is still not

filled with data, more requests for data are issued to the console.

If more than 114 characters of data are entered, only the first 114

characters will be recognized by the system.

If the receiving area is longer than the incoming message, the

rightmost characters are padded with spaces of the appropriate

representation for the receiving area.

If the incoming message is longer than the receiving area, the

character positions beyond the length of the receiving area are

truncated.

For information about obtaining ACCEPT input from an HFS file or

stdin, see the Enterprise COBOL Programming Guide.

environment-name

Identifies the source of input data. An environment-name from the names

given in Table 5 on page 118 can be specified.

If the device is the same as that used for READ statements for a LINE

SEQUENTIAL file, results are unpredictable.

Chapter 21. Procedure division statements 309

System date-related information transfer

System information contained in the specified conceptual data items DATE, DATE

YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, or TIME, can be transferred

into the data item referenced by identifier-2. The transfer must follow the rules for

the MOVE statement without the CORRESPONDING phrase. See “MOVE

statement” on page 386.

Format 2: system information transfer

�� ACCEPT identifier-2 FROM DATE

YYYYMMDD

DAY

YYYYDDD

DAY-OF-WEEK

TIME

 ��

identifier-2

The receiving area. Can be:

v An alphanumeric group item

v A national group item

v An elementary data item of one of the following categories:

– alphanumeric

– alphanumeric-edited

– numeric-edited (with usage DISPLAY or NATIONAL)

– national

– national-edited

– numeric

– internal floating-point

– external floating-point (with usage DISPLAY or NATIONAL)

A national group item is processed an an elementary data item of category

national.

Format 2 accesses the current date in two formats: the day of the week or the time

of day as carried by the system (which can be useful in identifying when a

particular run of an object program was executed). You can also use format 2 to

supply the date in headings and footings.

The current date and time can also be accessed with the intrinsic function

CURRENT-DATE, which also supports four-digit year values and provides

additional information (see “CURRENT-DATE” on page 508).

DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK,

and TIME

The conceptual data items DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD,

DAY-OF-WEEK, and TIME implicitly have USAGE DISPLAY. Because these are

conceptual data items, they cannot be described in the COBOL program.

310 Enterprise COBOL for z/OS V4.1 Language Reference

The content of the conceptual data items is moved to the receiving area using the

rules of the MOVE statement. If the receiving area is of usage NATIONAL, the

data is converted to national character representation.

DATE

Has the implicit PICTURE 9(6). If the DATEPROC compiler option is in

effect, then the returned value has implicit DATE FORMAT YYXXXX, and

identifier-2 must be defined with this date format.

 The sequence of data elements (from left to right) is:

Two digits for the year

Two digits for the month

Two digits for the day

Thus 27 April 2003 is expressed as 030427.

DATE YYYYMMDD

Has the implicit PICTURE 9(8). If the DATEPROC compiler option is in

effect, then the returned value has implicit DATE FORMAT YYYYXXXX,

and identifier-2 must be defined with this date format.

 The sequence of data elements (from left to right) is:

Four digits for the year

Two digits for the month

Two digits for the day

Thus 27 April 2003 is expressed as 20030427.

DAY Has the implicit PICTURE 9(5). If the DATEPROC compiler option is in

effect, then the returned value has implicit DATE FORMAT YYXXX, and

identifier-2 must be defined with this date format.

 The sequence of data elements (from left to right) is:

Two digits for the year

Three digits for the day

Thus 27 April 2003 is expressed as 03117.

DAY YYYYDDD

Has the implicit PICTURE 9(7). If the DATEPROC compiler option is in

effect, then the returned value has implicit DATE FORMAT YYYYXXX, and

identifier-2 must be defined with this date format.

 The sequence of data elements (from left to right) is:

Four digits for the year

Three digits for the day

Thus 27 April 2003 is expressed as 2003117.

DAY-OF-WEEK

Has the implicit PICTURE 9(1).

 The single data element represents the day of the week according to the

following values:

1 represents Monday 5 represents Friday

2 represents Tuesday 6 represents Saturday

3 represents Wednesday 7 represents Sunday

4 represents Thursday

Thus Wednesday is expressed as 3.

TIME Has the implicit PICTURE 9(8).

Chapter 21. Procedure division statements 311

The sequence of data elements (from left to right) is:

Two digits for hour of day

Two digits for minute of hour

Two digits for second of minute

Two digits for hundredths of second

Thus 2:41 PM is expressed as 14410000.

312 Enterprise COBOL for z/OS V4.1 Language Reference

ADD statement

The ADD statement sums two or more numeric operands and stores the result.

Format 1: ADD statement

��

ADD

�

identifier-1

literal-1

TO

�

identifier-2

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-ADD
 ��

All identifiers or literals that precede the keyword TO are added together, and this

sum is added to and stored in identifier-2. This process is repeated for each

successive occurrence of identifier-2 in the left-to-right order in which identifier-2 is

specified.

Chapter 21. Procedure division statements 313

Format 2: ADD statement with GIVING phrase

��

ADD

�

identifier-1

literal-1

TO

identifier-2

literal-2

�

�

�

GIVING

identifier-3

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-ADD
 ��

The values of the operands that precede the word GIVING are added together, and

the sum is stored as the new value of each data item referenced by identifier-3.

Format 3: ADD statement with CORRESPONDING phrase

�� ADD CORRESPONDING

CORR
 identifier-1 TO identifier-2

ROUNDED
 �

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-ADD
 ��

Elementary data items within identifier-1 are added to and stored in the

corresponding elementary items within identifier-2.

For all formats:

identifier-1, identifier-2

In format 1, must name an elementary numeric item.

 In format 2, must name an elementary numeric item except when

following the word GIVING. Each identifier that follows the word GIVING

must name an elementary numeric or numeric-edited item.

314 Enterprise COBOL for z/OS V4.1 Language Reference

In format 3, must name an alphanumeric group item or national group

item.

The following restrictions apply to date fields:

v In format 1, identifier-2 can specify one or more date fields. identifier-1

must not specify a date field.

v In format 2, either identifier-1 or identifier-2 (but not both) can specify at

most one date field. If identifier-1 or identifier-2 specifies a date field, then

every instance of identifier-3 must specify a date field that is compatible

with the date field specified by identifier-1 or identifier-2. That is, they

must have the same date format, except for the year part, which can be

windowed or expanded.

If neither identifier-1 nor identifier-2 specifies a date field, identifier-3 can

specify one or more date fields without any restriction on the date

formats.

v In format 3, only corresponding elementary items within identifier-2 can

be date fields. There is no restriction on the format of these date fields.

v A year-last date field is allowed in an ADD statement only as identifier-1

and when the result of the addition is a nondate.

There are two steps to determining the result of an ADD statement that

involves one or more date fields:

1. Addition: determine the result of the addition operation, as described

under “Addition that involves date fields” on page 264.

2. Storage: determine how the result is stored in the receiving field. (In

formats 1 and 3, the receiving field is identifier-2; in Format 3, the

receiving field is the GIVING identifier-3.) For details, see “Storing

arithmetic results that involve date fields” on page 265.

literal

Must be a numeric literal.

 Floating-point data items and literals can be used anywhere that a numeric

data item or literal can be specified.

When the ARITH(COMPAT) compiler option is in effect, the composite of operands

can contain a maximum of 30 digits. When the ARITH(EXTEND) compiler option

is in effect, the composite of operands can contain a maximum of 31 digits. For

more information, see “Arithmetic statement operands” on page 298 and the

details on arithmetic intermediate results in the Enterprise COBOL Programming

Guide.

ROUNDED phrase

For formats 1, 2, and 3, see “ROUNDED phrase” on page 296.

SIZE ERROR phrases

For formats 1, 2, and 3, see “SIZE ERROR phrases” on page 296.

CORRESPONDING phrase (format 3)

See “CORRESPONDING phrase” on page 294.

Chapter 21. Procedure division statements 315

END-ADD phrase

This explicit scope terminator serves to delimit the scope of the ADD statement.

END-ADD permits a conditional ADD statement to be nested in another

conditional statement. END-ADD can also be used with an imperative ADD

statement.

For more information, see “Delimited scope statements” on page 293.

316 Enterprise COBOL for z/OS V4.1 Language Reference

ALTER statement

The ALTER statement changes the transfer point specified in a GO TO statement.

The ALTER statement encourages the use of unstructured programming practices;

the EVALUATE statement provides the same function as the ALTER statement but

helps to ensure that a program is well-structured.

Format

��

ALTER

�

procedure-name-1

TO

procedure-name-2

PROCEED TO

��

The ALTER statement modifies the GO TO statement in the paragraph named by

procedure-name-1. Subsequent executions of the modified GO TO statement transfer

control to procedure-name-2.

procedure-name-1

Must name a procedure division paragraph that contains only one

sentence: a GO TO statement without the DEPENDING ON phrase.

procedure-name-2

Must name a procedure division section or paragraph.

Before the ALTER statement is executed, when control reaches the paragraph

specified in procedure-name-1, the GO TO statement transfers control to the

paragraph specified in the GO TO statement. After execution of the ALTER

statement however, the next time control reaches the paragraph specified in

procedure-name-1, the GO TO statement transfers control to the paragraph specified

in procedure-name-2.

The ALTER statement acts as a program switch, allowing, for example, one

sequence of execution during initialization and another sequence during the bulk

of file processing.

Altered GO TO statements in programs with the INITIAL attribute are returned to

their initial states each time the program is entered.

Do not use the ALTER statement in programs that have the RECURSIVE attribute,

in methods, or in programs compiled with the THREAD option.

Segmentation considerations

A GO TO statement that is coded in an independent segment must not be

referenced by an ALTER statement in a segment with a different priority-number.

All other uses of the ALTER statement are valid and are performed even if the GO

TO referenced by the ALTER statement is in a fixed segment.

Chapter 21. Procedure division statements 317

Altered GO TO statements in independent segments are returned to their initial

state when control is transferred to the independent segment that contains the

ALTERED GO TO from another independent segment with a different

priority-number.

This transfer of control can take place because of:

v The effect of previous statements

v An explicit transfer of control with a PERFORM or GO TO statement

v A sort or merge statement with the INPUT or OUTPUT phrase specified

318 Enterprise COBOL for z/OS V4.1 Language Reference

CALL statement

The CALL statement transfers control from one object program to another within

the run unit.

The program containing the CALL statement is the calling program; the program

identified in the CALL statement is the called subprogram. Called programs can

contain CALL statements; however, only programs defined with the RECURSIVE

clause can execute a CALL statement that directly or indirectly calls itself.

Chapter 21. Procedure division statements 319

Format

�� CALL identifier-1

literal-1

procedure-pointer-1

function-pointer-1

 �

�

�

�

�

�

USING

identifier-2

REFERENCE

ADDRESS OF

BY

file-name-1

OMITTED

CONTENT

identifier-3

BY

ADDRESS OF

LENGTH OF

literal-2

OMITTED

VALUE

identifier-4

BY

ADDRESS OF

LENGTH OF

literal-3

 �

�
RETURNING

identifier-5
 exception-phrases

END-CALL
 ��

exception-phrases:

not-exception-phrase

EXCEPTION

imperative-statement-1

ON

OVERFLOW

imperative-statement-3

ON

not-exception-phrase:

NOT

EXCEPTION

imperative-statement-2

ON

identifier-1, literal-1

literal-1 must be an alphanumeric literal. identifier-1 must be an

alphanumeric, alphabetic, or numeric data item described with USAGE

DISPLAY such that its value can be a program-name.

 The rules of formation for program-names are dependent on the

PGMNAME compiler option. For details, see the discussion of

320 Enterprise COBOL for z/OS V4.1 Language Reference

program-names in “PROGRAM-ID paragraph” on page 104 and also the

description of the PGMNAME compiler option in the Enterprise COBOL

Programming Guide.

identifier-1 cannot be a windowed date field.

Usage note: Do not specify the name of a class or method in the CALL

statement.

procedure-pointer-1

Must be defined with USAGE IS PROCEDURE-POINTER and must be set

to a valid program entry point; otherwise, the results of the CALL

statement are undefined.

 After a program has been canceled by COBOL, released by PL/I or C, or

deleted by assembler, any procedure-pointers that had been set to that

program’s entry point are no longer valid.

function-pointer-1

Must be defined with USAGE IS FUNCTION-POINTER and must be set to

a valid function or program entry point; otherwise, the results of the CALL

statement are undefined.

 After a program has been canceled by COBOL, released by PL/I or C, or

deleted by the assembler, any function-pointers that had been set to that

function or program’s entry point are no longer valid.

When the called subprogram is to be entered at the beginning of the procedure

division, literal-1 or the contents of identifier-1 must specify the program-name of

the called subprogram.

When the called subprogram is entered through an ENTRY statement, literal-1 or

the contents of identifier-1 must be the same as the name specified in the called

subprogram’s ENTRY statement.

For information about how the compiler resolves calls to program-names found in

multiple programs, see “Conventions for program-names” on page 90.

USING phrase

The USING phrase specifies arguments that are passed to the target program.

Include the USING phrase in the CALL statement only if there is a USING phrase

in the procedure division header or the ENTRY statement through which the called

program is run. The number of operands in each USING phrase must be identical.

For more information about the USING phrase, see “The procedure division

header” on page 255.

The sequence of the operands in the USING phrase of the CALL statement and in

the corresponding USING phrase in the called subprogram’s procedure division

header or ENTRY statement determines the correspondence between the operands

used by the calling and called programs. This correspondence is positional.

The values of the parameters referenced in the USING phrase of the CALL

statement are made available to the called subprogram at the time the CALL

statement is executed. The description of the data items in the called program must

describe the same number of character positions as the description of the

corresponding data items in the calling program.

Chapter 21. Procedure division statements 321

The BY CONTENT, BY REFERENCE, and BY VALUE phrases apply to parameters

that follow them until another BY CONTENT, BY REFERENCE, or BY VALUE

phrase is encountered. BY REFERENCE is assumed if you do not specify a BY

CONTENT, BY REFERENCE, or BY VALUE phrase prior to the first parameter.

BY REFERENCE phrase

If the BY REFERENCE phrase is either specified or implied for a parameter, the

corresponding data item in the calling program occupies the same storage area as

the data item in the called program.

identifier-2

Can be any data item of any level in the data division. identifier-2 cannot

be a function-identifier.

 If it is defined in the linkage section or file section, you must have already

provided addressability for identifier-2 prior to invocation of the CALL

statement. You can do this by coding either one of the following: SET

ADDRESS OF identifier-2 TO pointer or PROCEDURE/ENTRY USING.

file-name-1

A file-name for a QSAM file. See the Enterprise COBOL Programming Guide

for details on using file-name with the CALL statement.

ADDRESS OF identifier-2

identifier-2 must be a level-01 or level-77 item defined in the linkage

section.

OMITTED

Indicates that no argument is passed.

BY CONTENT phrase

If the BY CONTENT phrase is specified or implied for a parameter, the called

program cannot change the value of this parameter as referenced in the CALL

statement’s USING phrase, though the called program can change the value of the

data item referenced by the corresponding data-name in the called program’s

procedure division header. Changes to the parameter in the called program do not

affect the corresponding argument in the calling program.

identifier-3

Can be any data item of any level in the data division. identifier-3 cannot

be a function identifier.

 If defined in the linkage section or file section, you must have already

provided addressability for identifier-3 prior to invocation of the CALL

statement. You can do this by coding one of the following:

v SET ADDRESS OF identifier-3 TO pointer

v PROCEDURE DIVISION USING

v ENTRY . . . USING

literal-2

Can be:

v An alphanumeric literal

v A figurative constant (except ALL literal or NULL/NULLS)

v A DBCS literal

v A national literal

322 Enterprise COBOL for z/OS V4.1 Language Reference

LENGTH OF special register

For information about the LENGTH OF special register, see “LENGTH OF”

on page 18.

ADDRESS OF identifier-3

identifier-3 must be a data item of any level except 66 or 88 defined in the

linkage section, the working-storage section, or the local-storage section.

OMITTED

Indicates that no argument is passed.

For alphanumeric literals, the called subprogram should describe the parameter as

PIC X(n) USAGE DISPLAY, where n is the number of characters in the literal.

For DBCS literals, the called subprogram should describe the parameter as PIC

G(n) USAGE DISPLAY-1, or PIC N(n) with implicit or explicit USAGE DISPLAY-1,

where n is the length of the literal.

For national literals, the called subprogram should describe the parameter as PIC

N(n) with implicit or explicit USAGE NATIONAL, where n is the length of the

literal.

BY VALUE phrase

The BY VALUE phrase applies to all arguments that follow until overridden by

another BY REFERENCE or BY CONTENT phrase.

If the BY VALUE phrase is specified or implied for an argument, the value of the

argument is passed, not a reference to the sending data item. The called program

can modify the formal parameter that corresponds to the BY VALUE argument, but

any such changes do not affect the argument because the called program has

access to a temporary copy of the sending data item.

Although BY VALUE arguments are primarily intended for communication with

non-COBOL programs (such as C), they can also be used for COBOL-to-COBOL

invocations. In this case, BY VALUE must be specified or implied for both the

argument in the CALL USING phrase and the corresponding formal parameter in

the procedure division USING phrase.

identifier-4

Must be an elementary data item in the data division. It must be one of the

following:

v Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)

v Floating point (USAGE COMP-1 or COMP-2)

v Function-pointer (USAGE FUNCTION-POINTER)

v Pointer (USAGE POINTER)

v Procedure-pointer (USAGE PROCEDURE-POINTER)

v Object reference (USAGE OBJECT REFERENCE)

v One single-byte alphanumeric character (such as PIC X or PIC A)

v One national character (PIC N), described as an elementary data item of

category national.

The following can also be passed BY VALUE:

v Reference-modified item of usage display and length 1

v Reference-modified item of usage national and length 1

Chapter 21. Procedure division statements 323

v SHIFT-IN and SHIFT-OUT special registers

v LINAGE-COUNTER special register when it is usage binary

ADDRESS OF identifier-4

identifier-4 must be a data item of any level except 66 or 88 defined in the

linkage section, the working-storage section, or the local-storage section.

LENGTH OF special register

A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9)

binary. For information about the LENGTH OF special register, see

“LENGTH OF” on page 18.

literal-3

Must be one of the following:

v A numeric literal

v A figurative constant ZERO

v A one-character alphanumeric literal

v A one-character national literal

v A symbolic character

v A single-byte figurative constant

– SPACE

– QUOTE

– HIGH-VALUE

– LOW-VALUE

ZERO is treated as a numeric value; a fullword binary zero is passed.

If literal-3 is a fixed-point numeric literal, it must have a precision of nine

or fewer digits. In this case, a fullword binary representation of the literal

value is passed.

If literal-3 is a floating-point numeric literal, an 8-byte internal

floating-point (COMP-2) representation of the value is passed.

literal-3 must not be a DBCS literal.

RETURNING phrase

identifier-5

The RETURNING data item, which can be any data item defined in the

data division. The return value of the called program is implicitly stored

into identifier-5.

You can specify the RETURNING phrase for calls to functions written in COBOL,

C, or in other programming languages that use C linkage conventions. If you

specify the RETURNING phrase on a CALL to a COBOL subprogram:

v The called subprogram must specify the RETURNING phrase on its procedure

division header.

v identifier-5 and the corresponding procedure division RETURNING identifier in

the target program must have the same PICTURE, USAGE, SIGN,

SYNCHRONIZE, JUSTIFIED, and BLANK WHEN ZERO clauses (except that

PICTURE clause currency symbols can differ, and periods and commas can be

interchanged due to the DECIMAL POINT IS COMMA clause).

When the target returns, its return value is assigned to identifier-5 using the rules

for the SET statement if identifier-6 is of usage INDEX, POINTER,

324 Enterprise COBOL for z/OS V4.1 Language Reference

FUNCTION-POINTER, PROCEDURE-POINTER, or OBJECT REFERENCE.

When identifier-5 is of any other usage, the rules for the MOVE statement are

used.

The CALL ... RETURNING data item is an output-only parameter. On entry to the

called program, the initial state of the PROCEDURE DIVISION RETURNING data

item has an undefined and unpredictable value. You must initialize the

PROCEDURE DIVISION RETURNING data item in the called program before you

reference its value. The value that is passed back to the calling program is the final

value of the PROCEDURE DIVISION RETURNING data item when the called

program returns.

If an EXCEPTION or OVERFLOW occurs, identifier-5 is not changed. identifier-5

must not be reference-modified.

The RETURN-CODE special register is not set by execution of CALL statements

that include the RETURNING phrase.

ON EXCEPTION phrase

An exception condition occurs when the called subprogram cannot be made

available. At that time, one of the following two actions will occur:

1. If the ON EXCEPTION phrase is specified, control is transferred to

imperative-statement-1. Execution then continues according to the rules for each

statement specified in imperative-statement-1. If a procedure branching or

conditional statement that causes explicit transfer of control is executed, control

is transferred in accordance with the rules for that statement. Otherwise, upon

completion of the execution of imperative-statement-1, control is transferred to

the end of the CALL statement and the NOT ON EXCEPTION phrase, if

specified, is ignored.

2. If the ON EXCEPTION phrase is not specified in the CALL statement, the NOT

ON EXCEPTION phrase, if specified, is ignored.

NOT ON EXCEPTION phrase

If an exception condition does not occur (that is, the called subprogram can be

made available), control is transferred to the called program. After control is

returned from the called program, control is transferred to:

v imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.

v The end of the CALL statement in any other case. (If the ON EXCEPTION

phrase is specified, it is ignored.)

If control is transferred to imperative-statement-2, execution continues according to

the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement that causes explicit transfer of control is

executed, control is transferred in accordance with the rules for that statement.

Otherwise, upon completion of the execution of imperative-statement-2, control is

transferred to the end of the CALL statement.

ON OVERFLOW phrase

The ON OVERFLOW phrase has the same effect as the ON EXCEPTION phrase.

Chapter 21. Procedure division statements 325

END-CALL phrase

This explicit scope terminator serves to delimit the scope of the CALL statement.

END-CALL permits a conditional CALL statement to be nested in another

conditional statement. END-CALL can also be used with an imperative CALL

statement.

For more information, see “Delimited scope statements” on page 293.

326 Enterprise COBOL for z/OS V4.1 Language Reference

CANCEL statement

The CANCEL statement ensures that the referenced subprogram is entered in

initial state the next time that it is called.

Format

��

CANCEL

�

identifier-1

literal-1

��

identifier-1, literal-1

literal-1 must be an alphanumeric literal. identifier-1 must be an

alphanumeric, alphabetic, or zoned decimal data item such that its value

can be a program-name. The rules of formation for program-names are

dependent on the PGMNAME compiler option. For details, see the

discussion of program-names in “PROGRAM-ID paragraph” on page 104

and the description of the PGMNAME compiler option in the Enterprise

COBOL Programming Guide.

 identifier-1 cannot be a windowed date field.

literal-1 or the contents of identifier-1 must be the same as a literal or the

contents of an identifier specified in an associated CALL statement.

Do not specify the name of a class or a method in the CANCEL statement.

After a CANCEL statement for a called subprogram has been executed, that

subprogram no longer has a logical connection to the program. The contents of

data items in external data records described by the subprogram are not changed

when that subprogram is canceled. If a CALL statement is executed later by any

program in the run unit naming the same subprogram, that subprogram is entered

in its initial state.

When a CANCEL statement is executed, all programs contained within the

program referenced in the CANCEL statement are also canceled. The result is the

same as if a valid CANCEL were executed for each contained program in the

reverse order in which the programs appear in the separately compiled program.

A CANCEL statement closes all open files that are associated with an internal file

connector in the program named in an explicit CANCEL statement. USE

procedures associated with those files are not executed.

You can cancel a called subprogram in any of the following ways:

v By referencing it as the operand of a CANCEL statement

v By terminating the run unit of which the subprogram is a member

v By executing an EXIT PROGRAM statement or a GOBACK statement in the

called subprogram if that subprogram possesses the initial attribute

No action is taken when a CANCEL statement is executed if the specified program:

Chapter 21. Procedure division statements 327

v Has not been dynamically called in this run unit by another COBOL program

v Has been called and subsequently canceled

In a multithreaded environment, a program cannot execute a CANCEL statement

naming a program that is active on any thread. The named program must be

completely inactive.

Called subprograms can contain CANCEL statements. However, a called

subprogram must not execute a CANCEL statement that directly or indirectly

cancels the calling program itself or that cancels any program higher than itself in

the calling hierarchy. In such a case, the run unit is terminated.

A program named in a CANCEL statement must be a program that has been called

and has executed an EXIT PROGRAM statement or a GOBACK statement.

A program can cancel a program that it did not call, provided that, in the calling

hierarchy, the program that executes the CANCEL statement is higher than or

equal to the program it is canceling. For example:

A calls B and B calls C (When A receives control, it can cancel C.)

A calls B and A calls C (When C receives control, it can cancel B.)

328 Enterprise COBOL for z/OS V4.1 Language Reference

|
|

CLOSE statement

The CLOSE statement terminates the processing of volumes and files.

Format 1: CLOSE statement for sequential files

��

CLOSE

�

file-name-1

(1)

REEL

(1)

REMOVAL

UNIT

FOR

WITH NO REWIND

(1)

NO REWIND

WITH

LOCK

��

Notes:

1 The REEL, UNIT, and NO REWIND phrases are not valid for VSAM files.

Format 2: CLOSE statement for indexed and relative files

��

CLOSE

�

file-name-1

LOCK

WITH

��

Format 3: CLOSE statement for line-sequential files

��

CLOSE

�

file-name-1

REEL

UNIT

REMOVAL

FOR

WITH NO REWIND

NO REWIND

WITH

LOCK

��

file-name-1

Designates the file upon which the CLOSE statement is to operate. If more

Chapter 21. Procedure division statements 329

than one file-name is specified, the files need not have the same

organization or access. file-name-1 must not be a sort or merge file.

REEL and UNIT

You can specify these phrases only for QSAM multivolume or single

volume files. The terms REEL and UNIT are interchangeable.

WITH NO REWIND and FOR REMOVAL

These phrases apply only to QSAM tape files. If they are specified for

storage devices to which they do not apply, the close operation is

successful and a status key value is set to indicate the file was on a

non-reel medium.

A CLOSE statement can be executed only for a file in an open mode. After

successful execution of a CLOSE statement (without the REEL/UNIT phrase if

using format 1):

v The record area associated with the file-name is no longer available.

Unsuccessful execution of a CLOSE statement leaves availability of the record

data undefined.

v An OPEN statement for the file must be executed before any other input/output

statement can be executed for the file and before data is moved to a record

description entry associated with the file.

If the FILE STATUS clause is specified in the file-control entry, the associated file

status key is updated when the CLOSE statement is executed.

If the file is in an open status and the execution of a CLOSE statement is

unsuccessful, the EXCEPTION/ERROR procedure (if specified) for this file is

executed.

Effect of CLOSE statement on file types

If the SELECT OPTIONAL clause is specified in the file-control entry for a file, and

the file is not available at run time, standard end-of-file processing is not

performed. For QSAM files, the file position indicator and current volume pointer

are unchanged.

Files are divided into the following types:

Non-reel/unit

A file whose input or output medium is such that rewinding, reels, and

units have no meaning. All VSAM files are non-reel/unit file types. QSAM

files can be non-reel/unit file types.

Sequential single volume

A sequential file that is contained entirely on one volume. More than one

file can be contained on this volume. All VSAM files are single volume.

QSAM files can be single volume.

Sequential multivolume

A sequential file that is contained on more than one volume. QSAM files

are the only files that can be multivolume. The concept of volume has no

meaning for VSAM files.

The permissible combinations of CLOSE statement phrases are shown in the

following tables:

v For sequential files: Sequential files and CLOSE statement phrases

330 Enterprise COBOL for z/OS V4.1 Language Reference

v For indexed and relative files: Table 38

v For line-sequential files: Table 39

The meaning of each key letter is shown in Table 40.

 Table 37. Sequential files and CLOSE statement phrases

CLOSE statement phrases Non-reel/ unit

Sequential

single-volume

Sequential

multivolume

CLOSE C C, G A, C, G

CLOSE REEL/UNIT F F, G F, G

CLOSE REEL/UNIT WITH NO

REWIND

F B, F B, F

CLOSE REEL/UNIT FOR

REMOVAL

D D D

CLOSE WITH NO REWIND C, H B, C A, B, C

CLOSE WITH LOCK C, E C, E, G A, C, E, G

 Table 38. Indexed and relative file types and CLOSE statement phrases

CLOSE statement phrases Action

CLOSE C

CLOSE WITH LOCK C,E

 Table 39. Line-sequential file types and CLOSE statement phrases

CLOSE statement phrases Action

CLOSE C

CLOSE WITH LOCK C,E

 Table 40. Meanings of key letters for sequential file types

Key Actions taken

 A Previous volumes unaffected

Input and input-output files: Standard volume-switch processing is performed

for all previous volumes (except those controlled by a previous CLOSE

REEL/UNIT statement). Any subsequent volumes are not processed.

Output files: Standard volume-switch processing is performed for all previous

volumes (except those controlled by a previous CLOSE REEL/UNIT statement).

 B No rewinding of current reel: The current volume is left in its current position.

Chapter 21. Procedure division statements 331

Table 40. Meanings of key letters for sequential file types (continued)

Key Actions taken

 C Close file

Input and input-output files: If the file is at its end, and label records are

specified, the standard ending label procedure is performed. Standard system

closing procedures are then performed.

If the file is at its end, and label records are not specified, label processing does

not take place, but standard system closing procedures are performed.

If the file is not at its end, standard system closing procedures are performed,

but there is no ending label processing.

Output files: If label records are specified, standard ending label procedures are

performed. Standard system closing procedures are then performed.

If label records are not specified, ending label procedures are not performed, but

standard system closing procedures are performed.

 D Volume removal: Treated as a comment.

 E File lock: The compiler ensures that this file cannot be opened again during this

execution of the object program. If the file is a tape unit, it will be rewound and

unloaded.

 F Close volume

Input and input-output files: If the current reel/unit is the last or only reel/unit

for the file or if the reel is on a non-reel/unit medium, no volume switching is

performed. If another reel/unit exists for the file, the following operations are

performed: a volume switch, beginning volume label procedure, and the first

record on the new volume is made available for reading. If no data records exist

for the current volume, another volume switch occurs.

Output (reel/unit media) files: The following operations are performed: the

ending volume label procedure, a volume switch, and the beginning volume

label procedure. The next executed WRITE statement places the next logical

record on the next direct access volume available. A close statement with the

REEL phrase does not close the output file; only an end-of-volume condition

occurs.

Output (non-reel/unit media) files: Execution of the CLOSE statement is

considered successful. The file remains in the open mode and no action takes

place except that the value of the I-O status associated with the file is updated.

 G Rewind: The current volume is positioned at its physical beginning.

 H Optional phrases ignored: The CLOSE statement is executed as if none of the

optional phrases were present.

332 Enterprise COBOL for z/OS V4.1 Language Reference

COMPUTE statement

The COMPUTE statement assigns the value of an arithmetic expression to one or

more data items.

With the COMPUTE statement, arithmetic operations can be combined without the

restrictions on receiving data items imposed by the rules for the ADD, SUBTRACT,

MULTIPLY, and DIVIDE statements.

When arithmetic operations are combined, the COMPUTE statement can be more

efficient than the separate arithmetic statements written in a series.

Format

��

COMPUTE

�

identifier-1

ROUNDED

=

EQUAL

�

� arithmetic-expression

SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-COMPUTE
 ��

identifier-1

Must name an elementary numeric item or an elementary numeric-edited

item.

 Can name an elementary floating-point data item.

If identifier-1 or the result of arithmetic expression (or both) are date fields,

see “Storing arithmetic results that involve date fields” on page 265 for

details on how the result is stored in identifier-1. If a year-last date field is

specified as identifier-1, the result of arithmetic expression must be a nondate.

arithmetic-expression

Can be any arithmetic expression, as defined in “Arithmetic expressions”

on page 261.

 When the COMPUTE statement is executed, the value of arithmetic

expression is calculated and stored as the new value of each data item

referenced by identifier-1.

An arithmetic expression consisting of a single identifier, numeric function,

or literal allows the user to set the value of the data items that are

referenced by identifier-1 equal to the value of that identifier, function, or

literal.

Chapter 21. Procedure division statements 333

A year-last date field must not be specified in the arithmetic expression.

ROUNDED phrase

For a discussion of the ROUNDED phrase, see “ROUNDED phrase” on page 296.

SIZE ERROR phrases

For a discussion of the SIZE ERROR phrases, see “SIZE ERROR phrases” on page

296.

END-COMPUTE phrase

This explicit scope terminator serves to delimit the scope of the COMPUTE

statement. END-COMPUTE permits a conditional COMPUTE statement to be

nested in another conditional statement. END-COMPUTE can also be used with an

imperative COMPUTE statement.

For more information, see “Delimited scope statements” on page 293.

334 Enterprise COBOL for z/OS V4.1 Language Reference

CONTINUE statement

The CONTINUE statement is a no operation statement. CONTINUE indicates that

no executable instruction is present.

Format

�� CONTINUE ��

Chapter 21. Procedure division statements 335

DELETE statement

The DELETE statement removes a record from an indexed or relative file. For

indexed files, the key can then be reused for record addition. For relative files, the

space is then available for a new record with the same RELATIVE KEY value.

When the DELETE statement is executed, the associated file must be open in I-O

mode.

Format

�� DELETE file-name-1

RECORD
 �

�
INVALID

imperative-statement-1

KEY

 �

�
NOT INVALID

imperative-statement-2

KEY

END-DELETE
 ��

file-name-1

Must be defined in an FD entry in the data division and must be the name

of an indexed or relative file.

After successful execution of a DELETE statement, the record is removed from the

file and can no longer be accessed.

Execution of the DELETE statement does not affect the contents of the record area

associated with file-name-1 or the content of the data item referenced by the

data-name specified in the DEPENDING ON phrase of the RECORD clause

associated with file-name-1.

If the FILE STATUS clause is specified in the file-control entry, the associated file

status key is updated when the DELETE statement is executed.

The file position indicator is not affected by execution of the DELETE statement.

Sequential access mode

For a file in sequential access mode, the previous input/output statement must be

a successfully executed READ statement. When the DELETE statement is executed,

the system removes the record that was retrieved by that READ statement.

For a file in sequential access mode, the INVALID KEY and NOT INVALID KEY

phrases must not be specified. An EXCEPTION/ERROR procedure can be

specified.

336 Enterprise COBOL for z/OS V4.1 Language Reference

Random or dynamic access mode

In random or dynamic access mode, DELETE statement execution results depend

on the file organization: indexed or relative.

When the DELETE statement is executed, the system removes the record identified

by the contents of the prime RECORD KEY data item for indexed files, or the

RELATIVE KEY data item for relative files. If the file does not contain such a

record, an INVALID KEY condition exists. (See “Invalid key condition” on page

304.)

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure

can be omitted.

Transfer of control after the successful execution of a DELETE statement, with the

NOT INVALID KEY phrase specified, is to the imperative statement associated

with the phrase.

END-DELETE phrase

This explicit scope terminator serves to delimit the scope of the DELETE statement.

END-DELETE permits a conditional DELETE statement to be nested in another

conditional statement. END-DELETE can also be used with an imperative DELETE

statement.

For more information, see “Delimited scope statements” on page 293.

Chapter 21. Procedure division statements 337

DISPLAY statement

The DISPLAY statement transfers the contents of each operand to the output

device. The contents are displayed on the output device in the order, left to right,

in which the operands are listed.

Format

��

DISPLAY

�

identifier-1

literal-1

UPON

mnemonic-name-1

environment-name-1

�

�
NO ADVANCING

WITH

 ��

identifier-1

Identifier-1 references the data that is to be displayed. Identifier-1 can

reference any data item except an item of usage PROCEDURE-POINTER,

FUNCTION-POINTER, OBJECT REFERENCE, or INDEX. Identifier-1

cannot be an index-name.

 If identifier-1 is a binary, internal decimal, or internal floating-point data

item, identifier-1 is converted automatically to external format as follows:

v Binary and internal decimal items are converted to zoned decimal.

Negative signed values cause a low-order sign overpunch.

v Internal floating-point numbers are converted to external floating-point

numbers for display such that:

– A COMP-1 item will display as if it had an external floating-point

PICTURE clause of -.9(8)E-99.

– A COMP-2 item will display as if it had an external floating-point

PICTURE clause of -.9(17)E-99.

Data items defined with USAGE POINTER are converted to a zoned

decimal number that has an implicit PICTURE clause of PIC 9(10).

If the output is directed to CONSOLE, data items described with usage

NATIONAL are converted from national character representation to

EBCDIC. The conversion uses the EBCDIC code page that was specified in

the CODEPAGE compiler option when the source code was compiled.

National characters without EBCDIC counterparts are converted to default

substitution characters; no exception condition is indicated or raised.

If the output is not directed to CONSOLE, data items described with usage

NATIONAL are written without conversion and without data validation.

No other categories of data require conversion.

338 Enterprise COBOL for z/OS V4.1 Language Reference

Date fields are treated as nondates when specified in a DISPLAY statement.

That is, the DATE FORMAT is ignored and the content of the data item is

transferred to the output device as is.

DBCS data items, explicitly or implicitly defined as USAGE DISPLAY-1, are

transferred to the sending field of the output device. For proper results, the

output device must have the capability to recognize DBCS shift-out and

shift-in control characters.

Both DBCS and non-DBCS operands can be specified in a single DISPLAY

statement.

literal-1

Can be any literal or any figurative constant as specified in “Figurative

constants” on page 13. When a figurative constant is specified, only a

single occurrence of that figurative constant is displayed.

UPON

environment-name-1 or the environment name associated with

mnemonic-name-1 must be associated with an output device. See

“SPECIAL-NAMES paragraph” on page 116.

 A default logical record size is assumed for each device, as follows:

The system logical output device

120 characters

The system punch device

80 characters

The console

100 characters

A maximum logical record size is allowed for each device, as follows:

The system logical output device

255 characters

The system punch device

255 characters

The console

100 characters

On the system punch device, the last eight characters are used for

PROGRAM-ID name.

When the UPON phrase is omitted, the system’s logical output device is

assumed. The list of valid environment-names in a DISPLAY statement is

shown in Table 5 on page 118.

For details on routing DISPLAY output to stdout, see the Enterprise COBOL

Programming Guide.

WITH NO ADVANCING

When specified, the positioning of the output device will not be changed

in any way following the display of the last operand.

 If the WITH NO ADVANCING phrase is not specified, after the last

operand has been transferred to the output device, the positioning of the

output device will be reset to the leftmost position of the next line of the

device.

Chapter 21. Procedure division statements 339

Enterprise COBOL does not support output devices that are capable of

positioning to a specific character position. See the Enterprise COBOL

Programming Guide for more information about the DISPLAY statement.

The DISPLAY statement transfers the data in the sending field to the output

device. The size of the sending field is the total byte count of all operands listed. If

the output device is capable of receiving data of the same size as the data item

being transferred, then the data item is transferred. If the output device is not

capable of receiving data of the same size as the data item being transferred, then

one of the following applies:

v If the total count is less than the device maximum, the remaining rightmost

positions are padded with spaces.

v If the total count exceeds the maximum, as many records are written as are

needed to display all operands. Any operand being printed or displayed when

the end of a record is reached is continued in the next record.

If a DBCS operand must be split across multiple records, it will be split only on a

double-byte boundary.

Shift code insertion is required for splitting DBCS items. That is, when a DBCS

operand is split across multiple records, the shift-in character is inserted at the end

of the current record, and the shift-out character is inserted at the beginning of the

next record. A space is padded after the shift-in character, if necessary. These

inserted shift codes and spaces are included in the total byte count of the sending

data items.

After the last operand has been transferred to the output device, the device is reset

to the leftmost position of the next line of the device.

If a DBCS data item or literal is specified in a DISPLAY statement, the size of the

sending field is the total byte count of all operands listed, with each DBCS

character counted as two bytes, plus the necessary shift codes and spaces for

DBCS.

340 Enterprise COBOL for z/OS V4.1 Language Reference

DIVIDE statement

The DIVIDE statement divides one numeric data item into or by others and sets

the values of data items equal to the quotient and remainder.

Format 1: DIVIDE statement

��

DIVIDE

identifier-1

literal-1

INTO

�

identifier-2

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-DIVIDE
 ��

In format 1, the value of identifier-1 or literal-1 is divided into the value of

identifier-2, and the quotient is then stored in identifier-2. For each successive

occurrence of identifier-2, the division takes place in the left-to-right order in which

identifier-2 is specified.

Chapter 21. Procedure division statements 341

Format 2: DIVIDE statement with INTO and GIVING phrases

�� DIVIDE identifier-1

literal-1
 INTO identifier-2

literal-2
 �

�

�

GIVING

identifier-3

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-DIVIDE
 ��

In format 2, the value of identifier-1 or literal-1 is divided into the value of

identifier-2 or literal-2. The value of the quotient is stored in each data item

referenced by identifier-3.

Format 3: DIVIDE statement with BY and GIVING phrases

�� DIVIDE identifier-1

literal-1
 BY identifier-2

literal-2
 �

�

�

GIVING

identifier-3

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-DIVIDE
 ��

342 Enterprise COBOL for z/OS V4.1 Language Reference

In format 3, the value of identifier-1 or literal-1 is divided by the value of identifier-2

or literal-2. The value of the quotient is stored in each data item referenced by

identifier-3.

Format 4: DIVIDE statement with INTO and REMAINDER phrases

�� DIVIDE identifier-1

literal-1
 INTO identifier-2

literal-2
 �

� GIVING identifier-3

ROUNDED
 REMAINDER identifier-4 �

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-DIVIDE
 ��

In format 4, the value of identifier-1 or literal-1 is divided into identifier-2 or literal-2.

The value of the quotient is stored in identifier-3, and the value of the remainder is

stored in identifier-4.

Format 5: DIVIDE statement with BY and REMAINDER phrases

�� DIVIDE identifier-1

literal-1
 BY identifier-2

literal-2
 �

� GIVING identifier-3

ROUNDED
 REMAINDER identifier-4 �

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-DIVIDE
 ��

In format 5, the value of identifier-1 or literal-1 is divided by identifier-2 or literal-2.

The value of the quotient is stored in identifier-3, and the value of the remainder is

stored in identifier-4.

For all formats:

identifier-1, identifier-2

Must name an elementary numeric data item. identifier-1 and identifier-2

cannot be date fields.

Chapter 21. Procedure division statements 343

identifier-3, identifier-4

Must name an elementary numeric or numeric-edited item.

 If identifier-3 or identifier-4 is a date field, see “Storing arithmetic results

that involve date fields” on page 265 for details on how the quotient or

remainder is stored in identifier-3.

literal-1, literal-2

Must be a numeric literal.

In formats 1, 2, and 3, floating-point data items and literals can be used anywhere

that a numeric data item or literal can be specified.

In formats 4 and 5, floating-point data items or literals cannot be used.

ROUNDED phrase

For formats 1, 2, and 3, see “ROUNDED phrase” on page 296.

For formats 4 and 5, the quotient used to calculate the remainder is in an

intermediate field. The value of the intermediate field is truncated rather than

rounded.

REMAINDER phrase

The result of subtracting the product of the quotient and the divisor from the

dividend is stored in identifier-4. If identifier-3, the quotient, is a numeric-edited

item, the quotient used to calculate the remainder is an intermediate field that

contains the unedited quotient.

The REMAINDER phrase is invalid if the receiver or any of the operands is a

floating-point item.

Any subscripts for identifier-4 in the REMAINDER phrase are evaluated after the

result of the divide operation is stored in identifier-3 of the GIVING phrase.

SIZE ERROR phrases

For formats 1, 2, and 3, see “SIZE ERROR phrases” on page 296.

For formats 4 and 5, if a size error occurs in the quotient, no remainder calculation

is meaningful. Therefore, the contents of the quotient field (identifier-3) and the

remainder field (identifier-4) are unchanged.

If size error occurs in the remainder, the contents of the remainder field

(identifier-4) are unchanged.

In either of these cases, you must analyze the results to determine which situation

has actually occurred.

For information about the NOT ON SIZE ERROR phrase, see “SIZE ERROR

phrases” on page 296.

344 Enterprise COBOL for z/OS V4.1 Language Reference

END-DIVIDE phrase

This explicit scope terminator serves to delimit the scope of the DIVIDE statement.

END-DIVIDE turns a conditional DIVIDE statement into an imperative statement

that can be nested in another conditional statement. END-DIVIDE can also be used

with an imperative DIVIDE statement.

For more information, see “Delimited scope statements” on page 293.

Chapter 21. Procedure division statements 345

ENTRY statement

The ENTRY statement establishes an alternate entry point into a COBOL called

subprogram.

The ENTRY statement cannot be used in:

v Programs that specify a return value using the procedure division RETURNING

phrase. For details, see the discussion of the RETURNING phrase under “The

procedure division header” on page 255.

v Nested program. See “Nested programs” on page 89 for a description of nested

programs.

When a CALL statement that specifies the alternate entry point is executed in a

calling program, control is transferred to the next executable statement following

the ENTRY statement.

Format

�� ENTRY literal-1 �

�

�

�

USING

identifier-1

REFERENCE

BY

VALUE

BY

 . ��

literal-1

Must be an alphanumeric literal that conform to the rules for the formation

of a program-name in an outermost program (see “PROGRAM-ID

paragraph” on page 104).

 Must not match the program-ID or any other ENTRY literal in this

program.

Must not be a figurative constant.

Execution of the called program begins at the first executable statement following

the ENTRY statement whose literal corresponds to the literal or identifier specified

in the CALL statement.

The entry point name on the ENTRY statement can be affected by the PGMNAME

compiler option. For details, see the Enterprise COBOL Programming Guide.

USING phrase

For a discussion of the USING phrase, see “The procedure division header” on

page 255.

346 Enterprise COBOL for z/OS V4.1 Language Reference

EVALUATE statement

The EVALUATE statement provides a shorthand notation for a series of nested IF

statements. It can evaluate multiple conditions. The subsequent action depends on

the results of these evaluations.

Format

�� EVALUATE identifier-1

literal-1

expression-1

TRUE

FALSE

�

ALSO

identifier-2

literal-2

expression-2

TRUE

FALSE

 �

�

�

�

�

WHEN

phrase

1

imperative-statement-1

ALSO

phrase

2

�

�
WHEN OTHER

imperative-statement-2

END-EVALUATE
 ��

phrase 1:

 ANY

condition-1

TRUE

FALSE

identifier-3

NOT

literal-3

THROUGH

identifier-4

arithmetic-expression-1

THRU

literal-4

arithmetic-expression-2

phrase 2:

 ANY

condition-2

TRUE

FALSE

identifier-5

NOT

literal-5

THROUGH

identifier-6

arithmetic-expression-3

THRU

literal-6

arithmetic-expression-4

Chapter 21. Procedure division statements 347

Operands before the WHEN phrase

Are interpreted in one of two ways, depending on how they are specified:

v Individually, they are called selection subjects.

v Collectively, they are called a set of selection subjects.

Operands in the WHEN phrase

Are interpreted in one of two ways, depending on how they are specified:

v Individually, they are called selection objects

v Collectively, they are called a set of selection objects.

ALSO

Separates selection subjects within a set of selection subjects; separates

selection objects within a set of selection objects.

THROUGH and THRU

Are equivalent.

Two operands connected by a THRU phrase must be of the same class. The two

operands thus connected constitute a single selection object.

The number of selection objects within each set of selection objects must be equal

to the number of selection subjects.

Each selection object within a set of selection objects must correspond to the

selection subject having the same ordinal position within the set of selection

subjects, according to the following rules:

v Identifiers, literals, or arithmetic expressions appearing within a selection object

must be valid operands for comparison to the corresponding operand in the set

of selection subjects. For comparisons involving date fields, see “Comparison of

date fields” on page 279.

v condition-1, condition-2, or the word TRUE or FALSE appearing as a selection

object must correspond to a conditional expression or the word TRUE or FALSE

in the set of selection subjects.

v The word ANY can correspond to a selection subject of any type.

END-EVALUATE phrase

This explicit scope terminator serves to delimit the scope of the EVALUATE

statement. END-EVALUATE permits a conditional EVALUATE statement to be

nested in another conditional statement.

For more information, see “Delimited scope statements” on page 293.

Determining values

The execution of the EVALUATE statement operates as if each selection subject and

selection object were evaluated and assigned a numeric, alphanumeric, DBCS, or

national character value; a range of numeric, alphanumeric, DBCS, or national

character values; or a truth value. These values are determined as follows:

v Any selection subject specified by identifier-1, identifier-2, ... and any selection

object specified by identifier-3 or identifier-5 without the NOT or THRU phrase

are assigned the value and class of the data item that they reference.

v Any selection subject specified by literal-1, literal-2, ... and any selection object

specified by literal-3 or literal-5 without the NOT or THRU phrase are assigned

348 Enterprise COBOL for z/OS V4.1 Language Reference

the value and class of the specified literal. If literal-3 or literal-5 is the figurative

constant ZERO, QUOTE, or SPACE, the figurative constant is assigned the class

of the corresponding selection subject.

v Any selection subject in which expression-1, expression-2, ... is specified as an

arithmetic expression, and any selection object without the NOT or THRU phrase

in which arithmetic-expression-1 or arithmetic-expression-3 is specified, are assigned

numeric values according to the rules for evaluating an arithmetic expression.

(See “Arithmetic expressions” on page 261.)

v Any selection subject in which expression-1, expression-2, ... is specified as a

conditional expression, and any selection object in which condition-1 or condition-2

is specified, are assigned a truth value according to the rules for evaluating

conditional expressions. (See “Conditional expressions” on page 267.)

v Any selection subject or any selection object specified by the words TRUE or

FALSE is assigned a truth value. The truth value ″true″ is assigned to those

items specified with the word TRUE, and the truth value ″false″ is assigned to

those items specified with the word FALSE.

v Any selection object specified by the word ANY is not further evaluated.

v If the THRU phrase is specified for a selection object without the NOT phrase,

the range of values includes all values that, when compared to the selection

subject, are greater than or equal to the first operand and less than or equal to

the second operand according to the rules for comparison. If the first operand is

greater than the second operand, there are no values in the range.

v If the NOT phrase is specified for a selection object, the values assigned to that

item are all values not equal to the value, or range of values, that would have

been assigned to the item had the NOT phrase been omitted.

Comparing selection subjects and objects

The execution of the EVALUATE statement then proceeds as if the values assigned

to the selection subjects and selection objects were compared to determine whether

any WHEN phrase satisfies the set of selection subjects. This comparison proceeds

as follows:

1. Each selection object within the set of selection objects for the first WHEN

phrase is compared to the selection subject having the same ordinal position

within the set of selection subjects. One of the following conditions must be

satisfied if the comparison is to be satisfied:

a. If the items being compared are assigned numeric, alphanumeric, DBCS, or

national character values, or a range of numeric, alphanumeric, DBCS, or

national character values, the comparison is satisfied if the value, or one

value in the range of values, assigned to the selection object is equal to the

value assigned to the selection subject according to the rules for

comparison.

b. If the items being compared are assigned truth values, the comparison is

satisfied if the items are assigned identical truth values.

c. If the selection object being compared is specified by the word ANY, the

comparison is always satisfied, regardless of the value of the selection

subject.
2. If the above comparison is satisfied for every selection object within the set of

selection objects being compared, the WHEN phrase containing that set of

selection objects is selected as the one satisfying the set of selection subjects.

3. If the above comparison is not satisfied for every selection object within the set

of selection objects being compared, that set of selection objects does not satisfy

the set of selection subjects.

Chapter 21. Procedure division statements 349

4. This procedure is repeated for subsequent sets of selection objects in the order

of their appearance in the source text, until either a WHEN phrase satisfying

the set of selection subjects is selected or until all sets of selection objects are

exhausted.

Executing the EVALUATE statement

After the comparison operation is completed, execution of the EVALUATE

statement proceeds as follows:

v If a WHEN phrase is selected, execution continues with the first

imperative-statement-1 following the selected WHEN phrase. Note that multiple

WHEN statements are allowed for a single imperative-statement-1.

v If no WHEN phrase is selected and a WHEN OTHER phrase is specified,

execution continues with imperative-statement-2.

v If no WHEN phrase is selected and no WHEN OTHER phrase is specified,

execution continues with the next executable statement following the scope

delimiter.

v The scope of execution of the EVALUATE statement is terminated when

execution reaches the end of the scope of the selected WHEN phrase or WHEN

OTHER phrase, or when no WHEN phrase is selected and no WHEN OTHER

phrase is specified.

350 Enterprise COBOL for z/OS V4.1 Language Reference

EXIT statement

The EXIT statement provides a common end point for a series of procedures.

Format

�� paragraph-name . EXIT. ��

The EXIT statement enables you to assign a procedure-name to a given point in a

program.

The EXIT statement is treated as a CONTINUE statement. Any statements

following the EXIT statement are executed.

Chapter 21. Procedure division statements 351

EXIT METHOD statement

The EXIT METHOD statement specifies the end of an invoked method.

Format

�� EXIT METHOD. ��

You can specify EXIT METHOD only in the procedure division of a method. EXIT

METHOD causes the executing method to terminate, and control returns to the

invoking statement. If the containing method specifies the procedure division

RETURNING phrase, the value in the data item referred to by the RETURNING

phrase becomes the result of the method invocation.

If you need method-specific data to be in the last-used state on each invocation,

declare it in method working-storage. If you need method-specific data to be in the

initial state on each invocation, declare it in method local-storage.

If control reaches an EXIT METHOD statement in a method definition, control

returns to the point that immediately follows the INVOKE statement in the

invoking program or method. The state of the invoking program or method is

identical to that which existed at the time it executed the INVOKE statement.

The contents of data items and the contents of data files shared between the

invoking program or method and the invoked method could have changed. The

state of the invoked method is not altered except that the end of the ranges of all

PERFORM statements executed by the method are considered to have been

reached.

The EXIT METHOD statement does not have to be the last statement in a sequence

of imperative statements, but the statements following the EXIT METHOD will not

be executed.

When there is no next executable statement in an invoked method, an implicit

EXIT METHOD statement is executed.

352 Enterprise COBOL for z/OS V4.1 Language Reference

EXIT PROGRAM statement

The EXIT PROGRAM statement specifies the end of a called program and returns

control to the calling program.

You can specify EXIT PROGRAM only in the procedure division of a program.

EXIT PROGRAM must not be used in a declarative procedure in which the

GLOBAL phrase is specified.

Format

�� EXIT PROGRAM. ��

If control reaches an EXIT PROGRAM statement in a program that does not

possess the INITIAL attribute while operating under the control of a CALL

statement (that is, the CALL statement is active), control returns to the point in the

calling routine (program or method) immediately following the CALL statement.

The state of the calling routine is identical to that which existed at the time it

executed the CALL statement. The contents of data items and the contents of data

files shared between the calling and called routine could have been changed. The

state of the called program or method is not altered except that the ends of the

ranges of all executed PERFORM statements are considered to have been reached.

The execution of an EXIT PROGRAM statement in a called program that possesses

the INITIAL attribute is equivalent also to executing a CANCEL statement

referencing that program.

If control reaches an EXIT PROGRAM statement, and no CALL statement is active,

control passes through the exit point to the next executable statement.

If a subprogram specifies the procedure division RETURNING phrase, the value in

the data item referred to by the RETURNING phrase becomes the result of the

subprogram invocation.

The EXIT PROGRAM statement should be the last statement in a sequence of

imperative statements. When it is not, statements following the EXIT PROGRAM

will not be executed if a CALL statement is active.

When there is no next executable statement in a called program, an implicit EXIT

PROGRAM statement is executed.

Chapter 21. Procedure division statements 353

GOBACK statement

The GOBACK statement functions like the EXIT PROGRAM statement when it is

coded as part of a called program (or the EXIT METHOD statement when

GOBACK is coded as part of an invoked method) and like the STOP RUN

statement when coded in a main program.

The GOBACK statement specifies the logical end of a called program or invoked

method.

Format

�� GOBACK ��

A GOBACK statement should appear as the only statement or as the last of a

series of imperative statements in a sentence because any statements following the

GOBACK are not executed. GOBACK must not be used in a declarative procedure

in which the GLOBAL phrase is specified.

If control reaches a GOBACK statement while a CALL statement is active, control

returns to the point in the calling program or method immediately following the

CALL statement, as in the EXIT PROGRAM statement.

If control reaches a GOBACK statement while an INVOKE statement is active,

control returns to the point in the invoking program or method immediately

following the INVOKE statement, as in the EXIT METHOD statement.

In addition, the execution of a GOBACK statement in a called program that

possesses the INITIAL attribute is equivalent to executing a CANCEL statement

referencing that program.

The table below shows the action taken for the GOBACK statement in both a main

program and a subprogram.

 Termination

statement Main program Subprogram

GOBACK Returns to the calling program.

(Can be the system, which causes

the application to end.)

Returns to the calling program.

354 Enterprise COBOL for z/OS V4.1 Language Reference

GO TO statement

The GO TO statement transfers control from one part of the procedure division to

another. The types of GO TO statements are:

v Unconditional

v Conditional

v Altered

Unconditional GO TO

The unconditional GO TO statement transfers control to the first statement in the

paragraph or section identified by procedure-name, unless the GO TO statement

has been modified by an ALTER statement. (See “ALTER statement” on page 317.)

Format 1: unconditional GO TO statement

�� GO

TO
 procedure-name-1 ��

procedure-name-1

Must name a procedure or a section in the same procedure division as the

GO TO statement.

When the unconditional GO TO statement is not the last statement in a sequence

of imperative statements, the statements following the GO TO are not executed.

When a paragraph is referred to by an ALTER statement, the paragraph must

consist of a paragraph-name followed by an unconditional or altered GO TO

statement.

Conditional GO TO

The conditional GO TO statement transfers control to one of a series of procedures,

depending on the value of the data item referenced by identifier-1.

Format 2: conditional GO TO statement

��

GO

TO

�

procedure-name-1

DEPENDING

ON

identifier-1

��

procedure-name-1

Must be a procedure or a section in the same procedure division as the GO

TO statement. The number of procedure-names must not exceed 255.

Chapter 21. Procedure division statements 355

identifier-1

Must be a numeric elementary data item that is an integer. identifier-1

cannot be a windowed date field.

 If 1, control is transferred to the first statement in the procedure named by

the first occurrence of procedure-name-1.

If 2, control is transferred to the first statement in the procedure named by

the second occurrence of procedure-name-1, and so forth.

If the value of identifier is anything other than a value within the range of

1 through n (where n is the number of procedure-names specified in this

GO TO statement), no control transfer occurs. Instead, control passes to the

next statement in the normal sequence of execution.

Altered GO TO

The altered GO TO statement transfers control to the first statement of the

paragraph named in the ALTER statement.

You cannot specify the altered GO TO statement in the following:

v A program or method that has the RECURSIVE attribute

v A program compiled with the THREAD compiler option

An ALTER statement referring to the paragraph that contains the altered GO TO

statement should be executed before the GO TO statement is executed. Otherwise,

the GO TO statement acts like a CONTINUE statement.

Format 3: altered GO TO statement

�� paragraph-name . GO

TO
 . ��

When an ALTER statement refers to a paragraph, the paragraph can consist only of

the paragraph-name followed by an unconditional or altered GO TO statement.

MORE-LABELS GO TO

The GO TO MORE-LABELS statement can be specified only in a LABEL

declarative.

Format 4: MORE-LABELS GO TO statement

�� GO

TO
 MORE-LABELS ��

For more details, see the Enterprise COBOL Programming Guide.

356 Enterprise COBOL for z/OS V4.1 Language Reference

IF statement

The IF statement evaluates a condition and provides for alternative actions in the

object program, depending on the evaluation.

Format

��

IF

condition-1

THEN

�

statement-1

NEXT SENTENCE

�

�

�

ELSE

statement-2

NEXT SENTENCE

(1)

END-IF

 ��

Notes:

1 END-IF can be specified with statement-2 or NEXT SENTENCE.

condition-1

Can be any simple or complex condition, as described in “Conditional

expressions” on page 267.

statement-1, statement-2

Can be any one of the following:

v An imperative statement

v A conditional statement

v An imperative statement followed by a conditional statement

NEXT SENTENCE

The NEXT SENTENCE phrase transfers control to an implicit CONTINUE

statement immediately following the next separator period.

 When NEXT SENTENCE is specified with END-IF, control does not pass to

the statement following the END-IF. Instead, control passes to the

statement after the closest following period.

END-IF phrase

This explicit scope terminator serves to delimit the scope of the IF statement.

END-IF permits a conditional IF statement to be nested in another conditional

statement. For more information about explicit scope terminators, see “Delimited

scope statements” on page 293.

The scope of an IF statement can be terminated by any of the following:

v An END-IF phrase at the same level of nesting

v A separator period

Chapter 21. Procedure division statements 357

v If nested, by an ELSE phrase associated with an IF statement at a higher level of

nesting

Transferring control

If the condition tested is true, one of the following actions takes place:

v If statement-1 is specified, statement-1 is executed. If statement-1 contains a

procedure branching or conditional statement, control is transferred according to

the rules for that statement. If statement-1 does not contain a

procedure-branching statement, the ELSE phrase, if specified, is ignored, and

control passes to the next executable statement after the corresponding END-IF

or separator period.

v If NEXT SENTENCE is specified, control passes to an implicit CONTINUE

statement immediately preceding the next separator period.

If the condition tested is false, one of the following actions takes place:

v If ELSE statement-2 is specified, statement-2 is executed. If statement-2 contains a

procedure-branching or conditional statement, control is transferred, according

to the rules for that statement. If statement-2 does not contain a

procedure-branching or conditional statement, control is passed to the next

executable statement after the corresponding END-IF or separator period.

v If ELSE NEXT SENTENCE is specified, control passes to an implicit CONTINUE

STATEMENT immediately preceding the next separator period.

v If neither ELSE statement-2 nor ELSE NEXT SENTENCE is specified, control

passes to the next executable statement after the corresponding END-IF or

separator period.

When the ELSE phrase is omitted, all statements following the condition and

preceding the corresponding END-IF or the separator period for the sentence are

considered to be part of statement-1.

Nested IF statements

When an IF statement appears as statement-1 or statement-2, or as part of statement-1

or statement-2, that IF statement is nested.

Nested IF statements are considered to be matched IF, ELSE, and END-IF

combinations proceeding from left to right. Thus, any ELSE encountered is

matched with the nearest preceding IF that either has not been already matched

with an ELSE or has not been implicitly or explicitly terminated. Any END-IF

encountered is matched with the nearest preceding IF that has not been implicitly

or explicitly terminated.

358 Enterprise COBOL for z/OS V4.1 Language Reference

INITIALIZE statement

The INITIALIZE statement sets selected categories of data fields to predetermined

values. It is functionally equivalent to one or more MOVE statements.

Format

��

INITIALIZE

�

identifier-1

�

�

�

REPLACING

ALPHABETIC

BY

identifier-2

ALPHANUMERIC

DATA

literal-1

ALPHANUMERIC-EDITED

NATIONAL

NATIONAL-EDITED

NUMERIC

NUMERIC-EDITED

DBCS

EGCS

 ��

identifier-1

Receiving areas.

 identifier-1 must reference one of the following:

v An alphanumeric group item

v A national group item

v An elementary data item of one of the following categories:

– Alphabetic

– Alphanumeric

– Alphanumeric-edited

– DBCS

– External floating-point

– Internal floating-point

– National

– National-edited

– Numeric

– Numeric-edited
v A special register that is valid as a receiving operand in a MOVE

statement with identifer-2 or literal-1 as the sending operand.

When identifier-1 references a national group item, identifier-1 is processed

as a group item.

identifier-2, literal-1

Sending areas.

 When identifier-2 references a national group item, identifier-2 is processed

as an elementary data item of category national.

Chapter 21. Procedure division statements 359

identifier-2 must reference an elementary data item (or a national group

item treated as elementary) that is valid as a sending operand in a MOVE

statement with identifier-1 as the receiving operand.

literal-1 must be a literal that is valid as a sending operand in a MOVE

statement with identifier-1 as the receiving operand.

A subscripted item can be specified for identifier-1. A complete table can be

initialized only by specifying identifier-1 as a group that contains the complete

table.

Usage note: The data description entry for identifier-1 can contain the DEPENDING

phrase of the OCCURS clause. However, you cannot use the INITIALIZE statement

to initialize a variably-located item or a variable-length item.

The data description entry for identifier-1 must not contain a RENAMES clause.

Special registers can be specified for identifier-1 and identifier-2 only if they are

valid receiving fields or sending fields, respectively, for the implied MOVE

statements.

REPLACING phrase

When the REPLACING phrase is specified:

v identifier-2 must reference an item of a category that is valid as a sending

operand in a MOVE statement to an item of the corresponding category

specified in the REPLACING phrase.

v literal-1 must be of a category that is valid as a sending operand in a MOVE

statement to an item of the corresponding category specified in the REPLACING

phrase.

v A floating-point literal, a data item of category internal floating-point, or a data

item of category external floating point is treated as if it were in the NUMERIC

category.

v The same category cannot be repeated in a REPLACING phrase.

The keyword following the word REPLACING corresponds to a category of data

shown in “Classes and categories of data” on page 164.

When the REPLACING phrase is not specified:

v SPACE is the implied sending item for receiving items of category alphabetic,

alphanumeric, alphanumeric-edited, DBCS, national, or national-edited.

v ZERO is the implied sending item for receiving items of category numeric or

numeric-edited.

INITIALIZE statement rules

1. Whether identifier-1 references an elementary item, an alphanumeric group item,

or a national group item, all operations are performed as if a series of MOVE

statements had been written, each of which had an elementary item as a

receiving field.

If the REPLACING phrase is specified:

v If identifier-1 references an alphanumeric group item or a national group

item, any elementary item within the data item referenced by identifier-1 is

initialized only if it belongs to a category specified in the REPLACING

phrase.

360 Enterprise COBOL for z/OS V4.1 Language Reference

|

Initialization takes place as if the data item referenced by identifier-2 or literal-1

were the sending operand in an implicit MOVE statement to the receiving item.

All elementary receiving fields, including all occurrences of table items within

the group, are initialized, with the following exceptions:

v Index data items

v Object references

v Data items defined with USAGE IS POINTER, USAGE IS

FUNCTION-POINTER, or USAGE IS PROCEDURE-POINTER

v Elementary FILLER data items

v Items that are subordinate to identifier-1 and contain a REDEFINES clause, or

any items subordinate to such an item. (However, identifier-1 can contain a

REDEFINES clause or be subordinate to a redefining item.)
2. The areas referenced by identifier-1 are initialized in the order (left to right) of

the appearance of identifier-1 in the statement. Within a group receiving field,

affected elementary items are initialized in the order of their definition within

the group.

3. If identifier-1 occupies the same storage area as identifier-2, the result of the

execution of this statement is undefined, even if these operands are defined by

the same data description entry.

Chapter 21. Procedure division statements 361

INSPECT statement

The INSPECT statement examines characters or groups of characters in a data item

and does the following:

v Counts the occurrences of a specific character (alphanumeric, DBCS, or national)

in a data item (formats 1 and 3).

v Counts the occurrences of specific characters and fills all or portions of a data

item with specified characters, such as spaces or zeros (formats 2 and 3).

v Converts all occurrences of specific characters in a data item to user-supplied

replacement characters (format 4).

Format 1: INSPECT statement with TALLYING phrase

�� INSPECT identifier-1 TALLYING �

�

�

�

�

�

�

identifier-2

FOR

CHARACTERS

phrase

1

ALL

identifier-3

phrase

1

LEADING

literal-1

��

phrase 1:

 BEFORE

AFTER

INITIAL
 identifier-4

literal-2

362 Enterprise COBOL for z/OS V4.1 Language Reference

Format 2: INSPECT statement with REPLACING phrase

�� INSPECT identifier-1 REPLACING �

�

�

�

�

�

CHARACTERS BY

identifier-5

phrase

1

literal-3

ALL

identifier-3

BY

identifier-5

phrase

1

LEADING

literal-1

literal-3

FIRST

��

phrase 1:

 BEFORE

AFTER

INITIAL
 identifier-4

literal-2

Chapter 21. Procedure division statements 363

Format 3: INSPECT statement with TALLYING and REPLACING phrases

�� INSPECT identifier-1 TALLYING �

�

�

�

�

�

�

identifier-2

FOR

CHARACTERS

phrase

1

ALL

identifier-3

phrase

1

LEADING

literal-1

REPLACING

�

�

�

�

�

�

CHARACTERS BY

identifier-5

phrase

1

literal-3

ALL

identifier-3

BY

identifier-5

phrase

1

LEADING

literal-1

literal-3

FIRST

��

phrase 1:

 BEFORE

AFTER

INITIAL
 identifier-4

literal-2

Format 4: INSPECT statement with CONVERTING phrase

�� INSPECT identifier-1 CONVERTING identifier-6

literal-4
 TO identifier-7

literal-5
 �

�

�

BEFORE

identifier-4

AFTER

INITIAL

literal-2

��

identifier-1

Is the inspected item and can be any of the following:

364 Enterprise COBOL for z/OS V4.1 Language Reference

v An alphanumeric group item or a national group item

v An elementary data item described explicitly or implicitly with usage

DISPLAY, DISPLAY-1, or NATIONAL. The item can have any category

that is valid for the selected usage.

identifier-3, identifier-4, identifier-5, identifier-6, identifier-7

Must reference an elementary data item described explicitly or implicitly

with usage DISPLAY, DISPLAY-1, or NATIONAL.

literal-1, literal-2, literal-3, literal-4

Must be of category alphanumeric, DBCS, or national.

 When identifier-1 is of usage NATIONAL, literals must be of category

national.

When identifier-1 is of usage DISPLAY-1, literals must be of category DBCS.

When identifier-1 is of usage DISPLAY, literals must be of category

alphanumeric.

When identifier-1 is of usage DISPLAY-1 (DBCS) literals may be the

figurative constant SPACE.

When identifier-1 is of usage DISPLAY or NATIONAL, literals can be any

figurative constant that does not begin with the word ALL, as specified in

“Figurative constants” on page 13. The figurative constant is treated as a

one-character alphanumeric literal when identifier-1 is of usage DISPLAY,

and as a one-character national literal when identifier-1 is of usage

NATIONAL.

All identifiers (except identifier-2) must have the same usage as identifier-1. All

literals must have category alphanumeric, DBCS, or national when identifier-1 has

usage DISPLAY, DISPLAY-1, or NATIONAL, respectively.

None of the identifiers in an INSPECT statement can be windowed date fields.

TALLYING phrase (formats 1 and 3)

This phrase counts the occurrences of a specific character or special character in a

data item.

When identifier-1 is a DBCS data item, DBCS characters are counted; when

identifier-1 is a data item of usage national, national characters (encoding units) are

counted; otherwise, alphanumeric characters (bytes) are counted.

identifier-2

Is the count field, and must be an elementary integer item defined without

the symbol P in its PICTURE character-string.

 identifier-2 cannot be of category external floating-point.

You must initialize identifier-2 before execution of the INSPECT statement

begins.

Usage note: The count field can be an integer data item defined with usage

NATIONAL.

identifier-3 or literal-1

Is the tallying field (the item whose occurrences will be tallied).

CHARACTERS

When CHARACTERS is specified and neither the BEFORE nor AFTER

Chapter 21. Procedure division statements 365

phrase is specified, the count field (identifier-2) is increased by 1 for each

character (including the space character) in the inspected item (identifier-1).

Thus, execution of an INSPECT statement with the TALLYING phrase

increases the value in the count field by the number of character positions

in the inspected item.

ALL When ALL is specified and neither the BEFORE nor AFTER phrase is

specified, the count field (identifier-2) is increased by 1 for each

nonoverlapping occurrence of the tallying comparand (identifier-3 or

literal-1) in the inspected item (identifier-1), beginning at the leftmost

character position and continuing to the rightmost.

LEADING

When LEADING is specified and neither the BEFORE nor AFTER phrase is

specified, the count field (identifier-2) is increased by 1 for each contiguous

nonoverlapping occurrence of the tallying comparand in the inspected item

(identifier-1), provided that the leftmost such occurrence is at the point

where comparison began in the first comparison cycle for which the

tallying comparand is eligible to participate.

FIRST (format 3 only)

When FIRST is specified and neither the BEFORE nor AFTER phrase is

specified, the substitution field replaces the leftmost occurrence of the

subject field in the inspected item (identifier-1).

REPLACING phrase (formats 2 and 3)

This phrase fills all or portions of a data item with specified characters, such as

spaces or zeros.

identifier-3 or literal-1

Is the subject field, which identifies the characters to be replaced.

identifier-5 or literal-3

Is the substitution field (the item that replaces the subject field).

 The subject field and the substitution field must be the same length.

CHARACTERS BY

When the CHARACTERS BY phrase is used, the substitution field must be

one character position in length.

 When CHARACTERS BY is specified and neither the BEFORE nor AFTER

phrase is specified, the substitution field replaces each character in the

inspected item (identifier-1), beginning at the leftmost character position

and continuing to the rightmost.

ALL When ALL is specified and neither the BEFORE nor AFTER phrase is

specified, the substitution field replaces each nonoverlapping occurrence of

the subject field in the inspected item (identifier-1), beginning at the

leftmost character position and continuing to the rightmost.

LEADING

When LEADING is specified and neither the BEFORE nor AFTER phrase is

specified, the substitution field replaces each contiguous nonoverlapping

occurrence of the subject field in the inspected item (identifier-1), provided

that the leftmost such occurrence is at the point where comparison began

in the first comparison cycle for which this substitution field is eligible to

participate.

FIRST When FIRST is specified and neither the BEFORE nor AFTER phrase is

366 Enterprise COBOL for z/OS V4.1 Language Reference

specified, the substitution field replaces the leftmost occurrence of the

subject field in the inspected item (identifier-1).

When both the TALLYING and REPLACING phrases are specified (format 3), the

INSPECT statement is executed as if an INSPECT TALLYING statement (format 1)

were specified, immediately followed by an INSPECT REPLACING statement

(format 2).

The following replacement rules apply:

v When the subject field is a figurative constant, the one-character substitution

field replaces each character in the inspected item that is equivalent to the

figurative constant.

v When the substitution field is a figurative constant, the substitution field

replaces each nonoverlapping occurrence of the subject field in the inspected

item.

v When the subject and substitution fields are character-strings, the

character-string specified in the substitution field replaces each nonoverlapping

occurrence of the subject field in the inspected item.

v After replacement has occurred in a given character position in the inspected

item, no further replacement for that character position is made in this execution

of the INSPECT statement.

BEFORE and AFTER phrases (all formats)

This phrase narrows the set of items being tallied or replaced.

No more than one BEFORE phrase and one AFTER phrase can be specified for any

one ALL, LEADING, CHARACTERS, FIRST or CONVERTING phrase.

identifier-4 or literal-2

Is the delimiter.

 Delimiters are not counted or replaced.

INITIAL

The first occurrence of a specified item.

The BEFORE and AFTER phrases change how counting and replacing are done:

v When BEFORE is specified, counting or replacing of the inspected item

(identifier-1) begins at the leftmost character position and continues until the first

occurrence of the delimiter is encountered. If no delimiter is present in the

inspected item, counting or replacing continues toward the rightmost character

position.

v When AFTER is specified, counting or replacing of the inspected item

(identifier-1) begins with the first character position to the right of the delimiter

and continues toward the rightmost character position in the inspected item. If

no delimiter is present in the inspected item, no counting or replacement takes

place.

CONVERTING phrase (format 4)

This phrase converts all occurrences of a specific character or string of characters in

a data item (identifier-1) to user-supplied replacement characters.

identifier-6 or literal-4

Specifies the character string to be replaced.

Chapter 21. Procedure division statements 367

The same character must not appear more than once in either literal-4 or

identifier-6.

identifier-7 or literal-5

Specifies the replacing character string.

 The replacing character string (identifier-7 or literal-5) must be the same size

as the replaced character string (identifier-6 or literal-4).

A format-4 INSPECT statement is interpreted and executed as if a format-2

INSPECT statement had been written with a series of ALL phrases (one for each

character of literal-4), specifying the same identifier-1. The effect is as if each single

character of literal-4 were referenced as literal-1, and the corresponding single

character of literal-5 referenced as literal-3. Correspondence between the characters

of literal-4 and the characters of literal-5 is by ordinal position within the data item.

If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1,

the result of the execution of this statement is undefined, even if they are defined

by the same data description entry.

The following table describes the treatment of data items that can be used as an

operand in the INSPECT statement:

 Table 41. Treatment of the content of data items

When referenced by any identifier except

identifier-2, the content of each item of

category ... Is treated ...

Alphanumeric or alphabetic As an alphanumeric character string

DBCS As a DBCS character string

National As a national character string

Alphanumeric-edited, numeric-edited with

usage DISPLAY, or numeric with usage

DISPLAY (unsigned, external decimal)

As if redefined as category alphanumeric,

with the INSPECT statement referring to an

alphanumeric character string

National-edited, numeric-edited with usage

NATIONAL or numeric with usage

NATIONAL (unsigned, external decimal)

As if redefined as category national, with

the INSPECT statement referring to a

national character string

Numeric with usage DISPLAY (signed,

external decimal)

As if moved to an unsigned external decimal

item of usage DISPLAY with the same

length as the identifier and then redefined as

category alphanumeric, with the INSPECT

statement referring to an alphanumeric

character string

If the sign is a separate character, the byte

containing the sign is not examined and,

therefore, not replaced.

If the referenced item is identifier-1, the

string that results from any replacing or

converting action is copied back to

identifier-1.

368 Enterprise COBOL for z/OS V4.1 Language Reference

Table 41. Treatment of the content of data items (continued)

When referenced by any identifier except

identifier-2, the content of each item of

category ... Is treated ...

Numeric with usage NATIONAL (signed,

external decimal)

As if moved to an unsigned external decimal

item of usage NATIONAL with the same

length as the identifier and then redefined as

category national, with the INSPECT

statement referring to a national character

string

If the sign is a separate character, the byte

containing the sign is not examined and,

therefore, not replaced.

If the referenced item is identifier-1, the

string that results from any replacing or

converting action is copied back to

identifier-1.

External floating-point with usage DISPLAY As if redefined as category alphanumeric,

with the INSPECT statement referring to an

alphanumeric character-string

External floating-point with usage

NATIONAL

As if redefined as category national, with

the INSPECT statement referring to a

national character-string

Data flow

Except when the BEFORE or AFTER phrase is specified, inspection begins at the

leftmost character position of the inspected item (identifier-1) and proceeds

character-by-character to the rightmost position.

The comparands of the following phrases are compared in the left-to-right order in

which they are specified in the INSPECT statement:

v TALLYING (literal-1 or identifier-3, ...)

v REPLACING (literal-3 or identifier-5, ...)

If any identifier is subscripted or reference modified, or is a function-identifier, the

subscript, reference-modifier, or function is evaluated only once as the first

operation in the execution of the INSPECT statement.

For examples of TALLYING and REPLACING, see the Enterprise COBOL

Programming Guide.

Comparison cycle

The comparison cycle consists of the following actions:

1. The first comparand is compared with an equal number of leftmost contiguous

character positions in the inspected item. The comparand matches the inspected

characters only if both are equal, character-for-character.

If the CHARACTERS phrase is specified, an implied one-character comparand

is used. The implied character is always considered to match the inspected

character in the inspected item.

Chapter 21. Procedure division statements 369

2. If no match occurs for the first comparand and there are more comparands, the

comparison is repeated for each successive comparand until either a match is

found or all comparands have been acted upon.

3. Depending on whether a match is found, these actions are taken:

v If a match is found, tallying or replacing takes place as described in the

TALLYING and REPLACING phrase descriptions.

If there are more character positions in the inspected item, the first character

position following the rightmost matching character is now considered to be

in the leftmost character position. The process described in actions 1 and 2 is

then repeated.

v If no match is found and there are more character positions in the inspected

item, the first character position following the leftmost inspected character is

now considered to be in the leftmost character position. The process

described in actions 1 and 2 is then repeated.
4. Actions 1 through 3 are repeated until the rightmost character position in the

inspected item either has been matched or has been considered as being in the

leftmost character position.

When the BEFORE or AFTER phrase is specified, the comparison cycle is modified,

as described in “BEFORE and AFTER phrases (all formats)” on page 367.

Example of the INSPECT statement

The following figure shows an example of INSPECT statement results.

370 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 21. Procedure division statements 371

INVOKE statement

The INVOKE statement can create object instances of a COBOL or Java class and

can invoke a method defined in a COBOL or Java class.

Format

�� INVOKE identifier-1

class-name-1

SELF

SUPER

 literal-1

identifier-2

NEW

 �

�

�

�

USING

VALUE

identifier-3

BY

LENGTH OF

literal-2

 �

�
RETURNING

identifier-4
 �

�
EXCEPTION

imperative-statement-1

ON

 �

�
NOT

EXCEPTION

imperative-statement-2

ON

END-INVOKE
 ��

identifier-1

Must be defined as USAGE OBJECT REFERENCE. The contents of

identifier-1 specify the object on which a method is invoked.

 When identifier-1 is specified, either literal-1 or identifier-2 must be specified,

identifying the name of the method to be invoked.

The results of the INVOKE statement are undefined if either:

v identifier-1 does not contain a valid reference to an object.

v identifier-1 contains NULL.

class-name-1

When class-name-1 is specified together with literal-1 or identifier-2, the

INVOKE statement invokes a static or factory method of the class

referenced by class-name-1. literal-1 or identifier-2 specifies the name of the

method that is to be invoked. The method must be a static method if

class-name-1 is a Java class; the method must be a factory method if

class-name-1 is a COBOL class.

 When class-name-1 is specified together with NEW, the INVOKE statement

creates a new object that is an instance of class class-name-1.

372 Enterprise COBOL for z/OS V4.1 Language Reference

You must specify class-name-1 in the REPOSITORY paragraph of the

configuration section of the class or program that contains the INVOKE

statement.

SELF An implicit reference to the object used to invoke the currently executing

method. When SELF is specified, the INVOKE statement must appear

within the procedure division of a method.

SUPER

An implicit reference to the object that was used to invoke the currently

executing method. The resolution of the method to be invoked will ignore

any methods declared in the class definition of the currently executing

method and methods defined in any class derived from that class; thus the

method invoked will be one that is inherited from an ancestor class.

literal-1

The value of literal-1 is the name of the method to be invoked. The

referenced object must support the method identified by literal-1.

 literal-1 must be an alphanumeric literal or a national literal.

literal-1 is interpreted in a case-sensitive manner. The method name, the

number of arguments, and the data types of the arguments in the USING

phrase of the INVOKE statement are used to select the method with

matching signature that is supported by the object. The method can be

overloaded.

identifier-2

A data item of category alphabetic, alphanumeric, or national that at run

time contains the name of the method to be invoked. The referenced object

must support the method identified by identifier-2.

 If identifier-2 is specified, identifier-1 must be defined as USAGE OBJECT

REFERENCE without any optional phrases; that is, identifier-1 must be a

universal object reference.

The content of identifier-2 is interpreted in a case-sensitive manner. The

method name, the number of arguments, and the data types of the

arguments in the USING phrase of the INVOKE statement are used to

select the method with matching signature that is supported by the object.

The method can be overloaded.

identifier-2 cannot be a windowed date field.

NEW The NEW operand specifies that the INVOKE statement is to create a new

object instance of the class class-name-1. class-name-1 must be specified.

 When class-name-1 is implemented in Java, the USING phrase of the

INVOKE statement can be specified. The number of arguments and the

data types of the arguments in the USING phrase of the INVOKE

statement are used to select the Java constructor with matching signature

that is supported by the class. An object instance of class class-name-1 is

allocated, the selected constructor (or the default constructor) is executed,

and a reference to the created object is returned.

When class-name-1 is implemented in COBOL, the USING phrase of the

INVOKE statement must not be specified. An object instance of class

class-name-1 is allocated, instance data items are initialized to the values

specified in associated VALUE clauses, and a reference to the created object

is returned.

Chapter 21. Procedure division statements 373

When NEW is specified, you must also specify a RETURNING phrase as

described in “RETURNING phrase” on page 375.

USING phrase

The USING phrase specifies arguments that are passed to the target method. The

argument data types and argument linkage conventions are restricted to those

supported by Java. See “BY VALUE phrase” for details.

BY VALUE phrase

Arguments specified in an INVOKE statement must be passed BY VALUE.

The BY VALUE phrase specifies that the value of the argument is passed, not a

reference to the sending data item. The invoked method can modify the formal

parameter that corresponds to an argument passed by value, but changes do not

affect the argument because the invoked method has access only to a temporary

copy of the sending data item.

identifier-3

Must be an elementary data item in the data division. The data type of

identifier-3 must be one of the types supported for Java interoperation, as

listed in “Interoperable data types for COBOL and Java” on page 377.

Miscellaneous cases that are also supported as identifier-3 are listed in

“Miscellaneous argument types for COBOL and Java” on page 378, with

their corresponding Java type.

 See “Conformance requirements for arguments” for additional

requirements that apply to identifier-3.

literal-2

Must be of a type suitable for Java interoperation and must exactly match

the type of the corresponding parameter in the target method. Supported

literal forms are listed in “Miscellaneous argument types for COBOL and

Java” on page 378, with their corresponding Java type.

 literal-2 must not be a DBCS literal.

LENGTH OF identifier-3

Specifies that the length of identifier-3 is passed as an argument in the

LENGTH OF special register. A LENGTH OF special register passed BY

VALUE is treated as a PIC 9(9) binary value. For information about the

LENGTH OF special register, see “LENGTH OF” on page 18.

Conformance requirements for arguments

When identifier-3 is an object reference, the following rules apply:

v A class-name must be specified in the data description entry for that object

reference. That is, identifier-3 must not be a universal object reference.

v The specified class-name must reference a class that is exactly the class of the

corresponding parameter in the invoked method. That is, the class of identifier-3

must not be a subclass or a superclass of the corresponding parameter’s class.

When identifier-3 is not an object reference, the following rules apply:

v If the target method is implemented in COBOL, the description of identifier-3

must exactly match the description of the corresponding formal parameter in the

target method.

374 Enterprise COBOL for z/OS V4.1 Language Reference

v If the target method is implemented in Java, the description of identifier-3 must

correspond to the Java type of the formal parameter in the target method, as

specified in “Interoperable data types for COBOL and Java” on page 377.

Usage note: Adherence to conformance requirements for arguments is the

responsibility of the programmer. Conformance requirements are not verified by

the compiler.

RETURNING phrase

The RETURNING phrase specifies a data item that will contain the value returned

from the invoked method. You can specify the RETURNING phrase on the

INVOKE statement when invoking methods that are written in COBOL or Java.

identifier-4

The RETURNING data item. identifier-4:

v Must be defined in the data division

v Must not be reference-modified

v Is not changed if an EXCEPTION occurs

The data type of identifier-4 must be one of the types supported for Java

interoperation, as listed in “Interoperable data types for COBOL and Java”

on page 377.

See “Conformance requirements for the RETURNING item” for additional

requirements that apply to identifier-4.

If identifier-4 is specified and the target method is written in COBOL, the

target method must have a RETURNING phrase in its procedure division

header. When the target method returns, its return value is assigned to

identifier-4 using the rules for the SET statement if identifier-4 is described

with USAGE OBJECT REFERENCE; otherwise, the rules for the MOVE

statement are used.

The RETURNING data item is an output-only parameter. On entry to the called

method, the initial state of the PROCEDURE DIVISION RETURNING data item

has an undefined and unpredictable value. You must initialize the PROCEDURE

DIVISION RETURNING data item in the invoked method before you reference its

value. The value that is passed back to the invoker is the final value of the

PROCEDURE DIVISION RETURNING data item when the invoked method

returns.

See the Enterprise COBOL Programming Guide for discussion of local and global

object references as defined in Java. These attributes affect the life-time of object

references.

Usage note: The RETURN-CODE special register is not set by execution of

INVOKE statements.

Conformance requirements for the RETURNING item

For INVOKE statements that specify class-name-1 NEW, the RETURNING phrase is

required. The returning item must be one of the following:

v A universal object reference

v An object reference specifying class-name-1

v An object reference specifying a superclass of class-name-1

Chapter 21. Procedure division statements 375

For INVOKE statements without the NEW phrase, the RETURNING item specified

in the method invocation and in the corresponding target method must satisfy the

following requirements:

v The presence or absence of a return value must be the same on the INVOKE

statement and in the target method.

v If the RETURNING item is not an object reference, the following rules apply:

– If the target method is implemented in COBOL, the returning item in the

INVOKE statement and the RETURNING item in the target method must

have an identical data description entry.

– If the target method is implemented in Java, the returning item in the

INVOKE statement must correspond to the Java type of the method result, as

described in “Interoperable data types for COBOL and Java” on page 377.
v If the RETURNING item is an object reference, the RETURNING item specified

in the INVOKE statement must be an object reference typed exactly to the class

of the returning item specified in the target method. That is, the class of

identifier-4 must not be a subclass or a superclass of the class of the returning

item in the target method.

Usage note: Adherence to conformance requirements for returning items is the

responsibility of the programmer. Conformance requirements are not verified by

the compiler.

ON EXCEPTION phrase

An exception condition occurs when the identified object or class does not support

a method with a signature that matches the signature of the method specified in

the INVOKE statement. When an exception condition occurs, one of the following

actions occurs:

v If the ON EXCEPTION phrase is specified, control is transferred to

imperative-statement-1.

v If the ON EXCEPTION phrase is not specified, a severity-3 Language

Environment condition is raised at run time.

NOT ON EXCEPTION phrase

If an exception condition does not occur (that is, the identified method is

supported by the specified object), control is transferred to the invoked method.

After control is returned from the invoked method, control is then transferred:

1. To imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.

2. To the end of the INVOKE statement if the NOT ON EXCEPTION phrase is not

specified.

END-INVOKE phrase

This explicit scope terminator serves to delimit the scope of the INVOKE

statement. An INVOKE statement that is terminated by END-INVOKE, along with

its contained statements, becomes a unit that is treated as though it were an

imperative statement. It can be specified as an imperative statement in a

conditional statement; for example, in the exception phrase of another statement.

376 Enterprise COBOL for z/OS V4.1 Language Reference

Interoperable data types for COBOL and Java

A subset of COBOL data types can be used for interoperation between COBOL and

Java.

You can specify the interoperable data types as arguments in COBOL INVOKE

statements and as the RETURNING item in COBOL INVOKE statements. Similarly,

you can pass these types as arguments from a Java method invocation expression

and receive them as parameters in the USING phrase or as the RETURNING item

in the procedure division header of a COBOL method.

The following table lists the primitive Java types and the COBOL data types that

are supported for interoperation and the correspondence between them.

 Table 42. Interoperable Java and COBOL data types

Java data type COBOL data type

boolean1 Conditional variable and two condition-names of the form:

level-number data-name PIC X.

88 data-name-false VALUE X’00’.

88 data-name-true VALUE X’01’ THROUGH X’FF’.

byte Single-byte alphanumeric, PIC X or PIC A

short USAGE BINARY, COMP, COMP-4, or COMP-5, with a PICTURE

clause of the form S9(n), where 1 <= n <= 4

int USAGE BINARY, COMP, COMP-4, or COMP-5, with a PICTURE

clause of the form S9(n), where 5 <= n <= 9

long USAGE BINARY, COMP, COMP-4, or COMP-5, with a PICTURE

clause of the form S9(n), where 10 <= n <= 18

float2 USAGE COMP-1

double2 USAGE COMP-2

char Single-character national: PIC N USAGE NATIONAL

(an elementary data item of category national)

class types

(object references)

USAGE OBJECT REFERENCE class-name

1. Enterprise COBOL interprets a PIC X argument or parameter as the Java boolean type

only when the PIC X data item is followed by exactly two condition-names of the form

shown. In all other cases, a PIC X argument or parameter is interpreted as the Java byte

type.

2. Java floating-point data is represented in IEEE floating-point, while Enterprise COBOL

uses the IBM hexadecimal floating-point representation. The representations are

automatically converted as necessary when Java methods are invoked from COBOL and

when COBOL methods are invoked from Java.

In addition to the primitive types, Java Strings and arrays of Java primitive types

can interoperate with COBOL. This requires specialized mechanisms provided by

the COBOL runtime system and the Java Native Interface (JNI).

In a Java program, to pass array data to COBOL or to receive array data from

COBOL, you declare the array types using the usual Java syntax. In the COBOL

program, you declare the array as an object reference that contains an instance of

one of the special classes provided for array support. Conversion between the Java

and COBOL types is automatic at the time of method invocation.

Chapter 21. Procedure division statements 377

In a Java program, to pass String data to COBOL or to receive String data from

COBOL, you declare the array types using the usual Java syntax. In the COBOL

program, you declare the String as an object reference that contains an instance of

the special jstring class. Conversion between the Java and COBOL types is

automatic at the time of method invocation. The following table lists the Java array

and String data types and the corresponding special COBOL data types.

 Table 43. Interoperable COBOL and Java array and String data types

Java data type COBOL data type

boolean[] object reference jboooleanArray

byte[] object reference jbyteArray

short[] object reference jshortArray

int[] object reference jintArray

long[] object reference jlongArray

char[] object reference jcharArray

Object[] object reference jobjectArray

String object reference jstring

The following java array types are not currently supported:

 Java data type COBOL data type

float[] object reference jfloatArray

double[] object reference jdoubleArray

You must code an entry in the repository paragraph for each special class that you

want to use, just as you do for other classes. For example, to use jstring, code the

following entry:

Configuration Section.

Repository.

 Class jstring is "jstring".

Alternatively, for the String type, the COBOL repository entry can specify an

external class name of java.lang.String:

Repository.

 Class jstring is "java.lang.String".

Callable services are provided by the Java Native Interface (JNI) for manipulating

the COBOL objects of these types in COBOL. For example, callable services can be

used to set COBOL alphanumeric or national data into a jstring object or to extract

data from a jstring object. For details on use of JNI callable services for these and

other purposes, see the Enterprise COBOL Programming Guide.

For details on repository entries for class definitions, see “REPOSITORY

paragraph” on page 124. For examples, see the Enterprise COBOL Programming

Guide.

Miscellaneous argument types for COBOL and Java

Miscellaneous cases of COBOL items that can be used as arguments in an INVOKE

statement are listed in the following table along with the corresponding Java type.

378 Enterprise COBOL for z/OS V4.1 Language Reference

Table 44. COBOL miscellaneous argument types and corresponding Java types

COBOL argument

Corresponding Java

data type

Reference-modified item of usage display with length one byte

Reference-modified item of usage national with length one (either

an elementary data item of usage national or a national group

item)

char

SHIFT-IN and SHIFT-OUT special registers byte

LINAGE-COUNTER special register when its usage is binary int

LENGTH OF special register int

The following table lists COBOL literal types that can be used as arguments in an

INVOKE statement, with the corresponding Java type.

 Table 45. COBOL literal argument types and corresponding Java types

COBOL literal argument

Corresponding Java

data type

Fixed-point numeric literal with no decimal positions and with

nine digits or less

int

Floating-point numeric literal double

Figurative constant ZERO int

One-character alphanumeric literal byte

One-character national literal char

Symbolic character byte

Figurative constants SPACE, QUOTE, HIGH-VALUE, or

LOW-VALUE

byte

Chapter 21. Procedure division statements 379

MERGE statement

The MERGE statement combines two or more identically sequenced files (that is,

files that have already been sorted according to an identical set of

ascending/descending keys) on one or more keys and makes records available in

merged order to an output procedure or output file.

A MERGE statement can appear anywhere in the procedure division except in a

declarative section.

The MERGE statement is not supported for programs compiled with the THREAD

compiler option.

Format

��

MERGE

file-name-1

�

�

ASCENDING

data-name-1

ON

DESCENDING

KEY

�

�

SEQUENCE

alphabet-name-1

COLLATING

IS

USING

file-name-2

�

file-name-3

�

�

�

 OUTPUT PROCEDURE procedure-name-1

IS

THROUGH

procedure-name-2

THRU

GIVING

file-name-4

 ��

file-name-1

The name given in the SD entry that describes the records to be merged.

 No file-name can be repeated in the MERGE statement.

No pair of file-names in a MERGE statement can be specified in the same

SAME AREA, SAME SORT AREA, or SAME SORT-MERGE AREA clause.

However, any file-names in the MERGE statement can be specified in the

same SAME RECORD AREA clause.

When the MERGE statement is executed, all records contained in file-name-2,

file-name-3, ... , are accepted by the merge program and then merged according to

the keys specified.

380 Enterprise COBOL for z/OS V4.1 Language Reference

ASCENDING/DESCENDING KEY phrase

This phrase specifies that records are to be processed in an ascending or

descending sequence (depending on the phrase specified), based on the specified

merge keys.

data-name-1

Specifies a KEY data item on which the merge will be based. Each such

data-name must identify a data item in a record associated with file-name-1.

The data-names following the word KEY are listed from left to right in the

MERGE statement in order of decreasing significance without regard to

how they are divided into KEY phrases. The leftmost data-name is the

major key, the next data-name is the next most significant key, and so

forth.

 The following rules apply:

v A specific key data item must be physically located in the same position

and have the same data format in each input file. However, it need not

have the same data-name.

v If file-name-1 has more than one record description, the KEY data items

need be described in only one of the record descriptions.

v If file-name-1 contains variable-length records, all of the KEY data-items

must be contained within the first n character positions of the record,

where n equals the minimum records size specified for file-name-1.

v KEY data items must not contain an OCCURS clause or be subordinate

to an item that contains an OCCURS clause.

v KEY data items cannot be:

– Variably located

– Group items that contain variable-occurrence data items

– Category numeric described with usage NATIONAL (national decimal

type)

– Category external floating-point described with usage NATIONAL

(national floating-point)

– Category DBCS
v KEY data items can be qualified.

v KEY data items can be any of the following data categories:

– Alphabetic, alphanumeric, alphanumeric-edited

– Numeric (except numeric with usage NATIONAL)

– Numeric-edited (with usage DISPLAY or NATIONAL)

– Internal floating-point or display floating-point

– National or national-edited
v Key data items can be windowed date fields, under these conditions:

– The input files specified in the USING phrase can be sequential,

relative, or indexed, but must not have any record key, alternate

record key, or relative key in the same position as a windowed date

merge key. The file system does not support windowed date fields as

keys, so any ordering imposed by the file system could conflict with

the windowed date field support for the merge operation. In fact, if

the merge is to succeed, then input files must have already been

sorted into the same order as that specified by the MERGE statement,

including any windowed date ordering.

Chapter 21. Procedure division statements 381

– The GIVING phrase must not specify an indexed file, because the

(binary) ordering assumed or imposed by the file system conflicts

with the windowed date ordering provided in the output of the

merge. Attempting to write the windowed date merge output to such

an indexed file will either fail or reimpose binary ordering, depending

on how the file is accessed (as specified in the ACCESS MODE clause

in the file-control entry).

– If an alphanumeric windowed date field is specified as a KEY for a

MERGE statement, the collating sequence in effect for the merge

operation must be EBCDIC. The COLLATING SEQUENCE phrase of

the MERGE statement or, if this phrase is not specified, a PROGRAM

COLLATING SEQUENCE clause in the OBJECT-COMPUTER

paragraph, must not specify a collating sequence other than EBCDIC

or NATIVE.

If the MERGE statement meets these conditions, the merge operation

takes advantage of SORT Year 2000 features, provided that the execution

environment includes a sort product that supports century windowing.

A year-last windowed date field can be specified as a KEY for a MERGE

statement and can thereby exploit the corresponding century windowing

capability of the sort product.

For more information about using windowed date fields as KEY data

items, see the Enterprise COBOL Programming Guide.

The direction of the merge operation depends on the specification of the

ASCENDING or DESCENDING keywords as follows:

v When ASCENDING is specified, the sequence is from the lowest key value to

the highest key value.

v When DESCENDING is specified, the sequence is from the highest key value to

the lowest key value.

If the KEY data item is described with usage NATIONAL, the sequence of the KEY

values is based on the binary values of the national characters.

When the COLLATING SEQUENCE phrase is not specified, the key comparisons

are performed according to the rules for comparison of operands in a relation

condition. For details, see “General relation conditions” on page 271.

When the COLLATING SEQUENCE phrase is specified, the indicated collating

sequence is used for key data items of alphabetic, alphanumeric,

alphanumeric-edited, external floating-point, and numeric-edited categories. For all

other key data items, the comparisons are performed according to the rules for

comparison of operands in a relation condition.

COLLATING SEQUENCE phrase

This phrase specifies the collating sequence to be used in alphanumeric

comparisons for the KEY data items in this merge operation.

The COLLATING SEQUENCE phrase has no effect for keys that are not alphabetic

or alphanumeric.

alphabet-name-1

Must be specified in the ALPHABET clause of the SPECIAL-NAMES

paragraph. Any one of the alphabet-name clause phrases can be specified,

with the following results:

382 Enterprise COBOL for z/OS V4.1 Language Reference

STANDARD-1

The ASCII collating sequence is used for all alphanumeric

comparisons. (The ASCII collating sequence is shown in “US

English ASCII code page” on page 588.)

STANDARD-2

The 7-bit code defined in the International Reference Version of

ISO/IEC 646, 7-bit coded character set for information interchange is

used for all alphanumeric comparisons.

NATIVE

The EBCDIC collating sequence is used for all alphanumeric

comparisons. (The EBCDIC collating sequence is shown in

“EBCDIC collating sequence” on page 585.)

EBCDIC

The EBCDIC collating sequence is used for all alphanumeric

comparisons. (The EBCDIC collating sequence is shown in

“EBCDIC collating sequence” on page 585.)

literal The collating sequence established by the specification of literals in

the ALPHABET-NAME clause is used for all alphanumeric

comparisons.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM

COLLATING SEQUENCE clause (if specified) in the OBJECT-COMPUTER

paragraph identifies the collating sequence to be used. When both the

COLLATING SEQUENCE phrase of the MERGE statement and the PROGRAM

COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph are

omitted, the EBCDIC collating sequence is used.

USING phrase

file-name-2, file-name-3, ...

Specifies the input files.

During the MERGE operation, all the records on file-name-2, file-name-3, ... (that is,

the input files) are transferred to file-name-1. At the time the MERGE statement is

executed, these files must not be open. The input files are automatically opened,

read, and closed. If DECLARATIVE procedures are specified for these files for

input operations, the declaratives will be driven for errors if errors occur.

All input files must specify sequential or dynamic access mode and be described in

FD entries in the data division.

If file-name-1 contains variable-length records, the size of the records contained in

the input files (file-name-2, file-name-3, ...) must be neither less than the smallest

record nor greater than the largest record described for file-name-1. If file-name-1

contains fixed-length records, the size of the records contained in the input files

must not be greater than the largest record described for file-name-1. For more

information, see the Enterprise COBOL Programming Guide.

GIVING phrase

file-name-4, ...

Specifies the output files.

Chapter 21. Procedure division statements 383

When the GIVING phrase is specified, all the merged records in file-name-1 are

automatically transferred to the output files (file-name-4, ...).

All output files must specify sequential or dynamic access mode and be described

in FD entries in the data division.

If the output files (file-name-4, ...) contain variable-length records, the size of the

records contained in file-name-1 must be neither less than the smallest record nor

greater than the largest record described for the output files. If the output files

contain fixed-length records, the size of the records contained in file-name-1 must

not be greater than the largest record described for the output files. For more

information, see the Enterprise COBOL Programming Guide.

At the time the MERGE statement is executed, the output files (file-name-4, ...) must

not be open. The output files are automatically opened, read, and closed. If

DECLARATIVE procedures are specified for these files for output operations, the

declaratives will be driven for errors if errors occur.

OUTPUT PROCEDURE phrase

This phrase specifies the name of a procedure that is to select or modify output

records from the merge operation.

procedure-name-1

Specifies the first (or only) section or paragraph in the OUTPUT

PROCEDURE.

procedure-name-2

Identifies the last section or paragraph of the OUTPUT PROCEDURE.

The OUTPUT PROCEDURE can consist of any procedure needed to select, modify,

or copy the records that are made available one at time by the RETURN statement

in merged order from the file referenced by file-name-1. The range includes all

statements that are executed as the result of a transfer of control by CALL, EXIT,

GO TO, PERFORM, and XML PARSE statements in the range of the output

procedure. The range also includes all statements in declarative procedures that are

executed as a result of the execution of statements in the range of the output

procedure. The range of the output procedure must not cause the execution of any

MERGE, RELEASE, or SORT statement.

If an output procedure is specified, control passes to it after the file referenced by

file-name-1 has been sequenced by the MERGE statement. The compiler inserts a

return mechanism at the end of the last statement in the output procedure and

when control passes the last statement in the output procedure, the return

mechanism provides the termination of the merge and then passes control to the

next executable statement after the MERGE statement. Before entering the output

procedure, the merge procedure reaches a point at which it can select the next

record in merged order when requested. The RETURN statements in the output

procedure are the requests for the next record.

The OUTPUT PROCEDURE phrase is similar to a basic PERFORM statement. For

example, if you name a procedure in an OUTPUT PROCEDURE, that procedure is

executed during the merging operation just as if it were named in a PERFORM

statement. As with the PERFORM statement, execution of the procedure is

terminated after the last statement completes execution. The last statement in an

OUTPUT PROCEDURE can be the EXIT statement (see “EXIT statement” on page

351).

384 Enterprise COBOL for z/OS V4.1 Language Reference

MERGE special registers

SORT-CONTROL special register

You identify the sort control file (through which you can specify additional

options to the sort/merge function) with the SORT-CONTROL special

register.

 If you use a sort control file to specify control statements, the values

specified in the sort control file take precedence over those in the other

SORT special registers.

For information, see “SORT-CONTROL” on page 21.

SORT-MESSAGE special register

For information, see “SORT-MESSAGE” on page 22. The special register

SORT-MESSAGE is equivalent to an option control statement keyword in

the sort control file.

SORT-RETURN special register

For information, see “SORT-RETURN” on page 23.

Segmentation considerations

If a MERGE statement is coded in a fixed segment, any output procedure

referenced by that MERGE statement must be either totally within a fixed segment

or wholly contained in a single independent segment.

If a MERGE statement is coded in an independent segment, any output procedure

referenced by that MERGE statement must be either totally within a fixed segment

or wholly contained within the same independent segment as that MERGE

statement.

Chapter 21. Procedure division statements 385

MOVE statement

The MOVE statement transfers data from one area of storage to one or more other

areas.

Format 1: MOVE statement

��

MOVE

identifier-1

literal-1

TO

�

identifier-2

��

Format 2: MOVE statement with CORRESPONDING phrase

�� MOVE CORRESPONDING

CORR
 identifier-1 TO identifier-2 ��

CORR is an abbreviation for, and is equivalent to, CORRESPONDING.

identifier-1 , literal-1

The sending area.

identifier-2

The receiving areas. identifier-2 must not reference an intrinsic function.

When format 1 is specified:

v All identifiers can reference alphanumeric group items, national group items, or

elementary items.

v When one of identifier-1 or identifier-2 references a national group item and the

other operand references an alphanumeric group item, the national group is

processed as a group item; in all other cases, the national group item is

processed as an elementary data item of category national.

v The data in the sending area is moved into the data item referenced by each

identifier-2 in the order in which the identifier-2 data items are specified in the

MOVE statement. See “Elementary moves” on page 387 and “Group moves” on

page 392 below.

When format 2 is specified:

v Both identifiers must be group items.

v A national group item is processed as a group item (and not as an elementary

data item of category national).

v Selected items in identifier-1 are moved to identifier-2 according to the rules for

the “CORRESPONDING phrase” on page 294. The results are the same as if

each pair of CORRESPONDING identifiers were referenced in a separate MOVE

statement.

386 Enterprise COBOL for z/OS V4.1 Language Reference

Data items described with the following types of usage cannot be specified in a

MOVE statement:

v INDEX

v POINTER

v FUNCTION-POINTER

v PROCEDURE-POINTER

v OBJECT REFERENCE

A data item defined with a usage of INDEX, POINTER, FUNCTION-POINTER,

PROCEDURE-POINTER, or OBJECT REFERENCE can be part of an alphanumeric

group item that is referenced in a MOVE CORRESPONDING statement; however,

no movement of data from those data items takes place.

The evaluation of the length of the sending or receiving area can be affected by the

DEPENDING ON phrase of the OCCURS clause (see “OCCURS clause” on page

198).

If the sending field (identifier-1) is reference-modified or subscripted, or is an

alphanumeric or national function-identifier, the reference-modifier, subscript, or

function is evaluated only once, immediately before data is moved to the first of

the receiving operands.

Any length evaluation, subscripting, or reference-modification associated with a

receiving field (identifier-2) is evaluated immediately before the data is moved into

that receiving field.

For example, the result of the statement:

MOVE A(B) TO B, C(B).

is equivalent to:

MOVE A(B) TO TEMP.

MOVE TEMP TO B.

MOVE TEMP TO C(B).

where TEMP is defined as an intermediate result item. The subscript B has changed

in value between the time that the first move took place and the time that the final

move to C(B) is executed.

For further information about intermediate results, see the Enterprise COBOL

Programming Guide.

After execution of a MOVE statement, the sending fields contain the same data as

before execution.

Usage note: Overlapping operands in a MOVE statement can cause unpredictable

results.

Elementary moves

An elementary move is one in which the receiving item is an elementary data item

and the sending item is an elementary data item or a literal.

Valid operands belong to one of the following categories:

Chapter 21. Procedure division statements 387

v Alphabetic: includes data items of category alphabetic and the figurative

constant SPACE

v Alphanumeric: includes the following:

– Data items of category alphanumeric

– Alphanumeric functions

– Alphanumeric literals

– The figurative constant ALL alphanumeric-literal and all other figurative

constants (except NULL) when used in a context that requires an

alphanumeric sending item
v Alphanumeric-edited: includes data items of category alphanumeric-edited

v DBCS: includes data items of category DBCS, DBCS literals, and the figurative

constant ALL DBCS-literal.

v External floating-point: includes data items of category external floating point

(described with USAGE DISPLAY or USAGE NATIONAL) and floating-point

literals.

v Internal floating-point: includes data items of category internal floating-point

(defined as USAGE COMP-1 or USAGE COMP-2)

v National: includes the following:

– National group items (treated as elementary item of category national)

– Data items of category national

– National literals

– National functions

– Figurative constants ZERO, SPACE, QUOTE, and ALL national-literal when

used in a context that requires a national sending item
v National-edited: includes data items of category national-edited

v Numeric: includes the following:

– Data items of category numeric

– Numeric literals

– The figurative constant ZERO (when ZERO is moved to a numeric or

numeric-edited item).
v Numeric-edited: includes data items of category numeric-edited.

Elementary move rules

Any necessary conversion of data from one form of internal representation to

another takes place during the move, along with any specified editing in, or

de-editing implied by, the receiving item. The code page used for conversion to or

from alphanumeric characters is the one in effect for the CODEPAGE compiler

option when the source code was compiled.

The following rules outline the execution of valid elementary moves. When the

receiving field is:

Alphabetic:

v Alignment and any necessary space filling or truncation occur as described

under “Alignment rules” on page 168.

v If the size of the sending item is greater than the size of the receiving item,

excess characters on the right are truncated after the receiving item is filled.

Alphanumeric or alphanumeric-edited:

388 Enterprise COBOL for z/OS V4.1 Language Reference

v If the sending item is a national decimal integer item, the sending data is

converted to usage DISPLAY and treated as though it were moved to a

temporary data item of category alphanumeric with the same number of

character positions as the sending item. The resulting alphanumeric data item is

treated as the sending item.

v Alignment and any necessary space filling or truncation take place, as described

under “Alignment rules” on page 168.

v If the size of the sending item is greater than the size of the receiving item,

excess characters on the right are truncated after the receiving item is filled.

v If the initial sending item has an operational sign, the unsigned value is used. If

the operational sign occupies a separate character, that character is not moved,

and the size of the sending item is considered to be one less character than the

actual size.

DBCS:

v If the sending and receiving items are not the same size, the sending data is

either truncated on the right or padded with DBCS spaces on the right.

External floating-point:

v For a floating-point sending item, the floating-point value is converted to the

usage of the receiving external floating-point item (if different from the sending

item’s representation).

v For other sending items, the numeric value is treated as though that value were

converted to internal floating-point and then converted to the usage of the

receiving external floating-point item.

Internal floating-point:

v When the category of the sending operand is not internal floating-point, the

numeric value of the sending item is converted to internal floating-point format.

National or national-edited:

v If the representation of the sending item is not national characters, the sending

data is converted to national characters and treated as though it were moved to

a temporary data item of category national of a length not to cause truncation or

padding. The resulting category national data item is treated as the sending data

item.

v If the representation of the sending item is national characters, the sending data

is used without conversion.

v Alignment and any necessary space filling or truncation take place as described

under “Alignment rules” on page 168. The programmer is responsible for

ensuring that multiple encoding units that together form a graphic character are

not split by truncation.

v If the sending item has an operational sign, the unsigned value is used. If the

operational sign occupies a separate character, that character is not moved, and

the size of the sending item is considered to be one less character than the actual

size.

Numeric or numeric-edited:

v Except when zeros are replaced because of editing requirements, alignment by

decimal point and any necessary zero filling take place, as described under

“Alignment rules” on page 168.

Chapter 21. Procedure division statements 389

v If the receiving item is signed, the sign of the sending item is placed in the

receiving item, with any necessary sign conversion. If the sending item is

unsigned, a positive operational sign is generated for the receiving item.

v If the receiving item is unsigned, no operational sign is generated for the

receiving item and the absolute value of the sending item is used in the move.

v When the category of the sending item is alphanumeric, alphanumeric-edited,

national, or national-edited, the data is moved as if the sending item were

described as an unsigned integer.

v When the sending item is floating-point, the data is first converted to either a

binary or internal decimal representation and is then moved.

v When the receiving item is numeric-edited, editing takes place as defined by the

picture character string or BLANK WHEN ZERO clause associated with the

receiving item.

v When the sending item is numeric-edited, the compiler de-edits the sending data

to establish the unedited value of the numeric-edited item (this value can be

signed). The unedited numeric value is used in the move to the receiving

numeric or numeric-edited data item.

Usage notes:

1. If the receiving item is of category alphanumeric, alphanumeric-edited,

numeric-edited, national, or national-edited and the sending field is numeric,

any digit positions described with picture symbol P in the sending item are

considered to have the value zero. Each P is counted in the size of the sending

item.

2. If the receiving item is numeric and the sending field is an alphanumeric literal,

a national literal, or an ALL literal, all characters of the literal must be numeric

characters.

Valid and invalid elementary moves

The following table shows valid and invalid elementary moves for each category.

In the table:

v YES = Move is valid.

v NO = Move is invalid.

v Column headings indicate receiving item categories; row headings indicate

sending item categories.

 Table 46. Valid and invalid elementary moves

Alpha-

betic

Alpha-

numeric

Alpha-

numeric

edited Numeric

Numeric-

edited

External

floating-

point

Internal

floating-

point DBCS1

National,

national-

edited

Alphabetic and

SPACE sending

item

Yes Yes Yes No No No No No Yes

Alphanumeric

sending item2

Yes Yes Yes Yes3 Yes3 Yes8 Yes8 No Yes

Alphanumeric-
edited sending

item

Yes Yes Yes No No No No No Yes

Numeric integer

and ZERO

sending item4

No Yes Yes Yes Yes Yes Yes No Yes

390 Enterprise COBOL for z/OS V4.1 Language Reference

Table 46. Valid and invalid elementary moves (continued)

Alpha-

betic

Alpha-

numeric

Alpha-

numeric

edited Numeric

Numeric-

edited

External

floating-

point

Internal

floating-

point DBCS1

National,

national-

edited

Numeric

noninteger

sending item5

No No No Yes Yes Yes Yes No No

Numeric-edited

sending item

No Yes Yes Yes Yes Yes Yes No Yes

Floating-point

sending item6

No No No Yes Yes Yes Yes No No

DBCS sending

item7

No No No No No No No Yes Yes

National sending

item9

No No No Yes Yes Yes Yes No Yes

National-edited

sending item

No No No No No No No No Yes

1. Includes DBCS data items.

2. Includes alphanumeric literals.

3. Figurative constants and alphanumeric literals must consist only of numeric characters and will be treated as

numeric integer fields.

4. Includes integer numeric literals.

5. Includes noninteger numeric literals.

6. Includes floating-point literals, external floating-point data items (USAGE DISPLAY or USAGE NATIONAL),

and internal floating-point data items (USAGE COMP-1 or USAGE COMP-2).

7. Includes DBCS data-items, DBCS literals, and figurative constant SPACE.

8. Figurative constants and alphanumeric literals must consist only of numeric characters and will be treated as

numeric integer fields. The ALL literal cannot be used as a sending item.

9. Includes national data items, national literals, national functions, and figurative constants ZERO, SPACE,

QUOTE, and ALL national literal.

Moves involving date fields

If the sending item is specified as a year-last date field, then all receiving fields

must also be year-last date fields with the same date format as the sending item. If

a year-last date field is specified as a receiving item, then the sending item must be

either a nondate or a year-last date field with the same date format as the receiving

item. In both cases, the move is then performed as if all items were nondates.

Table 47 on page 392 describes the behavior of moves involving non-year-last date

fields. If the sending item is a date field, then the receiving item must be a

compatible date field. If the sending and receiving items are both date fields, then

they must be compatible; that is, they must have the same date format, except for

the year part, which can be windowed or expanded.

This table uses the following terms to describe the moves:

Normal

The move is performed with no date-sensitive behavior, as if the sending

and receiving items were both nondates.

Chapter 21. Procedure division statements 391

Expanded

The windowed date field sending item is treated as if it were first

converted to expanded form, as described under “Semantics of windowed

date fields” on page 191.

Invalid

The move is not allowed.

 Table 47. Moves involving date fields

Nondate receiving

item

Windowed date

field receiving item

Expanded date field

receiving item

Nondate sending item Normal Normal Normal

Windowed date field

sending item

Invalid Normal Expanded

Expanded date field

sending item

Invalid Normal1 Normal

1. A move from an expanded date field to a windowed date field is, in effect, a

″windowed″ move, because it truncates the century component of the expanded date

field. If the move is alphanumeric, it treats the receiving windowed date field as if its

data description specified JUSTIFIED RIGHT. This is true even if the receiving

windowed date field is a group item, for which the JUSTIFIED clause cannot be

specified.

Moves involving file record areas

The successful execution of an OPEN statement for a given file makes the record

area for that file available. You can move data to or from the record description

entries associated with a file only when the file is in the open status. Execution of

an implicit or explicit CLOSE statement removes a file from open status and makes

the record area unavailable.

Group moves

A group move is any move in which an alphanumeric group item is a sending

item or a receiving item, or both. The following are group moves:

v A move to an alphanumeric group item from one of the following:

– any elementary data item that is valid as a sending item in the MOVE

statement

– a national group item

– a literal

– a figurative constant
v A move from an alphanumeric group item to the following:

– any elementary data item that is valid as a receiving item in the MOVE

statement

– a national group item

– an alphanumeric group item

A group move is treated as though it were an alphanumeric-to-alphanumeric

elementary move, except that there is no conversion of data from one form of

internal representation to another. In a group move, the receiving area is filled

without consideration for the individual elementary items contained within either

the sending area or the receiving area, except as noted in the OCCURS clause. (See

392 Enterprise COBOL for z/OS V4.1 Language Reference

“OCCURS clause” on page 198.)

Chapter 21. Procedure division statements 393

MULTIPLY statement

The MULTIPLY statement multiplies numeric items and sets the values of data

items equal to the results.

Format 1: MULTIPLY statement

��

MULTIPLY

identifier-1

literal-1

BY

�

identifier-2

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-MULTIPLY
 ��

In format 1, the value of identifier-1 or literal-1 is multiplied by the value of

identifier-2; the product is then placed in identifier-2. For each successive occurrence

of identifier-2, the multiplication takes place in the left-to-right order in which

identifier-2 is specified.

394 Enterprise COBOL for z/OS V4.1 Language Reference

Format 2: MULTIPLY statement with GIVING phrase

�� MULTIPLY identifier-1

literal-1
 BY identifier-2

literal-2
 �

�

�

GIVING

identifier-3

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-MULTIPLY
 ��

In format 2, the value of identifier-1 or literal-1 is multiplied by the value of

identifier-2 or literal-2. The product is then stored in the data items referenced by

identifier-3.

For all formats:

identifier-1, identifier-2

Must name an elementary numeric item. identifier-1 and identifier-2 cannot

be date fields.

literal-1, literal-2

Must be a numeric literal.

For format-2:

identifier-3

Must name an elementary numeric or numeric-edited item.

 identifier-3, the GIVING phrase identifier, is the only identifier in the

MULTIPLY statement that can be a date field.

If identifier-3 names a date field, see “Storing arithmetic results that involve

date fields” on page 265 for details on how the product is stored in

identifier-3.

Floating-point data items and literals can be used anywhere a numeric data item or

literal can be specified.

When the ARITH(COMPAT) compiler option is in effect, the composite of operands

can contain a maximum of 30 digits. When the ARITH(EXTEND) compiler option

is in effect, the composite of operands can contain a maximum of 31 digits. For

Chapter 21. Procedure division statements 395

more information, see “Arithmetic statement operands” on page 298 and the

details on arithmetic intermediate results in the Enterprise COBOL Programming

Guide.

ROUNDED phrase

For formats 1 and 2, see “ROUNDED phrase” on page 296.

SIZE ERROR phrases

For formats 1 and 2, see “SIZE ERROR phrases” on page 296.

END-MULTIPLY phrase

This explicit scope terminator serves to delimit the scope of the MULTIPLY

statement. END-MULTIPLY permits a conditional MULTIPLY statement to be

nested in another conditional statement. END-MULTIPLY can also be used with an

imperative MULTIPLY statement.

For more information, see “Delimited scope statements” on page 293.

396 Enterprise COBOL for z/OS V4.1 Language Reference

OPEN statement

The OPEN statement initiates the processing of files. It also checks or writes labels,

or both.

Format 1: OPEN statement for sequential files

��

OPEN

�

�

�

�

�

INPUT

file-name-1

(1)

REVERSED

(1)

NO REWIND

WITH

OUTPUT

file-name-2

NO REWIND

WITH

I-O

file-name-3

EXTEND

file-name-4

��

Notes:

1 The REVERSED and WITH NO REWIND phrases are not valid for VSAM

files.

Format 2: OPEN statement for indexed and relative files

��

OPEN

�

�

�

�

�

INPUT

file-name-1

OUTPUT

file-name-2

I-O

file-name-3

EXTEND

file-name-4

��

Chapter 21. Procedure division statements 397

Format 3: OPEN statement for line-sequential files

��

OPEN

�

�

�

�

INPUT

file-name-1

OUTPUT

file-name-2

EXTEND

file-name-4

��

The phrases INPUT, OUTPUT, I-O, and EXTEND specify the mode to be used for

opening the file. At least one of the phrases INPUT, OUTPUT, I-O, or EXTEND

must be specified with the OPEN keyword. The INPUT, OUTPUT, I-O, and

EXTEND phrases can appear in any order.

INPUT

Permits input operations.

OUTPUT

Permits output operations. This phrase can be specified when the file is

being created.

 Do not specify OUTPUT for files that:

v Contain records. The file will be replaced by new data.

If the OUTPUT phrase is specified for a file that already contains

records, the data set must be defined as reusable and cannot have an

alternate index. The records in the file will be replaced by the new data

and any ALTERNATE RECORD KEY clause in the SELECT statement

will be ignored.

v Are defined with a DD dummy card. Unpredictable results can occur.

I-O Permits both input and output operations. The I-O phrase can be specified

only for files assigned to direct access devices.

 The I-O phrase is not valid for line-sequential files.

EXTEND

Permits output operations that append to or create a file.

 The EXTEND phrase is allowed for sequential access files only if the new

data is written in ascending sequence. The EXTEND phrase is allowed for

files that specify the LINAGE clause.

For QSAM files, do not specify the EXTEND phrase for a multiple file reel.

If you want to append to a file, but are unsure if the file exists, use the

SELECT OPTIONAL clause before opening the file in EXTEND mode. The

file will be created or appended to, depending on whether the file exists.

file-name-1, file-name-2, file-name-3, file-name-4

Designate a file upon which the OPEN statement is to operate. If more

than one file is specified, the files need not have the same organization or

access mode. Each file-name must be defined in an FD entry in the data

division and must not name a sort or merge file. The FD entry must be

equivalent to the information supplied when the file was defined.

398 Enterprise COBOL for z/OS V4.1 Language Reference

REVERSED

Valid only for sequential single-reel files. REVERSED is not valid for

VSAM files.

 If the concept of reels has no meaning for the storage medium (for

example, a direct access device), the REVERSED and NO REWIND phrases

do not apply.

NO REWIND

Valid only for sequential single-reel files. It is not valid for VSAM files.

General rules

v If a file opened with the INPUT phrase is an optional file that is not available,

the OPEN statement sets the file position indicator to indicate that an optional

input file is not available.

v Execution of an OPEN INPUT or OPEN I-O statement sets the file position

indicator:

– For indexed files, to the characters with the lowest ordinal position in the

collating sequence associated with the file.

– For sequential and relative files, to 1.
v When the EXTEND phrase is specified, the OPEN statement positions the file

immediately after the last record written in the file. (The record with the highest

prime record key value for indexed files or relative key value for relative files is

considered the last record.) Subsequent WRITE statements add records as if the

file were opened OUTPUT. The EXTEND phrase can be specified when a file is

being created; it can also be specified for a file that contains records, or that has

contained records that have been deleted.

v For VSAM files, if no records exist in the file, the file position indicator is set so

that the first format 1 READ statement executed results in an AT END condition.

v When NO REWIND is specified, the OPEN statement execution does not

reposition the file; prior to OPEN statement execution, the file must be

positioned at its beginning. When the NO REWIND phrase is specified (or when

both the NO REWIND and REVERSE phrases are omitted), file positioning is

specified with the LABEL parameter of the DD statement.

v When REVERSED is specified, OPEN statement execution positions the QSAM

file at its end. Subsequent READ statements make the data records available in

reversed order, starting with the last record.

When OPEN REVERSED is specified, the record format must be fixed.

v When the REVERSED, NO REWIND, or EXTEND phrases are not specified,

OPEN statement execution positions the file at its beginning.

If the PASSWORD clause is specified in the file-control entry, the password data

item must contain a valid password before the OPEN statement is executed. If a

valid password is not present, OPEN statement execution is unsuccessful.

Label records

If label records are specified for the file when the OPEN statement is executed, the

labels are processed according to the standard label conventions, as follows:

INPUT files

The beginning labels are checked.

OUTPUT files

The beginning labels are written.

Chapter 21. Procedure division statements 399

I-O files

The labels are checked; new labels are then written.

EXTEND files

The following procedures are executed:

v Beginning file labels are processed only if this is a single-volume file.

v Beginning volume labels of the last existing volume are processed as

though the file was being opened with the INPUT phrase.

v Existing ending file labels are processed as though the file was being

opened with the INPUT phrase; they are then deleted.

v Processing continues as if the file were opened as an OUTPUT file.

When label records are specified but not present, or are present but not specified,

execution of the OPEN statement is unpredictable.

OPEN statement notes

1. The successful execution of an OPEN statement determines the availability of

the file and results in that file being in open mode. A QSAM file is available if

it has a DD allocation and is physically present. A VSAM file is available if it

has a DD allocation, has been defined using VSAM access method services, and

contains records or has previously contained records. For more information

regarding file availability, see the Enterprise COBOL Programming Guide. The

following table shows the results of opening available and unavailable files.

 Table 48. Availability of a file

Opened as File is available File is unavailable

INPUT Normal open Open is unsuccessful.

INPUT (optional

file)

Normal open Normal open; the first read causes the at end

condition or the invalid key condition.

I-O Normal open Open is unsuccessful.

I-O (optional file) Normal open Open causes the file to be created.

OUTPUT Normal open; the

file contains no

records

Open causes the file to be created.

EXTEND Normal open Open is unsuccessful.

EXTEND (optional

file)

Normal open Open causes the file to be created.

2. The successful execution of the OPEN statement places the file in open status

and makes the associated record area available to the program.

3. The OPEN statement does not obtain or release the first data record.

4. You can move data to or from the record area only when the file is in open

status.

5. An OPEN statement must be successfully executed prior to the execution of

any of the permissible input-output statements, except a SORT or MERGE

statement with the USING or GIVING phrase. In the following table, an ’X’

indicates that the specified statement can be used with the open mode given at

the top of the column.

400 Enterprise COBOL for z/OS V4.1 Language Reference

|
|
|
|

Table 49. Permissible statements for sequential files

Statement

Input open

mode

Output open

mode I-O open mode

Extend open

mode

READ X X

WRITE X X

REWRITE X

In the following table, an ’X’ indicates that the specified statement, used in the

access mode given for that row, can be used with the open mode given at the top

of the column.

 Table 50. Permissible statements for indexed and relative files

File access

mode Statement

Input open

mode

Output open

mode

I-O open

mode

Extend open

mode

Sequential READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

In the following table, an ’X’ indicates that the specified statement can be used

with the open mode given at the top of the column.

 Table 51. Permissible statements for line-sequential files

Statement

Input open

mode

Output open

mode I-O open mode

Extend open

mode

READ X

WRITE X X

REWRITE

1. A file can be opened for INPUT, OUTPUT, I-O, or EXTEND (sequential and

line-sequential files only) in the same program. After the first OPEN statement

execution for a given file, each subsequent OPEN statement execution must be

preceded by a successful CLOSE file statement execution without the REEL or

UNIT phrase (for QSAM files only), or the LOCK phrase.

2. If the FILE STATUS clause is specified in the file-control entry, the associated

file status key is updated when the OPEN statement is executed.

Chapter 21. Procedure division statements 401

3. If an OPEN statement is issued for a file already in the open status, the

EXCEPTION/ERROR procedure (if specified) for this file is executed.

402 Enterprise COBOL for z/OS V4.1 Language Reference

PERFORM statement

The PERFORM statement transfers control explicitly to one or more procedures

and implicitly returns control to the next executable statement after execution of

the specified procedures is completed.

The PERFORM statement is:

An out-of-line PERFORM statement

When procedure-name-1 is specified.

An in-line PERFORM statement

When procedure-name-1 is omitted.

 An in-line PERFORM must be delimited by the END-PERFORM phrase.

The in-line and out-of-line formats cannot be combined. For example, if

procedure-name-1 is specified, imperative statements and the

END-PERFORM phrase must not be specified.

The PERFORM statement formats are:

v Basic PERFORM

v TIMES phrase PERFORM

v UNTIL phrase PERFORM

v VARYING phrase PERFORM

Basic PERFORM statement

The procedures referenced in the basic PERFORM statement are executed once,

and control then passes to the next executable statement following the PERFORM

statement.

Note: A PERFORM statement must not cause itself to be executed. A recursive

PERFORM statement can cause unpredictable results.

Format 1: Basic PERFORM statement

�� PERFORM procedure-name-1

THROUGH

procedure-name-2

THRU

END-PERFORM

imperative-statement-1

 ��

procedure-name-1 , procedure-name-2

Must name a section or paragraph in the procedure division.

 When both procedure-name-1 and procedure-name-2 are specified, if either is a

procedure-name in a declarative procedure, both must be procedure-names

in the same declarative procedure.

If procedure-name-1 is specified, imperative-statement-1 and the

END-PERFORM phrase must not be specified.

Chapter 21. Procedure division statements 403

If procedure-name-1 is omitted, imperative-statement-1 and the

END-PERFORM phrase must be specified.

imperative-statement-1

The statements to be executed for an in-line PERFORM

An in-line PERFORM statement functions according to the same general rules as

an otherwise identical out-of-line PERFORM statement, except that statements

contained within the in-line PERFORM are executed in place of the statements

contained within the range of procedure-name-1 (through procedure-name-2, if

specified). Unless specifically qualified by the word in-line or the word out-of-line,

all the rules that apply to the out-of-line PERFORM statement also apply to the

in-line PERFORM.

Whenever an out-of-line PERFORM statement is executed, control is transferred to

the first statement of the procedure named procedure-name-1. Control is always

returned to the statement following the PERFORM statement. The point from

which this control is returned is determined as follows:

v If procedure-name-1 is a paragraph name and procedure-name-2 is not specified, the

return is made after the execution of the last statement of the procedure-name-1

paragraph.

v If procedure-name-1 is a section name and procedure-name-2 is not specified, the

return is made after the execution of the last statement of the last paragraph in

the procedure-name-1 section.

v If procedure-name-2 is specified and it is a paragraph name, the return is made

after the execution of the last statement of the procedure-name-2 paragraph.

v If procedure-name-2 is specified and it is a section name, the return is made after

the execution of the last statement of the last paragraph in the procedure-name-2

section.

The only necessary relationship between procedure-name-1 and procedure-name-2 is

that a consecutive sequence of operations is executed, beginning at the procedure

named by procedure-name-1 and ending with the execution of the procedure named

by procedure-name-2.

PERFORM statements can be specified within the performed procedure. If there

are two or more logical paths to the return point, then procedure-name-2 can name a

paragraph that consists only of an EXIT statement; all the paths to the return point

must then lead to this paragraph.

When the performed procedures include another PERFORM statement, the

sequence of procedures associated with the embedded PERFORM statement must

be totally included in or totally excluded from the performed procedures of the

first PERFORM statement. That is, an active PERFORM statement whose execution

point begins within the range of performed procedures of another active

PERFORM statement must not allow control to pass through the exit point of the

other active PERFORM statement. However, two or more active PERFORM

statements can have a common exit.

The following figure illustrates valid sequences of execution for PERFORM

statements.

404 Enterprise COBOL for z/OS V4.1 Language Reference

When control passes to the sequence of procedures by means other than a

PERFORM statement, control passes through the exit point to the next executable

statement, as if no PERFORM statement referred to these procedures.

END-PERFORM

Delimits the scope of the in-line PERFORM statement. Execution of an in-line

PERFORM is completed after the last statement contained within it has been

executed.

PERFORM with TIMES phrase

The procedures referred to in the TIMES phrase PERFORM statement are executed

the number of times specified by the value in identifier-1 or integer-1. Control then

passes to the next executable statement following the PERFORM statement.

Format 2: PERFORM statement with TIMES phrase

�� PERFORM �

� procedure-name-1 identifier-1 TIMES

THROUGH

procedure-name-2

integer-1

THRU

identifier-1

TIMES

END-PERFORM

integer-1

imperative-statement-1

 ��

If procedure-name-1 is specified, imperative-statement-1 and the END-PERFORM

phrase must not be specified.

Chapter 21. Procedure division statements 405

identifier-1

Must name an integer item. identifier-1 cannot be a windowed date field.

 If identifier-1 is zero or a negative number at the time the PERFORM

statement is initiated, control passes to the statement following the

PERFORM statement.

After the PERFORM statement has been initiated, any change to identifier-1

has no effect in varying the number of times the procedures are initiated.

integer-1

Can be a positive signed integer.

PERFORM with UNTIL phrase

In the UNTIL phrase format, the procedures referred to are performed until the

condition specified by the UNTIL phrase is true. Control is then passed to the next

executable statement following the PERFORM statement.

Format 3: PERFORM statement with UNTIL phrase

�� PERFORM �

� procedure-name-1 phrase 1

THROUGH

procedure-name-2

THRU

phrase

1

END-PERFORM

imperative-statement-1

 ��

phrase 1:

TEST

BEFORE

WITH

AFTER

 UNTIL condition-1

If procedure-name-1 is specified, imperative-statement-1 and the END-PERFORM

phrase must not be specified.

condition-1

Can be any condition described under “Conditional expressions” on page

267. If the condition is true at the time the PERFORM statement is

initiated, the specified procedures are not executed.

 Any subscripting associated with the operands specified in condition-1 is

evaluated each time the condition is tested.

If the TEST BEFORE phrase is specified or assumed, the condition is tested before

any statements are executed (corresponds to DO WHILE).

If the TEST AFTER phrase is specified, the statements to be performed are

executed at least once before the condition is tested (corresponds to DO UNTIL).

406 Enterprise COBOL for z/OS V4.1 Language Reference

In either case, if the condition is true, control is transferred to the next executable

statement following the end of the PERFORM statement. If neither the TEST

BEFORE nor the TEST AFTER phrase is specified, the TEST BEFORE phrase is

assumed.

PERFORM with VARYING phrase

The VARYING phrase increases or decreases the value of one or more identifiers or

index-names, according to certain rules. (See “Varying phrase rules” on page 412.)

The format-4 VARYING phrase PERFORM statement can serially search an entire

seven-dimensional table.

Format 4: PERFORM statement with VARYING phrase

�� PERFORM procedure-name-1 phrase 1 phrase 2

THROUGH

procedure-name-2

THRU

phrase

1

imperative-statement-1

END-PERFORM

 ��

phrase 1:

TEST

BEFORE

WITH

AFTER

 VARYING identifier-2

index-name-1
 FROM identifier-3

index-name-2

literal-1

 BY �

� identifier-4

literal-2
 UNTIL condition-1

phrase 2:

�

AFTER

identifier-5

FROM

identifier-6

phrase

3

index-name-3

index-name-4

literal-3

phrase 3:

 BY identifier-7

literal-4
 UNTIL condition-2

If procedure-name-1 is specified, imperative-statement-1 and the END-PERFORM

phrase must not be specified. If procedure-name-1 is omitted, the AFTER phrase

must not be specified.

identifier-2 through identifier-7

Must name a numeric elementary item. These identifiers cannot be

windowed date fields.

Chapter 21. Procedure division statements 407

literal-1 through literal-4

Must represent a numeric literal.

condition-1, condition-2

Can be any condition described under “Conditional expressions” on page

267. If the condition is true at the time the PERFORM statement is

initiated, the specified procedures are not executed.

 After the conditions specified in the UNTIL phrase are satisfied, control is

passed to the next executable statement following the PERFORM

statement.

If any of the operands specified in condition-1 or condition-2 is subscripted,

reference modified, or is a function-identifier, the subscript,

reference-modifier, or function is evaluated each time the condition is

tested.

Floating-point data items and literals can be used anywhere a numeric data item or

literal can be specified.

When TEST BEFORE is indicated, all specified conditions are tested before the first

execution, and the statements to be performed are executed, if at all, only when all

specified tests fail. When TEST AFTER is indicated, the statements to be performed

are executed at least once, before any condition is tested.

If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST

BEFORE phrase is assumed.

Varying identifiers

The way in which operands are increased or decreased depends on the number of

variables specified. In the following discussion, every reference to identifier-n refers

equally to index-name-n (except when identifier-n is the object of the BY phrase).

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated each time the

content of the data item referenced by the identifier is set or augmented. If

identifier-3, identifier-4, identifier-6, or identifier-7 is subscripted, the subscripts are

evaluated each time the content of the data item referenced by the identifier is

used in a setting or an augmenting operation.

The following figure illustrates the logic of the PERFORM statement when an

identifier is varied with TEST BEFORE.

408 Enterprise COBOL for z/OS V4.1 Language Reference

The following figure illustrates the logic of the PERFORM statement when an

identifier is varied with TEST AFTER.

Varying two identifiers

PERFORM PROCEDURE-NAME-1 THROUGH PROCEDURE-NAME-2

 VARYING IDENTIFIER-2 FROM IDENTIFIER-3

 BY IDENTIFIER-4 UNTIL CONDITION-1

 AFTER IDENTIFIER-5 FROM IDENTIFIER-6

 BY IDENTIFIER-7 UNTIL CONDITION-2

1. identifier-2 and identifier-5 are set to their initial values, identifier-3 and

identifier-6, respectively.

2. condition-1 is evaluated as follows:

a. If it is false, steps 3 through 7 are executed.

b. If it is true, control passes directly to the statement following the PERFORM

statement.
3. condition-2 is evaluated as follows:

a. If it is false, steps 4 through 6 are executed.

b. If it is true, identifier-2 is augmented by identifier-4, identifier-5 is set to the

current value of identifier-6, and step 2 is repeated.
4. procedure-name-1 and procedure-name-2 are executed once (if specified).

5. identifier-5 is augmented by identifier-7.

6. Steps 3 through 5 are repeated until condition-2 is true.

7. Steps 2 through 6 are repeated until condition-1 is true.

At the end of PERFORM statement execution:

v identifier-5 contains the current value of identifier-6.

v identifier-2 has a value that exceeds the last-used setting by the increment or

decrement value (unless condition-1 was true at the beginning of PERFORM

statement execution, in which case, identifier-2 contains the current value of

identifier-3).

The following figure illustrates the logic of the PERFORM statement when two

identifiers are varied with TEST BEFORE.

Chapter 21. Procedure division statements 409

The following figure illustrates the logic of the PERFORM statement when two

identifiers are varied with TEST AFTER.

410 Enterprise COBOL for z/OS V4.1 Language Reference

Varying three identifiers

PERFORM PROCEDURE-NAME-1 THROUGH PROCEDURE-NAME-2

 VARYING IDENTIFIER-2 FROM IDENTIFIER-3

 BY IDENTIFIER-4 UNTIL CONDITION-1

 AFTER IDENTIFIER-5 FROM IDENTIFIER-6

 BY IDENTIFIER-7 UNTIL CONDITION-2

 AFTER IDENTIFIER-8 FROM IDENTIFIER-9

 BY IDENTIFIER-10 UNTIL CONDITION-3

The actions are the same as those for two identifiers, except that identifier-8 goes

through the complete cycle each time that identifier-5 is augmented by identifier-7,

which, in turn, goes through a complete cycle each time that identifier-2 is varied.

At the end of PERFORM statement execution:

v identifier-5 and identifier-8 contain the current values of identifier-6 and identifier-9,

respectively.

v identifier-2 has a value exceeding its last-used setting by one

increment/decrement value (unless condition-1 was true at the beginning of

PERFORM statement execution, in which case identifier-2 contains the current

value of identifier-3).

Varying more than three identifiers

You can produce analogous PERFORM statement actions to the example above

with the addition of up to four AFTER phrases.

Chapter 21. Procedure division statements 411

Varying phrase rules

No matter how many variables are specified, the following rules apply:

v In the VARYING or AFTER phrases, when an index-name is specified:

– The index-name is initialized and incremented or decremented according to

the rules under “INDEX phrase” on page 239. (See also “SET statement” on

page 434.)

– In the associated FROM phrase, an identifier must be described as an integer

and have a positive value; a literal must be a positive integer.

– In the associated BY phrase, an identifier must be described as an integer; a

literal must be a nonzero integer.
v In the FROM phrase, when an index-name is specified:

– In the associated VARYING or AFTER phrase, an identifier must be described

as an integer. It is initialized as described in the SET statement.

– In the associated BY phrase, an identifier must be described as an integer and

have a nonzero value; a literal must be a nonzero integer.
v In the BY phrase, identifiers and literals must have nonzero values.

v Changing the values of identifiers or index-names in the VARYING, FROM, and

BY phrases during execution changes the number of times the procedures are

executed.

412 Enterprise COBOL for z/OS V4.1 Language Reference

READ statement

For sequential access, the READ statement makes the next logical record from a file

available to the object program. For random access, the READ statement makes a

specified record from a direct-access file available to the object program.

When the READ statement is executed, the associated file must be open in INPUT

or I-O mode.

Format 1: READ statement for sequential retrieval

�� READ file-name-1

NEXT

RECORD

INTO

identifier-1
 �

�
END

imperative-statement-1

AT

 �

�
NOT

END

imperative-statement-2

AT

END-READ
 ��

Format 2: READ statement for random retrieval

�� READ file-name-1

RECORD

INTO

identifier-1
 �

�
KEY

data-name-1

IS

 �

�
INVALID

imperative-statement-3

KEY

 �

�
NOT INVALID

imperative-statement-4

KEY

END-READ
 ��

file-name-1

Must be defined in a data division FD entry.

NEXT RECORD

Reads the next record in the logical sequence of records. NEXT is optional

when the access mode is sequential, and has no effect on READ statement

execution.

 You must specify the NEXT RECORD phrase to retrieve records

sequentially from files in dynamic access mode.

Chapter 21. Procedure division statements 413

INTO identifier-1

identifier-1 is the receiving field.

 identifier-1 must be a valid receiving field for the selected sending record

description entry in accordance with the rules of the MOVE statement.

The record areas associated with file-name-1 and identifier-1 must not be the

same storage area.

When there is only one record description associated with file-name-1 or all

the records and the data item referenced by identifier-1 describe an

elementary alphanumeric item or an alphanumeric group item, the result

of the execution of a READ statement with the INTO phrase is equivalent

to the application of the following rules in the order specified:

v The execution of the same READ statement without the INTO phrase.

v The current record is moved from the record area to the area specified

by identifier-1 according to the rules for the MOVE statement without the

CORRESPONDING phrase. The size of the current record is determined

by rules specified for the RECORD clause. If the file description entry

contains a RECORD IS VARYING clause, the implied move is a group

move. The implied MOVE statement does not occur if the execution of

the READ statement was unsuccessful. Any subscripting or reference

modification associated with identifier-1 is evaluated after the record has

been read and immediately before it is moved to the data item. The

record is available in both the record area and the data item referenced

by identifier-1.

If identifier-1 is a date field, then the implied MOVE statement is

performed according to the behavior described under “Moves involving

date fields” on page 391.

When there are multiple record descriptions associated with file-name-1 and

they do not all describe an alphanumeric group item or elementary

alphanumeric item, the following rules apply:

1. If the file referenced by file-name-1 is described as containing

variable-length records, or as a QSAM file with RECORDING MODE

’S’ or ’U’, a group move will take place.

2. If the file referenced by file-name-1 is described as containing

fixed-length records, a move will take place according to the rules for a

MOVE statement using, as a sending field description, the record that

specifies the largest number of character positions. If more than one

such record exists, the sending field record selected will be the one

among those records that appears first under the description of

file-name-1.

KEY IS phrase

The KEY IS phrase can be specified only for indexed files. data-name-1 must

identify a record key associated with file-name-1. data-name-1 can be qualified; it

cannot be subscripted.

AT END phrases

For sequential access, both the AT END phrase and an applicable

EXCEPTION/ERROR procedure can be omitted.

414 Enterprise COBOL for z/OS V4.1 Language Reference

For information about at-end condition processing, see “AT END condition” on

page 416.

INVALID KEY phrases

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure

can be omitted.

For information about INVALID KEY phrase processing, see “Invalid key

condition” on page 304.

END-READ phrase

This explicit scope terminator serves to delimit the scope of the READ statement.

END-READ permits a conditional READ statement to be nested in another

conditional statement. END-READ can also be used with an imperative READ

statement. For more information, see “Delimited scope statements” on page 293.

Multiple record processing

If more than one record description entry is associated with file-name-1, those

records automatically share the same storage area; that is, they are implicitly

redefined. After a READ statement is executed, only those data items within the

range of the current record are replaced; data items stored beyond that range are

undefined. The following figure illustrates this concept. If the range of the current

record exceeds the record description entries for file-name-1, the record is truncated

on the right to the maximum size. In either of these cases, the READ statement is

successful and the I-O status is set to 04 indicating a record length conflict has

occurred.

Sequential access mode

Format 1 must be used for all files in sequential access mode.

Chapter 21. Procedure division statements 415

Execution of a format-1 READ statement retrieves the next logical record from the

file. The next record accessed is determined by the file organization.

Sequential files

The NEXT RECORD is the next record in a logical sequence of records. The NEXT

phrase need not be specified; it has no effect on READ statement execution.

If SELECT OPTIONAL is specified in the file-control entry for this file, and the file

is unavailable during this execution of the object program, execution of the first

READ statement causes an at-end condition; however, since no file is available, the

system-defined end-of-file processing is not performed.

AT END condition:

If the file position indicator indicates that no next logical record exists, or that an

optional input file is not available, the following occurs in the order specified:

1. A value derived from the setting of the file position indicator is placed into the

I-O status associated with file-name-1 to indicate the at-end condition.

2. If the AT END phrase is specified in the statement causing the condition,

control is transferred to imperative-statement-1 in the AT END phrase. Any USE

AFTER STANDARD EXCEPTION procedure associated with file-name-1 is not

executed.

3. If the AT END phrase is not specified and an applicable USE AFTER

STANDARD EXCEPTION procedure exists, the procedure is executed. Return

from that procedure is to the next executable statement following the end of the

READ statement.

Both the AT END phrase and an applicable EXCEPTION/ERROR procedure

can be omitted.

When the at-end condition occurs, execution of the READ statement is

unsuccessful. The contents of the associated record area are undefined and the

file position indicator is set to indicate that no valid next record has been

established.

For QSAM files, attempts to access or move data into the record area after an

unsuccessful read can result in a protection exception.

If an at-end condition does not occur during the execution of a READ statement,

the AT END phrase is ignored, if specified, and the following actions occur:

1. The file position indicator is set and the I-O status associated with file-name-1 is

updated.

2. If an exception condition that is not an at-end condition exists, control is

transferred to the end of the READ statement after the execution of any USE

AFTER STANDARD EXCEPTION procedure applicable to file-name-1.

If no USE AFTER STANDARD EXCEPTION procedure is specified, control is

transferred to the end of the READ statement or to imperative-statement-2, if

specified.

3. If no exception condition exists, the record is made available in the record area

and any implicit move resulting from the presence of an INTO phrase is

executed. Control is transferred to the end of the READ statement or to

imperative-statement-2, if specified. In the latter case, execution continues

according to the rules for each statement specified in imperative-statement-2. If a

procedure branching or conditional statement which causes explicit transfer of

control is executed, control is transferred in accordance with the rules for that

416 Enterprise COBOL for z/OS V4.1 Language Reference

statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the READ statement.

After the unsuccessful execution of a READ statement, the contents of the

associated record area are undefined and the file position indicator is set to

indicate that no valid next record has been established. Attempts to access or move

data into the record area after an unsuccessful read can result in a protection

exception.

Multivolume QSAM files

If end-of-volume is recognized during execution of a READ statement, and logical

end-of-file has not been reached, the following actions are taken:

v The standard ending volume label procedure is executed.

v A volume switch occurs.

v The standard beginning volume label procedure is executed.

v The first data record of the next volume is made available.

Indexed or relative files

The NEXT RECORD is the next logical record in the key sequence.

For indexed files, the key sequence is the sequence of ascending values of the

current key of reference. For relative files, the key sequence is the sequence of

ascending values of relative record numbers for records that exist in the file.

Before the READ statement is executed, the file position indicator must have been

set by a successful OPEN, START, or READ statement. When the READ statement

is executed, the record indicated by the file position indicator is made available if it

is still accessible through the path indicated by the file position indicator.

If the record is no longer accessible (because it has been deleted, for example), the

file position indicator is updated to point to the next existing record in the file, and

that record is made available.

For files in sequential access mode, the NEXT phrase need not be specified.

For files in dynamic access mode, the NEXT phrase must be specified for

sequential record retrieval.

AT END condition:

This condition exists when the file position indicator indicates that no next logical

record exists or that an optional input file is not available. The same procedure

occurs as for sequential files (see “AT END condition” on page 416).

If neither an at-end nor an invalid key condition occurs during the execution of a

READ statement, the AT END or the INVALID KEY phrase is ignored, if specified.

The same actions occur as when the at-end condition does not occur with

sequential files (see “AT END condition” on page 416).

Sequentially accessed indexed files:

When an ALTERNATE RECORD KEY with DUPLICATES is the key of reference,

file records with duplicate key values are made available in the order in which

they were placed in the file.

Chapter 21. Procedure division statements 417

Sequentially accessed relative files:

If the RELATIVE KEY clause is specified for this file, READ statement execution

updates the RELATIVE KEY data item to indicate the relative record number of the

record being made available.

Random access mode

Format 2 must be specified for indexed and relative files in random access mode,

and also for files in the dynamic access mode when record retrieval is random.

Execution of the READ statement depends on the file organization, as explained in

the following sections.

Indexed files

Execution of a format-2 READ statement causes the value of the key of reference to

be compared with the value of the corresponding key data item in the file records,

until the first record having an equal value is found. The file position indicator is

positioned to this record, which is then made available. If no record can be so

identified, an INVALID KEY condition exists, and READ statement execution is

unsuccessful. (See “Invalid key condition” on page 304 for details of the invalid

key condition.)

If the KEY phrase is not specified, the prime RECORD KEY becomes the key of

reference for this request. When dynamic access is specified, the prime RECORD

KEY is also used as the key of reference for subsequent executions of sequential

READ statements, until a different key of reference is established.

When the KEY phrase is specified, data-name-1 becomes the key of reference for

this request. When dynamic access is specified, this key of reference is used for

subsequent executions of sequential READ statements, until a different key of

reference is established.

Relative files

Execution of a format-2 READ statement sets the file position indicator pointer to

the record whose relative record number is contained in the RELATIVE KEY data

item, and makes that record available.

If the file does not contain such a record, the INVALID KEY condition exists, and

READ statement execution is unsuccessful. (See “Invalid key condition” on page

304 for details of the invalid key condition).

The KEY phrase must not be specified for relative files.

Dynamic access mode

For files with indexed or relative organization, dynamic access mode can be

specified in the file-control entry. In dynamic access mode, either sequential or

random record retrieval can be used, depending on the format used.

Format 1 with the NEXT phrase must be specified for sequential retrieval. All other

rules for sequential access apply.

418 Enterprise COBOL for z/OS V4.1 Language Reference

READ statement notes:

v If the FILE-STATUS clause is specified in the file-control entry, the associated file

status key is updated when the READ statement is executed.

v After unsuccessful READ statement execution, the contents of the associated

record area and the value of the file position indicator are undefined. Attempts

to access or move data into the record area after an unsuccessful read can result

in a protection exception.

Chapter 21. Procedure division statements 419

RELEASE statement

The RELEASE statement transfers records from an input/output area to the initial

phase of a sorting operation.

The RELEASE statement can be used only within the range of an INPUT

PROCEDURE associated with a SORT statement.

Format: RELEASE

�� RELEASE record-name-1

FROM

identifier-1
 ��

Within an INPUT PROCEDURE, at least one RELEASE statement must be

specified.

When the RELEASE statement is executed, the current contents of record-name-1 are

placed in the sort file. This makes the record available to the initial phase of the

sorting operation.

record-name-1

Must specify the name of a logical record in a sort-merge file description

entry (SD). record-name-1 can be qualified.

FROM phrase

The result of the execution of the RELEASE statement with the FROM

identifier-1 phrase is equivalent to the execution of the following statements

in the order specified.

MOVE identifier-1 to record-name-1.

RELEASE record-name-1.

The MOVE is performed according to the rules for the MOVE statement

without the CORRESPONDING phrase.

identifier-1

identifier-1 must reference one of the following:

v An entry in the working-storage section, the local-storage section, or the

linkage section

v A record description for another previously opened file

v An alphanumeric or national function.

identifier-1 must be a valid sending item with record-name-1 as the receiving

item in accordance with the rules of the MOVE statement.

identifier-1 and record-name-1 must not refer to the same storage area.

After the RELEASE statement is executed, the information is still available

in identifier-1. (See “INTO and FROM phrases” on page 305 under

″Common processing facilities″.)

If the RELEASE statement is executed without specifying the SD entry for

file-name-1 in a SAME RECORD AREA clause, the information in record-name-1 is

no longer available.

420 Enterprise COBOL for z/OS V4.1 Language Reference

If the SD entry is specified in a SAME RECORD AREA clause, record-name-1 is still

available as a record of the other files named in that clause.

When FROM identifier-1 is specified, the information is still available in identifier-1.

When control passes from the INPUT PROCEDURE, the sort file consists of all

those records placed in it by execution of RELEASE statements.

Chapter 21. Procedure division statements 421

RETURN statement

The RETURN statement transfers records from the final phase of a sorting or

merging operation to an OUTPUT PROCEDURE.

The RETURN statement can be used only within the range of an OUTPUT

PROCEDURE associated with a SORT or MERGE statement.

Format: RETURN statement

�� RETURN file-name-1

RECORD

INTO

identifier-1
 �

�
END

imperative-statement-1

AT

 �

�
NOT

END

imperative-statement-2

AT

END-RETURN
 ��

Within an OUTPUT PROCEDURE, at least one RETURN statement must be

specified.

When the RETURN statement is executed, the next record from file-name-1 is made

available for processing by the OUTPUT PROCEDURE.

file-name-1

Must be described in a data division SD entry.

 If more than one record description is associated with file-name-1, those

records automatically share the same storage; that is, the area is implicitly

redefined. After RETURN statement execution, only the contents of the

current record are available. If any data items lie beyond the length of the

current record, their contents are undefined.

INTO phrase

When there is only one record description associated with file-name-1 or all

the records and the data item referenced by identifier-1 describe an

elementary alphanumeric item or an alphanumeric group item, the result

of the execution of a RETURN statement with the INTO phrase is

equivalent to the application of the following rules in the order specified:

v The execution of the same RETURN statement without the INTO phrase.

v The current record is moved from the record area to the area specified

by identifier-1 according to the rules for the MOVE statement without the

CORRESPONDING phrase. The size of the current record is determined

by rules specified for the RECORD clause. If the file description entry

contains a RECORD IS VARYING clause, the implied move is a group

move. The implied MOVE statement does not occur if the execution of

the RETURN statement was unsuccessful. Any subscripting or reference

modification associated with identifier-1 is evaluated after the record has

422 Enterprise COBOL for z/OS V4.1 Language Reference

been read and immediately before it is moved to the data item. The

record is available in both the record area and the data item referenced

by identifier-1.

When there are multiple record descriptions associated with file-name-1 and

they do not all describe an alphanumeric group item or elementary

alphanumeric item, the following rules apply:

1. If the file referenced by file-name-1 contains variable-length records, a

group move takes place.

2. If the file referenced by file-name-1 contains fixed-length records, a

move takes place according to the rules for a MOVE statement using,

as a sending field description, the record that specifies the largest

number of character positions. If more than one such record exists, the

sending field record selected will be the one among those records that

appears first under the description of file-name-1.

identifier-1 must be a valid receiving field for the selected sending record

description entry in accordance with the rules of the MOVE statement.

The record areas associated with file-name-1 and identifier-1 must not be the same

storage area.

AT END phrases

The imperative-statement specified on the AT END phrase executes after all

records have been returned from file-name-1. No more RETURN statements can be

executed as part of the current output procedure.

If an at-end condition does not occur during the execution of a RETURN

statement, then after the record is made available and after executing any implicit

move resulting from the presence of an INTO phrase, control is transferred to the

imperative statement specified by the NOT AT END phrase. If an at-end condition

does occur, control is transferred to the end of the RETURN statement.

END-RETURN phrase

This explicit scope terminator serves to delimit the scope of the RETURN

statement. END-RETURN permits a conditional RETURN statement to be nested in

another conditional statement. END-RETURN can also be used with an imperative

RETURN statement.

For more information, see “Delimited scope statements” on page 293.

Chapter 21. Procedure division statements 423

REWRITE statement

The REWRITE statement logically replaces an existing record in a direct-access file.

When the REWRITE statement is executed, the associated direct-access file must be

open in I-O mode.

The REWRITE statement is not supported for line-sequential files.

Format: REWRITE statement

�� REWRITE record-name-1

FROM

identifier-1
 �

�
INVALID

imperative-statement-1

KEY

 �

�
NOT INVALID

imperative-statement-2

KEY

END-REWRITE
 ��

record-name-1

Must be the name of a logical record in a data division FD entry. The

record-name can be qualified.

FROM phrase

The result of the execution of the REWRITE statement with the FROM

identifier-1 phrase is equivalent to the execution of the following statements

in the order specified.

MOVE identifier-1 TO record-name-1.

REWRITE record-name-1

The MOVE is performed according to the rules for the MOVE statement

without the CORRESPONDING phrase.

identifier-1

identifier-1 can reference one of the following:

v A record description for another previously opened file

v An alphanumeric or national function

v A data item defined in the working-storage section, the local-storage

section, or the linkage section

identifier-1 must be a valid sending item with record-name-1 as the receiving

item in accordance with the rules of the MOVE statement.

identifier-1 and record-name-1 must not refer to the same storage area.

After the REWRITE statement is executed, the information is still available

in identifier-1 (“INTO and FROM phrases” on page 305 under ″Common

processing facilities″).

424 Enterprise COBOL for z/OS V4.1 Language Reference

INVALID KEY phrases

An INVALID KEY condition exists when:

v The access mode is sequential, and the value contained in the prime RECORD

KEY of the record to be replaced does not equal the value of the prime RECORD

KEY data item of the last-retrieved record from the file

v The value contained in the prime RECORD KEY does not equal that of any

record in the file

v The value of an ALTERNATE RECORD KEY data item for which DUPLICATES

is not specified is equal to that of a record already in the file

For details of invalid key processing, see “Invalid key condition” on page 304.

END-REWRITE phrase

This explicit scope terminator serves to delimit the scope of the REWRITE

statement. END-REWRITE permits a conditional REWRITE statement to be nested

in another conditional statement. END-REWRITE can also be used with an

imperative REWRITE statement.

For more information, see “Delimited scope statements” on page 293.

Reusing a logical record

After successful execution of a REWRITE statement, the logical record is no longer

available in record-name-1 unless the associated file is named in a SAME RECORD

AREA clause (in which case, the record is also available as a record of the other

files named in the SAME RECORD AREA clause).

The file position indicator is not affected by execution of the REWRITE statement.

If the FILE STATUS clause is specified in the file-control entry, the associated file

status key is updated when the REWRITE statement is executed.

Sequential files

For files in the sequential access mode, the last prior input/output statement

executed for this file must be a successfully executed READ statement. When the

REWRITE statement is executed, the record retrieved by that READ statement is

logically replaced.

The number of character positions in record-name-1 must equal the number of

character positions in the record being replaced.

The INVALID KEY phrase must not be specified for a file with sequential

organization. An EXCEPTION/ERROR procedure can be specified.

Indexed files

The number of character positions in record-name-1 can be different from the

number of character positions in the record being replaced.

Chapter 21. Procedure division statements 425

When the access mode is sequential, the record to be replaced is specified by the

value contained in the prime RECORD KEY. When the REWRITE statement is

executed, this value must equal the value of the prime record key data item in the

last record read from this file.

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure

can be omitted.

When the access mode is random or dynamic, the record to be replaced is specified

by the value contained in the prime RECORD KEY.

Values of ALTERNATE RECORD KEY data items in the rewritten record can differ

from those in the record being replaced. The system ensures that later access to the

record can be based upon any of the record keys.

If an invalid key condition exists, the execution of the REWRITE statement is

unsuccessful, the updating operation does not take place, and the data in

record-name-1 is unaffected. (See “Invalid key condition” on page 304 under

″Common processing facilities″.)

Relative files

The number of character positions in record-name-1 can be different from the

number of character positions in the record being replaced.

For relative files in sequential access mode, the INVALID KEY phrase must not be

specified. An EXCEPTION/ERROR procedure can be specified.

For relative files in random or dynamic access mode, the INVALID KEY phrase or

an applicable EXCEPTION/ERROR procedure can be specified. Both can be

omitted.

When the access mode is random or dynamic, the record to be replaced is specified

in the RELATIVE KEY data item. If the file does not contain the record specified,

an invalid key condition exists, and, if specified, the INVALID KEY

imperative-statement is executed. (See “Invalid key condition” on page 304 under

″Common processing facilities″.) The updating operation does not take place, and

the data in record-name is unaffected.

426 Enterprise COBOL for z/OS V4.1 Language Reference

SEARCH statement

The SEARCH statement searches a table for an element that satisfies the specified

condition and adjusts the associated index to indicate that element.

Format 1: SEARCH statement for serial search

�� SEARCH identifier-1

VARYING

identifier-2

index-name-1

END

imperative-statement-1

AT

 �

�

�

WHEN

condition-1

imperative-statement-2

NEXT-SENTENCE

END-SEARCH

��

Format 2: SEARCH statement for binary search

�� SEARCH ALL identifier-1

END

imperative-statement-1

AT

 �

� WHEN data-name-1 EQUAL identifier-3

IS

TO

literal-1

=

arithmetic-expression-1

condition-name-1

 �

�

�

AND

data-name-2

EQUAL

identifier-4

IS

TO

literal-2

=

arithmetic-expression-2

condition-name-2

�

� imperative-statement-2

NEXT SENTENCE

END-SEARCH
 ��

Use format 1 (serial search) when the table that you want to search has not been

sorted. Use format 1 to search a sorted table when you want to search serially

through the table or you want to control subscripts or indexes.

Chapter 21. Procedure division statements 427

Use format 2 (binary search) when you want to efficiently search across all

occurrences in a table. The table must previously have been sorted.

Serial search

identifier-1 (serial search)

identifier-1 identifies the table that is to be searched. identifier-1 references

all occurrences within that table.

 The data description entry for identifier-1 must contain an OCCURS clause.

The data description entry for identifier-1 should contain an OCCURS

clause with the INDEXED BY phrase, but a table can be searched using an

index defined for an appropriately described different table.

identifier-1 can reference a data item that is subordinate to a data item that

is described with an OCCURS clause (that is, identifier-1 can be a

subordinate table within a multidimensional table). In this case, the data

description entries must specify an INDEXED BY phrase for each

dimension of the table.

identifier-1 must not be subscripted or reference-modified.

AT END

The condition that exists when the search operation terminates without

satisfying the condition specified in any of the associated WHEN phrases.

Before executing a serial search, you must set the value of the first (or only) index

associated with identifier-1 (the search index) to indicate the starting occurrence for

the search.

Before using a serial search on a multidimensional table, you must also set the

value of the index for each superordinate dimension.

The SEARCH statement modifies only the value in the search index, and, if the

VARYING phrase is specified, the value in index-name-1 or identifier-2. Therefore, to

search an entire two-dimensional to seven-dimensional table, you must execute a

SEARCH statement for each dimension. In the WHEN phrases, you must specify

the indexes for all dimensions. Before the execution of each SEARCH statement,

you must initialize the associated indexes with SET statements.

The SEARCH statement executes a serial search beginning at the current setting of

the search index.

When the search begins, if the value of the index associated with identifier-1 is not

greater than the highest possible occurrence number, the following actions take

place:

v The conditions in the WHEN phrase are evaluated in the order in which they

are written.

v If none of the conditions is satisfied, the index for identifier-1 is increased to

correspond to the next table element, and step 1 is repeated.

v If upon evaluation one of the WHEN conditions is satisfied, the search is

terminated immediately, and the imperative-statement-2 associated with that

condition is executed. The index points to the table element that satisfied the

condition. If NEXT SENTENCE is specified, control passes to the statement

following the closest period.

428 Enterprise COBOL for z/OS V4.1 Language Reference

v If the end of the table is reached (that is, the value of the incremented index is

greater than the highest possible occurrence number) without the WHEN

condition being satisfied, the search is terminated.

If, when the search begins, the value of the index-name associated with identifier-1

is greater than the highest possible occurrence number, the search terminates

immediately.

When the search terminates, if the AT END phrase is specified,

imperative-statement-1 is executed. If the AT END phrase is omitted, control passes

to the next statement after the SEARCH statement.

Example: multidimensional serial search

The following code fragment shows a search of the inner dimension (table C) in the

third occurrence within the superordinate table (table R):

 . . .

 Working-storage section.

 1 G.

 2 R occurs 10 indexed by Rindex.

 3 C occurs 10 ascending key X indexed by Cindex.

 4 X pic 99.

 1 Arg pic 99 value 34.

 Procedure division.

 . . .

* To search within occurrence 3 of table R, set its index to 3

* To search table C beginning at occurrence 1, set its index to 1

 Set Rindex to 3

 Set Cindex to 1

* In the SEARCH statement, specify C without indexes

 Search C

* Specify indexes for both dimensions in the WHEN phrase

 when X(Rindex Cindex) = Arg

 display "Found " X(Rindex Cindex)

 End-search

 . . .

VARYING phrase

index-name-1

One of the following actions applies:

v If index-name-1 is an index for identifier-1, this index is used for the

search. Otherwise, the first (or only) index-name is used.

v If index-name-1 is an index for another table element, then the first (or

only) index-name for identifier-1 is used for the search; the occurrence

number represented by index-name-1 is increased by the same amount as

the search index-name and at the same time.

When the VARYING index-name-1 phrase is omitted, the first (or only)

index-name for identifier-1 is used for the search.

If indexing is used to search a table without an INDEXED BY phrase,

correct results are ensured only if both the table defined with the index

and the table defined without the index have table elements of the same

length and with the same number of occurrences.

When the object of the VARYING phrase is an index-name for another

table element, one serial SEARCH statement steps through two table

elements at once.

Chapter 21. Procedure division statements 429

identifier-2

Must be either an index data item or an elementary integer item. identifier-2

cannot be a windowed date field. identifier-2 cannot be subscripted by the

first (or only) index-name specified for identifier-1. During the search, one

of the following actions applies:

v If identifier-2 is an index data item, then, whenever the search index is

increased, the specified index data item is simultaneously increased by

the same amount.

v If identifier-2 is an integer data item, then, whenever the search index is

increased, the specified data item is simultaneously increased by 1.

WHEN phrase (serial search)

condition-1

Can be any condition described under “Conditional expressions” on page

267.

The following figure illustrates a format-1 SEARCH operation containing two

WHEN phrases.

Index
setting:
highest

permissible
occurrence

number

Entrance

Condition-2

Increment
index-name

for identifier-1

Increment
index-name-1
or identifier-2

False

False

>AT END imperative-
statement-1

True imperative-
statement-3

These operations are included only when called for in the statement.
Control transfers to the next sentence, unless the imperative statement
ends with a GOTO statement.

Condition-1
True imperative-

statement-2

�

Binary search

identifier-1 (binary search)

identifier-1 identifies the table that is to be searched. identifier-1 references

all occurrences within that table.

430 Enterprise COBOL for z/OS V4.1 Language Reference

The data description entry for identifier-1 must contain an OCCURS clause

with the INDEXED BY and KEY IS phrases.

identifier-1 can reference a data item that is subordinate to a data item that

contains an OCCURS clause (that is, identifier-1 can be a subordinate table

within a multidimensional table). In this case, the data description entry

must specify an INDEXED BY phrase for each dimension of the table.

identifier-1 must not be subscripted or reference-modified.

AT END

The condition that exists when the search operation terminates without

satisfying the conditions specified in the WHEN phrase.

The SEARCH ALL statement executes a binary search. The index associated with

identifier-1 (the search index) need not be initialized by SET statements. The search

index is varied during the search operation so that its value is at no time less than

the value of the first table element, nor ever greater than the value of the last table

element. The index used is always that associated with the first index-name

specified in the OCCURS clause.

Before using a binary search on a multidimensional table, you must execute SET

statements to set the value of the index for each superordinate dimension.

The SEARCH statement modifies only the value in the search index. Therefore, to

search an entire two-dimensional to seven-dimensional table, you must execute a

SEARCH statement for each dimension. In the WHEN phrases, you must specify

the indexes for all dimensions.

If the search ends without the WHEN condition being satisfied and the AT END

phrase is specified, imperative-statement-1 is executed. If the AT END phrase is

omitted, control passes to the next statement after the SEARCH statement.

The results of a SEARCH ALL operation are predictable only when:

v The data in the table is ordered in ASCENDING KEY or DESCENDING KEY

order

v The contents of the ASCENDING or DESCENDING keys specified in the WHEN

clause provide a unique table reference.

WHEN phrase (binary search)

If a relation condition is specified in the WHEN phrase, the evaluation of the

relation is based on the USAGE of the data item referenced by data-name-1. The

search argument is moved to a temporary data item with the same USAGE as

data-name-1, and this temporary data item is used for the compare operations

associated with the SEARCH.

If the WHEN phrase cannot be satisfied for any setting of the index within this

range, the search is unsuccessful. Control is passed to imperative-statement-1 of the

AT END phrase, when specified, or to the next statement after the SEARCH

statement. In either case, the final setting of the index is not predictable.

If the WHEN phrase can be satisfied, control passes to imperative-statement-2, if

specified, or to the next executable sentence if the NEXT SENTENCE phrase is

specified. The index contains the value indicating the occurrence that allowed the

WHEN conditions to be satisfied.

Chapter 21. Procedure division statements 431

After imperative-statement-2 is executed, control passes to the end of the SEARCH

statement, unless imperative-statement-2 ends with a GO TO statement.

condition-name-1, condition-name-2

Each condition-name specified must have only a single value, and each

must be associated with an ASCENDING KEY or DESCENDING KEY data

item for this table element.

data-name-1, data-name-2

Must specify an ASCENDING KEY or DESCENDING KEY data item in the

table element referenced by identifier-1 and must be subscripted by the first

index-name associated with identifier-1. Each data-name can be qualified.

 data-name-1 must be a valid operand for comparison with identifier-3,

literal-1, or arithmetic-expression-1 according to the rules of comparison.

data-name-2 must be a valid operand for comparison with identifier-4,

literal-2, or arithmetic-expression-2 according to the rules of comparison.

data-name-1 and data-name-2 cannot reference:

v Floating-point data items

v Group items containing variable-occurrence data items

v Windowed date fields

identifier-3, identifier-4

Must not be an ASCENDING KEY or DESCENDING KEY data item for

identifier-1 or an item that is subscripted by the first index-name for

identifier-1.

 identifier-3 and identifier-4 cannot be data items defined with any of the

usages POINTER, FUNCTION-POINTER, PROCEDURE-POINTER, or

OBJECT REFERENCE.

identifier-3 and identifier-4 cannot be windowed date fields.

If identifier-3 or literal-1 is of class national, data-name-1 must be of class

national.

If identifier-4 or literal-2 is of class national, data-name-2 must be of class

national.

literal-1, literal-2

literal-1 or literal-2 must be a valid operand for comparison with

data-name-1 or data-name-2, respectively.

arithmetic-expression

Can be any of the expressions defined under “Arithmetic expressions” on

page 261, with the following restriction: Any identifier in

arithmetic-expression must not be an ASCENDING KEY or DESCENDING

KEY data item for identifier-1 or an item that is subscripted by the first

index-name for identifier-1.

When an ASCENDING KEY or DESCENDING KEY data item is specified,

explicitly or implicitly, in the WHEN phrase, all preceding ASCENDING KEY or

DESCENDING KEY data-names for identifier-1 must also be specified.

Search statement considerations

Index data items cannot be used as subscripts, because of the restrictions on direct

reference to them.

432 Enterprise COBOL for z/OS V4.1 Language Reference

To ensure correct execution of a SEARCH statement for a variable-length table,

make sure the object of the OCCURS DEPENDING ON clause (data-name-1)

contains a value that specifies the current length of the table.

The scope of a SEARCH statement can be terminated by any of the following:

v An END-SEARCH phrase at the same level of nesting

v A separator period

v An ELSE or END-IF phrase associated with a previous IF statement

AT END and WHEN phrases

After imperative-statement-1 or imperative-statement-2 is executed, control passes to

the end of the SEARCH statement, unless imperative-statement-1 or

imperative-statement-2 ends with a GO TO statement.

The function of the AT END phrase is the same for a serial search and a binary

search.

NEXT SENTENCE

NEXT SENTENCE transfers control to the first statement following the closest

separator period.

When NEXT SENTENCE is specified with END-SEARCH, control does not pass to

the statement following the END-SEARCH. Instead, control passes to the statement

after the closest following period.

For the format-2 SEARCH ALL statement, neither imperative-statement-2 nor NEXT

SENTENCE is required. Without them, the SEARCH statement sets the index to

the value in the table that matched the condition.

The function of the NEXT SENTENCE phrase is the same for a serial search and a

binary search.

END-SEARCH phrase

This explicit scope terminator delimits the scope of the SEARCH statement.

END-SEARCH permits a conditional SEARCH statement to be nested in another

conditional statement.

For more information, see “Delimited scope statements” on page 293.

The function of END-SEARCH is the same for a serial search and a binary search.

Chapter 21. Procedure division statements 433

SET statement

The SET statement is used to perform one of the following operations:

v Placing values associated with table elements into indexes associated with

index-names

v Incrementing or decrementing an occurrence number

v Setting the status of an external switch to ON or OFF

v Moving data to condition names to make conditions true

v Setting USAGE POINTER data items to a data address

v Setting USAGE PROCEDURE-POINTER data items to an entry address

v Setting USAGE FUNCTION-POINTER data items to an entry address

v Setting USAGE OBJECT REFERENCE data items to refer to an object instance

Index-names are related to a given table through the INDEXED BY phrase of the

OCCURS clause; they are not further defined in the program.

When the sending and receiving fields in a SET statement share part of their

storage (that is, the operands overlap), the result of the execution of that SET

statement is undefined.

Format 1: SET for basic table handling

When this form of the SET statement is executed, the current value of the receiving

field is replaced by the value of the sending field (with conversion).

Format 1: SET statement for basic table handling

��

SET

�

index-name-1

identifier-1

TO

index-name-2

identifier-2

integer-1

��

index-name-1

Receiving field.

 Must name an index that is specified in the INDEXED BY phrase of an

OCCURS clause.

identifier-1

Receiving field.

 Must name either an index data item or an elementary numeric integer

item. A receiving field cannot be a windowed date field.

index-name-2

Sending field.

 Must name an index that is specified in the INDEXED BY phrase of an

OCCURS clause. The value of the index before the SET statement is

executed must correspond to an occurrence number of its associated table.

434 Enterprise COBOL for z/OS V4.1 Language Reference

identifier-2

Sending field.

 Must name either an index data item or an elementary numeric integer

item. A sending field cannot be a windowed date field.

integer-1

Sending field.

 Must be a positive integer.

The following table shows valid combinations of sending and receiving fields in a

format-1 SET statement.

 Table 52. Sending and receiving fields for format-1 SET statement

Sending field

Index-name

receiving field

Index data item

receiving field

Integer data

item receiving

field

Index-name* Valid Valid** Valid

Index data item* Valid** Valid** Invalid

Integer data item Valid Invalid Invalid

Integer literal Valid Invalid Invalid

*An index-name refers to an index named in the INDEXED BY phrase of an OCCURS

clause. An index data item is defined with the USAGE IS INDEX clause.

**No conversion takes place.

Receiving fields are acted upon in the left-to-right order in which they are

specified. Any subscripting or indexing associated with identifier-1 is evaluated

immediately before that receiving field is acted upon.

The value used for the sending field is the value at the beginning of SET statement

execution.

The value of an index after execution of a SEARCH or PERFORM statement can be

undefined; therefore, use a format-1 SET statement to reinitialize such indexes

before you attempt other table-handling operations.

If index-name-2 is for a table that has a subordinate item that contains an OCCURS

DEPENDING ON clause, then undefined values can be received into identifier-1.

For more information about complex OCCURS DEPENDING ON, see the

Enterprise COBOL Programming Guide.

Format 2: SET for adjusting indexes

When this form of the SET statement is executed, the value of the receiving index

is increased (UP BY) or decreased (DOWN BY) by a value that corresponds to the

value in the sending field.

Chapter 21. Procedure division statements 435

Format 2: SET statement for adjusting indexes

��

SET

�

index-name-3

UP BY

DOWN BY

identifier-3

integer-2

��

The receiving field is an index specified by index-name-3. The index value both

before and after the SET statement execution must correspond to an occurrence

number in an associated table.

The sending field can be specified as identifier-3, which must be an elementary

integer data item, or as integer-2, which must be a nonzero integer. identifier-3

cannot be a windowed date field.

When the format-2 SET statement is executed, the contents of the receiving field

are increased (UP BY) or decreased (DOWN BY) by a value that corresponds to the

number of occurrences represented by the value of identifier-3 or integer-2.

Receiving fields are acted upon in the left-to-right order in which they are

specified. The value of the incrementing or decrementing field at the beginning of

SET statement execution is used for all receiving fields.

If index-name-3 is for a table that has a subordinate item that contains an OCCURS

DEPENDING ON clause, and if the ODO object is changed before executing a

format-2 SET Statement, then index-name-3 cannot contain a value that corresponds

to an occurrence number of its associated table.

For more information about complex OCCURS DEPENDING ON, see the

Enterprise COBOL Programming Guide.

Format 3: SET for external switches

When this form of the SET statement is executed, the status of each external switch

associated with the specified mnemonic-name is turned ON or OFF.

Format 3: SET statement for external switches

��

SET

�

�

mnemonic-name-1

TO

ON

OFF

��

mnemonic-name-1

Must be associated with an external switch, the status of which can be

altered.

436 Enterprise COBOL for z/OS V4.1 Language Reference

Format 4: SET for condition-names

When this form of the SET statement is executed, the value associated with a

condition-name is placed in its conditional variable according to the rules of the

VALUE clause.

Format 4: SET statement for condition-names

��

SET

�

condition-name-1

TO TRUE

��

condition-name-1

Must be associated with a conditional variable.

If more than one literal is specified in the VALUE clause of condition-name-1, its

associated conditional variable is set equal to the first literal.

If multiple condition-names are specified, the results are the same as if a separate

SET statement had been written for each condition-name in the same order in

which they are specified in the SET statement.

Format 5: SET for USAGE IS POINTER data items

When this form of the SET statement is executed, the current value of the receiving

field is replaced by the address value contained in the sending field.

Format 5: SET statement for data-pointers

��

SET

�

identifier-4

ADDRESS OF

identifier-5

TO

identifier-6

ADDRESS OF

identifier-7

NULL

NULLS

��

identifier-4

Receiving fields.

 Must be described as USAGE IS POINTER.

ADDRESS OF identifier-5

Receiving fields.

 identifier-5 must be level-01 or level-77 items defined in the linkage section.

The addresses of these items are set to the value of the operand specified

in the TO phrase.

identifier-5 must not be reference-modified.

Chapter 21. Procedure division statements 437

identifier-6

Sending field.

 Must be described as USAGE IS POINTER.

ADDRESS OF identifier-7

Sending field. identifier-7 must name an item of any level except 66 or 88 in

the linkage section, the working-storage section, or the local-storage

section. ADDRESS OF identifier-7 contains the address of the identifier, and

not the content of the identifier.

NULL, NULLS

Sending field.

 Sets the receiving field to contain the value of an invalid address.

The following table shows valid combinations of sending and receiving fields in a

format-5 SET statement.

 Table 53. Sending and receiving fields for format-5 SET statement

Sending field USAGE IS

POINTER receiving

field

ADDRESS OF

receiving field

NULL/NULLS

receiving field

USAGE IS POINTER Valid Valid Invalid

ADDRESS OF Valid Valid Invalid

NULL/NULLS Valid Valid Invalid

Format 6: SET for procedure-pointer and function-pointer data

items

When this format of the SET statement is executed, the current value of the

receiving field is replaced by the address value specified by the sending field.

At run time, function-pointers and procedure-pointers can reference the address of

the primary entry point of a COBOL program, an alternate entry point in a

COBOL program, or an entry point in a non-COBOL program; or they can be

NULL.

COBOL function-pointers are more easily used than procedure-pointers for

interoperation with C functions.

438 Enterprise COBOL for z/OS V4.1 Language Reference

Format 6: SET statement for procedure-pointers and function-pointers

��

SET

�

procedure-pointer-data-item-1

function-pointer-data-item-1

�

� TO procedure-pointer-data-item-2

function-pointer-data-item-2

ENTRY

identifier-8

literal-1

NULL

NULLS

pointer-data-item-3

 ��

procedure-pointer-data-item-1, procedure-pointer-data-item-2

Must be described as USAGE IS PROCEDURE-POINTER.

procedure-pointer-data-item-1 is a receiving field; procedure-pointer-data-item-2

is a sending field.

function-pointer-data-item-1, function-pointer-data-item-2

Must be described as USAGE IS FUNCTION-POINTER.

function-pointer-data-item-1 is a receiving field; function-pointer-data-item-2 is

a sending field.

identifier-8

Must be defined as an alphabetic or alphanumeric item such that the value

can be a program name. For more information, see “PROGRAM-ID

paragraph” on page 104. For entry points in non-COBOL programs,

identifier-8 can contain the characters @, #, and, $.

literal-1

Must be alphanumeric and must conform to the rules for formation of

program-names. For details on formation rules, see the discussion of

program-name under “PROGRAM-ID paragraph” on page 104.

 identifier-8 or literal-1 must refer to one of the following types of entry

points:

v The primary entry point of a COBOL program as defined by the

PROGRAM-ID paragraph. The PROGRAM-ID must reference the

outermost program of a compilation unit; it must not reference a nested

program.

v An alternate entry point of a COBOL program as defined by a COBOL

ENTRY statement.

v An entry point in a non-COBOL program.

The program-name referenced by the SET ... TO ENTRY statement can be

affected by the PGMNAME compiler option. For details, see the Enterprise

COBOL Programming Guide.

NULL, NULLS

Sets the receiving field to contain the value of an invalid address.

Chapter 21. Procedure division statements 439

pointer-data-item-3

Must be defined with USAGE POINTER. You must set pointer-data-item-3 in

a non-COBOL program to point to a valid program entry point.

Example of COBOL/C interoperability

The following example demonstrates a COBOL CALL to a C function that returns

a function-pointer to a service, followed by a COBOL CALL to the service:

IDENTIFICATION DIVISION.

PROGRAM-ID DEMO.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 FP USAGE FUNCTION-POINTER.

PROCEDURE DIVISION.

 CALL "c-function" RETURNING FP.

 CALL FP.

Format 7: SET for USAGE OBJECT REFERENCE data items

When this format of the SET statement is executed the value in the receiving item

is replaced by the value in the sending item.

Format 7: SET statement for object references

�� SET object-reference-id-1 TO object-reference-id-2

NULL

SELF

 ��

object-reference-id-1 and object-reference-id-2 must be defined as USAGE OBJECT

REFERENCE. object-reference-id-1 is the receiving item and object-reference-id-2 is the

sending item. If object-reference-id-1 is defined as an object reference of a certain

class (defined as ″USAGE OBJECT REFERENCE class-name″), object-reference-id-2

must be an object reference of the same class or a class derived from that class.

If the figurative constant NULL is specified, the receiving object-reference-id-1 is set

to the NULL value.

If SELF is specified, the SET statement must appear in the procedure division of a

method. object-reference-id-1 is set to reference the object upon which the currently

executing method was invoked.

440 Enterprise COBOL for z/OS V4.1 Language Reference

SORT statement

The SORT statement accepts records from one or more files, sorts them according

to the specified keys, and makes the sorted records available either through an

output procedure or in an output file. See also “MERGE statement” on page 380.

The SORT statement can appear anywhere in the procedure division except in the

declarative portion.

The SORT statement is not supported for programs compiled with the THREAD

option.

Format

��

SORT

file-name-1

�

�

ASCENDING

data-name-1

ON

DESCENDING

KEY

�

�
DUPLICATES

WITH

IN

ORDER

 �

�
SEQUENCE

alphabet-name-1

COLLATING

IS

 �

�

�

USING

file-name-2

INPUT PROCEDURE

procedure-name-1

IS

THROUGH

procedure-name-2

THRU

�

�

�

GIVING

file-name-3

OUTPUT PROCEDURE

procedure-name-3

IS

THROUGH

procedure-name-4

THRU

��

file-name-1

The name given in the SD entry that describes the records to be sorted.

No pair of file-names in a SORT statement can be specified in the same SAME

SORT AREA clause or the SAME SORT-MERGE AREA clause. File-names

Chapter 21. Procedure division statements 441

associated with the GIVING clause (file-name-3, ...) cannot be specified in the SAME

AREA clause; however, they can be associated with the SAME RECORD AREA

clause.

ASCENDING KEY and DESCENDING KEY phrases

This phrase specifies that records are to be processed in ascending or descending

sequence (depending on the phrase specified), based on the specified sort keys.

data-name-1

Specifies a KEY data item on which the SORT statement will be based.

Each such data-name must identify a data item in a record associated with

file-name-1. The data-names following the word KEY are listed from left to

right in the SORT statement in order of decreasing significance without

regard to how they are divided into KEY phrases. The leftmost data-name

is the major key, the next data-name is the next most significant key, and

so forth. The following rules apply:

v A specific KEY data item must be physically located in the same position

and have the same data format in each input file. However, it need not

have the same data-name.

v If file-name-1 has more than one record description, the KEY data items

need be described in only one of the record descriptions.

v If file-name-1 contains variable-length records, all of the KEY data-items

must be contained within the first n character positions of the record,

where n equals the minimum records size specified for file-name-1.

v KEY data items must not contain an OCCURS clause or be subordinate

to an item that contains an OCCURS clause.

v KEY data items cannot be:

– Variably located

– Group items that contain variable-occurrence data items

– Category numeric described with usage NATIONAL (national decimal

item)

– Category external floating-point described with usage NATIONAL

(national floating-point item)

– Category DBCS
v KEY data items can be qualified.

v KEY data items can be any of the following data categories:

– Alphabetic, alphanumeric, alphanumeric-edited

– Numeric (except numeric with usage NATIONAL)

– Numeric-edited (with usage DISPLAY or NATIONAL)

– Internal floating-point or display floating-point

– National or national-edited
v Key data items can be windowed date fields, under these conditions:

– The GIVING phrase must not specify an indexed file, because the

(binary) ordering assumed or imposed by the file system conflicts

with the windowed date ordering provided in the sort output.

Attempting to write the windowed date merge output to such an

indexed file will either fail or re-impose binary ordering, depending

on how the file is accessed (the ACCESS MODE in the file-control

entry).

442 Enterprise COBOL for z/OS V4.1 Language Reference

– If an alphanumeric windowed date field is specified as a KEY for a

SORT statement, the collating sequence in effect for the merge

operation must be EBCDIC. Thus the COLLATING SEQUENCE

phrase of the SORT statement or, if this phrase is not specified, then

any PROGRAM COLLATING SEQUENCE clause in the

OBJECT-COMPUTER paragraph, must not specify a collating

sequence other than EBCDIC or NATIVE.

If the SORT statement meets these conditions, the sort operation takes

advantage of SORT Year 2000 features, provided that the execution

environment includes a sort product that supports century windowing.

A year-last windowed date field can be specified as a KEY for a SORT

statement and can thereby exploit the corresponding century windowing

capability of the sort product.

For more information about using windowed date fields as KEY data

items, see the Enterprise COBOL Programming Guide.

If file-name-3 references an indexed file, the first specification of data-name-1 must

be associated with an ASCENDING phrase and the data item referenced by that

data-name-1 must occupy the same character positions in this record as the data

item associated with the major record key for that file.

The direction of the sorting operation depends on the specification of the

ASCENDING or DESCENDING keywords as follows:

v When ASCENDING is specified, the sequence is from the lowest key value to

the highest key value.

v When DESCENDING is specified, the sequence is from the highest key value to

the lowest.

v If the KEY data item is described with usage NATIONAL, the sequence of the

KEY values is based on the binary values of the national characters.

v If the KEY data item is internal floating point, the sequence of key values will be

in numeric order.

v When the COLLATING SEQUENCE phrase is not specified, the key

comparisons are performed according to the rules for comparison of operands in

a relation condition. See “General relation conditions” on page 271).

v When the COLLATING SEQUENCE phrase is specified, the indicated collating

sequence is used for key data items of alphabetic, alphanumeric,

alphanumeric-edited, external floating-point, and numeric-edited categories. For

all other key data items, the comparisons are performed according to the rules

for comparison of operands in a relation condition.

DUPLICATES phrase

If the DUPLICATES phrase is specified, and the contents of all the key elements

associated with one record are equal to the corresponding key elements in one or

more other records, the order of return of these records is as follows:

v The order of the associated input files as specified in the SORT statement.

Within a given file the order is that in which the records are accessed from that

file.

v The order in which these records are released by an input procedure, when an

input procedure is specified.

Chapter 21. Procedure division statements 443

If the DUPLICATES phrase is not specified, the order of these records is undefined.

For more information about use of the DUPLICATES phrase, see the related

discussion of alternate indexes in the Enterprise COBOL Programming Guide.

COLLATING SEQUENCE phrase

This phrase specifies the collating sequence to be used in alphanumeric

comparisons for the KEY data items in this sorting operation.

The COLLATING SEQUENCE phrase has no effect for keys that are not alphabetic

or alphanumeric.

alphabet-name-1

Must be specified in the ALPHABET clause of the SPECIAL-NAMES

paragraph. alphabet-name-1 can be associated with any one of the

ALPHABET clause phrases, with the following results:

STANDARD-1

The ASCII collating sequence is used for all alphanumeric

comparisons. (The ASCII collating sequence is shown in

Appendix C, “EBCDIC and ASCII collating sequences,” on page

585.)

STANDARD-2

The International Reference Version of ISO/IEC 646, 7-bit coded

character set for information processing interchange is used for all

alphanumeric comparisons.

NATIVE

The EBCDIC collating sequence is used for all alphanumeric

comparisons. (The EBCDIC collating sequence is shown in

Appendix C, “EBCDIC and ASCII collating sequences,” on page

585.)

EBCDIC

The EBCDIC collating sequence is used for all alphanumeric

comparisons. (The EBCDIC collating sequence is shown in

Appendix C, “EBCDIC and ASCII collating sequences,” on page

585.)

literal The collating sequence established by the specification of literals in

the alphabet-name clause is used for all alphanumeric

comparisons.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM

COLLATING SEQUENCE clause (if specified) in the OBJECT-COMPUTER

paragraph specifies the collating sequence to be used. When both the COLLATING

SEQUENCE phrase and the PROGRAM COLLATING SEQUENCE clause are

omitted, the EBCDIC collating sequence is used.

USING phrase

file-name-2, ...

The input files.

 When the USING phrase is specified, all the records in file-name-2, ..., (that

is, the input files) are transferred automatically to file-name-1. At the time

the SORT statement is executed, these files must not be open. The compiler

opens, reads, makes records available, and closes these files automatically.

444 Enterprise COBOL for z/OS V4.1 Language Reference

If EXCEPTION/ERROR procedures are specified for these files, the

compiler makes the necessary linkage to these procedures.

All input files must be described in FD entries in the data division.

If the USING phrase is specified and if file-name-1 contains variable-length

records, the size of the records contained in the input files (file-name-2, ...)

must be neither less than the smallest record nor greater than the largest

record described for file-name-1. If file-name-1 contains fixed-length records,

the size of the records contained in the input files must not be greater than

the largest record described for file-name-1. For more information, see the

Enterprise COBOL Programming Guide.

INPUT PROCEDURE phrase

This phrase specifies the name of a procedure that is to select or modify input

records before the sorting operation begins.

procedure-name-1

Specifies the first (or only) section or paragraph in the input procedure.

procedure-name-2

Identifies the last section or paragraph of the input procedure.

 The input procedure can consist of any procedure needed to select, modify,

or copy the records that are made available one at a time by the RELEASE

statement to the file referenced by file-name-1. The range includes all

statements that are executed as the result of a transfer of control by CALL,

EXIT, GO TO, PERFORM, and XML PARSE statements in the range of the

input procedure, as well as all statements in declarative procedures that are

executed as a result of the execution of statements in the range of the input

procedure. The range of the input procedure must not cause the execution

of any MERGE, RETURN, or SORT statement.

If an input procedure is specified, control is passed to the input procedure

before the file referenced by file-name-1 is sequenced by the SORT

statement. The compiler inserts a return mechanism at the end of the last

statement in the input procedure. When control passes the last statement in

the input procedure, the records that have been released to the file

referenced by file-name-1 are sorted.

GIVING phrase

file-name-3, ...

The output files.

 When the GIVING phrase is specified, all the sorted records in file-name-1

are automatically transferred to the output files (file-name-3, ...).

All output files must be described in FD entries in the data division.

If the output files (file-name-3, ...) contain variable-length records, the size

of the records contained in file-name-1 must be neither less than the

smallest record nor greater than the largest record described for the output

files. If the output files contain fixed-length records, the size of the records

contained in file-name-1 must not be greater than the largest record

described for the output files. For more information, see the Enterprise

COBOL Programming Guide.

Chapter 21. Procedure division statements 445

At the time the SORT statement is executed, the output files (file-name-3, ...)

must not be open. For each of the output files, the execution of the SORT

statement causes the following actions to be taken:

v The processing of the file is initiated. The initiation is performed as if an

OPEN statement with the OUTPUT phrase had been executed.

v The sorted logical records are returned and written onto the file. Each

record is written as if a WRITE statement without any optional phrases

had been executed.

For a relative file, the relative key data item for the first record returned

contains the value ’1’; for the second record returned, the value ’2’. After

execution of the SORT statement, the content of the relative key data

item indicates the last record returned to the file.

v The processing of the file is terminated. The termination is performed as

if a CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE

AFTER EXCEPTION/ERROR procedures are executed; however, the

execution of such a USE procedure must not cause the execution of any

statement manipulating the file referenced by, or accessing the record area

associated with, file-name-3. On the first attempt to write beyond the

externally defined boundaries of the file, any USE AFTER STANDARD

EXCEPTION/ERROR procedure specified for the file is executed. If control

is returned from that USE procedure or if no such USE procedure is

specified, the processing of the file is terminated.

OUTPUT PROCEDURE phrase

This phrase specifies the name of a procedure that is to select or modify output

records from the sorting operation.

procedure-name-3

Specifies the first (or only) section or paragraph in the output procedure.

procedure-name-4

Identifies the last section or paragraph of the output procedure.

 The output procedure can consist of any procedure needed to select,

modify, or copy the records that are made available one at a time by the

RETURN statement in sorted order from the file referenced by file-name-1.

The range includes all statements that are executed as the result of a

transfer of control by CALL, EXIT, GO TO, PERFORM, and XML PARSE

statements in the range of the output procedure. The range also includes

all statements in declarative procedures that are executed as a result of the

execution of statements in the range of the output procedure. The range of

the output procedure must not cause the execution of any MERGE,

RELEASE, or SORT statement.

If an output procedure is specified, control passes to it after the file

referenced by file-name-1 has been sequenced by the SORT statement. The

compiler inserts a return mechanism at the end of the last statement in the

output procedure and when control passes the last statement in the output

procedure, the return mechanism provides the termination of the sort and

then passes control to the next executable statement after the SORT

statement. Before entering the output procedure, the sort procedure reaches

a point at which it can select the next record in sorted order when

requested. The RETURN statements in the output procedure are the

requests for the next record.

446 Enterprise COBOL for z/OS V4.1 Language Reference

The INPUT PROCEDURE and OUTPUT PROCEDURE phrases are similar

to those for a basic PERFORM statement. For example, if you name a

procedure in an output procedure, that procedure is executed during the

sorting operation just as if it were named in a PERFORM statement. As

with the PERFORM statement, execution of the procedure is terminated

after the last statement completes execution. The last statement in an input

or output procedure can be the EXIT statement (see “EXIT statement” on

page 351).

SORT special registers

The special registers, SORT-CORE-SIZE, SORT-MESSAGE, and SORT-MODE-SIZE,

are equivalent to option control statement keywords in the sort control file. You

define the sort control data set with the SORT-CONTROL special register.

Usage note: If you use a sort control file to specify control statements, the values

specified in the sort control file take precedence over those in the special register.

SORT-MESSAGE special register

See “SORT-MESSAGE” on page 22.

SORT-CORE-SIZE special register

See “SORT-CORE-SIZE” on page 22.

SORT-FILE-SIZE special register

See “SORT-FILE-SIZE” on page 22.

SORT-MODE-SIZE special register

See “SORT-MODE-SIZE” on page 23.

SORT-CONTROL special register

See “SORT-CONTROL” on page 21.

SORT-RETURN special register

See “SORT-RETURN” on page 23.

Segmentation considerations

If a SORT statement is coded in a fixed segment, any input or output procedure

referenced by that SORT statement must be either totally within a fixed segment or

wholly contained in a single independent segment.

If a SORT statement is coded in an independent segment, any input or output

procedure referenced by that SORT statement must be either totally within a fixed

segment or wholly contained within the same independent segment as that SORT

statement.

Chapter 21. Procedure division statements 447

START statement

The START statement provides a means of positioning within an indexed or

relative file for subsequent sequential record retrieval.

When the START statement is executed, the associated indexed or relative file must

be open in either INPUT or I-O mode.

Format

�� START file-name-1 �

�
KEY

EQUAL

data-name-1

IS

TO

=

GREATER

THAN

>

NOT LESS

THAN

NOT <

GREATER

OR EQUAL

THAN

TO

>=

 �

�
INVALID

imperative-statement-1

KEY

 �

�
NOT INVALID

imperative-statement-2

KEY

END-START
 ��

file-name-1

Must name a file with sequential or dynamic access. file-name-1 must be

defined in an FD entry in the data division and must not name a sort file.

KEY phrase

When the KEY phrase is specified, the file position indicator is positioned at the

logical record in the file whose key field satisfies the comparison.

When the KEY phrase is not specified, KEY IS EQUAL (to the prime record key) is

implied.

data-name-1

Can be qualified; it cannot be subscripted.

When the START statement is executed, a comparison is made between the current

value in the key data-name and the corresponding key field in the file’s index.

If the FILE STATUS clause is specified in the file-control entry, the associated file

status key is updated when the START statement is executed (See “File status key”

on page 300).

448 Enterprise COBOL for z/OS V4.1 Language Reference

INVALID KEY phrases

If the comparison is not satisfied by any record in the file, an invalid key condition

exists; the position of the file position indicator is undefined, and (if specified) the

INVALID KEY imperative-statement is executed. (See “INTO and FROM phrases”

on page 305 under ″Common processing facilities″.)

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure

can be omitted.

END-START phrase

This explicit scope terminator serves to delimit the scope of the START statement.

END-START permits a conditional START statement to be nested in another

conditional statement. END-START can also be used with an imperative START

statement.

For more information, see “Delimited scope statements” on page 293.

Indexed files

When the KEY phrase is specified, the key data item used for the comparison is

data-name-1.

When the KEY phrase is not specified, the key data item used for the EQUAL TO

comparison is the prime RECORD KEY.

When START statement execution is successful, the RECORD KEY or ALTERNATE

RECORD KEY with which data-name-1 is associated becomes the key of reference

for subsequent READ statements.

data-name-1

Can be any of the following:

v The prime RECORD KEY.

v Any ALTERNATE RECORD KEY.

v A data item within a record description for a file whose leftmost

character position corresponds to the leftmost character position of that

record key; it can be qualified. The size of the data item must be less

than or equal to the length of the record key for the file.

Regardless of its category, data-name-1 is treated as an alphanumeric item

for purposes of the comparison operation.

The file position indicator points to the first record in the file whose key field

satisfies the comparison. If the operands in the comparison are of unequal lengths,

the comparison proceeds as if the longer field were truncated on the right to the

length of the shorter field. All other numeric and alphanumeric comparison rules

apply, except that the PROGRAM COLLATING SEQUENCE clause, if specified,

has no effect.

When START statement execution is successful, the RECORD KEY with which

data-name-1 is associated becomes the key of reference for subsequent READ

statements.

Chapter 21. Procedure division statements 449

When START statement execution is unsuccessful, the key of reference is

undefined.

Relative files

When the KEY phrase is specified, data-name-1 must specify the RELATIVE KEY.

Whether or not the KEY phrase is specified, the key data item used in the

comparison is the RELATIVE KEY data item. Numeric comparison rules apply.

The file position indicator points to the logical record in the file whose key satisfies

the specified comparison.

450 Enterprise COBOL for z/OS V4.1 Language Reference

STOP statement

The STOP statement halts execution of the object program either permanently or

temporarily.

Format

�� STOP RUN

literal
 ��

literal

Can be a fixed-point numeric literal (signed or unsigned) or an

alphanumeric literal. It can be any figurative constant except ALL literal.

When STOP literal is specified, the literal is communicated to the operator, and

object program execution is suspended. Program execution is resumed only after

operator intervention, and continues at the next executable statement in sequence.

The STOP literal statement is useful for special situations when operator

intervention is needed during program execution; for example, when a special tape

or disk must be mounted or a specific daily code must be entered. However, the

ACCEPT and DISPLAY statements are preferred when operator intervention is

needed.

Do not use the STOP literal statement in programs compiled with the THREAD

compiler option.

When STOP RUN is specified, execution is terminated and control is returned to

the system. When STOP RUN is not the last or only statement in a sequence of

imperative statements within a sentence, the statements following STOP RUN are

not executed.

The STOP RUN statement closes all files defined in any of the programs in the run

unit.

For use of the STOP RUN statement in calling and called programs, see the

following table.

 Termination

statement Main program Subprogram

STOP RUN Returns to the calling program. (Can be

the system, which causes the

application to end.)

Returns directly to the program that

called the main program. (Can be

the system, which causes the

application to end.)

Chapter 21. Procedure division statements 451

STRING statement

The STRING statement strings together the partial or complete contents of two or

more data items or literals into one single data item.

One STRING statement can be written instead of a series of MOVE statements.

Format

��

STRING

�

�

identifier-1

DELIMITED

identifier-2

literal-1

BY

literal-2

SIZE

�

� INTO identifier-3

POINTER

identifier-4

WITH

 �

�
OVERFLOW

imperative-statement-1

ON

 �

�
NOT

OVERFLOW

imperative-statement-2

ON

END-STRING
 ��

identifier-1, literal-1

Represents the sending fields.

DELIMITED BY phrase

Sets the limits of the string.

identifier-2 , literal-2

Are delimiters; that is, characters that delimit the data to be

transferred.

SIZE Transfers the complete sending area.

INTO phrase

Identifies the receiving field.

identifier-3

Represents the receiving field.

452 Enterprise COBOL for z/OS V4.1 Language Reference

POINTER phrase

Points to a character position in the receiving field. The pointer field

indicates a relative alphanumeric character position, DBCS character

position, or national character position when the receiving field is of usage

DISPLAY, DISPLAY-1, or NATIONAL, respectively.

identifier-4

Represents the pointer field. identifier-4 must be large enough to

contain a value equal to the length of the receiving field plus 1.

The following rules apply:

v All identifiers except identifier-4 must reference data items described explicitly

or implicitly as usage DISPLAY, DISPLAY-1, or NATIONAL.

v literal-1 or literal-2 must be of category alphanumeric, DBCS, or national and can

be any figurative constant that does not begin with the word ALL (except

NULL).

v If identifier-1 or identifer-2 references a data item of category numeric, each

numeric item must be described as an integer without the symbol ’P’ in its

PICTURE character-string.

v identifier-3 must not reference a data item of category numeric-edited,

alphanumeric-edited, or national-edited; an external floating-point data item of

usage DISPLAY, or an external floating-point data item of usage NATIONAL.

v identifier-3 must not described with the JUSTIFIED clause.

v If identifier-3 is of usage DISPLAY, identifier-1 and identifier-2 must be of usage

DISPLAY and all literals must be alphanumeric literals. Any figurative constant

can be specified except one that begins with the word ALL. Each figurative

constant represents a 1-character alphanumeric literal.

v If identifier-3 is of usage DISPLAY-1, identifier-1 and identifier-2 must be of usage

DISPLAY-1 and all literals must be DBCS literals. The only figurative constant

that can be specified is SPACE, which represents a 1-character DBCS literal. ALL

DBCS-literal must not be specified.

v If identifier-3 is of usage NATIONAL, identifier-1 and identifier-2 must be of usage

NATIONAL and all literals must be national literals. Any figurative constant can

be specified except symbolic-character and one that begins with the word ALL.

Each figurative constant represents a 1-character national literal.

v If identifier-1 or identifier-2 references an elementary data item of usage DISPLAY

that is described as category numeric, numeric-edited, or alphanumeric-edited,

the item is treated as if it were redefined as category alphanumeric.

v If identifier-1 or identifier-2 references an elementary data item of usage

NATIONAL that is described as category numeric, numeric-edited, or

national-edited item, the item is treated as if it were redefined as category

national.

v identifier-4 must not be described with the symbol P in its PICTURE

character-string.

v None of the identifiers in a STRING statement can be a windowed date field.

Evaluation of subscripts, reference modification, variable-lengths, variable

locations, and function-identifiers is performed only once, at the beginning of the

execution of the STRING statement. Therefore, if identifier-3 or identifier-4 is used as

a subscript, reference-modifier, or function argument in the STRING statement, or

affects the length or location of any of the identifiers in the STRING statement, the

Chapter 21. Procedure division statements 453

values calculated for those subscripts, reference-modifiers, variable lengths,

variable locations, and functions are not affected by any results of the STRING

statement.

If identifier-3 and identifier-4 occupy the same storage area, undefined results will

occur, even if the identifiers are defined by the same data description entry.

If identifier-1 or identifier-2 occupies the same storage area as identifier-3 or

identifier-4, undefined results will occur, even if the identifiers are defined by the

same data description entry.

See “Data flow” on page 455 below for details of STRING statement processing.

ON OVERFLOW phrases

imperative-statement-1

Executed when the pointer value (explicit or implicit):

v Is less than 1

v Exceeds a value equal to the length of the receiving field

When either of the above conditions occurs, an overflow condition exists,

and no more data is transferred. Then the STRING operation is terminated,

the NOT ON OVERFLOW phrase, if specified, is ignored, and control is

transferred to the end of the STRING statement or, if the ON OVERFLOW

phrase is specified, to imperative-statement-1.

If control is transferred to imperative-statement-1, execution continues

according to the rules for each statement specified in imperative-statement-1.

If a procedure branching or conditional statement that causes explicit

transfer of control is executed, control is transferred according to the rules

for that statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the STRING

statement.

If at the time of execution of a STRING statement, conditions that would

cause an overflow condition are not encountered, then after completion of

the transfer of data, the ON OVERFLOW phrase, if specified, is ignored.

Control is then transferred to the end of the STRING statement, or if the

NOT ON OVERFLOW phrase is specified, to imperative-statement-2.

If control is transferred to imperative-statement-2, execution continues

according to the rules for each statement specified in imperative-statement-2.

If a procedure branching or conditional statement that causes explicit

transfer of control is executed, control is transferred according to the rules

for that statement. Otherwise, upon completion of the execution of

imperative-statement-2, control is transferred to the end of the STRING

statement.

END-STRING phrase

This explicit scope terminator serves to delimit the scope of the STRING statement.

END-STRING permits a conditional STRING statement to be nested in another

conditional statement. END-STRING can also be used with an imperative STRING

statement.

For more information, see “Delimited scope statements” on page 293.

454 Enterprise COBOL for z/OS V4.1 Language Reference

Data flow

When the STRING statement is executed, characters are transferred from the

sending fields to the receiving field. The order in which sending fields are

processed is the order in which they are specified. The following rules apply:

v Characters from the sending fields are transferred to the receiving fields in the

following manner:

– For national sending fields, data is transferred using the rules of the MOVE

statement for elementary national-to-national moves, except that no space

filling takes place.

– For DBCS sending fields, data is transferred using the rules of the MOVE

statement for elementary DBCS-to-DBCS moves, except that no space filling

takes place.

– Otherwise, data is transferred to the receiving fields using the rules of the

MOVE statement for elementary alphanumeric-to-alphanumeric moves, except

that no space filling takes place (see “MOVE statement” on page 386).
v When DELIMITED BY identifier-2 or literal-2 is specified, the contents of each

sending item are transferred, character-by-character, beginning with the leftmost

character position and continuing until either:

– A delimiter for this sending field is reached (the delimiter itself is not

transferred).

– The rightmost character of this sending field has been transferred.
v When DELIMITED BY SIZE is specified, each entire sending field is transferred

to the receiving field.

v When the receiving field is filled, or when all the sending fields have been

processed, the operation is ended.

v When the POINTER phrase is specified, an explicit pointer field is available to

the COBOL user to control placement of data in the receiving field. The user

must set the explicit pointer’s initial value, which must not be less than 1 and

not more than the character position count of the receiving field.

Usage note: The pointer field must be defined as a field large enough to contain

a value equal to the length of the receiving field plus 1; this precludes arithmetic

overflow when the system updates the pointer at the end of the transfer.

v When the POINTER phrase is not specified, no pointer is available to the user.

However, a conceptual implicit pointer with an initial value of 1 is used by the

system.

v Conceptually, when the STRING statement is executed, the initial pointer value

(explicit or implicit) is the first character position within the receiving field into

which data is to be transferred. Beginning at that position, data is then

positioned, character-by-character, from left to right. After each character is

positioned, the explicit or implicit pointer is increased by 1. The value in the

pointer field is changed only in this manner. At the end of processing, the

pointer value always indicates a value equal to one character position beyond

the last character transferred into the receiving field.

After STRING statement execution is completed, only that part of the receiving

field into which data was transferred is changed. The rest of the receiving field

contains the data that was present before this execution of the STRING statement.

When the following STRING statement is executed, the results obtained will be

like those illustrated in the figure after the statement.

Chapter 21. Procedure division statements 455

STRING ID-1 ID-2 DELIMITED BY ID-3

 ID-4 ID-5 DELIMITED BY SIZE

 INTO ID-7 WITH POINTER ID-8

END-STRING

456 Enterprise COBOL for z/OS V4.1 Language Reference

SUBTRACT statement

The SUBTRACT statement subtracts one numeric item, or the sum of two or more

numeric items, from one or more numeric items, and stores the result.

Format 1: SUBTRACT statement

��

SUBTRACT

�

identifier-1

literal-1

FROM

�

identifier-2

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-SUBTRACT
 ��

All identifiers or literals preceding the keyword FROM are added together and

their sum is subtracted from and stored immediately in identifier-2. This process is

repeated for each successive occurrence of identifier-2, in the left-to-right order in

which identifier-2 is specified.

Chapter 21. Procedure division statements 457

Format 2: SUBTRACT statement with GIVING phrase

��

SUBTRACT

�

identifier-1

literal-1

FROM

identifier-2

literal-2

�

�

�

GIVING

identifier-3

ROUNDED

�

�
SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-SUBTRACT
 ��

All identifiers or literals preceding the keyword FROM are added together and

their sum is subtracted from identifier-2 or literal-2. The result of the subtraction is

stored as the new value of each data item referenced by identifier-3.

Format 3: SUBTRACT statement with CORRESPONDING phrase

�� SUBTRACT CORRESPONDING

CORR
 identifier-1 FROM �

� identifier-2

ROUNDED

SIZE ERROR

imperative-statement-1

ON

 �

�
NOT

SIZE ERROR

imperative-statement-2

ON

END-SUBTRACT
 ��

Elementary data items within identifier-1 are subtracted from, and the results are

stored in, the corresponding elementary data items within identifier-2.

When the ARITH(COMPAT) compiler option is in effect, the composite of operands

can contain a maximum of 30 digits. When the ARITH(EXTEND) compiler option

is in effect, the composite of operands can contain a maximum of 31 digits. For

more information about arithmetic intermediate results, see the Enterprise COBOL

Programming Guide.

For all formats:

458 Enterprise COBOL for z/OS V4.1 Language Reference

identifier

In format 1, must name an elementary numeric data item.

 In format 2, must name an elementary numeric data item, unless the

identifier follows the word GIVING. Each identifier following the word

GIVING must name a numeric or numeric-edited elementary data item.

In format 3, must name an alphanumeric group item or a national group

item.

The following restrictions apply to date fields:

v In format 1, identifier-1 can specify at most one date field. If identifier-1

specifies a date field, then every instance of identifier-2 must specify a

date field that is compatible with the date field specified by identifier-1. If

identifier-1 does not specify a date field, then identifier-2 can specify one

or more date fields, with no restriction on their DATE FORMAT clauses.

v In format 2, identifier-1 and identifier-2 can each specify at most one date

field. If identifier-1 specifies a date field, then the FROM identifier-2 must

be a date field that is compatible with the date field specified by

identifier-1. identifier-3 can specify one or more date fields. If identifier-2

specifies a date field and identifier-1 does not, then every instance of

identifier-3 must specify a date field that is compatible with the date field

specified by identifier-2.

v In format 3, if an item within identifier-1 is a date field, then the

corresponding item within identifier-2 must be a compatible date field.

v A year-last date field is allowed in a SUBTRACT statement only as

identifier-1 and when the result of the subtraction is a nondate.

There are two steps to determining the result of a SUBTRACT statement

that involves one or more date fields:

1. Subtraction: determine the result of the subtraction operation, as

described under “Subtraction that involves date fields” on page 265.

2. Storage: determine how the result is stored in the receiving field. (In

formats 1 and 3, the receiving field is identifier-2; in format 3, the

receiving field is the GIVING identifier-3.) For details, see “Storing

arithmetic results that involve date fields” on page 265.

literal Must be a numeric literal.

Floating-point data items and literals can be used anywhere numeric data items

and literals can be specified.

ROUNDED phrase

For information about the ROUNDED phrase, and for operand considerations, see

“ROUNDED phrase” on page 296.

SIZE ERROR phrases

For information about the SIZE ERROR phrases, and for operand considerations,

see “SIZE ERROR phrases” on page 296.

CORRESPONDING phrase (format 3)

See “CORRESPONDING phrase” on page 294.

Chapter 21. Procedure division statements 459

END-SUBTRACT phrase

This explicit scope terminator serves to delimit the scope of the SUBTRACT

statement. END-SUBTRACT permits a conditional SUBTRACT statement to be

nested in another conditional statement. END-SUBTRACT can also be used with

an imperative SUBTRACT statement.

For more information, see “Delimited scope statements” on page 293.

460 Enterprise COBOL for z/OS V4.1 Language Reference

UNSTRING statement

The UNSTRING statement causes contiguous data in a sending field to be

separated and placed into multiple receiving fields.

Format

�� UNSTRING identifier-1 �

�

�

DELIMITED

identifier-2

BY

ALL

literal-1

OR

identifier-3

ALL

literal-2

 INTO �

�

�

identifier-4

DELIMITER

identifier-5

COUNT

identifier-6

IN

IN

�

�
POINTER

identifier-7

WITH

TALLYING

identifier-8

IN

 �

�
OVERFLOW

imperative-statement-1

ON

NOT

OVERFLOW

imperative-statement-2

ON

 �

�
END-UNSTRING

 ��

identifier-1

Represents the sending field. Data is transferred from this field to the data

receiving fields (identifier-4).

 identifier-1 must reference a data item of category alphabetic, alphanumeric,

alphanumeric-edited, DBCS, national, or national-edited.

identifier-2, literal-1, identifier-3, literal-2

Specifies one or more delimiters.

 identifier-2 and identifier-3 must reference data items of category alphabetic,

alphanumeric, alphanumeric-edited, DBCS, national, or national-edited.

Chapter 21. Procedure division statements 461

literal-1 or literal-2 must be of category alphanumeric, DBCS, or national

and must not be a figurative constant that begins with the word ALL.

identifier-4

Specifies one or more receiving fields.

 identifier-4 must reference a data item of category alphabetic, alphanumeric,

numeric, DBCS, or national. If the referenced data item is of category

numeric, its picture character-string must not contain the picture symbol P,

and its usage must be DISPLAY or NATIONAL.

identifier-5

Specifies a field to receive the delimiter associated with identifier-4.

 Identifier-5 must reference a data item of category alphabetic,

alphanumeric, DBCS, or national.

identifier-6

Specifies a field to hold the count of characters that are transferred to

identifier-4.

 identifier-6 must be an integer data item defined without the symbol P in

its PICTURE character-string.

identifier-7

Specifies a field to hold a relative character position during UNSTRING

processing.

 identifier-7 must be an integer data item defined without the symbol P in

the PICTURE string.identifier-7 must be described as a data item of

sufficient size to contain a value equal to 1 plus the number of character

positions in the data item referenced by identifier-1.

identifier-8

Specifies a field that is incremented by the number of delimited fields

processed.

 identifier-8 must be an integer data item defined without the symbol P in

its PICTURE character-string.

The following rules apply

v If identifier-4 references a data item of usage DISPLAY, identifier-1, identifier-2,

identifier-3, and identifier-5 must also reference data items of usage DISPLAY and

all literals must be alphanumeric literals. Any figurative constant can be

specified except NULL or one that begins with the word ALL. Each figurative

constant represents a 1-character alphanumeric literal.

v If identifier-4 references a data item of usage DISPLAY-1, identifier-1, identifier-2,

identifier-3, and identifier-5 must also reference data items of usage DISPLAY-1

and all literals must be DBCS literals. Figurative constant SPACE is the only

figurative constant that can be specified. Each figurative constant represents a

1-character DBCS literal.

v If identifier-4 references a data item of usage NATIONAL, identifier-1, identifier-2,

identifier-3, and identifier-5 must also reference data items of usage NATIONAL

and all literals must be national literals. Any figurative constant can be specified

except NULL or one that begins with the word ALL. Each figurative constant

represents a 1-character national literal.

v None of the identifiers in an UNSTRING statement can be windowed date

fields.

462 Enterprise COBOL for z/OS V4.1 Language Reference

Count fields (identifier-6) and pointer fields (identifier-7) are incremented by number

of character positions (alphanumeric, DBCS, or national), not by number of bytes.

One UNSTRING statement can take the place of a series of MOVE statements,

except that evaluation or calculation of certain elements is performed only once, at

the beginning of the execution of the UNSTRING statement. For more information,

see “Values at the end of execution of the UNSTRING statement” on page 467.

The rules for moving are the same as those for a MOVE statement for an

elementary sending item of the category of identifier-1, with the appropriate

identifier-4 as the receiving item (see “MOVE statement” on page 386). For example,

rules for moving a DBCS item are used when identifier-1 is a DBCS item.

DELIMITED BY phrase

This phrase specifies delimiters within the data that control the data transfer.

Each identifier-2, identifier-3, literal-1, or literal-2 represents one delimiter.

If the DELIMITED BY phrase is not specified, the DELIMITER IN and COUNT IN

phrases must not be specified.

ALL Multiple contiguous occurrences of any delimiters are treated as if there

were only one occurrence; this one occurrence is moved to the delimiter

receiving field (identifier-5), if specified. The delimiting characters in the

sending field are treated as an elementary item of the same usage and

category as identifier-1 and are moved into the current delimiter receiving

field according to the rules of the MOVE statement.

 When DELIMITED BY ALL is not specified, and two or more contiguous

occurrences of any delimiter are encountered, the current data receiving

field (identifier-4) is filled with spaces or zeros, according to the description

of the data receiving field.

Delimiter with two or more characters

A delimiter that contains two or more characters is recognized as a delimiter only

if the delimiting characters are both of the following:

v Contiguous

v In the sequence specified in the sending field

Two or more delimiters

When two or more delimiters are specified, an OR condition exists, and each

nonoverlapping occurrence of any one of the delimiters is recognized in the

sending field in the sequence specified.

For example:

DELIMITED BY "AB" or "BC"

An occurrence of either AB or BC in the sending field is considered a delimiter. An

occurrence of ABC is considered an occurrence of AB.

Chapter 21. Procedure division statements 463

INTO phrase

This phrase specifies the fields where the data is to be moved.

identifier-4 represents the data receiving fields.

DELIMITER IN

This phrase specifies the fields where the delimiters are to be moved.

 identifier-5 represents the delimiter receiving fields.

The DELIMITER IN phrase must not be specified if the DELIMITED BY

phrase is not specified.

COUNT IN

This phrase specifies the field where the count of examined character

positions is held.

 identifier-6 is the data count field for each data transfer. Each field holds the

count of examined character positions in the sending field, terminated by

the delimiters or the end of the sending field, for the move to this

receiving field. The delimiters are not included in this count.

The COUNT IN phrase must not be specified if the DELIMITED BY phrase

is not specified.

POINTER phrase

When the POINTER phrase is specified, the value of the pointer field, identifier-7,

behaves as if it were increased by 1 for each examined character position in the

sending field. When execution of the UNSTRING statement is completed, the

pointer field contains a value equal to its initial value plus the number of character

positions examined in the sending field.

When this phrase is specified, the user must initialize the pointer field before

execution of the UNSTRING statement begins.

TALLYING IN phrase

When the TALLYING phrase is specified, the area count field, identifier-8, contains

(at the end of execution of the UNSTRING statement) a value equal to the initial

value plus the number of data receiving areas acted upon.

When this phrase is specified, the user must initialize the area count field before

execution of the UNSTRING statement begins.

ON OVERFLOW phrases

An overflow condition exists when:

v The pointer value (explicit or implicit) is less than 1.

v The pointer value (explicit or implicit) exceeds a value equal to the length of the

sending field.

v All data receiving fields have been acted upon and the sending field still

contains unexamined character positions.

464 Enterprise COBOL for z/OS V4.1 Language Reference

When an overflow condition occurs

An overflow condition results in the following actions:

1. No more data is transferred.

2. The UNSTRING operation is terminated.

3. The NOT ON OVERFLOW phrase, if specified, is ignored.

4. Control is transferred to the end of the UNSTRING statement or, if the ON

OVERFLOW phrase is specified, to imperative-statement-1.

imperative-statement-1

Statement or statements for dealing with an overflow condition.

 If control is transferred to imperative-statement-1, execution continues

according to the rules for each statement specified in imperative-

statement-1. If a procedure branching or conditional statement that causes

explicit transfer of control is executed, control is transferred according to

the rules for that statement. Otherwise, upon completion of the execution

of imperative-statement-1, control is transferred to the end of the UNSTRING

statement.

When an overflow condition does not occur

When, during execution of an UNSTRING statement, conditions that would cause

an overflow condition are not encountered, then:

1. The transfer of data is completed.

2. The ON OVERFLOW phrase, if specified, is ignored.

3. Control is transferred to the end of the UNSTRING statement or, if the NOT

ON OVERFLOW phrase is specified, to imperative-statement-2.

imperative-statement-2

Statement or statements for dealing with an overflow condition that does

not occur.

 If control is transferred to imperative-statement-2, execution continues

according to the rules for each statement specified in imperative-

statement-2. If a procedure branching or conditional statement that causes

explicit transfer of control is executed, control is transferred according to

the rules for that statement. Otherwise, upon completion of the execution

of imperative-statement-2, control is transferred to the end of the UNSTRING

statement.

END-UNSTRING phrase

This explicit scope terminator serves to delimit the scope of the UNSTRING

statement. END-UNSTRING permits a conditional UNSTRING statement to be

nested in another conditional statement. END-UNSTRING can also be used with

an imperative UNSTRING statement.

For more information, see “Delimited scope statements” on page 293.

Data flow

When the UNSTRING statement is initiated, data is transferred from the sending

field to the current data receiving field, according to the following rules:

Stage 1: Examine

Chapter 21. Procedure division statements 465

1. If the POINTER phrase is specified, the field is examined, beginning at the

relative character position specified by the value in the pointer field.

If the POINTER phrase is not specified, the sending field character-string is

examined, beginning with the leftmost character position.

2. If the DELIMITED BY phrase is specified, the examination proceeds from left to

right, examining character positions one-by-one until a delimiter is

encountered. If the end of the sending field is reached before a delimiter is

found, the examination ends with the last character position in the sending

field. If there are more receiving fields, the next one is selected; otherwise, an

overflow condition occurs.

If the DELIMITED BY phrase is not specified, the number of character positions

examined is equal to the size of the current data receiving field, as described in

the table below. The size depends on the category treatment of the receiving

field, as shown in Table 41 on page 368.

 Table 54. Character positions examined when DELIMITED BY is not specified

If the receiving field is ...

The number of character positions

examined is ...

Alphanumeric or alphabetic Equal to the number of alphanumeric

character positions in the current receiving

field

DBCS Equal to the number of DBCS character

positions in the current receiving field

National Equal to the number of national character

positions in the current receiving field

Numeric Equal to the number of character positions

in the integer portion of the current

receiving field

Described with the SIGN IS SEPARATE

clause

1 less than the size of the current receiving

field

Described as a variable-length data item Determined by the size of the current

receiving field at the beginning of the

UNSTRING operation

Stage 2: Move

3. The examined character positions (excluding any delimiter characters) are

treated as an elementary data item of the same data category as the sending

field except for the cases shown in the table below.

 Category of identifier-1 (sending-field) Category of elementary data item

Alphanumeric-edited Alphanumeric

National-edited National

That elementary data item is moved to the current data receiving field

according to the rules for the MOVE statement for the categories of the sending

and receiving fields as described in “MOVE statement” on page 386.

4. If the DELIMITER IN phrase is specified, the delimiting characters in the

sending field are treated as an elementary alphanumeric item and are moved to

the current delimiter receiving field, according to the rules for the MOVE

statement. If the delimiting condition is the end of the sending field, the current

delimiter receiving field is filled with spaces.

466 Enterprise COBOL for z/OS V4.1 Language Reference

5. If the COUNT IN phrase is specified, a value equal to the number of examined

character positions (excluding any delimiters) is moved into the data count

field, according to the rules for an elementary move.

Stage 3: Successive iterations

6. If the DELIMITED BY phrase is specified, the sending field is further examined,

beginning with the first character position to the right of the delimiter.

If the DELIMITED BY phrase is not specified, the sending field is further

examined, beginning with the first character position to the right of the last

character position examined.

7. For each succeeding data receiving field, this process of examining and moving

is repeated until either of the following occurs:

v All the characters in the sending field have been transferred.

v There are no more unfilled data receiving fields.

Values at the end of execution of the UNSTRING statement

The following operations are performed only once, at the beginning of the

execution of the UNSTRING statement:

v Calculations of subscripts, reference modifications, variable-lengths, variable

locations

v Evaluations of functions

Therefore, if identifier-4, identifier-5, identifier-6, identifier-7, or identifier-8 is used as a

subscript, reference-modifier, or function argument in the UNSTRING statement, or

affects the length or location of any of the identifiers in the UNSTRING statement,

these values are determined at the beginning of the UNSTRING statement, and are

not affected by any results of the UNSTRING statement.

Example of the UNSTRING statement

The following figure shows the execution results for an example of the UNSTRING

statement.

Chapter 21. Procedure division statements 467

468 Enterprise COBOL for z/OS V4.1 Language Reference

WRITE statement

The WRITE statement releases a logical record to an output or input/output file.

When the WRITE statement is executed:

v The associated sequential file must be open in OUTPUT or EXTEND mode.

v The associated indexed or relative file must be open in OUTPUT, I-O, or

EXTEND mode.

Format 1: WRITE statement for sequential files

�� WRITE record-name-1

(1)

FROM

identifier-1

 �

� phrase 1

BEFORE

identifier-2

AFTER

ADVANCING

integer-1

LINE

LINES

mnemonic-name-1

PAGE

invalid_key

not_invalid_key

END-WRITE
 ��

phrase 1:

END-OF-PAGE

imperative-statement-3

AT

EOP

 �

�
NOT

END-OF-PAGE

imperative-statement-4

AT

EOP

invalid_key:

INVALID

imperative-statement-1

KEY

not_invalid_key:

NOT INVALID

imperative-statement-2

KEY

Notes:

1 The BEFORE, AFTER, INVALID KEY, and AT END OF PAGE phrases are not valid for VSAM

files.

Chapter 21. Procedure division statements 469

Format 2: WRITE statement for indexed and relative files

�� WRITE record-name-1

FROM

identifier-1
 �

�
INVALID

imperative-statement-1

KEY

 �

�
NOT INVALID

imperative-statement-2

KEY

END-WRITE
 ��

Format 3: WRITE statement for line-sequential files

�� WRITE record-name-1

FROM

identifier-1
 �

�
AFTER

identifier-2

ADVANCING

integer-1

LINE

LINES

PAGE

 �

�
END-WRITE

 ��

record-name-1

Must be defined in a data division FD entry. record-name-1 can be qualified.

It must not be associated with a sort or merge file.

 For relative files, the number of character positions in the record being

written can be different from the number of character positions in the

record being replaced.

FROM phrase

The result of the execution of the WRITE statement with the FROM

identifier-1 phrase is equivalent to the execution of the following statements

in the order specified:

MOVE identifier-1 TO record-name-1.

WRITE record-name-1.

The MOVE is performed according to the rules for a MOVE statement

without the CORRESPONDING phrase.

identifier-1

identifier-1 can reference any of the following:

v A data item defined in the working-storage section, the local-storage

section, or the linkage section

v A record description for another previously opened file

470 Enterprise COBOL for z/OS V4.1 Language Reference

v An alphanumeric function

v A national function

identifier-1 must be a valid sending item for a MOVE statement with

record-name-1 as the receiving item.

identifier-1 and record-name-1 must not refer to the same storage area.

After the WRITE statement is executed, the information is still available in

identifier-1. (See “INTO and FROM phrases” on page 305 under ″Common

processing facilities″.)

identifier-2

Must be an integer data item.

ADVANCING phrase

The ADVANCING phrase controls positioning of the output record on the page.

The BEFORE and AFTER phrases are not supported for VSAM files. QSAM files

are sequentially organized. The ADVANCING and END-OF-PAGE phrases control

the vertical positioning of each line on a printed page.

You can specify the ADVANCING PAGE and END-OF-PAGE phrases in a single

WRITE statement.

If the printed page is held on an intermediate device (a disk, for example), the

format can appear different from the expected format when the output is edited or

browsed.

ADVANCING phrase rules

When the ADVANCING phrase is specified, the following rules apply:

1. When BEFORE ADVANCING is specified, the line is printed before the page is

advanced.

2. When AFTER ADVANCING is specified, the page is advanced before the line is

printed.

3. When identifier-2 is specified, the page is advanced the number of lines equal to

the current value in identifier-2. identifier-2 must name an elementary integer

data item. identifier-2 cannot name a windowed date field.

4. When integer is specified, the page is advanced the number of lines equal to

the value of integer.

5. Integer or the value in identifier-2 can be zero.

6. When PAGE is specified, the record is printed on the logical page BEFORE or

AFTER (depending on the phrase used) the device is positioned to the next

logical page. If PAGE has no meaning for the device used, then BEFORE or

AFTER (depending on the phrase specified) ADVANCING 1 LINE is provided.

If the FD entry contains a LINAGE clause, the repositioning is to the first

printable line of the next page, as specified in that clause. If the LINAGE clause

is omitted, the repositioning is to line 1 of the next succeeding page.

7. When mnemonic-name is specified, a skip to channels 1 through 12, or space

suppression, takes place. mnemonic-name must be equated with

environment-name-1 in the SPECIAL-NAMES paragraph.

Chapter 21. Procedure division statements 471

The mnemonic-name phrase can also be specified for stacker selection with a

card punch file. When using stacker selection, WRITE AFTER ADVANCING

must be used.

The ADVANCING phrase of the WRITE statement, or the presence of a LINAGE

clause on the file, causes a carriage control character to be generated in the record

that is written. If the corresponding file is described with the EXTERNAL clause,

all file connectors within the run unit must be defined such that carriage control

characters will be generated for records that are written. That is, if all the files have

a LINAGE clause, some of the programs can use the WRITE statement with the

ADVANCING phrase and other programs can use the WRITE statement without

the ADVANCING phrase. However, if none of the files has a LINAGE clause, then

if any of the programs use the WRITE statement with the ADVANCING phrase, all

of the programs in the run unit that have a WRITE statement must use the WRITE

statement with the ADVANCING phrase.

When the ADVANCING phrase is omitted, automatic line advancing is provided,

as if AFTER ADVANCING 1 LINE had been specified.

LINAGE-COUNTER rules

If the LINAGE clause is specified for this file, the associated LINAGE-COUNTER

special register is modified during the execution of the WRITE statement,

according to the following rules:

1. If ADVANCING PAGE is specified, LINAGE-COUNTER is reset to 1.

2. If ADVANCING identifier-2 or integer is specified, LINAGE-COUNTER is

increased by the value in identifier-2 or integer.

3. If the ADVANCING phrase is omitted, LINAGE-COUNTER is increased by 1.

4. When the device is repositioned to the first available line of a new page,

LINAGE-COUNTER is reset to 1.

Usage note: If you use the ADV compiler option, the compiler adds 1 byte to the

record length in order to allow for the control character. If in your record definition

you already reserve the first byte for the control character, you should use the

NOADV option. For files defined with the LINAGE clause, the NOADV option has

no effect. The compiler processes these files as if the ADV option were specified.

END-OF-PAGE phrases

The AT END-OF-PAGE phrase is not supported for VSAM files.

When END-OF-PAGE is specified, and the logical end of the printed page is

reached during execution of the WRITE statement, the END-OF-PAGE

imperative-statement is executed. When the END-OF-PAGE phrase is specified, the

FD entry for this file must contain a LINAGE clause.

The logical end of the printed page is specified in the associated LINAGE clause.

An END-OF-PAGE condition is reached when execution of a WRITE

END-OF-PAGE statement causes printing or spacing within the footing area of a

page body. This occurs when execution of such a WRITE statement causes the

value in the LINAGE-COUNTER special register to equal or exceed the value

specified in the WITH FOOTING phrase of the LINAGE clause. The WRITE

statement is executed, and then the END-OF-PAGE imperative-statement is

executed.

472 Enterprise COBOL for z/OS V4.1 Language Reference

An automatic page overflow condition is reached whenever the execution of any

given WRITE statement (with or without the END-OF-PAGE phrase) cannot be

completely executed within the current page body. This occurs when a WRITE

statement, if executed, would cause the value in the LINAGE-COUNTER to exceed

the number of lines for the page body specified in the LINAGE clause. In this case,

the line is printed BEFORE or AFTER (depending on the option specified) the

device is repositioned to the first printable line on the next logical page, as

specified in the LINAGE clause. If the END-OF-PAGE phrase is specified, the

END-OF-PAGE imperative-statement is then executed.

If the WITH FOOTING phrase of the LINAGE clause is not specified, the

automatic page overflow condition exists because no end-of-page condition (as

distinct from the page overflow condition) can be detected.

If the WITH FOOTING phrase is specified, but the execution of a given WRITE

statement would cause the LINAGE-COUNTER to exceed both the footing value

and the page body value specified in the LINAGE clause, then both the

end-of-page condition and the automatic page overflow condition occur

simultaneously.

The keywords END-OF-PAGE and EOP are equivalent.

You can specify both the ADVANCING PAGE phrase and the END-OF-PAGE

phrase in a single WRITE statement.

INVALID KEY phrases

The INVALID KEY phrase is not supported for VSAM sequential files.

An invalid key condition is caused by the following:

v For sequential files, an attempt is made to write beyond the externally defined

boundary of the file.

v For indexed files:

– An attempt is made to write beyond the externally defined boundary of the

file.

– ACCESS SEQUENTIAL is specified and the file is opened OUTPUT, and the

value of the prime record key is not greater than that of the previous record.

– The file is opened OUTPUT or I-O and the value of the prime record key

equals that of an already existing record.
v For relative files:

– An attempt is made to write beyond the externally defined boundary of the

file.

– When the access mode is random or dynamic and the RELATIVE KEY data

item specifies a record that already exists in the file.

– The number of significant digits in the relative record number is larger than

the size of the relative key data item for the file.

When an invalid key condition occurs:

v If the INVALID KEY phrase is specified, imperative-statement-1 is executed. For

details of invalid key processing, see “Invalid key condition” on page 304.

v Otherwise, the WRITE statement is unsuccessful and the contents of record-name

are unaffected (except for QSAM files) and the following occurs:

Chapter 21. Procedure division statements 473

– For sequential files, the file status key, if specified, is updated and an

EXCEPTION/ERROR condition exists.

If an explicit or implicit EXCEPTION/ERROR procedure is specified for the

file, the procedure is executed. If no such procedure is specified, the results

are unpredictable.

– For relative and indexed files, program execution proceeds according to the

rules described by “Invalid key condition” on page 304 under ″Common

processing facilities″.

The INVALID KEY conditions that apply to a relative file in OPEN OUTPUT

mode also apply to one in OPEN EXTEND mode.
v If the NOT INVALID KEY phrase is specified and a valid key condition exists at

the end of the execution of the WRITE statement, control is passed to

imperative-statement-4.

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure

can be omitted.

END-WRITE phrase

This explicit scope terminator serves to delimit the scope of the WRITE statement.

END-WRITE permits a conditional WRITE statement to be nested in another

conditional statement. END-WRITE can also be used with an imperative WRITE

statement.

For more information, see “Delimited scope statements” on page 293.

WRITE for sequential files

The maximum record size for sequential files is established at the time the file is

created and cannot subsequently be changed.

After the WRITE statement is executed, the logical record is no longer available in

record-name-1 unless either:

v The associated file is named in a SAME RECORD AREA clause (in which case,

the record is also available as a record of the other files named in the SAME

RECORD AREA clause)

v The WRITE statement is unsuccessful because of a boundary violation.

In either of these two cases, the logical record is still available in record-name-1.

The file position indicator is not affected by execution of the WRITE statement.

The number of character positions required to store the record in a file might or

might not be the same as the number of character positions defined by the logical

description of that record in the COBOL program. (See “PICTURE clause editing”

on page 216 and “USAGE clause” on page 234.)

If the FILE STATUS clause is specified in the file-control entry, the associated file

status key is updated when the WRITE statement is executed, whether or not

execution is successful.

The WRITE statement can only be executed for a sequential file opened in

OUTPUT or EXTEND mode for QSAM files.

474 Enterprise COBOL for z/OS V4.1 Language Reference

Multivolume files

When end-of-volume is recognized for a multivolume OUTPUT file (tape or

sequential direct-access file), the WRITE statement performs the following

operations:

v The standard ending volume label procedure

v A volume switch

v The standard beginning volume label procedure

Punch function files with the IBM 3525

When the punch function is used, the next I-O operation after the READ statement

must be a WRITE statement for the punch function file.

If you want to punch additional data into some of the cards and not into others, a

dummy WRITE statement must be issued for the null cards, first filling the output

area with SPACES.

If stacker selection for the punch function file is desired, you can specify the

appropriate stacker function-names in the SPECIAL-NAMES paragraph, and then

issue WRITE ADVANCING statements using the associated mnemonic-names.

Print function files

After the punch function operations (if specified) are completed, you can issue

WRITE statements for the print function file.

If you wish to print additional data on some of the data cards and not on others,

the WRITE statement for the null cards can be omitted. Any attempt to write

beyond the limits of the card results in abnormal termination of the application,

thus, the END-OF-PAGE phrase cannot be specified.

Depending on the capabilities of the specific IBM 3525 model in use, the print file

can be either a two-line print file or a multiline print file. Up to 64 characters can

be printed on each line.

v For a two-line print file, the lines are printed on line 1 (top edge of card) and

line 3 (between rows 11 and 12). Line control cannot be specified. Automatic

spacing is provided.

v For a multiline print file, up to 25 lines of characters can be printed. Line control

can be specified. If line control is not specified, automatic spacing is provided.

Line control is specified by issuing WRITE AFTER ADVANCING statements for

the print function file. If line control is used for one such statement, it must be

used for all other WRITE statements issued to the file. The maximum number of

printable characters, including any space characters, is 64. Such WRITE statements

must not specify space suppression.

Identifier and integer have the same meanings they have for other WRITE AFTER

ADVANCING statements. However, such WRITE statements must not increase the

line position on the card beyond the card limit, or abnormal termination results.

The mnemonic-name option of the WRITE AFTER ADVANCING statement can

also be specified. In the SPECIAL-NAMES paragraph, the environment-names can

be associated with the mnemonic-names, as shown in the following table:

Chapter 21. Procedure division statements 475

Table 55. Meanings of environment-names in SPECIAL NAMES paragraph

environment-name Meaning

C02 Line 3

C03 Line 5

C04 Line 7

C05 Line 9

... ...

C22 Line 21

C12 Line 23

Advanced Function Printing

When you use the WRITE ADVANCING phrase with a mnemonic-name associated

with environment-name AFP-5A, a Print Services Facility™ (PSF) control character

is placed in the control character position of the output record. This control

character (X’5A’) allows Advanced Function Printing (AFP™) services to be used.

For more information, refer to the documentation for the Print Services Facility

product: PSF for OS/390® & z/OS (5655-B17).

WRITE for indexed files

Before the WRITE statement is executed for indexed files, you must set the prime

record key (the RECORD KEY data item, as defined in the file-control entry) to the

desired value. Note that RECORD KEY values must be unique within a file.

If the ALTERNATE RECORD KEY clause is also specified in the file-control entry,

each alternate record key must be unique, unless the DUPLICATES phrase is

specified. If the DUPLICATES phrase is specified, alternate record key values

might not be unique. In this case, the system stores the records so that later

sequential access to the records allows retrieval in the same order in which they

were stored.

When ACCESS IS SEQUENTIAL is specified in the file-control entry, records must

be released in ascending order of RECORD KEY values.

When ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified in the

file-control entry, records can be released in any programmer-specified order.

WRITE for relative files

For relative record OUTPUT files, the WRITE statement causes the following

actions:

v If ACCESS IS SEQUENTIAL is specified:

The first record released has relative record number 1, the second record

released has relative record number 2, the third number 3, and so on.

If the RELATIVE KEY is specified in the file-control entry, the relative record

number of the record just released is placed in the RELATIVE KEY during

execution of the WRITE statement.

v If ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified, the RELATIVE

KEY must contain the desired relative record number for this record before the

476 Enterprise COBOL for z/OS V4.1 Language Reference

WRITE statement is issued. When the WRITE statement is executed, this record

is placed at the specified relative record number position in the file.

For I-O files, either ACCESS IS RANDOM or ACCESS IS DYNAMIC must be

specified; the WRITE statement inserts new records into the file. The RELATIVE

KEY must contain the desired relative record number for this record before the

WRITE statement is issued. When the WRITE statement is executed, this record is

placed at the specified relative record number position in the file.

Chapter 21. Procedure division statements 477

XML GENERATE statement

The XML GENERATE statement converts data to XML format.

Format

�� XML GENERATE identifier-1 FROM identifier-2

COUNT

identifier-3

IN

 �

�
ENCODING

codepage

WITH

XML-DECLARATION

WITH

ATTRIBUTES

WITH

 �

�
NAMESPACE

identifier-4

IS

literal-4

NAMESPACE-PREFIX

identifier-5

IS

literal-5

 �

�
EXCEPTION

imperative-statement-1

ON

 �

�
NOT

EXCEPTION

imperative-statement-2

ON

END-XML
 ��

identifier-1

The receiving area for a generated XML document. identifier-1 must

reference one of the following:

v An elementary data item of category alphanumeric

v An alphanumeric group item

v An elementary data item of category national

v A national group item

When identifier-1 references a national group item, identifier-1 is processed

as an elementary data item of category national. When identifier-1

references an alphanumeric group item, identifier-1 is treated as though it

were an elementary data item of category alphanumeric.

identifier-1 must not be described with the JUSTIFIED clause, and cannot be

a function identifier. identifier-1 can be subscripted or reference modified.

identifier-1 must not overlap identifier-2, identifier-3, codepage (if an

identifier), identifier-4, or identifier-5.

The generated XML output is encoded as described in the documentation

of the ENCODING phrase below.

identifier-1 must reference a data item of category national, or the

ENCODING phrase must specify 1208, if any of the following statements is

true:

v The CODEPAGE compiler option specifies an EBCDIC DBCS code page.

v identifier-4 or identifier-5 references a data item of category national.

478 Enterprise COBOL for z/OS V4.1 Language Reference

|||||||

||||||||

|
|

|
|

|
|
|

|

v literal-4 or literal-5 is of category national.

v The generated XML includes data from identifier-2 for:

– Any data item of class national or class DBCS

– Any data item with a DBCS name (that is, a data item whose name

consists of DBCS characters)

– Any data item of class alphanumeric that contains DBCS characters

identifier-1 must be large enough to contain the generated XML document.

Typically, it should be from five to 10 times the size of identifier-2,

depending on the length of the data-name or data-names within identifier-2.

If identifier-1 is not large enough, an error condition exists at the end of the

XML GENERATE statement.

identifier-2

The group or elementary data item to be converted to XML format.

 If identifier-2 references a national group item, identifier-2 is processed as a

group item. When identifier-2 includes a subordinate national group item,

that subordinate item is processed as a group item.

identifier-2 cannot be a function identifier or be reference modified, but it

can be subscripted.

identifier-2 must not overlap identifier-1 or identifier-3.

identifier-2 must not specify the RENAMES clause.

The following data items specified by identifier-2 are ignored by the XML

GENERATE statement:

v Any unnamed elementary data items or elementary FILLER data items

v Any slack bytes inserted for SYNCHRONIZED items

v Any data item subordinate to identifier-2 that is described with the

REDEFINES clause or that is subordinate to such a redefining item

v Any data item subordinate to identifier-2 that is described with the

RENAMES clause

v Any group data item all of whose subordinate data items are ignored

All data items specified by identifier-2 that are not ignored according to the

rules above must satisfy the following conditions:

v Each elementary data item must either have class alphabetic,

alphanumeric, numeric, or national, or be an index data item. (That is,

no elementary data item can be described with the USAGE POINTER,

USAGE FUNCTION-POINTER, USAGE PROCEDURE-POINTER, or

USAGE OBJECT REFERENCE phrase.)

v There must be at least one such elementary data item.

v Each non-FILLER data-name must be unique within any immediately

superordinate group data item.

v Any DBCS data-names, when converted to Unicode, must be legal as

names in the XML specification, version 1.0.

v The data items must not specify the DATE FORMAT clause, or the

DATEPROC compiler option must not be in effect.

For example, consider the following data declaration:

01 STRUCT.

 02 STAT PIC X(4).

 02 IN-AREA PIC X(100).

 02 OK-AREA REDEFINES IN-AREA.

Chapter 21. Procedure division statements 479

|

|

03 FLAGS PIC X.

 03 PIC X(3).

 03 COUNTER USAGE COMP-5 PIC S9(9).

 03 ASFNPTR REDEFINES COUNTER USAGE FUNCTION-POINTER.

 03 UNREFERENCED PIC X(92).

 02 NG-AREA1 REDEFINES IN-AREA.

 03 FLAGS PIC X.

 03 PIC X(3).

 03 PTR USAGE POINTER.

 03 ASNUM REDEFINES PTR USAGE COMP-5 PIC S9(9).

 03 PIC X(92).

 02 NG-AREA2 REDEFINES IN-AREA.

 03 FN-CODE PIC X.

 03 UNREFERENCED PIC X(3).

 03 QTYONHAND USAGE BINARY PIC 9(5).

 03 DESC USAGE NATIONAL PIC N(40).

 03 UNREFERENCED PIC X(12).

The following data items from the example above can be specified as

identifier-2:

v STRUCT, of which subordinate data items STAT and IN-AREA would be

converted to XML format. (OK-AREA, NG-AREA1, and NG-AREA2 are ignored

because they specify the REDEFINES clause.)

v OK-AREA, of which subordinate data items FLAGS, COUNTER, and

UNREFERENCED would be converted. (The item whose data description

entry specifies 03 PIC X(3) is ignored because it is an elementary

FILLER data item. ASFNPTR is ignored because it specifies the

REDEFINES clause.)

v Any of the elementary data items that are subordinate to STRUCT except:

– ASFNPTR or PTR (disallowed usage)

– UNREFERENCED OF NG-AREA2 (nonunique names for data items that are

otherwise eligible)

– Any FILLER data items

The following data items cannot be specified as identifier-2:

v NG-AREA1, because subordinate data item PTR specifies USAGE POINTER

but does not specify the REDEFINES clause. (PTR would be ignored if it

specified the REDEFINES clause.)

v NG-AREA2, because subordinate elementary data items have the

nonunique name UNREFERENCED.

COUNT IN phrase

If the COUNT IN phrase is specified, identifier-3 contains (after execution

of the XML GENERATE statement) the count of generated XML character

encoding units. If identifier-1 (the receiver) has category national, the count

is in UTF-16 character encoding units. For all other encodings (including

UTF-8), the count is in bytes.

identifier-3

The data count field. Must be an integer data item defined without

the symbol P in its picture string.

 identifier-3 must not overlap identifier-1, identifier-2, codepage (if an

identifier), identifier-4, or identifier-5.

ENCODING phrase

The ENCODING phrase, if specified, determines the encoding of the

generated XML document.

480 Enterprise COBOL for z/OS V4.1 Language Reference

|
|
|
|

|
|

|
|
|

codepage

Must be an unsigned integer data item or unsigned integer literal

and must represent a valid coded character set identifier (CCSID).

Must identify one of the code pages supported for COBOL XML

processing as described in Coded character sets for XML documents

(Enterprise COBOL Programming Guide).

 If an identifier, codepage must not overlap identifier-1 or identifier-3.

If identifier-1 references a data item of category national, codepage must

specify 1200, the CCSID for Unicode UTF-16.

If identifier-1 references a data item of category alphanumeric, codepage

must specify 1208 or the CCSID of a supported EBCDIC code page as

listed in Coded character sets for XML documents (Enterprise COBOL

Programming Guide).

If the ENCODING phrase is omitted and identifier-1 is of category national,

the document encoding is Unicode UTF-16, CCSID 1200.

A byte order mark is not generated for XML documents that have Unicode

encoding.

If the ENCODING phrase is omitted and identifier-1 is of category

alphanumeric, the XML document is encoded using the code page

specified by the CODEPAGE compiler option in effect when the source

code was compiled.

XML-DECLARATION phrase

If the XML-DECLARATION phrase is specified, the generated XML

document starts with an XML declaration that includes the XML version

information and an encoding declaration.

 If identifier-1 is of category national, the encoding declaration has the value

UTF-16 (encoding="UTF-16").

If identifier-1 is of category alphanumeric, the encoding declaration is

derived from the ENCODING phrase, if specified, or from the CODEPAGE

compiler option in effect for the program if the ENCODING phrase is not

specified.

For an example of the effect of coding the XML-DECLARATION phrase,

see Generating XML output (Enterprise COBOL Programming Guide).

If the XML-DECLARATION phrase is omitted, the generated XML

document does not include an XML declaration.

ATTRIBUTES phrase

If the ATTRIBUTES phrase is specified, each eligible item included in the

generated XML document is expressed as an attribute of the XML element

that corresponds to the data item immediately superordinate to that

eligible item, rather than as a child element of the XML element. To be

eligible, a data item must be elementary, must have a name other than

FILLER, and must not specify an OCCURS clause in its data description

entry.

 For an example of the effect of the ATTRIBUTES phrase, see Generating

XML output (Enterprise COBOL Programming Guide).

NAMESPACE and NAMESPACE-PREFIX phrases

Use the NAMESPACE phrase to identify a namespace for the generated

XML document. If the NAMESPACE phrase is not specified, or if

Chapter 21. Procedure division statements 481

|
|
|
|
|
|

|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

identifier-4 has length zero or contains all spaces, the element names of

XML documents produced by the XML GENERATE statement are not in

any namespace.

 Use the NAMESPACE-PREFIX phrase to qualify the start and end tag of

each element in the generated XML document with a prefix.

If the NAMESPACE-PREFIX phrase is not specified, or if identifier-5 is of

length zero or contains all spaces, the namespace specified by the

NAMESPACE phrase specifies the default namespace for the document. In

this case, the namespace declared on the root element applies by default to

each element name in the document, including that of the root element.

(Default namespace declarations do not apply directly to attribute names.)

If the NAMESPACE-PREFIX phrase is specified, and identifier-5 is not of

length zero and does not contain all spaces, then the start and end tag of

each element in the generated document is qualified with the specified

prefix. The prefix should therefore preferably be short. When the XML

GENERATE statement is executed, the prefix must be a valid XML name,

but without the colon (:), as defined in Namespaces in XML 1.0. The prefix

can have trailing spaces, which are removed before use.

identifier-4, literal-4; identifier-5, literal-5

identifier-4, literal-4: The namespace identifier, which must be a

valid Uniform Resource Identifier (URI) as defined in Uniform

Resource Identifier (URI): Generic Syntax.

 identifier-5, literal-5: The namespace prefix, which serves as an alias

for the namespace identifier.

identifier-4 and identifier-5 must reference data items of category

alphanumeric or national.

identifier-4 and identifier-5 must not overlap identifier-1 or

identifier-3.

literal-4 and literal-5 must be of category alphanumeric or national,

and must not be figurative constants.

For full details about namespaces, see Namespaces in XML 1.0.

For examples that show the use of the NAMESPACE and

NAMESPACE-PREFIX phrases, see Generating XML output (Enterprise

COBOL Programming Guide).

ON EXCEPTION phrase

An exception condition exists when an error occurs during generation of

the XML document, for example if identifier-1 is not large enough to

contain the generated XML document. In this case, XML generation stops

and the content of the receiver, identifier-1, is undefined. If the COUNT IN

phrase is specified, identifier-3 contains the number of character positions

that were generated, which can range from 0 to the length of identifier-1.

 If the ON EXCEPTION phrase is specified, control is transferred to

imperative-statement-1. If the ON EXCEPTION phrase is not specified, the

NOT ON EXCEPTION phrase, if any, is ignored, and control is transferred

to the end of the XML GENERATE statement. Special register XML-CODE

contains an exception code, as detailed in Handling errors in generating XML

documents (Enterprise COBOL Programming Guide).

NOT ON EXCEPTION phrase

If an exception condition does not occur during generation of the XML

482 Enterprise COBOL for z/OS V4.1 Language Reference

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|
|

http://www.w3.org/TR/REC-xml-names/#ns-decl
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.w3.org/TR/REC-xml-names/

document, control is passed to imperative-statement-2, if specified, otherwise

to the end of the XML GENERATE statement. The ON EXCEPTION

phrase, if specified, is ignored. Special register XML-CODE contains zero

after execution of the XML GENERATE statement.

END-XML phrase

This explicit scope terminator delimits the scope of XML GENERATE or

XML PARSE statements. END-XML permits a conditional XML GENERATE

or XML PARSE statement (that is, an XML GENERATE or XML PARSE

statement that specifies the ON EXCEPTION or NOT ON EXCEPTION

phrase) to be nested in another conditional statement.

 The scope of a conditional XML GENERATE or XML PARSE statement can

be terminated by:

v An END-XML phrase at the same level of nesting

v A separator period

END-XML can also be used with an XML GENERATE or XML PARSE

statement that does not specify either the ON EXCEPTION or the NOT ON

EXCEPTION phrase.

For more information on explicit scope terminators, see “Delimited scope

statements” on page 293.

Nested XML GENERATE or XML PARSE statements

When a given XML GENERATE or XML PARSE statement appears as

imperative-statement-1 or imperative-statement-2, or as part of imperative-statement-1 or

imperative-statement-2 of another XML GENERATE or XML PARSE statement, that

given XML GENERATE or XML PARSE statement is a nested XML GENERATE or

XML PARSE statement.

Nested XML GENERATE or XML PARSE statements are considered to be matched

XML GENERATE and END-XML combinations, or XML PARSE and END-XML

combinations, proceeding from left to right. Thus, any END-XML phrase that is

encountered is matched with the nearest preceding XML GENERATE or XML

PARSE statement that has not been implicitly or explicitly terminated.

Operation of XML GENERATE

The content of each eligible elementary data item within identifier-2 is converted to

character format as described under “Format conversion of elementary data” on

page 484 and “Trimming of generated XML data” on page 485. Only the first

definition of each storage area is processed. Redefinitions of data items are not

included. Data items that are effectively defined by the RENAMES clause are also

not included.

The converted content is then inserted as element character content, or, if the

ATTRIBUTES phrase is specified and the data item is eligible to be expressed as an

attribute, as the value of the attribute, in the generated XML document.

The XML element names and attribute names are derived from the data-names

within identifier-2 as described under “XML element name and attribute name

formation” on page 486. The names of group items that contain the selected

elementary items are retained as parent elements. If the NAMESPACE-PREFIX

phrase is specified, the prefix value, minus any trailing spaces, is used to qualify

the start and end tag of each element.

Chapter 21. Procedure division statements 483

|
|
|

|

|
|
|

No extra white space (new lines, indentation, and so forth) is inserted to make the

generated XML more readable. An XML declaration is generated only if the

XML-DECLARATION phrase is specified.

If the receiving area specified by identifier-1 is not large enough to contain the

resulting XML document, an error condition exists. See the description of the ON

EXCEPTION phrase above for details.

If identifier-1 is longer than the generated XML document, only that part of

identifier-1 in which XML is generated is changed. The rest of identifier-1 contains

the data that was present before this execution of the XML GENERATE statement.

To avoid referring to that data, either initialize identifier-1 to spaces before the XML

GENERATE statement or specify the COUNT IN phrase.

If the COUNT IN phrase is specified, identifier-3 contains (after execution of the

XML GENERATE statement) the total number of character positions (UTF-16

encoding units or bytes) that were generated. You can use identifier-3 as a reference

modification length field to refer to the part of identifier-2 that contains the

generated XML document.

After execution of the XML GENERATE statement, special register XML-CODE

contains either zero, which indicates successful completion, or a nonzero exception

code. See Handling errors in generating XML documents (Enterprise COBOL

Programming Guide) for details.

The XML PARSE statement also uses special register XML-CODE. Therefore if you

code an XML GENERATE statement in the processing procedure of an XML

PARSE statement, save the value of XML-CODE before that XML GENERATE

statement executes and restore the saved value after the XML GENERATE

statement terminates.

Format conversion of elementary data

Elementary data items are converted to character format depending on the type of

the data item:

v Data items of category alphabetic, alphanumeric, alphanumeric-edited, DBCS,

external floating-point, national, national-edited, and numeric-edited are not

converted.

v Fixed-point numeric data items other than COMPUTATIONAL-5 (COMP-5)

binary data items or binary data items compiled with the TRUNC(BIN) compiler

option are converted as if they were moved to a numeric-edited item that has:

– As many integer positions as the numeric item has, but with at least one

integer position

– An explicit decimal point, if the numeric item has at least one decimal

position

– The same number of decimal positions as the numeric item has

– A leading ’-’ picture symbol if the data item is signed (has an S in its

PICTURE clause)
v COMPUTATIONAL-5 (COMP-5) binary data items or binary data items

compiled with the TRUNC(BIN) compiler option are converted in the same way

as the other fixed-point numeric items, except for the number of integer

positions. The number of integer positions is computed depending on the

number of ’9’ symbols in the picture character string as follows:

484 Enterprise COBOL for z/OS V4.1 Language Reference

|
|

– 5 minus the number of decimal places, if the data item has 1 to 4 ’9’ picture

symbols

– 10 minus the number of decimal places, if the data item has 5 to 9 ’9’ picture

symbols

– 20 minus the number of decimal places, if the data item has 10 to 18 ’9’

picture symbols
v Internal floating-point data items are converted as if they were moved to a data

item as follows:

– For COMP-1: an external floating-point data item with PICTURE -9.9(8)E+99

– For COMP-2: an external floating-point data item with PICTURE -9.9(17)E+99

(illegal because of the number of digit positions)
v Index data items are converted as if they were declared USAGE COMP-5

PICTURE S9(9).

After any conversion to character format, leading and trailing spaces and leading

zeroes are eliminated, as described under “Trimming of generated XML data.”

If a data item after any conversion contains any characters that are illegal in XML

content, as specified in the relevant XML specification, an exception is generated.

See Handling errors in generating XML documents (Enterprise COBOL Programming

Guide) for details.

Any remaining instances of the five characters & (ampersand), ’ (apostrophe), >

(greater-than sign), < (less-than sign), and " (quotation mark) are converted into

the equivalent XML references ’&’, ’'’, ’>’, ’<’, and ’"’,

respectively.

Then, if identifier-1 is a data item of category national, any nonnational values are

converted to national format.

Any remaining Unicode character represented by two UTF-16 encoding units (a

surrogate pair) is replaced by an XML character reference. For example, the

surrogate pair (NX’D802’, NX’DC13’) is replaced by the reference ’𐠓’.

Trimming of generated XML data

Trimming is performed on data values after their conversion to character format.

(Conversion is described under “Format conversion of elementary data” on page

484.)

For values converted from signed numeric values, the leading space is removed if

the value is positive.

For values converted from numeric items, leading zeroes (after any initial minus

sign) up to but not including the digit immediately before the actual or implied

decimal point are eliminated. Trailing zeroes after a decimal point are retained. For

example:

v -012.340 becomes -12.340.

v 0000.45 becomes 0.45.

v 0013 becomes 13.

v 0000 becomes 0.

Chapter 21. Procedure division statements 485

|
|
|

Character values from data items of class alphabetic, alphanumeric, DBCS, and

national have either trailing or leading spaces removed, depending on whether the

corresponding data items have left (default) or right justification, respectively. That

is, trailing spaces are removed from values whose corresponding data items do not

specify the JUSTIFIED clause. Leading spaces are removed from values whose data

items do specify the JUSTIFIED clause. If a character value consists solely of

spaces, one space remains as the value after trimming is finished.

XML element name and attribute name formation

In the XML documents that are generated from identifier-2, the XML element names

and attribute names are derived from the names of the data item specified by

identifier-2 and from any eligible data-names that are subordinate to identifier-2 as

follows:

v The exact mixed-case spelling of data-names from the data description entry is

retained. The spellings from any references to data items (for example, in an

OCCURS DEPENDING ON clause) are not used.

v Data-names that start with a digit are prefixed by an underscore. For example,

the data-name ’3D’ becomes XML tag or attribute name ’_3D’.

v Data-names that start with the characters ’xml’, in any combination of uppercase

and lowercase, are prefixed by an underscore. For example, the data-name ’Xml’

becomes XML tag or attribute name ’_Xml’.

DBCS data-names, when translated to Unicode, must be legal as names in the XML

specification, version 1.0.

486 Enterprise COBOL for z/OS V4.1 Language Reference

|

|

|

XML PARSE statement

The XML PARSE statement is the COBOL language interface to either of two

high-speed XML parsers, depending on the setting of the XMLPARSE compiler

option:

v The z/OS XML System Services parser, for enhanced parsing capabilities. This

parser is selected by the XMLPARSE(XMLSS) compiler option.

v The XML parser that is provided in the COBOL run time, for compatibility with

Enterprise COBOL for z/OS Version 3. The compatible parser is selected by the

XMLPARSE(COMPAT) compiler option.

The XML PARSE statement parses an XML document into its individual pieces and

passes each piece, one at a time, to a user-written processing procedure.

Format

�� XML PARSE identifier-1

ENCODING

codepage

WITH

RETURNING NATIONAL
 �

� PROCESSING PROCEDURE procedure-name-1

IS

THROUGH

procedure-name-2

THRU

 �

�
EXCEPTION

imperative-statement-1

ON

 �

�
NOT

EXCEPTION

imperative-statement-2

ON

END-XML
 ��

identifier-1

Must be an alphanumeric group item, a national group item, an

elementary data item of category alphanumeric, or an elementary data

item of category national that contains the XML document character

stream. identifier-1 cannot be a function-identifier.

 If identifier-1 is a national group item, identifier-1 is processed as an

elementary data item of category national.

If identifier-1 is of category national, its content must be encoded using

CCSID 1200 (Unicode UTF-16BE). If the XMLPARSE(COMPAT) compiler

option is in effect, identifier-1 must not contain any character entities that

are represented using multiple encoding units. Use a character reference,

for example:

v ″𐠓″ or

v ″𐠓″

to represent any such characters.

If identifier-1 is of category alphanumeric, its content must be encoded

using one of the character sets listed in Coded character sets for XML

Chapter 21. Procedure division statements 487

|
|
|

|
|

|
|
|

||||

|
|

documents in the Enterprise COBOL Programming Guide. If the

XMLPARSE(COMPAT) compiler option is in effect, and identifier-1 is

alphanumeric and contains an XML document that does not specify an

encoding declaration, the XML document is parsed with the code page

specified by the CODEPAGE compiler option.

If the XMLPARSE(XMLSS) compiler option is in effect, the XML document

is parsed with the code page specified in the ENCODING phrase; if the

ENCODING phrase is not used, the document is parsed with the code

page specified by the CODEPAGE compiler option. Any encoding

declaration in the XML document is ignored.

RETURNING NATIONAL phrase

The RETURNING NATIONAL phrase can be specified only when the

XMLPARSE(XMLSS) compiler option is in effect.

 When identifier-1 references a data item of category alphanumeric and the

RETURNING NATIONAL phrase is specified, XML document fragments

are automatically converted to Unicode UTF-16 representation and

returned to the processing procedure in the national special registers

XML-NTEXT, XML-NNAMESPACE, and XML-NNAMESPACE-PREFIX.

When the RETURNING NATIONAL phrase is not specified and identifier-1

references a data item of category alphanumeric, the XML document

fragments are returned to the processing procedure in the alphanumeric

special registers XML-TEXT, XML-NAMESPACE, and XML-NAMESPACE-
PREFIX except that: when XMLPARSE(COMPAT) is in effect, text for the

ATTRIBUTE-NATIONAL-CHARACTER and CONTENT-NATIONAL-
CHARACTER XML events is always returned in special register

XML-NTEXT.

When identifier-1 references a national data item, XML document fragments

are always returned in Unicode UTF-16 representaion in the national

special registers XML-NTEXT, XML-NNAMESPACE, and

XML-NNAMESPACE-PREFIX.

ENCODING phrase

The ENCODING phrase can be specified only when the

XMLPARSE(XMLSS) compiler option is in effect.

 The ENCODING phrase specifies an encoding that is assumed for the

source XML document in identifier-1. codepage must be an unsigned integer

data item or an unsigned integer literal that represents a valid coded

character set identifier (CCSID). The ENCODING phrase specification

overrides the encoding specified by the CODEPAGE compiler option. The

encoding specified in any XML declaration is always ignored.

If identifier-1 references a data item of category national, codepage must

specify CCSID 1200, for Unicode UTF-16.

If identifier-1 references a data item of category alphanumeric, codepage

must specify CCSID 1208 for UTF-8 or a CCSID for a supported EBCDIC

or ASCII codepage. See Coded character sets for XML documents in the

Enterprise COBOL Programming Guide for details.

PROCESSING PROCEDURE phrase

Specifies the name of a procedure to handle the various events that the

XML parser generates.

procedure-name-1, procedure-name-2

Must name a section or paragraph in the procedure division. When

488 Enterprise COBOL for z/OS V4.1 Language Reference

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

both procedure-name-1 and procedure-name-2 are specified, if either is

a procedure name in a declarative procedure, both must be

procedure names in the same declarative procedure.

procedure-name-1

Specifies the first (or only) section or paragraph in the processing

procedure.

procedure-name-2

Specifies the last section or paragraph in the processing procedure.

For each XML event, the parser transfers control to the first statement of

the procedure named procedure-name-1. Control is always returned from the

processing procedure to the XML parser. The point from which control is

returned is determined as follows:

v If procedure-name-1 is a paragraph name and procedure-name-2 is not

specified, the return is made after the execution of the last statement of

the procedure-name-1 paragraph.

v If procedure-name-1 is a section name and procedure-name-2 is not

specified, the return is made after the execution of the last statement of

the last paragraph in the procedure-name-1 section.

v If procedure-name-2 is specified and it is a paragraph name, the return is

made after the execution of the last statement of the procedure-name-2

paragraph.

v If procedure-name-2 is specified and it is a section name, the return is

made after the execution of the last statement of the last paragraph in

the procedure-name-2 section.

The only necessary relationship between procedure-name-1 and

procedure-name-2 is that they define a consecutive sequence of operations to

execute, beginning at the procedure named by procedure-name-1 and ending

with the execution of the procedure named by procedure-name-2.

If there are two or more logical paths to the return point, then

procedure-name-2 can name a paragraph that consists of only an EXIT

statement; all the paths to the return point must then lead to this

paragraph.

The processing procedure consists of all the statements at which XML

events are handled. The range of the processing procedure includes all

statements executed by CALL, EXIT, GO TO, GOBACK, INVOKE, MERGE,

PERFORM, and SORT statements that are in the range of the processing

procedure, as well as all statements in declarative procedures that are

executed as a result of the execution of statements in the range of the

processing procedure.

The range of the processing procedure must not cause the execution of any

GOBACK or EXIT PROGRAM statement, except to return control from a

method or program to which control was passed by an INVOKE or CALL

statement, respectively, that is executed in the range of the processing

procedure.

The range of the processing procedure must not cause the execution of an

XML PARSE statement, unless the XML PARSE statement is executed in a

method or outermost program to which control was passed by an INVOKE

or CALL statement that is executed in the range of the processing

procedure.

Chapter 21. Procedure division statements 489

A program executing on multiple threads can execute the same XML

statement or different XML statements simultaneously.

The processing procedure can terminate the run unit with a STOP RUN

statement.

For more details about the processing procedure, see “Control flow” on

page 491.

ON EXCEPTION

The ON EXCEPTION phrase specifies imperative statements that are

executed when the XML PARSE statement raises an exception condition.

 An exception condition exists when the XML parser detects an error in

processing the XML document. The parser first signals an XML exception

by passing control to the processing procedure with special register

XML-EVENT containing ’EXCEPTION’. The parser also provides a numeric

error code in special register XML-CODE, as detailed in the Enterprise

COBOL Programming Guide.

An exception condition also exists if the processing procedure sets

XML-CODE to -1 before returning to the parser for any normal XML event.

In this case, the parser does not signal an EXCEPTION XML event and

parsing is terminated.

If the ON EXCEPTION phrase is specified, the parser transfers control to

imperative-statement-1. If the ON EXCEPTION phrase is not specified, the

NOT ON EXCEPTION phrase, if any, is ignored and control is transferred

to the end of the XML PARSE statement.

Special register XML-CODE contains the numeric error code for the XML

exception or -1 after execution of the XML PARSE statement.

If the processing procedure handles the XML exception event and sets

XML-CODE to zero before returning control to the parser, the exception

condition no longer exists. If no other unhandled exceptions occur before

termination of the parser, control is transferred to imperative-statement-2 of

the NOT ON EXCEPTION phrase, if specified.

NOT ON EXCEPTION

The NOT ON EXCEPTION phrase specifies imperative statements that are

executed when no exception condition exists at the termination of XML

PARSE processing.

 If an exception condition does not exist at termination of XML PARSE

processing, control is transferred to imperative-statement-2 of the NOT ON

EXCEPTION phrase, if specified. If the NOT ON EXCEPTION phrase is

not specified, control is transferred to the end of the XML PARSE

statement. The ON EXCEPTION phrase, if specified, is ignored.

Special register XML-CODE contains zero after execution of the XML

PARSE statement.

END-XML phrase

This explicit scope terminator delimits the scope of XML GENERATE or

XML PARSE statements. END-XML permits a conditional XML GENERATE

or XML PARSE statement (that is, an XML GENERATE or XML PARSE

statement that specifies the ON EXCEPTION or NOT ON EXCEPTION

phrase) to be nested in another conditional statement.

 The scope of a conditional XML GENERATE or XML PARSE statement can

be terminated by:

490 Enterprise COBOL for z/OS V4.1 Language Reference

|
|
|
|

v An END-XML phrase at the same level of nesting

v A separator period

END-XML can also be used with an XML GENERATE or XML PARSE

statement that does not specify either the ON EXCEPTION or NOT ON

EXCEPTION phrase.

For more information on explicit scope terminators, see “Delimited scope

statements” on page 293.

Nested XML GENERATE or XML PARSE statements

When a given XML GENERATE or XML PARSE statement appears as

imperative-statement-1 or imperative-statement-2, or as part of imperative-statement-1 or

imperative-statement-2 of another XML GENERATE or XML PARSE statement, that

given XML GENERATE or XML PARSE statement is a nested XML GENERATE or

XML PARSE statement.

Nested XML GENERATE or XML PARSE statements are considered to be matched

XML GENERATE and END-XML, or XML PARSE and END-XML combinations

proceeding from left to right. Thus, any END-XML phrase that is encountered is

matched with the nearest preceding XML GENERATE or XML PARSE statement

that has not been implicitly or explicitly terminated.

Control flow

When the XML parser receives control from an XML PARSE statement, the parser

analyzes the XML document and transfers control at the following points in the

process:

v The start of the parsing process

v When a document fragment is found

v When the parser detects an error in parsing the XML document

v The end of processing the XML document

Control returns to the XML parser when the end of the processing procedure is

reached.

The exchange of control between the parser and the processing procedure

continues until either:

v The entire XML document has been parsed, ending with the

END-OF-DOCUMENT event.

v The processing procedure terminates parsing deliberately by setting XML-CODE

to -1 before returning to the parser.

v When the XMLPARSE(XMLSS) compiler option is in effect: The parser detects an

exception of any kind.

v When the XMLPARSE(COMPAT) compiler option is in effect: The parser detects

an exception (other than an encoding conflict) and the processing procedure

does not reset special register XML-CODE to zero before to returning to the

parser.

v When the XMLPARSE(COMPAT) compiler option is in effect: The parser detects

an encoding conflict exception and the processing procedure does not reset

special register XML-CODE to zero or to the CCSID of the document encoding.

Chapter 21. Procedure division statements 491

|
|

|

|

In each case, the processing procedure returns control to the parser. Then, the

parser terminates and returns control to the XML PARSE statement with the

XML-CODE special register containing the most recent value set by the parser or -1

(which might have been set by the parser or by the processing procedure).

For each XML event passed to the processing procedure, the XML-CODE and

XML-EVENT special registers contain information about the particular event.

Special register XML-EVENT is set to the event name, such as

’START-OF-DOCUMENT’. For most events, the XML-TEXT or XML-NTEXT special

register contains document text. Additionally, when the XMLPARSE(XMLSS)

compiler option is in effect, the XML-NAMESPACE and XML-NAMESPACE-
PREFIX or the XML-NNAMESPACE and XML-NNAMESPACE-PREFIX special

registers contain a namespace identifier and namespace prefix when applicable. See

“XML-EVENT” on page 25 for details.

The content of the XML-CODE special register is defined during and after

execution of an XML PARSE statement. The contents of all other XML special

registers are undefined outside the range of the processing procedure.

For normal XML events, special register XML-CODE contains zero when the

processing procedure receives control. For XML exception events, XML-CODE

contains an XML exception code as described in the Enterprise COBOL Programming

Guide.

For more information about the XML special registers, see:

v “XML-CODE” on page 24

v “XML-EVENT” on page 25

v “XML-NAMESPACE” on page 30

v “XML-NAMESPACE-PREFIX” on page 32

v “XML-NNAMESPACE” on page 31

v “XML-NNAMESPACE-PREFIX” on page 33

v “XML-NTEXT” on page 33

v “XML-TEXT” on page 34

For an introduction to special registers, see “Special registers” on page 15

For more information about the EXCEPTION event and exception processing, see

the Enterprise COBOL Programming Guide.

492 Enterprise COBOL for z/OS V4.1 Language Reference

|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

Part 7. Intrinsic functions

Chapter 22. Intrinsic functions 495

Specifying a function 495

Function definition and evaluation 496

Types of functions 496

Rules for usage 497

Arguments 498

Examples 500

ALL subscripting 500

Function definitions 502

ACOS 506

ANNUITY 506

ASIN 507

ATAN 507

CHAR 507

COS 508

CURRENT-DATE 508

DATE-OF-INTEGER 510

DATE-TO-YYYYMMDD 510

DATEVAL 511

DAY-OF-INTEGER 512

DAY-TO-YYYYDDD 513

DISPLAY-OF 514

FACTORIAL 515

INTEGER 516

INTEGER-OF-DATE 516

INTEGER-OF-DAY 517

INTEGER-PART 517

LENGTH 518

LOG 519

LOG10 519

LOWER-CASE 520

MAX 520

MEAN 521

MEDIAN 522

MIDRANGE 522

MIN 523

MOD 524

NATIONAL-OF 524

NUMVAL 525

NUMVAL-C 526

ORD 528

ORD-MAX 529

ORD-MIN 529

PRESENT-VALUE 530

RANDOM 530

RANGE 531

REM 532

REVERSE 532

SIN 533

SQRT 533

STANDARD-DEVIATION 534

SUM 534

TAN 535

UNDATE 535

UPPER-CASE 536

VARIANCE 536

WHEN-COMPILED 537

YEAR-TO-YYYY 538

YEARWINDOW 539

© Copyright IBM Corp. 1991, 2007 493

494 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 22. Intrinsic functions

Data processing problems often require the use of values that are not directly

accessible in the data storage associated with the object program, but instead must

be derived through performing operations on other data. An intrinsic function is a

function that performs a mathematical, character, or logical operation, and thereby

allows you to make reference to a data item whose value is derived automatically

during execution.

The functions can be grouped into six categories, based on the type of service

performed:

v Mathematical

v Statistical

v Date/time

v Financial

v Character-handling

v General

You can reference a function by specifying its name, along with any required

arguments, in a procedure division statement.

Functions are elementary data items, and return alphanumeric character, national

character, numeric, or integer values. Functions cannot serve as receiving operands.

Specifying a function

The general format of a function-identifier is:

Format: Function-identifier

�� FUNCTION function-name-1

�

(

argument-1

)

 �

�
reference-modifier

 ��

function-name-1

function-name-1 must be one of the intrinsic function names.

argument-1

argument-1 must be an identifier, a literal (other than a figurative constant),

or an arithmetic expression that satisfies the argument requirements for the

specified function.

 argument-1 cannot be a windowed date field, except in the UNDATE

intrinsic function.

© Copyright IBM Corp. 1991, 2007 495

reference-modifier

Can be specified only for functions of type alphanumeric or national.

A function-identifier can be specified wherever a data item of the type of the

function is allowed. The argument to a function can be any function or an

expression containing a function, including another evaluation of the same

function, whose result meets the requirements for the argument.

Within a procedure division statement, each function-identifier is evaluated at the

same time as any reference modification or subscripting associated with an

identifier in that same position would be evaluated.

Function definition and evaluation

The class and characteristics of a function, and the number and types of arguments

it requires, are determined by its function definition. These characteristics include:

v For functions of type alphanumeric and national, the size of the returned value

v For functions of type numeric and integer, the sign of the returned value and

whether the function is integer

v The actual value returned by the function

For some functions, the class and characteristics are determined by the arguments

to the function.

The evaluation of any intrinsic function is not affected by the context in which it

appears; in other words, function evaluation is not affected by operations or

operands outside the function. However, evaluation of a function can be affected

by the attributes of its arguments.

Within a procedure division statement, each function-identifier is evaluated at the

same time as any reference modification or subscripting associated with an

identifier in that same position would be evaluated.

Types of functions

COBOL has the following types of functions:

v Alphanumeric

v National

v Numeric

v Integer

Alphanumeric functions are of class and category alphanumeric. The value returned

has an implicit usage of DISPLAY. The number of character positions in the value

returned is determined by the function definition.

National functions are of class and category national. The value returned has an

implicit usage of NATIONAL and is represented in national characters (UTF-16).

The number of character positions in the value returned is determined by the

function definition.

Numeric functions are of class and category numeric. The returned value is always

considered to have an operational sign and is a numeric intermediate result. For

more information, see the Enterprise COBOL Programming Guide.

496 Enterprise COBOL for z/OS V4.1 Language Reference

Integer functions are of class and category numeric. The returned value is always

considered to have an operational sign and is an integer intermediate result. The

number of digit positions in the value returned is determined by the function

definition. For more information, see the Enterprise COBOL Programming Guide.

Rules for usage

Alphanumeric functions

An alphanumeric function can be specified anywhere in the general

formats that a data item of class and category alphanumeric is permitted

and where the rules associated with the general formats do not specifically

prohibit reference to functions, except as noted below.

 An alphanumeric function can be used as an argument for any function

that allows an alphanumeric argument.

Reference modification of an alphanumeric function is allowed. If reference

modification is specified for a function, the evaluation of the reference

modification takes place immediately after the evaluation of the function;

that is, the function’s returned value is reference-modified.

An alphanumeric function cannot be used:

v As a receiving operand of any statement

v Where the rules associated with the general formats require the data

item being referenced to have particular characteristics (such as class and

category, usage, size, and permissible values) and the evaluation of the

function according to its definition and the particular arguments

specified would not have those characteristics

National functions

A national function can be specified anywhere in the general formats that a

data item of class and category national is permitted and where the rules

associated with the general formats do not specifically prohibit reference to

functions, except as noted below.

 A national function can be used as an argument for any function that

allows a national argument.

Reference modification of a national function is allowed. If reference

modification is specified for a function, the evaluation of the reference

modification takes place immediately after the evaluation of the function;

that is, the function’s returned value is reference-modified.

A national function cannot be used:

v As a receiving operand of any statement

v Where the rules associated with the general formats require the data

item being referenced to have particular characteristics (such as class and

category, usage, size, and permissible values) and the evaluation of the

function according to its definition and the particular arguments

specified would not have those characteristics

Numeric functions

A numeric function can be used only where an arithmetic expression can

be specified.

 A numeric function can be referenced as an argument for a function that

allows a numeric argument.

Chapter 22. Intrinsic functions 497

A numeric function cannot be used where an integer operand is required,

even if the particular reference would yield an integer value. The

INTEGER or INTEGER-PART functions can be used to force the type of a

numeric argument to be an integer.

Integer functions

An integer function can be used only where an arithmetic expression can

be specified.

 An integer function can be referenced as an argument for a function that

allows an integer argument.

Usage notes:

v identifier-2 of the CALL statement must not be a function-identifier.

v The COPY statement accepts function-identifiers of all types in the REPLACING

phrase.

Arguments

The value returned by some functions is determined by the arguments specified in

the function-identifier when the functions are evaluated. Some functions require no

arguments; others require a fixed number of arguments, and still others accept a

variable number of arguments.

An argument must be one of the following:

v A data item identifier

v An arithmetic expression

v A function-identifier

v A literal other than a figurative constant

v A special-register

See “Function definitions” on page 502 for function-specific argument

specifications.

The types of arguments are:

Alphabetic

An elementary data item of the class alphabetic or an alphanumeric literal

containing only alphabetic characters. The content of the argument is used

to determine the value of the function. The length of the argument can be

used to determine the value of the function.

Alphanumeric

A data item of the class alphabetic or alphanumeric or an alphanumeric

literal. The content of the argument is used to determine the value of the

function. The length of the argument can be used to determine the value of

the function.

DBCS An elementary data item of class DBCS or a DBCS literal. The content of

the argument is used to determine the value of the function. The length of

the argument can be used to determine the value of the function. (A DBCS

data item or literal can be used as an argument only for the

NATIONAL-OF function.)

National

A data item of class national (category national, national-edited, or

498 Enterprise COBOL for z/OS V4.1 Language Reference

numeric-edited). The content of the argument is used to determine the

value of the function. The length of the argument can be used to determine

the value of the function.

Integer

An arithmetic expression that always results in an integer value. The value

of the expression, including its sign, is used to determine the value of the

function.

Numeric

An arithmetic expression. The expression can include numeric literals and

data items of categories numeric, internal floating-point, and external

floating-point. The numeric data items can have any usage permitted for

the category of the data item (including NATIONAL). The value of the

expression, including its sign, is used to determine the value of the

function.

Some functions place constraints on their arguments, such as the acceptable range

of values. If the values assigned as arguments for a function do not comply with

specified constraints, the returned value is undefined.

If a nested function is used as an argument, the evaluation of its arguments is not

affected by the arguments in the outer function.

Only those arguments at the same function level interact with each other. This

interaction occurs in two areas:

v The computation of an arithmetic expression that appears as a function

argument is affected by other arguments for that function.

v The evaluation of the function takes into consideration the attributes of all of its

arguments.

When a function is evaluated, its arguments are evaluated individually in the order

specified in the list of arguments, from left to right. The argument being evaluated

can be a function-identifier or an expression that includes function-identifiers.

If an arithmetic expression is specified as an argument and if the first operator in

the expression is a unary plus or a unary minus, the expression must be

immediately preceded by a left parenthesis.

Floating-point literals are allowed wherever a numeric argument is allowed and in

arithmetic expressions used in functions that allow a numeric argument.

Internal floating-point items and external floating-point items (both display

floating-point and national floating-point) can be used wherever a numeric

argument is allowed and in arithmetic expressions as arguments to a function that

allows a numeric argument.

Floating-point items and floating-point literals cannot be used where an integer

argument is required or where an argument of class alphanumeric or national is

required (such as in the LOWER-CASE, REVERSE, UPPER-CASE, NUMVAL, and

NUMVAL-C functions).

Chapter 22. Intrinsic functions 499

Examples

The following statement illustrates the use of intrinsic function UPPER-CASE to

replace each lowercase letter in an alphanumeric argument with the corresponding

uppercase letter.

MOVE FUNCTION UPPER-CASE(’hello’) TO DATA-NAME.

This statement moves HELLO into DATA-NAME.

The following statement illustrates the use of intrinsic function LOWER-CASE to

replace each uppercase letter in a national argument with the corresponding

lowercase letter.

MOVE FUNCTION LOWER-CASE(N’HELLO’) TO N-DATA-NAME.

This statement moves national characters hello into N-DATA-NAME.

The following statement illustrates the use of a numeric intrinsic function:

COMPUTE NUM-ITEM = FUNCTION SUM(A B C)

This statement uses the numeric function SUM to add the values of A, B, and C

and places the result in NUM-ITEM.

ALL subscripting

When a function allows an argument to be repeated a variable number of times,

you can refer to a table by specifying the data-name and any qualifiers that

identify the table. This can be followed immediately by subscripting where one or

more of the subscripts is the word ALL.

Tip: The evaluation of an ALL subscript must result in at least one argument or the

value returned by the function will be undefined; however, the situation can be

diagnosed at run time by specifying the SSRANGE compiler option and the

CHECK runtime option.

Specifying ALL as a subscript is equivalent to specifying all table elements possible

using every valid subscript in that subscript position.

For a table argument specified as Table-name(ALL), the order of the implicit

specification of each table element as an argument is from left to right, where the

first (or leftmost) argument is Table-name(1) and ALL has been replaced by 1. The

next argument is Table-name(2), where the subscript has been incremented by 1.

This process continues, with the subscript being incremented by 1 to produce an

implicit argument, until the ALL subscript has been incremented through its range

of values.

For example,

FUNCTION MAX(Table(ALL))

is equivalent to

FUNCTION MAX(Table(1) Table(2) Table(3) ... Table(n))

where n is the number of elements in Table.

500 Enterprise COBOL for z/OS V4.1 Language Reference

If there are multiple ALL subscripts, Table-name(ALL, ALL, ALL), the first implicit

argument is Table-name(1, 1, 1), where each ALL has been replaced by 1. The

next argument is Table-name(1, 1, 2), where the rightmost subscript has been

incremented by 1. The subscript represented by the rightmost ALL is incremented

through its range of values to produce an implicit argument for each value.

Once a subscript specified as ALL has been incremented through its range of

values, the next subscript to the left that is specified as ALL is incremented by 1.

Each subscript specified as ALL to the right of the newly incremented subscript is

set to 1 to produce an implicit argument. Once again, the subscript represented by

the rightmost ALL is incremented through its range of values to produce an

implicit argument for each value. This process is repeated until each subscript

specified as ALL has been incremented through its range of values.

For example,

FUNCTION MAX(Table(ALL, ALL))

is equivalent to

FUNCTION MAX(Table(1, 1) Table(1, 2) Table(1, 3) ... Table(1, n)

 Table(2, 1) Table(2, 2) Table(2, 3) ... Table(2, n)

 Table(3, 1) Table(3, 2) Table(3, 3) ... Table(3, n)

 ...

 Table(m, 1) Table(m, 2) Table(m, 3) ... Table(m, n))

where n is the number of elements in the column dimension of Table, and m is the

number of elements in the row dimension of Table.

ALL subscripts can be combined with literal, data-name, or index-name subscripts

to reference multidimensional tables.

For example,

FUNCTION MAX(Table(ALL, 2))

is equivalent to

FUNCTION MAX(Table(1, 2)

 Table(2, 2)

 Table(3, 2)

 ...

 Table(m, 2))

where m is the number of elements in the row dimension of Table.

If an ALL subscript is specified for an argument and the argument is

reference-modified, then the reference-modifier is applied to each of the implicitly

specified elements of the table.

If an ALL subscript is specified for an operand that is reference-modified, the

reference-modifier is applied to each of the implicitly specified elements of the

table.

If the ALL subscript is associated with an OCCURS DEPENDING ON clause, the

range of values is determined by the object of the OCCURS DEPENDING ON

clause.

For example, given a payroll record definition such as:

Chapter 22. Intrinsic functions 501

01 PAYROLL.

 02 PAYROLL-WEEK PIC 99.

 02 PAYROLL-HOURS PIC 999 OCCURS 1 TO 52

 DEPENDING ON PAYROLL-WEEK.

The following COMPUTE statements could be used to identify total year-to-date

hours, the maximum hours worked in any week, and the specific week

corresponding to the maximum hours:

COMPUTE YTD-HOURS = FUNCTION SUM (PAYROLL-HOURS(ALL))

COMPUTE MAX-HOURS = FUNCTION MAX (PAYROLL-HOURS(ALL))

COMPUTE MAX-WEEK = FUNCTION ORD-MAX (PAYROLL-HOURS(ALL))

In these function invocations, the subscript ALL is used to reference all elements of

the PAYROLL-HOURS array (depending on the execution time value of the

PAYROLL-WEEK field).

Function definitions

Table 56 on page 503 provides an overview of the argument type, function type,

and value returned for each of the intrinsic functions. Argument types and

function types are abbreviated as follows:

 Abbreviation Meaning

A Alphabetic

D DBCS

I Integer

N Numeric

X Alphanumeric

U National

O Other, as specified in the function definition (pointer,

function-pointer, procedure-pointer, or object reference)

The behavior of functions marked″DP″ depends on whether the DATEPROC or

NODATEPROC compiler option is in effect.

If the DATEPROC compiler option is in effect, the following intrinsic functions

return date fields:

 Function Returned value has implicit DATE FORMAT

DATE-OF-INTEGER YYYYXXXX

DATE-TO-YYYYMMDD YYYYXXXX

DAY-OF-INTEGER YYYYXXX

DAY-TO-YYYYDDD YYYYXXX

YEAR-TO-YYYY YYYY

DATEVAL Depends on the format specified by DATEVAL

YEARWINDOW YYYY

If the NODATEPROC compiler option is in effect:

v The following intrinsic functions return the same values as when DATEPROC is

in effect, but their returned values are nondates:

502 Enterprise COBOL for z/OS V4.1 Language Reference

– DAY-OF-INTEGER

– DATE-TO-YYYYMMDD

– DAY-TO-YYYYDDD

– YEAR-TO-YYYY
v The DATEVAL and UNDATE intrinsic functions have no effect, and simply

return their (first) arguments unchanged.

v The YEARWINDOW intrinsic function returns 0 unconditionally.

Each intrinsic function is described in detail in the topics that follow the table

below.

 Table 56. Table of functions

Function name Arguments

Function

type Value returned

ACOS N1 N Arccosine of N1

ANNUITY N1, I2 N Ratio of annuity paid for I2 periods at interest

of N1 to initial investment of one

ASIN N1 N Arcsine of N1

ATAN N1 N Arctangent of N1

CHAR I1 X Character in position I1 of program collating

sequence

COS N1 N Cosine of N1

CURRENT-DATE None X Current date and time and difference from

Greenwich mean time

DATE-OF-INTEGERDP I1 I Standard date equivalent (YYYYMMDD) of

integer date

DATE-TO-YYYYMMDDDP I1, I2 I Standard date equivalent (YYYYMMDD) of I1

(standard date with a windowed year,

YYMMDD), according to the 100-year interval

whose ending year is specified by the sum of I2

and the year at execution time

DATEVALDP I1 I Date field equivalent of I1

X1 X Date field equivalent of X1

DAY-OF-INTEGERDP I1 I Julian date equivalent (YYYYDDD) of integer

date

DAY-TO-YYYYDDDDP I1, I2 I Julian date equivalent (YYYYDDD) of I1 (Julian

date with a windowed year, YYDDD),

according to the 100-year interval whose ending

year is specified by the sum of I2 and the year

at execution time

DISPLAY-OF U1 or

U1, I2

X Each character in U1 converted to a

corresponding character representation using a

code page identified by I2, if specified, or a

default code page selected at compile time if I2

is unspecified

FACTORIAL I1 I Factorial of I1

INTEGER N1 I The greatest integer not greater than N1

INTEGER-OF-DATE I1 I Integer date equivalent of standard date

(YYYYMMDD)

Chapter 22. Intrinsic functions 503

Table 56. Table of functions (continued)

Function name Arguments

Function

type Value returned

INTEGER-OF-DAY I1 I Integer date equivalent of Julian date

(YYYYDDD)

INTEGER-PART N1 I Integer part of N1

LENGTH A1, N1, O1,

X1, or U1

I Length of argument in national character

positions or in alphanumeric character positions

or bytes, depending on the argument type

LOG N1 N Natural logarithm of N1

LOG10 N1 N Logarithm to base 10 of N1

LOWER-CASE A1 or X1 X All letters in the argument set to lowercase

U1 U All letters in the argument set to lowercase

MAX A1... X Value of maximum argument; note that the

type of function depends on the arguments

I1... I Value of maximum argument; note that the

type of function depends on the arguments

N1... N Value of maximum argument; note that the

type of function depends on the arguments

X1... X Value of maximum argument; note that the

type of function depends on the arguments

U1... U Value of maximum argument; note that the

type of function depends on the arguments

MEAN N1... N Arithmetic mean of arguments

MEDIAN N1... N Median of arguments

MIDRANGE N1... N Mean of minimum and maximum arguments

MIN A1... X Value of minimum argument; note that the type

of function depends on the arguments

I1... I Value of minimum argument; note that the type

of function depends on the arguments

N1... N Value of minimum argument; note that the type

of function depends on the arguments

X1... X Value of minimum argument; note that the type

of function depends on the arguments

U1... U Value of minimum argument; note that the type

of function depends on the arguments

MOD I1, I2 I I1 modulo I2

NATIONAL-OF A1, X1, or D1 U The characters in the argument converted to

national characters, using the code page

identified by I2, if specified, or a default code

page selected at compile time if I2 is

unspecified

A1, X1, or D1;

I2

U The characters in the argument converted to

national characters, using the code page

identified by I2, if specified, or a default code

page selected at compile time if I2 is

unspecified

NUMVAL X1 N Numeric value of simple numeric string

504 Enterprise COBOL for z/OS V4.1 Language Reference

Table 56. Table of functions (continued)

Function name Arguments

Function

type Value returned

NUMVAL-C X1 or

X1, X2

N Numeric value of numeric string with optional

commas and currency sign

ORD A1 or X1 I Ordinal position of the argument in collating

sequence

ORD-MAX A1..., N1...,

X1..., or U1...

I Ordinal position of maximum argument

ORD-MIN A1..., N1...,

X1..., or U1...

I Ordinal position of minimum argument

PRESENT-VALUE N1, N2... N Present value of a series of future period-end

amounts, N2, at a discount rate of N1

RANDOM I1, none N Random number

RANGE I1... I Value of maximum argument minus value of

minimum argument; note that the type of

function depends on the arguments.

N1... N Value of maximum argument minus value of

minimum argument; note that the type of

function depends on the arguments.

REM N1, N2 N Remainder of N1/N2

REVERSE A1 or X1 X Reverse order of the characters of the argument

U1 U Reverse order of the characters of the argument

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

STANDARD-DEVIATION N1... N Standard deviation of arguments

SUM I1... I Sum of arguments; note that the type of

function depends on the arguments.

N1... N Sum of arguments; note that the type of

function depends on the arguments.

TAN N1 N Tangent of N1

UNDATEDP I1 I Nondate equivalent of date field I1 or X1

X1 X Nondate equivalent of date field I1 or X1

UPPER-CASE A1 or X1 X All letters in the argument set to uppercase

U1 U All letters in the argument set to uppercase

VARIANCE N1... N Variance of arguments

WHEN-COMPILED None X Date and time when program was compiled

YEAR-TO-YYYYDP I1, I2 I Expanded year equivalent (YYYY) of I1

(windowed year, YY), according to the 100-year

interval whose ending year is specified by the

sum of I2 and the year at execution time

YEARWINDOWDP None I If the DATEPROC compiler option is in effect,

returns the starting year (in the format YYYY)

of the century window specified by the

YEARWINDOW compiler option; if

NODATEPROC is in effect, returns 0

Chapter 22. Intrinsic functions 505

ACOS

The ACOS function returns a numeric value in radians that approximates the

arccosine of the argument specified.

The function type is numeric.

Format

�� FUNCTION ACOS (argument-1) ��

argument-1

Must be class numeric. The value of argument-1 must be greater than or

equal to -1 and less than or equal to +1.

The returned value is the approximation of the arccosine of the argument and is

greater than or equal to zero and less than or equal to Pi.

ANNUITY

The ANNUITY function returns a numeric value that approximates the ratio of an

annuity paid at the end of each period, for a given number of periods, at a given

interest rate, to an initial value of one. The number of periods is specified by

argument-2; the rate of interest is specified by argument-1. For example, if

argument-1 is zero and argument-2 is four, the value returned is the approximation

of the ratio 1 / 4.

The function type is numeric.

Format

�� FUNCTION ANNUITY (argument-1 argument-2) ��

argument-1

Must be class numeric. The value of argument-1 must be greater than or

equal to zero.

argument-2

Must be a positive integer.

When the value of argument-1 is zero, the value returned by the function is the

approximation of:

1 / argument-2

When the value of argument-1 is not zero, the value of the function is the

approximation of:

506 Enterprise COBOL for z/OS V4.1 Language Reference

argument-1 / (1 - (1 + argument-1) ** (- argument-2))

ASIN

The ASIN function returns a numeric value in radians that approximates the

arcsine of the argument specified.

The function type is numeric.

Format

�� FUNCTION ASIN (argument-1) ��

argument-1

Must be class numeric. The value of argument-1 must be greater than or

equal to -1 and less than or equal to +1.

The returned value is the approximation of the arcsine of argument-1 and is greater

than or equal to -Pi/2 and less than or equal to +Pi/2.

ATAN

The ATAN function returns a numeric value in radians that approximates the

arctangent of the argument specified.

The function type is numeric.

Format

�� FUNCTION ATAN (argument-1) ��

argument-1

Must be class numeric.

The returned value is the approximation of the arctangent of argument-1 and is

greater than -Pi/2 and less than +Pi/2.

CHAR

The CHAR function returns a one-character alphanumeric value that is a character

in the program collating sequence having the ordinal position equal to the value of

the argument specified.

The function type is alphanumeric.

Chapter 22. Intrinsic functions 507

Format

�� FUNCTION CHAR (argument-1) ��

argument-1

Must be an integer. The value must be greater than zero and less than or

equal to the number of positions in the collating sequence associated with

alphanumeric data items (a maximum of 256).

If more than one character has the same position in the program collating

sequence, the character returned as the function value is that of the first literal

specified for that character position in the ALPHABET clause.

If the current program collating sequence was not specified by an ALPHABET

clause, the single-byte EBCDIC collating sequence is used. (See “Conditional

expressions” on page 267.)

COS

The COS function returns a numeric value that approximates the cosine of the

angle or arc specified by the argument in radians.

The function type is numeric.

Format

�� FUNCTION COS (argument-1) ��

argument-1

Must be class numeric.

The returned value is the approximation of the cosine of the argument and is

greater than or equal to -1 and less than or equal to +1.

CURRENT-DATE

The CURRENT-DATE function returns a 21-character alphanumeric value that

represents the calendar date, time of day, and time differential from Greenwich

mean time provided by the system on which the function is evaluated.

The function type is alphanumeric.

508 Enterprise COBOL for z/OS V4.1 Language Reference

Format

�� FUNCTION CURRENT-DATE ��

Reading from left to right, the 21 character positions of the returned value are as

follows:

 Character

positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar

5-6 Two numeric digits of the month of the year, in the range 01 through

12

7-8 Two numeric digits of the day of the month, in the range 01 through 31

9-10 Two numeric digits of the hours past midnight, in the range 00 through

23

11-12 Two numeric digits of the minutes past the hour, in the range 00

through 59

13-14 Two numeric digits of the seconds past the minute, in the range 00

through 59

15-16 Two numeric digits of the hundredths of a second past the second, in

the range 00 through 99. The value 00 is returned if the system on

which the function is evaluated does not have the facility to provide

the fractional part of a second.

17 Either the character ’-’ or the character ’+’. The character ’-’ is returned

if the local time indicated in the previous character positions is behind

Greenwich mean time. The character ’+’ is returned if the local time

indicated is the same as or ahead of Greenwich mean time. The

character ’0’ is returned if the system on which this function is

evaluated does not have the facility to provide the local time

differential factor.

18-19 If character position 17 is ’-’, two numeric digits are returned in the

range 00 through 12 indicating the number of hours that the reported

time is behind Greenwich mean time. If character position 17 is ’+’, two

numeric digits are returned in the range 00 through 13 indicating the

number of hours that the reported time is ahead of Greenwich mean

time. If character position 17 is ’0’, the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating

the number of additional minutes that the reported time is ahead of or

behind Greenwich mean time, depending on whether character position

17 is ’+’ or ’-’, respectively. If character position 17 is ’0’, the value 00 is

returned.

For more information, see the Enterprise COBOL Programming Guide.

Chapter 22. Intrinsic functions 509

DATE-OF-INTEGER

The DATE-OF-INTEGER function converts a date in the Gregorian calendar from

integer date form to standard date form (YYYYMMDD).

The function type is integer.

The function result is an eight-digit integer.

If the DATEPROC compiler option is in effect, the returned value is an expanded

date field with implicit DATE FORMAT YYYYXXXX.

Format

�� FUNCTION DATE-OF-INTEGER (argument-1) ��

argument-1

A positive integer that represents a number of days succeeding December

31, 1600, in the Gregorian calendar. The valid range is 1 to 3,067,671, which

corresponds to dates ranging from January 1, 1601 thru December 31, 9999.

 The INTDATE compiler option affects the starting date for the integer date

functions. For details, see the Enterprise COBOL Programming Guide.

The returned value represents the International Standards Organization (ISO)

standard date equivalent to the integer specified as argument-1.

The returned value is an integer of the form YYYYMMDD where YYYY represents

a year in the Gregorian calendar; MM represents the month of that year; and DD

represents the day of that month.

DATE-TO-YYYYMMDD

The DATE-TO-YYYYMMDD function converts argument-1 from a date with a

two-digit year (YYnnnn) to a date with a four-digit year (YYYYnnnn). argument-2,

when added to the year at the time of execution, defines the ending year of a

100-year interval, or sliding century window, into which the year of argument-1

falls.

The function type is integer.

If the DATEPROC compiler option is in effect, the returned value is an expanded

date field with implicit DATE FORMAT YYYYXXXX.

510 Enterprise COBOL for z/OS V4.1 Language Reference

Format

�� FUNCTION DATE-TO-YYYYMMDD (argument-1)

argument-2
 ��

argument-1

Must be zero or a positive integer less than 991232.

 Note: The COBOL run time does not verify that the value is a valid date.

argument-2

Must be an integer. If argument-2 is omitted, the function is evaluated

assuming the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be

less than 10,000 and greater than 1,699.

The following are examples of returned values from the DATE-TO-YYYYMMDD

function:

 Current year argument-1 value argument-2 value Returned value

2002 851003 120 20851003

2002 851003 -20 18851003

2002 851003 10 19851003

1994 981002 -10 18981002

DATEVAL

The DATEVAL function converts a nondate to a date field, for unambiguous use

with date fields.

If the DATEPROC compiler option is in effect, the returned value is a date field

containing the value of argument-1 unchanged. For information about using the

resulting date field:

v In arithmetic, see “Arithmetic with date fields” on page 264

v In conditional expressions, see “Comparison of date fields” on page 279

If the NODATEPROC compiler option is in effect, the DATEVAL function has no

effect, and returns the value of argument-1 unchanged.

The function type depends on the type of argument-1:

 Argument type Function type

Alphanumeric Alphanumeric

Integer Integer

Chapter 22. Intrinsic functions 511

Format

�� FUNCTION DATEVAL (argument-1 argument-2) ��

argument-1

Must be one of the following:

v A class alphanumeric item with the same number of characters as the

date format specified by argument-2.

v An integer. This can be used to specify values outside the range

specified by argument-2, including negative values.

The value of argument-1 represents a date of the form specified by

argument-2.

argument-2

Must be an alphanumeric literal specifying a date pattern, as defined in

“DATE FORMAT clause” on page 190. The date pattern consists of YY or

YYYY (representing a windowed year or expanded year, respectively),

optionally preceded or followed by one or more Xs (representing other

parts of a date, such as month and day), as shown below. Note that the

values are case insensitive; the letters X and Y in argument-2 can be any

mix of uppercase and lowercase.

 Date-pattern string Specifies that argument-1 contains

YY A windowed (two-digit) year

YYYY An expanded (four-digit) year

X A single character; for example, a digit representing a semester

or quarter (1–4)

XX Two characters; for example, digits representing a month

(01–12)

XXX Three characters; for example, digits representing a day of the

year (001–366)

XXXX Four characters; for example, two digits representing a month

(01–12) and two digits representing a day of the month (01–31)

DAY-OF-INTEGER

The DAY-OF-INTEGER function converts a date in the Gregorian calendar from

integer date form to Julian date form (YYYYDDD).

The function type is integer.

The function result is a seven-digit integer.

If the DATEPROC compiler option is in effect, the returned value is an expanded

date field with implicit DATE FORMAT YYYYXXX.

512 Enterprise COBOL for z/OS V4.1 Language Reference

Format

�� FUNCTION DAY-OF-INTEGER (argument-1) ��

argument-1

A positive integer that represents a number of days succeeding December

31, 1600, in the Gregorian calendar. The valid range is 1 to 3,067,671, which

corresponds to dates ranging from January 1, 1601 thru December 31, 9999.

 The INTDATE compiler option affects the starting date for the integer date

functions. For details, see the Enterprise COBOL Programming Guide.

The returned value represents the Julian equivalent of the integer specified as

argument-1. The returned value is an integer of the form YYYYDDD where YYYY

represents a year in the Gregorian calendar and DDD represents the day of that

year.

DAY-TO-YYYYDDD

The DAY-TO-YYYYDDD function converts argument-1 from a date with a two-digit

year (YYnnn) to a date with a four-digit year (YYYYnnn). argument-2, when added

to the year at the time of execution, defines the ending year of a 100-year interval,

or sliding century window, into which the year of argument-1 falls.

The function type is integer.

If the DATEPROC compiler option is in effect, the returned value is an expanded

date field with implicit DATE FORMAT YYYYXXX.

Format

�� FUNCTION DAY-TO-YYYYDDD (argument-1)

argument-2
 ��

argument-1

Must be zero or a positive integer less than 99367.

 The COBOL run time does not verify that the value is a valid date.

argument-2

Must be an integer. If argument-2 is omitted, the function is evaluated

assuming the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be

less than 10,000 and greater than 1,699.

Some examples of returned values from the DAY-TO-YYYYDDD function follow:

 Current year argument-1 value argument-2 value Returned value

2002 10004 -20 1910004

Chapter 22. Intrinsic functions 513

Current year argument-1 value argument-2 value Returned value

2002 10004 -120 1810004

2002 10004 20 2010004

2013 95005 -10 1995005

DISPLAY-OF

The DISPLAY-OF function returns an alphanumeric character string consisting of

the content of argument-1 converted to a specific code page representation.

The type of the function is alphanumeric.

Format

�� FUNCTION DISPLAY-OF (argument-1)

argument-2
 ��

argument-1

Must be of class national (categories national, national-edited, and

numeric-edited described with usage NATIONAL). argument-1 identifies

the source string for the conversion.

argument-2

Must be an integer. argument-2 identifies the output code page for the

conversion.

 argument-2 must be a valid CCSID number and must identify an EBCDIC,

ASCII, UTF-8, or EUC code page. An EBCDIC or ASCII code page can

contain both single-byte and double-byte characters.

If argument-2 is omitted, the output code page is the one that was in effect

for the CODEPAGE compiler option when the source code was compiled.

The returned value is an alphanumeric character string consisting of the characters

of argument-1 converted to the output code page representation. When a source

character cannot be converted to a character in the output code page, the source

character is replaced with a substitution character. The following table shows

substitution characters for some widely-used code pages:

 Output code page Substitution character

SBCS ASCII

PC Windows® SBCS

X’7F’

EBCDIC SBCS X’3F’

ASCII DBCS X’FCFC’

EBCDIC DBCS (except for Thai) X’FEFE’

EBCDIC DBCS (Thai) X’41B8’

PC DBCS (Japanese or Chinese) X’FCFC’

PC DBCS (Korean) X’BFFC’

514 Enterprise COBOL for z/OS V4.1 Language Reference

Output code page Substitution character

EUC (Korean) X’AFFE’

EUC (Japanese) X’747E’

UTF-8 From SBCS: X’1A’

From MBCS: X’EFBFBD’

UTF-16 From SBCS: X’001A’

From MBCS: X’FFFD’

No exception condition is raised.

The length of the returned value depends on the content of argument-1 and the

characteristics of the output code page.

Usage notes

v The CCSID for UTF-8 is 1208.

v If the output code page includes DBCS characters, the returned value can be a

mixed SBCS and DBCS string.

v The DISPLAY-OF function, with argument-2 specified, can be used to generate

character data represented in a code page that differs from that specified in the

CODEPAGE compiler option. Subsequent COBOL operations on that data can

involve implicit conversions that assume the data is represented in the EBCDIC

code page specified in the CODEPAGE compiler option. See the Enterprise

COBOL Programming Guide for examples and programming techniques for

processing data represented using more than one code page within a single

program.

Exception: If the conversion fails, a severe runtime error occurs. Verify that the

z/OS Unicode conversion services are installed and are configured to include the

table for converting from CCSID 1200 to the output code page. See the

Customization Guide for installation requirements to support the conversion.

FACTORIAL

The FACTORIAL function returns an integer that is the factorial of the argument

specified.

The function type is integer.

Format

�� FUNCTION FACTORIAL (argument-1) ��

argument-1

If the ARITH(COMPAT) compiler option is in effect, argument-1 must be an

integer greater than or equal to zero and less than or equal to 28. If the

ARITH(EXTEND) compiler option is in effect, argument-1 must be an

integer greater than or equal to zero and less than or equal to 29.

Chapter 22. Intrinsic functions 515

If the value of argument-1 is zero, the value 1 is returned; otherwise, the factorial of

argument-1 is returned.

INTEGER

The INTEGER function returns the greatest integer value that is less than or equal

to the argument specified.

The function type is integer.

Format

�� FUNCTION INTEGER (argument-1) ��

argument-1

Must be class numeric.

The returned value is the greatest integer less than or equal to the value of

argument-1. For example, FUNCTION INTEGER (2.5) returns a value of 2 and

FUNCTION INTEGER (-2.5) returns a value of -3.

INTEGER-OF-DATE

The INTEGER-OF-DATE function converts a date in the Gregorian calendar from

standard date form (YYYYMMDD) to integer date form.

The function type is integer.

The function result is a seven-digit integer with a range from 1 to 3,067,671.

Format

�� FUNCTION INTEGER-OF-DATE (argument-1) ��

argument-1

Must be an integer of the form YYYYMMDD, whose value is obtained

from the calculation (YYYY * 10,000) + (MM * 100) + DD, where:

v YYYY represents the year in the Gregorian calendar. It must be an

integer greater than 1600, but not greater than 9999.

v MM represents a month and must be a positive integer less than 13.

v DD represents a day and must be a positive integer less than 32,

provided that it is valid for the specified month and year combination.

The returned value is an integer that is the number of days that the date

represented by argument-1 succeeds December 31, 1600 in the Gregorian calendar.

516 Enterprise COBOL for z/OS V4.1 Language Reference

The INTDATE compiler option affects the starting date for the integer date

functions. For details, see the Enterprise COBOL Programming Guide.

INTEGER-OF-DAY

The INTEGER-OF-DAY function converts a date in the Gregorian calendar from

Julian date form (YYYYDDD) to integer date form.

The function type is integer.

The function result is a seven-digit integer.

Format

�� FUNCTION INTEGER-OF-DAY (argument-1) ��

argument-1

Must be an integer of the form YYYYDDD whose value is obtained from

the calculation (YYYY * 1000) + DDD, where:

v YYYY represents the year in the Gregorian calendar. It must be an

integer greater than 1600, but not greater than 9999.

v DDD represents the day of the year. It must be a positive integer less

than 367, provided that it is valid for the year specified.

The returned value is an integer that is the number of days that the date

represented by argument-1 succeeds December 31, 1600 in the Gregorian calendar.

The INTDATE compiler option affects the starting date for the integer date

functions. For details, see the Enterprise COBOL Programming Guide.

INTEGER-PART

The INTEGER-PART function returns an integer that is the integer portion of the

argument specified.

The function type is integer.

Format

�� FUNCTION INTEGER-PART (argument-1) ��

argument-1

Must be class numeric.

If the value of argument-1 is zero, the returned value is zero. If the value of

argument-1 is positive, the returned value is the greatest integer less than or equal

Chapter 22. Intrinsic functions 517

to the value of argument-1. If the value of argument-1 is negative, the returned value

is the least integer greater than or equal to the value of argument-1.

LENGTH

The LENGTH function returns an integer equal to the length of the argument in

national character positions for arguments of usage NATIONAL and in

alphanumeric character positions or bytes for all other arguments. An

alphanumeric character position and a byte are equivalent.

The type of the function is integer.

Format

�� FUNCTION LENGTH (argument-1) ��

argument-1

Can be:

v An alphanumeric literal or a national literal

v A data item of any class except DBCS

v A data item described with usage POINTER, PROCEDURE-POINTER,

FUNCTION-POINTER, or OBJECT REFERENCE

v The ADDRESS OF special register

v The LENGTH OF special register

v The XML-NTEXT special register

v The XML-TEXT special register

The returned value is a nine-digit integer determined as follows:

v If argument-1 is an alphanumeric literal or an elementary data item of class

alphabetic or alphanumeric, the value returned is equal to the number of

alphanumeric character positions in the argument.

If argument-1 is a null-terminated alphanumeric literal, the returned value is

equal to the number of alphanumeric character positions in the literal excluding

the null character at the end of the literal.

The length of an alphanumeric data item or literal containing a mix of

single-byte and double-byte characters is counted as though each byte were a

single-byte character.

v If argument-1 is an alphanumeric group item, the value returned is equal to the

length of argument-1 in alphanumeric character positions regardless of the

content of the group. If any data item subordinate to argument-1 is described

with the DEPENDING phrase of the OCCURS clause, the length of argument-1 is

determined using the contents of the data item specified in the DEPENDING

phrase. This evaluation is accomplished according to the rules of the OCCURS

clause for a sending data item. For more information, see the discussions of the

OCCURS clause and the USAGE clause.

The returned value includes implicit FILLER positions, if any.

518 Enterprise COBOL for z/OS V4.1 Language Reference

v If argument-1 is a national literal or an elementary data item described with

usage NATIONAL, the value returned is equal to the length of argument-1 in

national character positions.

For example, if argument-1 is defined as PIC 9(3) with usage NATIONAL, the

returned value is 3, although the storage size of the argument is 6 bytes.

v If argument-1 is a national group item, the value returned is equal to the length

of argument-1 in national character positions. If any data item subordinate to

argument-1 is described with the DEPENDING phrase of the OCCURS clause,

the length of argument-1 is determined using the contents of the data item

specified in the DEPENDING phrase. This evaluation is accomplished according

to the rules of the OCCURS clause for a sending data item. For more

information, see the discussions of the OCCURS clause and the USAGE clause.

The returned value includes implicit FILLER positions, if any.

v Otherwise, the returned value is the number of bytes of storage occupied by

argument-1.

LOG

The LOG function returns a numeric value that approximates the logarithm to the

base e (natural log) of the argument specified.

The function type is numeric.

Format

�� FUNCTION LOG (argument-1) ��

argument-1

Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base e of

argument-1.

LOG10

The LOG10 function returns a numeric value that approximates the logarithm to

the base 10 of the argument specified.

The function type is numeric.

Format

�� FUNCTION LOG10 (argument-1) ��

Chapter 22. Intrinsic functions 519

argument-1

Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base 10 of

argument-1.

LOWER-CASE

The LOWER-CASE function returns a character string that contains the characters

in the argument with each uppercase letter replaced by the corresponding

lowercase letter.

The function type depends on the type of the argument, as follows:

 Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

Format

�� FUNCTION LOWER-CASE (argument-1) ��

argument-1

Must be class alphabetic, alphanumeric, or national and must be at least

one character position in length.

The same character string as argument-1 is returned, except that each uppercase

letter is replaced by the corresponding lowercase letter.

If argument-1 is of class alphabetic or alphanumeric, the uppercase letters ’A’

through ’Z’ are replaced by the corresponding lowercase letters ’a’ through ’z’,

where the range of ’A’ through ’Z’ and the range of ’a’ through ’z’ are as shown in

“EBCDIC collating sequence” on page 585, regardless of the code page in effect.

If argument-1 is of class national, each uppercase letter is replaced by its

corresponding lowercase letter based on the specification given in the Unicode

database UnicodeData.txt, available from the Unicode Consortium at

http://www.unicode.org/.

The character string returned has the same length as argument-1.

MAX

The MAX function returns the content of the argument that contains the maximum

value.

The function type depends on the argument type, as follows:

520 Enterprise COBOL for z/OS V4.1 Language Reference

Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

All arguments integer

(includes integer arguments of usage NATIONAL)

Integer

Numeric (some arguments can be integer)

(includes numeric arguments of usage NATIONAL)

Numeric

Format

��

FUNCTION MAX

�

(

argument-1

)

��

argument-1

Must be class alphabetic, alphanumeric, national, or numeric.

All arguments must be of the same class, except that a combination of alphabetic

and alphanumeric arguments is allowed.

The returned value is the content of argument-1 having the greatest value. The

comparisons used to determine the greatest value are made according to the rules

for simple conditions. For more information, see “Conditional expressions” on

page 267.

If more than one argument-1 has the same greatest value, the leftmost argument-1

having that value is returned.

If the type of the function is alphanumeric or national, the size of the returned

value is the size of the selected argument-1.

MEAN

The MEAN function returns a numeric value that approximates the arithmetic

average of its arguments.

The function type is numeric.

Format

��

FUNCTION MEAN

�

(

argument-1

)

��

Chapter 22. Intrinsic functions 521

argument-1

Must be class numeric.

The returned value is the arithmetic mean of the argument-1 series. The returned

value is defined as the sum of the argument-1 series divided by the number of

occurrences referenced by argument-1.

MEDIAN

The MEDIAN function returns the content of the argument whose value is the

middle value in the list formed by arranging the arguments in sorted order.

The function type is numeric.

Format

��

FUNCTION MEDIAN

�

(

argument-1

)

��

argument-1

Must be class numeric.

The returned value is the content of argument-1 having the middle value in the list

formed by arranging all argument-1 values in sorted order.

If the number of occurrences referenced by argument-1 is odd, the returned value is

such that at least half of the occurrences referenced by argument-1 are greater than

or equal to the returned value and at least half are less than or equal. If the

number of occurrences referenced by argument-1 is even, the returned value is the

arithmetic mean of the values referenced by the two middle occurrences.

The comparisons used to arrange the argument values in sorted order are made

according to the rules for simple conditions. For more information, see

“Conditional expressions” on page 267.

MIDRANGE

The MIDRANGE function returns a numeric value that approximates the

arithmetic average of the values of the minimum argument and the maximum

argument.

The function type is numeric.

522 Enterprise COBOL for z/OS V4.1 Language Reference

Format

��

FUNCTION MIDRANGE

�

(

argument-1

)

��

argument-1

Must be class numeric.

The returned value is the arithmetic mean of the value of the greatest argument-1

and the value of the least argument-1. The comparisons used to determine the

greatest and least values are made according to the rules for simple conditions. For

more information, see “Conditional expressions” on page 267.

MIN

The MIN function returns the content of the argument that contains the minimum

value.

The function type depends on the argument type, as follows:

 Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

All arguments integer

(includes integer arguments of usage NATIONAL)

Integer

Numeric (some arguments can be integer)

(includes numeric arguments of usage NATIONAL)

Numeric

Format

��

FUNCTION MIN

�

(

argument-1

)

��

argument-1

Must be class alphabetic, alphanumeric, national, or numeric.

All arguments must be of the same class, except that a combination of alphabetic

and alphanumeric arguments is allowed.

The returned value is the content of argument-1 having the least value. The

comparisons used to determine the least value are made according to the rules for

simple conditions. For more information, see “Conditional expressions” on page

267.

Chapter 22. Intrinsic functions 523

If more than one argument-1 has the same least value, the leftmost argument-1

having that value is returned.

If the type of the function is alphanumeric or national, the size of the returned

value is the size of the selected argument-1.

MOD

The MOD function returns an integer value that is argument-1 modulo argument-2.

The function type is integer.

The function result is an integer with as many digits as the shorter of argument-1

and argument-2.

Format

�� FUNCTION MOD (argument-1 argument-2) ��

argument-1

Must be an integer.

argument-2

Must be an integer. Must not be zero.

The returned value is argument-1 modulo argument-2. The returned value is defined

as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

The following are expected results for some values of argument-1 and argument-2.

 argument-1 argument-2 Returned value

11 5 1

-11 5 4

11 -5 -4

-11 -5 -1

NATIONAL-OF

The NATIONAL-OF function returns a national character string consisting of the

national character representation of the characters in argument-1.

The type of the function is national.

524 Enterprise COBOL for z/OS V4.1 Language Reference

Format

�� FUNCTION NATIONAL-OF (argument-1)

argument-2
 ��

argument-1

Must be of class alphabetic, alphanumeric, or DBCS. argument-1 specifies

the source string for the conversion.

argument-2

Must be an integer. argument-2 identifies the source code page for the

conversion.

 argument-2 must be a valid CCSID number and must identify an EBCDIC,

ASCII, UTF-8, or EUC code page. An EBCDIC or ASCII code page can

contain both single-byte and double-byte characters.

If argument-2 is omitted, the source code page is the one that was in effect

for the CODEPAGE compiler option when the source code was compiled.

The returned value is a national character string consisting of the characters of

argument-1 converted to national character representation. When a source character

cannot be converted to a national character, the source character is converted to a

substitution character. The substitution character is:

v X’001A’ if converting a single-byte character

v X’FFFD’ if converting a multi-byte character

No exception condition is raised.

The length of the returned value depends on the content of argument-1 and the

characteristics of the source code page.

Usage note: The CCSID for UTF-8 is 1208.

Exception: If the conversion fails, a severe runtime error occurs. Verify that the

z/OS Unicode conversion services are installed and are configured to include the

table for converting from the source code page to CCSID 1200. See the

Customization Guide for installation requirements to support the conversion.

NUMVAL

The NUMVAL function returns the numeric value represented by the alphanumeric

character string or national character string specified as the argument. The function

removes any leading or trailing spaces in the string to produce a numeric value.

The function type is numeric.

Chapter 22. Intrinsic functions 525

Format

�� FUNCTION NUMVAL (argument-1) ��

argument-1

Must be an alphanumeric literal, a national literal, or a data item of class

national or class alphanumeric that contains a character string in either of

the following formats:

Format 1: argument-1

��

space

+

-

space
 digit

.

digit

.

digit

space
 ��

Format 2: argument-1, monetary format

��

space
 digit

.

digit

.

digit

space

+

-

CR

DB

space
 ��

space A string of one or more spaces.

digit A string of one or more digits. If the ARITH(COMPAT) compiler option is

in effect, the total number of digits must not exceed 18. If the

ARITH(EXTEND) compiler option is in effect, the total number of digits

must not exceed 31.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES

paragraph, a comma must be used in argument-1 rather than a decimal point.

The returned value is a floating-point approximation of the numeric value

represented by argument-1. The precision of the returned value depends on the

setting of the ARITH compiler option. For details, see Converting to numbers

(NUMVAL, NUMVAL-C) in the Enterprise COBOL Programming Guide

NUMVAL-C

The NUMVAL-C function returns the numeric value represented by the

alphanumeric character string or national character string specified as argument-1.

The function removes the currency string, if any, and any grouping separators

(commas or periods) to produce a numeric value.

526 Enterprise COBOL for z/OS V4.1 Language Reference

The function type is numeric.

Format

�� FUNCTION NUMVAL-C (argument-1)

argument-2
 ��

argument-1

Must be an alphanumeric literal, a national literal, or a data item of class

alphanumeric or class national that contains a character string in either of

the following formats:

Format 1: argument-1

��

space

+

-

space

cs

space
 �

�

�

 digit

.

digit

,

digit

.

digit

space
 ��

Format 2: argument-1, monetary format

��

space

cs

space
 �

�

�

 digit

.

digit

,

digit

.

digit

space

+

-

CR

DB

 �

�
space

 ��

space A string of one or more spaces.

cs The string of one or more characters that form the currency sign.

At most one copy of the characters specified by cs can occur in

argument-1.

digit A string of one or more digits. If the ARITH(COMPAT) compiler

Chapter 22. Intrinsic functions 527

option is in effect, the total number of digits must not exceed 18. If

the ARITH(EXTEND) compiler option is in effect, the total number

of digits must not exceed 31.

If the DECIMAL-POINT IS COMMA clause is specified in the

SPECIAL-NAMES paragraph, the functions of the comma and decimal

point in argument-1 are reversed.

argument-2

Specifies the currency string value.

 The following rules apply:

v argument-2 must be specified if the program contains more than one

CURRENCY SIGN clause.

v argument-2, if specified, must be of the same class as argument-1.

v argument-2 must not contain any of the digits 0 through 9, any leading

or trailing spaces, or any of the special characters ’+’, ’-’, ’.’, or ’,’.

v argument-2 can be of any length valid for an elementary or group data

item of the class of argument-2, including zero.

v Matching of argument-2 is case sensitive. For example, if you specify

argument-2 as ’CHF’, it will not match ’ChF’, ’chf’ or ’chF’.

If argument-2 is not specified, the character used for cs is the currency

symbol specified for the program.

The returned value is a floating-point approximation of the numeric value

represented by argument-1. The precision of the returned value depends on the

setting of the ARITH compiler option. For details, see Converting to numbers

(NUMVAL, NUMVAL-C) in the Enterprise COBOL Programming Guide.

ORD

The ORD function returns an integer value that is the ordinal position of its

argument in the collating sequence for the program. The lowest ordinal position is

1.

The function type is integer.

The function result is a three-digit integer.

Format

�� FUNCTION ORD (argument-1) ��

argument-1

Must be one character in length and must be class alphabetic or

alphanumeric.

The returned value is the ordinal position of argument-1 in the collating sequence

for the program; it ranges from 1 to 256 depending on the collating sequence.

528 Enterprise COBOL for z/OS V4.1 Language Reference

ORD-MAX

The ORD-MAX function returns a value that is the ordinal position in the

argument list of the argument that contains the maximum value.

The function type is integer.

Format

��

FUNCTION ORD-MAX

�

(

argument-1

)

��

argument-1

Must be class alphabetic, alphanumeric, national, or numeric.

All arguments must be of the same class, except that a combination of alphabetic

and alphanumeric arguments is allowed.

The returned value is the ordinal number that corresponds to the position of the

argument-1 having the greatest value in the argument-1 series.

The comparisons used to determine the greatest-valued argument-1 are made

according to the rules for simple conditions. For more information, see

“Conditional expressions” on page 267.

If more than one argument-1 has the same greatest value, the number returned

corresponds to the position of the leftmost argument-1 having that value.

ORD-MIN

The ORD-MIN function returns a value that is the ordinal position in the argument

list of the argument that contains the minimum value.

The function type is integer.

Format

��

FUNCTION ORD-MIN

�

(

argument-1

)

��

argument-1

Must be class alphabetic, alphanumeric, national, or numeric.

All arguments must be of the same class, except that a combination of alphabetic

and alphanumeric arguments is allowed.

Chapter 22. Intrinsic functions 529

The returned value is the ordinal number that corresponds to the position of the

argument-1 having the least value in the argument-1 series.

The comparisons used to determine the least-valued argument-1 are made

according to the rules for simple conditions. For more information, see

“Conditional expressions” on page 267.

If more than one argument-1 has the same least value, the number returned

corresponds to the position of the leftmost argument-1 having that value.

PRESENT-VALUE

The PRESENT-VALUE function returns a value that approximates the present

value of a series of future period-end amounts specified by argument-2 at a

discount rate specified by argument-1.

The function type is numeric.

Format

��

FUNCTION PRESENT-VALUE

(

argument-1

�

argument-2

)

��

argument-1

Must be class numeric. Must be greater than -1.

argument-2

Must be class numeric.

The returned value is an approximation of the summation of a series of

calculations with each term in the following form:

argument-2 / (1 + argument-1) ** n

There is one term for each occurrence of argument-2. The exponent n is

incremented from 1 by 1 for each term in the series.

RANDOM

The RANDOM function returns a numeric value that is a pseudorandom number

from a rectangular distribution.

The function type is numeric.

530 Enterprise COBOL for z/OS V4.1 Language Reference

Format

�� FUNCTION RANDOM

(

argument-1

)
 ��

argument-1

If argument-1 is specified, it must be zero or a positive integer. However,

only values in the range from zero up to and including 2,147,483,645 yield

a distinct sequence of pseudorandom numbers.

If a subsequent reference specifies argument-1, a new sequence of pseudorandom

numbers is started.

If the first reference to this function in the run unit does not specify argument-1, the

seed value used will be zero.

In each case, subsequent references without specifying argument-1 return the next

number in the current sequence.

The returned value is exclusively between zero and one.

For a given seed value, the sequence of pseudorandom numbers is always the

same.

The RANDOM function can be used in threaded programs. For an initial seed, a

single sequence of pseudorandom numbers is returned, regardless of the thread

that is running when RANDOM is invoked.

RANGE

The RANGE function returns a value that is equal to the value of the maximum

argument minus the value of the minimum argument.

The function type depends on the argument types, as follows:

 Argument type Function type

All arguments integer Integer

Numeric (some arguments can be integer) Numeric

Format

��

FUNCTION RANGE

�

(

argument-1

)

��

argument-1

Must be class numeric.

Chapter 22. Intrinsic functions 531

The returned value is equal to argument-1 with the greatest value minus the

argument-1 with the least value. The comparisons used to determine the greatest

and least values are made according to the rules for simple conditions. For more

information, see “Conditional expressions” on page 267.

REM

The REM function returns a numeric value that is the remainder of argument-1

divided by argument-2.

The function type is numeric.

Format

�� FUNCTION REM (argument-1 argument-2) ��

argument-1

Must be class numeric.

argument-2

Must be class numeric. Must not be zero.

The returned value is the remainder of argument-1 divided by argument-2. It is

defined as the expression:

argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1 / argument-2))

REVERSE

The REVERSE function returns a character string of exactly the same length as the

argument, whose characters are exactly the same as those specified in the

argument except that they are in reverse order. For arguments of type national,

character positions are reversed.

The function type depends on the type of the argument, as follows:

 Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

Format

�� FUNCTION REVERSE (argument-1) ��

532 Enterprise COBOL for z/OS V4.1 Language Reference

argument-1

Must be class alphabetic, alphanumeric, or national and must be at least

one character in length.

The returned value is a character string of the same length as argument-1, with the

characters of argument-1 in reversed order. For example, if argument-1 contains ABC,

the returned value is CBA.

SIN

The SIN function returns a numeric value that approximates the sine of the angle

or arc specified by the argument in radians.

The function type is numeric.

Format

�� FUNCTION SIN (argument-1) ��

argument-1

Must be class numeric.

The returned value is the approximation of the sine of argument-1 and is greater

than or equal to -1 and less than or equal to +1.

SQRT

The SQRT function returns a numeric value that approximates the square root of

the argument specified.

The function type is numeric.

Format

�� FUNCTION SQRT (argument-1) ��

argument-1

Must be class numeric. The value of argument-1 must be zero or positive.

The returned value is the absolute value of the approximation of the square root of

argument-1.

Chapter 22. Intrinsic functions 533

STANDARD-DEVIATION

The STANDARD-DEVIATION function returns a numeric value that approximates

the standard deviation of its arguments.

The function type is numeric.

Format

��

FUNCTION STANDARD-DEVIATION

�

(

argument-1

)

��

argument-1

Must be class numeric.

The returned value is the approximation of the standard deviation of the

argument-1 series. The returned value is calculated as follows:

1. The difference between each argument-1 and the arithmetic mean of the

argument-1 series is calculated and squared.

2. The values obtained are then added together. This quantity is divided by the

number of values in the argument-1 series.

3. The square root of the quotient obtained is then calculated. The returned value

is the absolute value of this square root.

If the argument-1 series consists of only one value, or if the argument-1 series

consists of all variable-occurrence data items and the total number of occurrences

for all of them is one, the returned value is zero.

SUM

The SUM function returns a value that is the sum of the arguments.

The function type depends on the argument types, as follows:

 Argument type Function type

All arguments integer Integer

Numeric (some arguments can be integer) Numeric

Format

��

FUNCTION SUM

�

(

argument-1

)

��

534 Enterprise COBOL for z/OS V4.1 Language Reference

argument-1

Must be class numeric.

The returned value is the sum of the arguments. If the argument-1 series are all

integers, the value returned is an integer. If the argument-1 series are not all

integers, a numeric value is returned.

TAN

The TAN function returns a numeric value that approximates the tangent of the

angle or arc that is specified by the argument in radians.

The function type is numeric.

Format

�� FUNCTION TAN (argument-1) ��

argument-1

Must be class numeric.

The returned value is the approximation of the tangent of argument-1.

UNDATE

The UNDATE function converts a date field to a nondate for unambiguous use

with nondates.

If the NODATEPROC compiler option is in effect, the UNDATE function has no

effect.

The function type depends on the type of argument-1:

 Argument type Function type

Alphanumeric Alphanumeric

Integer Integer

Format

�� FUNCTION UNDATE (argument-1) ��

argument-1

A date field.

The returned value is a nondate that contains the value of argument-1 unchanged.

Chapter 22. Intrinsic functions 535

UPPER-CASE

The UPPER-CASE function returns a character string that contains the characters in

the argument with each lowercase letter replaced by the corresponding uppercase

letter.

The function type depends on the type of the argument, as follows:

 Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

Format

�� FUNCTION UPPER-CASE (argument-1) ��

argument-1

Must be class alphabetic, alphanumeric, or national and must be at least

one character position in length.

The same character string as argument-1 is returned, except that each lowercase

letter is replaced by the corresponding uppercase letter.

If argument-1 is alphabetic or alphanumeric, the lowercase letters ’a’ through ’z’ are

replaced by the corresponding uppercase letters ’A’ through ’Z’, where the range

of ’a’ through ’z’ and the range of ’A’ through ’Z’ are as shown in “EBCDIC

collating sequence” on page 585, regardless of the code page in effect.

If argument-1 is national, each lowercase letter is replaced by its corresponding

uppercase letter based on the specification given in the Unicode database

UnicodeData.txt, available from the Unicode Consortium at www.unicode.org/.

The returned character string has the same length as argument-1.

VARIANCE

The VARIANCE function returns a numeric value that approximates the variance

of its arguments.

The function type is numeric.

536 Enterprise COBOL for z/OS V4.1 Language Reference

Format

��

FUNCTION VARIANCE

�

(

argument-1

)

��

argument-1

Must be class numeric.

The returned value is the approximation of the variance of the argument-1 series.

The returned value is defined as the square of the standard deviation of the

argument-1 series. This value is calculated as follows:

1. The difference between each argument-1 value and the arithmetic mean of the

argument-1 series is calculated and squared.

2. The values obtained are then added together. This quantity is divided by the

number of values in the argument series.

If the argument-1 series consists of only one value, or if the argument-1 series

consists of all variable-occurrence data items and the total number of occurrences

for all of them is one, the returned value is zero.

WHEN-COMPILED

The WHEN-COMPILED function returns the date and time that the program was

compiled as provided by the system on which the program was compiled.

The function type is alphanumeric.

Format

�� FUNCTION WHEN-COMPILED ��

Reading from left to right, the 21 character positions of the returned value are as

follows:

 Character

positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar

5-6 Two numeric digits of the month of the year, in the range 01 through

12

7-8 Two numeric digits of the day of the month, in the range 01 through 31

9-10 Two numeric digits of the hours past midnight, in the range 00 through

23

11-12 Two numeric digits of the minutes past the hour, in the range 00

through 59

Chapter 22. Intrinsic functions 537

Character

positions Contents

13-14 Two numeric digits of the seconds past the minute, in the range 00

through 59

15-16 Two numeric digits of the hundredths of a second past the second, in

the range 00 through 99. The value 00 is returned if the system on

which the function is evaluated does not have the facility to provide

the fractional part of a second.

17 Either the character ’-’ or the character ’+’. The character ’-’ is returned

if the local time indicated in the previous character positions is behind

Greenwich mean time. The character ’+’ is returned if the local time

indicated is the same as or ahead of Greenwich mean time. The

character ’0’ is returned if the system on which this function is

evaluated does not have the facility to provide the local time

differential factor.

18-19 If character position 17 is ’-’, two numeric digits are returned in the

range 00 through 12 indicating the number of hours that the reported

time is behind Greenwich mean time. If character position 17 is ’+’, two

numeric digits are returned in the range 00 through 13 indicating the

number of hours that the reported time is ahead of Greenwich mean

time. If character position 17 is ’0’, the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating

the number of additional minutes that the reported time is ahead of or

behind Greenwich mean time, depending on whether character position

17 is ’+’ or ’-’, respectively. If character position 17 is ’0’, the value 00 is

returned.

The returned value is the date and time of compilation of the source unit that

contains this function. If a program is a contained program, the returned value is

the compilation date and time associated with the containing program.

YEAR-TO-YYYY

The YEAR-TO-YYYY function converts argument-1, a two-digit year, to a four-digit

year. argument-2, when added to the year at the time of execution, defines the

ending year of a 100-year interval, or sliding century window, into which the year

of argument-1 falls.

The function type is integer.

If the DATEPROC compiler option is in effect, then the returned value is an

expanded date field with implicit DATE FORMAT YYYY.

Format

�� FUNCTION YEAR-TO-YYYY (argument-1)

argument-2
 ��

argument-1

Must be a non-negative integer that is less than 100.

538 Enterprise COBOL for z/OS V4.1 Language Reference

argument-2

Must be an integer. If argument-2 is omitted, the function is evaluated

assuming the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be

less than 10,000 and greater than 1,699.

Examples of return values from the YEAR-TO-YYYY function are shown in the

following table.

 Current year argument-1 value argument-2 value Returned value

1995 4 23 2004

1995 4 -15 1904

2008 98 23 1998

2008 98 -15 1898

YEARWINDOW

If the DATEPROC compiler option is in effect, the YEARWINDOW function

returns the starting year of the century window specified by the YEARWINDOW

compiler option. The returned value is an expanded date field with implicit DATE

FORMAT YYYY.

If the NODATEPROC compiler option is in effect, the YEARWINDOW function

returns 0.

The function type is integer.

Format

�� FUNCTION YEARWINDOW ��

Chapter 22. Intrinsic functions 539

540 Enterprise COBOL for z/OS V4.1 Language Reference

Part 8. Compiler-directing statements

Chapter 23. Compiler-directing statements . . 543

BASIS statement 543

CBL (PROCESS) statement 544

*CONTROL (*CBL) statement 544

Source code listing 546

Object code listing 546

Storage map listing 546

COPY statement 546

SUPPRESS phrase 549

REPLACING phrase 549

Replacement and comparison rules 550

DELETE statement 553

EJECT statement 554

ENTER statement 554

INSERT statement 555

READY or RESET TRACE statement 556

REPLACE statement 556

Continuation rules for pseudo-text 558

Comparison operation 558

REPLACE statement notes 558

SERVICE LABEL statement 559

SERVICE RELOAD statement 560

SKIP statements 560

TITLE statement 561

USE statement 562

EXCEPTION/ERROR declarative 562

Precedence rules for nested programs 564

LABEL declarative 564

DEBUGGING declarative 566

© Copyright IBM Corp. 1991, 2007 541

542 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 23. Compiler-directing statements

A compiler-directing statement is a statement that causes the compiler to take a

specific action during compilation.

You can use compiler-directing statements for the following:

v Extended source library control (BASIS, DELETE, and INSERT statements)

v Source text manipulation (COPY and REPLACE statements)

v Exception handling and label handling (USE statement)

v Controlling compiler listings (*CONTROL, *CBL, EJECT, TITLE, SKIP1, SKIP2,

and SKIP3 statements)

v Specifying compiler options (CBL and PROCESS statements)

v Specifying COBOL exception handling procedures (USE statements)

The SERVICE LABEL statement is used with Language Environment condition

handling. It is also generated by the CICS® integrated translator (and the separate

CICS translator).

The following compiler directing statements have no effect: ENTER, READY or

RESET TRACE, and SERVICE RELOAD.

BASIS statement

The BASIS statement is an extended source text library statement. It provides a

complete COBOL program as the source for a compilation.

A complete program can be stored as an entry in a user-defined library and can be

used as the source for a compilation. Compiler input is a BASIS statement,

optionally followed by any number of INSERT and DELETE statements.

Format

��

sequence-number
 BASIS basis-name

literal-1
 ��

sequence-number

Can optionally appear in columns 1 through 6, followed by a space. The

content of this field is ignored.

BASIS

Can appear anywhere in columns 1 through 72, followed by basis-name.

There must be no other text in the statement.

basis-name, literal-1

Is the name by which the library entry is known to the system

environment.

© Copyright IBM Corp. 1991, 2007 543

For rules of formation and processing rules, see the description under

literal-1 and text-name of the “COPY statement” on page 546.

The source file remains unchanged after execution of the BASIS statement.

Usage note: If INSERT or DELETE statements are used to modify the COBOL

source text provided by a BASIS statement, the sequence field of the COBOL

source text must contain numeric sequence numbers in ascending order.

CBL (PROCESS) statement

With the CBL (PROCESS) statement, you can specify compiler options to be used

in the compilation of the program. The CBL (PROCESS) statement is placed before

the identification division header of an outermost program.

Format

�� CBL

PROCESS

options-list
 ��

options-list

A series of one or more compiler options, each one separated by a comma

or a space.

 For more information about compiler options, see the Enterprise COBOL

Programming Guide.

The CBL (PROCESS) statement can be preceded by a sequence number in columns

1 through 6. The first character of the sequence number must be numeric, and CBL

or PROCESS can begin in column 8 or after; if a sequence number is not specified,

CBL or PROCESS can begin in column 1 or after.

The CBL (PROCESS) statement must end before or at column 72, and options

cannot be continued across multiple CBL (PROCESS) statements. However, you

can use more than one CBL (PROCESS) statement. Multiple CBL (PROCESS)

statements must follow one another with no intervening statements of any other

type.

The CBL (PROCESS) statement must be placed before any comment lines or other

compiler-directing statements.

*CONTROL (*CBL) statement

With the *CONTROL (or *CBL) statement, you can selectively display or suppress

the listing of source code, object code, and storage maps throughout the source

text.

544 Enterprise COBOL for z/OS V4.1 Language Reference

Format

��

*CONTROL

*CBL

�

SOURCE

NOSOURCE

LIST

NOLIST

MAP

NOMAP

.

��

For a complete discussion of the output produced by these options, see the

Enterprise COBOL Programming Guide.

The *CONTROL and *CBL statements are synonymous. *CONTROL is accepted

anywhere that *CBL is accepted.

The characters *CONTROL or *CBL can start in any column beginning with

column 7, followed by at least one space or comma and one or more option

keywords. The option keywords must be separated by one or more spaces or

commas. This statement must be the only statement on the line, and continuation

is not allowed. The statement can be terminated with a period.

The *CONTROL and *CBL statements must be embedded in a program source. For

example, in the case of batch applications, the *CONTROL and *CBL statements

must be placed between the PROCESS (CBL) statement and the end of the

program (or END PROGRAM marker, if specified).

The source line containing the *CONTROL (*CBL) statement will not appear in the

source listing.

If an option is defined at installation as a fixed option, that fixed option takes

precedence over all of the following:

v PARM (if available)

v CBL statement

v *CONTROL (*CBL) statement

The requested options are handled in the following manner:

1. If an option or its negation appears more than once in a *CONTROL statement,

the last occurrence of the option word is used.

2. If the corresponding option has been requested as a parameter to the compiler,

then a *CONTROL statement with the negation of the option word must

precede the portions of the source text for which listing output is to be

inhibited. Listing output then resumes when a *CONTROL statement with the

affirmative option word is encountered.

3. If the negation of the corresponding option has been requested as a parameter

to the compiler, then that listing is always inhibited.

4. The *CONTROL statement is in effect only within the source program in which

it is written, including any contained programs. It does not remain in effect

across batch compiles of two or more COBOL source programs.

Chapter 23. Compiler-directing statements 545

Source code listing

Listing of the input source text lines is controlled by any of the following

statements:

*CONTROL SOURCE [*CBL SOURCE]

*CONTROL NOSOURCE [*CBL NOSOURCE]

If a *CONTROL NOSOURCE statement is encountered and SOURCE has been

requested as a compilation option, printing of the source listing is suppressed from

this point on. An informational (I-level) message is issued stating that printing of

the source has been suppressed.

Object code listing

Listing of generated object code is controlled by any of the following statements

occurring in the procedure division:

*CONTROL LIST [*CBL LIST]

*CONTROL NOLIST [*CBL NOLIST]

If a *CONTROL NOLIST statement is encountered, and LIST has been requested as

a compilation option, listing of generated object code is suppressed from this point

on.

Storage map listing

Listing of storage map entries is controlled by any of the following statements

occurring in the data division:

*CONTROL MAP [*CBL MAP]

*CONTROL NOMAP [*CBL NOMAP]

If a *CONTROL NOMAP statement is encountered, and MAP has been requested

as a compilation option, listing of storage map entries is suppressed from this

point on.

For example, either of the following sets of statements produces a storage map

listing in which A and B will not appear:

*CONTROL NOMAP *CBL NOMAP

 01 A 01 A

 02 B 02 B

*CONTROL MAP *CBL MAP

COPY statement

The COPY statement is a library statement that places prewritten text in a COBOL

compilation unit.

Prewritten source code entries can be included in a compilation unit at compile

time. Thus, an installation can use standard file descriptions, record descriptions,

or procedures without recoding them. These entries and procedures can then be

saved in user-created libraries; they can then be included in programs and class

definitions by means of the COPY statement.

Compilation of the source code containing COPY statements is logically equivalent

to processing all COPY statements before processing the resulting source text.

546 Enterprise COBOL for z/OS V4.1 Language Reference

The effect of processing a COPY statement is that the library text associated with

text-name is copied into the compilation unit, logically replacing the entire COPY

statement, beginning with the word COPY and ending with the period, inclusive.

When the REPLACING phrase is not specified, the library text is copied

unchanged.

Format

�� COPY text-name

literal-1

OF

library-name

IN

literal-2

SUPPRESS
 �

�

�

REPLACING

operand-1

BY

operand-2

 . ��

text-name, library-name

text-name identifies the copy text. library-name identifies where the copy text

exists.

v Can be from 1-30 characters in length

v Can contain the following characters: Latin uppercase letters A-Z, Latin

lowercase letters a-z, digits 0-9, and hyphen

v The first or last character must not be a hyphen

text-name and library-name can be the same as a user-defined word.

text-name need not be qualified. If text-name is not qualified, a library-name

of SYSLIB is assumed.

When compiling from JCL or TSO, only the first eight characters are used

as the identifying name. When compiling with the cob2 command and

processing COPY text residing in the Hierarchical File System (HFS), all

characters are significant.

literal-1, literal-2

Must be alphanumeric literals. literal-1 identifies the copy text. literal-2

identifies where the copy text exists.

 When compiling from JCL or TSO:

v Literals can be from 1-30 characters in length.

v Literals can contain characters: A-Z, a-z, 0-9, hyphen, @, #, or $.

v The first or last character must not be a hyphen.

v Only the first eight characters are used as the identifying name.

When compiling with the cob2 command and processing COPY text

residing in the HFS, the literal can be from 1 to 160 characters in length.

The uniqueness of text-name and library-name is determined after the formation and

conversion rules for a system-dependent name have been applied.

For information about processing rules, see the Enterprise COBOL Programming

Guide.

Chapter 23. Compiler-directing statements 547

operand-1, operand-2

Can be either pseudo-text, an identifier, a function-identifier, a literal, or a

COBOL word (except the word COPY).

 Library text and pseudo-text can consist of or include any words (except

COPY), identifiers, or literals that can be written in the source text. This

includes DBCS DBCS user-defined words, DBCS literals, and national

literals.

DBCS user-defined words must be wholly formed; that is, there is no

partial-word replacement for DBCS words.

Words or literals containing DBCS characters cannot be continued across

lines.

Each COPY statement must be preceded by a space and ended with a separator

period.

A COPY statement can appear in the source text anywhere a character string or a

separator can appear.

COPY statements can be nested. However, nested COPY statements cannot contain

the REPLACING phrase, and a COPY statement with the REPLACING phrase

cannot contain nested COPY statements.

A nested COPY statement cannot cause recursion. That is, a COPY member can be

named only once in a set of nested COPY statements until the end-of-file for that

COPY member is reached. For example, assume that the source text contains the

statement: COPY X. and library text X contains the statement: COPY Y..

In this case, library text Y must not have a COPY X or a COPY Y statement.

Debugging lines are permitted within library text and pseudo-text. Text words

within a debugging line participate in the matching rules as if the ″D″ did not

appear in the indicator area. A debugging line is specified within pseudo-text if the

debugging line begins in the source text after the opening pseudo-text delimiter

but before the matching closing pseudo-text delimiter.

If additional lines are introduced into the source text as a result of a COPY

statement, each text word introduced appears on a debugging line if the COPY

statement begins on a debugging line or if the text word being introduced appears

on a debugging line in library text. When a text word specified in the BY phrase is

introduced, it appears on a debugging line if the first library text word being

replaced is specified on a debugging line.

When a COPY statement is specified on a debugging line, the copied text is treated

as though it appeared on a debugging line, except that comment lines in the text

appear as comment lines in the resulting source text.

If the word COPY appears in a comment-entry, or in the place where a

comment-entry can appear, it is considered part of the comment-entry.

After all COPY and REPLACE statements have been processed, a debugging line

will be considered to have all the characteristics of a comment line, if the WITH

DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER

paragraph.

548 Enterprise COBOL for z/OS V4.1 Language Reference

Comment lines or blank lines can occur in library text. Comment lines or blank

lines appearing in library text are copied into the resultant source text unchanged

with the following exception: a comment line or blank line in library text is not

copied if that comment line or blank line appears within the sequence of text

words that match operand-1 (see “Replacement and comparison rules” on page

550).

Lines containing *CONTROL (*CBL), EJECT, SKIP1, SKIP2, SKIP3, or TITLE

statements can occur in library text. Such lines are treated as comment lines during

COPY statement processing.

The syntactic correctness of the entire COBOL source text cannot be determined

until all COPY and REPLACE statements have been completely processed, because

the syntactic correctness of the library text cannot be independently determined.

Library text copied from the library is placed into the same area of the resultant

program as it is in the library. Library text must conform to the rules for Standard

COBOL 85 format.

Note: Characters outside those defined for COBOL words and separators must not

appear in library text or pseudo-text except in comment lines, comment-entries,

alphanumeric literals, DBCS literals, or national literals.

SUPPRESS phrase

The SUPPRESS phrase specifies that the library text is not to be printed on the

source listing.

REPLACING phrase

In the discussion that follows, each operand can consist of one of the following:

v Pseudo-text

v An identifier

v A literal

v A COBOL word (except the word COPY)

v Function identifier

When the REPLACING phrase is specified, the library text is copied, and each

properly matched occurrence of operand-1 within the library text is replaced by the

associated operand-2.

pseudo-text

A sequence of character-strings or separators, or both, bounded by, but not

including, pseudo-text delimiters (==). Both characters of each pseudo-text

delimiter must appear on one line; however, character-strings within

pseudo-text can be continued.

 Individual character-strings within pseudo-text can be up to 322 characters

long; they can be continued subject to the normal continuation rules for

source code format.

Keep in mind that a character-string must be delimited by separators. For

more information, see Chapter 1, “Characters,” on page 3.

pseudo-text-1 refers to pseudo-text when used for operand-1, and

pseudo-text-2 refers to pseudo-text when used for operand-2.

Chapter 23. Compiler-directing statements 549

pseudo-text-1 can consist solely of the separator comma or separator

semicolon. pseudo-text-2 can be null; it can consist solely of space characters

or comment lines.

Pseudo-text must not contain the word COPY.

Each text word in pseudo-text-2 that is to be copied into the program is

placed in the same area of the resultant program as the area in which it

appears in pseudo-text-2.

Pseudo-text can consist of or include any words (except COPY), identifiers,

or literals that can be written in the source text. This includes DBCS

user-defined words, DBCS literals, and national literals.

DBCS user-defined words must be wholly formed; that is, there is no

partial-word replacement for DBCS words.

Words or literals containing DBCS characters cannot be continued across

lines.

identifier

Can be defined in any section of the data division.

literal Can be numeric, alphanumeric, DBCS, or national.

word Can be any single COBOL word (except COPY), including DBCS

user-defined words. DBCS user-defined words must be wholly formed.

You cannot replace part of a DBCS word.

 You can include the nonseparator COBOL characters (for example, +, *, /,

$, <, >, and =) as part of a COBOL word when used as REPLACING

operands. In addition, the hyphen character can be at the beginning or end

of the word.

For purposes of matching, each identifier-1, literal-1, or word-1 is treated as

pseudo-text containing only identifier-1, literal-1, or word-1, respectively.

Replacement and comparison rules

 1. Arithmetic and logical operators are considered text words and can be

replaced only through the pseudo-text option.

 2. Beginning and ending blanks are not included in the text comparison process.

Embedded blanks are used in the text comparison process to separate multiple

text words.

 3. When operand-1 is a figurative constant, operand-1 matches only the same exact

figurative constant. For example, if ALL "AB" is specified in the library text,

then "ABAB" is not considered a match; only ALL "AB" is considered a match.

 4. When replacing a PICTURE character-string, the pseudo-text option should be

used; to avoid ambiguities, pseudo-text-1 should specify the entire PICTURE

clause, including the keyword PICTURE or PIC.

 5. Any separator comma, semicolon, or space preceding the leftmost word in the

library text is copied into the source text. Beginning with the leftmost library

text word and the first operand-1 specified in the REPLACING option, the

entire REPLACING operand that precedes the keyword BY is compared to an

equivalent number of contiguous library text words.

 6. operand-1 matches the library text if, and only if, the ordered sequence of text

words in operand-1 is equal, character for character, to the ordered sequence of

library words. For national characters, the sequence of national characters

must be equal, national character for national character, to the ordered

sequence of library words. For matching purposes, each occurrence of a

550 Enterprise COBOL for z/OS V4.1 Language Reference

comma or semicolon separator and each sequence of one or more space

separators is considered to be a single space. However, when operand-1

consists solely of a separator comma or semicolon, it participates in the match

as a text word (in this case, the space following the comma or semicolon

separator can be omitted).

When the library text contains a closing quotation mark that is not

immediately followed by a separator space, comma, semicolon, or period, the

closing quotation mark is considered a separator quotation mark.

 7. If no match occurs, the comparison is repeated with each successive operand-1,

if specified, until either a match is found or there are no further REPLACING

operands.

 8. Whenever a match occurs between operand-1 and the library text, the

associated operand-2 is copied into the source text.

 9. The COPY statement with REPLACING phrase can be used to replace parts of

words. By inserting a dummy operand delimited by colons into the program

text, the compiler will replace the dummy operand with the desired text.

Example 3 shows how this is used with the dummy operand :TAG:.

The colons serve as separators and make TAG a stand-alone operand.

10. When all operands have been compared and no match is found, the leftmost

library text word is copied into the source text.

11. The next successive uncopied library text word is then considered to be the

leftmost text word, and the comparison process is repeated, beginning with

the first operand-1. The process continues until the rightmost library text word

has been compared.

12. Comment lines or blank lines occurring in the library text and in pseudo-text-1

are ignored for purposes of matching; and the sequence of text words in the

library text and in pseudo-text-1 is determined by the rules for reference

format. Comment lines or blank lines appearing in pseudo-text-2 are copied

into the resultant program unchanged whenever pseudo-text-2 is placed into

the source text as a result of text replacement. Comment lines or blank lines

appearing in library text are copied into the resultant source text unchanged

with the following exception: a comment line or blank line in library text is

not copied if that comment line or blank line appears within the sequence of

text words that match pseudo-text-1.

13. Text words, after replacement, are placed in the source text according to

Standard COBOL 85 format rules.

14. When text words are placed in the source text, additional spaces are

introduced only between text words where there already exists a space

(including the assumed space between source lines).

15. COPY REPLACING does not affect the EJECT, SKIP1, SKIP2, SKIP3, or TITLE

compiler-directing statements.

Sequences of code (such as file and data descriptions, error and exception routines)

that are common to a number of programs can be saved in a library, and then used

in conjunction with the COPY statement. If naming conventions are established for

such common code, then the REPLACING phrase need not be specified. If the

names will change from one program to another, then the REPLACING phrase can

be used to supply meaningful names for this program.

Example 1

In this example, the library text PAYLIB consists of the following data division

entries:

Chapter 23. Compiler-directing statements 551

01 A.

 02 B PIC S99.

 02 C PIC S9(5)V99.

 02 D PIC S9999 OCCURS 1 TO 52 TIMES

 DEPENDING ON B OF A.

The programmer can use the COPY statement in the data division of a program as

follows:

COPY PAYLIB.

In this program, the library text is copied; the resulting text is treated as if it had

been written as follows:

01 A.

 02 B PIC S99.

 02 C PIC S9(5)V99.

 02 D PIC S9999 OCCURS 1 TO 52 TIMES

 DEPENDING ON B OF A.

Example 2

To change some (or all) of the names within the library text, the programmer can

use the REPLACING phrase:

COPY PAYLIB REPLACING A BY PAYROLL

 B BY PAY-CODE

 C BY GROSS-PAY

 D BY HOURS.

In this program, the library text is copied; the resulting text is treated as if it had

been written as follows:

01 PAYROLL.

 02 PAY-CODE PIC S99.

 02 GROSS-PAY PIC S9(5)V99.

 02 HOURS PIC S9999 OCCURS 1 TO 52 TIMES

 DEPENDING ON PAY-CODE OF PAYROLL.

The changes shown are made only for this program. The text, as it appears in the

library, remains unchanged.

Example 3

If the following conventions are followed in library text, then parts of names (for

example the prefix portion of data names) can be changed with the REPLACING

phrase.

In this example, the library text PAYLIB consists of the following data division

entries:

01 :TAG:.

 02 :TAG:-WEEK PIC S99.

 02 :TAG:-GROSS-PAY PIC S9(5)V99.

 02 :TAG:-HOURS PIC S999 OCCURS 1 TO 52 TIMES

 DEPENDING ON :TAG:-WEEK OF :TAG:.

The programmer can use the COPY statement in the data division of a program as

follows:

COPY PAYLIB REPLACING ==:TAG:== BY ==Payroll==.

552 Enterprise COBOL for z/OS V4.1 Language Reference

Usage Note: It is important to notice in this example the required use of colons or

parentheses as delimiters in the library text. Colons are recommended for clarity

because parentheses can be used for a subscript, for instance in referencing a table

element.

In this program, the library text is copied; the resulting text is treated as if it had

been written as follows:

01 PAYROLL.

 02 PAYROLL-WEEK PIC S99.

 02 PAYROLL-GROSS-PAY PIC S9(5)V99.

 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES

 DEPENDING ON PAYROLL-WEEK OF PAYROLL.

The changes shown are made only for this program. The text, as it appears in the

library, remains unchanged.

Example 4

This example shows how to selectively replace level numbers without replacing the

numbers in the PICTURE clause:

COPY xxx REPLACING ==(01)== BY ==(01)==

 == 01 == BY == 05 ==.

DELETE statement

The DELETE statement is an extended source library statement. It removes COBOL

statements from a source program that was included by a BASIS statement.

Format

��

sequence-number
 DELETE sequence-number-field ��

sequence-number

Can optionally appear in columns 1 through 6, followed by a space. The

content of this field is ignored.

DELETE

Can appear anywhere within columns 1 through 72. The keyword DELETE

must be followed by a space and the sequence-number-field. There must be

no other text in the statement.

sequence-number-field

Each number must be equal to a sequence-number in the BASIS source

program. This sequence-number is the six-digit number the programmer

assigns in columns 1 through 6 of the COBOL coding form. The numbers

referenced in the sequence-number-field of INSERT or DELETE statements

must always be specified in ascending numeric order.

 The sequence-number-field must be one of the following:

v A single number

v A series of single numbers

Chapter 23. Compiler-directing statements 553

v A range of numbers (indicated by separating the two bounding numbers

of the range by a hyphen)

v A series of ranges of numbers

v Any combination of one or more single numbers and one or more

ranges of numbers

Each entry in the sequence-number-field must be separated from the

preceding entry by a comma followed by a space. For example:

000250 DELETE 000010-000050, 000400, 000450

Source program statements can follow a DELETE statement. These source program

statements are then inserted into the BASIS source program before the statement

following the last statement deleted (that is, in the example above, before the next

statement following deleted statement 000450).

If a DELETE statement begins in column 12 or higher and a valid

sequence-number-field does not follow the keyword DELETE, the compiler assumes

that this DELETE statement is a COBOL DELETE statement.

Usage note: If INSERT or DELETE statements are used to modify the COBOL

source program provided by a BASIS statement, the sequence field of the COBOL

source program must contain numeric sequence numbers in ascending order. The

source file remains unchanged. Any INSERT or DELETE statements referring to

these sequence numbers must occur in ascending order.

EJECT statement

The EJECT statement specifies that the next source statement is to be printed at the

top of the next page.

Format

�� EJECT

.
 ��

The EJECT statement must be the only statement on the line. It can be written in

either Area A or Area B, and can be terminated with a separator period.

The EJECT statement must be embedded in a program source. For example, in the

case of batch applications, the EJECT statement must be placed between the CBL

(PROCESS) statement and the end of the program (or the END PROGRAM marker,

if specified).

The EJECT statement has no effect on the compilation of the source unit itself.

ENTER statement

The ENTER statement is designed to facilitate the use of more than one source

language in the same source program. However, only COBOL is allowed in the

source program.

554 Enterprise COBOL for z/OS V4.1 Language Reference

The ENTER statement is syntax checked but has no effect on the execution of the

program.

Format

�� ENTER language-name-1

routine-name-1
 . ��

language-name-1

A system name that has no defined meaning. It must be either a correctly

formed user-defined word or the word ″COBOL.″ At least one character

must be alphabetic.

routine-name-1

Must follow the rules for formation of a user-defined word. At least one

character must be alphabetic.

INSERT statement

The INSERT statement is a library statement that adds COBOL statements to a

source program that was included by a BASIS statement.

Format

��

sequence-number
 INSERT sequence-number-field ��

sequence-number

Can optionally appear in columns 1 through 6, followed by a space. The

content of this field is ignored.

INSERT

Can appear anywhere within columns 1 through 72, followed by a space

and the sequence-number-field. There must be no other text in the statement.

sequence-number-field

A number that must be equal to a sequence-number in the BASIS source

program. This sequence-number is a six-digit number that the programmer

assigns in columns 1 through 6 of the COBOL source line.

 The numbers referenced in the sequence-number-field of INSERT or DELETE

statements must always be specified in ascending numeric order.

The sequence-number-field must be a single number (for example, 000130). At

least one new source program statement must follow the INSERT

statement for insertion after the statement number specified by the

sequence-number-field.

New source program statements following the INSERT statement can include any

COBOL syntax.

Chapter 23. Compiler-directing statements 555

Usage note: If INSERT or DELETE statements are used to modify the COBOL

source program provided by a BASIS statement, the sequence field of the COBOL

source program must contain numeric sequence numbers in ascending order. The

source file remains unchanged. Any INSERT or DELETE statements referring to

these sequence numbers must occur in ascending order.

READY or RESET TRACE statement

The READY or RESET TRACE statement was designed to trace the execution of

procedures. The READY or RESET TRACE statement can appear only in the

procedure division, but has no effect on your program.

Format

�� READY

RESET
 TRACE . ��

You can trace the execution of procedures by using the USE FOR DEBUGGING

declarative as described in Example: USE FOR DEBUGGING in the Enterprise

COBOL Programming Guide.

REPLACE statement

The REPLACE statement is used to replace source text.

A REPLACE statement can occur anywhere in the source text that a

character-string can occur. It must be preceded by a separator period except when

it is the first statement in a separately compiled program. It must be terminated by

a separator period.

The REPLACE statement provides a means of applying a change to an entire

COBOL compilation group, or part of a compilation group, without manually

having to find and modify all places that need to be changed. It is an easy method

of doing simple string substitutions. It is similar in action to the REPLACING

phrase of the COPY statement, except that it acts on the entire source text, not just

on the text in COPY libraries.

If the word REPLACE appears in a comment-entry or in the place where a

comment-entry can appear, it is considered part of the comment-entry.

Format 1

��

REPLACE

�

==

pseudo-text-1

==

BY

==

pseudo-text-2

==

.

��

556 Enterprise COBOL for z/OS V4.1 Language Reference

Each matched occurrence of pseudo-text-1 in the source text is replaced by the

corresponding pseudo-text-2.

Format 2

�� REPLACE OFF. ��

Any text replacement currently in effect is discontinued with the format-2 form of

REPLACE. If format 2 is not specified, a given occurrence of the REPLACE

statement is in effect from the point at which it is specified until the next

occurrence of a REPLACE statement or the end of the separately compiled

program.

pseudo-text-1

Must contain one or more text words. Character-strings can be continued

in accordance with normal source code rules.

 pseudo-text-1 can consist solely of a separator comma or a separator

semicolon.

pseudo-text-2

Can contain zero, one, or more text words. Character strings can be

continued in accordance with normal source code rules.

pseudo-text-1 and pseudo-text-2 can contain any text words (except the word COPY)

that can be written in source text, including national literals, DBCS literals, and

DBCS user-defined words.

Characters outside those allowed for COBOL words and separators must not

appear in library text or pseudo-text except in comment lines, comment-entries,

alphanumeric literals, DBCS literals, or national literals.

DBCS user-defined words must be wholly formed; that is, there is no partial-word

replacement for DBCS words.

pseudo-text-1 and pseudo-text-2 can contain single-byte and DBCS characters in

comment lines and comment entries.

Individual character-strings within pseudo-text can be up to 322 characters long,

except that strings containing DBCS characters cannot be continued.

The compiler processes REPLACE statements in source text after the processing of

any COPY statements. COPY must be processed first, to assemble complete source

text. Then REPLACE can be used to modify that source text, performing simple

string substitution. REPLACE statements cannot themselves contain COPY

statements.

The text produced as a result of the processing of a REPLACE statement must not

contain a REPLACE statement.

Chapter 23. Compiler-directing statements 557

Continuation rules for pseudo-text

The character-strings and separators comprising pseudo-text can start in either area

A or area B. If, however, there is a hyphen in the indicator area of a line that

follows the opening pseudo-text delimiter, area A of the line must be blank; and

the normal rules for continuation of lines apply to the formation of text words.

(See “Continuation lines” on page 54.)

Comparison operation

The comparison operation to determine text replacement starts with the leftmost

source text word following the REPLACE statement, and with the first

pseudo-text-1. pseudo-text-1 is compared to an equivalent number of contiguous

source text words. pseudo-text-1 matches the source text if, and only if, the ordered

sequence of text words that forms pseudo-text-1 is equal, character for character, to

the ordered sequence of source text words. For national characters, the sequence of

national characters must be equal, national character for national character, to the

ordered sequence of library words.

For purposes of matching, each occurrence of a separator comma, semicolon, or

space, and each sequence of one or more space separators is considered to be a

single space.

However, when pseudo-text-1 consists solely of a separator comma or semicolon,

the comma or semicolon participates in the match as a text word (in this case, the

space following the comma or semicolon separator can be omitted).

If no match occurs, the comparison is repeated with each successive occurrence of

pseudo-text-1, until either a match is found or there is no next successive occurrence

of pseudo-text-1.

When all occurrences of pseudo-text-1 have been compared and no match has

occurred, the next successive source text word is then considered as the leftmost

source text word, and the comparison cycle starts again with the first occurrence of

pseudo-text-1.

Whenever a match occurs between pseudo-text-1 and the source text, the

corresponding pseudo-text-2 replaces the matched text in the source text. The source

text word immediately following the rightmost text word that participated in the

match is then considered as the leftmost source text word. The comparison cycle

starts again with the first occurrence of pseudo-text-1.

The comparison operation continues until the rightmost text word in the source

text that is within the scope of the REPLACE statement has either participated in a

match or been considered as a leftmost source text word and participated in a

complete comparison cycle.

REPLACE statement notes

Comment lines or blank lines occurring in the source text and in pseudo-text-1 are

ignored for purposes of matching. The sequence of text words in the source text

and in pseudo-text-1 is determined by the rules for reference format (see Chapter 6,

“Reference format,” on page 51). Comment lines or blank lines in pseudo-text-2 are

placed into the resultant program unchanged whenever pseudo-text-2 is placed into

the source text as a result of text replacement. Comment lines or blank lines

558 Enterprise COBOL for z/OS V4.1 Language Reference

appearing in source text are retained unchanged with the following exception: a

comment line or blank line in source text is not retained if that comment line or

blank line appears within the sequence of text words that match pseudo-text-1.

Lines containing *CONTROL (*CBL), EJECT, SKIP1/2/3, or TITLE statements can

occur in source text. Such lines are treated as comment lines during REPLACE

statement processing.

Debugging lines are permitted in pseudo-text. Text words within a debugging line

participate in the matching rules as if the letter ″D″ did not appear in the indicator

area.

When a REPLACE statement is specified on a debugging line, the statement is

treated as if the letter ″D″ did not appear in the indicator area.

After all COPY and REPLACE statements have been processed, a debugging line

will be considered to have all the characteristics of a comment line if the WITH

DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER

paragraph.

Except for COPY and REPLACE statements, the syntactic correctness of the source

text cannot be determined until after all COPY and REPLACE statements have

been completely processed.

Text words inserted into the source text as a result of processing a REPLACE

statement are placed in the source text according to the rules for reference format.

When inserting text words of pseudo-text-2 into the source text, additional spaces

are introduced only between text words where there already exists a space

(including the assumed space between source lines).

If additional lines are introduced into the source text as a result of the processing

of REPLACE statements, the indicator area of the introduced lines contains the

same character as the line on which the text being replaced begins, unless that line

contains a hyphen, in which case the introduced line contains a space.

If any literal within pseudo-text-2 is of a length too great to be accommodated on a

single line without continuation to another line in the resultant program and the

literal is not being placed on a debugging line, additional continuation lines are

introduced that contain the remainder of the literal. If replacement requires the

continued literal to be continued on a debugging line, the program is in error.

Each word in pseudo-text-2 that is to be placed into the resultant program begins in

the same area of the resultant program as it appears in pseudo-text-2.

SERVICE LABEL statement

This statement is generated by the CICS integrated language translator (and the

separate CICS translator) to indicate control flow. It is also used after calls to

CEE3SRP when using Language Environment condition handling. For more

information about CEE3SRP, see the Language Environment Programming Guide.

Chapter 23. Compiler-directing statements 559

Format

�� SERVICE LABEL ��

The SERVICE LABEL statement can appear only in the procedure division, but not

in the declaratives section.

At the statement following the SERVICE LABEL statement, all registers that might

no longer be valid are reloaded.

SERVICE RELOAD statement

The SERVICE RELOAD statement is syntax checked, but has no effect on the

execution of the program.

Format

�� SERVICE RELOAD identifier-1 ��

SKIP statements

The SKIP1, SKIP2, and SKIP3 statements specify blank lines that the compiler

should add when printing the source listing. SKIP statements have no effect on the

compilation of the source text itself.

Format

�� SKIP1

SKIP2

SKIP3

.
 ��

SKIP1 Specifies a single blank line to be inserted in the source listing.

SKIP2 Specifies two blank lines to be inserted in the source listing.

SKIP3 Specifies three blank lines to be inserted in the source listing.

SKIP1, SKIP2, or SKIP3 can be written anywhere in either Area A or Area B, and

can be terminated with a separator period. It must be the only statement on the

line.

The SKIP statements must be embedded in a program source. For example, in the

case of batch applications, a SKIP1, SKIP2, or SKIP3 statement must be placed

560 Enterprise COBOL for z/OS V4.1 Language Reference

between the CBL (PROCESS) statement and the end of the program or class (or the

END CLASS marker or END PROGRAM marker, if specified).

TITLE statement

The TITLE statement specifies a title to be printed at the top of each page of the

source listing produced during compilation. If no TITLE statement is found, a title

containing the identification of the compiler and the current release level is

generated. The title is left-justified on the title line.

Format

�� TITLE literal

.
 ��

literal Must be an alphanumeric literal, DBCS literal, or national literal and can

be followed by a separator period.

 Must not be a figurative constant.

In addition to the default or chosen title, the right side of the title line contains the

following:

v For programs, the name of the program from the PROGRAM-ID paragraph for

the outermost program. (This space is blank on pages preceding the

PROGRAM-ID paragraph for the outermost program.)

v For classes, the name of the class from the CLASS-ID paragraph.

v Current page number.

v Date and time of compilation.

The TITLE statement:

v Forces a new page immediately, if the SOURCE compiler option is in effect

v Is not itself printed on the source listing

v Has no other effect on compilation

v Has no effect on program execution

v Cannot be continued on another line

v Can appear anywhere in any of the divisions

A title line is produced for each page in the listing produced by the LIST option.

This title line uses the last TITLE statement found in the source statements or the

default.

The word TITLE can begin in either Area A or Area B.

The TITLE statement must be embedded in a class or program source. For

example, in the case of batch applications, the TITLE statement must be placed

between the CBL (PROCESS) statement and the end of the class or program (or the

END CLASS marker or END PROGRAM marker, if specified).

No other statement can appear on the same line as the TITLE statement.

Chapter 23. Compiler-directing statements 561

USE statement

The formats for the USE statement are:

v EXCEPTION/ERROR declarative

v LABEL declarative

v DEBUGGING declarative

For general information about declaratives, see “Declaratives” on page 259.

EXCEPTION/ERROR declarative

The EXCEPTION/ERROR declarative specifies procedures for input/output

exception or error handling that are to be executed in addition to the standard

system procedures.

The words EXCEPTION and ERROR are synonymous and can be used

interchangeably.

Format 1: USE statement for EXCEPTION/ERROR declarative

�� USE

GLOBAL
 AFTER

STANDARD
 EXCEPTION

ERROR
 PROCEDURE

ON
 �

�

�

file-name-1

INPUT

OUTPUT

I-O

EXTEND

��

file-name-1

Valid for all files. When this option is specified, the procedure is executed

only for the files named. No file-name can refer to a sort or merge file. For

any given file, only one EXCEPTION/ERROR procedure can be specified;

thus, file-name specification must not cause simultaneous requests for

execution of more than one EXCEPTION/ERROR procedure.

 A USE AFTER EXCEPTION/ERROR declarative statement specifying the

name of a file takes precedence over a declarative statement specifying the

open mode of the file.

INPUT

Valid for all files. When this option is specified, the procedure is executed

for all files opened in INPUT mode or in the process of being opened in

INPUT mode that get an error.

562 Enterprise COBOL for z/OS V4.1 Language Reference

OUTPUT

Valid for all files. When this option is specified, the procedure is executed

for all files opened in OUTPUT mode or in the process of being opened in

OUTPUT mode that get an error.

I-O Valid for all direct-access files. When this option is specified, the procedure

is executed for all files opened in I-O mode or in the process of being

opened in I-O mode that get an error.

EXTEND

Valid for all files. When this option is specified, the procedure is executed

for all files opened in EXTEND mode or in the process of being opened in

EXTEND mode that get an error.

The EXCEPTION/ERROR procedure is executed:

v Either after completing the system-defined input/output error routine, or

v Upon recognition of an INVALID KEY or AT END condition when an INVALID

KEY or AT END phrase has not been specified in the input/output statement, or

v Upon recognition of an IBM-defined condition that causes file status key 1 to be

set to 9. (See “File status key” on page 300.)

After execution of the EXCEPTION/ERROR procedure, control is returned to the

invoking routine in the input/output control system. If the input/output status

value does not indicate a critical input/output error, the input/output control

system returns control to the next executable statement following the input/output

statement whose execution caused the exception.

An applicable EXCEPTION/ERROR procedure is activated when an input/output

error occurs during execution of a READ, WRITE, REWRITE, START, OPEN,

CLOSE, or DELETE statement. To determine what conditions are errors, see

“Common processing facilities” on page 300.

The following rules apply to declarative procedures:

v A declarative procedure can be performed from a nondeclarative procedure.

v A nondeclarative procedure can be performed from a declarative procedure.

v A declarative procedure can be referenced in a GO TO statement in a declarative

procedure.

v A nondeclarative procedure can be referenced in a GO TO statement in a

declarative procedure.

You can include a statement that executes a previously called USE procedure that

is still in control. However, to avoid an infinite loop, you must be sure that there is

an eventual exit at the bottom.

You cannot use a GOBACK statement or a STOP RUN statement when an

EXCEPTION/ERROR declarative is active due to a QSAM abend for a READ,

WRITE, or REWRITE statement. You cannot use an EXIT PROGRAM statement in

a non-nested subprogram when an EXCEPTION/ERROR declarative is active due

to a QSAM abend for a READ, WRITE, or REWRITE statement. When a QSAM

abend occurs during a READ, WRITE, or REWRITE statement, the file status code

can be ″34″ or ″90″.

You cannot use a GOBACK statement or an EXIT PROGRAM statement while a

declarative is active in a nested program. You cannot use a GOBACK statement or

an EXIT METHOD statement while a declarative is active in a method.

Chapter 23. Compiler-directing statements 563

|
|
|
|
|
|
|

|
|
|

EXCEPTION/ERROR procedures can be used to check the file status key values

whenever an input/output error occurs.

Precedence rules for nested programs

Special precedence rules are followed when programs are contained within other

programs. In applying these rules, only the first qualifying declarative is selected

for execution. The order of precedence for selecting a declarative is:

1. A file-specific declarative (that is, a declarative of the form USE AFTER ERROR

ON file-name-1) within the program that contains the statement that caused the

qualifying condition.

2. A mode-specific declarative (that is, a declarative of the form USE AFTER

ERROR ON INPUT) within the program that contains the statement that

caused the qualifying condition.

3. A file-specific declarative that specifies the GLOBAL phrase and is within the

program directly containing the program that was last examined for a

qualifying declarative.

4. A mode-specific declarative that specifies the GLOBAL phrase and is within the

program directly containing the program that was last examined for a

qualifying condition.

Steps 3 and 4 are repeated until the last examined program is the outermost

program, or until a qualifying declarative has been found.

LABEL declarative

The LABEL declarative provides user label-handling procedures.

Format 2: USE statement for LABEL declarative

�� USE

GLOBAL
 AFTER

STANDARD

BEGINNING

ENDING

FILE

REEL

UNIT

 �

�

LABEL PROCEDURE

ON

�

file-name-1

INPUT

OUTPUT

I-O

EXTEND

��

AFTER

User labels follow standard file labels, and are to be processed.

 The labels must be listed as data names in the LABEL RECORDS clause in

the file description entry for the file, and must be described as level-01

data items subordinate to the file entry.

564 Enterprise COBOL for z/OS V4.1 Language Reference

If neither BEGINNING nor ENDING is specified, the designated

procedures are executed for both beginning and ending labels.

If FILE, REEL, or UNIT is not included, the designated procedures are

executed both for REEL or UNIT, whichever is appropriate, and for FILE

labels.

FILE The designated procedures are executed at beginning-of-file (on the first

volume) and/or at end-of-file (on the last volume) only.

REEL The designated procedures are executed at beginning-of-volume (on each

volume except the first) and/or at end-of-volume (on each volume except

the last).

 The REEL option is not applicable to direct-access files.

UNIT The designated procedures are executed at beginning-of-volume (on each

volume except the first) and/or at end-of-volume (on each volume except

the last).

 The UNIT phrase is not applicable to files in the random access mode,

because only FILE labels are processed in this mode.

file-name-1

Can appear in different specific arrangements of the format. However,

appearance of a file-name in a USE statement must not cause the

simultaneous request for execution of more than one USE declarative.

 file-name-1 must not represent a sort file.

If the file-name-1 option is used, the file description entry for file-name

must not specify a LABEL RECORDS ARE OMITTED clause.

When the INPUT, OUTPUT, or I-O options are specified, user label procedures are

executed as follows:

v When INPUT is specified, only for files opened as input

v When OUTPUT is specified, only for files opened as output

v When I-O is specified, only for files opened as I-O

v When EXTEND is specified, only for files opened EXTEND

If the INPUT, OUTPUT, or I-O phrase is specified, and an input, output, or I-O file,

respectively, is described with a LABEL RECORDS ARE OMITTED clause, the USE

procedures do not apply. The standard system procedures are performed:

v Before the beginning or ending input label check procedure is executed

v Before the beginning or ending output label is created

v After the beginning or ending output label is created, but before it is written on

tape

v Before the beginning or ending input-output label check procedure is executed

Within the procedures of a USE declarative in which the USE sentence specifies an

option other than file-name, references to common label items need not be qualified

by a file-name. A common label item is an elementary data item that appears in

every label record of the program, but does not appear in any data records of this

program. Such items must have identical descriptions and positions within each

label record.

Within a declarative section there must be no reference to any nondeclarative

procedure. Conversely, in the nondeclarative portion there must be no reference to

Chapter 23. Compiler-directing statements 565

procedure-names that appear in the declarative section, except that the PERFORM

statement can refer to a USE procedure, or to procedures associated with it.

The exit from a declarative section is inserted by the compiler following the last

statement in the section. All logical processing paths within the section must lead

to the exit point.

There is one exception: A special exit can be specified by the statement GO TO

MORE-LABELS. When an exit is made from a declarative section by means of this

statement, the system will do one of the following:

v Write the current beginning or ending label and then reenter the USE section at

its beginning for further creating of labels. After creating the last label, the user

must exit by executing the last statement of the section.

v Read an additional beginning or ending label, and then reenter the USE section

at its beginning for further checking of labels. When processing user labels, the

section will be reentered only if there is another user label to check. Hence, there

need not be a program path that flows through the last statement in the section.

If a GO TO MORE-LABELS statement is not executed for a user label, the

declarative section is not reentered to check or create any immediately succeeding

user labels.

DEBUGGING declarative

Debugging sections are permitted only in the outermost program; they are not

valid in nested programs. Debugging sections are never triggered by procedures

contained in nested programs.

Debugging sections are not permitted in:

v A method

v A program defined with the recursive attribute

v A program compiled with the THREAD compiler option

The WITH DEBUGGING MODE clause of the SOURCE-COMPUTER paragraph

activates all debugging sections and lines that have been compiled into the object

code. See Appendix D, “Source language debugging,” on page 593 for additional

details.

When the debugging mode is suppressed by not specifying the WITH

DEBUGGING MODE clause, all USE FOR DEBUGGING declarative procedures

and all debugging lines are inhibited.

Automatic execution of a debugging section is not caused by a statement that

appears in a debugging section.

566 Enterprise COBOL for z/OS V4.1 Language Reference

Format 3: USE statement for DEBUGGING declarative

��

USE

FOR

DEBUGGING

ON

�

procedure-name-1

ALL PROCEDURES

��

USE FOR DEBUGGING

All debugging statements must be written together in a section

immediately after the DECLARATIVES header.

 Except for the USE FOR DEBUGGING sentence itself, within the

debugging procedure there must be no reference to any nondeclarative

procedures.

procedure-name-1

Must not be defined in a debugging session.

 Table 57 shows, for each valid option, the points during execution when

the USE FOR DEBUGGING procedures are executed.

Any given procedure-name can appear in only one USE FOR

DEBUGGING sentence, and only once in that sentence. All procedures

must appear in the outermost program.

ALL PROCEDURES

procedure-name-1 must not be specified in any USE FOR DEBUGGING

sentences. The ALL PROCEDURES phrase can be specified only once in a

program. Only the procedures contained in the outermost program will

trigger execution of the debugging section.

 Table 57. Execution of debugging declaratives

USE FOR

DEBUGGING

operand

Upon execution of the following, the USE FOR DEBUGGING

procedures are executed immediately

procedure-name-1 Before each execution of the named procedure

After the execution of an ALTER statement referring to the named

procedure

ALL PROCEDURES Before each execution of each nondebugging procedure in the

outermost program

After the execution of each ALTER statement in the outermost

program (except ALTER statements in declarative procedures)

Chapter 23. Compiler-directing statements 567

568 Enterprise COBOL for z/OS V4.1 Language Reference

Appendix A. IBM extensions

IBM extensions are features, syntax rules, or behavior defined by IBM rather than

by the COBOL standards listed in Appendix G, “Industry specifications,” on page

613.

Table 58 lists IBM extensions with a brief description. Standard behavior is shown

in brackets, [], when the standard behavior is not obvious. Extensions are

described in more detail throughout this document, but they are not further

identified as extensions.

Many IBM extensions are distinguished from standard language by their syntax.

For others, you use compiler options to choose between standard and extension

behavior. Generally, the related compiler options are noted in the detailed rules.

You can find information about compiler options in the Enterprise COBOL

Programming Guide.

If an item is listed as an extension, all related rules are also extensions. For

example, USAGE DISPLAY-1 for DBCS characters is listed as an extension; its

many uses in statements and clauses are also extensions, but are not listed

separately.

 Table 58. IBM extension language elements

Language area Extension elements

COBOL words User-defined words written in DBCS characters

Computer-name written in DBCS characters

Class-names (for object orientation)

Method-names

National character support

(Unicode support)

Support for UTF-16 with USAGE NATIONAL

Allowance of UTF-8 with USAGE DISPLAY

Usage NATIONAL for data categories national, national-edited, numeric,

numeric-edited, external decimal, and external floating-point

GROUP-USAGE clause with the NATIONAL phrase

National literals (basic and hexadecimal)

National character value for figurative constants SPACE, ZERO, QUOTE,

HIGH-VALUES, LOW-VALUES, ALL literal

Intrinsic functions for data conversion:

v DISPLAY-OF

v NATIONAL-OF

Extended case mapping with UPPER-CASE and LOWER-CASE functions

© Copyright IBM Corp. 1991, 2007 569

Table 58. IBM extension language elements (continued)

Language area Extension elements

Implicit items Special object references:

v SELF

v SUPER

Special registers:

v ADDRESS OF

v JNIENVPTR

v LENGTH OF

v RETURN-CODE

v SHIFT-IN

v SHIFT-OUT

v SORT-CONTROL

v SORT-CORE-SIZE

v SORT-FILE-SIZE

v SORT-MESSAGE

v SORT-MODE-SIZE

v SORT-RETURN

v TALLY

v WHEN-COMPILED

v XML-CODE

v XML-EVENT

v XML-NAMESPACE

v XML-NAMESPACE-PREFIX

v XML-NNAMESPACE

v XML-NNAMESPACE-PREFIX

v XML-NTEXT

v XML-TEXT

Figurative constants Selection of apostrophe (’) as the value of the figurative constant QUOTE

NULL and NULLS for pointers and object references

570 Enterprise COBOL for z/OS V4.1 Language Reference

|

|

|

|

Table 58. IBM extension language elements (continued)

Language area Extension elements

Literals Use of apostrophe (’) as an alternative to the quotation mark (") in opening and

closing delimiters

Mixed single-byte and double-byte characters in alphanumeric literals (mixed literals)

Hexadecimal notation for alphanumeric literals, defined by opening delimiters X" and

X’

Null-terminated alphanumeric literals, defined by opening delimiters Z" and Z’

DBCS literals, defined by opening delimiters N", N’, G", and G’. N" and N’ are defined

as DBCS when the NSYMBOL(DBCS) compiler option is in effect.

Consecutive alphanumeric literals (coding two consecutive alphanumeric literals by

ending the first literal in column 72 of a continued line and starting the next literal

with a single quotation mark in the continuation line)

National literals N", N’, NX", NX’ for storing literal content as national characters. N"

and N’ are defined as national when the NSYMBOL(NATIONAL) compiler option is

in effect.

19- to 31-digit fixed-point numeric literals. [Standard COBOL 85 specifies a maximum

of 18 digits.]

Floating-point numeric literals

Comments Comment lines before the identification division header

Comment lines and comment entries containing DBCS characters

End markers The following end markers:

v END CLASS

v END FACTORY

v END METHOD

v END OBJECT

Indexing and subscripting Referencing a table with an index-name defined for a different table

Specifying a positive signed integer literal following the operator + or - in relative

subscripting

Millennium language

extensions and date fields.

DATE FORMAT clause

Windowed date fields, expanded date fields, year-last date fields, compatible date

fields, date formats, and century window

The following intrinsic functions:

v DATEVAL

v UNDATE

v YEARWINDOW

v DATE-TO-YYYYMMDD

v DAY-TO-YYYYDDD

v YEAR-TO-YYYY

Appendix A. IBM extensions 571

Table 58. IBM extension language elements (continued)

Language area Extension elements

Identification division for

programs

Abbreviation ID for IDENTIFICATION

RECURSIVE clause

An optional separator period following PROGRAM-ID, AUTHOR, INSTALLATION,

DATE-WRITTEN, and SECURITY paragraph headers. [Standard COBOL 85 requires a

period following each of these paragraph headers.]

An optional separator period following program-name in the PROGRAM-ID

paragraph. [Standard COBOL 85 requires a period following program-name.]

An alphanumeric literal for program-name in the PROGRAM-ID paragraph;

characters $, #, and @ in the name of the outermost program; program-name up to

160 characters in length. [Standard COBOL 85 requires that program-name be

specified as a user-defined word.]

End markers Program-name in a literal. [Standard COBOL 85 requires that program-name be

specified as a user-defined word.]

Object-oriented structure In a class definition:

v CLASS-ID paragraph

v INHERITS clause

v END CLASS marker

In a method definition:

v METHOD-ID paragraph

v EXIT METHOD statement

v END METHOD marker

Configuration section Repository paragraph

SPECIAL-NAMES

paragraph

The optional order of clauses. [Standard COBOL 85 requires that the clauses be coded

in the order presented in the syntax diagram.]

Optionality of a period after the last clause when no clauses are coded. [Standard

COBOL 85 requires a period, even when no clauses are coded.]

Multiple CURRENCY SIGN clauses. [Standard COBOL 85 allows a single

CURRENCY SIGN clause.]

WITH PICTURE SYMBOL phrase in the CURRENCY SIGN clause

Multiple-character and mixed-case currency signs in the CURRENCY SIGN clause

(when the WITH PICTURE SYMBOL phrase is specified). [Standard COBOL 85 allows

only one character, and it is both the currency sign and the currency picture symbol.

The standard currency sign must not be:

v The same character as any standard picture symbol

v A digit 0-9

v One of the special characters * + - , ; () " = /

v A space]

Use of lower-case alphabetic characters as a currency sign. [Standard COBOL 85

allows only uppercase characters.]

572 Enterprise COBOL for z/OS V4.1 Language Reference

Table 58. IBM extension language elements (continued)

Language area Extension elements

INPUT-OUTPUT SECTION,

FILE-CONTROL paragraph

Optionality of ″FILE-CONTROL.″ when the INPUT-OUTPUT SECTION is specified,

no file-control-paragraph is specified, and there are no files defined in the compilation

unit. [Standard COBOL 85 requires that ″FILE-CONTROL.″ be coded if

″INPUT-OUTPUT SECTION.″ is coded.]

Optionality of the file-control-paragraph when the ″FILE CONTROL.″ syntax is

specified and there are no files defined in the compilation unit. [Standard COBOL 85

requires that a file-control-paragraph be coded if ″INPUT-OUTPUT SECTION.″ is

coded.]

PASSWORD clause

The second data-name in the FILE STATUS clause

Optionality of RECORD in the ALTERNATE RECORD KEY clause. [Standard COBOL

85 requires the word RECORD.]

A numeric, numeric-edited, alphanumeric-edited, alphabetic, internal floating-point,

external floating-point, national, national-edited, or DBCS primary or alternate record

key data item. [Standard COBOL 85 requires that the key be alphanumeric.]

A primary or alternate record key defined outside the minimum record size for

indexed files containing variable-length records. [Standard COBOL 85 requires that

the primary and alternate record keys be within the minimum record size.]

A numeric data item of usage DISPLAY or NATIONAL in the FILE STATUS clause.

[Standard COBOL 85 requires an alphanumeric file status data item.]

The ORGANIZATION IS LINE SEQUENTIAL clause and line-sequential file control

format

National literal in the PADDING CHARACTER clause

INPUT-OUTPUT SECTION,

I-O-CONTROL paragraph

APPLY WRITE-ONLY clause

Specifying only one file-name in the SAME clause in the sequential, indexed, and

sort-merge formats of the I-O-control entry. [Standard COBOL 85 requires at least two

file-names.]

Optionality of the keyword ON in the RERUN clause. [Standard COBOL 85 requires

that ON be coded.]

The line-sequential format I-O-control entry

The RERUN clause in the sort-merge I-O-control entry

DATA DIVISION LOCAL-STORAGE SECTION

The GLOBAL clause in the linkage section

Specifying level numbers that are lower than other level numbers at the same

hierarchical level in a data description entry. [Standard COBOL 85 requires that all

elementary or group items at the same level in the hierarchy be assigned identical

level numbers.]

Data categories internal floating-point, external floating-point, DBCS, national, and

national-edited.

Data category numeric with usage NATIONAL.

Data category numeric-edited with usage NATIONAL.

Appendix A. IBM extensions 573

Table 58. IBM extension language elements (continued)

Language area Extension elements

File section data-name in the LABEL RECORDS clause, for specifying user labels

RECORDING MODE clause

Line-sequential format file description entry

Sort/merge file description

entry

The following clauses:

v BLOCK CONTAINS

v LABEL RECORDS

v VALUE OF

v LINAGE

v CODE-SET

v WITH FOOTING

v LINES AT

BLOCK CONTAINS clause BLOCK CONTAINS 0 for QSAM files. [Standard COBOL 85 requires that at least 1

CHARACTER or RECORD be specified in the BLOCK CONTAINS clause.]

VALUE OF clause The lack of VALUE clause effect on execution when specified under an SD

DATA RECORDS clause Optionality of an 01 record description entry for a specified data-name. [Standard

COBOL 85 requires that an 01 record with the same data-name be specified.]

LINAGE clause Specifying LINAGE for files opened in EXTEND mode

Data Description Entry DATE-FORMAT clause

BLANK WHEN ZERO

clause

Alternative spellings ZEROS and ZEROES for ZERO

GLOBAL clause Specifying GLOBAL in the linkage section

INDEXED BY phrase Nonunique unreferenced index names

OCCURS clause Omission of ″integer-1 TO″ for variable-length tables

Complex OCCURS DEPENDING ON. [Standard COBOL 85 requires that an entry

containing OCCURS DEPENDING ON be followed only by subordinate entries, and

that no entry containing OCCURS DEPENDING ON be subordinate to an entry

containing OCCURS DEPENDING ON.]

Implicit qualification of a key specified without qualifiers when the key name is not

unique

Reference to a table through indexing when no INDEXED BY phrase is specified

Keys of usages COMPUTATIONAL-1, COMPUTATIONAL-2, COMPUTATIONAL-3,

COMPUTATIONAL-4, and COMPUTATIONAL-5 in the ASCENDING/DESCENDING

KEY phrase

Acceptance of nonunique index-names that are not referenced

574 Enterprise COBOL for z/OS V4.1 Language Reference

Table 58. IBM extension language elements (continued)

Language area Extension elements

PICTURE clause A picture character-string containing 31 to 50 characters. [Standard COBOL 85 allows

a maximum of 30 characters.]

Picture symbols G and N

Picture symbol E and the external floating-point picture format

Coding a trailing comma insertion character or trailing period insertion character

immediately followed by a separator comma or separator semicolon in a PICTURE

clause that is not the last clause of a data description entry. [Standard COBOL 85

requires that a PICTURE clause containing a picture ending with a comma or period

be the last clause in the entry and that it be followed immediately by a separator

period.]

Selecting a currency sign and currency symbol with the CURRENCY compiler option

Case-sensitive currency symbols

The maximum of 31 digits for numeric items of usages DISPLAY and

PACKED-DECIMAL and for numeric-edited items of USAGE DISPLAY

The effect of the TRUNC compiler option on the value of data items described with a

usage of BINARY, COMPUTATIONAL, or COMPUTATIONAL-4

REDEFINES clause Specifying REDEFINES of a redefined data item

At a subordinate level, specifying a redefining data item that has a size greater than

the size of the redefined data item

SYNCHRONIZED clause Specifying SYNCHRONIZED for a level 01 entry

USAGE clause The following phrases:

v NATIVE

v COMP-1 and COMPUTATIONAL-1

v COMP-2 and COMPUTATIONAL-2

v COMP-3 and COMPUTATIONAL-3

v COMP-4 and COMPUTATIONAL-4

v COMP-5 and COMPUTATIONAL-5

v DISPLAY-1

v OBJECT REFERENCE

v NATIONAL

v POINTER

v PROCEDURE-POINTER

v FUNCTION-POINTER

Use of the SYNCHRONIZED clause for items of usage INDEX

VALUE clause for

condition-name entries

A VALUE clause in file and linkage sections in other than condition-name entries

A VALUE clause for a condition-name entry on a group that has usages other than

DISPLAY

VALUE IS NULL and VALUE IS NULLS

Appendix A. IBM extensions 575

Table 58. IBM extension language elements (continued)

Language area Extension elements

Procedure division Omission of a section-name

Omission of a paragraph-name when a section-name is omitted

A method, factory, or object procedure division

Referencing data items in the linkage section without a USING phrase in the

procedure division header (when those data-names are the operand of an ADDRESS

OF phrase or ADDRESS OF special register)

The following statements:

v ENTRY

v EXIT METHOD

v GOBACK

v INVOKE

v XML PARSE

v XML GENERATE

Procedure division header The BY VALUE phrase

The RETURNING phrase

Specifying a data item in the USING phrase when the data item has a REDEFINES

clause in its description

Specifying multiple instances of a given data item in the USING phrase

The formats for method, factory, and object definitions

Declarative Procedures The LABEL declarative

Performing a nondeclarative procedure from a declarative procedure

Referencing a declarative procedure or nondeclarative procedure in a GO TO

statement from a declarative procedure. [Standard COBOL 85 specifies that a

declarative procedure must not reference a nondeclarative procedure. A reference to a

declarative procedure from either another declarative procedure or a nondeclarative

procedure is allowed only with a PERFORM statement.]

Executing an active declarative

576 Enterprise COBOL for z/OS V4.1 Language Reference

Table 58. IBM extension language elements (continued)

Language area Extension elements

Procedures Specifying priority-number as a positive signed numeric literal. [Standard COBOL 85

requires an unsigned integer.]

Omitting the section-header after the declaratives or when there are no declaratives.

[Standard COBOL 85 requires a section-header following the ″DECLARATIVES.″

syntax and following the ″END DECLARATIVES.″ syntax.]

Omitting an initial paragraph-name if there are no declaratives. [Standard COBOL 85

requires a paragraph-name in the following circumstances:

v After the USE statement if there are statements in the declarative procedure

v Following a section header outside declarative procedures

v Before any procedural statement if there are no declaratives

and Standard COBOL 85 requires that procedural statements be within a paragraph.]

Specifying paragraphs that are not contained within a section, even if some

paragraphs are so contained. [Standard COBOL 85 requires that paragraphs be within

a section except when there are no declaratives. Standard COBOL 85 requires that

either all paragraphs be in sections or that none be.]

Conditional expressions DBCS and KANJI class conditions

Specifying data items of usage COMPUTATIONAL-3 or usage PACKED-DECIMAL in

a NUMERIC class test

Relation condition Enclosing an alphanumeric, DBCS, or national literal in parentheses

The data-pointer format, the procedure-pointer and function-pointer format, and the

object-reference format

Comparison of an index-name with an arithmetic expression

Use of parentheses within abbreviated combined relation conditions

CORRESPONDING phrase Specifying an identifier that is subordinate to a filler item

INVALID KEY phrase Omission of both the INVALID KEY phrase and an applicable EXCEPTION/ERROR

procedure. [Standard COBOL 85 requires at least one of them.]

ACCEPT statement The environment-name operand of the FROM phrase

The DATE YYYYMMDD phrase

The DAY YYYYDDD phrase

ADD statement A composite of operands greater than 18 digits

Appendix A. IBM extensions 577

Table 58. IBM extension language elements (continued)

Language area Extension elements

CALL statement The procedure-pointer and function-pointer operands for identifying the program to

be called

The following phrases:

v ADDRESS OF

v LENGTH OF

v OMITTED

v BY VALUE

v RETURNING

Specifying a file-name as an argument

Specifying the called program-name in an alphabetic or zoned-decimal data item

Specifying an argument defined as a subordinate group item. [Standard COBOL 85

requires that arguments be an elementary data item or a group item defined with

level 01.]

CANCEL statement Specifying the name of the program to be canceled in an alphabetic or zoned-decimal

data item

The effect of the PGMNAME compiler option on the name of the program to be

canceled

CLOSE statement WITH NO REWIND phrase

The line-sequential format

COMPUTE statement The use of the word EQUAL in place of the equal sign (=)

DISPLAY statement The environment-name operand of the UPON phrase

Displaying signed numeric literals and noninteger numeric literals

DIVIDE statement A composite of operands greater than 18 digits

EXIT statement Specifying the EXIT statement in a sentence that has statements before or after the

EXIT statement or in a paragraph that has other sentences. [Standard COBOL 85

requires that the EXIT statement be specified in a sentence by itself and that the

sentence be the only sentence in the paragraph.]

EXIT PROGRAM statement Specifying EXIT PROGRAM before the last statement in a sequence of imperative

statements. [Standard COBOL 85 requires that the EXIT PROGRAM statement be

specified as the last statement in a sequence of imperative statements.]

GO TO statement Coding the unconditional format before the last statement in a sequence of imperative

statements. [Standard COBOL 85 requires that an unconditional GO TO be coded:

v Only in a single-statement paragraph if no procedure-name is specified

v Otherwise, as the last statement of a sentence.]

The MORE-LABELS format

IF statement The use of END-IF with the NEXT SENTENCE phrase. [Standard COBOL 85

disallows use of END-IF with NEXT SENTENCE.]

INITIALIZE statement DBCS, EGCS, NATIONAL, and NATIONAL-EDITED in the REPLACING phrase

Initializing a data item that contains the DEPENDING phrase of the OCCURS clause

MERGE statement Specifying file-names in a SAME clause

MULTIPLY statement A composite of operands greater than 18 digits

578 Enterprise COBOL for z/OS V4.1 Language Reference

Table 58. IBM extension language elements (continued)

Language area Extension elements

OPEN statement The line-sequential format

Specifying the EXTEND phrase for files that have a LINAGE clause

PERFORM statement An empty in-line PERFORM statement

A common exit for two or more active PERFORMS

READ statement Omission of both the AT END phrase and an applicable declarative procedure

Omission of both the INVALID KEY phrase and an applicable declarative procedure

Read into an item that is neither an alphanumeric group item nor an elementary

alphanumeric item

RETURN statement Return into an item that is neither an alphanumeric group item nor an elementary

alphanumeric item

REWRITE statement Omission of both the INVALID KEY phrase and an applicable declarative procedure

Rewriting a record with a different number of character positions than the number of

character positions in the record being rewritten

SEARCH statement Specifying END SEARCH with NEXT SENTENCE

Omission of both the NEXT SENTENCE phrase and imperative statements in the

binary search format

SET statement The data-pointer format

The procedure-pointer and function-pointer format

The object reference format

SORT statement Specifying GIVING file-names in the SAME clause

START statement Omission of both the INVALID KEY phrase and an applicable exception procedure

Use of a key of a category other than alphanumeric

STOP statement Specifying a noninteger fixed-point literal or a signed numeric integer or noninteger

fixed-point literal

Coding STOP as other than the last statement in a sentence

STRING statement Reference modification of the data item specified in the INTO phrase

SUBTRACT statement A composite of operands greater than 18 digits

UNSTRING statement Reference modification of the sending field

WRITE statement INVALID KEY and NOT ON INVALID KEY phrases

The line-sequential format

For a relative file, writing a different number of character positions than the number

of character positions in the record being replaced

Specifying both the ADVANCING PAGE and END-OF-PAGE phrases in a single

WRITE statement

The effect of the ADV compiler option on the length of the record written to a file

Using WRITE ADVANCING with stacker selection for a card punch file

For a relative or indexed file, omission of both the INVALID KEY phrase and an

applicable exception procedure

Appendix A. IBM extensions 579

Table 58. IBM extension language elements (continued)

Language area Extension elements

Intrinsic functions The effect of the DATEPROC and INTDATE compiler options on the

DATE-OF-INTEGER and DAY-OF-INTEGER functions

The following functions:

v DATE-TO-YYYYMMDD

v DATEVAL

v DAY-TO-YYYYDDD

v DISPLAY-OF

v NATIONAL-OF

v UNDATE

v YEAR-TO-YYYY

v YEARWINDOW

FACTORIAL function The effect of the ARITH(EXTEND) compiler option on the range of values permitted

in the argument

INTEGER-OF-DATE

function

The effect of the INTDATE compiler option on the starting date for the function

INTEGER-OF-DAY function The effect of the INTDATE compiler option on the starting date for the function

LENGTH function Specifying a pointer, the ADDRESS OF special register, or the LENGTH OF special

register as an argument to the function

NUMVAL function The effect of the ARITH(EXTEND) compiler option on the maximum number of digits

allowed in the argument

NUMVAL-C function The effect of the ARITH(EXTEND) compiler option on the maximum number of digits

allowed in the argument

Compiler-directing

statements

The following statements:

v BASIS

v CBL(PROCESS)

v *CONTROL and *CBL

v DELETE

v EJECT

v INSERT

v READY or RESET TRACE

v SERVICE LABEL

v SERVICE RELOAD

v SKIP1, SKIP2, and SKIP3

v TITLE

COPY statement The optionality of the syntax ″OF library-name″ for specifying a text-name qualifier

Literals for specifying text-name and library-name

SUPPRESS phrase

Nested COPY statements

Hyphen as the first or last character in the word form of REPLACING operands

The use of any character (other than a COBOL separator) in the word form of

REPLACING operands. [Standard COBOL 85 accepts only the characters used in

formation of user-defined words.]

USE statement The LABEL declarative format

580 Enterprise COBOL for z/OS V4.1 Language Reference

Appendix B. Compiler limits

The following table lists the compiler limits for programs and class definitions.

 Table 59. Compiler limits

Language element Compiler limit

Maximum length of user-defined words (for example,

data-name, file-name, class-name)

30 bytes

Size of program 999,999 lines

Number of literals 4,194,303(Note 1)

Total length of literals 4,194,303 bytes(Note 1)

Reserved word table entries 1536

COPY REPLACING . . . BY . . . (items per COPY

statement)

No limit

Number of COPY libraries No limit

Block size of COPY library 32,767 bytes

Identification division

Environment division

Configuration section

Special-names paragraph

mnemonic-name IS 18

UPSI-n . . . (switches) 0-7

alphabet-name IS . . . No limit

Literal THRU . . . or ALSO . . . 256

Input-Output section

File-control paragraph

SELECT file-name . . . A maximum of 65,535 file names can be assigned

external names

ASSIGN system-name . . . No limit

ALTERNATE RECORD KEY data-name . . . 253

RECORD KEY length No limit(Note 3)

RESERVE integer (buffers) 255(Note 4)

I-O-control paragraph

RERUN ON system-name . . . 32,767

RERUN integer RECORDS 16,777,215

SAME RECORD AREA 255

SAME RECORD AREA FOR file-name . . . 255

SAME SORT/MERGE AREA No limit(Note 2)

MULTIPLE FILE file-name . . . No limit(Note 2)

Data division

77 data item size 134,217,727 bytes

01-49 data item size 134,217,727 bytes

© Copyright IBM Corp. 1991, 2007 581

Table 59. Compiler limits (continued)

Language element Compiler limit

Total 01 + 77 (data items) No limit

88 condition-names . . . No limit

VALUE literal . . . No limit

66 RENAMES . . . No limit

PICTURE clause, number of characters in character-string 50

PICTURE clause, numeric item digit positions If the ARITH(COMPAT) compiler option is in effect: 18

If the ARITH(EXTEND) compiler option is in effect: 31

PICTURE clause, numeric-edited character positions 249

Picture symbol replication () 134,217,727

Picture symbol replication (editing) 32,767

Picture symbol replication (), class DBCS items 67,108,863

Picture symbol replication (), class national items 67,108,863

Group item size: file section 1,048,575 bytes

Elementary item size 134,217,727 bytes

VALUE initialization (total length of all value literals) 134,217,727 bytes

OCCURS integer 134,217,727

Total number of ODOs 4,194,303(Note 1)

Table size 134,217,727 bytes

Table element size 134,217,727 bytes

ASCENDING or DESCENDING KEY . . . (per OCCURS

clause)

12 KEYS

Total length of keys (per OCCURS clause) 256 bytes

INDEXED BY . . . (index names per OCCURS clause) 12

Total number of indexes (index names) per class or

program

65,535

Size of relative index 32,765

File section

FD file-name . . . 65,535

LABEL data-name . . . (if no optional clauses) 255

Label record length 80 bytes

DATA RECORD data-name . . . No limit(Note 2)

BLOCK CONTAINS integer 2,147,483,647(Note 8)

RECORD CONTAINS integer 1,048,575(Note 5)

Item length 1,048,575 bytes(Note 5)

LINAGE clause values 99,999,999

SD file-name . . . 65,535

DATA RECORD data-name . . . No limit(Note 2)

Sort record length 32,751 bytes

Linkage section

Total size 134,213,631 bytes

582 Enterprise COBOL for z/OS V4.1 Language Reference

Table 59. Compiler limits (continued)

Language element Compiler limit

Local-storage section

Total size 134,217,727 bytes

Working-storage section

Total size of items without the external attribute 134,217,727 bytes

Total size of items with the external attribute 134,217,727 bytes

Procedure division

Procedure and constant area 4,194,303 bytes(Note 1)

Procedure division USING identifier . . . 32,767

Procedure-names 1,048,575(Note 1)

Subscripted data-names per statement 32,767

Verbs per line (TEST) 7

ACCEPT statement, record length on input device 32,760

ADD identifier . . . No limit

ALTER procedure-name-1 TO procedure-name-2 . . . 4,194,303(Note 1)

CALL . . . BY CONTENT identifier 2,147,483,647 bytes

CALL identifier or literal USING identifier or literal . . . 16,380

CALL literal . . . 4,194,303(Note 1)

Active programs in a run unit 32,767

Number of names called (DYN option) No limit

CANCEL identifier or literal . . . No limit

CLOSE file-name . . . No limit

COMPUTE identifier . . . No limit

DISPLAY identifier or literal . . . No limit

DIVIDE identifier . . . No limit

ENTRY USING identifier or literal . . . No limit

EVALUATE . . . subjects 64

EVALUATE . . . WHEN clauses 256

GO procedure-name . . . DEPENDING 255

INSPECT TALLYING and REPLACING clauses No limit

MERGE file-name ASC or DES KEY . . . No limit

Total merge key length 4,092 bytes(Note 6)

MERGE USING file-name . . . 16(Note 7)

MOVE identifier or literal TO identifier . . . No limit

MULTIPLY identifier . . . No limit

OPEN file-name . . . No limit

PERFORM 4,194,303

SEARCH . . . WHEN . . . No limit

SET index or identifier . . . TO No limit

SET index . . . UP/DOWN No limit

SORT file-name ASC or DES KEY No limit

Appendix B. Compiler limits 583

Table 59. Compiler limits (continued)

Language element Compiler limit

Total sort key length 4,092 bytes(Note 6)

SORT USING file-name . . . 16(Note 7)

STRING identifier . . . No limit

STRING DELIMITED identifier or literal . . . No limit

UNSTRING DELIMITED identifier or literal . . . 255

UNSTRING INTO identifier or literal . . . No limit

USE . . . ON file-name . . . No limit

XML PARSE statement, maximum size of identifier 134,180,862 bytes (67,090,431 national character positions)

Notes:

1. Items included in 4,194,303 byte limit for procedure plus constant area.

2. Syntax checked, but has no effect on the execution of the program; there is no limit.

3. No compiler limit, but VSAM limits it to 255 bytes.

4. QSAM.

5. Compiler limit shown, but QSAM limits it to 32,767 bytes.

6. For QSAM and VSAM, the limit is 4088 bytes if EQUALS is coded on the OPTION control statement.

7. SORT limit for QSAM and VSAM.

8. Requires large block interface (LBI) support provided by OS/390 DFSMS Version 2 Release 10.0 or later. On

OS/390 systems with earlier releases of DFSMS, the limit is 32,767 bytes. For more information about using large

block sizes, see the Enterprise COBOL Programming Guide.

584 Enterprise COBOL for z/OS V4.1 Language Reference

||

Appendix C. EBCDIC and ASCII collating sequences

The ascending collating sequences for both the single-byte EBCDIC (Extended

Binary Coded Decimal Interchange Code) and single-byte ASCII (American

National Standard Code for Information Interchange) character sets are shown in

this appendix. The collating sequence is defined by the ordinal number of

characters in the character set, relative to 1.

The symbols and associated meanings shown for the EBCDIC collating sequence

are those defined in the EBCDIC code page defined with CCSID 1140. Symbols and

meanings can vary for other EBCDIC code pages, but the collating sequence is

unchanged.

EBCDIC collating sequence

The following table presents the collating sequence for single-byte EBCDIC code

page 1140. Ellipsis (. . .) indicates omission of a range of ordinal numbers between

predecessor and successor ordinal numbers.

 Table 60. EBCDIC collating sequence

Ordinal

number Symbol Meaning

Decimal

representation

Hex

representation

. . .

65 Space 64 40

. . .

75 ¢ Cent sign 74 4A

76 . Period, decimal point 75 4B

77 < Less than sign 76 4C

78 (Left parenthesis 77 4D

79 + Plus sign 78 4E

80 | Vertical bar, logical OR 79 4F

81 & Ampersand 80 50

. . .

91 ! Exclamation point 90 5A

92 $ Dollar sign 91 5B

93 * Asterisk 92 5C

94) Right parenthesis 93 5D

95 ; Semicolon 94 5E

96 ¬ Logical NOT 95 5F

97 - Minus, hyphen 96 60

98 / Slash 97 61

. . .

108 , Comma 107 6B

109 % Percent sign 108 6C

110 _ Underscore 109 6D

© Copyright IBM Corp. 1991, 2007 585

Table 60. EBCDIC collating sequence (continued)

Ordinal

number Symbol Meaning

Decimal

representation

Hex

representation

111 > Greater than sign 110 6E

112 ? Question mark 111 6F

. . .

122 ` Grave accent 121 79

123 : Colon 122 7A

124 # Number sign, pound sign 123 7B

125 @ At sign 124 7C

126 ’ Apostrophe, prime sign 125 7D

127 = Equal sign 126 7E

128 " Quotation marks 127 7F

. . .

130 a 129 81

131 b 130 82

132 c 131 83

133 d 132 84

134 e 133 85

135 f 134 86

136 g 135 87

137 h 136 88

138 i 137 89

. . .

146 j 145 91

147 k 146 92

148 l 147 93

149 m 148 94

150 n 149 95

151 o 150 96

152 p 151 97

153 q 152 98

154 r 153 99

. . .

160 € Euro currency sign 159 9F

. . .

162 ~ Tilde 161 A1

163 s 162 A2

164 t 163 A3

165 u 164 A4

166 v 165 A5

167 w 166 A6

586 Enterprise COBOL for z/OS V4.1 Language Reference

Table 60. EBCDIC collating sequence (continued)

Ordinal

number Symbol Meaning

Decimal

representation

Hex

representation

168 x 167 A7

169 y 168 A8

170 z 169 A9

. . .

177 ^ Caret 176 B0

. . .

188 [Opening square bracket 187 BA

189] Closing square bracket 188 BB

. . .

193 { Opening brace 192 C0

194 A 193 C1

195 B 194 C2

196 C 195 C3

197 D 196 C4

198 E 197 C5

199 F 198 C6

200 G 199 C7

201 H 200 C8

202 I 201 C9

. . .

209 } Closing brace 208 D0

210 J 209 D1

211 K 210 D2

212 L 211 D3

213 M 212 D4

214 N 213 D5

215 O 214 D6

216 P 215 D7

217 Q 216 D8

218 R 217 D9

. . .

225 \ Backslash 224 E0

. . .

227 S 226 E2

228 T 227 E3

229 U 228 E4

230 V 229 E5

231 W 230 E6

232 X 231 E7

Appendix C. EBCDIC and ASCII collating sequences 587

Table 60. EBCDIC collating sequence (continued)

Ordinal

number Symbol Meaning

Decimal

representation

Hex

representation

233 Y 232 E8

234 Z 233 E9

. . .

241 0 240 F0

242 1 241 F1

243 2 242 F2

244 3 243 F3

245 4 244 F4

246 5 245 F5

247 6 246 F6

248 7 247 F7

249 8 248 F8

250 9 249 F9

. . .

US English ASCII code page

The following table presents the collating sequence for the US English ASCII code

page. The collating sequence is the order in which characters are defined in ANSI

INCITS 4, the 7-Bit American National Standard Code for Information Interchange

(7-Bit ASCII), and in the International Reference Version of ISO/IEC 646, 7-Bit Coded

Character Set for Information Interchange.

Ellipsis (. . .) indicates omission of a range of ordinal numbers between predecessor

and successor ordinal numbers.

 Table 61. ASCII collating sequence

Ordinal

number Symbol Meaning

Decimal

representation

Hex

representation

1 Null 0 0

. . .

33 Space 32 20

34 ! Exclamation point 33 21

35 " Quotation mark 34 22

36 # Number sign 35 23

37 $ Dollar sign 36 24

38 % Percent sign 37 25

39 & Ampersand 38 26

40 ’ Apostrophe, prime sign 39 27

41 (Opening parenthesis 40 28

42) Closing parenthesis 41 29

43 * Asterisk 42 2A

588 Enterprise COBOL for z/OS V4.1 Language Reference

Table 61. ASCII collating sequence (continued)

Ordinal

number Symbol Meaning

Decimal

representation

Hex

representation

44 + Plus sign 43 2B

45 , Comma 44 2C

46 - Hyphen, minus 45 2D

47 . Period, decimal point 46 2E

48 / Slash, solidus 47 2F

49 0 48 30

50 1 49 31

51 2 50 32

52 3 51 33

53 4 52 34

54 5 53 35

55 6 54 36

56 7 55 37

57 8 56 38

58 9 57 39

59 : Colon 58 3A

60 ; Semicolon 59 3B

61 < Less than sign 60 3C

62 = Equal sign 61 3D

63 > Greater than sign 62 3E

64 ? Question mark 63 3F

65 @ Commercial At sign 64 40

66 A 65 41

67 B 66 42

68 C 67 43

69 D 68 44

70 E 69 45

71 F 70 46

72 G 71 47

73 H 72 48

74 I 73 49

75 J 74 4A

76 K 75 4B

77 L 76 4C

78 M 77 4D

79 N 78 4E

80 O 79 4F

81 P 80 50

82 Q 81 51

Appendix C. EBCDIC and ASCII collating sequences 589

Table 61. ASCII collating sequence (continued)

Ordinal

number Symbol Meaning

Decimal

representation

Hex

representation

83 R 82 52

84 S 83 53

85 T 84 54

86 U 85 55

87 V 86 56

88 W 87 57

89 X 88 58

90 Y 89 59

91 Z 90 5A

92 [Opening bracket 91 5B

93 \ Backslash, reverse solidus 92 5C

94] Closing bracket 93 5D

95 ^ Caret 94 5E

96 _ Underscore 95 5F

97 ` Grave accent 96 60

98 a 97 61

99 b 98 62

100 c 99 63

101 d 100 64

102 e 101 65

103 f 102 66

104 g 103 67

105 h 104 68

106 i 105 69

107 j 106 6A

108 k 107 6B

109 l 108 6C

110 m 109 6D

111 n 110 6E

112 o 111 6F

113 p 112 70

114 q 113 71

115 r 114 72

116 s 115 73

117 t 116 74

118 u 117 75

119 v 118 76

120 w 119 77

121 x 120 78

590 Enterprise COBOL for z/OS V4.1 Language Reference

Table 61. ASCII collating sequence (continued)

Ordinal

number Symbol Meaning

Decimal

representation

Hex

representation

122 y 121 79

123 z 122 7A

124 { Opening brace 123 7B

125 | Vertical bar 124 7C

126 } Closing brace 125 7D

127 ~ Tilde 126 7E

Appendix C. EBCDIC and ASCII collating sequences 591

592 Enterprise COBOL for z/OS V4.1 Language Reference

Appendix D. Source language debugging

COBOL language elements that implement the debugging feature are:

v Debugging lines

v Debugging sections

v DEBUG-ITEM special register

v Compile-time switch (WITH DEBUGGING MODE clause)

v Object-time switch

Debugging lines

A debugging line is a statement that is compiled only when the compile-time switch

is activated. Debugging lines allow you, for example, to check the value of a data

item at certain points in a procedure.

To specify a debugging line in your program, code a D in column 7 (the indicator

area). You can include successive debugging lines, but each must have a D in

column 7. You cannot break character-strings across two lines.

All your debugging lines must be written so that the program is syntactically

correct, whether the debugging lines are compiled or treated as comments.

You can code debugging lines anywhere in your program after the

OBJECT-COMPUTER paragraph.

A debugging line that contains only spaces in Area A and in Area B is treated as a

blank line.

Debugging sections

Debugging sections are permitted only in the outermost program; they are not

valid in nested programs. Debugging sections are never triggered by procedures

contained in nested programs.

Debugging sections are declarative procedures. Declarative procedures are

described under “USE statement” on page 562. A debugging section can be called,

for example, by a PERFORM statement that causes repeated execution of a

procedure. Any associated procedure-name debugging declarative section is executed

once for each repetition.

A debugging section executes only if both the compile-time switch and the

object-time switch are activated.

The debug feature recognizes each separate occurrence of an imperative statement

within an imperative statement as the beginning of a separate statement.

You cannot refer to a procedure defined within a debugging section from a

statement outside of the debugging section.

References to the DEBUG-ITEM special register can be made only from within a

debugging declarative procedure.

© Copyright IBM Corp. 1991, 2007 593

DEBUG-ITEM special register

The DEBUG-ITEM special register provides information for a debugging

declarative procedure about the conditions that cause debugging section execution.

For details of the DEBUG-ITEM special register, see “DEBUG-ITEM” on page 17.

Activate compile-time switch

The compile-time switch activates the debugging lines and sections. To place the

compile-time switch in effect, specify WITH DEBUGGING MODE in the SOURCE

COMPUTER paragraph of the configuration section.

Format

�� SOURCE-COMPUTER.

computer-name

.

DEBUGGING MODE

WITH

 ��

WITH DEBUGGING MODE

When WITH DEBUGGING MODE is specified, all debugging sections and

debugging lines are compiled.

 When WITH DEBUGGING MODE is omitted, all debugging sections and

debugging lines are treated as comments.

Usage note: If you include a COPY statement as a debugging line, the letter ″D″

must appear on the first line of the COPY statement. The compiler treats the

copied text as the debugging line or lines. The COPY statement is executed,

regardless of whether WITH DEBUGGING MODE is specified or not.

Activate object-time switch

The object-time switch is set when the runtime option DEBUG or NODEBUG is

specified. (NODEBUG is the default supplied by IBM.)

For details on the format, see the Language Environment Programming Guide.

The USE FOR DEBUGGING declarative procedures are activated when DEBUG is

in effect and inhibited when NODEBUG is in effect.

The debugging lines (lines with ″D″ or ″d″ in column 7) are not affected by the

DEBUG or NODEBUG option; they are always active if they have been compiled.

When WITH DEBUGGING MODE is not specified in the SOURCE-COMPUTER

paragraph, the object-time switch has no effect on execution of the object program.

You do not have to recompile the source unit to activate or deactivate the

object-time switch.

594 Enterprise COBOL for z/OS V4.1 Language Reference

Appendix E. Reserved words

The following table identifies words that are reserved in Enterprise COBOL and

words that you should avoid because they might be reserved in a future release of

Enterprise COBOL.

v Words marked X under Reserved are reserved for function implemented in

Enterprise COBOL. If used as user-defined names, these words are flagged with

an S-level message.

v Words marked X under Standard only are Standard COBOL 85 reserved words

for function not implemented in Enterprise COBOL. (Some of the function is

implemented in the Report Writer Precompiler.) Use of these words as

user-defined names is flagged with an S-level message.

v Words marked X under Potential reserved words are words that might be reserved

in a future release of Enterprise COBOL. IBM recommends that you not use

these words as user-defined names. Use of these words as user-defined names is

flagged with an I-level message.

This column includes words reserved in Standard COBOL 2002.

The default reserved word table is shown below. You can select a different reserved

word table by using the WORD compiler option. For details, see the Enterprise

COBOL Programming Guide.

 Table 62. Reserved words

Word Reserved Standard only

Potential

reserved words

ACCEPT X

ACCESS X

ACTIVE-CLASS X

ADD X

ADDRESS X

ADVANCING X

AFTER X

ALIGNED X

ALL X

ALLOCATE X

ALPHABET X

ALPHABETIC X

ALPHABETIC-LOWER X

ALPHABETIC-UPPER X

ALPHANUMERIC X

ALPHANUMERIC-EDITED X

ALSO X

ALTER X

ALTERNATE X

AND X

© Copyright IBM Corp. 1991, 2007 595

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

ANY X

ANYCASE X

APPLY X

ARE X

AREA X

AREAS X

AS X

ASCENDING X

ASSIGN X

AT X

ATTRIBUTES X

AUTHOR X

B-AND X

B-NOT X

B-OR X

B-XOR X

BASED X

BASIS X

BEFORE X

BEGINNING X

BINARY X

BINARY-CHAR X

BINARY-DOUBLE X

BINARY-LONG X

BINARY-SHORT X

BIT X

BLANK X

BLOCK X

BOOLEAN X

BOTTOM X

BY X

CALL X

CANCEL X

CBL X

CD X

CF X

CH X

CHARACTER X

CHARACTERS X

596 Enterprise COBOL for z/OS V4.1 Language Reference

||||

||||

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

CLASS X

CLASS-ID X

CLOCK-UNITS X

CLOSE X

COBOL X

CODE X

CODE-SET X

COL X

COLLATING X

COLS X

COLUMN X

COLUMNS X

COM-REG X

COMMA X

COMMON X

COMMUNICATION X

COMP X

COMP-1 X

COMP-2 X

COMP-3 X

COMP-4 X

COMP-5 X

COMPUTATIONAL X

COMPUTATIONAL-1 X

COMPUTATIONAL-2 X

COMPUTATIONAL-3 X

COMPUTATIONAL-4 X

COMPUTATIONAL-5 X

COMPUTE X

CONDITION X

CONFIGURATION X

CONSTANT X

CONTAINS X

CONTENT X

CONTINUE X

CONTROL X

CONTROLS X

CONVERTING X

COPY X

Appendix E. Reserved words 597

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

CORR X

CORRESPONDING X

COUNT X

CRT X

CURRENCY X

CURSOR X

DATA X

DATA-POINTER X

DATE X

DATE-COMPILED X

DATE-WRITTEN X

DAY X

DAY-OF-WEEK X

DBCS X

DE X

DEBUG-CONTENTS X

DEBUG-ITEM X

DEBUG-LINE X

DEBUG-NAME X

DEBUG-SUB-1 X

DEBUG-SUB-2 X

DEBUG-SUB-3 X

DEBUGGING X

DECIMAL-POINT X

DECLARATIVES X

DEFAULT X

DELETE X

DELIMITED X

DELIMITER X

DEPENDING X

DESCENDING X

DESTINATION X

DETAIL X

DISABLE X

DISPLAY X

DISPLAY-1 X

DIVIDE X

DIVISION X

DOWN X

598 Enterprise COBOL for z/OS V4.1 Language Reference

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

DUPLICATES X

DYNAMIC X

EC X

EGCS X

EGI X

EJECT X

ELEMENTS X

ELSE X

EMI X

ENABLE X

ENCODING X

END X

END-ACCEPT X

END-ADD X

END-CALL X

END-COMPUTE X

END-DELETE X

END-DISPLAY X

END-DIVIDE X

END-EVALUATE X

END-EXEC X

END-IF X

END-INVOKE X

END-MULTIPLY X

END-OF-PAGE X

END-PERFORM X

END-READ X

END-RECEIVE X

END-RETURN X

END-REWRITE X

END-SEARCH X

END-START X

END-STRING X

END-SUBTRACT X

END-UNSTRING X

END-WRITE X

END-XML X

ENDING X

ENTER X

Appendix E. Reserved words 599

||||

||||

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

ENTRY X

ENVIRONMENT X

EO X

EOP X

EQUAL X

ERROR X

ESI X

EVALUATE X

EVERY X

EXCEPTION X

EXCEPTION-OBJECT X

EXEC X

EXECUTE X

EXIT X

EXTEND X

EXTERNAL X

FACTORY X

FALSE X

FD X

FILE X

FILE-CONTROL X

FILLER X

FINAL X

FIRST X

FLOAT-EXTENDED X

FLOAT-LONG X

FLOAT-SHORT X

FOOTING X

FOR X

FORMAT X

FREE X

FROM X

FUNCTION X

FUNCTION-ID X

FUNCTION-POINTER X

GENERATE X

GET X

GIVING X

GLOBAL X

600 Enterprise COBOL for z/OS V4.1 Language Reference

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

GO X

GOBACK X

GREATER X

GROUP X

GROUP-USAGE X

HEADING X

HIGH-VALUE X

HIGH-VALUES X

I-O X

I-O-CONTROL X

ID X

IDENTIFICATION X

IF X

IN X

INDEX X

INDEXED X

INDICATE X

INHERITS X

INITIAL X

INITIALIZE X

INITIATE X

INPUT X

INPUT-OUTPUT X

INSERT X

INSPECT X

INSTALLATION X

INTERFACE X

INTERFACE-ID X

INTO X

INVALID X

INVOKE X

IS X

JNIENVPTR X

JUST X

JUSTIFIED X

KANJI X

KEY X

LABEL X

LAST X

Appendix E. Reserved words 601

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

LEADING X

LEFT X

LENGTH X

LESS X

LIMIT X

LIMITS X

LINAGE X

LINAGE-COUNTER X

LINE X

LINE-COUNTER X

LINES X

LINKAGE X

LOCAL-STORAGE X

LOCALE X

LOCK X

LOW-VALUE X

LOW-VALUES X

MEMORY X

MERGE X

MESSAGE X

METHOD X

METHOD-ID X

MINUS X

MODE X

MODULES X

MORE-LABELS X

MOVE X

MULTIPLE X

MULTIPLY X

NAMESPACE X

NAMESPACE-PREFIX X

NATIONAL X

NATIONAL-EDITED X

NATIVE X

NEGATIVE X

NESTED X

NEXT X

NO X

NOT X

602 Enterprise COBOL for z/OS V4.1 Language Reference

||||

||||

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

NULL X

NULLS X

NUMBER X

NUMERIC X

NUMERIC-EDITED X

OBJECT X

OBJECT-COMPUTER X

OBJECT-REFERENCE X

OCCURS X

OF X

OFF X

OMITTED X

ON X

OPEN X

OPTIONAL X

OPTIONS X

OR X

ORDER X

ORGANIZATION X

OTHER X

OUTPUT X

OVERFLOW X

OVERRIDE X

PACKED-DECIMAL X

PADDING X

PAGE X

PAGE-COUNTER X

PASSWORD X

PERFORM X

PF X

PH X

PIC X

PICTURE X

PLUS X

POINTER X

POSITION X

POSITIVE X

PRESENT X

PRINTING X

Appendix E. Reserved words 603

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

PROCEDURE X

PROCEDURE-POINTER X

PROCEDURES X

PROCEED X

PROCESSING X

PROGRAM X

PROGRAM-ID X

PROGRAM-POINTER X

PROPERTY X

PROTOTYPE X

PURGE X

QUEUE X

QUOTE X

QUOTES X

RAISE X

RAISING X

RANDOM X

RD X

READ X

READY X

RECEIVE X

RECORD X

RECORDING X

RECORDS X

RECURSIVE X

REDEFINES X

REEL X

REFERENCE X

REFERENCES X

RELATIVE X

RELEASE X

RELOAD X

REMAINDER X

REMOVAL X

RENAMES X

REPLACE X

REPLACING X

REPORT X

REPORTING X

604 Enterprise COBOL for z/OS V4.1 Language Reference

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

REPORTS X

REPOSITORY X

RERUN X

RESERVE X

RESET X

RESUME X

RETRY X

RETURN X

RETURN-CODE X

RETURNING X

REVERSED X

REWIND X

REWRITE X

RF X

RH X

RIGHT X

ROUNDED X

RUN X

SAME X

SCREEN X

SD X

SEARCH X

SECTION X

SECURITY X

SEGMENT X

SEGMENT-LIMIT X

SELECT X

SELF X

SEND X

SENTENCE X

SEPARATE X

SEQUENCE X

SEQUENTIAL X

SERVICE X

SET X

SHARING X

SHIFT-IN X

SHIFT-OUT X

SIGN X

Appendix E. Reserved words 605

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

SIZE X

SKIP1 X

SKIP2 X

SKIP3 X

SORT X

SORT-CONTROL X

SORT-CORE-SIZE X

SORT-FILE-SIZE X

SORT-MERGE X

SORT-MESSAGE X

SORT-MODE-SIZE X

SORT-RETURN X

SOURCE X

SOURCE-COMPUTER X

SOURCES X

SPACE X

SPACES X

SPECIAL-NAMES X

SQL X

STANDARD X

STANDARD-1 X

STANDARD-2 X

START X

STATUS X

STOP X

STRING X

SUB-QUEUE-1 X

SUB-QUEUE-2 X

SUB-QUEUE-3 X

SUBTRACT X

SUM X

SUPER X

SUPPRESS X

SYMBOLIC X

SYNC X

SYNCHRONIZED X

SYSTEM-DEFAULT X

TABLE X

TALLY X

606 Enterprise COBOL for z/OS V4.1 Language Reference

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

TALLYING X

TAPE X

TERMINAL X

TERMINATE X

TEST X

TEXT X

THAN X

THEN X

THROUGH X

THRU X

TIME X

TIMES X

TITLE X

TO X

TOP X

TRACE X

TRAILING X

TRUE X

TYPE X

TYPEDEF X

UNIT X

UNIVERSAL X

UNLOCK X

UNSTRING X

UNTIL X

UP X

UPON X

USAGE X

USE X

USER-DEFAULT X

USING X

VAL-STATUS X

VALID X

VALIDATE X

VALIDATE-STATUS X

VALUE X

VALUES X

VARYING X

WHEN X

Appendix E. Reserved words 607

Table 62. Reserved words (continued)

Word Reserved Standard only

Potential

reserved words

WHEN-COMPILED X

WITH X

WORDS X

WORKING-STORAGE X

WRITE X

WRITE-ONLY X

XML X

XML-CODE X

XML-DECLARATION X

XML-EVENT X

XML-NAMESPACE X

XML-NAMESPACE-PREFIX X

XML-NNAMESPACE X

XML-NNAMESPACE-PREFIX X

XML-NTEXT X

XML-TEXT X

ZERO X

ZEROES X

ZEROS X

608 Enterprise COBOL for z/OS V4.1 Language Reference

||||

||||

||||

||||

||||

Appendix F. ASCII considerations

The compiler supports the American National Standard Code for Information

Interchange (ASCII) for magnetic tape files. Thus, the programmer can create and

process tape files recorded in accordance with the following standards:

v American National Standard Code for Information Interchange, X3.4-1977

v American National Standard Magnetic Tape Labels for Information Interchange,

X3.27-1978

v American National Standard Recorded Magnetic Tape for Information

Interchange (800 CPI, NRZI), X3.22-1967

Single-byte ASCII-encoded tape files, when read into the system, are automatically

translated in the buffers into single-byte EBCDIC. Internal manipulation of data is

performed exactly as if the ASCII files were single-byte EBCDIC-encoded files. For

an output file, the system translates the EBCDIC characters into single-byte ASCII

in the buffers before writing the file on tape. Therefore, there are special

considerations concerning ASCII-encoded files when they are processed in COBOL.

This appendix also applies (with appropriate modifications) to the International

Reference Version of the ISO 7-bit code defined in International Standard 646, 7-Bit

Coded Character Set for Information Processing Interchange (ISCII). The ISCII code set

differs from ASCII only in the graphic representation of two code points:

v Ordinal number 37, which is a dollar sign in ASCII, but a lozenge in ISCII

v Ordinal number 127, which is a tilde (~) in ASCII, but an overline (or optionally

a tilde) in ISCII.

The following paragraphs discuss the special considerations concerning

ASCII-encoded (or ISCII-encoded) files. The information given for STANDARD-1

also applies to STANDARD-2 except where otherwise specified.

Environment division

In the environment division, the OBJECT-COMPUTER, SPECIAL-NAMES, and

FILE-CONTROL paragraphs are affected by the use of ASCII-encoded files.

OBJECT-COMPUTER and SPECIAL-NAMES paragraphs

When at least one file in the program is an ASCII-encoded file, the alphabet-name

clause of the SPECIAL-NAMES paragraph must be specified; the alphabet-name

must be associated with STANDARD-1 or STANDARD-2 (for ASCII or ISCII

collating sequence or CODE SET, respectively).

When alphanumeric comparisons within the object program are to use the ASCII

collating sequence, the PROGRAM COLLATING SEQUENCE clause of the

OBJECT-COMPUTER paragraph must be specified; the alphabet-name used must

also be specified as an alphabet-name in the SPECIAL-NAMES paragraph, and

associated with STANDARD-1. For example:

Object-computer. IBM-system

 Program collating sequence is ASCII-sequence.

Special-names. Alphabet ASCII-sequence is standard-1.

© Copyright IBM Corp. 1991, 2007 609

|

When both clauses are specified, the ASCII collating sequence is used in this

program to determine the truth value of the following alphanumeric comparisons:

v Those explicitly specified in relation conditions

v Those explicitly specified in condition-name conditions

v Any alphanumeric sort or merge keys (unless the COLLATING SEQUENCE

phrase is specified in the MERGE or SORT statement).

When the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC

collating sequence is used for such comparisons.

The PROGRAM COLLATING SEQUENCE clause, in conjunction with the

alphabet-name clause, can be used to specify EBCDIC alphanumeric comparisons

for an ASCII-encoded tape file or ASCII alphanumeric comparisons for an

EBCDIC-encoded tape file.

The literal option of the alphabet-name clause can be used to process internal data

in a collating sequence other than NATIVE or STANDARD-1.

FILE-CONTROL paragraph

For ASCII files, the ASSIGN clause assignment-name has the following format:

Format: assignment-name for QSAM files

��

label-

S-
 name ��

The file must be a QSAM file assigned to a magnetic tape device.

label- Documents the device and device class to which a file is assigned. If

specified, it must end with a hyphen.

S- The organization field. Optional for QSAM files, which always have

sequential organization.

name A required one-character to eight-character field that specifies the external

name for this file.

I-O-CONTROL paragraph

The assignment-name in a RERUN clause must not specify an ASCII-encoded file.

ASCII-encoded files that contain checkpoint records cannot be processed.

Data division

In the data division, there are special considerations for the FD entry and for data

description entries.

610 Enterprise COBOL for z/OS V4.1 Language Reference

For each logical file defined in the environment division, there must be a

corresponding FD entry and level-01 record description entry in the file section of

the data division.

FD Entry: CODE-SET clause

The FD Entry for an ASCII-encoded file must contain a CODE-SET clause; the

alphabet-name must be associated with STANDARD-1 (for the ASCII code set) in

the SPECIAL-NAMES paragraph. For example:

Special-names. Alphabet ASCII-sequence is standard-1.

 ...

FD ASCII-file label records standard

 Recording mode is f

 Code-set is ASCII-sequence.

Data description entries

For ASCII files, the following data description considerations apply:

v PICTURE clause specifications are valid for the following categories of data:

– Alphabetic

– Alphanumeric

– Alphanumeric-edited

– Numeric

– Numeric-edited
v For signed numeric items, the SIGN clause with the SEPARATE CHARACTER

phrase must be specified.

v For the USAGE clause, only the DISPLAY phrase is valid.

Procedure division

An ASCII-collated sort or merge operation can be specified in two ways:

v Through the PROGRAM COLLATING SEQUENCE clause in the

OBJECT-COMPUTER paragraph. In this case, the ASCII collating sequence is

used for alphanumeric comparisons explicitly specified in relation conditions

and condition-name conditions.

v Through the COLLATING SEQUENCE phrase of the SORT or MERGE

statement. In this case, only this sort or merge operation uses the ASCII collating

sequence.

In either case, alphabet-name must be associated with STANDARD-1 (for ASCII

collating sequence) in the SPECIAL-NAMES paragraph.

For this sort or merge operation, the COLLATING SEQUENCE phrase of the SORT

or MERGE statement takes precedence over the PROGRAM COLLATING

SEQUENCE clause in the OBJECT-COMPUTER paragraph.

If both the PROGRAM COLLATING SEQUENCE clause and the COLLATING

SEQUENCE phrase are omitted (or if the one in effect specifies an EBCDIC

collating sequence), the sort or merge is performed using the EBCDIC collating

sequence.

Appendix F. ASCII considerations 611

612 Enterprise COBOL for z/OS V4.1 Language Reference

Appendix G. Industry specifications

Enterprise COBOL supports the following industry standards:

v ISO COBOL standards

– ISO 1989:1985, Programming languages - COBOL

ISO 1989:1985 is identical to ANSI INCITS 23-1985 (R2001), Programming

Languages - COBOL

– ISO/IEC 1989/AMD1:1992, Programming languages - COBOL: Intrinsic function

module

ISO/IEC 1989/AMD1:1992 is identical to ANSI INCITS 23a-1989 (R2001),

Programming Languages - Intrinsic Function Module for COBOL

– ISO/IEC 1989/AMD2:1994, Programming languages - Correction and clarification

amendment for COBOL

ISO/IEC 1989/AMD2:1994 is identical to ANSI INCITS 23b-1993 (R2001),

Programming Language - Correction Amendment for COBOL

All required modules are supported at the highest level defined by the standard.

The following optional modules of the standard are supported:

– Intrinsic Functions (1 ITR 0,1)

– Debug (1 DEB 0,2)

– Segmentation (2 SEG 0,2)

The Report Writer optional module of the standard is supported with the

optional IBM COBOL Report Writer Precompiler and Libraries (5798-DYR).

The following optional modules of the standard are not supported:

– Communications

– Debug (2 DEB 0,2)
v ANSI COBOL standards

– ANSI INCITS 23-1985 (R2001), Programming Languages - COBOL

– ANSI INCITS 23a-1989 (R2001), Programming Languages - Intrinsic Function

Module for COBOL

– ANSI INCITS 23b-1993 (R2001), Programming Language - Correction Amendment

for COBOL

All required modules are supported at the highest level defined by the standard.

The following optional modules of the standard are supported:

– Intrinsic Functions (1 ITR 0,1)

– Debug (1 DEB 0,2)

– Segmentation (2 SEG 0,2)

The following optional modules of the standard are not supported:

– Communications

– Debug (2 DEB 0,2)
v International Reference Version of ISO/IEC 646, 7-Bit Coded Character Set for

Information Interchange

v The 7-bit coded character set defined in American National Standard X3.4-1977,

Code for Information Interchange

Enterprise COBOL has the following restrictions related to COBOL standards:

© Copyright IBM Corp. 1991, 2007 613

v OPEN EXTEND is not supported for ASCII-encoded tapes (CODE-SET

STANDARD-1 or STANDARD-2).

v When division by zero occurs in an arithmetic expression and an ON SIZE

ERROR phrase is not specified, processing abnormally terminates.

v The overlay capability of the segmentation module is not supported.

See the Enterprise COBOL Programming Guide for specification of the compiler

options and Language Environment runtime options that are required to support

the above standards.

614 Enterprise COBOL for z/OS V4.1 Language Reference

Notices

Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2007 615

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

If you are viewing this information in softcopy, the photographs and color

illustrations might not appear.

Programming interface information

This Language Reference documents intended Programming Interfaces that allow

the customer to write programs to obtain the services of Enterprise COBOL.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

IBM

The IBM logo

ibm.com

Advanced Function Printing

BookManager

CICS

DFSMS

Language Environment

MVS

OS/390

616 Enterprise COBOL for z/OS V4.1 Language Reference

Print Services Facility

System z

z/OS

Intel is a registered trademark of Intel Corporation in the United States and other

countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be the trademarks or service marks

of others.

Notices 617

618 Enterprise COBOL for z/OS V4.1 Language Reference

Glossary

The terms in this glossary are defined in

accordance with their meaning in COBOL. These

terms might or might not have the same meaning

in other languages.

This glossary includes terms and definitions from

the following publications:

v ANSI INCITS 23-1985, Programming Languages -

COBOL as amended by:

– ANSI INCITS 23a-1989, Programming

Languages - Intrinsic Function Module for

COBOL,

– ANSI INCITS 23b-1993, Programming

Language - Correction Amendment for COBOL

v ANSI INCITS 172-2002 American National

Standard Dictionary of Information Technology.

American National Standard definitions are

preceded by an asterisk (*).

A

* abbreviated combined relation condition

The combined condition that results from

the explicit omission of a common subject

or a common subject and common

relational operator in a consecutive

sequence of relation conditions.

abend Abnormal termination of program.

* access mode

The manner in which records are to be

operated upon within a file.

* actual decimal point

The physical representation, using the

decimal point characters period (.) or

comma (,), of the decimal point position

in a data item.

* alphabet-name

A user-defined word, defined in the

SPECIAL-NAMES paragraph of the

environment division, that names a

specific character set or collating

sequence, or both.

* alphabetic character

A letter or a space character.

alphabetic data item

A data item described with a PICTURE

character-string that contains only the

symbol A. An alphabetic data item has

usage DISPLAY.

alphanumeric character

Any character in the computer’s

single-byte character set.

alphanumeric character position

See character position.

alphanumeric data item

A general reference to a data item

described implicitly or explicitly with

usage DISPLAY and category

alphanumeric, alphanumeric-edited, or

numeric-edited, possibly limited to

specific data categories or specific data

descriptions by detailed specifications.

alphanumeric-edited data item

A data item described by a PICTURE

character-string that contains at least one

symbol A or X and at least one of the

simple insertion symbols B, 0, or /. An

alphanumeric-edited data item has usage

DISPLAY.

* alphanumeric function

A function that returns a value that is

composed of a string of one or more

characters from the computer’s

alphanumeric character set.

alphanumeric group item

A group item that is defined without a

GROUP-USAGE NATIONAL clause. For

operations such as INSPECT, STRING,

and UNSTRING, an alphanumeric group

item is processed as though all its content

were described with usage DISPLAY,

regardless of the actual content of the

group. For operations that require

processing of the elementary items within

a group, such as MOVE

CORRESPONDING, ADD

CORRESPONDING, and INITIALIZE

identifier, an alphanumeric group item is

processed using group semantics.

alphanumeric literal

A literal that has an opening delimiter

from the following set:

© Copyright IBM Corp. 1991, 2007 619

’

"

X’

X"

Z’

Z"

 The literal content can include any

character in the character set of the

computer.

* alternate record key

A key, other than the prime record key,

whose contents identify a record within

an indexed file.

ANSI (American National Standards Institute)

An organization consisting of producers,

consumers, and general interest groups,

that establishes the procedures by which

accredited organizations create and

maintain voluntary industry standards in

the United States.

argument

(1) An identifier, a literal, an arithmetic

expression, or a function-identifier that

specifies a value to be used in the

evaluation of a function. (2) An operand

of the USING phrase of a CALL or

INVOKE statement, used for passing

values to a called program or an invoked

method.

* arithmetic expression

An identifier of a numeric elementary

item, a numeric literal, such identifiers

and literals separated by arithmetic

operators, two arithmetic expressions

separated by an arithmetic operator, or an

arithmetic expression enclosed in

parentheses.

* arithmetic operation

The process caused by the execution of an

arithmetic statement, or the evaluation of

an arithmetic expression, that results in a

mathematically correct solution to the

arguments presented.

* arithmetic operator

A single character, or a fixed

two-character combination that belongs to

the following set:

 Character Meaning

+ Addition

- Subtraction

Character Meaning

* Multiplication

/ Division

** Exponentiation

* arithmetic statement

A statement that causes an arithmetic

operation to be executed. The arithmetic

statements are the ADD, COMPUTE,

DIVIDE, MULTIPLY, and SUBTRACT

statements.

* ascending key

A key, upon the values of which data is

ordered starting with the lowest value of

the key up to the highest value of the key,

in accordance with the rules for

comparing data items.

ASCII

American National Standard Code for

Information Interchange. A standard code,

using a coded character set consisting of

7-bit coded characters (8 bits including

parity check), used for information

interchange between data processing

systems, data communication systems,

and associated equipment. The ASCII set

consists of control characters and graphic

characters.

 IBM has defined an extension to ASCII

(characters 128-255).

ASCII DBCS

See double-byte ASCII.

assignment-name

A name that identifies the organization of

a COBOL file and the name by which it is

known to the system.

* assumed decimal point

A decimal point position that does not

involve the existence of an actual

character in a data item. The assumed

decimal point has logical meaning with

no physical representation.

* AT END condition

A condition that exists in the following

circumstances:

v During the execution of a READ

statement for a sequentially accessed

file, when no next logical record exists

in the file, or when the number of

significant digits in the relative record

number is larger than the size of the

620 Enterprise COBOL for z/OS V4.1 Language Reference

relative key data item, or when an

optional input file is not available.

v During the execution of a RETURN

statement, when no next logical record

exists for the associated sort or merge

file.

v During the execution of a SEARCH

statement, when the search operation

terminates without satisfying the

condition specified in any of the

associated WHEN phrases.

B

basic character set

The basic set of characters used in writing

words, character-strings, and separators of

the language. The basic character set is

implemented in single-byte EBCDIC. The

extended character set includes DBCS

characters, which can be used in

comments, literals, and user-defined

words.

 Synonymous with COBOL character set in

Standard COBOL 85.

big-endian

The default format used by the

mainframe to store binary data. In this

format, the least significant digit is on the

highest address. See also little-endian.

binary item

A numeric data item represented in

binary notation (on the base 2 numbering

system). Binary items have a decimal

equivalent consisting of the decimal digits

0 through 9, plus an operational sign. The

leftmost bit of the item is the operational

sign.

binary search

A dichotomizing search in which, at each

step of the search, the set of data elements

is divided by two; some appropriate

action is taken in the case of an odd

number.

* block

A physical unit of data that is normally

composed of one or more logical records.

For mass storage files, a block can contain

a portion of a logical record. The size of a

block has no direct relationship to the size

of the file within which the block is

contained or to the size of the logical

records that are either contained within

the block or that overlap the block. The

term is synonymous with physical record.

buffer

A portion of storage used to hold input or

output data temporarily.

byte A string consisting of a certain number of

bits, usually eight, treated as a unit.

byte order mark (BOM)

A Unicode character that can be used at

the start of UTF-16 or UTF-32 text to

indicate the byte order of subsequent text;

the byte order can be either big endian or

little endian.

C

cataloged procedure

A set of job control statements placed in a

partitioned data set called the procedure

library (SYS1.PROCLIB). You can use

cataloged procedures to save time and

reduce errors coding JCL.

CCSID

See coded character set identifier.

century window

A 100-year interval within which any

two-digit year is unique. There are several

types of century window available to

COBOL programmers:

1. For windowed date fields, it is

specified by the YEARWINDOW

compiler option.

2. For windowing intrinsic functions

DATE-TO-YYYYMMDD,

DAY-TO-YYYYDDD, and

YEAR-TO-YYYY, it is specified by

argument-2.

* character

The basic indivisible unit of the language.

character encoding unit

A unit of data that corresponds to one

code point in a coded character set. One

or more character encoding units are used

to represent a character in a coded

character set. Also known as encoding unit.

 For usage NATIONAL, a character

encoding unit corresponds to one 2-byte

code point of UTF-16.

For usage DISPLAY, a character encoding

unit corresponds to a byte.

Glossary 621

For usage DISPLAY-1, a character

encoding unit corresponds to a 2-byte

code point in the DBCS character set.

character position

The amount of physical storage or

presentation space required for holding or

presenting one character. The term applies

to any class of character. For specific

classes of characters, the following terms

apply:

v Alphanumeric character position, for

characters represented in usage

DISPLAY

v DBCS character position, for DBCS

characters represented in usage

DISPLAY-1

v National character position, for characters

represented in usage NATIONAL;

synonymous with character encoding

unit for UTF-16

character set

See basic character set and coded character

set.

* character-string

A sequence of contiguous characters that

forms a COBOL word, a literal, a

PICTURE character-string, or a

comment-entry. Must be delimited by

separators.

checkpoint

A point at which information about the

status of a job and the system can be

recorded so that the job step can be

restarted later.

class (object-oriented)

The entity that defines common behavior

and implementation for zero, one, or

more objects. The objects that share the

same implementation are considered to be

objects of the same class.

* class condition

The proposition (for which a truth value

can be determined) that the content of an

item is wholly alphabetic, is wholly

numeric, is wholly DBCS, is wholly Kanji,

or consists exclusively of the characters

that are listed in the definition of a

class-name.

class definition

The COBOL source unit that defines a

class.

class-name (object-oriented)

The name of an object-oriented class

definition. Class-name can refer to a

COBOL class-name or a Java class-name.

* class-name (of data)

A user-defined word, defined in the

SPECIAL-NAMES paragraph, that refers

to the proposition for which a truth value

can be defined, that the content of a data

item consists exclusively of those

characters listed in the definition of the

class-name.

* clause

An ordered set of consecutive COBOL

character-strings whose purpose is to

specify an attribute of an entry.

COBOL character set

See basic character set.

* COBOL word

See word.

code page

An assignment of graphic characters and

control character meanings to the code

points in a coded character set; for

example, assignment of characters and

meanings to the 256 code points in

single-byte EBCDIC or ASCII. The terms

coded character set and code page can be

used interchangeably.

code point

A unique bit pattern defined in a code

page. Graphic symbols and control

characters are assigned to code points.

coded character set

A set of graphic characters and control

characters along with their unambiguous

assignment to specific code points (their

encodings). EBCDIC is an example of a

coded character set. A specific instance of

encodings is called a code page. A code

page specified by IBM is identified by a

CCSID.

coded character set identifier (CCSID)

An IBM-defined number in the range 1 to

65,535 that identifies a specific code page.

* collating sequence

The sequence in which the characters that

are acceptable to a computer are ordered

for purposes of sorting, merging,

comparing, and for processing indexed

files sequentially.

622 Enterprise COBOL for z/OS V4.1 Language Reference

column

A byte position within a print line or

within a reference format line. The

columns are numbered from 1, by 1,

starting at the leftmost position of the line

and extending to the rightmost position of

the line. A column holds one single-byte

character.

* combined condition

A condition that is the result of

connecting two or more conditions with

the AND or the OR logical operator.

* comment-entry

An entry in the identification division that

is used for documentation and has no

effect on execution.

* comment line

A source text line represented by an

asterisk (*) in the indicator area of the line

and any characters from the computer’s

character set in area A and area B of that

line. The comment line serves only for

documentation. A special form of

comment line represented by a forward

slash (/) in the indicator area of the line

and any characters from the computer’s

character set in area A and area B of that

line causes page ejection prior to printing

the comment.

* common program

A program that, despite being directly

contained within another program, is

permitted to be called from any program

directly or indirectly contained in that

other program.

compatible date field

The meaning of the term compatible, when

applied to date fields, depends on the

COBOL division in which the usage

occurs:

v data division

Two date fields are compatible if they

have identical USAGE and meet at least

one of the following conditions:

– They have the same date format.

– Both are windowed date fields,

where one consists of only a

windowed year, DATE FORMAT YY.

– Both are expanded date fields, where

one consists of only an expanded

year, DATE FORMAT YYYY.

– One has DATE FORMAT YYXXXX,

the other, YYXX.

– One has DATE FORMAT

YYYYXXXX, the other, YYYYXX.
A windowed date field can be

subordinate to an expanded date group

data item. The two date fields are

compatible if the subordinate date field

has USAGE DISPLAY, starts two bytes

after the start of the group expanded

date field, and the two fields meet at

least one of the following conditions:

– The subordinate date field has a

DATE FORMAT pattern with the

same number of Xs as the DATE

FORMAT pattern of the group date

field.

– The subordinate date field has DATE

FORMAT YY.

– The group date field has DATE

FORMAT YYYYXXXX and the

subordinate date field has DATE

FORMAT YYXX.
v procedure division

Two date fields are compatible if they

have the same date format except for

the year part, which can be windowed

or expanded. For example, a windowed

date field with DATE FORMAT YYXXX

is compatible with:

– Another windowed date field with

DATE FORMAT YYXXX

– An expanded date field with DATE

FORMAT YYYYXXX

compilation unit

See source unit

* compile time

The time at which COBOL source code is

translated by a COBOL compiler to a

COBOL object program.

compiler-directing statement

A statement that causes the compiler to

take a specific action during compilation.

The standard compiler-directing

statements are COPY, REPLACE, and

USE.

* complex condition

A condition in which one or more logical

operators act upon one or more

conditions. See also negated simple

condition, combined condition, and negated

combined condition.

Glossary 623

complex ODO

Certain forms of the OCCURS

DEPENDING ON clause:

v A variably located item or group: A

data item described with an OCCURS

clause with the DEPENDING ON

phrase, followed by a nonsubordinate

data item or group. The group can be

an alphanumeric group or a national

group.

v A variably located table: A data item

described with an OCCURS clause with

the DEPENDING ON phrase, followed

by a nonsubordinate data item

described with an OCCURS clause.

v A table with variable-length elements:

A data item described with an

OCCURS clause, where a subordinate

data item is described with an

OCCURS clause with the DEPENDING

ON phrase.

v An index name for a table with

variable-length elements.

v An element of a table with

variable-length elements.

condition (exception)

An exception that has been enabled, or

recognized, by Language Environment

and thus is eligible to activate user and

language condition handlers. Any

alteration to the normal programmed flow

of an application. Conditions can be

detected by the hardware or operating

system and result in an interrupt. They

can also be detected by language-specific

generated code or language library code.

* condition (expression)

A status of data at run time for which a

truth value can be determined. Where the

term ’condition’ (condition-1, condition-2,...)

appears in these language specifications

in or in reference to ’condition’

(condition-1, condition-2,...) of a general

format, it is a conditional expression

consisting of either a simple condition

optionally parenthesized, or a combined

condition consisting of the syntactically

correct combination of simple conditions,

logical operators, and parentheses, for

which a truth value can be determined.

* conditional expression

A simple condition or a complex

condition specified in an EVALUATE, IF,

PERFORM, or SEARCH statement. See

also simple condition and complex condition.

* conditional phrase

A conditional phrase specifies the action

to be taken upon determination of the

truth value of a condition resulting from

the execution of a conditional statement.

* conditional statement

A statement specifying that the truth

value of a condition is to be determined

and that the subsequent action of the

object program is dependent on this truth

value.

* conditional variable

A data item one or more values of which

has a condition-name assigned to it.

* condition-name

A user-defined word that assigns a name

to a subset of values that a conditional

variable is permitted to assume; or a

user-defined word assigned to a status of

an implementor defined switch or device.

* condition-name condition

The proposition, for which a truth value

can be determined, that the value of a

conditional variable is a member of the

set of values attributed to a

condition-name associated with the

conditional variable.

* configuration section

A section of the environment division that

describes overall specifications of source

and object programs, method definitions,

and class definitions.

CONSOLE

A COBOL environment-name associated

with the operator console.

* contiguous items

Items that are described by consecutive

entries in the data division, and that bear

a definite hierarchic relationship to each

other.

contained program

A COBOL program that is nested within

another COBOL program.

* counter

A data item used for storing numbers or

number representations in a manner that

permits these numbers to be increased or

decreased by the value of another

624 Enterprise COBOL for z/OS V4.1 Language Reference

number, or to be changed or reset to zero

or to an arbitrary positive or negative

value.

cs See currency symbol.

currency sign value

A character-string that identifies the

monetary units stored in a numeric-edited

item. Some examples are ’$’, ’USD’, ’JPY’,

and ’EUR’. A currency sign value can be

defined by either the CURRENCY

compiler option or the CURRENCY SIGN

clause in the SPECIAL-NAMES paragraph

of the environment division. If the

CURRENCY SIGN clause is not specified

and the NOCURRENCY compiler option

is in effect, the dollar sign ($) is used as

the default currency sign value. See also

currency symbol.

currency symbol

A character used in a PICTURE clause to

indicate the position of a currency sign

value in a numeric-edited item. A currency

symbol can be defined by either the

CURRENCY compiler option or by the

CURRENCY SIGN clause in the

SPECIAL-NAMES paragraph of the

environment division. If the CURRENCY

SIGN clause is not specified and the

NOCURRENCY compiler option is in

effect, the dollar sign ($) is used as the

default currency sign value and currency

symbol. Multiple currency symbols and

currency sign values can be defined. See

also currency sign value.

* current record

In file processing, the record that is

available in the record area associated

with a file.

* current volume pointer

A conceptual entity that points to the

current volume of a sequential file.

D

* data description entry

An entry in the data division composed

of a level-number followed by a

data-name, if required, and then followed

by a set of clauses that describe the

attributes of a data item or record.

* data division

A COBOL division that describes data

and files to be processed at run time.

* data item

A unit of data (excluding literals) defined

by a COBOL program or by the rules for

function evaluation.

* data-name

A user-defined word that names a data

item described in a data description entry.

The maximum length of a data-name is 30

bytes. When used in the general formats,

’data-name’ represents a word that must

not be reference-modified, subscripted or

qualified unless specifically permitted by

the rules for the format.

date field

Any of the following:

v A data item whose data description

entry includes a DATE FORMAT

clause.

v A value returned by one of the

following intrinsic functions:

– DATE-OF-INTEGER

– DATE-TO-YYYYMMDD

– DATEVAL

– DAY-OF-INTEGER

– DAY-TO-YYYYDDD

– YEAR-TO-YYYY

– YEARWINDOW
v The conceptual data items DATE,

DATE YYYYMMDD, DAY, and DAY

YYYYDDD of the ACCEPT statement.

v The result of certain arithmetic

operations (for details, see “Arithmetic

with date fields” on page 264).

The term date field refers to both expanded

date field and windowed date field. See also

nondate.

date format

The date pattern of a date field, specified

either:

v Explicitly, by the DATE FORMAT

clause or DATEVAL intrinsic function

argument-2

v Implicitly, by statements and intrinsic

functions that return date fields (for

details, see “Date field” on page 82).

DBCS

See Double-Byte Character Set (DBCS).

DBCS character

Any character defined in an IBM

double-byte character set.

Glossary 625

DBCS character position

See character position.

DBCS data item

A data item described by a PICTURE

character-string that contains at least one

symbol G or, when the NSYMBOL(DBCS)

compiler option is in effect, at least one

symbol N. A DBCS data item has usage

DISPLAY-1.

* debugging line

A debugging line is any line with a ’D’ in

the indicator area of the line.

* debugging section

A section that contains a USE FOR

DEBUGGING statement.

* declaratives

A set of one or more special purpose

sections, written at the beginning of the

procedure division, the first of which is

preceded by the keyword

DECLARATIVES and the last of which is

followed by the keyword END

DECLARATIVES. A declarative is

composed of a section header, followed

by a USE compiler-directing sentence,

followed by a set of zero, one, or more

associated paragraphs.

* de-edit

The logical removal of all editing

characters from a numeric-edited data

item in order to determine that item’s

unedited numeric value.

* delimited scope statement

Any statement that includes its explicit

scope terminator.

* delimiter

A character or a sequence of contiguous

characters that identify the end of a string

of characters and separate that string of

characters from the following string of

characters. A delimiter is not part of the

string of characters that it delimits.

* descending key

A key upon the values of which data is

ordered starting with the highest value of

key down to the lowest value of key, in

accordance with the rules for comparing

data items.

digit Any of the numerals from 0 through 9. In

COBOL, the term is not used in reference

to any other symbol.

* digit position

The amount of physical storage required

to store a single digit. This amount can

vary depending on the usage specified in

the data description entry that defines the

data item.

* direct access

The facility to obtain data from storage

devices or to enter data into a storage

device in such a way that the process

depends only on the location of that data

and not on a reference to data previously

accessed.

display floating-point data item

A data item described with usage

DISPLAY and a picture character-string

that describes an external floating-point

data item. See floating-point.

* division

There are four divisions in a COBOL

program: identification, environment,

data, and procedure.

* division header

A combination of words followed by a

separator period that indicates the

beginning of a division. The division

headers are:

v IDENTIFICATION DIVISION.

v ENVIRONMENT DIVISION.

v DATA DIVISION.

v PROCEDURE DIVISION.

do-until

In structured programming, a do-until

loop will be executed at least once, and

until a given condition is true. In COBOL,

a TEST AFTER phrase used with the

PERFORM statement functions in the

same way.

do-while

In structured programming, a do-while

loop will be executed if, and while, a

given condition is true. In COBOL, a

TEST BEFORE phrase used with the

PERFORM statement functions in the

same way.

double-byte ASCII

An IBM character set that includes DBCS

and single-byte ASCII characters. (Also

known as ASCII DBCS.)

double-byte EBCDIC

An IBM character set that includes DBCS

626 Enterprise COBOL for z/OS V4.1 Language Reference

and single-byte EBCDIC characters. (Also

known as EBCDIC DBCS.)

Double-Byte Character Set (DBCS)

An IBM coded character set in which each

character is represented by two bytes.

Languages such as Japanese, Chinese, and

Korean, which contain more symbols than

can be represented by 256 code points,

require double-byte character sets.

Because each character requires two bytes,

entering, displaying, and printing DBCS

characters requires hardware and

supporting software that are

DBCS-capable.

* dynamic access

An access mode in which specific logical

records can be obtained from or placed

into a mass storage file in a nonsequential

manner and obtained from a file in a

sequential manner during the scope of the

same OPEN statement.

E

EBCDIC (Extended Binary-Coded Decimal

Interchange Code)

A coded character set consisting of 8-bit

coded characters.

EBCDIC character

Any one of the graphic characters or

control characters encoded in EBCDIC.

EBCDIC DBCS

See double-byte EBCDIC.

edited data item

A data item that has been modified by

suppressing zeroes or inserting editing

characters.

* editing character

A single character or a fixed two-character

combination belonging to the following

set:

 Character Meaning

 Space

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

Z Zero suppress

* Check protect

Character Meaning

$ Currency sign

, Comma (decimal point)

. Period (decimal point)

/ Forward slash

* elementary item

A data item that is described as not being

further logically subdivided.

encoding unit

See character encoding unit.

end class marker

A combination of words, followed by a

separator period, that indicates the end of

a COBOL class definition. The end class

marker is:

END CLASS class-name.

end method marker

A combination of words, followed by a

separator period, that indicates the end of

a COBOL method definition. The end

method marker is:

END METHOD method-name.

* end of procedure division

The physical position of a COBOL

procedure division after which no further

procedures appear.

end program marker

A combination of words, followed by a

separator period, that indicates the end of

a COBOL source program. The end

program marker is:

END PROGRAM program-name.

* entry

Any descriptive set of consecutive clauses

written in the identification division,

environment division, or data division of

a COBOL program.

* environment division

A division of a COBOL source unit that

describes the computers upon which the

source code is compiled and those on

which the object code is run. It provides a

linkage between the logical concept of

files and their records and the physical

aspects of the devices on which files are

stored.

environment-name

A name, specified by IBM, that identifies

Glossary 627

system logical units, printer and card

punch control characters, report codes, or

program switches. When an

environment-name is associated with a

mnemonic-name in the environment

division, the mnemonic-name can then be

substituted in any format in which such

substitution is valid.

environment variable

Any of a number of variables that define

some aspect of the computing

environment, and are accessible to

programs that operate in that

environment. Environment variables can

affect the behavior of programs that are

sensitive to the environment in which

they operate.

execution time

See run time.

execution-time environment

See runtime environment.

expanded date field

A date field containing an expanded

(four-digit) year. See also date field and

expanded year.

expanded year

A date field that consists only of a

four-digit year. Its value includes the

century: for example, 1998. Compare with

windowed year.

* explicit scope terminator

A reserved word that terminates the scope

of a particular procedure division

statement. For example, END-READ.

exponent

A number, indicating the power to which

another number (the base) is to be raised.

Positive exponents denote multiplication,

negative exponents denote division,

fractional exponents denote a root of a

quantity. In COBOL, an exponential

expression is indicated with the symbol

’**’ followed by the exponent.

* expression

An arithmetic or conditional expression.

* extend mode

The state of a file after execution of an

OPEN statement, with the EXTEND

phrase specified for that file, and before

the execution of a CLOSE statement,

without the REEL or UNIT phrase for that

file.

Extensible Markup Language

See XML.

* external data

The data described in a program as

external data items and external file

connectors.

* external data item

A data item that is described as part of an

external record in one or more programs

of a run unit and that itself is permitted

to be referenced from any program in

which it is described.

* external data record

A logical record which is described in one

or more programs of a run unit and

whose constituent data items are

permitted to be referenced from any

program in which they are described.

external decimal data item

A zoned decimal data item or a national

decimal data item. A zoned decimal data

item has usage DISPLAY. A national

decimal data item has usage NATIONAL.

See zoned decimal data item and national

decimal data item.

* external file connector

A file connector which is accessible to one

or more object programs in the run unit.

external floating-point data item

A display floating-point data item or a

national floating-point data item. A

display floating-point data item has usage

DISPLAY. A national floating-point data

item has usage NATIONAL. See display

floating-point data item and national

floating-point data item.

* external switch

A hardware or software device, defined

and named by the implementor, which is

used to indicate that one of two alternate

states exists.

F

factory data

Data of a factory object. Factory data is

allocated once for a class and shared by

all instances of the class. Factory data is

declared in the working-storage section in

628 Enterprise COBOL for z/OS V4.1 Language Reference

the factory paragraph of a class definition.

Factory data is equivalent to private static

data in Java.

factory method

A method that is supported by a class

independently of any object instance.

Factory methods are defined in the

factory paragraph of the class definition,

and are equivalent to public static

methods in Java. They are typically used

to customize the creation of objects.

* figurative constant

A compiler-generated value referenced

through the use of certain reserved

words.

* file A collection of logical records.

* file attribute conflict condition

An unsuccessful attempt has been made

to execute an input-output operation on a

file and the file attributes, as specified for

that file in the program, do not match the

fixed attributes for that file.

* file connector

A storage area which contains information

about a file and is used as the linkage

between a file-name and a physical file

and between a file-name and its

associated record area.

* file control entry

A SELECT clause and all its subordinate

clauses which declare the relevant

physical attributes of a file.

* file-control paragraph

A paragraph in the environment division

in which the data files for a given source

unit are declared.

* file description entry

An entry in the file section of the data

division that is composed of the level

indicator FD, followed by a file-name,

and then followed by a set of clauses that

include the attributes of the file.

* file-name

A user-defined word that names a file

connector described in a file description

entry or a sort-merge file description

entry within the file section of the data

division.

* file organization

The permanent logical file structure

established at the time that a file is

created.

*file position indicator

A conceptual entity that contains the

value of the current key within the key of

reference for an indexed file, or the record

number of the current record for a

sequential file, or the relative record

number of the current record for a

relative file, or indicates that no next

logical record exists, or that an optional

input file is not available, or that the at

end condition already exists, or that no

valid next record has been established.

* file section

The section of the data division that

contains file description entries and

sort-merge file description entries together

with their associated record descriptions.

file system

The collection of files and file

management structures on a physical or

logical mass storage device, such as a

diskette or minidisk.

* fixed file attributes

Information about a file which is

established when a file is created and

cannot subsequently be changed during

the existence of the file. These attributes

include the organization of the file

(sequential, relative, or indexed), the

prime record key, the alternate record

keys, the code set, the minimum and

maximum record size, the record type

(fixed or variable), the collating sequence

of the keys for indexed files, the blocking

factor, the padding character, and the

record delimiter.

* fixed-length record

A record associated with a file whose file

description or sort-merge description

entry requires that all records contain the

same number of bytes.

fixed-point item

A numeric data item defined with a

PICTURE clause that specifies the location

of an optional sign, the number of digits

it contains, and the location of an optional

decimal point. The format can be either

binary, packed decimal, or external

decimal.

Glossary 629

floating-point

A format for representing numbers in

which a real number is represented by a

pair of distinct numerals. In floating-point

representation, the real number is the

product of the fixed-point part (the first

numeral), and a value obtained by raising

the implicit floating-point base to a power

denoted by the exponent (the second

numeral).

 For example, a floating-point

representation of the number 0.0001234 is:

0.1234 -3, where 0.1234 is the mantissa

and -3 is the exponent.

floating-point item

A numeric data item containing a fraction

and an exponent. Its value is obtained by

multiplying the fraction by the base of the

numeric data item raised to the power

specified by the exponent.

* format

A specific arrangement of a set of data.

* function

A temporary data item whose value is

determined at the time the function is

referenced during the execution of a

statement.

* function-identifier

A syntactically correct combination of

character-strings and separators that

references a function. The data item

represented by a function is uniquely

identified by a function-name with its

arguments, if any. A function-identifier

can include a reference-modifier. A

function-identifier that references an

alphanumeric function can be specified

anywhere in the general formats that an

identifier can be specified, subject to

certain restrictions. A function-identifier

that references an integer or numeric

function can be referenced anywhere in

the general formats that an arithmetic

expression can be specified.

function-name

A word that names the mechanism whose

invocation, along with required

arguments, determines the value of a

function.

function-pointer

A data item that can contain the address

of a procedure or function, described with

a usage of FUNCTION-POINTER.

G

garbage collection

The automatic freeing by the Java runtime

system of the memory for objects that are

no longer referenced.

* global name

A name that is declared in only one

program but which can be referenced

from that program and from any program

contained within that program.

Condition-names, data-names, file-names,

record-names, report-names, and some

special registers can be global names.

group item

(1) A data item that is composed of

subordinate data items. A group item that

is described with an explicit or implicit

GROUP-USAGE NATIONAL clause is a

national group item. A group that is

described without a GROUP-USAGE

NATIONAL clause is an alphanumeric

group item. See alphanumeric group item

and national group item. (2) When not

qualified explicitly or by context as a

national group or an alphanumeric group,

the term refers to groups in general.

grouping separator

A character used to separate units of

digits in numbers for ease of reading. The

default is the character comma.

H

header label

(1) A file label or data set label that

precedes the data records on a unit of

recording media. (2) Synonym for

beginning-of-file label.

hide (a method)

To redefine (in a subclass) a factory or

static method defined with the same

method-name in a parent class. Thus, the

method in the subclass hides the method

in the parent class.

* high order end

The leftmost character of a string of

characters.

I

630 Enterprise COBOL for z/OS V4.1 Language Reference

IBM extensions

COBOL syntax and semantics specified by

IBM, rather than by Standard COBOL 85.

identification division

One of the four main component parts of

a COBOL program, class definition, or

method definition. The identification

division identifies the program, class, or

method. The identification division can

include the following documentation:

author name, installation, or date.

* identifier

Syntax that references a resource, such as

a data item. An identifier that refers to

data item includes the data-name and

optionally includes qualifiers,

subscripting, and reference modification.

* imperative statement

A statement that specifies an

unconditional action to be taken or a

conditional statement that is delimited by

its explicit scope terminator (a delimited

scope statement). An imperative statement

can consist of a sequence of imperative

statements.

* implicit scope terminator

A separator period that terminates the

scope of any preceding unterminated

statement, or a phrase of a statement that

by its occurrence indicates the end of the

scope of any statement contained within

the preceding phrase.

* index

A computer storage area or register, the

content of which represents the

identification of a particular element in a

table.

* index data item

A data item in which the values

associated with an index-name can be

stored in a form specified by the

implementor.

indexed data-name

An identifier that is composed of a

data-name, followed by one or more

index-names enclosed in parentheses.

* indexed file

A file with indexed organization.

* indexed organization

The permanent logical file structure in

which each record is identified by the

value of one or more keys within that

record.

indexing

Subscripting using index-names.

* index-name

A user-defined word that names an index

associated with a specific table.

inheritance

A mechanism for using the

implementation of a class (the superclass)

as the basis for a new class (a subclass).

Each subclass inherits from exactly one

class. The inherited class can itself be a

subclass that inherits from another class.

 Enterprise COBOL does not support

multiple inheritance. It supports the Java

object model, which provides single

inheritance.

* initial program

A program that is placed into an initial

state every time the program is called in a

run unit.

* initial state

The state of a program when it is first

called in a run unit.

inline

In a program, instructions that are

executed sequentially, without branching

to routines, subroutines, or other

programs.

* input file

A file that is opened in the INPUT mode.

* input mode

The state of a file after execution of an

OPEN statement, with the INPUT phrase

specified, for that file and before the

execution of a CLOSE statement, without

the REEL or UNIT phrase for that file.

* input-output file

A file that is opened in the I-O mode.

* input-output section

The section of the environment division

that names the files and the external

media required by a program or method

and that provides information required

for transmission and handling of data at

run time.

* input-output statement

A statement that causes files to be

Glossary 631

processed by performing operations upon

individual records or upon the file as a

unit. The input-output statements are:

ACCEPT (with the identifier phrase),

CLOSE, DELETE, DISPLAY, OPEN,

READ, REWRITE, SET (with the TO ON

or TO OFF phrase), START, and WRITE.

* input procedure

A set of statements, to which control is

given during the execution of a SORT

statement, for the purpose of controlling

the release of specified records to be

sorted.

instance data

Data defining the state of an object

instance. Instance data is declared in the

working-storage section of the object

paragraph of a class definition. Also

called object instance data. Each object

instance has its own copy of instance

data. Instance data is equivalent to

private nonstatic member data in a Java

class.

instance method

A method defined in the object paragraph

of a class definition. Instance methods are

equivalent to public nonstatic methods in

Java.

* integer

(1) A numeric literal that does not include

any digit positions to the right of the

decimal point. (2) A numeric data item

defined in the data division that does not

include any digit positions to the right of

the decimal point. (3) A numeric function

whose definition provides that all digits

to the right of the decimal point are zero

in the returned value for any possible

evaluation of the function.

* integer function

A function whose category is numeric and

whose definition does not include any

digit positions to the right of the decimal

point.

interlanguage communication (ILC)

The ability of routines written in different

programming languages to communicate.

ILC support allows the application writer

to readily build applications from

component routines written in a variety

of languages.

intermediate result

An intermediate field containing the

results of a succession of arithmetic

operations.

* internal data

The data described in a program

excluding all external data items and

external file connectors. Items described

in the linkage section of a program are

treated as internal data.

* internal data item

A data item which is described in one

program in a run unit. An internal data

item can have a global name.

internal decimal data item

A data item that is described with usage

PACKED-DECIMAL or COMP-3 and a

PICTURE character-string that defines the

item as numeric (a valid combination of

symbols 9, S, P, or V). Synonymous with

packed decimal item.

* internal file connector

A file connector that is accessible to only

one object program in the run unit.

internal floating-point data item

A data item that is described with usage

COMP-1 or COMP-2. COMP-1 defines a

single-precision floating-point data item.

COMP-2 defines a double-precision

floating-point data item. There is no

PICTURE clause associated with an

internal floating-point data item.

intrinsic function

A function defined as part of the COBOL

language. In some programming

languages, this is called a built-in

function.

* invalid key condition

A condition, at run time, caused when a

specific value of the key associated with

an indexed or relative file is determined

to be invalid.

* I-O mode

The state of a file after execution of an

OPEN statement, with the I-O phrase

specified, for that file and before the

execution of a CLOSE statement without

the REEL or UNIT phase for that file.

* I-O status

A conceptual entity which contains the

two-character value indicating the

632 Enterprise COBOL for z/OS V4.1 Language Reference

resulting status of an input-output

operation. This value is made available to

the program through the use of the FILE

STATUS clause in the file control entry for

the file.

J

Java Native Interface (JNI)

A programming interface that allows Java

code running inside a Java virtual

machine (JVM) to interoperate with

applications and libraries written in other

programming languages.

K

K When referring to storage capacity, two to

the tenth power; 1024 in decimal notation.

* key A data item that identifies the location of

a record, or a set of data items which

serve to identify the ordering of data.

* key of reference

The key, either prime or alternate,

currently being used to access records

within an indexed file.

* keyword

A reserved word or function-name whose

presence is required when the format in

which the word appears is used in a

source unit.

kilobyte (KB)

One kilobyte equals 1024 bytes.

L

* language-name

A system-name that specifies a particular

programming language.

last-used state

The state of storage in which internal

values remain the same as when the

program or method was exited (are not

reset to their initial values on reentry).

* letter

A character belonging to one of the

following two sets:

v Uppercase letters: A, B, C, D, E, F, G,

H, I, J, K, L, M, N, O, P, Q, R, S, T, U,

V, W, X, Y, Z

v Lowercase letters: a, b, c, d, e, f, g, h, i,

j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

* level indicator

Two alphabetic characters that identify a

specific type of file or a position in a

hierarchy. The level indicators in the data

division are: CD, FD, and SD.

* level-number

A user-defined word, expressed as a

two-digit number, which indicates the

hierarchical position of a data item or the

special properties of a data description

entry. Level-numbers in the range from 1

through 49 indicate the position of a data

item in the hierarchical structure of a

logical record. Level-numbers in the range

1 through 9 can be written either as a

single digit or as a zero followed by a

significant digit. Level-numbers 66, 77,

and 88 identify special properties of a

data description entry.

* library-name

A user-defined word that names a

COBOL library that is to be used by the

compiler for a given compilation.

* library text

A sequence of text words, comment lines,

the separator space, or the separator

pseudo-text delimiter in a COBOL library.

Lilian date

The number of days since the beginning

of the Gregorian calendar. Day one is

Friday, October 15, 1582. The Lilian date

format is named in honor of Luigi Lilio,

the creator of the Gregorian calendar.

* LINAGE-COUNTER

A special register whose value points to

the current position within the page body.

linkage section

The section in the data division of an

activated unit (a called program or an

invoked method) that describes data

items available from the activating unit (a

program or a method). These data items

can be referred to by both the activated

unit and the activating unit.

literal

A character-string whose value is

specified either by the ordered set of

characters comprising the string, or by the

use of a figurative constant.

little-endian

The default format that Intel® processors

use to store binary data. In this format,

Glossary 633

the most significant digit is at the highest

address. See also big-endian.

local-storage section

The section of the data division that

defines storage that is allocated and freed

on a per-invocation basis, depending on

the value assigned in their VALUE

clauses.

* logical operator

One of the reserved words AND, OR, or

NOT. In the formation of a condition,

either AND or OR, or both, can be used

as logical connectives. NOT can be used

for logical negation.

* logical record

The most inclusive data item. The

level-number for a record is 01. A record

can be either an elementary item or a

group of items. The term is synonymous

with record.

* low order end

The rightmost character of a string of

characters.

M

main program

In a hierarchy of programs and

subroutines, the first program to receive

control when the programs are run.

* mass storage

A storage medium in which data can be

organized and maintained in both a

sequential and nonsequential manner.

* mass storage device

A device having a large storage capacity;

for example, magnetic disk, magnetic

drum.

* mass storage file

A collection of records that is assigned to

a mass storage medium.

* megabyte (M)

One megabyte equals 1,048,576 bytes.

* merge file

A collection of records to be merged by a

MERGE statement. The merge file is

created and can be used only by the

merge function.

method

Procedural code that defines one of the

operations supported by an object.

Method procedural code is executed by a

COBOL INVOKE statement on a specific

object instance. A method can be invoked

by a Java invocation expression. A

method can be a factory method or an

instance method.

method identification entry

An entry in the METHOD-ID paragraph

of the identification division that contains

clauses that specify the method-name and

assign selected attributes to the method

definition.

method invocation

(1) The act of invoking a method. (2) The

programming language syntax used to

invoke a method (the INVOKE statement

in COBOL, a method invocation

expression in Java).

method-name

A name that identifies a method, specified

as the content of an alphanumeric or

national literal in the METHOD-ID

paragraph, and as the content of an

alphanumeric literal, national literal,

alphanumeric data item, or data item of

category national in the INVOKE

statement.

method hiding

See hide.

method overloading

See overload.

method overriding

See override.

* mnemonic-name

A user-defined word that is associated in

the environment division with a specified

implementor-name.

N

namespace

See XML namespace.

national character

Any character represented in UTF-16.

national character data

A general reference to data represented in

UTF-16.

national character position

See character position.

national data

See national character data.

634 Enterprise COBOL for z/OS V4.1 Language Reference

 |
 |

national data item

A data item of class national. Class

national includes categories national,

national-edited, and numeric-edited with

USAGE NATIONAL.

national decimal data item

A data item described by a PICTURE

character-string that contains valid

combinations of picture symbols 9, S, P,

and V. A national decimal data item is an

external decimal data item that has usage

NATIONAL.

national-edited data item

A data item described by a PICTURE

character-string that contains the symbol

N and at least one of the simple insertion

symbols B, 0, and /. A national-edited

data item has usage NATIONAL.

national floating-point data item

A data item described with usage

NATIONAL and a picture character-string

that describes a floating-point data item.

See floating-point.

national group item

A group item that is explicitly or

implicitly described with a

GROUP-USAGE clause with the

NATIONAL phrase. A national group is

processed as though it were defined as an

elementary data item of category national

for operations such as INSPECT, STRING,

and UNSTRING. This ensures correct

padding and truncation of national

characters, as opposed to defining data

items described with USAGE NATIONAL

within an alphanumeric group item. For

operations that require processing of the

elementary items within a group, such as

MOVE CORRESPONDING, ADD

CORRESPONDING, and INITIALIZE

identifier, a national group is processed

using group semantics.

* native character set

The implementor-defined character set

associated with the computer specified in

the OBJECT-COMPUTER paragraph.

* native collating sequence

The implementor-defined collating

sequence associated with the computer

specified in the OBJECT-COMPUTER

paragraph.

* negated combined condition

The ’NOT’ logical operator immediately

followed by a parenthesized combined

condition.

* negated simple condition

The ’NOT’ logical operator immediately

followed by a simple condition.

nested program

A program that is directly contained

within another program.

* next executable sentence

The next sentence to which control will be

transferred after execution of the current

statement is complete.

* next executable statement

The next statement to which control will

be transferred after execution of the

current statement is complete.

* next record

The record that logically follows the

current record of a file.

* noncontiguous items

Elementary data items in the

working-storage and linkage sections that

bear no hierarchic relationship to other

data items.

nondate

Any of the following:

v A data item whose date description

entry does not include the DATE

FORMAT clause

v A literal

v A date field that has been converted

using the UNDATE function

v A reference-modified date field

v The result of certain arithmetic

operations that can include date field

operands; for example, the difference

between two compatible date fields

null A figurative constant that represents a

value used to indicate that a pointer data

item does not contain a valid address or

that an object reference does not reference

an object. NULLS can be used wherever

NULL can be used.

* numeric character

A character that belongs to the following

set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric data item

(1) A data item whose description restricts

Glossary 635

its content to a value represented by

characters chosen from the digits from ’0’

through ’9’; if signed, the item can also

contain a ’+’, ’-’, or other representation of

an operational sign. (2) A data item of

class numeric and category numeric,

internal floating-point, or external

floating-point, possibly limited to specific

data categories or specific data

descriptions by detailed specifications. A

numeric data item can have usage

DISPLAY, NATIONAL,

PACKED-DECIMAL, BINARY, COMP,

COMP-1, COMP-2, COMP-3, COMP-4, or

COMP-5.

numeric-edited data item

A data item that contains numeric data in

a form suitable for use in printed output.

It can consist of external decimal digits

from 0 through 9, the decimal separator,

commas, the currency sign, sign control

characters, and other editing characters. A

numeric-edited data item can be

represented in usage DISPLAY or usage

NATIONAL.

* numeric function

A function whose class and category are

numeric but which for some possible

evaluation does not satisfy the

requirements of integer functions.

* numeric literal

A literal composed of one or more

numeric characters. It can contain either a

decimal point, or an algebraic sign, or

both. The decimal point must not be the

rightmost character. The algebraic sign, if

present, must be the leftmost character.

O

object

An entity that has state (its data values)

and operations (its methods). An object is

a way to encapsulate state and behavior.

object code

Output from a compiler or assembler that

is itself executable machine code or is

suitable for processing to produce

executable machine code.

* object-computer

The name of an environment division

paragraph in which the computer

environment, within which the program

is executed, is described.

object deck

A portion of an object program suitable as

input to a linkage editor. The term is

synonymous with object module and text

deck.

object instance

A single object, of possibly many,

instantiated from the specifications in the

object paragraph of a COBOL class

definition. An object instance has a copy

of all the data described in its class

definition and all inherited data. The

methods associated with an object

instance includes the methods defined in

its class definition and all inherited

methods.

 An object instance can be an instance of a

Java class.

object module

Synonym for object deck or text deck.

* object of entry

A set of operands and reserved words,

within a data division entry of a COBOL

program, that immediately follows the

subject of the entry.

* object program

A set or group of executable machine

language instructions and other material

designed to interact with data to provide

problem solutions. In this context, an

object program is generally the machine

language result of the operation of a

COBOL compiler on a source program or

on the methods of an object-oriented class

definition. Where there is no danger of

ambiguity, the word ’program’ alone can

be used in place of the phrase ’object

program’.

object reference

A data item that can contain the

information needed to invoke or refer to

an object. An object reference is defined in

COBOL with the OBJECT REFERENCE

phrase in the USAGE clause of a data

description entry. See also typed object

reference and universal object reference.

* object time

The time at which an object program is

executed. The term is synonymous with

the terms execution time and run time.

* obsolete element

A COBOL language element in Standard

636 Enterprise COBOL for z/OS V4.1 Language Reference

COBOL 85 that was deleted from

Standard COBOL 2002.

ODO object

In the example below,

WORKING-STORAGE SECTION

01 TABLE-1.

 05 X PICS9.

 05 Y OCCURS 3 TIMES

 DEPENDING ON X PIC X.

X is the object of the OCCURS

DEPENDING ON clause (ODO object).

The value of the ODO object determines

how many of the ODO subject appear in

the table.

ODO subject

In the example above, Y is the subject of

the OCCURS DEPENDING ON clause

(ODO subject). The number of Y ODO

subjects that appear in the table depends

on the value of X.

* open mode

The state of a file after execution of an

OPEN statement for that file and before

the execution of a CLOSE statement

without the REEL or UNIT phrase for that

file. The particular open mode is specified

in the OPEN statement as either INPUT,

OUTPUT, I-O, or EXTEND.

operand

Data that is operated upon. In this

document, any lowercase word (or words)

that appears in a statement or entry

format is an operand in that it is a

reference to the data identified by that

word (or words).

* operational sign

An algebraic sign, associated with a

numeric data item or a numeric literal, to

indicate whether its value is positive or

negative.

optional file

A file that is declared as being not

necessarily available each time the object

program is executed.

* optional word

A reserved word that is included in a

specific format only to improve the

readability of the language and whose

presence is optional to the user when the

format in which the word appears is used

in a source unit.

* output file

A file that is opened in either the

OUTPUT mode or EXTEND mode.

* output mode

The state of a file after execution of an

OPEN statement, with the OUTPUT or

EXTEND phrase specified, for that file

and before the execution of a CLOSE

statement without the REEL or UNIT

phrase for that file.

* output procedure

A set of statements to which control is

given during execution of a SORT

statement after the sort function is

completed, or during execution of a

MERGE statement after the merge

function reaches a point at which it can

select the next record in merged order

when requested.

overflow condition

A condition that occurs when a portion of

the result of an operation exceeds the

capacity of the intended unit of storage.

overload

To define a method with the same name

as another method available in the same

class, but with a different signature. See

also signature.

override

To redefine (in a subclass) an instance

method inherited from a parent class.

P

package

In Java, a group of related classes that can

be imported individually or as a whole.

packed decimal item

See internal decimal item.

padding character

An alphanumeric or national character or

literal used to fill the unused character

positions in a physical record.

page A vertical division of output data

representing a physical separation of such

data, the separation being based on

internal logical requirements or external

characteristics of the output medium.

* page body

That part of the logical page in which

lines can be written or spaced.

Glossary 637

* paragraph

In the procedure division, a

paragraph-name followed by a separator

period and by zero, one, or more

sentences. In the identification and

environment divisions, a paragraph

header followed by zero, one, or more

entries.

* paragraph header

A reserved word, followed by the

separator period, that indicates the

beginning of a paragraph.

* paragraph-name

A user-defined word that identifies and

begins a paragraph in the procedure

division.

password

A unique string of characters that a

program, computer operator, or user must

supply to meet security requirements

before gaining access to data.

* phrase

An ordered set of one or more

consecutive COBOL character-strings that

form a portion of a COBOL procedural

statement or of a COBOL clause.

* physical record

See block.

pointer data item

A data item in which address values can

be stored. Data items are explicitly

defined as pointers with the USAGE IS

POINTER clause. ADDRESS OF special

registers are implicitly defined as pointer

data items. Pointer data items can be

compared for equality or moved to other

pointer data items.

portability

The ability to transfer an application from

one application platform to another with

relatively few changes to the source code.

* prime record key

A key whose contents uniquely identify a

record within an indexed file.

* priority-number

A user-defined word that classifies

sections in the procedure division for

purposes of segmentation.

Priority-numbers can contain only the

characters ’0’,’1’, . . ., ’9’.

private

In object orientation, data that is

accessible only by methods of the class

that defines the data. Instance data is

accessible only by instance methods;

factory data is accessible only by factory

methods. Thus, instance data is private to

instance methods defined in the same

class definition; factory data is private to

factory methods defined in the same class

definition.

* procedure

A paragraph or group of logically

successive paragraphs, or a section or

group of logically successive sections,

within the procedure division.

* procedure branching statement

A statement that causes the explicit

transfer of control to a statement other

than the next executable statement in the

sequence in which the statements are

written in the source unit. The procedure

branching statements are: ALTER, CALL,

EXIT, EXIT PROGRAM, GO TO, MERGE

(with the OUTPUT PROCEDURE phrase),

PERFORM, SORT (with the INPUT

PROCEDURE or OUTPUT PROCEDURE

phrase), and XML PARSE.

procedure division

The division of a program or method that

contains procedural statements for

performing operations at run time.

* procedure-name

A user-defined word that is used to name

a paragraph or section in the procedure

division. It consists of a paragraph-name

(which can be qualified) or a

section-name.

procedure pointer

A data item in which a pointer to an

entry point can be stored. A data item

defined with the USAGE IS

PROCEDURE-POINTER clause contains

the address of a procedure entry point.

* program-name

In the identification division and the end

program marker, a user-defined or a

literal that identifies a COBOL source

program.

* pseudo-text

A sequence of text words, comment lines,

or the separator space in a source unit or

638 Enterprise COBOL for z/OS V4.1 Language Reference

COBOL library bounded by, but not

including, pseudo-text delimiters.

* pseudo-text delimiter

Two contiguous equal sign characters (==)

used to delimit pseudo-text.

* punctuation character

A character that belongs to the following

set:

 Character Meaning

, Comma

; Semicolon

: Colon

. Period (full stop)

" Quotation mark

(Left parenthesis

) Right parenthesis

 Space

= Equal sign

Q

QSAM (Queued Sequential Access Method)

An extended version of the basic

sequential access method (BSAM). When

this method is used, a queue is formed of

input data blocks that are awaiting

processing or of output data blocks that

have been processed and are awaiting

transfer to auxiliary storage or to an

output device.

* qualified data-name

An identifier that is composed of a

data-name followed by one or more sets

of either of the connectives OF and IN

followed by a data-name qualifier.

* qualifier

(1) A data-name or a name associated

with a level indicator which is used in a

reference either together with another

data-name which is the name of an item

that is subordinate to the qualifier or

together with a condition-name. (2) A

section-name that is used in a reference

together with a paragraph-name specified

in that section. (3) A library-name that is

used in a reference together with a

text-name associated with that library.

R

* random access

An access mode in which the

program-specified value of a key data

item identifies the logical record that is

obtained from, deleted from, or placed

into a relative or indexed file.

* record

See logical record.

* record area

A storage area allocated for the purpose

of processing the record described in a

record description entry in the file section

of the data division. In the file section, the

current number of character positions in

the record area is determined by the

explicit or implicit RECORD clause.

* record description

See record description entry.

* record description entry

The total set of data description entries

associated with a particular record. The

term is synonymous with record

description.

record key

A key whose contents identify a record

within an indexed file.

* record-name

A user-defined word that names a record

described in a record description entry in

the data division of a COBOL program.

* record number

The ordinal number of a record in the file

whose organization is sequential.

recording mode

The format of the logical records in a file.

Recording mode can be F (fixed-length), V

(variable-length), S (spanned), or U

(undefined).

recursion

A program calling itself or being directly

or indirectly called by a one of its called

programs.

recursively capable

A program is recursively capable (can be

called recursively) if the RECURSIVE

clause is on the PROGRAM-ID statement.

reel A discrete portion of a storage medium

that contains part of a file, all of a file, or

any number of files. The term is

synonymous with unit and volume.

Glossary 639

reentrant

The attribute of a program or routine that

allows more than one user to share a

single copy of a load module.

* reference format

A format that provides a standard method

for writing COBOL source code.

reference modification

A method of defining a new data item by

specifying the leftmost character position

and length relative to the leftmost

character position of another data item.

* reference-modifier

A syntactically correct combination of

character-strings and separators that

defines a unique data item. It includes a

delimiting left parenthesis separator, the

leftmost character position, a colon

separator, optionally a length, and a

delimiting right parenthesis separator.

* relation

See relational operator or relation condition.

* relation character

A character that belongs to the following

set:

 Character Meaning

> Greater than

< Less than

= Equal to

* relation condition

The proposition, for which a truth value

can be determined, that the value of an

arithmetic expression, data item,

alphanumeric literal, or index-name has a

specific relationship to the value of

another arithmetic expression, data item,

alphanumeric literal, or index name. See

also relational operator.

* relational operator

A reserved word, a relation character, a

group of consecutive reserved words, or a

group of consecutive reserved words and

relation characters used in the

construction of a relation condition. The

permissible operators and their meanings

are:

 Character Meaning

IS GREATER THAN Greater than

Character Meaning

IS > Greater than

IS NOT GREATER THAN Not greater than

IS NOT > Not greater than

IS LESS THAN Less than

IS < Less than

IS NOT LESS THAN Not less than

IS NOT < Not less than

IS EQUAL TO Equal to

IS = Equal to

IS NOT EQUAL TO Not equal to

IS NOT = Not equal to

IS GREATER THAN OR EQUAL

TO

Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO Less than or equal to

IS <= Less than or equal to

* relative file

A file with relative organization.

* relative key

A key whose contents identify a logical

record in a relative file.

* relative organization

The permanent logical file structure in

which each record is uniquely identified

by an integer value greater than zero,

which specifies the record’s logical

ordinal position in the file.

* relative record number

The ordinal number of a record in a file

whose organization is relative. This

number is treated as a numeric literal that

is an integer.

* reserved word

A COBOL word specified in the list of

words that can be used in a COBOL

source unit, but that must not appear in

the program as user-defined words or

system-names.

* resource

A facility or service, controlled by the

operating system, that can be used by an

executing program.

* resultant identifier

A user-defined data item that is to contain

the result of an arithmetic operation.

640 Enterprise COBOL for z/OS V4.1 Language Reference

routine

A set of statements in a COBOL program

that causes the computer to perform an

operation or series of related operations.

* routine-name

A user-defined word that identifies a

procedure written in a language other

than COBOL.

* run time

The time at which an object program is

executed. The term is synonymous with

object time.

runtime environment

The environment in which a COBOL

program executes.

* run unit

A stand-alone object program, or several

object programs, that interact via COBOL

CALL or INVOKE statements and

function at run time as an entity.

S

SBCS (Single Byte Character Set)

See Single Byte Character Set (SBCS).

scope terminator

A COBOL reserved word that marks the

end of certain procedure division

statements. It can be either explicit

(END-ADD, for example) or implicit (a

separator period, for example).

* section

A set of zero, one or more paragraphs or

entities, called a section body, the first of

which is preceded by a section header.

Each section consists of the section header

and the related section body.

* section header

A combination of words followed by a

separator period that indicates the

beginning of a section. For example,

WORKING-STORAGE SECTION.

* section-name

A user-defined word that names a section

in the procedure division.

segmentation

A feature of Enterprise COBOL that is

based on the Standard COBOL 85

segmentation module. The segmentation

feature uses priority-numbers in section

headers to assign sections to fixed

segments or independent segments.

Segment classification affects whether

procedures contained in a segment receive

control in initial state or last-used state.

* sentence

A sequence of one or more statements, the

last of which is terminated by a separator

period.

* separately compiled program

A program that, together with its

contained programs, is compiled

separately from all other programs.

* separator

A character or two or more contiguous

characters used to delimit

character-strings.

* separator comma

A comma (,) followed by a space used to

delimit character-strings.

* separator period

A period (.) followed by a space used to

delimit character-strings.

* separator semicolon

A semicolon (;) followed by a space used

to delimit character-strings.

* sequential access

An access mode in which logical records

are obtained from or placed into a file in

a consecutive predecessor-to-successor

logical record sequence determined by the

order of records in the file.

* sequential file

A file with sequential organization.

* sequential organization

The permanent logical file structure in

which a record is identified by a

predecessor-successor relationship

established when the record is placed into

the file.

serial search

A search in which the members of a set

are consecutively examined, beginning

with the first member and ending with

the last.

* 77-level-description-entry

A data description entry that describes a

noncontiguous data item with the

level-number 77.

* sign condition

The proposition, for which a truth value

can be determined, that the algebraic

Glossary 641

value of a data item or an arithmetic

expression is either less than, greater than,

or equal to zero.

signature

The name of a method and the number

and types of its formal parameters.

* simple condition

Any single condition chosen from the set:

v Relation condition

v Class condition

v Condition-name condition

v Switch-status condition

v Sign condition

Single Byte Character Set (SBCS)

A set of characters in which each

character is represented by a single byte.

See also EBCDIC (Extended Binary-Coded

Decimal Interchange Code).

slack bytes (within records)

Bytes inserted by the compiler between

data items to ensure correct alignment of

some elementary data items. Slack bytes

contain no meaningful data. The

SYNCHRONIZED clause instructs the

compiler to insert slack bytes when they

are needed for proper alignment.

slack bytes (between records)

Bytes inserted by the programmer

between blocked logical records of a file,

to ensure correct alignment of some

elementary data items. In some cases,

slack bytes between records improve

performance for records processed in a

buffer.

* sort file

A collection of records to be sorted by a

SORT statement. The sort file is created

and can be used by the sort function only.

* sort-merge file description entry

An entry in the file section of the data

division that is composed of the level

indicator SD, followed by a file-name, and

then followed clauses that describe the

attributes of the sort-merge file.

source unit

A unit of COBOL source code that can be

separately compiled: a program or a class

definition. Also known as compilation unit.

* special character

A character that belongs to the following

set:

 Character Meaning

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Forward slash

= Equal sign

$ Currency sign

, Comma (decimal point)

; Semicolon

. Period (decimal point, full stop)

" Quotation mark

(Left parenthesis

) Right parenthesis

> Greater than symbol

< Less than symbol

: Colon

SPECIAL-NAMES

The name of an environment division

paragraph in which environment-names

are related to user-specified

mnemonic-names.

* special registers

Certain compiler-generated storage areas

whose primary use is to store information

produced in conjunction with the use of a

specific COBOL feature.

Standard COBOL 85

The COBOL language defined by the

ANSI and ISO standards identified in

Appendix G, “Industry specifications,” on

page 613.

Standard COBOL 2002

The COBOL language defined by the

following standards:

v INCITS/ISO/IEC 1989-2002,

Information Technology - Programming

Languages - COBOL

v ISO/IEC 1989:2002, Information

technology -- Programming languages

-- COBOL

* statement

A COBOL language construct that

specifies one or more actions to be

642 Enterprise COBOL for z/OS V4.1 Language Reference

performed. Statements can be procedural

statements or compiler-directing

statements. An example of a procedural

statement is the ADD statement; an

example of a compiler-directing statement

is the USE statement.

structured programming

A technique for organizing and coding a

computer program in which the program

comprises a hierarchy of segments, each

segment having a single entry point and a

single exit point. Control is passed

downward through the structure without

unconditional branches to higher levels of

the hierarchy.

subclass

A class that inherits from another class.

When two classes in an inheritance

relationship are considered together, the

subclass is the inheriting class; the

superclass is the inherited class.

 A subclass is also referred to as a child

class or derived class.

* subject of entry

An operand or reserved word that

appears immediately following the level

indicator or the level-number in a data

division entry.

* subprogram

Any called program.

* subscript

An occurrence number represented by

either an integer, a data-name optionally

followed by an integer with the operator

+ or -, or an index-name optionally

followed by an integer with the operator

+ or -, that identifies a particular element

in a table. A subscript can be the word

ALL when the subscripted identifier is

used as a function argument for a

function allowing a variable number of

arguments.

* subscripted data-name

An identifier that is composed of a

data-name followed by one or more

subscripts enclosed in parentheses.

superclass

A class that is inherited by another class.

When two classes in an inheritance

relationship are considered together, the

subclass is the inheriting class; the

superclass is the inherited class.

The superclass is also referred to as the

parent class.

surrogate pair

In the UTF-16 format of Unicode, a pair

of encoding units that together represents

a single Unicode graphic character. The

first unit of the pair is called a high

surrogate and the second a low surrogate.

The code value of a high surrogate is in

the range X’D800’ through X’DBFF’. The

code value of a low surrogate is in the

range X’DC00’ through X’DFFF’.

Surrogate pairs provide for more

characters than the 65,536 characters that

fit in the Unicode 16-bit coded character

set.

switch-status condition

The proposition, for which a truth value

can be determined, that an UPSI switch,

capable of being set to an ’on’ or ’off’

status, has been set to a specific status.

* symbolic-character

A user-defined word that specifies a

user-defined figurative constant.

syntax

(1) The relationship among characters or

groups of characters, independent of their

meanings or the manner of their

interpretation and use. (2) The structure

of expressions in a language. (3) The rules

governing the structure of a language. (4)

The relationship among symbols. (5) The

rules for the construction of a statement.

* system-name

A COBOL word that is used to

communicate with the operating

environment.

T

* table

A set of logically consecutive items of

data that are defined in the data division

by means of the OCCURS clause.

* table element

A data item that belongs to the set of

repeated items comprising a table.

text deck

Synonym for object deck or object module.

* text-name

A user-defined word that identifies library

text.

Glossary 643

* text word

A character or a sequence of contiguous

characters between margin A and margin

R in COBOL source code. A text word can

be:

v A separator, except for: space; a

pseudo-text delimiter; and the opening

and closing delimiters for alphanumeric

literals. The right parenthesis and left

parenthesis characters, regardless of

context within the library, source unit,

or pseudo-text, are always considered

text words.

v A literal including, in the case of

alphanumeric literals, the opening

quotation mark and the closing

quotation mark that bound the literal.

v Any other sequence of contiguous

COBOL characters except comment

lines and the word ’COPY’, bounded

by separators, that are neither a

separator nor a literal.

trailer-label

(1) A file or data set label that follows the

data records on a unit of recording

medium. (2) Synonym for end-of-file

label.

* truth value

The representation of the result of the

evaluation of a condition in terms of one

of two values: true or false.

typed object reference

An object reference data item that can

reference only an object of a specified

class or one of its subclasses.

U

* unary operator

A plus (+) or a minus (-) sign that

precedes a variable or a left parenthesis in

an arithmetic expression and that has the

effect of multiplying the expression by +1

or -1, respectively.

Unicode

A coded character set that encodes all the

characters required for the written

expression of any of the languages of the

modern world. There are multiple formats

for representing Unicode, including

UTF-8, UTF-16, and UTF-32. Enterprise

COBOL supports Unicode using UTF-16

big-endian format as the representation

for the national data type.

unit A module of direct access, the dimensions

of which are determined by IBM.

universal object reference

An object reference data item that can

contain a reference to an object of any

class.

* unsuccessful execution

The attempted execution of a statement

that does not result in the execution of all

the operations specified by that statement.

UPSI switch

A program switch that performs the

functions of a hardware switch. Eight are

provided: UPSI-0 through UPSI-7.

* user-defined word

A COBOL word that must be supplied by

the user to satisfy the format of a clause

or statement. The maximum length of a

user-defined word is 30 bytes.

V

* variable

A data item whose value can be changed

by the application at run time.

variable-length item

A group item that contains a table

described with the DEPENDING phrase

of the OCCURS clause.

* variable-length record

A record associated with a file whose file

description or sort-merge description

entry permits records to contain a varying

number of character positions.

* variable-occurrence data item

A variable-occurrence data item is a table

element which is repeated a variable

number of times. Such an item must

contain an OCCURS DEPENDING ON

clause in its data description entry, or be

subordinate to such an item.

variably located group

A group item following, and not

subordinate to, a variable-length table in

the same level-01 record. A variably

located group can be an alphanumeric

group or a national group.

variably located item

A data item following, and not

subordinate to, a variable-length table in

the same level-01 record.

644 Enterprise COBOL for z/OS V4.1 Language Reference

 |
 |
 |
 |

volume

A module of external storage. For tape

devices it is a reel; for direct-access

devices it is a unit.

volume switch procedures

System procedures executed automatically

when the end of a unit or reel has been

reached before end-of-file has been

reached.

W

white space characters

Characters that introduce space into a

document. They are:

v Space

v Horizontal tabulation

v Carriage return

v Line feed

v Next line

as named in the Unicode Standard.

windowed date field

A date field containing a windowed

(two-digit) year. See also date field and

windowed year.

windowed year

A date field that consists only of a

two-digit year. This two-digit year can be

interpreted using a century window. For

example, 05 could be interpreted as 2005.

See also century window. Compare with

expanded year.

* word

A character-string that forms a

user-defined word, a system-name, a

reserved word, or a function-name.

* working-storage section

The section of the data division that

describes working-storage data items,

composed either of noncontiguous items

or working-storage records, or both.

X

XML Extensible Markup Language. A

metalanguage for defining markup

languages that was derived from and is a

subset of SGML. XML omits the more

complex and less-used parts of SGML and

makes it much easier to:

v Write applications to handle document

types

v Author and manage structured

information

v Transmit and share structured

information across diverse computing

systems

XML is being developed under the

auspices of the World Wide Web

Consortium (W3C).

XML data

Data that is organized into a hierarchical

structure with XML elements. The data

definitions are defined in XML element

type declarations.

XML declaration

XML text that specifies characteristics of

the XML document such as the version of

XML being used and the encoding of the

document.

XML document

A data object that is well formed as

defined by the W3C XML specification.

XML namespace

A mechanism, defined by the W3C XML

Namespace specifications, that limits the

scope of a collection of element names

and attribute names. A uniquely chosen

XML namespace ensures the unique

identity of an element name or attribute

name across multiple XML documents or

multiple contexts within an XML

document.

Z

zoned decimal data item

A data item described by a PICTURE

character-string that contains valid

combinations of picture symbols 9, S, P,

and V. A zoned decimal data item is an

external decimal data item that has usage

DISPLAY. See external decimal data item

and national decimal data item.

Glossary 645

 |
 |
 |
 |
 |
 |
 |
 |
 |
 |

646 Enterprise COBOL for z/OS V4.1 Language Reference

List of resources

Enterprise COBOL for z/OS

Compiler and Runtime Migration Guide, GC23-8527

Customization Guide, SC23-8526

Language Reference, SC23-8528

Licensed Program Specifications, GI11-7871

Programming Guide, SC23-8529

Softcopy publications

The following collection kits contain Enterprise COBOL and other product

publications:

z/OS Software Products Collection, SK3T-4270

z/OS and Software Products DVD Collection, SK3T-4271

Support

If you have a problem using Enterprise COBOL for z/OS, see the following site,

which provides up-to-date support information: www.ibm.com/software/
awdtools/cobol/zos/ support/.

Related COBOL publications

COBOL Report Writer Precompiler

Programmer’s Manual, SC26-4301

Other related publications

CICS Transaction Server for z/OS

Application Programming Guide, SC34-6818

Application Programming Reference, SC34-6819

Customization Guide, SC34-6814

External Interfaces Guide, SC34-6830

z/OS XL C/C++

Programming Guide, SC09-4765

Run-Time Library Reference, SA22-7821

© Copyright IBM Corp. 1991, 2007 647

|

|

|

|

|

|

|
|

|

|

|

|

|

|

Debug Tool

Debug Tool Reference and Messages, SC19-1198

Debug Tool User’s Guide, SC19-1196

z/OS DFSMS

Access Method Services for Catalogs, SC26-7394

Checkpoint/Restart, SC26-7401

Macro Instructions for Data Sets, SC26-7408

Using Data Sets, SC26-7410

Utilities, SC26-7414

Java Guide and Reference, SC18-7821

z/OS ISPF

Dialog Developer’s Guide and Reference , SC34-4821

User’s Guide Vol. 1, SC34-4822

User’s Guide Vol. 2, SC34-4823

z/OS Language Environment

Concepts Guide, SA22-7567

Customization, SA22-7564

Debugging Guide, GA22-7560

Programming Guide, SA22-7561

Programming Reference, SA22-7562

Run-Time Messages, SA22-7566

Run-Time Migration Guide, GA22-7565

Writing Interlanguage Communication Applications, SA22-7563

z/OS MVS

JCL Reference, SA22-7597

JCL User’s Guide, SA22-7598

Program Management: User’s Guide and Reference, SA22-7643

System Commands, SA22-7627

648 Enterprise COBOL for z/OS V4.1 Language Reference

|

|

|

z/OS TSO/E

Command Reference, SA22-7782

Primer, SA22-7787

User’s Guide, SA22-7794

z/OS UNIX® System Services

Command Reference, SA22-7802

Programming: Assembler Callable Services Reference, SA22-7803

User’s Guide, SA22-7801

Softcopy publications for z/OS

The following collection kit contains z/OS and related product publications:

z/OS CD Collection Kit, SK3T-4269

Unicode and character representation

Unicode, www.unicode.org/

Character Data Representation Architecture: Reference and Registry, SC09-2190

z/OS Support for Unicode: Using Conversion Services, SA22-7649

Java

The Java Language Specification, Second Edition, by Gosling and others,

java.sun.com/docs/ books/jls/second_edition/html/j.title.doc.html

Java Native Interface, java.sun.com/j2se/ 1.3/docs/guide/jni/index.html

Java 2 Enterprise Edition Developer’s Guide, java.sun.com/j2ee/sdk_1.2.1/techdocs/
guides/ ejb/html/DevGuideTOC.html

Java 2 on z/OS, www.ibm.com/servers/eserver/ zseries/software/java/

Persistent Reusable Java Virtual Machine User’s Guide, SC34-6201

XML

Extensible Markup Language (XML), www.w3.org/XML/

Namespaces in XML 1.0, www.w3.org/TR/REC-xml-names

Namespaces in XML 1.1, www.w3.org/TR/xml-names11

XML specification, www.w3.org/TR/REC-xml/

z/OS XML System Services User’s Guide and Reference, SA23-1350

List of resources 649

|

|

|

650 Enterprise COBOL for z/OS V4.1 Language Reference

Index

Special characters
- (minus)

insertion character 218, 219

SIGN clause 228

symbol in PICTURE clause 209

, (comma)
insertion character 217

symbol in PICTURE clause 207, 209

: (colon)
description 45

required use of 553

/ (slash)
insertion character 217

symbol in PICTURE clause 209

(/) comment line 56

(period) symbol in PICTURE clause 207

$ (default currency symbol)
in PICTURE clause 209

insertion character 218, 219

symbol in PICTURE clause 207

* symbol in PICTURE clause 207

*CBL (*CONTROL) statement 544

*CONTROL (*CBL) statement 544

> (greater than) 272

>= (greater than or equal to) 272

< (less than) 272

<= (less than or equal to) 272

+ (plus)
insertion character 218, 219, 220

SIGN clause 228

symbol in PICTURE clause 209

= (equal) 272

Numerics
0

insertion character 217

symbol in PICTURE clause 209

0 symbol in PICTURE clause 207

66, RENAMES data description

entry 225

66, renames level-number 163

77, elementary item level-number 163

88, condition-name data description

entry 188

88, conditional variable level

number 163

9 symbol in PICTURE clause 207

9, symbol in PICTURE clause 209

A
A symbol in PICTURE clause 206

abbreviated combined relation

condition 619

examples 289

using parentheses in 288

abend, definition 619

ACCEPT statement
description and format 308

ACCEPT statement (continued)
FROM phrase 308

mnemonic-name in 308

overlapping operands, unpredictable

results 299

system information transfer 310

access mode
description 140

dynamic
DELETE statement 337

description 141

READ statement 418

DYNAMIC 140

random
DELETE statement 337

description 141

READ statement 418

RANDOM 140

sequential
DELETE statement 336

description 141

READ statement 415

SEQUENTIAL 140

ACCESS MODE clause 140

accessibility
of Enterprise COBOL xiii

of this document xiv

using z/OS xiii

ACOS function 506

ADD statement
common phrases 294

CORRESPONDING phrase 315

description and format 313

END-ADD phrase 316

GIVING phrase 314

NOT ON SIZE ERROR phrase 315

ON SIZE ERROR phrase 315

ROUNDED phrase 315

ADDRESS OF special register 17

ADV compiler option 472

advanced function printing 476

ADVANCING phrase 471

AFTER phrase
INSPECT statement 369

PERFORM statement 406

with REPLACING 366

with TALLYING 365

WRITE statement 471

alignment rules 168

ALL literal
figurative constant 13

STOP statement 451

STRING statement 453

ALL phrase
INSPECT statement 365, 366

SEARCH statement 430

UNSTRING statement 463

ALL subscripting 500

ALPHABET clause 119

alphabet-name 11, 60

description 119

alphabet-name (continued)
MERGE statement 382

PROGRAM COLLATING SEQUENCE

clause 115

SORT statement 444

alphabetic category 166

alphabetic character in ACCEPT 308

ALPHABETIC class test 267

alphabetic function arguments 498

alphabetic items
alignment rules 168

elementary move rules 388

how to define 210

PICTURE clause 210

ALPHABETIC-LOWER class test 267

ALPHABETIC-UPPER class test 267

alphanumeric category 166

alphanumeric comparisons 275

alphanumeric function arguments 498

alphanumeric functions 496, 497

alphanumeric group items 163

alphanumeric items
alignment rules 168

elementary move rules 389

how to define 212

PICTURE clause 212

alphanumeric literals 35, 38

in hexadecimal notation 37

with DBCS characters 36

alphanumeric operands, comparing 275

alphanumeric-edited category 166

alphanumeric-edited items
alignment rules 168

elementary move rules 389

how to define 213

PICTURE clause 213

ALSO phrase
ALPHABET clause 119

EVALUATE statement 348

ALTER statement
description and format 317

GO TO statement and 356

segmentation considerations 317

altered GO TO statement 356

alternate key data item 143

ALTERNATE RECORD KEY clause 143

DUPLICATES phrase 144

AND logical operator 284

ANNUITY function 506

ANSI COBOL standards 613

ANSI X3.22 609

ANSI X3.27 609

ANSI X3.4 609

APPLY WRITE-ONLY clause 152

Area A (cols. 8-11) 52

Area B (cols. 12-72) 53

arguments 498

arithmetic expression
COMPUTE statement 333

description 261

EVALUATE statement 348

© Copyright IBM Corp. 1991, 2007 651

arithmetic expression (continued)
relation condition 271

arithmetic operators 12

description 262

permissible symbol pairs 263

arithmetic statements
ADD 313

common phrases 294

COMPUTE 333

DIVIDE 341

list of 298

multiple results 299

MULTIPLY 394

operands 298

programming notes 299

SUBTRACT 457

ASCENDING KEY phrase
collating sequence 201

description 381

MERGE statement 381

OCCURS clause 200

SORT statement 442

ASCII
collating sequence 588

specifying in SPECIAL-NAMES

paragraph 119

ASCII considerations 609

ASSIGN clause 610

CODE-SET clause 611

data description entries 611

data division 610

environment division 609

I-O-CONTROL paragraph 610

OBJECT-COMPUTER paragraph 609

procedure division 611

PROGRAM COLLATING SEQUENCE

clause 609

SPECIAL-NAMES paragraph 609

ASCII standard 613

ASIN function 507

ASSIGN clause
ASCII considerations 610

description 132

format 128

SELECT clause and 132

assigning index values 434

assignment-name 12, 132

ASSIGN clause 132

environment variable 132

RECORD DELIMITER clause 140

RERUN clause 148

assistive technologies xiii

asterisk (*)
comment line 56

insertion character 220

AT END phrase
READ statement 414

RETURN statement 423

SEARCH statement 433

SEARCH statement (binary

search) 430

SEARCH statement (serial

search) 428

AT END-OF-PAGE phrases 472

at-end condition
READ statement 417

RETURN statement 423

ATAN function 507

ATTRIBUTE-CHARACTER XML

event 25

ATTRIBUTE-CHARACTERS XML

event 25

ATTRIBUTE-NAME XML event 25

ATTRIBUTE-NATIONAL-CHARACTER

XML event 25

ATTRIBUTES phrase 481

AUTHOR paragraph
description 109

format 101

B
B

insertion character 217

symbol in PICTURE clause 206

basic character set 3

BASIS statement 543

basis-name 60

batch compile 88

BEFORE phrase
INSPECT statement 369

PERFORM statement 406

with REPLACING 366

with TALLYING 365

WRITE statement 471

big-endian 5

binary arithmetic operators 262

binary data item, DISPLAY

statement 338

BINARY phrase in USAGE clause 236

binary search 430

blank lines 57

BLANK WHEN ZERO clause
description and format 190

INDEX phrase in USAGE clause 240

BLOCK CONTAINS clause
description 177

format 171

branching
GO TO statement 355

out-of-line PERFORM statement 404

BY CONTENT phrase
CALL statement 322

BY REFERENCE phrase
CALL statement 322

BY VALUE phrase
CALL statement 323

INVOKE statement 374

C
CALL statement

CANCEL statement and 327

description and format 319

linkage section 258

ON OVERFLOW phrase 319

procedure division header 255, 258

program termination 319

subprogram linkage 319

transfer of control 80

USING phrase 258

called and calling programs,

description 319

CANCEL statement 327

carriage control character 472

category
of group items 163

relationship to classes of data 164

relationship to usages of data 164

category descriptions 166

category of data 164

alphabetic 166, 210

alphanumeric 166, 212

alphanumeric-edited 166, 213

DBCS 166, 213

external floating-point 167

internal floating-point 167

national 167, 214

national-edited 167, 214

numeric 167, 211

numeric-edited 168, 212

category of functions 165

category of literals 165

CBL (PROCESS) statement 544

CCSID 5

century window (See also date field)
definition 83

CHAR function 507

character code set, specifying 119

character encoding unit 5

character sets 5

character-strings 9

COBOL words 9

representation in PICTURE

clause 209

size determination 169

CHARACTERS BY phrase 366

CHARACTERS phrase
BLOCK CONTAINS clause 177

INSPECT statement 365

MEMORY SIZE clause 115

USAGE clause and 177

characters, valid in COBOL program 3

checkpoint processing, RERUN

clause 148

class (object-oriented) 93

class (of data)
of data items 164

of figurative constants 165

of functions 164

of group items 163

of literals 165

CLASS clause 122

class condition 267

class definition
class procedure division 253

CLASS-ID paragraph 107

configuration section 113

description 93

effect of SELF and SUPER 372

factory procedure division 253

identification division 102

object procedure division 253

requirements for indexed tables 201

class identification division 101, 107

class procedure division 253

CLASS-ID paragraph 107

class-name 11, 12, 60

class-name class test 267

class-name, OO 60

652 Enterprise COBOL for z/OS V4.1 Language Reference

clauses 50

definition 50

syntactical hierarchy 49

CLOSE statement
format and description 329

COBOL
class definition 93

language structure 3

method definition 97

program structure 87

reference format 51

COBOL classes 93

COBOL objects 93

COBOL standards 613

COBOL words 9

with DBCS characters 9

with single-byte characters 9

code page names 5

code pages 5

CODE-SET clause
ALPHABET clause and 119

ASCII considerations 611

description 185

format 171

NATIVE phrase and 185

CODEPAGE compiler option 5

collating sequence
ASCENDING/DESCENDING KEY

phrase and 201

ASCII 588

EBCDIC 585

specified in OBJECT-COMPUTER

paragraph 115

specified in SPECIAL-NAMES

paragraph 119

COLLATING SEQUENCE phrase 115

ALPHABET clause 119

MERGE statement 382

SORT statement 444

colon character
description 45

required use of 553

column 7
indicator area 54

specifying comments 56

combined condition
description 285

evaluation rules 286

logical operators and evaluation

results 286

order of evaluation 287

permissible element sequences 286

comma (,)
DECIMAL-POINT IS COMMA

clause 124

insertion character 217

comment lines
description 56

in identification division 109

in library text 549

COMMENT XML event 25

comments 43

COMMON clause 105

common processing facilities 300

COMP-1 through COMP-5 data

items 236

comparison tables 272

comparison types 272

comparisons
alphanumeric operands 275

cycle, INSPECT statement 369

date field 279

DBCS operands 276

function pointer operands 281

group operands 278

in EVALUATE statement 349

index data items 278

index-names 278

national operands 276

numeric operands 277

object reference operands 282

procedure pointer operands 281

rules for COPY statement 550

compatible date field (See also date field)
definition 83

compiler limits 581

compiler options 544

ADV 472

CODEPAGE 5

controlling listing output 544

DATEPROC 81

NUMPROC 283

PGMNAME 327

specifying 544

THREAD 201

TRUNC 169

compiler-directing statements 57, 543

*CBL (*CONTROL) 544

*CONTROL (*CBL) 544

BASIS 543

CBL (PROCESS) 544

COPY 546

DELETE 553

EJECT 554

ENTER 554

INSERT 555

PROCESS (CBL) 544

READY TRACE 556

REPLACE 556

RESET TRACE 556

SERVICE LABEL 559

SERVICE RELOAD 560

SKIP1 560

SKIP2 560

SKIP3 560

TITLE 561

USE 562

complex conditions
abbreviated combined relation 287

combined condition 285

description 284

negated simple 285

complex OCCURS DEPENDING ON

(CODO) 204

composite of operands 298

COMPUTATIONAL data items 236

COMPUTATIONAL phrases in USAGE

clause 236

COMPUTE statement
common phrases 296

description and format 333

computer-name 12, 114

condition
abbreviated combined relation 287

condition (continued)
class 267

combined 285

complex 284

condition-name 269

EVALUATE statement 348

IF statement 357

negated simple 285

PERFORM UNTIL statement 406

relation 271

SEARCH statement (binary

search) 430

SEARCH statement (serial

search) 430

sign 283

simple 267

switch-status 284

condition-name 11, 60, 70

and conditional variable 188

description and format 269

rules for values 246

SEARCH statement 432

SET statement 437

SPECIAL-NAMES paragraph 119

switch status condition 119

conditional expressions
DBCS operands 276

description 267

index-names and index data

items 278

order of evaluation of operands 286

parentheses in abbreviated combined

relation conditions 288

conditional statements
description 292

GO TO statement 355

IF statement 357

list of 292

PERFORM statement 406

conditional variable 188

configuration section
description (programs, classes,

methods) 113

REPOSITORY paragraph 124

SOURCE-COMPUTER

paragraph 114

SPECIAL-NAMES paragraph 116

conformance rules
SET...USAGE OBJECT

REFERENCE 440

contained programs 87

CONTENT-CHARACTER XML event 25

CONTENT-CHARACTERS XML

event 25

CONTENT-NATIONAL-CHARACTER

XML event 25

continuation
area 51

lines 54, 56

CONTINUE statement 335

CONTROL statement (*CONTROL) 544

conversion of data, DISPLAY

statement 338

CONVERTING phrase 367

COPY libraries 66

COPY statement
comparison rules 550

Index 653

COPY statement (continued)
description and format 546

example 551

replacement rules 550

REPLACING phrase 549

SUPPRESS option 549

CORRESPONDING (CORR) phrase
ADD statement 315

description 315

MOVE statement 386

SUBTRACT statement 458

with ON SIZE ERROR phrase 297

COS function 508

COUNT IN phrase
UNSTRING statement 464

XML GENERATE statement 480

CR (credit)
insertion character 218

symbol in PICTURE clause 207

cs (currency symbol)
in PICTURE clause 206

CURRENCY SIGN clause
description 123

Euro currency sign 123

currency sign value 123

currency symbol 209

in PICTURE clause 207

specifying in CURRENCY SIGN

clause 123

currency symbol, default ($) 218

CURRENT-DATE function 508

D
data

alignment 168

categories 164, 210

classes 164

hierarchies used in qualification 161

organization 137

signed 170

truncation of 169, 197

data category
alphabetic 210

alphanumeric 212

alphanumeric-edited 213

DBCS 213

national 214

national-edited 214

numeric 211

numeric-edited 212

data category descriptions 166

data conversion, DISPLAY

statement 338

data description entries
ASCII considerations 611

data description entry 187

BLANK WHEN ZERO clause 190

data-name 189

DATE FORMAT clause 190

FILLER phrase 189

GLOBAL clause 196

indentation and 163

JUSTIFIED clause 196

level-66 format (previously defined

items) 188

data description entry (continued)
level-88 format (condition-

names) 188

level-number description 188

OCCURS clause 198

OCCURS DEPENDING ON (ODO)

clause 202

PICTURE clause 205

REDEFINES clause 222

RENAMES clause 225

SIGN clause 227

SYNCHRONIZED clause 229

USAGE clause 234

USAGE IS NATIONAL clause

and 196

VALUE clause 243

data division
ASCII considerations 610

data description entry 187

data relationships 160

file description (FD) entry 176

in factory definition 155

in method definition 155

in object definition 155

in program definition 155

levels of data 161

linkage section 159

local-storage section 158

sort description (SD) entry 176

working-storage section 157

data division names 67

data flow
STRING statement 455

UNSTRING statement 465

data item
characteristics 187

description entry definition 157

EXTERNAL clause 195

data item description entry 158

data items
categories 165

classes 165

data manipulation statements
ACCEPT 308

INITIALIZE 359

list of 299

MOVE 386

overlapping operands 299

READ 413

RELEASE 420

RETURN 422

REWRITE 424

SET 434

STRING 452

UNSTRING 461

WRITE 469

data organization
access modes and 141

indexed 138

line-sequential 138

relative 138

sequential 137

DATA RECORDS clause
description 182

format 171

data relationships
data division 160

data transfer 308

data units
factory data 160

file data 159

instance data 160

method data 160

overview 159

program data 160

data-item-description-entry
linkage section 159

data-name
data description entry 189

definition 60

DATE 311

date field
addition 264

arithmetic 264

compatible 83

DATE FORMAT clause 190

DATEPROC compiler option 81

DATEVAL function 511

definition 82

expansion of windowed date fields

before use 191

group items that are date fields 193

in relation conditions 279

in sign conditions 283

MOVE statement, behavior in 391

nondate 83

purpose 81

restrictions 192

size errors 265, 296

storing arithmetic results 265

subtraction 265

trigger values 192

UNDATE function 535

windowed date field conditional

variables 270

date field comparisons 279

date format (See also DATE FORMAT

clause)
definition 82

DATE FORMAT clause 190

combining with other clauses 192

date functions 502

DATE YYYYMMDD 311

DATE-COMPILED paragraph
description 109

format 101

DATE-OF-INTEGER function 510

DATE-TO-YYYYMMDD function 510

DATE-WRITTEN paragraph
description 109

format 101

DATEPROC compiler option 81

DATEVAL function 511

DAY 311

DAY YYYYDDD 311

DAY-OF-INTEGER function 512

DAY-OF-WEEK 311

DAY-TO-YYYYDDD function 513

DB (debit)
insertion character 218

symbol in PICTURE clause 207

DBCS (Double-Byte Character Set)
elementary move rules 389

using in comments 110

654 Enterprise COBOL for z/OS V4.1 Language Reference

DBCS category 166

DBCS character set 3

DBCS characters
in COBOL words 10

in literals 36

DBCS class condition 267

DBCS comparisons 276

DBCS function arguments 498

DBCS items
alignment rules 168

how to define 213

in ACCEPT 308

PICTURE clause 213

DBCS literals 39

in ACCEPT 308

DBCS notation xviii

de-editing 390

DEBUG-CONTENTS 17

DEBUG-ITEM special register 17, 594

DEBUG-LINE 17

DEBUG-NAME 17

debugging 593

DEBUGGING declarative 562, 566

debugging lines 57, 114, 593

debugging mode
compile-time switch 594

object-time switch 594

DEBUGGING MODE clause 114, 566,

593, 594

debugging sections 593

decimal point (.) 296

DECIMAL-POINT IS COMMA clause
description 124

NUMVAL function 526

NUMVAL-C function 527

declarative procedures
description and format 259

PERFORM statement 403

USE statement 259

declaratives
DEBUGGING 566

EXCEPTION/ERROR 562

LABEL 564

precedence rules for nested

programs 564

DECLARATIVES key word
begin in Area A 53

description 259

declaratives section 259

DELETE statement
description and format 553

dynamic access 337

format and description 336

INVALID KEY phrase 337

random access 337

sequential access 336

DELIMITED BY phrase
STRING 452

UNSTRING statement 463

delimited scope statement 293

delimiter
INSPECT statement 367

UNSTRING statement 463

DELIMITER IN phrase, UNSTRING

statement 464

DEPENDING phrase
GO TO statement 355

DEPENDING phrase (continued)
OCCURS clause 202

derived class 93

DESCENDING KEY phrase 200

collating sequence 201

description 381

MERGE statement 381

SORT statement 442

display floating-point 216

DISPLAY phrase in USAGE clause 238

DISPLAY statement
description and format 338

DISPLAY-OF function 514

DIVIDE statement
common phrases 296

description and format 341

REMAINDER phrase 344

division header
format, environment division 113

format, identification division 101

format, procedure division 255

specification of 52

DO-UNTIL structure, PERFORM

statement 406

DO-WHILE structure, PERFORM

statement 406

DOCUMENT-TYPE-DECLARATION

XML event 25

Double-Byte Character Set (DBCS)
PICTURE clause and 213

using in comments 110

DOWN BY phrase, SET statement 435

DUPLICATES phrase 144

SORT statement 443

dynamic access mode
data organization and 141

DELETE statement 337

description 141

READ statement 418

E
E symbol in PICTURE clause 206

EBCDIC
code page 1140 585

CODE-SET clause and 185

collating sequence 585

specifying in SPECIAL-NAMES

paragraph 119

editing
fixed insertion 218

floating insertion 219

replacement 220

signs 170

simple insertion 217

special insertion 218

suppression 220

editing sign control symbol 207

editing signs 170

eject page 56

EJECT statement 554

elementary items 161

alignment rules 168

basic subdivisions of a record 161

MOVE statement 387

size determination in program 169

size determination in storage 169

elementary move rules 387

ELSE NEXT SENTENCE phrase 357

ENCODING phrase
XML GENERATE statement 480

ENCODING phrase, in XML PARSE 487

encoding units 5

ENCODING-DECLARATION XML

event 25

end class marker 53

END DECLARATIVES key word 259

end markers 53

end method marker 53

END PROGRAM 88

end program marker 53

END-ADD phrase 316

END-CALL phrase 326

END-IF phrase 357

END-INVOKE phrase 376

END-OF-CDATA-SECTION XML

event 25

END-OF-DOCUMENT XML event 25

END-OF-ELEMENT XML event 25

end-of-file processing 329

END-OF-INPUT XML event 25

END-OF-PAGE phrases 472

END-PERFORM phrase 405

END-SUBSTRACT phrase 460

END-WRITE phrase 474

END-XML phrase
XML GENERATE statement 483

XML PARSE statement 487

entries
definition 49

syntactical hierarchy 49

ENTRY statement
description and format 346

subprogram linkage 346

environment division
ASCII considerations 609

configuration section
ALPHABET clause 119

CURRENCY SIGN clause 123

OBJECT-COMPUTER

paragraph 114

REPOSITORY paragraph 124

SOURCE-COMPUTER

paragraph 114

SPECIAL-NAMES paragraph 116,

122

SYMBOLIC CHARACTERS

clause 121

input-output section
FILE-CONTROL paragraph 128

REPOSITORY paragraph 124

environment variable
assignment-name 132

DSN option 132

for a line sequential file 132

for a QSAM file 132

for a VSAM file 132

PATH option 132

environment-name 12, 308, 475

SPECIAL-NAMES paragraph 118,

119

EOP phrases 472

equal sign (=) 271

EQUAL TO relational operator 271

Index 655

EUC 5

Euro currency sign 586

specifying in CURRENCY SIGN

clause 123

EVALUATE statement
comparing operands 349

determining truth value 348

format and description 347

evaluation rules
combined conditions 286

EVALUATE statement 349

nested IF statement 358

EXCEPTION XML event 25

EXCEPTION/ERROR declarative 562

CLOSE statement 330

DELETE statement 336

description and format 562

execution flow
ALTER statement 317

PERFORM statement 403

EXIT METHOD statement
format and description 352

EXIT PROGRAM statement
format and description 353

EXIT statement
format and description 351

PERFORM statement 404

expanded date field (See also date field)
definition 82

expanded year (See also date field)
definition 82

expansion of windowed date fields before

use 191

explicit attributes, of data 78

explicit scope terminators 293

exponentiation
exponential expression 262

expression, arithmetic 261

EXTEND phrase
OPEN statement 398

extended character set 3

extension language elements 569

EXTERNAL clause
with data item 195

with file name 176

external decimal item
DISPLAY statement 338

external floating-point
DISPLAY statement 338

external floating-point category 167

external floating-point in ACCEPT 308

external floating-point items
alignment rules 168

how to define 215

PICTURE clause 215

external-class-name 12, 125

F
FACTORIAL function 515

factory data 93

factory data division 155

format 156

factory data unit 160

factory definition
FACTORY paragraph 108

format and description 95

factory identification division 101, 108

factory method 93, 98

FACTORY paragraph 108

factory procedure division 253

factory procedure division header 255

factory working-storage 157

FALSE phrase 348

FD (file description) entry
BLOCK CONTAINS clause 177

DATA RECORDS clause 182

description 176

format 171

GLOBAL clause 177

LABEL RECORDS clause 181

level indicator 161

VALUE OF clause 182

figurative constant
DISPLAY statement 338

STOP statement 451

STRING statement 453

figurative constants 13

ALL literal 13

HIGH-VALUE 13

HIGH-VALUES 13

LOW-VALUE 13

LOW-VALUES 13

NULL 13

NULLS 13

QUOTE 13

QUOTES 13

SPACE 13

SPACES 13

symbolic-character 13

ZERO 13

ZEROES 13

ZEROS 13

file
definition 159

labels 181

file organization
and access modes 141

definition 141

LINAGE clause 182

line-sequential 138

types of 137

file position indicator
description 306

READ statement 417

file section 156, 176

EXTERNAL clause 176

RECORD clause 179

FILE STATUS clause
DELETE statement and 336

description 145

file status key 300

format 128

INVALID KEY phrase and 304

file status key
common processing facility 300

value and meaning 300

FILE-CONTROL paragraph
ASSIGN clause 132

description and format 128

FILE STATUS clause 145

ORGANIZATION clause 137

PADDING CHARACTER clause 139

RECORD KEY clause 142

FILE-CONTROL paragraph (continued)
RELATIVE KEY clause 144

RESERVE clause 136

SELECT clause 132

file-description-entry 156

file-name 60

file-name, specifying on SELECT

clause 132

FILLER phrase 187

CORRESPONDING phrase 189

data description entry 189

fixed insertion editing 218

fixed segments 260

fixed-length
records 177

floating insertion editing 219

floating-point
DISPLAY statement 338

floating-point literals 39

FOOTING phrase of LINAGE

clause 182

FOR REMOVAL phrase 329, 330

format notation, rules for xiv

FROM phrase
ACCEPT statement 308

REWRITE statement 424

SUBTRACT statement 457

with identifier 305

WRITE statement 470

function arguments 498

function definitions 502

function pointer
in SET statement 434

function pointer data items 239

relation condition 281

function type 496

function-identifier 77

function-names 12

function-pointer data items
SET statement 438

FUNCTION-POINTER phrase in USAGE

clause 239

functions
arguments 498

categories 165

class and category of 164

classes 165

description 495

rules for usage 497

types of functions 496

G
G symbol in PICTURE clause 206

garbage collection 93

GIVING phrase
ADD statement 314

arithmetic 296

DIVIDE statement 344

MERGE statement 383

MULTIPLY statement 395

SORT statement 445

SUBTRACT statement 459

GLOBAL clause
with data item 196

with file name 177

glossary 619

656 Enterprise COBOL for z/OS V4.1 Language Reference

GO TO statement 317

altered 356

conditional 355

format and description 355

MORE-LABELS 356

SEARCH statement 432, 433

unconditional 355

GO TO, DEPENDING ON phrase 317

GOBACK statement 354

graphic character 5

GREATER THAN OR EQUAL TO symbol

(>=) 271

GREATER THAN symbol (>) 271

group comparisons 278

group items 161

alphanumeric 163

class and category of 163

description 161

MOVE statement 392

national 164, 197

usage of 163

group move rules 392

GROUP-USAGE clause 197

description 197

format 197

GROUP-USAGE NATIONAL clause 197

groups
categories 165

classes 165

H
halting execution 451

hexadecimal notation
for alphanumeric literals 37

for national literals 42

hiding 109

hierarchy of data 161

HIGH-VALUE figurative constant 13,

119

HIGH-VALUES figurative constant 13,

119

hyphen (-), in indicator area 54

I
I-O-CONTROL paragraph

APPLY WRITE-ONLY clause 152

ASCII considerations 610

checkpoint processing in 148

description 127, 146

MULTIPLE FILE TAPE clause 151

order of entries 147

RERUN clause 148

SAME AREA clause 149

SAME RECORD AREA clause 150

SAME SORT AREA clause 151

SAME SORT-MERGE AREA

clause 151

IBM extensions xvii, 569

identification division
CLASS-ID paragraph 107

FACTORY paragraph 108

format 101

format (program, class, method) 101

METHOD-ID paragraph 108

identification division (continued)
OBJECT paragraph 108

optional paragraphs 109

PROGRAM-ID paragraph 104

identifier 261

identifiers 68, 260

IF statement 357

imperative statement 290

implementor-name 12

implicit
redefinition of storage area 176, 223

scope terminators 294

implicit attributes, of data 78

in-line PERFORM statement 403

indentation 54, 163

independent segments 260

index
data item 278, 387

relative indexing 74

SET statement 74

index data item 71

INDEX phrase in USAGE clause 239

index-name 60, 71

assigning values 434

comparisons 278

OCCURS clause 201

PERFORM statement 412

SET statement 434

INDEXED BY phrase 201

indexed files
CLOSE statement 330

DELETE statement 337

FILE-CONTROL paragraph

format 128

I-O-CONTROL paragraph

format 147

organization 138

permissible statements for 401

READ statement 417

REWRITE statement 425

START statement 449

indexed organization
description 138

FILE-CONTROL paragraph

format 128

I-O-CONTROL paragraph

format 147

indexing
description 73

MOVE statement evaluation 387

OCCURS clause 73, 198

relative 74

SET statement and 74

indicator area 51

industry specifications 613

inheritance 93, 107

INHERITS clause 107

INITIAL clause 105

initial state of program 105

INITIALIZE statement
format and description 359

overlapping operands, unpredictable

results 299

input file, label processing 399

INPUT phrase
OPEN statement 398

USE statement 562

INPUT PROCEDURE phrase
RELEASE statement 420

SORT statement 445

Input-Output section
description 127

file control paragraph 127

FILE-CONTROL keyword 127

FILE-CONTROL paragraph 128

format 127

I-O-CONTROL paragraph 146

input-output statements
ACCEPT 308

CLOSE 329

common processing facilities 300

DELETE 336

DISPLAY 338

EXCEPTION/ERROR

procedures 563

general description 300

OPEN 397

READ 413

REWRITE 424

START 448

WRITE 469

INSERT statement 555

insertion editing
fixed (numeric-edited items) 218

floating (numeric-edited items) 219

simple 217

special (numeric-edited items) 218

INSPECT statement
AFTER phrase 367

BEFORE phrase 367

comparison cycle 369

CONVERTING phrase 367

overlapping operands, unpredictable

results 299

REPLACING phrase 365

INSTALLATION paragraph
description 109

format 101

instance data 93, 97, 160

instance definition
format and description 95

instance method 93, 98

instance variable 93

integer arguments 498

INTEGER function 516

integer function arguments 498

integer functions 497

INTEGER-OF-DATE function 516

INTEGER-OF-DAY function 517

INTEGER-PART function 517

internal floating-point
DISPLAY statement 338

size of items 169

internal floating-point category 167

internal floating-point items
alignment rules 168

how to define 210

INTO phrase
DIVIDE statement 341

READ statement 413

RETURN statement 422

STRING statement 452

UNSTRING statement 464

with identifier 305

Index 657

intrinsic functions 495

ACOS 506

alphanumeric functions 496

ANNUITY 506

ASIN 507

ATAN 507

categories 165

CHAR 507

classes 165

COS 508

CURRENT-DATE 508

DATE-OF-INTEGER 510

DATE-TO-YYYYMMDD 510

DATEVAL 511

DAY-OF-INTEGER 512

DAY-TO-YYYYDDD 513

DISPLAY-OF 514

FACTORIAL 515

floating-point literals 499

INTEGER 516

integer functions 496

INTEGER-OF-DATE 516

INTEGER-OF-DAY 517

INTEGER-PART 517

LENGTH 518

LOG 519

LOG10 519

LOWER-CASE 520

MAX 520

MEAN 521

MEDIAN 522

MIDRANGE 522

MIN 523

MOD 524

national functions 496

NATIONAL-OF 524

numeric functions 496

NUMVAL 525

NUMVAL-C 526

ORD 528

ORD-MAX 529

ORD-MIN 529

PRESENT-VALUE 530

RANDOM 530

RANGE 531

REM 532

REVERSE 532

SIN 533

SQRT 533

STANDARD-DEVIATION 534

SUM 534

summary of 503

TAN 535

UNDATE 535

UPPER-CASE 536

VARIANCE 536

WHEN-COMPILED 537

YEAR-TO-YYYY 538

YEARWINDOW 539

invalid key condition 304

INVALID KEY phrase
DELETE statement 337

READ statement 415

REWRITE statement 425

START statement 449

WRITE statement 473

INVOKE statement
BY VALUE phrase 374

format and description 372

LENGTH OF special register 374

NEW phrase 372

NOT ON EXCEPTION phrase 376

ON EXCEPTION phrase 376

RETURNING phrase 375

SELF special object identifier 372

SUPER special object identifier 372

USING phrase 374

ISCII considerations 609

ISCII standard 613

ISO 646 609

ISO COBOL standards 613

J
Java

class-name 125

package 125

Java classes 93

Java interoperability 93

data types 374, 377, 378

literal types 374

Java interoperation 93

Java Native Interface (JNI) 18, 93, 633

Java objects 93

Java String data 93

java.lang.Object 93

JNI environment pointer 93

JNIENVPTR special register 18, 93

JUSTIFIED clause
description and format 196

effect on initial settings 197

STRING statement 453

truncation of data 197

USAGE IS INDEX clause and 196

VALUE clause and 243

K
Kanji 267

key of reference 138

KEY phrase
OCCURS clause 200

READ statement 414

SEARCH statement 430

SORT statement 442

START statement 448

keyboard navigation xiii

L
LABEL declarative 562, 564

label processing, OPEN statement 399

LABEL RECORDS clause
description 181

format 171

language-name 12

LEADING phrase
INSPECT statement 365, 366

SIGN clause 228

LENGTH function 518

LENGTH OF special register 18

INVOKE statement 374

LESS THAN OR EQUAL TO symbol

(<=) 271

LESS THAN symbol (<) 271

level
01 item 161

02-49 item 161

level indicator
(FD and SD) 53

definition 160

level-number 56, 161, 187

(01 and 77) 53

66, renames 163

77, elementary item 163

88, conditional variable 163

definition 160

description and format 188

FILLER phrase 189

levels of data 160, 161

library-name 11, 60

COPY statement 547

limit values, date field 192

limits of the compiler 581

LINAGE clause 472

description 182

diagram of phrases 183

format 171

LINAGE-COUNTER special register
description 19

WRITE statement 472

LINE
WRITE statement 471

line advancing 471

line-sequential file organization 138

LINES
WRITE statement 471

LINES AT BOTTOM phrase 183

LINES AT TOP phrase 183

linkage section
called subprogram 258

description 159

requirement for indexed items 201

VALUE clause 243

literal
and arithmetic expressions 261

ASSIGN clause 132

CODE-SET clause and ALPHABET

clause 119

CURRENCY SIGN clause 123

description 35

null-terminated alphanumeric 38

STOP statement 451

VALUE clause 244

literals
categories 165

classes 165

DBCS 39

literals, class and category of 165

local-storage 158

defining with RECURSIVE

clause 105

requirement for indexed items 201

LOG function 519

LOG10 function 519

logical operator
complex condition 284

in evaluation of combined

conditions 286

658 Enterprise COBOL for z/OS V4.1 Language Reference

logical operator (continued)
list of 284

logical record
definition 159

file data 159

program data 160

record description entry and 160

RECORDS phrase 177

LOW-VALUE figurative constant 13, 119

LOW-VALUES figurative constant 13,

119

LOWER-CASE function 520

lowercase letters
in PICTURE clause 205

M
MAX function 520

maximum index value 74

MEAN function 521

MEDIAN function 522

MEMORY SIZE clause 115

MERGE statement
ASCENDING/DESCENDING KEY

phrase 381

COLLATING SEQUENCE

phrase 382

format and description 380

GIVING phrase 383

OUTPUT PROCEDURE phrase 384

segmentation considerations 385

USING phrase 383

method data 160

method data division 155

format 155

method definition
effect of SELF and SUPER 372

format and description 97

identification division 104

inheritance rules 107

method procedure division 253

METHOD-ID paragraph 108

method file section 157

method hiding 109

method identification division 101, 108

method local-storage 158, 159

method overloading 108

method overriding 109

method procedure division 253, 254

method procedure division header 256

method working-storage 157

METHOD-ID paragraph 108

method-name 60

methods
available to subclasses 107

exiting 352

invoking 372

recursively reentering 105

reusing 107

MIDRANGE function 522

millennium language extensions
syntax 81

millennium language extensions (MLE)

(See also date field)
description 81

MIN function 523

minus sign (-)
COBOL character 3

fixed insertion symbol 218

floating insertion symbol 219, 220

SIGN clause 228

mnemonic-name 11, 60, 308

ACCEPT statement 308

DISPLAY statement 338

SET statement 436

SPECIAL-NAMES paragraph 119

WRITE statement 471

MOD function 524

MORE-LABELS GO TO statement 356

MOVE statement
CORRESPONDING phrase 386

elementary moves 387

format and description 386

group moves 392

record area 392

MULTIPLE FILE TAPE clause 151

multiple record processing, READ

statement 415

multiple results, arithmetic

statements 299

MULTIPLY statement
common phrases 296

format and description 394

multivolume files
READ statement 417

WRITE statement 475

N
N symbol in PICTURE clause 206

NAMESPACE phrase 481

NAMESPACE-DECLARATION XML

event 25

NAMESPACE-PREFIX phrase 481

national category 167

national comparisons 276

national data items 240

elementary move rules 389

in a class condition 267

in ACCEPT 308

in UNSTRING statement 461

SEARCH statement 430

national floating-point 216

national function arguments 498

national functions 496, 497

national groups 197

CORRESPONDING phrase 198

description 198

INITIALIZE statement 198

qualification of data-names 198

RENAMES clause 198

where processed as group 198

XML GENERATE statement 198

national items
alignment rules 168

how to define 214

PICTURE clause 214

national literals 3, 41

in ACCEPT 308

national literals in hexadecimal

notation 42

NATIONAL phrase in USAGE

clause 240

national-edited category 167

national-edited items 214

alignment rules 168

how to define 214

NATIONAL-OF function 524

native binary data item 236

native character set 119

native collating sequence 119

negated combined condition 285

negated simple condition 285

NEGATIVE in sign condition 283

nested IF structure
description 358

EVALUATE statement 347

nested programs
description 87

precedence rules for 564

NEW phrase
INVOKE statement 372

next executable statement 79

NEXT RECORD phrase, READ

statement 413

NEXT SENTENCE phrase
IF statement 357

SEARCH statement 433

SEARCH statement (binary

search) 431

SEARCH statement (serial

search) 428

NO ADVANCING phrase, DISPLAY

statement 338

NO REWIND phrase 329

OPEN statement 398

nondate (See also date field)
definition 83

nonreel file, definition 330

NOT AT END phrase
READ statement 414

RETURN statement 423

NOT END-OF-PAGE phrase 472

NOT INVALID KEY phrase
DELETE statement 337

READ statement 415

REWRITE statement 425

START statement 449

NOT ON EXCEPTION phrase
CALL statement 325

INVOKE statement 376

XML GENERATE statement 482

XML PARSE statement 487

NOT ON OVERFLOW phrase
STRING statement 454

UNSTRING statement 465

NOT ON SIZE ERROR phrase
ADD statement 315

DIVIDE statement 344

general description 296

MULTIPLY statement 396

SUBTRACT statement 459

NSYMBOL compiler option 3

NULL
figurative constant 13

null block branch, CONTINUE

statement 335

null-terminated alphanumeric literals 38

NULL/NULLS
data pointer 281, 437

Index 659

NULL/NULLS (continued)
figurative constant 248

function-pointer 282, 439

object reference 282, 440

procedure-pointer 282, 439

NULLS
figurative constant 13

numeric arguments 498, 499

numeric category 167

NUMERIC class test 267

numeric comparisons 277

numeric function arguments 498

numeric functions 496, 497

numeric items 211

alignment rules 168

how to define 211

millennium dates 211

PICTURE clause 211

numeric literals 38

numeric-edited category 168

numeric-edited item
editing signs 170

elementary move rules 389

numeric-edited items
alignment rules 168

how to define 212

PICTURE clause 212

NUMVAL function 525

NUMVAL-C function 526

O
object data division 155

format 156

object definition
OBJECT paragraph 108

object identification division 101, 108

object instance data 160

OBJECT paragraph 108

object procedure division 253

object program 87

object reference 93

in SET statement 434

OBJECT REFERENCE phrase 240

object working-storage 157

OBJECT-COMPUTER paragraph 114

ASCII considerations 609

object-oriented class-name 60

object-oriented COBOL
class definition 93

comparison rules 282

conformance rules
SET...USAGE OBJECT

REFERENCE 440

effect of VALUE clause 157

factory definition 95

identification division (class and

method) 101

INHERITS clause 107

INVOKE statement 372

method definition 97

method-name 60

object definition 95

OBJECT REFERENCE phrase in

USAGE clause 240

OO class name 60

object-oriented COBOL (continued)
procedure division (classes and

methods) 253

REPOSITORY paragraph 124

SELF and SUPER special object

identifiers 12

specifying configuration section 113

subclasses and methods 107

objects in EVALUATE statement 348

obsolete language elements xvii

OCCURS clause
ASCENDING/DESCENDING KEY

phrase 200

description 198

INDEXED BY phrase 201

restrictions 199

variable-length tables format 202

OCCURS DEPENDING ON (ODO)

clause
complex 204

description 203

format 202

object of 203

RECORD clause 179

REDEFINES clause and 199

SEARCH statement and 199

subject and object of 203

subject of 199, 203

subscripting 71

OFF phrase, SET statement 436

OMITTED phrase 322

ON EXCEPTION phrase
CALL statement 325

INVOKE statement 376

XML GENERATE statement 482

XML PARSE statement 487

ON OVERFLOW phrase
CALL statement 325

STRING statement 454, 465

ON phrase, SET statement 436

ON SIZE ERROR phrase
ADD statement 315

arithmetic statements 296

COMPUTE statement 334

DIVIDE statement 344

MULTIPLY statement 396

SUBTRACT statement 459

OPEN statement
for new/existing files 398

format and description 397

I-O phrase 398

label processing 399

phrases 397

programming notes 400

system dependencies 401

operands
comparison of alphanumeric 275

comparison of DBCS 276

comparison of group 278

comparison of national 276

comparison of numeric 277

composite of 298

overlapping 299

operation of XML GENERATE

statement 483

operational sign
algebraic, description of 170

operational sign (continued)
SIGN clause and 170

USAGE clause and 170

operational signs 170

optional words, syntax notation xiv

ORD function 528

ORD-MAX function 529

ORD-MIN function 529

order of entries
clauses in FILE-CONTROL

paragraph 128

I-O-CONTROL paragraph 147

order of evaluation in combined

conditions 287

ORGANIZATION clause
description 137

format 128

INDEXED phrase 137

LINE SEQUENTIAL phrase 137

RELATIVE phrase 137

SEQUENTIAL phrase 137

out-of-line PERFORM statement 404

outermost programs, debugging 566

output file, label processing 399

OUTPUT phrase 398

OUTPUT PROCEDURE phrase
MERGE statement 384

RETURN statement 422

SORT statement 446

OVERFLOW phrase
CALL statement 325

STRING statement 454, 465

overlapping operands invalid in
arithmetic statements 299

data manipulation statements 299

overloading 108

overriding 109

P
P symbol in PICTURE clause 206, 208

PACKED-DECIMAL phrase in USAGE

clause 236

PADDING CHARACTER clause 139

PAGE
WRITE statement 471

page eject 56

paragraph
header, specification of 52

termination, EXIT statement 351

paragraph-name 11, 60

description 260

specification of 52

paragraphs
description 49, 260

syntactical hierarchy 49

parent class 93

parentheses
combined conditions, use 286

in arithmetic expressions 262

partial listings 544

PASSWORD clause
description 145

system dependencies 145

PERFORM statement
branching 404

conditional 406

660 Enterprise COBOL for z/OS V4.1 Language Reference

PERFORM statement (continued)
END-PERFORM phrase 405

EVALUATE statement 347

execution sequences 404

EXIT statement 351

format and description 403

in-line 404

out-of-line 404

TIMES phrase 405

VARYING phrase 407, 409

period (.)
actual decimal point 218

PGMNAME compiler option
CANCEL statement 327

phrases
definition 50

syntactical hierarchy 49

physical record
BLOCK CONTAINS clause 177

definition 159

file data 159

file description entry and 160

RECORDS phrase 177

PICTURE character-strings 43

PICTURE clause
and class condition 267

computational items and 236

CURRENCY SIGN clause 123

data categories 210

DECIMAL-POINT IS COMMA

clause 124, 205

description 205

editing 216

format 205

symbols used in 205

PICTURE SYMBOL phrase 123

picture symbols 206

- 207

, 207

/ 207

. 207

$ (currency symbol) 207

* 207

+ 207

0 207

9 207

A 206

asterisk 207

B 206

comma 207

CR 207

currency symbol (cs) 207, 209

DB 207

E 206

G 206

minus 207

N 206

P 206, 208

period 207

plus 207

S 207

sequence of 208

slash 207

V 207

X 207

Z 207

plus (+)
fixed insertion symbol 218

floating insertion symbol 219, 220

insertion character 220

SIGN clause 228

pointer data items
relation condition 280

SET statement 437

USAGE clause 241

POINTER phrase
STRING statement 452

UNSTRING statement 464

POINTER phrase in USAGE clause 241

POSITIVE in sign condition 283

PRESENT-VALUE function 530

print files, WRITE statement 475

priority-number 115, 260

procedure branching
GO TO statement 355

statements, executed sequentially 307

procedure branching statements 307

procedure division
ASCII considerations 611

declarative procedures 259

description 253

format (programs, methods,

classes) 253

header 255

statements 307

procedure division header
RETURNING phrase 258

USING phrase 256

procedure division names 67

procedure pointer data items
relation condition 281

procedure-name
GO TO statement 355

MERGE statement 384

PERFORM statement 403

SORT statement 445

procedure-pointer data items
SET statement 438

USAGE clause 242

PROCEDURE-POINTER phrase in

USAGE clause 242

procedures, description 260

PROCESS (CBL) statement 544

PROCESSING PROCEDURE phrase, in

XML PARSE 487

PROCESSING-INSTRUCTION-DATA

XML event 25

PROCESSING-INSTRUCTION-TARGET

XML event 25

PROGRAM COLLATING SEQUENCE

clause
ALPHABET clause 119

ASCII considerations 609

SPECIAL-NAMES paragraph

and 115

program data 160

program data division 155

format 155

program definition
program procedure division 253

program identification division 101

program local-storage 158

program procedure division 253

program procedure division header 255

program termination
GOBACK statement 354

STOP statement 451

program working-storage 157

PROGRAM-ID paragraph
description 104

format 101

program-name 60

program-name, rules for referencing 90

program, separately compiled 87

Programming interface information 616

programming notes
ACCEPT statement 308

altered GO TO statement 317

arithmetic statements 299

data manipulation statements 452,

461

DELETE statement 336

EXCEPTION/ERROR

procedures 564

OPEN statement 400

PERFORM statement 405

RECORD clause 179

STRING statement 452

UNSTRING statement 461

programming structures 406

programs, recursive 105

pseudo-text
continuation rules 558

COPY statement operand 549

description 57

pseudo-text delimiters 45

punch files, WRITE statement 475

Q
qualification 65

quotation mark character 54

QUOTE figurative constant 13

QUOTES figurative constant 13

R
railroad track format, how to read xiv

random access mode
data organization and 141

DELETE statement 337

description 141

READ statement 418

RANDOM function 530

RANGE function 531

READ statement
AT END phrases 414

dynamic access mode 418

format and description 413

INTO identifier phrase 305, 413

INVALID KEY phrase 304, 415

KEY phrase 414

multiple record processing 415

multivolume files 417

NEXT RECORD phrase 413

overlapping operands, unpredictable

results 299

programming notes 419

random access mode 418

Index 661

READY TRACE statement 556

receiving field
COMPUTE statement 333

MOVE statement 386

multiple results rules 299

SET statement 434

STRING statement 452

UNSTRING statement 464

record
area description 179

elementary items 161

fixed-length 177

logical, definition of 159

physical, definition of 159

record area
MOVE statement 392

RECORD clause
description and format 179

omission of 179

RECORD CONTAINS 0

CHARACTERS 179

RECORD DELIMITER clause 140

record description entry 158, 187

levels of data 161

logical record 160

RECORD KEY clause
description 142

format 128

record key in indexed file 337

record-description entry
linkage section 159

record-description-entry 156

record-name 60

RECORDING MODE clause 184

RECORDS phrase
BLOCK CONTAINS clause 177

RERUN clause 148

RECURSIVE clause 105

recursive methods 372

recursive programs 105

requirement for indexed items 201

REDEFINES clause
description 222

examples of 224

format 222

general considerations 223

OCCURS clause restriction 222

undefined results 225

VALUE clause and 222

redefinition, implicit 176

REEL phrase 329, 330

reference format 51

reference-modification
description 74

MOVE statement evaluation 387

reference, methods of
simple data 67

relation character
COPY statement 549

INITIALIZE statement 359

INSPECT statement 365

relation conditions
abbreviated combined 287

alphanumeric comparisons 272, 275

comparison operations 272

data pointer 280

DBCS comparisons 272, 276

relation conditions (continued)
description 271

function-pointer operands 281

general relation 271

group comparisons 272

national comparisons 272

numeric comparisons 272

object reference 282

operands of equal size 276

operands of unequal size 276

procedure pointer operands 281

relational operator
in abbreviated combined relation

condition 288

meaning of each 272

relation condition use 271

relational operators 12

relative files
access modes allowed 141

CLOSE statement 330

DELETE statement 337

FILE-CONTROL paragraph

format 128

I-O-CONTROL paragraph

format 147

organization 138

permissible statements for 401

READ statement 415

RELATIVE KEY clause 141, 144

REWRITE statement 426

START statement 450

RELATIVE KEY clause
description 144

format 128

relative organization
access modes allowed 141

description 138

FILE-CONTROL paragraph

format 128

I-O-CONTROL paragraph

format 147

RELEASE statement 299, 420

REM function 532

REMAINDER phrase of DIVIDE

statement 344

RENAMES clause 163

description and format 225

INITIALIZE statement 360

level 66 item 163, 225

PICTURE clause 205

repeated words, syntax notation xv

REPLACE statement
comparison operation 558

continuation rules for

pseudo-text 558

description and format 556

special notes 558

replacement editing 220

replacement rules for COPY

statement 550

REPLACING phrase
COPY statement 549

INITIALIZE statement 359, 360

REPOSITORY paragraph 124, 126

required words, syntax notation xiv

RERUN clause
checkpoint processing 148

RERUN clause (continued)
description 148

format 147

RECORDS phrase 148

sort/merge 148

RESERVE clause
description 136

format 128

reserved words 12, 595

RESET TRACE statement 556

resolution of names 62

result field
GIVING phrase 296

NOT ON SIZE ERROR phrase 296

ON SIZE ERROR phrase 296

ROUNDED phrase 296

RETURN statement
AT END phrase 423

description and format 422

overlapping operands, unpredictable

results 299

RETURN-CODE special register 20

RETURNING NATIONAL phrase, in

XML PARSE 487

RETURNING phrase
CALL statement 324

INVOKE statement 375

procedure division header 258

reusing logical records 425

REVERSE function 532

REWRITE statement
description and format 424

FROM identifier phrase 305

INVALID KEY phrase 425

ROUNDED phrase
ADD statement 315

COMPUTE statement 334

description 296

DIVIDE statement 344

MULTIPLY statement 396

size error checking and 297

SUBTRACT statement 459

RSD file
WRITE statement 471

rules for condition-name entries 246

rules for syntax notation xiv

run unit
description 87

termination with CANCEL

statement 328

runtime options
DEBUG 594

NODEBUG 594

S
S symbol in PICTURE clause 207

SAME clause 149

SAME RECORD AREA clause
description 150

format 147

SAME SORT AREA clause
description 151

format 147

SAME SORT-MERGE AREA clause
description 151

format 147

662 Enterprise COBOL for z/OS V4.1 Language Reference

scope of names 59

scope terminator
explicit 293

implicit 294

SD (sort file description) entry
data division 176

DATA RECORDS clause 182

description 176

level indicator 161

SD (Sort File Description) entry
description 171

SEARCH statement
AT END phrase 428, 433

binary search 430

description and format 427

serial search 428

SET statement 428

VARYING phrase 429

WHEN phrase 432

SEARCH STATEMENT
NEXT SENTENCE phrase 433

section header
description 260

specification of 52

section-name 11, 60

description 260

in EXCEPTION/ERROR

declarative 562

sections 49, 260

SECURITY paragraph
description 109

format 101

SEGMENT-LIMIT clause 115

segmentation 260

segmentation considerations 317, 385,

447

SELECT clause
ASSIGN clause and 132

format 128

specifying a file name 132

SELECT OPTIONAL clause
CLOSE statement 330

description 132

format 128

specification for sequential I-O

files 132

selection objects in EVALUATE

statement 348

selection subjects in EVALUATE

statement 348

SELF 282

SELF special object identifier 12, 372

sending field
MOVE statement 386

SET statement 434

STRING statement 452

UNSTRING statement 461

sentences
definition 50

description 260

syntactical hierarchy 49

SEPARATE CHARACTER phrase of

SIGN clause 228

separately compiled program 87

separators 45, 246

separators, rules for 45

sequence number area (cols. 1-6) 51

sequential access mode
data organization and 141

DELETE statement 336

description 141

READ statement 415

REWRITE statement 425

sequential files
access mode allowed 141

CLOSE statement 329, 330

description 137

file description entry 171

FILE-CONTROL paragraph

format 128

LINAGE clause 182

OPEN statement 397

PASSWORD clause valid with 145

permissible statements for 400

READ statement 416

REWRITE statement 425

SELECT OPTIONAL clause 132

serial search 428

PERFORM statement 407

SERVICE LABEL statement 559

SERVICE RELOAD statement 560

SET statement
description and format 434

DOWN BY phrase 435

function-pointer data items 239, 438

index data item 239

object reference data items 440

OFF phrase 436

ON phrase 436

overlapping operands, unpredictable

results 299

pointer data items 437

procedure-pointer data items 438

requirement for indexed items 201

SEARCH statement 435

TO phrase 434

TO TRUE phrase 437

UP BY phrase 435

sharing data 196

sharing files 177

SHIFT-IN special register 21

SHIFT-OUT special register 21

sibling program 87

SIGN clause 227

sign condition 283

SIGN IS SEPARATE clause 228

signed
numeric item, definition 211

operational signs 170

simple condition
combined 285

description and types 267

negated 285

simple data reference 67

simple insertion editing 217

SIN function 533

single-byte ASCII 5

single-byte EBCDIC 5

size-error condition 296

skip to next page 56

SKIP1 statement 560

SKIP2 statement 560

SKIP3 statement 560

slack bytes
between 233

within 231

slash (/)
comment lines 56

insertion character 217

symbol in PICTURE clause 207

SORT statement
ASCENDING KEY phrase 442

COLLATING SEQUENCE

phrase 444

DESCENDING KEY phrase 442

description and format 441

DUPLICATES phrase 443

GIVING phrase 445

INPUT PROCEDURE phrase 445

OUTPUT PROCEDURE phrase 446

segmentation considerations 447

USING phrase 444

SORT-CONTROL special register 21, 447

SORT-CORE-SIZE special register 22,

447

SORT-FILE-SIZE special register 22, 447

SORT-MESSAGE special register 22, 447

SORT-MODE-SIZE special register 23,

447

SORT-RETURN special register 23, 447

Sort/Merge feature
I-O-CONTROL paragraph

format 147

MERGE statement 380

RELEASE statement 420

RERUN clause 148

RETURN statement 422

SAME SORT AREA clause 151

SAME SORT-MERGE AREA

clause 151

SORT statement 441

Sort/Merge file statement phrases
ASCENDING/DESCENDING KEY

phrase 381

COLLATING SEQUENCE

phrase 382

GIVING phrase 383

OUTPUT PROCEDURE phrase 384

USING phrase 383

source code
library, programming notes 551

listing 546

source code format 51

source language debugging 593

source program
standard COBOL reference format 51

SOURCE-COMPUTER paragraph 114

SPACE figurative constant 13

SPACES figurative constant 13

special insertion editing 218

special object identifiers
SELF 12

SUPER 12

special registers 15

ADDRESS OF 17

DEBUG-ITEM 17

JNIENVPTR 18

LENGTH OF 18

LINAGE-COUNTER 19

RETURN-CODE 20

Index 663

special registers (continued)
SHIFT-OUT, SHIFT-IN 21

SORT-CONTROL 21

SORT-CORE-SIZE 22

SORT-FILE-SIZE 22

SORT-MESSAGE 22

SORT-MODE-SIZE 23

SORT-RETURN 23

TALLY 23

WHEN-COMPILED 24

XML-CODE 24, 25

XML-EVENT 25

XML-NAMESPACE 25, 30

XML-NAMESPACE-PREFIX 25, 32

XML-NNAMESPACE 25, 31

XML-NNAMESPACE-PREFIX 25, 33

XML-NTEXT 25, 33

XML-TEXT 25, 34

SPECIAL-NAMES paragraph
ACCEPT statement 308

ALPHABET clause 119

ASCII considerations 609

ASCII-encoded file specification 185

CLASS clause 122

CODE-SET clause and 185

CURRENCY SIGN clause 123

DECIMAL-POINT IS COMMA

clause 124

description 116

format 116

mnemonic-name 119

SQRT function 533

STANDALONE-DECLARATION XML

event 25

standard alignment
JUSTIFIED clause 197

standard alignment rules 168

STANDARD-1
RECORD DELIMITER clause 140

STANDARD-1 phrase 119

STANDARD-2 phrase 119

STANDARD-DEVIATION function 534

standards 613

START statement
description and format 448

indexed file 449

INVALID KEY phrase 304, 449

relative files 450

status key considerations 448

START-OF-CDATA-SECTION XML

event 25

START-OF-DOCUMENT XML event 25

START-OF-ELEMENT XML event 25

statement operations
common phrases 294

file position indicator 306

INTO and FROM phrases 305

statements
categories of 290

conditional 292

data manipulation 299

definition 50

delimited scope 293

description 260

imperative 290

input-output 300

procedure branching 307

statements (continued)
syntactical hierarchy 49

types of 50

static data 93

static method 93

status key
common processing facility 300

file processing 563

STOP RUN statement 451

STOP statement 451

storage
map listing 546

MEMORY SIZE clause 115

REDEFINES clause 222

STRING statement
description and format 452

execution of 454

overlapping operands, unpredictable

results 299

structure of the COBOL language 3

structured programming
DO-WHILE and DO-UNTIL 406

subclass 93

subclasses and methods 107

subjects in EVALUATE statement 348

subprogram linkage
CALL statement 319

CANCEL statement 327

ENTRY statement 346

subprogram termination
CANCEL statement 327

EXIT PROGRAM statement 353

GOBACK statement 354

subscripting
definition and format 71

INDEXED BY phrase of OCCURS

clause 201

MOVE statement evaluation 387

OCCURS clause specification 198

table references 71

using data-names 73

using index-names (indexing) 73

using integers 73

substitution characters
DISPLAY-OF 514

NATIONAL-OF 525

substitution field of INSPECT

REPLACING 365

substrings, specifying

(reference-modification) 74

SUBTRACT statement
common phrases 294

description and format 457

SUM function 534

SUPER special object identifier 12, 372

superclass 93

SUPPRESS option, COPY 549

suppress output 544

suppression editing 220

switch-status condition 284

SYMBOLIC CHARACTERS clause 121

symbolic-character 11, 60

symbolic-character figurative

constant 13

symbols in PICTURE clause 205

SYNCHRONIZED clause 229

SYNCHRONIZED clause (continued)
effect on other language

elements 229

VALUE clause and 243

syntax notation, rules for xiv

system considerations, subprogram

linkage
CALL statement 319

CANCEL statement 327

system information transfer, ACCEPT

statement 310

system input device, ACCEPT

statement 308

system-names 12, 114

computer-name 114

SOURCE-COMPUTER

paragraph 114

T
table references

indexing 73

subscripting 71

TALLY special register 23

TALLYING phrase
INSPECT statement 365

UNSTRING statement 464

TAN function 535

termination of execution
EXIT METHOD statement 352

EXIT PROGRAM statement 353

GOBACK statement 354

STOP RUN statement 451

terminators, scope 293

text words 548

text-name 11, 60

literal-1 547

THREAD compiler option 201

requirement for indexed items 201

THROUGH (THRU) phrase
ALPHABET clause 119

CLASS clause 122

EVALUATE statement 348

PERFORM statement 403

RENAMES clause 225

VALUE clause 245

TIME 311

TIMES phrase of PERFORM

statement 405

TITLE statement 561

TO phrase, SET statement 434

TO TRUE phrase, SET statement 437

transfer of control
ALTER statement 317, 318

explicit 79

GO TO statement 355

IF statement 358

implicit 79

PERFORM statement 403

XML PARSE statement 487

transfer of data
ACCEPT statement 308

MOVE statement 386

STRING statement 452

UNSTRING statement 461

trigger values, date field 192

trimming of generated XML data 485

664 Enterprise COBOL for z/OS V4.1 Language Reference

TRUNC compiler option 169

truncation of data
arithmetic item 169

JUSTIFIED clause 197

ROUNDED phrase 296

TRUNC compiler option 169

truth value
complex conditions 284

EVALUATE statement 348

IF statement 357

of complex condition 284

sign condition 283

with conditional statement 292

type conformance
SET...USAGE OBJECT

REFERENCE 440

types of functions 496

U
unary operator 262

unconditional GO TO statement 355

UNDATE function 535

Unicode 3, 5

unique names 163

uniqueness of reference 65

unit file, definition 330

UNIT phrase 329

universal object reference 240

UNKNOWN-REFERENCE-IN-
ATTRIBUTE XML event 25

UNKNOWN-REFERENCE-IN-CONTENT

XML event 25

UNRESOLVED-REFERENCE XML

event 25

unsigned numeric item, definition 211

UNSTRING statement
description and format 461

execution 465

overlapping operands, unpredictable

results 299

receiving field 464

sending field 461

UP BY phrase, SET statement 435

UPON phrase, DISPLAY 338

UPPER-CASE function 536

UPSI-0 through UPSI-7, program switches
and switch-status condition 284

condition-name 119

processing special conditions 119

SPECIAL-NAMES paragraph 119

USAGE clause
BINARY phrase 236

CODE-SET clause and 185

COMPUTATIONAL phrases 236

description 234

DISPLAY phrase 238

DISPLAY-1 phrase 239

format 234

FUNCTION-POINTER phrase 239

INDEX phrase 239

NATIONAL phrase 197, 240

operational signs and 170

PACKED-DECIMAL phrase 236

POINTER phrase 241

PROCEDURE-POINTER phrase 242

VALUE clause and 243

USAGE COMP-1
size of items 169

USAGE COMP-2
size of items 169

USAGE DISPLAY
size of items 169

STRING statement and 453

USAGE DISPLAY-1
size of items 169

STRING statement and 453

USAGE NATIONAL
size of items 169

STRING statement and 453

USAGE OBJECT REFERENCE

phrase 372

USE FOR DEBUGGING declarative 594

USE statement
format and description 562

user labels
DEBUGGING declarative 566

LABEL declarative 564

user-defined words 10

USING phrase
ASSIGN clause 132

CALL statement 321

in procedure division header 255

INVOKE statement 374

MERGE statement 383

procedure division header 256

SORT statement 444

subprogram linkage 258

UTF-16 3, 5

UTF-8 5

V
V symbol in PICTURE clause 207

VALUE clause
condition-name 245

effect on object-oriented

programs 157

format 243, 245

level 88 item 163

NULL/NULLS figurative

constant 239, 248

rules for condition-name entries 246

rules for literal values 244

VALUE OF clause
description 182

format 171

variable-length tables 202, 203

VARIANCE function 536

VARYING phrase
PERFORM statement 407

SEARCH statement 429

VERSION-INFORMATION XML

event 25

W
WHEN phrase

EVALUATE statement 348

SEARCH statement (binary

search) 431

SEARCH statement (serial

search) 430

WHEN-COMPILED function 537

WHEN-COMPILED special register 24

windowed date field
expansion before use 191

windowed date field (See also date field)
definition 82

WITH DEBUGGING MODE clause 114,

566, 593

WITH DUPLICATES phrase, SORT

statement 443

WITH FOOTING phrase 183

WITH NO ADVANCING phrase 338

WITH NO REWIND phrase, CLOSE

statement 330

WITH POINTER phrase
STRING statement 452

UNSTRING statement 464

working-storage section 157

WRITE statement
AFTER ADVANCING 471, 475

ALTERNATE RECORD KEY 476

BEFORE ADVANCING 471, 475

description 469

END-OF-PAGE phrase 472

format 469

FROM identifier phrase 305

indexed files 476

NOT END-OF-PAGE phrase 472

relative files 476

sequential files 474

X
X symbol in PICTURE clause 207

XML event
ATTRIBUTE-CHARACTER 25

ATTRIBUTE-CHARACTERS 25

ATTRIBUTE-NAME 25

ATTRIBUTE-NATIONAL-
CHARACTER 25

COMMENT 25

CONTENT-CHARACTER 25

CONTENT-CHARACTERS 25

CONTENT-NATIONAL-
CHARACTER 25

DOCUMENT-TYPE-
DECLARATION 25

ENCODING-DECLARATION 25

END-OF-CDATA-SECTION 25

END-OF-DOCUMENT 25

END-OF-ELEMENT 25

END-OF-INPUT 25

EXCEPTION 25

NAMESPACE-DECLARATION 25

PROCESSING-INSTRUCTION-
DATA 25

PROCESSING-INSTRUCTION-
TARGET 25

STANDALONE-DECLARATION 25

START-OF-CDATA-SECTION 25

START-OF-DOCUMENT 25

START-OF-ELEMENT 25

UNKNOWN-REFERENCE-IN-
ATTRIBUTE 25

UNKNOWN-REFERENCE-IN-
CONTENT 25

UNRESOLVED-REFERENCE 25

Index 665

XML event (continued)
VERSION-INFORMATION 25

XML GENERATE statement
ATTRIBUTES phrase 481

COUNT IN phrase 480

description 478

element name formation 486

ENCODING phrase 480

END-XML phrase 483

exception event 482

format 478

format conversion 484

NAMESPACE phrase 481

NAMESPACE-PREFIX phrase 481

NOT ON EXCEPTION phrase 482

ON EXCEPTION phrase 482

operation 483

trimming 485

XML-DECLARATION phrase 481

XML PARSE statement
control flow 491

description 487

exception event 487

format 487

nested XML GENERATE 491

nested XML PARSE 491

ON EXCEPTION phrase 487

PROCESSING PROCEDURE

phrase 487

XML processing
ENCODING phrase, in XML

GENERATE 480

ENCODING phrase, in XML

PARSE 487

PROCESSING PROCEDURE phrase,

in XML PARSE 487

RETURNING NATIONAL phrase, in

XML PARSE 487

XML-CODE special register 24, 25,

487

XML-EVENT special register 25, 487

XML-NAMESPACE special

register 25, 30, 487

XML-NAMESPACE-PREFIX special

register 25, 32, 487

XML-NNAMESPACE special

register 25, 31, 487

XML-NNAMESPACE-PREFIX special

register 25, 33, 487

XML-NTEXT special register 25, 33,

487

XML-TEXT special register 25, 34,

487

XML-CODE special register 24, 25

use in XML GENERATE 482

use in XML PARSE 487

XML-DECLARATION phrase 481

XML-EVENT special register 25, 492

XML-NAMESPACE special register 25,

30

XML-NAMESPACE special register, in

XML PARSE 487

XML-NAMESPACE-PREFIX special

register 25, 32

XML-NNAMESPACE special register 25,

31

XML-NNAMESPACE-PREFIX special

register 25, 33

XML-NTEXT special register 25, 33, 492

XML-TEXT special register 25, 34, 492

XML, definition 645

Y
year-last date field (See also date field)

definition 82

YEAR-TO-YYYY function 538

YEARWINDOW compiler option
century window 83

YEARWINDOW function 539

Z
Z

insertion character 220

symbol in PICTURE clause 207

zero
filling, elementary moves 387

suppression and replacement

editing 220

ZERO figurative constant 13

ZERO in sign condition 283

ZEROES figurative constant 13

ZEROS figurative constant 13

666 Enterprise COBOL for z/OS V4.1 Language Reference

Readers’ Comments — We’d Like to Hear from You

Enterprise COBOL for z/OS

Language Reference

Version 4 Release 1

 Publication No. SC23-8528-00

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-8528-00

SC23-8528-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Reader Comments

DTX/E269

555 Bailey Avenue

San Jose, CA

U.S.A. 95141-9989

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-S71

Printed in USA

SC23-8528-00

	Contents
	Tables
	Preface
	About this publication
	Accessing softcopy documentation and support information
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Accessibility of this document

	How to read the syntax diagrams
	IBM extensions
	Obsolete language elements
	DBCS notation
	Acknowledgment
	Summary of changes
	Version 4 Release 1 (December 2007)

	How to send your comments

	Part 1. COBOL language structure
	Chapter 1. Characters
	Chapter 2. Character sets and code pages
	Character encoding units
	Single-byte code pages
	EBCDIC DBCS code pages
	USAGE DISPLAY
	USAGE DISPLAY-1

	Unicode UTF-16

	Chapter 3. Character-strings
	COBOL words with single-byte characters
	User-defined words with DBCS characters
	User-defined words
	System-names
	Function-names
	Reserved words
	Figurative constants
	Special registers
	ADDRESS OF
	DEBUG-ITEM
	JNIENVPTR
	LENGTH OF
	LINAGE-COUNTER
	RETURN-CODE
	SHIFT-OUT and SHIFT-IN
	SORT-CONTROL
	SORT-CORE-SIZE
	SORT-FILE-SIZE
	SORT-MESSAGE
	SORT-MODE-SIZE
	SORT-RETURN
	TALLY
	WHEN-COMPILED
	XML-CODE
	XML-EVENT
	XML-NAMESPACE
	XML-NNAMESPACE
	XML-NAMESPACE-PREFIX
	XML-NNAMESPACE-PREFIX
	XML-NTEXT
	XML-TEXT

	Literals
	Alphanumeric literals
	Basic alphanumeric literals
	Alphanumeric literals with DBCS characters
	Hexadecimal notation for alphanumeric literals
	Null-terminated alphanumeric literals

	Numeric literals
	Rules for floating-point literal values

	DBCS literals
	Where DBCS literals can be used

	National literals
	Basic national literals
	Hexadecimal notation for national literals
	Where national literals can be used

	PICTURE character-strings
	Comments

	Chapter 4. Separators
	Rules for separators

	Chapter 5. Sections and paragraphs
	Sentences, statements, and entries
	Entries
	Clauses
	Sentences
	Statements
	Phrases

	Chapter 6. Reference format
	Sequence number area
	Indicator area
	Area A
	Division headers
	Section headers
	Paragraph headers or paragraph names
	Level indicators (FD and SD) or level-numbers (01 and 77)
	DECLARATIVES and END DECLARATIVES
	End program, end class, and end method markers

	Area B
	Entries, sentences, statements, clauses
	Continuation lines
	Continuation of alphanumeric and national literals

	Area A or Area B
	Level-numbers
	Comment lines
	Compiler-directing statements
	Debugging lines
	Pseudo-text
	Blank lines

	Chapter 7. Scope of names
	Types of names
	External and internal resources
	Resolution of names
	Names within programs
	Names within a class definition

	Chapter 8. Referencing data names, copy libraries, and procedure division names
	Uniqueness of reference
	Qualification
	Qualification rules

	Identical names
	References to COPY libraries
	References to procedure division names
	References to data division names
	Simple data reference
	Identifiers

	Condition-name
	Index-name
	Index data item
	Subscripting
	Subscripting using data-names
	Subscripting using index-names (indexing)
	Relative subscripting

	Reference modification
	Evaluation of operands
	Reference modification examples

	Function-identifier

	Data attribute specification

	Chapter 9. Transfer of control
	Chapter 10. Millennium Language Extensions and date fields
	Millennium Language Extensions syntax
	Terms and concepts
	Date field
	Windowed date field
	Expanded date field
	Year-last date field
	Date format
	Compatible date field

	Nondate
	Century window

	Part 2. COBOL source unit structure
	Chapter 11. COBOL program structure
	Nested programs
	Conventions for program-names
	Rules for program-names

	Chapter 12. COBOL class definition structure
	Chapter 13. COBOL method definition structure
	Part 3. Identification division
	Chapter 14. Identification division
	PROGRAM-ID paragraph
	CLASS-ID paragraph
	General rules
	Inheritance

	FACTORY paragraph
	OBJECT paragraph
	METHOD-ID paragraph
	Method signature
	Method overloading, overriding, and hiding
	Method overloading
	Method overriding (for instance methods)
	Method hiding (for factory methods)

	Optional paragraphs

	Part 4. Environment division
	Chapter 15. Configuration section
	SOURCE-COMPUTER paragraph
	OBJECT-COMPUTER paragraph
	SPECIAL-NAMES paragraph
	ALPHABET clause
	SYMBOLIC CHARACTERS clause
	CLASS clause
	CURRENCY SIGN clause
	DECIMAL-POINT IS COMMA clause
	REPOSITORY paragraph
	General rules
	Identifying and referencing a class

	Chapter 16. Input-Output section
	FILE-CONTROL paragraph
	SELECT clause
	ASSIGN clause
	Assignment name for environment variable
	Environment variable contents for a QSAM file
	Environment variable contents for a line-sequential file
	Environment variable contents for a VSAM file

	RESERVE clause
	ORGANIZATION clause
	File organization
	Sequential organization
	Indexed organization
	Relative organization
	Line-sequential organization

	PADDING CHARACTER clause
	RECORD DELIMITER clause
	ACCESS MODE clause
	File organization and access modes
	Access modes
	Relationship between data organizations and access modes

	RECORD KEY clause
	ALTERNATE RECORD KEY clause
	RELATIVE KEY clause
	PASSWORD clause
	FILE STATUS clause
	I-O-CONTROL paragraph
	RERUN clause
	SAME AREA clause
	SAME RECORD AREA clause
	SAME SORT AREA clause
	SAME SORT-MERGE AREA clause
	MULTIPLE FILE TAPE clause
	APPLY WRITE-ONLY clause

	Part 5. Data division
	Chapter 17. Data division overview
	File section
	Working-storage section
	Local-storage section
	Linkage section
	Data units
	File data
	Program data
	Method data
	Factory data
	Instance data

	Data relationships
	Levels of data
	Levels of data in a record description entry
	Special level-numbers
	Indentation
	Classes and categories of group items
	Classes and categories of data
	Category descriptions
	Alphabetic
	Alphanumeric
	Alphanumeric-edited
	DBCS
	External floating-point
	Internal floating-point
	National
	National-edited
	Numeric
	Numeric-edited

	Alignment rules
	Character-string and item size
	Signed data
	Operational signs
	Editing signs

	Chapter 18. Data division--file description entries
	File section
	EXTERNAL clause
	GLOBAL clause
	BLOCK CONTAINS clause
	RECORD clause
	Format 1
	Format 2
	Format 3

	LABEL RECORDS clause
	VALUE OF clause
	DATA RECORDS clause
	LINAGE clause
	LINAGE-COUNTER special register

	RECORDING MODE clause
	CODE-SET clause

	Chapter 19. Data division--data description entry
	Format 1
	Format 2
	Format 3
	Level-numbers
	BLANK WHEN ZERO clause
	DATE FORMAT clause
	Semantics of windowed date fields
	Date trigger values

	Restrictions on using date fields
	Combining the DATE FORMAT clause with other clauses
	Group items that are date fields
	Language elements that treat date fields as nondates
	Language elements that do not accept windowed date fields as arguments
	Language elements that do not accept date fields as arguments

	EXTERNAL clause
	GLOBAL clause
	JUSTIFIED clause
	GROUP-USAGE clause
	OCCURS clause
	Fixed-length tables
	ASCENDING KEY and DESCENDING KEY phrases
	INDEXED BY phrase
	Variable-length tables
	OCCURS DEPENDING ON clause

	PICTURE clause
	Symbols used in the PICTURE clause
	P symbol
	Currency symbol

	Character-string representation
	Data categories and PICTURE rules
	Alphabetic items
	Numeric items
	Numeric-edited items
	Alphanumeric items
	Alphanumeric-edited items
	DBCS items
	National items
	National-edited items
	External floating-point items

	PICTURE clause editing
	Simple insertion editing
	Special insertion editing
	Fixed insertion editing
	Floating insertion editing
	Representing floating insertion editing

	Zero suppression and replacement editing
	Representing zero suppression

	REDEFINES clause
	REDEFINES clause considerations
	REDEFINES clause examples
	Undefined results

	RENAMES clause
	SIGN clause
	SYNCHRONIZED clause
	Slack bytes
	Slack bytes within records
	Slack bytes between records

	USAGE clause
	Computational items
	DISPLAY phrase
	DISPLAY-1 phrase
	FUNCTION-POINTER phrase
	INDEX phrase
	NATIONAL phrase
	OBJECT REFERENCE phrase
	POINTER phrase
	PROCEDURE-POINTER phrase
	NATIVE phrase

	VALUE clause
	Format 1
	Rules for literal values

	Format 2
	Rules for condition-name entries

	Format 3

	Part 6. Procedure division
	Chapter 20. Procedure division structure
	Requirements for a method procedure division
	The procedure division header
	The USING phrase
	RETURNING phrase
	References to items in the linkage section

	Declaratives
	Procedures
	Arithmetic expressions
	Arithmetic operators
	Arithmetic with date fields
	Addition that involves date fields
	Subtraction that involves date fields
	Storing arithmetic results that involve date fields

	Conditional expressions
	Simple conditions
	Class condition
	Condition-name condition
	Condition-name conditions and windowed date field comparisons

	Relation conditions
	General relation conditions
	Alphanumeric comparisons
	DBCS comparisons
	National comparisons
	Numeric comparisons
	Group comparisons
	Comparison of index-names and index data items
	Comparison of date fields

	Data pointer relation conditions
	Procedure-pointer and function-pointer relation conditions
	Object-reference relation conditions
	Sign condition
	Date fields in sign conditions

	Switch-status condition
	Complex conditions
	Negated simple conditions
	Combined conditions
	Order of evaluation of conditions
	Order of evaluation:

	Abbreviated combined relation conditions
	Using parentheses

	Statement categories
	Imperative statements
	Arithmetic
	Data movement
	Ending
	Input-output
	Ordering
	Procedure-branching
	Program or method linkage
	Table-handling

	Conditional statements
	Arithmetic
	Data movement
	Decision
	Input-output
	Ordering
	Program or method linkage
	Table-handling

	Delimited scope statements
	Explicit scope terminators
	Implicit scope terminators
	Compiler-directing statements

	Statement operations
	CORRESPONDING phrase
	GIVING phrase
	ROUNDED phrase
	SIZE ERROR phrases
	Arithmetic statements
	Arithmetic statement operands
	Size of operands
	Overlapping operands
	Multiple results

	Data manipulation statements
	Overlapping operands

	Input-output statements
	Common processing facilities
	File status key
	Invalid key condition
	INTO and FROM phrases
	File position indicator

	Chapter 21. Procedure division statements
	ACCEPT statement
	Data transfer
	System date-related information transfer
	DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, and TIME

	ADD statement
	ROUNDED phrase
	SIZE ERROR phrases
	CORRESPONDING phrase (format 3)
	END-ADD phrase

	ALTER statement
	Segmentation considerations

	CALL statement
	USING phrase
	BY REFERENCE phrase
	BY CONTENT phrase
	BY VALUE phrase
	RETURNING phrase
	ON EXCEPTION phrase
	NOT ON EXCEPTION phrase
	ON OVERFLOW phrase
	END-CALL phrase

	CANCEL statement
	CLOSE statement
	Effect of CLOSE statement on file types

	COMPUTE statement
	ROUNDED phrase
	SIZE ERROR phrases
	END-COMPUTE phrase

	CONTINUE statement
	DELETE statement
	Sequential access mode
	Random or dynamic access mode
	END-DELETE phrase

	DISPLAY statement
	DIVIDE statement
	ROUNDED phrase
	REMAINDER phrase
	SIZE ERROR phrases
	END-DIVIDE phrase

	ENTRY statement
	USING phrase

	EVALUATE statement
	END-EVALUATE phrase
	Determining values
	Comparing selection subjects and objects
	Executing the EVALUATE statement

	EXIT statement
	EXIT METHOD statement
	EXIT PROGRAM statement
	GOBACK statement
	GO TO statement
	Unconditional GO TO
	Conditional GO TO
	Altered GO TO
	MORE-LABELS GO TO

	IF statement
	END-IF phrase
	Transferring control
	Nested IF statements

	INITIALIZE statement
	REPLACING phrase
	INITIALIZE statement rules

	INSPECT statement
	TALLYING phrase (formats 1 and 3)
	REPLACING phrase (formats 2 and 3)
	BEFORE and AFTER phrases (all formats)
	CONVERTING phrase (format 4)
	Data flow
	Comparison cycle
	Example of the INSPECT statement

	INVOKE statement
	USING phrase
	BY VALUE phrase
	Conformance requirements for arguments

	RETURNING phrase
	Conformance requirements for the RETURNING item

	ON EXCEPTION phrase
	NOT ON EXCEPTION phrase
	END-INVOKE phrase
	Interoperable data types for COBOL and Java
	Miscellaneous argument types for COBOL and Java

	MERGE statement
	ASCENDING/DESCENDING KEY phrase
	COLLATING SEQUENCE phrase
	USING phrase
	GIVING phrase
	OUTPUT PROCEDURE phrase
	MERGE special registers
	Segmentation considerations

	MOVE statement
	Elementary moves
	Elementary move rules
	Valid and invalid elementary moves
	Moves involving date fields

	Moves involving file record areas
	Group moves

	MULTIPLY statement
	ROUNDED phrase
	SIZE ERROR phrases
	END-MULTIPLY phrase

	OPEN statement
	General rules
	Label records
	OPEN statement notes

	PERFORM statement
	Basic PERFORM statement
	END-PERFORM
	PERFORM with TIMES phrase
	PERFORM with UNTIL phrase
	PERFORM with VARYING phrase
	Varying identifiers
	Varying two identifiers
	Varying three identifiers
	Varying more than three identifiers
	Varying phrase rules

	READ statement
	KEY IS phrase
	AT END phrases
	INVALID KEY phrases
	END-READ phrase
	Multiple record processing
	Sequential access mode
	Sequential files
	Multivolume QSAM files
	Indexed or relative files

	Random access mode
	Indexed files
	Relative files

	Dynamic access mode
	READ statement notes:

	RELEASE statement
	RETURN statement
	AT END phrases
	END-RETURN phrase

	REWRITE statement
	INVALID KEY phrases
	END-REWRITE phrase
	Reusing a logical record
	Sequential files
	Indexed files
	Relative files

	SEARCH statement
	Serial search
	VARYING phrase
	WHEN phrase (serial search)

	Binary search
	WHEN phrase (binary search)

	Search statement considerations
	AT END and WHEN phrases
	NEXT SENTENCE
	END-SEARCH phrase

	SET statement
	Format 1: SET for basic table handling
	Format 2: SET for adjusting indexes
	Format 3: SET for external switches
	Format 4: SET for condition-names
	Format 5: SET for USAGE IS POINTER data items
	Format 6: SET for procedure-pointer and function-pointer data items
	Format 7: SET for USAGE OBJECT REFERENCE data items

	SORT statement
	ASCENDING KEY and DESCENDING KEY phrases
	DUPLICATES phrase
	COLLATING SEQUENCE phrase
	USING phrase
	INPUT PROCEDURE phrase
	GIVING phrase
	OUTPUT PROCEDURE phrase
	SORT special registers
	Segmentation considerations

	START statement
	KEY phrase
	INVALID KEY phrases
	END-START phrase
	Indexed files
	Relative files

	STOP statement
	STRING statement
	ON OVERFLOW phrases
	END-STRING phrase
	Data flow

	SUBTRACT statement
	ROUNDED phrase
	SIZE ERROR phrases
	CORRESPONDING phrase (format 3)
	END-SUBTRACT phrase

	UNSTRING statement
	DELIMITED BY phrase
	Delimiter with two or more characters
	Two or more delimiters

	INTO phrase
	POINTER phrase
	TALLYING IN phrase
	ON OVERFLOW phrases
	When an overflow condition occurs
	When an overflow condition does not occur

	END-UNSTRING phrase
	Data flow
	Values at the end of execution of the UNSTRING statement

	Example of the UNSTRING statement

	WRITE statement
	ADVANCING phrase
	ADVANCING phrase rules
	LINAGE-COUNTER rules

	END-OF-PAGE phrases
	INVALID KEY phrases
	END-WRITE phrase
	WRITE for sequential files
	Multivolume files
	Punch function files with the IBM 3525
	Print function files
	Advanced Function Printing

	WRITE for indexed files
	WRITE for relative files

	XML GENERATE statement
	Nested XML GENERATE or XML PARSE statements
	Operation of XML GENERATE
	Format conversion of elementary data
	Trimming of generated XML data
	XML element name and attribute name formation

	XML PARSE statement
	Nested XML GENERATE or XML PARSE statements
	Control flow

	Part 7. Intrinsic functions
	Chapter 22. Intrinsic functions
	Specifying a function
	Function definition and evaluation
	Types of functions
	Rules for usage
	Arguments
	Examples
	ALL subscripting

	Function definitions
	ACOS
	ANNUITY
	ASIN
	ATAN
	CHAR
	COS
	CURRENT-DATE
	DATE-OF-INTEGER
	DATE-TO-YYYYMMDD
	DATEVAL
	DAY-OF-INTEGER
	DAY-TO-YYYYDDD
	DISPLAY-OF
	FACTORIAL
	INTEGER
	INTEGER-OF-DATE
	INTEGER-OF-DAY
	INTEGER-PART
	LENGTH
	LOG
	LOG10
	LOWER-CASE
	MAX
	MEAN
	MEDIAN
	MIDRANGE
	MIN
	MOD
	NATIONAL-OF
	NUMVAL
	NUMVAL-C
	ORD
	ORD-MAX
	ORD-MIN
	PRESENT-VALUE
	RANDOM
	RANGE
	REM
	REVERSE
	SIN
	SQRT
	STANDARD-DEVIATION
	SUM
	TAN
	UNDATE
	UPPER-CASE
	VARIANCE
	WHEN-COMPILED
	YEAR-TO-YYYY
	YEARWINDOW

	Part 8. Compiler-directing statements
	Chapter 23. Compiler-directing statements
	BASIS statement
	CBL (PROCESS) statement
	*CONTROL (*CBL) statement
	Source code listing
	Object code listing
	Storage map listing

	COPY statement
	SUPPRESS phrase
	REPLACING phrase
	Replacement and comparison rules

	DELETE statement
	EJECT statement
	ENTER statement
	INSERT statement
	READY or RESET TRACE statement
	REPLACE statement
	Continuation rules for pseudo-text
	Comparison operation
	REPLACE statement notes

	SERVICE LABEL statement
	SERVICE RELOAD statement
	SKIP statements
	TITLE statement
	USE statement
	EXCEPTION/ERROR declarative
	Precedence rules for nested programs
	LABEL declarative
	DEBUGGING declarative

	Appendix A. IBM extensions
	Appendix B. Compiler limits
	Appendix C. EBCDIC and ASCII collating sequences
	EBCDIC collating sequence
	US English ASCII code page

	Appendix D. Source language debugging
	Debugging lines
	Debugging sections
	DEBUG-ITEM special register
	Activate compile-time switch
	Activate object-time switch

	Appendix E. Reserved words
	Appendix F. ASCII considerations
	Environment division
	OBJECT-COMPUTER and SPECIAL-NAMES paragraphs
	FILE-CONTROL paragraph
	I-O-CONTROL paragraph

	Data division
	FD Entry: CODE-SET clause
	Data description entries

	Procedure division

	Appendix G. Industry specifications
	Notices
	Programming interface information
	Trademarks

	Glossary
	List of resources
	Index
	Readers’ Comments — We'd Like to Hear from You

