<|lI!

COBOL. for Windows

Language Reference

Version 75

SC23-8560-00






<|lI!

COBOL. for Windows

Language Reference

Version 75

SC23-8560-00



Note!
Before using this information and the product it supports, be sure to read the general information under

First Edition (October 2008)

This edition applies to COBOL for Windows Version 7.5 in IBM Rational Developer for System z and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using the
correct edition for the level of the product.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.




Contents
Tables

Preface

About this document . .o
Accessibility of this document .
IBM extensions .
Obsolete language elements
How to read the syntax diagrams.
DBCS notation .
Acknowledgment .

Summary of changes.
Version 7 (December 2006)
Version 6 (May 2005)

How to send your comments.

. Xi

. Xiii
. Xxiii
. xiii
. xiii
. Xxiii
. Xiv
. XVi
. Xvi
. Xvii
. Xvii
. xviii
. Xviii

Part 1. COBOL language structure.

Chapter 1. Characters.

Chapter 2. Character sets and code
pages. ..
Compile-time code page
Runtime code page .
Character encoding units .
Single-byte code pages .
Multibyte code pages
Unicode UTF-16 .

Chapter 3. Character-strings .
COBOL words with single-byte characters
User-defined words with multibyte characters .
User-defined words.
System-names
Function-names .
Reserved words .
Figurative constants
Special registers .
ADDRESS OF
DEBUG-ITEM
JNIENVPIR .
LENGTH OF .
LINAGE-COUNTER
RETURN-CODE.
SHIFT-OUT and SHIFT-IN
SORT-CONTROL
SORT-CORE-SIZE
SORT-FILE-SIZE .
SORT-MESSAGE
SORT-MODE-SIZE .
SORT-RETURN .
TALLY . .
WHEN- COMPILED
XML-CODE
XML-EVENT .

© Copyright IBM Corp. 1996, 2008

.1

No oo uta A

XML-NTEXT .
XML-TEXT
Literals . . .
Alphanumeric 11tera1s .
Numeric literals .
DBCS literals .
National literals .
PICTURE character-strings
Comments. L.

Chapter 4. Separators

Rules for separators

Chapter 5. Sections and paragraphs .
Sentences, statements, and entries .

Entries .

Clauses.

Sentences .

Statements.

Phrases.

Chapter 6. Reference format

Sequence number area.

Indicator area.

Area A . .
Division headers
Section headers . .
Paragraph headers or paragraph names .
Level indicators (FD and SD) or level-numbers
(01 and 77) .
DECLARATIVES and END DECLARATIVES .
End program, end class, and end method
markers

Area B .
Entries, sentences statements Clauses
Continuation lines .

Area A or Area B
Level-numbers
Comment lines . .
Compiler-directing statements .
Compiler directives.
Debugging lines .
Pseudo-text
Blank lines

Chapter 7. Scope of names .
Types of names .
External and internal resources .
Resolution of names
Names within programs .
Names within a class definition

. 26
.27
. 28
. 28
.31
.32
. 33
. 36
. 36

. 37
. 37

.4
.41
.41
. 42
.42
.42
. 42

. 43
.43
.43
.44
.44
.44
.44

. 45
. 45

. 45
. 45
. 46
. 46
. 48
. 48
. 48
. 48
. 49
. 49
. 49
. 49

. 51
.51
. 53
. 54
. 54
. 55

iii



Chapter 8. Referencing data names,
copy libraries, and procedure division

hames. . . . . . . . . . . . . . .b7
Uniqueness of reference . . . . . . . . . .57
Qualification . . . . . . . . . . . . .57
Identical names . . . .. . . . . .b8
References to COPY l1brar1es .. . . . . .b8
References to procedure division names . . . . 58
References to data division names. . . . . .59
Condition-name . . . . . . . . . . . .61
Index-name . . . . . . . . . . . . .62
Index dataitem . . . . . . . . . . . .63
Subscripting . . . .. . . . . . . .63
Reference mod1f1cat10n ... . . . . . .66
Function-identifier . . . . . . . . . . .68
Data attribute specification . . . . . . . . .69
Chapter 9. Transfer of control. . . . . 71

Chapter 10. Millennium Language

Extensions and date fields . . . . . . 73
Millennium Language Extensions syntax . . . .73
Terms and concepts. . . . . . . . . . . .74
Date field . . . . . . . . . . . . . .74
Nondate . . . . . . . . . . . . . .75
Century window . . . . . . . . . . .75

Part 2. COBOL source unit
structure . . . . . . . . . ... .77

Chapter 11. COBOL program structure 79
Nested programs . . . 81
Conventions for program—names B 74

Chapter 12. COBOL class definition
structure. . . . . . . . .. ... .85

Chapter 13. COBOL method definition

structure. . . . . . . . . . ... .89
Part 3. Identification division. . . . 91
Chapter 14. Identification division . . . 93
PROGRAM-ID paragraph . . . . . . . . .9
CLASS-ID paragraph . . . . . . . . . . .98

General rules. . . . . . . . . . . . .9

Inheritance . . . . . . . . . . . . .9
FACTORY paragraph . . . . . . . . . . .9
OBJECT paragraph. . . . . . . . . . . .9
METHOD-ID paragraph . . . . . . . . . .99

Method signature . . . . 100

Method overloading, overrrdmg, and h1d1ng . 100
Optional paragraphs . . . . .. . . . 100
Part 4. Environment division . . . 103

iV COBOL for Windows Version 7.5 Language Reference

Chapter 15. Configuration section . 105
SOURCE-COMPUTER paragraph . 106
OBJECT-COMPUTER paragraph . . 106
SPECIAL-NAMES paragraph . . 108
ALPHABET clause. 111
SYMBOLIC CHARACTERS clause . 113
CLASS clause . . 114
CURRENCY SIGN clause . . 115
DECIMAL-POINT IS COMMA clause . 116
REPOSITORY paragraph . 116
General rules . . 117
Identifying and referencmg the class . 117
Chapter 16. Input-Output section . . 119
FILE-CONTROL paragraph . 120
SELECT clause . . 124
ASSIGN clause . .. Lo . 124
Assignment name for non- env1ronment
variables and literals . . 125
Assignment name for data—names and
environment variables . 126
RESERVE clause . 127
ORGANIZATION clause . 127
File organization . . 128
PADDING CHARACTER clause . . 130
RECORD DELIMITER clause . . 131
ACCESS MODE clause . . . 131
File organization and access modes . . 132
Access modes . 132
Relationship between data orgamzatlons and
access modes . 132
RECORD KEY clause. . . 133
ALTERNATE RECORD KEY clause . . 134
RELATIVE KEY clause . . 135
PASSWORD clause . 136
FILE STATUS clause . . . 136
I-O-CONTROL paragraph . . 137
RERUN clause . . 139
SAME AREA clause . . . 140
SAME RECORD AREA clause . 140
SAME SORT AREA clause . . . 140
SAME SORT-MERGE AREA clause . . 141
MULTIPLE FILE TAPE clause . . 141
APPLY WRITE-ONLY clause . 141
Part 5. Data division . 143
Chapter 17. Data division overview 145
File section . . . 146
Working-storage sect1on . 147
Local-storage section . . 148
Linkage section. . 149
Data units . 149
File data . . 149
Program data . 150
Method data . 150
Factory data. . 150
Instance data . 150
Data relationships . . 150
Levels of data . . 151



Levels of data in a record description entry
Special level-numbers

Indentation . .
Classes and categor1es of group 1tems .
Classes and categories of data .
Category descriptions

Alignment rules .
Character-string and item size.

Signed data .

Operational signs .

Editing signs

Chapter 18. Data division—file

description entries .
File section . .
EXTERNAL clause
GLOBAL clause
BLOCK CONTAINS clause
RECORD clause
Format 1 .
Format 2 .
Format 3 . .
LABEL RECORDS clause
VALUE OF clause .
DATA RECORDS clause .
LINAGE clause.
LINAGE-COUNTER spec1al reg1ster
RECORDING MODE clause .
CODE-SET clause .

Chapter 19. Data division—data

description entry .

Format 1 .

Format 2 .

Format 3 .

Level-numbers . .

BLANK WHEN ZERO clause .

DATE FORMAT clause . .
Semantics of windowed date frelds .
Restrictions on using date fields .

EXTERNAL clause

GLOBAL clause

JUSTIFIED clause .

GROUP-USAGE clause .

OCCURS clause
Fixed-length tables .
ASCENDING KEY and DESCENDING KEY
phrases
INDEXED BY phrase
Variable-length tables. . .
OCCURS DEPENDING ON clause .

PICTURE clause
Symbols used in the PICTURE clause
Character-strmg representation
Data categories and PICTURE rules .
PICTURE clause editing .

Simple insertion editing .
Special insertion editing .
Fixed insertion editing

Floating insertion editing

. 151
. 153
. 153
. 153
. 154
. 156
. 158
. 159
. 159
. 159
. 160

. 161
. 164
. 165
. 166
. 166
. 167
. 167
. 168
. 168
. 169
. 170
. 170
. 170
172
172
172

. 173
. 173
. 174
. 174
. 174
. 176
. 176
. 177
. 178
. 181
. 181
. 182
. 182
. 184
. 184

. 185
. 187
. 187
. 188
. 190
. 191
. 196
. 197
. 203
. 204
. 205
. 205
. 206

Zero suppression and replacement editing. . 207
REDEFINES clause . 208
REDEFINES clause cons1derat10ns . 210
REDEFINES clause examples . . 210
Undefined results . . 212
RENAMES clause . . 212
SIGN clause . . 214
SYNCHRONIZED clause . 216
Slack bytes . . . 218
Slack bytes within records . . 218
Slack bytes between records . 220
USAGE clause . . . 221
Computational items . . 223
DISPLAY phrase . 225
DISPLAY-1 phrase. . 226
FUNCTION-POINTER phrase . 226
INDEX phrase . . . 226
NATIONAL phrase . . 227
OBJECT REFERENCE phrase . . 227
POINTER phrase . . . . 228
PROCEDURE-POINTER phrase . . 229
NATIVE phrase .o . 230
VALUE clause . . 230
Format 1 . . 231
Format 2 . . 233
Format 3 . . 236
Part 6. Procedure division. . . . . 237
Chapter 20. Procedure division
structure .. . 241
Requirements for a rnethod procedure division . . 242
The procedure division header . 243
The USING phrase . 244
RETURNING phrase . . . 246
References to items in the lmkage sectron . . 246
Declaratives . . 247
Procedures . . 247
Arithmetic expressions . 249
Arithmetic operators . . 250
Arithmetic with date fields . . 251
Conditional expressions . . 254
Simple conditions . . 254
Class condition . . . 255
Condition-name cond1t10r1 . . 257
Relation conditions . . 258
General relation conditions . . 259
Data pointer relation conditions . . 269
Procedure-pointer and function-pointer relat1or1
conditions . . 270
Object-reference relatron condrtrons . . 271
Sign condition . . . 271
Switch-status condition . . 272
Complex conditions . . 272
Negated simple conditions . . 273
Combined conditions. . . 274
Abbreviated combined relat1on cond1t1ons . 275
Statement categories . . 278
Imperative statements . 278
Conditional statements . . 280

Contents V



Delimited scope statements.
Explicit scope terminators .
Implicit scope terminators .
Compiler-directing statements .
Statement operations .
CORRESPONDING phrase
GIVING phrase. .
ROUNDED phrase
SIZE ERROR phrases.
Arithmetic statements
Arithmetic statement operands
Data manipulation statements .
Input-output statements .
Common processing facilities .

Chapter 21. Procedure division
statements
ACCEPT statement
Data transfer .
System date-related 1nformat10n transfer
DATE, DATE YYYYMMDD, DAY, DAY
YYYYDDD, DAY-OF-WEEK, and TIME.
ADD statement.
ROUNDED phrase
SIZE ERROR phrases.
CORRESPONDING phrase (format 3)
END-ADD phrase . .
ALTER statement .
Segmentation cons1deratrons
CALL statement
USING phrase .
BY REFERENCE phrase
BY CONTENT phrase
BY VALUE phrase.
RETURNING phrase .
ON EXCEPTION phrase.
NOT ON EXCEPTION phrase .
ON OVERFLOW phrase.
END-CALL phrase
CANCEL statement
CLOSE statement . .
Effect of CLOSE statement on f11e types
COMPUTE statement. .o .
ROUNDED phrase
SIZE ERROR phrases.
END-COMPUTE phrase .
CONTINUE statement
DELETE statement
Sequential access mode .
Random or dynamic access mode
END-DELETE phrase.
DISPLAY statement
DIVIDE statement .
ROUNDED phrase
REMAINDER phrase .
SIZE ERROR phrases.
END-DIVIDE phrase .
ENTRY statement .
USING phrase .
EVALUATE statement
END-EVALUATE phrase

. 281
. 282
. 282
. 282
. 282
. 283
. 284
. 284
. 285
. 286
. 286
. 288
. 288
. 288

. 295
. 296
. 296
. 297

. 298
. 300
. 302
. 302
. 302
. 302
. 303
. 303
. 305
. 307
. 308
. 308
. 309
. 310
. 311
. 311
. 311
. 312
. 313
. 315
. 316
. 318
. 319
. 319
. 319
. 320
. 321
. 321
. 321
. 322
. 323
. 325
. 327
. 328
. 328
. 328
. 329
. 329
. 330
. 331

vi COBOL for Windows Version 7.5 Language Reference

Determining values

Comparing selection subjects and ob]ects .

Executing the EVALUATE statement
EXIT statement . . Lo
EXIT METHOD statement .
EXIT PROGRAM statement
GOBACK statement .
GO TO statement . .
Unconditional GO TO
Conditional GO TO
Altered GO TO.
MORE-LABELS GO TO .
IF statement. .
END-IF phrase .
Transferring control
Nested IF statements .
INITIALIZE statement
REPLACING phrase .
INITIALIZE statement rules
INSPECT statement
TALLYING phrase (formats 1 and 3)
REPLACING phrase (formats 2 and 3) .

BEFORE and AFTER phrases (all formats).

CONVERTING phrase (format 4).
Data flow .
Example of the INSPECT statement
INVOKE statement L.
USING phrase .
BY VALUE phrase.
RETURNING phrase .
ON EXCEPTION phrase. .
NOT ON EXCEPTION phrase.
END-INVOKE phrase

Interoperable data types for COBOL and ]ava
Miscellaneous argument types for COBOL and

Java
MERGE statement

ASCENDING/ DESCENDING KEY phrase

COLLATING SEQUENCE phrase
USING phrase . .
GIVING phrase.

OUTPUT PROCEDURE phrase
MERGE special registers.
Segmentation considerations

MOVE statement .

Elementary moves. .
Moves involving file record areas.
Group moves

MULTIPLY statement.

ROUNDED phrase

SIZE ERROR phrases.

END-MULTIPLY phrase .
OPEN statement .

General rules

Label records

OPEN statement notes

PERFORM statement . .

Basic PERFORM statement .
END-PERFORM

PERFORM with TIMES phrase
PERFORM with UNTIL phrase

. 331
. 332
. 333
. 334
. 335
. 336
. 337
. 338
. 338
. 338
. 339
. 339
. 340
. 340
. 341
. 341
. 342
. 343
. 343
. 345
. 348
. 349
. 350
. 350
. 352
. 354
. 355
. 357
. 357
. 358
. 359
. 359
. 359

360

. 361
. 363
. 363
. 365
. 366
. 366
. 366
. 367
. 367
. 369
. 370
. 375
. 375
. 376
. 377
. 377
. 377
. 378
. 380
. 380
. 380
. 383
. 383
. 385
. 385
. 386



PERFORM with VARYING phrase
Varying identifiers. .o
Varying two identifiers .

Varying three identifiers. .
Varying more than three identifiers .
Varying phrase rules .

READ statement
KEY IS phrase .

AT END phrases .
INVALID KEY phrases .
END-READ phrase
Multiple record processing .
Sequential access mode .
Random access mode.
Dynamic access mode
READ statement notes: .

RELEASE statement .

RETURN statement
AT END phrases
END-RETURN phrase

REWRITE statement . .

INVALID KEY phrases .
END-REWRITE phrase .
Reusing a logical record .
Sequential files .

Indexed files

Relative files.

SEARCH statement
Serial search.

Binary search .
Search statement con51derat10ns .
AT END and WHEN phrases .
NEXT SENTENCE.
END-SEARCH phrase

SET statement .

Format 1: SET for ba51c table handhng
Format 2: SET for adjusting indexes .

Format 3: SET for external switches .

Format 4: SET for condition-names . .
Format 5: SET for USAGE IS POINTER data
items . .
Format 6: SET for procedure—pomter and
function-pointer data items.

Format 7: SET for USAGE OBJECT REFERENCE
data items

SORT statement

ASCENDING KEY and DESCENDING KEY
phrases
DUPLICATES phrase
COLLATING SEQUENCE phrase
USING phrase . .
INPUT PROCEDURE phrase .
GIVING phrase.
OUTPUT PROCEDURE phrase
SORT special registers
Segmentation considerations

START statement .

KEY phrase . .
INVALID KEY phrases .
END-START phrase
Indexed files

. 387
. 388
. 389
. 391
. 391
. 392
. 393
. 395
. 395
. 395
. 395
. 395
. 396
. 398
. 399
. 399
. 400
. 402
. 403
. 403
. 404
. 404
. 405
. 405
. 405
. 405
. 406
. 407
. 408
. 411
. 413
. 413
. 413
. 413
. 414
. 414
. 415
. 416
. 417

. 417

. 418

. 420
. 421

. 422
. 423
. 423
. 424
. 424
. 425
. 425
. 426
. 427
. 428
. 428
. 429
. 429
. 429

Relative files. . 430
STOP statement . 431
STRING statement. . 432

ON OVERFLOW phrases . 434

END-STRING phrase. . 435

Data flow . . 435
SUBTRACT statement . 437

ROUNDED phrase . 439

SIZE ERROR phrases. . . 439

CORRESPONDING phrase (format 3) . . 439

END-SUBTRACT phrase . . 439
UNSTRING statement . 440

DELIMITED BY phrase . . 442

INTO phrase . 442

POINTER phrase . . 443

TALLYING IN phrase . 443

ON OVERFLOW phrases . 443

END-UNSTRING phrase . 444

Data flow . . 444

Example of the UNSTRING statement . . 446
WRITE statement . . Lo . 447

ADVANCING phrase. . 450

END-OF-PAGE phrases . . 451

INVALID KEY phrases . . 451

END-WRITE phrase . . . 452

WRITE for sequential files . . 452

WRITE for indexed files . . 453

WRITE for relative files . . 453
XML GENERATE statement . 455

Nested XML GENERATE or XML PARSE

statements . . 458

Operation of XML GENERATE . 459

XML element name formation . . 461
XML PARSE statement . . 462

Nested XML GENERATE or XML PARSE

statements . 465

Control flow. . 466
Part 7. Intrinsic functions . . . . . 469
Chapter 22. Intrinsic functions . . 471
Specifying a function . . . 471
Function definition and evaluatlon . . 472
Types of functions. . 472
Rules for usage. . 473
Arguments . . 474
Examples. . . 476
ALL subscripting . . 476
Function definitions . . 478
ACOS . . 481
ANNUITY . 482
ASIN . . 482
ATAN . . 483
CHAR. . 483
COSs . . 484
CURRENT- DATE . 484
DATE-OF-INTEGER . . 485
DATE-TO-YYYYMMDD . . 486
DATEVAL . 487
DAY-OF-INTEGER . 488

Contents Vil



DAY-TO-YYYYDDD . . 488
DISPLAY-OF . 489
FACTORIAL. . 490
INTEGER . . 491
INTEGER-OF-DATE . . 491
INTEGER-OF-DAY . 492
INTEGER-PART . 492
LENGTH. . 493
LOG . 494
LOGI10 . 494
LOWER-CASE . . 495
MAX . . 495
MEAN . 496
MEDIAN. . 496
MIDRANGE. . 497
MIN . 498
MOD . . . 498
NATIONAL-OF . 499
NUMVAL . 500
NUMVAL-C. . 501
ORD . 503
ORD-MAX . . 504
ORD-MIN . 504
PRESENT-VALUE . . 505
RANDOM . 505
RANGE . . 506
REM . 506
REVERSE. . 507
SIN. . 507
SQRT . . . . 508
STANDARD- DEVIATION . . 508
SUM . . 509
TAN . . . 509
UNDATE. . 510
UPPER-CASE . 510
VARIANCE . . . 511
WHEN-COMPILED . . 511
YEAR-TO-YYYY . 512
YEARWINDOW . 513
Part 8. Compiler-directing
statements.. . 515
Chapter 23. Compiler-directing
statements . 517
BASIS statement . 517
CBL (PROCESS) statement . 518
*CONTROL (*CBL) statement . . 518
Source code listing . 519
Object code listing. . 520
Storage map listing . 520
COPY statement . 520
SUPPRESS phrase . . 523
REPLACING phrase . . . 523
Replacement and comparison rules . . 524
DELETE statement . 527
EJECT statement . 528
ENTER statement . . 528
INSERT statement . . . 529
READY or RESET TRACE statement . 529

viii COBOL for Windows Version 7.5 Language Reference

REPLACE statement . . . . 530
Continuation rules for pseudo- text . . 531
Comparison operation . 531
REPLACE statement notes . . 532
SERVICE LABEL statement. . 533
SERVICE RELOAD statement . . 533
SKIP statements . 534
TITLE statement . 534
USE statement . . . 535
EXCEPTION/ERROR declaratlve . 535
Precedence rules for nested programs . . 537
LABEL declarative. . 537
DEBUGGING declarative . 538
Chapter 24. Compiler directives . 541
CALLINTERFACE. . 541
Syntax and general rules . . 542
Difference between the directive and compller
option . . 542
Precedence of suboptlons . 542
Part 9. Appendixes . . 543
Appendix A. IBM extensions . . 545
Appendix B. Compiler limits . . 557
Appendix C. EBCDIC and ASCII
collating sequences . 561
EBCDIC collating sequence. . 561
US English ASCII code page . 564
Appendix D. Source language
debugging. . 569
Debugging lines . 569
Debugging sections . 569
DEBUG-ITEM special reg1ster . 570
Activate compile-time switch . . 570
Activate object-time switch . . 570
Appendix E. Reserved words . 571
Appendix F. Code page names . . 585
Appendix G. Locale considerations 593
Compile-time versus runtime locale . . 593
Code pages . . 593
Collating sequences . 594
Supported locales . . 594
Appendix H. Industry specifications 595
Notices . C e e . 597
Programming interface mformatlon . . 598
Trademarks . . 598
Glossary . 599



Listofresources. . . . . . . . . . 619

COBOL for Windows. . . . . . . . . . .619
COBOL for AIX . . . . . . . . . . . .619
Enterprise COBOL for z/OS . . . . . . . .619

Related publications for Windows

Index .

. 619

. 621

Contents

ix



X  COBOL for Windows Version 7.5 Language Reference



Tables

@

® N U

11.

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.

22.

23.
24.

25.
26.

27.
28.

29.
30.

31.

32.

Basic COBOL character set .
DEBUG-ITEM subfield contents . .
Contents of XML-EVENT and XML-TEXT or
XML-NTEXT special registers .

Separators . .o

Meanings of env1ronment names.

Types of files

Classes and categories of group 1tems

Class, category, and usage of elementary
data items

Classes and categorles of functlons

Classes and categories of literals .

Where national group items are processed as
groups. . .
PICTURE clause symbol meamngs .
Numeric types . R

Data categories . .

SYNCHRONIZE clause effect on other
language elements. .

Relation test references for condltlon-names
Binary and unary operators

Valid arithmetic symbol pairs .

Results of using date fields in addltlon
Results of using date fields in subtraction
Storing arithmetic results that involve date
fields when ON SIZE ERROR is specified
Valid forms of the class condition for
different types of data items . .
Relational operators and their meamngs
Comparisons involving data items and
literals .

Comparisons 1nvolv1ng f1gurat1ve constants
Comparisons for index-names and index
data items

Comparisons with date f1elds

Permissible comparisons for USAGE
POINTER, NULL, and ADDRESS OF .
Logical operators and their meanings
Combined conditions—permissible element
sequences

Logical operators and evaluatlon results of
combined conditions .

Abbreviated combined condltlons
permissible element sequences

© Copyright IBM Corp. 1996, 2008

.3

.18

. 25
. 37
. 110
. 120

154

. 155
. 155
. 155

. 183
. 192
. 197
. 203

. 216

234

. 250
. 251

252
253

. 254

. 257

260

. 262

263

. 268
. 269

. 270

273

. 274

. 275

. 277

33.

34.
35.

36.
37.

38.

39.

40.

41.
42.
43.

44.

45.

46.
47.
48.
49.
50.

51.

52.

53.

54.

55.
56.
57.
58.
59.
60.
61.
62.

Abbreviated combined conditions:
unabbreviated equivalents .
Exponentiation size error conditions

How the composite of operands is
determined . .o .o

File status key values and meanlngs
Sequential files and CLOSE statement
phrases

Indexed and relatlve flle types and CLOSE
statement phrases . .
Line-sequential file types and CLOSE
statement phrases .

Meanings of key letters for sequentlal flle
types .

Treatment of the content of data 1tems
Interoperable Java and COBOL data types
Interoperable COBOL and Java array and
String data types .

COBOL miscellaneous argument types and
corresponding Java types .

COBOL literal argument types and
corresponding Java types

Valid and invalid elementary moves
Moves involving date fields

Availability of a file . .
Permissible statements for sequentlal flles
Permissible statements for indexed and
relative files. .

Permissible statements for lme sequentlal
files .
Sending and rece1v1ng f1elds for format-l
SET statement . .o .
Sending and receiving f1elds for format-5
SET statement . .

Character positions examlned when
DELIMITED BY is not specified .

Table of functions.

Execution of debugging declaratlves

IBM extension language elements
Compiler limits

EBCDIC collating sequence

ASCII collating sequence

Reserved words .

Code page names .

. 278

285

. 287

289

. 317

. 317

. 317

. 317

351
360

. 361

. 362

. 362

373

. 374
. 380

381

. 381

. 381

. 415

. 418

. 445
. 479

539

. 545
. 557
. 561
. 564
. 571
. 585

xi



xil COBOL for Windows Version 7.5 Language Reference



Preface

About this document

This document describes the language supported by IBM® COBOL for Windows®
Version 7.5 in IBM Rational® Developer for System z .

Use this document in conjunction with the COBOL for Windows Programming Guide.

Accessibility of this document

The XHTML format of this document is accessible to visually impaired individuals
who use a screen reader.

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma picture symbols, you must
set the screen reader to speak all punctuation.

IBM extensions
IBM extensions generally add features, syntax, or rules that are not specified in the
ANSI and ISO COBOL standards that are listed in [Appendix H, “Industry]|

lspecifications,” on page 595.|In this document, the term Standard COBOL 85 refers
to those standards.

Extensions range from minor relaxation of rules to major capabilities, such as XML
support, Unicode support, object-oriented COBOL for Java " interoperability, and
DBCS character handling.

The rest of this document describes the complete language without identifying
extensions. You will need to review |[Appendix A, “IBM extensions,” on page 545|
and the compiler options that are described in the COBOL for Windows
Programming Guide if you want to use only standard language elements.

Obsolete language elements

Obsolete language elements are elements that are categorized as obsolete in
Standard COBOL 85. Those elements are not part of Standard COBOL 2002.

This does not imply that IBM will remove Standard COBOL 85 obsolete elements
from a future release of COBOL for Windows.

The following are language elements that Standard COBOL 85 categorized as
obsolete:

¢ ALTER statement

e AUTHOR paragraph

¢ Comment entry

* DATA RECORDS clause

¢ DATE-COMPILED paragraph
* DATE-WRITTEN paragraph
* DEBUG-ITEM special register
* Debugging sections

© Copyright IBM Corp. 1996, 2008 xiii



* ENTER statement

* GO TO without a specified procedure-name
e INSTALLATION paragraph

* LABEL RECORDS clause

* MEMORY SIZE clause

* MULTIPLE FILE TAPE clause

* RERUN clause

* REVERSED phrase

e SECURITY paragraph

* Segmentation module

e STOP literal format of the STOP statement
* USE FOR DEBUGGING declarative

* VALUE OF clause

* The figurative constant ALL literal with a length greater than one, when the
figurative constant is associated with a numeric or numeric-edited item

How to read the syntax diagrams
Use the following description to read the syntax diagrams in this document:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The >>—- symbol indicates the beginning of a syntax diagram.
The —-> symbol indicates that the syntax diagram is continued on the next line.

The >—- symbol indicates that the syntax diagram is continued from the
previous line.

The —->< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >—-
symbol and end with the —-> symbol.

* Required items appear on the horizontal line (the main path).

Format

»»>—STATEMENT—required item ><

* Optional items appear below the main path.

Format

»>—STATEMENT ><

|—0pt1’ona1 1'1:emJ

* When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

Format

»—STATEMENT—[required choice 1 ><
required choice 2—|

Xiv  COBOL for Windows Version 7.5 Language Reference



If choosing one of the items is optional, the entire stack appears below the main
path.

Format

v
A

»>—STATEMENT
i:optiona] choice 1:‘
optional choice 2

* An arrow returning to the left above the main line indicates an item that can be
repeated.

Format

»»—STATEMENT——repeatable item ><

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

* Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

Format

(1) @ |
»»>—STATEMENT identifier-1
|:Ziteral-lg L‘ (3)
item 1 |7

(4)

v

> T0—identifier-3 B ]
ROUNDED

(5)

». »<

LTJ—SIZE ERROR—imperative—statement—]—| L (6)
ON END-STATEMENT

item 1:

identifier-2 I
literal-2——
arithmetic-expression-1—

Preface XV



xvi

Notes:
1 The STATEMENT keyword must be specified and coded as shown.
2 This operand is required. Either identifier-1 or literal-1 must be coded.

3  The item 1 fragment is optional; it can be coded or not, as required by the
application. If item 1 is coded, it can be repeated with each entry separated
by one or more COBOL separators. Entry selections allowed for this fragment
are described at the bottom of the diagram.

4 The operand identifier-3 and associated TO keyword are required and can be
repeated with one or more COBOL separators separating each entry. Each
entry can be assigned the keyword ROUNDED.

5  The ON SIZE ERROR phrase with associated imperative-statement-1 is
optional. If the ON SIZE ERROR phrase is coded, the keyword ON is
optional.

6  The END-STATEMENT keyword can be coded to end the statement. It is not
a required delimiter.

DBCS notation

In this document, DBCS characters are shown in this form: D1D2D3. Latin
alphabet characters in DBCS representation are shown in this form: .A.B.C.

Notes

* In EBCDIC DBCS data containing mixed single-byte and double-byte characters,
double-byte character strings are delimited by shift-out and shift-in characters.
In this document, the shift-out delimiter is represented pictorially by the <
character, and the shift-in character is represented pictorially by the > character.
The single-byte EBCDIC codes for the shift-out and shift-in delimiters are X'0E’
and X'0F, respectively. The <> symbol denotes contiguous shift-out and shift-in
characters. The >< symbol denotes contiguous shift-in and shift-out characters.

* In ASCII DBCS data containing mixed single-byte and double-byte characters,
double-byte character strings are not delimited by shift-out and shift-in
characters.

Acknowledgment

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as the
basis for an instruction manual or for any other purpose is free to do so.
However, all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short passage, as in a
book review, are requested to mention COBOL in acknowledgment of the
source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection there with.

COBOL for Windows Version 7.5 Language Reference



Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:

¢ FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for
the UNIVAC I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation

* IBM Commercial Translator, Form No. F28-8013, copyrighted 1959 by IBM
* FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

Note: The Conference on Data Systems Languages (CODASYL), mentioned above,
is no longer in existence.

Summary of changes

This section lists the key changes that have been made to IBM COBOL for
Windows. The technical changes with respect to Version 6 are marked by a revision
bar in the left margin in the PDF version.

Version 7 (December 2006)

This section lists the key changes that have been made to COBOL for Windows.
The latest technical changes and editorial changes to terminology are marked by a
vertical bar in the left margin in the PDF version.

Other changes in this release of COBOL for Windows are described in the COBOL
for Windows Programming Guide.

* Support for national (Unicode UTF-16) data has been enhanced. Several
additional kinds of data items can now be described implicitly or explicitly as
USAGE NATIONAL:

External decimal (national decimal) items

External floating-point (national floating-point) items
Numeric-edited items

National-edited items

Group (national group) items, supported by the GROUP-USAGE NATIONAL
clause

* Many COBOL language elements support the new kinds of USAGE NATIONAL
data items, or newly support the processing of existing national data items:

Numeric data with USAGE NATIONAL (national decimal and national
floating point) can be used in arithmetic operations and in any language
constructs that support numeric operands.

Edited data with USAGE NATIONAL is supported in the same language
constructs as any existing edited type, including editing and de-editing
operations associated with moves.

Group items that contain all national data can be defined with the
GROUP-USAGE NATIONAL clause, which results in the group behaving as
an elementary item in most language constructs. This support facilitates use
of national groups in statements such as STRING, UNSTRING, and INSPECT.

Preface  XVii



— The XML GENERATE statement supports national groups as receiving data
items, and national-edited, numeric-edited of USAGE NATIONAL, national
decimal, national floating-point, and national group items as sending data
items.

— The NUMVAL and NUMVAL-C intrinsic functions can take a national literal
or national data item as an argument.

Using these new national data capabilities, it is now practical to develop COBOL

programs that exclusively use Unicode for all application data.

e The REDEFINES clause has been enhanced such that for data items that are not
level 01, the subject of the entry can be larger than the data item being
redefined.

e The literal in a VALUE clause for a data item of class national can be
alphanumeric.

* The following terminology changes are made in this release:

— The term alphanumeric group is introduced to refer specifically to groups other
than national groups.

— The term group means both alphanumeric groups and national groups except
when used in a context that obviously refers to only an alphanumeric group
or only a national group.

— The term external decimal refers to both zoned decimal items and national
decimal items.

— The term display floating-point is introduced to refer to an external
floating-point item that has usage DISPLAY.

— The term external floating-point refers to both display floating-point items and
national floating-point items.

Version 6 (May 2005)
Several compiler limits are increased. For example, the maximum size of data

items and tables is raised to 2 gigabytes. For additional details, see
[‘Compiler limits,” on page 557

Other changes are described in the COBOL for Windows Programming Guide.

How to send your comments

xviii

Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this document or any other
documentation for this product, contact us in one of the following ways:

e Fill out the Readers’” Comment Form at the back of this document, and return it
by mail or give it to an IBM representative. If there is no form at the back of this
document, address your comments to:

IBM Corporation
Reader Comments
DTX/E269

555 Bailey Avenue

San Jose, CA 95141-1003
US.A.

¢ Use the Online Readers’ Comments Form at |www.ibrn.com/ software/awdtools/ |
[rcf/}

* Send your comments to the following e-mail address: comments@us.ibm.com

COBOL for Windows Version 7.5 Language Reference


http://www.ibm.com/software/awdtools/rcf/
http://www.ibm.com/software/awdtools/rcf/

Be sure to include the name of the document, the publication number of the
document, the version of the product, and, if applicable, the specific location (for
example, page number or section heading) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way that IBM believes appropriate without
incurring any obligation to you.

Preface  XiX



XX  COBOL for Windows Version 7.5 Language Reference



Part 1. COBOL language structure

Chapter 1. Characters.

Chapter 2. Character sets and code pages
Compile-time code page
Runtime code page .
Character encoding units .
Single-byte code pages .
Multibyte code pages
USAGE DISPLAY .
USAGE DISPLAY-1 .
Unicode UTF-16 .

Chapter 3. Character-strings .
COBOL words with single-byte characters
User-defined words with multibyte characters .
User-defined words.
System-names
Function-names .
Reserved words .
Figurative constants
Special registers .
ADDRESS OF
DEBUG-ITEM
JNIENVPTR .
LENGTH OF .
LINAGE-COUNTER
RETURN-CODE.
SHIFT-OUT and SHIFT-IN
SORT-CONTROL
SORT-CORE-SIZE
SORT-FILE-SIZE .
SORT-MESSAGE
SORT-MODE-SIZE .
SORT-RETURN .
TALLY .
WHEN- COMPILED
XML-CODE
XML-EVENT .
XML-NTEXT .
XML-TEXT
Literals . . .
Alphanumeric hterals .
Basic alphanumeric literals .
Alphanumeric literals with multibyte
characters . .
Hexadecimal notat10n for alphanumerlc
literals . .
Null-terminated alphanumerlc hterals
Numeric literals . . .
Rules for floating-point hteral Values
DBCS literals .
DBCS literals with the SOSI compller optlon
Where DBCS literals can be used . .
National literals . .
Basic national literals . .
Hexadecimal notation for national hterals

© Copyright IBM Corp. 1996, 2008

.3

NNy GO

. 10
. 10
.12
.12
.12
.13
. 16
.17
.17
. 18
.18
. 20
. 20
.21
.21
.22
.22
.22
.23
.23
.23
.24
.24
. 25
. 26
.27
. 28
. 28
.28

.29

. 29
. 30
.31
.31
.32

32

. 33
. 33
. 33
. 34

Where national literals can be used
PICTURE character- strlngs
Comments. ..

Chapter 4. Separators
Rules for separators

Chapter 5. Sections and paragraphs
Sentences, statements, and entries .
Entries .
Clauses.
Sentences .
Statements.
Phrases.

Chapter 6. Reference format .

Sequence number area.

Indicator area.

Area A . .
Division headers
Section headers . .
Paragraph headers or paragraph names .
Level indicators (FD and SD) or level-numbers
(01 and 77) .
DECLARATIVES and END DECLARATIVES .
End program, end class, and end method
markers

Area B .
Entries, sentences statements clauses
Continuation lines . .

Continuation of alphanumenc and natronal
literals .

Area A or Area B
Level-numbers
Comment lines . .
Compiler-directing statements .
Compiler directives.
Debugging lines .
Pseudo-text
Blank lines

Chapter 7. Scope of names
Types of names . .
External and internal resources .
Resolution of names
Names within programs .
Names within a class definition

Chapter 8. Referencing data names, copy
libraries, and procedure division names .
Uniqueness of reference
Qualification . .
Qualification rules .
Identical names .
References to COPY 11brar1es

. 35
. 36
. 36

. 37
. 37

.M
.41
.41
.42
.42
.42
. 42

. 43
.43
. 43
. 44
. 44
. 44
. 44

. 45
. 45

. 45
. 45
. 46
. 46

. 46
. 48
. 48
. 48
. 48
. 49
. 49
. 49
. 49

. 51
. 51
. 53
. 54
. 54
. 55

. 57
. 57
. 57
. 58
. 58
. 58



References to procedure division names .

References to data division names .
Simple data reference .

Identifiers .

Condition-name .

Index-name

Index data item .

Subscripting . .
Subscripting using data-names . .
Subscripting using index-names (mdexmg) .
Relative subscripting

Reference modification
Evaluation of operands
Reference modification examples .

Function-identifier .

Data attribute specification .

Chapter 9. Transfer of control

Chapter 10. Millennium Language Extensions
and date fields . .
Millennium Language Exten51ons syntax
Terms and concepts.
Date field . . .
Windowed date fleld .
Expanded date field
Year-last date field .
Date format
Compatible date fleld
Nondate .
Century window

2  COBOL for Windows Version 7.5 Language Reference

. 58
. 59
. 59
. 59
. 61
. 62
. 63
. 63
. 64
. 65
. 65
. 66
. 67
. 68
. 68
. 69

.7

. 73
.73
.74
. 74
. 74
. 74
. 74
.74
.75
.75
.75



Chapter 1. Characters

The most basic and indivisible unit of the COBOL language is the character. The
basic character set includes the letters of the Latin alphabet, digits, and special
characters. In the COBOL language, individual characters are joined to form
character-strings and separators. Character-strings and separators, then, are used to
form the words, literals, phrases, clauses, statements, and sentences that form the
language.

The basic characters used in forming character-strings and separators in source
code are shown in Basic COBOL character set (Table 1).

For certain language elements, the basic character set is extended with the ASCII
Double-Byte Character Set (DBCS).

DBCS characters occupy 2 adjacent bytes to represent one character. DBCS
characters are also called multibyte characters. A character-string that contains
DBCS characters in source code is a multibyte character-string.

Multibyte characters can be used in forming user-defined words.

The content of alphanumeric literals, comment lines, and comment entries can
include any of the characters in the computer’s compile-time character set, and can
include both single-byte and multibyte characters.

Runtime data can include any characters from the runtime character set of the
computer. The runtime character set of the computer can include alphanumeric
characters, multibyte characters, and national characters. National characters are
represented in UTF-16, a 16-bit encoding form of Unicode.

When the NSYMBOL (NATIONAL) compiler option is in effect, literals identified
by the opening delimiter N or N” are national literals and can contain any
single-byte or multibyte characters, or both, that are valid for the compile-time
code page. Characters contained in national literals are represented as national
characters at run time.

For details, see [“User-defined words with multibyte characters” on page 10,|["DBCY
literals” on page 32)and |“National literals” on page 33

Table 1. Basic COBOL character set

Character Meaning
Space
+ Plus sign

- Minus sign or hyphen

* Asterisk

/ Forward slash or solidus
= Equal sign

$ Currency sign

, Comma

© Copyright IBM Corp. 1996, 2008 3



Table 1. Basic COBOL character set (continued)

Character Meaning
; Semicolon
Decimal point or period
" Quotation mark
( Left parenthesis
) Right parenthesis
> Greater than
< Less than
Colon
g Apostrophe
A-Z Alphabet (uppercase)
a-z Alphabet (lowercase)
0-9 Numeric characters

4  COBOL for Windows Version 7.5 Language Reference



Chapter 2. Character sets and code pages

A character set is a set of letters, numbers, special characters, and other elements
used to represent information. A character set is independent of a coded
representation. A coded character set is the coded representation of a set of
characters, where each character is assigned a numerical position, called a code
point, in the encoding scheme. The basic COBOL character set is an example of a
character set that is independent of a coded representation. ASCII and EBCDIC are
examples of types of coded character sets. Each variation of ASCII or EBCDIC is a
specific coded character set.

The term code page refers to a coded character set. Each code page that IBM defines
is identified by a code page name, for example IBM-1252, and a coded character set
identifier (CCSID), for example 1252.

Compile-time code page

The compile-time code page must be an ASCII single-byte or ASCII double-byte
code page. The specific code page is indicated by the compile-time locale.

The source program (including user-defined words and the content of
alphanumeric, DBCS, and national literals) is encoded in the code page indicated
by the locale in effect at compile time.

Runtime code page

The code page used at run time is determined by a combination of a data item’s
USAGE clause, the compiler options in effect, and the locale (or environment
variable value) in effect.

When the CHAR(NATIVE) compiler option is in effect, data items described with
USAGE DISPLAY or USAGE DISPLAY-1 are encoded in an ASCII code page as
indicated by the runtime locale.

When the CHAR(EBCDIC) compiler option is in effect, data items described with
USAGE DISPLAY or USAGE DISPLAY-1 are encoded in an EBCDIC code page,
except when the NATIVE phrase is specified in the item’s USAGE clause. If the
NATIVE phrase is specified, the code page used is the ASCII code page indicated
by the runtime locale.

For EBCDIC, the code page is determined from the EBCDIC_CODEPAGE
environment variable, if set. If the EBCDIC_CODEPAGE environment variable is
not set, the default EBCDIC code page associated with the current runtime locale is
used. The default EBCDIC code page associated with each supported locale is
identified in Locales and code pages supported in the COBOL for Windows Programming
Guide.

The code page for data items described with USAGE NATIONAL and national
literals is UTF-16LE (little endian), CCSID 1202. The source text representation of
national literals is converted at run time from the compile-time code page to
UTE-16LE.

A reference to UTF-16 in this document is a reference to UTF-16LE.

© Copyright IBM Corp. 1996, 2008 5



Character encoding units

A character encoding unit (or encoding unit) is the unit of data that COBOL treats as
a single character at run time. In this document, the terms character and character
position refer to a single encoding unit.

The size of an encoding unit for data items and literals depends on the USAGE

clause of the data item or the category of the literal as follows:

* For data items described with USAGE DISPLAY and for alphanumeric literals,
an encoding unit is 1 byte, regardless of the code page used and regardless of
the number of bytes used to represent a given graphic character.

» For data items described with USAGE DISPLAY-1 (DBCS data items) and for
DBCS literals, an encoding unit is 2 bytes.

e For data items described with USAGE NATIONAL and for national literals, an
encoding unit is 2 bytes.

The relationship between a graphic character and an encoding unit depends on the
type of code page used for the data item or literal. The following are the types of
runtime code pages:

* Single-byte ASCII or EBCDIC
* Multibyte ASCII or EBCDIC
* Unicode UTF-16

See the following sections for the details of each type of code page.

Single-byte code pages
You can use single-byte characters encoded in an ASCII or EBCDIC code page in
data items described with USAGE DISPLAY and in literals of category
alphanumeric. An encoding unit is 1 byte and each graphic character is represented
in 1 byte. For these data items and literals, you need not be concerned with
encoding units.

Multibyte code pages

USAGE DISPLAY

You can use data encoded in a multibyte ASCII-based or EBCDIC-based code page
in data items described with USAGE DISPLAY (category alphanumeric) and in
literals of category alphanumeric. An encoding unit is 1 byte and the size of a
graphic character varies from 1 byte to 4 bytes, depending on the code page.

Usage note: You can assign multibyte data that contains graphic characters
encoded in 1-, 2-, 3-, or 4-bytes to an alphanumeric data item by using the
DISPLAY-OF intrinsic function. However, COBOL processes the data as characters
of 1-byte encoding units of the runtime codepage.

When alphanumeric data items or literals contain multibyte ASCII or EBCDIC
data, programmers are responsible for ensuring that operations do not
unintentionally separate the multiple encoding units that form a graphic character.
Care should be taken with reference modification, and truncation during moves
should be avoided. The COBOL runtime system does not check for a split between
the encoding units that form a graphic character.

To avoid problems, you can convert alphanumeric literals and data items described
with usage DISPLAY to national data (UTF-16) by moving the data items or literals

6 COBOL for Windows Version 7.5 Language Reference



to data items described with usage NATIONAL or by using the NATIONAL-OF
intrinsic function. You can then perform operations on the national data with less
concern for splitting graphic characters. You can convert the data back to USAGE
DISPLAY by using the DISPLAY-OF intrinsic function.

USAGE DISPLAY-1

You can use double-byte characters of a multibyte ASCII DBCS or EBCDIC DBCS
code page in data items described with USAGE DISPLAY-1 and in literals of
category DBCS. An encoding unit is 2 bytes and each graphic character is
represented in a single 2-byte encoding unit. For these data items and literals, you
need not be concerned with encoding units.

Unicode UTF-16

You can use UTF-16 in data items described with USAGE NATIONAL. National
literals are stored as UTF-16 characters regardless of the code page used for the
source program. An encoding unit for data items of usage NATIONAL and
national literals is 2 bytes.

For most of the characters in UTF-16, a graphic character is one encoding unit.
Characters converted to UTF-16 from an EBCDIC, ASCII, or EUC code page are
represented in one UTF-16 encoding unit. Some of the other graphic characters in
UTF-16 are represented by a surrogate pair or a combining character sequence. A
surrogate pair consists of two encoding units (4 bytes). A combining character
sequence consists of a base character and one or more combining marks or a
sequence of one or more combining marks (4 bytes or more, in 2-byte increments).
In data items of usage NATIONAL, each 2-byte encoding unit is treated as a
character.

When national data contains surrogate pairs or combining character sequences,
programmers are responsible for ensuring that operations on national characters do
not unintentionally separate the multiple encoding units that form a graphic
character. Care should be taken with reference modification, and truncation during
moves should be avoided. The COBOL runtime system does not check for a split
between the encoding units that form a graphic character.

Chapter 2. Character sets and code pages 7



8 COBOL for Windows Version 7.5 Language Reference



Chapter 3. Character-strings

A character-string is a character or a sequence of contiguous characters that forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A
character-string is delimited by separators.

A separator is a string of contiguous characters used to delimit character strings.
Separators are described in detail under [Chapter 4, “Separators,” on page 37/

Character strings and certain separators form text words. A text word is a character
or a sequence of contiguous characters (possibly continued across lines) between
character positions 8 and 72 inclusive in source text, library text, or pseudo-text.
For more information about pseudo-text, see [‘Pseudo-text” on page 49

Source text, library text, and pseudo-text can be written in single-byte ASCII and,
for some character-strings, multibyte characters (DBCS).

You can use single-byte and multibyte character-strings to form the following:
* COBOL words
e Literals

e Comment text

You can use only single-byte characters to form PICTURE character-strings.

COBOL words with single-byte characters

A COBOL word is a character-string that forms a user-defined word, a
system-name, or a reserved word. The maximum size of a COBOL user-defined
word is 30 bytes. The number of characters that can be specified depends on the
code page indicated by the compile-time locale.

Except for arithmetic operators and relation characters, each character of a COBOL
word is selected from the following set:

* Latin uppercase letters A through Z
* Latin lowercase letters a through z
* digits 0 through 9

+ - (hyphen)

The hyphen cannot appear as the first or last character in such words. Most
user-defined words (all except section-names, paragraph-names, priority-numbers,
and level-numbers) must contain at least one alphabetic character. Priority numbers
and level numbers need not be unique; a given specification of a priority-number
or level-number can be identical to any other priority-number or level-number.

In COBOL words (but not in the content of alphanumeric, DBCS, and national
literals), each lowercase single-byte alphabetic letter is considered to be equivalent
to its corresponding single-byte uppercase alphabetic letter.

The following rules apply for all COBOL words:

* A reserved word cannot be used as a user-defined word or as a system-name.

© Copyright IBM Corp. 1996, 2008 9



¢ The same COBOL word, however, can be used as both a user-defined word and
as a system-name. The classification of a specific occurrence of a COBOL word is
determined by the context of the clause or phrase in which it occurs.

User-defined words with multibyte characters

When used in the context of user-defined words, the term multibyte refers to words
formed using at least one character that is encoded using two or more bytes,
possibly combined with single byte characters.

The following are the rules for forming user-defined words with multibyte
characters:

Contained characters
A user-defined word can consist of both single-byte and multibyte
characters. If a character exists in both single-byte and multibyte forms, its
single-byte and multibyte representations are not equivalent.

The single-byte characters in the user-defined word are limited to the
following characters:

* Latin letters uppercase A through Z
* Latin letters lowercase a through z
* digits 0 through 9

* - (hyphen)

The single-byte encoded hyphen cannot appear as the first or last character
in such words.

Uppercase and lowercase letters
In COBOL words, each lowercase single-byte encoded character “a”
through “z” is considered to be equivalent to its corresponding single-byte
encoded uppercase character. Multibyte-encoded uppercase and lowercase
letters are not equivalent.

Value range
Valid value ranges for multibyte characters depend on the specific code
page being used.

Maximum length
30 bytes. The number of characters that you can specify in 30 bytes varies
depending on the source code page and the characters used in the
user-defined word.

Continuation
Words formed with multibyte characters cannot be continued across lines.

Use of shift-out and shift-in characters
Applicable only when the dummy shift-out/shift-in (SOSI) compiler option
is in effect. See the COBOL for Windows Programming Guide for the details
of the SOSI compiler option.

User-defined words

The following sets of user-defined words are supported. The second column
indicates whether multibyte characters are allowed in words of a given set.

User-defined word Multibyte characters allowed?
Alphabet-name Yes

10 COBOL for Windows Version 7.5 Language Reference



User-defined word Multibyte characters allowed?

Class-name (of data) Yes
Condition-name Yes
Data-name Yes
File-name Yes
Index-name Yes
Level-numbers: 01-49, 66, 77, 88 No
Library-name No
Mnemonic-name Yes
Object-oriented class-name No
Paragraph-name Yes
Priority-numbers: 00-99 No
Program-name No
Record-name Yes
Section-name Yes
Symbolic-character Yes
Text-name No

The maximum length of a user-defined word is 30 bytes, except for level-numbers
and priority-numbers. Level-numbers and priority numbers must each be a
one-digit or two-digit integer.

A given user-defined word can belong to only one of these sets, except that a given
number can be both a priority-number and a level-number. Each user-defined
word within a set must be unique, except for priority-numbers and level-numbers
and except as specified in [Chapter 8, “Referencing data names, copy libraries, and|
forocedure division names,” on page 57

The following types of user-defined words can be referenced by statements and
entries in the program in which the user-defined word is declared:

¢ Paragraph-name
* Section-name

The following types of user-defined words can be referenced by any COBOL
program, provided that the compiling system supports the associated library or
other system and that the entities referenced are known to that system:

* Library-name

¢ Text-name

The following types of names, when they are declared within a configuration
section, can be referenced by statements and entries in the program that contains
the configuration section or in any program contained within that program:

* Alphabet-name
* (Class-name

* Condition-name
* Mnemonic-name

* Symbolic-character

The function of each user-defined word is described in the clause or statement in
which it appears.

Chapter 3. Character-strings 11



System-names

A system-name is a character string that has a specific meaning to the system. There
are three types of system-names:

* Computer-name
* Language-name

¢ Implementor-name

There are three types of implementor-names:
* Environment-name
* External-class-name

* Assignment-name

The meaning of each system-name is described with the format in which it
appears.

Multibyte character-strings are allowed for system-names.

Function-names

A function-name specifies the mechanism provided to determine the value of an
intrinsic function. The same word, in a different context, can appear in a program
as a user-defined word or a system-name. For a list of function-names and their
definitions, see Table of functions (Table 55 on page 479).

Reserved words

A reserved word is a character-string with a predefined meaning in a COBOL source
unit. Reserved words are listed in|Appendix E, “Reserved words,” on page 571)

There are six types of reserved words:
* Keywords
* Optional words
 Figurative constants
* Special character words
* Special object identifiers
* Special registers
Keywords
Keywords are reserved words that are required within a given clause,

entry, or statement. Within each format, such words appear in uppercase
on the main path.

Optional words
Optional words are reserved words that can be included in the format of a
clause, entry, or statement in order to improve readability. They have no
effect on the execution of the program.

Figurative constants
See [“Figurative constants” on page 13|

Special character words
There are two types of special character words, which are recognized as
special characters only when represented in single-byte characters:

12 COBOL for Windows Version 7.5 Language Reference



* Arithmetic operators: + - / * **

See|”Arithmetic expressions” on page 249.|

* Relational operators: < > = <= >=

See[“Conditional expressions” on page 254.|

Special object identifiers
COBOL provides two special object identifiers, SELF and SUPER, used in a
method procedure division:

SELF A special object identifier that you can use in the procedure
division of a method. SELF refers to the object instance used to
invoke the currently executing method. You can specify SELF only
in places that are explicitly listed in the syntax diagrams.

SUPER
A special object identifier that you can use in the procedure
division of a method only as the object identifier in an INVOKE
statement. When used in this way, SUPER refers to the object
instance used to invoke the currently executing method. The
resolution of the method to be invoked ignores any methods
declared in the class definition of the currently executing method
and methods defined in any class derived from that class. Thus,
the method invoked is inherited from an ancestor class.

Special registers
See [“Special registers” on page 16.

Figurative constants

Figurative constants are reserved words that name and refer to specific constant
values. The reserved words for figurative constants and their meanings are:

ZERO, ZEROS, ZEROES
Represents the numeric value zero (0) or one or more occurrences of the
alphanumeric character zero, depending on context.

When the figurative constant ZERO, ZEROS, or ZEROES is used in a
context that requires an alphanumeric character, an alphanumeric character
zero is used. When the context requires a national character zero, a
national character zero is used (value NX'0030"). When the context cannot
be determined, an alphanumeric character zero is used.

SPACE, SPACES
Represents one or more blanks or spaces. SPACE is treated as an
alphanumeric literal when used in a context that requires an alphanumeric
character, as a DBCS literal when used in a context that requires a DBCS
character, and as a national literal when used in a context that requires a
national character.

HIGH-VALUE, HIGH-VALUES
Represents one or more occurrences of the character that has the highest
ordinal position in the collating sequence used.

HIGH-VALUE is treated as an alphanumeric literal in a context that
requires an alphanumeric character. For alphanumeric data with the
EBCDIC collating sequence, the value is X’FF'. For other alphanumeric

Chapter 3. Character-strings 13



data, the value depends on the collating sequence indicated by the locale.
For more information about locales, see [Appendix G, “Locale]
fconsiderations,” on page 593

HIGH-VALUE is treated as a national literal when used in a context that
requires a national literal. The value is national character NX'FFFF’.
HIGH-VALUE can be used in a context that requires a national literal only
when the NCOLLSEQ(BIN) compiler option is in effect.

When the context cannot be determined, an alphanumeric context is
assumed and the value X'FF’ is used.

Usage note:You should not use HIGH-VALUE (or a value assigned from
HIGH-VALUE) in a way that results in conversion between one data
representation and another. X’FF” does not represent a valid EBCDIC or
ASCII character, and NX'FFFF” does not represent a valid national
character. Conversion of either the alphanumeric or the national
HIGH-VALUE representation to another representation results in a
substitution character. For example, conversion of X'FF" to UTF-16 would
give a substitution character, not NX'FFFF’.

LOW-VALUE, LOW-VALUES

Represents one or more occurrences of the character that has the lowest
ordinal position in the collating sequence used.

LOW-VALUE is treated as an alphanumeric literal in a context that requires
an alphanumeric character. For alphanumeric data with the EBCDIC
collating sequence, the value is X’00". For other alphanumeric data, the
value depends on the collating sequence indicated by the locale. For more
information about locales, see|Appendix G, “Locale considerations,” on|

LOW-VALUE is treated as a national literal when used in a context that
requires a national literal. The value is national character NX"0000".
LOW-VALUE can be used in a context that requires a national literal only
when the NCOLLSEQ(BIN) compiler option is in effect.

When the context cannot be determined, an alphanumeric context is
assumed and the value X'00” is used.

QUOTE, QUOTES

Represents one or more occurrences of:

* The quotation mark character (“), if the QUOTE compiler option is in
effect

* The apostrophe character ('), if the APOST compiler option is in effect

QUOTE or QUOTES represents an alphanumeric character when used in a
context that requires an alphanumeric character, and represents a national
character when used in a context that requires a national character. The
national character value of quotation mark is NX’0022". The national
character value of apostrophe is NX'0027".

QUOTE and QUOTES cannot be used in place of a quotation mark or an
apostrophe to enclose an alphanumeric literal.

ALL literal

literal can be an alphanumeric literal, a DBCS literal, a national literal, or a
figurative constant other than the ALL literal.

When literal is not a figurative constant, ALL literal represents one or more
occurrences of the string of characters that compose the literal.

14 COBOL for Windows Version 7.5 Language Reference



When literal is a figurative constant, the word ALL has no meaning and is
used only for readability.

The figurative constant ALL literal must not be used with the CALL,
INSPECT, INVOKE, STOP, or STRING statements.

symbolic-character
Represents one or more of the characters specified as a value of the
symbolic-character in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph.

symbolic-character always represents an alphanumeric character; it can be
used in a context that requires a national character only when implicit
conversion of alphanumeric to national characters is defined. (It can be
used, for example, in a MOVE statement where the receiving item is of
class national because implicit conversion is defined when the sending
item is alphanumeric and the receiving item is national.)

You cannot specify the SYMBOLIC CHARACTERS clause if a multibyte
codepage is indicated by the compile-time locale setting. For more
information about locales, see|Appendix G, “Locale considerations,” on|

NULL, NULLS
Represents a value used to indicate that data items defined with USAGE
POINTER, USAGE PROCEDURE-POINTER, USAGE FUNCTION-
POINTER, USAGE OBJECT REFERENCE, or the ADDRESS OF special
register do not contain a valid address. NULL can be used only where
explicitly allowed in the syntax formats. NULL has the value zero.

The singular and plural forms of NULL, ZERO, SPACE, HIGH-VALUE,
LOW-VALUE, and QUOTE can be used interchangeably. For example, if
DATA-NAME-1 is a five-character data item, each of the following statements moves
five spaces to DATA-NAME-1:

MOVE SPACE TO DATA-NAME-1

MOVE SPACES TO DATA-NAME-1
MOVE ALL SPACES TO DATA-NAME-1

When the rules of COBOL permit any one spelling of a figurative constant name,
any alternative spelling of that figurative constant name can be specified.

You can use a figurative constant wherever literal appears in a syntax diagram,
except where explicitly prohibited. When a numeric literal appears in a syntax
diagram, only the figurative constant ZERO (or ZEROS or ZEROES) can be used.
Figurative constants are not allowed as function arguments except in an arithmetic
expression, where the expression is an argument to a function.

The length of a figurative constant depends on the context of its use. The following
rules apply:

* When a figurative constant is specified in a VALUE clause or associated with a
data item (for example, when it is moved to or compared with another item), the
length of the figurative constant character-string is equal to 1 or the number of
character positions in the associated data item, whichever is greater.

* When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a CALL, INVOKE, STOP, STRING, or
UNSTRING statement), the length of the character-string is one character.

Chapter 3. Character-strings 15



Special registers

Special registers are reserved words that name storage areas generated by the
compiler. Their primary use is to store information produced through specific
COBOL features. Each such storage area has a fixed name, and must not be
defined within the program.

For programs with the recursive attribute, for programs compiled with the
THREAD option, and for methods, storage for the following special registers is
allocated on a per-invocation basis:

* ADDRESS-OF

* RETURN-CODE
* SORT-CONTROL
* SORT-CORE-SIZE
e SORT-FILE-SIZE
* SORT-MESSAGE
* SORT-MODE-SIZE
e SORT-RETURN
 TALLY

* XML-CODE

* XML-EVENT

For the first call to a program, for the first call to a program following a cancel of
that program, or for a method invocation, the compiler initializes the special
register fields to their initial values.

For the following four cases:

* Programs that have the INITIAL clause specified

¢ Programs that have the RECURSIVE clause specified
* Programs compiled with the THREAD option

* Methods

the following special registers are reset to their initial value on each program or
method entry:

* RETURN-CODE
* SORT-CONTROL
* SORT-CORE-SIZE
e SORT-FILE-SIZE
* SORT-MESSAGE
* SORT-MODE-SIZE
e SORT-RETURN
 TALLY

* XML-CODE

e XML-EVENT

Further, in the above four cases, values set in ADDRESS OF special registers persist
only for the span of the particular program or method invocation.

In all other cases, the special registers will not be reset; they will be unchanged
from the value contained on the previous CALL or INVOKE.

16 COBOL for Windows Version 7.5 Language Reference



Unless otherwise explicitly restricted, a special register can be used wherever a
data-name or identifier that has the same definition as the implicit definition of the
special register (which is specified later in this section) can be used.

You can specify an alphanumeric special register in a function wherever an
alphanumeric argument to a function is allowed, unless specifically prohibited.

If qualification is allowed, special registers can be qualified as necessary to provide
uniqueness. (For more information, see [“Qualification” on page 57))

ADDRESS OF

The ADDRESS OF special register references the address of a data item in the
linkage section, the local-storage section, or the working-storage section.

For 01 and 77 level items in the linkage section, the ADDRESS OF special register
can be either a sending item or a receiving item. For all other operands, the
ADDRESS OF special register can be only a sending item.

The ADDRESS OF special register is implicitly defined as USAGE POINTER.

A function-identifier is not allowed as the operand of the ADDRESS OF special
register.

DEBUG-ITEM

The DEBUG-ITEM special register provides information for a debugging
declarative procedure about the conditions that cause debugging section execution.

DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
02  DEBUG-LINE PICTURE IS X(6).

02  FILLER PICTURE IS X VALUE SPACE.

02  DEBUG-NAME PICTURE IS X(30).

02  FILLER PICTURE IS X VALUE SPACE.

02  DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02  FILLER PICTURE IS X VALUE SPACE.

02  DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02  FILLER PICTURE IS X VALUE SPACE.

02  DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02  FILLER PICTURE IS X VALUE SPACE.

02  DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces. The
contents of the DEBUG-ITEM subfields are updated according to the rules for the
MOVE statement, with one exception: DEBUG-CONTENTS is updated as if the
move were an alphanumeric-to-alphanumeric elementary move without conversion
of data from one form of internal representation to another.

After updating, the contents of the DEBUG-ITEM subfields are:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated
sequence number, depending on the compiler option chosen) that caused
execution of the debugging section.

Chapter 3. Character-strings 17



DEBUG-NAME
The first 30 characters of the name that caused execution of the debugging
section. Any qualifiers are separated by the word "OF’.

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3
If the DEBUG-NAME is subscripted or indexed, the occurrence number of
each level is entered in the respective DEBUG-SUB-n. If the item is not
subscripted or indexed, these fields remain as spaces. You must not
reference the DEBUG-ITEM special register if your program uses more
than three levels of subscripting or indexing.

DEBUG-CONTENTS
Data is moved into DEBUG-CONTENTS, as shown in the following table.

Table 2. DEBUG-ITEM subfield contents

reference

Cause of debugging Statement referred to in Contents of Contents of
section execution DEBUG-LINE DEBUG-NAME DEBUG-CONTENTS
procedure-name-1 ALTER ALTER statement procedure-name-1 procedure-name-n in TO

PROCEED TO phrase

GO TO procedure-name-n

GO TO statement procedure-name-n Spaces

MERGE input/output
procedure

procedure-name-n in SORT or | SORT or MERGE statement | procedure-name-n “SORT INPUT”

“SORT OUTPUT”
“MERGE OUTPUT”
(as applicable)

procedure

PERFORM statement This PERFORM statement | procedure-name-n “PERFORM LOOP”
transfer of control
procedure-name-n in a USE | Statement causing USE procedure-name-n “USE PROCEDURE”

procedure execution

Implicit transfer from
previous sequential

Previous statement procedure-name-n “FALL THROUGH"
executed in previous

procedure sequential procedure’
First execution of first Line number of first First nondeclarative “START PROGRAM”
nondeclarative procedure  |nondeclarative procedure

procedure-name

number refers to the

1. If this procedure is preceded by a section header, and control is passed through the section header, the statement

section header.

JNIENVPTR

The JNIENVPTR special register references the Java Native Interface (JNI)
environment pointer. The JNI environment pointer is used in calling Java callable
services.

JNIENVPTR is implicitly defined as USAGE POINTER. It cannot be specified as a
receiving data item.

For information about using JNIENVPTR and JNI callable services, see the COBOL
for Windows Programming Guide.

LENGTH OF

18 COBOL for Windows

The LENGTH OF special register contains the number of bytes used by a data
item.

Version 7.5 Language Reference




LENGTH OF creates an implicit special register whose content is equal to the
current byte length of the data item referenced by the identifier.

For data items described with usage DISPLAY-1 (DBCS data items) and data items
described with usage NATIONAL, each character occupies 2 bytes of storage.

LENGTH OF can be used in the procedure division anywhere a numeric data item
that has the same definition as the implied definition of the LENGTH OF special
register can be used. The LENGTH OF special register has the implicit definition:

USAGE IS BINARY PICTURE 9(9).

If the data item referenced by the identifier contains the GLOBAL clause, the
LENGTH OF special register is a global data item.

The LENGTH OF special register can appear within either the starting character
position or the length expressions of a reference-modification specification.
However, the LENGTH OF special register cannot be applied to any operand that
is reference-modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special
register is allowed in a function where an integer argument is allowed.

If the LENGTH OF special register is used as the argument to the LENGTH
function, the result is always 4, independent of the argument specified for
LENGTH OF

If the ADDRESS OF special register is used as the argument to the LENGTH
special register, the result is always 4, independent of the argument specified for
ADDRESS OF.

LENGTH OF cannot be either of the following:
* A receiving data item

* A subscript

When the LENGTH OF special register is used as a parameter on a CALL
statement, it must be passed BY CONTENT or BY VALUE.

When a table element is specified, the LENGTH OF special register contains the
length in bytes of one occurrence. When referring to a table element, the element
name need not be subscripted.

A value is returned for any identifier whose length can be determined, even if the
area referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with
the LENGTH OF phrase. For example:

MOVE LENGTH OF A TO B

DISPLAY LENGTH OF A, A

ADD LENGTH OF A TO B
CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

The intrinsic function LENGTH can also be used to obtain the length of a data

item. For data items of usage NATIONAL, the length returned by the LENGTH
function is the number of national character positions, rather than bytes; thus the

Chapter 3. Character-strings 19



LENGTH OF special register and the LENGTH intrinsic function have different
results for data items of usage NATIONAL. For all other data items, the result is
the same.

LINAGE-COUNTER

A separate LINAGE-COUNTER special register is generated for each FD entry that
contains a LINAGE clause. When more than one is generated, you must qualify
each reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is one of the
following:

e If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same
PICTURE and USAGE as that data-name.

* If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item
with the same number of digits as that integer.

For more information, see ['LINAGE clause” on page 170)

The value in LINAGE-COUNTER at any given time is the line number at which
the device is positioned within the current page. LINAGE-COUNTER can be
referred to in procedure division statements; it must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated
file is executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this
file. (See ["WRITE statement” on page 447)

If the file description entry for a sequential file contains the LINAGE clause and
the EXTERNAL clause, the LINAGE-COUNTER data item is an external data item.
If the file description entry for a sequential file contains the LINAGE clause and
the GLOBAL clause, the LINAGE-COUNTER data item is a global data item.

You can specify the LINAGE-COUNTER special register wherever an integer
argument to a function is allowed.

RETURN-CODE

The RETURN-CODE special register can be used to pass a return code to the
calling program or operating system when the current COBOL program ends.
When a COBOL program ends:

* If control returns to the operating system, the value of the RETURN-CODE
special register is passed to the operating system as a user return code. The
supported user return code values are determined by the operating system, and
might not include the full range of RETURN-CODE special register values.

* If control returns to a calling program, the value of the RETURN-CODE special
register is passed to the calling program. If the calling program is a COBOL
program, the RETURN-CODE special register in the calling program is set to the
value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:
01 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

20 COBOL for Windows Version 7.5 Language Reference



When used in nested programs, this special register is implicitly defined with the
GLOBAL clause in the outermost program.

The following are examples of how to set the RETURN-CODE special register:
¢ COMPUTE RETURN-CODE = 8.
* MOVE 8 to RETURN-CODE.

The RETURN-CODE special register does not return a value from an invoked
method or from a program that uses CALL ... RETURNING. For more information,
see ['INVOKE statement” on page 355|or [‘CALL statement” on page 305

You can specify the RETURN-CODE special register in a function wherever an
integer argument is allowed.

The RETURN-CODE special register does not return information from a date/time
callable service. For more information, see the COBOL for Windows Programming
Guide.

SHIFT-OUT and SHIFT-IN

The SHIFT-OUT and SHIFI-IN special registers are supported only when
compiling with the CHAR(EBCDIC) compiler option. However, their values are not
recognized as delimiters for double-byte characters in the code pages supported for
COBOL for Windows.

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as
alphanumeric data items of the format:

01 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OE".
01 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OF".

When used in nested programs, these special registers are implicitly defined with
the global attribute in the outermost program.

These special registers represent EBCDIC shift-out and shift-in control characters,
which are unprintable characters.

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function
wherever an alphanumeric argument is allowed.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN cannot
be used in place of the keyboard control characters when you are defining
multibyte user-defined words or specifying EBCDIC DBCS literals.

SORT-CONTROL

The SORT-CONTROL special register is the name of an alphanumeric data item
that is implicitly defined as:

01 SORT-CONTROL GLOBAL PICTURE X(160) VALUE "file name".

where “file name” is the file name used by the sort as the source for additional
sort/merge options.

Chapter 3. Character-strings 21



When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

You can specify the SORT-CONTROL special register in a function wherever an
alphanumeric argument is allowed.

The SORT-CONTROL special register is not necessary for a successful sorting or
merging operation.

The sort control file takes precedence over the SORT special registers.

SORT-CORE-SIZE

The SORT-CORE-SIZE special register is the name of a binary data item that you
can use to specify the number of bytes of storage available to the sort utility. It has
the implicit definition:

01 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The amount of storage indicated in the SORT-CORE-SIZE special register does not
include memory areas required by COBOL library functions not related to the
SORT or MERGE function. It also does not include the fixed amount of memory
areas (modules, control blocks, fixed-size work areas) required for the sort and
merge implementation.

You can specify the SORT-CORE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-FILE-SIZE

The SORT-FILE-SIZE special register is the name of a binary data item that you can
use to specify the estimated number of records in the sort input file, file-name-1. It
has the implicit definition:

01 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

References to the SORT-FILE-SIZE special register are resolved by the compiler;
however, the value in the special register has no effect on the execution of a SORT
or MERGE statement.

You can specify the SORT-FILE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-MESSAGE

The SORT-MESSAGE special register is the name of an alphanumeric data item
that is available to both sort and merge programs.

References to the SORT-MESSAGE special register are resolved by the compiler;
however, the value in the special register has no effect on the execution of a SORT
or MERGE statement.

22  COBOL for Windows Version 7.5 Language Reference



The SORT-MESSAGE special register has the implicit definition:
01 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT".

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

You can specify the SORT-MESSAGE special register in a function wherever an
alphanumeric argument is allowed.

SORT-MODE-SIZE

The SORT-MODE-SIZE special register is the name of a binary data item that you
can use to specify the length of variable-length records that occur most frequently.
It has the implicit definition:

01 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

References to the SORT-MODE-SIZE special register are resolved by the compiler;
however, the value in the special register has no effect on the execution of a SORT
or MERGE statement.

You can specify the SORT-MODE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-RETURN

The SORT-RETURN special register is the name of a binary data item and is
available to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:
01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The SORT-RETURN special register contains a return code of 0 (successful) or 16
(unsuccessful) at the completion of a sort or merge operation. If the sort or merge
is unsuccessful and there is no reference to this special register anywhere in the
program, a message is displayed on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort or merge operation before all records
are processed. The operation is terminated on the next input or output function for
the sort or merge operation.

You can specify the SORT-RETURN special register in a function wherever an
integer argument is allowed.

TALLY

The TALLY special register is the name of a binary data item that has the following
definition:

Chapter 3. Character-strings 23



01 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer
argument is allowed.

WHEN-COMPILED

The WHEN-COMPILED special register contains the date at the start of the
compilation. WHEN-COMPILED is an alphanumeric data item that has the implicit
definition:

01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The WHEN-COMPILED special register has the format:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 27 April 2006,
WHEN-COMPILED would contain the value 04/27/0614.04.00.

WHEN-COMPILED can be used only as the sending field in a MOVE statement.
WHEN-COMPILED special register data cannot be reference-modified.
The compilation date and time can also be accessed with the intrinsic function

WHEN-COMPILED (see ["WHEN-COMPILED” on page 511). That function
supports four-digit year values and provides additional information.

XML-CODE

The XML-CODE special register is used for the following purposes:

* To communicate status between the XML parser and the processing procedure
that was identified in an XML PARSE statement

¢ To indicate either that an XML GENERATE statement executed successfully or
that an exception occurred during XML generation

The XML parser sets XML-CODE prior to transferring control to the processing
procedure for each event and at parser termination. You can reset XML-CODE
prior to returning control from the processing procedure to the XML parser.

The XML-CODE special register has the implicit definition:
01 XML-CODE PICTURE S9(9) USAGE BINARY VALUE 0.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

When the XML parser encounters an XML event, it sets XML-CODE and then

passes control to the processing procedure. For all events except an EXCEPTION
event, XML-CODE contains zero when the processing procedure receives control.

24  COBOL for Windows Version 7.5 Language Reference



For an EXCEPTION event, the parser sets XML-CODE to an exception code that
indicates the nature of the exception. XML PARSE exception codes are detailed in
the COBOL for Windows Programming Guide.

You can set XML-CODE before returning to the parser, as follows:

e To -1, after a normal event, to indicate that the parser is to terminate without
causing an EXCEPTION event.

* To 0, after an EXCEPTION event for which continuation is allowed, to indicate
that the parser is to continue processing. The parser will attempt to continue
processing the XML document, but results are undefined.

If you set XML-CODE to any other value before returning to the parser, results are
undefined.

When the parser returns control to the XML PARSE statement, XML-CODE
contains the most recent value set either by the parser or by the processing
procedure.

At termination of an XML GENERATE statement, XML-CODE contains either zero,
indicating successful completion of XML generation, or a nonzero error code,
indicating that an exception occurred during XML generation. XML GENERATE
exception codes are detailed in the COBOL for Windows Programming Guide.

XML-EVENT

The XML-EVENT special register is used to communicate event information from
the XML parser to the processing procedure that was identified in the XML PARSE
statement. Prior to passing control to the processing procedure, the XML parser
sets the XML-EVENT special register to the name of the XML event, as described
in Contents of XML-EVENT and XML-TEXT or XML-NTEXT special registers

(Table 3).

XML-EVENT has the implicit definition:
01 XML-EVENT USAGE DISPLAY PICTURE X(30) VALUE SPACE.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-EVENT cannot be used as a receiving data item.
Table 3. Contents of XML-EVENT and XML-TEXT or XML-NTEXT special registers

XML event (content of XML-EVENT) Content of XML-TEXT or XML-NTEXT

ATTRIBUTE-CHARACTER The single character corresponding with the predefined entity
reference in the attribute value

ATTRIBUTE-CHARACTERS The value within quotes or apostrophes. This can be a substring of
the attribute value if the value includes an entity reference.

ATTRIBUTE-NAME The attribute name; the string to the left of =

ATTRIBUTE-NATIONAL-CHARACTER Regardless of the type of the XML document specified by identifier-1

in the XML PARSE statement, XML-TEXT is empty and
XML-NTEXT contains the single national character corresponding
with the (numeric) character reference.

COMMENT The text of the comment between the opening character sequence
“<1--" and the closing character sequence “-->"

Chapter 3. Character-strings 25



Table 3. Contents of XML-EVENT and XML-TEXT or XML-NTEXT special registers (continued)

XML event (content of XML-EVENT)

Content of XML-TEXT or XML-NTEXT

CONTENT-CHARACTER The single character corresponding with the predefined entity
reference in the element content
CONTENT-CHARACTERS The element content between start and end tags. This can be a

substring of the element content if the content contains an entity
reference or another element.

CONTENT-NATIONAL-CHARACTER

Regardless of the type of the XML document specified by identifier-1
in the XML PARSE statement, XML-TEXT is empty and
XML-NTEXT contains the single national character corresponding
with the (numeric) character reference.’

DOCUMENT-TYPE-DECLARATION

The entire document type declaration including the opening and
closing character sequences, “<!DOCTYPE” and “>"

ENCODING-DECLARATION

The value, between quotes or apostrophes, of the encoding
declaration in the XML declaration

END-OF-CDATA-SECTION

Always contains the string “]]>"

END-OF-DOCUMENT

Null, zero-length

END-OF-ELEMENT

The name of the end element tag or empty element tag

EXCEPTION

The part of the document successfully scanned, up to and including
the point at which the exception was detected.’

Special register XML-CODE contains the unique error code
identifying the exception.

PROCESSING-INSTRUCTION-DATA

The rest of the processing instruction, not including the closing
sequence, “?>", but including trailing, and not leading, white space
characters

PROCESSING-INSTRUCTION-TARGET

The processing instruction target name, which occurs immediately
after the processing instruction opening sequence, “<?”

STANDALONE-DECLARATION

The value, between quotes or apostrophes, of the stand-alone
declaration in the XML declaration

START-OF-CDATA-SECTION

Always contains the string “<![CDATA[”

START-OF-DOCUMENT

The entire document

START-OF-ELEMENT

The name of the start element tag or empty element tag, also known
as the element type

UNKNOWN-REFERENCE-IN-CONTENT

The entity reference name, not including the “&” and “;” delimiters

UNKNOWN-REFERENCE-IN-ATTRIBUTE

The entity reference name, not including the “&” and “;” delimiters

VERSION-INFORMATION

The value, between quotes or apostrophes, of the version declaration
in the XML declaration. This is currently always "1.0".

1. National characters with scalar values greater than 65,535 (NX“FFFE”) are represented using two encoding units
(a “surrogate pair”). Programmers are responsible for ensuring that operations on the content of XML-NTEXT do
not split the pair of encoding units that together form a graphic character, thereby forming invalid data.

2. Exceptions for encoding conflicts are signaled before parsing begins. For these exceptions, XML-TEXT is either
zero length or contains just the encoding declaration value from the document. See the COBOL for Windows
Programming Guide for information about XML exception codes.

XML-NTEXT

The XML-NTEXT special register is defined during XML parsing to contain
document fragments that are represented in usage NATIONAL.

26 COBOL for Windows Version 7.5 Language Reference




XML-NTEXT is an elementary data item of category national of the length of the
contained XML document fragment. The length of XML-NTEXT can vary from 0
through 1,073,741,823 national character positions. The maximum byte length is
2,147,483,646.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The parser sets XML-NTEXT to the document fragment associated with an event
before transferring control to the processing procedure, in these cases:

* When the operand of the XML PARSE statement is a data item of category
national

* For the ATTRIBUTE-NATIONAL-CHARACTER event
* For the CONTENT-NATIONAL-CHARACTER event

When XML-NTEXT is set, the XML-TEXT special register has a length of zero. At
any given time, only one of the two special registers XML-NTEXT and XML-TEXT
has a nonzero length.

Use the LENGTH function to determine the number of national characters that
XML-NTEXT contains. Use the LENGTH OF special register to determine the
number of bytes, rather than the number of national characters, that XML-NTEXT
contains.

XML-NTEXT cannot be used as a receiving item.
XML-TEXT

The XML-TEXT special register is defined during XML parsing to contain
document fragments that are represented in usage DISPLAY.

XML-TEXT is an elementary data item of category alphanumeric of the length of
the contained XML document fragment. The length of XML-TEXT can vary from 0
through 2,147,483,646 bytes.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The parser sets XML-TEXT to the document fragment associated with an event
before transferring control to the processing procedure when the operand of the
XML PARSE statement is an alphanumeric data item, except for the
ATTRIBUTE-NATIONAL-CHARACTER event and the CONTENT-NATIONAL-
CHARACTER event.

When XML-TEXT is set, the XML-NTEXT special register has a length of zero. At
any given time, only one of the two special registers XML-NTEXT and XML-TEXT
has a nonzero length.

Use the LENGTH function or the LENGTH OF special register for XML-TEXT to
determine the number of bytes that XML-TEXT contains.

Chapter 3. Character-strings 27



XML-TEXT cannot be used as a receiving item.

Literals

A literal is a character-string whose value is specified either by the characters of
which it is composed or by the use of a figurative constant. (See
lconstants” on page 13)) For descriptions of the different types of literals, see:

» |“Alphanumeric literals”]
« |“DBCS literals” on page 32|
* |“National literals” on page 33

* |“Numeric literals” on page 31

Alphanumeric literals

COBOL for Windows provides several formats of alphanumeric literals:

+ Format 1: [“Basic alphanumeric literals”]

+ Format 2: [’ Alphanumeric literals with multibyte characters” on page 29

 Format 3: ["Hexadecimal notation for alphanumeric literals” on page 29

+ Format 4: [“Null-terminated alphanumeric literals” on page 30|

Basic alphanumeric literals
Basic alphanumeric literals can contain only single-byte characters.

The following is the format for a basic alphanumeric literal:

Format 1: Basic alphanumeric literals

"single-byte-characters"
'single-byte-characters'

The enclosing quotation marks or apostrophes are excluded from the literal when
the program is compiled.

An embedded quotation mark or apostrophe must be represented by a pair of
quotation marks (“”) or a pair of apostrophes ("), respectively, when it is the
character used as the opening delimiter. For example:

"THIS ISN""T WRONG"
'THIS ISN''T WRONG'

The delimiter character used as the opening delimiter for a literal must be used as
the closing delimiter for that literal. For example:
'THIS IS RIGHT'

"THIS IS RIGHT"
'THIS IS WRONG"

You can use apostrophes or quotation marks as the literal delimiters independent
of the APOST/QUOTE compiler option.

Any punctuation characters included within an alphanumeric literal are part of the
value of the literal.

The maximum length of an alphanumeric literal is 160 bytes. The minimum length
is 1 byte.

28 COBOL for Windows Version 7.5 Language Reference



Alphanumeric literals are in the alphanumeric data class and category. (Data
classes and categories are described in [‘Classes and categories of data” on page]

154)

Usage note: Use hexadecimal notation to express control characters X’00” through
X'1F” within an alphanumeric literal. Results are unpredictable if you specify these
control characters in a basic alphanumeric literal.

Alphanumeric literals with multibyte characters

You can include multibyte as well as single-byte characters in alphanumeric literals
(such as to initialize display fields). Alphanumeric literals with multibyte
characters are referred to as mixed literals.

Mixed literals have the following format:

Format 2: Mixed literals

"mixed-characters"
'mixed-characters'

The rules of formation for mixed literals are as follows:

* The opening and closing delimiters, either “ or ’, must both be the same
character and must be represented as a single-byte character.

* Mixed-characters can be:
- Mixed single-byte and multibyte characters
— Solely multibyte characters

* Mixed literals cannot be continued. The maximum length of a mixed literal is
limited only by the available positions in Area B on a single source line.

Mixed literals cannot be used as a literal in the following:
* ALPHABET clause

* ASSIGN clause

* CLASS clause

* CURRENCY SIGN clause

« END METHOD marker

¢ METHOD-ID paragraph

* PADDING CHARACTER clause
* PROGRAM-ID paragraph

* RERUN clause

* STOP statement

COBOL statements process alphanumeric literals with multibyte characters on a
byte-by-byte basis, without sensitivity to the character codes. See the COBOL for
Windows Programming Guide for more information about using alphanumeric
literals and data items with multibyte characters in statements that operate on a
byte-by-byte basis.

Hexadecimal notation for alphanumeric literals

Hexadecimal notation can be used for alphanumeric literals. Hexadecimal notation
has the following format:

Chapter 3. Character-strings 29



Format 3: Hexadecimal notation for alphanumeric literals

X"hexadecimal-digits"
X'hexadecimal-digits'

X“ or X’
The opening delimiter for the hexadecimal notation of an alphanumeric
literal.

”

or’ The closing delimiter for the hexadecimal notation of an alphanumeric
literal. If a quotation mark is used in the opening delimiter, it must be
used as the closing delimiter. Similarly, if an apostrophe is used in the
opening delimiter, it must be used as the closing delimiter.

Hexadecimal digits are characters in the range ‘0’ to '9’, ‘a’ to 'f’, and "A’ to 'F’,
inclusive. Two hexadecimal digits represent one character in a single-byte character
set (EBCDIC or ASCII). Four hexadecimal digits represent one character in a DBCS
character set. An even number of hexadecimal digits must be specified. The
maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any alphanumeric literal. The
opening delimiter (X” or X") cannot be split across lines.

An alphanumeric literal in hexadecimal notation has data class and category
alphanumeric. The compiler converts the hexadecimal notation into the normal
characters of an alphanumeric literal. Hexadecimal notation for alphanumeric
literals can be used anywhere alphanumeric literals can be used.

Usage note: Use hexadecimal notation to express control characters X’00” through
X'1F” within an alphanumeric literal. Results are unpredictable if you specify these
control characters in a basic alphanumeric literal.

See also ["Hexadecimal notation for national literals” on page 34

Null-terminated alphanumeric literals
Alphanumeric literals can be null-terminated, with the following format:

Format 4: Null-terminated alphanumeric literals

Z"mixed-characters"
Z'mixed-characters'

Z" or Z'
The opening delimiter for a null-terminated alphanumeric literal. Both
characters of the opening delimiter (Z” or Z’) must be on the same source
line.

“

or’ The closing delimiter for a null-terminated alphanumeric literal.

If a quotation mark is used in the opening delimiter, it must be used as the
closing delimiter. Similarly, if an apostrophe is used in the opening
delimiter, it must be used as the closing delimiter.

mixed-characters
Can be any of the following:
* Solely single-byte characters
¢ Mixed single-byte and multibyte characters
* Solely multibyte characters

30 COBOL for Windows Version 7.5 Language Reference



However, you cannot specify the single-byte character with the value X00".
X’00" is the null character automatically appended to the end of the literal.
The content of the literal is otherwise subject to the same rules and
restrictions as an alphanumeric literal with multibyte characters (format 2).

The length of the string of characters in the literal content can be 0 to 159 bytes.
The actual length of the literal includes the terminating null character, and is a
maximum of 160 bytes.

A null-terminated alphanumeric literal has data class and category alphanumeric.
It can be used anywhere an alphanumeric literal can be used except that
null-terminated literals are not supported in ALL literal figurative constants.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns
the number of bytes in the literal prior to but not including the terminating null.
(The LENGTH special register does not support literal operands.)

Numeric literals

A numeric literal is a character-string whose characters are selected from the digits 0
through 9, a sign character (+ or -), and the decimal point. If the literal contains no
decimal point, it is an integer. (In this documentation, the word integer appearing
in a format represents a numeric literal of nonzero value that contains no sign and
no decimal point, except when other rules are included with the description of the
format.) The following rules apply:

* If the ARITH(COMPAT) compiler option is in effect, one through 18 digits are
allowed. If the ARITH(EXTEND) compiler option is in effect, one through 31
digits are allowed.

* Only one sign character is allowed. If included, it must be the leftmost character
of the literal. If the literal is unsigned, it is a positive value.

* Only one decimal point is allowed. If a decimal point is included, it is treated as
an assumed decimal point (that is, as not taking up a character position in the
literal). The decimal point can appear anywhere within the literal except as the
rightmost character.

The value of a numeric literal is the algebraic quantity expressed by the characters
in the literal. The size of a numeric literal is equal to the number of digits specified
by the user.

Numeric literals can be fixed-point or floating-point numbers.

Rules for floating-point literal values
The format and rules for floating-point literals are listed below.

— Format

»—E'—mantissa E exponent
+ E + }

* The sign is optional before the mantissa and the exponent; if you omit the sign,
the compiler assumes a positive number.

v
A

Chapter 3. Character-strings 31



* The mantissa can contain between one and 16 digits. A decimal point must be
included in the mantissa.

* The exponent is represented by an E followed by an optional sign and one or
two digits.

* The magnitude of a floating-point literal value must fall between:
— 32-bit representation: 1.175(10%) to 3.403(10)
— 64-bit representation: 2.225(10°%) to 1.798(10°")

Numeric literals are in the numeric data class and category. (Data classes and
categories are described under [“Classes and categories of data” on page 154))

DBCS literals

The formats and rules for DBCS literals are listed below.

Format for DBCS literals

G"DBCS-characters"
G'DBCS-characters'
N"DBCS-characters"
N'DBCS-characters'

G”, G’, NII, or N’
Opening delimiters.
N“ and N’ identify a DBCS literal when the NSYMBOL(DBCS) compiler
option is in effect. They identify a national literal when the

NSYMBOL(NATIONAL) compiler option is in effect, and the rules
specified in|“National literals” on page 33|apply.

”

or’ The closing delimiter. If a quotation mark is used in the opening delimiter,
it must be used as the closing delimiter. Similarly, if an apostrophe is used

in the opening delimiter, it must be used as the closing delimiter.

DBCS-characters
Any DBCS character.

Maximum length
The maximum length is limited by the available space on one source line.

Continuation rules
Cannot be continued across lines

DBCS literals with the SOSI compiler option

When the SOSI compiler option is in effect, workstation shift-out (SO) and shift-in
(SI) control characters delimit DBCS characters in source text. The following is the
syntax for DBCS literals with shift-out and shift-in delimiters:

Format for DBCS literals

G"<DBCS-characters>"
G'<DBCS-characters>'
N"<DB(CS-characters>"
N'<DBCS-characters>"'

< Represents the shift-out control character (X"1E’)

> Represents the shift-in control character (X'1F")

32 COBOL for Windows Version 7.5 Language Reference



Rules for DBCS characters, literal delimiters, maximum length, and continuation
are the same as for DBCS literals without the SOSI compiler option. See the
COBOL for Windows Programming Guide for the details of the SOSI compiler
option.

Where DBCS literals can be used
DBCS literals can be used in the following places:

¢ Data division

— In the VALUE clause of data description entries that define a data item of
class DBCS.

— In the VALUE OF clause of file description entries.
* Procedure division

— In a relation condition when the comparand is a DBCS data item, an
elementary data item of class national, a national group item, or an
alphanumeric group item

— As an argument passed BY CONTENT in a CALL statement
— In the DISPLAY and EVALUATE statements
— In the following statements:
- INITIALIZE; for details, see [“INITIALIZE statement” on page 342
- INSPECT; for details, see|'INSPECT statement” on page 345,
- MOVE; for details, see [“MOVE statement” on page 369
STRING; for details, see ["'STRING statement” on page 432.]
- UNSTRING, for details, see ["UNSTRING statement” on page 440.|
— In figurative constant ALL
— As an argument to the NATIONAL-OF intrinsic function
* Compiler-directing statements COPY, REPLACE, and TITLE

National literals

COBOL for Windows provides the following national literal formats:

* |“Basic national literals”|

* |"Hexadecimal notation for national literals” on page 34|

Basic national literals
The following are the format and rules for a basic national literal.

Format 1: Basic national literals

N"character-data"
N'character-data'

When the NSYMBOL(NATIONAL) compiler option is in effect, the opening
delimiter N“ or N’ identifies a national literal. A national literal is of the class and
category national.

When the NSYMBOL(DBCS) compiler option is in effect, the opening delimiter N”
or N’ identifies a DBCS literal, and the rules specified in ["DBCS literals” on page]

apply.

N“ or N’
Opening delimiters. The opening delimiter must be coded as single-byte
characters. It cannot be split across lines.

Chapter 3. Character-strings 33



” I4

or’ The closing delimiter. The closing delimiter must be coded as a single-byte
character. If a quotation mark is used in the opening delimiter, it must be
used as the closing delimiter. Similarly, if an apostrophe is used in the
opening delimiter, it must be used as the closing delimiter.

To include the quotation mark or apostrophe used in the opening delimiter
in the content of the literal, specify a pair of quotation marks or
apostrophes, respectively. Examples:

N'This Titeral''s content includes an apostrophe'

N'This Titeral includes ", which is not used in the opening delimiter'
N'This Titeral includes "", which is used in the opening delimiter"

character-data
The source text representation of the content of the national literal.
character-data can include any combination of single-byte and multibyte
characters represented in the code page in effect for the source code.

DBCS characters in the content of the literal can be delimited by
workstation shift-out and shift-in control characters as described for the
SOSI compiler option in the COBOL for Windows Programming Guide.

Maximum length
The maximum length of a national literal is 80 character positions,
excluding the opening and closing delimiters. If the source content of the
literal contains one or more multibyte characters, the maximum length is
limited by the available space in Area B of a single source line.

The literal must contain at least one character. Each single-byte character in
the literal counts as one character position and each multibyte character in
the literal counts as one character position. Workstation shift-in and
shift-out delimiters for DBCS characters are not counted.

Continuation rules
When the content of the literal includes multibyte characters, the literal
cannot be continued. When the content of the literal does not include
multibyte characters, normal continuation rules apply.

The source text representation of character-data is automatically converted to
UTF-16 for use at run time (for example, when the literal is moved to or compared
with a data item of category national).

Hexadecimal notation for national literals
The following are the format and rules for the hexadecimal notation format of
national literals.

Format 2: Hexadecimal notation for national literals

NX"hexadecimal-digits"
NX'hexadecimal-digits'

The hexadecimal notation format of national literals is not affected by the
NSYMBOL compiler option.

NX” or NX’
Opening delimiters. The opening delimiter must be represented in
single-byte characters. It must not be split across lines.

”

or’ The closing delimiter. The closing delimiter must be represented as a

single-byte character.

34 COBOL for Windows Version 7.5 Language Reference



If a quotation mark is used in the opening delimiter, it must be used as the
closing delimiter. Similarly, if an apostrophe is used in the opening
delimiter, it must be used as the closing delimiter.

hexadecimal-digits
Hexadecimal digits in the range ‘0" to '9’, ‘a’ - f’, and "A’ to 'F’, inclusive.
Each group of four hexadecimal digits represents a single national
character and must represent a valid code point in UTF-16. The number of
hexadecimal digits must be a multiple of four.

The syntax of hexadecimal notation uses big-endian representation on all
platforms. This is the normal representation for COBOL for AIX® and
Enterprise COBOL for z/OS®. You must enter the hexadecimal notation in
big-endian, but the compiler converts the value to little-endian for use at
run time.

Maximum length
The length of a national literal in hexadecimal notation must be from four
to 320 hexadecimal digits, excluding the opening and closing delimiters.
The length must be a multiple of four.

Continuation rules
Normal continuation rules apply.

The content of a national literal in hexadecimal notation is stored as national
characters. The resulting content has the same meaning as a basic national literal
that specifies the same national characters.

A national literal in hexadecimal notation has data class and category national and
can be used anywhere that a basic national literal can be used.

Where national literals can be used
National literals can be used:

e In a VALUE clause associated with a data item of class national or a VALUE
clause associated with a condition-name for a conditional variable that is defined
with usage NATIONAL

* In figurative constant ALL

* In a relation condition

* In the WHEN phrase of a format-2 SEARCH statement (binary search)
* In the ALL, LEADING, or FIRST phrase of an INSPECT statement

* In the BEFORE or AFTER phrase of an INSPECT statement

* In the DELIMITED BY phrase of a STRING statement

¢ In the DELIMITED BY phrase of an UNSTRING statement

* As the method-name in a METHOD-ID paragraph, an END METHOD marker,
and an INVOKE statement

* As an argument passed BY CONTENT in the CALL statement
* As an argument passed BY VALUE in an INVOKE or CALL statement
* In the DISPLAY and EVALUATE statements
¢ As a sending item in the following procedural statements:
- INITIALIZE
- INSPECT
- MOVE
- STRING
- UNSTRING

Chapter 3. Character-strings 35



* In the argument list to the following intrinsic functions:

DISPLAY-OF, LENGTH, LOWER-CASE, MAX, MIN, ORD-MAX, ORD-MIN,
REVERSE, and UPPER-CASE

* In the compiler-directing statements COPY, REPLACE, and TITLE

A national literal can be used only as specified in the detailed rules in this
document.

PICTURE character-strings

A PICTURE character-string is composed of the currency symbol and certain
combinations of characters in the COBOL character set. PICTURE character-strings
are delimited only by the separator space, separator comma, separator semicolon,
or separator period.

A chart of PICTURE clause symbols appears in PICTURE clause symbol meanings
(Table 12 on page 192).

Comments

A comment is a character-string that can contain any combination of characters from
the character set of the computer. It has no effect on the execution of the program.
There are two forms of comments:

Comment entry (identification division)
This form is described under [“Optional paragraphs” on page 100

Comment line (any division)
This form is described under [*Comment lines” on page 48|

Character-strings that form comments can contain any single-byte or multibyte
character from the code page in effect for compilation.

Multiple comment lines that contain multibyte strings are allowed. The embedding
of multibyte characters in a comment line must be done on a line-by-line basis.
Words containing those characters cannot be continued to a following line. No
syntax checking for valid strings is provided in comment lines.

36 COBOL for Windows Version 7.5 Language Reference



Chapter 4. Separators

A separator is a character or a string of two or more contiguous characters that

delimits character-strings. The separators are shown in the following table.

Table 4. Separators

Separator Meaning
b Space
bt Comma
bt Period
;b Semicolon
( Left parenthesis
) Right parenthesis
Colon
“pt Quotation mark
b Apostrophe
X" Opening delimiter for a hexadecimal format alphanumeric literal
X’ Opening delimiter for a hexadecimal format alphanumeric literal
z" Opening delimiter for a null-terminated alphanumeric literal
z Opening delimiter for a null-terminated alphanumeric literal
N” Opening delimiter for a national literal®
N’ Opening delimiter for a national literal®
NX” Opening delimiter for a hexadecimal format national literal
NX’ Opening delimiter for a hexadecimal format national literal
G” Opening delimiter for a DBCS literal
G’ Opening delimiter for a DBCS literal

Pseudo-text delimiter

1. b represents a blank.

2. N” and N’ are the opening delimiter for a DBCS literal when the NSYMBOL(DBCS)
compiler option is in effect.

Rules for separators

In the following description, {} (curly braces) enclose each separator, and b
represents a space. Anywhere a space is used as a separator or as part of a
separator, more than one space can be used.

Space {b}

A space can immediately precede or follow any separator except:

* The opening pseudo-text delimiter, where the preceding space is
required.

* Within quotation marks. Spaces between quotation marks are considered

part of the alphanumeric literal; they are not considered separators.

© Copyright IBM Corp. 1996, 2008

37



Period {.b}, Comma {,b}, Semicolon {;b}
A separator comma is composed of a comma followed by a space. A
separator period is composed of a period followed by a space. A separator
semicolon is composed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence,
or as shown in formats. The separator comma and separator semicolon can
be used anywhere the separator space is used.

* In the identification division, each paragraph must end with a separator
period.

e In the environment division, the SOURCE-COMPUTER,
OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL
paragraphs must each end with a separator period. In the
FILE-CONTROL paragraph, each file-control entry must end with a
separator period.

* In the data division, file (FD), sort/merge file (SD), and data description
entries must each end with a separator period.

¢ In the procedure division, separator commas or separator semicolons can
separate statements within a sentence and operands within a statement.
Each sentence and each procedure must end with a separator period.

Parentheses { (}...{) }
Except in pseudo-text, parentheses can appear only in balanced pairs of left
and right parentheses. They delimit subscripts, a list of function
arguments, reference-modifiers, arithmetic expressions, or conditions.

Colon { :}
The colon is a separator and is required when shown in general formats.

Quotation marks {“} ... {"}
An opening quotation mark must be immediately preceded by a space or a
left parenthesis. A closing quotation mark must be immediately followed
by a separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. Quotation marks must appear as balanced pairs.
They delimit alphanumeric literals, except when the literal is continued
(see [“Continuation lines” on page 46).

Apostrophes {'} ... {"}
An opening apostrophe must be immediately preceded by a space or a left
parenthesis. A closing apostrophe must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. Apostrophes must appear as balanced pairs. They
delimit alphanumeric literals, except when the literal is continued (see
[“Continuation lines” on page 46).

Null-terminated literal delimiters {Z”} ... {"}, {Z’} ... {"}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter.

DBCS literal delimiters {G“} ... {"}, {G'}...{"}, {N“}..{"}, {(N}..{}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. N“ and N’ are DBCS literal delimiters when the
NSYMBOL/(DBCS) compiler option is in effect.

38 COBOL for Windows Version 7.5 Language Reference



National literal delimiters {N”} ... {“}, {N'}...{"}, {NX"}...{“}, {NX}..{}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. N” and N” are DBCS literal delimiters when the
NSYMBOL/(DBCS) compiler option is in effect.

Pseudo-text delimiters {b==} ... {==b}
An opening pseudo-text delimiter must be immediately preceded by a
space. A closing pseudo-text delimiter must be immediately followed by a
separator space, comma, semicolon, or period. Pseudo-text delimiters must

appear as balanced pairs. They delimit pseudo-text. (See [“COPY statement”]
on page 520}

Any punctuation character included in a PICTURE character-string, a comment
character-string, or an alphanumeric literal is not considered a punctuation
character, but is part of the character-string or literal.

Chapter 4. Separators 39



40 COBOL for Windows Version 7.5 Language Reference



Chapter 5. Sections and paragraphs

Sections and paragraphs define a program. Sections and paragraphs are
subdivided into sentences, statements, and entries (see [‘Sentences, statements, and
. Sentences are subdivided into statements (see|’Statements” on page 42),
and statements are subdivided into phrases (see[“Phrases” on page 42). Entries are
subdivided into clauses (see [“Clauses” on page 42) and phrases.

For more information about sections, paragraphs, and statements, see |“Procedures”

Sentences, statements, and entries

Unless the associated rules explicitly state otherwise, each required clause or
statement must be written in the sequence shown in its format. If optional clauses
or statements are used, they must be written in the sequence shown in their
formats. These rules are true even for clauses and statements treated as comments.

The syntactical hierarchy follows this form:
* Identification division
— Paragraphs
- Entries
* Clauses
* Environment division
— Sections
- Paragraphs
* Entries
— Clauses
- Phrases
* Data division
— Sections
- Entries
* Clauses
— Phrases
* Procedure division
— Sections
- Paragraphs
* Sentences
— Statements
- Phrases

Entries

An entry is a series of clauses that ends with a separator period. Entries are
constructed in the identification, environment, and data divisions.

© Copyright IBM Corp. 1996, 2008 41



Clauses

A clause is an ordered set of consecutive COBOL character-strings that specifies an
attribute of an entry. Clauses are constructed in the identification, environment,
and data divisions.

Sentences

A sentence is a sequence of one or more statements that ends with a separator
period. Sentences are constructed in the procedure division.

Statements

A statement specifies an action to be taken by the program. Statements are
constructed in the procedure division. For descriptions of the different types of
statements, see:

* |“Imperative statements” on page 278|
+ [“Conditional statements” on page 280|

+ |Chapter 7, “Scope of names,” on page 51|

+ |Chapter 23, “Compiler-directing statements,” on page 517

Phrases

Each clause or statement in a program can be subdivided into smaller units called
phrases.

42 COBOL for Windows Version 7.5 Language Reference



Chapter 6. Reference format

COBOL source text must be written in COBOL reference format. Reference format
consists of the following areas in a 72-character line:

Sequence number area
Columns 1 through 6

Indicator area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

The figure below illustrates reference format for a COBOL source line.

L1|2|3|4|5|J| 9|10|1112|13|...|71|72
Sequence Number Area Area A Area B

Indicator Area

The sections below provide details about these areas:

+ |“Sequence number area”]

* [“Indicator area’]

+ |“Area A” on page 44|

* [“Area B” on page 45|

* |“Area A or Area B” on page 48|

Sequence number area

The sequence number area can be used to label a source statement line. The
content of this area can consist of any character in the character set of the
computer.

Indicator area

Use the indicator area to specify:

* The continuation of words or alphanumeric literals from the previous line onto
the current line

e The treatment of text as documentation

¢ Debugging lines

See [“Continuation lines” on page 46)[’Comment lines” on page 48,|and
[“Debugging lines” on page 49

The indicator area can be used for source listing formatting. A slash (/) placed in
the indicator column will cause the compiler to start a new page for the source
listing, and the corresponding source record to be treated as a comment. The effect

© Copyright IBM Corp. 1996, 2008 43



can be dependent on the LINECOUNT compiler option. For information about the
LINECOUNT compiler option, see the COBOL for Windows Programming Guide.

Area A

The following items must begin in Area A:

* Division headers

* Section headers

* Paragraph headers or paragraph names

* Level indicators or level-numbers (01 and 77)
* DECLARATIVES and END DECLARATIVES

* End program, end class, and end method markers

Division headers

A division header is a combination of words, followed by a separator period, that
indicates the beginning of a division:

» IDENTIFICATION DIVISION.
* ENVIRONMENT DIVISION.
* DATA DIVISION.

* PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a procedure
division header) must be immediately followed by a separator period. Except for
the USING phrase, no text can appear on the same line.

Section headers

In the environment and procedure divisions, a section header indicates the
beginning of a series of paragraphs. For example:

INPUT-OUTPUT SECTION.

In the data division, a section header indicates the beginning of an entry; for
example:

FILE SECTION.
LINKAGE SECTION.
LOCAL-STORAGE SECTION.

WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph headers or paragraph names
A paragraph header or paragraph name indicates the beginning of a paragraph.

In the environment division, a paragraph consists of a paragraph header followed
by one or more entries. For example:

OBJECT-COMPUTER. computer-name.

In the procedure division, a paragraph consists of a paragraph-name followed by
one or more sentences.

44  COBOL for Windows Version 7.5 Language Reference



Level indicators (FD and SD) or level-numbers (01 and 77)

A level indicator can be either FD or SD. It must begin in Area A and be followed
by a space. (See [“File section” on page 164)) A level-number that must begin in
Area A is a one- or two-digit integer with a value of 01 or 77. It must be followed
by a space or separator period.

DECLARATIVES and END DECLARATIVES

DECLARATIVES and END DECLARATIVES are keywords that begin and end the
declaratives part of the source unit.

In the procedure division, each of the keywords DECLARATIVES and END
DECLARATIVES must begin in Area A and be followed immediately by a
separator period; no other text can appear on the same line. After the keywords
END DECLARATIVES, no text can appear before the following section header. (See
[“Declaratives” on page 247))

End program, end class, and end method markers

The end markers are a combination of words followed by a separator period that
indicates the end of a COBOL program, method, class, factory, or object definition.
For example:

END PROGRAM program-name .

END CLASS class-name.

END METHOD "method-name" .

END OBJECT.

END FACTORY.

For programs
program-name must be identical to the program-name of the corresponding
PROGRAM-ID paragraph. Every COBOL program, except an outermost
program that contains no nested programs and is not followed by another
batch program, must end with an END PROGRAM marker.

For classes
class-name must be identical to the class-name in the corresponding
CLASS-ID paragraph.

For methods
method-name must be identical to the method-name in the corresponding
METHOD-ID paragraph.

For object paragraphs
There is no name in an object paragraph header or in its end marker. The
syntax is simply END OBJECT.

For factory paragraphs
There is no name in a factory paragraph header or in its end marker. The
syntax is simply END FACTORY.

Area B

The following items must begin in Area B:
e Entries, sentences, statements, and clauses
e Continuation lines

Chapter 6. Reference format 45



Entries, sentences, statements, clauses

The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name that it follows, or in Area B of the next nonblank line
that is not a comment line. Successive sentences or entries either begin in Area B of
the same line as the preceding sentence or entry, or in Area B of the next nonblank
line that is not a comment line.

Within an entry or sentence, successive lines in Area B can have the same format
or can be indented to clarify program logic. The output listing is indented only if
the input statements are indented. Indentation does not affect the meaning of the
program. The programmer can choose the amount of indentation, subject only to
the restrictions on the width of Area B. See also [Chapter 5, “Sections and|

[paragraphs,” on page 41.|

Continuation lines

Any sentence, entry, clause, or phrase that requires more than one line can be
continued in Area B of the next line that is neither a comment line nor a blank line.
The line being continued is a continued line; the succeeding lines are continuation
lines. Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character
of the preceding line is assumed to be followed by a space.

The following cannot be continued:

* Multibyte user-defined words

* DBCS literals

* Alphanumeric literals containing multibyte characters
* National literals containing multibyte characters

However, alphanumeric literals and national literals in hexadecimal notation can be
continued regardless of the kind of characters expressed in hexadecimal notation.

All characters that make up an opening literal delimiter must be on the same line.
For example, Z“, G”, N”, NX”, or X".

Both characters that make up the pseudo-text delimiter separator “==" must be on
the same line.

If there is a hyphen in the indicator area of a line, the first nonblank character of
the continuation line immediately follows the last nonblank character of the
continued line without an intervening space.

Continuation of alphanumeric and national literals
Alphanumeric and national literals can be continued only when there are no
multibyte characters in the content of the literal.

The following rules apply to alphanumeric and national literals that do not contain

multibyte characters:

* If the continued line contains an alphanumeric or national literal without a
closing quotation mark, all spaces at the end of the continued line (through
column 72) are considered to be part of the literal. The continuation line must
contain a hyphen in the indicator area, and the first nonblank character must be

46 COBOL for Windows Version 7.5 Language Reference



a quotation mark. The continuation of the literal begins with the character
immediately following the quotation mark.

¢ If an alphanumeric or national literal that is to be continued on the next line has
as its last character a quotation mark in column 72, the continuation line must
start with two consecutive quotation marks. This will result in a single quotation
mark as part of the value of the literal.

If the last character on the continued line of an alphanumeric or national literal
is a single quotation mark in Area B, the continuation line can start with a single
quotation mark. This will result in two consecutive literals instead of one
continued literal.

The rules are the same when an apostrophe is used instead of a quotation mark in
delimiters.

If you want to continue a literal such that the continued lines and the continuation
lines are part of one literal:

* Code a hyphen in the indicator area of each continuation line.

* Code the literal value using all columns of each continued line, up to and
including column 72. (Do not terminate the continued lines with a single
quotation mark followed by a space.)

* Code a quotation mark before the first character of the literal on each
continuation line.

* Terminate the last continuation line with a single quotation mark followed by a
space.

In the following examples, the number and size of literals created are indicated

below the example:

[P U JE N DURPIE Y SUNP SN DUNPR SRR - FUNP R B

000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGGHHHHHHHHHHI TTIII1111JJJJJJJIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM"

* Literal 000001 is interpreted as one alphanumeric literal that is 120 bytes long.
Each character between the starting quotation mark and up to and including
column 72 of continued lines is counted as part of the literal.

P T PO U S P DI . U U I I PRI S S

000003 N"AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGG"

* Literal 000003 is interpreted as one national literal that is 60 national character
positions in length (120 bytes). Each character between the starting quotation
mark and the ending quotation mark on the continued line is counted as part of
the literal. Although single-byte characters are entered, the value of the literals is
stored as national characters.

[P T PR S SO SN PRI SO S T SRS ST PR D SN

000005 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGGHHHHHHHHHHIIIIIIIII1JJJJIIIIIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM"

* Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at
the end of each continued line are counted as part of the literal because the
continued lines do not end with a quotation mark.

T e o B N P R PR SR A

000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"

- "GGGGGGGGGGHHHHHHHHHHIIIIIIIII1JJJJJIIIIIKKKKKKKKKK"
- "LLLLLLLLLLMMMMMMMMMM"

e Literal 000010 is interpreted as three separate literals that have lengths of 50, 50,

and 20, respectively. The quotation mark with the following space terminates the

Chapter 6. Reference format 47



continued line. Only the characters within the quotation marks are counted as
part of the literals. Literal 000010 is not valid as a VALUE clause literal for
non-level-88 data items.

To code a continued literal where the length of each continued part of the literal is
less than the length of Area B, adjust the starting column such that the last
character of the continued part is in column 72.

Area A or Area B

The following items can begin in either Area A or Area B:
* Level-numbers

e Comment lines

* Compiler-directing statements

* Debugging lines

* Pseudo-text

Level-numbers

A level-number that can begin in Area A or B is a one- or two-digit integer with a
value of 02 through 49, 66, or 88. A level-number that must begin in Area A is a
one- or two-digit integer with a value of 01 or 77. A level-number must be
followed by a space or a separator period. For more information, see
[“Level-numbers” on page 174/

Comment lines

A comment line is any line with an asterisk (*) or slash (/) in the indicator area
(column 7) of the line. The comment can be written anywhere in Area A and Area
B of that line, and can consist of any combination of characters from the character
set of the computer.

Comment lines can be placed anywhere in a program, method, or class definition.
Comment lines placed before the identification division header must follow any
control cards (for example, PROCESS or CBL).

Important: Comments intermixed with control cards could nullify some of the
control cards and cause them to be diagnosed as errors.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or
a slash (/) in the indicator area.

An asterisk (*) comment line is printed on the next available line in the output
listing. The effect can be dependent on the LINECOUNT compiler option. For
information about the LINECOUNT compiler option, see the COBOL for Windows

Programming Guide. A slash (/) comment line is printed on the first line of the next
page, and the current page of the output listing is ejected.

The compiler treats a comment line as documentation, and does not check it
syntactically.

Compiler-directing statements

Most compiler-directing statements, including COPY and REPLACE, can start in
either Area A or Area B.

48 COBOL for Windows Version 7.5 Language Reference



BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE, EJECT, INSERT, SKIP1,
SKIP2, SKIP3, and TITLE statements can also start in Area A or Area B.

Compiler directives

Compiler directives must start in Area B. Currently, the only compiler directive is
CALLINTERFACE. For more information, see |Chapter 24, “Compiler directives,”

Debugging lines

A debugging line is any line with a D (or d) in the indicator area of the line.
Debugging lines can be written in the environment division (after the
OBJECT-COMPUTER paragraph), the data division, and the procedure division. If

a debugging line contains only spaces in Area A and Area B, it is considered a
blank line.

See “WITH DEBUGGING MODE” in [“SOURCE-COMPUTER paragraph” on pag¢
[Lo6]

Pseudo-text

The character-strings and separators that comprise pseudo-text can start in either
Area A or Area B. If, however, there is a hyphen in the indicator area (column 7) of
a line that follows the opening pseudo-text delimiter, Area A of the line must be
blank, and the rules for continuation lines apply to the formation of text words.
See [“Continuation lines” on page 46| for details.

Blank lines

A blank line contains nothing but spaces in column 7 through column 72. A blank
line can appear anywhere in a program.

Chapter 6. Reference format 49



50 COBOL for Windows Version 7.5 Language Reference



Chapter 7. Scope of names

A user-defined word names a data resource or a COBOL programming element.
Examples of named data resources are a file, a data item, or a record. Examples of
named programming elements are a program, a paragraph, a method, or a class
definition. The sections below define the types of names in COBOL and explain
where the names can be referenced:

* |“Types of names”|

+ [“External and internal resources” on page 53

* |“Resolution of names” on page 54

Types of names

In addition to identifying a resource, a name can have global or local attributes.
Some names are always global, some names are always local, and some names are
either local or global depending on specifications in the program in which the
names are declared.

For programs
A global name can be used to refer to the resource with which it is
associated both:

* From within the program in which the global name is declared
¢ From within any other program that is contained in the program that
declares the global name

Use the GLOBAL clause in the data description entry to indicate that a
name is global. For more information about using the GLOBAL clause, see
[‘GLOBAL clause” on page 166

A local name can be used only to refer to the resource with which it is
associated from within the program in which the local name is declared.

By default, if a data-name, a file-name, a record-name, or a condition-name
declaration in a data description entry does not include the GLOBAL
clause, the name is local.

For methods
All names declared in methods are implicitly local.

For classes
Names declared in a class definition are global to all the methods
contained in that class definition.

For object paragraphs
Names declared in the data division of an object paragraph are global to
the methods contained in that object paragraph.

For factory paragraphs
Names declared in the data division of a factory paragraph are global to
the methods contained in that factory paragraph.

Restriction: Specific rules sometimes prohibit specifying the GLOBAL clause for
certain data description, file description, or record description entries.

© Copyright IBM Corp. 1996, 2008 51



The following list indicates the names that you can use and whether the name can
be local or global:

data-name
data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data
description entry that declares the data-name or in another entry to which
that data description entry is subordinate.

file-name
file-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file
description entry for that file-name.

record-name
record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record
description that declares the record-name, or in the case of record
description entries in the file section, if the GLOBAL clause is specified in
the file description entry for the file name associated with the record
description entry.

condition-name
condition-name associates a value with a conditional variable.

A condition-name that is declared in a data description entry is global if
that entry is subordinate to another entry that specifies the GLOBAL
clause.

A condition-name that is declared within the configuration section is
always global.

program-name
program-name assigns a name to an external or internal (nested) program.
For more information, see|“Conventions for program-names” on page 82)

A program-name is neither local nor global. For more information, see
[“Conventions for program-names” on page 82

method-name
method-name assigns a name to a method. method-name must be specified as
the content of an alphanumeric or national literal.

section-name
section-name assigns a name to a section in the procedure division.

A section-name is always local.

paragraph-name
paragraph-name assigns a name to a paragraph in the procedure division.

A paragraph-name is always local.

basis-name
basis-name specifies the name of source text that is be included by the
compiler into the source unit. For details, see ['BASIS statement” on page

library-name
library-name specifies the COBOL library that the compiler uses for
including COPY text. For details, see [‘COPY statement” on page 520

52 COBOL for Windows Version 7.5 Language Reference



text-name
text-name specifies the name of COPY text to be included by the compiler
into the source unit. For details, see ['COPY statement” on page 520

alphabet-name
alphabet-name assigns a name to a specific character set or collating
sequence, or both, in the SPECIAL-NAMES paragraph of the environment
division.
An alphabet-name is always global.

class-name (of data)
class-name assigns a name to the proposition in the SPECIAL-NAMES
paragraph of the environment division for which a truth value can be
defined.

A class-name is always global.

class-name (object-oriented)
class-name assigns a name to an object-oriented class or subclass.

mnemonic-name
mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
symbolic-character specifies a user-defined figurative constant.

A symbolic-character is always global.

index-name
index-name assigns a name to an index associated with a specific table.

If a data item that possesses the global attribute includes a table accessed
with an index, that index also possesses the global attribute. In addition,
the scope of that index-name is identical to the scope of the data-name that
includes the table.

External and internal resources

The storage associated with a data item or a file connector can be external or
internal to the program or method in which the resource is declared.

A data item or file connector is external if the storage associated with that resource
is associated with the run unit rather than with any particular program or method
within the run unit. An external resource can be referenced by any program or
method in the run unit that describes the resource. References to an external
resource from different programs or methods using separate descriptions of the
resource are always to the same resource. In a run unit, there is only one
representation of an external resource.

A resource is internal if the storage associated with that resource is associated only
with the program or method that describes the resource.

External and internal resources can have either global or local names.
A data record described in the working-storage section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry.

Any data item described by a data description entry subordinate to an entry that
describes an external record also attains the external attribute. If a record or data

Chapter 7. Scope of names 53



item does not have the external attribute, it is part of the internal data of the
program or method in which it is described.

Two programs or methods in a run unit can reference the same file connector in
the following circumstances:

* An external file connector can be referenced from any program or method that
describes that file connector.

 If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program or in any program that directly or indirectly contains the
containing program.

Two programs or methods in a run unit can reference common data in the
following circumstances:

* The data content of an external data record can be referenced from any program
or method provided that program or method has described that data record.

 If a program is contained within another program, both programs can refer to
data that possesses the global attribute either in the program or in any program
that directly or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not
contain the EXTERNAL clause or to a sort-merge file description entry, as well as
any data items described subordinate to the data description entries for such
records, are always internal to the program or method that describes the file-name.
If the EXTERNAL clause is included in the file description entry, the data records
and the data items attain the external attribute.

Resolution of names

The rules for resolution of names depend on whether the names are specified in a
program or in a class definition.

Names within programs

When a program, program B, is directly contained within another program,
program A, both programs can define a condition-name, a data-name, a file-name,
or a record-name using the same user-defined word. When such a duplicated name
is referenced in program B, the following steps determine the referenced resource
(these rules also apply to classes and contained methods):

1. The referenced resource is identified from the set of all names that are defined
in program B and all global names defined in program A and in any programs
that directly or indirectly contain program A. The normal rules for qualification
and any other rules for uniqueness of reference are applied to this set of names
until one or more resources is identified.

2. If only one resource is identified, it is the referenced resource.

3. If more than one resource is identified, no more than one resource can have a
name local to program B. If zero or one of the resources has a name local to
program B, the following rules apply:

* If the name is declared in program B, the resource in program B is the
referenced resource.

¢ If the name is not declared in program B, the referenced resource is:
— The resource in program A if the name is declared in program A

54 COBOL for Windows Version 7.5 Language Reference



— The resource in the containing program if the name is declared in the
program that contains program A

This rule is applied to further containing programs until a valid resource is
found.

Names within a class definition
Within a class definition, resources can be defined within the following units:
* The factory data division
* The object data division

¢ A method data division

If a resource is defined with a given name in the data division of an object
definition, and there is no resource defined with the same name in an instance
method of that object definition, a reference to that name from an instance method
is a reference to the resource in the object data division.

If a resource is defined with a given name in the data division of a factory
definition, and there is no resource defined with the same name in a factory
method of that factory definition, a reference to that name from a factory method
is a reference to the resource in the factory data division.

If a resource is defined within a method, any reference within the method to that
resource name is always a reference to the resource in the method.

The normal rules for qualification and uniqueness of reference apply when the

same name is associated with more than one resource within a given method data
division, object data division, or factory data division.

Chapter 7. Scope of names 55



56 COBOL for Windows Version 7.5 Language Reference



Chapter 8. Referencing data names, copy libraries, and
procedure division names

References can be made to external and internal resources. References to data and
procedures can be either explicit or implicit. The following sections:

+ [“Uniqueness of reference”|

* [“Data attribute specification” on page 69|

contain the rules for qualification and for explicit and implicit data references.

Uniqueness of reference

Every user-defined name in a COBOL program is assigned by the user to name a
resource for solving a data processing problem. To use a resource, a statement in a
COBOL program must contain a reference that uniquely identifies that resource.

To ensure uniqueness of reference, a user-defined name can be qualified. A
subscript is required for unique reference to a table element, except as specified in
[“Subscripting” on page 63] A data-name or function-name, any subscripts, and the
specified reference-modifier uniquely reference a data item defined by reference
modification.

When the same name has been assigned in separate programs to two or more
occurrences of a resource of a given type, and when qualification by itself does not
allow the references in one of those programs to differentiate between the
identically named resources, then certain conventions that limit the scope of names
apply. The conventions ensure that the resource identified is that described in the
program containing the reference. For more information about resolving
program-names, see [‘Resolution of names” on page 54/

Unless otherwise specified by the rules for a statement, any subscripts and
reference modification are evaluated only once as the first step in executing that
statement.

Qualification

A name that exists within a hierarchy of names can be made unique by specifying
one or more higher-level names in the hierarchy. The higher-level names are called
qualifiers, and the process by which such names are made unique is called
qualification.

Qualification is specified by placing one or more phrases after a user-specified
name, with each phrase made up of the word IN or OF followed by a qualifier. (IN
and OF are logically equivalent.)

In any hierarchy, the data-name associated with the highest level must be unique if
it is referenced, and cannot be qualified.

You must specify enough qualification to make the name unique; however, it is not
always necessary to specify all the levels of the hierarchy. For example, if there is
more than one file whose records contain the field EMPLOYEE-NO, but only one of the
files has a record named MASTER-RECORD:

© Copyright IBM Corp. 1996, 2008 57



* EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO.
* EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary.

Qualification rules
The rules for qualifying a name are:

* A name can be qualified even though it does not need qualification except in a
REDEFINES clause, in which case it must not be qualified.

* Each qualifier must be of a higher level than the name it qualifies and must be
within the same hierarchy.

e If there is more than one combination of qualifiers that ensures uniqueness, any
of those combinations can be used.

Identical names

When programs are directly or indirectly contained within other programs, each
program can use identical user-defined words to name resources. A program
references the resources that that program describes rather than the same-named
resources described in another program, even if the names are different types of
user-defined words.

These same rules apply to classes and their contained methods.

References to COPY libraries

— Format

»>—text-name-1 _| |
L|:IN library-name-1
OF

If library-name-1 is not specified, SYSLIB is assumed as the library name.

For rules on referencing COPY libraries, see [“COPY statement” on page 520]

References to procedure division names

— Format 1

v
A

IN sect‘ion-name-]—|

»>—paragraph-name-1
|:OF

— Format 2

»>—section-name-1 ><

58 COBOL for Windows Version 7.5 Language Reference



Procedure division names that are explicitly referenced in a program must be
unique within a section. A section-name is the highest and only qualifier available
for a paragraph-name and must be unique if referenced. (Section-names are
described under ["Procedures” on page 247.)

If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to within the
section in which it appears. A paragraph-name or section-name that appears in a
program cannot be referenced from any other program.

References to data division names

This section discusses the following types of references:

» |“Simple data reference’]
. ‘”Identiﬁers”|

Simple data reference

The most basic method of referencing data items in a COBOL program is simple
data reference, which is data-name-1 without qualification, subscripting, or reference
modification. Simple data reference is used to reference a single elementary or
group item.

Format

v
A

»»—data-name-1

data-name-1
Can be any data description entry.

data-name-1 must be unique in a program.

Identifiers

When used in a syntax diagram in this information, the term identifier refers to a
valid combination of a data-name or function-identifier with its qualifiers,
subscripts, and reference-modifiers as required for uniqueness of reference. Rules
for identifiers associated with a format can however specifically prohibit
qualification, subscripting, or reference modification.

The term data-name refers to a name that must not be qualified, subscripted, or
reference modified unless specifically permitted by the rules for the format.

* For a description of qualification, see [‘Qualification” on page 57|

* For a description of subscripting, see |”Subscripting” on page 63.

» For a description of reference modification, see [‘Reference modification” on|

Chapter 8. Referencing data names, copy libraries, and procedure division names 59



— Format 1

»»—data-name-1—Y 7 2
L|:IN data-name-2 L|:IN:|—fiZe-name-1
OF OF

v
v

(—Y-subscript——)

|—(—Zeftmos t-character-posit ion—:—L—_l—)J
length

data-name-1, data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the data division.

file-name-1 must be unique within this program.

— Format 2

v

»—[condition-name-l 3
dat‘a—name—l4 L|:IN data—name-ZJ
OF

[
>

A\
A

IN fiZe-name—lJ
L[OF]_

— Format 3

»>—| INAGE-COUNTER ><

IN file—name—ZJ
T

data-name-1, data-name-2
Can be a record-name.

60 COBOL for Windows Version 7.5 Language Reference



condition-name-1
Can be referenced by statements and entries either in the program that
contains the configuration section or in a program contained within that
program.

file-name-1
Must be identified by an FD or SD entry in the data division.

Must be unique within this program.

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file
description entry that contains a LINAGE clause has been specified in the
source unit.

file-name-2
Must be identified by the FD or SD entry in the data division. file-name-2
must be unique within this program.

Duplication of data-names must not occur in those places where the data-names
cannot be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose
level-number is 01 that includes the EXTERNAL clause must not be the same
data-name specified for any other data description entry that includes the
EXTERNAL clause.

In the same data division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

Data division names that are explicitly referenced must either be uniquely defined
or made unique through qualification. Unreferenced data items need not be
uniquely defined. The highest level in a data hierarchy (a data item associated with
a level indicator (FD or SD in the file section) or with level-number 01) must be
uniquely named if referenced. Data items associated with level-numbers 02
through 49 are successively lower levels of the hierarchy.

Condition-name

— Format 1 (data division item)

A, »

»»>—condition-name-1 _| >
LI:IN data-name-1
OF

IN fi Ze—name—l—l
g | |
(—Y-subscript——)

A\
A

Chapter 8. Referencing data names, copy libraries, and procedure division names 61



— Format 2 (special-names item)

»>—condition-name-1—Y 7 <
LI:IN nemonic-name-1
OF:

condition-name-1

Can be referenced by statements and entries either in the program that
contains the definition of condition-name-1, or in a program contained
within that program.

If explicitly referenced, a condition-name must be unique or be made
unique through qualification or subscripting (or both) except when the
scope of names by itself ensures uniqueness of reference.

If qualification is used to make a condition-name unique, the associated
conditional variable can be used as the first qualifier. If qualification is
used, the hierarchy of names associated with the conditional variable itself
must be used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any
of its condition-names also requires the same combination of subscripting.

In this information, condition-name refers to a condition-name qualified or
subscripted, as necessary.

data-name-1

Can be a record-name.

file-name-1

Must be identified by an FD or SD entry in the data division.

file-name-1 must be unique within this program.

mnemonic-name-1

For information about acceptable values for mnemonic-name-1, see
[‘'SPECIAL-NAMES paragraph” on page 108

Index-name

An index-name identifies an index. An index can be regarded as a private special
register that the compiler generates for working with a table. You name an index
by specifying the INDEXED BY phrase in the OCCURS clause that defines a table.

You can use an index-name in only the following language elements:

SET statements
PERFORM statements
SEARCH statements
Subscripts

Relation conditions

An index-name is not the same as the name of an index data item, and an
index-name cannot be used like a data-name.

62 COBOL for Windows Version 7.5 Language Reference




Index data item

An index data item is a data item that can hold the value of an index. You define
an index data item by specifying the USAGE IS INDEX clause in a data description
entry. The name of an index data item is a data-name. An index data item can be
used anywhere a data-name or identifier can be used, unless stated otherwise in
the rules of a particular statement. You can use the SET statement to save the value
of an index (referenced by index-name) in an index data item.

Subscripting

Subscripting is a method of providing table references through the use of
subscripts. A subscript is a positive integer whose value specifies the occurrence
number of a table element.

— Format

»—[condition-name-l \ >
data—name—l—I LI:IN ata—name—Z—l
OF

[ »
| 2

IN fiZe—name—l—l
T

> (—Y—integer-1 ) ><
ALL

data-name-3 _|
LI: + :l—integer-Z

index-name-1 _|
LI: + :l—integer-.?

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS
clause or must be subordinate to a data description entry that contains an
OCCURS clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data
description entry that contains an OCCURS clause.

data-name-2, file-name-1
Must name data items or records that contain data-name-1.

integer-1
Can be signed. If signed, it must be positive.

data-name-3
Must be a numeric elementary item representing an integer.

data-name-3 can be qualified. data-name-3 cannot be a windowed date field.

Chapter 8. Referencing data names, copy libraries, and procedure division names 63



index-name-1
Corresponds to a data description entry in the hierarchy of the table being
referenced that contains an INDEXED BY phrase that specifies that name.

integer-2, integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any
qualification for the name of the table element. The number of subscripts in such a
reference must equal the number of dimensions in the table whose element is
being referenced. That is, there must be a subscript for each OCCURS clause in the
hierarchy that contains the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization. If a
multidimensional table is thought of as a series of nested tables and the most
inclusive or outermost table in the nest is considered to be the major table with the
innermost or least inclusive table being the minor table, the subscripts are written
from left to right in the order major, intermediate, and minor.

For example, if TABLE-THREE is defined as:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:
ELEMENT-THREE (2 2 1)

Subscripted references can also be reference modified. See the third example under
[‘Reference modification examples” on page 68| A reference to an item must not be
subscripted unless the item is a table element or an item or condition-name
associated with a table element.

Each table element reference must be subscripted except when such reference
appears:

e In a USE FOR DEBUGGING statement

* As the subject of a SEARCH statement

* In a REDEFINES clause

* In the KEY is phrase of an OCCURS clause

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum
number of occurrences of the item as specified in the OCCURS clause.

Subscripting using data-names

When a data-name is used to represent a subscript, it can be used to reference
items within different tables. These tables need not have elements of the same size.
The same data-name can appear as the only subscript with one item and as one of
two or more subscripts with another item. A data-name subscript can be qualified;
it cannot be subscripted or indexed. For example, valid subscripted references to
TABLE-THREE, assuming that SUB1, SUB2, and SUB3 are all items subordinate to
SUBSCRIPT-ITEM, include:

64 COBOL for Windows Version 7.5 Language Reference



ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,
SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting using index-names (indexing)

Indexing allows such operations as table searching and manipulating specific
items. To use indexing, you associate one or more index-names with an item
whose data description entry contains an OCCURS clause. An index associated
with an index-name acts as a subscript, and its value corresponds to an occurrence
number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated
with its table, is an optional part of the OCCURS clause. There is no separate entry
to describe the index associated with index-name. At run time, the contents of the
index corresponds to an occurrence number for that specific dimension of the table
with which the index is associated.

The initial value of an index at run time is undefined, and the index must be
initialized before it is used as a subscript. An initial value is assigned to an index
with one of the following:

¢ The PERFORM statement with the VARYING phrase
e The SEARCH statement with the ALL phrase
* The SET statement

The use of an integer or data-name as a subscript that references a table element or
an item within a table element does not cause the alteration of any index
associated with that table.

An index-name can be used to reference any table. However, the element length of
the table being referenced and of the table that the index-name is associated with
should match. Otherwise, the reference will not be to the same table element in
each table, and you might get runtime errors.

Data that is arranged in the form of a table is often searched. The SEARCH
statement provides facilities for producing serial and nonserial searches. It is used
to search for a table element that satisfies a specific condition and to adjust the
value of the associated index to indicate that table element.

To be valid during execution, an index value must correspond to a table element
occurrence of neither less than one, nor greater than the highest permissible
occurrence number.

For more information about index-names, see [“Index-name” on page 62 and
[“INDEXED BY phrase” on page 187/

Relative subscripting

In relative subscripting, the name of a table element is followed by a subscript of the
form data-name or index-name followed by the operator + or -, and a positive or
unsigned integer literal.

The operators + and - must be preceded and followed by a space. The value of the
subscript used is the same as if the index-name or data-name had been set up or
down by the value of the integer. The use of relative indexing does not cause the
program to alter the value of the index.

Chapter 8. Referencing data names, copy libraries, and procedure division names 65



Reference modification

Reference modification defines a data item by specifying a leftmost character and
optional length for the data item.

— Format
> data-name-1 | >
FUNCTION—function-name-1 L J
(—argument-1——)
»—(—leftmost-character-position—: |_ _| ) ><
length

data-name-1
Must reference a data item described explicitly or implicitly with usage
DISPLAY, DISPLAY-1, or NATIONAL. A national group item is processed
as an elementary data item of category national.

data-name-1 can be qualified or subscripted. data-name-1 cannot be a
windowed date field.

function-name-1
Must reference an alphanumeric or national function.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-
position must result in a positive nonzero integer that is less than or equal
to the number of characters in the data item referenced by data-name-1.

The evaluation of leftmost-character-position must not result in a windowed
date field.

length Must be an arithmetic expression.
The evaluation of length must result in a positive nonzero integer.
The evaluation of length must not result in a windowed date field.

The sum of leftmost-character-position and length minus the value 1 must be
less than or equal to the number of character positions in data-name-1. If
length is omitted, the length used will be equal to the number of character
positions in data-name-1 plus 1, minus leftmost-character-position.

For usages DISPLAY-1 and NATIONAL, each character position occupies 2 bytes.
Reference modification operates on whole character positions and not on the
individual bytes of the characters in usages DISPLAY-1 and NATIONAL. For usage
DISPLAY, reference modification operates as though each character were a
single-byte character.

Unless otherwise specified, reference modification is allowed anywhere an
identifier or function-identifier that references a data item or function with the
same usage as the reference-modified data item is permitted.

Each character position referenced by data-name-1 or function-name-1 is assigned an
ordinal number incrementing by one from the leftmost position to the rightmost
position. The leftmost position is assigned the ordinal number one. If the data

66 COBOL for Windows Version 7.5 Language Reference



description entry for data-name-1 contains a SIGN IS SEPARATE clause, the sign
position is assigned an ordinal number within that data item.

If data-name-1 is described with usage DISPLAY and category numeric,
numeric-edited, alphabetic, alphanumeric-edited, or external floating-point,
data-name-1 is operated upon for purposes of reference modification as if it were
redefined as a data item of category alphanumeric with the same size as the data
item referenced by data-name-1.

If data-name-1 is described with usage NATIONAL and category numeric,
numeric-edited, national-edited, or external floating-point, data-name-1 is operated
upon for purposes of reference modification as if it were redefined as a data item
of category national with the same size as the data item referenced by data-name-1.

If data-name-1 is a national group item, data-name-1 is processed as an elementary
data item of category national.

If data-name-1 is an expanded date field, then the result of reference modification is
a nondate.

Reference modification creates a unique data item that is a subset of data-name-1 or
a subset of the value referenced by function-name-1 and its arguments, if any. This
unique data item is considered an elementary data item without the JUSTIFIED
clause.

When a function is reference-modified, the unique data item has class, category,
and usage national if the type of the function is national; otherwise, it has class
and category alphanumeric and usage display.

When data-name-1 is reference-modified, the unique data item has the same class,
category, and usage as that defined for the data item referenced by data-name-1
except that:

e If data-name-1 has category national-edited, the unique data item has category
national.

e If data-name-1 has usage NATIONAL and category numeric-edited, numeric, or
external floating-point, the unique data item has category national.

* If data-name-1 has usage DISPLAY, and category numeric-edited,
alphanumeric-edited, numeric, or external floating-point, the unique data item
has category alphanumeric.

e If data-name-1 references an alphanumeric group item, the unique data item is
considered to have usage DISPLAY and category alphanumeric.

e If data-name-1 references a national group item, the unique data item has usage
NATIONAL and category national.

If length is not specified, the unique data item created extends from and includes
the character position identified by leftmost-character-position up to and including
the rightmost character position of the data item referenced by data-name-1.

Evaluation of operands
Reference modification for an operand is evaluated as follows:

e If subscripting is specified for the operand, the reference modification is
evaluated immediately after evaluation of the subscript.

Chapter 8. Referencing data names, copy libraries, and procedure division names 67



* If subscripting is not specified for the operand, the reference modification is
evaluated at the time subscripting would be evaluated if subscripts had been
specified.

Reference modification examples

The following statement transfers the first 10 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).

77 FIRST-NAME PIC X(10).

MOVE WHOLE-NAME(1:10) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME  PIC X(15).

MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third
occurrence of TAB to the variable SUFFIX.

01 TABLE-1.
02 TAB OCCURS 10 TIMES PICTURE X(5).

77 SUFFIX PICTURE X(2).

’ MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.
Function-identifier

A function-identifier is a sequence of character strings and separators that uniquely
references the data item that results from the evaluation of a function.

— Format

»»—FUNCTION—jfunction-name-1 L J >
(—-argument-1——)

> [

I—reference-modifier—l

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

For more information, see|Chapter 22, “Intrinsic functions,” on page 471/

function-name-1
function-name-1 must be one of the intrinsic function names.

reference-modifier
Can be specified only for functions of the type alphanumeric or national.

68 COBOL for Windows Version 7.5 Language Reference



A function-identifier that makes reference to an alphanumeric or national function
can be specified anywhere that a data item of category alphanumeric or category
national, respectively, can be referenced and where references to functions are not
specifically prohibited, except as follows:

* As a receiving operand of any statement

* Where a data item is required to have particular characteristics (such as class
and category, size, sign, and permissible values) and the evaluation of the
function according to its definition and the particular arguments specified would
not have these characteristics

A function-identifier that makes reference to an integer or numeric function can be
used wherever an arithmetic expression can be used.

Data attribute specification

Explicit data attributes are data attributes that you specify in COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data
attribute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If USAGE is omitted
and the symbol N is not specified in the PICTURE clause, the default is USAGE
DISPLAY, which is the implicit data attribute. When PICTURE symbol N is used,
USAGE DISPLAY-1 is the default when the NSYMBOL(DBCS) compiler option is
in effect; USAGE NATIONAL is the default when NSYMBOL(NATIONAL) is in
effect. These are implicit data attributes.

Chapter 8. Referencing data names, copy libraries, and procedure division names 69



70 COBOL for Windows Version 7.5 Language Reference



Chapter 9. Transfer of control

In the procedure division, unless there is an explicit control transfer or there is no
next executable statement, program flow transfers control from statement to
statement in the order in which the statements are written. This normal program
flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement. The following examples show
implicit transfers of control, overriding statement-to-statement transfer of control:

 After execution of the last statement of a procedure that is executed under
control of another COBOL statement, control implicitly transfers. (COBOL
statements that control procedure execution are, for example, MERGE,
PERFORM, SORT, and USE.) Further, if a paragraph is being executed under the
control of a PERFORM statement that causes iterative execution, and that
paragraph is the first paragraph in the range of that PERFORM statement, an
implicit transfer of control occurs between the control mechanism associated
with that PERFORM statement and the first statement in that paragraph for each
iterative execution of the paragraph.

* During SORT or MERGE statement execution, control is implicitly transferred to
an input or output procedure.

¢ During XML PARSE statement execution, control is implicitly transferred to a
processing procedure.

* During execution of any COBOL statement that causes execution of a declarative
procedure, control is implicitly transferred to that procedure.

* At the end of execution of any declarative procedure, control is implicitly
transferred back to the control mechanism associated with the statement that
caused its execution.

COBOL also provides explicit control transfers through the execution of any
procedure branching, program call, or conditional statement. (Lists of procedure
branchini and conditional statements are contained in [‘Statement categories” on|

page 278.)

Definition: The term next executable statement refers to the next COBOL statement
to which control is transferred, according to the rules given above. There is no next
executable statement under the following circumstances:

* When the program contains no procedure division

* Following the last statement in a declarative section when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement

* Following the last statement in a program or method when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement in that program

* Following the last statement in a declarative section when the statement is in the
range of an active PERFORM statement executed in a different section and this
last statement of the declarative section is not also the last statement of the
procedure that is the exit of the active PERFORM statement

© Copyright IBM Corp. 1996, 2008 71



* Following a STOP RUN statement or EXIT PROGRAM statement that transfers
control outside the COBOL program

* Following a GOBACK statement that transfers control outside the COBOL
program

* Following an EXIT METHOD statement that transfers control outside the
COBOL method

* The end program or end method marker

When there is no next executable statement and control is not transferred outside
the COBOL program, the program flow of control is undefined unless the program
execution is in the nondeclarative procedures portion of a program under control
of a CALL statement, in which case an implicit EXIT PROGRAM statement is
executed.

Similarly, if control reaches the end of the procedure division of a method and

there is no next executable statement, an implicit EXIT METHOD statement is
executed.

72  COBOL for Windows Version 7.5 Language Reference



Chapter 10. Millennium Language Extensions and date fields

Many applications use two digits rather than four digits to represent the year in
date fields, and assume that these values represent years from 1900 to 1999. This
compact date format works well for the 1900s, but it does not work for the year
2000 and beyond because these applications interpret “00” as 1900 rather than
2000, producing incorrect results.

The millennium language extensions are designed to allow applications that use
two-digit years to continue performing correctly in the year 2000 and beyond, with
minimal modification to existing code. This is achieved using a technique known
as windowing, which removes the assumption that all two-digit year fields
represent years from 1900 to 1999. Instead, windowing enables two-digit year
fields to represent years within a 100-year range known as a century window.

For example, if a two-digit year field contains the value 15, many applications
would interpret the year as 1915. However, with a century window of 1960-2059,
the year would be interpreted as 2015.

The millennium language extensions provide support for the most common
operations on date fields: comparisons, moving and storing, and incrementing and
decrementing. This support is limited to date fields of certain formats; for details,
see ['DATE FORMAT clause” on page 176]

For information about supported operations and restrictions when using date
fields, see [“Restrictions on using date fields” on page 178

Millennium Language Extensions syntax

The millennium language extensions introduce the following language elements:

¢ The DATE FORMAT clause in data description entries, which defines data items
as date fields.

* The following intrinsic functions:

DATEVAL
Converts a nondate to a date field.

UNDATE
Converts a date field to a nondate.

YEARWINDOW
Returns the first year of the century window specified by the
YEARWINDOW compiler option.

For details on using the millennium language extensions in applications, see the
COBOL for Windows Programming Guide.

The millennium language extensions have no effect unless your program is
compiled using the DATEPROC compiler option and the century window is
specified by the YEARWINDOW compiler option.

© Copyright IBM Corp. 1996, 2008 73



Terms and concepts

This documents uses the terms discussed in the following sections when referring
to the millennium language extensions:

« ["Date field’l

+ [“Nondate” on page 75|

* [“Century window” on page 75|

Date field

A date field can be any of the following:
* A data item whose data description entry includes a DATE FORMAT clause
* A value returned by one of the following intrinsic functions:

— DATE-OF-INTEGER

- DATE-TO-YYYYMMDD

- DATEVAL

— DAY-OF-INTEGER

- DAY-TO-YYYYDDD

- YEAR-TO-YYYY

- YEARWINDOW

* The conceptual data items DATE, DATE YYYYMMDD, DAY, or DAY YYYYDDD
of the ACCEPT statement

« The result of certain arithmetic operations (for details, see|”Arithmetic with date]
[fields” on page 251))

The term date field refers to both expanded date fields and windowed date fields.

Windowed date field

A windowed date field is a date field that contains a windowed year. A windowed year
consists of two digits, representing a year within the century window.

Expanded date field

An expanded date field is a date field that contains an expanded year. An expanded
year consists of four digits.

The main use of expanded date fields is to provide correct results when these are
used in combination with windowed date fields; for example, where migration to
four-digit year dates is not complete. If all the dates in an application use
four-digit years, there is no need to use the millennium language extensions.

Year-last date field

A year-last date field is a date field whose DATE FORMAT clause specifies one or
more Xs preceding the YY or YYYY. Year-last date fields are supported in a limited
number of operations, typically involving another date with the same (year-last)
date format, or a nondate.

Date format
Date format refers to the date pattern of a date field, specified either:

* Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function
argument-2

¢ Implicitly, by statements and intrinsic functions that return date fields (for
details, see [‘Date field”[above)

74 COBOL for Windows Version 7.5 Language Reference



Compatible date field
The meaning of the term compatible, when applied to date fields, depends on the
COBOL division in which the date field occurs:

Data division
Two date fields are compatible if they have identical USAGE and meet at
least one of the following conditions:

They have the same date format.

Both are windowed date fields, where one consists only of a windowed
year, DATE FORMAT YY.

Both are expanded date fields, where one consists only of an expanded
year, DATE FORMAT YYYY.

One has DATE FORMAT YYXXXX, the other, YYXX.
One has DATE FORMAT YYYYXXXX, the other, YYYYXX.

A windowed date field can be subordinate to an expanded date group data
item. The two date fields are compatible if the subordinate date field has
USAGE DISPLAY, starts 2 bytes after the start of the group expanded date
field, and the two fields meet at least one of the following conditions:

The subordinate date field has a DATE FORMAT pattern with the same
number of Xs as the DATE FORMAT pattern of the group date field.

The subordinate date field has DATE FORMAT YY.

The group date field has DATE FORMAT YYYYXXXX and the
subordinate date field has DATE FORMAT YYXX.

Procedure division
Two date fields are compatible if they have the same date format except
for the year part, which can be windowed or expanded. For example, a

Nondate

windowed date field with DATE FORMAT YYXXX is compatible with:

Another windowed date field with DATE FORMAT YYXXX
An expanded date field with DATE FORMAT YYYYXXX

A nondate can be any of the following:
¢ A data item whose date description entry does not include the DATE FORMAT

clause
A date field that has been converted using the UNDATE function
A literal

A reference-modified date field

The result of certain arithmetic operations that can include date field operands;
for example, the difference between two compatible date fields

Century window

A century window is a 100-year interval within which any two-digit year is unique.
There are several ways to specify a century window in a COBOL program:

For windowed date fields, it is specified by the YEARWINDOW compiler
option.

For windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD,
and YEAR-TO-YYYY, it is specified by argument-2.

Chapter 10. Millennium Language Extensions and date fields 75



76  COBOL for Windows Version 7.5 Language Reference



Part 2. COBOL source unit structure

Chapter 11. COBOL program structure
Nested programs . . . . . . . .
Conventions for program-names
Rules for program-names.

Chapter 12. COBOL class definition structure .

Chapter 13. COBOL method definition structure

© Copyright IBM Corp. 1996, 2008

.79
. 81
. 82
. 82

. 85

89

77



78 COBOL for Windows Version 7.5 Language Reference



Chapter 11. COBOL program structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested programs
A nested program is a program that is contained in another program.
Contained programs can reference some of the resources of the programs
that contain them. If program B is contained in program A, it is directly
contained if there is no program contained in program A that also contains
program B. Program B is indirectly contained in program A if there exists a
program contained in program A that also contains program B. For more
information about nested programs, see ["Nested programs” on page 81|
and the COBOL for Windows Programming Guide.

Object program
An object program is a set or group of executable machine language
instructions and other material designed to interact with data to provide
problem solutions. An object program is generally the machine language
result of the operation of a COBOL compiler on a source program. The
term object program also refers to the methods that result from compiling
a class definition.

Run unit
A run unit is one or more object programs that interact with one another
and that function at run time as an entity to provide problem solutions.
Sibling program
Sibling programs are programs that are directly contained in the same
program.

With the exception of the COPY and REPLACE statements and the end program
marker, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into the following four divisions:

 Identification division
e Environment division
e Data division

* Procedure division

The end of a COBOL source program is indicated by the END PROGRAM marker.
If there are no nested programs, the absence of additional source program lines
also indicates the end of a COBOL program.

Following is the format for the entries and statements that constitute a separately
compiled COBOL source program.

© Copyright IBM Corp. 1996, 2008 79



— Format: COBOL source program

v

IDENTIFICATION DIVISION.—PROGRAM-ID program-name-1
1D [:l

Lm—[RECURSIVE | l——l l—identification-divisz‘on-content—l
IS INITIALJ |—PROGRAMJ

|—ENVIRONMENT DIVISION.—envir'onment—division—content‘—|

\
4

\
4

\

v

|—DATA DIVISION.—da'ta-divisz’on-content—|

|—PROCEDURE DIVISION.—pr‘ocedure-division-content—|

Yy
v
A

| END PROGRAM—program-name-1. —|

L' Nested source program i

nested source program:

IDENTIFICATION DIVISION.—PROGRAM—ID—L—_I—pr‘ogram-name—Z >
1D .

\

v

| l——l l—identification—division-content—l

| I‘OMMOI\I
|—IS—| L |—INITIAL—| |—PROGRAM—I
INITIAL—L——l—
COMMON

\

v

|—ENVIRONMENT DIVISION.—envir'onment-division-r:ontent—|

A\
v

|—DATA DIVISION.—data-divisz’on-content—|

Y

|—PROCEDURE DIVISION.—pr‘ocedure-division-content—| |
v

| nested source program |

»—END PROGRAM—program-name-2. }

A sequence of separate COBOL programs can also be input to the compiler. The
following is the format for the entries and statements that constitute a sequence of
source programs (batch compile).

80 COBOL for Windows Version 7.5 Language Reference



— Format: sequence of COBOL source programs

Y

COBOL-source-program ><

END PROGRAM program-name
An end program marker separates each program in the sequence of
programs. program-name must be identical to a program-name declared in a
preceding program-ID paragraph.

program-name can be specified either as a user-defined word or in an
alphanumeric literal. Either way, program-name must follow the rules for
forming a user-defined word. program-name cannot be a figurative constant.
Any lowercase letters in the literal are folded to uppercase.

An end program marker is optional for the last program in the sequence
only if that program does not contain any nested source programs.

Nested programs

A COBOL program can contain other COBOL programs, which in turn can contain
still other COBOL programs. These contained programs are called nested programs.
Nested programs can be directly or indirectly contained in the containing program.

In the following code fragment, program Quter-program directly contains program
Inner-1. Program Inner-1 directly contains program Inner-1la, and Outer-program
indirectly contains Inner-1la:

Id division.
Program-id. Outer-program.
Procedure division.
Call "Inner-1".
Stop run.
Id division.
Program-id. Inner-1

Call Inner-la.

Stop run.
Id division.
Program-id. Inner-la.

End Inner-1la.

End Inner-1.
End Outer-program.

The following figure describes a more complex nested program structure with
directly and indirectly contained programs.

Chapter 11. COBOL program structure 81




Id Division.
Program -Id. X.
Procedure Division.
Display "I'm in X"
Call "x1"
Call "x2"
Stop Run.
— Id Division.
Program-Id X1.
Procedure Division.
Display "I'm in X1"
Call "x11"
Call "x12"
Exit Program.
Id Division.
Program-Id. XI11.
Procedure Division.
Display "I'm in X11"
Exit Program.
End Program X11.
Id Division.
Program-Id. X12.
Procedure Division.
Display "I'm in X12"
Exit Program.
End Program X12.
— End Program X1
— ID Division.
Program-Id. X2
Procedure Division.
Display "I'm in X2"
Exit Program
“— End Program X2
——End Program X.

X is the outermost program

and directly contains X1 and =
X2, and indirectly contains

X11 and X12

X1 is directly contained
in X and directly N
contains X11 and X12

X11 is directly
contained in X1
and indirectly
contained in X

X12 is directly
contained in X1
and indirectly
contained in X

]

X2 is directly
contained in X

Conventions for program-names

The program-name of a program is specified in the PROGRAM-ID paragraph of
the program’s identification division. A program-name can be referenced only by
the CALL statement, the CANCEL statement, the SET statement, or the END
PROGRAM marker. Names of programs that constitute a run unit are not
necessarily unique, but when two programs in a run unit are identically named, at
least one of the programs must be directly or indirectly contained within another
separately compiled program that does not contain the other of those two
programs.

A separately compiled program and all of its directly and indirectly contained
programs must have unique program-names within that separately compiled
program.

Rules for program-names
The following rules define the scope of a program-name:

* If the program-name is that of a program that does not possess the COMMON
attribute and that program is directly contained within another program, that
program-name can be referenced only by statements included in that containing
program.

* If the program-name is that of a program that does possess the COMMON
attribute and that program is directly contained within another program, that
program-name can be referenced only by statements included in the containing

82 COBOL for Windows Version 7.5 Language Reference



program and any programs directly or indirectly contained within that
containing program, except that program possessing the COMMON attribute
and any programs contained within it.

If the program-name is that of a program that is separately compiled, that
program-name can be referenced by statements included in any other program
in the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:

If one of two programs that have the same name as that specified in the CALL
statement is directly contained within the program that includes the CALL
statement, that program is called.

If one of two programs that have the same name as that specified in the CALL
statement possesses the COMMON attribute and is directly contained within
another program that directly or indirectly contains the program that includes
the CALL statement, that common program is called unless the calling program
is contained within that common program.

Otherwise, the separately compiled program is called.

The following rules apply to referencing a program-name of a program that is
contained within another program. For this discussion, Program-A contains
Program-B and Program-C; Program-C contains Program-D and Program-F; and
Program-D contains Program-E.

Program-A

Program-B

Program-C

Program-D

Program-E

Program-F

If Program-D does not possess the COMMON attribute, then Program-D can be
referenced only by the program that directly contains Program-D, that is,
Program-C.

Chapter 11. COBOL program structure 83



If Program-D does possess the COMMON attribute, then Program-D can be
referenced by Program-C (because Program-C contains Program-D) and by any
programs contained in Program-C except for programs contained in Program-D. In
other words, if Program-D possesses the COMMON attribute, Program-D can be
referenced in Program-C and Program-F but not by statements in Program-E,
Program-A, or Program-B.

84 COBOL for Windows Version 7.5 Language Reference



Chapter 12. COBOL class definition structure

COBOL for Windows provides object-oriented syntax to facilitate interoperation of
COBOL and Java programs.

You can use object-oriented syntax to:

* Define classes, with methods and data implemented in COBOL

* Create instances of Java or COBOL classes

* Invoke methods on Java or COBOL objects

* Write classes that inherit from Java classes or from other COBOL classes
* Define and invoke overloaded methods

Basic Java-oriented object capabilities are accessed directly through COBOL
language. Additional capabilities are available to the COBOL programmer by
calling services through the Java Native Interface (JNI), as described in the COBOL
for Windows Programming Guide.

Java programs can be multithreaded, and Java interoperation requires toleration of
asynchronous signals. Therefore, to mix COBOL with these Java programs, you
must use the thread enablement provided by the THREAD compiler option, as
described in the COBOL for Windows Programming Guide.

Java String data is represented at run time in Unicode. The Unicode support
provided in COBOL for Windows with the national data type enables COBOL
programs to exchange String data with Java.

The following are the entities and concepts used in object-oriented COBOL for Java
interoperability:

Class The entity that defines operations and state for zero, one, or more object
instances and defines operations and state for a common object (a factory
object) that is shared by multiple object instances.

You create object instances using the NEW operand of the COBOL
INVOKE statement or using a Java class instance creation expression.

Object instances are automatically freed by the Java runtime system’s
garbage collection when they are no longer in use. You cannot explicitly
free individual objects.

Instance method
Procedural code that defines one of the operations supported for the object
instances of a class. Instance methods introduced by a COBOL class are
defined within the object paragraph of the class definition.

COBOL instance methods are equivalent to public nonstatic methods in
Java.

You execute instance methods on a particular object instance by using a
COBOL INVOKE statement or a Java method invocation expression.

Instance data
Data that defines the state of an individual object instance. Instance data in
a COBOL class is defined in the working-storage section of the data
division within the object paragraph of a class definition.

© Copyright IBM Corp. 1996, 2008 85



COBOL instance data is equivalent to private nonstatic member data in a
Java class.

The state of an object also includes the state of the instance data
introduced by inherited classes. Each instance object has its own copy of
the instance data defined within its class definition and its own copy of the
instance data defined in inherited classes.

You can access COBOL object instance data only from within COBOL
instance methods defined in the class definition that defines the data.

You can initialize object instance data with VALUE clauses or you can
write an instance method to perform custom initialization.

Factory method, static method
Procedural code that defines one of the operations supported for the
common factory object of the class. COBOL factory methods are defined
within the factory paragraph of a class definition. Factory methods are
associated with a class, not with any individual instance object of the class.

COBOL factory methods are equivalent to public static methods in Java.

You execute COBOL factory methods from COBOL using an INVOKE
statement that specifies the class-name as the first operand. You execute
them from a Java program using a static method invocation expression.

A factory method cannot operate directly on instance data of its class, even
though the data is described in the same class definition; a factory method
must invoke instance methods to act on instance data.

COBOL factory methods are typically used to define customized methods
that create object instances. For example, you can code a customized
factory method that accepts initial values as parameters, creates an instance
object using the NEW operand of the INVOKE statement, and then invokes
a customized instance method passing those initial values as arguments for
use in initializing the instance object.

Factory data, static data
Data associated with a class, rather than with an individual object instance.
COBOL factory data is defined in the working-storage section of the data
division within the factory paragraph of a class definition.

COBOL factory data is equivalent to private static data in Java.

There is a single copy of factory data for a class. Factory data is associated
only with the class and is shared by all object instances of the class. It is
not associated with any particular instance object. A factory data item
might be used, for example, to keep a count of the number of instance
objects that have been created.

You can access COBOL factory data only within COBOL factory methods
defined in the same class definition.

Inheritance
Inheritance is a mechanism whereby a class definition (the inheriting class)
acquires the methods, data descriptions, and file descriptions written in
another class definition (the inherited class). When two classes in an
inheritance relationship are considered together, the inheriting class is the
subclass (or derived class or child class); the inherited class is the superclass
(or parent class). The inheriting class also indirectly acquires the methods,
data descriptions, and file descriptions that the parent class inherited from
its parent class.

86 COBOL for Windows Version 7.5 Language Reference



A COBOL class must inherit from exactly one parent class, which can be
implemented in COBOL or Java.

Every COBOL class must inherit directly or indirectly from the
java.lang.Object class.

Instance variable
An individual data item defined in the data division of an object
paragraph.

Java Native Interface (JNI)
A facility of Java designed for interoperation with non-Java programs.

Java Native Interface (JNI) environment pointer

A pointer used to obtain the address of the JNI environment structure used

for calling JNI services. The COBOL special register JNIENVPTR is
provided for referencing the JNI environment pointer.

Object reference
A data item that contains information used to identify and reference an
individual object. An object reference can refer to an object that is an
instance of a Java or COBOL class.

Subclass
A class that inherits from another class; also called a derived class or child
class of the inherited class.

Superclass
A class that is inherited by another class; also called a parent class of the
inheriting class.

With the exception of the COPY and REPLACE statements and the END CLASS
marker, the statements, entries, paragraphs, and sections of a COBOL class
definition are grouped into the following structure:

 Identification division
* Environment division (configuration section only)
* Factory definition
— Identification division
— Data division
— Procedure division
- One or more method definitions
* Object definition
— Identification division
— Data division
— Procedure division
- One or more method definitions

The end of a COBOL class definition is indicated by the END CLASS marker.

The following is the format for a COBOL class definition.

Chapter 12. COBOL class definition structure

87



— Format: COBOL class definition

ID

IDENTIFICATION DIVISION.—CLASS-1D—.—class-name-1—INHERITS—class-name-2— . ——»

l—other-identification-division-content—l

»—ENVIRONMENT DIVISION.—class-environment-division-content
L‘ Factory-definition ’J

v

|—‘ Object-definition ’J |—END CLASS—cZass-name-l.J

Factory-definition:

IDENTIFICATION DIVISION.—FACTORY.

ID |—DATA DIVISION.—fa(:tory-data-divz'sion-content—|

> |_ | END FACTORY.
PROCEDURE DIVISION.

Y _method-definition

Object-definition:

IDENTIFICATION DIVISION.—OBJECT.

ID |—DATA DIVISION.—object-data-divisz‘on-content—|

> |_ | END OBJECT.
PROCEDURE DIVISION.

Y _method-definition

END CLASS
Specifies the end of a class definition.

END FACTORY
Specifies the end of a factory definition.

END OBJECT
Specifies the end of an object definition.

88 COBOL for Windows Version 7.5 Language Reference




Chapter 13. COBOL method definition structure

A COBOL method definition describes a method. You can specify method
definitions only within the factory paragraph and the object paragraph of a class
definition.

With the exception of COPY and REPLACE statements and the END METHOD
marker, the statements, entries, paragraphs, and sections of a COBOL method
definition are grouped into the following four divisions:

* Identification division
¢ Environment division (input-output section only)
* Data division

¢ Procedure division
The end of a COBOL method definition is indicated by the END METHOD marker.

The following is the format for a COBOL method definition.

— Format: COBOL method definition

v

> IDENTIFICATION DIVISION.—METHOD-ID ethod-name-1
10 L] L

l—other- identification-division-content—l

v

I—ENVIRONMENT DIVISION .—method-environment-division-coni,‘ent‘—|

I—DATA DIVISION.—method-data-division-comtent—|

Y

l—method—procedur‘e—division—header‘. _| |
|—method-procedure-division-(:ontem.‘

»—END METHOD—method-name-1. > <

METHOD-ID
Identifies a method definition. See [“METHOD-ID paragraph” on page 99|
for details.

method-procedure-division-header
Indicates the start of the procedure division and identifies method
parameters and the returning item, if any. See|“The procedure division|
lheader” on page 243 for details.

END METHOD
Specifies the end of a method definition.

© Copyright IBM Corp. 1996, 2008 89



Methods defined in an object definition are instance methods. An instance method in
a given class can access:

¢ Data defined in the data division of the object paragraph of that class (instance
data)

* Data defined in the data division of that instance method (method data)

An instance method cannot directly access instance data defined in a parent class,
factory data defined in its own class, or method data defined in another method of
its class. It must invoke a method to access such data.

Methods defined in a factory definition are factory methods. A factory method in a
given class can access:

* Data defined in the data division of the factory paragraph of that class (factory
data)

* Data defined in the data division of that factory method (method data)

A factory method cannot directly access factory data defined in a parent class,
instance data defined in its own class, or method data defined in another method
of its class. It must invoke a method to access such data.

Methods can be invoked from COBOL programs and methods, and they can be
invoked from Java programs. A method can execute an INVOKE statement that
directly or indirectly invokes itself. Therefore, COBOL methods are implicitly
recursive (unlike COBOL programs, which support recursion only if the
RECURSIVE attribute is specified in the program-ID paragraph.)

90 COBOL for Windows Version 7.5 Language Reference



Part 3. Identification division

Chapter 14. Identification division .
PROGRAM-ID paragraph
CLASS-ID paragraph .
General rules .
Inheritance
FACTORY paragraph
OBJECT paragraph .
METHOD-ID paragraph .
Method signature .

Method overloading, overrldmg, and hldmg .

Method overloading .

Method overriding (for 1nstance methods)

Method hiding (for factory methods)
Optional paragraphs .

© Copyright IBM Corp. 1996, 2008

. 93
. 96
. 98
.99
.99
. 99
.99
.99
. 100
. 100
. 100

100

. 100
. 100

91



92  COBOL for Windows Version 7.5 Language Reference



Chapter 14. Identification division

The identification division must be the first division in every COBOL source
program, factory definition, object definition, and method definition. It names the
program, class, or method and identifies the factory definition and object
definition; it can include the date a program, class, or method was written, the
date of compilation, and other such documentary information.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the identification division must be
the PROGRAM-ID paragraph. The other paragraphs are optional and can
appear in any order.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the identification division must be the
CLASS-ID paragraph. The other paragraphs are optional and can appear in
any order.

Factory IDENTIFICATION DIVISION
A factory IDENTIFICATION DIVISION contains only a factory paragraph
header.

Object IDENTIFICATION DIVISION
An object IDENTIFICATION DIVISION contains only an object paragraph
header.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the identification division must be the
METHOD-ID paragraph. The other paragraphs are optional and can
appear in any order.

The following is the format for a program IDENTIFICATION DIVISION.

© Copyright IBM Corp. 1996, 2008 93



— Format: program identification division

IDENTIFICATION——DIVISION.—PROGRAM-ID program-name——————»
1D [

RECURSIVE | LJ

IS COMMON_L—_|_ |—PROGRAMJ
INITIAL
INITIAL—L——|—
COMMON

I
Y _comment-entry

|—INSTALLATION |

L] |
Lcomment-entryj—

|—DATE—WRITTE"‘ |
L. |

LY _comment-entry

\
v

|—/-\UTHOP\

\
v

|—DATE-COMPILED. |

v

comment-entry

|—SECURITY LJ

Y _comment-entry

The following is the format for a class IDENTIFICATION DIVISION.

94 COBOL for Windows Version 7.5 Language Reference



— Format: class identification division

IDENTIFICATION DIVISION. CLASS-ID.—class-name-1
ID DIVISION.

v

»—INHERITS—class-name-2. >

|—/-\UTHCD
- U
Y _comment-entry
I—INSTALLATIO"' |
- M
Y _comment-entry
I—DATE—WRITTE"' | ]
- M JJ
Y _comment-entry

|—DATE-COMPILED.
L‘ comment-entry

> >

L
SECURITY—— |

Y _comment-entry

v
v

Y
4

v
v

The following is the format for a factory IDENTIFICATION DIVISION.

Format: factory identification division

IDENTIFICATION DIVISION.—FACTORY.
ID

v
A

The following is the format for an object IDENTIFICATION DIVISION.

Format: object identification division

> IDENTIFICATION DIVISION.—OBJECT. ><
ID

Chapter 14. Identification division 95



The following is the format for a method IDENTIFICATION DIVISION.

— Format: method identification division

IDENTIFICATION DIVISION. >
1D

»—METHOD-1 D—L—_I—me thod-name-1 |_ _|

|—/-\UTHO°
I
Y _comment-entry

|—INSTALLATION |

- M ﬂ
Y _comment-entry

|—DATE—WRITTE!\l |

- M
Y_comment-entry

». >

|—DATE-COMPI LED.
L‘ comment-entry

L
SECURITY——

v

v
v

\
v

Y _comment-entry

PROGRAM-ID paragraph

The PROGRAM-ID paragraph specifies the name by which the program is known
and assigns selected program attributes to that program. It is required and must be
the first paragraph in the identification division.

program-name
A user-defined word or alphanumeric literal, but not a figurative constant,
that identifies your program. It must follow the following rules of
formation, depending on the setting of the PGMNAME compiler option:

PGMNAME (LONGUPPER)
If program-name is a user-defined word, it can be up to 30
characters in length.

If program-name is an alphanumeric literal, the literal can be up to
160 characters in length. The literal cannot be a figurative constant.

96 COBOL for Windows Version 7.5 Language Reference



Only the hyphen, digit, and alphabetic characters are allowed in
the name.

At least one character must be alphabetic.
The hyphen cannot be used as the first or last character.

PGMNAME (LONGMIXED)
program-name must be specified as a literal. It cannot be a figurative
constant.

The name can be up to 160 characters in length. The literal cannot
be a figurative constant.

Wherever alphabetic characters are allowed, you can use multibyte
characters.

For information about the PGMNAME compiler option and how the compiler
processes the names, see the COBOL for Windows Programming Guide.

RECURSIVE
An optional clause that allows COBOL programs to be recursively
reentered.

You can specify the RECURSIVE clause only on the outermost program of
a compilation unit. Recursive programs cannot contain nested
subprograms.

If the RECURSIVE clause is specified, program-name can be recursively
reentered while a previous invocation is still active. If the RECURSIVE
clause is not specified, an active program cannot be recursively reentered.

The working-storage section of a recursive program defines storage that is
statically allocated and initialized on the first entry to a program and is
available in a last-used state to any of the recursive invocations.

The local-storage section of a recursive program (as well as a nonrecursive
program) defines storage that is automatically allocated, initialized, and
deallocated on a per-invocation basis.

Internal file connectors that correspond to an FD in the file section of a
recursive program are statically allocated. The status of internal file
connectors is part of the last-used state of a program that persists across
invocations.

The following language elements are not supported in a recursive
program:

* ALTER

* GO TO without a specified procedure-name

* RERUN

* SEGMENT-LIMIT

* USE FOR DEBUGGING

Methods are always recursive by default. The RECURSIVE clause cannot
be specified in the METHOD-ID paragraph.

COMMON
Specifies that the program named by program-name is contained (that is,
nested) within another program and can be called from siblings of the
common program and programs contained within them. The COMMON

Chapter 14. Identification division 97



clause can be used only in nested programs. For more information about
conventions for program names, see [“Conventions for program-names” on|

INITIAL
Specifies that when program-name is called, program-name and any programs
contained (nested) within it are placed in their initial state.

A program is in the initial state:

* The first time the program is called in a run unit

¢ Every time the program is called, if it possesses the initial attribute

* The first time the program is called after the execution of a CANCEL
statement that references the program or a CANCEL statement that
references a program that directly or indirectly contains the program

* The first time the program is called after the execution of a CALL

statement that references a program that possesses the initial attribute
and that directly or indirectly contains the program

When a program is in the initial state, the following occur:

* The program’s internal data contained in the working-storage section is
initialized. If a VALUE clause is used in the description of the data item,
the data item is initialized to the defined value. If a VALUE clause is not
associated with a data item, the initial value of the data item is
undefined.

* Files with internal file connectors associated with the program are not in
the open mode.

e The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

¢ An altered GO TO statement contained in the program is set to its initial
state.

For the rules governing nonunique program names, see [‘Rules fo
fprogram-names” on page 82

CLASS-ID paragraph

98

The CLASS-ID paragraph specifies the name by which the class is known and
assigns selected attributes to that class. It is required and must be the first
paragraph in a class identification division.

class-name-1
A user-defined word that identifies the class. class-name-1 can optionally
have an entry in the REPOSITORY paragraph of the configuration section
of the class definition.

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of
class-name-2 (the parent class). class-name-1 cannot directly or indirectly
inherit from class-name-1.

class-name-2
The name of a class inherited by class-name-1. You must specify class-name-2
in the REPOSITORY paragraph of the configuration section of the class
definition.

COBOL for Windows Version 7.5 Language Reference



General rules

class-name-1 and class-name-2 must conform to the normal rules of formation for a
COBOL user-defined word, using single-byte characters.

See |”REPOSITORY paragraph” on page 116| for details on specifying a class-name
that is part of a Java package or for using non-COBOL naming conventions for
class-names.

You cannot include a class definition in a sequence of programs or other class
definitions in a single compilation group. Each class must be specified as a
separate source file; that is, a class definition cannot be included in a batch
compile.

Inheritance

Every method available on instances of a class is also available on instances of any
subclass directly or indirectly derived from that class. A subclass can introduce
new methods that do not exist in the parent or ancestor class and can override a
method from the parent or ancestor class. When a subclass overrides an existing
method, it defines a new implementation for that method, which replaces the
inherited implementation.

The instance data of class-name-1 is the instance data declared in class-name-2
together with the data declared in the working-storage section of class-name-1.
Note, however, that instance data is always private to the class that introduces it.

The semantics of inheritance are as defined by Java. All classes must be derived
directly or directly from the java.lang.Object class.

Java supports single inheritance; that is, no class can inherit directly from more
than one parent. Only one class-name can be specified in the INHERITS phrase of
a class definition.

FACTORY paragraph

The factory IDENTIFICATION DIVISION introduces the factory definition, which
is the portion of a class definition that defines the factory object of the class. A
factory object is the single common object that is shared by all object instances of the
class.

The factory definition contains factory data and factory methods.

OBJECT paragraph

The object IDENTIFICATION DIVISION introduces the object definition, which is
the portion of a class definition that defines the instance objects of the class.

The object definition contains object data and object methods.

METHOD-ID paragraph

The METHOD-ID paragraph specifies the name by which a method is known and
assigns selected attributes to that method. The METHOD-ID paragraph is required
and must be the first paragraph in a method identification division.

Chapter 14. Identification division 99



method-name-1
An alphanumeric literal or national literal that contains the name of the
method. The name must conform to the rules of formation for a Java
method name. Method names are used directly, without translation. The
method name is processed in a case-sensitive manner.

Method signature

The signature of a method consists of the name of the method and the number and
types of the formal parameters to the method as specified in the procedure
division USING phrase.

Method overloading, overriding, and hiding

COBOL methods can be overloaded, overridden, or hidden, based on the rules of the
Java language.

Method overloading

Method names that are defined for a class are not required to be unique. (The set
of methods defined for a class includes the methods introduced by the class
definition and the methods inherited from parent classes.)

Method names defined for a class must have unique signatures. Two methods
defined for a class and that have the same name but different signatures are said to
be overloaded.

The type of the method return value, if any, is not included in the method
signature.

A class must not define two methods with the same signature but different return
value types, or with the same signature but where one method specifies a return
value and the other does not.

The rules for overloaded method definitions and resolution of overloaded method
invocations are based on the corresponding rules for Java.

Method overriding (for instance methods)
An instance method in a subclass overrides an instance method with the same name
that is inherited from a parent class if the two methods have the same signature.

When a method overrides an instance method defined in a parent class, the
presence or absence of a method return value (the procedure division
RETURNING data-name) must be consistent in the two methods. Further, when
method return values are specified, the return values in the overridden method
and the overriding method must have identical data types.

An instance method must not override a factory method in a COBOL parent class,
or a static method in a Java parent class.

Method hiding (for factory methods)

A factory method is said to hide any and all methods with the same signature in
the superclasses of the method definition that would otherwise be accessible. A
factory method must not hide an instance method.

Optional paragraphs

These optional paragraphs in the identification division can be omitted:

100 COBOL for Windows Version 7.5 Language Reference



AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
Date the program was compiled.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of
characters from the character set of the computer. The comment-entry is written in
Area B on one or more lines.

The paragraph name DATE-COMPILED and any comment-entry associated with it
appear in the source code listing with the current date inserted. For example:

DATE-COMPILED. 04/27/03.

Comment-entries serve only as documentation; they do not affect the meaning of
the program. A hyphen in the indicator area (column 7) is not permitted in
comment-entries.

You can include multibyte as well as single-byte characters from a multibyte code

page in comment-entries in the identification division of your program. Multiple
lines are allowed in a comment-entry that contains multibyte characters.

Chapter 14. Identification division 101



102 COBOL for Windows Version 7.5 Language Reference



Part 4. Environment division

Chapter 15. Configuration section.
SOURCE-COMPUTER paragraph
OBJECT-COMPUTER paragraph .
SPECIAL-NAMES paragraph .
ALPHABET clause.
SYMBOLIC CHARACTERS Clause
CLASS clause .
CURRENCY SIGN clause
DECIMAL-POINT IS COMMA clause
REPOSITORY paragraph

General rules

Identifying and referencmg the class

Chapter 16. Input-Output section .

FILE-CONTROL paragraph

SELECT clause .

ASSIGN clause . - ..
Ass1gnment name for non-env1ronment
variables and literals . .
Assignment name for data—names and
environment variables

RESERVE clause .

ORGANIZATION clause
File organization .

Sequential organization .

Indexed organization .

Relative organization .

Line-sequential organization

Language elements treated as Comments

PADDING CHARACTER clause .

RECORD DELIMITER clause .

ACCESS MODE clause . .
File organization and access modes .
Access modes

Relationship between data organ1zat10ns and

access modes
RECORD KEY clause. .
ALTERNATE RECORD KEY clause .
RELATIVE KEY clause
PASSWORD clause
FILE STATUS clause . .
I-O-CONTROL paragraph .
RERUN clause .
SAME AREA clause . .
SAME RECORD AREA clause
SAME SORT AREA clause . .
SAME SORT-MERGE AREA clause .
MULTIPLE FILE TAPE clause .
APPLY WRITE-ONLY clause

© Copyright IBM Corp. 1996, 2008

. 105
. 106
. 106
. 108
. 111
. 113
. 114
. 115
. 116
. 116
. 117
. 117

. 119
. 120
. 124
. 124

. 125

. 126
. 127
. 127
. 128
. 128
. 128
. 128
. 128
. 130
. 130
. 131
. 131
. 132
. 132

. 132
. 133
. 134
. 135
. 136
. 136
. 137
. 139
. 140
. 140
. 140
. 141
. 141
. 141

103



104 COBOL for Windows Version 7.5 Language Reference



Chapter 15. Configuration section

The configuration section is an optional section for programs and classes, and can
describe the computer environment on which the program or class is compiled and
executed.

Program configuration section
The configuration section can be specified only in the environment division
of the outermost program of a COBOL source program.

You should not specify the configuration section in a program that is
contained within another program. The entries specified in the
configuration section of a program apply to any program contained within
that program.

Class configuration section
Specify the configuration section in the environment division of a class
definition. The repository paragraph can be specified in the environment
division of a class definition.

Entries in a class configuration section apply to the entire class definition,
including all methods introduced by that class.

Method configuration section
The input-output section can be specified in a method configuration
section. The entries apply only to the method in which the configuration
section is specified.

— Format: programs and classes

»>—CONFIGURATION SECTION. >
|—sour‘ce-compu7.‘er-par‘agraphJ

Y
4

l—object—computer—paragraph—l l—special—names—paragraph—l

\

A\
A

I—repos i tory—paragraph—l

The configuration section can:
e Relate IBM-defined environment-names to user-defined mnemonic names
* Specify the collating sequence

* Specify a currency sign value, and the currency symbol used in the PICTURE
clause to represent the currency sign value

* Exchange the functions of the comma and the period in PICTURE clauses and
numeric literals

* Relate alphabet-names to character sets or collating sequences
* Specify symbolic characters
* Relate class-names to sets of characters

* Relate object-oriented class names to external class-names and identify
class-names that can be used in a class definition or program

© Copyright IBM Corp. 1996, 2008 105



SOURCE-COMPUTER paragraph

The SOURCE-COMPUTER paragraph describes the computer on which the source
text is to be compiled.

— Format

»»—SOURCE-COMPUTER. a >

I—computer—name _|
Lm—DEBUGGING MODE
WITH

computer-name
A system-name. For example:

IBM-X22

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source
text.

A debugging line is a statement that is compiled only when the
compile-time switch is activated. Debugging lines allow you, for example,
to check the value of a data-name at certain points in a procedure.

To specify a debugging line in your program, code a D in column 7
(indicator area). You can include successive debugging lines, but each must
have a D in column 7, and you cannot break character strings across lines.

All your debugging lines must be written so that the program is
syntactically correct, whether the debugging lines are compiled or treated
as comments.

The presence or absence of the DEBUGGING MODE clause is logically
determined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the environment division (after the
OBJECT-COMPUTER paragraph), and in the data and procedure divisions.

If a debugging line contains only spaces in Area A and in Area B, the
debugging line is treated the same as a blank line.

All of the SOURCE-COMPUTER paragraph is syntax checked, but only the WITH
DEBUGGING MODE clause has an effect on the execution of the program.

OBJECT-COMPUTER paragraph

The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

106 COBOL for Windows Version 7.5 Language Reference



— Format

»>—0BJECT-COMPUTER.

[

v

. «

o

entry 1:

omputer-name |_M
EMORY

| i entry 1 '—

—L——I—integer WORDS
SIZE ECHARACTERS—

MODULES

]

|
SEQUENCE—L—_I—alphabet-narne
|—PROGRAM—| |—COLLATING—| IS

l—S EGMENT - LIMIT—L—_I—priori ty-number—|
IS

computer-name
A system-name. For example:

IBM-X22
MEMORY SIZE
The amount of main storage needed to run the object program. The
MEMORY SIZE clause is syntax checked but has no effect on the execution
of the program.
integer
Expressed in words, characters, or modules.

PROGRAM COLLATING SEQUENCE IS
The collating sequence used in this program is the collating sequence
associated with the specified alphabet-name.

The collating sequence pertains to this program and any programs it might
contain.

alphabet-name
The collating sequence.

PROGRAM COLLATING SEQUENCE determines the truth value of the following
alphanumeric comparisons:

* Those explicitly specified in relation conditions

* Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any merge or sort
keys described with usage DISPLAY, unless the COLLATING SEQUENCE phrase
is specified in the MERGE or SORT statement.

The PROGRAM COLLATING SEQUENCE clause is not applied to data items of
usage NATIONAL.

Chapter 15. Configuration section 107



You cannot specify the PROGRAM COLLATING SEQUENCE clause if the source
code page is a multibyte code page.

If the PROGRAM COLLATING SEQUENCE clause is omitted, the COLLSEQ
compiler option indicates the collating sequence used. For example, if
COLLSEQ(EBCDIC) is specified and the PROGRAM COLLATING SEQUENCE
clause is not specified (or is NATIVE), the EBCDIC collating sequence is used.

SEGMENT-LIMIT IS
The SEGMENT-LIMIT clause is syntax checked but has no effect on the
execution of the program.

priority-number
An integer ranging from 1 through 49. All sections with
priority-numbers 0 through 49 are fixed permanent segments. See
[“Procedures” on page 247 for a description of priority-numbers
and segmentation support.

All of the OBJECT-COMPUTER paragraph is syntax checked, but only the
PROGRAM COLLATING SEQUENCE clause has an effect on the execution of the
program.

SPECIAL-NAMES paragraph

The SPECIAL-NAMES paragraph:

* Relates IBM-specified environment-names to user-defined mnemonic-names
* Relates alphabet-names to character sets or collating sequences

* Specifies symbolic characters

* Relates class names to sets of characters

* Specifies one or more currency sign values and defines a picture symbol to
represent each currency sign value in PICTURE clauses

* Specifies that the functions of the comma and decimal point are to be
interchanged in PICTURE clauses and numeric literals

The clauses in the SPECIAL-NAMES paragraph can appear in any order.

108 COBOL for Windows Version 7.5 Language Reference



— Format

»»—SPECIAL-NAMES . — .

environment-name-l—L—_l—mnemonic-narne-l
IS

environment-name-2 nemonic-name-2:
IS L| entry 1 'J

entry 1 i

Y _ALPHABET— alphabet-name-1 STANDARD-1
IN STANDARD-2

NATIVE

EBCDIC

A Ziteral-1—| phrase 1 ’J—

S SYMBOLIC—L—_|—| symbolic i B ]
CHARACTERS IN— alphabet-name-2

Y _CLASS— class-name-1 ] Y literal-4 ]
IS I*I:THROUGH literal-5
THRU

Y _CURRENCY: literal-6
I—SIGN—| I—IS—| I-L—J—PICTURE—SYMBOL—Zii.‘eral-7—|

WITH

" I—DECIMAL—POINT COMMA—| L (1) )
EIS] .

Notes:

1 This separator period is optional when no clauses are selected. If you use any clauses, you
must code the period after the last clause.

Chapter 15. Configuration section 109



— Fragments

entry 1:

}—|:0N condition-1 |
I—STATUS—I I—IS—I I—OFF Londition-z—l

I—STATUS—I I—IS—l
condition-2-
Coms] Lisd Lo

OFF

Londition-l—l

o] Lisd

phrase 1:

THROUGH literal-2—
THRU

z ALSO—literal—.?L

symbolic:

e .

—"-symbolic-character-1 | integer-1 |
b

IS

When the source code page is a multibyte code page, the following clauses cannot
be specified:

« ALPHABET clause
¢ CLASS clause
* SYMBOLIC characters clause

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are shown in the following table.

Table 5. Meanings of environment names

environment

name-1 Meaning Allowed in

SYSIN System logical input unit ACCEPT

SYSIPT

SYSOUT System logical output unit DISPLAY

SYSLIST

SYSLST

SYSPUNCH System punch device DISPLAY

SYSPCH

CONSOLE Console ACCEPT and DISPLAY

CO01 through C12 |Skip to channel 1 through channel | WRITE ADVANCING

12, respectively

With C01 through C12, one line is
advanced.

110 COBOL for Windows Version 7.5 Language Reference



Table 5. Meanings of environment names (continued)

environment
name-1 Meaning Allowed in
CSpP Suppress spacing WRITE ADVANCING

S01 through S05

Pocket select 1 through 5 on WRITE ADVANCING

punch devices
With S01 through S05, one line is

advanced.

AFP-5A

WRITE ADVANCING

Advanced Function Printing”

environment-name-2

A 1-byte user programmable status indicator (UPSI) switch. Valid
specifications for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1, mnemonic-name-2

mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for
user-defined names. mnemonic-name-1 can be used in ACCEPT, DISPLAY,
and WRITE statements. mnemonic-name-2 can be referenced only in the SET
statement. mnemonic-name-2 can qualify condition-1 or condition-2 names.

Mnemonic-names and environment-names need not be unique. If you
choose a mnemonic-name that is also an environment-name, its definition
as a mnemonic-name will take precedence over its definition as an
environment-name.

ON STATUS IS, OFF STATUS IS

UPSI switches process special conditions within a program, such as
year-beginning or year-ending processing. For example, at the beginning of
the procedure division, an UPSI switch can be tested; if it is ON, the
special branch is taken. (See [“Switch-status condition” on page 272.)

condition-1, condition-2

Condition-names follow the rules for user-defined names. At least one
character must be alphabetic. The value associated with the
condition-name is considered to be alphanumeric. A condition-name can be
associated with the on status or off status of each UPSI switch specified.

In the procedure division, the UPSI switch status is tested through the
associated condition-name. Each condition-name is the equivalent of a
level-88 item; the associated mnemonic-name, if specified, is considered the
conditional variable and can be used for qualification.

Condition-names specified in the SPECIAL-NAMES paragraph of a
containing program can be referenced in any contained program.

ALPHABET clause

The ALPHABET clause provides a means of relating an alphabet-name to a
specified character code set or collating sequence.

The related character code set or collating sequence can be used for alphanumeric
data, but not for national data.

ALPHABET alphabet-name-1 IS

alphabet-name-1 specifies a collating sequence when used in:

¢ The PROGRAM COLLATING SEQUENCE clause of the object-computer
paragraph

111

Chapter 15. Configuration section



¢ The COLLATING SEQUENCE phrase of the SORT or MERGE statement

alphabet-name-1 specifies a character code set when used in:
¢ The FD entry CODE-SET clause
* The SYMBOLIC CHARACTERS clause

You cannot specify the ALPHABET clause if the source code page in effect
is a multibyte code page. For details, see the COBOL for Windows
Programming Guide.

STANDARD-1
Specifies that the collating sequence is based on the binary code
values of the characters, ignoring the locale setting.

STANDARD-2
Specifies that the collating sequence is based on the binary code
values of the characters, ignoring the locale setting.

NATIVE
Specifies the native character code set. If the ALPHABET clause is
omitted, the alphabet-name is associated with the ASCII character
set indicated by the locale in effect.

EBCDIC
Specifies the EBCDIC character set.

literal-1, literal-2, literal-3

Specifies that the collating sequence for alphanumeric data is

determined by the program, according to the following rules:

* The order in which literals appear specifies the ordinal number,
in ascending sequence, of the characters in this collating
sequence.

* Each numeric literal specified must be an unsigned integer.

* Each numeric literal must have a value that corresponds to a
valid ordinal position within the collating sequence in effect.

Appendix C, “EBCDIC and ASCII collating sequences,” on page|
@ lists the ordinal number for characters in the single-byte
EBCDIC and ASCII collating sequences.

* Each character in an alphanumeric literal represents that actual
character in the character set. (If the alphanumeric literal
contains more than one character, each character, starting with
the leftmost, is assigned a successively ascending position within
this collating sequence.)

* Any characters that are not explicitly specified assume positions
in this collating sequence higher than any of the explicitly
specified characters. The relative order within the collating
sequence of these unspecified characters is  their relative order
in the collating sequence indicated by the COLLSEQ compiler
option.

* Within one alphabet-name clause, a given character must not be
specified more than once.

* Each alphanumeric literal associated with a THROUGH or ALSO
phrase must be one character in length.

*  When the THROUGH phrase is specified, the contiguous
characters in the native character set beginning with the
character specified by literal-1 and ending with the character

112 COBOL for Windows Version 7.5 Language Reference



specified by literal-2 are assigned successively ascending
positions in this collating sequence.

This sequence can be either ascending or descending within the
original native character set. That is, if “Z” THROUGH “A” is
specified, the ascending values, left-to-right, for the uppercase
letters are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

*  When the ALSO phrase is specified, the characters specified as
literal-1, literal-3, ... are assigned to the same position in this
collating sequence. For example, if you specify:

IIDII ALSO IINII ALSO Ila/oll

the characters D, N, and % are all considered to be in the same
position in the collating sequence.

* When the ALSO phrase is specified and alphabet-name-1 is
referenced in a SYMBOLIC CHARACTERS clause, only literal-1
is used to represent the character in the character set.

* The character that has the highest ordinal position in this
collating sequence is associated with the figurative constant
HIGH-VALUE. If more than one character has the highest
position because of specification of the ALSO phrase, the last
character specified (or defaulted to when any characters are not
explicitly specified) is considered to be the HIGH-VALUE
character for procedural statements such as DISPLAY and as the
sending field in a MOVE statement. (If the ALSO phrase
example given above were specified as the high-order characters
of this collating sequence, the HIGH-VALUE character would be
%.)

* The character that has the lowest ordinal position in this
collating sequence is associated with the figurative constant
LOW-VALUE. If more than one character has the lowest position
because of specification of the ALSO phrase, the first character
specified is the LOW-VALUE character. (If the ALSO phrase
example given above were specified as the low-order characters
of the collating sequence, the LOW-VALUE character would be
D.)

When literal-1, literal-2, or literal-3 is specified, the alphabet-name
must not be referred to in a CODE-SET clause (see|“CODE-SE

[clause” on page 172).

literal-1, literal-2, and literal-3 must be alphanumeric or numeric
literals. All must have the same category. A floating-point literal, a
national literal, a DBCS literal, or a symbolic-character figurative
constant must not be specified.

SYMBOLIC CHARACTERS clause

SYMBOLIC CHARACTERS symbolic-character-1
Provides a means of specifying one or more symbolic characters.
symbolic-character-1 is a user-defined word and must contain at least one

alphabetic character. The same symbolic-character can appear only once in
a SYMBOLIC CHARACTERS clause.

Chapter 15. Configuration section 113



You cannot use the SYMBOLIC CHARACTERS clause if the source text
code page is a multibyte code page.

The SYMBOLIC CHARACTERS clause is applicable only to single-byte
character sets. Each character represented is an alphanumeric character.

The internal representation of symbolic-character-1 is the internal
representation of the character that is represented in the specified character
set. The following rules apply:

* The relationship between each symbolic-character-1 and the corresponding
integer-1 is by their position in the SYMBOLIC CHARACTERS clause.
The first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so forth.

* There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC
CHARACTERS clause.

e If the IN phrase is specified, integer-1 specifies the ordinal position of the
character that is represented in the character set named by
alphabet-name-2. This ordinal position must exist.

e If the IN phrase is not specified, symbolic-character-1 represents the
character whose ordinal position in the native character set is specified
by integer-1.

Ordinal positions are numbered starting from 1.

CLASS clause

You cannot specify the CLASS clause if the source code page in effect is a
multibyte code page.

CLASS class-name-1 IS

Provides a means for relating a name to the specified set of characters
listed in that clause. class-name-1 can be referenced only in a class
condition. The characters specified by the values of the literals in this
clause define the exclusive set of characters of which this class consists.

literal-4, literal-5

Must be category numeric or alphanumeric, and both must be of the same
category.

If numeric, literal-4 and literal-5 must be unsigned integers and must have
a value that is greater than or equal to 1 and less than or equal to the
number of characters in the alphabet specified. Each number corresponds
to the ordinal position of each character in the single-byte EBCDIC or
ASCII collating sequence. They cannot be specified as floating-point literals
or as DBCS literals.

If alphanumeric, literal-4 and literal-5 are an actual single-byte EBCDIC or
single-byte ASCII character.

literal-4 and literal-5 must not specify a symbolic-character figurative
constant. If the value of the alphanumeric literal contains multiple
characters, each character in the literal is included in the set of characters
identified by class-name.

If the alphanumeric literal is associated with a THROUGH phrase, the
literal must be one character in length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified,

114 COBOL for Windows Version 7.5 Language Reference



class-name includes those characters that begin with the value of
literal-4 and that end with the value of literal-5. In addition, the
characters specified by a THROUGH phrase can be in either
ascending or descending order.

CURRENCY SIGN clause

The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE
character-strings contain a currency symbol. A currency symbol represents a currency
sign value that is:

* Inserted in such data items when they are used as receiving items

* Removed from such data items when they are used as sending items for a
numeric or numeric-edited receiver

Typically, currency sign values identify the monetary units stored in a data item.
For example: '$’, '"EUR’, 'CHF’, ‘JPY’, "HK$’, '"HKD’, or X'9F’ (hexadecimal code
point in some EBCDIC code pages for €, the Euro currency sign). For more details
on programming techniques for handling the Euro, see the COBOL for Windows
Programming Guide.

The CURRENCY SIGN clause specifies a currency sign value and the currency
symbol used to represent that currency sign value in a PICTURE clause.

The SPECIAL-NAMES paragraph can contain multiple CURRENCY SIGN clauses.
Each CURRENCY SIGN clause must specify a different currency symbol. Unlike all
other PICTURE clause symbols, currency symbols are case sensitive. For example,
‘D’ and 'd’ specify different currency symbols.

CURRENCY SIGN IS literal-6
literal-6 must be an alphanumeric literal. literal-6 must not be a figurative
constant or a null-terminated literal. literal-6 must not contain a multibyte
character.
If the PICTURE SYMBOL phrase is not specified, literal-6:

* Specifies both a currency sign value and the currency symbol for this
currency sign value

* Must be a single character
* Must not be any of the following:
— Digits 0 through 9

— Alphabetic characters A, B, C, D, E, G, N, P, R, S, V, X, Z, their
lowercase equivalents, or the space

— Special characters +-,.* /;()“ ="

¢ Can be one of the following lowercase alphabetic characters: f, h, i, j, k, 1,
m,o,q tuwy

If the PICTURE SYMBOL phrase is specified, literal-6:

* Specifies a currency sign value. literal-7 in the PICTURE SYMBOL phrase
specifies the currency symbol for this currency sign value.

* Can consist of one or more characters.
¢ Must not contain any of the following:
- Digits 0 through 9
— Special characters + - .,

Chapter 15. Configuration section 115



PICTURE SYMBOL literal-7
Specifies a currency symbol that can be used in a PICTURE clause to
represent the currency sign value specified by literal-6.

literal-7 must be an alphanumeric literal consisting of one single-byte
character. literal-7 must not be any of the following;:

* A figurative constant
¢ Digits 0 through 9

* Alphabetic characters A, B, C, D, E, G, N, P, R, S, V, X, Z, their lowercase
equivalents, or the space

” 7

* Special characters + -,.* /; ()" =

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and
the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY and NOCURRENCY compiler options, see the COBOL for Windows
Programming Guide.

DECIMAL-POINT IS COMMA clause

DECIMAL-POINT IS COMMA
Exchanges the functions of the period and the comma in PICTURE
character-strings and in numeric literals.

REPOSITORY paragraph

The REPOSITORY paragraph is used in a program or class definition to identify all
the object-oriented classes that are intended to be referenced in that program or
class definition. Optionally, the REPOSITORY paragraph defines associations
between class-names and external class-names.

— Format

»»—REPOSITORY.

Y
A

LCLASS—cZass-name-l

Lm—[external-class-name-lﬁ—‘
IS Jjava-array-class-reference

class-name-1
A user-defined word that identifies the class.

external-class-name-1
An alphanumeric literal containing a name that enables a COBOL program
to define or access classes with class-names that are defined using Java
rules of formation.

116 COBOL for Windows Version 7.5 Language Reference




The name must conform to the rules of formation for a fully qualified Java
class-name. If the class is part of a Java package, external-class-name-1 must
specify the fully qualified name of the package, followed by “.”, followed
by the simple name of the Java class.

See Java Language Specification, Second Edition, by Gosling et al., for Java
class-name formation rules.

java-array-class-reference

A reference that enables a COBOL program to access a class that represents
an array object, where the elements of the array are themselves objects.
java-array-class-reference must be an alphanumeric literal with content in the
following format:

Format

»»—jobjectArray ><
|—:—external-cZass-name-ZJ

jobjectArray
Specifies a Java object array class.

A required separator when external-class-name-2 is specified. The
colon must not be preceded or followed by space characters.

external-class-name-2
The external class-name of the type of the elements of the array.
external-class-name-2 must follow the same rules of formation as
external-class-name-1.

When the repository entry specifies jobjectArray without the colon
separator and external-class-name-2, the elements of the object array are of
type java.lang.Object.

General rules

1.

All referenced class-names must have an entry in the repository paragraph of
the COBOL program or class definition that contains the reference. You can
specify a given class-name only once in a given repository paragraph.

In program definitions, the repository paragraph can be specified only in the
outermost program.

The repository paragraph of a COBOL class definition can optionally contain an
entry for the name of the class itself, but this entry is not required. Such an
entry can be used to specify an external class-name that uses non-COBOL
characters or that specifies a fully package-qualified class-name when a COBOL
class is to be part of a Java package.

Entries in a class repository paragraph apply to the entire class definition,
including all methods introduced by that class. Entries in a program repository
paragraph apply to the entire program, including its contained programs.

Identifying and referencing the class

An external-class-name is used to identify and reference a given class from outside
the class definition that defines the class. The external class-name is determined by

Chapter 15. Configuration section 117



using the contents of external-class-name-1, external-class-name-2, or class-name-1 (as
specified in the repository paragraph of a class), as described below:

1. external-class-name-1 and external-class-name-2 are used directly, without
translation. They are processed in a case-sensitive manner.

2. class-name-1 is used if external-class-name-1 or java-array-class-reference is not
specified. To create an external name that identifies the class and conforms to
Java rules of formation, class-name-1 is processed as follows:

* The name is converted to uppercase.

* Hyphens are translated to zero.

* If the first character of the name is a digit, it is converted as follows:
— Digits 1 though 9 are changed to A through 1.
— 0is changed to J.

The class can be implemented in Java or COBOL.

When referencing a class that is part of a Java package, external-class-name-1 must
be specified and must give the fully qualified Java class-name.

For example, the repository entry

Repository.
Class JavaException is "java.lang.Exception"

defines local class-name JavaException for referring to the fully qualified
external-class-name “java.lang.Exception.”

When defining a COBOL class that is to be part of a Java package, specify an entry

in the repository paragraph of that class itself, giving the full Java
package-qualified name as the external class-name.

118 COBOL for Windows Version 7.5 Language Reference



Chapter 16. Input-Output section

The input-output section of the environment division contains two paragraphs:
* FILE-CONTROL paragraph
* [-O-CONTROL paragraph

The exact contents of the input-output section depend on the file organization and
access methods used. See ["ORGANIZATION clause” on page 127|and [*ACCESS|
IMODE clause” on page 131

Program input-output section
The same rules apply to program and method I-O sections.

Class input-output section
The input-output section is not valid for class definitions.

Method input-output section
The same rules apply to program and method I-O sections.

— Format: Programs and methods

»»—INPUT-QUTPUT SECTION.—FILE-CONTROL.—file-control-paragraph————»
|—I-O-CONTROL. L J
Y _i-o-control-paragraph——.

FILE-CONTROL
The keyword FILE-CONTROL identifies the file-control paragraph. This
keyword can appear only once, at the beginning of the FILE-CONTROL
paragraph. It must begin in Area A and be followed by a separator period.

The keyword FILE-CONTROL and the period can be omitted if no
file-control-paragraph is specified and there are no files defined in the
program.

v
A

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator
period. See ['FILE-CONTROL paragraph” on page 120

file-control-paragraph can be omitted if there are no files defined in the
program, even if the FILE-CONTROL keyword is specified.

I-O-CONTROL
The keyword I-O-CONTROL identifies the I-O-CONTROL paragraph.

i-o-control-paragraph
Specifies information needed for efficient transmission of data between the

© Copyright IBM Corp. 1996, 2008 119



external data set and the COBOL program. The series of entries must end
with a separator period. See|“I-O-CONTROL paragraph” on page 137

FILE-CONTROL paragraph

The FILE-CONTROL paragraph associates each file in the COBOL program with
an external data set, and specifies file organization, access mode, and other
information.

The following are the formats for the FILE-CONTROL paragraph:
* Sequential file entries

* Indexed file entries

* Relative file entries

* Line-sequential file entries

Types of files (Table 6) lists the different type of files available to programs and
methods.

Table 6. Types of files

File organization Access method
Sequential Btrieve, STL, RSD
Relative Btrieve, STL
Indexed Btrieve, STL

Line sequential Native

The FILE-CONTROL paragraph begins with the word FILE-CONTROL followed
by a separator period. It must contain one and only one entry for each file
described in an FD or SD entry in the data division.

Within each entry, the SELECT clause must appear first. The other clauses can
appear in any order.

120 COBOL for Windows Version 7.5 Language Reference



— Format 1: sequential-file-control-entries

»»—SELECT |_ J -file-name-1—ASSIGN Y _assignment-name-1 >
OPTIONAL |:T0:|
USING—data-name-9———
|—RESERVE— integer |_ SEQUENTIALJ
i:AREAﬂ ORGANIZATIONﬁ
AREAS IS

». »

|—PADDI" data-nameﬁJ
|—CHARACTERJ |—ISJ |—l iteral-2

> »
>

|—RECORD DELIMITER STANDARD- 1—<|J |—ACCESc |_ J |_ J SEQUENTIALJ
IS assignment-name-2- MODE IS

|
STATUS data-name-1
|—FILEJ |—ISJ |—data-name—BJ

|—PASSWORD—L—_I—data-name-6J
IS

Chapter 16. Input-Output section 121



— Format 2: indexed-file-control-entries

»»>—SELECT |_ J -file-name-1—ASSIGN Y _assignment-name-1 >
OPTIONAL | |:T0:|
USING—data-name-9——
INDEXED
|—RESERVE—z’nteger LORGANIZATIONﬁ
AREA IS
AREAS

RECORD data-name-2: >
|—ACCESS SEQUENTIAL—J |—KEYJ |—ISJ

|—MODEJ |—ISJ tRANDOM—

DYNAMIC——

v

\

y

v
v

v
|—PASSWORD—L—_I—da1,‘0 name 6J |—‘ entr ’J
- - y 1

IS

A\
A

\

|
STATUS data-name-1
|—FILEJ |—ISJ |—data-name-8J

entry 1:

[—ALTERNATE data-name-3 P
|—RECORDJ |—KEYJ |—ISJ ﬁDUPLICATESJ

WITH

i |—PASSWORD data-name—7J
|:IS:|

122  COBOL for Windows Version 7.5 Language Reference



— Format 3: relative-file-control-entries

A

»>—SELECT file-name-1—ASSIGN ' _gssignment-name-1
|:(;PTIONAL:| |:T0:|

USING—data-name-9

> RELATIVE >
I—RESERVE— integer l—ORGANIZATIONﬁ
AREA IS
AREAS
I—ACCESS SEQUENTIAL |
|—MODEJ |—ISJ |—RELATIVE data-name-4J
|—KEYJ |—ISJ

RANDOM RELATIVE data-name-4
—[DYNAMIC:| |—KEYJ |—ISJ

|—PASSWORD—L—_I—data—name—6J | STATUS data-name-1 |
IS I—FILE—| |—IS—| |—data—name—B—l

— Format 4: line-sequential-file-control-entries

»»—SELECT -file-name-1—ASSIGN Y _assignment-name-1 >
|—OPTIONALJ |:T0:|
USING—data-name-9———

> LINE SEQUENTIAL
LORGANIZATIONﬁ |—ACCESS |_ J |_ J SEQUENTIALJ
IS MODE IS

> >«

I |
STATUS data-name-1
|—FILEJ |—ISJ |—data-name-éiJ

Chapter 16. Input-Output section 123



SELECT clause

The SELECT clause identifies a file in the COBOL program to be associated with
an external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode.
You must specify SELECT OPTIONAL for those input files that are not
necessarily present each time the object program is executed. For more
information, see the COBOL for Windows Programming Guide.

file-name-1
Must be identified by an FD or SD entry in the data division. A file-name
must conform to the rules for a COBOL user-defined name, must contain
at least one alphabetic character, and must be unique within this program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can
follow the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all
file-control entries in the run unit that reference this file connector must have the
same specification for the OPTIONAL phrase.

ASSIGN clause

The ASSIGN clause associates the name of a file in a program with the actual
external name of the data file.

assignment-name-1
Can be specified either as a user-defined word or as an alphanumeric
literal.

User-defined word
assignment-name-1 must follow the rules for a COBOL word. The
name component of the assignment name can be up to 30 bytes in
length. A user-defined word is treated as one of the following:

* Environment variable name: At program initialization, the name
is used as an environment variable. If the environment variable
value is set, that value is treated as the system file name
optionally preceded by the file-system ID. See [“Assignment]
[name for data-names and environment variables” on page 126|
for details.

* System file ID of the platform: If the environment variable
indicated by the name is not set, the user-defined word is treated
as the system file name, optionally preceded by the file-system
ID and a comment character string. See [“ Assienment name foxi
[non-environment variables and literals” on page 125|for details.

Literal assignment-name-1 is treated as the actual file ID for the platform.
assignment-name-1 must follow the rules for a COBOL literal and
have a length of one to 160 characters. See [“ Assienment name fod
[non-environment variables and literals” on page 125 for details.

All characters specified within the literal delimiters are used
without any mapping.

124 COBOL for Windows Version 7.5 Language Reference



USING data-name-9
Must be defined in the working-storage section as a data item of category
alphanumeric, and must not be subordinate to the file description for
file-name-1. The content is evaluated when opened to identify the
assignment name. See [ Assignment name for data-names and environment]
variables” on page 126[for details.

Assignment name for non-environment variables and literals

If a literal or a word that is not a data-name is specified for the name, the
assignment name is processed as follows:

— Format: assignment name

»h-
>p

|—comment— —| l—fiZe—system—ID— —|
system-file-name
L‘ alt-index ’J
nvironment-variable-name———

alt-index:

A\
A

—(alt-index-file-name-1-" B | ) I

| l—alt—index—file—name—z—l

comment
All characters to the left of the system-file ID are treated as comments.
Comments can be hyphenated, for example, my-comment or
this-is-my-comment.

file-system-1D
The first three characters of file-system-ID are used to determine the
file-system identifier. If the character string for file-system-ID is less than
three characters, then the entire character string (along with any character
strings to the left of it) is treated as a comment. If you include comments
(hyphenated or not), you must include the separating hyphen between the
comment and file-system-ID.

For example:
my-comment-st1-myfile

In this example, my-comment is the comment, st1 is the file-system-ID, and
myfile is the system-file-name or environment-variable-name.
my-comment-am-myfile

In this example, my-comment-am is the comment, and myfile is the
system-file-name or environment-variable-name.

system-file-name or environment-variable-name
If the assignment name is not specified in the literal form and the
environment variable that matches the character string is found at run

Chapter 16. Input-Output section 125



time, the environment variable value is used to identify the file system and
the system file name. Otherwise, the character string is used as the system
file name.

Specifying alternate indexes: The compiler normally assigns default
alternate index file names; however, you must override the default
assignment when the file already exists and has alternate index files with
names that differ from the default alternate index file names that are
assigned by the compiler. For example, a file created through a different
language, such as PL/L

Alternate index names, if specified, must be specified in the same order as
the alternate record keys are specified in the source program. You can omit
alternate index names, but any other alternate index names must
correspond to the position in the file definition. The following example
shows how to specify the first and third alternate index names:

base-file-name(first-index-file-name,,third-index-file-name)

In the above example, the compiler will assign a default file name for the
second alternate index file.

Alternate index file names are ignored for file systems that do not require
separate alternate index files, such as the STL file system.

Assignment name for data-names and environment variables

If the environment variable or data-name is specified for the assignment name, the
data-name value or the environment variable value is processed as follows:

— Format: Environment variable and data name value

system-file-name >

>

I—file-system-ID- —|

». [

L(alt—index—fiZe—name—] v B | )J

K

|—aZ t-index-fi Ze-name-ZJ

file-system-ID
If file-system-ID is specified explicitly using the environment variable value
or the data-name value, that specification for the file system overrides any
file system specification made by the assignment name.

The environment variable value for a file is obtained when the program
that contains the file is first run (or called) in its initial state. This value is
kept for the file for subsequent calls to the program in the last-used state.

The value of the file ID specified with a data-name is obtained when the
file is opened. On each subsequent OPEN for the file, the value is
reobtained.

File declarations for an external file must have the same file-system
identifier. If they do not, the error is caught during run time, and the
application is terminated with an error message.

126 COBOL for Windows Version 7.5 Language Reference



system-file-name
If there is a hyphen in the environment variable or the data name value,
the first three characters to the left of the leftmost hyphen are treated as
the file-system identifier. The character string to right of the leftmost
hyphen is then used as the system file name (possibly including drive and
path names).

If there is no hyphen, or the character string to the left of the leftmost
hyphen is less than three characters long, the entire character string is used
as the system file name (possibly including drive and path names).

For information about specifying alternate indexes, see “Specifying
alternate indexes” under [“Assignment name for non-environment variables|
land literals” on page 125

RESERVE clause

The RESERVE clause is syntax checked, but has no effect on the execution of the
program.

ORGANIZATION clause

The ORGANIZATION clause identifies the logical structure of the file. The logical
structure is established at the time the file is created and cannot subsequently be
changed.

You can find a discussion of the different ways in which data can be organized
and of the different access methods that you can use to retrieve the data under
[“File organization and access modes” on page 132

ORGANIZATION IS SEQUENTIAL (format 1)
A predecessor-successor relationship among the records in the file is
established by the order in which records are placed in the file when it is
created or extended.

ORGANIZATION IS INDEXED (format 2)
The position of each logical record in the file is determined by indexes
created with the file and maintained by the system. The indexes are based
on embedded keys within the file’s records.

ORGANIZATION IS RELATIVE (format 3)
The position of each logical record in the file is determined by its relative
record number.

ORGANIZATION IS LINE SEQUENTIAL (format 4)
A predecessor-successor relationship among the records in the file is
established by the order in which records are placed in the file when it is
created or extended. A record in a LINE SEQUENTIAL file can consist only
of printable characters.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION
IS SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, the same organization must be specified for all file-control entries in
the run unit that reference this file connector.

Chapter 16. Input-Output section 127



File organization

You establish the organization of the data when you create a file. Once the file has
been created, you can expand the file, but you cannot change the organization.

Sequential organization

The physical order in which the records are placed in the file determines the
sequence of records. The relationships among records in the file do not change,
except that the file can be extended. Records can be fixed length or variable length;
there are no keys.

Each record in the file except the first has a unique predecessor record; and each
record except the last has a unique successor record.

Indexed organization

Each record in the file has one or more embedded keys (referred to as key data
items); each key is associated with an index. An index provides a logical path to
the data records according to the contents of the associated embedded record key
data items. Indexed files must be direct-access storage files. Records can be fixed
length or variable length.

Each record in an indexed file must have an embedded prime key data item. When
records are inserted, updated, or deleted, they are identified solely by the values of
their prime keys. Thus, the value in each prime key data item must be unique and
must not be changed when the record is updated. You tell COBOL the name of the
prime key data item in the RECORD KEY clause of the file-control paragraph.

In addition, each record in an indexed file can contain one or more embedded
alternate key data items. Each alternate key provides another means of identifying
which record to retrieve. You tell COBOL the name of any alternate key data items
on the ALTERNATE RECORD KEY clause of the file-control paragraph.

The key used for any specific input-output request is known as the key of reference.

Relative organization

Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method stores
and retrieves a record based on its relative record number. For example, the first
record area is addressed by relative record number 1 and the 10th is addressed by
relative record number 10. The physical sequence in which the records were placed
in the file has no bearing on the record area in which they are stored, and thus no
effect on each record’s relative record number. Relative files must be direct-access
files. Records can be fixed length or variable length.

Line-sequential organization
In a line-sequential file, each record contains a sequence of characters that ends
with a record delimiter. The delimiter is not counted in the length of the record.

When a record is written, any trailing blanks are removed prior to adding the
record delimiter. The characters in the record area from the first character up to
and including the added record delimiter constitute one record and are written to
the file.

When a record is read, characters are read one at a time into the record area until:

e The first record delimiter is encountered. The record delimiter is discarded and
the remainder of the record is filled with spaces.

128 COBOL for Windows Version 7.5 Language Reference



* The entire record area is filled with characters. If the first unread character is the
record delimiter, it is discarded. Otherwise, the first unread character becomes
the first character read by the next READ statement.

Records written to line-sequential files must consist of data items described as
USAGE DISPLAY or DISPLAY-1 or a combination of DISPLAY and DISPLAY-1
items. If the CHAR(EBCDIC) compiler option is in effect, a DISPLAY or DISPLAY-1
item can be encoded in either ASCII or EBCDIC, depending on the presence or
absence of the NATIVE phrase in the USAGE clause of the data item. A zoned
decimal data item either must be unsigned or, if signed, must be declared with the
SEPARATE CHARACTER phrase.

A line-sequential file must contain only printable characters and the control
characters shown in the following table:

Control character ASCII hex value EBCDIC hex value
Bell 07 2F
Backspace 08 16
Form feed 0C 0C
Line feed 0A 15
Carriage-return 0D 0D
Horizontal tab 09 05
Vertical tab 0B 0B
Dummy DBCS shift-out 1E

Dummy DBCS shift-in 1F

DBCS shift-out OE
DBCS shift-in OF

Line feed characters are processed as record delimiters. Other control characters are
treated by COBOL as part of the data for the records in the file.

The following are not supported for line-sequential files:
¢ APPLY WRITE-ONLY clause

* CODE-SET clause

¢ DATA RECORDS clause

* LABEL RECORDS clause

* LINAGE clause

¢ [-O phrase of the OPEN statement

* PADDING CHARACTER clause

¢ RECORD CONTAINS 0 clause

¢ RECORD CONTAINS clause format 2 (for example: RECORD CONTAINS 100 to
200 CHARACTERS)

* RECORD DELIMITER clause

* RECORDING MODE clause

* RERUN clause

* RESERVE clause

* REVERSED phrase of the OPEN statement
* REWRITE statement

Chapter 16. Input-Output section 129



VALUE OF clause of file description entry

e WRITE ... AFTER ADVANCING mnemonic-name
* WRITE ... AT END-OF-PAGE

* WRITE ... BEFORE ADVANCING

Language elements treated as comments
For other files (sequential, relative, and indexed), the following language elements
are syntax checked, but have no effect on the execution of the program:

* APPLY WRITE-ONLY clause

* CLOSE ... FOR REMOVAL

* CLOSE ... WITH NO REWIND

* CODE-SET clause

* DATA RECORDS clause

* LABEL RECORDS clause

 MULTIPLE FILE TAPE clause

* OPEN ... REVERSE

 PADDING CHARACTER clause

* PASSWORD clause

« RECORD CONTAINS 0 clause

* RECORD DELIMITER clause

* RECORDING MODE clause (for relative and indexed files)
* RERUN clause

* RESERVE clause

* SAME AREA clause

* SAME SORT AREA clause

* SAME SORT-MERGE AREA clause

* VALUE OF clause of file description entry

No error messages are generated (with the exception of the data name option for
the LABEL RECORDS, USE ... AFTER ... LABEL PROCEDURE, and GO TO
MORE-LABELS clauses).

PADDING CHARACTER clause

The PADDING CHARACTER clause specifies a character to be used for block
padding on sequential files.

data-name-5
Must be defined in the data division as a one-character data item of
category alphabetic, alphanumeric, or national, and must not be defined in
the file section. data-name-5 can be qualified.

literal-2
Must be a one-character alphanumeric literal or national literal.

For external files, data-name-5, if specified, must reference an external data item.

The PADDING CHARACTER clause is syntax checked, but has no effect on the
execution of the program.

130 COBOL for Windows Version 7.5 Language Reference



RECORD DELIMITER clause

The RECORD DELIMITER clause indicates the method of determining the length
of a variable-length record on an external medium. It can be specified only for
variable-length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape
file.

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but has no effect on the
execution of the program.

ACCESS MODE clause

The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified,
sequential access is assumed.

For sequentially accessed relative files, the ACCESS MODE clause does not have to
precede the RELATIVE KEY clause.

ACCESS MODE IS SEQUENTIAL
Can be specified in all formats.

Format 1: sequential
Records in the file are accessed in the sequence established when
the file is created or extended. Format 1 supports only sequential
access.

Format 2: indexed
Records in the file are accessed in the sequence of ascending record
key values according to the collating sequence of the file.

Format 3: relative
Records in the file are accessed in the ascending sequence of
relative record numbers of existing records in the file.

Format 4: line-sequential
Records in the file are accessed in the sequence established when
the file is created or extended. Format 4 supports only sequential
access.

ACCESS MODE IS RANDOM
Can be specified in formats 2 and 3 only.

Format 2: indexed
The value placed in a record key data item specifies the record to
be accessed.

Format 3: relative
The value placed in a relative key data item specifies the record to
be accessed.

Chapter 16. Input-Output section 131



ACCESS MODE IS DYNAMIC
Can be specified in formats 2 and 3 only.

Format 2: indexed
Records in the file can be accessed sequentially or randomly,
depending on the form of the specific input-output statement used.

Format 3: relative
Records in the file can be accessed sequentially or randomly,
depending on the form of the specific input-output request.

File organization and access modes

File organization is the permanent logical structure of the file. You tell the computer
how to retrieve records from the file by specifying the access mode (sequential,
random, or dynamic). For details on the access methods and data organization, see
Types of files (Table 6 on page 120).

Sequentially organized data can be accessed only sequentially; however, data that
has indexed or relative organization can be accessed in any of the three access
modes.

Access modes

Sequential-access mode
Allows reading and writing records of a file in a serial manner; the order
of reference is implicitly determined by the position of a record in the file.

Random-access mode
Allows reading and writing records in a programmer-specified manner; the
control of successive references to the file is expressed by specifically
defined keys supplied by the user.

Dynamic-access mode
Allows the specific input-output statement to determine the access mode.
Therefore, records can be processed sequentially or randomly or both.

For external files, every file-control entry in the run unit that is associated with
that external file must specify the same access mode. In addition, for relative file
entries, data-name-4 must reference an external data item, and the RELATIVE KEY
phrase in each associated file-control entry must reference that same external data
item.

Relationship between data organizations and access modes

This section discusses which access modes are valid for each type of data
organization.

Sequential files
Files with sequential organization can be accessed only sequentially. The
sequence in which records are accessed is the order in which the records
were originally written.

Line-sequential files
Same as for sequential files (described above).

Indexed files
All three access modes are allowed.

132 COBOL for Windows Version 7.5 Language Reference



In the sequential access mode, the sequence in which records are accessed
is the ascending order (or, optionally, descending order) of the record key
value. The order of retrieval within a set of records that have duplicate
alternate record key values is the order in which records were written into
the set.

In the random access mode, you control the sequence in which records are
accessed. A specific record is accessed by placing the value of its key or
keys in the RECORD KEY data item (and the ALTERNATE RECORD KEY
data item). If a set of records has duplicate alternate record key values,
only the first record written is available.

In the dynamic access mode, you can change as needed from sequential
access to random access by using appropriate forms of input-output
statements.

Relative files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed
is the ascending order (or, optionally, descending order) of the relative
record numbers of all records that exist within the file.

In the random access mode, you control the sequence in which records are

accessed. A specific record is accessed by placing its relative record number
in the RELATIVE KEY data item; the RELATIVE KEY must not be defined

within the record description entry for the file.

In the dynamic access mode, you can change as needed from sequential
access to random access by using appropriate forms of input-output
statements.

RECORD KEY clause

The RECORD KEY clause (format 2) specifies the data item within the record that
is the prime RECORD KEY for an indexed file. The values contained in the prime
RECORD KEY data item must be unique among records in the file.

data-name-2
The prime RECORD KEY data item.

data-name-2 must be described within a record description entry associated
with the file. The key can have any of the following data categories:

* Alphanumeric

¢ Numeric

* Numeric-edited (with usage DISPLAY or NATIONAL)

* Alphanumeric-edited

* Alphabetic

+ External floating-point (with usage DISPLAY or NATIONAL)

* Internal floating-point

+ DBCS

* National

* National-edited

Regardless of the category of the key data item, the key is treated as an
alphanumeric item. The collation order of the key is determined by the

item’s binary value order when the key is used for locating a record or for
setting the file position indicator associated with the file.

Chapter 16. Input-Output section 133



data-name-2 cannot be a windowed date field.

data-name-2 must not reference a group item that contains a
variable-occurrence data item. data-name-2 can be qualified.

If the indexed file contains variable-length records, data-name-2 need not be
contained within the minimum record size specified for the file. That is,
data-name-2 can exceed the minimum record size, but this is not
recommended.

The data description of data-name-2 and its relative location within the
record must be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need be
described in only one of those record description entries. The identical character
positions referenced by data-name-2 in any one record description entry are
implicitly referenced as keys for all other record description entries for that file.

For files defined with the EXTERNAL clause, all file description entries in the run
unit that are associated with the file must have data description entries for
data-name-2 that specify the same relative location in the record and the same
length.

ALTERNATE RECORD KEY clause

The ALTERNATE RECORD KEY clause (format 2) specifies a data item within the
record that provides an alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item.

data-name-3 must be described within a record description entry associated
with the file. The key can have any of the following data categories:

* Alphanumeric

* Numeric

* Numeric-edited (with usage DISPLAY or NATIONAL)

* Alphanumeric-edited

* Alphabetic

* External floating-point (with usage DISPLAY or NATIONAL)

* Internal floating-point

* DBCS

* National

* National-edited

Regardless of the category of the key data item, the key is treated as an
alphanumeric item. The collation order of the key is determined by the

item’s binary value order when the key is used for locating a record or for
setting the file position indicator associated with the file.

data-name-3 cannot be a windowed date field.

data-name-3 must not reference a group item that contains a
variable-occurrence data item. data-name-3 can be qualified.

134 COBOL for Windows Version 7.5 Language Reference



If the indexed file contains variable-length records, data-name-3 need not be
contained within the minimum record size specified for the file. That is,
data-name-3 can exceed the minimum record size, but this is not
recommended.

If the file has more than one record description entry, data-name-3 need be
described in only one of these record description entries. The identical
character positions referenced by data-name-3 in any one record description
entry are implicitly referenced as keys for all other record description
entries of that file.

The data description of data-name-3 and its relative location within the
record must be the same as those used when the file was defined. The
number of alternate record keys for the file must also be the same as that
used when the file was created.

The leftmost character position of data-name-3 must not be the same as the
leftmost character position of the prime RECORD KEY or of any other
ALTERNATE RECORD KEY.

If the DUPLICATES phrase is not specified, the values contained in the
ALTERNATE RECORD KEY data item must be unique among records in the file.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE
RECORD KEY data item can be duplicated within any records in the file. In
sequential access, the records with duplicate keys are retrieved in the order in
which they were placed in the file. In random access, only the first record written
in a series of records with duplicate keys can be retrieved.

For files defined with the EXTERNAL clause, all file description entries in the run
unit that are associated with the file must have data description entries for
data-name-3 that specify the same relative location in the record and the same
length. The file description entries must specify the same number of alternate
record keys and the same DUPLICATES phrase.

RELATIVE KEY clause

The RELATIVE KEY clause (format 3) identifies a data-name that specifies the
relative record number for a specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does
not contain the PICTURE symbol P. data-name-4 must not be defined in a
record description entry associated with this relative file. That is, the
RELATIVE KEY is not part of the record. data-name-4 can be qualified.

data-name-4 cannot be a windowed date field.

data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM
and ACCESS IS DYNAMIC. When the START statement is issued, the
system uses the contents of the RELATIVE KEY data item to determine the
record at which sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued,
the value is ignored and processing begins with the first record in the file.

Chapter 16. Input-Output section 135



If a relative file is to be referenced by a START statement, you must specify
the RELATIVE KEY clause for that file.

For external files, data-name-4 must reference an external data item, and the
RELATIVE KEY phrase in each associated file-control entry must reference
that same external data item in each case.

The ACCESS MODE IS RANDOM clause must not be specified for
file-names specified in the USING or GIVING phrase of a SORT or MERGE
statement.

PASSWORD clause

The PASSWORD clause is syntax checked, but has no effect on the execution of the
program.

FILE STATUS clause

The FILE STATUS clause monitors the execution of each input-output operation for
the file.

When the FILE STATUS clause is specified, the system moves a value into the file
status key data item after each input-output operation that explicitly or implicitly
refers to this file. The value indicates the status of execution of the statement. (See
the file status key description under [“Common processing facilities” on page 288))

data-name-1
The file status key data item can be defined in the working-storage,
local-storage, or linkage section as one of the following:

* A two-character data item of category alphanumeric
¢ A two-character data item of category national

* A two-digit data item of category numeric with usage DISPLAY or
NATIONAL (an external decimal data item)

data-name-1 must not contain the PICTURE symbol "P’.
data-name-1 can be qualified.

The file status key data item must not be variably located; that is, the data
item cannot follow a data item that contains an OCCURS DEPENDING
ON clause.

data-name-8
Represents information returned from the file system. Because the
definitions are specific to the file systems and platforms, applications that
depend on the specific values in data-name-8 might not be portable across
platforms.

You must define data-name-8 with PICTURE 9(6) and USAGE DISPLAY.
However, you can define an additional field with PICTURE X(n). The file
system defines the feedback values, which are converted to the six-digit
external decimal representation with leading zeros when the file systems
feedback value is less than 100000. If you have defined an additional field
using PICTURE X(n), then X(n) contains additional information that
describes any nonzero feedback code. (For most programs, an n value of
100 should be adequate to show the complete message text. If the file is
defined with a large number of alternate keys, then allow 100 bytes plus 20
bytes per alternate key.)

136 COBOL for Windows Version 7.5 Language Reference



I-O-CONTROL paragraph

— Format: Sequential I-O-control entries

st weve i B
EVERY

The I-O-CONTROL paragraph of the input-output section specifies when
checkpoints are to be taken and the storage areas to be shared by different files.

This paragraph is optional in a COBOL program.

The keyword [F-O-CONTROL can appear only once, at the beginning of the
paragraph. The word [-O-CONTROL must begin in Area A and must be followed
by a separator period.

The order in which [-O-CONTROL paragraph clauses are written is not significant.
The [-O-CONTROL paragraph ends with a separator period.

>

v

file-name-4

Y _file-name-5

»——RERUN—L——'—Eass ignment-
ON file-name-1
—SAME file-name-3
I—RECORD—| I—AREA—| I—FOR—| L
(1)
—MULTIPLE FILE
|—TAPEJ |—CONTAINSJ
(1) ‘
—APPLY WRITE-ONLY
LonJ
phrase 1:

' _file-name-2

integer-1—RECORDS

}—[ file-name-1
END REEL:ltl |:OFZI

OF UNIT

Notes:

1

The MULTIPLE FILE clause and APPLY WRITE-ONLY clause are syntax checked, but have no

LPOSITION—integer-ZJ

effect on the execution of the program.

Chapter 16. Input-Output section

137



— Format: Relative and indexed I-O-control entries

SAME

RERUN assignment-%—l_—_l—| phrase 1 i
ON -file-name-1 EVERY

-file-name-3
|—RECORDJ |—AREAJ |—FORJ

phrase 1:

Y _file-name-4

Y
A

|—integer—1—REC0RDS—L—_|—fi le-name-1
OF

— Format: Line-sequential I-O-control entries

v

»»>—SAME

file-name-3
|—RECORDJ |—AREAJ |—FORJ

-file-name-4

A\
A

— Format: Sort/merge I-O-control entries

>

E UN—L——I—GSSIQ - -
I—R R nment-name lJ

ON

{ phrase 1
SORT——— |—AREAJ |—FORJ !

»——SAME |:RECORD
SORT-MERGE—

phrase 1:

—file-name-3

\4
A

|—fz' Ze-name-4J

138 COBOL for Windows Version 7.5 Language Reference




RERUN clause

The RERUN clause specifies that checkpoint records are to be taken. Subject to the
restrictions given with each phrase, more than one RERUN clause can be specified.

The RERUN clause is syntax checked, but has no effect on the execution of
programs compiled with the NOTHREAD compiler option.

The RERUN clause is invalid syntax for programs compiled with the THREAD
compiler option.

Do not use the RERUN clause:
* For files described with the EXTERNAL clause
* In programs with the RECURSIVE clause specified
* In programs compiled with the THREAD option
* In methods
file-name-1
Must be a sequentially organized file.
assignment-name-1
The external data set for the checkpoint file. It must not be the same

assignment-name as that specified in any ASSIGN clause throughout the
entire program, including contained and containing programs.

SORT/MERGE considerations:

When the RERUN clause is specified in the [-O-CONTROL paragraph,
checkpoint records are written at logical intervals determined by the
sort/merge program during execution of each SORT or MERGE statement
in the program. When the RERUN clause is omitted, checkpoint records
are not written.

There can be only one SORT/MERGE I-O-CONTROL paragraph in a
program, and it cannot be specified in contained programs. It will have a
global effect on all SORT and MERGE statements in the program unit.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 records in
file-name-1 that are processed.

When multiple integer-1 RECORDS phrases are specified, no two of them
can specify the same value for file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify
assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for
file-name-1 occurs. The terms REEL and UNIT are interchangeable.

When multiple END OF REEL/UNIT phrases are specified, no two of
them can specify the same value for file-name-1.

The END OF REEL/UNIT phrase can be specified only if file-name-1 is a
sequentially organized file.

Chapter 16. Input-Output section 139



SAME AREA clause

The SAME AREA clause is syntax checked, but has no effect on the execution of
the program.

SAME RECORD AREA clause

The SAME RECORD AREA clause specifies that two or more files are to use the
same main storage area for processing the current logical record.

The files named in a SAME RECORD AREA clause need not have the same
organization or access.

file-name-3, file-name-4
Must be specified in the file-control paragraph of the same program.
file-name-3 and file-name-4 must not reference a file that is defined with the
EXTERNAL clause.

All of the files can be open at the same time. A logical record in the shared storage
area is considered to be both of the following:

* A logical record of each opened output file in the SAME RECORD AREA clause

* A logical record of the most recently read input file in the SAME RECORD
AREA clause

More than one SAME RECORD AREA clause can be included in a program.

However:

* A specific file-name must not appear in more than one SAME RECORD AREA
clause.

* If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

* The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

* If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include
the GLOBAL clause.

* The SAME RECORD AREA clause must not be specified when the RECORD
CONTAINS 0 CHARACTERS clause is specified.

The files named in the SAME RECORD AREA clause need not have the same
organization or access.

SAME SORT AREA clause

The SAME SORT AREA clause is syntax checked but has no effect on the execution
of the program.

file-name-3, file-name-4
Must be specified in the file-control paragraph of the same program.
file-name-3 and file-name-4 must not reference a file that is defined with the
EXTERNAL clause.

140 COBOL for Windows Version 7.5 Language Reference



When the SAME SORT AREA clause is specified, at least one file-name specified
must name a sort file. Files that are not sort files can also be specified. The
following rules apply:

More than one SAME SORT AREA clause can be specified. However, a given
sort file must not be named in more than one such clause.

If a file that is not a sort file is named in both a SAME AREA clause and in one
or more SAME SORT AREA clauses, all the files in the SAME AREA clause must
also appear in that SAME SORT AREA clause.

Files named in a SAME SORT AREA clause need not have the same organization
or access.

Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless they are named in a SAME AREA or SAME
RECORD AREA clause.

During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any nonsort or nonmerge files associated with
file-names named in this clause must not be in the open mode.

SAME SORT-MERGE AREA clause

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA
clause (see ['SAME SORT AREA clause” on page 140).

MULTIPLE FILE TAPE clause

The MULTIPLE FILE TAPE clause (format 1) specifies that two or more files share
the same physical reel of tape.

This clause is syntax checked, but has no effect on the execution of the program.

APPLY WRITE-ONLY clause

The APPLY WRITE-ONLY clause is syntax checked, but has no effect on the
execution of the program.

Chapter 16. Input-Output section 141



142 COBOL for Windows Version 7.5 Language Reference



Part 5. Data division

Chapter 17. Data division overview
File section . .
Working-storage sectron
Local-storage section .
Linkage section.
Data units
File data .
Program data
Method data
Factory data.
Instance data
Data relationships .
Levels of data . .
Levels of data in a record descrrptron entry
Special level-numbers
Indentation . .
Classes and categorles of group 1terns .
Classes and categories of data .
Category descriptions
Alphabetic
Alphanumeric . .
Alphanumeric-edited .
DBCS .
External floating- p01nt
Internal floating-point
National . .
National-edited.
Numeric . .
Numeric-edited.
Alignment rules .
Character-string and item size.
Signed data .
Operational signs .
Editing signs

Chapter 18. Data division—file description
entries
File section . .
EXTERNAL clause
GLOBAL clause
BLOCK CONTAINS clause
RECORD clause
Format 1 .
Format 2 .
Format 3 . .
LABEL RECORDS clause
VALUE OF clause .
DATA RECORDS clause .
LINAGE clause.
LINAGE-COUNTER spec1al reg1ster
RECORDING MODE clause -
CODE-SET clause .

Chapter 19. Data division—data description
entry .
Format 1 .

© Copyright IBM Corp. 1996, 2008

. 145
. 146
. 147
. 148
. 149
. 149
. 149
. 150
. 150
. 150
. 150
. 150
. 151
. 151
. 153
. 153
. 153
. 154
. 156
. 156
. 156
. 156
. 156
. 156
. 157
. 157
. 157
. 157
. 158
. 158
. 159
. 159
. 159
. 160

. 161
. 164
. 165
. 166
. 166
. 167
. 167
. 168
. 168
. 169
. 170
. 170
. 170
. 172
. 172
. 172

. 173
. 173

Format 2 .

Format 3 .

Level-numbers . .

BLANK WHEN ZERO clause .

DATE FORMAT clause . .
Semantics of windowed date f1elds .
Restrictions on using date fields .

Combining the DATE FORMAT clause w1th
other clauses Lo
Group items that are date f1elds .
Language elements that treat date fields as
nondates .

Language elements that do not accept
windowed date fields as arguments .
Language elements that do not accept date
fields as arguments

EXTERNAL clause

GLOBAL clause

JUSTIFIED clause .

GROUP-USAGE clause .

OCCURS clause
Fixed-length tables
ASCENDING KEY and DESCENDING KEY
phrases
INDEXED BY phrase
Variable-length tables. . .
OCCURS DEPENDING ON clause .

PICTURE clause .

Symbols used in the PICTURE clause
P symbol . e
Currency symbol .
Character-string representation
Data categories and PICTURE rules .
Alphabetic items .o
Numeric items .
Examples of valid ranges
Numeric-edited items
Alphanumeric items .
Alphanumeric-edited items.
DBCS items .
National items .
National-edited items.
External floating-point items
PICTURE clause editing .
Simple insertion editing .
Special insertion editing .
Fixed insertion editing
Floating insertion editing .
Representing floating 1nsert10n ed1t1ng
Zero suppression and replacement editing.
Representing zero suppression

REDEFINES clause
REDEFINES clause consrcleratlons
REDEFINES clause examples .

Undefined results .

RENAMES clause .

. 174
. 174
. 174
. 176
. 176
. 177
. 178

. 178
. 179

. 179

. 180

. 180
. 181
. 181
. 182
. 182
. 184
. 184

. 185
. 187
. 187
. 188
. 190
. 191
. 195
. 196
. 196
. 197
. 197
. 197
. 198
. 198
. 199
. 199
. 200
. 200
. 201
. 202
. 203
. 204
. 205
. 205
. 206
. 206
. 207
. 207
. 208
. 210
. 210
. 212
. 212

143



SIGN clause .

SYNCHRONIZED clause
Slack bytes . .
Slack bytes within records .
Slack bytes between records

USAGE clause . .
Computational items .
DISPLAY phrase

Effect of CHAR(EBCDIC) compller optlon

DISPLAY-1 phrase.
FUNCTION-POINTER phrase
INDEX phrase . S
NATIONAL phrase ..
OBJECT REFERENCE phrase .
POINTER phrase . . .
PROCEDURE-POINTER phrase .
NATIVE phrase L.
VALUE clause .
Format 1 . .
Rules for literal Values
Format 2 . . oL
Rules for condltlon -name entrles .
Format 3 .

. 214
. 216
. 218
. 218
. 220
. 221
. 223
. 225

226

. 226
. 226
. 226
. 227
. 227
. 228
. 229
. 230
. 230
. 231
. 231
. 233
. 234
. 236

144 COBOL for Windows Version 7.5 Language Reference



Chapter 17. Data division overview

This overview describes the structure of the data division for programs, object
definitions, factory definitions, and methods. Each section in the data division has
a specific logical function within a COBOL program, object definition, factory
definition, or method and can be omitted when that logical function is not needed.
If included, the sections must be written in the order shown. The data division is
optional.

Program data division
The data division of a COBOL source program describes, in a structured
manner, all the data to be processed by the program.

Object data division
The object data division contains data description entries for instance object
data (instance data). Instance data is defined in the working-storage section
of the object paragraph of a class definition.

Factory data division
The factory data division contains data description entries for factory object
data (factory data). Factory data is defined in the working-storage section
of the factory paragraph of a class definition.

Method data division
A method data division contains data description entries for data accessible
within the method. A method data division can contain a local-storage
section or a working-storage section, or both. The term method data applies
to both. Method data in local-storage is dynamically allocated and
initialized on each invocation of the method; method data in
working-storage is static and persists across invocations of the method.

© Copyright IBM Corp. 1996, 2008 145



— Format: program and method data division

»>—DATA DIVISION.

v

y
4

FILE SECTION.—Y

v

file-description-entry record-description-entry

v
v

WORKING-STORAGE SECTION.—Y

i:record-description-entry
data-item-description-entry—

Yy
4

LOCAL-STORAGE SECTION.—Y

|:gecord-description-entry
ata-item-description-entry—

A\
v
A

record-description-entry

LINKAGE SECTION.— i:
data-item-description-entry—

— Format: object and factory data division

»>—DATA DIVISION.

A\
A

ecord-description-entry

WORKING-STORAGE SECTION.—
r
i:dat'a—it‘em—descrz’pt‘z'on—entry—

File section

The file section defines the structure of data files. The file section must begin with
the header FILE SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the file section. It provides

information about the physical structure and identification of a file, and
gives the record-names associated with that file. For the format and the

146 COBOL for Windows Version 7.5 Language Reference



clauses required in a file description entry, see Data division—file

description entries (Chapter 18, “Data division—file description entries,” on|
page 161).

record-description-entry
A set of data description entries (described in Data division—data
description entry (Chapter 19, “Data division—data description entry,” on|
page 173)) that describe the particular records contained within a particular
file.

A record in the file section must be described as an alphanumeric group
item, a national group item, or an elementary data item of class alphabetic,
alphanumeric, DBCS, national, or numeric.

More than one record description entry can be specified; each is an
alternative description of the same record storage area.

Data areas described in the file section are not available for processing unless the
file that contains the data area is open.

A method file section can define external files only. A single run-unit-level file
connector is shared by all programs and methods that contain a declaration of a
given external file.

Working-storage section

The working-storage section describes data records that are not part of data files
but are developed and processed by a program or method. It also describes data
items whose values are assigned in the source program or method and do not
change during execution of the object program.

The working-storage section must begin with the section header
WORKING-STORAGE SECTION, followed by a separator period.

Program working-storage
The working-storage section for programs (and methods) can also describe
external data records, which are shared by programs and methods
throughout the run unit. All clauses that are used in record descriptions in
the file section and also the VALUE and EXTERNAL clauses (which might
not be specified in record description entries in the file section) can be used
in record descriptions in the working-storage section.

Method working-storage
A single copy of the working-storage for a method is statically allocated on
the first invocation of the method and persists in a last-used state for the
duration of the run unit. The same copy is used whenever the method is
invoked regardless of which object instance the method is invoked upon.

If a VALUE clause is specified on a method working-storage data item, the
data item is initialized to the VALUE clause value on the first invocation.

If the EXTERNAL clause is specified on a data description entry in a
method working-storage section, a single copy of the storage for that data
item is allocated once for the duration of the run unit. That storage is
shared by all programs and methods in the run unit that contain a
definition for the external data item.

Object working-storage
The data described in the working-storage section of an object paragraph is

Chapter 17. Data division overview 147



object instance data, usually called instance data. A separate copy of
instance data is statically allocated for each object instance when the object
is instantiated. Instance data persists in a last-used state until the object
instance is freed by the Java runtime system.

Instance data can be initialized by VALUE clauses specified in data
declarations or by logic specified in an instance method.

Factory working-storage
The data described in the working-storage section of a factory paragraph is
factory data. A single copy of factory data is statically allocated when the
factory object for the class is created. Factory data persists in a last-used
state for the duration of the run unit.

Factory data can be initialized by VALUE clauses specified in data
declarations or by logic specified in a factory method.

The working-storage section contains record description entries and data
description entries for independent data items, called data item description entries.

record-description-entry
Data entries in the working-storage section that bear a definite hierarchic
relationship to one another must be grouped into records structured by
level number. See Data division—data description entry (Chapter 19, “Datal
[division—data description entry,” on page 173) for more information.

data-item-description-entry
Independent items in the working-storage section that bear no hierarchic
relationship to one another need not be grouped into records provided that
they do not need to be further subdivided. Instead, they are classified and
defined as independent elementary items. Each is defined in a separate
data-item description entry that begins with either the level number 77 or
01. See Data division—data description entry (Chapter 19, “Datal
(division—data description entry,” on page 173) for more information.

Local-storage section

The local-storage section defines storage that is allocated and freed on a
per-invocation basis. On each invocation, data items defined in the local-storage
section are reallocated. Each data item that has a VALUE clause is initialized to the
value specified in that clause.

For nested programs, data items defined in the local-storage section are allocated
upon each invocation of the containing outermost program. However, each data
item is reinitialized to the value specified in its VALUE clause each time the nested
program is invoked.

For methods, a separate copy of the data defined in local-storage is allocated and
initialized on each invocation of the method. The storage allocated for the data is

freed when the method returns.

Data items defined in the local-storage section cannot specify the EXTERNAL
clause.

The local-storage section must begin with the header LOCAL-STORAGE SECTION,
followed by a separator period.

148 COBOL for Windows Version 7.5 Language Reference



You can specify the local-storage section in recursive programs, in nonrecursive
programs, and in methods.

Method local-storage content is the same as program local-storage content except
that the GLOBAL clause has no effect (because methods cannot be nested).

Linkage section

The linkage section describes data made available from another program or
method.

record-description-entry
See [“Working-storage section” on page 147| for a description.

data-item-description-entry
See [“Working-storage section” on page 147| for a description.

Record description entries and data item description entries in the linkage section
provide names and descriptions, but storage within the program or method is not
reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the linkage section
with the following exceptions:

* You cannot specify the VALUE clause for items other than level-88 items.
* You cannot specify the EXTERNAL clause.

You can specify the GLOBAL clause in the linkage section. The GLOBAL clause
has no effect for methods, however.

Data units

Data is grouped into the following conceptual units:
* File data

* Program data

¢ Method data

* Factory data

¢ Instance data

File data

File data is contained in files. (See|”File section” on page 164.) A file is a collection
of data records that exist on some input-output device. A file can be considered as
a group of physical records; it can also be considered as a group of logical records.
The data division describes the relationship between physical and logical records.

A physical record is a unit of data that is treated as an entity when moved into or
out of storage. The size of a physical record is determined by the particular
input-output device on which it is stored. The size does not necessarily have a
direct relationship to the size or content of the logical information contained in the
file.

A logical record is a unit of data whose subdivisions have a logical relationship. A
logical record can itself be a physical record (that is, be contained completely

Chapter 17. Data division overview 149



within one physical unit of data); several logical records can be contained within
one physical record, or one logical record can extend across several physical
records.

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and names of the logical
records, labeling information, and so forth).

Record description entries describe the logical records in the file (including the
category and format of data within each field of the logical record), different values
the data might be assigned, and so forth.

After the relationship between physical and logical records has been established,
only logical records are made available to you. For this reason, a reference in this
information to “records” means logical records, unless the term “physical records”
is used.

Program data

Program data is created by a program instead of being read from a file.

The concept of logical records applies to program data as well as to file data.
Program data can thus be grouped into logical records, and be defined by a series
of record description entries. Items that need not be so grouped can be defined in
independent data description entries (called data item description entries).

Method data

Method data is defined in the data division of a method and is processed by the
procedural code in that method. Method data is organized into logical records and
independent data description entries in the same manner as program data.

Factory data

Factory data is defined in the data division in the factory paragraph of a class
definition and is processed by procedural code in the factory methods of that class.
Factory data is organized into logical records and independent data description
entries in the same manner as program data.

There is one factory object for a given class in a run unit, and therefore only one
instance of factory data in a run unit for that class.

Instance data

Instance data is defined in the data division in the object paragraph of a class
definition and is processed by procedural code in the instance methods of that
class. Instance data is organized into logical records and independent data
description entries in the same manner as program data.

There is one copy of instance data in each object instance of a given class. There
can be many object instances for a given class. Each has its own separate copy of
instance data.

Data relationships

The relationships among all data to be used in a program are defined in the data
division through a system of level indicators and level-numbers.

150 COBOL for Windows Version 7.5 Language Reference



A level indicator, with its descriptive entry, identifies each file in a program. Level
indicators represent the highest level of any data hierarchy with which they are
associated. FD is the file description level indicator and SD is the sort-merge file
description level indicator.

A level-number, with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose. Although they can be associated with (and subordinate
to) level indicators, they can also be used independently to describe internal data
or data common to two or more programs. (See [“Level-numbers” on page 174 for
level-number rules.)

Levels of data

After a record has been defined, it can be subdivided to provide more detailed
data references.

For example, in a customer file for a department store, one complete record could
contain all data that pertains to one customer. Subdivisions within that record
could be, for example, customer name, customer address, account number,
department number of sale, unit amount of sale, dollar amount of sale, previous
balance, and other pertinent information.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items. Thus a record can be made up of a series of elementary
items or can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items
can be combined into group items. Groups can also be combined into a more
inclusive group that contains one or more subgroups. Thus within one hierarchy of
data items, an elementary item can belong to more than one group item.

A system of level-numbers specifies the organization of elementary and group
items into records. Special level-numbers are also used to identify data items used
for special purposes.

Levels of data in a record description entry

Each group and elementary item in a record requires a separate entry, and each
must be assigned a level-number.

A level-number is a one-digit or two-digit integer between 01 and 49, or one of
three special level-numbers: 66, 77, or 88. The following level-numbers are used to
structure records:

01 This level-number specifies the record itself, and is the most inclusive
level-number possible. A level-01 entry can be either an alphanumeric
group item, a national group item, or an elementary item. The level
number must begin in Area A.

02 through 49
These level-numbers specify group and elementary items within a record.
They can begin in Area A or Area B. Less inclusive data items are assigned
higher (not necessarily consecutive) level-numbers in this series.

The relationship between level-numbers within a group item defines the hierarchy
of data within that group.

Chapter 17. Data division overview 151



A group item includes all group and elementary items that follow it until a
level-number less than or equal to the level-number of that group is encountered.

The following figure illustrates a group wherein all groups immediately
subordinate to the level-01 entry have the same level-number.

The COBOL record description

entry written as follows: is subdivided as indicated below:
01  RECORD-ENTRY. «— This entry includes
05 GROUP-1. «—— This entry includes—
10  SUBGROUP-1. +«—— This entry includes

15 ELEM-1 PIC...
15 ELEM-2 PIC...

10  SUBGROUP-2. «<—— This entry includes—

15 ELEM-3 PIC...
15  ELEM-4 PIC...

05  GROUP-2 <— This entry includes
15  SUBGROUP-3. «——This entry includes—

25 ELEM-5 PIC...
25 ELEM-6 PIC...

15 SUBGROUP-4 PIC... . This entry includes itself.

05 ELEM-7 PIC... . This entry includes itself.

The storage arrangement of the record description entry is illustrated below:

RECORD ENTRY
GROUP 1 GROUP 2 ——— ™
<—SUBGROUP—1—>|<—SUBGROUP—2—> <—SUBGROUP—3—>|

|ELEM-1 | ELEM-2 | ELEM-3 | ELEM-4 | ELEM-5 | ELEM-6 | SUBGROUP-4 | ELEM-7|

You can also define groups with subordinate items that have different
level-numbers for the same level in the hierarchy. For example, 05 EMPLOYEE-NAME
and 04 EMPLOYEE-ADDRESS in the following record description entry define the same
level in the hierarchy:
01  EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
04 EMPLOYEE-ADDRESS.
08 STREET PICTURE X(10).
08 CITY PICTURE X(10).

The following record description entry defines the same data hierarchy as the
preceding record description entry:
01  EMPLOYEE-RECORD.

05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).

152 COBOL for Windows Version 7.5 Language Reference



10 LAST-NAME PICTURE X(10).
05 EMPLOYEE-ADDRESS.

10 STREET PICTURE X(10).

10 CITY PICTURE X(10).

Elementary items can be specified at any level within the hierarchy.

Special level-numbers

Special level-numbers identify items that do not structure a record. The special
level-numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup
previously defined data items. (For details, see|"/RENAMES clause” on|
page 212.)

77 Identifies data item description entries that are independent

working-storage, local-storage, or linkage section items; they are not
subdivisions of other items and are not subdivided themselves. Level-77
items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular
value of a conditional variable. (For details, see [“VALUE clause” on page|
230.)

Level-77 and level-01 entries in the working-storage, local-storage, and linkage
sections that are referenced in a program or method must be given unique
data-names because level-77 and level-01 entries cannot be qualified. Subordinate
data-names that are referenced in the program or method must be either uniquely
defined, or made unique through qualification. Unreferenced data-names need not
be uniquely defined.

Indentation

Successive data description entries can begin in the same column as preceding
entries, or can be indented.

Indentation is useful for documentation but does not affect the action of the
compiler.

Classes and categories of group items

COBOL for Windows has two types of groups: alphanumeric groups and national
groups.

Groups that do not specify a GROUP-USAGE clause are alphanumeric groups. An
alphanumeric group has class and category alphanumeric and is treated as though
its usage were DISPLAY, regardless of the representation of the elementary data
items that are contained within the group. In many operations, such as moves and
compares, alphanumeric groups are treated as though they were elementary items
of category alphanumeric, except that no editing or conversion of data
representation takes place. In other operations, such as MOVE CORRESPONDING
and ADD CORRESPONDING, the subordinate data items are processed as
separate elementary items.

The content of an alphanumeric group is treated as though it were represented in
native single-byte characters when the CHAR(NATIVE) compiler option is used,
and as single-byte EBCDIC characters when the CHAR(EBCDIC) compiler option
is used.

Chapter 17. Data division overview 153



National groups are defined by a GROUP-USAGE clause with the NATIONAL
phrase at the group level. All subordinate data items must be explicitly or
implicitly described with usage NATIONAL, and subordinate groups must be
explicitly or implicitly defined with GROUP-USAGE NATIONAL.

Unless stated otherwise, a national group item is processed exactly as though it
were an elementary data item of usage national, class and category national,
described with PICTURE N(m), where m is the length of the group in national
character positions. Because national groups contain only national characters, data
is converted as necessary for moves and compares. The compiler ensures proper
truncation and padding. In other operations, such as MOVE CORRESPONDING
and ADD CORRESPONDING, the subordinate data items are processed as
separate elementary items. See ['GROUP-USAGE clause” on page 182|for details.

The table below summarizes the classes and categories of group items.

Table 7. Classes and categories of group items

USAGE of
elementary
Category of items within a | USAGE of a
Group description | Class of group |group group group
Without a Alphanumeric Alphanumeric Any Treated as
GROUP-USAGE (even though the DISPLAY
clause elementary items when usage is
in the group can relevant
have any
category)
With explicit or National National NATIONAL NATIONAL
implicit
GROUP-USAGE
clause

Classes and categories of data

Most data and all literals used in a COBOL program are divided into classes and
categories. Data classes are groupings of data categories. Data categories are
determined by the attributes of data description entries or function definitions, as
described in [“Category descriptions” on page 156.]

The following elementary data items do not have a class and category:
* Index data items

* Items described with USAGE POINTER, USAGE FUNCTION-POINTER, USAGE
PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

All other types of elementary data items have a class and category as shown in
Classes, categories, and usages of elementary data items (Table 8 on page 155).

A function references an elementary data item and belongs to the data class and
category associated with the type of the function, as shown in Classes and
categories of functions (Table 9 on page 155).

Literals have a class and category as shown in Classes and categories of literals
(Table 10 on page 155). Figurative constants (except NULL) have a class and

154 COBOL for Windows Version 7.5 Language Reference



category that depends on the literal or value represented by the figurative constant
in the context of its use. For details, see [“Figurative constants” on page 13

All group items have a class and category, even if the subordinate elementary
items belong to another class and category. For the classification of group items,

see [“Classes and categories of group items” on page 153]

Table 8. Class, category, and usage of elementary data items

Class Category Usage
Alphabetic Alphabetic DISPLAY
Alphanumeric Alphanumeric DISPLAY
Alphanumeric-edited DISPLAY
Numeric-edited DISPLAY
DBCS DBCS DISPLAY-1
National National NATIONAL
National-edited NATIONAL
Numeric-edited NATIONAL
Numeric Numeric DISPLAY (type zoned decimal)

NATIONAL (type national decimal)

PACKED-DECIMAL (type internal
decimal)

COMP-3 (type internal decimal)
BINARY

COMP

COMP-4

COMP-5

Internal floating-point COMP-1

COMP-2

External floating-point

DISPLAY
NATIONAL

Table 9. Classes and categories of functions

Function type

Class and category

Alphanumeric Alphanumeric
National National
Integer Numeric
Numeric Numeric

Table 10. Classes and categories of literals

Literal Class and category
Alphanumeric Alphanumeric
(including hexadecimal formats)

DBCS DBCS

National National

(including hexadecimal formats)

Chapter 17. Data division overview 155



Table 10. Classes and categories of literals (continued)

Literal Class and category

Numeric Numeric
(fixed-point and floating-point)

Category descriptions

The category of a data item is established by the attributes of its data description
entry (such as its PICTURE character-string or USAGE clause) or by its function
definition. The meaning of each category is given below.

Alphabetic

A data item is described as category alphabetic by its PICTURE character-string.
For PICTURE character-string details, see [ Alphabetic items” on page 197/

A data item of category alphabetic is referred to as an alphabetic data item.

Alphanumeric
Each of the following is a data item of category alphanumeric:

* An elementary data item described as alphanumeric by its PICTURE
character-string. For PICTURE character-string details, see [ Alphanumeric items’]

* An alphanumeric group item.

* An alphanumeric function.
* The following special registers:
— DEBUG-ITEM
— SHIFT-OUT
- SHIFT-IN
— SORT-CONTROL
— SORT-MESSAGE
- WHEN-COMPILED
— XML-EVENT
- XML-TEXT

Alphanumeric-edited

A data item is described as category alphanumeric-edited by its PICTURE
character-string. For PICTURE character-string details, see [“ Alphanumeric-edited)|
litems” on page 199

A data item of category alphanumeric-edited is referred to as an
alphanumeric-edited data item.

DBCS

A data item is described as category DBCS by its PICTURE character-string and
the NSYMBOL(DBCS) compiler option or by an explicit USAGE DISPLAY-1 clause.
For PICTURE character-string details, see ["DBCS items” on page 200]

A data item of category DBCS is referred to as a DBCS data item.

External floating-point
A data item is described as category external floating-point by its PICTURE
character-string. For PICTURE character-string details, see [“External floating-poin{

156 COBOL for Windows Version 7.5 Language Reference



litems” on page 202 An external floating-point data item can be described with
USAGE DISPLAY or USAGE NATIONAL.

When the usage is DISPLAY, the item is referred to as a display floating-point data
item.

When the usage is NATIONAL, the item is referred to as a national floating-point
data item.

An external floating-point data item is of class numeric and, unless specifically
excluded, is included in a reference to a numeric data item.

Internal floating-point
A data item is described as category internal floating-point by a USAGE clause
with the COMP-1 or COMP-2 phrase.

A data item of category internal floating-point is referred to as an internal
floating-point data item. An internal floating-point data item is of class numeric
and, unless specifically excluded, is included in a reference to a numeric data item.

National

Each of the following is a data item of category national:

e A data item that is described as category national by its PICTURE
character-string and the NSYMBOL(NATIONAL) compiler option or by an
explicit USAGE NATIONAL clause. For PICTURE character-string details, see
[“National items” on page 200

* A group item explicitly or implicitly described with a GROUP-USAGE
NATIONAL clause.

* A national function.
* The special register XML-NTEXT.

National-edited
A data item is described as category national-edited by its PICTURE
character-string. For PICTURE character-string details, see[“National-edited items”]

A data item of category national-edited is referred to as a national-edited data
item.

Numeric
Each of the following is a data item of category numeric:

* An elementary data item described as numeric by its PICTURE character-string
and not described with a BLANK WHEN ZERO clause. For PICTURE
character-string details, see [“Numeric items” on page 197 |

* An elementary data item described with one of the following usages:

— BINARY, COMPUTATIONAL, COMPUTATIONAL-4, COMPUTATIONAL-5,
COMP, COMP-4, or COMP-5

- PACKED-DECIMAL, COMPUTATIONAL-3, or COMP-3
* A special register of numeric type:
- LENGTH OF
LINAGE-COUNTER
RETURN-CODE
SORTCORE-SIZE

Chapter 17. Data division overview 157



— SORT-FILE-SIZE
— SORT-MODE-SIZE
— SORT-RETURN
- TALLY
- XML-CODE

* A numeric function.

* An integer function.

A data item of category numeric is referred to as a numeric data item.

Numeric-edited
Each of the following is a data item of category numeric-edited:

* A data item described as numeric-edited by its PICTURE character-string. For
PICTURE character-string details, see ["Numeric-edited items” on page 198

* A data item described as numeric by its PICTURE character-string and described
with a BLANK WHEN ZERO clause.

Alignment rules

The standard alignment rules for positioning data in an elementary item depend
on the category of a receiving item (that is, an item into which the data is moved;
see [“Elementary moves” on page 370).

Numeric
For numeric receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,
truncated or padded with zeros. (An assumed decimal point is one that
has logical meaning but that does not exist as an actual character in the
data.)

2. If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified
immediately to the right of the field. The data is then treated according
to the preceding rule.

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end except when editing causes replacement of
leading zeros.

Internal floating-point
A decimal point is assumed immediately to the left of the field. The data is
then aligned on the leftmost digit position that follows the decimal point,
with the exponent adjusted accordingly.

External floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.
Alphanumeric, alphanumeric-edited, alphabetic, DBCS
For these receiving items, the following rules apply:
1. The data is aligned at the leftmost character position, and (if necessary)
truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified as described in [“JUSTIFIED clause” on page 182]

National, national-edited
For these receiving items, the following rules apply:

158 COBOL for Windows Version 7.5 Language Reference



1. The data is aligned at the leftmost character position, and (if necessary)
truncated or padded with default Unicode spaces (NX'0020") at the
right. Truncation occurs at the boundary of a national character
position.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified as described in [“JUSTIFIED clause” on page 182)

Character-string and item size

For items described with a PICTURE clause, the size of an elementary item is
expressed in source code by the number of character positions described in the
PICTURE character-string and a SIGN clause (if applicable). Storage size, however,
is determined by the actual number of bytes the item occupies as determined by
the combination of its PICTURE character-string, SIGN IS SEPARATE clause (if
specified), and USAGE clause.

For items described with USAGE DISPLAY (categories alphabetic, alphanumeric,
alphanumeric-edited, numeric-edited, numeric, and external floating-point), 1 byte
of storage is reserved for each character position described by the item’s PICTURE
character-string and SIGN IS SEPARATE clause (if applicable).

For items described with USAGE DISPLAY-1 (category DBCS), 2 bytes of storage
are reserved for each character position described by the item’s PICTURE
character-string.

For items described with USAGE NATIONAL (categories national, national-edited,
numeric-edited, numeric, and external floating-point), 2 bytes of storage are
reserved for each character position described by the item’s PICTURE
character-string and SIGN IS SEPARATE clause (if specified).

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the
item; USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

Normally, when an arithmetic item is moved from a longer field into a shorter one,
the compiler truncates the data to the number of digits represented in the shorter
item’s PICTURE character-string by truncating leading digits. For example, if a
sending field with PICTURE 599999 that contains the value +12345 is moved to a
BINARY receiving field with PICTURE S99, the data is truncated to +45. For
additional information, see ["USAGE clause” on page 221

The TRUNC compiler option can affect the value of a binary numeric item. For
information about TRUNC, see the COBOL for Windows Programming Guide.

Signed data

There are two categories of algebraic signs used in COBOL: operational signs and
editing signs.

Operational signs

Operational signs are associated with signed numeric items, and indicate their
algebraic properties. The internal representation of an algebraic sign depends on
the item’s USAGE clause, its SIGN clause (if present), and the operating
environment. (For further details about the internal representation, see the COBOL

Chapter 17. Data division overview 159



for Windows Programming Guide.) Zero is considered a unique value regardless of
the operational sign. An unsigned field is always assumed to be either positive or
Zero.

Editing signs
Editing signs are associated with numeric-edited items. Editing signs are PICTURE
symbols that identify the sign of the item in edited output.

160 COBOL for Windows Version 7.5 Language Reference



Chapter 18. Data division—file description entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description (SD)
Entry for sort/merge files) represents the highest level of organization in the file
section. The order in which the optional clauses follow the FD or SD entry is not

important.

— Format 1: sequential files

»»—FD—file-name-1
LrJfEXTERNAL—I Lm_GLOBAL—l I—BLOCY integer-2-
IN IS I—CONTAINS—I I—integer-l—TO—l

CHARACT
RECORDS

EJ

I—RECORD integer-3 |

|—CONTAINSJ

I_ J I—LABEL RECOR —STANDARD———
CHARACTERS FOMITTED——
i RECORDS

]

I—MOD E—I I—I S—l

—l_—_l—integer-4—T0—znteger-5—L—_|—
CONTAINS CHARACTERS I—ARE—I | |
clause 1 t *
j ! I—DEPENDING—LO—J—data-name-]—l I—data-name-z—l
N
\\ —L—_l—Edata nameji DATA RECORD: ata name-4
literal-1
RECORDS:
l—LINAGE—L—_l—Edata namej—L—_|—| clause 2 'J I—RECORDINC ,..ode—l
IS integer-8 LINES

I—CODE-SET—L—J—athabet-name—l
IS

clause 1:

clause 2:

| VARYING
I
|—ISJ |—INJ I—SIZEJ LhM’lfinteger—EJ I—TO—integer—7J I—CHARACTERSJ
FROI

I | j
FOOTING data-name-6 Lm_WTOP
I—WITH—l I—AT—I I—integer—9 LINES AT

ata-name-7j—|
integer-10

Lm—WBOTTOMTata name- 8j—|
LINES integer-11

© Copyright IBM Corp. 1996, 2008

161




— Format 2: relative and indexed files

»»>—FD—file-name-1
LL—J—EXTERNALJ LL—J—GLOBALJ
IS IS

|—BLOCK |_ J |_ J integer-2 CHARACT%J
CONTAINS integer-1—T0 RECORDS

v

\

Yy

|—RECORD inte 3
ger-3
|—CONTAINSJ |—CHARACTERSJ

—L—_I—integer-4—TO—integer-5 |_ J
CONTAINS CHARACTERS
—| clause 1 i |_ J
DEPENDING—IiI—data-name-I
ON

y

|—LABEL RECORD STANDARDJJ
L |—I SJ |—OMITTED
RECORDS_I_—_|_
ARE

VALUE OF—Y-system-name-1 data-name-3
IS literal-1

A\
A

\

DATA RECORD Y _data-name-4
Lo
RECORDS
|:ARE:|

clause 1:

VARYING
|—ISJ |—INJ |—SIZEJ LL—M—I—integer-6J |—T0—integer-7J
FRO

|—CHARACTERSJ

162 COBOL for Windows Version 7.5 Language Reference



— Format 3: line-sequential files

»»—FD—file-name-1
LL—J—EXTERNALJ LL—J—GLOBALJ
IS IS

i |—RECORD inte 3 | ' X
ger-3
|—CONTAINSJ |—CHARACTERSJ

clause 1 i |_ J
DEPENDING data-name-1
|:ON:|

v

clause 1:

VARYING
|—ISJ |—INJ |—SIZEJ LL—M’I—integer-6J |—TO—integer-7J
FRO

|—CHARACTERSJ

Chapter 18. Data division—file description entries 163




— Format 4: sort/merge files

»»>—SD—file-name-1

I—RECORD—

—L—_l—integer-’
CONTAINS I—CHARACTERS—I

—L—_l—integer-4—T0—integer-5—L—_|—
CONTAINS CHARACTERS
~| clause 1 i

I—DEPENDING—L—_l—data-name—1—I
ON

|—BLOCK |_ _| |_ _| integer-2 CHARACTE—‘
CONTAINS integer-1—T0 RECORDS

DATA RECORD: Y data-name-4—
Lis]
RECORDS
I:ARE:|

I—LABEL RECORD—L——I— STANDARD——I
IS OMITTED——

RECORDS: l_ _| VALUE OF
ARE- L
Y—data-name-2

I—LINAGE ata—name-5_—,—L—_|—| clause 2 'J l—CODE-SET—L—_l—alphabel‘-name—I
IS integer-8 LINES IS

Yy system-name-]—L—_l—Edata-name— 3
IS l iteral—l—I

clause 1:

| VARYING |
I |
|—IsJ |—1NJ I—SIZEJ Lm—integerﬁJ |—To—integer-7J I—CHARACTERSJ
FRO

clause 2:

NG

| FOOTI data-name-6;|—| | TOP data-name—7j—|
|—WITHJ |—ATJ I—integer-g |—LINESJ |—ATJ —[

integer-10

| R I
BOTTOM ata- name-B:lJ
I—LINES—I I—AT—I integer-11

File section

The file section must contain a level-indicator for each input and output file:
* For all files except sort/merge files, the file section must contain an FD entry.
* For each sort or merge file, the file section must contain an SD entry.
file-name
Must follow the level indicator (FD or SD), and must be the same as that
specified in the associated SELECT clause. file-name must adhere to the

rules of formation for a user-defined word; at least one character must be
alphabetic. file-name must be unique within this program.

164 COBOL for Windows Version 7.5 Language Reference



One or more record description entries must follow file-name. When more
than one record description entry is specified, each entry implies a
redefinition of the same storage area.

The clauses that follow file-name are optional, and they can appear in any
order.

FD (formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a
separator period.

SD (format 4)
An SD entry must be written for each sort or merge file in the program.
The last clause in the SD entry must be immediately followed by a
separator period.

The following example illustrates the file section entries needed for a sort
or merge file:

SD  SORT-FILE.
01 SORT-RECORD PICTURE X(80).

A record in the file section must be described as an alphanumeric group item, a
national group item, or an elementary item of class alphabetic, alphanumeric,
DBCS, national, or numeric.

All the record description entries under the file description entry (FD) for an RSD
file must be described with the same number of bytes. The following example
illustrates the file section for an RSD file with level 01 records that are of a fixed
length:
FILE SECTION.
FD an-RSD-file . . . RECORD CONTAINS 80 CHARACTERS.
01 record-1 PIC X(80).
01 record-2.

02 PIC X(10).

02 PIC X(70).

EXTERNAL clause

The EXTERNAL clause specifies that a file connector is external, and permits
communication between two programs by the sharing of files. A file connector is
external if the storage associated with that file is associated with the run unit
rather than with any particular program within the run unit. An external file can
be referenced by any program in the run unit that describes the file. References to
an external file from different programs that use separate descriptions of the file
are always to the same file. In a run unit, there is only one representative of an
external file.

In the file section, the EXTERNAL clause can be specified only in file description
entries.

The records appearing in the file description entry need not have the same name in
corresponding external file description entries. In addition, the number of such
records need not be the same in corresponding file description entries.

Use of the EXTERNAL clause does not imply that the associated file-name is a

global name. See the COBOL for Windows Programming Guide for specific
information about the use of the EXTERNAL clause.

Chapter 18. Data division—file description entries 165



GLOBAL clause

The GLOBAL clause specifies that the file connector named by a file-name is a
global name. A global file-name is available to the program that declares it and to
every program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name. A record-name is global if the GLOBAL clause is specified in the
record description entry by which the record-name is declared or, in the case of
record description entries in the file section, if the GLOBAL clause is specified in
the file description entry for the file-name associated with the record description
entry. For details on using the GLOBAL clause, see the COBOL for Windows
Programming Guide.

Two programs in a run unit can reference global file connectors in the following
circumstances:

e An external file connector can be referenced from any program that describes
that file connector.

* If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program or in any program that directly or indirectly contains the
containing program.

BLOCK CONTAINS clause

The BLOCK CONTAINS clause is syntax checked but has no effect on the
execution of the program.

integer-1, integer-2
Must be nonzero unsigned integers. They specify:

CHARACTERS
Specifies the number of bytes required to store the physical record,
no matter what USAGE the data items have within the data record.

If only integer-2 is specified, it specifies the exact number of bytes
in the physical record. When integer-1 and integer-2 are both
specified, they represent the minimum and maximum number of
bytes in the physical record, respectively.

integer-1 and integer-2 must include any control bytes and padding
contained in the physical record. (Logical records do not include
padding.)

The CHARACTERS phrase is the default. CHARACTERS must be
specified when:

* The physical record contains padding.

* Logical records are grouped so that an inaccurate physical record
size could be implied. For example, suppose you describe a
variable-length record of 100 bytes, yet each time you write a
block of 4, one 50-byte record is written followed by three
100-byte records. If the RECORDS phrase were specified, the
compiler would calculate the block size as 420 bytes instead of
the actual size, 370 bytes. (This calculation includes block and
record descriptors.)

166 COBOL for Windows Version 7.5 Language Reference



RECORDS
Specifies the number of logical records contained in each physical
record.

The compiler assumes that the block size must provide for integer-2
records of maximum size, and provides any additional space
needed for control bytes.

RECORD clause

When the RECORD clause is used, the record size must be specified as the number
of bytes needed to store the record internally, regardless of the USAGE of the data
items contained within the record.

For example, if you have a record with 10 DBCS characters, the RECORD clause
should say RECORD CONTAINS 20 CHARACTERS. For a record with 10 national
characters, the RECORD clause should say the same, RECORD CONTAINS 20
CHARACTERS.

The size of a record is determined according to the rules for obtaining the size of a
group item. (See ['USAGE clause” on page 221| and [“SYNCHRONIZED clause” on|
page 216

When the RECORD clause is omitted, the compiler determines the record lengths
from the record descriptions. When one of the entries within a record description
contains an OCCURS DEPENDING ON clause, the compiler uses the maximum
value of the variable-length item to calculate the number of bytes needed to store
the record internally.

If the associated file connector is an external file connector, all file description
entries in the run unit that are associated with that file connector must specify the
same maximum number of bytes.

For an RSD file, the RECORD clause, if specified, must describe fixed-length
records.

The following sections describe the formats of the RECORD clause:

. fixed-length records

* [“Format 2” on page 168 |fixed-length or variable-length records

* [“Format 3” on page 168 |variable-length records

Format 1

Format 1 specifies the number of bytes for fixed-length records.

Format 1

»»>—RECORD integer-3 ><

|—CONTAINSJ |—CHARACTERSJ

Chapter 18. Data division—file description entries 167



integer-3
Must be an unsigned integer that specifies the number of bytes contained
in each record in the file.

The RECORD CONTAINS 0 characters clause is syntax checked, but has no
effect on the execution of the program.

Do not specify the RECORD CONTAINS 0 clause for an SD entry.

Format 2

Format 2 specifies the number of bytes for either fixed-length or variable-length
records. Fixed-length records are obtained when all 01 record description entry
lengths are the same. The format-2 RECORD CONTAINS clause is never required,
because the minimum and maximum record lengths are determined from the
record description entries.

Format 2

»»—RECORD integer-4—T0—integer-5

|—CONT/-\INS—| |—CHARACTERS—|

integer-4, integer-5
Must be unsigned integers. integer-4 specifies the size of the smallest data
record, and integer-5 specifies the size of the largest data record.

Format 3

Format 3 is used to specify variable-length records.

— Format 3

»»—RECORD

VARYING >
|—IS—| |—IN—| I—SIZE—I Lm—integer-é—l
FROM

" Cro—tnteger-] L L T J
— ger-7 CHARACTERS DEPENDING data-name-1

ON

integer-6
Specifies the minimum number of bytes to be contained in any record of
the file. If integer-6 is not specified, the minimum number of bytes to be
contained in any record of the file is equal to the least number of bytes
described for a record in that file.

integer-7
Specifies the maximum number of bytes in any record of the file. If
integer-7 is not specified, the maximum number of bytes to be contained in
any record of the file is equal to the greatest number of bytes described for
a record in that file.

168 COBOL for Windows Version 7.5 Language Reference



The number of bytes associated with a record description is determined by the

sum of the number of bytes in all elementary data items (excluding redefinitions

and renamings), plus any implicit FILLER due to synchronization. If a table is

specified:

¢ The minimum number of table elements described in the record is used in the
summation above to determine the minimum number of bytes associated with
the record description.

¢ The maximum number of table elements described in the record is used in the
summation above to determine the maximum number of bytes associated with
the record description.

If data-name-1 is specified:
* data-name-1 must be an elementary unsigned integer.
* data-name-1 cannot be a windowed date field.

* The number of bytes in the record must be placed into the data item referenced
by data-name-1 before any RELEASE, REWRITE, or WRITE statement is executed
for the file.

e The execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement
or the unsuccessful execution of a READ or RETURN statement does not alter
the content of the data item referenced by data-name-1.

e After the successful execution of a READ or RETURN statement for the file, the
contents of the data item referenced by data-name-1 indicate the number of bytes
in the record just read.

During the execution of a RELEASE, REWRITE, or WRITE statement, the number

of bytes in the record is determined by the following conditions:

e If data-name-1 is specified, by the content of the data item referenced by
data-name-1

* If data-name-1 is not specified and the record does not contain a variable
occurrence data item, by the number of bytes positions in the record

s If data-name-1 is not specified and the record contains a variable occurrence data
item, by the sum of the fixed position and that portion of the table described by
the number of occurrences at the time of execution of the output statement

During the execution of a READ ... INTO or RETURN ... INTO statement, the

number of bytes in the current record that participate as the sending data items in

the implicit MOVE statement is determined by the following conditions:

o If data-name-1 is specified, by the content of the data item referenced by
data-name-1

s If data-name-1 is not specified, by the value that would have been moved into
the data item referenced by data-name-1 had data-name-1 been specified

LABEL RECORDS clause

The LABEL RECORDS clause is syntax checked, but has no effect on the execution
of the program. A warning message is issued if you use any of the following
language elements:

¢ LABEL RECORD IS data-name
e USE ... AFTER ... LABEL PROCEDURE
* GO TO MORE-LABELS

Chapter 18. Data division—file description entries 169



The LABEL RECORDS clause indicates the presence or absence of labels. If it is not
specified for a file, label records for that file must conform to the system label
specifications.

STANDARD
Labels conforming to system specifications exist for this file.

STANDARD is permitted for mass storage devices and tape devices.

OMITTED
No labels exist for this file.

OMITTED is permitted for tape devices.

data-name-2
User labels are present in addition to standard labels. data-name-2 specifies
the name of a user label record. data-name-2 must appear as the subject of a
record description entry associated with the file.

A LABEL RECORDS clause under an SD is syntax checked, but has no effect on
the execution of the program.

VALUE OF clause

The VALUE OF clause describes an item in the label records associated with the
file.

data-name-3
Should be qualified when necessary, but cannot be subscripted. It must be
described in the working-storage section. It cannot be described with the
USAGE IS INDEX clause.

literal-1
Can be numeric or alphanumeric, or a figurative constant of category
numeric or alphanumeric. Cannot be a floating-point literal.

The VALUE OF clause is syntax checked, but has no effect on the execution of the
program.

DATA RECORDS clause

The DATA RECORDS clause is syntax checked but serves only as documentation
for the names of data records associated with the file.

data-name-4

The names of record description entries associated with the file.

The data-name need not have an associated 01 level number record description
with the same name.

LINAGE clause

The LINAGE clause specifies the depth of a logical page in number of lines.
Optionally, it also specifies the line number at which the footing area begins and
the top and bottom margins of the logical page. (The logical page and the physical
page cannot be the same size.)

The LINAGE clause is effective for sequential files opened as OUTPUT or
EXTEND, except that the clause cannot be specified for RSD files.

170 COBOL for Windows Version 7.5 Language Reference



All integers must be unsigned. All data-names must be described as unsigned
integer data items.

data-name-5, integer-8
The number of lines that can be written or spaced on this logical page. The
area of the page that these lines represent is called the page body. The value
must be greater than zero.

WITH FOOTING AT
integer-9 or the value of the data item in data-name-6 specifies the first line
number of the footing area within the page body. The footing line number
must be greater than zero, and not greater than the last line of the page
body. The footing area extends between those two lines.

LINES AT TOP
integer-10 or the value of the data item in data-name-7 specifies the number
of lines in the top margin of the logical page. The value can be zero.

LINES AT BOTTOM
integer-11 or the value of the data item in data-name-8 specifies the number
of lines in the bottom margin of the logical page. The value can be zero.

The following figure illustrates the use of each phrase of the LINAGE clause.

)
JLINES AT TOP integer-10 (top|margin)

)

Togical
page body page depth

WITH FOOTING integer-9

footing area
LINAGE integer-8

)
) LINES AT BOTTOM integer-11 (bottom|margin)
)

The logical page size specified in the LINAGE clause is the sum of all values
specified in each phrase except the FOOTING phrase. If the LINES AT TOP phrase
is omitted, the assumed value for the top margin is zero. Similarly, if the LINES AT
BOTTOM phrase is omitted, the assumed value for the bottom margin is zero.
Each logical page immediately follows the preceding logical page, with no
additional spacing provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page
body (integer-8 or data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,
integer-9, integer-10, and integer-11, if specified, are used to determine the page
body, first footing line, top margin, and bottom margin of the logical page for this
file. (See the figure above.) These values are then used for all logical pages printed
for this file during a given execution of the program.

Chapter 18. Data division—file description entries 171



At the time an OPEN statement with the OUTPUT phrase is executed for the file,
data-name-5, data-name-6, data-name-7, and data-name-8 determine the page body,
first footing line, top margin, and bottom margin for the first logical page only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed
or a page overflow condition occurs, the values of data-name-5, data-name-6,
data-name-7, and data-name-8 if specified, are used to determine the page body, first
footing line, top margin, and bottom margin for the next logical page.

If an external file connector is associated with this file description entry, all file
description entries in the run unit that are associated with this file connector must
have:

* A LINAGE clause, if any file description entry has a LINAGE clause

* The same corresponding values for integer-8, integer-9, integer-10, and integer-11,
if specified

¢ The same corresponding external data items referenced by data-name-5,
data-name-6, data-name-7, and data-name-8

See [“ADVANCING phrase” on page 450 for the behavior of carriage control
characters in external files.

A LINAGE clause under an SD is syntax checked, but has no effect on the
execution of the program.

LINAGE-COUNTER special register

For information about the LINAGE-COUNTER special register, see
['LINAGE-COUNTER” on page 20,

RECORDING MODE clause

The RECORDING MODE clause for record sequential files is treated as follows:

F Record descriptions are validated as fixed. Do not specify RECORDING
MODE F if the record descriptions are variable. This is the only valid value
for RSD files.

v Variable-length record format is assumed (even if the record descriptions
are fixed).

U Syntax checked, but has no effect on the execution of the program.

S Treated the same as V.

CODE-SET clause

The CODE-SET clause is syntax checked, but has no effect on the execution of the
program.

172 COBOL for Windows Version 7.5 Language Reference



Chapter 19. Data division—data description entry

A data description entry specifies the characteristics of a data item. In the sections
that follow, sets of data description entries are called record description entries. The
term data description entry refers to data and record description entries.

Data description entries that define independent data items do not make up a
record. These entries are known as data item description entries.

Data description entries have three general formats, which are described in the
following sections:

e |“Format 1"|

* |“Format 2” on page 174

* |“Format 3” on page 174]

All data description entries must end with a separator period.

Format 1

Format 1 is used for data description entries in all data division sections.

— Format 1

v

data-name-1— |—redefines-clause—|

»»>—level-number ii
FILLER

|—b lank-when-zero-cl ause—| |—ex ternal-cl ause—| |—gZobaZ-cZause—|

|—group-usage-clause—I |—justified-clause—| |—occurs-clause—I

Y

|—pictur‘e-clauseJ |—sz’gn-cZauseJ |—synchronized-clauseJ

\
v
A

|—usage—clause—| |—vaZue—clause—| l—date—for‘mat—clause—l

The clauses can be written in any order, with two exceptions:

* data-name-1 or FILLER, if specified, must immediately follow the level-number.

* When the REDEFINES clause is specified, it must immediately follow
data-name-1 or FILLER, if either is specified. If data-name-1 or FILLER is not
specified, the REDEFINES clause must immediately follow the level-number.

The level-number in format 1 can be any number in the range 01-49, or 77.

A space, a comma, or a semicolon must separate clauses.

© Copyright IBM Corp. 1996, 2008 173



Format 2

Format 2 regroups previously defined items.

Format 2

»>—66—data-name-1—renames-clause. »><

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,
level-77, or level-88 entry.

All level-66 entries associated with one record must immediately follow the last
data description entry in that record.

See ["RENAMES clause” on page 212 for further details.

Format 3
Format 3 describes condition-names.
Format 3
»»—88—condition-name-1—value-clause. ><
condition-name-1
A user-specified name that associates a value, a set of values, or a range of
values with a conditional variable.
Level-88 entries must immediately follow the data description entry for the
conditional variable with which the condition-names are associated.
Format 3 can be used to describe elementary items, national group items, or
alphanumeric group items. Additional information about condition-name entries
can be found under ["VALUE clause” on page 230| and [Condition-name condition”]
Level-numbers

The level-number specifies the hierarchy of data within a record, and identifies
special-purpose data entries. A level-number begins a data description entry, a
renamed or redefined item, or a condition-name entry. A level-number has an
integer value between 1 and 49, inclusive, or one of the special level-number
values 66, 77, or 88.

174 COBOL for Windows Version 7.5 Language Reference



— Format

data-name-1—

»>—Ilevel-number ii ><
FILLER

level-number
01 and 77 must begin in Area A and be followed either by a separator
period or by a space followed by its associated data-name, FILLER, or
appropriate data description clause.

Level numbers 02 through 49 can begin in Areas A or B and must be
followed by a space or a separator period.

Level numbers 66 and 88 can begin in Areas A or B and must be followed
by a space.

Single-digit level-numbers 1 through 9 can be substituted for
level-numbers 01 through 09.

Successive data description entries can start in the same column as the first
entry or can be indented according to the level-number. Indentation does
not affect the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any
number of spaces to the right of Area A. The extent of indentation to the
right is limited only by the width of Area B.

For more information, see|“Levels of data” on page 151

data-name-1
Explicitly identifies the data being described.

data-name-1, if specified, identifies a data item used in the program.
data-name-1 must be the first word following the level-number.

The data item can be changed during program execution.

data-name-1 must be specified for level-66 and level-88 items. It must also
be specified for any entry containing the GLOBAL or EXTERNAL clause,
and for record description entries associated with file description entries

that have the GLOBAL or EXTERNAL clauses.

FILLER
A data item that is not explicitly referred to in a program. The keyword
FILLER is optional. If specified, FILLER must be the first word following
the level-number.

The keyword FILLER can be used with a conditional variable if explicit
reference is never made to the conditional variable but only to values that
it can assume. FILLER cannot be used with a condition-name.

In a MOVE CORRESPONDING statement or in an ADD
CORRESPONDING or SUBTRACT CORRESPONDING statement, FILLER
items are ignored. In an INITIALIZE statement, elementary FILLER items
are ignored.

If data-name-1 or the FILLER clause is omitted, the data item being described is
treated as though FILLER had been specified.

Chapter 19. Data division—data description entry 175



BLANK WHEN ZERO clause

The BLANK WHEN ZERO clause specifies that an item contains only spaces when
its value is zero.

— Format

»»>—BLANK

ZERO <
|—WH EN—| i:ZEROSt‘
S

ZEROE

The BLANK WHEN ZERO clause may be specified only for an elementary item
described by its picture character string as category numeric-edited or numeric,
without the picture symbol S or *. These items must be described, either implicitly
or explicitly, as USAGE DISPLAY or USAGE NATIONAL.

A BLANK WHEN ZERO clause that is specified for an item defined as numeric by
it picture character string defines the item as category numeric-edited.

The BLANK WHEN ZERO clause must not be specified for date fields.

DATE FORMAT clause

The DATE FORMAT clause specifies that a data item is a windowed or expanded
date field:

Windowed date fields
Contain a windowed (two-digit) year, specified by a DATE FORMAT
clause that contains YY.

Expanded date fields
Contain an expanded (four-digit) year, specified by a DATE FORMAT
clause that contains YYYY.

If the NODATEPROC compiler option is in effect, the DATE FORMAT clause is
syntax checked but has no effect on the execution of the program. NODATEPROC
disables date processing. The rules and restrictions described in this reference for
the DATE FORMAT clause and date fields apply only if the DATEPROC compiler
option is in effect.

The DATE FORMAT clause must not be specified for a data item described with
USAGE NATIONAL.

Format

»»—DATE FORMAT—m—date-pattern
IS

A\
A

date-pattern is a character string, such as YYXXXX, that represents a windowed or
expanded year optionally followed or preceded by one to four characters

176 COBOL for Windows Version 7.5 Language Reference



representing other parts of a date such as the month and day:

Date-pattern string Specifies that the data item contains

YY A windowed (two-digit) year

YYYY An expanded (four-digit) year

X A single character; for example, a digit representing a semester
or quarter (1-4)

XX Two characters; for example, digits representing a month
(01-12)

XXX Three characters; for example, digits representing a day of the
year (001-366)

XXXX Four characters; for example, two digits representing a month

(01-12) and two digits representing a day of the month (01-31)

For an introduction to date fields and related terms, see |Chapter 10, “Millennium|
[Language Extensions and date fields,” on page 73| For details on using date fields
in applications, see COBOL for Windows Programming Guide.

Semantics of windowed date fields

Windowed date fields undergo automatic expansion relative to the century
window when they are used as operands in arithmetic expressions or arithmetic
statements. However, the result of incrementing or decrementing a windowed date
is still treated as a windowed date for further computation, comparison, and
storing.

When used in the following situations, windowed date fields are treated as if they
were converted to expanded date format:

* Operands in subtractions in which the other operand is an expanded date
* Operands in relation conditions
* Sending fields in arithmetic or MOVE statements

The details of the conversion to expanded date format depend on whether the
windowed date field is numeric or alphanumeric.

Given a century window starting year of 19nn, the year part (yy) of a numeric
windowed date field is treated as if it were expanded as follows:

 If yy is less than nn, then add 2000 to yy.
 If yy is equal to or greater than nn, then add 1900 to yy.

For signed numeric windowed date fields, this means that there can be two
representations of some years. For instance, windowed year values 99 and -01 are
both treated as 1999, since 1900 + 99 = 2000 + -01.

Alphanumeric windowed date fields are treated in a similar manner, but use a
prefix of 19 or 20 instead of adding 1900 or 2000.

For example, when used as an operand of a relation condition, a windowed date
field defined by:

01 DATE-FIELD DATE FORMAT YYXXXX PICTURE 9(6)
VALUE IS 450101.
is treated as if it were an expanded date field with a value of:

* 19450101, if the century window starting year is 1945 or earlier

Chapter 19. Data division—data description entry 177



e 20450101, if the century window starting year is later than 1945

Restrictions on using date fields
The following sections describe restrictions on using date fields in these contexts:
* DATE FORMAT clauses combined with other clauses
* Group items consisting only of a date field
* Language elements that treat date fields as nondates

* Language elements that do not accept date fields as arguments

For restrictions on using date fields in other contexts, see:
» |“Arithmetic with date fields” on page 251

+ [“Comparison of date fields” on page 268

+ |“ADD statement” on page 300)

* |"SUBTRACT statement” on page 437

« ["MOVE statement” on page 369

Combining the DATE FORMAT clause with other clauses
The following phrases are the only phrases of the USAGE clause that can be
combined with the DATE FORMAT clause:

* BINARY

« COMPUTATIONAL'
* COMPUTATIONAL-3
* COMPUTATIONAL-4
* DISPLAY

* PACKED-DECIMAL

'USAGE COMPUTATIONAL cannot be combined with the DATE FORMAT clause
if the TRUNC(BIN) compiler option is in effect.

The PICTURE character-string must specify the same number of characters or
digits as the DATE FORMAT clause. For alphanumeric date fields, the only
PICTURE character-string symbols allowed are A, 9, and X, with at least one X. For
numeric date fields, the only PICTURE character-string symbols allowed are 9 and
S.

The following clauses are not allowed for a data item defined with DATE
FORMAT:

* BLANK WHEN ZERO
» JUSTIFIED
* SEPARATE CHARACTER phrase of the SIGN clause

The EXTERNAL clause is not allowed for a windowed date field or a group item
that contains a windowed date field subordinate item.

Some restrictions apply when combining the following clauses with DATE
FORMAT:

* |"REDEFINES clause” on page 208
* ["VALUE clause” on page 23a

178 COBOL for Windows Version 7.5 Language Reference



Group items that are date fields
If a group item is defined with a DATE FORMAT clause, then the following
restrictions apply:

The elementary items in the group must all be USAGE DISPLAY.

The length of the group item must be the same number of characters as the
date-pattern in the DATE FORMAT clause.

If the group consists solely of a date field with USAGE DISPLAY, and both the
group and the single subordinate item have DATE FORMAT clauses, then the
DATE FORMAT clauses must be identical.

If the group item contains subordinate items that subdivide the group, then the
following restrictions apply:

— If a named (not FILLER) subordinate item consists of exactly the year part of
the group item date field and has a DATE FORMAT clause, then the DATE
FORMAT clause must be YY or YYYY with the same number of year
characters as the group item.

— If the group item is a Gregorian date with a DATE FORMAT clause of
YYXXXX, YYYYXXXX, XXXXYY, or XXXXYYYY, and a named subordinate
date data item consists of the year and month part of the Gregorian date, then
its DATE FORMAT clause must be YYXX, YYYYXX, XXYY, or XXYYYY,
respectively (or, for a group date format of YYYYXXXX, a subordinate date
format of YYXX as described below).

- A windowed date field can be subordinate to an expanded date field group
item if the subordinate item starts two characters after the group item, neither
date is in year-last format, and the date format of the subordinate item either
has no Xs or has the same number of Xs following the Ys as the group item,
or is YYXX under a group date format of YYYYXXXX.

— The only subordinate items that can have a DATE FORMAT clause are those
that define the year part of the group item, the windowed part of an
expanded date field group item, or the year and month part of a Gregorian
date group item, as discussed in the above restrictions.

For example, the following defines a valid group item:

01 YYMMDD DATE FORMAT YYXXXX.
02 YYMM  DATE FORMAT YYXX.
03 YY DATE FORMAT YY PICTURE 99.
03 PICTURE 99.
02 DD PICTURE 99.

Language elements that treat date fields as nondates

If date fields are used in the following language elements, they are treated as
nondates. That is, the DATE FORMAT is ignored, and the content of the date data
item is used without undergoing automatic expansion.

In the environment division file-control paragraph:
— SELECT ... ASSIGN USING data-name

— SELECT ... PASSWORD IS data-name

— SELECT ... FILE STATUS IS data-name

In data division entries:

— LABEL RECORD IS data-name

— LABEL RECORDS ARE data-name

— LINAGE IS data-name FOOTING data-name TOP data-name BOTTOM
data-name

In class conditions
In sign conditions

Chapter 19. Data division—data description entry ~ 179



e In DISPLAY statements

Language elements that do not accept windowed date fields as
arguments
Windowed date fields cannot be used as:

* A data-name in the following formats of the environment division file-control
paragraph:
— SELECT ... RECORD KEY IS
— SELECT ... ALTERNATE RECORD KEY IS
— SELECT ... RELATIVE KEY IS

* A data-name in the RECORD IS VARYING DEPENDING ON clause of a data
division file description (FD) or sort description (SD) entry

* The object of an OCCURS DEPENDING ON clause of a data division data
definition entry

* The key in an ASCENDING KEY or DESCENDING KEY phrase of an OCCURS
clause of a data division data definition entry

* Any data-name or identifier in the following statements:
- CANCEL
- GO TO ... DEPENDING ON
- INSPECT
- SET
- SORT
- STRING
— UNSTRING
e In the CALL statement, as the identifier containing the program-name

* In the INVOKE statement, as the identifier specifying the object on which the
method is invoked, or the identifier containing the method name

* Identifiers in the TIMES and VARYING phrases of the PERFORM statement
(windowed date fields are allowed in the PERFORM conditions)

* An identifier in the VARYING phrase of a serial (format-1) SEARCH statement,
or any identifier in a binary (format-2) SEARCH statement (windowed date
fields are allowed in the SEARCH conditions)

* An identifier in the ADVANCING phrase of the WRITE statement

* Arguments to intrinsic functions, except the UNDATE intrinsic function

Windowed date fields cannot be used as ascending or descending keys in MERGE
or SORT statements.

Language elements that do not accept date fields as arguments
Neither windowed date fields nor expanded date fields can be used:

* In the DIVIDE statement, except as an identifier in the GIVING or REMAINDER
clause

e In the MULTIPLY statement, except as an identifier in the GIVING clause

(Date fields cannot be used as operands in division or multiplication.)

180 COBOL for Windows Version 7.5 Language Reference



EXTERNAL clause

The EXTERNAL clause specifies that the storage associated with a data item is
associated with the run unit rather than with any particular program or method
within the run unit. An external data item can be referenced by any program or
method in the run unit that describes the data item. References to an external data
item from different programs or methods using separate descriptions of the data
item are always to the same data item. In a run unit, there is only one
representative of an external data item.

The EXTERNAL clause can be specified only on data description entries whose
level-number is 01. It can be specified only on data description entries that are in
the working-storage section of a program or method. It cannot be specified in
linkage section or file section data description entries. Any data item described by
a data description entry subordinate to an entry that describes an external record
also attains the external attribute. Indexes in an external data record do not possess
the external attribute.

The data contained in the record named by the data-name clause is external and
can be accessed and processed by any program or method in the run unit that
describes and, optionally, redefines it. This data is subject to the following rules:

* If two or more programs or methods within a run unit describe the same
external data record, each record-name of the associated record description
entries must be the same, and the records must define the same number of
bytes. However, a program or method that describes an external record can
contain a data description entry including the REDEFINES clause that redefines
the complete external record, and this complete redefinition need not occur
identically in other programs or methods in the run unit.

* Use of the EXTERNAL clause does not imply that the associated data-name is a
global name.

GLOBAL clause

The GLOBAL clause specifies that a data-name is available to every program
contained within the program that declares it, as long as the contained program
does not itself have a declaration for that name. All data-names subordinate to or
condition-names or indexes associated with a global name are global names.

A data-name is global if the GLOBAL clause is specified either in the data
description entry by which the data-name is declared or in another entry to which
that data description entry is subordinate. The GLOBAL clause can be specified in
the working-storage section, the file section, the linkage section, and the
local-storage section, but only in data description entries whose level-number is 01.

In the same data division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program that
describes a global name can reference that name without describing it again.

Two programs in a run unit can reference common data in the following
circumstances:

¢ The data content of an external data record can be referenced from any program
that describes the data record as external.

Chapter 19. Data division—data description entry ~ 181



 If a program is contained within another program, both programs can refer to
data that possesses the global attribute either in the containing program or in
any program that directly or indirectly contains the containing program.

JUSTIFIED clause

The JUSTIFIED clause overrides standard positioning rules for receiving items of
category alphabetic, alphanumeric, DBCS, or national.

Format

v
A

IFIED

JUST
JUST4 |—RIGHT—|

You can specify the JUSTIFIED clause only at the elementary level. JUST is an
abbreviation for JUSTIFIED, and has the same meaning.

You cannot specify the JUSTIFIED clause:

* For data items of category numeric, numeric-edited, alphanumeric-edited, or
national-edited

* For edited DBCS items

* For index data items

e For items described as USAGE FUNCTION-POINTER, USAGE POINTER,
USAGE PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

* For external floating-point or internal floating-point items

* For date fields

* With level-66 (RENAMES) and level-88 (condition-name) entries

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at
the rightmost character position in the receiving item. Also:

¢ If the sending item is larger than the receiving item, the leftmost character
positions are truncated.

¢ If the sending item is smaller than the receiving item, the unused character
positions at the left are filled with spaces. For a DBCS item, each unused
position is filled with a DBCS space; for an item described with usage
NATIONAL, each unused position is filled with the default Unicode space
(NX’0020"); otherwise, each unused position is filled with an alphanumeric
space.

If you omit the JUSTIFIED clause, the rules for standard alignment are followed
(see [“Alignment rules” on page 158).

The JUSTIFIED clause does not affect initial settings as determined by the VALUE
clause.

GROUP-USAGE clause

A GROUP-USAGE clause with the NATIONAL phrase specifies that the group
item defined by the entry is a national group item. A national group item contains
national characters in all subordinate data items and subordinate group items.

182 COBOL for Windows Version 7.5 Language Reference



Format

»»—GROUP-USAGE NATIONAL >
15

When GROUP-USAGE NATIONAL is specified:

* The subject of the entry is a national group item. The class and category of a
national group are national.

* A USAGE clause must not be specified for the subject of the entry. A USAGE
NATIONAL clause is implied.

* A USAGE NATIONAL clause is implied for any subordinate elementary data
items that are not described with a USAGE NATIONAL clause.

 All subordinate elementary data items must be explicitly or implicitly described
with USAGE NATIONAL.

* Any signed numeric data items must be described with the SIGN IS SEPARATE
clause.

* A GROUP-USAGE NATIONAL clause is implied for any subordinate group
items that are not described with a GROUP-USAGE NATIONAL clause.

* All subordinate group items must be explicitly or implicitly described with a
GROUP-USAGE NATIONAL clause.

* The JUSTIFIED clause must not be specified.

Unless stated otherwise, a national group item is processed as though it were an
elementary data item of usage national, class and category national, described with
PICTURE N(m), where m is the length of the group in national character positions.

Usage note: When you use national groups, the compiler can ensure proper
truncation and padding of group items for statements such as MOVE and
INSPECT. Groups defined without a GROUP-USAGE NATIONAL clause are
alphanumeric groups. The content of alphanumeric groups, including any national
characters, is treated as alphanumeric data, possibly leading to invalid truncation
or mishandling of national character data.

The table below summarizes the cases where a national group item is processed as
a group item.

Table 11. Where national group items are processed as groups

Language feature Processing of national group items

Name qualification The name of a national group item can be used to qualify the
names of elementary data items and subordinate group items
in the national group. The rules of qualification for a national
group are the same as the rules of qualification for an
alphanumeric group.

RENAMES clause The rules for a national group item specified in the
THROUGH phrase are the same as the rules for an
alphanumeric group item specified in the THROUGH phrase.
The result is an alphanumeric group item.

Chapter 19. Data division—data description entry ~ 183



Table 11. Where national group items are processed as groups (continued)

Language feature

Processing of national group items

CORRESPONDING phrase

A national group item is processed as a group in accordance
with the rules of the CORRESPONDING phrase. Elementary
data items within a national group are processed the same as
they would be if defined within an alphanumeric group.

INITIALIZE statement

A national group item is processed as a group in accordance
with the rules of the INITIALIZE statement. Elementary items
within the national group are initialized the same as they
would be if defined within an alphanumeric group.

XML GENERATE statement

A national group item specified in the FROM phrase is
processed as a group in accordance with the rules of the XML
GENERATE statement. Elementary items within the national
group are processed the same as they would be if defined
within an alphanumeric group.

OCCURS clause

The data division clauses used for table handling are the OCCURS clause and the
USAGE IS INDEX clause. For the USAGE IS INDEX description, see|"USAGE

fclause” on page 221

The OCCURS clause specifies tables whose elements can be referred to by indexing
or subscripting. It also eliminates the need for separate entries for repeated data

items.

Formats for the OCCURS clause include fixed-length tables and variable-length

tables.

The subject of an OCCURS clause is the data-name of the data item that contains
the OCCURS clause. Except for the OCCURS clause itself, data description clauses
used with the subject apply to each occurrence of the item described.

Whenever the subject of an OCCURS clause or any data-item subordinate to it is
referenced, it must be subscripted or indexed, with the following exceptions:

* When the subject of the OCCURS clause is used as the subject of a SEARCH

statement

* When the subject or a subordinate data item is the object of the
ASCENDING/DESCENDING KEY phrase

* When the subordinate data item is the object of the REDEFINES clause

When subscripted or indexed, the subject refers to one occurrence within the table.
When not subscripted or indexed, the subject references the entire table.

The OCCURS clause cannot be specified in a data description entry that:
* Has a level number of 01, 66, 77, or 88.

* Describes a redefined data item. (However, a redefined item can be subordinate
to an item that contains an OCCURS clause.) See |["REDEFINES clause” on page

Fixed-length tables

Fixed-length tables are specified using the OCCURS clause. Because seven
subscripts or indexes are allowed, six nested levels and one outermost level of the

184 COBOL for Windows Version 7.5 Language Reference




format-1 OCCURS clause are allowed. The format-1 OCCURS clause can be
specified as subordinate to the OCCURS DEPENDING ON clause. In this way, a
table of up to seven dimensions can be specified.

— Format 1: fixed-length tables

»»—(0CCURS—integer-2 |_ >
TIMESJ

ASCENDING data-name-2]—|

i Trd Lid

\\INDEXED '—index-name-1]—|

|:BY:|

\

v
A

integer-2
The exact number of occurrences. integer-2 must be greater than zero.

ASCENDING KEY and DESCENDING KEY phrases

Data is arranged in ascending or descending order, depending on the keyword
specified, according to the values contained in data-name-2. The data-names are
listed in their descending order of significance.

The order is determined by the rules for comparison of operands (see

fconditions” on page 258). The ASCENDING KEY and DESCENDING KEY data

items are used in OCCURS clauses and the SEARCH ALL statement for a binary
search of the table element.

data-name-2
Must be the name of the subject entry or the name of an entry subordinate
to the subject entry. data-name-2 cannot be a windowed date field.
data-name-2 can be qualified.

If data-name-2 names the subject entry, that entire entry becomes the
ASCENDING KEY or DESCENDING KEY and is the only key that can be
specified for this table element.

If data-name-2 does not name the subject entry, then data-name-2:

* Must be subordinate to the subject of the table entry itself

* Must not be subordinate to, or follow, any other entry that contains an
OCCURS clause

e Must not contain an OCCURS clause

Chapter 19. Data division—data description entry 185



data-name-2 must not have subordinate items that contain OCCURS
DEPENDING ON clauses.

When the ASCENDING KEY or DESCENDING KEY phrase is specified, the
following rules apply:

* Keys must be listed in decreasing order of significance.
* The total number of keys for a given table element must not exceed 12.

e The data in the table must be arranged in ascending or descending sequence
according to the collating sequence in use.

e The key must be described with one of the following usages:
- BINARY
- DISPLAY
- DISPLAY-1
- NATIONAL
- PACKED-DECIMAL
- COMPUTATIONAL
- COMPUTATIONAL-1
- COMPUTATIONAL-2
- COMPUTATIONAL-3
- COMPUTATIONAL-4
- COMPUTATIONAL-5

* A key described with usage NATIONAL can have one of the following
categories: national, national-edited, numeric-edited, numeric, or external
floating-point.

* The sum of the lengths of all the keys associated with one table element must
not exceed 256.

 If a key is specified without qualifiers and it is not a unique name, the key will
be implicitly qualified with the subject of the OCCURS clause and all qualifiers
of the OCCURS clause subject.

The following example illustrates the specification of ASCENDING KEY data
items:

WORKING-STORAGE SECTION.
01 TABLE-RECORD.
05 EMPLOYEE-TABLE OCCURS 100 TIMES
ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
INDEXED BY A, B.

10 EMPLOYEE-NAME PIC X(20).
10 EMPLOYEE-NO PIC 9(6).
10 WAGE-RATE PIC 9999V99.

10 WEEK-RECORD OCCURS 52 TIMES
ASCENDING KEY IS WEEK-NO INDEXED BY C.

15 WEEK-NO PIC 99.
15 AUTHORIZED-ABSENCES PIC 9.
15 UNAUTHORIZED-ABSENCES PIC 9.
15 LATE-ARRIVALS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, and the key for
WEEK-RECORD is subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in
ascending order of WAGE-RATE, and in ascending order of EMPLOYEE-NO

186 COBOL for Windows Version 7.5 Language Reference



within WAGE-RATE. Records in WEEK-RECORD must be arranged in ascending
order of WEEK-NO. If they are not, results of any SEARCH ALL statement are
unpredictable.

INDEXED BY phrase

The INDEXED BY phrase specifies the indexes that can be used with a table. A
table without an INDEXED BY phrase can be referred to through indexing by
using an index-name associated with another table. See|“Subscripting using]|
lindex-names (indexing)” on page 65)

Indexes normally are allocated in static memory associated with the program that
contains the table. Thus indexes are in the last-used state when a program is
reentered. However, in the following cases, indexes are allocated on a
per-invocation basis. Thus you must set the value of the index on every entry for
indexes on tables in the following sections:

* The local-storage section
* The working-storage section of a class definition (object instance variables)
* The linkage section of:

— Methods

- Programs compiled with the RECURSIVE clause

— Programs compiled with the THREAD option

Indexes specified in an external data record do not possess the external attribute.

index-name-1
Each index-name specifies an index to be created by the compiler for use
by the program. These index-names are not data-names and are not
identified elsewhere in the COBOL program; instead, they can be regarded
as private special registers for the use of this object program only. They are
not data and are not part of any data hierarchy.

Unreferenced index names need not be uniquely defined.
In one table entry, up to 12 index-names can be specified.

If a data item that possesses the global attribute includes a table accessed
with an index, that index also possesses the global attribute. Therefore, the
scope of an index-name is the same as that of the data-name that names
the table in which the index is defined.

Variable-length tables
Variable-length tables are specified using the OCCURS DEPENDING ON clause.

Chapter 19. Data division—data description entry 187



— Format 2: variable-length tables

»»>—0CCURS integer-Z—L—_l—DEPENDING >
I—inz&eger—l—TO—| TIMES |—ON—|

»—data-name-1— >
ASCENDING ' data-name-2]—|

Thecone] Lerd Lisd

> [

LINDEXED v index—name-1]—|

|:BY:|

integer-1
The minimum number of occurrences.

The value of integer-1 must be greater than or equal to zero; it must also be
less than the value of integer-2.

If integer-1 is omitted, a value of 1 is assumed and the keyword TO must
also be omitted.

integer-2
The maximum number of occurrences.

integer-2 must be greater than integer-1.

The length of the subject item is fixed. Only the number of repetitions of the subject
item is variable.

OCCURS DEPENDING ON clause

The OCCURS DEPENDING ON clause specifies variable-length tables.

data-name-1
Identifies the object of the OCCURS DEPENDING ON clause; that is, the
data item whose current value represents the current number of
occurrences of the subject item. The contents of items whose occurrence
numbers exceed the value of the object are undefined.

The object of the OCCURS DEPENDING ON clause (data-name-1) must
describe an integer data item. The object cannot be a windowed date field.

The object of the OCCURS DEPENDING ON clause must not occupy any
storage position within the range of the table (that is, any storage position
from the first character position in the table through the last character
position in the table).

188 COBOL for Windows Version 7.5 Language Reference



The object of the OCCURS DEPENDING ON clause cannot be variably
located; the object cannot follow an item that contains an OCCURS
DEPENDING ON clause.

If the OCCURS clause is specified in a data description entry included in a
record description entry that contains the EXTERNAL clause, data-name-1,
if specified, must reference a data item that possesses the external attribute.
data-name-1 must be described in the same data division as the subject of
the entry.

If the OCCURS clause is specified in a data description entry subordinate
to one that contains the GLOBAL clause, data-name-1, if specified, must be
a global name. data-name-1 must be described in the same data division as
the subject of the entry.

All data-names used in the OCCURS clause can be qualified; they cannot be
subscripted or indexed.

At the time that the group item, or any data item that contains a subordinate
OCCURS DEPENDING ON item or that follows but is not subordinate to the
OCCURS DEPENDING ON item, is referenced, the value of the object of the
OCCURS DEPENDING ON clause must fall within the range integer-1 through
integer-2.

When a group item that contains a subordinate OCCURS DEPENDING ON item is
referred to, the part of the table area used in the operation is determined as
follows:

* If the object is outside the group, only that part of the table area that is specified
by the object at the start of the operation is used.

e If the object is included in the same group and the group data item is referenced
as a sending item, only that part of the table area that is specified by the value
of the object at the start of the operation is used in the operation.

* If the object is included in the same group and the group data item is referenced
as a receiving item, the maximum length of the group item is used in the
operation.

The following statements are affected by the maximum length rule:
* ACCEPT identifier (format 1 and 2)

¢ CALL ... USING BY REFERENCE identifier

* INVOKE ... USING BY REFERENCE identifier

¢ MOVE ... TO identifier

* READ ... INTO identifier

* RELEASE identifier FROM ...

* RETURN ... INTO identifier

* REWRITE identifier FROM ...

e STRING ... INTO identifier

¢ UNSTRING ... INTO identifier DELIMITER IN identifier
* WRITE identifier FROM ...

If a variable-length group item is not followed by a nonsubordinate item, the
maximum length of the group is used when it appears as the identifier in CALL ...

Chapter 19. Data division—data description entry ~ 189



USING BY REFERENCE identifier. Therefore, the object of the OCCURS
DEPENDING ON clause does not need to be set unless the group is variably
located.

If the group item is followed by a nonsubordinate item, the actual length, rather
than the maximum length, is used. At the time the subject of entry is referenced, or
any data item subordinate or superordinate to the subject of entry is referenced,
the object of the OCCURS DEPENDING ON clause must fall within the range
integer-1 through integer-2.

Certain uses of the OCCURS DEPENDING ON clause result in complex OCCURS
DEPENDING ON (ODO) items. The following constitute complex ODO items:

* A data item described with an OCCURS DEPENDING ON clause that is
followed by a nonsubordinate elementary data item, described with or without
an OCCURS clause

* A data item described with an OCCURS DEPENDING ON clause that is
followed by a nonsubordinate group item

* A group item that contains one or more subordinate items described with an
OCCURS DEPENDING ON clause

e A data item described with an OCCURS clause or an OCCURS DEPENDING
ON clause that contains a subordinate data item described with an OCCURS
DEPENDING ON clause (a table that contains variable-length elements)

* An index-name associated with a table that contains variable-length elements

The object of an OCCURS DEPENDING ON clause cannot be a nonsubordinate
item that follows a complex ODO item.

Any nonsubordinate item that follows an item described with an OCCURS
DEPENDING ON clause is a variably located item. That is, its location is affected by
the value of the OCCURS DEPENDING ON object.

When implicit redefinition is used in a File Description (FD) entry, subordinate
level items can contain OCCURS DEPENDING ON clauses.

The INDEXED BY phrase can be specified for a table that has a subordinate item
that contains an OCCURS DEPENDING ON clause.

For more information about complex OCCURS DEPENDING ON, see the COBOL
for Windows Programming Guide.

The ASCENDING KEY phrase, the DESCENDING KEY phrase, and the INDEXED
BY clause are described under [“Fixed-length tables” on page 184

PICTURE clause

The PICTURE clause specifies the general characteristics and editing requirements
of an elementary item.

190 COBOL for Windows Version 7.5 Language Reference



Format

> PICTURE character-string ><
PIC IS

PICTURE or PIC
The PICTURE clause must be specified for every elementary item except
the following:

* Index data items
¢ The subject of the RENAMES clause

 Items described with USAGE POINTER, USAGE FUNCTION-POINTER,
USAGE PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

* Internal floating-point data items

In these cases, use of the PICTURE clause is prohibited.

The PICTURE clause can be specified only at the elementary level.
PIC is an abbreviation for PICTURE and has the same meaning.

character-string
character-string is made up of certain COBOL characters used as picture
symbols. The allowable combinations determine the category of the
elementary data item.

character-string can contain a maximum of 50 characters.

Symbols used in the PICTURE clause

Any punctuation character that appears within the PICTURE character-string is not
considered a punctuation character, but rather is a PICTURE character-string
symbol.

When specified in the SPECIAL-NAMES paragraph, DECIMAL-POINT IS
COMMA exchanges the functions of the period and the comma in PICTURE
character-strings and in numeric literals.

The lowercase letters that correspond to the uppercase letters that represent the
following PICTURE symbols are equivalent to their uppercase representations in a
PICTURE character-string:

A, B, E, G, N, P, S, V, X, Z, CR, DB

All other lowercase letters are not equivalent to their corresponding uppercase
representations.

PICTURE clause symbol meanings (Table 12 on page 192) defines the meaning of
each PICTURE clause symbol. The heading Size indicates how the item is counted
in determining the number of character positions represented by the item. The type
of the character positions depends on the USAGE clause specified for the item, as
follows:

Usage Type of character positions Number of bytes per character
DISPLAY Alphanumeric 1
DISPLAY-1 DBCS 2

Chapter 19. Data division—data description entry 191



Usage Type of character positions Number of bytes per character

NATIONAL National 2

All others Conceptual Not applicable

Table 12. PICTURE clause symbol meanings

Symbol | Meaning Size

A A character position that can contain Each A’ is counted as one character
only a letter of the Latin alphabet or a | position in the size of the data item.
space.

B For usage DISPLAY, a character Each ‘B’ is counted as one character
position into which an alphanumeric position in the size of the data item.
space is inserted.

For usage DISPLAY-1, a character
position into which a DBCS space is
inserted.

For usage NATIONAL, a character
position into which a national space is
inserted.

E Marks the start of the exponent in an | Each 'E’ is counted as one character
external floating-point item. For position in the size of the data item.
additional details of external
floating-point items, see Data categories
and PICTURE rules (“External
[floating-point items” on page 202).

G A DBCS character position. Each G’ is counted as one character

position in the size of the data item.

N A DBCS character position when Each ‘N’ is counted as one character
specified with usage DISPLAY-1 or position in the size of the data item.
when usage is unspecified and the
NSYMBOL(DBCS) compiler option is in
effect.

For category national, a national
character position when specified with
usage NATIONAL or when usage is
unspecified and the
NSYMBOL(NATIONAL) compiler
option is in effect.

For category national-edited, a national
character position.

P An assumed decimal scaling position. | Not counted in the size of the data
Used to specify the location of an item. Scaling position characters are
assumed decimal point when the point |counted in determining the maximum
is not within the number that appears |number of digit positions in
in the data item. See also numeric-edited items or in items that
on page 195. are used as arithmetic operands.

The size of the value is the number of
digit positions represented by the
PICTURE character-string.

192 COBOL for Windows Version 7.5 Language Reference




Table 12. PICTURE clause symbol meanings (continued)

Symbol |Meaning Size

S An indicator of the presence (but not | Not counted in the size of the
the representation, and not necessarily |elementary item, unless an associated
the position) of an operational sign. An |SIGN clause specifies the SEPARATE
operational sign indicates whether the |CHARACTER phrase (which would be
value of an item involved in an counted as one character position).
operation is positive or negative.

\% An indicator of the location of the Not counted in the size of the
assumed decimal point. Does not elementary item.
represent a character position.

When the assumed decimal point is to
the right of the rightmost symbol in the
string, the V is redundant.

X A character position that can contain Each "X’ is counted as one character
any allowable character from the position in the size of the data item.
alphanumeric character set of the
computer.

Z A leading numeric character position. |Each ’Z’ is counted as one character
When that position contains a zero, a | position in the size of the data item.
space character replaces the zero.

9 A character position that contains a Each nine specifies one decimal digit in
numeral. the value of the item. For usages

DISPLAY and NATIONAL, each nine is
counted as one character position in the
size of the data item.

0 A character position into which the Each zero is counted as one character
numeral zero is inserted. position in the size of the data item.

/ A character position into which the Each slash character is counted as one
slash character is inserted. character position in the size of the

data item.

, A character position into which a Each comma is counted as one
comma is inserted. character position in the size of the

data item.
An editing symbol that represents the |Each period is counted as one character
decimal point for alignment purposes. |position in the size of the data item.
In addition, it represents a character
position into which a period is inserted.

+ Editing sign control symbols. Each Each character used in the editing sign

- represents the character position into symbol is counted as one character

CR which the editing sign control symbol | position in the size of the data item.

DB is placed.

A check protect symbol: a leading
numeric character position into which
an asterisk is placed when that position
contains a zero.

Each asterisk is counted as one
character position in the size of the
item.

Chapter 19. Data division—data description entry 193



Table 12.

PICTURE clause symbol meanings (continued)

Symbol

Meaning

Size

cs

cs can be any valid currency symbol. A
currency symbol represents a character
position into which a currency sign
value is placed. The default currency
symbol is the character assigned the
value X'24" in the code page in effect at
compile time. In this document, the
default currency symbol is represented
by the dollar sign ($) and cs stands for
any valid currency symbol. For details,
see [‘Currency symbol” on page 196,

The first occurrence of a currency
symbol adds the number of characters
in the currency sign value to the size of
the data item. Each subsequent
occurrence adds one character position
to the size of the data item.

The following figure shows the sequences in which picture symbols can be
specified to form picture character-strings. More detailed explanations of PICTURE
clause symbols follow the figure.

194 COBOL for Windows Version 7.5 Language Reference




FIRST

Non-Floating Floating Other Symbols
QYMBOL Insertion Symbols Insertion Symbols
SECOND + + ||/CR z\ Z + + A
seconNde ol /| | [T NS es| e (25N Tos]es| o [R]s v]r]r]c]n
B [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ® |0 [ ] [ ] [ ] [ ]
0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ® o0 [ ] [ ] [ ]
/ [ ] [ ] [ ] [ ] [ ] [ ] o [ ] [ ] [ ] [ ] [ ] [ ] o0 [ ] [ ) [ )
g [ ] L ] [ ] ® [ ] [ ] [ ) [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ )
mZ
Q % o o |0 |0 ° o L4 L4 L4 L4
2o -
250

== { Tje|e e e e o oo |0 oo | @ e|o| e

3

g {gg [ N ) o | o (o [ ] e o e |0 [ ] e |0 [ ]

cs °
E ol e ° °

s Z} e o | oo ° L4 °

@ { Z

% [ ] [ ] [ ] [ ] [ ] [ ] Y [ ] [ ] [ ] [ ]

§ § { tle|e|eo|e ° °

g %‘ { *le|e|o|e|e ° o | e °

'8 cs|eo (o |0 @ ° °

» cs|e (e |e (@ |0 e o e °

9|le|e|e|e| e 0 ° ° (] ° o | oo @ °
Q [ ] [ ] [ ] [ ] [ ]
S
()]
2 % V|ie|e | |e|e ° ° ° o ° ° ° °
8 m|p|le|e|e]|e ° ° ° . ° ° ° °
6 Py
P ° [ ] [ N} [ ]
G|e °
N|le|leo|e® °

Legend:

° Closed circle indicates that the symbol(s) at the top of the column can,
in a given character-string, appear anywhere to the left of the symbol(s)
at the left of the row.

(1 Braces indicate items that are mutually exclusive.

Nonfloating insertion symbols + and -, floating insertion symbols Z, *,

Symbols t.hat +, -, and cs, and the symbol P appear twice.

appear twice .
The leftmost column and uppermost row for each symbol represents its
use to the left of the decimal point position. The second appearance of
the symbol in the table represents its use to the right of the decimal
point position.

P symbol

The symbol P specifies a scaling position and implies an assumed decimal point
(to the left of the Ps if the Ps are leftmost PICTURE characters; to the right of the
Ps if the Ps are rightmost PICTURE characters). The assumed decimal point
symbol V is redundant as either the leftmost or rightmost character within such a
PICTURE description.

The symbol P can be specified only as a continuous string of Ps in the leftmost or
rightmost digit positions within a PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-string
contains the symbol P, the algebraic value of the data item is used rather than the

Chapter 19. Data division—data description entry 195



actual character representation of the data item. This algebraic value assumes the
decimal point in the prescribed location and zero in place of the digit position
specified by the symbol P. The size of the value is the number of digit positions
represented by the PICTURE character-string. These operations are any of the
following:

* Any operation that requires a numeric sending operand

* A MOVE statement where the sending operand is numeric and its PICTURE
character-string contains the symbol P

* A MOVE statement where the sending operand is numeric-edited and its
PICTURE character-string contains the symbol P, and the receiving operand is
numeric or numeric-edited

* A comparison operation where both operands are numeric

In all other operations, the digit positions specified with the symbol P are ignored
and are not counted in the size of the operand.

Currency symbol

The currency symbol in a picture character-string is represented by the default
currency symbol $ or by a single character specified either in the CURRENCY
compiler option or in the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph of the environment division.

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and
the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY SIGN clause, see |"CURRENCY SIGN clause” on page 115| For more
information about the CURRENCY and NOCURRENCY compiler options, see the
COBOL for Windows Programming Guide.

A currency symbol can be repeated within the PICTURE character-string to specify
floating insertion. Different currency symbols must not be used in the same
PICTURE character-string.

Unlike all other picture symbols, currency symbols are case sensitive. For example,
‘D’ and ’'d’ specify different currency symbols.

A currency symbol can be used only to define a numeric-edited item with USAGE
DISPLAY.

Character-string representation

Symbols that can appear more than once
The following symbols can appear more than once in one PICTURE
character-string:

AABGNZPXZ 90/ , + - * cs

At least one of the symbols A, G, N, X, Z, 9, or *, or at least two of the
symbols +, -, or cs must be present in a PICTURE string.

An unsigned nonzero integer enclosed in parentheses immediately
following any of these symbols specifies the number of consecutive
occurrences of that symbol.

Example: The following two PICTURE clause specifications are equivalent:

PICTURE IS $99999.99CR
PICTURE IS $9(5).9(2)CR

196 COBOL for Windows Version 7.5 Language Reference



Symbols that can appear only once
The following symbols can appear only once in one PICTURE
character-string:

E S Vv . CR DB
Except for the PICTURE symbol V, each occurrence of any of the above

symbols in a given PICTURE character-string represents an occurrence of
that character or set of allowable characters in the data item.

Data categories and PICTURE rules

The allowable combinations of PICTURE symbols determine the data category of
the item:

* Alphabetic

* Numeric

* Numeric-edited

* Alphanumeric

¢ Alphanumeric-edited
* DBCS

* External floating-point
* National

* National-edited

Note: Category internal floating point is defined by a USAGE clause that specifies
the COMP-1 or COMP-2 phrase.

Alphabetic items
The PICTURE character-string can contain only the symbol A.

The content of the item must consist only of letters of the Latin alphabet and the
space character.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal containing only
alphabetic characters, SPACE, or a symbolic-character as the value of a figurative
constant.

Numeric items
Types of numeric items are:

* Binary

* Packed decimal (internal decimal)

» Zoned decimal (external decimal)

* National decimal (external decimal)

The type of a numeric item is defined by the usage clause as shown in the table
below.

Table 13. Numeric types

Type USAGE clause
Binary BINARY, COMP, COMP-4, or COMP-5
Internal decimal PACKED-DECIMAL, COMP-3

Chapter 19. Data division—data description entry 197



Table 13. Numeric types (continued)

Type USAGE clause
Zoned decimal (external decimal) DISPLAY
National decimal (external decimal) NATIONAL

For numeric date fields, the PICTURE character-string can contain only the
symbols 9 and S. For all other numeric fields, the PICTURE character-string can
contain only the symbols 9, P, S, and V.

The symbol S can be written only as the leftmost character in the PICTURE
character-string.

The symbol V can be written only once in a given PICTURE character-string.

For binary items, the number of digit positions must range from 1 through 18
inclusive. For packed decimal and zoned decimal items the number of digit
positions must range from 1 through 18, inclusive, when the ARITH(COMPAT)
compiler option is in effect, or from 1 through 31, inclusive, when the
ARITH(EXTEND) compiler option is in effect.

For numeric date fields, the number of digit positions must match the number of
characters specified by the DATE FORMAT clause.

If unsigned, the contents of the item in standard data format must contain a
combination of the Arabic numerals 0-9. If signed, it can also contain a +, -, or
other representation of the operational sign.

Examples of valid ranges

PICTURE Valid range of values
9999 0 through 9999
S99 -99 through +99
S$999vV9 -999.9 through +999.9
PPP999 0 through .000999
S999PPP -1000 through -999000 and
+1000 through +999000 or zero

Other clauses: The USAGE of the item can be DISPLAY, NATIONAL, BINARY,
COMPUTATIONAL, PACKED-DECIMAL, COMPUTATIONAL-3,
COMPUTATIONAL-4, or COMPUTATIONAL-5.

For signed numeric items described with usage NATIONAL, the SIGN IS
SEPARATE clause must be specified or implied.

The BINARY and TRUNC compiler options can affect the use of numeric data
items. For details, see the COBOL for Windows Programming Guide.

Numeric-edited items
The PICTURE character-string can contain the following symbols:

B PVZOY9O/, . + - CRDB * cs

The combinations of symbols allowed are determined from the PICTURE clause
symbol order allowed (see the figure in [“Symbols used in the PICTURE clause” on|
page 191)), and the editing rules (see ['PICTURE clause editing” on page 203).

The following rules apply:

198 COBOL for Windows Version 7.5 Language Reference



¢ Either the BLANK WHEN ZERO clause must be specified for the item, or the
string must contain at least one of the following symbols:

B /20 , . * + - CR DB cs

* Only one of the following symbols can be written in a given PICTURE
character-string:

+ - CR DB

e If the ARITH(COMPAT) compiler option is in effect, then the number of digit
positions represented in the character-string must be in the range 1 through 18,
inclusive. If the ARITH(EXTEND) compiler option is in effect, then the number
of digit positions represented in the character-string must be in the range 1
through 31, inclusive.

* The total number of character positions in the string (including editing-character
positions) must not exceed 249.

* The contents of those character positions representing digits in standard data
format must be one of the 10 Arabic numerals.

Other clauses: USAGE DISPLAY or NATIONAL must be specified or implied.

If the usage of the item is DISPLAY, any associated VALUE clause must specify an
alphanumeric literal or a figurative constant. The value is assigned without editing.

If the usage of the item is NATIONAL, any associated VALUE clause must specify
an alphanumeric literal, a national literal, or a figurative constant. The value is
assigned without editing.

Alphanumeric items
The PICTURE character-string must consist of either of the following:

* One or more occurrences of the symbol X.

* Combinations of the symbols A, X, and 9. (A character-string containing all As
or all 9s does not define an alphanumeric item.)

The item is treated as if the character-string contained only the symbol X.

The contents of the item in standard data format can be any allowable characters
from the character set of the computer.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal or one of the
following figurative constants:

* ZERO

* SPACE

* QUOTE

* HIGH-VALUE

+ LOW-VALUE

e symbolic-character

* ALL alphanumeric-literal

Alphanumeric-edited items
The PICTURE character-string can contain the following symbols:

AX 9 B 0 /

The string must contain at least one A or X, and at least one B or 0 (zero) or /.

Chapter 19. Data division—data description entry 199



The contents of the item in standard data format must be two or more characters
from the character set of the computer.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal or or one of
the following figurative constants:

* ZERO

* SPACE

* QUOTE

* HIGH-VALUE

+ LOW-VALUE

* symbolic-character

* ALL alphanumeric-literal

The literal is treated exactly as specified; no editing is done.

DBCS items
The PICTURE character-string can contain the symbols G, G and B, or N. Each G,
B, or N represents a single DBCS character position.

Any associated VALUE clause must contain a DBCS literal, the figurative constant
SPACE, or the figurative constant ALL DBCS-literal.

The runtime locale in effect must indicate a code page that includes DBCS
characters. For information about locales, see |Appendix G, “Locale considerations,”l

Do not include a single byte character in a DBCS data item.

When padding is required for a DBCS data item, the following rules apply:

* Padding is done using double-byte space characters until the data area is filled
(based on the number of double-byte character positions allocated for the data
item).

¢ Padding is done using single-byte space characters when the padding needed is
not an even number of bytes (for example, when an alphanumeric group item is
moved to a DBCS data item).

Other clauses: When PICTURE symbol G is used, USAGE DISPLAY-1 must be
specified. When PICTURE symbol N is used and the NSYMBOL(DBCS) compiler
option is in effect, USAGE DISPLAY-1 is implied if the USAGE clause is omitted.

National items
The PICTURE character-string can contain one or more occurrences of the picture
symbol N.

These rules apply when the NSYMBOL(NATIONAL) compiler option is in effect or
the USAGE NATIONAL clause is specified. In the absence of a USAGE
NATIONAL clause, if the NSYMBOL(DBCS) compiler option is in effect, picture
symbol N represents a DBCS character and the rules of the PICTURE clause for a
DBCS item apply.

Each N represents a single national character position.

200 COBOL for Windows Version 7.5 Language Reference



Any associated VALUE clause must specify an alphanumeric literal, a national
literal, or one of the following figurative constants:

¢ ZERO

» SPACE

* QUOTE

* HIGH-VALUE

+ LOW-VALUE

e symbolic-character

* ALL alphanumeric-literal
e ALL national-literal

Other clauses: Only the NATIONAL phrase can be specified in the USAGE
clause. When PICTURE symbol N is used and the NSYMBOL(NATIONAL)
compiler option is in effect, USAGE NATIONAL is implied if the usage clause is
omitted.

The following clauses can be used:
 JUSTIFIED

* EXTERNAL

+ GLOBAL

* OCCURS

* REDEFINES

* RENAMES

* SYNCHRONIZED

The following clauses cannot be used:
* BLANK WHEN ZERO

+ SIGN

¢ DATE FORMAT

National-edited items
The PICTURE character-string must contain the following:

* At least one symbol N, and
* At least one of the symbols B 0 (zero) or / (slash)

Each symbol represents a single national character position.

Any associated VALUE clause must specify an alphanumeric literal, a national
literal, or one of the following figurative constants:

¢ ZERO

* SPACE

* QUOTE

* HIGH-VALUE
 LOW-VALUE

* symbolic-character

* ALL alphanumeric-literal
* ALL national-literal

The literal is treated exactly as specified; no editing is done.

Chapter 19. Data division—data description entry 201



The NSYMBOL(NATIONAL) compiler option has no effect on the definition of a
data item of category national-edited.

Other clauses: USAGE NATIONAL must be specified or implied.

The following clauses can be used:
 JUSTIFIED

* EXTERNAL

* GLOBAL

* OCCURS

* REDEFINES

* RENAMES

* SYNCHRONIZED

The following clauses cannot be used:
* BLANK WHEN ZERO

* SIGN

* DATE FORMAT

External floating-point items

Format

»—[ + :l—mantissa E_E + :l—exponent ><

+ or - A sign character must immediately precede both the mantissa and the
exponent.
A + sign indicates that a positive sign will be used in the output to
represent positive values and that a negative sign will represent negative
values.
A - sign indicates that a blank will be used in the output to represent
positive values and that a negative sign will represent negative values.
Each sign position occupies one byte of storage.

mantissa
The mantissa can contain the symbols:
9 .V
An actual decimal point can be represented with a period (.) while an
assumed decimal point is represented by a V.
Either an actual or an assumed decimal point must be present in the
mantissa; the decimal point can be leading, embedded, or trailing.
The mantissa can contain from 1 to 16 numeric characters.

E Indicates the exponent.

exponent

The exponent must consist of the symbol 99.

202 COBOL for Windows Version 7.5 Language Reference




The DISPLAY phrase of the USAGE clause and a floating-point picture
character-string define the item as a display floating-point data item.

The NATIONAL phrase of the USAGE clause and a floating-point picture
character-string define the item as a national floating-point data item.

For items defined with usage DISPLAY, each picture symbol except V defines one
alphanumeric character position in the item.

For items defined with usage NATIONAL, each picture symbol except V defines
one national character position in the item.

Other clauses: The DISPLAY phrase or the NATIONAL phrase of the USAGE
clause must be specified or implied.

The OCCURS, REDEFINES, and RENAMES clauses can be associated with external
floating-point items.

The SIGN clause is accepted as documentation and has no effect on the
representation of the sign.

The SYNCHRONIZED clause is treated as documentation.

The following clauses are invalid with external floating-point items:
* BLANK WHEN ZERO

* JUSTIFIED

* VALUE

PICTURE clause editing

There are two general methods of editing in a PICTURE clause:
* Insertion editing:

— Simple insertion

— Special insertion

— Fixed insertion

— Floating insertion
* Suppression and replacement editing:

— Zero suppression and replacement with asterisks

— Zero suppression and replacement with spaces

The type of editing allowed for an item depends on its data category. The type of
editing that is valid for each category is shown in the following table. cs indicates
any valid currency symbol.

Table 14. Data categories

Data category Type of editing Insertion symbol
Alphabetic None None
Numeric None None

Chapter 19. Data division—data description entry 203



Table 14. Data categories (continued)

Data category

Type of editing

Insertion symbol

Numeric-edited

Simple insertion

Special insertion

B0/,

Fixed insertion ¢s + - CR DB
Floating insertion cs + -
Zero suppression z*
Replacement Z*+-cs
Alphanumeric None None
Alphanumeric-edited Simple insertion B0/
DBCS Simple insertion B
External floating-point Special insertion
National None None
National-edited Simple insertion BO/

Types of editing are described in the following sections:

+ |“Simple insertion editing”|

* |“Special insertion editing” on page 205|

* |“Fixed insertion editing” on page 205

» [“Floating insertion editing” on page 206

* |“Zero suppression and replacement editing” on page 207|

Simple insertion editing

This type of editing is valid for alphanumeric-edited, numeric-edited, and DBCS
items.

Each insertion symbol is counted in the size of the item, and represents the
position within the item where the equivalent character is to be inserted. For
edited DBCS items, each insertion symbol (B) is counted in the size of the item and
represents the position within the item where the DBCS space is to be inserted.

For example:

PICTURE Value of data Edited result
X(10)/XX ALPHANUMERO01 ALPHANUMER/01
X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC
99,8999,B000 1234 01,6234,b000"

99,999 12345 12,345

GGBBGG D1D2D3D4 D1D2bbbbD3D4!
Notes:

1. The symbol b represents a space.

204 COBOL for Windows Version 7.5 Language Reference



Special insertion editing

This type of editing is valid for either numeric-edited items or external
floating-point items.

The period (.) is the special insertion symbol; it also represents the actual decimal
point for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the
position within the item where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but

not both, must be specified in one PICTURE character-string.

For example:

PICTURE Value of data Edited result
999.99 1.234 001.23
999.99 12.34 012.34
999.99 123.45 123.45
999.99 1234.5 234.50
+999.99E+99 12345 +123.45E+02

Fixed insertion editing

This type of editing is valid only for numeric-edited items. The following insertion
symbols are used:

® Cs

* + - CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing-sign control
symbol can be specified in a PICTURE character-string.

Unless it is preceded by a + or - symbol, the currency symbol must be the first
character in the character-string.

When either + or - is used as a symbol, it must be the first or last character in the
character-string.

When CR or DB is used as a symbol, it must occupy the rightmost two character
positions in the character-string. If these two character positions contain the
symbols CR or DB, the uppercase letters are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data
item, as shown below:

Editing symbol in PICTURE | Result: data item positive or

character-string zero Result: data item negative
+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Chapter 19. Data division—data description entry 205



For example:

PICTURE Value of data Edited result
999.99+ +6555.556 555.55+
+9999.99 -6555.555 -6555.55
9999.99 +1234.56 1234.56
$999.99 -123.45 $123.45
-$999.99 -123.456 -$123.45
-$999.99 +123.456 $123.45
$9999.99CR +123.45 $0123.45
$9999.99CR -123.45 $0123.45DB

Floating insertion editing

This type of editing is valid only for numeric-edited items.

The following symbols are used:
cs + -

Within one PICTURE character-string, these symbols are mutually exclusive as
floating insertion characters.

Floating insertion editing is specified by using a string of at least two of the
allowable floating insertion symbols to represent leftmost character positions into
which the actual characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the
leftmost limit at which the actual character can appear in the data item. The
rightmost floating insertion symbol represents the rightmost limit at which the
actual character can appear.

The second leftmost floating insertion symbol in the character-string represents the
leftmost limit at which numeric data can appear within the data item. Nonzero
numeric data can replace all characters at or to the right of this limit.

Any simple-insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating insertion symbols are considered part of the floating
character-string. If the period (.) special-insertion symbol is included within the
floating string, it is considered to be part of the character-string.

To avoid truncation, the minimum size of the PICTURE character-string must be:
* The number of character positions in the sending item, plus

¢ The number of nonfloating insertion symbols in the receiving item, plus

* One character position for the floating insertion symbol

Representing floating insertion editing
In a PICTURE character-string, there are two ways to represent floating insertion
editing and thus two ways in which editing is performed:

1. Any or all leading numeric character positions to the left of the decimal point
are represented by the floating insertion symbol. When editing is performed, a
single floating insertion character is placed to the immediate left of the first

206 COBOL for Windows Version 7.5 Language Reference



nonzero digit in the data, or of the decimal point, whichever is farther to the
left. The character positions to the left of the inserted character are filled with
spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, then at least one of the insertion
characters must be to the left of the decimal point.

2. All the numeric character positions are represented by the floating insertion
symbol. When editing is performed, then:

* If the value of the data is zero, the entire data item will contain spaces.
o If the value of the data is nonzero, the result is the same as in rule 1.

For example:

PICTURE Value of data Edited result
$$$$.99 .123 $.12
$$$9.99 12 $0.12

$,$$$,999.99 -1234.56 $1,234.56

+,+++,999.99 -123456.789 -123,456.78
$$,$$$,$$$.99CR -1234567 $1,234,567.00CR
o, A 0000.00

Zero suppression and replacement editing
This type of editing is valid only for numeric-edited items.

In zero suppression editing, the symbols Z and * are used. These symbols are
mutually exclusive in one PICTURE character-string.

The following symbols are mutually exclusive as floating replacement symbols in
one PICTURE character-string:

Z*+-cs

Specify zero suppression and replacement editing with a string of one or more of
the allowable symbols to represent leftmost character positions in which zero
suppression and replacement editing can be performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating editing symbols are considered part of the string. If the period (.)
special insertion symbol is included within the floating editing string, it is
considered to be part of the character-string.

Representing zero suppression
In a PICTURE character-string, there are two ways to represent zero suppression,
and two ways in which editing is performed:

1. Any or all of the leading numeric character positions to the left of the decimal
point are represented by suppression symbols. When editing is performed, the
replacement character replaces any leading zero in the data that appears in the
same character position as a suppression symbol. Suppression stops at the
leftmost character:

* That does not correspond to a suppression symbol
* That contains nonzero data

Chapter 19. Data division—data description entry 207



* That is the decimal point

2. All the numeric character positions in the PICTURE character-string are
represented by the suppression symbols. When editing is performed and the
value of the data is nonzero, the result is the same as in the preceding rule. If
the value of the data is zero, then:

* If Z has been specified, the entire data item will contain spaces.

 If * has been specified, the entire data item except the actual decimal point
will contain asterisks.

For example:

PICTURE Value of data Edited result
Kokdok |k 0000.00 T
7771.71 0000.00
7777.99 0000.00 .00
*kkk,99 0000.00 *xkkx, 00
7799.99 0000.00 00.00

Z,777.77+ +123.456 123.45+
Ky RRE Ak -123.45 *%123.45-
Kok ok ok Kkt +12345678.9 12,345,678.90+
$2,277,777.77CR +12345.67 $ 12,345.67
§Bx, xxx xxx *xBBDB -12345.67 $ *%%12,345.67 DB

Do not specify both the asterisk (*) as a suppression symbol and the BLANK
WHEN ZERO clause for the same entry.

REDEFINES clause

The REDEFINES clause allows you to use different data description entries to
describe the same computer storage area.

— Format

data-name-1—

»»>—Ilevel-number i: REDEFINES—data-name-2 »><
FILLER

(level-number, data-name-1, and FILLER are not part of the REDEFINES clause, and
are included in the format only for clarity.)

When specified, the REDEFINES clause must be the first entry following
data-name-1 or FILLER. If data-name-1 or FILLER is not specified, the REDEFINES
clause must be the first entry following the level-number.

data-name-1, FILLER
Identifies an alternate description for the data area identified by
data-name-2; data-name-1 is the redefining item or the REDEFINES subject.

208 COBOL for Windows Version 7.5 Language Reference



Neither data-name-1 nor any of its subordinate entries can contain a VALUE
clause.

data-name-2
Identifies the redefined item or the REDEFINES object.

The data description entry for data-name-2 can contain a REDEFINES
clause.

The data description entry for data-name-2 cannot contain an OCCURS
clause. However, data-name-2 can be subordinate to an item whose data
description entry contains an OCCURS clause; in this case, the reference to
data-name-2 in the REDEFINES clause must not be subscripted.

Neither data-name-1 nor data-name-2 can contain an OCCURS DEPENDING ON
clause.

data-name-1 and data-name-2 must have the same level in the hierarchy; however,
the level numbers need not be the same. Neither data-name-1 nor data-name-2 can
be defined with level number 66 or 88.

data-name-1 and data-name-2 can each be described with any usage.

Redefinition begins at data-name-1 and ends when a level-number less than or
equal to that of data-name-1 is encountered. No entry that has a level-number
numerically lower than those of data-name-1 and data-name-2 can occur between
these entries. In the following example:

05 A PICTURE X(6).
05 B REDEFINES A.

10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).
05 ¢ PICTURE 99V99.

A is the redefined item, and B is the redefining item. Redefinition begins with B and
includes the two subordinate items B-1 and B-2. Redefinition ends when the
level-05 item C is encountered.

If the GLOBAL clause is used in the data description entry that contains the
REDEFINES clause, only data-name-1 (the redefining item) possesses the global
attribute. For example, in the following description, only item B possesses the
GLOBAL attribute:

05 A PICTURE X(6).
05 B REDEFINES A GLOBAL PICTURE X(4).

The EXTERNAL clause must not be specified in the same data description entry as
a REDEFINES clause.

If the redefined data item (data-name-2) is declared to be an external data record,
the size of the redefining data item (data-name-1) must not be greater than the size
of the redefined data item. If the redefined data item is not declared to be an
external data record, there is no such constraint.

The following example shows that the redefining item, B, can occupy more storage
than the redefined item, A. The size of storage for the REDEFINED clause is
determined in number of bytes. Item A occupies 6 bytes of storage and item B, a
data item of category national, occupies 8 bytes of storage.

05 A PICTURE X(6).
05 B REDEFINES A GLOBAL PICTURE N(4).

Chapter 19. Data division—data description entry 209



One or more redefinitions of the same storage area are permitted. The entries that
give the new descriptions of the storage area must immediately follow the
description of the redefined area without intervening entries that define new
character positions. Multiple redefinitions can, but need not, all use the data-name
of the original entry that defined this storage area. For example:

05 A PICTURE 9999.

05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

Also, multiple redefinitions can use the name of the preceding definition as shown
in the following example:
05 A PICTURE 9999.

05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES B PICTURE 99V99.

When more than one level-01 entry is written subordinate to an FD entry, a
condition known as implicit redefinition occurs. That is, the second level-01 entry
implicitly redefines the storage allotted for the first entry. In such level-01 entries,
the REDEFINES clause must not be specified.

When the data item implicitly redefines multiple 01-level records in a file
description (FD) entry, items subordinate to the redefining or redefined item can
contain an OCCURS DEPENDING ON clause.

REDEFINES clause considerations

When an area is redefined, all descriptions of the area are always in effect; that is,
redefinition does not supersede a previous description. Thus, if B REDEFINES C has
been specified, either of the two procedural statements MOVE X TO B or MOVE Y TO C
could be executed at any point in the program. In the first case, the area described
as B would receive the value and format of X. In the second case, the same physical
area (described now as C) would receive the value and format of Y. Note that if the
second statement is executed immediately after the first, the value of Y replaces the
value of X in the one storage area.

The usage of a redefining data item need not be the same as that of a redefined
item. This does not, however, cause any change in the format or content of existing
data. For example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.
05 A PICTURE S99 USAGE COMPUTATIONAL-4.

Redefining B does not change the bit configuration of the data in the storage area.
Therefore, the following two statements produce different results:

ADD B TO A
ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the
second statement, the value -3848 is added to A (because C has USAGE
COMPUTATIONAL-4), and the bit configuration of the storage area has the binary
value -3848. This example demonstrates how the improper use of redefinition can
give unexpected or incorrect results.

REDEFINES clause examples

The REDEFINES clause can be specified for an item within the scope of
(subordinate to) an area that is redefined. In the following example, WEEKLY-PAY

210 COBOL for Windows Version 7.5 Language Reference



redefines SEMI-MONTHLY-PAY (which is within the scope of REGULAR-EMPLOYEE, while
REGULAR-EMPLOYEE is redefined by TEMPORARY-EMPLOYEE).

05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 9999V99.

10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY
PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a
redefining item, as shown for CODE-H REDEFINES HOURLY-PAY in the following

example:
05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 GRADE PICTURE X(4).

10 SEMI-MONTHLY-PAY PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 FILLER PICTURE X(6).

10 HOURLY-PAY PICTURE 99V99.

10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

Data items within an area can be redefined without changing their lengths. For
example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

Data item lengths and types can also be respecified within an area. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE 999V999.
10 EMP-NO PICTURE X(6).
10 YEAR PICTURE XX.

Data items can also be respecified with a length that is greater than the length of
the redefined item. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE 999V999.
10 EMP-NO PICTURE X(6).
10 YEAR PICTURE X(4).

This does not change the length of the redefined item NAME-2.

Chapter 19. Data division—data description entry 211



Undefined results

Undefined results can occur when:

* A redefining item is moved to a redefined item (that is, if B REDEFINES C and the
statement MOVE B TO C is executed).

* A redefined item is moved to a redefining item (that is, if B REDEFINES C and the
statement MOVE C TO B is executed).

RENAMES clause

The RENAMES clause specifies alternative and possibly overlapping groupings of
elementary data items.

— Format

THROUGH data—name-3—|

»»>—66—data-name-1—RENAMES—data-name-2 >
|:THRU

The special level-number 66 must be specified for data description entries that
contain the RENAMES clause. (Level-number 66 and data-name-1 are not part of
the RENAMES clause, and are included in the format only for clarity.)

One or more RENAMES entries can be written for a logical record. All RENAMES
entries associated with one logical record must immediately follow that record’s
last data description entry.

data-name-1
Identifies an alternative grouping of data items.

A level-66 entry cannot rename a level-01, level-77, level-88, or another
level-66 entry.

data-name-1 cannot be used as a qualifier; it can be qualified only by the
names of level indicator entries or level-01 entries.

data-name-2, data-name-3
Identify the original grouping of elementary data items; that is, they must
name elementary or group items within the associated level-01 entry and
must not be the same data-name. Both data-names can be qualified.
data-name-2 and data-name-3 can each reference any of the following:
* An elementary data item
* An alphanumeric group item
* A national group item
When data-name-2 or data-name-3 references a national group item, the

referenced item is processed as a group (not as an elementary data item of
category national).

The OCCURS clause must not be specified in the data entries for
data-name-2 and data-name-3, or for any group entry to which they are
subordinate. In addition, the OCCURS DEPENDING clause must not be
specified for any item defined between data-name-2 and data-name-3.

212 COBOL for Windows Version 7.5 Language Reference



The keywords THROUGH and THRU are equivalent.

When the THROUGH phrase is specified:

* data-name-1 defines an alphanumeric group item that includes all the elementary
items that:

— Start with data-name-2 if it is an elementary item, or the first elementary item
within data-name-2 if it is a group item

— End with data-name-3 if it is an elementary item, or the last elementary item
within data-name-3 if it is an alphanumeric group item or national group item

* The storage area occupied by the starting item through the ending item becomes
the storage area occupied by data-name-1.

Usage note: The group defined with the THROUGH phrase can include data items
of usage NATIONAL.

The leftmost character position in data-name-3 must not precede the leftmost
character position in data-name-2, and the rightmost character position in
data-name-3 must not precede the rightmost character position in data-name-2. This
means that data-name-3 cannot be totally subordinate to data-name-2.

When the THROUGH phrase is not specified:

* The storage area occupied by data-name-2 becomes the storage area occupied by
data-name-1.

e All of the data attributes of data-name-2 become the data attributes for
data-name-1. That is:

— When data-name-2 is an alphanumeric group item, data-name-1 is an
alphanumeric group item.

— When data-name-2 is a national group item, data-name-1 is a national group
item.

— When data-name-2 is an elementary item, data-name-1 is an elementary item.

The following figure illustrates valid and invalid RENAMES clause specifications.

Chapter 19. Data division—data description entry 213



COBOL Specifications Storage Layouts

Example 1 (Valid)

01  RECORD-I e RECORD-I—
05 DN-1... . DN-1 DN-2 DN-3 ‘ DN-4 |
05 DN-2...
05 DN-3...
05 DN-4...

66  DN-6 RENAMES DN-1 THROUGH DN-3 DN-6

Example 2 (Valid)
01  RECORD-II RECORD-II |
05 DN-1. DN-1

|
|

10 DN-2... . | DN-2 | DN-2A
|

|
10 DN-2A... |
05 DN-1A REDEFINES DN-1. DN-1A !
10 DN-3A... . | DN-3A | DN-3 ‘ DN-38 |
10 DN-3...
10 DN-38B...
05 DN-5...
66  DN-6 RENAMES DN-2 THROUGH DN-3.  |~——DN-6——

Example 3 (Invalid)
01  RECORD-III «— RECORD-II] —M
05 DN-2. DN-2
10 DN-3... . DN-3 DN-4 DN-5
10 DN-4...
05 DN-5...
66 DN-6 RENAMES DN-2 THROUGH DN-3. DN-6 is indeterminate

Example 4 (Invalid)
01  RECORD-IV <—RECORD—IV—>|
05 DN-1. DN-1 |
10 DN-2A... . | DN-2A | DN-2B ‘
10 DN-2B...
10 DN-2C REDEFINES DN-2B. | DN-2C |

DN-3 |

15 DN-2CA...
15 DN-2D...
05 DN-3...
66  DN-4 RENAMES DN-1 THROUGH DN-2CA. DN-4 is indeterminate

| DN-2CA | DN-2D

SIGN clause

The SIGN clause specifies the position and mode of representation of the
operational sign for the signed numeric item to which it applies.

The SIGN clause is required only when an explicit description of the properties or
position of the operational sign is necessary.

214 COBOL for Windows Version 7.5 Language Reference



— Format

> LEADING ><
LSIGNﬁ |—TRAI LING—| l—S EPARATE |
IS |—CHARACTER—|

The SIGN clause can be specified only for the following items:
* An elementary numeric data item of usage DISPLAY or NATIONAL that is
described with an S in its picture character string, or

e A group item that contains at least one such elementary entry as a subordinate
item

When the SIGN clause is specified at the group level, that SIGN clause applies
only to subordinate signed numeric elementary data items of usage DISPLAY or
NATIONAL. Such a group can also contain items that are not affected by the SIGN
clause. If the SIGN clause is specified for a group or elementary entry that is
subordinate to a group item that has a SIGN clause, the SIGN clause for the
subordinate entry takes precedence for that subordinate entry.

The SIGN clause is treated as documentation for external floating-point items.

When the SIGN clause is specified without the SEPARATE phrase, USAGE
DISPLAY must be specified explicitly or implicitly. When SIGN IS SEPARATE is
specified, either USAGE DISPLAY or USAGE NATIONAL can be specified.

If you specify the CODE-SET clause in an FD entry, any signed numeric data
description entries associated with that file description entry must be described
with the SIGN IS SEPARATE clause.

If the SEPARATE CHARACTER phrase is not specified, then:

* The operational sign is presumed to be associated with the LEADING or
TRAILING digit position, whichever is specified, of the elementary numeric data
item. (In this instance, specification of SIGN IS TRAILING is the equivalent of
the standard action of the compiler.)

* The character S in the PICTURE character string is not counted in determining
the size of the item (in terms of standard data format characters).

If the SEPARATE CHARACTER phrase is specified, then:

* The operational sign is presumed to be the LEADING or TRAILING character
position, whichever is specified, of the elementary numeric data item. This
character position is not a digit position.

* The character S in the PICTURE character string is counted in determining the
size of the data item (in terms of standard data format characters).

* +is the character used for the positive operational sign.

* - is the character used for the negative operational sign.

The SEPARATE CHARACTER phrase cannot be specified for a date field.

Chapter 19. Data division—data description entry 215



SYNCHRONIZED clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on a
natural boundary in storage.

— Format

> SYNCHRONIZED <
SYNCg i:LEFTt‘
T

RIGH

SYNC is an abbreviation for SYNCHRONIZED and has the same meaning.

The SYNCHRONIZED clause is never required, but can improve performance on
some systems for binary items used in arithmetic.

The SYNCHRONIZED clause can be specified for elementary items and for
level-01 group items, in which case every elementary item within the group item is
synchronized.

LEFT Specifies that the elementary item is to be positioned so that it will begin
at the left character position of the natural boundary in which the
elementary item is placed.

RIGHT
Specifies that the elementary item is to be positioned such that it will
terminate on the right character position of the natural boundary in which
it has been placed.

When specified, the LEFT and the RIGHT phrases are syntax checked but have no
effect on the execution of the program.

The length of an elementary item is not affected by the SYNCHRONIZED clause.

The following table lists the effect of the SYNCHRONIZE clause on other language
elements.

Table 15. SYNCHRONIZE clause effect on other language elements

Language element Comments

OCCURS clause When specified for an item within the scope of an OCCURS clause,
each occurrence of the item is synchronized.

USAGE DISPLAY or |Each item is syntax checked, but the SYNCHRONIZED clause has
PACKED-DECIMAL |no effect on execution.

USAGE NATIONAL | Each item is syntax checked, but the SYNCHRONIZED clause has
no effect on execution.

216 COBOL for Windows Version 7.5 Language Reference



Table 15. SYNCHRONIZE clause effect on other language elements (continued)

Language element

Comments

USAGE BINARY or
COMPUTATIONAL

When the item is the first elementary item subordinate to an item
that contains a REDEFINES clause, the item must not require the
addition of unused character positions.

When the synchronized clause is not specified for a subordinate
data item (one with a level number of 02 through 49):

* The item is aligned at a displacement that is a multiple of 2
relative to the beginning of the record if its USAGE is BINARY
and its PICTURE is in the range of S9 through S9(4).

* The item is aligned at a displacement that is a multiple of 4
relative to the beginning of the record if its USAGE is BINARY
and its PICTURE is in the range of S9(5) through S9(18), or its
USAGE is INDEX.

When SYNCHRONIZED is not specified for binary items, no space
is reserved for slack bytes.

USAGE POINTER,

The data is aligned on a fullword boundary.

COMPUTATIONAL-5

PROCEDURE-

POINTER,

FUNCTION-

POINTER, OBJECT

REFERENCE

USAGE The data is aligned on a fullword boundary.
COMPUTATIONAL-1

USAGE The data is aligned on a doubleword boundary.
COMPUTATIONAL-2

USAGE The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL-3 | PACKED-DECIMAL item.

USAGE The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL-4 | COMPUTATIONAL item.

USAGE The data is treated the same as the SYNCHRONIZED clause for a

COMPUTATIONAL item.

DBCS and external
floating-point items

Each item is syntax checked, but the SYNCHRONIZED clause has
no effect on execution.

REDEFINES clause

For an item that contains a REDEFINES clause, the data item that
is redefined must have the proper boundary alignment for the data
item that redefines it. For example, if you write the following, be
sure that data item A begins on a fullword boundary:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) BINARY SYNC.

In the file section, the compiler assumes that all level-01 records that contain
SYNCHRONIZED items are aligned on doubleword boundaries in the buffer. You
must provide the necessary slack bytes between records to ensure alignment when
there are multiple records in a block.

In the working-storage section, the compiler aligns all level-01 entries on a
doubleword boundary.

Chapter 19. Data division—data description entry 217



For the purposes of aligning binary items in the linkage section, all level-01 items
are assumed to begin on doubleword boundaries. Therefore, if you issue a CALL
statement, such operands of any USING phrase within it must be aligned
correspondingly.

Slack bytes
There are two types of slack bytes:

* Slack bytes within records: unused character positions that precede each
synchronized item in the record

* Slack bytes between records: unused character positions added between blocked
logical records

Slack bytes within records

For any data description that has binary items that are not on their natural
boundaries, the compiler inserts slack bytes within a record to ensure that all
SYNCHRONIZED items are on their proper boundaries.

Because it is important that you know the length of the records in a file, you need
to determine whether slack bytes are required and, if so, how many bytes the
compiler will add. The algorithm the compiler uses is as follows:

* The total number of bytes occupied by all elementary data items that precede
the binary item are added together, including any slack bytes previously added.

* This sum is divided by m, where:
— m = 2 for binary items of four-digit length or less

— m = 4 for binary items of five-digit length or more and for
COMPUTATIONAL-1 data items

m = 4 for data items described with USAGE INDEX, USAGE POINTER,
USAGE PROCEDURE-POINTER, USAGE OBJECT REFERENCE, or USAGE
FUNCTION-POINTER

— m = 8 for COMPUTATIONAL-2 data items

e If the remainder () of this division is equal to zero, no slack bytes are required.
If the remainder is not equal to zero, the number of slack bytes that must be
added is equal to m - r.

These slack bytes are added to each record immediately following the elementary
data item that precedes the binary item. They are defined as if they constitute an
item with a level-number equal to that of the elementary item that immediately
precedes the SYNCHRONIZED binary item, and are included in the size of the
group that contains them.

For example:

01 FIELD-A.
05 FIELD-B PICTURE X(5).
05 FIELD-C.
10 FIELD-D PICTURE XX.
[10 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
10 FIELD-E COMPUTATIONAL PICTURE S9(6) SYNC.
01 FIELD-L.
05 FIELD-M PICTURE X(5).
05 FIELD-N PICTURE XX.
[05 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
05 FIELD-0.

10 FIELD-P COMPUTATIONAL  PICTURE S9(6) SYNC.

218 COBOL for Windows Version 7.5 Language Reference



Slack bytes can also be added by the compiler when a group item is defined with

an OCCURS clause and contains within it a SYNCHRONIZED binary data item. To

determine whether slack bytes are to be added, the following action is taken:

¢ The compiler calculates the size of the group, including all the necessary slack
bytes within a record.

* This sum is divided by the largest m required by any elementary item within the
group.

 If r is equal to zero, no slack bytes are required. If 7 is not equal to zero, m - r
slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the group item that
contains the OCCURS clause. For example, a record defined as follows will appear
in storage, as shown, in the figure after the record:

01 WORK-RECORD.

05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.
10 COMP-TYPE PICTURE X.
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HOURS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE X(5).

«— Firstoccurrence of COMP-TABLE ——

| Slack COMP- |

COMP-PAY HOURS ‘

!
i
i
i
i
i
i
COMP-NAME |
i
i

COMP-TYPE

WORK-CODE

| I
I I
I I
I I
I I
i \ i
| | [
H H H H H

[
i

i

i

i

i

|
H

D D D D

D =doublewordboundary
F =fullword boundary
H=halfwordboundary

In order to align COMP-PAY and COMP-HOURS on their proper boundaries, the
compiler added 2 slack bytes within the record.

In the previous example, without further adjustment, the second occurrence of
COMP-TABLE would begin 1 byte before a doubleword boundary, and the alignment
of COMP-PAY and COMP-HOURS would not be valid for any occurrence of the table
after the first. Therefore, the compiler must add slack bytes at the end of the
group, as though the record had been written as follows:

01 WORK-RECORD.

05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.
10 COMP-TYPE PICTURE X.
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HOURS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE X(5).
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]

Chapter 19. Data division—data description entry 219



In this example, the second and each succeeding occurrence of COMP-TABLE begins 1
byte beyond a doubleword boundary. The storage layout for the first occurrence of
COMP-TABLE will now appear as shown in the following figure:

«—First Occurrence of COMP-TABLE ——!+—Second Occurrence of COMP-TABLE I

|
| I

i |

Slack | comp-!
Bytes | COMP-PAY | H6uRs!
\ \

1 I | | 1 | I | | | |

L |

| |
| |
| |
| |
| |
| [
H H H H H H H

COMP-NAME

compTYPE

ITr—t—————

WORK-CODE

D D D D D

D =doublewordboundary
F =fullwordboundary
H=halfword boundary

Each succeeding occurrence within the table will now begin at the same relative
position as the first.

Slack bytes between records

The lengths of all the elementary data items in the record, including all slack bytes,
are added. The total is then divided by the highest value of m for any one of the
elementary items in the record.

If r (the remainder) is equal to zero, no slack bytes are required. If r is not equal to
zero, m - r slack bytes are required. These slack bytes can be specified by writing a
level-02 FILLER at the end of the record.

Consider the following record description:

01 COMP-RECORD.
05 A-1 PICTURE X(5).

05 A-2  PICTURE X(3).
05 A-3  PICTURE X(3).
05 B-1  PICTURE $S9999 USAGE COMP SYNCHRONIZED.
05 B-2  PICTURE $S99999 USAGE COMP SYNCHRONIZED.
05 B-3  PICTURE $S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2, and A-3 totals 11. B-1 is a four-digit
COMPUTATIONAL item and 1 slack byte must therefore be added before B-1.
With this byte added, the number of bytes that precede B-2 totals 14. Because B-2
is a COMPUTATIONAL item of five digits in length, 2 slack bytes must be added
before it. No slack bytes are needed before B-3.

The revised record description entry now appears as:
01 COMP-RECORD.

05 A-1 PICTURE X(5).

05 A-2 PICTURE X(3).

05 A-3 PICTURE X(3).

[05 SLACK-BYTE-1  PICTURE X.  INSERTED BY COMPILER]

05 B-1 PICTURE $9999 USAGE COMP SYNCHRONIZED.
[05 SLACK-BYTE-2  PICTURE XX. INSERTED BY COMPILER]

05 B-2 PICTURE $99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE $9999 USAGE COMP SYNCHRONIZED.

220 COBOL for Windows Version 7.5 Language Reference



There is a total of 22 bytes in COMP-RECORD, but from the rules above, it appears
that m = 4 and r = 2. Therefore, to attain proper alignment for blocked records, you
must add 2 slack bytes at the end of the record.

The final record description entry appears as:
01 COMP-RECORD.

05 A-1 PICTURE X(5).

05 A-2 PICTURE X(3).

05 A-3 PICTURE X(3).

[05 SLACK-BYTE-1  PICTURE X.  INSERTED BY COMPILER]

05 B-1 PICTURE $9999 USAGE COMP SYNCHRONIZED.
[05 SLACK-BYTE-2 ~ PICTURE XX. INSERTED BY COMPILER]

05 B-2 PICTURE $99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.
05 FILLER PICTURE XX. [SLACK BYTES YOU ADD]

USAGE clause

The USAGE clause specifies the format in which data is represented in storage.

Chapter 19. Data division—data description entry 221



— Format 1

BINARY
I—USAGEﬁ I—NATIVE—I
IN —COMP:

I—NATIVE—I
|—NATIVEJ
I—NATIVE—I

(1)

—COMP-1

—COMP-2

—COMP-3

—NATIVE

|—NATIVEJ

(1)

—COMP-4

—COMP-5

—NATIVE

—COMPUTATIONAL:
|—NATIVEJ
—COMPUTATIONAL- 1_|_—_|—
NATIVE
—COMPUTATIONAL-Z—L—J—
NATIVE

—COMPUTATIONAL-3

(1)
LNATIVE

—COMPUTATIONAL-4—L——|—
NATIVE

—COMPUTATIONAL-5

(1)
—NATIVE:
—DISPLAY
|—NATIVEJ
—DISPLAY-1
I—NATIVE—I
—INDEX
—NATIONAL:

L (1)
NATIVE

objref phrase
—PACKED-DECIMAL

[_ (1)
NATIVE
—POINTER

—PROCEDURE-POINTER
—FUNCTION-POINTER:

objref phrase:

|—O0BJECT REFERENCE
I—cluss—name—l—l

Notes:

1 The NATIVE phrase is treated as a comment for COMP-3,
COMPUTATIONAL-3, COMP-5, COMPUTATIONAL-5, NATIONAL,
and PACKED-DECIMAL data items.

The USAGE clause can be specified for a data description entry with any
level-number other than 66 or 88.

222  COBOL for Windows Version 7.5 Language Reference



When specified at the group level, the USAGE clause applies to each elementary
item in the group. The usage of elementary items must not contradict the usage of
a group to which the elementary items belongs.

A USAGE clause must not be specified in a group level entry for which a
GROUP-USAGE NATIONAL clause is specified.

When a GROUP-USAGE NATIONAL clause is specified or implied for a group
level entry, USAGE NATIONAL must be specified or implied for every elementary
item within the group. For details, see ["GROUP-USAGE clause” on page 182/

When the USAGE clause is not specified at either the group or elementary level, a
usage clause is implied with:

* Usage DISPLAY when the PICTURE clause contains only symbols other than G
or N

* Usage NATIONAL when the PICTURE clause contains only one or more of the
symbol N and the NSYMBOL(NATIONAL) compiler option is in effect

* Usage DISPLAY-1 when the PICTURE clause contains one or more of the symbol
N and the NSYMBOL(DBCS) compiler option is in effect

For data items defined with the DATE FORMAT clause, only usage DISPLAY and
COMP-3 (or its equivalents, COMPUTATIONAL-3 and PACKED-DECIMAL) are
allowed. For details, see [“Combining the DATE FORMAT clause with other]
fclauses” on page 178

Computational items

A computational item is a value used in arithmetic operations. It must be numeric.
If a group item is described with a computational usage, the elementary items
within the group have that usage.

The maximum length of a computational item is 18 decimal digits, except for a
PACKED-DECIMAL item. If the ARITH(COMPAT) compiler option is in effect,
then the maximum length of a PACKED-DECIMAL item is 18 decimal digits. If the
ARITH(EXTEND) compiler option is in effect, then the maximum length of a
PACKED-DECIMAL item is 31 decimal digits.

The PICTURE of a computational item can contain only:

9 One or more numeric character positions
S One operational sign

A% One implied decimal point

P One or more decimal scaling positions

COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point)
cannot have PICTURE strings.

BINARY
Specified for binary data items. Such items have a decimal equivalent
consisting of the decimal digits 0 through 9, plus a sign. Negative numbers
are represented as the two’s complement of the positive number with the
same absolute value.

The amount of storage occupied by a binary item depends on the number
of decimal digits defined in its PICTURE clause:

Chapter 19. Data division—data description entry 223



Digits in PICTURE clause Storage occupied
1 through 4 2 bytes (halfword)
5 through 9 4 bytes (fullword)
10 through 18 8 bytes (doubleword)

If the BINARY(S390) compiler option is in effect, binary data is big-endian:
the operational sign is contained in the leftmost bit. Otherwise, binary data
is little-endian: the operational sign is contained in the leftmost bit of the
rightmost byte.

BINARY, COMPUTATIONAL, and COMPUTATIONAL-4 data items can be
affected by the BINARY and TRUNC compiler options. For information
about the effect of these compiler options, see the COBOL for Windows
Programming Guide.

PACKED-DECIMAL
Specified for internal decimal items. Such an item appears in storage in
packed decimal format. There are two digits for each character position,
except for the trailing character position, which is occupied by the
low-order digit and the sign. Such an item can contain any of the digits 0
through 9, plus a sign, representing a value not exceeding 18 decimal
digits.
The sign representation uses the same bit configuration as the 4-bit sign
representation in zoned decimal fields. For details, see the COBOL for
Windows Programming Guide.

COMPUTATIONAL or COMP (binary)
This is the equivalent of BINARY. The COMPUTATIONAL phrase is
synonymous with BINARY.

COMPUTATIONAL-1 or COMP-1 (floating-point)
Specified for internal floating-point items (single precision). COMP-1 items
are 4 bytes long.

COMP-1 data items are affected by the FLOAT(NATIVE | HEX) compiler
option. For details, see the COBOL for Windows Programming Guide.

COMPUTATIONAL-2 or COMP-2 (long floating-point)
Specified for internal floating-point items (double precision). COMP-2
items are 8 bytes long.

COMP-2 data items are affected by the FLOAT(NATIVE | HEX) compiler
option. For details, see the COBOL for Windows Programming Guide.

COMPUTATIONAL-3 or COMP-3 (internal decimal)
This is the equivalent of PACKED-DECIMAL.

COMPUTATIONAL-4 or COMP-4 (binary)
This is the equivalent of BINARY.

COMPUTATIONAL-5 or COMP-5 (native binary)
These data items are represented in storage as binary data. The data items
can contain values up to the capacity of the native binary representation (2,
4 or 8 bytes), rather than being limited to the value implied by the number
of nines in the picture for the item (as is the case for USAGE BINARY
data). When numeric data is moved or stored into a COMP-5 item,
truncation occurs at the binary field size rather than at the COBOL picture
size limit. When a COMP-5 item is referenced, the full binary field size is
used in the operation.

224  COBOL for Windows Version 7.5 Language Reference



The TRUNC(BIN) compiler option causes all binary data items (USAGE
BINARY, COMP, COMP-4) to be handled as if they were declared USAGE
COMP-5.

The following table shows several picture character strings, the resulting
storage representation, and the range of values for data items described
with USAGE COMP-5.

Picture Storage representation Numeric values

S9(1) through S9(4) Binary halfword (2 bytes) -32768 through +32767

S9(5) through S9(9) Binary fullword (4 bytes) -2,147 483,648 through
+2,147,483,647

S9(10) through S9(18) Binary doubleword (8 bytes) |-9,223,372,036,854,775,808
through
+9,223,372,036,854,775,807

9(1) through 9(4) Binary halfword (2 bytes) 0 through 65535

9(5) through 9(9) Binary fullword (4 bytes) 0 through 4,294,967,295

9(10) through 9(18) Binary doubleword (8 bytes) |0 through
18,446,744,073,709,551,615

The picture for a COMP-5 data item can specify a scaling factor (that is,
decimal positions or implied integer positions). In this case, the maximal
capacities listed in the table above must be scaled appropriately. For
example, a data item described with PICTURE S99V99 COMP-5 is
represented in storage as a binary halfword, and supports a range of
values from -327.68 to +327.67.

USAGE NOTE: When the ON SIZE ERROR phrase is used on an
arithmetic statement and a receiver is defined with USAGE COMP-5, the
maximum value that the receiver can contain is the value implied by the
item’s decimal PICTURE character-string. Any attempt to store a value
larger than this maximum will result in a size error condition.

DISPLAY phrase

The data item is stored in character form, one character for each 8-bit byte. This
corresponds to the format used for printed output. DISPLAY can be explicit or
implicit.

USAGE IS DISPLAY is valid for the following types of items:
* Alphabetic

* Alphanumeric

* Alphanumeric-edited

* Numeric-edited

* External floating-point

¢ External decimal

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited items are
discussed in [“Data categories and PICTURE rules” on page 197

External decimal items with USAGE DISPLAY are sometimes referred to as zoned
decimal items. Each digit of a number is represented by a single byte. The 4

Chapter 19. Data division—data description entry 225




high-order bits of each byte are zone bits; the 4 high-order bits of the low-order
byte represent the sign of the item. The 4 low-order bits of each byte contain the
value of the digit.

If the ARITH(COMPAT) compiler option is in effect, then the maximum length of
an external decimal item is 18 digits. If the ARITH(EXTEND) compiler option is in
effect, then the maximum length of an external decimal item is 31 digits.

The PICTURE character-string of an external decimal item can contain only: 9s; the
operational-sign, S; the assumed decimal point, V; and one or more Ps.

Effect of CHAR(EBCDIC) compiler option

Data items defined with the DISPLAY or DISPLAY-1 phrase are treated as EBCDIC
when the CHAR(EBCDIC) compiler option is used, unless the character data is
defined with the NATIVE phrase.

DISPLAY-1 phrase

The DISPLAY-1 phrase defines an item as DBCS. The data item is stored in
character form, with each character occupying 2 bytes of storage.

FUNCTION-POINTER phrase

The FUNCTION-POINTER phrase defines an item as a function-pointer data item. A
function-pointer data item can contain the address of a procedure entry point.

A function-pointer is a 4-byte elementary item. Function-pointers have the same
capabilities as procedure-pointers. Function-pointers are easily interoperable with C
function pointers.

A function-pointer can contain one of the following addresses or can contain
NULL:

* The primary entry point of a COBOL program, defined by the PROGRAM-ID
paragraph of the outermost program

* An alternate entry point of a COBOL program, defined by a COBOL ENTRY
statement

* An entry point in a non-COBOL program

A VALUE clause for a function-pointer data item can contain only NULL or
NULLS.

A function-pointer can be used in the same contexts as a procedure-pointer, as
defined in ["PROCEDURE-POINTER phrase” on page 229)

INDEX phrase

A data item defined with the INDEX phrase is an index data item.

An index data item is a 4-byte elementary data item (not necessarily connected with
any table) that can be used to save index-name values for future reference.
Through a SET statement, an index data item can be assigned an index-name
value. Such a value corresponds to the occurrence number in a table.

226 COBOL for Windows Version 7.5 Language Reference



Direct references to an index data item can be made only in a SEARCH statement,
a SET statement, a relation condition, the USING phrase of the procedure division
header, or the USING phrase of the CALL or ENTRY statement.

An index data item can be part of an alphanumeric group item that is referenced
in a MOVE statement or an input/output statement.

An index data item saves values that represent table occurrences, yet is not
necessarily defined as part of any table. There is no conversion of values when an
index data item is referenced in the following circumstances:

e directly in a SEARCH or SET statement
¢ indirectly in a MOVE statement

* indirectly in an input or output statement
An index data item cannot be a conditional variable.

The DATE FORMAT, JUSTIFIED, PICTURE, BLANK WHEN ZERO, or VALUE
clauses cannot be used to describe a group item or elementary items described
with the USAGE IS INDEX clause.

SYNCHRONIZED can be used with USAGE IS INDEX to obtain efficient use of the
index data item.

NATIONAL phrase

The NATIONAL phrase defines an item whose content is represented in storage in
UTF-16 (CCSID 1202). The class and category of the data item depend on the
picture symbols that are specified in the associated PICTURE clause.

OBJECT REFERENCE phrase
A data item defined with the OBJECT REFERENCE phrase is an object reference.

class-name-1
An optional class name.

You must declare class-name-1 in the REPOSITORY paragraph in the
configuration section of the containing class or outermost program.

If specified, class-name-1 indicates that data-name-1 always refers to an
object-instance of class class-name-1 or a class derived from class-name-1.

Important: The programmer must ensure that the referenced object meets
this requirement; violations are not diagnosed.

If class-name-1 is not specified, the object reference can refer to an object of
any class. In this case, data-name-1 is a universal object reference.

You can specify data-name-1 within an alphanumeric group item without
affecting the semantics of the group item. There is no conversion of values
or other special handling of the object references when statements are
executed that operate on the group. The group continues to behave as an
alphanumeric group item.

An object reference can be defined in any section of the data division of a factory
definition, object definition, method, or program. An object-reference data item can
be used in only:

e A SET statement (format 7 only)
* A relation condition

Chapter 19. Data division—data description entry ~ 227



* An INVOKE statement
* The USING or RETURNING phrase of an INVOKE statement
e The USING or RETURNING phrase of a CALL statement

* A program procedure division or ENTRY statement USING or RETURNING
phrase

* A method procedure division USING or RETURNING phrase

Object-reference data items:

* Are ignored in CORRESPONDING operations

* Are unaffected by INITIALIZE statements

¢ Can be the subject or object of a REDEFINES clause
* Cannot be a conditional variable

* Can be written to a file (but upon subsequent reading of the record the content
of the object reference is undefined)

A VALUE clause for an object-reference data item can contain only NULL or
NULLS.

You can use the SYNCHRONIZED clause with the USAGE OBJECT REFERENCE
clause to obtain efficient alignment of the object-reference data item.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE
OBJECT REFERENCE clause.

POINTER phrase

A data item defined with USAGE IS POINTER is a pointer data item. A pointer data
item is a 4-byte elementary item.

You can use pointer data items to accomplish limited base addressing. Pointer data
items can be compared for equality or moved to other pointer items.

A pointer data item can be used only:
* In a SET statement (format 5 only)
* In a relation condition

* In the USING phrase of a CALL statement, an ENTRY statement, or the
procedure division header

Pointer data items can be part of an alphanumeric group that is referred to in a
MOVE statement or an input/output statement. However, if a pointer data item is
part of a group, there is no conversion of values when the statement is executed.

A pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS POINTER to obtain efficient use of
the pointer data item.

A VALUE clause for a pointer data item can contain only NULL or NULLS.
A pointer data item cannot be a conditional variable.

A pointer data item does not belong to any class or category.

228 COBOL for Windows Version 7.5 Language Reference



The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE IS
POINTER clause.

Pointer data items are ignored in the processing of a CORRESPONDING phrase.

A pointer data item can be written to a data set, but upon subsequent reading of
the record that contains the pointer, the address contained might no longer
represent a valid pointer.

USAGE IS POINTER is implicitly specified for the ADDRESS OF special register.
For more information, see the COBOL for Windows Programming Guide.

PROCEDURE-POINTER phrase

The PROCEDURE-POINTER phrase defines an item as a procedure-pointer data item.
A procedure-pointer data item is a 4-byte elementary item.

A procedure-pointer can contain one of the following addresses or can contain
NULL:

¢ The primary entry point of a COBOL program as defined by the program-ID
paragraph of the outermost program of a compilation unit

* An alternate entry point of a COBOL program as defined by a COBOL ENTRY
statement

* An entry point in a non-COBOL program

A procedure-pointer data item can be used only:

* In a SET statement (format 6 only)

* In a CALL statement

¢ In a relation condition

* In the USING phrase of an ENTRY statement or the procedure division header

Procedure-pointer data items can be compared for equality or moved to other
procedure-pointer data items.

Procedure-pointer data items can be part of a group that is referred to in a MOVE
statement or an input/output statement. However, there is no conversion of values
when the statement is executed. If a procedure-pointer data item is written to a
data set, subsequent reading of the record that contains the procedure-pointer can
result in an invalid value in the procedure-pointer.

A procedure-pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS PROCEDURE-POINTER to obtain
efficient alignment of the procedure-pointer data item.

The GLOBAL, EXTERNAL, and OCCURS clause can be used with USAGE IS
PROCEDURE-POINTER.

A VALUE clause for a procedure-pointer data item can contain only NULL or
NULLS.

Chapter 19. Data division—data description entry ~ 229



The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE IS
PROCEDURE-POINTER clause.

A procedure-pointer data item cannot be a conditional variable.

A procedure-pointer data item does not belong to any class or category.

Procedure-pointer data items are ignored in CORRESPONDING operations.

NATIVE phrase

By using the NATIVE phrase, you can mix characters, floating-point, and binary
data as represented on the z/OS and Windows platforms. The NATIVE phrase
overrides the CHAR(EBCDIC), FLOAT(HEX), and BINARY(S390) compiler options,
which indicate host data type usages.

The use of both host and native data types within a program (ASCII and EBCDIC,
Hex Floating-point and IEEE floating-point, and either or both big endian and little
endian binary) is valid only for those data items specifically defined with the
NATIVE phrase.

Specifying NATIVE does not change the class or the category of the data item.

Numeric data items are processed in arithmetic operations (numeric comparisons,
arithmetic expressions, assignment to numeric targets, arithmetic statements) based
on their logical numeric values, regardless of their internal representations.

Characters are converted to the representation of the target item prior to an
assignment.

Comparisons are done based on the collating sequence rules applicable to the
operands. If native and non-native alphanumeric or DBCS characters are
compared, the comparison is based on the COLLSEQ option in effect.

VALUE clause

The VALUE clause specifies the initial contents of a data item or the values
associated with a condition-name. The use of the VALUE clause differs depending
on the data division section in which it is specified.

A VALUE clause that is used in the file section or the linkage section in an entry
other than a condition-name entry is syntax checked, but has no effect on the
execution of the program.

In the working-storage section and the local-storage section, the VALUE clause can
be used in condition-name entries or in specifying the initial value of any data
item. The data item assumes the specified value at the beginning of program
execution. If the initial value is not explicitly specified, the value is unpredictable.

230 COBOL for Windows Version 7.5 Language Reference



Format 1

Format 1: literal value

»»—VALUE |_ _| literal ><
IS

Format 1 specifies the initial value of a data item. Initialization is independent of
any BLANK WHEN ZERO or JUSTIFIED clause that is specified.

A format-1 VALUE clause specified in a data description entry that contains or is
subordinate to an OCCURS clause causes every occurrence of the associated data
item to be assigned the specified value. Each structure that contains the
DEPENDING ON phrase of the OCCURS clause is assumed to contain the
maximum number of occurrences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains
or is subordinate to an entry that contains either an EXTERNAL or a REDEFINES
clause. This rule does not apply to condition-name entries.

A format-1 VALUE clause can be specified for an elementary data item or for a
group item. When the VALUE clause is specified at the group level, the group area
is initialized without consideration for the subordinate entries within the group. In
addition, a VALUE clause must not be specified for subordinate entries within the

group.

For group items, the VALUE clause must not be specified if any subordinate
entries contain a JUSTIFIED or SYNCHRONIZED clause.

If the VALUE clause is specified for an alphanumeric group, all subordinate items
must be explicitly or implicitly described with USAGE DISPLAY.

The VALUE clause must not conflict with other clauses in the data description
entry or in the data description of that entry’s hierarchy.

The functions of the editing characters in a PICTURE clause are ignored in
determining the initial value of the item described. However, editing characters are
included in determining the size of the item. Therefore, any editing characters
must be included in the literal. For example, if the item is defined as PICTURE
+999.99 and the value is to be +12.34, then the VALUE clause should be specified
as VALUE “+012.34".

A VALUE clause cannot be specified for external floating-point items.

A data item cannot contain a VALUE clause if the prior data item contains an
OCCURS clause with the DEPENDING ON phrase.

Rules for literal values

* Wherever a literal is specified, a figurative constant can be substituted, in
accordance with the rules specified in [‘Figurative constants” on page 13

e If the item is class numeric, the VALUE clause literal must be numeric. If the
literal defines the value of a working-storage item or local-storage item, the
literal is aligned according to the rules for numeric moves, with one additional

Chapter 19. Data division—data description entry 231



restriction: The literal must not have a value that requires truncation of nonzero
digits. If the literal is signed, the associated PICTURE character-string must
contain a sign symbol.

* With some exceptions, numeric literals in a VALUE clause must have a value
within the range of values indicated by the PICTURE clause for the item. For
example, for PICTURE 99PPD, the literal must be zero or within the range 1000
through 99000. For PICTURE PPP99, the literal must be within the range 0.00000
through 0.00099.

The exceptions are the following:

— Data items described with usage COMP-5 that do not have a picture symbol
P in their PICTURE clause

— When the TRUNC(BIN) compiler option is in effect, data items described with
usage BINARY, COMP, or COMP-4 that do not have a picture symbol P in
their PICTURE clause

A VALUE clause for these items can have a value up to the capacity of the
native binary representation.

* If the VALUE clause is specified for an elementary alphabetic, alphanumeric,
alphanumeric-edited, or numeric-edited item described with usage DISPLAY, the
VALUE clause literal must be an alphanumeric literal or a figurative constant.
The literal is aligned according to the alphanumeric alignment rules, with one
additional restriction: the number of characters in the literal must not exceed the
size of the item.

* If the VALUE clause is specified for an elementary national, national-edited, or
numeric-edited item described with usage NATIONAL, the VALUE clause literal
must be a national or alphanumeric literal or a figurative constant as specified in
[“Figurative constants” on page 13.|The value of an alphanumeric literal is
converted from its source code representation to UTF-16 representation. The
literal is aligned according to the national alignment rules, with one additional
restriction: the number of characters in the literal must not exceed the size, in
character positions, of the item.

* If the VALUE clause is specified at the group level for an alphanumeric group,
the literal must be an alphanumeric literal or a figurative constant as specified in
[“Figurative constants” on page 13 |other than ALL national-literal. The size of the
literal must not exceed the size of the group item.

If the VALUE clause is specified at the group level for a national group, the
literal can be an alphanumeric literal, a national literal, or one of the figurative
constants ZERO, SPACE, QUOTES, HIGH-VALUE, LOW-VALUE, symbolic
character, ALL national-literal, or ALL -literal. The value of an alphanumeric literal
is converted from its source code representation to UTF-16 representation. Each
figurative constant represents a national character value. The size of the literal
must not exceed the size of the group item.

A VALUE clause associated with a DBCS item must contain a DBCS literal, the
figurative constant SPACE, or the figurative constant ALL DBCS-literal. The
length of the literal must not exceed the size indicated by the data item’s
PICTURE clause.

A VALUE clause that specifies a national literal can be associated only with a
data item of class national.

A VALUE clause that specifies a DBCS literal can be associated only with a data
item of class DBCS.

A VALUE clause associated with a COMPUTATIONAL-1 or
COMPUTATIONAL-2 (internal floating-point) item must specify a floating-point
literal. In addition, the figurative constant ZERO and both integer and decimal
forms of the zero literal can be specified in a floating-point VALUE clause.

232  COBOL for Windows Version 7.5 Language Reference



For information about floating-point literal values, see [‘Rules for floating-point|
[literal values” on page 31/

Format 2

— Format 2: condition-name value

v

»»—88—condition-name-1 VALUE
L L5

VALUES_L—_|_
ARE

»Y literal-1 g . <
LI:THROUGH literal-2
THRU

This format associates a value, values, or ranges of values with a condition-name.
Each such condition-name requires a separate level-88 entry. Level-number 88 and
the condition-name are not part of the format-2 VALUE clause itself. They are
included in the format only for clarity.

condition-name-1
A user-specified name that associates a value with a conditional variable. If
the associated conditional variable requires subscripts or indexes, each
procedural reference to the condition-name must be subscripted or indexed
as required for the conditional variable.

Condition-names are tested procedurally in condition-name conditions (see
[“Conditional expressions” on page 254).

literal-1
Associates the condition-name with a single value.

The class of literal-1 must be a valid class for assignment to the associated
conditional variable.

literal-1 THROUGH literal-2
Associates the condition-name with at least one range of values. When the
THROUGH phrase is used, literal-1 must be less than literal-2, unless the
associated data item is a non-year-last windowed date field. For details, see
[“Rules for condition-name entries” on page 234/

literal-1 and literal-2 must be of the same class. The class of literal-1 and
literal-2 must be a valid class for assignment to the associated conditional
variable.

The range of alphanumeric literals, national literals, or DBCS literals
specified for the THROUGH phrase is based on the collating sequence in
effect for the associated conditional variable. For more information about
collating sequences, see|Appendix G, “Locale considerations,” on page 593/

If the associated conditional variable is of class DBCS, literal-1 and literal-2
must be DBCS literals. The figurative constant SPACE or the figurative
constant ALL DBCS-literal can be specified.

Chapter 19. Data division—data description entry 233



If the associated conditional variable is of class national, literal-1 and
literal-2 must be either both national literals or both alphanumeric literals
for a given condition-name. The figurative constants ZERO, SPACE,
QUOTE, HIGH-VALUE, LOW-VALUE, symbolic-character, ALL
national-literal, or ALL literal can be specified.

Rules for condition-name entries

* The VALUE clause is required in a condition-name entry, and must be the only
clause in the entry. Each condition-name entry is associated with a preceding
conditional variable. Thus every level-88 entry must always be preceded either
by the entry for the conditional variable or by another level-88 entry when
several condition-names apply to one conditional variable. Each such level-88
entry implicitly has the PICTURE characteristics of the conditional variable.

* A space, a separator comma, or a separator semicolon must separate successive
operands.

Each entry must end with a separator period.
* The keywords THROUGH and THRU are equivalent.

* The condition-name entries associated with a particular conditional variable
must immediately follow the conditional variable entry. The conditional variable
can be any elementary data description entry except the following:

— Another condition-name
— A RENAMES clause (level-66 item)
— An item described with USAGE IS INDEX

— An item described with USAGE POINTER, USAGE PROCEDURE-POINTER,
USAGE FUNCTION-POINTER, or USAGE OBJECT REFERENCE

* Condition-names can be specified both at the group level and at subordinate
levels within an alphanumeric group or national group.

* When the condition-name is specified for an alphanumeric group data
description entry:

— The value of literal-1 (or literal-1 and literal-2) must be specified as an
alphanumeric literal or figurative constant.

— The group can contain items of any usage.

* When the condition-name is specified for a national group data description
entry:
— The value of literal-1 (or literal-1 and literal-2) must be specified as an
alphanumeric literal, a national literal, or a figurative constant.

— The group can contain only items of usage national, as specified for the
["GROUP-USAGE clause” on page 182

* When the condition-name is associated with an alphanumeric group data
description entry or a national group data description entry:

— The size of each literal value must not exceed the sum of the sizes of all the
elementary items within the group.

— No element within the group can contain a JUSTIFIED or SYNCHRONIZED
clause.

* Relation tests implied by the definition of a condition-name are performed in
accordance with the rules referenced in the table below.

Table 16. Relation test references for condition-names

Type of conditional variable Relation condition rules

Alphanumeric group item |“Group comparisons” on page 267

234 COBOL for Windows Version 7.5 Language Reference



Table 16. Relation test references for condition-names (continued)

Type of conditional variable

Relation condition rules

National group item (treated as elementary data ["National comparisons” on page 265

item of class national)

Elementary data item of class alphanumeric ’ Alphanumeric comparisons” on page|
D6

Elementary data item of class national

["National comparisons” on page 265

Elementary data item of class numeric

["Numeric comparisons” on page 267

Elementary data item of class DBCS

["DBCS comparisons” on page 265|

* A VALUE clause that specifies a national literal can be associated with a
condition-name defined only for a data item of class national.

* A VALUE clause that specifies a DBCS literal can be associated with a
condition-name defined only for a data item of class DBCS.

* The literals in a condition-name entry for an elementary data item of class
national or a national group item must be either national literals or
alphanumeric literals, and literal-1 and literal-2 must be of the same class. For
alphanumeric groups or elementary data items of other classes, the type of
literal must be consistent with the data type of the conditional variable. In the

following example:

— CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables.
The PICTURE associated with COUNTY-NO limits the condition-name value

to a two-digit numeric literal.

The PICTURE associated with CITY limits the condition-name value to a
three-character alphanumeric literal.

— The associated condition-names are level-88 entries.
Any values for the condition-names associated with CITY-COUNTY-INFO

cannot exceed five characters.

Because this is an alphanumeric group item, the literal must be alphanumeric.

05 CITY-COUNTY-INFO.
88 BRONX
88 BROOKLYN
88 MANHATTAN
88 QUEENS
88 STATEN-ISLAND
10 COUNTY-NO
88 DUTCHESS
88 KINGS
88 NEW-YORK
88 RICHMOND
10 CITY
88 BUFFALO
88 NEW-YORK-CITY
88 POUGHKEEPSIE
05 POPULATION...

VALUE "O3NYC".
VALUE "24NYC".
VALUE "31INYC".
VALUE "41NYC".
VALUE "43NYC".
PICTURE 99.
VALUE 14.
VALUE 24.
VALUE 31.
VALUE 43.
PICTURE X(3).
VALUE "BUF".
VALUE "NYC".
VALUE "POK".

e If the item is a windowed date field, the following restrictions apply:

— For alphanumeric conditional variables:

- Both literal-1 and literal-2 (if specified) must be alphanumeric literals of the
same length as the conditional variable.

- The literals must not be specified as figurative constants.

- If literal-2 is specified, both literals must contain only decimal digits.

— If the YEARWINDOW compiler option is specified as a negative integer,

literal-2 must not be specified.

Chapter 19. Data division—data description entry 235



— If literal-2 is specified, literal-1 must be less than literal-2 after applying the
century window specified by the YEARWINDOW compiler option. That is,
the expanded date value of literal-1 must be less than the expanded date
value of literal-2.

For more information about using condition-names with windowed date fields,
see [“Condition-name conditions and windowed date field comparisons” on pagd

[258]

Format 3

Format 3: NULL value

»»—VALUE

Y
A

NULL
I—I S—l |—NU LLS—|

This format assigns an invalid address as the initial value of an item defined as
USAGE POINTER, USAGE PROCEDURE POINTER, or USAGE
FUNCTION-POINTER. It also assigns an invalid object reference as the initial
value of an item defined as USAGE OBJECT REFERENCE.

VALUE IS NULL can be specified only for elementary items described implicitly or

explicitly as USAGE POINTER, USAGE PROCEDURE-POINTER, USAGE
FUNCTION-POINTER, or USAGE OBJECT REFERENCE.

236 COBOL for Windows Version 7.5 Language Reference



Part 6. Procedure division

Chapter 20. Procedure division structure .
Requirements for a method procedure division .
The procedure division header
The USING phrase
RETURNING phrase . .
References to items in the hnkage sectlon .
Declaratives .
Procedures .
Arithmetic expressions
Arithmetic operators .
Arithmetic with date fields .
Addition that involves date fields
Subtraction that involves date fields.
Storing arithmetic results that involve date
fields . .
Conditional expressions .
Simple conditions .
Class condition . .
Condition-name condltlon .
Condition-name conditions and wmdowed
date field comparisons
Relation conditions
General relation conditions .
Alphanumeric comparisons.
DBCS comparisons
National comparisons
Numeric comparisons
Group comparisons .
Comparison of index-names and 1ndex data
items . . .
Comparison of date flelds .
Data pointer relation conditions .
Procedure-pointer and function-pointer relatlon
conditions .
Object-reference relatlon condltlons .
Sign condition . .
Date fields in sign condltrons .
Switch-status condition .
Complex conditions .
Negated simple conditions .
Combined conditions.
Order of evaluation of condltlons
Order of evaluation: .
Abbreviated combined relation condltlons
Using parentheses .
Statement categories .
Imperative statements
Arithmetic
Data movement
Ending
Input-output
Ordering . .
Procedure—branchmg
Program or method linkage
Table-handling .
Conditional statements .

© Copyright IBM Corp. 1996, 2008

. 241
. 242
. 243
. 244
. 246
. 246
. 247
. 247
. 249
. 250
. 251
. 252
. 252

. 253
. 254
. 254
. 255
. 257

. 258
. 258
. 259
. 264
. 265
. 265
. 267
. 267

. 267
. 268
. 269

. 270
. 271
. 271
. 272
. 272
. 272
. 273
. 274
. 275
. 275
. 275
. 276
. 278
. 278
. 279
. 279
. 279
. 279
. 280
. 280
. 280
. 280
. 280

Arithmetic

Data movement

Decision .

Input-output

Ordering . .

Program or method hnkage

Table-handling . .
Delimited scope statements.
Explicit scope terminators .
Implicit scope terminators .
Compiler-directing statements .

Statement operations .

CORRESPONDING phrase
GIVING phrase. .
ROUNDED phrase
SIZE ERROR phrases.
Arithmetic statements
Arithmetic statement operands

Size of operands

Overlapping operands

Multiple results. .
Data manipulation statements .

Overlapping operands
Input-output statements .
Common processing facilities .

File status key .

Invalid key condition.

INTO and FROM phrases

File position indicator

Chapter 21. Procedure division statements
ACCEPT statement
Data transfer .
System date-related 1nformat10n transfer
DATE, DATE YYYYMMDD, DAY, DAY
YYYYDDD, DAY-OF-WEEK, and TIME.
ADD statement.
ROUNDED phrase
SIZE ERROR phrases. .
CORRESPONDING phrase (format 3) .
END-ADD phrase . .
ALTER statement .
Segmentation con51derat10ns
CALL statement
USING phrase .
BY REFERENCE phrase
BY CONTENT phrase
BY VALUE phrase.
RETURNING phrase .
ON EXCEPTION phrase.
NOT ON EXCEPTION phrase .
ON OVERFLOW phrase.
END-CALL phrase
CANCEL statement
CLOSE statement . .
Effect of CLOSE statement on f11e types

. 280
. 280
. 281
. 281
. 281
. 281
. 281
. 281
. 282
. 282
. 282
. 282
. 283
. 284
. 284
. 285
. 286
. 286
. 286
. 287
. 287
. 288
. 288
. 288
. 288
. 288
. 293
. 293
. 294

. 295
. 296
. 296
. 297

. 298
. 300
. 302
. 302
. 302
. 302
. 303
. 303
. 305
. 307
. 308
. 308
. 309
. 310
.31
. 311
. 311
. 312
. 313
. 315
. 316

237



COMPUTE statement.
ROUNDED phrase
SIZE ERROR phrases.
END-COMPUTE phrase .
CONTINUE statement
DELETE statement
Sequential access mode .
Random or dynamic access mode
END-DELETE phrase.
DISPLAY statement
DIVIDE statement. .
ROUNDED phrase
REMAINDER phrase .
SIZE ERROR phrases.
END-DIVIDE phrase .
ENTRY statement .
USING phrase .
EVALUATE statement
END-EVALUATE phrase
Determining values

Comparing selection subjects and ob]ects .

Executing the EVALUATE statement
EXIT statement . . e
EXIT METHOD statement .
EXIT PROGRAM statement
GOBACK statement .
GO TO statement . .
Unconditional GO TO
Conditional GO TO
Altered GO TO. .
MORE-LABELS GO TO .
IF statement .
END-IF phrase .
Transferring control
Nested IF statements .
INITIALIZE statement
REPLACING phrase .
INITIALIZE statement rules
INSPECT statement
TALLYING phrase (formats 1 and 3)
REPLACING phrase (formats 2 and 3) .
Replacement rules.
BEFORE and AFTER phrases (all formats)
CONVERTING phrase (format 4).
Data types for identifiers and literals
Data flow .
Comparison cycle .
Example of the INSPECT statement
INVOKE statement .o
USING phrase .
BY VALUE phrase.

Conformance requrrements for arguments

RETURNING phrase .
Conformance requirements for the
RETURNING item.
ON EXCEPTION phrase.
NOT ON EXCEPTION phrase.
END-INVOKE phrase

Interoperable data types for COBOL and ]ava
Miscellaneous argument types for COBOL and

Java

. 318
. 319
. 319
. 319
. 320
. 321
. 321
. 321
. 322
. 323
. 325
. 327
. 328
. 328
. 328
. 329
. 329
. 330
. 331
. 331
. 332
. 333
. 334
. 335
. 336
. 337
. 338
. 338
. 338
. 339
. 339
. 340
. 340
. 341
. 341
. 342
. 343
. 343
. 345
. 348
. 349
. 350
. 350
. 350
. 351
. 352
. 352
. 354
. 355
. 357
. 357

357

. 358

. 358
. 359
. 359
. 359

360

. 361

238 COBOL for Windows Version 7.5 Language Reference

MERGE statement.

ASCENDING/ DESCENDING KEY phrase

COLLATING SEQUENCE phrase
USING phrase . .
GIVING phrase.

OUTPUT PROCEDURE phrase
MERGE special registers.
Segmentation considerations
MOVE statement .
Elementary moves. .
Elementary move rules .
Valid and invalid elementary moves.
Moves involving date fields
Moves involving file record areas.
Group moves
MULTIPLY statement.
ROUNDED phrase
SIZE ERROR phrases.
END-MULTIPLY phrase .
OPEN statement .
General rules
Label records
OPEN statement notes

PERFORM statement . .o
Basic PERFORM statement .
END-PERFORM
PERFORM with TIMES phrase
PERFORM with UNTIL phrase
PERFORM with VARYING phrase
Varying identifiers. .o
Varying two identifiers .

Varying three identifiers. .
Varying more than three 1dent1f1ers .
Varying phrase rules .

READ statement

KEY IS phrase .
AT END phrases .
INVALID KEY phrases .
END-READ phrase
Multiple record processing .
Sequential access mode .
Sequential files .
Indexed or relative files .
Random access mode.
Indexed files
Relative files.
Dynamic access mode
READ statement notes: .

RELEASE statement .

RETURN statement
AT END phrases
END-RETURN phrase

REWRITE statement . .
INVALID KEY phrases .
END-REWRITE phrase .

Reusing a logical record .
Sequential files .

Indexed files

Relative files.

SEARCH statement
Serial search.

. 363
. 363
. 365
. 366
. 366
. 366
. 367
. 367
. 369
. 370
. 371
. 373
. 374
. 375
. 375
. 376
. 377
. 377
. 377
. 378
. 380
. 380
. 380
. 383
. 383
. 385
. 385
. 386
. 387
. 388
. 389
. 391
. 391
. 392
. 393
. 395
. 395
. 395
. 395
. 395
. 396
. 396
. 397
. 398
. 398
. 398
. 399
. 399
. 400
. 402
. 403
. 403
. 404
. 404
. 405
. 405
. 405
. 405
. 406
. 407
. 408



Example: multidimensional serial search

VARYING phrase .

WHEN phrase (serial search)

Binary search
WHEN phrase (bmary search)

Search statement considerations .
AT END and WHEN phrases .
NEXT SENTENCE.
END-SEARCH phrase

SET statement . .
Format 1: SET for ba51c table handhng
Format 2: SET for adjusting indexes .
Format 3: SET for external switches .
Format 4: SET for condition-names . .o
Format 5: SET for USAGE IS POINTER data
items . .
Format 6: SET for procedure-pomter and
function-pointer data items.

Example of COBOL/C mteroperabrllty
Format 7: SET for USAGE OBJECT REFERENCE
data items

SORT statement
ASCENDING KEY and DESCENDING KEY
phrases
DUPLICATES phrase
COLLATING SEQUENCE phrase
USING phrase . .o
INPUT PROCEDURE phrase .
GIVING phrase.
OUTPUT PROCEDURE phrase
SORT special registers
Segmentation considerations
START statement .
KEY phrase . .
INVALID KEY phrases .
END-START phrase
Indexed files
Relative files.
STOP statement
STRING statement.
ON OVERFLOW phrases
END-STRING phrase.
Data flow ..
SUBTRACT statement
ROUNDED phrase
SIZE ERROR phrases.
CORRESPONDING phrase (format 3)
END-SUBTRACT phrase .
UNSTRING statement
DELIMITED BY phrase . .
Delimiter with two or more characters .
Two or more delimiters .
INTO phrase
POINTER phrase .
TALLYING IN phrase
ON OVERFLOW phrases .

When an overflow condition occurs .

When an overflow condition does not occur
END-UNSTRING phrase
Data flow -

. 409
. 409
. 410
. 411
. 411
. 413
. 413
. 413
. 413
. 414
. 414
. 415
. 416
. 417

. 417

. 418
. 420

. 420
. 421

. 422
. 423
. 423
. 424
. 424
. 425
. 425
. 426
. 427
. 428
. 428
. 429
. 429
. 429
. 430
. 431
. 432
. 434
. 435
. 435
. 437
. 439
. 439
. 439
. 439
. 440
. 442
. 442
. 442
. 442
. 443
. 443
. 443
. 443

444

. 444
. 444

Values at the end of execution of the
UNSTRING statement .
Example of the UNSTRING statement .

WRITE statement . . Lo
ADVANCING phrase.

ADVANCING phrase rules

LINAGE-COUNTER rules .
END-OF-PAGE phrases .
INVALID KEY phrases .
END-WRITE phrase .
WRITE for sequential files .
WRITE for indexed files .
WRITE for relative files .

XML GENERATE statement .
Nested XML GENERATE or XML PARSE
statements
Operation of XML GENERATE

Format conversion of elementary data .
Trimming of generated XML data
XML element name formation .

XML PARSE statement . .
Nested XML GENERATE or XML PARSE
statements
Control flow.

Part 6. Procedure division

. 446
. 446
. 447
. 450
. 450
. 450
. 451
. 451
. 452
. 452
. 453
. 453
. 455

. 458
. 459
. 459
. 460
. 461
. 462

. 465
. 466

239



240 COBOL for Windows Version 7.5 Language Reference



Chapter 20. Procedure division structure

The procedure division is an optional division.

Program procedure division
The procedure division consists of optional declaratives, and procedures
that contain sections, paragraphs, sentences, and statements.

Factory procedure division
The factory procedure division contains only factory method definitions.

Object procedure division
The object procedure division contains only object method definitions.

Method procedure division
A method procedure division consists of optional declaratives, and
procedures that contain sections, paragraphs, sentences, and statements. A
method can INVOKE other methods, be recursively invoked, and issue a
CALL to a program. A method procedure division cannot contain nested
programs or methods.

For additional details on a method procedure division, see

ffor a method procedure division” on page 242.|

© Copyright IBM Corp. 1996, 2008 241



— Format: procedure division

> procedure-division-header
Efactory—or—object—procedure—di vision-header—
ethod-procedure-division-header

». >

(1) J
\\DECLARATIVES.—'—| sect |—.—use-statement L‘ END DECLARATIVES.
para ’J

(2)

»—Y section-name SECTION

(3) . |—‘ para ’J

|~priori7,‘y-number'

sect:

f—section-name—SECTION |
(3)

Lpriori ty-number:

para:

—"-paragraph-name. |

—

LY _sentence—-

Notes:
1 See the USE statement under "Compiler-directing statements.”
2 Section-name can be omitted. If you omit section-name, paragraph-name can be omitted.

3 Priority-numbers are not valid for methods, recursive programs, or programs compiled with
the THREAD option.

Requirements for a method procedure division

When using a method procedure division:

* You can use the EXIT METHOD statement or the GOBACK statement to return
control to the invoking method or program. An implicit EXIT METHOD
statement is generated as the last statement of every method procedure division.
For details on the EXIT METHOD statement, see[“EXIT METHOD statement” on|

242 COBOL for Windows Version 7.5 Language Reference



* You can use the STOP RUN statement (which terminates the run unit) in a
method.

* You can use the RETURN-CODE special register within a method procedure
division to access return codes from subprograms that are called with the CALL
statement, but the RETURN-CODE value is not returned to the invoker of the
current method. Use the procedure division RETURNING data name to return a
value to the invoker of the current method. For details, see the discussion of
RETURNING data-name-2 under [“The procedure division header.”]

You cannot specify the following statements or clauses in a method procedure
division:

* ALTER

¢ ENTRY

* EXIT PROGRAM

¢ GO TO without a specified procedure name

¢ SEGMENT-LIMIT

* USE FOR DEBUGGING

The procedure division header

The procedure division, if specified, is identified by one of the following headers,
depending on whether you are specifying a program, a factory definition, an object
definition, or a method definition.

The following is the format for a procedure division header in a program.

— Format: program procedure division header

»>—PROCEDURE DIVISION >

[ »

USING— Y _data-name-1

REFERENCE—
Loy
VALUE
gy

|—RETURNING—data-name-Z—|

The following is the format for a procedure division header in a factory paragraph
or object paragraph.

Format: factory and object procedure division header

»>—PROCEDURE DIVISION. ><

Chapter 20. Procedure division structure 243



The following is the format for a procedure division header in a method.

— Format: method procedure division header

»>—PROCEDURE DIVISION >

USING—Y ] VALUE—Y—data-name-1
BY

Y
A

|—RETURNING—data-name—Z—|

The USING phrase

The USING phrase specifies the parameters that a program or method receives
when the program is called or the method is invoked.

The USING phrase is valid in the procedure division header of a called
subprogram or invoked method entered at the beginning of the nondeclaratives
portion. Each USING identifier must be defined as a level-01 or level-77 item in the
linkage section of the called subprogram or invoked method.

In a called subprogram entered at the first executable statement following an
ENTRY statement, the USING phrase is valid in the ENTRY statement. Each
USING identifier must be defined as a level-01 or level-77 item in the linkage
section of the called subprogram.

However, a data item specified in the USING phrase of the CALL statement can be
a data item of any level in the data division of the calling COBOL program or
method. A data item specified in the USING phrase of an INVOKE statement can
be a data item of any level in the data division of the invoking COBOL program or
method.

A data item in the USING phrase of the procedure division header can have a
REDEFINES clause in its data description entry.

It is possible to call COBOL programs from non-COBOL programs or to pass user
parameters from a system command to a COBOL main program. COBOL methods
can be invoked only from Java or COBOL.

Command-line arguments are always passed in as native data types. If you specify
the host data type compiler options CHAR(EBCDIC), FLOAT(HEX), or
BINARY(S390), you must specify the NATIVE phrase in the description of
arguments with data types that are affected by those compiler options.

The order of appearance of USING identifiers in both calling and called
subprograms, or invoking methods or programs and invoked methods, determines
the correspondence of single sets of data available to both. The correspondence is
positional and not by name. For calling and called subprograms, corresponding
identifiers must contain the same number of bytes although their data descriptions
need not be the same.

244 COBOL for Windows Version 7.5 Language Reference



For index-names, no correspondence is established. Index-names in calling and
called programs, or invoking method or program and invoked methods, always
refer to separate indexes.

The identifiers specified in a CALL USING or INVOKE USING statement name the
data items available to the calling program or invoking method or program that
can be referred to in the called program or invoked method. These items can be
defined in any data division section.

A given identifier can appear more than once in a procedure division USING
phrase. The last value passed to it by a CALL or INVOKE statement is used.

The BY REFERENCE or BY VALUE phrase applies to all parameters that follow
until overridden by another BY REFERENCE or BY VALUE phrase.

BY REFERENCE (for programs only)
When an argument is passed BY CONTENT or BY REFERENCE, BY
REFERENCE must be specified or implied for the corresponding formal
parameter on the PROCEDURE or ENTRY USING phrase.

BY REFERENCE is the default if neither BY REFERENCE nor BY VALUE is
specified.

If the reference to the corresponding data item in the CALL statement
declares the parameter to be passed BY REFERENCE (explicit or implicit),
the program executes as if each reference to a USING identifier in the
called subprogram procedure division is replaced by a reference to the
corresponding USING identifier in the calling program.

If the reference to the corresponding data item in the CALL statement
declares the parameter to be passed BY CONTENT, the value of the item is
moved when the CALL statement is executed and placed into a
system-defined storage item that possesses the attributes declared in the
linkage section for data-name-1. The data description of each parameter in
the BY CONTENT phrase of the CALL statement must be the same,
meaning no conversion or extension or truncation, as the data description
of the corresponding parameter in the USING phrase of the procedure
division header.

BY VALUE
When an argument is passed BY VALUE, the value of the argument is
passed, not a reference to the sending data item. The receiving subprogram
or method has access only to a temporary copy of the sending data item.
Any modifications made to the formal parameters that correspond to an
argument passed BY VALUE do not affect the argument.

Parameters specified in the USING phrase of a method procedure division
header must be passed to the method BY VALUE. Method arguments are
always passed as native data types. If you specify the host data type
compiler options FLOAT(HEX) or BINARY(390), you must specify the
NATIVE phrase in the description of arguments that are affected by those
compiler options.

See the COBOL for Windows Programming Guide for examples that illustrate
these concepts.

data-name-1
data-name-1 must be a level-01 or level-77 item in the linkage section.

Chapter 20. Procedure division structure 245



When data-name-1 is an object reference in a method procedure division
header, an explicit class-name must be specified in the data description
entry for that object reference; that is, data-name-1 must not be a universal
object reference.

For methods, the parameter data types are restricted to the data types that
are interoperable between COBOL and Java, as listed in
data types for COBOL and Java” on page 360

RETURNING phrase

The RETURNING phrase specifies a data item that is to receive the program or
method result.

data-name-2

data-name-2 is the RETURNING data item. data-name-2 must be a level-01
or level-77 item in the linkage section.

In a method procedure division header, the data type of data-name-2 must
be one of the types supported for Java interoperation, as listed in
[“Interoperable data types for COBOL and Java” on page 360)

The RETURNING data item is an output-only parameter. On entry to the
method, the initial state of the RETURNING data item has an undefined
and unpredictable value. You must initialize the PROCEDURE DIVISION
RETURNING data item before you reference its value. The value that is
returned to the invoking routine is the value that the data item has at the
point of exit from the method. See ['RETURNING phrase” on page 35§ for
further details on conformance requirements for the INVOKE RETURNING
identifier and the method RETURNING data item.

Do not use the procedure division RETURNING phrase in:
¢ Programs that contain the ENTRY statement.

* Nested programs.

* Main programs: Results of specifying procedure division RETURNING
on a main program are undefined. You should specify the procedure
division RETURNING phrase only on called subprograms. For main
programs, use the RETURN-CODE special register to return a value to
the oper