<|lI!

Enterprise COBOL for z/0S

Language Reference

Version 4 Release 1

SC23-8528-00

<|lI!

Enterprise COBOL for z/0S

Language Reference

Version 4 Release 1

SC23-8528-00

Note!

Before using this information and the product it supports, be sure to read the general information under

First Edition (December 2007)

This edition applies to Version 4 Release 1 of IBM Enterprise COBOL for z/OS (program number 5655-S71) and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using
the correct edition for the level of the product.

You can order publications online at www.ibm.com/shop/publications/order/, or order by phone or fax. IBM
Software Manufacturing Solutions takes publication orders between 8:30 a.m. and 7:00 p.m. Eastern Standard Time
(EST). The phone number is (800)879-2755. The fax number is (800)445-9269.

You can also order publications through your IBM representative or the IBM branch office that serves your locality.

© Copyright International Business Machines Corporation 1991, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
TablesXi

Preface Xxiii

About this publication xiil
Accessing softcopy documentatlon and support
informationxii
Accessibility D G 1

How to read the syntax dlagrams N A

IBM extensions. oo oxvil

Obsolete language elements B g

DBCS notation xvii

Acknowledgment. xviii

Summary of changes . . . D D¢
Version 4 Release 1 (December 2007) ... Loxix

How to send your commentsxix

Part 1. COBOL language structure. . 1
Chapter 1. Characters.3

Chapter 2. Character sets and code
pages. ..
Character encoding units .

Single-byte code pages .

EBCDIC DBCS code pages.

Unicode UTF-16 . .

No oo A

Chapter 3. Character-strings . 9
COBOL words with single-byte characters 9
User-defined words with DBCS characters . 10
User-defined words. 10
System-names 12
Function-names . 12
Reserved words . Lo .12
Figurative constants13
Special registers . . 15

ADDRESS OF 17

DEBUG-ITEM 17

JNIENVPTR . 18

LENGTH OF . 18

LINAGE-COUNTER 19

RETURN-CODE. 1
SHIFT-OUT and SHIFT-IN21
SORT-CONTROL21
SORT-CORE-SIZE22
SORT-FILE-SIZE.22
SORT-MESSAGE22
SORT-MODE-SIZE23
SORT-RETURN23
TALLY23
WHEN- COMPILED .
XML-CODE24
XML-EVENT.25
XML-NAMESPACE.30

© Copyright IBM Corp. 1991, 2007

XML-NNAMESPACE .
XML-NAMESPACE-PREFIX . .
XML-NNAMESPACE-PREFIX .
XML-NTEXT .
XML-TEXT
Literals . . .
Alphanumeric hterals .
Numeric literals .
DBCS literals .
National literals . .
PICTURE character-strings
Comments. -

Chapter 4. Separators

Rules for separators

Chapter 5. Sections and paragraphs .
Sentences, statements, and entries .

Entries .

Clauses.

Sentences .

Statements.

Phrases.

Chapter 6. Reference format

Sequence number area.

Indicator area.

Area A . ..
Division headers
Section headers . -
Paragraph headers or paragraph names .
Level indicators (FD and SD) or level-numbers
(01 and 77) .
DECLARATIVES and END DECLARATIVES .
End program, end class, and end method
markers

Area B .
Entries, sentences statements clauses
Continuation lines .

Area A or Area B
Level-numbers
Comment lines . .
Compiler-directing statements .
Debugging lines .
Pseudo-text
Blank lines

Chapter 7. Scope of names .
Types of names . .
External and internal resources .
Resolution of names
Names within programs . .
Names within a class definition

.31
.32
. 33
. 33
. 34
. 35
. 35
. 38
. 39
.41
.43
.43

. 45
.45

. 49
.49
.49
. 50
. 50
. 50
. 50

. 51
. 51
. 51
. 52
. 52
. 52
. 52

. 53
. 53

. 53
. 53
. 54
. 54
. 56
. 56
. 56
. 57
. 57
. 57
. 57

. 59
. 59
. 61
. 62
. 62
. 63

iii

Chapter 8. Referencing data names,
copy libraries, and procedure division

names . . . 65
Uniqueness of reference . 65
Qualification . . 65
Identical names . . . 66
References to COPY l1brar1es . . 66
References to procedure division names . . 66
References to data division names . . 67
Condition-name . . 70
Index-name .71
Index data item . .71
Subscripting . .71
Reference modrﬁcatlon .74
Function-identifier . .77
Data attribute specification . .78
Chapter 9. Transfer of control . . 79
Chapter 10. Millennium Language
Extensions and date fields . . 81
Millennium Language Extensions syntax . 81
Terms and concepts. . 82
Date field . . 82
Nondate . 83
Century window . 83
Part 2. COBOL source unit
structure . 85
Chapter 11. COBOL program structure 87
Nested programs . 89
Conventions for prograrn—narnes . 90
Chapter 12. COBOL class definition
structure . . 93
Chapter 13. COBOL method definition
structure . . 97
Part 3. Identification division . . 99
Chapter 14. Identification division . 101
PROGRAM-ID paragraph . . 104
CLASS-ID paragraph . . 107
General rules . 107
Inheritance . . 107
FACTORY paragraph . 108
OBJECT paragraph . 108
METHOD-ID paragraph. . 108
Method signature . . 108
Method overloading, overr1d1ng, and h1d1ng . 108
Optional paragraphs . . . 109
Part 4. Environment division 11

iv Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 15. Configuration section
SOURCE-COMPUTER paragraph.
OBJECT-COMPUTER paragraph .
SPECIAL-NAMES paragraph .
ALPHABET clause
SYMBOLIC CHARACTERS clause
CLASS clause .
CURRENCY SIGN clause . .
DECIMAL-POINT IS COMMA clause .
REPOSITORY paragraph

General rules .

Identifying and referenc1ng a class

Chapter 16. Input-Output section .

FILE-CONTROL paragraph

SELECT clause .

ASSIGN clause . .
Assignment name for env1ronrnent Var1able .

. 113

. 114
. 114
. 116
. 119
121

. 122

. 123
. 124

. 124
. 125

. 125

. 127
. 128
. 132

. 132
. 133

Environment variable contents for a QSAM file 134
Environment variable contents for a
line-sequential file . . 135
Environment variable contents for a VSAM flle 135
RESERVE clause . . 136
ORGANIZATION clause . 137
File organization . . 137
PADDING CHARACTER clause . . 139
RECORD DELIMITER clause . . 140
ACCESS MODE clause . . . 140
File organization and access rnodes . . 141
Access modes . 141
Relationship between data orgamzatlons and
access modes . 141
RECORD KEY clause. . . 142
ALTERNATE RECORD KEY clause . . 143
RELATIVE KEY clause . . 144
PASSWORD clause . 145
FILE STATUS clause . . 145
I-O-CONTROL paragraph . . 146
RERUN clause . . . 148
SAME AREA clause . . . 149
SAME RECORD AREA clause . 150
SAME SORT AREA clause . . . 151
SAME SORT-MERGE AREA clause . . 151
MULTIPLE FILE TAPE clause . . 151
APPLY WRITE-ONLY clause . 152
Part 5. Data division . 153
Chapter 17. Data division overview 155
File section . . . 156
Working-storage sect10n . 157
Local-storage section . . 158
Linkage section. . 159
Data units . 159
File data . . 159
Program data . 160
Method data . 160
Factory data. . 160
Instance data . 160
Data relationships . . 160

Levels of data . .
Levels of data in a record descrrptron entry
Special level-numbers

Indentation . .
Classes and categorles of group 1tems .
Classes and categories of data .

Category descriptions

Alignment rules .
Character-string and item size.

Signed data .

Operational signs .

Editing signs

Chapter 18. Data division--file
description entries .
File section . .
EXTERNAL clause
GLOBAL clause
BLOCK CONTAINS clause
RECORD clause
Format 1 .
Format 2 .
Format 3 . .
LABEL RECORDS clause
VALUE OF clause .
DATA RECORDS clause .
LINAGE clause.
LINAGE-COUNTER specral regrster
RECORDING MODE clause .
CODE-SET clause .

Chapter 19. Data division--data

description entry .

Format 1 .

Format 2 .

Format 3 .

Level-numbers . .

BLANK WHEN ZERO clause .

DATE FORMAT clause . .
Semantics of windowed date f1elcls .
Restrictions on using date fields .

EXTERNAL clause

GLOBAL clause

JUSTIFIED clause .

GROUP-USAGE clause .

OCCURS clause
Fixed-length tables .
ASCENDING KEY and DESCENDING KEY
phrases
INDEXED BY phrase
Variable-length tables. . .
OCCURS DEPENDING ON clause .

PICTURE clause
Symbols used in the PICTURE clause
Character-string representation
Data categories and PICTURE rules .
PICTURE clause editing .

Simple insertion editing .
Special insertion editing .
Fixed insertion editing

. 161
. 161
. 163
. 163
. 163
. 164
. 166
. 168
. 169
. 170
. 170
. 170

A7
. 176
. 176
. 177
. 177
. 179
. 179
. 180
. 180
. 181
. 182
. 182
. 182
. 184
. 184
. 185

. 187
. 187
. 188
. 188
. 188
. 190
. 190
. 191
. 192
. 195
. 196
. 196
. 197
. 198
. 199

. 200
. 201
. 202
. 203
. 205
. 205
. 209
. 210
. 216
. 217
. 218
. 218

Floating insertion editing . . 219
Zero suppression and replacement edrtmg . 220
REDEFINES clause . 222
REDEFINES clause consrderahons . 223
REDEFINES clause examples . . 224
Undefined results . . 225
RENAMES clause . . 225
SIGN clause . . 227
SYNCHRONIZED clause . 229
Slack bytes . . . 231
Slack bytes within records . . 231
Slack bytes between records . 233
USAGE clause . . . 234
Computational items . . 236
DISPLAY phrase . 238
DISPLAY-1 phrase. . 239
FUNCTION-POINTER phrase . 239
INDEX phrase . Lo . 239
NATIONAL phrase . . 240
OBJECT REFERENCE phrase . . 240
POINTER phrase 241
PROCEDURE-POINTER phrase . . 242
NATIVE phrase .o . 243
VALUE clause . . 243
Format 1 . . 243
Format 2 . . 245
Format 3 . . 248
Part 6. Procedure division. 249
Chapter 20. Procedure division
structure e w4 o+« . . . 253
Requirements for a method procedure division . . 254
The procedure division header . 255
The USING phrase . 256
RETURNING phrase . . . 258
References to items in the lmkage sect1or1 . . 258
Declaratives . . 259
Procedures . 260
Arithmetic expressrons . 261
Arithmetic operators . . 262
Arithmetic with date fields . . 264
Conditional expressions . . 267
Simple conditions . . 267
Class condition . . . 267
Condition-name cond1t1on . . 269
Relation conditions . . 271
General relation conditions . . 271
Data pointer relation conditions . . 280
Procedure-pointer and function-pointer relat10n
conditions . . 281
Object-reference relatron condrtrons . . 282
Sign condition . . . 283
Switch-status condition . . 284
Complex conditions . . 284
Negated simple conditions . . 285
Combined conditions. . . 285
Abbreviated combined relat1on cond1tlons . 287
Statement categories . . 290
Imperative statements . 290

Contents V

Conditional statements .
Delimited scope statements.
Explicit scope terminators .
Implicit scope terminators .
Compiler-directing statements .
Statement operations .
CORRESPONDING phrase
GIVING phrase. .o
ROUNDED phrase
SIZE ERROR phrases.
Arithmetic statements
Arithmetic statement operands
Data manipulation statements .
Input-output statements .
Common processing facilities .

Chapter 21. Procedure division
statements
ACCEPT statement
Data transfer .
System date-related 1nformat10n transfer
DATE, DATE YYYYMMDD, DAY, DAY
YYYYDDD, DAY-OF-WEEK, and TIME.
ADD statement.
ROUNDED phrase
SIZE ERROR phrases.
CORRESPONDING phrase (format 3)
END-ADD phrase . .
ALTER statement .
Segmentation con51derat10ns
CALL statement
USING phrase .
BY REFERENCE phrase
BY CONTENT phrase
BY VALUE phrase.
RETURNING phrase .
ON EXCEPTION phrase.
NOT ON EXCEPTION phrase.
ON OVERFLOW phrase.
END-CALL phrase
CANCEL statement
CLOSE statement . .
Effect of CLOSE statement on f11e types
COMPUTE statement. .. .
ROUNDED phrase
SIZE ERROR phrases.
END-COMPUTE phrase .
CONTINUE statement
DELETE statement
Sequential access mode .
Random or dynamic access mode
END-DELETE phrase.
DISPLAY statement
DIVIDE statement .
ROUNDED phrase
REMAINDER phrase .
SIZE ERROR phrases.
END-DIVIDE phrase .
ENTRY statement .
USING phrase .
EVALUATE statement

. 292
. 293
. 293
. 294
. 294
. 294
. 294
. 296
. 296
. 296
. 298
. 298
. 299
. 300
. 300

. 307
. 308
. 308
. 310

. 310
. 313
. 315
. 315
. 315
. 316
. 317
. 317
. 319
. 321
. 322
. 322
. 323
. 324
. 325
. 325
. 325
. 326
. 327
. 329
. 330
. 333
. 334
. 334
. 334
. 335
. 336
. 336
. 337
. 337
. 338
. 341
. 344
. 344
. 344
. 345
. 346
. 346
. 347

vi Enterprise COBOL for z/OS V4.1 Language Reference

END-EVALUATE phrase
Determining values

Comparing selection subjects and ob]ects .

Executing the EVALUATE statement
EXIT statement
EXIT METHOD statement .
EXIT PROGRAM statement
GOBACK statement .
GO TO statement . .
Unconditional GO TO
Conditional GO TO
Altered GO TO. .
MORE-LABELS GO TO .
IF statement.
END-IF phrase .
Transferring control
Nested IF statements .
INITIALIZE statement
REPLACING phrase .
INITIALIZE statement rules
INSPECT statement
TALLYING phrase (formats 1 and 3)
REPLACING phrase (formats 2 and 3) .

BEFORE and AFTER phrases (all formats).

CONVERTING phrase (format 4).
Data flow .
Comparison cycle .

Example of the INSPECT statement

INVOKE statement .
USING phrase .

BY VALUE phrase.
RETURNING phrase .

ON EXCEPTION phrase.

NOT ON EXCEPTION phrase.
END-INVOKE phrase

Interoperable data types for COBOL and]ava
Miscellaneous argument types for COBOL and

Java
MERGE statement

ASCENDING/ DESCENDIN G KEY phrase

COLLATING SEQUENCE phrase

USING phrase . . .
GIVING phrase.
OUTPUT PROCEDURE phrase
MERGE special registers.
Segmentation considerations

MOVE statement .

Elementary moves.
Moves involving file record areas.
Group moves

MULTIPLY statement.
ROUNDED phrase
SIZE ERROR phrases.
END-MULTIPLY phrase .

OPEN statement .

General rules
Label records
OPEN statement notes

PERFORM statement . ..
Basic PERFORM statement .
END-PERFORM

. 348
. 348
. 349
. 350
. 351
. 352
. 353
. 354
. 355
. 355
. 355
. 356
. 356
. 357
. 357
. 358
. 358
. 359
. 360
. 360
. 362
. 365
. 366
. 367
. 367
. 369
. 369
. 370
. 372
. 374
. 374
. 375
. 376
. 376
. 376

377

. 378
. 380
. 381
. 382
. 383
. 383
. 384
. 385
. 385
. 386
. 387
. 392
. 392
. 394
. 396
. 396
. 396
. 397
. 399
. 399
. 400
. 403
. 403
. 405

PERFORM with TIMES phrase
PERFORM with UNTIL phrase
PERFORM with VARYING phrase
Varying identifiers. Lo
Varying two identifiers .
Varying three identifiers .
Varying more than three 1dent1f1ers .
Varying phrase rules .

READ statement
KEY IS phrase .
AT END phrases .
INVALID KEY phrases .
END-READ phrase
Multiple record processing .
Sequential access mode .
Random access mode.
Dynamic access mode
READ statement notes: .

RELEASE statement .

RETURN statement
AT END phrases
END-RETURN phrase

REWRITE statement . .
INVALID KEY phrases .
END-REWRITE phrase .
Reusing a logical record .
Sequential files .
Indexed files
Relative files.

SEARCH statement
Serial search.
Binary search . .
Search statement cons1derat10ns .
AT END and WHEN phrases .
NEXT SENTENCE.
END-SEARCH phrase

SET statement . .
Format 1: SET for basm table handhng
Format 2: SET for adjusting indexes .
Format 3: SET for external switches .
Format 4: SET for condition-names .

Format 5: SET for USAGE IS POINTER data

items .

Format 6: SET for procedure pomter and

function-pointer data items.

Format 7: SET for USAGE OBJECT REFERENCE
. 440
. 441

data items
SORT statement

ASCENDING KEY and DESCENDING KEY

phrases

DUPLICATES phrase

COLLATING SEQUENCE phrase

USING phrase . .o

INPUT PROCEDURE phrase .

GIVING phrase.

OUTPUT PROCEDURE phrase

SORT special registers

Segmentation considerations
START statement .

KEY phrase . .

INVALID KEY phrases .

. 405
. 406
. 407
. 408
. 409
. 411
. 411
. 412
. 413
. 414
. 414
. 415
. 415
. 415
. 415
. 418
. 418
. 419
. 420
. 422
. 423
. 423
. 424
. 425
. 425
. 425
. 425
. 425
. 426
. 427
. 428
. 430
. 432
. 433
. 433
. 433
. 434
. 434
. 435
. 436
. 437

. 437

. 438

. 442
. 443
. 444
. 444
. 445
. 445
. 446
. 447
. 447
. 448
. 448
. 449

END-START phrase . . 449
Indexed files . 449
Relative files. . 450
STOP statement . 451
STRING statement. . 452
ON OVERFLOW phrases . 454
END-STRING phrase. . 454
Data flow . . 455
SUBTRACT statement . 457
ROUNDED phrase . 459
SIZE ERROR phrases. . . 459
CORRESPONDING phrase (format 3) . . 459
END-SUBTRACT phrase . 460
UNSTRING statement . 461
DELIMITED BY phrase . . 463
INTO phrase . . 464
POINTER phrase . . 464
TALLYING IN phrase . 464
ON OVERFLOW phrases . 464
END-UNSTRING phrase . 465
Data flow . . 465
Example of the UNSTRING statement . . 467
WRITE statement . . Lo . 469
ADVANCING phrase. . 471
END-OF-PAGE phrases . . 472
INVALID KEY phrases . . 473
END-WRITE phrase . . . 474
WRITE for sequential files . . 474
WRITE for indexed files . . 476
WRITE for relative files . . 476
XML GENERATE statement . 478
Nested XML GENERATE or XML PARSE
statements . . 483
Operation of XML GENERATE . 483
Format conversion of elementary data . . 484
Trimming of generated XML data . 485
XML element name and attribute name
formation. . . 486
XML PARSE statement . . 487
Nested XML GENERATE or XML PARSE
statements . 491
Control flow. . 491
Part 7. Intrinsic functions 493
Chapter 22. Intrinsic functions . . 495
Specifying a function . . . 495
Function definition and evaluatlon . . 496
Types of functions. . 496
Rules for usage. . 497
Arguments . . 498
Examples. . . 500
ALL subscripting . . 500
Function definitions . . 502
ACOS . . 506
ANNUITY . 506
ASIN . . 507
ATAN . . 507
CHAR. . 507
COs . 508
Contents Vil

CURRENT-DATE508

DATE-OF-INTEGER510
DATE-TO-YYYYMMDD.510
DATEVAL51
DAY-OF-INTEGER512
DAY-TO-YYYYDDD513
DISPLAY-OFb5l4
FACTORIAL.b515
INTEGERb5l6
INTEGER-OF-DATEb5l6
INTEGER-OF-DAY517
INTEGER-PART517
LENGTH.518
Lo59
Logmwo59
LOWER-CASE.52
MAX50
MEAN5
MEDIAN.52
MIDRANGE.b522
MINb523
MOD.54
NATIONAL-OFb524
NUMvVAL52
NUMVAL-C.b2
ORDb28
ORD-MAX52
ORD-MIN52
PRESENT-VALUE.530
RANDOM53
RANGE53
REM53
REVERSE.b532
SIN.53
SQRT53
STANDARD- DEVIATION e
suM53
TAN53
UNDATE.53
UPPER-CASEb536
VARIANCE.53
WHEN-COMPILED537
YEAR-TO-YYYYb538
YEARWINDOW53

Part 8. Compiler-directing
statements.54

Chapter 23. Compiler-directing

statements543
BASIS statementb543
CBL (PROCESS) statementbh44
*CONTROL (*CBL) statement54
Source code listingb546
Object code listing.b546
Storage map listingb546
COPY statementb546
SUPPRESS phrase.b549
REPLACING phrase59
Replacement and comparison rules550

viii Enterprise COBOL for z/OS V4.1 Language Reference

DELETE statement

EJECT statement

ENTER statement .

INSERT statement . .

READY or RESET TRACE statement

REPLACE statement . . .
Continuation rules for pseudo- text .
Comparison operation
REPLACE statement notes .

SERVICE LABEL statement.

SERVICE RELOAD statement .

SKIP statements

TITLE statement

USE statement . .
EXCEPTION/ ERROR declaratlve

Precedence rules for nested programs .

LABEL declarative.
DEBUGGING declarative

Appendix A. IBM extensions .
Appendix B. Compiler limits .

Appendix C. EBCDIC and ASCII
collating sequences

EBCDIC collating sequence.
US English ASCII code page

Appendix D. Source language
debugging.

Debugging lines

Debugging sections

DEBUG-ITEM special reglster
Activate compile-time switch .

Activate object-time switch .

Appendix E. Reserved words

Appendix F. ASCII considerations.

Environment division

OBJECT-COMPUTER and SPECIAL NAMES

paragraphs . .

FILE-CONTROL paragraph

I-O-CONTROL paragraph .
Data division

FD Entry: CODE- SET clause

Data description entries .
Procedure division.

Appendix G. Industry specifications

Notices . . .
Programming interface mformatlon .
Trademarks .

Glossary

List of resources .

. 553
. 554
. 554
. 555
. 556
. 556
. 558
. 558
. 558
. 559
. 560
. 560
. 561
. 562
. 562
. 564
. 564
. 566

. 569

. 581

. 585
. 585
. 588

. 593
. 593
. 593
. 594
. 594
. 594

. 595

. 609
. 609

. 609
. 610
. 610
. 610
. 611
. 611
. 611

613

. 615
. 616
. 616
. 619

. 647

Index.651

Contents 1X

X Enterprise COBOL for z/OS V4.1 Language Reference

Tables

@

® N U

11.

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.

23.
24.

25.
26.

27.
28.

29.
30.

31.

32.

33.

Basic COBOL character set .
DEBUG-ITEM subfield contents . .
XML events and associated special register
contents

Separators . .o
Meanings of env1ronment names.

Types of files

Classes and categories of group 1tems
Class, category, and usage of elementary
data items

Classes and categorles of functlons
Classes and categories of literals .

Where national group items are processed as
groups. . .
PICTURE clause symbol meanlngs .
Numeric types . R

Data categories . .

SYNCHRONIZE clause effect on other
language elements. .

Relation test references for condltlon-names
Binary and unary operators

Valid arithmetic symbol pairs .

Results of using date fields in addltlon
Results of using date fields in subtraction
Storing arithmetic results that involve date
fields when ON SIZE ERROR is specified
Valid forms of the class condition for
different types of data items . .
Relational operators and their meamngs
Comparisons involving data items and
literals .

Comparisons 1nvolv1ng f1gurat1ve constants
Comparisons for index-names and index
data items

Comparisons with date f1elds

Permissible comparisons for USAGE
POINTER, NULL, and ADDRESS OF .
Logical operators and their meanings
Combined conditions—permissible element
sequences

Logical operators and evaluatlon results of
combined conditions .

Abbreviated combined condltlons
permissible element sequences
Abbreviated combined conditions:
unabbreviated equivalents .

© Copyright IBM Corp. 1991, 2007

.3

.18

. 26

. .45
. 118

. 128

164

. 165
. 165
. 165

. 198
. 206
. 211
. 217

. 229

247

. 262
. 263

264
265

. 266

. 269

272

. 274

275

. 279
. 280

. 281

284

. 286

. 286

. 289

. 290

34.
35.

36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.
62.

Exponentiation size error conditions

How the composite of operands is
determined . . .o

File status key values and meanlngs
Sequential files and CLOSE statement
phrases

Indexed and relatlve f11e types and CLOSE
statement phrases . .
Line-sequential file types and CLOSE
statement phrases .

Meanings of key letters for sequentlal flle
types

Treatment of the content of data 1tems
Interoperable Java and COBOL data types
Interoperable COBOL and Java array and
String data types .

COBOL miscellaneous argument types and
corresponding Java types

COBOL literal argument types and
corresponding Java types .
Valid and invalid elementary moves
Moves involving date fields

Availability of a file . .
Permissible statements for sequentlal flles
Permissible statements for indexed and
relative files . .

Permissible statements for 11ne sequentlal
files .
Sending and rece1v1ng f1elds for format-l
SET statement . . .
Sending and receiving f1elds for format-5
SET statement . .o

Character positions exammed when
DELIMITED BY is not specified .
Meanings of environment-names in
SPECIAL NAMES paragraph .

Table of functions. .
Execution of debugging declara’uves .

IBM extension language elements
Compiler limits

EBCDIC collating sequence

ASCII collating sequence

Reserved words .

297

. 298

301

. 331

. 331

. 331

. 331

368
377

. 378

. 379

. 379

390

. 392
. 400

401

. 401

. 401

. 435

. 438

. 466

. 476
. 503
. 567
. 569
. 581
. 585
. 588
. 595

xi

xii Enterprise COBOL for z/OS V4.1 Language Reference

Preface

About this publication

This publication describes the COBOL language supported by IBM® Enterprise
COBOL for z/0S®, referred to in this document as Enterprise COBOL.

See the IBM Enterprise COBOL for z/OS Programming Guide for information and
examples that will help you write, compile, and debug programs and classes.

Accessing softcopy documentation and support information

Enterprise COBOL provides Portable Document Format (PDF) and BookManager®
versions of the library on the product site at www.ibm.com/software/awdtools/
cobol/zos/library/.

You can check that Web site for the latest editions of the documents. In the
BookManager version of a document, the content of some tables and syntax
diagrams might be aligned improperly due to variations in the display technology.

Support information is also available on the product site at www.ibm.com/
software/awdtools/cobol/zos/support/.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The accessibility
features in z/OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS enable users to do the following tasks:

* Use assistive technology products such as screen readers and screen magnifier
software.

* Operate specific or equivalent features by using only the keyboard.
* Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products work with the user interfaces that are found in
z/0S. For specific guidance information, consult the documentation for the
assistive technology product that you use to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces by using TSO/E or ISPE. For information
about accessing TSO/E and ISPF interfaces, refer to the following publications:

* z/OS TSO/E Primer at http:/ /publib.boulder.ibm.com/cgi-bin/bookmgr/
BOOKS/IKJ4P100

* z/OS TSO/E User’s Guide at http:/ /publib.boulder.ibm.com/cgi-bin/bookmgr/
BOOKS/IKJ4C230/ APPENDIX1.3

* z/OS ISPF User’s Guide Volume I at http:/ /publib.boulder.ibm.com/cgi-bin/
bookmgr/BOOKS/ISPZUG30

© Copyright IBM Corp. 1991, 2007 xiii

These guides describe how to use TSO/E and ISPF, including the use of keyboard
shortcuts or function keys (PF keys). Each guide includes the default settings for
the PF keys and explains how to modify their functions.

Accessibility of this document

The English-language XHTML format of this document that will be provided in
the IBM System z" Enterprise Development Tools & Compilers Information Center
at http://publib.boulder.ibm.com/infocenter/pdthelp/index.jsp is accessible to
visually impaired individuals who use a screen reader.

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma picture symbols, you must
set the screen reader to speak all punctuation.

How to read the syntax diagrams

Use the following description to read the syntax diagrams in this document:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The >>--- symbol indicates the beginning of a syntax diagram.
The ---> symbol indicates that the syntax diagram is continued on the next line.

The >--- symbol indicates that the syntax diagram is continued from the
previous line.

The --->< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >---
symbol and end with the ---> symbol.

* Required items appear on the horizontal line (the main path).

Format

»»>—STATEMENT—required item ><

* Optional items appear below the main path.

Format

»>—STATEMENT

A\
A

|—optiona] 1’temJ

* When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

xiv Enterprise COBOL for z/OS V4.1 Language Reference

Format

A\
A

»—STATEMENT—Erequired choice 1
required choice 2—|

If choosing one of the items is optional, the entire stack appears below the main
path.

Format

»»>—STATEMENT ><
i:optiona] choice 1:‘

optional choice 2

* An arrow returning to the left above the main line indicates an item that can be
repeated.

Format

»»—STATEMENT——repeatable item

v
A

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

* Variables appear in italic lowercase letters (for example, parmx). They represent
user-supplied names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

Preface XV

xvi

»>—STATEMENT identifier-1 v
[Ziteral-lg L‘ (3)

Format

(1) @ |

item 1 |7

»

Yy

—T0—identifier-3 |_ _|
ROUNDED

(4)

v

(5)

y

LL—J—SIZE ERROR—imperati ve—stutement—l—l
ON

v

\\END-STATEMENT

(6)

item 1:
identifier-2 }
literal-2——————

rithmetic-expression-1—

Notes:

1 The STATEMENT keyword must be specified and coded as shown.

2 This operand is required. Either identifier-1 or literal-1 must be coded.

3 Theitem 1 fragment is optional; it can be coded or not, as required by the
application. If item 1 is coded, it can be repeated with each entry separated
by one or more COBOL separators. Entry selections allowed for this
fragment are described at the bottom of the diagram.

4 The operand identifier-3 and associated TO keyword are required and can
be repeated with one or more COBOL separators separating each entry.
Each entry can be assigned the keyword ROUNDED.

5 The ON SIZE ERROR phrase with associated imperative-statement-1 is
optional. If the ON SIZE ERROR phrase is coded, the keyword ON is
optional.

6 The END-STATEMENT keyword can be coded to end the statement. It is

not a required delimiter.

Enterprise COBOL for z/OS V4.1 Language Reference

IBM extensions

IBM extensions generally add features, syntax, or rules that are not specified in the
ANSI and ISO COBOL standards that are listed in [Appendix G, “Industry]
lspecifications,” on page 613.|In this document, the term Standard COBOL 85 refers
to those standards.

Extensions range from minor relaxation of rules to major capabilities, such as XML
support, Unicode support, object-oriented COBOL for Java' " interoperability, and
DBCS character handling.

The rest of this document describes the complete language without identifying
extensions. You will need to review |[Appendix A, “IBM extensions,” on page 569
and the compiler options that are described in the Enterprise COBOL Programming
Guide if you want to use only standard language elements.

Obsolete language elements

Obsolete language elements are elements that are categorized as obsolete in
Standard COBOL 85. Those elements are not part of Standard COBOL 2002.

This does not imply that IBM will remove Standard COBOL 85 obsolete elements
from a future release of Enterprise COBOL.

The following are language elements that Standard COBOL 85 categorized as
obsolete:

* ALTER statement

* AUTHOR paragraph

¢ Comment entry

* DATA RECORDS clause

* DATE-COMPILED paragraph

¢ DATE-WRITTEN paragraph

* DEBUG-ITEM special register

* Debugging sections

* ENTER statement

* GO TO without a specified procedure-name
e INSTALLATION paragraph

¢ LABEL RECORDS clause

* MEMORY SIZE clause

* MULTIPLE FILE TAPE clause

* RERUN clause

* REVERSED phrase

e SECURITY paragraph

* Segmentation module

» STOP literal format of the STOP statement
* USE FOR DEBUGGING declarative
* VALUE OF clause

* The figurative constant ALL literal with a length greater than one, when the
figurative constant is associated with a numeric or numeric-edited item

Preface XVii

DBCS notation

Double-Byte Character Set (DBCS) strings in literals, comments, and user-defined
words are delimited by shift-out and shift-in characters. In this document, the
shift-out delimiter is represented pictorially by the < character, and the shift-in
character is represented pictorially by the > character. The single-byte EBCDIC
codes for the shift-out and shift-in delimiters are X’0E” and X'0F’, respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol
denotes contiguous shift-in and shift-out characters.

DBCS characters are shown in this form: D1D2D3. Latin alphabet characters in
DBCS representation are shown in this form: .A.B.C. The dots that precede the
letters represent the hexadecimal value X'42’.

Notes

* In EBCDIC DBCS data containing mixed single-byte and double-byte characters,
double-byte character strings are delimited by shift-out and shift-in characters.

* In ASCII DBCS data containing mixed single-byte and double-byte characters,
double-byte character strings are not delimited by shift-out and shift-in
characters.

Acknowledgment

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as the
basis for an instruction manual or for any other purpose is free to do so.
However, all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short passage, as in a
book review, are requested to mention COBOL in acknowledgment of the
source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:

* FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for
the UNIVAC(R) I and 1II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation

* IBM Commercial Translator, Form No. F28-8013, copyrighted 1959 by IBM
* FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

xviii Enterprise COBOL for z/OS V4.1 Language Reference

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

Note: The Conference on Data Systems Languages (CODASYL), mentioned above,
is no longer in existence.

Summary of changes

This section lists the key changes that have been made to Enterprise COBOL for
z/0S in Version 4. The latest technical changes are marked by a vertical bar (1) in
the left margin in the PDF and BookManager versions.

Version 4 Release 1 (December 2007)

* A new compiler option, XMLPARSE, makes it possible to choose between
parsing with the parser that is available with the COBOL library (for
compatibility with Enterprise COBOL for z/OS Version 3) or with the z/OS
XML System Services parser.

* New XML PARSE capabilities are available when you parse a document with the
z/0S XML System Services parser:

— Namespaces and namespace prefixes are processed using new special
registers and new XML events.

— You can specify the document encoding using the ENCODING phrase of the
XML PARSE statement.

— You can parse documents that are encoded in Unicode UTF-8.

— The RETURNING NATIONAL phrase enables you to receive XML document
fragments in Unicode UTF-16 regardless of the original encoding of an XML
document.

— You can parse documents that reside in a data set or parse very large
documents a buffer at a time.

e The XML GENERATE statement has been enhanced:

— You can specify a namespace using the NAMESPACE phrase, and a
namespace prefix to be applied to each element using the
NAMESPACE-PREFIX phrase.

— You can specify the code page of the generated document using the
ENCODING phrase.

— XML documents can now be generated in UTF-8 as well as in UTF-16 or
various EBCDIC code pages.

— The WITH ATTRIBUTES phrase causes eligible elementary items to be
expressed as attributes rather than as child elements in the generated XML.

— The WITH XML-DECLARATION phrase causes an XML declaration to be
generated.

How to send your comments

Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this document or any other
documentation for this product, contact us in one of the following ways:

e Fill out the Readers’” Comment Form at the back of this document, and return it
by mail or give it to an IBM representative. If there is no form at the back of this
document, address your comments to:

Preface XiX

IBM Corporation
Reader Comments
DTX/E269

555 Bailey Avenue

San Jose, CA 95141-1003
US.A.

¢ Use the Online Readers’ Comments Form at www.ibm.com/software/awdtools/
rcf/.

* Send your comments to the following e-mail address: comments@us.ibm.com

Be sure to include the name of the document, the publication number of the
document, the version of the product, and, if applicable, the specific location (for
example, page number or section heading) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way that IBM believes appropriate without
incurring any obligation to you.

XX Enterprise COBOL for z/OS V4.1 Language Reference

Part 1. COBOL language structure

Chapter 1. Characters.

Chapter 2. Character sets and code pages
Character encoding units .
Single-byte code pages .
EBCDIC DBCS code pages.
USAGE DISPLAY.
USAGE DISPLAY-1 .
Unicode UTF-16 .

Chapter 3. Character-strings
COBOL words with single-byte characters .
User-defined words with DBCS characters .
User-defined words.
System-names
Function-names .
Reserved words .
Figurative constants
Special registers .
ADDRESS OF
DEBUG-ITEM
JNIENVPTR .
LENGTH OF .
LINAGE-COUNTER
RETURN-CODE.
SHIFT-OUT and SHIFT-IN
SORT-CONTROL
SORT-CORE-SIZE
SORT-FILE-SIZE .
SORT-MESSAGE
SORT-MODE-SIZE .
SORT-RETURN .
TALLY .
WHEN:- COMPILED
XML-CODE
XML-EVENT .
XML-NAMESPACE.
XML-NNAMESPACE .
XML-NAMESPACE-PREFIX .
XML-NNAMESPACE-PREFIX .
XML-NTEXT .
XML-TEXT
Literals . . .
Alphanumeric hterals .
Basic alphanumeric literals
Alphanumeric literals with DBCS characters
Hexadecimal notation for alphanumeric
literals .
Null-terminated alphanumerlc hterals
Numeric literals . . .
Rules for floating- pomt 11teral values
DBCS literals . .
Where DBCS hterals can be used .
National literals . .
Basic national literals . .
Hexadecimal notation for national hterals

© Copyright IBM Corp. 1991, 2007

.3

NN U1 O

. 10
. 10
.12
.12
.12
.13
.15
.17
.17
. 18
.18
.19
. 20
.21
.21
.22
.22
.22
.23
.23
.23
.24
.24
.25
. 30
.31
.32
. 33
. 33
. 34
. 35
. 35
. 35

36

. 37
. 38
. 38
. 39
. 39
. 40
. 41
.41
.42

Where national literals can be used
PICTURE character- strlngs
Comments. ..

Chapter 4. Separators
Rules for separators

Chapter 5. Sections and paragraphs
Sentences, statements, and entries .
Entries .
Clauses.
Sentences .
Statements.
Phrases.

Chapter 6. Reference format .

Sequence number area.

Indicator area.

Area A . .
Division headers
Section headers . .
Paragraph headers or paragraph names .
Level indicators (FD and SD) or level-numbers
(01 and 77) .
DECLARATIVES and END DECLARATIVES .
End program, end class, and end method
markers

Area B .
Entries, sentences statements clauses
Continuation lines . .

Continuation of alphanumenc and natlonal
literals .

Area A or Area B
Level-numbers
Comment lines . .
Compiler-directing statements .
Debugging lines .
Pseudo-text
Blank lines

Chapter 7. Scope of names
Types of names . ..
External and internal resources .
Resolution of names
Names within programs .
Names within a class definition

Chapter 8. Referencing data names, copy
libraries, and procedure division names .
Uniqueness of reference
Qualification . .
Qualification rules .
Identical names . .
References to COPY hbrarles .
References to procedure division names .

. 43
. 43
. 43

. 45
. 45

. 49
. 49
. 49
. 50
. 50
. 50
. 50

. 51
. 51
.51
. 52
. 52
. 52
. 52

. 53
. 53

. 53
. 53
. 54
. 54

. 54
. 56
. 56
. 56
. 57
. 57
. 57
. 57

. 59
. 59
. 61
. 62
. 62
. 63

. 65
. 65
. 65
. 66
. 66
. 66
. 66

References to data division names .
Simple data reference .
Identifiers .

Condition-name .

Index-name

Index data item .

Subscripting . .
Subscripting using data -names .

Subscripting using index-names (mdexmg) .

Relative subscripting
Reference modification

Evaluation of operands

Reference modification examples .
Function-identifier .

Data attribute specification .

Chapter 9. Transfer of control

Chapter 10. Millennium Language Extensions
and date fields .

Millennium Language Extensmns syntax

Terms and concepts.

2

Date field . . .
Windowed date f1eld .
Expanded date field
Year-last date field .
Date format
Compatible date fleld

Nondate ..

Century window

Enterprise COBOL for z/OS V4.1 Language Reference

. 67
. 67
. 68
.70
.71
.71
.71
.73
.73
. 74
. 74
. 76
.77
.77
.78

. 79

. 81
. 81
. 82
. 82
. 82
. 82
. 82
. 82
. 83
. 83
. 83

Chapter 1. Characters

The most basic and indivisible unit of the COBOL language is the character. The
basic character set includes the letters of the Latin alphabet, digits, and special
characters. In the COBOL language, individual characters are joined to form
character-strings and separators. Character-strings and separators, then, are used to
form the words, literals, phrases, clauses, statements, and sentences that form the
language.

The basic characters used in forming character-strings and separators in source
code are shown in [Table 1}

For certain language elements, the basic character set is extended with the EBCDIC
Double-Byte Character Set (DBCS).

DBCS characters can be used in forming user-defined words.

The content of alphanumeric literals, comment lines, and comment entries can
include any of the characters in the computer’s compile-time character set, and can
include both single-byte and DBCS characters.

Runtime data can include any characters from the runtime character set of the
computer. The runtime character set of the computer can include alphanumeric
characters, DBCS characters, and national characters. National characters are
represented in UTF-16, a 16-bit encoding form of Unicode.

When the NSYMBOL (NATIONAL) compiler option is in effect, literals identified
by the opening delimiter N” or N” are national literals and can contain any
single-byte or double-byte characters, or both, that are valid for the compile-time
code page in effect (either the default code page or the code page specified for the
CODEPAGE compiler option). Characters contained in national literals are
represented as national characters at run time.

For details, see ["User-defined words with DBCS characters” on page 10 |[“DBCY
literals” on page 39 and |“National literals” on page 41

Table 1. Basic COBOL character set

Character Meaning
Space
+ Plus sign

- Minus sign or hyphen

* Asterisk

/ Forward slash or solidus
= Equal sign

$ Currency sign'

, Comma

; Semicolon

Decimal point or period

Quotation mark?

© Copyright IBM Corp. 1991, 2007 3

4

Table 1. Basic COBOL character set (continued)

Character Meaning
(Left parenthesis
) Right parenthesis
> Greater than
< Less than
Colon
' Apostrophe
A-Z Alphabet (uppercase)
a-z Alphabet (lowercase)
0-9 Numeric characters
1. The currency sign is the character with the value X'5B’, regardless of the code page in
effect. The assigned graphic character can be the dollar sign or a local currency sign.
2. The quotation mark is the character with the value X'7F".

Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 2. Character sets and code pages

A character set is a set of letters, numbers, special characters, and other elements
used to represent information. A character set is independent of a coded
representation. A coded character set is the coded representation of a set of
characters, where each character is assigned a numerical position, called a code
point, in the encoding scheme. ASCII and EBCDIC are examples of types of coded
character sets. Each variation of ASCII or EBCDIC is a specific coded character set.

The term code page refers to a coded character set. Each code page that IBM defines
is identified by a code page name, for example IBM-1252, and a coded character set
identifier (CCSID), for example 1252.

Enterprise COBOL provides the CODEPAGE compiler option for specifying a

coded character set for use at compile time and run time for code-page-sensitive

elements, such as:

¢ The encoding of literals in the source program

* The default encoding for data items described with USAGE DISPLAY or
DISPLAY-1

* The default encoding for XML parsing and XML generation

Some COBOL operations can override the encoding established by the CODEPAGE

compiler option, for example:

e The DISPLAY-OF and NATIONAL-OF intrinsic functions can specify a CCSID as
argument-2.

¢ The XML PARSE and XML GENERATE statements can specify a code page in
the ENCODING phrase.

See the Enterprise COBOL Programming Guide for further details of the CODEPAGE
compiler option.

If you do not specify a code page, the default is code page IBM-1140, CCSID 1140.

The encoding of national data is not affected by the CODEPAGE compiler option.
The encoding for national literals and data items described with usage NATIONAL
is UTF-16BE (big endian), CCSID 1200. A reference to UTF-16 in this document is a
reference to UTF-16BE.

Character encoding units

A character encoding unit (or encoding unit) is the unit of data that COBOL treats as
a single character at run time. In this document, the terms character and character
position refer to a single encoding unit.

The size of an encoding unit for data items and literals depends on the USAGE
clause of the data item or the category of the literal as follows:

* For data items described with USAGE DISPLAY and for alphanumeric literals,
an encoding unit is 1 byte, regardless of the code page used and regardless of
the number of bytes used to represent a given graphic character.

* For data items described with USAGE DISPLAY-1 (DBCS data items) and for
DBCS literals, an encoding unit is 2 bytes.

© Copyright IBM Corp. 1991, 2007 5

6

e For data items described with USAGE NATIONAL and for national literals, an
encoding unit is 2 bytes.

The relationship between a graphic character and an encoding unit depends on the
type of code page used for the data item or literal. The following are the types of
runtime code pages:

* Single-byte EBCDIC
* EBCDIC DBCS
e Unicode UTF-16

See the following sections for the details of each type of code page.

Single-byte code pages

You can use single-byte characters encoded in an EBCDIC code page in data items
described with USAGE DISPLAY and in literals of category alphanumeric. An
encoding unit is 1 byte and each graphic character is represented in 1 byte. For
these data items and literals, you need not be concerned with encoding units.

EBCDIC DBCS code pages

USAGE DISPLAY

You can use a mixture of single-byte and double-byte EBCDIC characters in data
items described with USAGE DISPLAY and in literals of category alphanumeric.
Double-byte characters must be delimited by shift-out and shift-in characters. An
encoding unit is 1 byte and the size of a graphic character is 1 byte or 2 bytes.

When alphanumeric data items or literals contain DBCS data, programmers are
responsible for ensuring that operations do not unintentionally separate the
multiple encoding units that form a graphic character. Care should be taken with
reference modification, and truncation during moves should be avoided. The
COBOL runtime system does not check for a split between the encoding units that
form a graphic character or for the loss of shift-out or shift-in codes.

To avoid problems, you can convert alphanumeric literals and data items described
with usage DISPLAY to national data (UTF-16) by moving the data items or literals
to data items described with usage NATIONAL or by using the NATIONAL-OF
intrinsic function. You can then perform operations on the national data with less
concern for splitting graphic characters. You can convert the data back to USAGE
DISPLAY by using the DISPLAY-OF intrinsic function.

USAGE DISPLAY-1

You can use double-byte characters of an EBCDIC DBCS code page in data items
described with USAGE DISPLAY-1 and in literals of category DBCS. An encoding
unit is 2 bytes and each graphic character is represented in a single 2-byte
encoding unit. For these data items and literals, you need not be concerned with
encoding units.

Enterprise COBOL for z/OS V4.1 Language Reference

Unicode UTF-16

You can use UTF-16 in data items described with USAGE NATIONAL. National
literals are stored as UTF-16 characters regardless of the code page used for the
source program. An encoding unit for data items of usage NATIONAL and
national literals is 2 bytes.

For most of the characters in UTF-16, a graphic character is one encoding unit.
Characters converted to UTF-16 from an EBCDIC, ASCII, or EUC code page are
represented in one UTF-16 encoding unit. Some of the other graphic characters in
UTF-16 are represented by a surrogate pair or a combining character sequence. A
surrogate pair consists of two encoding units (4 bytes). A combining character
sequence consists of a base character and one or more combining marks or a
sequence of one or more combining marks (4 bytes or more, in 2-byte increments).
In data items of usage NATIONAL, each 2-byte encoding unit is treated as a
character.

When national data contains surrogate pairs or combining character sequences,
programmers are responsible for ensuring that operations on national characters do
not unintentionally separate the multiple encoding units that form a graphic
character. Care should be taken with reference modification, and truncation during
moves should be avoided. The COBOL runtime system does not check for a split
between the encoding units that form a graphic character.

Chapter 2. Character sets and code pages 7

8 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 3. Character-strings

A character-string is a character or a sequence of contiguous characters that forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A
character-string is delimited by separators.

A separator is a string of contiguous characters used to delimit character strings.
Separators are described in detail under [Chapter 4, “Separators,” on page 45]

Character strings and certain separators form text words. A text word is a character
or a sequence of contiguous characters (possibly continued across lines) between
character positions 8 and 72 inclusive in source text, library text, or pseudo-text.
For more information about pseudo-text, see [“Pseudo-text” on page 57

Source text, library text, and pseudo-text can be written in single-byte EBCDIC
and, for some character-strings, DBCS. (The compiler cannot process source code
written in ASCII or Unicode.)

You can use single-byte and double-byte character-strings to form the following:
* COBOL words
* Literals

¢ Comment text

You can use only single-byte characters to form PICTURE character-strings.

COBOL words with single-byte characters

A COBOL word is a character-string that forms a user-defined word, a
system-name, or a reserved word. The maximum size of a COBOL user-defined
word is 30 bytes. The number of characters that can be specified depends on the
code page indicated by the compile-time locale.

Except for arithmetic operators and relation characters, each character of a COBOL
word is selected from the following set:

 Latin uppercase letters A through Z
* Latin lowercase letters a through z
* digits 0 through 9

* - (hyphen)

The hyphen cannot appear as the first or last character in such words. Most
user-defined words (all except section-names, paragraph-names, priority-numbers,
and level-numbers) must contain at least one alphabetic character. Priority numbers
and level numbers need not be unique; a given specification of a priority-number
or level-number can be identical to any other priority-number or level-number.

In COBOL words (but not in the content of alphanumeric, DBCS, and national
literals), each lowercase single-byte alphabetic letter is considered to be equivalent

to its corresponding single-byte uppercase alphabetic letter.

The following rules apply for all COBOL words:

© Copyright IBM Corp. 1991, 2007 9

* A reserved word cannot be used as a user-defined word or as a system-name.

¢ The same COBOL word, however, can be used as both a user-defined word and
as a system-name. The classification of a specific occurrence of a COBOL word is
determined by the context of the clause or phrase in which it occurs.

User-defined words with DBCS characters

The following are the rules for forming user-defined words with DBCS characters:

Contained characters
DBCS user-defined words can contain only double-byte characters, and
must contain at least one DBCS character that is not in the set A through Z,
a through z, 0 through 9, and hyphen (DBCS representation of these
characters has X’42’ in the first byte).

DBCS user-defined words can contain characters that correspond to
single-byte EBCDIC characters and those that do not correspond to
single-byte EBCDIC characters. DBCS characters that correspond to
single-byte EBCDIC characters follow the normal rules for COBOL
user-defined words; that is, the characters A-Z, a -z, 0 -9, and the
hyphen (-) are allowed. The hyphen cannot appear as the first or last
character. Any of the DBCS characters that have no corresponding
single-byte EBCDIC character can be used in DBCS user-defined words.

Uppercase and lowercase letters
In COBOL words, each lowercase single-byte encoded character "a”
through "z" is considered to be equivalent to its corresponding single-byte
encoded uppercase character. DBCS-encoded uppercase and lowercase
letters are not equivalent.

Value range
DBCS user-defined words can contain characters whose values range from
X’41” to X’FE’ for both bytes.

Maximum length
14 characters

Continuation
Words formed with DBCS characters cannot be continued across lines.

Use of shift-out and shift-in characters
DBCS user-defined words begin with a shift-out character and end with a
shift-in character.

User-defined words

The following sets of user-defined words are supported. The second column
indicates whether DBCS characters are allowed in words of a given set.

User-defined word DBCS characters allowed?
Alphabet-name Yes
Class-name (of data) Yes
Condition-name Yes
Data-name Yes
File-name Yes
Index-name Yes

10 Enterprise COBOL for z/OS V4.1 Language Reference

User-defined word DBCS characters allowed?
Level-numbers: 0149, 66, 77, 88 No
Library-name No
Mnemonic-name Yes
Object-oriented class-name No
Paragraph-name Yes
Priority-numbers: 00-99 No
Program-name No
Record-name Yes
Section-name Yes
Symbolic-character Yes
Text-name No

The maximum length of a user-defined word is 30 bytes, except for level-numbers
and priority-numbers. Level-numbers and priority numbers must each be a
one-digit or two-digit integer.

A given user-defined word can belong to only one of these sets, except that a given
number can be both a priority-number and a level-number. Each user-defined
word within a set must be unique, except for priority-numbers and level-numbers
and except as specified in |[Chapter 8, “Referencing data names, copy libraries, and|
forocedure division names,” on page 65)

The following types of user-defined words can be referenced by statements and
entries in the program in which the user-defined word is declared:

e Paragraph-name

e Section-name

The following types of user-defined words can be referenced by any COBOL
program, provided that the compiling system supports the associated library or
other system and that the entities referenced are known to that system:

* Library-name
* Text-name

The following types of names, when they are declared within a configuration
section, can be referenced by statements and entries in the program that contains
the configuration section or in any program contained within that program:

* Alphabet-name
* (Class-name

* Condition-name
* Mnemonic-name

¢ Symbolic-character

The function of each user-defined word is described in the clause or statement in
which it appears.

Chapter 3. Character-strings 11

System-names

A system-name is a character string that has a specific meaning to the system. There
are three types of system-names:

* Computer-name
* Language-name

* Implementor-name

There are three types of implementor-names:
¢ Environment-name
* External-class-name

* Assignment-name

The meaning of each system-name is described with the format in which it
appears.

Computer-name can be written in DBCS characters, but the other system-names
cannot.

Function-names

A function-name specifies the mechanism provided to determine the value of an
intrinsic function. The same word, in a different context, can appear in a program
as a user-defined word or a system-name. For a list of function-names and their
definitions, see [Table 56 on page 503]

Reserved words

A reserved word is a character-string with a predefined meaning in a COBOL source
unit. Reserved words are listed in |[Appendix E, “Reserved words,” on page 595/

There are six types of reserved words:
* Keywords
¢ Optional words
* Figurative constants
* Special character words
* Special object identifiers
* Special registers
Keywords
Keywords are reserved words that are required within a given clause,

entry, or statement. Within each format, such words appear in uppercase
on the main path.

Optional words
Optional words are reserved words that can be included in the format of a
clause, entry, or statement in order to improve readability. They have no
effect on the execution of the program.

Figurative constants
See [“Figurative constants” on page 13

12 Enterprise COBOL for z/OS V4.1 Language Reference

Special character words
There are two types of special character words, which are recognized as
special characters only when represented in single-byte characters:

* Arithmetic operators: + - / * **

See [“ Arithmetic expressions” on page 261 |

* Relational operators: < > = <= >=

See [“Conditional expressions” on page 267.|

Special object identifiers
COBOL provides two special object identifiers, SELF and SUPER:

SELF A special object identifier that you can use in the procedure
division of a method. SELF refers to the object instance used to
invoke the currently executing method. You can specify SELF only
in places that are explicitly listed in the syntax diagrams.

SUPER
A special object identifier that you can use in the procedure
division of a method only as the object identifier in an INVOKE
statement. When used in this way, SUPER refers to the object
instance used to invoke the currently executing method. The
resolution of the method to be invoked ignores any methods
declared in the class definition of the currently executing method
and methods defined in any class derived from that class. Thus,
the method invoked is inherited from an ancestor class.

Special registers
See [“Special registers” on page 15,

Figurative constants

Figurative constants are reserved words that name and refer to specific constant
values. The reserved words for figurative constants and their meanings are:

ZERO, ZEROS, ZEROES
Represents the numeric value zero (0) or one or more occurrences of the
character zero, depending on context.

When the figurative constant ZERO, ZEROS, or ZEROES is used in a
context that requires an alphanumeric character, an alphanumeric character
zero is used. When the context requires a national character zero, a
national character zero is used (value NX'0030"). When the context cannot
be determined, an alphanumeric character zero is used.

SPACE, SPACES
Represents one or more blanks or spaces. SPACE is treated as an
alphanumeric literal when used in a context that requires an alphanumeric
character, as a DBCS literal when used in a context that requires a DBCS
character, and as a national literal when used in a context that requires a
national character. The EBCDIC DBCS space character has the value
X’4040’, and the national space character has the value NX'0020".

HIGH-VALUE, HIGH-VALUES
Represents one or more occurrences of the character that has the highest
ordinal position in the collating sequence used.

HIGH-VALUE is treated as an alphanumeric literal in a context that
requires an alphanumeric character. For alphanumeric data with the

Chapter 3. Character-strings 13

14

EBCDIC collating sequence, the value is X’FF'. For other alphanumeric
data, the value depends on the collating sequence in effect.

HIGH-VALUE is treated as a national literal when used in a context that
requires a national literal. The value is national character NX'FFFF’.

When the context cannot be determined, an alphanumeric context is
assumed and the value X'FF’ is used.

Usage note: You should not use HIGH-VALUE (or a value assigned from
HIGH-VALUE) in a way that results in conversion between one data
representation and another. X’FF” does not represent a valid EBCDIC
character, and NX'FFFF’ does not represent a valid national character.
Conversion of either the alphanumeric or the national HIGH-VALUE
representation to another representation results in a substitution character.
For example, conversion of X’FF’ to UTF-16 would give a substitution
character, not NX'FFFF’.

LOW-VALUE, LOW-VALUES

Represents one or more occurrences of the character that has the lowest
ordinal position in the collating sequence used.

LOW-VALUE is treated as an alphanumeric literal in a context that requires
an alphanumeric character. For alphanumeric data with the EBCDIC
collating sequence, the value is X’00". For other alphanumeric data, the
value depends on the collating sequence in effect.

LOW-VALUE is treated as a national literal when used in a context that
requires a national literal. The value is national character NX"0000".

When the context cannot be determined, an alphanumeric context is
assumed and the value X'00" is used.

QUOTE, QUOTES

Represents one or more occurrences of:

¢ The quotation mark character ("), if the QUOTE compiler option is in
effect

* The apostrophe character ('), if the APOST compiler option is in effect

QUOTE or QUOTES represents an alphanumeric character when used in a
context that requires an alphanumeric character, and represents a national
character when used in a context that requires a national character. The
national character value of quotation mark is NX’0022". The national
character value of apostrophe is NX'0027".

QUOTE and QUOTES cannot be used in place of a quotation mark or an
apostrophe to enclose an alphanumeric literal.

ALL literal

literal can be an alphanumeric literal, a DBCS literal, a national literal, or a
figurative constant other than the ALL literal.

When literal is not a figurative constant, ALL literal represents one or more
occurrences of the string of characters that compose the literal.

When literal is a figurative constant, the word ALL has no meaning and is
used only for readability.

The figurative constant ALL literal must not be used with the CALL,
INSPECT, INVOKE, STOP, or STRING statements.

Enterprise COBOL for z/OS V4.1 Language Reference

symbolic-character
Represents one or more of the characters specified as a value of the
symbolic-character in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph.

symbolic-character always represents an alphanumeric character; it can be
used in a context that requires a national character only when implicit
conversion of alphanumeric to national characters is defined. (It can be
used, for example, in a MOVE statement where the receiving item is of
class national because implicit conversion is defined when the sending
item is alphanumeric and the receiving item is national.)

NULL, NULLS
Represents a value used to indicate that data items defined with USAGE
POINTER, USAGE PROCEDURE-POINTER, USAGE FUNCTION-
POINTER, USAGE OBJECT REFERENCE, or the ADDRESS OF special
register do not contain a valid address. NULL can be used only where
explicitly allowed in the syntax formats. NULL has the value zero.

The singular and plural forms of NULL, ZERO, SPACE, HIGH-VALUE,
LOW-VALUE, and QUOTE can be used interchangeably. For example, if
DATA-NAME-1 is a five-character data item, each of the following statements moves
five spaces to DATA-NAME-1:

MOVE SPACE TO DATA-NAME-1

MOVE SPACES TO DATA-NAME-1
MOVE ALL SPACES TO DATA-NAME-1

When the rules of COBOL permit any one spelling of a figurative constant name,
any alternative spelling of that figurative constant name can be specified.

You can use a figurative constant wherever literal appears in a syntax diagram,
except where explicitly prohibited. When a numeric literal appears in a syntax
diagram, only the figurative constant ZERO (or ZEROS or ZEROES) can be used.
Figurative constants are not allowed as function arguments except in an arithmetic
expression, where the expression is an argument to a function.

The length of a figurative constant depends on the context of its use. The following
rules apply:

* When a figurative constant is specified in a VALUE clause or associated with a
data item (for example, when it is moved to or compared with another item), the
length of the figurative constant character-string is equal to 1 or the number of
character positions in the associated data item, whichever is greater.

* When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a CALL, INVOKE, STOP, STRING, or
UNSTRING statement), the length of the character-string is one character.

Special registers

Special registers are reserved words that name storage areas generated by the
compiler. Their primary use is to store information produced through specific
COBOL features. Each such storage area has a fixed name, and must not be
defined within the program.

For programs with the recursive attribute, for programs compiled with the
THREAD option, and for methods, storage for the following special registers is

allocated on a per-invocation basis:

Chapter 3. Character-strings 15

16

* ADDRESS-OF

* RETURN-CODE
* SORT-CONTROL
* SORT-CORE-SIZE
* SORT-FILE-SIZE
* SORT-MESSAGE
* SORT-MODE-SIZE
* SORT-RETURN
 TALLY

* XML-CODE

* XML-EVENT

For the first call to a program after a cancel of that program, or for a method
invocation, the compiler initializes the special register fields to their initial values.

For the following four cases:

* Programs that have the INITIAL clause specified

* Programs that have the RECURSIVE clause specified
* Programs compiled with the THREAD option

* Methods

the following special registers are reset to their initial value on each program or
method entry:

* RETURN-CODE
* SORT-CONTROL
* SORT-CORE-SIZE
* SORT-FILE-SIZE
* SORT-MESSAGE
* SORT-MODE-SIZE
* SORT-RETURN
 TALLY

* XML-CODE

* XML-EVENT

Further, in the above four cases, values set in ADDRESS OF special registers persist
only for the span of the particular program or method invocation.

In all other cases, the special registers will not be reset; they will be unchanged
from the value contained on the previous CALL or INVOKE.

Unless otherwise explicitly restricted, a special register can be used wherever a
data-name or identifier that has the same definition as the implicit definition of the
special register can be used. Implicit definitions, if applicable, are given in the
specification of each special register.

You can specify an alphanumeric special register in a function wherever an
alphanumeric argument to a function is allowed, unless specifically prohibited.

If qualification is allowed, special registers can be qualified as necessary to provide
uniqueness. (For more information, see [“Qualification” on page 65.)

Enterprise COBOL for z/OS V4.1 Language Reference

ADDRESS OF

The ADDRESS OF special register references the address of a data item in the
linkage section, the local-storage section, or the working-storage section.

For 01 and 77 level items in the linkage section, the ADDRESS OF special register
can be used as either a sending item or a receiving item. For all other operands,
the ADDRESS OF special register can be used only as a sending item.

The ADDRESS OF special register is implicitly defined as USAGE POINTER.

A function-identifier is not allowed as the operand of the ADDRESS OF special
register.

DEBUG-ITEM

The DEBUG-ITEM special register provides information for a debugging
declarative procedure about the conditions that cause debugging section execution.

DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
02 DEBUG-LINE PICTURE IS X(6).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-NAME PICTURE IS X(30).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces. The
contents of the DEBUG-ITEM subfields are updated according to the rules for the
MOVE statement, with one exception: DEBUG-CONTENTS is updated as if the
move were an alphanumeric-to-alphanumeric elementary move without conversion
of data from one form of internal representation to another.

After updating, the contents of the DEBUG-ITEM subfields are:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated
sequence number, depending on the compiler option chosen) that caused
execution of the debugging section.

DEBUG-NAME
The first 30 characters of the name that caused execution of the debugging
section. Any qualifiers are separated by the word "OF’.

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3
If the DEBUG-NAME is subscripted or indexed, the occurrence number of
each level is entered in the respective DEBUG-SUB-n. If the item is not
subscripted or indexed, these fields remain as spaces. You must not
reference the DEBUG-ITEM special register if your program uses more
than three levels of subscripting or indexing.

DEBUG-CONTENTS
Data is moved into DEBUG-CONTENTS, as shown in the following table.

Chapter 3. Character-strings 17

Table 2. DEBUG-ITEM subfield contents

Cause of debugging Statement referred to in Contents of Contents of

section execution DEBUG-LINE DEBUG-NAME DEBUG-CONTENTS
procedure-name-1 ALTER ALTER statement procedure-name-1 procedure-name-n in TO
reference PROCEED TO phrase
GO TO procedure-name-n GO TO statement procedure-name-n Spaces
procedure-name-n in SORT or | SORT or MERGE statement | procedure-name-n "SORT INPUT”, "SORT

MERGE input/output
procedure

OUTPUT", or "MERGE
OUTPUT" (as applicable)

PERFORM statement This PERFORM statement | procedure-name-n "PERFORM LOOP”
transfer of control
procedure-name-n in a USE | Statement causing USE procedure-name-n "USE PROCEDURE"

procedure

procedure execution

Implicit transfer from a
previous sequential

Previous statement procedure-name-n "FALL THROUGH"
executed in previous

procedure sequential procedure’
First execution of first Line number of first Name of first "START PROGRAM"
nondeclarative procedure |nondeclarative nondeclarative procedure

procedure-name

1. If this procedure is preceded by a section header, and control is passed through the section header, the statement

number refers to the

section header.

JNIENVPTR

The JNIENVPTR special register references the Java Native Interface (JNI)
environment pointer. The JNI environment pointer is used in calling Java callable
services.

JNIENVPTR is implicitly defined as USAGE POINTER, and cannot be specified as
a receiving data item.

For information about using JNIENVPTR and JNI callable services, see the
Enterprise COBOL Programming Guide.

LENGTH OF

The LENGTH OF special register contains the number of bytes used by a data
item.

LENGTH OF creates an implicit special register that contains the current byte
length of the data item referenced by the identifier.

For data items described with usage DISPLAY-1 (DBCS data items) and data items
described with usage NATIONAL, each character occupies 2 bytes of storage.

LENGTH OF can be used in the procedure division anywhere a numeric data item
that has the same definition as the implied definition of the LENGTH OF special
register can be used. The LENGTH OF special register has the implicit definition:

USAGE IS BINARY PICTURE 9(9).

If the data item referenced by the identifier contains the GLOBAL clause, the
LENGTH OF special register is a global data item.

18 Enterprise COBOL for z/OS V4.1 Language Reference

The LENGTH OF special register can appear within either the starting character
position or the length expressions of a reference-modification specification.
However, the LENGTH OF special register cannot be applied to any operand that
is reference-modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special
register is allowed in a function where an integer argument is allowed.

If the LENGTH OF special register is used as the argument to the LENGTH
function, the result is always 4, independent of the argument specified for
LENGTH OF

If the ADDRESS OF special register is used as the argument to the LENGTH
special register, the result is always 4, independent of the argument specified for
ADDRESS OF.

LENGTH OF cannot be either of the following:
* A receiving data item
¢ A subscript

When the LENGTH OF special register is used as a parameter on a CALL
statement, it must be passed BY CONTENT or BY VALUE.

When a table element is specified, the LENGTH OF special register contains the
length in bytes of one occurrence. When referring to a table element, the element
name need not be subscripted.

A value is returned for any identifier whose length can be determined, even if the
area referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with
the LENGTH OF phrase. For example:

MOVE LENGTH OF A TO B

DISPLAY LENGTH OF A, A

ADD LENGTH OF A TO B
CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

The intrinsic function LENGTH can also be used to obtain the length of a data
item. For data items of usage NATIONAL, the length returned by the LENGTH
function is the number of national character positions, rather than bytes; thus the
LENGTH OF special register and the LENGTH intrinsic function have different
results for data items of usage NATIONAL. For all other data items, the result is
the same.

LINAGE-COUNTER

A separate LINAGE-COUNTER special register is generated for each FD entry that
contains a LINAGE clause. When more than one is generated, you must qualify
each reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is one of the
following;:

* If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same
PICTURE and USAGE as that data-name.

Chapter 3. Character-strings 19

* If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item
with the same number of digits as that integer.

For more information, see ["'LINAGE clause” on page 182

The value in LINAGE-COUNTER at any given time is the line number at which
the device is positioned within the current page. LINAGE-COUNTER can be
referred to in procedure division statements; it must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated
file is executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this
file. (See ["WRITE statement” on page 469))

If the file description entry for a sequential file contains the LINAGE clause and
the EXTERNAL clause, the LINAGE-COUNTER data item is an external data item.
If the file description entry for a sequential file contains the LINAGE clause and
the GLOBAL clause, the LINAGE-COUNTER data item is a global data item.

You can specify the LINAGE-COUNTER special register wherever an integer
argument to a function is allowed.

RETURN-CODE

The RETURN-CODE special register can be used to pass a return code to the
calling program or operating system when the current COBOL program ends.
When a COBOL program ends:

* If control returns to the operating system, the value of the RETURN-CODE
special register is passed to the operating system as a user return code. The
supported user return code values are determined by the operating system, and
might not include the full range of RETURN-CODE special register values.

* If control returns to a calling program, the value of the RETURN-CODE special
register is passed to the calling program. If the calling program is a COBOL
program, the RETURN-CODE special register in the calling program is set to the
value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:
01 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
GLOBAL clause in the outermost program.

The following are examples of how to set the RETURN-CODE special register:
* COMPUTE RETURN-CODE = 8.
* MOVE 8 to RETURN-CODE.

The RETURN-CODE special register does not return a value from an invoked
method or from a program that uses CALL ... RETURNING. For more information,
see ['INVOKE statement” on page 372| or ["CALL statement” on page 319.|

You can specify the RETURN-CODE special register in a function wherever an
integer argument is allowed.

20 Enterprise COBOL for z/OS V4.1 Language Reference

The RETURN-CODE special register does not return information from a service
call for a Language Environment® callable service. For more information, see the
Enterprise COBOL Programming Guide and the Language Environment Programming
Guide.

SHIFT-OUT and SHIFT-IN

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as
alphanumeric data items of the format:

01 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OE".
01 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OF".

When used in nested programs, these special registers are implicitly defined with
the global attribute in the outermost program.

These special registers represent EBCDIC shift-out and shift-in control characters,
which are unprintable characters.

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function
wherever an alphanumeric argument is allowed.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN cannot
be used in place of the keyboard control characters when you are defining DBCS
user-defined words or specifying EBCDIC DBCS literals.

Following is an example of how SHIFT-OUT and SHIFT-IN might be used:

DATA DIVISION.
WORKING-STORAGE.

01 DBCSGRP.
05 SO PIC X.
05 DBCSITEM PIC G(3) USAGE DISPLAY-1.
05 SI PIC X.

PROCEDURE DIVISION.
MOVE SHIFT-OUT TO SO
MOVE G"<D1D2D3>" TO DBCSITEM
MOVE SHIFT-IN TO SI
DISPLAY DBCSGRP

SORT-CONTROL

The SORT-CONTROL special register is the name of an alphanumeric data item
that is implicitly defined as:

01 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD".

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

This register contains the ddname of the data set that holds the control statements
used to improve the performance of a sorting or merging operation.

You can provide a DD statement for the data set identified by the
SORT-CONTROL special register. Enterprise COBOL will attempt to open the data
set at execution time. Any error will be diagnosed with an informational message.

You can specify the SORT-CONTROL special register in a function wherever an
alphanumeric argument is allowed.

Chapter 3. Character-strings 21

The SORT-CONTROL special register is not necessary for a successful sorting or
merging operation.

The sort control file takes precedence over the SORT special registers.

SORT-CORE-SIZE

The SORT-CORE-SIZE special register is the name of a binary data item that you
can use to specify the number of bytes of storage available to the sort utility. It has
the implicit definition:

01 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

SORT-CORE-SIZE can be used in place of the MAINSIZE or RESINV control
statements in the sort control file:

* The "MAINSIZE=" option control statement keyword is equivalent to
SORT-CORE-SIZE with a positive value.

e The 'RESINV=" option control statement keyword is equivalent to
SORT-CORE-SIZE with a negative value.

* The '"MAINSIZE=MAX’ option control statement keyword is equivalent to
SORT-CORE-SIZE with a value of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-FILE-SIZE

The SORT-FILE-SIZE special register is the name of a binary data item that you can
use to specify the estimated number of records in the sort input file, file-name-1. It
has the implicit definition:

01 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

SORT-FILE-SIZE is equivalent to the 'FILSZ=Ennn’ control statement in the sort
control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-MESSAGE

The SORT-MESSAGE special register is the name of an alphanumeric data item
that is available to both sort and merge programs.

The SORT-MESSAGE special register has the implicit definition:
01 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT".

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

22 Enterprise COBOL for z/OS V4.1 Language Reference

You can use the SORT-MESSAGE special register to specify the ddname of a data
set that the sort utility should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on
the 'MSGDDN=" control statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an
alphanumeric argument is allowed.

SORT-MODE-SIZE

The SORT-MODE-SIZE special register is the name of a binary data item that you
can use to specify the length of variable-length records that occur most frequently.
It has the implicit definition:

01 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

SORT-MODE-SIZE is equivalent to the ‘'SMS=" control statement in the sort control
file.

You can specify the SORT-MODE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-RETURN

The SORT-RETURN special register is the name of a binary data item and is
available to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:
01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The SORT-RETURN special register contains a return code of 0 (successful) or 16
(unsuccessful) at the completion of a sort or merge operation. If the sort or merge
is unsuccessful and there is no reference to this special register anywhere in the
program, a message is displayed on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort or merge operation before all records
are processed. The operation is terminated on the next input or output function for
the sort or merge operation.

You can specify the SORT-RETURN special register in a function wherever an
integer argument is allowed.

TALLY

The TALLY special register is the name of a binary data item that has the following
definition:
01 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO.

Chapter 3. Character-strings 23

24

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer
argument is allowed.

WHEN-COMPILED

The WHEN-COMPILED special register contains the date at the start of the
compilation. WHEN-COMPILED is an alphanumeric data item that has the implicit
definition:

01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The WHEN-COMPILED special register has the format:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 15 October 2007,
WHEN-COMPILED would contain the value 10/15/0714.04.00.

WHEN-COMPILED can be used only as the sending field in a MOVE statement.
WHEN-COMPILED special register data cannot be reference-modified.
The compilation date and time can also be accessed with the intrinsic function

WHEN-COMPILED (see [*“WHEN-COMPILED” on page 537). That function
supports four-digit year values and provides additional information.

XML-CODE

The XML-CODE special register is used for the following purposes:

* To communicate status between the XML parser and the processing procedure
that was identified in an XML PARSE statement

* To indicate either that an XML GENERATE statement executed successfully or
that an exception occurred during XML generation

The XML-CODE special register has the implicit definition:
01 XML-CODE PICTURE S9(9) USAGE BINARY VALUE 0.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

When the XML parser encounters an XML event, it sets XML-CODE and then
passes control to the processing procedure. For all events except an EXCEPTION
event, XML-CODE contains zero when the processing procedure receives control.

For an EXCEPTION event, the parser sets XML-CODE to an exception code that
indicates the nature of the exception. XML PARSE exception codes are discussed in
the Enterprise COBOL Programming Guide.

Enterprise COBOL for z/OS V4.1 Language Reference

You can set XML-CODE before returning to the parser, as follows:

* To -1, after a normal event, to indicate that the parser is to terminate
immediately without processing any remaining XML document text, and
without causing an EXCEPTION event.

* To 0, when the XMLPARSE(COMPAT) compiler option is in effect, after an
EXCEPTION event for which continuation is allowed, to indicate that the parser
is to continue processing. The parser attempts to continue processing the XML
document, but results are undefined.

* To 1, when the XMLPARSE(XMLSS) compiler option is in effect, to indicate after
an END-OF-INPUT event that the next segment of the document is ready for
parsing. (You must leave XMLCODE set to 0 when the processing procedure has
no more segments to return.)

* To a code page identifier after an encoding conflict exception, in some cases
when the XMLPARSE(COMPAT) compiler option is in effect. See the Enterprise
COBOL Programming Guide for details.

If you set XML-CODE to any other value before returning to the parser, results are
undefined.

When the parser returns control to the XML PARSE statement, XML-CODE
contains the most recent value set by the processing procedure or the parser. In
some cases, the parser overrides the value set by the processing procedure.

At termination of an XML GENERATE statement, XML-CODE contains either zero,
indicating successful completion of XML generation, or a nonzero error code,
indicating that an exception occurred during XML generation. XML GENERATE
exception codes are detailed in the Enterprise COBOL Programming Guide.

XML-EVENT

The XML-EVENT special register communicates event information from the XML
parser to the processing procedure identified in the XML PARSE statement. Before
passing control to the processing procedure, the XML parser sets the XML-EVENT
special register to the name of the XML event. The specific events and the
associated special registers that are set depend on the setting of the XMLPARSE
compiler option, XMLPARSE(XMLSS) or XMLPARSE(COMPAT).

The parser uses the following special registers when XMLPARSE(XMLSS) is in
effect:

* XML-CODE

* XML-EVENT

* XML-TEXT or XML-NTEXT

* XML-NAMESPACE or XML-NNAMESPACE

* XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX

The parser uses the following special registers when XMLPARSE(COMPAT) is in
effect:

* XML-CODE
* XML-EVENT
e XML-TEXT or XML-NTEXT

The parser sets XML-NTEXT to associated XML text when the XML document is in
a national data item, and sets XML-TEXT when the XML document is in an

Chapter 3. Character-strings 25

alphanumeric data item. When the XMLPARSE(COMPAT) compiler option is in
effect, the parser sets XML-NTEXT to the text of any numeric character reference
(for events ATTRIBUTE-NATIONAL-CHARACTER and CONTENT-NATIONAL-
CHARACTER) regardless of the type of the XML document data item.

When the XMLPARSE(XMLSS) compiler option is in effect, the parser sets
XML-NNAMESPACE and XML-NNAMESPACE-PREFIX when the XML document
is in a national data item and when the RETURNING NATIONAL phrase is
specified in the XMLPARSE statement; otherwise, the parser sets
XML-NAMESPACE and XML-NAMESPACE-PREFIX.

shows XML events and special register contents for parsing with the
XMLPARSE(XMLSS) and XMLPARSE(COMPAT) options.

XML-EVENT has the implicit definition:

01

XML-EVENT USAGE DISPLAY PICTURE X(30) VALUE SPACE.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-EVENT cannot be used as a receiving data item.

Table 3. XML events and associated special register contents

XML-EVENT

XMLPARSE(XMLSS)!

XMLPARSE(COMPAT)!

ATTRIBUTE-CHARACTER

n/a°

XML-TEXT or XML-NTEXT
contains the single character that
corresponds with the predefined
entity reference in the attribute
value.

ATTRIBUTE-CHARACTERS

XML-TEXT or XML-NTEXT contains
the value within quotation marks or
apostrophes.

XML-TEXT or XML-NTEXT
contains the value within
quotation marks or apostrophes.
This can be a substring of the
attribute value if the value
includes an entity reference.

ATTRIBUTE-NAME

For attribute names that are not in a
namespace, XML-TEXT or
XML-NTEXT contains the attribute
name.

For attributes with names in a
nondefault namespace, attribute names

are always prefixed and have the form:

prefix:local-part = "AttValue".

XML-TEXT or XML-NTEXT contains
the local-part, XML-NAMESPACE or
XML-NNAMESPACE contains the
namespace identifier, and
XML-NAMESPACE-PREFIX or
XML-NNAMESPACE-PREFIX contains
the prefix.

XML-TEXT or XML-TEXT
contains the attribute name (the
string to the left of the equal

sign).

26 Enterprise COBOL for z/OS V4.1 Language Reference

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)" XMLPARSE(COMPAT)!
ATTRIBUTE-NATIONAL- n/a’ Regardless of the type of the
CHARACTER XML document, XML-TEXT is
(A numeric character reference that has empty with length zero and
no corresponding code point in the XML-NTEXT contains the single
target coded character set is replaced national character that
with hyphen-minus.) corresponds with the numeric
character reference’.
COMMENT XML-TEXT or XML-NTEXT contains XML-TEXT or XML-NTEXT
the text of the comment between the content is the same as for
opening character sequence "<!--" and | XMLPARSE(XMLSS).
the closing character sequence "-->".

CONTENT-CHARACTER n/a’ XML-TEXT or XML-NTEXT
contains the single character that
corresponds with the predefined
entity reference in the element
content.

CONTENT-CHARACTERS XML-TEXT or XML-NTEXT contains XML-TEXT or XML-NTEXT

the character content of the element
between start and end tags.

contains the character content of
the element between start and
end tags. This can be a substring
of the character content if the
content includes an entity
reference or another element.

CONTENT-NATIONAL-CHARACTER

n/a’

(A numeric character reference that has
no corresponding code point in the
target coded character set is replaced
with hyphen-minus.)

Regardless of the type of the
XML document, XML-TEXT is
empty with length zero and
XML-NTEXT contains the single
national character that
corresponds with the numeric
character reference.”.

DOCUMENT-TYPE-DECLARATION

XML-TEXT or XML-NTEXT contains
the name of the root element, as
specified in the document type
delcaration.

XML-TEXT or XML-NTEXT
contains the entire document type
declaration, including the
opening and closing character
sequences, "<!DOCTYPE" and
">

ENCODING-DECLARATION

XML-TEXT or XML-NTEXT contains
the value, between quotation marks or
apostrophes, of the encoding
declaration in the XML declaration.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

END-OF-CDATA-SECTION

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

XML-TEXT or XML-NTEXT
contains the string "]]>".

END-OF-DOCUMENT

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

Chapter 3. Character-strings 27

Table 3. XML events and associated special register contents (continued)

XML-EVENT

XMLPARSE(XMLSS)!

XMLPARSE(COMPAT)!

END-OF-ELEMENT

XML-TEXT or XML-NTEXT contains
the local part of the end element tag or
empty element tag name.

If the element name is in a nondefault
namespace, XML-NAMESPACE or
XML-NNAMESPACE contains the
namespace identifier.

If the element name is in a namespace
and is prefixed (of the form
prefix:local-part), XML-NAMESPACE-
PREFIX or XML-NNAMESPACE-
PREFIX contains the prefix.

XML-TEXT or XML-NTEXT
contains the name of the end
element tag or empty element
tag.

END-OF-INPUT

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

To parse an additional segment of an
XML document, move the next
segment to identifier-1 and set
XML-CODE to 1.

n/a

EXCEPTION

XML-CODE contains the unique error
code that identifies the exception.

XML-TEXT or XML-NTEXT contains
the document fragment up to the point
of the error or anomaly that caused the
exception.*

All other XML special registers are
empty with length zero.

XML-CODE contains the unique
error code that identifies the
exception.’

XML-TEXT or XML-NTEXT
contains the part of the document
that was successfully scanned, up
to and including the point at
which the exception was
detected.

NAMESPACE-DECLARATION

XML-TEXT and XML-NTEXT are both
empty with length zero.

XML-NAMESPACE or
XML-NNAMESPACE contains the
declared namespace identifier. If the
namespace is "undeclared” by
specifying the empty string,
XML-NAMESPACE and
XML-NNAMESPACE are empty with
length zero.

XML-NAMESPACE-PREFIX or
XML-NNAMESPACE-PREFIX contains
the prefix if the namespace declaration
is of the form xmins:prefix =
"namespace-identifier”; otherwise, if the
declaration is for the default
namespace and thus the attribute name
is xmins, XML-NAMESPACE-PREFIX
and XML-NNAMESPACE-PREFIX are
both empty with length zero.

n/a°

(ATTRIBUTE-NAME and
ATTRIBUTE-CHARACTERS
events are signaled instead.)

28 Enterprise COBOL for z/OS V4.1 Language Reference

Table 3. XML events and associated special register contents (continued)

XML-EVENT

XMLPARSE(XMLSS)!

XMLPARSE(COMPAT)!

PROCESSING-INSTRUCTION-DATA

XML-TEXT or XML-NTEXT contains
the rest of the processing instruction
(after the target name), not including
the closing sequence "?>", but
including trailing, and not leading,
white space characters.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

PROCESSING-INSTRUCTION-
TARGET

XML-TEXT or XML-NTEXT contains
the processing instruction target name,
which occurs immediately after the
processing instruction opening
sequence, "<?".

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

STANDALONE-DECLARATION

XML-TEXT or XML-NTEXT contains
the value, between quotation marks or
apostrophes ("yes” or "no"), of the
stand-alone declaration in the XML
declaration.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

START-OF-CDATA-SECTION

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

XML-TEXT or XML-NTEXT
contains the string "<![CDATA[".

START-OF-DOCUMENT

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

XML-TEXT or XML-NTEXT
contains the entire document.

START-OF-ELEMENT

XML-TEXT or XML-NTEXT contains
the local part of the start element tag
name or the local part of the empty
element tag name.

If the element name is in a namespace,
XML-NAMESPACE or
XML-NNAMESPACE contains the
namespace identifier.

If the element name is in a namespace
and is prefixed (of the form
prefix:local-part, XML-NAMESPACE-
PREFIX or XML-NNAMESPACE-
PREFIX contains the prefix.

XML-TEXT or XML-NTEXT
contains the name of the start
element tag or empty element
tag, also known as the element

type.

UNKNOWN-REFERENCE-IN- n/a’ XML-TEXT or XML-NTEXT

ATTRIBUTE contains the entity reference
name, not including the "&"” and
"" delimiters.

UNKNOWN-REFERENCE-IN- n/a’ XML-TEXT or XML-NTEXT

CONTENT

For XMLPARSE(XMLSS), the parser
might signal event
UNRESOLVED-REFERENCE instead.

contains the entity reference
name, not including the "&" and
"." delimiters.

UNRESOLVED-REFERENCE

XML-TEXT or XML-NTEXT contains
the entity name from XML content, not
including the "&" and ";" delimiters.

See "Unresolved references” below for
additional details.

n/a°

(The parser signals
UNKNOWN-REFERENCE-IN-
CONTENT instead.)

Chapter 3. Character-strings 29

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)" XMLPARSE(COMPAT)!

VERSION-INFORMATION XML-TEXT or XML-NTEXT contains XML-TEXT or XML-NTEXT

the value, between quotation marks or |content is the same as for
apostrophes, of the version information | XMLPARSE(XMLSS).
in the XML declaration.

. For all events except EXCEPTION, XML-CODE contains zero. Unless stated otherwise, the namespace XML

registers (XML-NAMESPACE, XML-NNAMESPACE, XML-NAMESPACE-PREFIX, and XML-NNAMESPACE-
PREFIX) are empty and have length zero.

National characters with scalar values greater than 65,535 (NX"FFFF") are represented using two encoding units
(a "surrogate pair”). Programmers are responsible for ensuring that operations on the content of XML-NTEXT do
not split the pair of encoding units that together form a graphic character, thereby forming invalid data.

For XMLPARSE(COMPAT), exceptions for encoding conflicts are signaled before parsing begins. For these
exceptions, XML-TEXT or XML-NTEXT is either zero length or contains only the encoding declaration value
from the document. See the Enterprise COBOL Programming Guide for information about XML exception codes.

If an END-OF-INPUT XML event previously occurred and the processing procedure provided a new document
segment, XML-TEXT or XML-NTEXT contains only the new segment.

If the anomaly occurs before parsing begins (for example, the encoding specification is invalid), XML-TEXT or
XML-NTEXT are empty with length zero.

The fragment might or might not include the anomaly. For a duplicate attribute name, for example, the fragment
includes the incorrect attribute. For an invalid character, the fragment includes document text up to, but not
including, the invalid character.

n/a. Not applicable; occurs only with XMLPARSE(COMPAT).
n/a. Not applicable; occurs only wtih XMLPARSE(XMLSS).

30

Unresolved References:

An unresolved entity reference is a reference to the name of an entity that has no
declaration in the document type definition (DTD).

If the XML document does not contain a document type declaration (<!DOCTYPE
...>), an unresolved entity reference in character content results in an EXCEPTION
XML event. To cause the parser to signal an UNRESOLVED-REFERENCE event for
an unresolved reference in character data, instead of an EXCEPTION event, include
at least a minimal document type declaration in the XML document; for example:

<IDOCTYPE rootName>

The parser always signals an EXCEPTION XML event for unresolved references in
attribute values, even when the document includes a document type declaration.

XML-NAMESPACE

The XML-NAMESPACE special register is defined during XML parsing to contain
the identifier of the namespace, if any, associated with the name in XML-TEXT for
XML events START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME,
and to contain the declared namespace identifier for XML event
NAMESPACE-DECLARATION.

The parser sets XML-NAMESPACE to the identifier of the namespace associated
with a name before transferring control to the processing procedure when the
operand of the XML PARSE statement is an alphanumeric data item and the
RETURNING NATIONAL phrase is not specified in the XML PARSE statement.

Enterprise COBOL for z/OS V4.1 Language Reference

To use XML-NAMESPACE, you must compile with the XMLPARSE(XMLSS)
compiler option.

XML-NAMESPACE is an elementary data item of category alphanumeric. The
length of XML-NAMESPACE can vary from 0 through 32,768 bytes. The length at
run time is the length of the contained namespace identifier.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-NAMESPACE has a length of zero for:

¢ The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML
events if there is no namespace associated with a name

* The NAMESPACE-DECLARATION XML event if the namespace is undeclared by
specifying the empty string

* All other XML events

When XML-NAMESPACE is set, the XML-NNAMESPACE special register has a

length of zero. At any given time, only one of the two special registers

XML-NAMESPACE and XML-NNAMESPACE has a nonzero length.

Use the LENGTH function or the LENGTH OF special register to determine the
number of bytes that XML-NAMESPACE contains.

XML-NAMESPACE cannot be used as a receiving item.

XML-NNAMESPACE

The XML-NNAMESPACE special register is defined during XML parsing to
contain the identifier of the namespace, if any, associated with the name in
XML-NTEXT for XML events START-OF-ELEMENT, END-OF-ELEMENT, and
ATTRIBUTE-NAME, and to contain the declared namespace identifier for XML
event NAMESPACE-DECLARATION.

The parser sets XML-NNAMESPACE to the identifier of the namespace associated
with a name before transferring control to the processing procedure when the
RETURNING NATIONAL phrase is specified in the XML PARSE statement or the
operand of the XML PARSE statement is a national data item.

To use XML-NNAMESPACE, you must compile with the XMLPARSE(XMLSS)
compiler option.

XML-NNAMESPACE is an elementary data item of category national. The length
of XML-NNAMESPACE can vary from 0 through 16,384 national characters (0

through 32,768 bytes). The length at run time is the length of the contained
namespace identifier.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-NNAMESPACE has a length of zero for:

Chapter 3. Character-strings 31

32

* The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML
events, if there is no namespace associated with a name

* The NAMESPACE-DECLARATION XML event if the namespace is undeclared by
specifying the empty string

* All other XML events

When XML-NNAMESPACE is set, the XML-NAMESPACE special register has a

length of zero. At any given time, only one of the two special registers
XML-NNAMESPACE and XML-NAMESPACE has a nonzero length.

Use the LENGTH function to determine the number of national character positions
that XML-NNAMESPACE contains; use the LENGTH OF special register to
determine the number of bytes.

XML-NNAMESPACE cannot be used as a receiving item.

XML-NAMESPACE-PREFIX

The XML-NAMESPACE-PREFIX special register is defined during XML parsing to
contain the prefix, if any, of the name in XML-TEXT for XML events
START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME, and to
contain the local attribute name for XML event NAMESPACE-DECLARATION.
The namespace prefix is used as an alias for the complete namespace identifier.

The parser sets XML-NAMESPACE-PREFIX before transferring control to the
processing procedure when the operand of the XML PARSE statement is an
alphanumeric data item and the RETURNING NATIONAL phrase is not specified.

To use XML-NAMESPACE-PREFIX, you must compile with the
XMLPARSE(XMLSS) compiler option.

XML-NAMESPACE-PREFIX is an elementary data item of category national. The
length of XML-NAMESPACE-PREFIX can vary from 0 through 4,096 bytes. The
length at run time is the length of the contained namespace prefix.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-NAMESPACE-PREFIX has a length of zero for:

¢ The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML
events if the name does not have a prefix

e The NAMESPACE-DECLARATION XML event if the declaration is for the
default namespace, in which case the namespace declaration attribute name is
not prefixed.

e All other XML events

When XML-NAMESPACE-PREFIX is set, the XML-NNAMESPACE-PREFIX special
register has a length of zero. At any given time, only one of the two special
registers XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX has a
nonzero length.

Enterprise COBOL for z/OS V4.1 Language Reference

Use the LENGTH function or the LENGTH OF special register to determine the
number of bytes that XML-NAMESPACE-PREFIX contains.

XML-NAMESPACE-PREFIX cannot be used as a receiving item.

XML-NNAMESPACE-PREFIX

The XML-NNAMESPACE-PREFIX special register is defined during XML parsing
to contain the prefix, if any, of the name in XML-NTEXT for XML events
START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME, and to
contain the local attribute name for XML event NAMESPACE-DECLARATION.
The namespace prefix is used as an alias for the complete namespace identifier.

The parser sets XML-NNAMESPACE-PREFIX before transferring control to the
processing procedure when the operand of the XML PARSE statement is a national
data item or the RETURNING NATIONAL phrase is specified in the XML PARSE
statement.

To use XML-NNAMESPACE-PREFIX, you must compile with the
XMLPARSE(XMLSS) compiler option.

XML-NNAMESPACE-PREFIX is an elementary data item of category national. The
length of XML-NNAMESPACE-PREFIX can vary from 0 through 2048 national
character positions (0 through 4096 bytes). The length at run time is the length of
the contained namespace prefix.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-NNAMESPACE-PREFIX has a length of zero for:

¢ The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML
events if the name does not have a prefix

* NAMESPACE-DECLARATION XML event if the declaration is for the default
namespace, in which case the namespace declaration attribute name is not
prefixed.

e All other XML events

When XML-NNAMESPACE-PREFIX is set, the XML-NAMESPACE-PREFIX special
register has a length of zero. At any given time, only one of the two special
registers XML-NNAMESPACE-PREFIX and XML-NAMESPACE-PREFIX has a
nonzero length.

Use the LENGTH function to determine the number of national character positions
that XML-NNAMESPACE contains; use the LENGTH OF special register to

determine the number of bytes.

XML-NNAMESPACE-PREFIX cannot be used as a receiving item.

XML-NTEXT

The XML-NTEXT special register is defined during XML parsing to contain
document fragments that are represented in usage NATIONAL.

Chapter 3. Character-strings 33

34

XML-NTEXT is an elementary data item of category national of the length of the
contained XML document fragment. The length of XML-NTEXT can vary from 0
through 67,090,431 national character positions. The maximum byte length is
134,180,862.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The parser sets XML-NTEXT to the document fragment associated with an event
before transferring control to the processing procedure in these cases:

* When the operand of the XML PARSE statement is a data item of category
national or the RETURNING NATIONAL phrase is specified in the XML PARSE
statement

* For the ATTRIBUTE-NATIONAL-CHARACTER event
* For the CONTENT-NATIONAL-CHARACTER event

When XML-NTEXT is set, the XML-TEXT special register has a length of zero. At
any given time, only one of the two special registers XML-NTEXT and XML-TEXT
has a nonzero length.

Use the LENGTH function to determine the number of national characters that
XML-NTEXT contains. Use the LENGTH OF special register to determine the
number of bytes, rather than the number of national characters, that XML-NTEXT
contains.

XML-NTEXT cannot be used as a receiving item.

XML-TEXT

The XML-TEXT special register is defined during XML parsing to contain
document fragments that are represented in usage DISPLAY.

XML-TEXT is an elementary data item of category alphanumeric of the length of
the contained XML document fragment. The length of XML-TEXT can vary from 0
through 134,180,862 bytes.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The parser sets XML-TEXT to the document fragment associated with an event
before transferring control to the processing procedure when the operand of the
XML PARSE statement is an alphanumeric data item and the RETURNING
NATIONAL phrase is not specified in the XML PARSE statement, except for the
ATTRIBUTE-NATIONAL-CHARACTER event and the CONTENT-NATIONAL-
CHARACTER event.

When XML-TEXT is set, the XML-NTEXT special register has a length of zero. At
any given time, only one of the two special registers XML-NTEXT and XML-TEXT
has a nonzero length.

Enterprise COBOL for z/OS V4.1 Language Reference

Use the LENGTH function or the LENGTH OF special register for XML-TEXT to
determine the number of bytes that XML-TEXT contains.

XML-TEXT cannot be used as a receiving item.

Literals

A literal is a character-string whose value is specified either by the characters of
which it is composed or by the use of a figurative constant. (See
lconstants” on page 13)) For descriptions of the different types of literals, see:

» |“Alphanumeric literals”]
« [“DBCS literals” on page 39
* [“National literals” on page 41

* |“Numeric literals” on page 3§

Alphanumeric literals

Enterprise COBOL provides several formats of alphanumeric literals:

+ Format 1: [“Basic alphanumeric literals”]

+ Format 2: [“Alphanumeric literals with DBCS characters” on page 36|

+ Format 3: ["Hexadecimal notation for alphanumeric literals” on page 37

+ Format 4: [‘Null-terminated alphanumeric literals” on page 3§|

Basic alphanumeric literals

Basic alphanumeric literals can contain any character in a single-byte EBCDIC
character set.

The following is the format for a basic alphanumeric literal:

Format 1: Basic alphanumeric literals

"single-byte-characters"
'single-byte-characters'

The enclosing quotation marks or apostrophes are excluded from the literal when
the program is compiled.

An embedded quotation mark or apostrophe must be represented by a pair of
quotation marks ("") or a pair of apostrophes (''), respectively, when it is the
character used as the opening delimiter. For example:

"THIS ISN""T WRONG"
'THIS ISN''T WRONG'

The delimiter character used as the opening delimiter for a literal must be used as
the closing delimiter for that literal. For example:
'THIS IS RIGHT'

"THIS IS RIGHT"
'THIS IS WRONG"

You can use apostrophes or quotation marks as the literal delimiters independent
of the APOST/QUOTE compiler option.

Chapter 3. Character-strings 35

36

Any punctuation characters included within an alphanumeric literal are part of the
value of the literal.

The maximum length of an alphanumeric literal is 160 bytes. The minimum length
is 1 byte.

Alphanumeric literals are in the alphanumeric data class and category. (Data
classes and categories are described in I"Classes and categories of data” on page|

Alphanumeric literals with DBCS characters

When the DBCS compiler option is in effect, the characters X’0E” and X'0F’ in an
alphanumeric literal will be recognized as shift codes for DBCS characters. That is,
the characters between paired shift codes will be recognized as DBCS characters.
Unlike an alphanumeric literal compiled under the NODBCS option, additional
syntax rules apply to DBCS characters in an alphanumeric literal.

Alphanumeric literals with DBCS characters have the following format:

Format 2: Alphanumeric literals with DBCS characters

"mixed-SBCS-and-DBCS-characters"
'mixed-SBCS-and-DBCS-characters'

or ' The opening and closing delimiter. The closing delimiter must match the

opening delimiter.
mixed-SBCS-and-DBCS-characters
Any mix of single-byte and DBCS characters.

Shift-out and shift-in control characters are part of the literal and must be
paired. They must contain zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for single-byte characters in the literal follow the rules for
basic alphanumeric literals. The syntax rules for DBCS characters in the
literal follow the rules for DBCS literals.

The move and comparison rules for alphanumeric literals with DBCS characters
are the same as those for any alphanumeric literal.

The length of an alphanumeric literal with DBCS characters is its byte length,
including the shift control characters. The maximum length is limited by the
available space on one line in Area B. An alphanumeric literal with DBCS
characters cannot be continued.

An alphanumeric literal with DBCS characters is of the alphanumeric category.

Alphanumeric literals with DBCS characters cannot be used:
* As a literal in the following:

— ALPHABET clause

— ASSIGN clause

— CALL statement program-1D

— CANCEL statement

— CLASS clause

Enterprise COBOL for z/OS V4.1 Language Reference

— CURRENCY SIGN clause
— END PROGRAM marker
— ENTRY statement
— PADDING CHARACTER clause
— PROGRAM-ID paragraph
— RERUN clause
— STOP statement
* As the external class-name for an object-oriented class
* As the basis-name in a BASIS statement
* As the text-name in a COPY statement
* As the library-name in a COPY statement

Enterprise COBOL statements process alphanumeric literals with DBCS characters
without sensitivity to the shift codes and character codes. The use of statements
that operate on a byte-to-byte basis (for example, STRING and UNSTRING) can
result in strings that are not valid mixtures of single-byte EBCDIC and DBCS
characters. See the Enterprise COBOL Programming Guide for more information
about using alphanumeric literals and data items with DBCS characters in
statements that operate on a byte-by-byte basis.

Hexadecimal notation for alphanumeric literals

Hexadecimal notation can be used for alphanumeric literals. Hexadecimal notation
has the following format:

Format 3: Hexadecimal notation for alphanumeric literals

X"hexadecimal-digits"
X'hexadecimal-digits'

X" or X'
The opening delimiter for the hexadecimal notation of an alphanumeric
literal.

or ' The closing delimiter for the hexadecimal notation of an alphanumeric
literal. If a quotation mark is used in the opening delimiter, a quotation
mark must be used as the closing delimiter. Similarly, if an apostrophe is
used in the opening delimiter, an apostrophe must be used as the closing
delimiter.

Hexadecimal digits are characters in the range ‘0’ to '9’, ‘a’ to 'f’, and 'A” to 'F’,
inclusive. Two hexadecimal digits represent one character in a single-byte character
set (EBCDIC or ASCII). Four hexadecimal digits represent one character in a DBCS
character set. A string of EBCDIC DBCS characters represented in hexadecimal
notation must be preceded by the hexadecimal representation of a shift-out control
character (X’0E’) and followed by the hexadecimal representation of a shift-in
control character (X’0F’). An even number of hexadecimal digits must be specified.
The maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any alphanumeric literal. The
opening delimiter (X" or X') cannot be split across lines.

The DBCS compiler option has no effect on the processing of hexadecimal notation
of alphanumeric literals.

Chapter 3. Character-strings 37

38

An alphanumeric literal in hexadecimal notation has data class and category
alphanumeric. Hexadecimal notation for alphanumeric literals can be used
anywhere alphanumeric literals can be used.

See also ["Hexadecimal notation for national literals” on page 42.|

Null-terminated alphanumeric literals

Alphanumeric literals can be null-terminated, with the following format:

Format 4: Null-terminated alphanumeric literals

Z"mixed-characters"
Z'mixed-characters'

Z"orZ'
The opening delimiter for a null-terminated alphanumeric literal. Both
characters of the opening delimiter (Z" or Z') must be on the same source
line.

or ' The closing delimiter for a null-terminated alphanumeric literal.

If a quotation mark is used in the opening delimiter, a quotation mark
must be used as the closing delimiter. Similarly, if an apostrophe is used in
the opening delimiter, an apostrophe must be used as the closing delimiter.

mixed-characters
Can be any of the following:

* Solely single-byte characters
* Mixed single-byte and DBCS characters
* Solely DBCS characters

However, you cannot specify the single-byte character with the value X"00".
X’00” is the null character automatically appended to the end of the literal.
The content of the literal is otherwise subject to the same rules and
restrictions as an alphanumeric literal with DBCS characters (format 2).

The length of the string of characters in the literal content can be 0 to 159 bytes.
The actual length of the literal includes the terminating null character, and is a
maximum of 160 bytes.

A null-terminated alphanumeric literal has data class and category alphanumeric.
It can be used anywhere an alphanumeric literal can be used except that
null-terminated literals are not supported in ALL literal figurative constants.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns
the number of bytes in the literal prior to but not including the terminating null.
(The LENGTH special register does not support literal operands.)

Numeric literals

A numeric literal is a character-string whose characters are selected from the digits 0
through 9, a sign character (+ or -), and the decimal point. If the literal contains no
decimal point, it is an integer. (In this documentation, the word integer appearing
in a format represents a numeric literal of nonzero value that contains no sign and
no decimal point, except when other rules are included with the description of the
format.) The following rules apply:

Enterprise COBOL for z/OS V4.1 Language Reference

* If the ARITH(COMPAT) compiler option is in effect, one through 18 digits are
allowed. If the ARITH(EXTEND) compiler option is in effect, one through 31
digits are allowed.

* Only one sign character is allowed. If included, it must be the leftmost character
of the literal. If the literal is unsigned, it is a positive value.

* Only one decimal point is allowed. If a decimal point is included, it is treated as
an assumed decimal point (that is, as not taking up a character position in the
literal). The decimal point can appear anywhere within the literal except as the
rightmost character.

The value of a numeric literal is the algebraic quantity expressed by the characters
in the literal. The size of a numeric literal is equal to the number of digits specified
by the user.

Numeric literals can be fixed-point or floating-point numbers.

Rules for floating-point literal values

The format and rules for floating-point literals are listed below.

Format

y
Yy

mantissak exponent >«
I+ I+

* The sign is optional before the mantissa and the exponent; if you omit the sign,
the compiler assumes a positive number.

¢ The mantissa can contain between one and 16 digits. A decimal point must be
included in the mantissa.

* The exponent is represented by an E followed by an optional sign and one or
two digits.

* The magnitude of a floating-point literal value must fall between 0.54E-78 and
0.72E+76. For values outside of this range, an E-level diagnostic is produced and
the value is replaced by either 0 or 0.72E+76, respectively.

Numeric literals are in the numeric data class and category. (Data classes and
categories are described under [“Classes and categories of data” on page 164))

DBCS literals

The formats and rules for DBCS literals are listed below.

Format for DBCS literals

G"<DBCS-characters>"
G'<DBCS-characters>'
N"<DBCS-characters>"
N'<DB(CS-characters>'

G", GI, N“, or N'
Opening delimiters.

Chapter 3. Character-strings 39

N" and N' identify a DBCS literal when the NSYMBOL(DBCS) compiler
option is in effect. They identify a national literal when the
NSYMBOL(NATIONAL) compiler option is in effect, and the rules
specified in|“National literals” on page 41|apply.

The opening delimiter must be followed immediately by a shift-out control
character.

For literals with opening delimiter N" or N', when embedded quotes or
apostrophes are specified as part of DBCS characters in a DBCS literal, a
single embedded DBCS quote or apostrophe is represented by two DBCS
quotes or apostrophes. If a single embedded DBCS quote or apostrophe is
found, an E-level compiler message will be issued and a second embedded
DBCS quote or apostrophe will be assumed.

< Represents the shift-out control character (X’0E’)
> Represents the shift-in control character (X'0F")
"or ' The closing delimiter. If a quotation mark is used in the opening delimiter,

a quotation mark must be used as the closing delimiter. Similarly, if an
apostrophe is used in the opening delimiter, an apostrophe must be used
as the closing delimiter.

The closing delimiter must appear immediately after the shift-in control
character.

DBCS-characters
DBCS-characters can be one or more characters in the range of X'00’
through X'FF’ for either byte. Any value will be accepted in the content of
the literal, although whether it is a valid value at run time depends on the
CCSID in effect for the CODEPAGE compiler option.

Maximum length
28 characters

Continuation rules
Cannot be continued across lines

Where DBCS literals can be used

DBCS literals can be used in the following places:
* Data division

— In the VALUE clause of data description entries that define a data item of
class DBCS.

— In the VALUE OF clause of file description entries.
* Procedure division

— In a relation condition when the comparand is a DBCS data item, an
elementary data item of class national, a national group item, or an
alphanumeric group item

— As an argument passed BY CONTENT in a CALL statement

— In the DISPLAY and EVALUATE statements

— In the following statements:
- INITIALIZE; for details, see ["INITIALIZE statement” on page 359
- INSPECT; for details, see[“INSPECT statement” on page 362
- MOVE; for details, see["MOVE statement” on page 386,
- STRING; for details, see ['STRING statement” on page 452.]

40 Enterprise COBOL for z/OS V4.1 Language Reference

- UNSTRING, for details, see ["UNSTRING statement” on page 461
- In figurative constant ALL
— As an argument to the NATIONAL-OF intrinsic function
* Compiler-directing statements COPY, REPLACE, and TITLE

National literals

Enterprise COBOL provides the following national literal formats:

» [“Basic national literals”

+ [“Hexadecimal notation for national literals” on page 42|

Basic national literals

The following are the format and rules for basic national literals.

Format 1: Basic national literals

N"character-data"
N'character-data'

When the NSYMBOL(NATIONAL) compiler option is in effect, the opening
delimiter N" or N' identifies a national literal. A national literal is of the class and
category national.

When the NSYMBOL(DBCS) compiler option is in effect, the opening delimiter N"

or N' identifies a DBCS literal, and the rules specified in|”DBCS literals” on page|

B apply.

N" or N'
Opening delimiters. The opening delimiter must be coded as single-byte
characters. It cannot be split across lines.

or ' The closing delimiter. The closing delimiter must be coded as a single-byte
character. If a quotation mark is used in the opening delimiter, it must be
used as the closing delimiter. Similarly, if an apostrophe is used in the

opening delimiter, it must be used as the closing delimiter.

To include the quotation mark or apostrophe used in the opening delimiter
in the content of the literal, specify a pair of quotation marks or
apostrophes, respectively. Examples:

N'This Titeral''s content includes an apostrophe'

N'This Titeral includes ", which is not used in the opening delimiter'
N"This Titeral includes "", which is used in the opening delimiter"

character-data
The source text representation of the content of the national literal.
character-data can include any combination of EBCDIC single-byte
characters and double-byte characters encoded in the Coded Character Set
ID (CCSID) specified by the CODEPAGE compiler option.

DBCS characters in the content of the literal must be delimited by shift-out
and shift-in control characters.

Maximum length
The maximum length of a national literal is 80 character positions,
excluding the opening and closing delimiters. If the source content of the
literal contains one or more DBCS characters, the maximum length is
limited by the available space in Area B of a single source line.

Chapter 3. Character-strings 41

42

The literal must contain at least one character. Each single-byte character in
the literal counts as one character position and each DBCS character in the
literal counts as one character position. Shift-in and shift-out delimiters for
DBCS characters are not counted.

Continuation rules
When the content of the literal includes DBCS characters, the literal cannot
be continued. When the content of the literal does not include DBCS
characters, normal continuation rules apply.

The source text representation of character-data is automatically converted to
UTF-16 for use at run time (for example, when the literal is moved to or compared
with a data item of category national).

Hexadecimal notation for national literals

The following are the format and rules for the hexadecimal notation format of
national literals.

Format 2: Hexadecimal notation for national literals

NX"hexadecimal-digits"
NX'hexadecimal-digits'

The hexadecimal notation format of national literals is not affected by the
NSYMBOL compiler option.

NX" or NX'
Opening delimiters. The opening delimiter must be represented in
single-byte characters. It must not be split across lines.

or ' The closing delimiter. The closing delimiter must be represented as a

single-byte character.

If a quotation mark is used in the opening delimiter, a quotation mark
must be used as the closing delimiter. Similarly, if an apostrophe is used in
the opening delimiter, an apostrophe must be used as the closing delimiter.

hexadecimal-digits
Hexadecimal digits in the range ‘0’ to '9’, ‘a’ - f’, and "A’ to 'F’, inclusive.
Each group of four hexadecimal digits represents a single national
character and must represent a valid code point in UTF-16. The number of
hexadecimal digits must be a multiple of four.

Maximum length
The length of a national literal in hexadecimal notation must be from four
to 320 hexadecimal digits, excluding the opening and closing delimiters.
The length must be a multiple of four.

Continuation rules
Normal continuation rules apply.

The content of a national literal in hexadecimal notation is stored as national
characters. The resulting content has the same meaning as a basic national literal
that specifies the same national characters.

A national literal in hexadecimal notation has data class and category national and
can be used anywhere that a basic national literal can be used.

Enterprise COBOL for z/OS V4.1 Language Reference

Where national literals can be used

National literals can be used:

In a VALUE clause associated with a data item of class national or a VALUE

clause associated with a condition-name for a conditional variable that is defined

with usage NATIONAL

In figurative constant ALL

In a relation condition

In the WHEN phrase of a format-2 SEARCH statement (binary search)
In the ALL, LEADING, or FIRST phrase of an INSPECT statement

In the BEFORE or AFTER phrase of an INSPECT statement

In the DELIMITED BY phrase of a STRING statement

In the DELIMITED BY phrase of an UNSTRING statement

As the method-name in a METHOD-ID paragraph, an END METHOD marker,
and an INVOKE statement

As an argument passed BY CONTENT in the CALL statement

As an argument passed BY VALUE in an INVOKE or CALL statement
In the DISPLAY and EVALUATE statements

As a sending item in the following procedural statements:

- INITIALIZE

- INSPECT

- MOVE

- STRING

— UNSTRING

In the argument list to the following intrinsic functions:

DISPLAY-OF, LENGTH, LOWER-CASE, MAX, MIN, ORD-MAX, ORD-MIN,
REVERSE, and UPPER-CASE

In the compiler-directing statements COPY, REPLACE, and TITLE

A national literal can be used only as specified in the detailed rules in this
document.

PICTURE character-strings

A PICTURE character-string is composed of the currency symbol and certain
combinations of characters in the COBOL character set. PICTURE character-strings
are delimited only by the separator space, separator comma, separator semicolon,
or separator period.

A chart of PICTURE clause symbols appears in[Table 12 on page 206}

Comments

A comment is a character-string that can contain any combination of characters from

the character set of the computer. It has no effect on the execution of the program.
There are two forms of comments:

Comment entry (identification division)

This form is described under |[“Optional paragraphs” on page 109,

Chapter 3. Character-strings

43

Comment line (any division)
This form is described under [’Comment lines” on page 56|

Character-strings that form comments can contain DBCS characters or a
combination of DBCS and single-byte EBCDIC characters.

Multiple comment lines that contain DBCS strings are allowed. The embedding of
DBCS characters in a comment line must be done on a line-by-line basis. Words
containing those characters cannot be continued to a following line. No syntax
checking for valid strings is provided in comment lines.

44 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 4. Separators

A separator is a character or a string of two or more contiguous characters that
delimits character-strings. The separators are shown in the following table.

Table 4. Separators

Separator Meaning
b Space
b Comma
bt Period
;b Semicolon
(Left parenthesis
) Right parenthesis
Colon
"p! Quotation mark
‘b Apostrophe
X" Opening delimiter for a hexadecimal format alphanumeric literal
X! Opening delimiter for a hexadecimal format alphanumeric literal
7" Opening delimiter for a null-terminated alphanumeric literal
Z' Opening delimiter for a null-terminated alphanumeric literal
N" Opening delimiter for a national literal®
N Opening delimiter for a national literal®
NX" Opening delimiter for a hexadecimal format national literal
NX' Opening delimiter for a hexadecimal format national literal
G" Opening delimiter for a DBCS literal
G' Opening delimiter for a DBCS literal
== Pseudo-text delimiter
1. b represents a blank.
2. N"and N' are the opening delimiter for a DBCS literal when the NSYMBOL(DBCS)
compiler option is in effect.

Rules for separators

In the following description, {} (curly braces) enclose each separator, and b
represents a space. Anywhere a space is used as a separator or as part of a
separator, more than one space can be used.

Space {b}
A space can immediately precede or follow any separator except:

* The opening pseudo-text delimiter, where the preceding space is
required.

* Within quotation marks. Spaces between quotation marks are considered
part of the alphanumeric literal; they are not considered separators.

© Copyright IBM Corp. 1991, 2007 45

46

Period {.b}, Comma {,b}, Semicolon {;b}
A separator comma is composed of a comma followed by a space. A
separator period is composed of a period followed by a space. A separator
semicolon is composed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence,
or as shown in formats. The separator comma and separator semicolon can
be used anywhere the separator space is used.

* In the identification division, each paragraph must end with a separator
period.

e In the environment division, the SOURCE-COMPUTER,
OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL
paragraphs must each end with a separator period. In the
FILE-CONTROL paragraph, each file-control entry must end with a
separator period.

* In the data division, file (FD), sort/merge file (SD), and data description
entries must each end with a separator period.

¢ In the procedure division, separator commas or separator semicolons can
separate statements within a sentence and operands within a statement.
Each sentence and each procedure must end with a separator period.

Parentheses { (}...{) }
Except in pseudo-text, parentheses can appear only in balanced pairs of left
and right parentheses. They delimit subscripts, a list of function
arguments, reference-modifiers, arithmetic expressions, or conditions.

Colon { :}
The colon is a separator and is required when shown in general formats.

Quotation marks {"} ... {"}
An opening quotation mark must be immediately preceded by a space or a
left parenthesis. A closing quotation mark must be immediately followed
by a separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. Quotation marks must appear as balanced pairs.
They delimit alphanumeric literals, except when the literal is continued
(see [“Continuation lines” on page 54)).

Apostrophes {'} ... {"'}
An opening apostrophe must be immediately preceded by a space or a left
parenthesis. A closing apostrophe must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. Apostrophes must appear as balanced pairs. They
delimit alphanumeric literals, except when the literal is continued (see
[“Continuation lines” on page 54).

Null-terminated literal delimiters {Z"} ... {"}, {Z'} ... {"}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter.

DBCS literal delimiters {G"} ... {"}, {G'} ... {"}, {N"} ... {"}, {(N'} ... {"}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. N" and N' are DBCS literal delimiters when the
NSYMBOL/(DBCS) compiler option is in effect.

Enterprise COBOL for z/OS V4.1 Language Reference

National literal delimiters {N"} ... {"}, {N'} ... {"}, {NX"} ... {"}, {(NX"} ... {"}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. N" and N' are DBCS literal delimiters when the
NSYMBOL/(DBCS) compiler option is in effect.

Pseudo-text delimiters {b==} ... {==b}
An opening pseudo-text delimiter must be immediately preceded by a
space. A closing pseudo-text delimiter must be immediately followed by a
separator space, comma, semicolon, or period. Pseudo-text delimiters must

appear as balanced pairs. They delimit pseudo-text. (See [“COPY statement”]
on page 546

Any punctuation character included in a PICTURE character-string, a comment
character-string, or an alphanumeric literal is not considered a punctuation
character, but is part of the character-string or literal.

Chapter 4. Separators 47

48 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 5. Sections and paragraphs

Sections and paragraphs define a program. Sections and paragraphs are
subdivided into sentences, statements, and entries (see |”Sentences, statements, and|
. Sentences are subdivided into statements (see [’Statements” on page 50)),
and statements are subdivided into phrases (see[“Phrases” on page 50). Entries are
subdivided into clauses (see|“Clauses” on page 50) and phrases.

For more information about sections, paragraphs, and statements, see [“Procedures’
on page 260,

Sentences, statements, and entries

Unless the associated rules explicitly state otherwise, each required clause or
statement must be written in the sequence shown in its format. If optional clauses
or statements are used, they must be written in the sequence shown in their
formats. These rules are true even for clauses and statements treated as comments.

The syntactical hierarchy follows this form:
* Identification division
— Paragraphs
- Entries
* Clauses
* Environment division
— Sections
- Paragraphs
e Entries
— Clauses
- Phrases
* Data division
— Sections
- Entries
* Clauses
— Phrases
* Procedure division
— Sections
- Paragraphs
* Sentences
— Statements
- Phrases

Entries

An entry is a series of clauses that ends with a separator period. Entries are
constructed in the identification, environment, and data divisions.

© Copyright IBM Corp. 1991, 2007 49

Clauses

A clause is an ordered set of consecutive COBOL character-strings that specifies an

attribute of an entry. Clauses are constructed in the identification, environment,
and data divisions.

Sentences

A sentence is a sequence of one or more statements that ends with a separator
period. Sentences are constructed in the procedure division.

Statements

A statement specifies an action to be taken by the program. Statements are

constructed in the procedure division. For descriptions of the different types of
statements, see:

« |[“Imperative statements” on page 290

+ |[“Conditional statements” on page 292|

* |Chapter 7, “Scope of names,” on page 59
+ |Chapter 23, “Compiler-directing statements,” on page 543

Phrases

Each clause or statement in a program can be subdivided into smaller units called
phrases.

50 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 6. Reference format

COBOL source text must be written in COBOL reference format. Reference format
consists of the following areas in a 72-character line:

Sequence number area
Columns 1 through 6

Indicator area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

The figure below illustrates reference format for a COBOL source line.

L1|2|3|4|5|Cj7|8|9|10|11|12|13|...|71|72
Sequence Number Area. l Area A Area B

Indicator Area

Sequence number area

The sequence number area can be used to label a source statement line. The
content of this area can consist of any character in the character set of the
computer.

Indicator area

Use the indicator area to specify:

* The continuation of words or alphanumeric literals from the previous line onto
the current line

e The treatment of text as documentation
* Debugging lines

See [’Continuation lines” on page 54)[‘Comment lines” on page 56,|and
[‘Debugging lines” on page 57

The indicator area can be used for source listing formatting. A slash (/) placed in
the indicator column causes the compiler to start a new page for the source listing,
and the corresponding source record to be treated as a comment. The effect can be
dependent on the LINECOUNT compiler option. For information about the
LINECOUNT compiler option, see the Enterprise COBOL Programming Guide.

© Copyright IBM Corp. 1991, 2007 51

Area A

The following items must begin in Area A:

* Division headers

* Section headers

* Paragraph headers or paragraph names

* Level indicators or level-numbers (01 and 77)

* DECLARATIVES and END DECLARATIVES

* End program, end class, and end method markers

Division headers

A division header is a combination of words, followed by a separator period, that
indicates the beginning of a division:

* IDENTIFICATION DIVISION.
* ENVIRONMENT DIVISION.
* DATA DIVISION.

* PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a procedure
division header) must be immediately followed by a separator period. Except for
the USING phrase, no text can appear on the same line.

Section headers

In the environment and procedure divisions, a section header indicates the
beginning of a series of paragraphs. For example:

INPUT-OUTPUT SECTION.

In the data division, a section header indicates the beginning of an entry; for
example:

FILE SECTION.
LINKAGE SECTION.
LOCAL-STORAGE SECTION.

WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph headers or paragraph names

A paragraph header or paragraph name indicates the beginning of a paragraph.

In the environment division, a paragraph consists of a paragraph header followed
by one or more entries. For example:

OBJECT-COMPUTER. computer-name.

In the procedure division, a paragraph consists of a paragraph-name followed by
one or more sentences.

52 Enterprise COBOL for z/OS V4.1 Language Reference

Level indicators (FD and SD) or level-numbers (01 and 77)

A level indicator can be either FD or SD. It must begin in Area A and be followed
by a space. (See [“File section” on page 176)) A level-number that must begin in
Area A is a one- or two-digit integer with a value of 01 or 77. It must be followed
by a space or separator period.

DECLARATIVES and END DECLARATIVES

DECLARATIVES and END DECLARATIVES are keywords that begin and end the
declaratives part of the source unit.

In the procedure division, each of the keywords DECLARATIVES and END
DECLARATIVES must begin in Area A and be followed immediately by a
separator period; no other text can appear on the same line. After the keywords
END DECLARATIVES, no text can appear before the following section header. (See
[“Declaratives” on page 259))

End program, end class, and end method markers

The end markers are a combination of words followed by a separator period that
indicates the end of a COBOL program, method, class, factory, or object definition.
For example:

END PROGRAM program-name .

END CLASS class-name.

END METHOD "method-name".

END OBJECT.
END FACTORY.

For programs
program-name must be identical to the program-name of the corresponding
PROGRAM-ID paragraph. Every COBOL program, except an outermost
program that contains no nested programs and is not followed by another
batch program, must end with an END PROGRAM marker.

For classes
class-name must be identical to the class-name in the corresponding
CLASS-ID paragraph.

For methods

method-name must be identical to the method-name in the corresponding
METHOD-ID paragraph.

For object paragraphs
There is no name in an object paragraph header or in its end marker. The
syntax is simply END OBJECT.

For factory paragraphs
There is no name in a factory paragraph header or in its end marker. The
syntax is simply END FACTORY.

Area B

The following items must begin in Area B:
e Entries, sentences, statements, and clauses
e Continuation lines

Chapter 6. Reference format 53

54

Entries, sentences, statements, clauses

The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name that it follows, or in Area B of the next nonblank line
that is not a comment line. Successive sentences or entries either begin in Area B of
the same line as the preceding sentence or entry, or in Area B of the next nonblank
line that is not a comment line.

Within an entry or sentence, successive lines in Area B can have the same format
or can be indented to clarify program logic. The output listing is indented only if
the input statements are indented. Indentation does not affect the meaning of the
program. The programmer can choose the amount of indentation, subject only to
the restrictions on the width of Area B. See also [Chapter 5, “Sections and|

[paragraphs,” on page 49.|

Continuation lines

Any sentence, entry, clause, or phrase that requires more than one line can be
continued in Area B of the next line that is neither a comment line nor a blank line.
The line being continued is a continued line; the succeeding lines are continuation
lines. Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character
of the preceding line is assumed to be followed by a space.

The following cannot be continued:

* DBCS user-defined words

* DBCS literals

* Alphanumeric literals containing DBCS characters
* National literals containing DBCS characters

However, alphanumeric literals and national literals in hexadecimal notation can be
continued regardless of the kind of characters expressed in hexadecimal notation.

All characters that make up an opening literal delimiter must be on the same line.
For example, Z", G", N, NX", or X".

Both characters that make up the pseudo-text delimiter separator "==" must be on
the same line.

If there is a hyphen in the indicator area of a line, the first nonblank character of
the continuation line immediately follows the last nonblank character of the
continued line without an intervening space.

Continuation of alphanumeric and national literals

Alphanumeric and national literals can be continued only when there are no DBCS
characters in the content of the literal.

The following rules apply to alphanumeric and national literals that do not contain
DBCS characters:

* If the continued line contains an alphanumeric or national literal without a
closing quotation mark, all spaces at the end of the continued line (through
column 72) are considered to be part of the literal. The continuation line must

Enterprise COBOL for z/OS V4.1 Language Reference

contain a hyphen in the indicator area, and the first nonblank character must be
a quotation mark. The continuation of the literal begins with the character
immediately following the quotation mark.

 If an alphanumeric or national literal that is to be continued on the next line has
as its last character a quotation mark in column 72, the continuation line must
start with two consecutive quotation marks. This will result in a single quotation
mark as part of the value of the literal.

If the last character on the continued line of an alphanumeric or national literal
is a single quotation mark in Area B, the continuation line can start with a single
quotation mark. This will result in two consecutive literals instead of one
continued literal.

The rules are the same when an apostrophe is used instead of a quotation mark in
delimiters.

If you want to continue a literal such that the continued lines and the continuation
lines are part of one literal:

* Code a hyphen in the indicator area of each continuation line.

¢ Code the literal value using all columns of each continued line, up to and
including column 72. (Do not terminate the continued lines with a single
quotation mark followed by a space.)

* Code a quotation mark before the first character of the literal on each
continuation line.

* Terminate the last continuation line with a single quotation mark followed by a
space.

In the following examples, the number and size of literals created are indicated

below the example:

P O S SO SUNN: PO IR S N SRS U : SR D N

000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGGHHHHHHHHHHITIIIIIIIIJJJJIIIIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM"

* Literal 000001 is interpreted as one alphanumeric literal that is 120 bytes long.
Each character between the starting quotation mark and up to and including
column 72 of continued lines is counted as part of the literal.

PR N . PP Y S P DU U ;NP U O

000003 N"AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGG"

* Literal 000003 is interpreted as one national literal that is 60 national character
positions in length (120 bytes). Each character between the starting quotation
mark and the ending quotation mark on the continued line is counted as part of
the literal. Although single-byte characters are entered, the value of the literals is
stored as national characters.

[P PO SUY JUIE SUN: PRI Y SUNPIE RN PUNPIE SN : PO T S

000005 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGGHHHHHHHHHHIIIIIIIII1JJJJIIIIIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM "

* Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at
the end of each continued line are counted as part of the literal because the
continued lines do not end with a quotation mark.

[e B N P DY PR SR AR

000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"

- "GGGGGGGGGGHHHHHHHHHHIIIIIIIII1JJJJJIIIIIKKKKKKKKKK"
"LLLLLLLLLLMMMMMMMMMM "

Chapter 6. Reference format 55

* Literal 000010 is interpreted as three separate literals that have lengths of 50, 50,
and 20, respectively. The quotation mark with the following space terminates the
continued line. Only the characters within the quotation marks are counted as
part of the literals. Literal 000010 is not valid as a VALUE clause literal for
non-level-88 data items.

To code a continued literal where the length of each continued part of the literal is
less than the length of Area B, adjust the starting column such that the last
character of the continued part is in column 72.

Area A or Area B

56

The following items can begin in either Area A or Area B:
* Level-numbers

* Comment lines

* Compiler-directing statements

* Debugging lines

e Pseudo-text

Level-numbers

A level-number that can begin in Area A or B is a one- or two-digit integer with a
value of 02 through 49, 66, or 88. A level-number that must begin in Area A is a
one- or two-digit integer with a value of 01 or 77. A level-number must be
followed by a space or a separator period. For more information, see
[“Level-numbers” on page 188

Comment lines

A comment line is any line with an asterisk (*) or slash (/) in the indicator area
(column 7) of the line. The comment can be written anywhere in Area A and Area
B of that line, and can consist of any combination of characters from the character
set of the computer.

Comment lines can be placed anywhere in a program, method, or class definition.
Comment lines placed before the identification division header must follow any
control cards (for example, PROCESS or CBL).

Important: Comments intermixed with control cards could nullify some of the
control cards and cause them to be diagnosed as errors.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or
a slash (/) in the indicator area.

An asterisk (*) comment line is printed on the next available line in the output
listing. The effect can be dependent on the LINECOUNT compiler option. For
information about the LINECOUNT compiler option, see the Enterprise COBOL
Programming Guide. A slash (/) comment line is printed on the first line of the next
page, and the current page of the output listing is ejected.

The compiler treats a comment line as documentation, and does not check it
syntactically.

Enterprise COBOL for z/OS V4.1 Language Reference

Compiler-directing statements

Most compiler-directing statements, including COPY and REPLACE, can start in
either Area A or Area B.

BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE, EJECT, INSERT, SKIP1,
SKIP2, SKIP3, and TITLE statements can also start in Area A or Area B.

Debugging lines

A debugging line is any line with a D (or d) in the indicator area of the line.
Debugging lines can be written in the environment division (after the
OBJECT-COMPUTER paragraph), the data division, and the procedure division. If
a debugging line contains only spaces in Area A and Area B, it is considered a
blank line.

See "WITH DEBUGGING MODE" in [‘'SOURCE-COMPUTER paragraph” on page]
fi14]

Pseudo-text

The character-strings and separators that comprise pseudo-text can start in either
Area A or Area B. If, however, there is a hyphen in the indicator area (column 7) of
a line that follows the opening pseudo-text delimiter, Area A of the line must be
blank, and the rules for continuation lines apply to the formation of text words.
See [“Continuation lines” on page 54| for details.

Blank lines

A blank line contains nothing but spaces in column 7 through column 72. A blank
line can appear anywhere in a program.

Chapter 6. Reference format 57

58 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 7. Scope of names

A user-defined word names a data resource or a COBOL programming element.
Examples of named data resources are a file, a data item, or a record. Examples of
named programming elements are a program, a paragraph, a method, or a class
definition. The sections below define the types of names in COBOL and explain
where the names can be referenced:

* [“Types of names’|

» [“External and internal resources” on page 61|

* [“Resolution of names” on page 62|

Types of names

In addition to identifying a resource, a name can have global or local attributes.
Some names are always global, some names are always local, and some names are
either local or global depending on specifications in the program in which the
names are declared.

For programs
A global name can be used to refer to the resource with which it is
associated both:

¢ From within the program in which the global name is declared
* From within any other program that is contained in the program that
declares the global name

Use the GLOBAL clause in the data description entry to indicate that a
name is global. For more information about using the GLOBAL clause, see
[“‘GLOBAL clause” on page 177

A local name can be used only to refer to the resource with which it is
associated from within the program in which the local name is declared.

By default, if a data-name, a file-name, a record-name, or a condition-name
declaration in a data description entry does not include the GLOBAL
clause, the name is local.

For methods
All names declared in methods are implicitly local.

For classes
Names declared in a class definition are global to all the methods
contained in that class definition.

For object paragraphs
Names declared in the data division of an object paragraph are global to
the methods contained in that object paragraph.

For factory paragraphs
Names declared in the data division of a factory paragraph are global to
the methods contained in that factory paragraph.

Restriction: Specific rules sometimes prohibit specifying the GLOBAL clause for
certain data description, file description, or record description entries.

© Copyright IBM Corp. 1991, 2007 59

60

The following list indicates the names that you can use and whether the name can
be local or global:

data-name
data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data
description entry that declares the data-name or in another entry to which
that data description entry is subordinate.

file-name
file-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file
description entry for that file-name.

record-name
record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record
description that declares the record-name, or in the case of record
description entries in the file section, if the GLOBAL clause is specified in
the file description entry for the file name associated with the record
description entry.

condition-name
condition-name associates a value with a conditional variable.

A condition-name that is declared in a data description entry is global if
that entry is subordinate to another entry that specifies the GLOBAL
clause.

A condition-name that is declared within the configuration section is
always global.

program-name
program-name assigns a name to an external or internal (nested) program.
For more information, see|“”Conventions for program-names” on page 90)

A program-name is neither local nor global. For more information, see
[“Conventions for program-names” on page 90

method-name
method-name assigns a name to a method. method-name must be specified as
the content of an alphanumeric literal or a national literal.

section-name
section-name assigns a name to a section in the procedure division.

A section-name is always local.

paragraph-name
paragraph-name assigns a name to a paragraph in the procedure division.

A paragraph-name is always local.

basis-name
basis-name specifies the name of source text that is be included by the
compiler into the source unit. For details, see ['BASIS statement” on page

library-name
library-name specifies the COBOL library that the compiler uses for
including COPY text. For details, see [‘COPY statement” on page 546

Enterprise COBOL for z/OS V4.1 Language Reference

text-name
text-name specifies the name of COPY text to be included by the compiler
into the source unit. For details, see ['COPY statement” on page 546

alphabet-name
alphabet-name assigns a name to a specific character set or collating
sequence, or both, in the SPECIAL-NAMES paragraph of the environment
division.
An alphabet-name is always global.

class-name (of data)
class-name assigns a name to the proposition in the SPECIAL-NAMES
paragraph of the environment division for which a truth value can be
defined.

A class-name is always global.

class-name (object-oriented)
class-name assigns a name to an object-oriented class or subclass.

mnemonic-name
mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
symbolic-character specifies a user-defined figurative constant.

A symbolic-character is always global.

index-name
index-name assigns a name to an index associated with a specific table.

If a data item that possesses the global attribute includes a table accessed
with an index, that index also possesses the global attribute. In addition,
the scope of that index-name is identical to the scope of the data-name that
includes the table.

External and internal resources

The storage associated with a data item or a file connector can be external or
internal to the program or method in which the resource is declared.

A data item or file connector is external if the storage associated with that resource
is associated with the run unit rather than with any particular program or method
within the run unit. An external resource can be referenced by any program or
method in the run unit that describes the resource. References to an external
resource from different programs or methods using separate descriptions of the
resource are always to the same resource. In a run unit, there is only one
representation of an external resource.

A resource is internal if the storage associated with that resource is associated only
with the program or method that describes the resource.

External and internal resources can have either global or local names.

A data record described in the working-storage section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry.
Any data item described by a data description entry subordinate to an entry that
describes an external record also attains the external attribute. If a record or data

Chapter 7. Scope of names 61

item does not have the external attribute, it is part of the internal data of the
program or method in which it is described.

Two programs or methods in a run unit can reference the same file connector in
the following circumstances:

* An external file connector can be referenced from any program or method that
describes that file connector.

 If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program or in any program that directly or indirectly contains the
containing program.

Two programs or methods in a run unit can reference common data in the
following circumstances:

* The data content of an external data record can be referenced from any program
or method provided that program or method has described that data record.

 If a program is contained within another program, both programs can refer to
data that possesses the global attribute either in the program or in any program
that directly or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not
contain the EXTERNAL clause or to a sort-merge file description entry, as well as
any data items described subordinate to the data description entries for such
records, are always internal to the program or method that describes the file-name.
If the EXTERNAL clause is included in the file description entry, the data records
and the data items attain the external attribute.

Resolution of names

62

The rules for resolution of names depend on whether the names are specified in a
program or in a class definition.

Names within programs

When a program, program B, is directly contained within another program,
program A, both programs can define a condition-name, a data-name, a file-name,
or a record-name using the same user-defined word. When such a duplicated name
is referenced in program B, the following steps determine the referenced resource
(these rules also apply to classes and contained methods):

1. The referenced resource is identified from the set of all names that are defined
in program B and all global names defined in program A and in any programs
that directly or indirectly contain program A. The normal rules for qualification
and any other rules for uniqueness of reference are applied to this set of names
until one or more resources is identified.

2. If only one resource is identified, it is the referenced resource.

3. If more than one resource is identified, no more than one resource can have a
name local to program B. If zero or one of the resources has a name local to
program B, the following rules apply:

* If the name is declared in program B, the resource in program B is the
referenced resource.

e If the name is not declared in program B, the referenced resource is:
— The resource in program A if the name is declared in program A

Enterprise COBOL for z/OS V4.1 Language Reference

— The resource in the containing program if the name is declared in the
program that contains program A

This rule is applied to further containing programs until a valid resource is
found.

Names within a class definition

Within a class definition, resources can be defined within the following units:
* The factory data division

* The object data division

* A method data division

If a resource is defined with a given name in the data division of an object
definition, and there is no resource defined with the same name in an instance
method of that object definition, a reference to that name from an instance method
is a reference to the resource in the object data division.

If a resource is defined with a given name in the data division of a factory
definition, and there is no resource defined with the same name in a factory
method of that factory definition, a reference to that name from a factory method
is a reference to the resource in the factory data division.

If a resource is defined within a method, any reference within the method to that
resource name is always a reference to the resource in the method.

The normal rules for qualification and uniqueness of reference apply when the

same name is associated with more than one resource within a given method data
division, object data division, or factory data division.

Chapter 7. Scope of names 63

64 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 8. Referencing data names, copy libraries, and
procedure division names

References can be made to external and internal resources. References to data and
procedures can be either explicit or implicit. The following sections:

* [“Uniqueness of reference”|

* |“Data attribute specification” on page 78|

contain the rules for qualification and for explicit and implicit data references.

Uniqueness of reference

Every user-defined name in a COBOL program is assigned by the user to name a
resource for solving a data processing problem. To use a resource, a statement in a
COBOL program must contain a reference that uniquely identifies that resource.

To ensure uniqueness of reference, a user-defined name can be qualified. A
subscript is required for unique reference to a table element, except as specified in
[“Subscripting” on page 71| A data-name or function-name, any subscripts, and the
specified reference-modifier uniquely reference a data item defined by reference
modification.

When the same name has been assigned in separate programs to two or more
occurrences of a resource of a given type, and when qualification by itself does not
allow the references in one of those programs to differentiate between the
identically named resources, then certain conventions that limit the scope of names
apply. The conventions ensure that the resource identified is that described in the
program containing the reference. For more information about resolving
program-names, see [“Resolution of names” on page 62]

Unless otherwise specified by the rules for a statement, any subscripts and
reference modification are evaluated only once as the first step in executing that
statement.

Qualification

A name that exists within a hierarchy of names can be made unique by specifying
one or more higher-level names in the hierarchy. The higher-level names are called
qualifiers, and the process by which such names are made unique is called
qualification.

Qualification is specified by placing one or more phrases after a user-specified
name, with each phrase made up of the word IN or OF followed by a qualifier. (IN
and OF are logically equivalent.)

In any hierarchy, the data-name associated with the highest level must be unique if
it is referenced, and cannot be qualified.

© Copyright IBM Corp. 1991, 2007 65

66

You must specify enough qualification to make the name unique; however, it is not
always necessary to specify all the levels of the hierarchy. For example, if there is
more than one file whose records contain the field EMPLOYEE-NO, but only one of the
files has a record named MASTER-RECORD:

* EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO.
* EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary.

Qualification rules

The rules for qualifying a name are:

* A name can be qualified even though it does not need qualification except in a
REDEFINES clause, in which case it must not be qualified.

* Each qualifier must be of a higher level than the name it qualifies and must be
within the same hierarchy.

* If there is more than one combination of qualifiers that ensures uniqueness, any
of those combinations can be used.

Identical names

When programs are directly or indirectly contained within other programs, each
program can use identical user-defined words to name resources. A program
references the resources that that program describes rather than the same-named
resources described in another program, even if the names are different types of
user-defined words.

These same rules apply to classes and their contained methods.

References to COPY libraries

Format

»>—text-name-1 _| <
LI:IN library-name-1
OF

If library-name-1 is not specified, SYSLIB is assumed as the library name.

For rules on referencing COPY libraries, see [“COPY statement” on page 546

References to procedure division nhames

Enterprise COBOL for z/OS V4.1 Language Reference

Format 1

A\
A

IN section—name—]—l

»»>—paragraph-name-1
|:OF

Format 2

»>—section-name-1 > <

Procedure division names that are explicitly referenced in a program must be
unique within a section. A section-name is the highest and only qualifier available
for a paragraph-name and must be unique if referenced. (Section-names are
described under [“Procedures” on page 260.)

If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to within the
section in which it appears. A paragraph-name or section-name that appears in a
program cannot be referenced from any other program.

References to data division names

This section discusses the following types of references:

* [“Simple data reference”]

+ |“Identifiers” on page 68

Simple data reference

The most basic method of referencing data items in a COBOL program is simple
data reference, which is data-name-1 without qualification, subscripting, or reference
modification. Simple data reference is used to reference a single elementary or
group item.

Format

»»—data-name-1 ><

data-name-1
Can be any data description entry.

data-name-1 must be unique in a program.

Chapter 8. Referencing data names, copy libraries, and procedure division names 67

68

Identifiers

When used in a syntax diagram in this information, the term identifier refers to a
valid combination of a data-name or function-identifier with its qualifiers,
subscripts, and reference-modifiers as required for uniqueness of reference. Rules
for identifiers associated with a format can however specifically prohibit
qualification, subscripting, or reference modification.

The term data-name refers to a name that must not be qualified, subscripted, or
reference modified unless specifically permitted by the rules for the format.

* For a description of qualification, see [“Qualification” on page 65)

» For a description of subscripting, see [“Subscripting” on page 71.|

» For a description of reference modification, see [‘Reference modification” on|
page 74.

Format 1

»>—data-name-1—Y g]
LI:IN ata-name-2 LI:IN]—fiZe-name-l
OF OF

(—'subscriptl)

»

y
v

». >

|—(—Zeftmos t-character-posit ion—:—l_—_l—)—l
length

A

data-name-1, data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the data division.

file-name-1 must be unique within this program.

Enterprise COBOL for z/OS V4.1 Language Reference

Format 2

> condition-name-1 v
data-name-l4 LI:IN data-name-ZJ
OF

> »<

LI:IN fz'Ze-name-]—|
OF

Format 3

»»>—| INAGE-COUNTER _| «
LI:IN file-name-2
OF:

data-name-1, data-name-2
Can be a record-name.

condition-name-1
Can be referenced by statements and entries either in the program that
contains the configuration section or in a program contained within that
program.

file-name-1
Must be identified by an FD or SD entry in the data division.

Must be unique within this program.

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file
description entry that contains a LINAGE clause has been specified in the
source unit.

file-name-2
Must be identified by the FD or SD entry in the data division. file-name-2
must be unique within this program.

Duplication of data-names must not occur in those places where the data-names
cannot be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose
level-number is 01 that includes the EXTERNAL clause must not be the same
data-name specified for any other data description entry that includes the
EXTERNAL clause.

In the same data division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

Chapter 8. Referencing data names, copy libraries, and procedure division names 69

70

Data division names that are explicitly referenced must either be uniquely defined
or made unique through qualification. Unreferenced data items need not be
uniquely defined. The highest level in a data hierarchy (a data item associated with
a level indicator (FD or SD in the file section) or with level-number 01) must be
uniquely named if referenced. Data items associated with level-numbers 02
through 49 are successively lower levels of the hierarchy.

Condition-name

Format 1: condition-name in data division

»>—condition-name-1—Y 7 7
LI:IN data-name-1 LI:IN file-name-1
OF:

OF

Y
v
A

(—Y-subscript——)

Format 2: condition-name in SPECIAL-NAMES paragraph

V

»>—condition-name-1

IN nemonic—name-l—|
g

condition-name-1
Can be referenced by statements and entries either in the program that
contains the definition of condition-name-1, or in a program contained
within that program.

If explicitly referenced, a condition-name must be unique or be made
unique through qualification or subscripting (or both) except when the
scope of names by itself ensures uniqueness of reference.

If qualification is used to make a condition-name unique, the associated
conditional variable can be used as the first qualifier. If qualification is
used, the hierarchy of names associated with the conditional variable itself
must be used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any
of its condition-names also requires the same combination of subscripting.

Enterprise COBOL for z/OS V4.1 Language Reference

In this information, condition-name refers to a condition-name qualified or
subscripted, as necessary.

data-name-1
Can be a record-name.
file-name-1
Must be identified by an FD or SD entry in the data division.

file-name-1 must be unique within this program.

mnemonic-name-1
For information about acceptable values for mnemonic-name-1, see
[“SPECIAL-NAMES paragraph” on page 116/

Index-name

An index-name identifies an index. An index can be regarded as a private special
register that the compiler generates for working with a table. You name an index
by specifying the INDEXED BY phrase in the OCCURS clause that defines a table.

You can use an index-name in only the following language elements:
» SET statements

* PERFORM statements

* SEARCH statements

* Subscripts

* Relation conditions

An index-name is not the same as the name of an index data item, and an
index-name cannot be used like a data-name.

Index data item

An index data item is a data item that can hold the value of an index. You define
an index data item by specifying the USAGE IS INDEX clause in a data description
entry. The name of an index data item is a data-name. An index data item can be
used anywhere a data-name or identifier can be used, unless stated otherwise in
the rules of a particular statement. You can use the SET statement to save the value
of an index (referenced by index-name) in an index data item.

Subscripting

Subscripting is a method of providing table references through the use of
subscripts. A subscript is a positive integer whose value specifies the occurrence
number of a table element.

Chapter 8. Referencing data names, copy libraries, and procedure division names 71

Format

»—[condition—name—l v
data-name-l4 LI:IN data-name-ZJ
OF

> »

IN fiZe-name-]—|
T

v
A

»—(———integer-1)
ALL

data-name-3 _|
LI: +:|—integer—2

index-name-1 _|
LI: +:|—integer—3

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS
clause or must be subordinate to a data description entry that contains an
OCCURS clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data
description entry that contains an OCCURS clause.

data-name-2, file-name-1
Must name data items or records that contain data-name-1.

integer-1
Can be signed. If signed, it must be positive.

data-name-3
Must be a numeric elementary item representing an integer.

data-name-3 can be qualified. data-name-3 cannot be a windowed date field.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being
referenced that contains an INDEXED BY phrase that specifies that name.

integer-2, integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any
qualification for the name of the table element. The number of subscripts in such a
reference must equal the number of dimensions in the table whose element is
being referenced. That is, there must be a subscript for each OCCURS clause in the
hierarchy that contains the data-name including the data-name itself.

72 Enterprise COBOL for z/OS V4.1 Language Reference

When more than one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization. If a
multidimensional table is thought of as a series of nested tables and the most
inclusive or outermost table in the nest is considered to be the major table with the
innermost or least inclusive table being the minor table, the subscripts are written
from left to right in the order major, intermediate, and minor.

For example, if TABLE-THREE is defined as:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:
ELEMENT-THREE (2 2 1)

Subscripted references can also be reference modified. See the third example under
[“Reference modification examples” on page 77| A reference to an item must not be
subscripted unless the item is a table element or an item or condition-name
associated with a table element.

Each table element reference must be subscripted except when such reference
appears:

* In a USE FOR DEBUGGING statement

* As the subject of a SEARCH statement

* In a REDEFINES clause

* In the KEY is phrase of an OCCURS clause

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum
number of occurrences of the item as specified in the OCCURS clause.

Subscripting using data-names

When a data-name is used to represent a subscript, it can be used to reference
items within different tables. These tables need not have elements of the same size.
The same data-name can appear as the only subscript with one item and as one of
two or more subscripts with another item. A data-name subscript can be qualified;
it cannot be subscripted or indexed. For example, valid subscripted references to
TABLE-THREE, assuming that SUB1, SUB2, and SUB3 are all items subordinate to
SUBSCRIPT-ITEM, include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,
SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting using index-names (indexing)

Indexing allows such operations as table searching and manipulating specific
items. To use indexing, you associate one or more index-names with an item
whose data description entry contains an OCCURS clause. An index associated
with an index-name acts as a subscript, and its value corresponds to an occurrence
number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated
with its table, is an optional part of the OCCURS clause. There is no separate entry

Chapter 8. Referencing data names, copy libraries, and procedure division names 73

74

to describe the index associated with index-name. At run time, the contents of the
index corresponds to an occurrence number for that specific dimension of the table
with which the index is associated.

The initial value of an index at run time is undefined, and the index must be
initialized before it is used as a subscript. An initial value is assigned to an index
with one of the following:

e The PERFORM statement with the VARYING phrase
* The SEARCH statement with the ALL phrase
* The SET statement

The use of an integer or data-name as a subscript that references a table element or
an item within a table element does not cause the alteration of any index
associated with that table.

An index-name can be used to reference any table. However, the element length of
the table being referenced and of the table that the index-name is associated with
should match. Otherwise, the reference will not be to the same table element in
each table, and you might get runtime errors.

Data that is arranged in the form of a table is often searched. The SEARCH
statement provides facilities for producing serial and nonserial searches. It is used
to search for a table element that satisfies a specific condition and to adjust the
value of the associated index to indicate that table element.

To be valid during execution, an index value must correspond to a table element
occurrence of neither less than one, nor greater than the highest permissible
occurrence number.

For more information about index-names, see [Index-name” on page 71| and
[“INDEXED BY phrase” on page 201

Relative subscripting

In relative subscripting, the name of a table element is followed by a subscript of the
form data-name or index-name followed by the operator + or -, and a positive or
unsigned integer literal.

The operators + and - must be preceded and followed by a space. The value of the
subscript used is the same as if the index-name or data-name had been set up or
down by the value of the integer. The use of relative indexing does not cause the
program to alter the value of the index.

Reference modification

Reference modification defines a data item by specifying a leftmost character and
optional length for the data item.

Enterprise COBOL for z/OS V4.1 Language Reference

Format: reference modification

v

data-name-1 |
FUNCTION—function-name-1

(—argument-1——)

»—(—leftmost-character-position—: |_ _|) >
length

data-name-1
Must reference a data item described explicitly or implicitly with usage
DISPLAY, DISPLAY-1, or NATIONAL. A national group item is processed
as an elementary data item of category national.

data-name-1 can be qualified or subscripted. data-name-1 cannot be a
windowed date field.

function-name-1
Must reference an alphanumeric or national function.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-
position must result in a positive nonzero integer that is less than or equal
to the number of characters in the data item referenced by data-name-1.

The evaluation of leftmost-character-position must not result in a windowed
date field.

length Must be an arithmetic expression.
The evaluation of length must result in a positive nonzero integer.
The evaluation of length must not result in a windowed date field.

The sum of leftmost-character-position and length minus the value 1 must be
less than or equal to the number of character positions in data-name-1. If
length is omitted, the length used will be equal to the number of character
positions in data-name-1 plus 1, minus leftmost-character-position.

For usages DISPLAY-1 and NATIONAL, each character position occupies 2 bytes.
Reference modification operates on whole character positions and not on the
individual bytes of the characters in usages DISPLAY-1 and NATIONAL. For usage
DISPLAY, reference modification operates as though each character were a
single-byte character.

Unless otherwise specified, reference modification is allowed anywhere an
identifier or function-identifier that references a data item or function with the
same usage as the reference-modified data item is permitted.

Each character position referenced by data-name-1 or function-name-1 is assigned an
ordinal number incrementing by one from the leftmost position to the rightmost
position. The leftmost position is assigned the ordinal number one. If the data
description entry for data-name-1 contains a SIGN IS SEPARATE clause, the sign
position is assigned an ordinal number within that data item.

Chapter 8. Referencing data names, copy libraries, and procedure division names 75

76

If data-name-1 is described with usage DISPLAY and category numeric,
numeric-edited, alphabetic, alphanumeric-edited, or external floating-point,
data-name-1 is operated upon for purposes of reference modification as if it were
redefined as a data item of category alphanumeric with the same size as the data
item referenced by data-name-1.

If data-name-1 is described with usage NATIONAL and category numeric,
numeric-edited, national-edited, or external floating-point, data-name-1 is operated
upon for purposes of reference modification as if it were redefined as a data item
of category national with the same size as the data item referenced by data-name-1.

If data-name-1 is a national group item, data-name-1 is processed as an elementary
data item of category national.

If data-name-1 is an expanded date field, then the result of reference modification is
a nondate.

Reference modification creates a unique data item that is a subset of data-name-1 or
a subset of the value referenced by function-name-1 and its arguments, if any. This
unique data item is considered an elementary data item without the JUSTIFIED
clause.

When a function is reference-modified, the unique data item has class, category,
and usage national if the type of the function is national; otherwise, it has class
and category alphanumeric and usage display.

When data-name-1 is reference-modified, the unique data item has the same class,
category, and usage as that defined for the data item referenced by data-name-1
except that:

e If data-name-1 has category national-edited, the unique data item has category
national.

e If data-name-1 has usage NATIONAL and category numeric-edited, numeric, or
external floating-point, the unique data item has category national.

e If data-name-1 has usage DISPLAY, and category numeric-edited,
alphanumeric-edited, numeric, or external floating-point, the unique data item
has category alphanumeric.

e If data-name-1 references an alphanumeric group item, the unique data item is
considered to have usage DISPLAY and category alphanumeric.

e If data-name-1 references a national group item, the unique data item has usage
NATIONAL and category national.

If length is not specified, the unique data item created extends from and includes
the character position identified by leftmost-character-position up to and including
the rightmost character position of the data item referenced by data-name-1.

Evaluation of operands

Reference modification for an operand is evaluated as follows:

* If subscripting is specified for the operand, the reference modification is
evaluated immediately after evaluation of the subscript.

* If subscripting is not specified for the operand, the reference modification is

evaluated at the time subscripting would be evaluated if subscripts had been
specified.

Enterprise COBOL for z/OS V4.1 Language Reference

Reference modification examples

The following statement transfers the first 10 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).

77 FIRST-NAME PIC X(10).

MOVE WHOLE-NAME(1:10) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME PIC X(15).

MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third
occurrence of TAB to the variable SUFFIX.

01 TABLE-1.
02 TAB OCCURS 10 TIMES PICTURE X(5).
77 SUFFIX PICTURE X(2).

" MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.
Function-identifier

A function-identifier is a sequence of character strings and separators that uniquely
references the data item that results from the evaluation of a function.

Format

»»—FUNCTION—jfunction-name-1 L J >
(—argument-1——)

»
>

\4
A

I—reference-modifier—l

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

For more information, see |Chapter 22, “Intrinsic functions,” on page 495)

function-name-1
function-name-1 must be one of the intrinsic function names.

reference-modifier
Can be specified only for functions of the type alphanumeric or national.

A function-identifier that makes reference to an alphanumeric or national function
can be specified anywhere that a data item of category alphanumeric or category
national, respectively, can be referenced and where references to functions are not
specifically prohibited, except as follows:

Chapter 8. Referencing data names, copy libraries, and procedure division names 77

* As a receiving operand of any statement

* Where a data item is required to have particular characteristics (such as class
and category, size, sign, and permissible values) and the evaluation of the
function according to its definition and the particular arguments specified would
not have these characteristics

A function-identifier that makes reference to an integer or numeric function can be
used wherever an arithmetic expression can be used.

Data attribute specification

Explicit data attributes are data attributes that you specify in COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data
attribute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If USAGE is omitted
and the symbol N is not specified in the PICTURE clause, the default is USAGE
DISPLAY, which is the implicit data attribute. When PICTURE symbol N is used,
USAGE DISPLAY-1 is the default when the NSYMBOL(DBCS) compiler option is
in effect; USAGE NATIONAL is the default when the NSYMBOL(NATIONAL)
compiler option is in effect. These are implicit data attributes.

78 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 9. Transfer of control

In the procedure division, unless there is an explicit control transfer or there is no
next executable statement, program flow transfers control from statement to
statement in the order in which the statements are written. This normal program
flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement. The following examples show
implicit transfers of control, overriding statement-to-statement transfer of control:

* After execution of the last statement of a procedure that is executed under
control of another COBOL statement, control implicitly transfers. (COBOL
statements that control procedure execution are, for example, MERGE,
PERFORM, SORT, and USE.) Further, if a paragraph is being executed under the
control of a PERFORM statement that causes iterative execution, and that
paragraph is the first paragraph in the range of that PERFORM statement, an
implicit transfer of control occurs between the control mechanism associated
with that PERFORM statement and the first statement in that paragraph for each
iterative execution of the paragraph.

* During SORT or MERGE statement execution, control is implicitly transferred to
an input or output procedure.

* During XML PARSE statement execution, control is implicitly transferred to a
processing procedure.

* During execution of any COBOL statement that causes execution of a declarative
procedure, control is implicitly transferred to that procedure.

* At the end of execution of any declarative procedure, control is implicitly
transferred back to the control mechanism associated with the statement that
caused its execution.

COBOL also provides explicit control transfers through the execution of any
procedure branching, program call, or conditional statement. (Lists of procedure
branchini and conditional statements are contained in |’Statement categories” on|

page 290.)

Definition: The term next executable statement refers to the next COBOL statement
to which control is transferred, according to the rules given above. There is no next
executable statement under the following circumstances:

* When the program contains no procedure division

* Following the last statement in a declarative section when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement

* Following the last statement in a program or method when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement in that program

* Following the last statement in a declarative section when the statement is in the
range of an active PERFORM statement executed in a different section and this
last statement of the declarative section is not also the last statement of the
procedure that is the exit of the active PERFORM statement

* Following a STOP RUN statement or EXIT PROGRAM statement that transfers
control outside the COBOL program

© Copyright IBM Corp. 1991, 2007 79

* Following a GOBACK statement that transfers control outside the COBOL
program

* Following an EXIT METHOD statement that transfers control outside the
COBOL method

* The end program or end method marker

When there is no next executable statement and control is not transferred outside
the COBOL program, the program flow of control is undefined unless the program
execution is in the nondeclarative procedures portion of a program under control
of a CALL statement, in which case an implicit EXIT PROGRAM statement is
executed.

Similarly, if control reaches the end of the procedure division of a method and

there is no next executable statement, an implicit EXIT METHOD statement is
executed.

80 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 10. Millennium Language Extensions and date fields

Many applications use two digits rather than four digits to represent the year in
date fields, and assume that these values represent years from 1900 to 1999. This
compact date format works well for the 1900s, but it does not work for the year
2000 and beyond because these applications interpret "00” as 1900 rather than 2000,
producing incorrect results.

The millennium language extensions are designed to allow applications that use
two-digit years to continue performing correctly in the year 2000 and beyond, with
minimal modification to existing code. This is achieved using a technique known
as windowing, which removes the assumption that all two-digit year fields
represent years from 1900 to 1999. Instead, windowing enables two-digit year
fields to represent years within a 100-year range known as a century window.

For example, if a two-digit year field contains the value 15, many applications
would interpret the year as 1915. However, with a century window of 1960-2059,
the year would be interpreted as 2015.

The millennium language extensions provide support for the most common
operations on date fields: comparisons, moving and storing, and incrementing and
decrementing. This support is limited to date fields of certain formats; for details,
see ["'DATE FORMAT clause” on page 190/

For information about supported operations and restrictions when using date
fields, see [“Restrictions on using date fields” on page 192

Millennium Language Extensions syntax

The millennium language extensions introduce the following language elements:

¢ The DATE FORMAT clause in data description entries, which defines data items
as date fields.

¢ The following intrinsic functions:

DATEVAL
Converts a nondate to a date field.

UNDATE
Converts a date field to a nondate.

YEARWINDOW
Returns the first year of the century window specified by the
YEARWINDOW compiler option.

For details on using the millennium language extensions in applications, see the
Enterprise COBOL Programming Guide.

The millennium language extensions have no effect unless your program is

compiled using the DATEPROC compiler option and the century window is
specified by the YEARWINDOW compiler option.

© Copyright IBM Corp. 1991, 2007 81

Terms and concepts

82

This documents uses the following terms when referring to the millennium
language extensions:

e |“Date ﬁeld’:|

+ [“Nondate” on page 83|

* [“Century window” on page 83|

Date field

A date field can be any of the following;:
* A data item whose data description entry includes a DATE FORMAT clause
* A value returned by one of the following intrinsic functions:

- DATE-OF-INTEGER

- DATE-TO-YYYYMMDD

- DATEVAL

- DAY-OF-INTEGER

- DAY-TO-YYYYDDD

- YEAR-TO-YYYY

- YEARWINDOW

* The conceptual data items DATE, DATE YYYYMMDD, DAY, or DAY YYYYDDD
of the ACCEPT statement

« The result of certain arithmetic operations (for details, see|Arithmetic with date]
[fields” on page 264)

The term date field refers to both expanded date fields and windowed date fields.
Windowed date field

A windowed date field is a date field that contains a windowed year. A windowed year
consists of two digits, representing a year within the century window.

Expanded date field

An expanded date field is a date field that contains an expanded year. An expanded
year consists of four digits.

The main use of expanded date fields is to provide correct results when these are
used in combination with windowed date fields; for example, where migration to
four-digit year dates is not complete. If all the dates in an application use
four-digit years, there is no need to use the millennium language extensions.

Year-last date field

A year-last date field is a date field whose DATE FORMAT clause specifies one or
more Xs preceding the YY or YYYY. Year-last date fields are supported in a limited
number of operations, typically involving another date with the same (year-last)
date format, or a nondate.

Date format

Date format refers to the date pattern of a date field, specified either:

Enterprise COBOL for z/OS V4.1 Language Reference

* Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function
argument-2

* Implicitly, by statements and intrinsic functions that return date fields.

Compatible date field

The meaning of the term compatible, when applied to date fields, depends on the
COBOL division in which the date field occurs:

Data division
Two date fields are compatible if they have identical USAGE and meet at
least one of the following conditions:

They have the same date format.

Both are windowed date fields, where one consists only of a windowed
year, DATE FORMAT YY.

Both are expanded date fields, where one consists only of an expanded
year, DATE FORMAT YYYY.

One has DATE FORMAT YYXXXX, the other, YYXX.
One has DATE FORMAT YYYYXXXX, the other, YYYYXX.

A windowed date field can be subordinate to an expanded date group data
item. The two date fields are compatible if the subordinate date field has
USAGE DISPLAY, starts 2 bytes after the start of the group expanded date
field, and the two fields meet at least one of the following conditions:

The subordinate date field has a DATE FORMAT pattern with the same
number of Xs as the DATE FORMAT pattern of the group date field.

The subordinate date field has DATE FORMAT YY.

The group date field has DATE FORMAT YYYYXXXX and the
subordinate date field has DATE FORMAT YYXX.

Procedure division
Two date fields are compatible if they have the same date format except
for the year part, which can be windowed or expanded. For example, a
windowed date field with DATE FORMAT YYXXX is compatible with:

Nondate

Another windowed date field with DATE FORMAT YYXXX
An expanded date field with DATE FORMAT YYYYXXX

A nondate can be any of the following:
* A data item whose date description entry does not include the DATE FORMAT

clause

* A date field that has been converted using the UNDATE function
* A literal
* A reference-modified date field

* The result of certain arithmetic operations that can include date field operands;
for example, the difference between two compatible date fields

Century window

A century window is a 100-year interval within which any two-digit year is unique.
There are several ways to specify a century window in a COBOL program:

Chapter 10. Millennium Language Extensions and date fields 83

* For windowed date fields, a century window is specified by the YEARWINDOW
compiler option.

* For windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD,
and YEAR-TO-YYYY, a century window is specified by argument-2.

84 Enterprise COBOL for z/OS V4.1 Language Reference

Part 2. COBOL source unit structure

Chapter 11. COBOL program structure
Nested programs
Conventions for program-names
Rules for program-names.

Chapter 12. COBOL class definition structure .

Chapter 13. COBOL method definition structure

© Copyright IBM Corp. 1991, 2007

. 87
. 89
.90
. 90

. 93

97

85

86 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 11. COBOL program structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested programs
A nested program is a program that is contained in another program.
Contained programs can reference some of the resources of the programs
that contain them. If program B is contained in program A, it is directly
contained if there is no program contained in program A that also contains
program B. Program B is indirectly contained in program A if there exists a
program contained in program A that also contains program B. For more
information about nested programs, see [‘Nested programs” on page 89|
and the Enterprise COBOL Programming Guide.

Object program
An object program is a set or group of executable machine language
instructions and other material designed to interact with data to provide
problem solutions. An object program is generally the machine language
result of the operation of a COBOL compiler on a source program. The
term object program also refers to the methods that result from compiling
a class definition.

Run unit
A run unit is one or more object programs that interact with one another
and that function at run time as an entity to provide problem solutions.
Sibling program
Sibling programs are programs that are directly contained in the same
program.

With the exception of the COPY and REPLACE statements and the end program
marker, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into the following four divisions:

* Identification division

¢ Environment division

 Data division

* Procedure division

The end of a COBOL source program is indicated by the END PROGRAM marker.
If there are no nested programs, the absence of additional source program lines

also indicates the end of a COBOL program.

Following is the format for the entries and statements that constitute a separately
compiled COBOL source program.

© Copyright IBM Corp. 1991, 2007 87

Format: COBOL source program

v

IDENTIFICATION——DIVISION.—PROGRAM-ID program-name- 1
1D L]

Lm—[RECURSIVE | l——l l—z’dentification-division-content—|
IS INITIALJ I—PROG.RAMJ

|—ENVIRONMENT DIVISION.—envir‘onment-divisz’on-content—|

\
4

\
4

». »

|—DATA DIVISION.—data-division-content—| |—PROCEDURE DIVISION.—procedure-division-content—|

Yy
v
A

| END PROGRAM—program-name-1. J

L' Nested source program i

nested source program:

IDENTIFICATION DIVISION.—PROGRAM—ID—L—_I—program—name—Z >
ID .
||_ J COMMON |_ J |_ Jl l——l l—identification—division—content—l
IS L INITIAL PROGRAM
INITIAL—L—_|—
COMMON

\
4

|—ENVIRONMENT DIVISION.—envir'onment-division-content—|

»- »

|—DATA DIVISION.—data-division-content—| |—PROCEDURE DIVISION.—procedure-division-content—|

> END PROGRAM—program-name-2. I

Y| nested source program |

A sequence of separate COBOL programs can also be input to the compiler. The
following is the format for the entries and statements that constitute a sequence of
source programs (batch compile).

88 Enterprise COBOL for z/OS V4.1 Language Reference

Format: sequence of COBOL source programs

»»—Y _COBOL-source-program ><

END PROGRAM program-name
An end program marker separates each program in the sequence of
programs. program-name must be identical to a program-name declared in a
preceding program-ID paragraph.

program-name can be specified either as a user-defined word or in an
alphanumeric literal. Either way, program-name must follow the rules for
forming program-names. program-name cannot be a figurative constant. Any
lowercase letters in the literal are folded to uppercase.

An end program marker is optional for the last program in the sequence
only if that program does not contain any nested source programs.

Nested programs

A COBOL program can contain other COBOL programs, which in turn can contain
still other COBOL programs. These contained programs are called nested programs.
Nested programs can be directly or indirectly contained in the containing program.

Nested programs are not supported for programs compiled with the THREAD
option.

In the following code fragment, program Quter-program directly contains program
Inner-1. Program Inner-1 directly contains program Inner-1la, and Outer-program
indirectly contains Inner-1la:

Id division.
Program-id. Outer-program.
Procedure division.
Call "Inner-1".
Stop run.
Id division.
Program-id. Inner-1

Call Inner-1la.

Stop run.
Id division.
Program-id. Inner-la.

End Inner-la.

End Inner-1.
End Outer-program.

The following figure describes a more complex nested program structure with
directly and indirectly contained programs.

Chapter 11. COBOL program structure 89

Id Division.
Program -Id. X.
Procedure Division.
Display "I'm in X"
Call "x1"
Call "x2"
Stop Run.
— Id Division.
Program-Id X1.
Procedure Division.
Display "I'm in X1"
Call "x11"
Call "x12"
Exit Program.
Id Division.
Program-Id. XI11.
Procedure Division.
Display "I'm in X11"
Exit Program.
End Program X11.
Id Division.
Program-Id. X12.
Procedure Division.
Display "I'm in X12"
Exit Program.
End Program X12.
End Program X1
ID Division.
Program-Id. X2
Procedure Division.
Display "I'm in X2"
Exit Program
— End Program X2
———End Program X.

X is the outermost program

and directly contains X1 and =
X2, and indirectly contains

X11 and X12

X1 is directly contained
in X and directly N
contains X11 and X12

X11 is directly
contained in X1
and indirectly
contained in X

X12 is directly
contained in X1
and indirectly
contained in X

N —

X2 is directly
contained in X

Conventions for program-names

The program-name of a program is specified in the PROGRAM-ID paragraph of
the program’s identification division. A program-name can be referenced only by
the CALL statement, the CANCEL statement, the SET statement, or the END
PROGRAM marker. Names of programs that constitute a run unit are not
necessarily unique, but when two programs in a run unit are identically named, at
least one of the programs must be directly or indirectly contained within another
separately compiled program that does not contain the other of those two
programs.

A separately compiled program and all of its directly and indirectly contained
programs must have unique program-names within that separately compiled
program.

Rules for program-names

The following rules define the scope of a program-name:

e If the program-name is that of a program that does not possess the COMMON
attribute and that program is directly contained within another program, that
program-name can be referenced only by statements included in that containing
program.

* If the program-name is that of a program that does possess the COMMON
attribute and that program is directly contained within another program, that
program-name can be referenced only by statements included in the containing

90 Enterprise COBOL for z/OS V4.1 Language Reference

program and any programs directly or indirectly contained within that
containing program, except that program possessing the COMMON attribute
and any programs contained within it.

If the program-name is that of a program that is separately compiled, that
program-name can be referenced by statements included in any other program
in the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:

If one of two programs that have the same name as that specified in the CALL
statement is directly contained within the program that includes the CALL
statement, that program is called.

If one of two programs that have the same name as that specified in the CALL
statement possesses the COMMON attribute and is directly contained within
another program that directly or indirectly contains the program that includes
the CALL statement, that common program is called unless the calling program
is contained within that common program.

Otherwise, the separately compiled program is called.

The following rules apply to referencing a program-name of a program that is
contained within another program. For this discussion, Program-A contains
Program-B and Program-C; Program-C contains Program-D and Program-F; and
Program-D contains Program-E.

Program-A

Program-B

Program-C

Program-D

Program-E

Program-F

If Program-D does not possess the COMMON attribute, then Program-D can be
referenced only by the program that directly contains Program-D, that is,
Program-C.

Chapter 11. COBOL program structure 91

If Program-D does possess the COMMON attribute, then Program-D can be
referenced by Program-C (because Program-C contains Program-D) and by any
programs contained in Program-C except for programs contained in Program-D. In
other words, if Program-D possesses the COMMON attribute, Program-D can be
referenced in Program-C and Program-F but not by statements in Program-E,
Program-A, or Program-B.

92 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 12. COBOL class definition structure

Enterprise COBOL provides object-oriented syntax to facilitate interoperation of
COBOL and Java programs.

You can use object-oriented syntax to:

* Define classes, with methods and data implemented in COBOL

* Create instances of Java or COBOL classes

* Invoke methods on Java or COBOL objects

* Write classes that inherit from Java classes or from other COBOL classes
* Define and invoke overloaded methods

Basic Java-oriented object capabilities are accessed directly through COBOL
language. Additional capabilities are available to the COBOL programmer by
calling services through the Java Native Interface (JNI), as described in the
Enterprise COBOL Programming Guide.

Java programs can be multithreaded, and Java interoperation requires toleration of
asynchronous signals. Therefore, to mix COBOL with these Java programs, you
must use the thread enablement provided by the THREAD compiler option, as
described in the Enterprise COBOL Programming Guide.

Java String data is represented at run time in Unicode. The Unicode support
provided in Enterprise COBOL with the national data type enables COBOL
programs to exchange String data with Java.

The following are the entities and concepts used in object-oriented COBOL for Java
interoperability:

Class The entity that defines operations and state for zero, one, or more object
instances and defines operations and state for a common object (a factory
object) that is shared by multiple object instances.

You create object instances using the NEW operand of the COBOL
INVOKE statement or using a Java class instance creation expression.

Object instances are automatically freed by the Java runtime system’s
garbage collection when they are no longer in use. You cannot explicitly
free individual objects.

Instance method
Procedural code that defines one of the operations supported for the object
instances of a class. Instance methods introduced by a COBOL class are
defined within the object paragraph of the class definition.

COBOL instance methods are equivalent to public nonstatic methods in
Java.

You execute instance methods on a particular object instance by using a
COBOL INVOKE statement or a Java method invocation expression.

Instance data
Data that defines the state of an individual object instance. Instance data in
a COBOL class is defined in the working-storage section of the data
division within the object paragraph of a class definition.

© Copyright IBM Corp. 1991, 2007 93

94

COBOL instance data is equivalent to private nonstatic member data in a
Java class.

The state of an object also includes the state of the instance data
introduced by inherited classes. Each instance object has its own copy of
the instance data defined within its class definition and its own copy of the
instance data defined in inherited classes.

You can access COBOL object instance data only from within COBOL
instance methods defined in the class definition that defines the data.

You can initialize object instance data with VALUE clauses or you can
write an instance method to perform custom initialization.

Factory method, static method

Procedural code that defines one of the operations supported for the
common factory object of the class. COBOL factory methods are defined
within the factory paragraph of a class definition. Factory methods are
associated with a class, not with any individual instance object of the class.

COBOL factory methods are equivalent to public static methods in Java.

You execute COBOL factory methods from COBOL using an INVOKE
statement that specifies the class-name as the first operand. You execute
them from a Java program using a static method invocation expression.

A factory method cannot operate directly on instance data of its class, even
though the data is described in the same class definition; a factory method
must invoke instance methods to act on instance data.

COBOL factory methods are typically used to define customized methods
that create object instances. For example, you can code a customized
factory method that accepts initial values as parameters, creates an instance
object using the NEW operand of the INVOKE statement, and then invokes
a customized instance method passing those initial values as arguments for
use in initializing the instance object.

Factory data, static data

Data associated with a class, rather than with an individual object instance.
COBOL factory data is defined in the working-storage section of the data
division within the factory paragraph of a class definition.

COBOL factory data is equivalent to private static data in Java.

There is a single copy of factory data for a class. Factory data is associated
only with the class and is shared by all object instances of the class. It is
not associated with any particular instance object. A factory data item
might be used, for example, to keep a count of the number of instance
objects that have been created.

You can access COBOL factory data only within COBOL factory methods
defined in the same class definition.

Inheritance

Inheritance is a mechanism whereby a class definition (the inheriting class)
acquires the methods, data descriptions, and file descriptions written in
another class definition (the inherited class). When two classes in an
inheritance relationship are considered together, the inheriting class is the
subclass (or derived class or child class); the inherited class is the superclass
(or parent class). The inheriting class also indirectly acquires the methods,
data descriptions, and file descriptions that the parent class inherited from
its parent class.

Enterprise COBOL for z/OS V4.1 Language Reference

A COBOL class must inherit from exactly one parent class, which can be
implemented in COBOL or Java.

Every COBOL class must inherit directly or indirectly from the
java.lang.Object class.

Instance variable
An individual data item defined in the data division of an object
paragraph.

Java Native Interface (JNI)
A facility of Java designed for interoperation with non-Java programs.

Java Native Interface (JNI) environment pointer

A pointer used to obtain the address of the JNI environment structure used

for calling JNI services. The COBOL special register JNIENVPTR is
provided for referencing the JNI environment pointer.

Object reference
A data item that contains information used to identify and reference an
individual object. An object reference can refer to an object that is an
instance of a Java or COBOL class.

Subclass
A class that inherits from another class; also called a derived class or child
class of the inherited class.

Superclass
A class that is inherited by another class; also called a parent class of the
inheriting class.

With the exception of the COPY and REPLACE statements and the END CLASS
marker, the statements, entries, paragraphs, and sections of a COBOL class
definition are grouped into the following structure:

* Identification division
* Environment division (configuration section only)
* Factory definition
— Identification division
— Data division
— Procedure division (containing one or more method definitions)
* Object definition
— Identification division
— Data division

— Procedure division (containing one or more method definitions)
The end of a COBOL class definition is indicated by the END CLASS marker.

The following is the format for a COBOL class definition.

Chapter 12. COBOL class definition structure

95

Format: COBOL class definition

IDENTIFICATION DIVISION.—CLASS-1D—.—class-name-1—INHERITS—class-name-2—.
1D

v

|—other-identification-division-content—|

»—ENVIRONMENT DIVISION.—class—environment—division—content—| Factory-definition i >

Y
A

>—| Object-definition |} |_ _|
END CLASS—class-name-1.
Factory-definition:

IDENTIFICATION DIVISION.—FACTORY. |_ _| >
1D DATA DIVISION.—factory-data-division-content

r—END FACTORY. |

|—PROCEDURE DIVISION.

ethod-definition

Object-definition:

IDENTIFICATION DIVISION.—OBJECT. |_ _| >
1D DATA DIVISION.—object-data-division-content

[END OBJECT. |

|—PROCEDURE DIVISION.

Y method-definition

END CLASS
Specifies the end of a class definition.

END FACTORY
Specifies the end of a factory definition.

END OBJECT
Specifies the end of an object definition.

96 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 13. COBOL method definition structure

A COBOL method definition describes a method. You can specify method
definitions only within the factory paragraph and the object paragraph of a class
definition.

With the exception of COPY and REPLACE statements and the END METHOD
marker, the statements, entries, paragraphs, and sections of a COBOL method
definition are grouped into the following four divisions:

¢ Identification division

¢ Environment division (input-output section only)
* Data division

* Procedure division

The end of a COBOL method definition is indicated by the END METHOD marker.

The following is the format for a COBOL method definition.

Format: method definition

> IDENTIFICATION DIVISION.—METHOD-ID ethod-name-1 >
10 L] L

A\
v

l—other— identification—division—content—l

\
4

|—ENVIRONMENT DIVISION.—method-environment—division—content—l

v
v

|—DATA DIVISION.—method-data-division-content—|

> »

|—me’chod-p\r‘ocedure-d1'v1's1’on-header~. _| |
I—method-procedure-division-content

»—END METHOD—method-name-1. >

METHOD-ID
Identifies a method definition. See ["METHOD-ID paragraph” on page 108|
for details.

method-procedure-division-header
Indicates the start of the procedure division and identifies method
parameters and the returning item, if any. See[“The procedure division|
lheader” on page 255 for details.

END METHOD
Specifies the end of a method definition.

© Copyright IBM Corp. 1991, 2007 97

Methods defined in an object definition are instance methods. An instance method in
a given class can access:

¢ Data defined in the data division of the object paragraph of that class (instance
data)

* Data defined in the data division of that instance method (method data)

An instance method cannot directly access instance data defined in a parent class,
factory data defined in its own class, or method data defined in another method of
its class. It must invoke a method to access such data.

Methods defined in a factory definition are factory methods. A factory method in a
given class can access:

* Data defined in the data division of the factory paragraph of that class (factory
data)

* Data defined in the data division of that factory method (method data)

A factory method cannot directly access factory data defined in a parent class,
instance data defined in its own class, or method data defined in another method
of its class. It must invoke a method to access such data.

Methods can be invoked from COBOL programs and methods, and they can be
invoked from Java programs. A method can execute an INVOKE statement that
directly or indirectly invokes itself. Therefore, COBOL methods are implicitly
recursive (unlike COBOL programs, which support recursion only if the
RECURSIVE attribute is specified in the program-ID paragraph.)

98 Enterprise COBOL for z/OS V4.1 Language Reference

Part 3. Identification division

Chapter 14. Identification division.
PROGRAM-ID paragraph .
CLASS-ID paragraph .

General rules

Inheritance .
FACTORY paragraph
OBJECT paragraph
METHOD-ID paragraph.

Method signature .

Method overloading, overrldmg, and hldmg .

Method overloading .

Method overriding (for 1nstance methods)

Method hiding (for factory methods)
Optional paragraphs .

© Copyright IBM Corp. 1991, 2007

. 101
. 104
. 107
. 107
. 107
. 108
. 108
. 108
. 108
. 108
. 108

109

. 109
. 109

99

100 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 14. Identification division

The identification division must be the first division in each COBOL source
program, factory definition, object definition, and method definition. The
identification division names the program, class, or method and identifies the
factory definition and object definition. The identification division can include the
date a program, class, or method was written, the date of compilation, and other
such documentary information.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the identification division must be
the PROGRAM-ID paragraph. The other paragraphs are optional and can
appear in any order.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the identification division must be the
CLASS-ID paragraph. The other paragraphs are optional and can appear in
any order.

Factory IDENTIFICATION DIVISION
A factory IDENTIFICATION DIVISION contains only a factory paragraph
header.

Object IDENTIFICATION DIVISION
An object IDENTIFICATION DIVISION contains only an object paragraph
header.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the identification division must be the
METHOD-ID paragraph. The other paragraphs are optional and can
appear in any order.

The following is the format for a program IDENTIFICATION DIVISION.

© Copyright IBM Corp. 1991, 2007 101

102

Format: program identification division

v

IDENTIFICATION DIVISION.—PROGRAM-I D—L—_I—program-name

y

ID
RECURSIVE r . | L]
Is COMMON PROGRAM
Civaria
INITIAL
Ccomon]

|—AUTHOR

I
Y _comment-entry

Yy

L insTaLLATION
L

LY _comment-entry

\

v

|—DATE-WRITTE"‘
L. |

LY _comment-entry

y

v

|—DATE-COMPILED. |

v

comment-entry

A\

|—SECURITY
- M
Y_comment-entry

A4
A

The following is the format for a class IDENTIFICATION DIVISION.

Enterprise COBOL for z/OS V4.1 Language Reference

Format: class identification division

IDENTIFICATION DIVISION. CLASS-ID.—class-name-1
ID DIVISION.

v

»—INHERITS—class-name-2. >

|—AUTHO"
i
Y _comment-entry

|—INST/—\LL/-\TIO'“ |
il 1
LY _comment-entry

|—DATE—WRITTE"' |]
L. |

Y _comment-entry

|—DATE-COMPI LED.
\\' comment-entry

|—SECURITY LJ

\
4

Y _comment-entry

The following is the format for a factory IDENTIFICATION DIVISION.

Format: factory identification division

IDENTIFICATION DIVISION.—FACTORY. ><
1D

The following is the format for an object IDENTIFICATION DIVISION.

Chapter 14. Identification division 103

Format: object identification division

IDENTIFICATION DIVISION.—OBJECT.
1D

A\
A

The following is the format for a method IDENTIFICATION DIVISION.

Format: method identification division

IDENTIFICATION DIVISION .—METHOD-ID—L——I—method-name-l—L——l—>
1D . .

|—AUTHOD
- U
Y _comment-entry

> »

|—I NSTALLATION |
1l ﬂ
Y_comment-entry

|—DATE—WRITTE!\I |

L. |

Y _comment-entry

|—DATE-COMPILED.
L’ comment-entry

I—SECURITY
I
Y _comment-entry

\
4

\
v

Yy
v
A

PROGRAM-ID paragraph

The PROGRAM-ID paragraph specifies the name by which the program is known
and assigns selected program attributes to that program. It is required and must be
the first paragraph in the identification division.

program-name
A user-defined word or alphanumeric literal, but not a figurative constant,

104 Enterprise COBOL for z/OS V4.1 Language Reference

that identifies your program. It must follow the following rules of
formation, depending on the setting of the PGMNAME compiler option:

PGMNAME(COMPAT)
The name can be up to 30 characters in length.

Only the hyphen, digits 0-9, and alphabetic characters are allowed
in the name when it is specified as a user-defined word.

At least one character must be alphabetic.
The hyphen cannot be used as the first or last character.

If program-name is an alphanumeric literal, the rules for the name
are the same except that the extension characters $, #, and @ can be
included in the name of the outermost program.

PGMNAME (LONGUPPER)
If program-name is a user-defined word, it can be up to 30
characters in length.

If program-name is an alphanumeric literal, the literal can be up to
160 characters in length. The literal cannot be a figurative constant.

Only the hyphen, digit, and alphabetic characters are allowed in
the name.

At least one character must be alphabetic.
The hyphen cannot be used as the first or last character.

PGMNAME (LONGMIXED)
program-name must be specified as a literal. It cannot be a figurative
constant.

The name can be up to 160 characters in length. The literal cannot
be a figurative constant.

program-name can consist of any character in the range X'41" to
X'FE'.

For information about the PGMNAME compiler option and how the compiler
processes the names, see the Enterprise COBOL Programming Guide.

RECURSIVE
An optional clause that allows COBOL programs to be recursively
reentered.

You can specify the RECURSIVE clause only on the outermost program of
a compilation unit. Recursive programs cannot contain nested
subprograms.

If the RECURSIVE clause is specified, program-name can be recursively
reentered while a previous invocation is still active. If the RECURSIVE
clause is not specified, an active program cannot be recursively reentered.

The working-storage section of a recursive program defines storage that is
statically allocated and initialized on the first entry to a program and is
available in a last-used state to any of the recursive invocations.

The local-storage section of a recursive program (as well as a nonrecursive
program) defines storage that is automatically allocated, initialized, and
deallocated on a per-invocation basis.

Chapter 14. Identification division 105

106

Internal file connectors that correspond to an FD in the file section of a
recursive program are statically allocated. The status of internal file
connectors is part of the last-used state of a program that persists across
invocations.

The following language elements are not supported in a recursive
program:

* ALTER

* GO TO without a specified procedure-name

* RERUN

* SEGMENT-LIMIT

* USE FOR DEBUGGING

The RECURSIVE clause is required for programs compiled with the
THREAD option.

COMMON

Specifies that the program named by program-name is contained (that is,
nested) within another program and can be called from siblings of the
common program and programs contained within them. The COMMON
clause can be used only in nested programs. For more information about

conventions for program names, see [“Conventions for program-names” on|

INITIAL

Specifies that when program-name is called, program-name and any programs
contained (nested) within it are placed in their initial state. The initial
attribute is not supported for programs compiled with the THREAD
option.

A program is in the initial state:

The first time the program is called in a run unit
Every time the program is called, if it possesses the initial attribute

The first time the program is called after the execution of a CANCEL
statement that references the program or a CANCEL statement that
references a program that directly or indirectly contains the program

The first time the program is called after the execution of a CALL
statement that references a program that possesses the initial attribute
and that directly or indirectly contains the program

When a program is in the initial state, the following occur:

The program’s internal data contained in the working-storage section is
initialized. If a VALUE clause is used in the description of the data item,
the data item is initialized to the defined value. If a VALUE clause is not
associated with a data item, the initial value of the data item is
undefined.

Files with internal file connectors associated with the program are not in
the open mode.

The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

An altered GO TO statement contained in the program is set to its initial
state.

For the rules governing nonunique program names, see [‘Rules fo

fprogram-names” on page 90

Enterprise COBOL for z/OS V4.1 Language Reference

CLASS-ID paragraph

The CLASS-ID paragraph specifies the name by which the class is known and
assigns selected attributes to that class. It is required and must be the first
paragraph in a class identification division.

class-name-1
A user-defined word that identifies the class. class-name-1 can optionally
have an entry in the REPOSITORY paragraph of the configuration section
of the class definition.

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of
class-name-2 (the parent class). class-name-1 cannot directly or indirectly
inherit from class-name-1.

class-name-2
The name of a class inherited by class-name-1. You must specify class-name-2
in the REPOSITORY paragraph of the configuration section of the class
definition.

General rules

class-name-1 and class-name-2 must conform to the normal rules of formation for a
COBOL user-defined word, using single-byte characters.

See ["REPOSITORY paragraph” on page 124 for details on specifying a class-name
that is part of a Java package or for using non-COBOL naming conventions for
class-names.

You cannot include a class definition in a sequence of programs or other class
definitions in a single compilation group. Each class must be specified as a
separate source file; that is, a class definition cannot be included in a batch
compile.

Inheritance

Every method available on instances of a class is also available on instances of any
subclass directly or indirectly derived from that class. A subclass can introduce
new methods that do not exist in the parent or ancestor class and can override a
method from the parent or ancestor class. When a subclass overrides an existing
method, it defines a new implementation for that method, which replaces the
inherited implementation.

The instance data of class-name-1 is the instance data declared in class-name-2
together with the data declared in the working-storage section of class-name-1.
Note, however, that instance data is always private to the class that introduces it.

The semantics of inheritance are as defined by Java. All classes must be derived
directly or directly from the java.lang.Object class.

Java supports single inheritance; that is, no class can inherit directly from more

than one parent. Only one class-name can be specified in the INHERITS phrase of
a class definition.

Chapter 14. Identification division 107

FACTORY paragraph

The factory IDENTIFICATION DIVISION introduces the factory definition, which
is the portion of a class definition that defines the factory object of the class. A
factory object is the single common object that is shared by all object instances of the
class.

The factory definition contains factory data and factory methods.

OBJECT paragraph

The object IDENTIFICATION DIVISION introduces the object definition, which is
the portion of a class definition that defines the instance objects of the class.

The object definition contains object data and object methods.

METHOD-ID paragraph

108

The METHOD-ID paragraph specifies the name by which a method is known and
assigns selected attributes to that method. The METHOD-ID paragraph is required
and must be the first paragraph in a method identification division.

method-name-1
An alphanumeric literal or national literal that contains the name of the
method. The name must conform to the rules of formation for a Java
method name. Method names are used directly, without translation. The
method name is processed in a case-sensitive manner.

Method signature

The signature of a method consists of the name of the method and the number and
types of the formal parameters to the method as specified in the procedure
division USING phrase.

Method overloading, overriding, and hiding

COBOL methods can be overloaded, overridden, or hidden, based on the rules of the
Java language.

Method overloading

Method names that are defined for a class are not required to be unique. (The set
of methods defined for a class includes the methods introduced by the class
definition and the methods inherited from parent classes.)

Method names defined for a class must have unique signatures. Two methods
defined for a class and that have the same name but different signatures are said to
be overloaded.

The type of the method return value, if any, is not included in the method
signature.

Enterprise COBOL for z/OS V4.1 Language Reference

A class must not define two methods with the same signature but different return
value types, or with the same signature but where one method specifies a return
value and the other does not.

The rules for overloaded method definitions and resolution of overloaded method
invocations are based on the corresponding rules for Java.

Method overriding (for instance methods)

An instance method in a subclass overrides an instance method with the same name
that is inherited from a parent class if the two methods have the same signature.

When a method overrides an instance method defined in a parent class, the
presence or absence of a method return value (the procedure division
RETURNING data-name) must be consistent in the two methods. Further, when
method return values are specified, the return values in the overridden method
and the overriding method must have identical data types.

An instance method must not override a factory method in a COBOL parent class,
or a static method in a Java parent class.

Method hiding (for factory methods)

A factory method is said to hide any and all methods with the same signature in
the superclasses of the method definition that would otherwise be accessible. A
factory method must not hide an instance method.

Optional paragraphs

These optional paragraphs in the identification division can be omitted:

AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
Date the program was compiled.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of
characters from the character set of the computer. The comment-entry is written in
Area B on one or more lines.

The paragraph name DATE-COMPILED and any comment-entry associated with it
appear in the source code listing with the current date inserted. For example:

DATE-COMPILED. 11/30/07.
Comment-entries serve only as documentation; they do not affect the meaning of

the program. A hyphen in the indicator area (column 7) is not permitted in
comment-entries.

Chapter 14. Identification division 109

You can include DBCS character strings as comment-entries in the identification
division of your program. Multiple lines are allowed in a comment-entry that
contains DBCS character strings.

A DBCS character string must be preceded by a shift-out control character and
followed by a shift-in control character. For example:

AUTHOR. <.A.U.T.H.0.R.-.N.A.M.E>, XYZ CORPORATION
DATE-WRITTEN. <.D.A.T.E>

When a comment-entry that is contained on multiple lines uses DBCS characters,
shift-out and shift-in characters must be paired on a line.

110 Enterprise COBOL for z/OS V4.1 Language Reference

Part 4. Environment division

Chapter 15. Configuration section.
SOURCE-COMPUTER paragraph.
OBJECT-COMPUTER paragraph .
SPECIAL-NAMES paragraph .
ALPHABET clause
SYMBOLIC CHARACTERS Clause
CLASS clause .
CURRENCY SIGN clause . .
DECIMAL-POINT IS COMMA clause .
REPOSITORY paragraph
General rules .
Identifying and referencmg a class

Chapter 16. Input-Output section .

FILE-CONTROL paragraph

SELECT clause .

ASSIGN clause . . .
Assignment name for env1ronment Varlable .
Environment variable contents for a QSAM file
Environment variable contents for a
line-sequential file .

Environment variable contents for a VSAM ﬁle

RESERVE clause .

ORGANIZATION clause
File organization .

Sequential organization .
Indexed organization .
Relative organization .
Line-sequential organization

PADDING CHARACTER clause .

RECORD DELIMITER clause .

ACCESS MODE clause . .

File organization and access modes .

Access modes

Relationship between data organ1zat10ns and
access modes

RECORD KEY clause. .

ALTERNATE RECORD KEY clause .

RELATIVE KEY clause

PASSWORD clause

FILE STATUS clause . .

I-O-CONTROL paragraph .

RERUN clause .

SAME AREA clause . .

SAME RECORD AREA clause

SAME SORT AREA clause . .

SAME SORT-MERGE AREA clause .

MULTIPLE FILE TAPE clause .

APPLY WRITE-ONLY clause

© Copyright IBM Corp. 1991, 2007

. 113
. 114
. 114
. 116
. 119
. 121
. 122
. 123
. 124
. 124
. 125
. 125

. 127
. 128
. 132
. 132
. 133

134

. 135

135

. 136
. 137
. 137
. 137
. 138
. 138
. 138
. 139
. 140
. 140
. 141
. 141

. 141
. 142
. 143
. 144
. 145
. 145
. 146
. 148
. 149
. 150
. 151
. 151
. 151
. 152

111

112 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 15. Configuration section

The configuration section is an optional section for programs and classes, and can
describe the computer environment on which the program or class is compiled and
executed.

Program configuration section

The configuration section can be specified only in the environment division
of the outermost program of a COBOL source program.

You should not specify the configuration section in a program that is
contained within another program. The entries specified in the
configuration section of a program apply to any program contained within
that program.

Class configuration section

Specify the configuration section in the environment division of a class
definition. The repository paragraph can be specified in the environment
division of a class definition.

Entries in a class configuration section apply to the entire class definition,
including all methods introduced by that class.

Method configuration section

The input-output section can be specified in a method configuration
section. The entries apply only to the method in which the configuration
section is specified.

Format:

»>—CONFIGURATION SECTION.

v

l—source—computer—paragraph—l

\

v

l—object-computer-paragraph—l l—special-names -paragraph—|

\

\4
A

|—r“epos i tory-paragraph—l

The configuration section can:

© Copyright IBM Corp. 1991,

Relate IBM-defined environment-names to user-defined mnemonic names
Specify the collating sequence

Specify a currency sign value, and the currency symbol used in the PICTURE
clause to represent the currency sign value

Exchange the functions of the comma and the period in PICTURE clauses and
numeric literals

Relate alphabet-names to character sets or collating sequences
Specify symbolic characters
Relate class-names to sets of characters

2007 113

* Relate object-oriented class names to external class-names and identify
class-names that can be used in a class definition or program

SOURCE-COMPUTER paragraph

The SOURCE-COMPUTER paragraph describes the computer on which the source
text is to be compiled.

Format

»»—SOURCE-COMPUTER. a >

I—computer—name _|
Lm—DEBUGGING MODE
WITH

computer-name
A system-name. For example:

IBM-system

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source
text.

A debugging line is a statement that is compiled only when the
compile-time switch is activated. Debugging lines allow you, for example,
to check the value of a data-name at certain points in a procedure.

To specify a debugging line in your program, code a D in column 7
(indicator area). You can include successive debugging lines, but each must
have a D in column 7, and you cannot break character strings across lines.

All your debugging lines must be written so that the program is
syntactically correct, whether the debugging lines are compiled or treated
as comments.

The presence or absence of the DEBUGGING MODE clause is logically
determined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the environment division (after the
OBJECT-COMPUTER paragraph), and in the data and procedure divisions.

If a debugging line contains only spaces in Area A and in Area B, the
debugging line is treated the same as a blank line.

All of the SOURCE-COMPUTER paragraph is syntax checked, but only the WITH
DEBUGGING MODE clause has an effect on the execution of the program.

OBJECT-COMPUTER paragraph

The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

114 Enterprise COBOL for z/OS V4.1 Language Reference

Format

»>—0BJECT-COMPUTER.

v

> »<

_| i entry 1 |—J)

|—computer‘-name

l—MEMORY—L—_I—integer WORDS
SIZE ECHARACTERS—

MODULES——

entry 1:

| >

T i
SEQUENCE—L—_I—alphabet-name
|—PROGRAM—| |—COLL/-\TING—I IS

> I_ |
SEGMENT-LIMIT—L—_I—pr‘ior‘ity-numberJ
IS

computer-name
A system-name. For example:

IBM-system
MEMORY SIZE integer
integer specifies the amount of main storage needed to run the object

program. The MEMORY SIZE clause is syntax checked but has no effect on
the execution of the program.

PROGRAM COLLATING SEQUENCE IS alphabet-name
The collating sequence used in this program is the collating sequence
associated with the specified alphabet-name.

The collating sequence pertains to this program and to any programs that
this program might contain.

PROGRAM COLLATING SEQUENCE determines the truth value of the
following alphanumeric comparisons:

* Those explicitly specified in relation conditions

* Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any

merge or sort keys described with usage DISPLAY, unless the COLLATING
SEQUENCE phrase is specified in the MERGE or SORT statement.

The PROGRAM COLLATING SEQUENCE clause does not apply to DBCS
data items or data items of usage NATIONAL.

If the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC
collating sequence is used. (See|Appendix C, “EBCDIC and ASCII collating]
lsequences,” on page 585.)

SEGMENT-LIMIT IS
The SEGMENT-LIMIT clause is syntax checked but has no effect on the
execution of the program.

priority-number
An integer ranging from 1 through 49. All sections with priority-numbers 0

Chapter 15. Configuration section 115

through 49 are fixed permanent segments. See ["Procedures” on page 260
for a description of priority-numbers and segmentation support.

Segmentation is not supported for programs compiled with the THREAD
option.

All of the OBJECT-COMPUTER paragraph is syntax checked, but only the
PROGRAM COLLATING SEQUENCE clause has an effect on the execution of the
program.

SPECIAL-NAMES paragraph

116

The SPECIAL-NAMES paragraph:

Relates IBM-specified environment-names to user-defined mnemonic-names
Relates alphabet-names to character sets or collating sequences

Specifies symbolic characters

Relates class names to sets of characters

Specifies one or more currency sign values and defines a picture symbol to
represent each currency sign value in PICTURE clauses

Specifies that the functions of the comma and decimal point are to be
interchanged in PICTURE clauses and numeric literals

The clauses in the SPECIAL-NAMES paragraph can appear in any order.

Enterprise COBOL for z/OS V4.1 Language Reference

Format: SPECIAL-NAMES paragraph

»»—SPECIAL-NAMES . —

environmen t-name-]—l_—_l—mnemon ic-name-1
IS

environment-name-2 nemonic-name-Z—I entry 1
IS

"

entry 1 i

Y_ALPHABET— alphabet-name-1 STANDARD-1
I STANDARD-2

NATIVE

EBCDIC

Y Ziteral—l—l phrase 1 ’J—

Y _SYMBOLIC

i symbolic i

|—CHARACTERS—I |—IN— athabet-name-Z—|

Y _CLASS— class-name-1] Y literal-4 .
IS LI:THROUGH literal-5
THRU

Y _CURRENCY literal-6
l—SIGN—l |—Is—| Lm—PICTURE—SYMBOL—Ziteral—7—|

WITH

COMMA—| L (1)

I—DECIMAL-POINT—L——l—
IS

Notes:

1 This separator period is optional when no clauses are selected. If you use any clauses, you must

code the period after the last clause.

Chapter 15. Configuration section

117

Fragments

v
v

v
A

symbolic:

Y _ALSO—Iliteral-3

| symbolic-character-1

.

entry 1
| NN ¥ |
| ON condition-1 |
|—STATUSJ |—ISJ |—OFF uondition-ZJ
Lstarus) Lis
OFF condition-2
|—STATUSJ |—ISJ |—ON uondition-lJ
|—STATUSJ |—ISJ
phrase 1:
| |
THROUGH literal-2—
—[THRU

Y _integer-1

118

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are shown in the following table.

Table 5. Meanings of environment names

environment-

name-1 Meaning Allowed in

SYSIN System logical input unit ACCEPT

SYSIPT

SYSOUT System logical output unit DISPLAY

SYSLIST

SYSLST

SYSPUNCH System punch device DISPLAY

SYSPCH

CONSOLE Console ACCEPT and DISPLAY

CO01 through C12 |Skip to channel 1 through channel | WRITE ADVANCING
12, respectively

csp Suppress spacing WRITE ADVANCING

Enterprise COBOL for z/OS V4.1 Language Reference

Table 5. Meanings of environment names (continued)

environment-

name-1 Meaning Allowed in

S01 through S05 Pocket select 1 through 5 on WRITE ADVANCING
punch devices

AFP-5A Advanced Function Printing™ WRITE ADVANCING

environment-name-2

A 1-byte user-programmable status indicator (UPSI) switch. Valid
specifications for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1, mnemonic-name-2

mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for
user-defined names. mnemonic-name-1 can be used in ACCEPT, DISPLAY,
and WRITE statements. mnemonic-name-2 can be referenced only in the SET
statement. mnemonic-name-2 can qualify condition-1 or condition-2 names.

Mnemonic-names and environment-names need not be unique. If you
choose a mnemonic-name that is also an environment-name, its definition
as a mnemonic-name will take precedence over its definition as an
environment-name.

ON STATUS IS, OFF STATUS IS

UPSI switches process special conditions within a program, such as
year-beginning or year-ending processing. For example, at the beginning of
the procedure division, an UPSI switch can be tested; if it is ON, the
special branch is taken. (See [“Switch-status condition” on page 284.)

condition-1, condition-2

Condition-names follow the rules for user-defined names. At least one
character must be alphabetic. The value associated with the
condition-name is considered to be alphanumeric. A condition-name can be
associated with the on status or off status of each UPSI switch specified.

In the procedure division, the UPSI switch status is tested through the
associated condition-name. Each condition-name is the equivalent of a
level-88 item; the associated mnemonic-name, if specified, is considered the
conditional variable and can be used for qualification.

Condition-names specified in the SPECIAL-NAMES paragraph of a
containing program can be referenced in any contained program.

ALPHABET clause

The ALPHABET clause provides a means of relating an alphabet-name to a
specified character code set or collating sequence.

The related character code set or collating sequence can be used for alphanumeric
data, but not for DBCS or national data.

ALPHABET alphabet-name-1 IS

alphabet-name-1 specifies a collating sequence when used in:

¢ The PROGRAM COLLATING SEQUENCE clause of the object-computer
paragraph
¢ The COLLATING SEQUENCE phrase of the SORT or MERGE statement

alphabet-name-1 specifies a character code set when used in:

Chapter 15. Configuration section 119

¢ The FD entry CODE-SET clause
* The SYMBOLIC CHARACTERS clause

STANDARD-1
Specifies the ASCII character set.

STANDARD-2
Specifies the International Reference Version of ISO/IEC 646, 7-bit
coded character set for information interchange.

NATIVE
Specifies the native character code set. If the ALPHABET clause is
omitted, EBCDIC is assumed.

EBCDIC
Specifies the EBCDIC character set.

literal-1, literal-2, literal-3
Specifies that the collating sequence for alphanumeric data is
determined by the program, according to the following rules:

* The order in which literals appear specifies the ordinal number,
in ascending sequence, of the characters in this collating
sequence.

* Each numeric literal specified must be an unsigned integer.

* Each numeric literal must have a value that corresponds to a
valid ordinal position within the collating sequence in effect.

See |Appendix C, “EBCDIC and ASCII collating sequences,” on|
|Bage 585| for the ordinal numbers for characters in the
single-byte EBCDIC and ASCII collating sequences.

* Each character in an alphanumeric literal represents that actual
character in the character set. (If the alphanumeric literal
contains more than one character, each character, starting with
the leftmost, is assigned a successively ascending position within
this collating sequence.)

* Any characters that are not explicitly specified assume positions
in this collating sequence higher than any of the explicitly
specified characters. The relative order within the collating
sequence of these unspecified characters is their relative order in
the collating sequence indicated by the COLLSEQ compiler
option.

* Within one alphabet-name clause, a given character must not be
specified more than once.

* Each alphanumeric literal associated with a THROUGH or ALSO
phrase must be one character in length.

* When the THROUGH phrase is specified, the contiguous
characters in the native character set beginning with the
character specified by literal-1 and ending with the character
specified by literal-2 are assigned successively ascending
positions in this collating sequence.

This sequence can be either ascending or descending within the
original native character set. That is, if "Z” THROUGH "A" is
specified, the ascending values, left-to-right, for the uppercase
letters are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

120 Enterprise COBOL for z/OS V4.1 Language Reference

* When the ALSO phrase is specified, the characters specified as
literal-1, literal-3, ... are assigned to the same position in this
collating sequence. For example, if you specify:

“D" ALSO "N" ALSO "%"

the characters D, N, and % are all considered to be in the same
position in the collating sequence.

* When the ALSO phrase is specified and alphabet-name-1 is
referenced in a SYMBOLIC CHARACTERS clause, only literal-1
is used to represent the character in the character set.

* The character that has the highest ordinal position in this
collating sequence is associated with the figurative constant
HIGH-VALUE. If more than one character has the highest
position because of specification of the ALSO phrase, the last
character specified (or defaulted to when any characters are not
explicitly specified) is considered to be the HIGH-VALUE
character for procedural statements such as DISPLAY and as the
sending field in a MOVE statement. (If the ALSO phrase
example given above were specified as the high-order characters
of this collating sequence, the HIGH-VALUE character would be
%.)

* The character that has the lowest ordinal position in this
collating sequence is associated with the figurative constant
LOW-VALUE. If more than one character has the lowest position
because of specification of the ALSO phrase, the first character
specified is the LOW-VALUE character. (If the ALSO phrase
example given above were specified as the low-order characters
of the collating sequence, the LOW-VALUE character would be
D.)

When literal-1, literal-2, or literal-3 is specified, the alphabet-name
must not be referred to in a CODE-SET clause (see ["CODE-SET]

[clause” on page 185).

literal-1, literal-2, and literal-3 must be alphanumeric or numeric
literals. All must have the same category. A floating-point literal, a
national literal, a DBCS literal, or a symbolic-character figurative
constant must not be specified.

SYMBOLIC CHARACTERS clause

SYMBOLIC CHARACTERS symbolic-character-1
Provides a means of specifying one or more symbolic characters.
symbolic-character-1 is a user-defined word and must contain at least one
alphabetic character. The same symbolic-character can appear only once in
a SYMBOLIC CHARACTERS clause. The symbolic character can be a
DBCS user-defined word.

The SYMBOLIC CHARACTERS clause is applicable only to single-byte
character sets. Each character represented is an alphanumeric character.

The internal representation of symbolic-character-1 is the internal
representation of the character that is represented in the specified character
set. The following rules apply:

* The relationship between each symbolic-character-1 and the corresponding
integer-1 is by their position in the SYMBOLIC CHARACTERS clause.

Chapter 15. Configuration section 121

The first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so forth.

* There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC
CHARACTERS clause.

* If the IN phrase is specified, integer-1 specifies the ordinal position of the
character that is represented in the character set named by
alphabet-name-2. This ordinal position must exist.

e If the IN phrase is not specified, symbolic-character-1 represents the
character whose ordinal position in the native character set is specified
by integer-1.

Ordinal positions are numbered starting from 1.

CLASS clause

CLASS class-name-1 IS

Provides a means for relating a name to the specified set of characters
listed in that clause. class-name-1 can be referenced only in a class
condition. The characters specified by the values of the literals in this
clause define the exclusive set of characters of which this class consists.

The class-name in the CLASS clause can be a DBCS user-defined word.

literal-4, literal-5

Must be category numeric or alphanumeric, and both must be of the same
category.

If numeric, literal-4 and literal-5 must be unsigned integers and must have
a value that is greater than or equal to 1 and less than or equal to the
number of characters in the alphabet specified. Each number corresponds
to the ordinal position of each character in the single-byte EBCDIC or
ASCII collating sequence.

If alphanumeric, literal-4 and literal-5 are an actual single-byte EBCDIC
character.

literal-4 and literal-5 must not specify a symbolic-character figurative
constant. If the value of the alphanumeric literal contains multiple
characters, each character in the literal is included in the set of characters
identified by class-name.

Floating-point literals cannot be used in the CLASS clause.

If the alphanumeric literal is associated with a THROUGH phrase, the
literal must be one character in length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified,
class-name includes those characters that begin with the value of
literal-4 and that end with the value of literal-5. In addition, the
characters specified by a THROUGH phrase can be in either
ascending or descending order.

122 Enterprise COBOL for z/OS V4.1 Language Reference

CURRENCY SIGN clause

The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE
character-strings contain a currency symbol. A currency symbol represents a currency
sign value that is:

¢ Inserted in such data items when they are used as receiving items

* Removed from such data items when they are used as sending items for a
numeric or numeric-edited receiver

Typically, currency sign values identify the monetary units stored in a data item.
For example: '$’, 'EUR’, 'CHF’, 'JPY’, "HK$’, '"HKD’, or X’9F’ (hexadecimal code
point in some EBCDIC code pages for ph conref="lrsymbols.dita#lrm/euro”>, the
Euro currency sign). For details on programming techniques for handling the Euro,
see the Enterprise COBOL Programming Guide.

The CURRENCY SIGN clause specifies a currency sign value and the currency
symbol used to represent that currency sign value in a PICTURE clause.

The SPECIAL-NAMES paragraph can contain multiple CURRENCY SIGN clauses.
Each CURRENCY SIGN clause must specify a different currency symbol. Unlike all
other PICTURE clause symbols, currency symbols are case sensitive. For example,
‘D’ and “d’ specify different currency symbols.

CURRENCY SIGN IS literal-6
literal-6 must be an alphanumeric literal. literal-6 must not be a figurative
constant or a null-terminated literal. [iteral-6 must not contain a DBCS
character.
If the PICTURE SYMBOL phrase is not specified, literal-6:

* Specifies both a currency sign value and the currency symbol for this
currency sign value

* Must be a single character
¢ Must not be any of the following:
— Digits 0 through 9

— Alphabetic characters A, B, C, D, E, G, N, P R, S, V, X, Z, their
lowercase equivalents, or the space

— Special characters +-,.* /; ()" ="' (plus sign, minus sign, comma,
period, asterisk, slash, semicolon, left parenthesis, right parenthesis,
quotation mark, equal sign, apostrophe)

* Can be one of the following lowercase alphabetic characters: f, h, i, j, k, 1,
m, o, q/ t/ u, w, y
If the PICTURE SYMBOL phrase is specified, literal-6:

* Specifies a currency sign value. literal-7 in the PICTURE SYMBOL phrase
specifies the currency symbol for this currency sign value.

* Can consist of one or more characters.
* Must not contain any of the following:
— Digits 0 through 9
— Special characters + - .,
PICTURE SYMBOL literal-7

Specifies a currency symbol that can be used in a PICTURE clause to
represent the currency sign value specified by literal-6.

Chapter 15. Configuration section 123

literal-7 must be an alphanumeric literal consisting of one single-byte
character. literal-7 must not be any of the following:

* A figurative constant

* Digits 0 through 9

 Alphabetic characters A, B, C, D, E, G, N, PR, S, V, X, Z, their lowercase
equivalents, or the space

* Special characters + -,. % /; ()" =

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and
the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY and NOCURRENCY compiler options, see the Enterprise COBOL
Programming Guide.

DECIMAL-POINT IS COMMA clause

DECIMAL-POINT IS COMMA
Exchanges the functions of the period and the comma in PICTURE
character-strings and in numeric literals.

REPOSITORY paragraph

The REPOSITORY paragraph is used in a program or class definition to identify all
the object-oriented classes that are intended to be referenced in that program or
class definition. Optionally, the REPOSITORY paragraph defines associations
between class-names and external class-names.

Format: REPOSITORY paragraph

»»—REPOSITORY. <
\\' CLASS—class-name-1

LTJ—I:external—c lass—name—J‘JJ
IS java-array-class-reference

class-name-1
A user-defined word that identifies the class.

external-class-name-1
An alphanumeric literal containing a name that enables a COBOL program
to define or access classes with class-names that are defined using Java
rules of formation.

The name must conform to the rules of formation for a fully qualified Java
class-name. If the class is part of a Java package, external-class-name-1 must
specify the fully qualified name of the package, followed by a period,
followed by the simple name of the Java class.

See Java Language Specification, Second Edition, by Gosling et al., for Java
class-name formation rules.

124 Enterprise COBOL for z/OS V4.1 Language Reference

java-array-class-reference

A reference that enables a COBOL program to access a class that represents
an array object, where the elements of the array are themselves objects.
java-array-class-reference must be an alphanumeric literal with content in the
following format:

Format

»»—jobjectArray »><
l—:—external—class—name-z—l

jobjectArray
Specifies a Java object array class.

A required separator when external-class-name-2 is specified. The
colon must not be preceded or followed by space characters.

external-class-name-2
The external class-name of the type of the elements of the array.
external-class-name-2 must follow the same rules of formation as
external-class-name-1.

When the repository entry specifies jobjectArray without the colon
separator and external-class-name-2, the elements of the object array are of
type java.lang.Object.

General rules

1.

All referenced class-names must have an entry in the repository paragraph of
the COBOL program or class definition that contains the reference. You can
specify a given class-name only once in a given repository paragraph.

In program definitions, the repository paragraph can be specified only in the
outermost program.

The repository paragraph of a COBOL class definition can optionally contain an
entry for the name of the class itself, but this entry is not required. Such an
entry can be used to specify an external class-name that uses non-COBOL
characters or that specifies a fully package-qualified class-name when a COBOL
class is to be part of a Java package.

Entries in a class repository paragraph apply to the entire class definition,
including all methods introduced by that class. Entries in a program repository
paragraph apply to the entire program, including its contained programs.

Identifying and referencing a class

An external-class-name is used to identify and reference a given class from outside
the class definition that defines the class. The external class-name is determined by
using the contents of external-class-name-1, external-class-name-2, or class-name-1 (as
specified in the repository paragraph of a class), as described below:

1.

2.

external-class-name-1 and external-class-name-2 are used directly, without
translation. They are processed in a case-sensitive manner.

class-name-1 is used if external-class-name-1 or java-array-class-reference is not
specified. To create an external name that identifies the class and conforms to
Java rules of formation, class-name-1 is processed as follows:

Chapter 15. Configuration section 125

¢ The name is converted to uppercase.

* Hyphens are translated to zero.

e If the first character of the name is a digit, it is converted as follows:
— Digits 1 though 9 are changed to A through 1.
— 0is changed to J.

The class can be implemented in Java or COBOL.

When referencing a class that is part of a Java package, external-class-name-1 must
be specified and must give the fully qualified Java class-name.

For example, the repository entry

Repository.
Class JavaException is "java.lang.Exception"

defines local class-name JavaException for referring to the fully qualified
external-class-name "java.lang.Exception.”

When defining a COBOL class that is to be part of a Java package, specify an entry

in the repository paragraph of that class itself, giving the full Java
package-qualified name as the external class-name.

126 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 16. Input-Output section

The input-output section of the environment division contains two paragraphs:
* FILE-CONTROL paragraph
* [-O-CONTROL paragraph

The exact contents of the input-output section depend on the file organization and
access methods used. See ["ORGANIZATION clause” on page 137|and [*ACCESS|
IMODE clause” on page 140

Program input-output section
The same rules apply to program and method I-O sections.

Class input-output section
The input-output section is not valid for class definitions.

Method input-output section
The same rules apply to program and method I-O sections.

Format: input-output section

»»>—INPUT-OUTPUT SECTION.—FILE-CONTROL.—file-control-paragraph————>»

I—I-O-CONTROL. J
\\' i-o-control-paragraph——.

|)

FILE-CONTROL
The keyword FILE-CONTROL identifies the file-control paragraph. This
keyword can appear only once, at the beginning of the FILE-CONTROL
paragraph. It must begin in Area A and be followed by a separator period.

The keyword FILE-CONTROL and the period can be omitted if no
file-control-paragraph is specified and there are no files defined in the
program.

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator
period. See [“FILE-CONTROL paragraph” on page 128

file-control-paragraph can be omitted if there are no files defined in the
program, even if the FILE-CONTROL keyword is specified.

I-O-CONTROL
The keyword I-O-CONTROL identifies the I-O-CONTROL paragraph.

© Copyright IBM Corp. 1991, 2007 127

i-o-control-paragraph
Specifies information needed for efficient transmission of data between the
external data set and the COBOL program. The series of entries must end
with a separator period. See|“I-O-CONTROL paragraph” on page 146

FILE-CONTROL paragraph

128

The FILE-CONTROL paragraph associates each file in the COBOL program with
an external data set, and specifies file organization, access mode, and other
information.

The following are the formats for the FILE-CONTROL paragraph:
* Sequential file entries

* Indexed file entries

* Relative file entries

* Line-sequential file entries

The table below lists the different type of files available to programs and methods.
Table 6. Types of files

File organization Access method
Sequential QSAM, VSAM!
Relative VSAM!

Indexed VSAM!

Line sequential® Text stream I-O

1. VSAM does not support HFS files.

2. Line-sequential support is limited to HFS files.

The FILE-CONTROL paragraph begins with the word FILE-CONTROL followed
by a separator period. It must contain one and only one entry for each file
described in an FD or SD entry in the data division.

Within each entry, the SELECT clause must appear first. The other clauses can
appear in any order, except that the PASSWORD clause for indexed files, if

specified, must immediately follow the RECORD KEY or ALTERNATE RECORD
KEY data-name with which it is associated.

Enterprise COBOL for z/OS V4.1 Language Reference

Format 1: sequential-file-control-entry

»»—SELECT file—name—l—ASSIGN—L——I—'assignment—name-l >
|—OPTIONALJ T0

|—RESERVE— integer |_ SEQUENTIALJ
i:AREAﬂ ORGANI ZATIONﬁ
AREAS IS

\{

».
| 2

v

|—PADDI" data‘—nameﬁJ
|—(IHARACTERJ |—ISJ |—Z iteral-2:

v
v

|—RECORD DELIMITER STANDARD 1ﬁ—‘ |—ACCES° SEQUENTIALJ
IS ssignment-name-2 |—MODEJ |—ISJ

> »

|—PASSWORD data-name-6J | STATUS data-name-1 |
|:IS:| |—FILEJ |—ISJ I—data-name-8J

Chapter 16. Input-Output section 129

Format 2: indexed-file-control-entry

»»—SELECT

-file-name-1—ASSIGN Y _assignment-name-1
Loptional— Lo

> INDEXED
|—RESERVE—integer LORGANIZATIONﬁ
AREA IS
AREAS

RECORD data-name-2
|—ACCESS SEQUENTIAL—J |—KEYJ |—ISJ

|—MODEJ |—ISJ i:RANDOM—

DYNAMIC—

>

v

A\
|—PASSWORD—L—’I—data-name-6J |—‘ entry 1 |J

IS

| 2

STATUS data-name-1
|—FI LEJ |—ISJ |—data-name-8J

entry 1:

|—ALTERNATE

data-name-3
|—RECORDJ |—KEYJ |—ISJ LL—J—DUPLICATESJ

WITH

|—PASSWORD—L—’I—data-name-7J
IS

130 Enterprise COBOL for z/OS V4.1 Language Reference

Format 3: relative-file-control-entry

»»—SELECT fi le—name—l—ASSIGN—L——I—'ass ignment-name-1
|—OPTIONALJ T0

Yy

\

|_ |_ RELATIVE
RESERVE— integer ORGANIZATIONﬁ
AREA IS

AREAS

\{

v

| 2

|—ACCESS SEQUENTIAL

|—MODEJ |—ISJ

RANDOM
DYNAMIC

|—RELATIVE data-name-4J
|—KEYJ |—ISJ

RELATIVE data-name-4——
|—KEYJ |—ISJ

|—PASSWORD data-name-6J
|:IS:|

STATUS data-name-1
|—FILEJ |—ISJ |—data-name-8J

Format 4: line-sequential-file-control-entry

»»—SELECT |_ J fi Ze-name-l—ASSIGN—L—_I——ass ignment-name-1
OPTIONAL TO

\

| 2

A,

v

v

LINE SEQUENTIAL
LORGANIZATION‘L—J—‘ |—ACCESS SEQUENTIALJ
IS |—MOD EJ |—I SJ

|
Lrried L5

STATUS data-name-lJ

Chapter 16. Input-Output section

131

SELECT clause

The SELECT clause identifies a file in the COBOL program to be associated with
an external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode.
You must specify SELECT OPTIONAL for those input files that are not
necessarily available each time the object program is executed. For more
information, see the Enterprise COBOL Programming Guide.

file-name-1
Must be identified by an FD or SD entry in the data division. A file-name
must conform to the rules for a COBOL user-defined name, must contain
at least one alphabetic character, and must be unique within this program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can
follow the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all
file-control entries in the run unit that reference this file connector must have the
same specification for the OPTIONAL phrase.

ASSIGN clause

132

The ASSIGN clause associates the name of a file in a program with the actual
external name of the data file.

assignment-name-1
Identifies the external data file. It can be specified as a name or as an
alphanumeric literal.

assignment-name-1 is not the name of a data item, and assignment-name-1
cannot be contained in a data item. It is just a character string.

Any assignment-name after the first is syntax checked, but has no effect on
the execution of the program.

assignment-name-1 has the following formats:

Format: assignment-name for QSAM files

> name <
|—label——| I—S——|

Format: assignment-name for VSAM sequential file

>>—m—AS -—name >«
label-

Enterprise COBOL for z/OS V4.1 Language Reference

Format: assignment-name for line-sequential, VSAM indexed, or VSAM
relative file

T e
label-

\4
A

label- Documents (for the programmer) the device and device class to which a
file is assigned. It must end in a hyphen; the specified value is not
otherwise checked. It has no effect on the execution of the program. If
specified, it must end with a hyphen.

S- For QSAM files, the S- (organization) field can be omitted.
AS- For VSAM sequential files, the AS- (organization) field must be specified.

For VSAM indexed and relative files, the organization field must be
omitted.

name A required field that specifies the external name for this file.

It must be either the name specified in the DD statement for this file or the
name of an environment variable that contains file allocation information.
For details on specifying an environment variable, see|”Assignment namel
lfor environment variable.”|

name must conform to the following rules of formation:
* If assignment-name-1 is a user-defined word:
— The name can contain from one to eight characters.
— The name can contain the characters A-Z, a-z, and 0-9.
— The leading character must be alphabetic.
o If assignment-name-1 is a literal:
— The name can contain from one to eight characters.
— The name can contain the characters A-Z, a-z, 0-9, @, #, and $.
— The leading character must be alphabetic.

For both user-defined words and literals, the compiler folds name to
uppercase to form the ddname for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file-control entries in the run unit that reference this file
connector must have a consistent specification for assignment-name-1 in the ASSIGN
clause. For QSAM files and VSAM indexed and relative files, the name specified
on the first assignment-name-1 must be identical. For VSAM sequential files, it must
be specified as AS-name.

Assignment name for environment variable

The name component of assignment-name-1 is initially treated as a ddname. If no file
has been allocated using this ddname, then name is treated as an environment
variable.

Chapter 16. Input-Output section 133

134

The environment variable name must be defined using only uppercase because the
COBOL compiler automatically folds the external file-name to uppercase.

If this environment variable exists and contains a valid PATH or DSN option
(described below), then the file is dynamically allocated using the information
supplied by that option.

If the environment variable does not contain a valid PATH or DSN option or if the
dynamic allocation fails, then attempting to open the file results in file status 98.

The contents of the environment variable are checked at each OPEN statement. If a
file was dynamically allocated by a previous OPEN statement and the contents of
the environment variable have changed since the previous OPEN, then the
previous allocation is dynamically deallocated prior to dynamically reallocating the
file using the options currently set in the environment variable.

When the run unit terminates, the COBOL runtime system automatically
deallocates all automatically generated dynamic allocations.

Environment variable contents for a QSAM file

For a QSAM file, the environment variable must contain either a DSN or a PATH
option in the format shown below.

Format: environment variable for QSAM files, DSN option

»»—DSN(data-set-name

)
|—(member-name)—| NEW i:TRACKS—
OLD CYL—
SHR.
MOD

Y
4

|—SPACE(nnn,mmmm)—| |—VOL(voZume—seriaZ)—| |—UNIT(type)—|

A\

v

KEEP
DELETE——
CATALOG—
UNCATALOG—

I—STORC LAS (storage-c lass)—|

|—MGMTC LAS (management-cl ass)—| I—DATAC LAS (data-c Zass)—|

data-set-name must be fully qualified. The data set must not be a temporary data
set; that is, it must not start with an ampersand.

After data-set-name or member-name, the data set attributes can follow in any order.

The options that follow DSN (such as NEW or TRACKS) must be separated by a
comma or by one or more blanks.

Enterprise COBOL for z/OS V4.1 Language Reference

Blanks at the beginning and end of the environment variable contents are ignored.
You must not code blanks within the parentheses or between a keyword and the
left parenthesis that immediately follows the keyword.

COBOL does not provide a default for data set disposition (NEW, OLD, SHR, or
MOD); however, your operating system might provide one. To avoid unexpected
results when opening the file, you should always specify NEW, OLD, SHR, or
MOD with the DSN option when you use environment variables for dynamic
allocation of QSAM files.

For information about specifying the values of the data set attributes, see the

description of the DD statement in the z/OS MVS " JCL Reference.

Format: environment variable for QSAM files, PATH option

»»—PATH (path-name) ><

path-name must be an absolute path name; that is, it must begin with a slash. For
more information about specifying path-name, see the description of the PATH
parameter in z/OS MVS JCL Reference.

Blanks at the beginning and end of the environment variable contents are ignored.

You must not code blanks within the parentheses or between a keyword and the
left parenthesis that immediately follows the keyword.

Environment variable contents for a line-sequential file

For a line-sequential file, the environment variable must contain a PATH option in
the following format:

Format: environment variable for line-sequential files

»>—PATH (path-name) ><

path-name must be an absolute path name; that is, it must begin with a slash. For
more information about specifying path-name, see the description of the PATH
parameter in z/OS MVS JCL Reference.

Blanks at the beginning and end of the environment variable contents are ignored.

You must not code blanks within the parentheses or between a keyword and the
left parenthesis that immediately follows the keyword.

Environment variable contents for a VSAM file

For an indexed, relative, or sequential VSAM file, the environment variable must
contain a DSN option in the following format:

Chapter 16. Input-Output section 135

Format: environment variable for VSAM files, DSN option

OLD

»>—DSN(data-set-name) |: :‘ >
SHR

data-set-name specifies the data set name for the base cluster. data-set-name must be
fully qualified and must reference an existing predefined and cataloged VSAM
data set.

If an indexed file has alternate indexes, then additional environment variables
must be defined that contain DSN options (as above) for each of the alternate
index paths. The names of these environment variables must follow the same
naming convention as used for alternate index ddnames. That is:

* The environment variable name for each alternate index path is formed by
concatenating the base cluster environment variable name with an integer,
beginning with 1 for the path associated with the first alternate index and
incrementing by 1 for the path associated with each successive alternate index.
(For example, if the environment variable name for the base cluster is CUST,
then the environment variable names for the alternate indexes would be CUST],
CUST?, ...,)

* If the length of the base cluster environment variable name is already eight
characters, then the environment variable names for the alternate indexes are
formed by truncating the base cluster portion of the environment variable name
on the right to reduce the concatenated result to eight characters. (For example,
if the environment variable name for the base cluster is DATAFILE, then the
environment variable names for the alternate clusters would be DATAFILI,
DATAFIL2, ..., .)

The options that follow DSN (such as SHR) must be separated by a comma or by
one or more blanks.

Blanks at the beginning and end of the environment variable contents are ignored.
You must not code blanks within the parentheses or between a keyword and the
left parenthesis that immediately follows the keyword.

COBOL does not provide a default for data set disposition (OLD or SHR);
however, your operating system might provide one. To avoid unexpected results
when opening the file, you should always specify OLD or SHR with the DSN
option when you use environment variables for dynamic allocation of VSAM files.

RESERVE clause

136

The RESERVE clause allows the user to specify the number of input/output
buffers to be allocated at run time for the files.

The RESERVE clause is not supported for line-sequential files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from
the DD statement. If none is specified, the system default is taken.

Enterprise COBOL for z/OS V4.1 Language Reference

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file-control entries in the run unit that reference this file
connector must have the same value for the integer specified in the RESERVE
clause.

ORGANIZATION clause

The ORGANIZATION clause identifies the logical structure of the file. The logical
structure is established at the time the file is created and cannot subsequently be
changed.

You can find a discussion of the different ways in which data can be organized
and of the different access methods that you can use to retrieve the data under
[“File organization and access modes” on page 141

ORGANIZATION IS SEQUENTIAL (format 1)
A predecessor-successor relationship among the records in the file is
established by the order in which records are placed in the file when it is
created or extended.

ORGANIZATION IS INDEXED (format 2)
The position of each logical record in the file is determined by indexes
created with the file and maintained by the system. The indexes are based
on embedded keys within the file’s records.

ORGANIZATION IS RELATIVE (format 3)
The position of each logical record in the file is determined by its relative
record number.

ORGANIZATION IS LINE SEQUENTIAL (format 4)
A predecessor-successor relationship among the records in the file is
established by the order in which records are placed in the file when it is
created or extended. A record in a LINE SEQUENTIAL file can consist only
of printable characters.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION
IS SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, the same organization must be specified for all file-control entries in
the run unit that reference this file connector.

File organization

You establish the organization of the data when you create a file. Once the file has
been created, you can expand the file, but you cannot change the organization.

Sequential organization

The physical order in which the records are placed in the file determines the
sequence of records. The relationships among records in the file do not change,
except that the file can be extended. Records can be fixed length or variable length;
there are no keys.

Each record in the file except the first has a unique predecessor record; and each
record except the last has a unique successor record.

Chapter 16. Input-Output section 137

138

Indexed organization

Each record in the file has one or more embedded keys (referred to as key data
items); each key is associated with an index. An index provides a logical path to
the data records according to the contents of the associated embedded record key
data items. Indexed files must be direct-access storage files. Records can be fixed
length or variable length.

Each record in an indexed file must have an embedded prime key data item. When
records are inserted, updated, or deleted, they are identified solely by the values of
their prime keys. Thus, the value in each prime key data item must be unique and
must not be changed when the record is updated. You tell COBOL the name of the
prime key data item in the RECORD KEY clause of the file-control paragraph.

In addition, each record in an indexed file can contain one or more embedded
alternate key data items. Each alternate key provides another means of identifying
which record to retrieve. You tell COBOL the name of any alternate key data items
on the ALTERNATE RECORD KEY clause of the file-control paragraph.

The key used for any specific input-output request is known as the key of reference.
Relative organization

Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method stores
and retrieves a record based on its relative record number. For example, the first
record area is addressed by relative record number 1 and the 10th is addressed by
relative record number 10. The physical sequence in which the records were placed
in the file has no bearing on the record area in which they are stored, and thus no
effect on each record’s relative record number. Relative files must be direct-access
files. Records can be fixed length or variable length.

Line-sequential organization

In a line-sequential file, each record contains a sequence of characters that ends
with a record delimiter. The delimiter is not counted in the length of the record.

When a record is written, any trailing blanks are removed prior to adding the
record delimiter. The characters in the record area from the first character up to
and including the added record delimiter constitute one record and are written to
the file.

When a record is read, characters are read one at a time into the record area until:

e The first record delimiter is encountered. The record delimiter is discarded and
the remainder of the record is filled with spaces.

e The entire record area is filled with characters. If the first unread character is the
record delimiter, it is discarded. Otherwise, the first unread character becomes
the first character read by the next READ statement.

¢ End-of-file is encountered. The remainder of the record area is filled with spaces.

Records written to line-sequential files must consist of data items described as
USAGE DISPLAY or DISPLAY-1 or a combination of DISPLAY and DISPLAY-1
items. A zoned decimal data item either must be unsigned or, if signed, must be
declared with the SEPARATE CHARACTER phrase.

Enterprise COBOL for z/OS V4.1 Language Reference

A line-sequential file must contain only printable characters and the following
control characters:

e Alarm (X"2F)

* Backspace (X'16")

* Form feed (X'0C")

* New-line (X'15")

* Carriage-return (X'0D’)
* Horizontal tab (X'05")
* Vertical tab (X'0B’)

» DBCS shift-out (X'0E’)
* DBCS shift-in (X'0F)

New-line characters are processed as record delimiters. Other control characters are
treated by COBOL as part of the data for the records in the file.

The following are not supported for line-sequential files:
* APPLY WRITE-ONLY clause

* CODE-SET clause

* DATA RECORDS clause

* LABEL RECORDS clause

* LINAGE clause

* I-O phrase of the OPEN statement

* PADDING CHARACTER clause

 RECORD CONTAINS 0 clause

¢ RECORD CONTAINS clause format 2 (for example: RECORD CONTAINS 100 to
200 CHARACTERS)

¢ RECORD DELIMITER clause

* RECORDING MODE clause

* RERUN clause

* RESERVE clause

* REVERSED phrase of the OPEN statement

* REWRITE statement

* VALUE OF clause of file description entry

* WRITE ... AFTER ADVANCING mnemonic-name
¢ WRITE ... AT END-OF-PAGE

* WRITE ... BEFORE ADVANCING

PADDING CHARACTER clause

The PADDING CHARACTER clause specifies a character to be used for block
padding on sequential files.

data-name-5
Must be defined in the data division as a one-character data item of
category alphabetic, alphanumeric, or national, and must not be defined in
the file section. data-name-5 can be qualified.

literal-2
Must be a one-character alphanumeric literal or national literal.

Chapter 16. Input-Output section 139

For external files, data-name-5, if specified, must reference an external data item.

The PADDING CHARACTER clause is syntax checked, but has no effect on the
execution of the program.

RECORD DELIMITER clause

The RECORD DELIMITER clause indicates the method of determining the length
of a variable-length record on an external medium. It can be specified only for
variable-length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape
file.

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but has no effect on the
execution of the program.

ACCESS MODE clause

The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified,
sequential access is assumed.

For sequentially accessed relative files, the ACCESS MODE clause does not have to
precede the RELATIVE KEY clause.

ACCESS MODE IS SEQUENTIAL
Can be specified in all formats.

Format 1: sequential
Records in the file are accessed in the sequence established when
the file is created or extended. Format 1 supports only sequential
access.

Format 2: indexed
Records in the file are accessed in the sequence of ascending record
key values according to the collating sequence of the file.

Format 3: relative
Records in the file are accessed in the ascending sequence of
relative record numbers of existing records in the file.

Format 4: line-sequential
Records in the file are accessed in the sequence established when
the file is created or extended. Format 4 supports only sequential
access.

ACCESS MODE IS RANDOM
Can be specified in formats 2 and 3 only.

Format 2: indexed
The value placed in a record key data item specifies the record to
be accessed.

140 Enterprise COBOL for z/OS V4.1 Language Reference

Format 3: relative

The value placed in a relative key data item specifies the record to
be accessed.

ACCESS MODE IS DYNAMIC
Can be specified in formats 2 and 3 only.

Format 2: indexed
Records in the file can be accessed sequentially or randomly,
depending on the form of the specific input-output statement used.

Format 3: relative
Records in the file can be accessed sequentially or randomly,
depending on the form of the specific input-output request.

File organization and access modes

File organization is the permanent logical structure of the file. You tell the computer
how to retrieve records from the file by specifying the access mode (sequential,
random, or dynamic). For details on the access methods and data organization, see
[Table 6 on page 128

Sequentially organized data can be accessed only sequentially; however, data that
has indexed or relative organization can be accessed in any of the three access
modes.

Access modes

Sequential-access mode
Allows reading and writing records of a file in a serial manner; the order
of reference is implicitly determined by the position of a record in the file.

Random-access mode
Allows reading and writing records in a programmer-specified manner; the
control of successive references to the file is expressed by specifically
defined keys supplied by the user.

Dynamic-access mode
Allows the specific input-output statement to determine the access mode.
Therefore, records can be processed sequentially or randomly or both.

For external files, every file-control entry in the run unit that is associated with
that external file must specify the same access mode. In addition, for relative file
entries, data-name-4 must reference an external data item, and the RELATIVE KEY
phrase in each associated file-control entry must reference that same external data
item.

Relationship between data organizations and access modes

This section discusses which access modes are valid for each type of data
organization.

Sequential files
Files with sequential organization can be accessed only sequentially. The
sequence in which records are accessed is the order in which the records
were originally written.

Line-sequential files
Same as for sequential files (described above).

Chapter 16. Input-Output section 141

Indexed files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed
is the ascending order of the record key value. The order of retrieval
within a set of records that have duplicate alternate record key values is
the order in which records were written into the set.

In the random access mode, you control the sequence in which records are
accessed. A specific record is accessed by placing the value of its key or
keys in the RECORD KEY data item (and the ALTERNATE RECORD KEY
data item). If a set of records has duplicate alternate record key values,
only the first record written is available.

In the dynamic access mode, you can change as needed from sequential
access to random access by using appropriate forms of input-output
statements.

Relative files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed
is the ascending order of the relative record numbers of all records that
exist within the file.

In the random access mode, you control the sequence in which records are

accessed. A specific record is accessed by placing its relative record number
in the RELATIVE KEY data item; the RELATIVE KEY must not be defined

within the record description entry for the file.

In the dynamic access mode, you can change as needed from sequential
access to random access by using appropriate forms of input-output
statements.

RECORD KEY clause

142

The RECORD KEY clause (format 2) specifies the data item within the record that
is the prime RECORD KEY for an indexed file. The values contained in the prime
RECORD KEY data item must be unique among records in the file.

data-name-2
The prime RECORD KEY data item.

data-name-2 must be described within a record description entry associated
with the file. The key can have any of the following data categories:
* Alphanumeric

* Numeric

* Numeric-edited (with usage DISPLAY or NATIONAL)

* Alphanumeric-edited

* Alphabetic

* External floating-point (with usage DISPLAY or NATIONAL)

¢ Internal floating-point

+ DBCS

* National

* National-edited

Regardless of the category of the key data item, the key is treated as an
alphanumeric item. The collation order of the key is determined by the

Enterprise COBOL for z/OS V4.1 Language Reference

item’s binary value order when the key is used for locating a record or for
setting the file position indicator associated with the file.

data-name-2 cannot be a windowed date field.

data-name-2 must not reference a group item that contains a
variable-occurrence data item. data-name-2 can be qualified.

If the indexed file contains variable-length records, data-name-2 need not be
contained within the minimum record size specified for the file. That is,
data-name-2 can exceed the minimum record size, but this is not
recommended.

The data description of data-name-2 and its relative location within the
record must be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need be
described in only one of those record description entries. The identical character
positions referenced by data-name-2 in any one record description entry are
implicitly referenced as keys for all other record description entries for that file.

For files defined with the EXTERNAL clause, all file description entries in the run
unit that are associated with the file must have data description entries for
data-name-2 that specify the same relative location in the record and the same
length.

ALTERNATE RECORD KEY clause

The ALTERNATE RECORD KEY clause (format 2) specifies a data item within the
record that provides an alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item.

data-name-3 must be described within a record description entry associated
with the file. The key can have any of the following data categories:

* Alphanumeric

* Numeric

* Numeric-edited (with usage DISPLAY or NATIONAL)

* Alphanumeric-edited

* Alphabetic

 External floating-point (with usage DISPLAY or NATIONAL)

* Internal floating-point

+ DBCS

* National

* National-edited

Regardless of the category of the key data item, the key is treated as an
alphanumeric item. The collation order of the key is determined by the

item’s binary value order when the key is used for locating a record or for
setting the file position indicator associated with the file.

data-name-3 cannot be a windowed date field.

data-name-3 must not reference a group item that contains a
variable-occurrence data item. data-name-3 can be qualified.

Chapter 16. Input-Output section 143

If the indexed file contains variable-length records, data-name-3 need not be
contained within the minimum record size specified for the file. That is,
data-name-3 can exceed the minimum record size, but this is not
recommended.

If the file has more than one record description entry, data-name-3 need be
described in only one of these record description entries. The identical
character positions referenced by data-name-3 in any one record description
entry are implicitly referenced as keys for all other record description
entries of that file.

The data description of data-name-3 and its relative location within the
record must be the same as those used when the file was defined. The
number of alternate record keys for the file must also be the same as that
used when the file was created.

The leftmost character position of data-name-3 must not be the same as the
leftmost character position of the prime RECORD KEY or of any other
ALTERNATE RECORD KEY.

If the DUPLICATES phrase is not specified, the values contained in the
ALTERNATE RECORD KEY data item must be unique among records in the file.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE
RECORD KEY data item can be duplicated within any records in the file. In
sequential access, the records with duplicate keys are retrieved in the order in
which they were placed in the file. In random access, only the first record written
in a series of records with duplicate keys can be retrieved.

For files defined with the EXTERNAL clause, all file description entries in the run
unit that are associated with the file must have data description entries for
data-name-3 that specify the same relative location in the record and the same

length. The file description entries must specify the same number of alternate
record keys and the same DUPLICATES phrase.

RELATIVE KEY clause

144

The RELATIVE KEY clause (format 3) identifies a data-name that specifies the
relative record number for a specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does
not contain the PICTURE symbol P. data-name-4 must not be defined in a
record description entry associated with this relative file. That is, the
RELATIVE KEY is not part of the record. data-name-4 can be qualified.

data-name-4 cannot be a windowed date field.

data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM
and ACCESS IS DYNAMIC. When the START statement is issued, the
system uses the contents of the RELATIVE KEY data item to determine the
record at which sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued,
the value is ignored and processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify
the RELATIVE KEY clause for that file.

Enterprise COBOL for z/OS V4.1 Language Reference

For external files, data-name-4 must reference an external data item, and the
RELATIVE KEY phrase in each associated file-control entry must reference
that same external data item in each case.

The ACCESS MODE IS RANDOM clause must not be specified for
file-names specified in the USING or GIVING phrase of a SORT or MERGE
statement.

PASSWORD clause

The PASSWORD clause controls access to files.

data-name-6, data-name-7
Password data items. Each must be defined in the working-storage section
of the data division as a data item of category alphabetic, alphanumeric, or
alphanumeric-edited. The first eight characters are used as the password; a
shorter field is padded with blanks to eight characters. Each password data
item must be equivalent to one that is externally defined.

When the PASSWORD clause is specified, at object time the PASSWORD data item
must contain a valid password for this file before the file can be successfully
opened.

Format 1 considerations:
The PASSWORD clause is not valid for QSAM sequential files.
Format 2 and 3 considerations:

The PASSWORD clause, if specified, must immediately follow the RECORD KEY
or ALTERNATE RECORD KEY data-name with which it is associated.

For indexed files that have been completely predefined to VSAM, only the
PASSWORD data item for the RECORD KEY need contain the valid password
before the file can be successfully opened at file creation time.

For any other type of file processing (including the processing of dynamic calls at
file creation time through a COBOL runtime subroutine), every PASSWORD data
item for the file must contain a valid password before the file can be successfully
opened, regardless of whether all paths to the data are used in this object program.

For external files, data-name-6 and data-name-7 must reference external data items.
The PASSWORD clauses in each associated file-control entry must reference the
same external data items.

FILE STATUS clause

The FILE STATUS clause monitors the execution of each input-output operation for
the file.

When the FILE STATUS clause is specified, the system moves a value into the file
status key data item after each input-output operation that explicitly or implicitly
refers to this file. The value indicates the status of execution of the statement. (See
the file status key description under [“Common processing facilities” on page 300.)

Chapter 16. Input-Output section 145

data-name-1
The file status key data item can be defined in the working-storage,
local-storage, or linkage section as one of the following:

* A two-character data item of category alphanumeric
* A two-character data item of category national

¢ A two-digit data item of category numeric with usage DISPLAY or
NATIONAL (an external decimal data item)

data-name-1 must not contain the PICTURE symbol 'P".
data-name-1 can be qualified.

The file status key data item must not be variably located; that is, the data
item cannot follow a data item that contains an OCCURS DEPENDING
ON clause.

data-name-8
Must be defined as an alphanumeric group item of 6 bytes in the
working-storage section or linkage section of the data division.

Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS,
RRDS).

data-name-8 holds the 6-byte VSAM return code, which is composed as
follows:

* The first 2 bytes of data-name-8 contain the VSAM return code in binary
format. The value for this code is defined (by VSAM) as 0, 8, or 12.

* The next 2 bytes of data-name-8 contain the VSAM function code in binary
format. The value for this code is defined (by VSAM) as 0, 1, 2, 3, 4, or
5.

* The last 2 bytes of data-name-8 contain the VSAM feedback code in binary
format. The code value is 0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.

If FILE STATUS is returned without having called VSAM, data-name-8 is
Zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM
status return code information is available without transformation in the
currently defined COBOL FILE STATUS code. User identification and
handling of exception conditions are allowed at the same level as that
defined by VSAM.

Function code and feedback code are set if and only if the return code is set to
a nonzero value. If they are referenced when the return code is set to zero,
the contents of the fields are not dependable.

Values in the return code, function code, and feedback code fields are defined
by VSAM. There are no COBOL additions, deletions, or modifications to
the VSAM definitions.

For more information, see DFSMS" Macro Instructions for Data Sets.

I-O-CONTROL paragraph

The I-O-CONTROL paragraph of the input-output section specifies when
checkpoints are to be taken and the storage areas to be shared by different files.
This paragraph is optional in a COBOL program.

146 Enterprise COBOL for z/OS V4.1 Language Reference

The keyword I-O-CONTROL can appear only once, at the beginning of the
paragraph. The word [-O-CONTROL must begin in Area A and must be followed
by a separator period.

The order in which I-O-CONTROL paragraph clauses are written is not significant.
The I-O-CONTROL paragraph ends with a separator period.

Format: QSAM- i-o-control-entry

»——RERUN—L—_I—[assignment-%—L—_l—' phrase 1 i ><

ON file-name-1 EVERY

—SAME file-name-3
|—RECORD—| |—AREA—| |—FOR—| L

v

file-name-4

(1) |
-file-name-5
|—TAPE—| |—CONTAINS—| I—POSITION—integer-Z—l

—MULTIPLE FILE

(1)
APPLY WRITE-ONLY] Y file-name-2
ON

phrase 1:

}—[integer-l—RECORDS file-name-1 I
END REEL:ltl |:0 F:|
OF UNIT

Notes:
1 The MULTIPLE FILE clause and APPLY WRITE-ONLY clause are not supported for VSAM files.

Format: VSAM- i-o-control-entry

RERUN—L—_I—[assignment-%—L—_l—' phrase 1 i »<
ON -file-name-1 EVERY
SAME file-name-3
|—RECORD—| |—AREA—| |—FOR—| \\

v

-file-name-4

phrase 1:

|—integer—1—REC0RDS—L—_|—fi le-name-1 I
OF

Chapter 16. Input-Output section 147

Format: line-sequential-i-o-control-entry

v

»>—SAME -file-name-4 ><

file-name-3
|—RECORD—| |—AREA—| |—FOR—|

Format: sort/merge-i-o-control-entry

v

[
>p

|—RERUN—L—_I—assi —|
gnment-name-1

ON

Y _SAME RECORD | phrase 1 } ><
i:SORT l—AREA—l |—FOR—| ! !
SORT-MERGE—

phrase 1:

—file-name-3 I

v
|—fiZe-name-4J

RERUN clause

The RERUN clause specifies that checkpoint records are to be taken. Subject to the
restrictions given with each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint
method required for complete compliance to Standard COBOL 85, see the
Enterprise COBOL Programming Guide.

Do not use the RERUN clause:

* For files described with the EXTERNAL clause

* In programs with the RECURSIVE clause specified
* In programs compiled with the THREAD option

¢ In methods

file-name-1
Must be a sequentially organized file.

148 Enterprise COBOL for z/OS V4.1 Language Reference

VSAM and QSAM considerations:

The file named in the RERUN clause must be a file defined in the same
program as the I-O-CONTROL paragraph, even if the file is defined as
GLOBAL.

assignment-name-1
The external data set for the checkpoint file. It must not be the same
assignment-name as that specified in any ASSIGN clause throughout the
entire program, including contained and containing programs.

For QSAM files, assignment-name-1 has the format:

Format: assignment-name for QSAM files

[
>

A\
A

name
I—Za'bel-—| |—S-—|

The QSAM file must reside on a tape or direct access device. See also
[Appendix F, “ASCII considerations,” on page 609.|

SORT/MERGE considerations:

When the RERUN clause is specified in the [-O-CONTROL paragraph,
checkpoint records are written at logical intervals determined by the
sort/merge program during execution of each SORT or MERGE statement
in the program. When the RERUN clause is omitted, checkpoint records
are not written.

There can be only one SORT/MERGE I-O-CONTROL paragraph in a
program, and it cannot be specified in contained programs. It will have a
global effect on all SORT and MERGE statements in the program unit.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 records in
file-name-1 that are processed.

When multiple integer-1 RECORDS phrases are specified, no two of them
can specify the same value for file-name-1.

If you specity the integer-1 RECORDS phrase, you must specify
assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for
file-name-1 occurs. The terms REEL and UNIT are interchangeable.

When multiple END OF REEL/UNIT phrases are specified, no two of
them can specify the same value for file-name-1.

The END OF REEL/UNIT phrase can be specified only if file-name-1 is a
sequentially organized file.

SAME AREA clause

The SAME AREA clause specifies that two or more files that do not represent sort
or merge files are to use the same main storage area during processing.

Chapter 16. Input-Output section 149

The files named in a SAME AREA clause need not have the same organization or
access.

file-name-3, file-name-4
Must be specified in the file-control paragraph of the same program.
file-name-3 and file-name-4 must not reference a file that is defined with the
EXTERNAL clause.

» For QSAM files, the SAME clause is treated as documentation.

* For VSAM files, the SAME clause is treated as if equivalent to the SAME
RECORD AREA clause.

More than one SAME AREA clause can be included in a program. However:
* A specific file-name must not appear in more than one SAME AREA clause.

* If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

* The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

SAME RECORD AREA clause

150

The SAME RECORD AREA clause specifies that two or more files are to use the
same main storage area for processing the current logical record.

The files named in a SAME RECORD AREA clause need not have the same
organization or access.

file-name-3, file-name-4
Must be specified in the file-control paragraph of the same program.
file-name-3 and file-name-4 must not reference a file that is defined with the
EXTERNAL clause.

All of the files can be open at the same time. A logical record in the shared storage
area is considered to be both of the following:

* A logical record of each opened output file in the SAME RECORD AREA clause

* Alogical record of the most recently read input file in the SAME RECORD
AREA clause

More than one SAME RECORD AREA clause can be included in a program.
However:

* A specific file-name must not appear in more than one SAME RECORD AREA
clause.

e If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

* The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

 If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include
the GLOBAL clause.

Enterprise COBOL for z/OS V4.1 Language Reference

¢ The SAME RECORD AREA clause must not be specified when the RECORD
CONTAINS 0 CHARACTERS clause is specified.

The files named in the SAME RECORD AREA clause need not have the same
organization or access.

SAME SORT AREA clause

The SAME SORT AREA clause is syntax checked but has no effect on the execution
of the program.

file-name-3, file-name-4
Must be specified in the file-control paragraph of the same program.
file-name-3 and file-name-4 must not reference a file that is defined with the
EXTERNAL clause.

When the SAME SORT AREA clause is specified, at least one file-name specified

must name a sort file. Files that are not sort files can also be specified. The

following rules apply:

* More than one SAME SORT AREA clause can be specified. However, a given
sort file must not be named in more than one such clause.

* If a file that is not a sort file is named in both a SAME AREA clause and in one
or more SAME SORT AREA clauses, all the files in the SAME AREA clause must
also appear in that SAME SORT AREA clause.

* Files named in a SAME SORT AREA clause need not have the same organization
or access.

e Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless they are named in a SAME AREA or SAME
RECORD AREA clause.

* During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any nonsort or nonmerge files associated with
file-names named in this clause must not be in the open mode.

SAME SORT-MERGE AREA clause

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA
clause (see ['SAME SORT AREA clause”).

MULTIPLE FILE TAPE clause

The MULTIPLE FILE TAPE clause (format 1) specifies that two or more files share
the same physical reel of tape.

This clause is syntax checked, but has no effect on the execution of the program.

The function is performed by the system through the LABEL parameter of the DD
statement.

Chapter 16. Input-Output section 151

APPLY WRITE-ONLY clause

152

The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for
files that have standard sequential organization, have variable-length records, and
are blocked. If you specify this phrase, the buffer is truncated only when the space
available in the buffer is smaller than the size of the next record. Otherwise, the
buffer is truncated when the space remaining in the buffer is smaller than the
maximum record size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2
Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file
description entries. For an alternate method of achieving the APPLY WRITE-ONLY
results, see the description of the AWO compiler option in the Enterprise COBOL
Programming Guide.

Enterprise COBOL for z/OS V4.1 Language Reference

Part 5. Data division

Chapter 17. Data division overview
File section . .
Working-storage sectron
Local-storage section .
Linkage section.
Data units
File data .
Program data
Method data
Factory data.
Instance data
Data relationships .
Levels of data . .
Levels of data in a record descrrptron entry
Special level-numbers
Indentation . .
Classes and categorles of group 1tems .
Classes and categories of data .
Category descriptions
Alphabetic
Alphanumeric . .
Alphanumeric-edited .
DBCS .
External floating- pomt
Internal floating-point
National . .
National-edited.
Numeric . .
Numeric-edited.
Alignment rules .
Character-string and item size.
Signed data .
Operational signs .
Editing signs

Chapter 18. Data division--file description
entries
File section . .
EXTERNAL clause
GLOBAL clause
BLOCK CONTAINS clause
RECORD clause
Format 1 .
Format 2 .
Format 3 . .
LABEL RECORDS clause
VALUE OF clause .
DATA RECORDS clause .
LINAGE clause.
LINAGE-COUNTER spec1al reg1ster
RECORDING MODE clause -
CODE-SET clause .

Chapter 19. Data division--data description
entry .
Format 1 .

© Copyright IBM Corp. 1991, 2007

. 155
. 156
. 157
. 158
. 159
. 159
. 159
. 160
. 160
. 160
. 160
. 160
. 161
. 161
. 163
. 163
. 163
. 164
. 166
. 166
. 166
. 166
. 166
. 167
. 167
. 167
. 167
. 167
. 168
. 168
. 169
. 170
. 170
. 170

171
. 176
. 176
. 177
. 177
. 179
. 179
. 180
. 180
. 181
. 182
. 182
. 182
. 184
. 184
. 185

. 187
. 187

Format 2 .

Format 3 .

Level-numbers . .

BLANK WHEN ZERO clause .

DATE FORMAT clause . .
Semantics of windowed date f1elds .

Date trigger values .

Restrictions on using date fields .

Combining the DATE FORMAT clause w1th

other clauses .
Group items that are date f1elds .

Language elements that treat date fields as

nondates .
Language elements that do not accept
windowed date fields as arguments .

Language elements that do not accept date

fields as arguments
EXTERNAL clause
GLOBAL clause
JUSTIFIED clause .
GROUP-USAGE clause .
OCCURS clause
Fixed-length tables .
ASCENDING KEY and DESCENDING KEY
phrases
INDEXED BY phrase
Variable-length tables. . .
OCCURS DEPENDING ON clause .
PICTURE clause .
Symbols used in the PICTURE clause
P symbol . e
Currency symbol .
Character-string representation
Data categories and PICTURE rules .
Alphabetic items .
Numeric items .
Numeric-edited items
Alphanumeric items .
Alphanumeric-edited items.
DBCS items .
National items .
National-edited items.
External floating-point items
PICTURE clause editing .
Simple insertion editing .
Special insertion editing .
Fixed insertion editing
Floating insertion editing .
Representing floating 1nsert1on ed1t1ng .
Zero suppression and replacement editing.
Representing zero suppression
REDEFINES clause
REDEFINES clause consrcleratlons
REDEFINES clause examples .
Undefined results .
RENAMES clause .

. 188
. 188
. 188
. 190
. 190
. 191
. 192

. 192

. 192
. 193

. 194

. 194

. 195
. 195
. 196
. 196
. 197
. 198
. 199

. 200
. 201
. 202
. 203
. 205
. 205
. 208
. 209
. 209
. 210
. 210
. 211
. 212
. 212
. 213
. 213
. 214
. 214
. 215
. 216
. 217
. 218
. 218
. 219
. 220
. 220
. 221
. 222
. 223
. 224
. 225
. 225

153

SIGN clause .
SYNCHRONIZED clause
Slack bytes . .
Slack bytes within records .
Slack bytes between records
USAGE clause . .
Computational items .
DISPLAY phrase
DISPLAY-1 phrase.
FUNCTION-POINTER phrase
INDEX phrase . . S
NATIONAL phrase .o
OBJECT REFERENCE phrase .
POINTER phrase . .
PROCEDURE-POINTER phrase .
NATIVE phrase S
VALUE clause .
Format 1 . .
Rules for literal Values
Format 2 .

Rules for condltlon-name entrles .

Format 3 .

. 227
. 229
. 231
. 231
. 233
. 234
. 236
. 238
. 239
. 239
. 239
. 240
. 240
. 241
. 242
. 243
. 243
. 243
. 244
. 245
. 246
. 248

154 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 17. Data division overview

This overview describes the structure of the data division for programs, object
definitions, factory definitions, and methods. Each section in the data division has
a specific logical function within a COBOL program, object definition, factory
definition, or method and can be omitted when that logical function is not needed.
If included, the sections must be written in the order shown. The data division is
optional.

Program data division
The data division of a COBOL source program describes, in a structured
manner, all the data to be processed by the program.

Object data division
The object data division contains data description entries for instance object
data (instance data). Instance data is defined in the working-storage section
of the object paragraph of a class definition.

Factory data division
The factory data division contains data description entries for factory object
data (factory data). Factory data is defined in the working-storage section
of the factory paragraph of a class definition.

Method data division
A method data division contains data description entries for data accessible
within the method. A method data division can contain a local-storage
section or a working-storage section, or both. The term method data applies
to both. Method data in local-storage is dynamically allocated and
initialized on each invocation of the method; method data in
working-storage is static and persists across invocations of the method.

© Copyright IBM Corp. 1991, 2007 155

Format: program and method data division

»>—DATA DIVISION.

v

FILE SECTION.—

file-description-entry—Y—record-description-entry

record-description-entry

WORKING-STORAGE SECTION.—Y |:
data-item-description-entry—

v
v

ecord-description-entry

LOCAL-STORAGE SECTION.—Y
I
i:data-item-description-entry—

record-description-entry
data-item-description-entry—

LINKAGE SECTION.— i:

Format: object and factory data division

»>—DATA DIVISION. ><

record-description-entry
data-item-description-entry—

WORKING-STORAGE SECTION.—Y i:

File section

The file section defines the structure of data files. The file section must begin with
the header FILE SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the file section. It provides
information about the physical structure and identification of a file, and
gives the record-names associated with that file. For the format and the

156 Enterprise COBOL for z/OS V4.1 Language Reference

clauses required in a file description entry, see |Chapter 18, “Data
(division--file description entries,” on page 171.

record-description-entry
A set of data description entries (described in |Chapter 19, “Datal
division—-data description entry,” on page 187) that describe the particular
records contained within a particular file.

A record in the file section must be described as an alphanumeric group
item, a national group item, or an elementary data item of class alphabetic,
alphanumeric, DBCS, national, or numeric.

More than one record description entry can be specified; each is an
alternative description of the same record storage area.

Data areas described in the file section are not available for processing unless the
file that contains the data area is open.

A method file section can define external files only. A single run-unit-level file
connector is shared by all programs and methods that contain a declaration of a
given external file.

Working-storage section

The working-storage section describes data records that are not part of data files
but are developed and processed by a program or method. It also describes data
items whose values are assigned in the source program or method and do not
change during execution of the object program.

The working-storage section must begin with the section header
WORKING-STORAGE SECTION, followed by a separator period.

Program working-storage
The working-storage section for programs (and methods) can also describe
external data records, which are shared by programs and methods
throughout the run unit. All clauses that are used in record descriptions in
the file section and also the VALUE and EXTERNAL clauses (which might
not be specified in record description entries in the file section) can be used
in record descriptions in the working-storage section.

Method working-storage
A single copy of the working-storage for a method is statically allocated on
the first invocation of the method and persists in a last-used state for the
duration of the run unit. The same copy is used whenever the method is
invoked regardless of which object instance the method is invoked upon.

If a VALUE clause is specified on a method working-storage data item, the
data item is initialized to the VALUE clause value on the first invocation.

If the EXTERNAL clause is specified on a data description entry in a
method working-storage section, a single copy of the storage for that data
item is allocated once for the duration of the run unit. That storage is
shared by all programs and methods in the run unit that contain a
definition for the external data item.

Object working-storage
The data described in the working-storage section of an object paragraph is
object instance data, usually called instance data. A separate copy of
instance data is statically allocated for each object instance when the object

Chapter 17. Data division overview 157

is instantiated. Instance data persists in a last-used state until the object
instance is freed by the Java runtime system.

Instance data can be initialized by VALUE clauses specified in data
declarations or by logic specified in an instance method.

Factory working-storage
The data described in the working-storage section of a factory paragraph is
factory data. A single copy of factory data is statically allocated when the
factory object for the class is created. Factory data persists in a last-used
state for the duration of the run unit.

Factory data can be initialized by VALUE clauses specified in data
declarations or by logic specified in a factory method.

The working-storage section contains record description entries and data
description entries for independent data items, called data item description entries.

record-description-entry
Data entries in the working-storage section that bear a definite hierarchic
relationship to one another must be grouped into records structured by
level number. See |Chapter 19, “Data division--data description entry,” on|
for more information.

data-item-description-entry
Independent items in the working-storage section that bear no hierarchic
relationship to one another need not be grouped into records provided that
they do not need to be further subdivided. Instead, they are classified and
defined as independent elementary items. Each is defined in a separate
data-item description entry that begins with either the level number 77 or
01. See|Chapter 19, “Data division--data description entry,” on page 187 for
more information.

Local-storage section

158

The local-storage section defines storage that is allocated and freed on a
per-invocation basis. On each invocation, data items defined in the local-storage
section are reallocated. Each data item that has a VALUE clause is initialized to the
value specified in that clause.

For nested programs, data items defined in the local-storage section are allocated
upon each invocation of the containing outermost program. However, each data
item is reinitialized to the value specified in its VALUE clause each time the nested
program is invoked.

For methods, a separate copy of the data defined in local-storage is allocated and
initialized on each invocation of the method. The storage allocated for the data is
freed when the method returns.

Data items defined in the local-storage section cannot specify the EXTERNAL
clause.

The local-storage section must begin with the header LOCAL-STORAGE SECTION,
followed by a separator period.

You can specify the local-storage section in recursive programs, in nonrecursive
programs, and in methods.

Enterprise COBOL for z/OS V4.1 Language Reference

Method local-storage content is the same as program local-storage content except
that the GLOBAL clause has no effect (because methods cannot be nested).

Linkage section

The linkage section describes data made available from another program or
method.

record-description-entry
See ["Working-storage section” on page 157 for a description.

data-item-description-entry
See [“Working-storage section” on page 157| for a description.

Record description entries and data item description entries in the linkage section
provide names and descriptions, but storage within the program or method is not
reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the linkage section
with the following exceptions:

* You cannot specify the VALUE clause for items other than level-88 items.
* You cannot specify the EXTERNAL clause.

You can specify the GLOBAL clause in the linkage section. The GLOBAL clause
has no effect for methods, however.

Data units

Data is grouped into the following conceptual units:
* File data

* Program data

* Method data

 Factory data

* Instance data

File data

File data is contained in files. (See|”File section” on page 176.) A file is a collection
of data records that exist on some input-output device. A file can be considered as
a group of physical records; it can also be considered as a group of logical records.
The data division describes the relationship between physical and logical records.

A physical record is a unit of data that is treated as an entity when moved into or
out of storage. The size of a physical record is determined by the particular
input-output device on which it is stored. The size does not necessarily have a
direct relationship to the size or content of the logical information contained in the
file.

A logical record is a unit of data whose subdivisions have a logical relationship. A
logical record can itself be a physical record (that is, be contained completely
within one physical unit of data); several logical records can be contained within
one physical record, or one logical record can extend across several physical
records.

Chapter 17. Data division overview 159

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and names of the logical
records, labeling information, and so forth).

Record description entries describe the logical records in the file (including the
category and format of data within each field of the logical record), different values
the data might be assigned, and so forth.

After the relationship between physical and logical records has been established,
only logical records are made available to you. For this reason, a reference in this
information to "records” means logical records, unless the term "physical records”
is used.

Program data

Program data is created by a program instead of being read from a file.

The concept of logical records applies to program data as well as to file data.
Program data can thus be grouped into logical records, and be defined by a series
of record description entries. Items that need not be so grouped can be defined in
independent data description entries (called data item description entries).

Method data

Method data is defined in the data division of a method and is processed by the
procedural code in that method. Method data is organized into logical records and
independent data description entries in the same manner as program data.

Factory data

Factory data is defined in the data division in the factory paragraph of a class
definition and is processed by procedural code in the factory methods of that class.
Factory data is organized into logical records and independent data description
entries in the same manner as program data.

There is one factory object for a given class in a run unit, and therefore only one
instance of factory data in a run unit for that class.

Instance data

Instance data is defined in the data division in the object paragraph of a class
definition and is processed by procedural code in the instance methods of that
class. Instance data is organized into logical records and independent data
description entries in the same manner as program data.

There is one copy of instance data in each object instance of a given class. There
can be many object instances for a given class. Each has its own separate copy of
instance data.

Data relationships

The relationships among all data to be used in a program are defined in the data
division through a system of level indicators and level-numbers.

160 Enterprise COBOL for z/OS V4.1 Language Reference

A level indicator, with its descriptive entry, identifies each file in a program. Level
indicators represent the highest level of any data hierarchy with which they are
associated. FD is the file description level indicator and SD is the sort-merge file
description level indicator.

A level-number, with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose. Although they can be associated with (and subordinate
to) level indicators, they can also be used independently to describe internal data
or data common to two or more programs. (See [“Level-numbers” on page 18§ for
level-number rules.)

Levels of data

After a record has been defined, it can be subdivided to provide more detailed
data references.

For example, in a customer file for a department store, one complete record could
contain all data that pertains to one customer. Subdivisions within that record
could be, for example, customer name, customer address, account number,
department number of sale, unit amount of sale, dollar amount of sale, previous
balance, and other pertinent information.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items. Thus a record can be made up of a series of elementary
items or can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items
can be combined into group items. Groups can also be combined into a more
inclusive group that contains one or more subgroups. Thus within one hierarchy of
data items, an elementary item can belong to more than one group item.

A system of level-numbers specifies the organization of elementary and group
items into records. Special level-numbers are also used to identify data items used
for special purposes.

Levels of data in a record description entry

Each group and elementary item in a record requires a separate entry, and each
must be assigned a level-number.

A level-number is a one-digit or two-digit integer between 01 and 49, or one of
three special level-numbers: 66, 77, or 88. The following level-numbers are used to
structure records:

01 This level-number specifies the record itself, and is the most inclusive
level-number possible. A level-01 entry can be either an alphanumeric
group item, a national group item, or an elementary item. The level
number must begin in Area A.

02 through 49
These level-numbers specify group and elementary items within a record.
They can begin in Area A or Area B. Less inclusive data items are assigned
higher (not necessarily consecutive) level-numbers in this series.

Chapter 17. Data division overview 161

The relationship between level-numbers within a group item defines the hierarchy
of data within that group.

A group item includes all group and elementary items that follow it until a
level-number less than or equal to the level-number of that group is encountered.

The following figure illustrates a group wherein all groups immediately
subordinate to the level-01 entry have the same level-number.

The COBOL record description

entry written as follows: is subdivided as indicated below:
01 RECORD-ENTRY. <— This entry includes
05 GROUP-1. «—— This entry includes—,
10 SUBGROUP-1. «—— This entry includes

15 ELEM-1 PIC...
15 ELEM-2 PIC...

10 SUBGROUP-2. «—— This entry includes

15 ELEM-3 PIC...
15 ELEM-4 PIC...

05 GROUP-2 <— This entry includes
15 SUBGROUP-3. «<—— This entry includes

25 ELEM-5 PIC...
25 ELEM-6 PIC...

15 SUBGROUP-4 PIC... . This entry includes itself.

05 ELEM-7 PIC... . This entry includes itself.

The storage arrangement of the record description entry is illustrated below:

RECORD ENTRY
GROUP 1 GROUP 2 ——
<—SUBGROUP—1—>|<—SUBGROUP-2—> <—SUBGROUP—3—>|

|ELEM—1 | ELEM-2 | ELEM-3 | ELEM-4 | ELEM-5 | ELEM-6 | SUBGROUP-4 | ELEM—7|

You can also define groups with subordinate items that have different
level-numbers for the same level in the hierarchy. For example, 05 EMPLOYEE-NAME
and 04 EMPLOYEE-ADDRESS in EMPLOYEE-RECORD below define the same level in the
hierarchy. The compiler renumbers the levels in a relative fashion, as shown in
MAP output.
01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
04 EMPLOYEE-ADDRESS.

08 STREET PICTURE X(10).
08 CITY PICTURE X(10).

The following record description entry defines the same data hierarchy as the
preceding record description entry:

162 Enterprise COBOL for z/OS V4.1 Language Reference

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.
03 FIRST-NAME PICTURE X(10).
03 LAST-NAME PICTURE X(10).
02 EMPLOYEE-ADDRESS.
03 STREET PICTURE X(10).
03 CITY PICTURE X(10).

Elementary items can be specified at any level within the hierarchy.

Special level-numbers

Special level-numbers identify items that do not structure a record. The special
level-numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup
previously defined data items. (For details, see|"RENAMES clause” on|
page 225

77 Identifies data item description entries that are independent

working-storage, local-storage, or linkage section items; they are not
subdivisions of other items and are not subdivided themselves. Level-77
items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular
value of a conditional variable. (For details, see [“VALUE clause” on page]

P43)

Level-77 and level-01 entries in the working-storage, local-storage, and linkage
sections that are referenced in a program or method must be given unique
data-names because level-77 and level-01 entries cannot be qualified. Subordinate
data-names that are referenced in the program or method must be either uniquely
defined, or made unique through qualification. Unreferenced data-names need not
be uniquely defined.

Indentation

Successive data description entries can begin in the same column as preceding
entries, or can be indented.

Indentation is useful for documentation but does not affect the action of the
compiler.

Classes and categories of group items

Enterprise COBOL has two types of groups: alphanumeric groups and national
groups.

Groups that do not specify a GROUP-USAGE clause are alphanumeric groups. An
alphanumeric group has class and category alphanumeric and is treated as though
its usage were DISPLAY, regardless of the representation of the elementary data
items that are contained within the group. In many operations, such as moves and
compares, alphanumeric groups are treated as though they were elementary items
of category alphanumeric, except that no editing or conversion of data
representation takes place. In other operations, such as MOVE CORRESPONDING
and ADD CORRESPONDING, the subordinate data items are processed as
separate elementary items.

Chapter 17. Data division overview 163

164

National groups are defined by a GROUP-USAGE clause with the NATIONAL
phrase at the group level. All subordinate data items must be explicitly or
implicitly described with usage NATIONAL, and subordinate groups must be
explicitly or implicitly described with GROUP-USAGE NATIONAL.

Unless stated otherwise, a national group item is processed exactly as though it
were an elementary data item of usage national, class and category national,
described with PICTURE N(m), where m is the length of the group in national
character positions. Because national groups contain only national characters, data
is converted as necessary for moves and compares. The compiler ensures proper
truncation and padding. In other operations, such as MOVE CORRESPONDING
and ADD CORRESPONDING, the subordinate data items are processed as
separate elementary items. See ['GROUP-USAGE clause” on page 197|for details.

The table below summarizes the classes and categories of group items.

Table 7. Classes and categories of group items

implicit
GROUP-USAGE
clause

USAGE of
elementary
Category of items within a | USAGE of a
Group description | Class of group |group group group
Without a Alphanumeric Alphanumeric Any Treated as
GROUP-USAGE (even though the DISPLAY
clause elementary items when usage is
in the group can relevant
have any
category)
With explicit or National National NATIONAL NATIONAL

Classes and categories of data

Most data and all literals used in a COBOL program are divided into classes and
categories. Data classes are groupings of data categories. Data categories are
determined by the attributes of data description entries or function definitions, as

described in [“Category descriptions” on page 166.|

The following elementary data items do not have a class and category:

¢ Index data items

* Items described with USAGE POINTER, USAGE FUNCTION-POINTER, USAGE
PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

All other types of elementary data items have a class and category as shown in

[Table 8 on page 165

A function references an elementary data item and belongs to the data class and
category associated with the type of the function, as shown in [Table 9 on page 165}

Enterprise COBOL for z/OS V4.1 Language Reference

Literals have a class and category as shown in [Table 10| Figurative constants
(except NULL) have a class and category that depends on the literal or value
represented by the figurative constant in the context of its use. For details, see

[‘Figurative constants” on page 13

All group items have a class and category, even if the subordinate elementary
items belong to another class and category. For the classification of group items,

see [“Classes and categories of group items” on page 163]

Table 8. Class, category, and usage of elementary data items

Class Category Usage
Alphabetic Alphabetic DISPLAY
Alphanumeric Alphanumeric DISPLAY
Alphanumeric-edited DISPLAY
Numeric-edited DISPLAY
DBCS DBCS DISPLAY-1
National National NATIONAL
National-edited NATIONAL
Numeric-edited NATIONAL
Numeric Numeric DISPLAY (type zoned decimal)

NATIONAL (type national decimal)

PACKED-DECIMAL (type internal
decimal)

COMP-3 (type internal decimal)

BINARY

COMP

COMP-4

COMP-5

Internal floating-point

COMP-1

COMP-2

External floating-point

DISPLAY

NATIONAL

Table 9. Classes and categories of functions

Function type

Class and category

Alphanumeric Alphanumeric
National National
Integer Numeric
Numeric Numeric

Table 10. Classes and categories of literals

Literal Class and category
Alphanumeric Alphanumeric
(including hexadecimal formats)

DBCS DBCS

Chapter 17. Data division overview

165

166

Table 10. Classes and categories of literals (continued)

Literal Class and category

National National
(including hexadecimal formats)

Numeric Numeric

(fixed-point and floating-point)

Category descriptions

The category of a data item is established by the attributes of its data description
entry (such as its PICTURE character-string or USAGE clause) or by its function
definition. The meaning of each category is given below.

Alphabetic

A data item is described as category alphabetic by its PICTURE character-string.
For PICTURE character-string details, see [Alphabetic items” on page 210,

A data item of category alphabetic is referred to as an alphabetic data item.
Alphanumeric

Each of the following is a data item of category alphanumeric:

* An elementary data item described as alphanumeric by its PICTURE
character-string. For PICTURE character-string details, see |“Alphanumeric items’|

* An alphanumeric group item.

* An alphanumeric function.
* The following special registers:
- DEBUG-ITEM
— SHIFT-OUT
— SHIFT-IN
— SORT-CONTROL
— SORT-MESSAGE
- WHEN-COMPILED
- XML-EVENT
— XML-TEXT

Alphanumeric-edited

A data item is described as category alphanumeric-edited by its PICTURE
character-string. For PICTURE character-string details, see [”Alphanumeric-edited|
fitems” on page 213

A data item of category alphanumeric-edited is referred to as an
alphanumeric-edited data item.

DBCS

A data item is described as category DBCS by its PICTURE character-string and
the NSYMBOL(DBCS) compiler option or by an explicit USAGE DISPLAY-1 clause.
For PICTURE character-string details, see ["'DBCS items” on page 213]

Enterprise COBOL for z/OS V4.1 Language Reference

A data item of category DBCS is referred to as a DBCS data item.
External floating-point

A data item is described as category external floating-point by its PICTURE
character-string. For PICTURE character-string details, see [“External floating-point
litems” on page 215.|An external floating-point data item can be described with
USAGE DISPLAY or USAGE NATIONAL.

When the usage is DISPLAY, the item is referred to as a display floating-point data
item.

When the usage is NATIONAL, the item is referred to as a national floating-point
data item.

An external floating-point data item is of class numeric and, unless specifically
excluded, is included in a reference to a numeric data item.

Internal floating-point

A data item is described as category internal floating-point by a USAGE clause
with the COMP-1 or COMP-2 phrase.

A data item of category internal floating-point is referred to as an internal
floating-point data item. An internal floating-point data item is of class numeric
and, unless specifically excluded, is included in a reference to a numeric data item.

National

Each of the following is a data item of category national:

e A data item that is described as category national by its PICTURE
character-string and the NSYMBOL(NATIONAL) compiler option or by an
explicit USAGE NATIONAL clause. For PICTURE character-string details, see
[“National items” on page 214

* A group item explicitly or implicitly described with a GROUP-USAGE
NATIONAL clause.

* A national function.
* The special register XML-NTEXT.

National-edited

A data item is described as category national-edited by its PICTURE
character-string. For PICTURE character-string details, see [“National-edited items”]

A data item of category national-edited is referred to as a national-edited data
item.

Numeric

Each of the following is a data item of category numeric:

* An elementary data item described as numeric by its PICTURE character-string
and not described with a BLANK WHEN ZERO clause. For PICTURE
character-string details, see [“Numeric items” on page 211

* An elementary data item described with one of the following usages:

Chapter 17. Data division overview 167

168

— BINARY, COMPUTATIONAL, COMPUTATIONAL-4, COMPUTATIONAL-5,
COMP, COMP-4, or COMP-5

— PACKED-DECIMAL, COMPUTATIONAL-3, or COMP-3
* A special register of numeric type:

- LENGTH OF

— LINAGE-COUNTER

- RETURN-CODE

— SORTCORE-SIZE

— SORT-FILE-SIZE

- SORT-MODE-SIZE

- SORT-RETURN

- TALLY

- XML-CODE
* A numeric function.

* An integer function.
A data item of category numeric is referred to as a numeric data item.
Numeric-edited

Each of the following is a data item of category numeric-edited:

e A data item described as numeric-edited by its PICTURE character-string. For
PICTURE character-string details, see ["Numeric-edited items” on page 212)

* A data item described as numeric by its PICTURE character-string and described
with a BLANK WHEN ZERO clause.

Alignment rules

The standard alignment rules for positioning data in an elementary item depend
on the category of a receiving item (that is, an item into which the data is moved;
see ["Elementary moves” on page 387).

Numeric
For numeric receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,
truncated or padded with zeros. (An assumed decimal point is one that
has logical meaning but that does not exist as an actual character in the
data.)

2. If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified
immediately to the right of the field. The data is then treated according
to the preceding rule.

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end except when editing causes replacement of
leading zeros.

Internal floating-point
A decimal point is assumed immediately to the left of the field. The data is
then aligned on the leftmost digit position that follows the decimal point,
with the exponent adjusted accordingly.

Enterprise COBOL for z/OS V4.1 Language Reference

External floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.
Alphanumeric, alphanumeric-edited, alphabetic, DBCS
For these receiving items, the following rules apply:
1. The data is aligned at the leftmost character position, and (if necessary)
truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified as described in [“JUSTIFIED clause” on page 196

National, national-edited

For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary)
truncated or padded with default Unicode spaces (NX'0020") at the
right. Truncation occurs at the boundary of a national character
position.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified as described in [“JUSTIFIED clause” on page 196

Character-string and item size

For items described with a PICTURE clause, the size of an elementary item is
expressed in source code by the number of character positions described in the
PICTURE character-string and a SIGN clause (if applicable). Storage size, however,
is determined by the actual number of bytes the item occupies as determined by
the combination of its PICTURE character-string, SIGN IS SEPARATE clause (if
specified), and USAGE clause.

For items described with USAGE DISPLAY (categories alphabetic, alphanumeric,
alphanumeric-edited, numeric-edited, numeric, and external floating-point), 1 byte
of storage is reserved for each character position described by the item’s PICTURE
character-string and SIGN IS SEPARATE clause (if applicable).

For items described with USAGE DISPLAY-1 (category DBCS), 2 bytes of storage
are reserved for each character position described by the item’s PICTURE
character-string.

For items described with USAGE NATIONAL (categories national, national-edited,
numeric-edited, numeric, and external floating-point), 2 bytes of storage are
reserved for each character position described by the item’s PICTURE
character-string and SIGN IS SEPARATE clause (if specified).

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the
item; USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

Normally, when an arithmetic item is moved from a longer field into a shorter one,
the compiler truncates the data to the number of digits represented in the shorter
item’s PICTURE character-string by truncating leading digits. For example, if a
sending field with PICTURE 599999 that contains the value +12345 is moved to a
BINARY receiving field with PICTURE S99, the data is truncated to +45. For
additional information, see ["USAGE clause” on page 234 |

The TRUNC compiler option can affect the value of a binary numeric item. For
information about TRUNC, see the Enterprise COBOL Programming Guide.

Chapter 17. Data division overview 169

Signed data

There are two categories of algebraic signs used in COBOL: operational signs and
editing signs.

Operational signs

Operational signs are associated with signed numeric items, and indicate their
algebraic properties. The internal representation of an algebraic sign depends on
the item’s USAGE clause, its SIGN clause (if present), and the operating
environment. (For further details about the internal representation, see the
Enterprise COBOL Programming Guide.) Zero is considered a unique value regardless
of the operational sign. An unsigned field is always assumed to be either positive
or zero.

Editing signs

Editing signs are associated with numeric-edited items. Editing signs are PICTURE
symbols that identify the sign of the item in edited output.

170 Enterprise COBOL for z/OS V4.1 Language Reference

Chapter 18. Data division--file description entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description (SD)
Entry for sort/merge files) represents the highest level of organization in the file

section. The order in which the optional clauses follow the FD or SD entry is not
important.

© Copyright IBM Corp. 1991, 2007 171

Format 1: sequential file description entry

»»>—FD—file-name-1
LTJfEXTERNAL—I meGLOBAL—l
IS IS

>

|—BLOCK |_ _| |_ _| integer-2 (IHARACTﬁJ
CONTAINS integer-1—T0 RECORDS

N4

|—RECORD inte 3 |
ger-3
I—CONTAINS—| |—CHARACTERS—|

—L—_l—integer—4—T0—integer—5 |_ _|
CONTAINS CHARACTERS
—| clause 1 i |_ J
DEPENDING—L——I—data-name-l
ON

\4

|—LABEL RECORD |_ _| STANDARD
IS —OMITTED

RECORDS
|—AREJ

I—data—narne-Z—l

LALUE OF— LATA

—SyS tem—name—l—l_—_l—[data-name—3 RECORD |_ _|
IS literal-1 IS
RECORDS—L—_|—
ARE

! data—narne—4]—‘

]

I—LINAGE—L——'—[data—name—5_-|—L——|—| clause 2 'J I—RECORDING J |_ J mode:
IS integer-8 LINES |—MODE IS

|—CODE-SET—L—_I—alphabet-name—|
IS
clause 1:
VARYING
|—ISJ |—INJ |—SIZEJ ﬁinteger%J |—TO—integer-7J |—CHARACTERSJ
FROM
clause 2:

I j_I I j_I
FOOTING data-name-6 TOP ata-name-7
LWITH—l |—AT—| l—integer—9 |—LINES—| |—AT—| integer-10

>

I 8
BOTTO ata-name-8
|—LINESJ |—ATJ integer-11

172 Enterprise COBOL for z/OS V4.1 Language Reference

Format 2: relative or indexed file description entry

»»>—FD—file-name-1
LL—J—EXTERNALJ LL—J—GLOBALJ
IS IS

|—BLOCK |_ J |_ J integer-2: CHARACTﬁJ
CONTAINS integer-1—T0 RECORDS

v

v

\

v

\

|—RECORD inte 3
ger-3
|—CONTAINSJ |—CHARACTERSJ

—L—_I—integer-4—T0—integer-5 |_ J
CONTAINS CHARACTERS
—| clause 1 } |_ J
DEPENDING—L——I—data-name-I
ON

Y

|—LABEL RECORD STANDARD;,J
L |—I SJ |—OMITTED
RECORDS—L——|—
ARE

VALUE OF—Y-system-name-1 data-name-3
IS literal-1

A\
A

\

L_DATA RECORD Y _data-name-4
Lo
RECORDS—L——l—
ARE

clause 1:

VARYING |
|—ISJ |—INJ |—SIZEJ LL—M—I—inte’ger-6J |—T0—integer‘—7J |—CHARACTERSJ
FRO

Chapter 18. Data division--file description entries 173

Format 3: line-sequential file description entry

»»>—FD—file-name-1
LL—J—EXTERNALJ LL—J—GLOBALJ
IS IS

|—RECORD |_ J integer-3
CONTAINS
clause 1 i

v

v
A

|—CHARACTERSJ

|—DEPEND I N(E.—L—’I—data-name-1J
ON

clause 1:

VARYING
|—ISJ |—INJ |—SIZEJ LL—J—integer-6J |—T0—integer‘—7J |—CHARACTERSJ
FROM

174 Enterprise COBOL for z/OS V4.1 Language Reference

Format 4: sort/merge file description entry

»»—SD—file-name-1

|—RECORD inte 3 |
ger-3
|—CONTAINS—| |—CHARACTERS—|

—l_——l—integer-4—T0—integer-5—L—_|—
CONTAINS CHARACTERS:
—| clause 1 i |_ _|
DEPENDING—L——'—data-name—J
ON

Y _data-name-4—

DATA RECORD:
—[L5
RECORDS—L——|—
ARE

I—BLOCK |_ _| |_ _| integer-2: CHARACT%J
CONTAINS integer-1—T0 RECORDS:

OMITTED

I—LABEL RECORD STANDARD——|
L L5
RECORDS
L are L
Y data-name-2

VALUE OF—-sys tem-name-]—l_——l—[data-name-.?
IS Ziteral—l—l

LLINAGE—I_——I—[thG-nﬂmeﬁ—m—I clause 2 ’J LCODE-SET—I_——I—GthGbEt-HwﬂeJ
IS integer-8 LINES IS

clause 1:
VARYING |
|—IS—| |—IN—| |—SIZE—| Lm—int‘eger‘%—' |—TO—int‘eger—7—| |—CHARACTERS—|
FROM
clause 2:

| ¢ |
FOOTING data-name-6- TOP. ata-name-7
|—L«IITH—| |—AT—I I—integer-g |—LINES—| I—AT—| integer-10

>

I 8
BOTTOM ata-name-8
|—LINES—| |—AT—| integer-11

Chapter 18. Data division--file description entries

175

File section

The file section must contain a level-indicator for each input and output file:
* For all files except sort/merge files, the file section must contain an FD entry.
* For each sort or merge file, the file section must contain an SD entry.

file-name
Must follow the level indicator (FD or SD), and must be the same as that
specified in the associated SELECT clause. file-name must adhere to the
rules of formation for a user-defined word; at least one character must be
alphabetic. file-name must be unique within this program.

One or more record description entries must follow file-name. When more
than one record description entry is specified, each entry implies a
redefinition of the same storage area.

The clauses that follow file-name are optional, and they can appear in any
order.

FD (formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a
separator period.

SD (format 4)
An SD entry must be written for each sort or merge file in the program.
The last clause in the SD entry must be immediately followed by a
separator period.

The following example illustrates the file section entries needed for a sort
or merge file:

SD SORT-FILE.
01 SORT-RECORD PICTURE X(80).

A record in the file section must be described as an alphanumeric group item, a
national group item, or an elementary item of class alphabetic, alphanumeric,
DBCS, national, or numeric.

EXTERNAL clause

176

The EXTERNAL clause specifies that a file connector is external, and permits
communication between two programs by the sharing of files. A file connector is
external if the storage associated with that file is associated with the run unit
rather than with any particular program within the run unit. An external file can
be referenced by any program in the run unit that describes the file. References to
an external file from different programs that use separate descriptions of the file
are always to the same file. In a run unit, there is only one representative of an
external file.

In the file section, the EXTERNAL clause can be specified only in file description
entries.

The records appearing in the file description entry need not have the same name in

corresponding external file description entries. In addition, the number of such
records need not be the same in corresponding file description entries.

Enterprise COBOL for z/OS V4.1 Language Reference

Use of the EXTERNAL clause does not imply that the associated file-name is a
global name. See the Enterprise COBOL Programming Guide for specific information
about the use of the EXTERNAL clause.

GLOBAL clause

The GLOBAL clause specifies that the file connector named by a file-name is a
global name. A global file-name is available to the program that declares it and to
every program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name. A record-name is global if the GLOBAL clause is specified in the
record description entry by which the record-name is declared or, in the case of
record description entries in the file section, if the GLOBAL clause is specified in
the file description entry for the file-name associated with the record description
entry. For details on using the GLOBAL clause, see the Enterprise COBOL
Programming Guide.

Two programs in a run unit can reference global file connectors in the following
circumstances:

* An external file connector can be referenced from any program that describes
that file connector.

 If a program is conta