
Enterprise PL/I for z/OS

Compiler and Run-Time Migration Guide
Version 4 Release 2

GC14-7284-01

���

Enterprise PL/I for z/OS

Compiler and Run-Time Migration Guide
Version 4 Release 2

GC14-7284-01

���

Second Edition (September 2011)

This edition applies to Version 4 Release 2 of Enterprise PL/I for z/OS, 5655-W67, and to any subsequent releases
until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for
the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, Department H150/090
555 Bailey Ave
San Jose, CA, 95141-1099
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1999, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Notices” on page 187.

Contents

Tables ix

Figures xi

About this book xiii
Using your documentation xiii

PL/I information xiv
Language Environment information xiv

How to send your comments xiv
Accessibility xv

Interface information xv
Keyboard navigation xv
Accessibility of this information xv
IBM and accessibility xvi

Part 1. Overview 1

Chapter 1. Do I need to recompile? . . . 3
Migration basics 4

Run-time migration - Moving to Language
Environment 4
Compiler migration 4

Migration Roadmap 5
Service support for OS PL/I and PL/I for MVS &
VM 5

Chapter 2. Introducing the new compiler
and run-time 7
Product relationships - compiler, run-time, debug . . 7
General PL/I compiler information 7
Language Environment's run-time support for other
programs 8
Advantages of the new compiler and run-time . . . 8
Major changes with the new compiler and run-time . 9
General conversion tasks 10

Planning your strategy 10
Moving to the Language Environment run time 11
Recompiling your source with Enterprise PL/I . 11
Adding Enterprise PL/I programs to existing
applications 11

Part 2. Conversion Strategies . . . 13

Chapter 3. Planning the move to
Language Environment 15
Prepare to move to the Language Environment
run-time library 15

Installing Language Environment 15
Assessing storage requirements 15
Educating your programmers about Language
Environment 16

Take an inventory of your applications 16
Vendor tools, packages, and products. 16

PL/I applications 17
Existing PL/I load modules 17

Decide how to phase in Language Environment . . 18
Multilanguage conversion 18
Determining how applications will have access to
the library 18

Set up a regression testing procedure 21
Take performance measurements 22

Cut over to production use 22

Chapter 4. Planning to move to the new
compiler 23
Prepare to move your source to the new compiler 23

Installing Enterprise PL/I. 23
Assessing storage requirements 23
Educating your programmers on new compiler
features. 23

Take an inventory of your applications 24
Taking an inventory of vendor tools, packages,
and products 24
Taking an inventory of PL/I applications . . . 24
Prioritizing your applications 25
Setting up move/no move categories 25

Make application program updates 26

Part 3. Moving existing applications
to Language Environment 29

Chapter 5. Running existing
applications under Language
Environment 31
Invoke existing applications 31

For non-CICS applications 31
For CICS applications 32

Link-edit existing applications 32

Chapter 6. Considerations Before
Migrating. 35
Differences in Run-Time Options 35

Deleted run-time options 35
Replaced run-time options 35
New run-time options 36

Differences in Condition Handling. 37
Timing differences 37
Unhandled condition differences 38
IBMBXITA and IBMBEER differences 38
ABEND U4039 differences 38
Severity differences 38

Differences in PLICALLA and PLICALLB Support 38
PLICALLA Considerations 39
PLICALLB Considerations 39

Differences in Preinitialization Support 41
Differences in PLISRTx Support 42

© Copyright IBM Corp. 1999, 2011 iii

Differences in Multitasking Support 42
Differences in OS PL/I Shared Library support . . 42
Differences in DATE/TIME Built-In Functions . . . 42
Differences in User Return Code 42
Differences in Run-Time Messages 43
Differences in PLIDUMP 43
Differences in Storage Report 44
Differences in Interlanguage Communication
Support 45
Differences in Assembler Support 46

Assembler programs that find the main
parameter list. 46

Chapter 7. Object and Load Module
Considerations 47
OS PL/I Version 1 Object Module and Load Module
Compatibility. 47

OS PL/I Version 1 Release 5.1 47
OS PL/I Version 1 Release 5 48
OS PL/I Version 1 Release 3.0 - Release 4.0 . . . 49
OS PL/I Version 1 Prior to Release 3.0 49

OS PL/I Version 2 Object Module and Load Module
Compatibility. 49
Summary of Support for OS PL/I Object and Load
Modules 49

Chapter 8. Link-Edit Considerations . . 51
SCEERUN 51
Symbol Table Considerations 51
NCAL Linkage Editor Option 51
ENTRY cards 52
Using OS PL/I Math Routines 52

Chapter 9. Subsystem Considerations 53
CICS Considerations 53

Updating CICS System Definition (CSD) File . . 53
Error Handling 53
Restrictions on User-Written Condition Handlers
under CICS 53
Macro-Level Interface 54
FETCHing a PL/I MAIN Procedure 54
STACK Run-Time Option. 54
Run-Time Output 54
Abend Codes Used by PL/I under CICS . . . 55

IMS Considerations. 55
Interfaces to IMS 55
SYSTEM(IMS) Compile-Time Option 55
PLICALLA Support in IMS 55
PSB Language Options Supported 55
Storage Usage Considerations 56
Coordinated Condition Handling under IMS . . 56
Performance Enhancement with Library
Retention(LRR) 57

DB2 Considerations 57

Part 4. Moving to the new compiler 59

Chapter 10. Understanding the
limitations of the new compiler 63

Language Environment Requirements 63
Language not supported 63

Multitasking 63
CHECK 63
CHARSET(48) and CHARSET(BCD) 63
EGCS 63
Fortran 63
Invalid code 63

Language restricted. 64
RECORD I/O 64
STREAM I/O. 64
Structure expressions 65
Array expressions 65
DEFAULT statement 65
Extents of automatic variables 66
Built-in functions 66
DEFINED BIT aggregates 66
OPTIONS(REENTRANT) 66
iSUB defining 66
LABEL arrays 66
DBCS 67
Macro preprocessor. 67

Options restricted 67
Options not supported 68
Restrictions on other interfaces to the compiler . . 68

Batch compilation 68
Invoking the compiler from assembler 69
Compiling under TSO 69
Specifying INCLUDE data set names 69
Defining the SYSLIN data set 70

Compiler time and space requirements 70
AMODE(24) restrictions 70
EXTERNAL names restricted 71
Listing differences 71
Control block differences 72
ISAM support differences. 72

Chapter 11. Understanding the new
compiler's options. 73
Understanding the effect of default options on
compatibility 73

BACKREG(5) 73
BIFPREC(15) 74
CMPAT(V2) 74
EXTRN(FULL) 75
LIMITS(EXTNAME(7)) 75
NORENT and WRITABLE 76
SYSTEM 76

Choosing non-default options for even more
compatibility 76

COMMON 77
DFT(NOBIN1ARG) 77
DEFAULT(LINKAGE(SYSTEM)) 77
DFT(OVERLAP) 77
NOREDUCE 77
NORESEXP 78
RULES(LAXCTL) 78
RULES(NOLAXINOUT NOLAXSEMI) 78
NOWRITABLE 78

Choosing options for improved performance . . . 79
ARCH 79

iv Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

BIFPREC(31) 79
DEFAULT(NONASGN) 79
DEFAULT(CONNECTED) 79
DEFAULT(REORDER) 80
DEFAULT(NOOVERLAP) 80
OPTIMIZE(2)/OPTIMIZE(3) 80
REDUCE 80
NORENT 81
RULES(NOLAXCTL) 82

Choosing options for better quality 83
RULES(NOLAXDCL) 83
RULES(NOLAXIF) 83
RULES(NOLAXLINK) 84
RULES(NOLAXMARGINS) 84
RULES(LAXSTRZ) 85
RULES(NOMULTICLOSE) 85

Choosing options for test 85
CHECK(CONFORMANCE) 85
GONUMBER 86
PREFIX 86
TEST 86

Chapter 12. Understanding the new
compiler's messages 87
IBM1044: one-byte FIXED BIN 87
IBM1053: scaled FIXED BIN evaluation 87
IBM1065: imprecise float constants. 87
IBM1091: FIXED BIN precision warning 88
IBM1099: mixed FIXED 88
IBM1181: miscoded DO loops 89
IBM1206: misuse of BIT operators 90
IBM1208: incompletely initialized arrays 90
IBM1215: incomplete declares 91
IBM1216: incorrect structure declares 91
IBM1220: pointless comparisons 92
IBM1927: SIZE condition 92
IBM1948: restricted expression evaluation 93
IBM2063: invalid ALLOCATE 93
IBM2402: storage overlay 93
IBM2409: RETURN; in a function 94
IBM2410: No RETURN in a function 94
IBM2412: missing RETURNS option 94
IBM2421: CLOSE in ENDFILE 95
IBM2610: precision interpretation 95
IBM2611, IBM2612: duplicate whens 95
IBM2617: passing labels out of PL/I 96
IBM2621: missing ON ERROR SYSTEM 96
IBM2622: warning on poorly coded DO loops . . . 96
IBM2626: SUBSTR with a zero length 97
IBM2628: large BYVLAUE parameters 97
IBM2801: introduction of scaled FIXED BIN . . . 98
IBM2804: suboptimal compares 98
IBM2810: conversion of scaled FIXED BIN 98
IBM2811: use of PICTURE as DO control variables 99
IBM2812: poor TRANSLATE and VERIFY 99
PLIXOPT messages 99
Using the compiler user exit 100

Chapter 13. Understanding when
working code must be changed . . . 101

Incorrect code 101
Relying on the order of declarations 101
Using invalid FIXED DECIMAL data 101
Using invalid SUBSTR references 102
Using dissimilar EXTERNAL declares 102
Using an incorrect PLITABS declare 103

Initializing variables 103
Initializing AUTOMATIC 103
Initializing BASED 104
Initializing CONTROLLED 104
Initializing STATIC 104

Retaining unused declarations 104
Retaining unused INTERNAL STATIC 104

Incorrect code that will now raise exceptions . . . 104
FIXEDOVERFLOW when SIZE is disabled . . 104
Invalid allocations 106

Incorrect code that will now loop endlessly . . . 106
Even precision PICTURE loop control variables 106

Assignments that will produce different results . . 108
Source-target overlap 108
Float-to-float assignments 109

Other statements that will produce different results 110
STREAM I/O with unprintable characters . . . 110
Uninitialized EXTERNAL STATIC 110
Incompletely declared FILEs 111
Dummy arguments and alignment 111
Dummy arguments and CONTROLLED . . . 111
Pointer arithmetic 112

Code that will not perform as well 112
FIXED DEC as a loop control 112
FIXED BIN(15) as a loop control 112
I/O using TOTAL 112

Chapter 14. Understanding when
working code may need to be
changed 113
Code that will now raise an exception 113

ZERODIVIDE and OVERFLOW promoted to
ERROR 113
Conditions raised when disabled 113
Invalid RETURNs 114
GOTO holes 114
The scope of NOFOFL 114

Code that will now not raise exceptions 115
FIXEDOVERFLOW for FIXED BIN 115
CONVERSION when assigning blanks to
numeric variables 115
ERROR when mapping excessively large
aggregates 115

Storage mapped differently 116
One-byte FIXED BIN 116

Declarations handled differently 116
AREA with INITIAL 116

Conversions handled differently 117
Conversions from float to character 117
Conversions from scaled FIXED BINARY . . . 117

Built-in functions handled differently 118
Arithmetic built-in functions with scale factors
and FIXED BIN. 118

Contents v

String-handling built-in function for conversion
of DBCS character strings 119

MACRO preprocessor differences. 119
MACRO preprocessor and strings 120

SQL preprocessor differences 120

Chapter 15. Linking your new objects 121
Prelinker and PDSE considerations 121
AMODE(24) considerations. 121
Using PLICALLA or PLICALLB Entry 121
CHANGE cards 121

Chapter 16. Using Language
Environment with the new compiler. . 123
Using the right run-time options 123
Calling PL/I from assembler main programs . . . 124
Understanding when your results may vary . . . 124

Return codes 124
When the run-time issues messages 124
What the run-time messages say 125
Where the run-time messages go 125
Math built-ins 125
Dumps 126
Storage reports 126

Prerequisite Language Environment PTFs 126

Chapter 17. Tuning for better CPU and
storage utilization 127
Improving CPU Utilization 127
Improving Storage Utilization 128
Improving Performance under Subsystems . . . 129

Chapter 18. Adding Enterprise PL/I
programs to existing PL/I applications 131
Object and load module considerations 131
Sharing SYSPRINT 132
Run-time option considerations 133
Condition handling considerations 133
Partitioning PL/I source programs into units of
execution 134

Chapter 19. Migrating from earlier
releases of Enterprise PL/I to
Enterprise PL/I V4R2 135
Migrating from Enterprise PL/I V4R1 135

SQL preprocessor differences from Enterprise
PL/I V4R1 136

Migrating from Enterprise PL/I Version 3 (all
releases) 138

Changes in Enterprise PL/I Version 3 releases 138
Messages that are introduced with V4R2 139

Compiler messages that are introduced with
V4R2 139
Preprocessor messages that are introduced with
V4R2 140

Compiler messages that are introduced with V4R1 142
Compiler messages that are introduced with V3R9 142
Compiler messages that are introduced with V3R8 143
Compiler messages that are introduced with V3R7 144

Compiler messages that are introduced with V3R6 144
Compiler messages that are introduced with V3R5 145
Compiler messages that are introduced with V3R4 145
Object compatibility 147
Runtime changes 148

Part 5. Subsystem and other
language considerations 149

Chapter 20. Assembler considerations
for PL/I applications 151
Considerations for assembler programs mimicking
PL/I main procedures 151
Calling PL/I from assembler and Language
Environment conforming assembler 151
Condition handling and assembler programs . . . 152
Considerations for using assembler user exits . . 152

Specific considerations 152

Chapter 21. CICS considerations for
PL/I applications 153
General CICS considerations 153

Updating CICS System Definition (CSD) file . . 153
Macro-level interface 154

Compiler options for programs that run under
CICS 154
Linking CICS applications and run-time
considerations 154

Error-handling 154
FETCHing a PL/I MAIN procedure 154
Run-time output 154
Abend codes used by PL/I under CICS . . . 155

Migrating to the integrated CICS preprocessor . . 155

Chapter 22. IMS considerations for
PL/I applications 157
Interfaces to IMS 157
SYSTEM(IMS) compile-time option 157
PLICALLA support in IMS 157
PSB language options supported 158
Storage usage considerations 158
Coordinated condition handling under IMS . . . 158
Performance enhancement with Library Retention
(LRR) 159

Chapter 23. DB2 Considerations for
PL/I applications 161
General DB2 considerations 161
Migrating to the integrated SQL preprocessor . . 161

Programming and compilation considerations 161
FOR BIT DATA assignment notes. 162
Prerequisite DB2 APARs 162

Part 6. Appendixes 163

Appendix A. Conversion and
Migration Aids 165

vi Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

OS PL/I Routine Replacement Tool 165
OS PL/I Version 1 Release 5.1 main load module
ZAP 166
OS PL/I Shared library replacement tool 166
OS PL/I Object Module Relinking Tool - APAR
PN69803 167

ILC Applications 167
PLISRTx Applications 167

EDGE Portfolio Analyzer 168
Vendor products 168

Appendix B. Compiler elements
comparison 169

Appendix C. Compiler option
comparison 171

Appendix D. Compiler limit
comparison 179

Appendix E. Batch processing sample 183

Appendix F. Debugging tool
comparison 185

Differences between debugging tools 185

Notices 187
Programming interface information 188
Trademarks 188

Bibliography. 189
PL/I publications 189

Enterprise PL/I for z/OS 189
PL/I for MVS & VM 189
PL/I for AIX 189

Related publications 189
DB2 UDB for z/OS 189
DFSORT 189
IMS/ESA. 189
TXSeries for Multiplatforms 190
z/Architecture 190
z/OS Language Environment 190
z/OS MVS 190
z/OS TSO/E 190
z/OS UNIX System Services 190
Unicode and character representation 190

Index 191

Contents vii

viii Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Tables

1. How to use Enterprise PL/I publications xiv
2. How to use z/OS Language Environment

publications xiv
3. PL/I compiler IDR values. 18
4. Specification of new DDNAMEs 31
5. Mapping of SPIE and STAE Options to the

TRAP Option 35
6. OS PL/I Version 2 Release 3 ERROR ON-Unit

and Message for an ERROR condition. . . . 37
7. Language Environment ERROR ON-Unit and

Message for an ERROR Condition 38
8. Differences in PLICALLB Argument List

Support 39

9. Return Code Behavior under Language
Environment 43

10. Summary of Object and Load Module Support
by Language Environment 49

11. PSB LANG Options for IMS/ESA Version 4
Release 1, and later 55

12. PSB LANG options for IMS/ESA Version 4
Release 1, and later 158

13. PL/I element names 169
14. Compiler option comparison 171
15. Language element limits 179
16. PLITEST Commands and Their Debug Tool

Equivalents 185

© Copyright IBM Corp. 1999, 2011 ix

x Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Figures

1. CESE Output Data Queue. 54 2. CESE output data queue 155

© Copyright IBM Corp. 1999, 2011 xi

xii Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

About this book

This book provides information to help you to move from a pre-Language
Environment run-time library to IBM Language Environment for z/OS and to
upgrade your source programs to IBM Enterprise PL/I for z/OS Version 4 Release
2. It suggests solutions to problems that arise because of differences in support
between previous releases of PL/I (OS PL/I, PL/I for MVS & VM, and VisualAge
PL/I) and Enterprise PL/I.

IMPORTANT
The information in this book discusses migration considerations using
Enterprise PL/I V4R2M0 and z/OS V1R10 Language Environment or later.
These two products must be installed in order to take advantage of the
migration enhancements discussed in this book. The use of Enterprise PL/I
refers to Version 4 Release 2 unless indicated otherwise. The use of Language
Environment refers to z/OS V1R10 Language Environment or later unless
indicated otherwise.

This book is for system programmers, application programmers, and IBM support
personnel who are involved in PL/I product migration. Prerequisite knowledge for
using this book is:
v A general understanding of your operating system
v Some knowledge of the PL/I language and options
v Some knowledge of how PL/I uses Language Environment for its run-time

environment

Using your documentation
The publications provided with Enterprise PL/I are designed to help you program
with PL/I. The publications provided with Language Environment are designed to
help you manage your run-time environment for applications generated with
Enterprise PL/I. Each publication helps you perform a different task.

The following tables show you how to use the publications you receive with
Enterprise PL/I and Language Environment. You'll want to know information
about both your compiler and run-time environment. For the complete titles and
order numbers of these and other related publications, see “Bibliography” on page
189.

© Copyright IBM Corp. 1999, 2011 xiii

PL/I information
Table 1. How to use Enterprise PL/I publications

To... Use...

Evaluate Enterprise PL/I Fact Sheet

Understand warranty information Licensed Programming Specifications

Plan for and install Enterprise PL/I Enterprise PL/I Program Directory

Understand compiler and run-time changes and
adapt programs to Enterprise PL/I and Language
Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference

Diagnose compiler problems and report them to
IBM

Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment information
Table 2. How to use z/OS Language Environment publications

To... Use...

Evaluate Language Environment Concepts Guide

Plan for Language Environment Concepts Guide
Run-Time Migration Guide

Install Language Environment on z/OS z/OS Program Directory

Customize Language Environment on z/OS Customization

Understand Language Environment program
models and concepts

Concepts Guide
Programming Guide

Find syntax for Language Environment run-time
options and callable services

Programming Reference

Develop applications that run with Language
Environment

Programming Guide and your language
Programming Guide

Debug applications that run with Language
Environment, get details on run-time messages,
diagnose problems with Language Environment

Debugging Guide and Run-Time Messages

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Applications

Migrate applications to Language Environment Run-Time Application Migration Guide and the
migration guide for each Language
Environment-enabled language

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this document or any other PL/I
documentation, contact us in one of these ways:
v Use the Online Readers' Comment Form at

www.ibm.com/software/awdtools/rcf/

or send an e-mail to
comments@us.ibm.com

About this book

xiv Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Be sure to include the name of the document, the publication number of the
document, the version of PL/I, and, if applicable, the specific location (for
example, page number) of the text that you are commenting on.

v Fill out the Readers' Comment Form at the back of this document, and return it
by mail or give it to an IBM representative. If the form has been removed,
address your comments to:

International Business Machines Corporation
Reader Comments
H150/090
555 Bailey Avenue
San Jose, CA 95141-1003
USA

v Fax your comments to this U.S. number: (800)426-7773.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

Accessibility
Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully. The
accessibility features in z/OS provide accessibility for Enterprise PL/I.

The major accessibility features in z/OS are:
v Interfaces that are commonly used by screen readers and screen-magnifier

software
v Keyboard-only navigation
v Ability to customize display attributes such as color, contrast, and font size

Interface information
Assistive technology products work with the user interfaces that are found in
z/OS. For specific guidance information, see the documentation for the assistive
technology product that you use to access z/OS interfaces.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF. For information
about accessing TSO/E or ISPF interfaces, see the following publications:
v z/OS TSO/E Primer
v z/OS TSO/E Primer
v z/OS TSO/E Primer

These guides describe how to use TSO/E and ISPF, including the use of keyboard
shortcuts or function keys (PF keys). Each guide includes the default settings for
the PF keys and explains how to modify their functions.

Accessibility of this information
The English-language XHTML format of this information that will be provided in
the IBM System z® Enterprise Development Tools & Compilers Information Center
at publib.boulder.ibm.com/infocenter/pdthelp/index.jsp is accessible to visually
impaired individuals who use a screen reader.

How to send your comments

About this book xv

http://publib.boulder.ibm.com/infocenter/pdthelp/index.jsp

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma PICTURE symbols, you must
set the screen reader to speak all punctuation.

IBM and accessibility
See the IBM Human Ability and Accessibility Center at www.ibm.com/able for
more information about the commitment that IBM® has to accessibility.

Accessibility

xvi Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

http://www.ibm.com/able

Part 1. Overview

Chapter 1. Do I need to recompile? 3
Migration basics 4

Run-time migration - Moving to Language
Environment 4
Compiler migration 4

Migration Roadmap 5
Service support for OS PL/I and PL/I for MVS &
VM 5

Chapter 2. Introducing the new compiler and
run-time 7
Product relationships - compiler, run-time, debug . . 7
General PL/I compiler information 7
Language Environment's run-time support for other
programs 8
Advantages of the new compiler and run-time . . . 8
Major changes with the new compiler and run-time . 9
General conversion tasks 10

Planning your strategy 10
Moving to the Language Environment run time 11
Recompiling your source with Enterprise PL/I . 11
Adding Enterprise PL/I programs to existing
applications 11

© Copyright IBM Corp. 1999, 2011 1

2 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 1. Do I need to recompile?

Ideally, programs should be compiled with IBM Enterprise PL/I for z/OS and run
with the supported run-time library (Language Environment). You can reach this
ideal state gradually, by starting with a run-time migration followed by a compiler
migration.

The remainder of this chapter explains when and why you might want to migrate
your applications (run-time or source). It includes the following topics:
v Migration basics
v Migration Roadmap
v Service support for OS PL/I and PL/I for MVS & VM.

Terminology clarification
In this book, we use the term Enterprise PL/I as a general reference to:
v IBM Enterprise PL/I for z/OS Version 4 Release 2

In this book, we use the term PL/I as a general reference to:
v OS PL/I
v PL/I for MVS & VM
v VisualAge PL/I
v Enterprise PL/I

Also, in this book, we refer to the 'old' and 'new' PL/I compilers in the course
of the discussions. For the purposes of this book, the 'old' PL/I compilers
refer to
v OS PL/I V3R2 and before
v PL/I for MVS & VM

while the 'new' PL/I compilers refer to
v VisualAge PL/I
v Enterprise PL/I

Important Migration Note:
It is important to understand, from the very beginning, that the ‘old’ and
‘new’ PL/I compilers are completely different from each other. The ‘new’
PL/I compilers are written in PL/I, and do not make use of certain
techniques that the ‘old’ PL/I compilers did. They are so different, in fact,
that from the perspective of Language Environment they are considered
different languages, each with its own signature CSECT.

In the past, migrating from an ‘old’ PL/I compiler to another ‘old’ PL/I
compiler was not that difficult. With the introduction of the new Enterprise
PL/I compiler the migration process may be much more complicated than
before. Migrating to the ‘new’ Enterprise PL/I compiler must be a well
researched, planned and executed project if you wish to have a smooth
transition.

© Copyright IBM Corp. 1999, 2011 3

Migration basics
The migration process involves run-time migration (moving your applications to a
new run-time) and compiler migration (compiling your source programs with the
new compiler). As part of the migration process, you'll also need to do inventory
assessment and testing. As stated previously, you are not required to migrate your
run-time and source concurrently.

For more details on the migration process, see “General conversion tasks” on page
10.

For information on performing an inventory assessment and test plan, see “Take an
inventory of your applications” on page 16.

Run-time migration - Moving to Language Environment
Every PL/I program requires run-time library routines to execute.

Do not make more than one PL/I run-time library available to your applications at
execution time. For example, there should be one and only one PL/I run-time
library, such as SCEERUN for Language Environment, in LNKLST. If you have
more than one you will either get hard-to-find errors or you will have an unused
load library in your concatenation. In addition, if you have more than one run-time
library in your concatenation, then you have an invalid configuration that is not
supported by IBM.

If you have not already moved to Language Environment and are using a
pre-Language Environment PL/I compiler, such as OS PL/I V2R3, you will need to
read Chapter 3, “Planning the move to Language Environment,” on page 15.

If you have already moved to Language Environment and are migrating to the
new IBM Enterprise PL/I for z/OS compiler, you can begin reading about
compiler migration in Chapter 4, “Planning to move to the new compiler,” on page
23.

Compiler migration
It is strongly recommended that you recompile all your source with the new
Enterprise PL/I compiler (unless you have already recompiled all your source with
VisualAge PL/I). Since the Enterprise PL/I compiler is a completely different
compiler from the ’old’ PL/I compilers, recompiling your source would the best
way to avoid the limitations imposed by mixing ’new’ PL/I with ’old’ PL/I object
and load modules.

Compiler migration can be done all at once or by separate execution units. How to
divide up your PL/I source into separate execution units is described in
“Partitioning PL/I source programs into units of execution” on page 134.

If you decide to mix old PL/I modules with Enterprise PL/I modules, there are
limited circumstances in which this mix will work. These limitations are described
in “Object and load module considerations” on page 131.

In a few cases, some changes to your code will be necessary when moving from
OS PL/I to Enterprise PL/I. These cases are described in Chapter 13,
“Understanding when working code must be changed,” on page 101 and
Chapter 14, “Understanding when working code may need to be changed,” on
page 113.

4 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

If you have already moved to Language Environment and are migrating to the
new IBM Enterprise PL/I for z/OS compiler, you can begin reading about
migrating to the new compiler in Chapter 4, “Planning to move to the new
compiler,” on page 23.

If you are migrating to the PL/I for MVS & VM compiler, you should be using the
IBM PL/I for MVS & VM Compiler and Run-Time Migration Guide.

Migration Roadmap
Here is a short summary of migration possibilities.
v If you are migrating from OS PL/I or PL/I for MVS & VM and

– Are NOT currently migrated to Language Environment then
- If you intend to migrate to Language Environment and then to Enterprise

PL/I for z/OS, you want to begin with Chapter 3, “Planning the move to
Language Environment,” on page 15 and then continue with Part 3,
“Moving existing applications to Language Environment,” on page 29

- If you are migrating from OS PL/I we recommend migration to PL/I for
MVS & VM first, in which case you would use the IBM PL/I for MVS & VM
Compiler and Run-Time Migration Guide

– If you have already migrated to Language Environment then
- If you intend to migrate to Enterprise PL/I for z/OS, you want to begin

withChapter 2, “Introducing the new compiler and run-time,” on page 7
and then continue with Chapter 4, “Planning to move to the new
compiler,” on page 23 and Part 4, “Moving to the new compiler,” on page
59

v If you are migrating from VisualAge PL/I or an earlier release of Enterprise
PL/I, then
– You will want to review Part 4, “Moving to the new compiler,” on page 59

paying special attention to Chapter 19, “Migrating from earlier releases of
Enterprise PL/I to Enterprise PL/I V4R2,” on page 135.
Additional information concerning subsystems can be found inPart 5,
“Subsystem and other language considerations,” on page 149.

Service support for OS PL/I and PL/I for MVS & VM

Note: The CICS TS (Transaction Server) release that follows CICS TS Version 2
Release 2 will not support OS PL/I modules. You must move from OS PL/I
to an LE-enabled PL/I compiler to use CICS after CICS TS V2 R2.

IBM will continue to provide service support for the execution of programs
compiled with the OS PL/I compiler when these programs use the Language
Environment run-time library versions of the PL/I library routines.

For more information about this support and its restrictions, see Chapter 7, “Object
and Load Module Considerations,” on page 47.

Chapter 1. Do I need to recompile? 5

6 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 2. Introducing the new compiler and run-time

This chapter provides an overview of the Enterprise PL/I compiler, (IBM
Enterprise PL/I for z/OS) and the common run time (Language Environment)
and introduces you to the terminology used throughout this book. This chapter
includes information on the following:
v Product relationships - compiler, run-time, debug
v General PL/I compiler information
v Language Environment's run-time support for other programs
v Advantages of the new compiler and run-time
v Major changes with the new compiler and run-time
v General conversion tasks

Product relationships - compiler, run-time, debug
IBM Enterprise PL/I for z/OS is IBM's strategic PL/I compiler for the zSeries
platform. Enterprise PL/I is comprised of features from OS PL/I, PL/I for MVS &
VM, and VisualAge PL/I with additional features such as Unicode support, XML
parsing capabilities, improved C and Java interoperability, integrated CICS
preprocessor, and integrated SQL preprocessor.

Language Environment provides a single language run-time environment for
COBOL, PL/I, C, and FORTRAN. In addition to support for existing applications,
Language Environment also provides common condition handling, improved
interlanguage communication (ILC), reusable libraries, and more efficient
application development of interlanguage applications. Application development is
simplified by the use of common conventions, common run-time facilities, and a
set of shared callable services. Language Environment is required to run Enterprise
PL/I programs.

Debug Tool provides significantly improved debugging function over previous
PL/I debugging tools, and you can use it to debug Enterprise PL/I programs and
other Language Environment-conforming language programs including COBOL
and C/C++.

General PL/I compiler information

You must have access to Language Environment when you compile your
Enterprise PL/I application. When you compile your application and you use
existing JCL, be sure your STEPLIB or JOBLIB statement includes SCEERUN
(Language Environment run-time library) or that SCEERUN is in LNKLST. You can
use the IBMZC cataloged procedure to compile PL/I applications.

Your compile step should include the following:
//PLI EXEC PGM=IBMZPLI,REGION=4000K
//STEPLIB DD DSN=&LNGPRFX;.SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX;.SCEERUN,DISP=SHR

© Copyright IBM Corp. 1999, 2011 7

Reading about the cataloged procedures provided with Enterprise PL/I can help
you understand the use of SCEERUN during compilation. See “Using PL/I
Cataloged Procedures” in Enterprise PL/I for z/OS Programming Guide for more
details.

When you link-edit your Enterprise PL/I application with Language Environment
and you use existing JCL, be sure your SYSLIB statement includes SCEELKED
(Language Environment link-time library).

Language Environment's run-time support for other programs

Enterprise PL/I uses Language Environment as its run-time environment.

Language Environment is the common run-time environment for the following
language compilers:

C/370
C/C⁺⁺
COBOL for MVS & VM
COBOL for OS/390 & VM
Fortran
PL/I for MVS & VM
Enterprise PL/I

It provides a common set of run-time options and callable services. It also
improves interlanguage communication (ILC) between high-level languages (HLL)
and assembler by eliminating language-specific initialization and termination on
each ILC invocation. Language Environment provides compatibility support for
existing applications with a few restrictions.

Advantages of the new compiler and run-time
The new IBM Enterprise PL/I for z/OS compiler has many new features and
advantages, including the following:
v FETCH improvements:

– FETCHed routines may FETCH other routines
– FETCHed routines can perform same I/O as MAIN
– FETCHed routines may have their own CONTROLLED

v 31 digit DECIMAL and PICTURE precision
v Increased limits:

– internal and external names may have up to 100 characters
– no compiler limit on the number of FILEs and CONTROLLED variables
– up to 4095 parameters allowed per PROCEDURE

v Support for many new 390 instructions (such as AHI and ALCR)
v Support for writeable reentrant static and DLLs
v Easier compatibility and interoperability with C/C++
v Better integer support:

– maximum precision of 63 for signed FIXED BIN
– UNSIGNED attribute supported (with a maximum precision of 64)
– signed FIXED BIN(7) mapped to one byte (as is UNSIGNED FIXED BIN(8))

v Many powerful new language features, including:
– PACKAGEs (the ANSI alternative to secondary ENTRYs)
– DO FOREVER (as a good alternate to DO WHILE(1 = 1);)

8 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

– Delimiting strings with " (double quotes)
– Using underscores to make constants more readable (e.g. "0011_0101"b)
– Compound assignments (e.g. x += 1;)
– RESIGNAL (for more powerful exception handling)

v Many powerful new attributes, including:
– ABNORMAL (like volatile in C)
– NONASSIGNABLE (like const in C)
– BYVALUE
– LIMITED ENTRY (for C function pointers)
– ORDINAL (for strongly-typed enums)
– RESERVED (for C-like static)
– UNION
– UNSIGNED
– VALUE (for named constants)
– VARYINGZ (for C-style null-terminated strings)

v Over 100 new built-in functions, including:
– HEX and HEXIMAGE (for debugging)
– PROCNAME and SOURCELINE (for tracing)
– PLIMOVE, PLIFILL and COMPARE (like memcpy, memset and memcmp)
– IAND, IOR, IEOR and NOT (for bitwise integer operations)
– COPY (the "nice" REPEAT as defined by ANSI)

v Full z/OS UNIX System Services support, including
– Source, object and listing files in HFS
– I/O to HFS files

v Improved macro facility:
– Deck file preserves case of source
– Macro variables may now be arrays
– Many more built-in functions supported
– Support for the ANSWER statement
– WHILE,UNTIL and LOOP keywords supported in %DO statements
– SELECT statement supported (in open code and in macros)
– ITERATE statement supported
– LEAVE statement supported
– REPLACE statement supported

v Support for Multithreading
v Support for UTF-16 Unicode
v Support for IEEE floating-point
v SAX-style XML parsing
v XML generation
v Integrated CICS Preprocessor
v Integrated SQL Preprocessor

For more information on these items see the PL/I Language Reference and the
Enterprise PL/I for z/OS Programming Guide.

Major changes with the new compiler and run-time
With Enterprise PL/I, you will find that existing PL/I applications are affected by
several areas such as removed or changed compiler options, different default
compiler options, and restrictions in combining old and new load modules.

Chapter 2. Introducing the new compiler and run-time 9

The following list of concerns is merely a representative list that reflects what has
been important to some customers. It may not indicate what is important to any
one individual customer. More details are provided in the rest of this book.
v Enterprise PL/I supports only Language Environment releases currently in

support.
v Enterprise PL/I has no support for VM.
v Enterprise PL/I has no support for multitasking (but it does support

multithreading).
v Code that is incorrect or invalid (for instance, code that uses uninitialized

variables) may not run the same. This may not seem like an important problem,
but it has been a significant issue for most of the customers that have migrated.

v You may need to specify some non-default options to get the most compatible
behavior from the compiler and to get the best performance from the compiler.

v Programs may need to be tuned for optimal performance. In particular, the use
of the runtime option RPTSTG(ON), while useful when tuning, is much more
costly now to leave on in a production program.

v Recompiling all your PL/I source is recommended. If this isn't done, you need
to carefully select the compiler options for compiling Enterprise PL/I code that
will be mixed with older PL/I objects. You will also need to divide your source
into partitions according to how they use FILEs, CONTROLLED variables and
conditions. For more information, see “Object and load module considerations”
on page 131.

General conversion tasks
Depending on your shop's needs, you will most likely need to complete one or
more of the general conversion tasks, which include:
v Planning your strategy
v Moving to the Language Environment run-time library
v Recompiling your source with Enterprise PL/I
v Adding Enterprise PL/I programs to existing applications

Planning your strategy
Before moving to the Language Environment run-time library or recompiling your
source programs with Enterprise PL/I, develop a conversion strategy. A thorough
strategy will help ensure a smooth transition to the new compiler and run time.

Your conversion strategy might be to move to Language Environment, and then
gradually recompile your existing applications with Enterprise PL/I as needed.
This book provides separate strategies for moving to the new run time and for
recompiling your PL/I source.

If you are not currently on Language Environment and want information on how
to plan your move, see Chapter 3, “Planning the move to Language Environment,”
on page 15.

If you have already moved to Language Environment and want information on
moving to the new compiler, see Chapter 4, “Planning to move to the new
compiler,” on page 23.

10 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Moving to the Language Environment run time
You can run existing load modules under Language Environment and receive the
same results as with pre-Language Environment libraries. For important
compatibility information, see Chapter 5, “Running existing applications under
Language Environment,” on page 31.

For information on moving applications that are running under older PL/I
run-times, see Chapter 6, “Considerations Before Migrating,” on page 35.

In almost all cases, you will need to link-edit existing applications with Language
Environment or recompile programs with Enterprise PL/I. To determine which
programs require link-editing with Language Environment, see Chapter 8,
“Link-Edit Considerations,” on page 51.

Recompiling your source with Enterprise PL/I
The new Enterprise PL/I compiler has many powerful, new features of which you
may want to take advantage. There are also some differences between this new
compiler and the previous PL/I compilers.

To read about the differences between the Enterprise PL/I compiler and the
previous PL/I compilers, see Chapter 10, “Understanding the limitations of the
new compiler,” on page 63.

To find out more about the new compiler options, see Chapter 11, “Understanding
the new compiler's options,” on page 73.

To determine which programs must be changed and then recompiled with
Enterprise PL/I, see Chapter 13, “Understanding when working code must be
changed,” on page 101 and Chapter 14, “Understanding when working code may
need to be changed,” on page 113.

Adding Enterprise PL/I programs to existing applications
You can create new Enterprise PL/I programs (or recompile existing programs
with Enterprise PL/I) and run them with existing applications under Language
Environment.

When adding Enterprise PL/I programs to existing applications, you need to be
aware of the limitations of mixing old and new PL/I modules. For details, see
Chapter 18, “Adding Enterprise PL/I programs to existing PL/I applications,” on
page 131.

Chapter 2. Introducing the new compiler and run-time 11

12 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Part 2. Conversion Strategies

Chapter 3. Planning the move to Language
Environment 15
Prepare to move to the Language Environment
run-time library 15

Installing Language Environment 15
Assessing storage requirements 15

DASD storage requirements 15
Virtual storage requirements. 16

Educating your programmers about Language
Environment 16

Take an inventory of your applications 16
Vendor tools, packages, and products. 16
PL/I applications 17
Existing PL/I load modules 17

Decide how to phase in Language Environment . . 18
Multilanguage conversion 18
Determining how applications will have access to
the library 18

LNKLST/LPALST 18
STEPLIB 19
Problems with STEPLIB and IMS programs. . 19
STEPLIB example 20

Set up a regression testing procedure 21
Take performance measurements 22

Cut over to production use 22

Chapter 4. Planning to move to the new compiler 23
Prepare to move your source to the new compiler 23

Installing Enterprise PL/I. 23
Assessing storage requirements 23
Educating your programmers on new compiler
features. 23

Take an inventory of your applications 24
Taking an inventory of vendor tools, packages,
and products 24
Taking an inventory of PL/I applications . . . 24
Prioritizing your applications 25

Determining conversion priority 25
Setting up move/no move categories 25

Make application program updates 26

© Copyright IBM Corp. 1999, 2011 13

14 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 3. Planning the move to Language Environment

This chapter describes a general strategy for moving your run-time environment to
Language Environment. The following tasks are necessary, and should be
performed in roughly the following order:
v Prepare to move to the Language Environment run-time library
v Take an inventory of your applications
v Decide how to phase in Language Environment
v Set up a regression testing procedure
v Cut over to production use

If you have already moved to Language Environment you do not need to read this
chapter and can proceed to reading about planning for the new compiler in
Chapter 4, “Planning to move to the new compiler,” on page 23.

Important

v Enterprise PL/I programs can only run with the Language Environment
element of z/OS Version 1 Release 7 or later.

Prepare to move to the Language Environment run-time library
In preparing to move to Language Environment, you need to perform the
following tasks, which can be done concurrently:
v Install Language Environment
v Educate your programmers about Language Environment
v Assess storage requirements.

Installing Language Environment
On z/OS

To install z/OS, including the Language Environment element, see either
the z/OS Program Directory or consult your ServerPac: Installing Your Order.

On OS/390
To install OS/390, including the Language Environment element, see either
the OS/390 Program Directory or consult your ServerPac: Installing Your
Order.

Important: To ensure that the Language Environment run-time results are
compatible with pre-Language Environment results, you may need to change the
default run-time options. See “Differences in Run-Time Options” on page 35 for
more details.

Assessing storage requirements
Storage requirements for Language Environment are larger than for pre-Language
Environment PL/I libraries.

DASD storage requirements
During conversion you will need DASD storage for the Language Environment
run-time as well as any pre-Language Environment run-time libraries. When you

© Copyright IBM Corp. 1999, 2011 15

have finished moving to Language Environment, you will be able to free the
storage reserved for the previous PL/I run-time libraries.

To determine the amount of DASD storage required by Language Environment,
see:
v On z/OS: z/OS Program Directory
v On OS/390: OS/390 Program Directory

Virtual storage requirements
Virtual storage requirements for running PL/I programs with Language
Environment will increase over the OS PL/I run-time. For both CICS and
non-CICS applications, the amount of increase depends on many factors, such as:
v The values used for the Language Environment run-time storage options:

STACK, LIBSTACK, HEAP, ANYHEAP, BELOWHEAP.
v The value used for the Language Environment run-time option ALL31.
v Which run-time routines are in the LPA (link pack area) or the ELPA (extended

link pack area)

Note: You can use the information generated by the Language Environment
RPTSTG(ON) run-time option to help tune your storage options during the
tuning phase. For details, see the z/OS Language Environment Programming
Reference. Be sure to reset this option to RPTSTG(OFF) before putting the
PL/I application into production, as it will greatly worsen performance.

Educating your programmers about Language Environment
Before moving to Language Environment, ensure that your application
programmers are familiar with the features of Language Environment and the
differences between the pre-Language Environment run-time and the Language
Environment run time.

Once your programmers are familiar with Language Environment, they can better
prepare for the move to Language Environment. For example, they can assist in
taking an inventory of applications.

For information on Enterprise PL/I and Language Environment education
available through IBM, you can call 1-800-IBM-TEACH. You can also get
information directly from Language Environment publications, from user groups
(such as SHARE), and from the Web at www.ibm.com/s390/le.

Take an inventory of your applications
While planning your move to the Language Environment run time, you need to
take a comprehensive inventory of the applications that you intend to run on
Language Environment. Include in this inventory:
v Vendor tools, packages, and products
v PL/I applications

The Edge Portfolio Analyzer can aid in taking an inventory of your existing load
modules. See “EDGE Portfolio Analyzer” on page 168 for more information.

Vendor tools, packages, and products
Before you can begin moving your run time to Language Environment, you need
to know if your vendor tools, packages, and products are designed to run under
Language Environment. Verify that:

16 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v All packages will run under Language Environment, especially if you do not
have the source code for them.

v Source code for packages, if you do have the source, is able to be compiled with
the Enterprise PL/I compiler.

v Code generators generate source code that is able to be compiled with the
Enterprise PL/I compiler.

v Development tools and debuggers that issue their own ESPIE or ESTAE
coordinate with Language Environment.

For information on how to obtain a list of vendor products that are enabled for
Language Environment, see “Vendor products” on page 168.

PL/I applications
When taking an inventory of your PL/I applications, you need to gather
information about the program attributes that affect moving to Language
Environment. This information includes how and what to test and what will affect
performance under Language Environment. For your inventory, determine:

For moving your applications to Language Environment:

v Which programs have been compiled with OS PL/I and which programs have
been compiled with PL/I for MVS & VM

v Which programs have been linked with PL/I shared libraries
v Run-time options used (and how specified)
v Which PL/I programs call or are called by assembler programs
v Which PL/I programs are multitasking.
v Which PL/I programs use interlanguage communication (COBOL, C, or

FORTRAN)
v Which PL/I programs are used under CICS, IMS, DB2, or other subsystems
v Frequency and types of abends expected

For regression testing:

v Test cases required and available

For performance measurements:
v Amount of storage used
v Frequency of execution of reusable/common modules
v Program execution time (both CPU and elapsed)

Existing PL/I load modules
Knowing what versions of PL/I load modules you have in your libraries is
important in planning your migration to Language Environment. As mentioned
above, the Edge Portfolio Analyzer can aid in taking an inventory of your existing
load modules.

Another tool that will give you some information about your load modules is the
AMBLIST utility. AMBLIST is provided by IBM and is usually found in
SYS1.LINKLIST. Using the LISTIDR control statement you can obtain listings of
selected CSECT identification records (IDR). One of the fields in the IDR contains
the name of the translator, or compiler in the case of PL/I, that was used to
compile the CSECT. Sample output from AMBLIST would look like this:

Chapter 3. Planning the move to Language Environment 17

CSECT TRANSLATOR VR.MD YR/DY
MYPLI 5655-H31 32.00 2003/171
MYPLI2 5655-B22 22.01 2001/073
D1 566896201 02.01 1972/271
UNRES 566896201 02.01 1992/034

Using the text in the TRANSLATOR column you can determine which PL/I
compiler created the module. See Table 3 for the Translator field values for the
various PL/I compilers.

Table 3. PL/I compiler IDR values

PL/I Compiler Version Translator Identification Record

OS PL/I V1 Release 5.1 5734-PL1

OS PL/I V2.3 5668-910

PL/I for MVS & VM 5688-235

VisualAge PL/I for OS/390 V2R2 5655-B22

Enterprise PL/I for z/OS Version 3 5655-H31

Enterprise PL/I for z/OS Version 4 5655-W67

Decide how to phase in Language Environment
When you are ready to use Language Environment in production mode, you need
to:
v Determine how to handle multilanguage conversion
v Determine how applications will have access to the library

Multilanguage conversion
If you have PL/I applications with ILC, move them to the Language Environment
run time after you have converted each of the languages involved. For example,
move a PL/I-COBOL application to Language Environment after you have moved
your PL/I-only and COBOL-only applications to Language Environment.

Note: Do not install two different libraries for a given language in
LNKLST/LPALST. For example, if you install Language Environment with
the PL/I component in LNKLST/LPALST, do not have the OS PL/I library
or the PL/I for MVS & VM library installed in LNKLST/LPALST.

After Language Environment has been installed in LNKLST, all of your PL/I
applications will run under Language Environment by default.

Determining how applications will have access to the library
Two general methods are available for moving Language Environment into
production: adding Language Environment to the LNKLST/LPALST or using a
STEPLIB approach.

LNKLST/LPALST
After you add Language Environment to the LNKLST/LPALST, Language
Environment is available to all of your applications. To ensure that all applications
are functioning correctly under Language Environment before adding Language
Environment to your LNKLST/LPALST, you can temporarily install Language
Environment in LNKLST/LPALST or use STEPLIB.

18 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Do not make more than one PL/I run-time library available to your applications at
execution time. For example, there should be one and only one PL/I run-time
library, such as SCEERUN for Language Environment, in LNKLST. If you have
more than one, you will either get hard-to-find errors or you will have an unused
load library in your concatenation. When you add Language Environment to
LNKLST/LPALST, remove any other PL/I run-time libraries.

Temporary installation in LNKLST/LPALST or use STEPLIB: Suggestions for
temporarily installing Language Environment in LNKLST/LPALST include:
v Install Language Environment in LNKLST/LPALST on a test or development

machine first.
v Use the SETPROG MVS system command to temporarily modify the LNKLST or

LPA, without having to IPL the system. For information on using the SETPROG
command, see z/OS MVS System Commands, SA22-7627 or OS/390 MVS System
Commands, GC28-1781.

v IPL over a weekend and install Language Environment in LNKLST/LPALST.
Verify over the weekend that your applications run under Language
Environment.

Note: Although many elements of z/OS and OS/390 depend on the Language
Environment run-time library, both z/OS and OS/390 do not require
Language Environment to be installed in LNKLST. (However, Language
Environment must be installed in the same zone as z/OS and OS/390.) If
you choose not to place Language Environment in LNKLST, you must
STEPLIB Language Environment in the individual z/OS or OS/390 PROCs
that required Language Environment. For information on which elements
require Language Environment, see:
v z/OS Program Directory for z/OS Version 1 Release 1 or OS/390 Program

Directory for OS/390 Version 2 Release 10

STEPLIB
You can choose to phase in Language Environment gradually by using the
STEPLIB approach. When you STEPLIB to the Language Environment run time,
you phase in one region (CICS or IMS), batch (group of applications), or user
(TSO) at a time.

Although using STEPLIB means changing your JCL, a gradual conversion can be
easier than moving all of your applications at one time. Also note that when using
STEPLIB, programs will run slower than when they access the run-time library
through LNKLST/LPALST and more virtual storage will be used.

Note: If you have multiple processors linked together with channel-to-channel
connections, you must treat the entire system as one processor and should
convert subsystem by subsystem. In addition to revising your JCL to
STEPLIB to the Language Environment run time during initial setup, you
might also need to specify CEEDUMP DD if the default allocation for
CEEDUMP does not meet your shop's needs. (CEEDUMP is the ddname
where Language Environment writes its dump output.)

Problems with STEPLIB and IMS programs
When you use STEPLIB on IMS/DC online to access the Language Environment
run time, any Language Environment library routines that you have preloaded will
not be loaded into read-only storage. If your application has an error and
overwrites non-application storage, preloaded run-time routines can become
corrupted and eventually cause abends when used. At refresh time, these

Chapter 3. Planning the move to Language Environment 19

preloaded routines marked reentrant are not refreshed unless loaded from the LPA
or the LNKLST/LPALST. Thus, the abends will recur.

Note: This is a 20-year-old problem with MVS (OS/390), IMS, and STEPLIB, and is
mentioned here because of the proposed STEPLIB approach for gradually
moving to Language Environment.

You can use either of the following methods to prevent this problem:
v Install Language Environment into the LNKLST/LPALST.
v Do not preload any run-time routines. (This will slow performance.)

How to minimize the impact::

v Keep your certification of Language Environment as short as possible. (The
sooner it is certified, the sooner you can install in LNKLST/LPALST.)

v Watch for different applications abending in the same region, which would
indicate that you need to follow the recovery procedure.

How to recover: If you do notice several different applications abending in the
same region, stop the region and restart with these IMS commands:
1. Determine the region number by issuing: '/DISPLAY ACTIVE'
2. Stop the region by issuing: '/STOP REGION region#'
3. Restart the region by issuing: '/START REGION region-name'

STEPLIB example
Here is one example of how to phase in Language Environment using the STEPLIB
method: for an organization that has a central development center (all compiling
and linking is done in one location) and separate production sites. This is a very
conservative approach, but it has been used by many customers who require
absolutely no disruption in production applications.
1. Certify Language Environment and Enterprise PL/I at the central development

center.
v Run tests with captured data on your current run time, and save all results.
v Install Language Environment in a STEPLIB environment. This means that

unchanged jobs will run with your current run time, and that some users can
use the Language Environment run time by using STEPLIB JCL to access the
Language Environment run-time library.

v Run tests with captured data on the Language Environment run time, using
the STEPLIB environment, and compare the results to your current run time.
Run parallel tests throughout the certification cycle to ensure that your
applications produce the same results when run with Language Environment
as they did with your current run time.

v Finally, compile your test applications using Enterprise PL/I. STEPLIB to the
Language Environment run-time library, and rerun the certification tests.

2. Install Language Environment on the central development center's system and
test.
v Run parallel tests of the nonconverted versions of your existing applications

using STEPLIB to access your current run time.
v Run all new applications in the Language Environment run-time

environment before releasing to production runs.
3. Prepare a backout strategy
v Save the procedures for installing your current run time in case you need to

back out the Language Environment run time.
4. Install the Language Environment run time at one production site.

20 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v Continue to run parallel tests of the nonconverted versions of your existing
applications with your current run time in the STEPLIB environment.

v Run the Language Environment run time for one month at this production
site.

5. Install the Language Environment run time at all production sites.
v Optional: continue to run parallel tests of the nonconverted versions of your

existing applications with your current run time in the STEPLIB
environment.

v Run the Language Environment run time for one month at all production
sites.

v After one month, delete the entire contents of your current run time library.

Try to move the largest units of work that you can. Moving entire online regions,
applications, or run units at once ensures that interactions between programs
within an application or run unit can be tested.

Set up a regression testing procedure
Although most applications will run under Language Environment with the same
results as on their existing run-time, results could differ depending on coding
styles, resource utilization, performance, abend behavior, or more strict adherence
to IBM conventions in Language Environment. For information on situations where
existing code may behave differently, see Chapter 14, “Understanding when
working code may need to be changed,” on page 113.

Because there are so many possible combinations of coding techniques, the only
way to determine if your applications will run under Language Environment and
receive the expected results, is to set up a procedure for regression testing. Move
your applications to a test environment, and ensure that you receive the expected
results when running under Language Environment.

Regression testing will help to identify if there are:
v Source code changes required as indicated in Chapter 14, “Understanding when

working code may need to be changed,” on page 113.
v Storage usage differences between your current run time and the Language

Environment run time.
v CPU time differences between your current run time and the Language

Environment run time.

During testing, run your existing applications in parallel on both your current run
time and under the Language Environment run time to verify that the results are
the same. Take performance measurements of your existing applications to
compare with Language Environment.

After the program runs correctly, test it separately and also test it with other
programs in a run unit. By testing it against a variety of data, you can exercise all
the program processing features to help ensure that there are no unexpected
execution differences.

Analyze program output and, if the results are not correct, use Debug Tool or
Language Environment dump output to uncover any errors and correct those
errors. Make any further changes that you need and then rerun, and, if necessary,
continue to debug.

Chapter 3. Planning the move to Language Environment 21

Take performance measurements
After your applications are running under Language Environment in a test
environment, take performance measurements—especially on any time-critical or
response-critical applications.

After you compare run-time performance between Language Environment and
your current run time environment and have identified which applications, if any,
need performance improvements, you can investigate the methods available to
tune your programs and improve performance. For example, you can modify
storage values using the Language Environment run-time options.

Cut over to production use
When your testing shows the entire application (or group of applications, if
running more than one application in an IMS region, or on TSO) receives the
expected results, you can move the entire unit over to production use. However, in
case of unexpected errors, be prepared for recovery:
v Under z/OS and OS/390, run the old version as a substitute from the latest

productivity checkpoint.
v Under DB2, CICS, and IMS, return to the last commit point and then continue

processing from that point using the unmigrated PL/I program. (For DB2, use
an SQL ROLLBACK WORK statement.)

v For batch applications, use your shop's backup and restore facilities to recover.

After you move your existing applications to production use under the Language
Environment run time, monitor your applications for a short time to ensure that
they continue to work properly. Then, you can run with the confidence that you
had in your previous run time.

22 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 4. Planning to move to the new compiler

This chapter describes a general strategy for moving your source programs to
Enterprise PL/I. The following tasks are necessary, and should be performed in
roughly the following order:
1. Prepare to move your source to the new compiler
2. Take an inventory of your applications.
3. Make application program updates.

Because of the loss of service support for older PL/I compilers, you should
eventually move all of your PL/I source programs to the new compiler. Although
this is not an immediate requirement, at some future date the older compilers and
any supported fixes will not be available. At that point, you will be forced to do a
'quick' migration, and this might be a very inconvenient time.

Before you can move your source programs to the new compiler, you must move
your applications to Language Environment.

Prepare to move your source to the new compiler
In preparing to move your source to the new Enterprise PL/I compiler, you need
to perform the following tasks, which can be done concurrently:
v Install Enterprise PL/I
v Assess storage requirements
v Educate your programmers on new compiler features

Installing Enterprise PL/I
If you haven't already done so, install the compiler:
v For z/OS or OS/390, see the Program Directory for your product.

Assessing storage requirements
Enterprise PL/I object programs may execute in 31-bit addressing mode and can
reside above the 16-MB line, which frees storage below the 16-MB line. You can use
the freed storage for programs or data that must reside below the 16-MB line.

During the compiler migration, you will need DASD storage for your current PL/I
compilers as well as for the Enterprise PL/I compiler. When you have completed
the compiler migration, and if you have moved all of your OS PL/I, PL/I for MVS
& VM, or VisualAge PL/I programs to Enterprise PL/I, you will be able to free the
storage reserved for your current PL/I compiler.

The load module produced from the same source code when compiled with
Enterprise PL/I may be larger than when compiled with OS PL/I or PL/I for MVS
& VM.

Educating your programmers on new compiler features
Early in the conversion effort, ensure that your application programmers are
familiar with the features of Enterprise PL/I and the relationship and
interdependencies between Enterprise PL/I, Language Environment, and Debug
Tool and any other application productivity tools your shop uses.

© Copyright IBM Corp. 1999, 2011 23

In addition, your programmers will need to be familiar with Language
Environment run-time options, condition handling and callable services.

Choosing the right compiler options for your environment is a critical task. The
options you choose can vary widely depending on whether you are looking for
optimum performance or maximum compatibility with previous versions of PL/I.
For more information on choosing compiler options see Chapter 11,
“Understanding the new compiler's options,” on page 73.

For information on Enterprise PL/I and Language Environment education
available through IBM, you can call 1-800-IBM-TEACH. You can also get
information directly from Language Environment publications or technical
conferences such as SHARE, or the IBM Technical Interchange.

After your programmers are familiar with Enterprise PL/I features, they can assist
you in taking the inventory of programs as described in “Take an inventory of
your applications.”

Take an inventory of your applications
In planning to move your PL/I source programs to Enterprise PL/I, you need to
take a comprehensive inventory of applications in which you have programs that
you intend to compile with Enterprise PL/I. By taking an inventory of your
applications, you get a detailed picture of the work that is required. You need to
take an inventory of:
v Vendor tools, packages, and products
v PL/I applications

The Edge Portfolio Analyzer can aid in taking an inventory of your existing load
modules, see “EDGE Portfolio Analyzer” on page 168 for more information.

Taking an inventory of vendor tools, packages, and products
Before you can begin moving your source, you need to know if your vendor tools,
packages, and products are designed to work with Enterprise PL/I. Verify that:
v PL/I code generators generate PL/I programs that can be compiled with

Enterprise PL/I.
v PL/I packages can be compiled with Enterprise PL/I.

Taking an inventory of PL/I applications
For each program in your PL/I applications, include at least the following
information in your inventory:

OS PL/I, PL/I for MVS & VM and VisualAge PL/I:
v Programmer responsible
v Compiler used
v Compiler options used, especially CMPAT
v Precompiler options used
v PL/I modules
v INCLUDE library members used in PL/I programs
v Called or FETCHed subprograms
v Calling or FETCHing programs
v Frequency of execution
v Test cases required and available

24 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

If you are planning to mix ’old’ PL/I modules with Enterprise PL/I modules, you
will also want this information in your inventory:
v Use of CONTROLLED variables
v Use of FILE variables and constants

For information on the partitioning of PL/I source programs into units of
execution based on the above information, see “Partitioning PL/I source programs
into units of execution” on page 134.

Prioritizing your applications
Using the complete inventory, you can now prioritize the conversion effort.
1. Assign complexity ratings to each item in your completed inventory and

determine each program or application's resulting overall complexity rating.
2. Determine the conversion priority of each program or application.

Determining conversion priority
After you have determined the complexity rating for each program in your
inventory, you can make informed decisions about the programs that you want to
move to the new Enterprise PL/I compiler, and the order in which you want to
move them.

Consider the following when deciding on conversion priorities:
v If your application is at the limits of the storage available below the 16-MB line,

it is a prime candidate for conversion to Enterprise PL/I. With z/OS or OS/390
architecture you can obtain virtual storage constraint relief.

v If the program cannot run under Language Environment, you must convert it.

After you determine the priority of each program that you need to move and the
effort required to move those programs, you can decide the order in which you
want to convert your applications and programs.

Setting up move/no move categories
By using the conversion priorities that you have established, and taking into
account program importance and frequency of execution, you can list most of your
programs in the order that you want to convert them to Enterprise PL/I.

There might be some programs that you do not want to convert at all, such as:
v Programs for which you have no source code, that will never need

recompilation, and that run correctly under Language Environment.
v Programs of low importance to your organization that run correctly under

Language Environment and that would take a very high conversion effort.
v Programs that are being phased out of production.

Note, however, that there might be restrictions on running existing modules mixed
with programs that have been moved to the new Enterprise PL/I compiler. See
Chapter 18, “Adding Enterprise PL/I programs to existing PL/I applications,” on
page 131.

Chapter 4. Planning to move to the new compiler 25

Make application program updates
The following application programming tasks are necessary when converting your
source. You must decide what size your program updates will be. For example,
you can choose to update programs along with your regular maintenance, or you
can divide your programs into functional groups and update the source group by
group. Some customers have followed the ’big bang’ process and have made all
their program updates at once. However you decide to proceed, these tasks should
be performed in roughly the following order:

Save the existing source as a back-up—a benchmark to compare to and a version
to recover to—if the converted modules have problems.
1. Update the job and module documentation.

It is extremely important that all updates be properly documented. PL/I itself
is reasonably self-documenting. However, keep a log of the compiler options
you specify and the reasons for specifying them. Also document any special
system considerations. This is an iterative process and should be performed
throughout the conversion programming task.

2. Update the available source code.
Update the source code manually or with tools that you have developed. For
information on when source code must or may need to be changed, see
Chapter 13, “Understanding when working code must be changed,” on page
101 and Chapter 14, “Understanding when working code may need to be
changed,” on page 113.

3. Compile, link-edit, and run.
After the source has been updated, you can process the program as you would
a newly written Enterprise PL/I program. (You need the Language
Environment run time installed.) If, during the compile process, you see new
messages and wish to understand them better, see Chapter 12, “Understanding
the new compiler's messages,” on page 87.

4. Debug.
Analyze program output and, if the results are not correct, use Debug Tool or
Language Environment dump output to uncover any errors.

5. Test the converted programs.
After moving your source to Enterprise PL/I, set up a procedure for regression
testing. Regression testing will help to identify:
v Code that must be changed.
v File attribute mismatches.
v Storage initialization issues.
v Performance differences.
v AMODE issues.
After you have established a regression testing procedure, and after your
programs run correctly, test them against a variety of data:
v Locally—each program separately
v Globally—programs in a run unit in interaction with each other
In this way, you can exercise all the program processing features to help ensure
that there are no unexpected execution differences.
The importance of regression testing cannot be stressed enough. You should
consider the move from an ’old’ PL/I compiler to Enterprise PL/I as a move to
a different, though similar, language and plan your testing accordingly.

6. Repeat when necessary.

26 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Make any further corrections that you need, and then recompile, relink, rerun,
and, if necessary, continue to debug.

7. Cut over to production mode.
When your testing shows that the entire application receives the expected
results, you can move the entire unit over to production mode. (This assumes
your production system is already using the Language Environment run time.
If not, STEPLIB to the Language Environment run time. See “STEPLIB” on page
19.)
In case of unexpected errors, be prepared for recovery:
v Under z/OS or OS/390, run the old version as a substitute from the latest

productivity checkpoint.
v Under DB2 and IMS return to the last commit point and then continue

processing from that point using the unmigrated PL/I program. (For DB2,
use an SQL ROLLBACK WORK statement.)

v For non-CICS applications, use your shop's backup and restore facilities to
recover.

8. Run in production mode.
After cut over, monitor the application for a short time to ensure that you are
getting the results expected. After that, your source conversion task is
completed.

Chapter 4. Planning to move to the new compiler 27

28 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Part 3. Moving existing applications to Language Environment

Chapter 5. Running existing applications under
Language Environment 31
Invoke existing applications 31

For non-CICS applications 31
Specify the correct library 31
Specify alternate DDNAMES (optional) . . . 31

For CICS applications 32
Output differences when using Language
Environment on CICS 32

Link-edit existing applications 32

Chapter 6. Considerations Before Migrating . . 35
Differences in Run-Time Options 35

Deleted run-time options 35
Replaced run-time options 35
New run-time options 36

Differences in Condition Handling. 37
Timing differences 37
Unhandled condition differences 38
IBMBXITA and IBMBEER differences 38
ABEND U4039 differences 38
Severity differences 38

Differences in PLICALLA and PLICALLB Support 38
PLICALLA Considerations 39
PLICALLB Considerations 39

Differences in Preinitialization Support 41
Differences in PLISRTx Support 42
Differences in Multitasking Support 42
Differences in OS PL/I Shared Library support . . 42
Differences in DATE/TIME Built-In Functions . . . 42
Differences in User Return Code 42
Differences in Run-Time Messages 43
Differences in PLIDUMP 43
Differences in Storage Report 44
Differences in Interlanguage Communication
Support 45
Differences in Assembler Support 46

Assembler programs that find the main
parameter list. 46

Chapter 7. Object and Load Module
Considerations 47
OS PL/I Version 1 Object Module and Load Module
Compatibility. 47

OS PL/I Version 1 Release 5.1 47
Object Module 47
Load Module Not Using Shared Library: . . 47
Load Module Using the Shared Library . . . 48

OS PL/I Version 1 Release 5 48
Object Module 48
Load Module 48

OS PL/I Version 1 Release 3.0 - Release 4.0 . . . 49
Object Module 49
Load Module 49

OS PL/I Version 1 Prior to Release 3.0 49
OS PL/I Version 2 Object Module and Load Module
Compatibility. 49
Summary of Support for OS PL/I Object and Load
Modules 49

Chapter 8. Link-Edit Considerations 51
SCEERUN 51
Symbol Table Considerations 51
NCAL Linkage Editor Option 51
ENTRY cards 52
Using OS PL/I Math Routines 52

Chapter 9. Subsystem Considerations 53
CICS Considerations 53

Updating CICS System Definition (CSD) File . . 53
Error Handling 53
Restrictions on User-Written Condition Handlers
under CICS 53
Macro-Level Interface 54
FETCHing a PL/I MAIN Procedure 54
STACK Run-Time Option. 54
Run-Time Output 54
Abend Codes Used by PL/I under CICS . . . 55

IMS Considerations. 55
Interfaces to IMS 55
SYSTEM(IMS) Compile-Time Option 55
PLICALLA Support in IMS 55
PSB Language Options Supported 55
Storage Usage Considerations 56
Coordinated Condition Handling under IMS . . 56
Performance Enhancement with Library
Retention(LRR) 57

DB2 Considerations 57

Important
This part is intended for users who are migrating from OS PL/I and are not
currently on Language Environment. If you are currently using PL/I for MVS
& VM, VisualAge PL/I, or Enterprise PL/I you may go directly to Part 4,
“Moving to the new compiler,” on page 59.

© Copyright IBM Corp. 1999, 2011 29

30 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 5. Running existing applications under Language
Environment

Depending on the characteristics of your applications, you might need to make
application modifications and perform some of the following Language
Environment customization tasks to ensure that your current applications run
under Language Environment:
v Invoke existing applications
v Link-edit existing applications

Other factors also apply to ensure compatibility, depending on if you are moving
your run-time from OS PL/I or PL/I for MVS & VM. For details, see:
v Chapter 6, “Considerations Before Migrating,” on page 35

Invoke existing applications
To access Language Environment you will need to change the procedures you use
for invoking applications. The procedures required for non-CICS applications are
different than the procedures for CICS applications.

Note: Make sure your program names do not begin with AFH, CEE, EDC, IBM,
IGZ, ILB, or FOR. These prefixes are reserved for Language Environment
library routine module names.

For non-CICS applications
The following sections detail the changes required for non-CICS applications. For
more information on how to prepare and run your programs with Language
Environment, see the z/OS Language Environment Programming Guide.

Specify the correct library
To invoke existing applications when running under Language Environment, you
need to replace your current library with the Language Environment SCEERUN
library.

Specify alternate DDNAMES (optional)
With Language Environment, you can indicate the destination for Language
Environment output by changing the ddname in the MSGFILE run-time option to
the ddname you want. Table 4 lists the default ddnames for Language
Environment output.

Table 4. Specification of new DDNAMEs

Output Default ddname

Messages SYSOUT

Run-time options report (RPTOPTS) SYSOUT

Storage reports (RPTSTG) SYSOUT

Dumps CEEDUMP

All of the ddnames in the above table are dynamically allocated.

© Copyright IBM Corp. 1999, 2011 31

You do not need to alter your JCL, CLISTs, or Rexx EXECs to define the ddnames
for Language Environment messages, reports, or dumps unless the defaults used by
Language Environment do not meet the needs of your shop. The Language
Environment default destinations are:
v On z/OS and OS/390: SYSOUT=*

For CICS applications
To run Language Environment on CICS, you need to perform several required
steps. For details on how to invoke PL/I applications running on CICS under
Language Environment, including how to specify the Language Environment
run-time library SCEERUN, see:
v For z/OS, z/OS Language Environment Customization
v For OS/390, Language Environment for OS/390 Customization

Output differences when using Language Environment on CICS
Under CICS, Language Environment output goes to a transient data queue named
CESE. Each record written to the file has a header that includes the terminal ID,
the transaction ID, date, and time. The transient data queue (CESE) receives the
following types of Language Environment output:
v Messages
v Run-time options report (RPTOPTS)
v Storage reports (RPTSTG)
v Dumps
v PL/I Stream output

Link-edit existing applications
After determining which of your existing applications either require or will benefit
from link-editing with Language Environment, you need to specify the correct
library name. The Language Environment link-edit library is the same for
non-CICS applications as for CICS applications.

Under z/OS and OS/390
Include the Language Environment SCEELKED in the SYSLIB
concatenation.

Note: If you link-edit with the NCAL linkage editor option, ensure that all of the
required run-time routines from SCEELKED are included in the load
module. Otherwise, unpredictable errors will occur (typically a program
check).

There are some names in the SCEELKED library that do not follow IBM naming
conventions, and that can conflict with your subprogram names. For example, if
you have a statically called subroutine named DUMP and if SCEELKED is ahead
of your private subroutine library in the concatenation at link-edit time, then your
references to DUMP will be resolved in SCEELKED. In this example, the
FORTRAN routine AFHUDUMS will be link-edited in, and you could get incorrect
results, loss of function, or slower performance as a result. (Another common name
is ABORT, which is an entry point in EDC4$05C, a C run-time library routine.)

There are a couple of ways to avoid these problems:

32 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v You can check the names in the SCEELKED data set against the names of your
private subroutines. If there are any duplicates, you can rename your private
subroutines so that they do not have the same names as the names in the
SCEELKED data set.

v Another way is to place your private subroutine libraries before SCEELKED in
the SYSLIB concatenation. However, doing this could result in losing function
that is available under Language Environment if your application contains
Fortran or C/C++ programs. Changing the name of your subroutine to avoid
the conflict with the Language Environment subroutine is preferable to placing
your private subroutine libraries ahead of SCEELKED.

To determine which applications require link-editing with Language Environment,
see Chapter 8, “Link-Edit Considerations,” on page 51.

Chapter 5. Running existing applications under Language Environment 33

34 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 6. Considerations Before Migrating

Language Environment is now part of z/OS and OS/390 and you can start
migrating your applications to Language Environment prior to installing a
Language Environment-enabled PL/I compiler such as PL/I for MVS & VM,
VisualAge PL/I or Enterprise PL/I. This chapter discusses the functional
differences between OS PL/I run-time and Language Environment. These
differences should be considered before migrating your applications to Language
Environment.

Differences in Run-Time Options
Language Environment run-time options replace PL/I run-time options. Most PL/I
run-time options have an equivalent Language Environment run-time option that
provides the same function. This section describes differences in the use of
run-time options.

You should adapt your applications to allow for the following differences:

Deleted run-time options
v The OS PL/I COUNT option is ignored.
v The OS PL/I FLOW option is ignored.
v The OS PL/I HEAP option is always in effect. This means that when you

allocate storage for BASED and CONTROLLED variables, the storage always
comes from HEAP storage. The storage does not come from a PL/I Initial
Storage Area (ISA). HEAP(0) is not supported and, if used, is ignored.

Replaced run-time options
v The Language Environment NATLANG option replaces the OS PL/I

LANGUAGE option.
v The Language Environment RPTSTG option replaces the OS PL/I REPORT

option.
v The Language Environment TRAP option replaces both OS PL/I SPIE and STAE

options. The following table shows how the OS PL/I SPIE and STAE options
map to Language Environment's TRAP option:

Table 5. Mapping of SPIE and STAE Options to the TRAP Option

OS PL/I
Language
Environment Action

SPIE|NOSPIE TRAP(ON|OFF) If SPIE|NOSPIE is specified in input, TRAP is set
according to the option: TRAP(ON) for SPIE, and
TRAP(OFF) for NOSPIE.

STAE|NOSTAE TRAP(ON|OFF) If STAE|NOSTAE is specified in input, then TRAP is
set according to the option: TRAP(ON) for STAE, and
TRAP(OFF) for NOSTAE.

SPIE STAE or
SPIE NOSTAE or
STAE NOSPIE

NOSPIE NOSTAE

TRAP(ON)

TRAP(OFF)

If both SPIE|NOSPIE and STAE|NOSTAE are
specified together in input, TRAP is set according to
both options: TRAP(OFF) when both options are
negative, and TRAP(ON) otherwise. TRAP(ON) must
be in effect for applications to run successfully.

© Copyright IBM Corp. 1999, 2011 35

Note: Applications performing their own condition management often conflict
with Language Environment condition management. See your z/OS
Language Environment Programming Guide for more information on
Language Environment condition handling.

v The Language Environment STACK option replaces both OS PL/I ISASIZE and
ISAINC options. You do not need to change and recompile source code that
contains ISASIZE and ISAINC. In addition, object modules and/or load modules
containing the PLIXOPT string will run under Language Environment with the
ISASIZE and ISAINC honored as before.
STACK(,,ANY) can be used for an OS PL/I application relinked with Language
Environment that does not contain any edited stream I/O.
Your application must run in AMODE(31) to use STACK(,,ANY).
Under CICS, ALL31(ON) and STACK(,,ANY) are the defaults; however, because
STACK(,,BELOW) is required for OS PL/I applications that have not been
relinked with Language Environment, you must change the default to
STACK(,,BELOW) during installation or explicitly specify STACK(,,BELOW) for
any OS PL/I applications that have not been relinked.

New run-time options
v The Language Environment ABTERMENC option controls which type of

return/abend code your application receives at abnormal termination.
ABTERMENC(RETCODE) allows your application to receive a run-time return
code, which is equivalent to the way OS PL/I worked.

v The Language Environment ERRCOUNT option limits the number of conditions
that are handled at run time. ERRCOUNT(0) specifies that there is no limit,
which is equivalent to the way the OS PL/I worked.

v The Language Environment DEPTHCONDLMT option limits the extent to which
conditions can be nested. To maintain compatibility, specify
DEPTHCONDLMT(0), which means there is an unlimited depth.

v The Language Environment XUFLOW option determines if the UNDERFLOW
condition is raised when underflow occurs. XUFLOW(AUTO) preserves PL/I
semantics with regard to raising the UNDERFLOW condition.

v The Language Environment ALL31 option controls AMODE switching among
library routines. You should set ALL31(0N) if all of your applications are
AMODE(31).

When you pass run-time options in the MVS GO step, your run-time options string
must end with a slash (/) to distinguish it from a main procedure parameter
string. If you omit the slash, the string is passed as the main procedure parameter.

The following run-time options are needed to provide compatibility with OS PL/I:
v ABTERMENC(RETCODE)
v ERRCOUNT(0)
v DEPTHCONDLMT(0)
v STORAGE(,,CLEAR)
v TRAP(ON)
v XUFLOW(AUTO | ON)

36 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Note that before you use the CLEAR suboption of the STORAGE option, you must
have the appropriate PTFs for APAR PK02614 installed. Also, the use of the option
may not be entirely effective for Enterprise PL/I code: see the discussion later in
this book on initializing variables.

For more information about run-time options, see the z/OS Language Environment
Programming Reference.

For OS PL/I applications, the options specified in the PLIXOPT string is processed
as the application-specific options. If you provide the Language Environment
CEEUOPT, CEEUOPT is ignored.

If the main load module contains ILC, the PLIXOPT string is ignored. In this case,
you must provide CEEUOPT for the application-specific options.

Differences in Condition Handling

Timing differences
PL/I condition handling semantics remain supported under Language
Environment; however, the timing of issuing the run-time message for an ERROR
condition with respect to the ERROR ON-Unit is different in the following way:
v The run-time message for an ERROR condition is issued only if there is no

ERROR ON-Unit established, or if the ERROR ON-Unit does not recover from
the condition by using a GOTO out of block. You can use a GOTO out of the
ERROR ON-Unit to avoid a message for a PL/I ERROR condition.

For PL/I conditions whose implicit action includes issuing a message and raising
the ERROR condition, the timing of issuing the message is unchanged.

Table 6 shows when the run-time message for an ERROR condition is issued under
OS PL/I with respect to the ERROR On-Unit.

Table 6. OS PL/I Version 2 Release 3 ERROR ON-Unit and Message for an ERROR
condition

Condition No
ON-Units

ERROR ON-Unit No
GOTO

ERROR ON-Unit
GOTO

ERROR condition raised1 Message Message prior to ON-unit Message prior to ON-unit

ZERODIVIDE condition
raised2

Message Message prior to ON-unit Message prior to ON-unit

Notes:

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR
condition is raised.

Table 7 shows when the run-time message for an ERROR condition is issued under
Language Environment with respect to the ERROR On-Unit.

Chapter 6. Considerations Before Migrating 37

Table 7. Language Environment ERROR ON-Unit and Message for an ERROR Condition

Condition
No

ON-units
ERROR ON-unit

No GOTO
ERROR ON-unit

GOTO

ERROR condition raised1 Message Message after ON-unit No message

ZERODIVIDE condition
raised2

Message Message prior to ON-unit Message prior to ON-unit

Notes:

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR
condition is raised.

The SNAP traceback message produced by ON ERROR SNAP continues to be
issued before the ERROR ON-unit receives control. The SNAP traceback message is
not identical to the regular ERROR message.

Unhandled condition differences
If your OS PL/I application used to force an abend for an unhandled condition
under OS PL/I run-time using OS PL/I assembler user exit IBMBXITA or abend
exit IBMBEER, use the following ways to force an abend under Language
Environment:
v Run your application with Language Environment ABTERMENC(ABEND)

option. You cannot specify your own abend code via the run-time option.
v Use Language Environment assembler user exit CEEBXITA to force an abend

with your own abend code.

IBMBXITA and IBMBEER differences
Language Environment provides limited support for OS PL/I IBMBXITA and
IBMBEER. See “Considerations for using assembler user exits” on page 152 for
details.

ABEND U4039 differences
An UNHANDLED condition of severity 2 or higher now produces an abend U4039
and optionally a system dump if SYSUDUMP or SYSABEND ddname is present. If
ABTERMENC(RETCODE) is in effect, your application continues the termination
with an abend code. If you don't want to see the U4039 abend, Language
Environment provides you the facilities to suppress it.

See “Abnormal Termination Exit” in z/OS Language Environment Installation and
Customization under OS/390 or z/OS Language Environment Customization for ways to
suppress or change the U4039 abend.

Severity differences
Severities of some PL/I conditions are different under Language Environment. See
PL/I Language Reference for the severities.

Differences in PLICALLA and PLICALLB Support
The interfaces in the following sections are not recommended for use under
Language Environment.

38 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

PLICALLA Considerations
Language Environment provides support for OS PL/I applications that use the
PLICALLA entry point. You can also relink your program under Language
Environment. See “OS PL/I Routine Replacement Tool” on page 165 about details
on how to relink an application under Language Environment.

You can use PLICALLA as the primary entry point of a FETCHed/CALLed PL/I
main load module; however, the calling routine must pass only user arguments
which are passed to a subroutine. If run-time options are passed, they are treated
as user arguments.

If you develop a new PL/I application and you want the main procedure to
receive user arguments like a subroutine, do one of the following:
v Receive control directly from IMS by

– Using CEESTART or PLISTART as the primary entry point of the load module
– Specifying the SYSTEM(IMS) compile-time option

v Receive control from an assembler program or a procedure using a FETCH or
CALL statement by:
– Using CEESTART or PLISTART as the primary entry point of the load module
– Specifying the NOEXECOPS option and the SYSTEM(MVS) compile-time

option
– Specifying either the BYADDR option or the BYVALUE option as necessary

and/or appropriate for the mechanism the assembler code used to pass the
parameters.

Language Environment support of PLICALLA is not available in the following
environments:

CICS environment
Preinitialized environment
Nested enclave environment except the PL/I FETCHable main.

PLICALLB Considerations
Language Environment provides support for PL/I applications that use the
PLICALLB entry point. The following table shows the PLICALLB parameter
mapping between OS PL/I and Language Environment:

Table 8. Differences in PLICALLB Argument List Support

OS PL/I Language Environment

Address of the length of ISA storage for a
nonmultitasking program or the major task in a
multitasking program

Mapped to STACK(init_size)

Address of ISA storage Used as the initial STACK segment

Address of the length of ISA storage for each
subtask

Mapped to NONIPTSTACK(init_size)

Address of the maximum number of concurrent
subtasks

Mapped to PLITASKCOUNT(max_thread)

Chapter 6. Considerations Before Migrating 39

Table 8. Differences in PLICALLB Argument List Support (continued)

OS PL/I Language Environment

Address of the options word, in which the
following run-time options can be specified:

REPORT
SPIE|STAE
COUNT
FLOW
HEAP suboptions
TASKHEAP suboptions

Supported as follows:

REPORT mapped to RPTSTG
SPIE|STAE mapped to TRAP
COUNT ignored
FLOW ignored
HEAP(,,KEEP|FREE)|(,,ANY|BELOW)
THREADHEAP(,,KEEP|FREE)|(,,ANY|BELOW)

Address of HEAP storage length for a
nonmultitasking program or the major task in a
multitasking program

Mapped to HEAP(init_size)

Address of HEAP storage Used as the initial HEAP segment

Address of HEAP increment for a nonmultitasking
program or the major task in a multitasking
program

Mapped to HEAP(,incr_size)

Address of HEAP for subtasks Mapped to THREADHEAP(,increment)

Address of ISA increment for a nonmultitasking
program or the major task in a multitasking
program

Mapped to STACK(,incr_size)

Address of ISA increment for each subtask
(optional for a nontasking application)

Mapped to NONIPTSTACK(,incr_size)

When the above argument list is passed in via the PLICALLB entry point, the
argument in the list must either point to an address or be zero. The high-order bit
ON in an argument indicates the end of the argument list. R1 must contain the
address of the argument list.

With Language Environment, the run-time options passed via the PLICALLB entry
point are processed as options specified on invocation of the application and have
a higher precedence than CEEUOPT or PLIXOPT options. The assembler user exit
cannot be used to alter the run-time options passed through the PLICALLB
invocation.

To summarize, the run-time options passed in have the following precedence (from
highest to lowest) among Language Environment option specification methods:
1. Options defined at installation time that have the non-overrideable attribute
2. Options specified via the PLICALLB entry point
3. Options specified in the PLIXOPT string or in CEEUOPT
4. Option defaults defined at installation time

The user arguments passed to the PL/I main routine have the following
precedence (from highest to lowest):
1. Output from CXIT_PARM or AUE_PARM of the assembler user exit
2. User arguments passed in via the PLICALLB entry

Note: The input to CXIT_PARM or AUE_PARM of the assembler user exit is the
first argument in the PLICALLB parameter list, that is, the address of a
vector of user argument addresses.

Language Environment encourages the use of above-16M-line storage. For
compatibility with OS PL/I, Language Environment maps the user-supplied ISA
and HEAP storage to STACK and HEAP. With this mapping, however, Language
Environment still needs to issue some GETMAINs. Since user-supplied ISA/HEAP

40 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

storage is usually below the 16M line, below-16M-line storage can be quickly
consumed under Language Environment. How Language Environment manages
storage is described in the z/OS Language Environment Programming Guide.

Language Environment manages storage differently than OS PL/I. It divides
storage into more categories than the OS PL/I supported ISA and HEAP. As a
result, mapping the user-supplied OS PL/I ISA or HEAP storage to Language
Environment STACK or HEAP storage still requires GETMAINs during run time.
Further, Language Environment provides diagnostics to ensure the user-supplied
length of ISA or HEAP storage is a multiple of 8 bytes and the address is on a
double-word boundary.

Language Environment also ensures that the location of the user-supplied ISA or
HEAP storage matches the location specification in the STACK or HEAP run-time
option. The user-supplied HEAP storage is ignored when all ofthe following are
true:
1. User-supplied heap storage is above the 16M line
2. The ANYWHERE suboption of the HEAP option is in effect
3. The main program is in AMODE(24)

Language Environment allocates below-16M-line storage using the init_sz24 and
incr_sz24 suboptions specified in the HEAP option.

Language Environment support of PLICALLB is not available in the following
environments:

CICS
IMS
Preinitialized environment
Nested enclave environment

Differences in Preinitialization Support
Enterprise PL/I does not support the old preinitialization scheme and you may
want to consider redesigning your applications. Language Environment
preinitialization services should be used with Enterprise PL/I in the redesigned
applications. However, if you want to run your preinitialized programs under
Language Environment in the interim while waiting for them to be redesigned, this
section describes the differences that you may want to consider prior to the
migration.

The PL/I preinitialized program interface is supported with the following changes:
v The PL/I preinitialized program interface no longer supports the REINITIALIZE

request modifier code. If you attempt to use this function, it is diagnosed with
the 4093-136 abend code.

v If the routine specified in the CALL request is not statically linked with the
assembler driver and it contains ILC, you must ensure the ILC environment is
initialized by including the same ILC in the routine specified in the INIT
request.

v The TERM request no longer returns 1000 return code as OS PL/I run time did.
v Some of the return and reason codes for the service vector defined by OS PL/I

have changed. You must use the return and reason codes for the service vector
defined by Language Environment preinitialization services as described in z/OS
Language Environment Programming Reference.

Chapter 6. Considerations Before Migrating 41

Language Environment preinitialization services support multiple preinitialization
environments under the same TCB. Multiple preinitialization environments under
the same TCB is not supported by OS PL/I. To understand how the service works,
see “Using Preinitialization Services” in z/OS Language Environment Programming
Guide.

Differences in PLISRTx Support
OS PL/I applications containing PLISRTx invocations are supported by Language
Environment for OS/390 & VM Release 1.4 or later; however, you must relink your
applications if you are using Release 1.3 of Language Environment as your run
time. It is a good idea to relink your load module with Language Environment,
regardless of therelease you are using, for the following reasons:
v Relinking allows the library routine to access the Language Environment-

provided DFSORT interface for a more integrated language and sort
environment.

v Relinking allows the library routine to replace the 24-bit DFSORT parameter list
with the extended 31-bit DFSORT parameter list.

You can relink your OS PL/I PLISRTx applications using one of the following
methods:
v For object module relinking, use OS PL/I Object Module Relinking Tool - APAR

PN69803 described on “OS PL/I Object Module Relinking Tool - APAR
PN69803” on page 167.

v For library routine replacement, use OS PL/I Routine Replacement Tool
described on “OS PL/I Routine Replacement Tool” on page 165.

v Relinking the object module directly with Language Environment.

Differences in Multitasking Support
Enterprise PL/I does not support multitasking. You must change your applications
to use multithreading or else use the PL/I for MVS compiler. Note also that
Enterprise PL/I multithreading code must use the POSIX(ON) run-time option.

Differences in OS PL/I Shared Library support
Enterprise PL/I does not support the old OS PL/I shared library.

Differences in DATE/TIME Built-In Functions
The DATETIME and TIME built-in functions now return the number of
milliseconds in all environments. The syntax and description of these built-in
functions are in PL/I Language Reference.

Differences in User Return Code
Language Environment supports a FIXED BIN(31) four-byte user return code value
for PLIRETC, PLIRETV, and OPTIONS(RETCODE). This support removes the
restriction of maximum value 999. OS PL/I applications must be relinked with
Language Environment in order to take advantage of the four-byte user
return-code value.

The following table shows how PL/I user return code is supported:

42 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Table 9. Return Code Behavior under Language Environment

Function
OS PL/I
load module

OS PL/I object
module linked
with Language
Environment

Enterprise PL/I
load module

PLIRETC
built-in function

2-byte value with
restriction of 999

4-byte value without
restriction of 999

4-byte value without
restriction of 999

PLIRETV
built-in function

2-byte value Lower 2 bytes of a
4-byte value

4-byte value

RETCODE option Lower 2 bytes
of R15

Lower 2 bytes
of R15

2-byte value

For PLIRETC, relinked OS PL/I load modules can set a 4-byte user return code
value.

Under Language Environment, the PL/I user return code is always reset to zero
upon return from the PLISRTx invocation. This is not the case with OS PL/I run
time.

Differences in Run-Time Messages
The format and content of run-time messages are different. If you have
applications that analyze run-time messages, you must change the applications to
allow for the differences. The differences include:
v The message number in the message prefix is four digits instead of three digits

in the form IBMnnnnx, where nnnn represents the message number and x
represents the severity of the message.

v The message severity in the message prefix can be I, W, E, S, or C.
v The message text of some mixed-case English and Japanese messages has been

enhanced. The message text of uppercase English messages remains unchanged.

Details are provided in Language Environment Debugging Guide and Run-Time
Messages.

Under Language Environment, run-time messages go to the MSGFILE destination
specified in the run-time option MSGFILE. The default for MSGFILE destination is
SYSOUT. The user output still goes to SYSPRINT. MSGFILE(SYSPRINT) is
supported under Enterprise PL/I only after applying the PTFs for the runtime
APAR PQ78307. For more information about the MSGFILE option, see z/OS
Language Environment Programming Guide.

Differences in PLIDUMP
PLIDUMP now produces a Language Environment-style dump. The way you use
PLIDUMP and the dump output is different. The following list the differences in
the way you use PLIDUMP and the output produced. Compile unit refers to the
primary entry point of the external procedure and Compile unit name refers to the
name of the external procedure.
v The ddname of the dump output file can be CEEDUMP, PLIDUMP, or

PL1DUMP. If you do not define one of these files, Language Environment
creates a default CEEDUMP file to contain the dump output. The LRECL of the
dump output file must be at least 133 bytes to prevent dump records from
wrapping, not the 121 bytes required by OS PL/I.

Chapter 6. Considerations Before Migrating 43

v When you use the hexadecimal (H) option of PLIDUMP, you must specify the
ddname CEESNAP for MVS, or the file name CEESNAP for VM; otherwise the
H option is ignored. This data set contains the SNAP dump output.
When you specify the hexadecimal (H) option under MVS, the output from
SNAP includes all system control program information (SDATA=ALL). OS PL/I
provides only partial information (SDATA=CB, Q, and TRT).

v When you use ILC, the dump output contains information related to other
languages (for example, C/C⁺⁺ or COBOL).

v The identifier character string is limited to 60 bytes rather than the 90 bytes OS
PL/I supported.

v The traceback section lists the compile-unit name associated with each entry
point name. When the entry point is a secondary entry point, the primary entry
point name associated with the actual entry point is not listed.
The traceback section also contains offsets relative to the address of the compile
unit, as well as offsets relative to the address of the real entry point.

v Run-time messages are in a separate section; they are no longer part of the
traceback section.

v When you specify the BLOCK (B) option of PLIDUMP, the condition handler
save areas appear in the block section of the dump. If you do not specify the
BLOCK option of PLIDUMP, the condition handler save areas do not appear in
the dump.

v If the program was compiled with the TEST compile-time option, and a
begin-block has a label, the begin-block is identified as Label:BEGIN block..
Otherwise, the begin-block is identified as %BLOCKnn, where nn is the block count
for the begin-block.

v Compiler-generated ILC subroutines now appear in the traceback section. They
are identified as the compile unit name concatenated with the suffix ILC.

v PL/I library routines that have Language Environment-defined Program
Prologue Areas (PPAs) are identified by name in the dump. If the library
routines do not have Language Environment PPAs, they are identified as
Library(PL/I).

v A HEX dump of STATIC storage is included in the Language Environment
formatted dump. If more than one routine from a compilation unit is on the
stack when a dump is produced, static will be dumped only once for that
compilation unit.

v Assembler routines that conform to the rules for mimicking PL/I routines are
identified by their CSECT names in the dump output.

v PLIDUMP now conforms to National Language Support standards.
v PLIDUMP can supply information across multiple Language Environment

enclaves. For example, if an application running in one enclave FETCHes a main
procedure (an action that creates another enclave), PLIDUMP contains
information about both procedures.

Differences in Storage Report
The format, contents, and destination of the run-time storage report have changed.
Language Environment provides storage information equivalent to OS PL/I. The
details of the storage report is described in z/OS Language Environment Programming
Reference.

The PLIXHD declaration is no longer used to provide the heading for the run-time
storage report. Instead, use Language Environment's Callable Service, CEE3RPH, to

44 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

specify the heading. If you do not use CEE3RPH, the heading includes the main
procedure name, date, and time of execution.

Differences in Interlanguage Communication Support
There are some restrictions on support for ILC applications containing OS PL/I
and other pre-Language Environment language programs. The restrictions fall into
three groups:
v Fully supported load modules

Load modules containing OS PL/I and pre-Language Environment C/370
programs are supported under Language Environment.

v Load modules you must relink
Load modules containing OS PL/I and VS COBOL II Release 3 (or later)
programs must be relinked with Language Environment.
OS PL/I Version 2 Release 3 provides a migration aid, APARs PN69803 and
PN69804, to allow you to do relinking while you are under OS PL/I Version 2
Release 3 environment. As long as the application is relinked with PN69803 and
PN69804 under OS PL/I Version 2 Release 3, the application is supported under
Language Environment. See “OS PL/I Object Module Relinking Tool - APAR
PN69803” on page 167 for details of the migration aid.

v Unsupported ILC
ILC between OS PL/I and the following languages is not supported:
– Fortran (prior to Language Environment Release 5)
– OS/VS COBOL
– VS COBOL II Version 1 Release 2 or earlier releases

For more information, see Language Environment for OS/390 & VM Writing
Interlanguage Communication Applications or z/OS Language Environment Writing
Interlanguage Applications.

The behavior of certain applications that use ILC might be different. For example:
v Condition handling might behave differently. The major causes of differences in

condition handling are that the INTER option is now ignored, and that PL/I
condition handling facilities can deal with conditions occurring in non-PL/I
routines whether or not you specify INTER.

v Under OS PL/I, in applications that used ILC, the environment initialization and
termination of the involved languages, including PL/I, could occur multiple
times. With Language Environment, there is only one run-time environment, and
language-specific initialization and termination occurs only once. Changes in
behavior that you might see include opening and closing of files, releasing of
allocated storage, and invocation of establish ON-units.

Note: If you have designed your own code to manage your run-time
environments, you should remove it as part of your migration efforts.
This private code is incompatible with Language Environment and will
conflict with the run-time environment.

For a complete description of how ILC works in the Language Environment
run-time environment, see either Language Environment for OS/390 & VM Writing
Interlanguage Communication Applications or z/OS Language Environment Writing
Interlanguage Applications.

Chapter 6. Considerations Before Migrating 45

Differences in Assembler Support
With Language Environment, assembler programs that call a PL/I routine must
follow the calling conventions defined by Language Environment. For example,
Register 13 pointing to a save area, save areas properly back-chained, and the first
word of the save area being zero. For detailed information, see the z/OS Language
Environment Programming Guide.

If your OS PL/I main program is called by an assembler program and you want to
convert your assembler program to use Language Environment-conforming
assembler, you must either recompile your OS PL/I program without
OPTIONS(MAIN) or ensure the entry point receiving control is the real entry point
of the PL/I program. In either case, the called PL/I program is treated as a
subroutine. Either of these programs run under the same Language Environment
enclave where the assembler program is the main program and the called PL/I
program is a subroutine.

Your Language Environment-conforming assembler main program must explicitly
include the Language Environment-PL/I for MVS & VM signature CSECT,
CEESG010, when calling an OS PL/I subroutine to ensure the Language
Environment-PL/I-specific run-time environment is initialized. There are three
ways Language Environment-conforming assembler can pass control to an OS PL/I
subroutine:
1. Branch to a statically linked PL/I subroutine.
2. Use the Language Environment macro CEELOAD and branch to a separately

linked PL/I subroutine.
3. Use assembler instructions such as LOAD and BALR to a separately linked

PL/I subroutine.

The condition-handling behavior of the LINK from assembler is now clearly
defined. For detailed information, see z/OS Language Environment Programming
Guide.

Assembler programs that find the main parameter list
Assembler programs called from PL/I that use the save area back chain to find the
parameter list passed to the PL/I main program will no longer work when
running on Language Environment. This is because the number of save areas
between the assembler program and the save area of the program that invoked the
PL/I main program has changed.

Assembler programs that need to find the parameter list passed to the PL/I main
program can use the CEEEDB_R13_PARENT field in the Language Environment
EDB to obtain the save area address of the program that invoked the PL/I main
program.

46 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 7. Object and Load Module Considerations

This chapter describes factors that affect the compatibility of OS PL/I object and
load modules in Language Environment. The discussions include both OS PL/I
Version 1 and OS PL/I Version 2 object and load modules.

All of the library routines in a load module must be from the same release of the
run-time library. For example, Language Environment stubs, OS PL/I Shared
Library stubs, and OS PL/I resident library routines cannot exist in the same load
module.

To find out what tools are available to help you migrate your libraries to the
Language Environment run-time environment, see Appendix A, “Conversion and
Migration Aids,” on page 165.

OS PL/I Version 1 Object Module and Load Module Compatibility
Language Environment supports object modules and load modules for OS PL/I
Version 1 with some restrictions. You can continue to use most of your Version 1
object and load modules if you observe the rules described in the following
sections.

If a load module contains an OS PL/I Version 1 object module but is linked with
OS PL/I Version 2 resident library, the load module is considered an OS PL/I
Version 2 load module and the rules for OS PL/I Version 2 apply. If the load
module contains OS PL/I Version 1 Release 1.0 - 2.3 object modules, however, the
object module must be recompiled.

If a load module contains the OS PL/I abend exit, IBMBEER, the abend exit is
ignored by Language Environment. See “Considerations for using assembler user
exits” on page 152 for more information on this topic.

OS PL/I Version 1 Release 5.1

Object Module
The object module is supported.

Load Module Not Using Shared Library:
v Main load module for MVS non-CICS nonmultitasking

The OS PL/I bootstrap routine, IBMBPIRA, always linked with a user load
module, contains features such as the fast initialization and termination that are
not compatible with Language Environment. A sample ZAP, IBMRZAPM, is
provided in Language Environment SCEESAMP to help you deactivate those
incompatible features. The sample ZAP is described in “OS PL/I Version 1
Release 5.1 main load module ZAP” on page 166.
ZAPped load modules continue to work under OS PL/I V1.5.1 and V2, as well
as Language Environment; however, performance degradation might occur if the
original load module contains the fast initialization and termination feature.
If you do not ZAP your load module, you must do one of the following:
– Relink your object module with Language Environment or OS PL/I Version 2

© Copyright IBM Corp. 1999, 2011 47

– Use the OS PL/I Library Routine Replacement Tool described in “OS PL/I
Routine Replacement Tool” on page 165 to replace the library routines in the
load module with Language Environment stubs

v Main load module for MVS non-CICS multitasking
The load module is supported.

v Main load module under CICS
The load module is supported.

v Main load module under VM
The OS PL/I VM-specific bootstrap routine, DMSIBM, contains features that are
not compatible with Language Environment. A sample ZAP, IBMRZAPV, is
provided in Language Environment SCEESAMP to help you deactivate the
incompatible features. The sample ZAP is described in “OS PL/I Version 1
Release 5.1 main load module ZAP” on page 166.
The ZAPped load module is supported under Language Environment only. It no
longer works under OS PL/I Version 1 or Version 2. If you do not ZAP your
load module, you must do one of the following:
– Relink your object module with Language Environment or OS PL/I Version 2
– Use the OS PL/I Library Routine Replacement Tool to replace the library

routines in the load module with Language Environment stubs See “OS PL/I
Routine Replacement Tool” on page 165 for a description of this tool.

v FETCHed subroutine load module
The load module is supported.

Load Module Using the Shared Library
The load module is supported as long as the OS PL/I V1R5.1 Shared Library was
created with all PLRSHR options and the Shared Library, including the
multitasking Shared Library, is replaced with Language Environment stubs. The
Shared Library needs to be replaced only once during Language Environment
installation.

If the Shared Library was not created with all PLRSHR options or the Shared
Library is not replaced with Language Environment stubs, the object module must
be relinked with Language Environment or OS PL/I Version 2, or you can replace
the Shared Library stubs in the load module with Language Environment stubs.
After the object module is relinked or the load module is replaced, the OS PL/I
Shared Library feature is no longer used.

Note that Enterprise PL/I doesn't support the shared library. If you intend to
migrate to Enterprise PL/I, you should stop using the shared library. Under
Language Environment, PL/I uses stubs instead of full size resident modules and
there is no need to use the shared library.

OS PL/I Version 1 Release 5
OS PL/I Version 1 Release 5 provides support only for MVS applications. VM and
CICS are not supported in Release 5.0.

Object Module
The object module is supported.

Load Module
The load module is not supported, whether or not you use the Shared Library. You
must relink your object module with Language Environment or OS PL/I Version 2,
or you can use the OS PL/I Library Routine Replacement Tool to replace the

48 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

library routines in the load module with Language Environment stubs. See “OS
PL/I Routine Replacement Tool” on page 165 for a description of this tool.

OS PL/I Version 1 Release 3.0 - Release 4.0

Object Module
v Under MVS

The object module is supported except for the CICS macro language.
v Under VM

The object module is supported.

Load Module
The load module is not supported, whether or not you use the Shared Library. You
must relink your object module with Language Environment or OS PL/I Version 2,
or you can use the OS PL/I Library Routine Replacement Tool to replace the
library routines in the load module with Language Environment stubs. See “OS
PL/I Routine Replacement Tool” on page 165 for a description of this tool.

OS PL/I Version 1 Prior to Release 3.0
Object modules or load modules created prior to Release 3.0 are not supported and
you must recompile your application with a Language Environment supported
PL/I compiler. or OS PL/I Version 2.

OS PL/I Version 2 Object Module and Load Module Compatibility
In most cases, object modules and load modules created with OS PL/I Version 2
do not require relinking. Earlier sections of this migration guide discuss OS PL/I
features in more detail. Some of these features do require relinking, however, and a
few are no longer supported.

Language Environment supports OS PL/I applications that contain the PL/I
assembler user exit, IBMxXITA. See “Considerations for using assembler user exits”
on page 152 for more information on this topic.

Summary of Support for OS PL/I Object and Load Modules
The following table summarizes the PL/I object- and load-module support
described in this chapter. Exceptions to support are shown in the footnotes and are
described elsewhere in a related section.

Table 10. Summary of Object and Load Module Support by Language Environment

Support description V2 V1R5.1 V1R5.0
V1R3.0-
V1R4.0

Prior to
V1R3.0

Main load module Yes3 Yes1,3 No No No

Fetched subroutine
load module

Yes3 Yes3 No No No

Object module Yes Yes Yes Yes2 No

Chapter 7. Object and Load Module Considerations 49

Table 10. Summary of Object and Load Module Support by Language
Environment (continued)

Support description V2 V1R5.1 V1R5.0
V1R3.0-
V1R4.0

Prior to
V1R3.0

Exceptions:

1MVS non-CICS nonmultitasking load modules and VM load modules are not supported unless specific
action is taken. Review “Load Module Not Using Shared Library:” on page 47 for what action you need
to take to enable support for these modules.

2CICS macro language is not supported as described in Object Module under “OS PL/I Version 1
Release 3.0 - Release 4.0” on page 49.

3Shared Library must be created with all PLRSHR options and must be replaced with Language
Environment stubs. Review “Differences in OS PL/I Shared Library support” on page 42 for actions you
need to take to make this happen.

50 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 8. Link-Edit Considerations

This chapter describes factors you must consider when you link-edit an object
module produced by OS PL/I. Topics discussed include symbol tables and math
routines.

SCEERUN
When you run your OS PL/I application under Language Environment and you
use existing JCL, be sure your STEPLIB or JOBLIB statement includes SCEERUN,
unless you TASKLIB or LINKLIB which already includes SCEERUN.

Symbol Table Considerations
If you link-edit an object module produced by different releases of PL/I, and the
object module contains symbol tables for external variables, the symbol table that
appears in the resultant load module must be the one produced by the most recent
release of PL/I.

The compiler produces an object module that contains external symbol table
control sections (CSECTs) if your program includes one or more of the following
PL/I features for external variables:
v GET DATA statements
v PUT DATA statements
v The TEST(SYM) compile-time option

If your program uses one or more of these features with external variables, you
must ensure that the correct symbol table appears in your load module. Place the
object module produced by the most recent release of PL/I ahead of all other
object modules in the link-edit job stream. If more than one object module
produces a symbol table CSECT with the same name, the linkage editor keeps the
symbol table CSECT that it encounters first and discards the other symbol tables.

For example, suppose you link-edit an object module produced by OS PL/I
Version 1 Release 5.1 with an object module produced by OS PL/I Version 2
Release 3. Put the object module produced by OS PL/I Version 2 Release 3 ahead
of the object module produced by OS PL/I Version 1 Release 5.1 in the link-edit
job stream. By doing this, the linkage editor keeps the symbol table produced by
OS PL/I Version 2 Release 3 if both object modules produce symbol tables.

NCAL Linkage Editor Option
Under Language Environment, the NCAL linkage editor option continues to be
required when you link-edit your subroutine object modules for the future use.

Load modules must not contain Language Environment stubs and OS PL/I
resident library routines.

© Copyright IBM Corp. 1999, 2011 51

ENTRY cards
The entry point for a MAIN program compiled with the OS PL/I compiler is
PLISTART, but the entry point is CEESTART if the MAIN is compiled with the
PL/I for MVS compiler or any later compiler.

If an ENTRY card must be used during the building of a batch application, then
you should not use CEESTART for a program compiled with the OS PL/I
compiler.

Using OS PL/I Math Routines
Language Environment provides a set of math routines, including routines for
exponentiation. For most commonly used routines, Language Environment
produces more accurate results than OS PL/I. Some of the Language Environment
routines also have better performance than OS PL/I. You should use the Language
Environment-provided math routines.

Language Environment also provides the OS PL/I math routines to help you to
migrate to Language Environment; however, the OS PL/I math routines are
provided for compatibility only and will be withdrawn in the future.

If your application must use the OS PL/I math routines under Language
Environment, place SIBMMATH in front of SCEELKED when you link-edit your
object module.

Enterprise PL/I for z/OS does not provide the math routines that were in OS
PL/I.

52 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 9. Subsystem Considerations

This chapter discusses subsystem-specific considerations that you need to know
when you migrate your applications running under CICS, IMS, and DB2.

CICS Considerations
Language Environment provides the same level of OS PL/I object and load
module support as for non-CICS. See Chapter 7, “Object and Load Module
Considerations,” on page 47 for details. If you are running under CICS Version 3
Release 3, you must ensure the CICS APAR PN38032 is installed. Without
PN38032, your application trying to use Language Environment will receive the
APLE abend.

The CICS Storage Protect facility was introduced under CICS 3.3. This provides
more data integrity and security for the application program and especially for the
entire CICS region. Because of the new feature, you might discover that some of
the successfully running OS PL/I applications start to fail with ASRA(0C4) abend
and the CICS message DFHSR0622.

If the above problem is happening in your OS PL/I application program, either of
the following two methods might be able to fix your problem:
1. Set the CICS system initialization parameter RENTPGM=NOPROTECT. This

sets the protection of the user program in user key. The default for RENTPGM
is PROTECT.

2. Relink your OS PL/I application program under Language Environment with
APAR PN38032 installed.

If the stream output function is used in your OS PL/I CICS application, especially
the PUT DATA; statement, it might trigger the above error. PL/I stream output
function is intended for debugging purposes only. For performance reasons, we
recommend that you don't use it in production programs.

Updating CICS System Definition (CSD) File
When you bring up a CICS region with Language Environment, you must ensure
the module names listed in Language Environment CEECCSD are defined in the
CSD. You can locate CEECCSD in SCEESAMP. If you use CICS Version 4
autoinstall facility, you do not need to define Language Environment modules
manually in the CSD.

Error Handling
A diagnostic message is issued only if there is no ERROR ON-unit established in
the program, or the ERROR ON-unit does not recover from the condition by using
a GOTO out of block.

Restrictions on User-Written Condition Handlers under CICS
The following EXEC CICS commands cannot be used within a user-written
condition handler established using CEEHDLR, or within any routine called by the
user-written condition handler:
v EXEC CICS ABEND

© Copyright IBM Corp. 1999, 2011 53

v EXEC CICS HANDLE AID
v EXEC CICS HANDLE ABEND
v EXEC CICS HANDLE CONDITION
v EXEC CICS IGNORE CONDITION
v EXEC CICS POP HANDLE
v EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within a user-written condition
handler. However, they must be coded using the NOHANDLE option, the RESP
option, or the RESP2 option. This prevents additional conditions being raised due
to a CICS service failure.

Macro-Level Interface
The CICS macro-level interface is not supported.

FETCHing a PL/I MAIN Procedure
CICS does not support PL/I FETCHing a PL/I MAIN procedure.

STACK Run-Time Option
Language Environment supports PL/I for MVS & VM applications that use the
run-time option STACK(,,ANY). Language Environment also supports
STACK(,,ANY) for OS PL/I applications that have been relinked with Language
Environment as long as the applications meet the following conditions:
v Contains no edited stream I/O (for example, EDIT was not used in a PUT

statement)
v Specifies AMODE(31)

Run-Time Output
When a program is compiled with DISPLAY(STD), all run-time output is
transmitted to a CICS transient data queue CESE.

When a program is compiled with DISPLAY(WTO), the DISPLAY output is routed
to the CICS JESLOG. All other run-time output is transmitted to a CICS transient
data queue CESE.

Language Environment ignores the MSGFILE option under CICS. Figure 1 shows
format of the output data queue.

In addition, PL/I transient queues CPLI and CPLD are no longer used. As a result,
you do not need to specify entries for the CPLI and CPLD in the CICS Destination
Control Table (DCT).

Figure 1. CESE Output Data Queue

54 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Abend Codes Used by PL/I under CICS
The APLx abend codes that were issued under OS PL/I Version 2 are no longer
issued. Instead, Language Environment-defined abend codes are issued. For more
information about Language Environment abend codes, see z/OS Language
Environment Run-Time Messages.

IMS Considerations
Language Environment provides the same level of OS PL/I object and load
module support for IMS as for non-IMS. See Chapter 7, “Object and Load Module
Considerations,” on page 47 for details.

Interfaces to IMS
Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces
from a PL/I routine.

SYSTEM(IMS) Compile-Time Option
The SYSTEM(IMS) option, available in OS PL/I Version 2, was supported for PL/I
IMS applications only. The main procedure of an IMS application must use the
POINTER data type for its parameters.

PLICALLA Support in IMS
The OS PL/I PLICALLA entry point is supported under Language Environment;
however, it is not a recommended interface for IMS and support can be withdrawn
at any time. Instead use the SYSTEM(IMS) compile-time option and the PLISTART
or CEESTART entry point.

Language Environment provides the same support for OS PL/I PLICALLA
applications; however, if you recompile your main load module with PL/I for MVS
& VM and want to continue to use PLICALLA, you must follow additional rules.
See “PLICALLA Considerations” on page 39 for details.

PSB Language Options Supported
Language Environment supports PL/I applications with the following PSBGEN
LANG options in the supported releases of IMS:

IMS/ESA Version 4
Table 11 shows support for PSB LANG options in IMS/ESA Version 4
Release 1, and later releases.

Table 11. PSB LANG Options for IMS/ESA Version 4 Release 1, and later

SYSTEM option Entry point LANG=

IMS CEESTART, PLISTART PLI or other values except
PASCAL

IMS PLICALLA1 PLI

Omitted CEESTART, PLISTART Illegal

Omitted PLICALLA1 PLI

Note: 1Supported only for compatibility.

Chapter 9. Subsystem Considerations 55

Storage Usage Considerations
With IMS/ESA Version 3 Release 1, the parameters passed to the IMS interfaces are
no longer restricted to the area below the 16M line. The parameters will most
likely be placed above the 16M line if you use the following methods:
v Use the ANYWHERE suboption of the HEAP run-time option. It applies to

variables with the CONTROLLED or BASED attribute because their storage is
obtained from the heap.

v Use the ANYWHERE suboption of the STACK run-time option. If you relink
your OS PL/I application with Language Environment and your application
does not use any edited stream I/O, or you recompile your application with
PL/I for MVS & VM, you can use STACK(,,ANYWHERE) if your application is
AMODE(31). In this case, the variables in automatic storage are placed above the
16M line.

v Place parameters in static storage and make sure the load module attribute used
is RMODE(ANY).

Coordinated Condition Handling under IMS
Language Environment and IMS condition handling is coordinated, meaning that if
a program interrupt or abend occurs when your application is running in an IMS
environment, the Language Environment condition manager is informed whether
the problem occurred in your application or in IMS. If the problem occurs in IMS,
Language Environment, as well as any invoked HLL-specific condition handler,
percolates the condition back to IMS.

With Language Environment run-time option TRAP(ON), Language Environment
continues to support coordinated condition handling for the PLITDLI and
ASMTDLI interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or IMS/ESA Version 4, Language
Environment also supports the coordinated condition handling for CEETDLI,
CTDLI from a C routine, CBLTDLI from a COBOL program, AIBTDLI from a PL/I
program, and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of
IMS, or if a software condition of severity 2 or greater is raised outside of IMS, the
Language Environment condition manager takes normal condition handling actions
described in the z/OS Language Environment Programming Guide. In this case, in
order to give IMS a chance to do database rollback, you must do one of the
following:
v Resolve the error completely so that your application can continue.
v Issue a rollback call to IMS, and then terminate the application.
v Make sure that the application terminates abnormally by using the

ABTERMENC(ABEND) run-time option to transform all abnormal terminations
into system abends in order to cause IMS rollbacks.

v Make sure that the application terminates abnormally by providing a modified
assembler user exit (CEEBXITA) that transforms all abnormal terminations into
system abends in order to cause IMS rollbacks.
The assembler user exit you provide should check the return code and reason
code or the CEEAUE_ABTERM bit, and requests an abend by setting the
CEEAUE_ABND flag to ON, if appropriate. See the z/OS Language Environment
Programming Guide for details.

56 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Performance Enhancement with Library Retention(LRR)
If you use LRR, you can get an improvement in performance. See “Improving CPU
Utilization” on page 127 for details.

DB2 Considerations
There are no special considerations for using DB2 other than the considerations
described in “IMS Considerations” on page 55.

Chapter 9. Subsystem Considerations 57

58 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Part 4. Moving to the new compiler

Chapter 10. Understanding the limitations of the
new compiler 63
Language Environment Requirements 63
Language not supported 63

Multitasking 63
CHECK 63
CHARSET(48) and CHARSET(BCD) 63
EGCS 63
Fortran 63
Invalid code 63

Language restricted. 64
RECORD I/O 64
STREAM I/O. 64
Structure expressions 65
Array expressions 65
DEFAULT statement 65
Extents of automatic variables 66
Built-in functions 66
DEFINED BIT aggregates 66
OPTIONS(REENTRANT) 66
iSUB defining 66
LABEL arrays 66
DBCS 67
Macro preprocessor. 67

Options restricted 67
Options not supported 68
Restrictions on other interfaces to the compiler . . 68

Batch compilation 68
Invoking the compiler from assembler 69
Compiling under TSO 69
Specifying INCLUDE data set names 69
Defining the SYSLIN data set 70

Compiler time and space requirements 70
AMODE(24) restrictions 70
EXTERNAL names restricted 71
Listing differences 71
Control block differences 72
ISAM support differences. 72

Chapter 11. Understanding the new compiler's
options 73
Understanding the effect of default options on
compatibility 73

BACKREG(5) 73
BIFPREC(15) 74
CMPAT(V2) 74
EXTRN(FULL) 75
LIMITS(EXTNAME(7)) 75
NORENT and WRITABLE 76
SYSTEM 76

SYSTEM(CICS) 76
SYSTEM(IMS) 76
SYSTEM(OS) 76

Choosing non-default options for even more
compatibility 76

COMMON 77

DFT(NOBIN1ARG) 77
DEFAULT(LINKAGE(SYSTEM)) 77
DFT(OVERLAP) 77
NOREDUCE 77
NORESEXP 78
RULES(LAXCTL) 78
RULES(NOLAXINOUT NOLAXSEMI) 78
NOWRITABLE 78

Choosing options for improved performance . . . 79
ARCH 79
BIFPREC(31) 79
DEFAULT(NONASGN) 79
DEFAULT(CONNECTED) 79
DEFAULT(REORDER) 80
DEFAULT(NOOVERLAP) 80
OPTIMIZE(2)/OPTIMIZE(3) 80
REDUCE 80
NORENT 81
RULES(NOLAXCTL) 82

Choosing options for better quality 83
RULES(NOLAXDCL) 83
RULES(NOLAXIF) 83
RULES(NOLAXLINK) 84
RULES(NOLAXMARGINS) 84
RULES(LAXSTRZ) 85
RULES(NOMULTICLOSE) 85

Choosing options for test 85
CHECK(CONFORMANCE) 85
GONUMBER 86
PREFIX 86
TEST 86

Chapter 12. Understanding the new compiler's
messages 87
IBM1044: one-byte FIXED BIN 87
IBM1053: scaled FIXED BIN evaluation 87
IBM1065: imprecise float constants. 87
IBM1091: FIXED BIN precision warning 88
IBM1099: mixed FIXED 88
IBM1181: miscoded DO loops 89
IBM1206: misuse of BIT operators 90
IBM1208: incompletely initialized arrays 90
IBM1215: incomplete declares 91
IBM1216: incorrect structure declares 91
IBM1220: pointless comparisons 92
IBM1927: SIZE condition 92
IBM1948: restricted expression evaluation 93
IBM2063: invalid ALLOCATE 93
IBM2402: storage overlay 93
IBM2409: RETURN; in a function 94
IBM2410: No RETURN in a function 94
IBM2412: missing RETURNS option 94
IBM2421: CLOSE in ENDFILE 95
IBM2610: precision interpretation 95
IBM2611, IBM2612: duplicate whens 95
IBM2617: passing labels out of PL/I 96

© Copyright IBM Corp. 1999, 2011 59

IBM2621: missing ON ERROR SYSTEM 96
IBM2622: warning on poorly coded DO loops . . . 96
IBM2626: SUBSTR with a zero length 97
IBM2628: large BYVLAUE parameters 97
IBM2801: introduction of scaled FIXED BIN . . . 98
IBM2804: suboptimal compares 98
IBM2810: conversion of scaled FIXED BIN 98
IBM2811: use of PICTURE as DO control variables 99
IBM2812: poor TRANSLATE and VERIFY 99
PLIXOPT messages 99
Using the compiler user exit 100

Chapter 13. Understanding when working code
must be changed 101
Incorrect code 101

Relying on the order of declarations 101
Using invalid FIXED DECIMAL data 101
Using invalid SUBSTR references 102
Using dissimilar EXTERNAL declares 102
Using an incorrect PLITABS declare 103

Initializing variables 103
Initializing AUTOMATIC 103
Initializing BASED 104
Initializing CONTROLLED 104
Initializing STATIC 104

Retaining unused declarations 104
Retaining unused INTERNAL STATIC 104

Incorrect code that will now raise exceptions . . . 104
FIXEDOVERFLOW when SIZE is disabled . . 104
Invalid allocations 106

Incorrect code that will now loop endlessly . . . 106
Even precision PICTURE loop control variables 106

Assignments that will produce different results . . 108
Source-target overlap 108
Float-to-float assignments 109

Other statements that will produce different results 110
STREAM I/O with unprintable characters . . . 110
Uninitialized EXTERNAL STATIC 110
Incompletely declared FILEs 111
Dummy arguments and alignment 111
Dummy arguments and CONTROLLED . . . 111
Pointer arithmetic 112

Code that will not perform as well 112
FIXED DEC as a loop control 112
FIXED BIN(15) as a loop control 112
I/O using TOTAL 112

Chapter 14. Understanding when working code
may need to be changed 113
Code that will now raise an exception 113

ZERODIVIDE and OVERFLOW promoted to
ERROR 113
Conditions raised when disabled 113
Invalid RETURNs 114
GOTO holes 114
The scope of NOFOFL 114

Code that will now not raise exceptions 115
FIXEDOVERFLOW for FIXED BIN 115
CONVERSION when assigning blanks to
numeric variables 115

ERROR when mapping excessively large
aggregates 115

Storage mapped differently 116
One-byte FIXED BIN 116

Declarations handled differently 116
AREA with INITIAL 116

Conversions handled differently 117
Conversions from float to character 117
Conversions from scaled FIXED BINARY . . . 117

Built-in functions handled differently 118
Arithmetic built-in functions with scale factors
and FIXED BIN. 118
String-handling built-in function for conversion
of DBCS character strings 119

MACRO preprocessor differences. 119
MACRO preprocessor and strings 120

SQL preprocessor differences 120

Chapter 15. Linking your new objects 121
Prelinker and PDSE considerations 121
AMODE(24) considerations. 121
Using PLICALLA or PLICALLB Entry 121
CHANGE cards 121

Chapter 16. Using Language Environment with
the new compiler 123
Using the right run-time options 123
Calling PL/I from assembler main programs . . . 124
Understanding when your results may vary . . . 124

Return codes 124
When the run-time issues messages 124
What the run-time messages say 125
Where the run-time messages go 125
Math built-ins 125
Dumps 126
Storage reports 126

Prerequisite Language Environment PTFs 126

Chapter 17. Tuning for better CPU and storage
utilization 127
Improving CPU Utilization 127
Improving Storage Utilization 128
Improving Performance under Subsystems . . . 129

Chapter 18. Adding Enterprise PL/I programs to
existing PL/I applications. 131
Object and load module considerations 131
Sharing SYSPRINT 132
Run-time option considerations 133
Condition handling considerations 133
Partitioning PL/I source programs into units of
execution 134

Chapter 19. Migrating from earlier releases of
Enterprise PL/I to Enterprise PL/I V4R2 135
Migrating from Enterprise PL/I V4R1 135

SQL preprocessor differences from Enterprise
PL/I V4R1 136

Dropped SQL preprocessor options 136
Handling of LOB declarations 136
Invalid host variable references 137

60 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Handling of SQL preprocessor messages . . 137
Migrating from Enterprise PL/I Version 3 (all
releases) 138

Changes in Enterprise PL/I Version 3 releases 138
Messages that are introduced with V4R2 139

Compiler messages that are introduced with
V4R2 139
Preprocessor messages that are introduced with
V4R2 140

Compiler messages that are introduced with V4R1 142
Compiler messages that are introduced with V3R9 142
Compiler messages that are introduced with V3R8 143
Compiler messages that are introduced with V3R7 144
Compiler messages that are introduced with V3R6 144
Compiler messages that are introduced with V3R5 145
Compiler messages that are introduced with V3R4 145
Object compatibility 147
Runtime changes 148

Part 4. Moving to the new compiler 61

62 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 10. Understanding the limitations of the new compiler

In addition to not supporting VM, the new compiler has various other limitations
that you should understand. This chapter lists and explains these differences.

Language Environment Requirements
Enterprise PL/I V4R2 is supported only on Language Environment for z/OS 1.10
or later.

Language not supported
The compiler will flag any language that is not supported.

Multitasking
The multitasking language supported by the old compilers is not supported by the
new compiler.

However, the new compiler does support multithreading. But, in order to use the
multithreading facilities, your code must run with the POSIX(ON) option.

For more information on the multithreading statements, see the PL/I Language
Reference.

CHECK
PL/I for MVS & VM dropped support for the CHECK statement, the CHECK
prefix, and the CHECK condition, and the new compiler also does not support
these constructs.

CHARSET(48) and CHARSET(BCD)
Support for these options were dropped by OS PL/I Version 2. However, there is
an IBM-supplied tool that will convert your source.

EGCS
OS PL/I Version 1 supported EGCS, which was a precursor to the GRAPHIC
support in OS PL/I Version 2, which dropped the support for EGCS. The new
compiler also does not support EGCS.

Fortran
The new compiler does not suppport the remapping of Fortran parameters. In
particular, a two-dimensional array passed from Fortran to PL/I will be seen by
PL/I as if it were transposed.

Invalid code
The new compiler does not suppport invalid code even if it was sometimes
accepted by the old compiler. For example, the old compiler would allow the
CHAR built-in function to be applied to a FILE VARIABLE (even though the old
compiler documented that the arguments to the CHAR built-in must have have
computational type). The new compiler will flag such invalid code with a severe
message.

© Copyright IBM Corp. 1999, 2011 63

Language restricted
Except where indicated, the compiler will flag the use of any language that is
restricted.

RECORD I/O
RECORD I/O is supported, but with the following restrictions:
v REGIONAL(1) files larger than 2.1 Gigabytes are not supported.
v The EVENT clause on READ/WRITE statements is not supported.
v The UNLOCK statement is not supported.
v The following file attributes are not supported:

– BACKWARDS
– EXCLUSIVE
– TRANSIENT

v The following options of the ENVIRONMENT attribute are not supported, but
their use is flagged only under LANGLVL(NOEXT):
– ADDBUFF
– ASCII
– BUFFERS
– BUFOFF
– INDEXAREA
– NCP
– NOWRITE
– REGIONAL(2)
– REGIONAL(3)
– SIS
– SKIP
– TOTAL
– TP
– TRKOFL

Note that since the TOTAL option of the ENVIRONMENT attribute is not
supported, I/O to files using the TOTAL option will generally not perform as well
as under the old compilers.

However, the old implementation of the TOTAL option relied on the compiler
generated code knowing both about the layout of the library's i/o control blocks
and the layout of the DFSMS control blocks. This meant that if either of these
changed, that code would be broken. Consequently, the library code could not be
changed and had to continue to use (or fake the use of) a fixed level of the DFSMS
control blocks. One consequence of this was that the old library could not use i/o
buffers that were above the line - because the compiler generated code in the user's
load modules knew they were below the line. (And if Enterprise PL/I were to start
implementing the TOTAL option, then it, in turn, would never be able to use
buffers that were above the line or above the bar). This rigid interdependence is
poor design that hurts even those that don't use the TOTAL option.

Furthermore, the TOTAL option had inherent dangers since the code bypassed all
of the library code and hence error handling was problematic at best.

STREAM I/O
STREAM I/O is supported, but the following restrictions apply to PUT/GET
DATA statements:

64 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v DEFINED is not supported if both of the following are true:
– the DEFINED variable is BIT or GRAPHIC
– the DEFINED variable has the POSITION attribute

v DEFINED is not supported if its base variable is an array slice or an array with
a different number of dimensions than the defined variable.

Structure expressions
Structure expressions as arguments are not supported unless both of the following
conditions are true:
v There is a parameter description.
v The parameter description specifies all constant extents.

However, structure expressions are not supported in any GENERIC reference.
Mismatched parameter and argument structures are also not supported in any
GENERIC reference.

Array expressions
An array expression is not allowed as an argument to a user function unless it is
an array of scalars of known size. Consequently, any array of scalars of arithmetic
type may be passed to a user function, but there may be problems with arrays of
varying-length strings.

However, array expressions are not supported in any GENERIC reference.
Mismatched parameter and argument arrays are also not supported in any
GENERIC reference.

The following example shows a numeric array expression supported in a call:
dcl x entry, (y(10),z(10)) fixed bin(31);

call x(y + z);

The following unprototyped call would be flagged since it requires a string
expression of unknown size:

dcl a1 entry;
dcl (b(10),c(10)) char(20) var;

call a1(b || c);

However, the following prototyped call would not be flagged:
dcl a2 entry(char(30) var);
dcl (b(10),c(10)) char(20) var;

call a2(b || c);

DEFAULT statement
Factored default specifications are not supported.

For example, a statement such as the following is not supported:
default (range(a:h), range(p:z)) fixed bin;

But you could change the above statement to the following equivalent and
supported statement:

default range(a:h) fixed bin, range(p:z) fixed bin;

Chapter 10. Understanding the limitations of the new compiler 65

The use of a "(" after the DEFAULT keyword is reserved for the same purpose as
under the ANSI standard: after the DEFAULT keyword, the standard allows a
parenthesized logical predicate in attributes.

Extents of automatic variables
An extent of an automatic variable cannot be set by a function nested in the
procedure where the automatic variable is declared or by an entry variable unless
the entry variable is declared before the automatic variable.

Built-in functions
Built-in functions are supported with the following exceptions/restrictions:
v The PLITEST built-in function is not supported.
v Pseudovariables permitted in DO loops are restricted to:

– IMAG
– REAL
– SUBSTR
– UNSPEC

v The POLY built-in function has the following restrictions:
– The first argument must be REAL FLOAT.
– The second argument must be scalar.

v The COMPLEX pseudovariable is not supported.
v Under the RULES(NOLAXDCL) option, the compiler will flag any declare of a

name, such as DISPLAY, as a built-in function if there is no such PL/I built-in
function. Even under the more forgiving RULES(LAXDCL) option, the compiler
will flag any declare of a name, such as DISPLAY, as a built-in function if there
is no such PL/I built-in function if the code attempts to use the name as a
built-in function (rather than merely declare it).

DEFINED BIT aggregates
If a DEFINED variable is a structure or union containing any elements which are
UNALIGNED NONVARYING BIT, then all array bounds and string lengths in the
DEFINED variable must be specified as constants. The compiler will issue the
S-level message IBM1900I when this restriction is violated.

OPTIONS(REENTRANT)
This option is a part of the OPTIONS for a PROCEDURE or BEGIN statement, but
it is ignored. On the z/OS platform, all programs compiled with the RENT
compiler option are reentrant, and other programs are reentrant if they do not alter
any static variables (which may require use of the NOWRITABLE compiler option).

iSUB defining
Support for iSUB defining is limited to arrays of scalars.

LABEL arrays
The Enterprise PL/I compiler does not require that arrays of statement labels be
declared. If such an array is declared, it should either be declared without a
storage class (and without an active DEFAULT statement that would imply a
storage class) or it should be declared as STATIC. The old PL/I compiler would
require either the former or that the array be declared as AUTOMATIC. Hence if

66 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

you want your code to be accepted by both compilers, you must declare such an
array, but you should declare it neither as AUTOMATIC nor as STATIC.

DBCS
DBCS can be used only in the following:
v G and M constants
v Identifiers
v Comments

G literals can start and end with a DBCS quote followed by either a DBCS G or an
SBCS G.

Macro preprocessor
Suffixes that follow string constants are not replaced by the macro
preprocessor—whether or not these are legal PL/I suffixes—unless you insert a
delimiter between the ending quotation mark of the string and the first letter of the
suffix.

Note that the OS PL/I V2R1 compiler introduced this change, and so this is not a
difference between the Enterprise PL/I compiler and either the PL/I for MVS &
VM compiler or the OS PL/I V2Rx compilers. This restriction is consequently not
flagged.

As an example, consider:
%DCL (GX, XX) CHAR;
%GX='||FX';
%XX='||ZZ';
DATA = 'STRING'GX;
DATA = 'STRING'XX;
DATA = 'STRING' GX;
DATA = 'STRING' XX;

Under OS PL/I V1, this produces the source:
DATA = 'STRING'||FX;
DATA = 'STRING'||ZZ;
DATA = 'STRING' ||FX;
DATA = 'STRING' ||ZZ;

whereas, under Enterprise PL/I it produces:
DATA = 'STRING'GX;
DATA = 'STRING'XX;
DATA = 'STRING' ||FX;
DATA = 'STRING' ||ZZ;

Options restricted
The following compiler options are restricted:
v INCLUDE

The NOINCLUDE option is not supported, and the old INCLUDE option is
essentially always enabled.

v LANGLVL
The NOSPROG and SPROG suboptions are not supported - SPROG is always in
effect.
The SAA and SAA2 suboptions are not supported, because the SAA compilers
are no longer in service.

Chapter 10. Understanding the limitations of the new compiler 67

v LIST
The LIST option is supported, but no suboptions of the LIST option are
supported - under the new compiler, the psuedo-assembly listing always
appears in one column.

v STMT
The STMT option is supported, but it currently has no effect on the output
produced by the LIST, MAP or OFFSET options.

v SYSTEM
The CMS and CMSTPL options are not supported (because VM is not
supported).

Options not supported
The following compiler options are not supported:
v CONTROL
v COUNT

The COUNT options is not supported, and it is also not supported by the PL/I
for MVS & VM compiler.

v DECK
v ESD

The ESD option is not supported, but an External Symbol Dictionary is
produced if either the LIST or MAP option is in effect.

v FLOW
The FLOW option is not supported, and it is also not supported by the PL/I for
MVS & VM compiler.

v (NO)GOSTMT
The GOSTMT option is not supported and is treated as a synonym for the
GONUMBER option.
The NOGOSTMT option is not supported and is treated as a synonym for the
NOGONUMBER option.

v IMPRECISE
v LMESSAGE
v SEQUENCE
v SIZE
v SMESSAGE

Restrictions on other interfaces to the compiler

Batch compilation
Compilation is not performed in PROCESS-delimited chunks, and this difference
has the following consequences:
v Options on later sets of PROCESS statements are ignored
v One TEXT deck or .o is produced
v One listing file with one set of messages is produced
v External variables with the same name must match

The following example demonstrates a batch compilation. In this case, the
mismatches in b and x would be flagged by the new compiler only.

68 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

*process opt(0);

a: proc;
dcl b ext entry(1,2 char(2), 2 char(2));
dcl

1 x ext,
2 x1a char(2),
2 x1b char(2);

call b(x);
end;

*process opt(2);

b: proc(p);
dcl p pointer;
dcl

1 x ext,
2 x1a bit(16),
2 x1b bit(16);

end;

You can imitate how batch compilations worked by using a program like the one
in Appendix E, “Batch processing sample,” on page 183.

Invoking the compiler from assembler
The new compiler cannot be invoked from assembler by calling IEL0AA.

The new DD option can be used to specify a list of alternate ddnames for the
compiler to use. This provides the key functionality offered by invoking the old
compiler from assembler and should alleviate the need to invoke the compiler
from assembler.

Note also that the compiler can be invoked from an Enterprise PL/I program by
using the SYSTEM built-in function.

However, if you must invoke the compiler from assembler, you can do so as long
as your assembler code satisfies these requirements:
v the assembler code must be LE-enabled
v it must load IBMZPLI using CEEFETCH
v when it calls IBMZPLI, register 1 must point to the address of a varying string

containing the options to be passed in the compilation

Compiling under TSO
There is no support for compilations under TSO.

This means that the ISPF 4.5 option is useless with Enterprise PL/I. You should
probably disable this option or use it for another purpose.

However, you can invoke the compiler under z/OS UNIX using the pli command.
For more information on using the compiler under z/OS UNIX, see the Enterprise
PL/I for z/OS Programming Guide.

Specifying INCLUDE data set names
The DD statement corresponding to a %INCLUDE statement should specify the
name of the PDS (or PDSE) containing the file to be included, but it must not

Chapter 10. Understanding the limitations of the new compiler 69

specify the name of the member file. For example, to include the file DEBUG from
the data set INCLUDE.PLI using the TEST DD statement, the %INCLUDE
statement would be:

%INCLUDE TEST(DEBUG);

The corresponding DD statement would be
TEST DD DISP=SHR,DSN=INCLUDE.PLI

The following DD statement would not be accepted by the new compiler.
TEST DD DISP=SHR,DSN=INCLUDE.PLI(DEBUG)

Defining the SYSLIN data set
Output in the form of one or more object modules from the compiler is stored in
the SYSLIN data set if you specify the OBJECT compile-time option. This data set
is defined by the DD statement.

The SYSLIN DD must specify a sequential dataset, not a PDS or PDSE.

Compiler time and space requirements
The LRECL for the compiler SYSPRINT data set is 137.

The new compiler can require much more time and use much more storage when
generating your code. This is especially true under OPT(2) or OPT(3), in which
case some compiles may need a region greater than 100M and may possibly
require several minutes to compile. Using the options OPT(2) or OPT(3) without
the option DFT(REORDER) can easily lead to this problem and should be avoided.

When the region size is too small for a compile, the compilation will often end
with this message:

IBM1936I S Invocation of compiler backend ended abnormally.

In these situations, you will also find in SYSOUT the following message from the
compiler backend:

SEVERE ERROR IBM5002: Virtual storage exceeded.

If you see this combination of messages, you should either split your program into
several smaller programs or recompile using a larger region size.

The new compiler always runs with ALL31(ON) and with HEAP and STACK
obtained from above the 16MB line.

AMODE(24) restrictions
AMODE(31) and RMODE(ANY) are the default settings for Enterprise PL/I
applications. To run an application in AMODE(24), you must:
1. compile all the PL/I source with the compiler option NORENT
2. link with the SIBMAM24 dataset concatenated in front of the SCEELKED

dataset
3. run with the Language Environment run-time option ALL31(OFF) and

STACK=(,,BELOW,,,)

70 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Notes:

1. There is no support for AMODE(24) in ILC applications, including those
involving both Enterprise PL/I and older PL/I. The single exception to this
restriction is ILC between Enterprise PL/I and supported High-Level
Assembler releases.

2. When you include the SIBMAM24 library in the SYSLIB concatenation for the
binder, you are making available library modules which have mode switching
capability. However, including the SIBMAM24 library will not by itself cause
the resulting load module to be AMODE(24).

3. If you try to run an Enterprise PL/I program in AMODE(24) without linking
the SIBMAM24 library before the SCEELKED dataset in the SYSLIB
concatenation for the binder, your application is invalid and can lead to obscure
abends. For example, the first out-of-block GOTO will most likely cause an
abend in the library SETJMP routine.

EXTERNAL names restricted
You must not declare as EXTERNAL a variable whose name, unless it is the name
of an IBM provided function such as PLIXOPT or PLITDLI, begins with any of the
following:
v @@
v CEE
v IBM
v PLI

The code generator for the new compiler uses C functions to perform some tasks,
particularly under OPT(0). As a result, unless you are intending to invoke the C
function directly, you must not declare as EXTERNAL a variable with any of the
following names:
v LONGJMP
v MEMCCPY
v MEMCHR
v MEMCMP
v MEMCPY
v MEMMOVE
v MEMSET
v SETJMP
v STRLEN
v SYSTEM

The PLIXHD variable is no longer used as the heading in storage reports.
Consequently, the identifier PLIXHD is no longer reserved, and you can declare it
and use it as you would declare and use any other variable (as long as you don't
declare it EXTERNAL).

Listing differences
The new compiler produces a listing that is significantly different from the listing
produced by the old compiler. Some of the differences include:
v the LRECL for the listing is 137
v the first line of the source will not be reflected in the first line of the first page,

but the first 43 (or the first 25 if the DBCS option is in effect) characters from
that line will be incorporated into the header line of the following pages (except
for some parts of the pseudoassembler listing)

Chapter 10. Understanding the limitations of the new compiler 71

Control block differences
The new compiler uses some different internal control blocks in its generated code
than did the old compiler. If you had code that knew the layout and meaning of
such control blocks, that code is highly likely not to work now and will probably
have to be changed. Some examples where these differences would require code
changes:
v assembler code that "knows" the layout of a PL/I label variable and uses that to

try to branch back from assembler into PL/I code
v assembler code that "knows" the layout of a PL/I file variable and associated file

control block and uses that to try to get the DCB for a file

ISAM support differences
The Enterprise PL/I compiler provides no support for ISAM datasets.

72 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 11. Understanding the new compiler's options

This section describes some important compiler options, and after a description of
some important defaults, it describes choices you can make to improve:
v compatibility
v performance
v quality
v test

If you want to ignore all the discussion below and blindly try to maximize
compatibility at all costs, you should:
1. use the following default options:
v BACKREG(5)
v BIFPREC(15)
v CMPAT(V2) or CMPAT(V1)
v EXTRN(FULL)
v LIMITS(EXTNAME(7))
v NORENT

2. specify the following additional, non-default options:
v COMMON
v DFT(NOBIN1ARG)
v DFT(LINKAGE(SYSTEM))
v DFT(OVERLAP)
v NOREDUCE
v NORESEXP
v RULES(LAXCTL)
v RULES(NOLAXINOUT NOLAXSEMI)
v STATIC(FULL)
v NOWRITABLE(PRV)

The rest of this section will describe these and other options in detail so that you
can understand the consequences of your choices.

Note that you can also change the IBM defaults for the compiler option by running
the job IBMZWIOP when you install the compiler or by applying a usermod to the
module IBMZIOP after you have installed the compiler.

Understanding the effect of default options on compatibility
This section describes some of the default settings for the compiler options and
why you might want to use them.

BACKREG(5)
The BACKREG option controls the backchain register, which is the register used to
pass the address of a parent routine's automatic storage when a nested routine is
invoked.

For best compatibility with PL/I for MVS & VM, OS PL/I V2R3 and earlier
compilers, BACKREG(5) should be used.

© Copyright IBM Corp. 1999, 2011 73

All routines that share an ENTRY VARIABLE must be compiled with the same
BACKREG option, and it is strongly recommended that all code in application be
compiled with the same BACKREG option.

Note that code compiled with VisualAge PL/I effectively used the BACKREG(11)
option. Code compiled with Enterprise PL/I V3R1 or V3R2 also used the
BACKREG(11) option by default.

BIFPREC(15)
The BIFPREC option controls the precision of the FIXED BIN result returned by the
following built-in functions:
v COUNT
v INDEX
v LENGTH
v LINENO
v ONCOUNT
v PAGENO
v SEARCH
v SEARCHR
v SIGN
v VERIFY
v VERIFYR

The effect of the BIFPREC compiler option is most visible when the result of one of
the above built-in functions is passed to an external function that has been
declared without a parameter list. For example, consider the following code
fragment:

dcl parm char(40) var;
dcl funky ext entry(pointer, fixed bin(15));
dcl beans ext entry;
call beans(addr(parm), verify(parm),’ ’));

If the function beans actually declares its parameters as POINTER and FIXED
BIN(15), then if the code above were compiled with the option BIFPREC(31) and if
it were run on a big-endian system such as z/OS, the compiler would pass a
four-byte integer as the second argument and the second parameter would appear
to be zero.

Note that the function funky would work on all systems with either option.

The BIFPREC option does not affect the built-in functions DIM, HBOUND and
LBOUND. The CMPAT option determines the precision of the FIXED BIN result
returned these three functions: under CMPAT(V1), these array-handling functions
return a FIXED BIN(15) result, while under CMPAT(V2) and CMPAT(LE), they
return a FIXED BIN(31) result.

CMPAT(V2)
With V3R2 of Enterprise PL/I, CMPAT(V2) became the default (previously
CMPAT(LE) was the default). This default will ease your migration because under
CMPAT(V2),
v all descriptors will be the same as those generated by the OS PL/I V2R3 and

PL/I for MVS & VM compilers
v functions returning a string will also use a string locator descriptor (as did the

old compilers) for the return value

74 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

CMPAT(V1) still limits array bounds to halfword values.

CMPAT(V2) and CMPAT(V1) will not prevent the use of any new feature of
Enterprise PL/I. However, if you have assembler code that examines or builds
PL/I descriptors (even if only for strings), the CMPAT(V2) (or CMPAT(V1)) option
must be used. For example, DB2 contains such assembler code where it invokes
PL/I stored procedures and hence your stored procedures written in PL/I must be
compiled with CMPAT(V1) or CMPAT(V2).

Unlike CMPAT(V1) and CMPAT(V2), there is no feature that will work only with
CMPAT(LE). Do not use it.

If any suboption will be dropped later, it will be the LE suboption.

EXTRN(FULL)
By default, the Enterprise compiler will not discard unused EXTERNAL ENTRYs.

This would cause problems if the EXTRN for a discarded entry was used to force
the linker to resolve other references. For example, this would cause problems if
your program called the secondary entry point B inside a procedure called A, but
contained a declare but no references for A itself.

Note, however, this option will cause EXTRNs to be emitted for all declared
external ENTRYs. If you include a file with all the declares potentially used by
your code, this can populate your text decks with a large number of EXTRNs.

LIMITS(EXTNAME(7))
With V3R2 of Enterprise PL/I, LIMITS(EXTNAME(7)) became the default
(previously LIMITS(EXTNAME(100)) was the default). This default will ease your
migration because this will make the default under the new compiler match what
the old compilers always did - they had a limit of 7 characters in an external name
and no option that allowed for a higher limit.

Also note that any n > 8 in LIMITS(EXTNAME(n)) requires the prelinker to be
used or your modules to be stored in PDSEs.

Additionally, under LIMITS(EXTNAME(7)) (and under all the old compilers), if an
8-character name is declared as EXTERNAL, the compiler will take the first 4 and
last 3 characters to make a 7-character name which it will pass to the linker.
However, under LIMITS(EXTNAME(8)), the full 8-character name would be passed
to the linker, thereby creating an incompatibility with the code generated by the
old compilers.

For example, if the name DEZEMBER is declared as EXTERNAL, then under
LIMITS(EXTNAME(7)), the linker will see the name DEZEBER, while under
LIMITS(EXTNAME(8)), it would see DEZEMBER.

Consequently, for compatibility, do not use LIMITS(EXTNAME(8)) - use the default
of LIMITS(EXTNAME(7)).

Finally note that LIMITS(EXTNAME(7)) applies only to PL/I names; assembler and
COBOL routines can have 8 characters (exactly as they could with the old
compilers).

Chapter 11. Understanding the new compiler's options 75

NORENT and WRITABLE
With V3R2 of Enterprise PL/I, NORENT became the default (previously RENT
was the default). This default will ease your migration because now, by default, the
new compiler, just like the old compilers, will not generate any extra code to make
your static variables writeable and still REENTRANT (which is what the RENT
option does).

Also note that using the RENT option requires the prelinker to be used or your
modules to be stored in PDSEs.

The new WRITABLE option is also the default since it gives you the best
performance in combination with NORENT.

But if you are using the NORENT option, then you must also use the
NOWRITABLE option if both of the following are true:
1. your code must be REENTRANT
2. your code uses CONTROLLED variables or FILEs

With Enterprise V3R4, the NOWRITABLE option has two suboptions which can
also make your code more (or less) compatible:

FWS The NOWRITABLE(FWS) option will make your code compatible with the
code generated by earlier releases of Enterprise PL/I under the
NOWRITABLE option, but it does not allow CONTROLLED variables to
be shared between code generated by Enterprise PL/I and code generated
by the PL/I for MVS & VM and earlier compilers.

PRV The NOWRITABLE(PRV) option will allow code compiled by Enterprise
PL/I to share CONTROLLED variables with code compiled by the old
PL/I compilers. However, it will also impose the same limits as imposed
by those compilers on using CONTROLLED with FETCH.

SYSTEM
The SYSTEM option generally effects only the way parameters are passed to
MAIN. The default is SYSTEM(MVS), and this option should be used for all
programs except as noted below.

SYSTEM(CICS)
The SYSTEM(CICS) option should be used for all CICS MAIN programs.

SYSTEM(IMS)
The SYSTEM(IMS) option should be used only for those IMS MAIN programs to
which IMS will pass parameters BYVALUE.

SYSTEM(OS)
The SYSTEM(OS) option should be used only for those z/OS UNIX MAIN
programs that want to receive the parameter list built by z/OS UNIX. For more
discussion of this option, see the Enterprise PL/I for z/OS Programming Guide.

Choosing non-default options for even more compatibility
This section describes some of the options that you can choose to increase the
compatibility between the old and new compilers.

76 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

COMMON
The COMMON option specifies that the compiler should generate CM linkage
records for uninitialized EXTERNAL STATIC. This option can it make it easier to
migrate your code if you declare an EXTERNAL STATIC variable in more than one
routine but initialize it in only one.

However, note that this option is valid only if both the NORENT and
LIMITS(EXTNAME(7)) options are in effect.

DFT(NOBIN1ARG)
The DFT(NOBIN1ARG) compiler option will generally increase the compatibility of
your code, but at the expense of limiting the use of some new function.

For more discussion of this option, see “One-byte FIXED BIN” on page 116.

DEFAULT(LINKAGE(SYSTEM))
DFT(LINKAGE(SYSTEM)) causes the parameter list to be built in the same way
that it was built by the old compilers (including turning on the high-order bit of
the address of the last parameter).

This is not the default linkage used by C or JAVA; their default linkage is what
you get with the new compiler's default of DFT(LINKAGE(OPTLINK)). Under
the OPTLINK linkage, the last parameter may not even be an address (for instance,
if it is a BYVALUE FIXED BIN(31)), and its high-order bit will not turned on even
when it is an address. Furthermore, under the OPTLINK linkage, the return value,
if any, may be returned in Register 15.

The SYSTEM linkage is assumed for any OPTIONS(COBOL) or OPTIONS(ASM)
routine.

When one PL/I routine calls another, it does not matter what linkage they use as
long as they match. However, some non-PL/I routines are not declared as
OPTIONS(ASM) but do use the SYSTEM linkage. So, for easiest compatibility and
migration, you should probably use the DFT(LINKAGE(SYSTEM)) option.

However if you make the SYSTEM linkage your default, you will need to add
OPTIONS(LINKAGE(OPTLINK)) to the declares of any functions (such as the C
library function fread) that use that linkage. For example, you would declare fread
as follows:

dcl fread ext entry(...) options(linkage(optlink));

DFT(OVERLAP)
The DFT(OVERLAP) compiler option will generally increase the compatibility of
your code, but at some expense to performance.

For more discussion of this option, see “Source-target overlap” on page 108.

NOREDUCE
The NOREDUCE compiler option will slightly increase the compatibility of your
code, but at a significant expense to performance.

For more discussion of this option, see “REDUCE” on page 80.

Chapter 11. Understanding the new compiler's options 77

NORESEXP
The NORESEXP compiler option will increase the compatibility of your code if
your code intentionally forces a ZERODIVIDE condition:

The RESEXP compiler option allows the compiler to evaluate all restricted
expressions at compiler time. For example, programs with the following code
would fail at compile-time with an S-level message:
if somevariable = goodvalue then;

else
put skip list(1 / 0);

Under the NORESEXP compiler option, the compiler would not flag this statement
and the ZERODIVIDE condition would be raised at run-time, as originally
intended.

RULES(LAXCTL)
The RULES(LAXCTL) compiler option will slightly increase the compatibility of
your code, but at a significant expense to performance.

For more discussion of this option, see “RULES(NOLAXCTL)” on page 82.

RULES(NOLAXINOUT NOLAXSEMI)
These suboptions of the RULES option have no effect on object compatibility since
they do not change the code that is generated. But if you specify them, the new
compiler will act more like the old because it will then issue two messages that the
old compiler would issue; in particular, the compiler will issue a W-level message
under:

RULES(NOLAXINOUT)
if it finds a possibly uninitialized scalar passed as an ASSIGNABLE
BYADDR parameter

RULES(NOLAXSEMI)
if it finds a semicolon inside a comment

NOWRITABLE
You should choose the NORENT option for the greatest compatibility with your
old modules.

The NORENT WRITABLE options allow the compiler to use a static pointer
v as the base for the stack that tracks a CONTROLLED variable
v as the handle for the storage that represents a FILE

Under the NOWRITABLE option, the compiler will not use a static pointer for
either of these purposes, but it has to generate more lines of code to provide the
same function.

But you must use the NOWRITABLE option if both of the following are true:
1. your code must be REENTRANT
2. your code uses CONTROLLED variables or FILEs

However, the NOWRITABLE(FWS) option can have a potentially very strong
negative impact on performance, so do not use it if either of the above items does
not apply to you.

78 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Choosing options for improved performance
This section describes some of the options that you can choose to improve the
performance of the compiler generated code.

If you want to ignore all the discussion below and blindly try to improve
performance at all costs, you should:
1. use the following default options:
v REDUCE
v NORENT
v RULES(NOLAXCTL)

2. specify the following additional, non-default options:
v ARCH(9)
v BIFPREC(31)
v DFT(NONASGN)
v DFT(CONNECTED)
v DFT(REORDER)
v DFT(NOOVERLAP)
v OPT(3)

However, while there are considerations (discussed below) that may make you
choose not to use all of the above options, unless you use both DFT(REORDER)
and at least OPT(2), you will not get good performance from the generated code.

ARCH
The default since Enterprise PL/I V3R6 is ARCH(5).

Note that Enterprise PL/I requires Language Environment 1.10 (and later) and
Language Environment 1.10 requires machines that support ARCH(5).

If you specify an ARCH level that is greater than the lowest level of any machine
on which your code runs, your code might cause a program abend with a
specification exception on those machines.

If you specify an ARCH value less than 5, the compiler resets it to 5.

BIFPREC(31)
Specifying the BIFPREC(31) will make your code perform better if you use of the
built-in functions to which it applies. However, as discussed above, the
BIFPREC(15) option will give you better compatibility if you use unprototyped
ENTRY declarations.

DEFAULT(NONASGN)
The option DFT(NONASGN) will add the NONASSIGNABLE attribute to all
STATIC variables not explicitly declared as ASSIGNABLE. If your STATIC variables
are, in fact, not altered, using this option will allow the compiler to put them in
read-only storage and that will give you better performance (particularly if you use
the RENT option).

DEFAULT(CONNECTED)
Nonconnected arrays are arrays whose elements do not occupy adjacent pieces of
storage. Nonconnected arrays are passed by both of these calls:

Chapter 11. Understanding the new compiler's options 79

dcl a(3,4) fixed bin;

dcl 1 x(5), 2 y fixed bin, 2 z fixed bin;

call f(a(*,1));

call f(x.y);

The new and old compilers fully support nonconnected arrays, and in fact, the
compilers assume that any array parameter is not connected - that there may be
other bytes between successive array elements.

This assumption slows down the compiler and requires more code to be generated
which slows down your application.

If you use the new DFT(CONNECTED) compiler option, the compiler will assume
that all arrays received are connected and will generate much better code. Hence, if
you never pass a discontiguous slice of an array (such as a column), use this
option for better performance.

DEFAULT(REORDER)
To optimize the performance from the compiler generated code, use either
OPTIMIZE(2) or OPTIMIZE(3) together with DFT(REORDER).

If you use OPTIMIZE(2) or OPTIMIZE(3) with DFT(ORDER) rather than
DFT(REORDER), the runtime performance is less optimal and the compile time
might be much longer.

DEFAULT(NOOVERLAP)
While you may want to use the DFT(OVERLAP) option for compatibility, using the
DFT(NOOVERLAP) option will give you much better performance.

For more discussion of this option, see “Source-target overlap” on page 108.

OPTIMIZE(2)/OPTIMIZE(3)
To optimize the performance from the compiler generated code, use either
OPTIMIZE(2) or OPTIMIZE(3) together with DFT(REORDER).

If you use OPTIMIZE(2) or OPTIMIZE(3) with DFT(ORDER) rather than
DFT(REORDER), the runtime performance is less optimal and the compile time
might be much longer.

Note that OPT(3) will produce slightly better code than OPT(2), but the compiler
will take much longer to compiler programs (especially large programs) under
OPT(3) than under OPT(2). For this reason, the compiler maps OPT(TIME) to
OPT(2).

REDUCE
The REDUCE option specifies that the compiler is permitted to reduce an
assignment of a null string to a structure into fewer, simpler operations - even if
that means padding bytes might be overwritten.

80 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

The REDUCE option will cause fewer lines of code to be generated for an
assignment of a null string to a structure, and that will usually mean your
compilation will be quicker and your code will run much faster. However, padding
bytes may be zeroed out.

For instance, in the following structure, there is one byte of padding between
field11 and field12:
dcl
1 sample ext,

5 field10 bin fixed(31),
5 field11 dec fixed(13),
5 field12 bin fixed(31),
5 field13 bin fixed(31),
5 field14 bit(32),
5 field15 bin fixed(31),
5 field16 bit(32),
5 field17 bin fixed(31);

Now consider the assignment sample = '';

Under the NOREDUCE option, it will cause eight assignments to be generated, but
the padding byte will be unchanged.

However, under REDUCE, the assignment would be reduced to three operations.

With NOREDUCE, you get code that looks like:
00004C 5810 3056 00015 | L r1,=A(@CONSTANT_AREA)(,r3,86)
000050 58E0 305A 00015 | L r14,=A(SAMPLE)(,r3,90)
000054 4100 0000 00015 | LA r0,0
000058 D206 E004 1000 00015 | MVC FIELD11(7,r14,4),+CONSTANT_AREA(r1,0)
00005E 5000 E000 00015 | ST r0,<s9:d0:l4>(,r14,0)
000062 5000 E00C 00015 | ST r0,<s9:d12:l4>(,r14,12)
000066 5000 E010 00015 | ST r0,<s9:d16:l4>(,r14,16)
00006A 5000 E014 00015 | ST r0,<s9:d20:l4>(,r14,20)
000072 5000 E018 00015 | ST r0,<s9:d24:l4>(,r14,24)
000076 5000 E01C 00015 | ST r0,<s9:d28:l4>(,r14,28)
00007A 5000 E020 00015 | ST r0,<s9:d32:l4>(,r14,32)

But with REDUCE, you get code like:
00004C 5810 3042 00015 | L r1,=A(SAMPLE)(,r3,66)
000050 58E0 3046 00000 | L r14,=A(@CONSTANT_AREA)(,r3,70)
000054 D703 1000 1000 00015 | XC _shadow1(4,r1,0),_shadow1(r1,0)
00005A D206 1004 E000 00015 | MVC _shadow1(7,r1,4),+CONSTANT_AREA(r14,0)
000060 D717 100C 100C 00015 | XC _shadow1(24,r1,12),_shadow1(r1,12)

Consequently, for best performance use the REDUCE compiler option.

NORENT
While the NORENT option is now one of the compiler defaults because its use
increases the compatibility of the object code generated, it may also significantly
improve the performance of your code - as long as you do not also use the
NOWRITABLE option.

The reasons for this performance improvement are that, under the RENT option,
the initialization of every load module takes more time and the code length is
longer both for calls and for references to static variables.

Chapter 11. Understanding the new compiler's options 81

However, note that if your code must be REENTRANT and if your code uses
CONTROLLED variables or FILEs, then you must use either the RENT option or
both the NORENT and NOWRITABLE options.

If you use NOWRITABLE with NORENT and your application consists of many
programs using CONTROLLED variables, then you will get better performance if
you use NOWRITABLE(PRV) than if you use NOWRITABLE(FWS). However, as
discussed earlier in this chapter, using NOWRITABLE(PRV) will also impose all the
old limits on using CONTROLLED variables with FETCH.

RULES(NOLAXCTL)
Using RULES(LAXCTL) can significantly slow the compiler and cause it to
generate more copious and more time-consuming code

For one large customer program, this reduced the compile-time by 40% and
run-time by 50%.

To understand this option, consider the following declaration:
DCL
01 VTAB(*) CTL, /* VALOREN-TABLE */
02 WA0102 CHAR(26), /* MUTATIONSDATUM DB2-TIMESTAMP */
02 WA0104I BIN FIXED(31), /* PKEY AKTIONSNR-ID: */
02 WA0104K CHAR(1), /* PKEY VALOREN-KNZ: */
02 WA0104V DEC FIXED(15,0), /* PKEY VALORENNR */
02 WA0104L BIN FIXED(15), /* PKEY VV_SEG_LFNR */
02 WA0104A CHAR(4); /* PKEY TERM_ID */

The bounds of VTAB are clearly not known at compile-time. But is the length of
WA0104K really 1 ? The structure would normally be allocated with a statement
like one of the following two statements:

ALLOC VTAB(100);

ALLOC VTAB(N + M);

After either of these allocations, WA0104K would have length 1.

But the structure could be allocated as follows:
ALLOC

1 VTAB(17),
2 WA0102,
2 WA0140I,
2 WA0104K CHAR(29);

But then WA0104K has length 29 !

The compiler option RULES(LAXCTL) permits allocations such as the one
immediately above despite the fact that the original declared length for the string
was a constant. However, using this option will also force the compiler to generate
much longer code sequences.

In contrast, the compiler option RULES(NOLAXCTL) assumes that all lengths and
bounds that are declared as constant are, in fact, constants. - and any ALLOCATE
statement that violated this assumption will be flagged with an S-level message
IBM2063.

82 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Consequently, using this option will not leave you with any run-time surprises,
and it will give you much better performance, both at compile-time and at
run-time.

Choosing options for better quality
This section describes some of the options that you can choose to improve or
insure the quality of your code.

RULES(NOLAXDCL)
RULES(LAXDCL) causes the compiler to emit only an I-level message for each
undeclared variable. But, under RULES(NOLAXDCL), you get an E-level message.

If your code is to have any reasonable quality, you should always compile with
RULES(NOLAXDCL).

However, when we made this the default on Windows, too many users objected,
and it is now not the default.

Under RULES(NOLAXDCL), compiling:
x: proc(starting_role) returns(fixed bin(31));

dcl starting_role fixed bin(31);
return(starring_role + 1);

end;

will cause the compiler to issue an E-level message saying that starring_role is
undeclared. This would alert you to the fact that this name is almost certainly a
typo, and this is an example of why you want to use this compiler option.

The option RULES(NOLAXDCL) may also flag "working" code:
read_in = fileread(file_in, addr(buffer), stg(buffer));

if read_in = 0 then
leave;

If read_in is undeclared, the code will work; however, read_in will have FLOAT as
an attribute and that is probably not what you want.

RULES(NOLAXIF)
The expressions in IF, WHILE, UNTIL and undominated WHEN clauses should
have the attributes BIT(1) NONVARYING; however, all the new and old compilers
would allow any computational expression in these clauses. For example, you
could write:

dcl x fixed bin(31);

if x then ...

You may have intended this IF statement to mean the same as the following
statement:

if x ¬= 0 then

But the old and new compilers will interpret the statement as:
if abs(x) ¬= 0 then

It would be much better to code this statement and similar statements so that the
conditional expression was a boolean.

Chapter 11. Understanding the new compiler's options 83

Under the compiler option RULES(NOLAXIF), the compiler will flag with an
E-level message any conditional expression that does not have the attributes BIT(1)
NONVARYING. Hence you can use this option to enforce this good coding
practice.

Under RULES(NOLAXIF), the compiler will also flag an IF clause consisting of just
a reference to a BIT(8) variable, say Y. In this case, the generated code will treat the
expression as true if any of the 8 bits is on, but it might be better to change this IF
clause to Y ^= ’’b.

Note that the RULES(NOLAXIF) option will have effect on the code generated for
any statement that it flags.

RULES(NOLAXLINK)
Specifying the option RULES(LAXLINK) causes the compiler to ignore the
LINKAGE and other options specified in the declarations of two ENTRY variables
or constants when you assign or compare them.

For example, if you use the RULES(LAXLINK) option, the following incorrect
program, which would almost certainly cause an abend if executed, would not be
flagged:

dcl funtion ext entry returns(char(20));
dcl subrtn entry variable;

subrtn = function;

call subrtn;

You should use the RULES(NOLAXLINK) option to catch these errors and to
enforce basic coding standards.

However, it is probably not a good idea to use the RULES(NOLAXLINK) option in
programs containing EXEC CICS statements because the CICS preprocessor
generates these declares:

DCL DFHEI0 ENTRY VARIABLE INIT(DFHEI01) AUTO;
DCL DFHEI01 ENTRY OPTIONS(INTER ASSEMBLER);

Since the variable DFHEI0 is then used in the code that the CICS preprocessor
generates for EXEC CICS statements, the compiler will flag under
RULES(NOLAXLINK) that the entry DFHEI01 which is declared with
OPTIONS(INTER ASSEMBLER), but assigned to DFHEI0 which is declared
without any OPTIONS attribute.

RULES(NOLAXMARGINS)
Under the option RULES(NOLAXMARGINS), any line with non-blanks after the
right margin will be flagged.

This can help detect problems when code, especially an end-of-comment marker,
has been accidentally shifted too far right.

However, since many source files have serial numbers or other data after the right
margin, RULES(LAXMARGINS) is the default.

84 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

RULES(LAXSTRZ)
The new compiler will flag any string assignment where the source has a known
length, the target has a known maximum length, and the source length is greater
than the maximum target length. Unfortunately, this will cause the compiler to flag
even those assignments where the trailing bits or characters are "uninteresting".

The compiler option RULES(LAXSTRZ) can help reduce this "noise": under
RULES(LAXSTRZ), no message will be issued in an initial clause or an assignment
if :
v a bit variable has a source that is too long but whose excess bits are all 0's
v a character variable has a source that is too long but whose excess characters are

all blanks

Consequently, under RULES(LAXSTRZ), only the second of the following
statements would be flagged:

dcl a char(4) init(’ok ’);
dcl b char(4) init(’error’);

The default option is RULES(NOLAXSTRZ), but using RULES(LAXSTRZ) might
give you better quality by letting you focus on the truly problematic assignments.

RULES(NOMULTICLOSE)
The new and old compilers all allow you to close more than one DO, SELECT,
BEGIN or PROCEDURE group with one END statement, although the new
compiler will issue an I-level message.

However, closing multiple groups with one END statement is not a good
programming practice, and the compiler option RULES(NOMULTICLOSE) allows
you to force the compiler to flag such code with an E-level message. For example,
under this option the compiler would object to the following code:

a: do i = 1 to 17;
b: do j = 1 to 29;

t = x(i,j); /* transpose i and j
x(i,j) = x(j,i);
x(j,i) = t;

end b; /* end of loop */
end a;

Note that since the first comment is unclosed, the end a; closes both DO loops.

Choosing options for test
This section describes some of the options that you can choose during
development when you want to test your code.

CHECK(CONFORMANCE)
Specifying the CONFORMANCE suboption of the CHECK option will cause the
compiler to generate extra code in the prologue of some procedures to check that
the parameters passed match what those procedures expect.

The Programming Guide describes in more detail when this option applies and
what it will do, and it can be a very useful tool in development to test your code.

Chapter 11. Understanding the new compiler's options 85

GONUMBER
When you specify the compiler option GONUMBER, the compiler generates a
"statement number table". This table allows the error handler, when it needs to
produce a message for a condition that has been raised, to identify where the
condition occurred not only by its offset within the containing procedure, but also
by its location within your source program.

This extra information can be very useful in helping you analyze errors in your
program. If you choose not to use this option, you should probably use the
OFFSET option so that the compiler will produce a table that you can use to
determine the source statement from the entry offset.

PREFIX
The PREFIX compiler option allows you to enable PL/I conditions without editing
your source. The following three conditions are particularly useful to enable during
test:
v SIZE
v STRINGRANGE
v STRINGSIZE
v SUBSCRIPTRANGE

However, all these conditions will cause the compiler to generate more code and
will sometimes cause the performance of the generated code to be significantly
worse. Enabling the SIZE condition for an entire compilation can be especially
expensive, and it is not recommended that you use this option with production
programs.

TEST
Finally, if you are using Debug Tool, you should use the TEST option so that the
compiler will generate symbol tables and other information needed for the
debugger. However, this is another option that you should probably not use with
production programs.

86 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 12. Understanding the new compiler's messages

The new compiler issues many messages that are very similar to those issued by
the old compilers. However, it also issues many new messages, some of which can
be very important as you migrate to the new compiler. Paying attention to
messages such as these can alert you to possible migration problems. This section
will attempt to explain some of the more important of these messages.

Many of the messages discussed here are I-level and W-level messages, but that
does not mean you should ignore them. In fact, these messages are highlighting
probable errors in your "working" code.

IBM1044: one-byte FIXED BIN
This I-level message alerts you to a difference between Enterprise PL/I and the old
PL/I compilers. The message produced by the new compiler looks like:

IBM1044I I FIXED BINARY with precision 7 or less is mapped to 1 byte.

This is a feature of Enterprise PL/I: it supports one-byte integers. This is a very
useful feature, especially when exchanging data with C or JAVA.

However, this is also a difference between the old and the new compilers: under
the old compilers, a variable declared as, for example, FIXED BIN(7) would have
been allocated 2 bytes which meant that unless SIZE was enabled, it could have
assumed values ranging from -32768 to 32767 rather than the much smaller range
of --128 to 127 allowed by a one-byte integer.

Unless you are intentionally exploiting this new feature, you should probably use
the EXIT option to increase the severity of this message and then change all code
that produces the message.

IBM1053: scaled FIXED BIN evaluation
When compiling some of your code, you may see the following message:
IBM1053I I Scaled FIXED operation evaluated as FIXED DECIMAL.

For an example of the code that will produce this message, and for an explanation
of what to do, see “Arithmetic built-in functions with scale factors and FIXED
BIN” on page 118.

IBM1065: imprecise float constants
This I-level message alerts you to a potential source of problems with Enterprise
PL/I:

IBM1065I I Float constant ... would be more precise if specified as a long float.

Floating point constants can represent binary fractions (such .1E0b and .001E0b)
very well, but in general, they cannot represent decimal fractions (such .1E0 and
3.1415E0) precisely. This message alerts you to the fact that if such fractions were
specified as long-floating point (for instance by specifying more than 6 decimal
digits), then the fraction would be more precisely represented.

© Copyright IBM Corp. 1999, 2011 87

IBM1091: FIXED BIN precision warning
This W-level message alerts you to what is at best poor programming and at worst
a source of problems. The message produced by the new compiler looks like:

IBM1091I W FIXED BIN precision less than storage allows.

The Enterprise PL/I compiler will produce this message whenever a SIGNED
FIXED BIN variable is declared with a precision other than 7, 15, 31 or 63 or
whenever an UNSIGNED FIXED BIN variable is declared with a precision other
than 8, 16, 32 or 64. The compiler will also issue this message if a built-in function
such as BIN, ADD, DIVIDE, etc has a FIXED BIN result but specifies one of the
above precisions.

For example, if you declare a variable as FIXED BIN(5), the compiler will flag the
declare, and you should probably change the declare to the intended FIXED
BIN(15).

IBM1099: mixed FIXED
When compiling some of your code, you may see messages such as:

IBM1099I W FIXED DEC(7,2) operand will be converted to FIXED
BIN(25,7). Significant digits may be lost.

The attributes in your messages may vary, but a sample piece of code that would
produce exactly this message is:

DCL
1 REC_OUT,

03 AVAIL FIXED BIN(31),
03 TOTAL_SPARE FIXED DECIMAL(7,2),
03 WORK_TOTAL FIXED DECIMAL(7,2);

AVAIL = 17;
WORK_TOTAL = 12.2;

TOTAL_SPARE = AVAIL + WORK_TOTAL;

The new and old compilers implement the final assignment in exactly the same
way and both would leave TOTAL_SPARE with the value of 29.19 (not 29.20 as
you might expect). However, only the new compiler issues a message to tell you
that you might want to examine this statement more closely.

To understand what this message is telling you and why the result of the
statement above is correct when it seems to be wrong, you need to recall these
PL/I rules for arithmetic operations other than exponentiation:
1. if either operand is FLOAT, any FIXED is converted to FLOAT
2. if either operand is BINARY, any DECIMAL is converted to BINARY
3. DECIMAL(p,q) is converted to BINARY(1+log(10)*p, log(10)*q)

So, adding the FIXED BIN(31,0) variable AVAIL to the FIXED DEC(7,2) variable
WORK_TOTAL will force, by the above rules, the DEC(7,2) operand to be
converted to BIN(25,7).

But 12.20 cannot be exactly represented as a BIN(25,7), and is actually converted
via

(bin(12.20,31,0) * 2**7) / 10**2

88 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

This yields a value that is approximately 12.195.

Then adding 17 and converting back results in 29.19.

The compiler behavior in all of the above is correct, but perhaps not what you
want. If it is, in fact, not what you want, you could force the operation to be
evaluated in DECIMAL by either applying the DECIMAL built-in function to the
BINARY operand or by specifying the new compiler option RULES(ANS).

Under RULES(ANS), scaled FIXED BIN is not permitted and the conversion rules
are more what a naive user might expect:

if both operands are FIXED, then

if either has a non-zero scale, any BIN becomes DEC

So when adding BIN(31,0) to DEC(7,2), the BIN(31,0) is converted to DEC(10,0)
and nothing is lost.

The same considerations as detailed above also apply to the following customer
code fragment:

dcl a dec fixed(15,3) init(2500000);
dcl zero bin fixed(31) init(0);
if (a ¬= zero) then

put skip edit(’dec fixed ¬= Zero’)(a);
else

put skip edit(’dec fixed = Zero’)(a);

The DEC(15,3) operand gets converted to BIN(31,10).

But BIN(31,10) can hold up to 2**21 or 2_097_152.

Consequently, this conversion cannot be made successfully, and the SIZE condition
would be raised if it were enabled. When the SIZE condition is not enabled, this
code is in error and the CVB instruction that is generated to perform the
conversion raises the ZERODIVIDE condition.

Again, the new compiler issues an appropriate message:
IBM1099I W FIXED DEC(15,3) operand will be converted

to FIXED BIN(31,10). Significant digits may be lost.

Finally, using RULES(ANS) compiler option or applying the DEC built-in function
to the BINARY operand would again fix this code.

IBM1181: miscoded DO loops
Some programs that have always compiled cleanly may now produce this
message:

IBM1181I W A WHILE or UNTIL option at the end of a series DO specifications
applies only to the last specification.

This message is produced for statements such as the following:
DO I = 1, 2 WHILE(X = 'Z');

This message says that this DO-loop will be executed once with I equal to 1
(whether or not X = ’Z’ is true) and then, if X = ’Z’ is true, with I equal to 2. This
DO statement is not the same as this statement (although this is probably what the
author intended:

Chapter 12. Understanding the new compiler's messages 89

DO I = 1 WHILE(X = 'Z'), 2 WHILE(X = 'Z')

If this was what you intended, it would probably be best to code the statement as:
DO I = 1 TO 2 WHILE(X = 'Z');

And, if you did want to test if X = ’Z’ only before the second iteration of the
DO-group, then it would be best to code the statement as:
DO I = 1 TO 2 UNTIL(X ^= 'Z');

IBM1206: misuse of BIT operators
This W-level message alerts you to likely coding errors. The message produced by
the new compiler looks like:

IBM1206I W BIT operators should be applied only to BIT operands.

The code generated by the new compiler for statements where it produces this
message is the same as the code generated by the old compiler, although the latter
issued no warning message.

As examples of where this message could arise and the likely coding errors that
led to them, consider this code

dcl (x,y) fixed bin;

if x = ¬y then
...

if x ¬ y then
...

In the first IF statement, the bit prefix negation operator will be applied to the
FIXED BIN variable y, and most likely that is not what was meant. Similarly, in the
second IF statement, the bit infix exclusive-or operator will be applied to the
FIXED BIN variables x and y, and most likely that is again not what was meant. In
fact, both statements most likely contain typographical errors and were meant to
test if the variables x and y were unequal.

Note also that if the bitwise operations were really intended here, it would
probably be best to use the BIT built-in function (or possibly the INOT and IEOR
built-in functions) to make that clear.

IBM1208: incompletely initialized arrays
When compiling some of your code, you may also see the following new message:

IBM1208I W INITIAL list for the array WPPXS_TAB
contains only one item.

For instance, this message would be produced if the variable in the following
declaration is used in your program:

DCL WPPXS_TAB(15) CHAR(3500) INIT((15)’ ’);

The INIT((15)' ') attribute does not specify 15 instances of a string consisting of
one blank. The 15 is a string repetition factor, and so this INIT clause specifies only
one string (of 15 blanks).

To initialize the whole array to blanks, you should code:
DCL WPPXS_TAB(15) CHAR(3500) INIT((*) (’’));

90 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

The new compiler will also produce this message for many other similar declares,
such as:

DCL LISTE(4,60:73) CHAR(50) INIT(’’);
DCL SPRACH_TAB(4) CHAR(15) INIT(’’);

Finally, if this array is part of a structure, the compiler will flag any subsequent
occurrences of this problem in that structure withe message IBM2603. Hence, you
can use the EXIT option to reduce the number of times this problem is flagged to
once per structure.

IBM1215: incomplete declares
When compiling some of your old code, you may additionally see a message such
as the following:

IBM1215I W The variable I is declared without any data attributes.

The new compiler would issue this message, for example, for this declaration:
DCL I, J FIXED BIN;

While the older compilers would produce no message for this declare, the new
compiler issues the message above because this declare is not equivalent to DCL
(I,J) FIXED BIN;: it's actually equivalent to DCL I; DCL J FIXED BIN;.

IBM1216: incorrect structure declares
Similarly, consider the following declare:

DCL
1 S,

2 A CHAR(10),
2 B,

2 C CHAR(3),
2 D CHAR(3);

The older compilers would produce no message for this declare. However, the new
compiler will produce the message:

IBM1216I W The structure member B is declared without any data
attributes. A level number may be incorrect.

This message is pointing at some probable errors in the declare, namely that C and
D should be declared at level 3 rather than level 2. But given the declare above,
since they are at the same structure level as B, B is not their parent and gets the
default attributes of FLOAT! This is almost certainly not what you intended, and
this new message is directing your attention to this likely problem.

The compiler also issued this message for the following customer code:
DCL PARDIASE CHAR (20);
DCL 1 INDIASE1 BASED (PTPDIASE),

2 C1CODIA CHAR (1),
2 C1FECDI DEC FIXED (9),
2 C1DIADI CHAR (9),
2 C1ABRDI CHAR (3),
2 C1RESDI;

DCL PTPDIASE POINTER;
PTPDIASE = ADDR (PARDIASE);
. . .
INDIASE1 = ’’;

Chapter 12. Understanding the new compiler's messages 91

The message flags the fact that the variable C1RESDI is declared with out any data
attributes. Hence it gets the default attributes of FLOAT DEC(6), and that means
that the structure INDIASE1 then occupies 22 bytes. But since the structure is
based on a pointer that has been assigned the address of a CHAR(20) field, the
assignment INDIASE1 = ’’; will blank out 2 bytes of storage used by some other
variable. In the customer’s code this led to an abend in a library routine. Note that
f C1RESDI had been declared as CHAR(2) or even as CHAR(0) (and CHAR(0) is
legitimate PL/I), then there would have been no problem.

So, even though this message, like many of the other messages discussed in this
chapter, is not an E-level message, it would be very good to change your code so
that your compilation is free of this message.

IBM1220: pointless comparisons
When compiling some of your code, you may also see the following new message:

IBM1220I W Result of comparison is always constant

For example, the following code would cause the new compiler to produce this
message:

DCL ZWSTRING CHAR(80);
DCL ZWSTRING2 CHAR(8);

ZWSTRING = ’E R R O R’;
.....
IF ZWSTRING2 = ’E R R O R’ THEN

This message is produced because 'E R R O R' is CHAR(9) with its last character a
non-blank, and hence it could never equal a CHAR(8) field.

Any code that produces this message is problematic and should be closely
examined. In fact, ignoring this message when it points at a DO-loop statement
means that your code could go into an infinite loop. For example, the compiler
would produce this message for all three of these executable statements, and in the
last case, the loop would run endlessly unless exited with a LEAVE statement:

DCL ZZ9 PIC’ZZ9’;
DCL N FIXED BIN(15);

IF ZZ9 < 0 THEN ...
IF ZZ9 <= 999 THEN ...
DO N = 1 TO 32768; ...; END;

Note that if you have a loop that you want to run "endlessly" until exited by a
LEAVE (or GOTO) statement, it would be best to code that loop statement using
DO FOREVER.

IBM1927: SIZE condition
When compiling some of your "working" code, you may also see a message such
as the following:

IBM1927I S SIZE condition raised by attempt to convert
32777 to SIGNED FIXED BIN(15)

Some sample code that would produce this message is:
DCL I BIN FIXED(15);

DCL

92 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

1 S,
2 A CHAR(10),
2 B CHAR(32767);

I = STG(S);

Note that in the assignment above:
v the source STG(S) is equal to 32777
v the target I has the attributes FIXED BIN(15)

The old compilers would have issued no message.

The new compiler is telling you that 32777 is too large to be converted to FIXED
BIN(15) (since a FIXED BIN(15) variable can hold no value larger than 32767).

This message points to a problem you should not ignore, and since it is an S-level
message, you will be forced to change your code.

IBM1948: restricted expression evaluation
When compiling some of your code, you may see the following message:
IBM1948I S ZERODIVIDE condition with ONCODE=320 raised while

evaluating restricted expression.

For an example of the code that will produce this message, and for an explanation
of what to do, see “NORESEXP” on page 78.

IBM2063: invalid ALLOCATE
When compiling some of your code, you may see the following message:
IBM2063I S Specification of extent for variable-name in

ALLOCATE statement is invalid since it was declared
with a constant extent.

For an example of the code that would produce this message, and for an
explanation of what to do, see “RULES(NOLAXCTL)” on page 82.

IBM2402: storage overlay
This message alerts you to a potentially important coding error:

IBM2402I E <variable x> is declared as BASED on the ADDR of <variable y>,
but <variable x> requires more storage than <variable y>.

The importance of this message depends on how the variables are used in your
program. For instance, if X is a 100-byte structure and Y is declared as CHAR(200)
BASED(ADDR(X)), the compiler issues this message; note that, in this example, the
message is issued only when X is not subscripted. If your program also contains
the statement Y = ’’, you have a severe problem (because that assignment wipes
out 100 bytes of storage that the compiler is likely to be using for other purposes).
You must correct this kind of problem.

However, your program might use Y only in the statements such as:
v SUBSTR(Y,1,STG(X)) = ’’;
v SUBSTR(Y,1,STG(X)) = LOW(STG(X));

In this case, your code does not need to be changed.

Chapter 12. Understanding the new compiler's messages 93

However, in this case, you could change the declare of Y to eliminate these
messages: if you declare Y after X, you could then declare Y as CHAR(STG(X))
BASED(ADDR(X)). This would eliminate this occurrence of the message without
your having to make any changes to your code. But, if you wanted, you could also
then simplify the above assignment statements to:
v Y = ’’;
v Y = LOW(STG(X));

IBM2409: RETURN; in a function
This message alerts you what is probably a coding error:

IBM2409I E RETURN statement without an expression is invalid inside a
subprocedure that specified the RETURNS attribute.

The compiler issues this message when it finds a RETURN; statement inside a
function (i.e. inside a PROCEDURE that has the RETURNS options). If this
statement were executed, then the caller of the function would, if it used the result
of the function, use an uninitialized value, and that could have unpredictable and
arbitrarily bad consequences.

Code that produces this message should be corrected.

IBM2410: No RETURN in a function
This message alerts you to another coding error:

IBM2410I E Function F contains no valid RETURN statement.

The compiler issues this message when it finds no RETURN statement inside a
function (i.e. inside a PROCEDURE that has the RETURNS options). If this
function were called, then the caller of the function would, if it used the result of
the function, use an uninitialized value, and that could have unpredictable and
arbitrarily bad consequences.

Code that produces this message should be corrected.

IBM2412: missing RETURNS option
This message alerts you to a related coding error:

IBM2412I E Procedure has no RETURNS attribute, but contains a RETURN statement.
A RETURNS attribute will be assumed.

This is the inverse problem to the problem that message IBM2409 flags: here there
is a RETURN statement with an expression, but it is inside a PROCEDURE that is
a subroutine rather than a function (i.e. inside a PROCEDURE that does not have
the RETURNS options). The compiler will assume a RETURNS attribute for the
PROCEDURE, but these assumed attributes may not be what you intended. More
importantly, if the invoker of this routine invoked it via a CALL statement, then if
this RETURN statement were executed, it would assign the return value to storage
allocated for other purposes, and that could have unpredictable and arbitrarily bad
consequences.

Code that produces this message should be corrected.

94 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

IBM2421: CLOSE in ENDFILE
This message alerts you to a subtle coding error:

IBM2421I E A file should not be closed in its ENDFILE block.

While it may be tempting to close a file in your ENDFILE block for that file, you
should not do this since doing so will lead to internal library errors. Instead, it is
best to write your ENDFILE block so that it does nothing more than set a flag that
will be tested after the READ or GET statement for the file. You should then close
the file in the mainline code when it sees that this flag has been turned on.

Code that produces this message should be corrected.

IBM2610: precision interpretation
This message alerts you to a possible misunderstanding of PL/I rules and,
consequently, a possible source of problems:

IBM2610I W One argument to BUILTIN X is FIXED DEC while the other is FIXED BIN
or FLOAT. Compiler will not interpret precision as FIXED DEC.

This message applies to the MULTIPLY, DIVIDE, ADD and SUBSTRACT built-in
functions. You are most likely to see it if
1. the built-in function has either 3 arguments or 4 arguments the last of which is

zero
2. one argument is FIXED DEC(p1,0)
3. one argument is FIXED BIN(p2,0)

If, for instance, X is FIXED BIN(31), the compiler would flag the expression
MULTIPLY(X, 1000, 15) with this message (even if this expression is assigned to a
FIXED DEC(15) variable) because the result of this built-in has the attributes
FIXED BIN(15). If you had intended that this built-in function produce a FIXED
DEC(15) result (because, for example, you knew the result of the multiplication
might be greater than 2G), this code would not perform the way you had intended
and might result in the loss of significant data.

Note that if you want to force the result of this MULTIPLY to be FIXED DEC, you
could apply the DECIMAL built-in to the FIXED BIN argument (as in MULTIPLY(
DEC(X), 1000, 15). You can use the PRECTYPE compiler option to change how the
compiler interprets the precision, but that would, of course, potentially change the
interpretation of other statements.

IBM2611, IBM2612: duplicate whens
When compiling some of your "working" code, you may also see a message such
as one of the following:

IBM2611I W The binary value ... appears in more than one WHEN clause.

IBM2612I W The character string ... appears in more than one WHEN clause.

This message is easier to understand than some of the others discussed in this
section and would be produced by code such as the following:

SELECT(OPT);
WHEN(’f’,’F’)

BUFROM = ETOS(OPTARG);
WHEN(’T’,’T’)

BUTO = ETOS(OPTARG);

Chapter 12. Understanding the new compiler's messages 95

WHEN(’n’,’N’)
MAXRECIN = ETOL(OPTARG);

WHEN(’k’,’K’)
KFLG = ^KFLG;

WHEN(’m’,’M’)
MAXERR = ETOL(OPTARG);

OTHERWISE;
/* ungueltige Option */

END;

The message is indicating that the second WHEN clause above is probably meant
to be coded as WHEN('t', 'T')

The old compilers would have issued no message, and perhaps the code as written
is not incorrect; however, it would probably be worthwhile to examine closely any
code producing this message.

IBM2617: passing labels out of PL/I
This message alerts you to a bad coding practice that may require you to edit some
of your source code.

In general, the use of GOTO statements is a very poor programming practice, but
if you pass a LABEL constant or variable to an ENTRY declared with
OPTIONS(ASM), OPTIONS(COBOL) or OPTIONS(FORTRAN), you must not
attempt to do a GOTO from that non-PL/I code back into your PL/I code by using
the passed label. If you have code that is doing this, you must change it.

IBM2621: missing ON ERROR SYSTEM
When compiling some of your "working" code, you may also now see this
message:

IBM2621I W ON ERROR block does not start with ON ERROR SYSTEM.
An error inside the block may lead to an infinite loop.

The new compiler will produce this message for any ON ERROR block for which
does not start with the statement ON ERROR SYSTEM. If an ON ERROR block
does not start with this statement, then if there is an error in the ON ERROR block,
the block will most likely be reentered and an "infinite" loop would result.

Code that produces this message should be corrected.

IBM2622: warning on poorly coded DO loops
When compiling some of your "working" code, you may also now see this more
obscure message:

IBM2622I W ENTRY used to set the initial value in a DO loop will
be invoked after any TO or BY values are set.

The new compiler will produce this message for code such as the following:

dcl jx fixed bin;
dcl last fixed bin init(10);

do jx = f() to last;
put skip list(jx);

end;

96 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

f: proc returns(fixed bin);
last = 4;
return(2);

end;

Note that in this code the function f that sets the initial value in the loop also
changes the value of the variable last that sets the final value in the loop. The
message is alerting you to the fact that this change to the variable last will be made
after the compiler has already used that variable to set the final value for the loop.
In the concrete terms of this example, the loop will run from 2 to 10, not 2 to 4.

This is different than what the old compiler would have done for such code: under
the compiler, this loop would have run from 2 to 4.

So to make this code behave the same as it did under the old compiler, it would be
necessary for you to change your source code. This would be a good idea in any
case since it is not good programming practice to have functions that have side
effects such as changing other variables in their calling routine. The code as written
above is also not very transparent, and unclear code with obscure effects is never
good.

IBM2626: SUBSTR with a zero length
If you have some especially poor code, you may also now see this message:

IBM2626I W Use of SUBSTR with a third argument equal to 0 is
somewhat pointless since the result will always be a
null string.

If the compiler flags any if your code with this message, it has almost certainly
found an error in your code that you should promptly fix.

IBM2628: large BYVLAUE parameters
Since the old compiler had only very limited support for the BYVALUE attribute,
you are not likely to see this message when compiling old code:

IBM2628I W BYVALUE parameters should ideally be no larger than 32 bytes.

However as you start to use the BYVALUE attribute more, you may see this
message, and in that case you should heed it. You should reserve the use of the
BYVALUE attribute for small scalars and ideally for variables that could be passed
in a register. Typically these would be declared as
v REAL FIXED BIN
v REAL FLOAT
v POINTER
v OFFSET
v HANDLE
v ORDINAL
v CHAR(1)
v ALIGNED BIT(1)
v ALIGNED BIT(8)

You should never use the BYVALUE attribute with strings or aggreates that are
larger than 4096 bytes in size.

Chapter 12. Understanding the new compiler's messages 97

IBM2801: introduction of scaled FIXED BIN
This message alerts you to a possible misunderstanding of PL/I rules and,
consequently, a possible source of problems:

IBM2801I I FIXED DEC(p1,q1) operand will be converted to FIXED BIN(p2,q2).
This introduces a non-zero scale factor into an integer operation
and will produce a result with the attributes FIXED BIN(r,s).

This message applies to arithmetic operations where one operand is scaled FIXED
DEC and one is unscaled FIXED BIN. By PL/I rules, under the RULES(IBM)
compiler option, if one operand in an arithmetic operation is DECIMAL and one is
BINARY, then the result is BINARY. This applies even if the DECIMAL operand is
FIXED DEC with a non-zero scale factor and the BINARY operand is FIXED BIN
with a scale factor of zero.

For example, if X is FIXED DEC(5,1) and Y is FIXED BIN(15), then in evaluating
the expression X+Y, X will be converted to FIXED BIN(18,4), and the result will
have the attributes FIXED BIN(20,4). The compiler will also issue the W-level
message IBM1099I because a FIXED DEC(5,1) value whose fractional is not .0 or .5
can not be exactly represented in FIXED BIN.

If you want to eliminate this message and avoid the problems it hints at, you may
apply the DECIMAL built-in function to the FIXED BIN operand. For example,
X+DEC(Y) would produce a result with the attributes FIXED DEC(8,1).

IBM2804: suboptimal compares
This I-level message alerts you to a poor programming practice and possible error:

IBM2804I I Boolean is compared with something other than '1'b or '0'b.

A boolean is a result of a comparison of two expressions or the result of anding,
oring or negating booleans. As such, a boolean can have only the values ’1’b or
’0’b. If your code compares a boolean with something other than one of these
values, it may reflect a problem (for instance, maybe the expression (a > b) = c was
meant to be (a + b) = c).

Note that the compiler will produce this message even if you compare a boolean to
a value declared as BIT(1) STATIC INIT(’1’b). In this situation there is no
programming error, but the compiler cannot generate as good as code as it would
generate if the value were declared as BIT(1) VALUE(’1’b).

IBM2810: conversion of scaled FIXED BIN
When compiling some of your code, you may see the following message:
IBM2810I I Conversion of FIXED BIN(31,16) to FIXED DEC(15,12) may

produce a more accurate result than under the old
compiler.

For an example of the code that will produce this message, and for an explanation
of what to do, see “Conversions from scaled FIXED BINARY” on page 117.

98 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

IBM2811: use of PICTURE as DO control variables
This message alerts you to a poor coding practice that may require you to edit
some of your source code: even under OPT(0), the new compiler will flag any DO
loop where the control variable has the PICTURE attribute. The compiler will issue
this informational message:
IBM2811I I Use of PICTURE as DO control variable is not recommended.

In general, the use of PICTURE variables as DO loop control variables is a very
poor programming practice (especially because it can lead to poor performance),
and it would be best to change such code to use FIXED BIN variables as the loop
control variables.

IBM2812: poor TRANSLATE and VERIFY
This message alerts you to a coding practice that was ok under the old compiler,
but for which there is a much better alternative with the new compiler: rather than
declaring named constants with the attributes STATIC INIT, you can now with the
attribute VALUE.

This change will particularly help code such as:
test: proc(c);

dcl c char(20);

dcl upper char(26) static init(’ABCDEFGHIJKLMNOPQRSTUVWXYZ’);
dcl lower char(26) static init(’abcdefghijklmnopqrstuvwxyz’);

c = translate(c, upper, lower);
end;

Since the named constants upper and lower are declared as STATIC INIT, both the
old and new compilers will build the translate table at run time. This is expensive.
However, the new compiler will also issue these informational messages:
IBM2812I I Argument number 2 to TRANSLATE built-in would lead to

much better code if declared with the VALUE attribute.
IBM2812I I Argument number 3 to TRANSLATE built-in would lead to

much better code if declared with the VALUE attribute.

If you change the STATIC INIT in both declares to VALUE, these messages will be
eliminated and the compiler will generate much better code.

PLIXOPT messages
The PLIXOPT variable is a varying-length character string that contains run-time
options which you can specify at compile time. The messages that the compiler
produces to diagnose errors in these options are different than the messages
produced by the old compilers. In most cases, the PL/I messages now list an
associated Language Environment message that you should read for more
information.

A module containing a PLIXOPT declare will also now contain a
compiler-generated CEEUOPT CSECT that contains the Language Environment
encoding of the run-time options specified in the PLIXOPT string. For small
modules, this CSECT can cause a substantial increase in the object size of the
modules.

Chapter 12. Understanding the new compiler's messages 99

Using the compiler user exit
When looking at some of the above messages, you may wish that they had a
higher severity. The new compiler option EXIT makes it very easy for you to raise
the severity of any informational, warning or error message.

For more information on how to use this option, see the Enterprise PL/I for z/OS
Programming Guide.

100 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 13. Understanding when working code must be
changed

This chapter documents situations where the new compiler generates different
code than the old compilers. The problems discussed in this chapter have been
important to customers who have already migrated to Enterprise PL/I, and you
should read this chapter closely to see if they might affect you.

Some of the problematic code discussed in the sections that follow is flagged by
the compiler, and you should examine (and change as appropriate) the code
associated with the messages issued. In particular, you should examine any
compilations producing the following messages:
v IBM1063
v IBM1089

Note also that using the options DECIMAL(NOFOFLONASGN) DFT(OVERLAP)
and STATIC(FULL) may eliminate some of these problems.

Incorrect code
Your code must be correct code that conforms to the rules of PL/I. The Enterprise
PL/I compiler may produce different results (including abends) than the old
compiler for code that is incorrect. You may get "lucky" in that some incorrect code
does what you intended, but you must not rely on this. You must change your
incorrect code.

These rules may seem obvious: for example, no user would expect to write to an
element of an array using an index that is outside of the bounds of that array.
However, in some cases, the fact that code is incorrect and needs to be changed
may be less obvious. This section will attempt to describe some instances of
incorrect code that must be changed; however, it is not a list of all incorrect code
since the opportunities for writing bad code are endless.

Relying on the order of declarations
If you declare one variable after another, you must not presume that they are
contiguous in storage or even that the second variable is in storage after the first.

For example, in the following code, the storage allocated to the variable a may not
immediately follow the storage allocated to the variable b, and hence the
assignment could overlay 100 bytes of storage allocated to some other variable.

dcl a char(100);
dcl b char(100);
dcl c char(200) based;
addr(a)->c = ’’;

In fact, if the variable b is unused, the compiler will most likely allocate no storage
to it!

Using invalid FIXED DECIMAL data
All FIXED DECIMAL variables that you use must be used only when they contain
valid data.

© Copyright IBM Corp. 1999, 2011 101

If a FIXED DECIMAL variable contains invalid data (such as bad numeric digits or
a bad sign nibble), any use of that variable may lead to a data exception. Even the
assignment of such a variable to another variable with a similar precision and scale
may lead to a data exception - even though the assignment could be done via a
byte move.

Conversely, you should not presume that a data exception will be raised on the
first use of such a variable: for example, the assignment described above may be
done with a byte move under some circumstances, and in that case, a data
exception would not occur until it was used in an arithmetic operation or a
compare etc.

Using invalid SUBSTR references
Any SUBSTR reference that you use must be such that its use would not raise the
STRINGRANGE condition if that condition were enabled.

If the STRINGRANGE condition is not enabled (and by default, it is not), then a
SUBSTR reference that is invalid can cause the compiled code to overwrite storage
allocated for other purposes and that, in turn, can lead to data corruptions or
abends.

For example, in the following code, if the value in the variable n is larger than 100,
then the SUBSTR reference is invalid and the generated code may overwrite
storage allocated to other variables.

dcl f ext entry;
dcl a char(100);
call f(’test’ || substr(a,1,n));

You can easily detect such bad code during test by compiling your programs with
the PREFIX(STRINGRANGE) compiler option.

The SUBSTR suboption introduced in V3R8 to the USAGE compiler option can
allow some of this incorrect code to be accepted. However, it would be best not to
use this option and instead to correct your code by, for example, changing the
declare of a above to have a length at least as large as the largest value that n
could assume and if the maximum value for n is unknown, then by changing the
declare of a to have a length of 32767.

In some situations, the old compiler also generated code for SUBSTR references of
the form SUBSTR(X,1,N) where X was CHAR and N was greater than 32767.
However, such references are invalid and would have raised STRINGSIZE if it
were enabled. The new compiler enforces the restriction that the length of a
SUBSTR reference must be less than 32768 for CHAR and BIT references and less
than 16384 for GRAPHIC and WIDECHAR references, and you must correct any
code that does not conform to these rules.

Using dissimilar EXTERNAL declares
If you declare an EXTERNAL variable in more than one compilation unit, then
those declares must match. In particular, all the attributes in the two declares must
match.

For example, if you declare an EXTERNAL FILE in one compilation unit with the
attributes KEYED ENV(VSAM), then you must declare it with the same attributes
in any other program linked with the first.

102 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Using an incorrect PLITABS declare
If your code contains a declare for PLITABS, not only must the pagesize, linesize
and other values be valid, but the first field in the PLITABS structure must also be
valid. This field is supposed to hold the offset to the field specifying the number of
tabs set by the structure, and the Enterprise PL/I library code will not work
correctly if this is not true.

Initializing variables
You must not use a variable before it has been initialized. Any program that uses
an uninitialized variable is invalid and must be corrected. The best way to correct
such code is to add the INITIAL attribute to those variables that need it. However,
there are also some other ways to initialize your variables, and the rest of this
subsection discusses them.

Initializing AUTOMATIC
The compiler option INITAUTO will add an appropriate INITIAL attribute to any
AUTOMATIC variable that does not have an INITIAL attribute if the variable has
one of the attributes
v FIXED or FLOAT
v PICTURE, CHAR, BIT, GRAPHIC or WIDECHAR
v POINTER or OFFSET

See the Programming Guide for more details.

The compiler option DFT(INITFILL) will fill all AUTOMATIC storage will a
specified byte value (or to '00'x if no byte value is specified). This can be used to
initialize variables with these attributes
v FIXED BIN
v FLOAT
v VARYING or VARYINGZ
v POINTER or OFFSET

The compiler option INITFILL will also fill all other AUTOMATIC variables with
the specified (or default) byte value, but these variables would not really be
properly initialized. For example, use of a FIXED DEC variable initialized via
DFT(INITFILL) will lead immediately to a data exception.

Setting the third suboption of the runtime option to 00 (as in STORAGE(,,00)) will
fill all AUTOMATIC storage in all the routines (including library routines) with the
hex value 00. This has the same effects and validity as the DFT(INITFILL) compiler
option except that it applies to all routines in the application and has a dreadfully
bad impact on performance. Furthermore, since the compiler does not know if this
option is being used, it may not have the desired effect for code compiled with
OPT(2) or OPT(3): the fact that a variable is uninitialized makes the code invalid
and may lead the optimizer to make choices about how to optimize the code that
cannot be repaired by using this runtime option.

Setting the third suboption of the runtime option to CLEAR (as in
STORAGE(,,CLEAR)) will fill all AUTOMATIC storage with the hex value 00
before MAIN is invoked. This has the same effects and validity as the
DFT(INITFILL) compiler option except that it applies only to the MAIN routine.
Furthermore, since the compiler does not know if this option is being used, it may
not have the desired effect for code compiled with OPT(2) or OPT(3): the fact that

Chapter 13. Understanding when working code must be changed 103

a variable is uninitialized makes the code invalid and may lead the optimizer to
make choices about how to optimize the code that cannot be repaired by using this
runtime option.

Initializing BASED
The compiler option INITBASED does for BASED what INITAUTO does for
AUTOMATIC.

Initializing CONTROLLED
The compiler option INITCTL does for CONTROLLED what INITAUTO does for
AUTOMATIC.

Initializing STATIC
The compiler option INITSTATIC does for STATIC what INITAUTO does for
AUTOMATIC.

Without this option, all uninitialized STATIC storage will be filled with binary
zeros. Of course, as was true with the compiler DFT(INITFILL) and runtime
STORAGE options discussed above, this means that many variables, e.g. FIXED
DEC variables, would have invalid values.

Retaining unused declarations

Retaining unused INTERNAL STATIC
If an INTERNAL static variable is unused, the compiler will not allocate any
storage for it.

For example, if the following declaration is the only reference to the variable
build_data, then no storage would be allocated for this variable and its initial value
would not be in the generated text.

dcl build_data char(30) var static
init(’Compiled in build 17’);

If the ABNORMAL attribute is specified on a level-1 static variable, the compiler
will allocate storage for the variable. For example, to keep the variable above, you
could change the declaration above to:

dcl build_data char(30) var static abnormal
init(’Compiled in build 17’);

Do not apply the ABNORMAL attribute indiscriminately to all variables or all
static variables - this will both slow down your compilation and worsen the
performance of the generated code.

If you specify the compiler option STATIC(FULL), the compiler will apply the
abnormal attribute to all static. This is a coarse solution and is not recommended.

Incorrect code that will now raise exceptions

FIXEDOVERFLOW when SIZE is disabled
Under both the old and new compilers, if you try to assign a source to a numeric
target and the source is too big, the SIZE condition will be raised if it is enabled.

104 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

However, if the SIZE condition is NOT enabled, your program is in error and what
happens is unpredictable. You should correct such a program.

Under the old compiler, sometimes no condition would be raised. For example,
consider the following program:

dcl A fixed dec(3);
dcl B pic’9’;

A = 123;
B = A;

The value in the source A is too large to fit into B, and if SIZE is enabled, it would
be raised. However, when SIZE is disabled, the old compiler raises no condition.
That does not mean your program is correct - in fact, it is incorrect and should be
changed. For instance, if you wished to set B to just the ones digit of A, you could
change the above code to:

dcl A fixed dec(3);
dcl B pic’9’;

A = 123;
B = mod(A,10);

Moreover, under the old compiler, sometimes a condition would be raised for very
similar code. For example, consider the following program:

dcl X fixed dec(5);
dcl Y fixed dec(4);
dcl Z fixed dec(5);

X = 99999;
Y = X + 1;
Z = X + 1;

The value of the expression X + 1 is too large to fit into either Y or Z, and if SIZE
is enabled, it would be raised for both statements. However, when SIZE is
disabled, the old compiler raises no condition for the assignment to Y and raises
FIXEDOVERFLOW for the assignment to Z. Again your program is incorrect and
should be changed.

The new compiler handles these statements consistently, but the results depend on
the target attributes and the compiler options in effect: when the SIZE condition is
disabled,
v if the target has the PICTURE attribute, the generated code will not raise the

FIXEDOVERFLOW condition
More precisely, the generated code will not raise the FIXEDOVERFLOW
condition when SIZE is disabled when assigning a source expression with any of
the following data types to a non-floating point PICTURE target:
– FIXED BIN
– FIXED DEC
– non-floating point PICTURE

v if the target has the FIXED DEC attribute, then
– if the default compiler option DECIMAL(FOFLONASGN) is in effect, then the

generated code will raise the FIXEDOVERFLOW condition
– if the compiler option DECIMAL(NOFOFLONASGN) is in effect, then the

generated code will not raise the FIXEDOVERFLOW condition

Chapter 13. Understanding when working code must be changed 105

Note that the above discussion applies to assignments only: if an operation such as
addition or multiplication produces a result requiring more than 15 digits (or more
than 31 if the LIMITS(FIXEDDEC(15,31)) option is in effect), then an exception will
be raised. The exception raised will usually be FIXEDOVERFLOW, but depending
on the machine instructions generated, other exceptions, such as a specification
exception, may be raised.

Similarly, when assigning a BIT variable to a FIXED BIN variable, if the BIT
variable was too large to be validly converted and if SIZE was not enabled (and
hence the program was invalid),
v the old compiler would sometimes raise no condition and simply assign 0 to the

target.
v the new compiler will raise the SIZE condition if the conversion is done via a

library call.

For example, consider the following program:
dcl A bit(32) aligned;
dcl B fixed bin(31);

A = ’80000000’bx;
B = A;

The value in the source A is too large to fit into B, and if SIZE is enabled, it would
be raised. The new compiler will raise the SIZE condition for this code even when
it is disabled. However, when SIZE is disabled, the old compiler raises no
condition. That does not mean your program was correct - in fact, it always was
incorrect and should be changed.

Invalid allocations
Under the old compilers, the following piece of code "worked":

dcl vdptr pointer;
dcl vdcom char(2000) based(vdptr);

dcl
1 vdcommarea based(addr(vdcom)),

2 vda char(1000),
2 vdb char(1000),
2 vdz char(1);

alloc vdcom;

vdcommarea = ’’;

This code is not valid PL/I code because you must not use a 2001 byte area to
overlay a 2000 byte allocated piece of storage. By luck, this "worked" under the OS
PL/I V2R3 run-time, but under the Language Environment run-time, this code fails
miserably.

Incorrect code that will now loop endlessly

Even precision PICTURE loop control variables
Consider the following program to initialize an array:

winter: proc;
dcl n pic’99’;
dcl a(0:99) fixed bin ext;

106 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

do n = 0 to 99;
a(n) = n;

end;
end;

This code is not valid PL/I since if the SIZE condition were enabled, it would be
raised after n became equal to 99 (since the next value, 100, it would assume is too
large for a PIC'99' variable).

For best performance, using a PICTURE variable for a loop control variable is
usually not a good idea. However, for the code above it is a very bad idea since
the new compiler will generate code that will make this loop run endlessly.

By the definition of the DO statement, this loop is equivalent to the following code
which will loop infinitely under both the old and new compiler.

n = 0;
if n > 99 then go to loop_exit;
loop_body:;

a(n) = n;
n = n + 1;
if n <= 99 then go to loop_body;
loop_exit:;

However, for the original code using the DO-loop, the old compiler cheats and
generates code that is, strictly speaking, incorrect.

The new compiler will try to alert you to this situation by issuing the following
messages:

IBM1089I W Control variable in DO loop cannot
exceed TO value, and loop may be infinite.

IBM1220I W Result of comparison is always constant.
IBM1220I W Result of comparison is always constant.

You should closely examine (and probably change) any code that causes the
compiler to issue message IBM1089. You could also use the EXIT option to raise
the severity of this message.

To correct your code, you could change the attributes for the DO-loop control
variable from PICTURE to FIXED BIN(31).

Finally, note that this problem will occur in any loop where the DO-loop control
variable is PICTURE'(n)9' when n is an even number and the loop limit is equal to
10**n-1.

This problem could also occur in forms which would not be flagged by the
compiler. For example, consider the following program to initialize an array:

sommer: proc;
dcl n pic’999’;
dcl a(0:999) fixed bin ext;
do n = 0 to 998 by 2;

a(n) = n;
end;

end;

In this case, since the TO value of 998 is less than the maximum value that n could
assume, the compiler will not issue message IBM1089. However, after n assumes
the value 998, the next time through the loop n will be assigned the value 0 and
the loop will repeat.

Chapter 13. Understanding when working code must be changed 107

This problem could also occur when the BY value was negative:
eiki: proc;

dcl n pic’999’;
dcl a(0:99) fixed bin ext;
do n = 79 to 1 by -2;

a(n) = n;
end;

end;

However, after n assumes the value 1, the next time through the loop n will be
decremented by 2 and assigned the value 1 and the loop will repeat.

Assignments that will produce different results

Source-target overlap
Consider the assignment P->Z = Q->Z; where Z is CHAR(6) BASED.

Under OPT(0), the old compiler would assign the source first to a 6-byte
temporary and then assign the temporary to the target.

However under OPT(2), the old compiler would perform the assignment with one
MVC.

These different implementations lead to different results if the source and target
overlap.

The new compiler controls this behavior via the OVERLAP suboption of the
DEFAULT compiler option:
v under DFT(NOOVERLAP), the compiler will assume the source and target never

overlap.
v under DFT(OVERLAP), the compiler will generate more conservative code

whenever necessary.

For example, for the assignment SUBSTR(A,4,6) = SUBSTR(A,3,6);, if A =
'abcdefghijklm', then
v the old compiler sets A = 'abccdefghjklm'
v the new compiler under DFT(OVERLAP), sets A = 'abccdefghjklm'
v the new compiler under DFT(NOOVERLAP), sets A = 'abcccccccjklm'

Consequently, for the most compatibility with the least work, you might want to
specify the compiler option DFT(OVERLAP).

But specifying this option will also force the compiler to generate slower code in
situations where you know the source and target do not overlap and it will also
cause the compiler to forego some other optimizations. You would be much better
off if you changed your code to avoid source and target overlap and then use
DFT(NOOVERLAP).

For instance, the assignment:
SUBSTR(A,4,6) = SUBSTR(A,3,6);

could be replaced by the assignments:
temp_Char6 = SUBSTR(A,3,6);
SUBSTR(A,4,6) = temp_Char6;

108 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Float-to-float assignments
The new compiler converts a FLOAT DECIMAL literal, such as 3.1415926E0 or
1E-02, to its internal floating-point representation solely by examining the literal's
attributes and not by examining the context in which it used.

For example, 3.1415296E0 has the attributes FLOAT DEC(8), and hence the new
compiler will convert it to long floating point. But, 1E-02 has the attributes FLOAT
DEC(1), and hence the new compiler will convert it to short floating point.

If the literal is used in an assignment or an initial clause, the compiler will then
convert, if necessary, its floating-point value to the attributes of the target of the
assignment or initialization.

However, the old compilers would examine the context in which such a literal is
used and convert the literal directly to the attributes of its target. The behavior of
the old compilers does not strictly follow the rules for PL/I expression evaluation
and can lead to different results than those produced by the new compiler.
Consider this code fragment:

dcl z float dec(06) init(0);
dcl s float dec(06);
dcl q float dec(17);

s = 1e-2;
q = s;
put skip data(q);
q = 1e-2;
put skip data(q);
q = 1e-2 + z;
put skip data(q);

In all three assignments to q above, the attributes of the source are those of a short
floating-point number, and the value of the source should be the same. However,
the results of the three PUT statements under the old compilers are:

Q= 9.999997913837432861E-03;
Q= 9.999999999999999999E-03;
Q= 9.999999999999999999E-03;

The results of the three PUT statements under the new compiler are:
Q= 9.999997913837432860E-03;
Q= 9.999997913837432860E-03;
Q= 9.999997913837432860E-03;

This kind of difference occurs only for float literals that cannot be exactly
represented (such as fractions like 1E-2 that cannot be equated to a binary
fraction).

To alert you to situations such as the above, the compiler will issue message
IBM1065I when it detects short-floating point literals that cannot be exactly
represented.

To get the same results as under the old compilers, you would have to change
your source in one of the following ways:
1. specify the constant via the FLOAT built-in function applied to a FIXED

DECIMAL literal and with the desired precision
for example, you would specify 1E-2 as FLOAT(.01,7) to make it a long
floating-point value and as FLOAT(.01,17) to make it an extended floating-point
value

Chapter 13. Understanding when working code must be changed 109

2. add enough zeroes to the literal to give it the desired precision
for example, you would specify 1E-2 as 1.000000E-2 to make it a long
floating-point value and as 1.0000000000000000E-2 to make it an extended
floating-point value

3. use the new D or Q format to indicate the desired precision
for example, you would specify 1E-2 as 1D-2 to make it a long floating-point
value and as 1Q-2 to make it an extended floating-point value

Note that the first two changes in the above list would be accepted by the old and
new compilers (and would produce the same results under each), but the third
change would work only under the new compiler.

Other statements that will produce different results

STREAM I/O with unprintable characters
If a character with the value '00'x, '0C'x through '0F'x or '15'x is part of the output
of a PUT FILE statement, then a period ('4B'x) will be output instead under these
scenarios:
v The code is running under batch and is compiled with the STDSYS option, the

file is SYSPRINT, and SYSPRINT is directed to SYSOUT
v The code is running under z/OS UNIX, and the file is a STREAM OUTPUT file

being written to the command window
v The code is running under TSO, and the file is a STREAM OUTPUT file being

written to the TSO terminal

Uninitialized EXTERNAL STATIC
Under the old compiler, a variable declared as EXTERNAL STATIC but with no
INITIAL value(s) specified for it was not allocated any storage (and a linkage
editor ESD of type CM was issued). The storage for it must have been defined in
some other program object that will be linked with it. In fact, the storage that was
actually allocated may be bigger than what its declare specified (or implied). For
example, consider the following code declares
dcl testpcl ext static, pcl char(16) based(addr(testpcl));

The variable testpcl has the (implied) attributes of FLOAT DEC(6) and hence
would seem to be allocated only 4 bytes of storage. If all the programs linked with
this one also declare testpcl with the same PL/I declare, then exactly 4 bytes will
be allocated to it. However, if it is linked with, say, an assembler that defined
testpcl as a 16-byte CSECT, then the linker would allocate 16 bytes to it.

The new compiler will currently allocate 4 bytes to such a variable (and issue a
linkage editor ESD of type SD and length 4). An attempt to use it as the base for,
say, a 16-byte area will lead to errors.

If you want to declare a variable but have its storage allocation be determined by
its declaration in another module, you should declare it with the RESERVED
option. For example, the declare above should be:
dcl testpcl ext static reserved, pcl char(16) based(addr(testpcl));

If, however, you compile with the option COMMON, then the Enterprise compiler
will also issue a linkage editor ESD of type CM, and the code would work as it
did with the old compiler.

110 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Incompletely declared FILEs
Under the old compiler, if you declared an EXTERNAL FILE in one routine with
some attributes, such as RECORD, but in another routine linked with the first
routine, you did not declare the file or declared it with no attributes (other than
FILE), then the second routine would use the attributes declared in the first routine
even if the second routine opened the file first.

Enterprise PL/I would handle this differently: the second routine would not "see"
the attributes from the first routine and would instead apply the default attributes,
such as STREAM, to the file. This can lead to problems.

You should correct this code by declaring the FILE identically in all routines; in
fact, all EXTERNAL variables should be declared identically in all routines.

Dummy arguments and alignment
According to the Language Reference Manual, a dummy argument will be created
if an argument differs from its parameter description in its alignment. However,
the old compiler followed this rule for CHARACTER NONVARYING, but not for
CHARACTER VARYING. The new compiler applies the rule consistently.

So, for example, given the following code
dcl x entry(unaligned char(8));
dcl y entry(unaligned char(8) varying);
dcl a aligned char(8);
dcl b aligned char(8) varying;
call x(a);
call y(b);

Dummy arguments should be created for both CALL statements, but only the
Enterprise compiler will create a dummy argument for the second CALL.

Note that you can use the DEFAULT(DUMMY(UNALIGNED)) compiler option to
make the compiler ignore alignment mismatches when deciding when to create
dummy arguments. If this option were in effect, the compiler would not create a
dummy argument for either of the CALLs in the above example.

Dummy arguments and CONTROLLED
According to the Language Reference Manual, a dummy argument will be created
if an argument is a CONTROLLED string or area (because an ALLOCATE
statement could have changed the length or extent and hence have caused the
string length or area size to be different than required by the called routine).

Under Enterprise PL/I, this is true unless the RULES(NOLAXCTL) option is in
effect and the string length or area size is a constant. However, the old compiler
was not always consistent about following this rule (which should always have
applied since the old compiler had no equivalent to the RULES(NOLAXCTL)
option.) The new compiler applies the rule consistently.

So, for example, given the following code
dcl x entry(char(8));
dcl a controlled char(8);
dcl 1 b(2) controlled, 2 c char(8);
call x(a);
call y(b(1).c);

Chapter 13. Understanding when working code must be changed 111

Dummy arguments should be created for both CALL statements, but only the
Enterprise compiler will create a dummy argument for the second CALL.

Pointer arithmetic
In expressions involving pointer arithmetic, it is presumed that the pointers are
addresses. Consequently, when adding a value to a pointer, the result pointer may
not have the high order bit on even though the source pointer did have the high
order bit on.

Code that will not perform as well

FIXED DEC as a loop control
A DO-loop that has a FIXED DECIMAL or PICTURE control variable will perform
much worse than a loop that has a FIXED BINARY control variable.

You can get significantly better code if you change the declarations for your loop
control variables from FIXED DEC to FIXED BIN(31).

FIXED BIN(15) as a loop control
A DO-loop that has a FIXED BIN(15) control variable will perform worse than a
loop that has a FIXED BIN(31) control variable.

Under OPT(2) or OPT(3), the compiler will issue I-level message IBM1063 to flag
code that uses FIXED BIN(15) control variables. You can get better code if you
change the declarations for your loop control variables from FIXED BIN(15) to
FIXED BIN(31).

I/O using TOTAL
Since the TOTAL option of the ENVIRONMENT attribute is not supported, I/O to
files using it will generally not perform as well.

112 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 14. Understanding when working code may need to
be changed

This chapter documents more situations where the new compiler generates
different code than the old compilers. But unlike the previous chapter, these
differences are somewhat obscure; they are included in this document for
completeness and because they could potentially affect you.

Code that will now raise an exception

ZERODIVIDE and OVERFLOW promoted to ERROR
Under the old compiler if ZERODIVIDE or OVERFLOW were raised and there was
an ON-unit for the condition, then if the END statement for the ON-unit was
reached, your program would continue with the next machine instruction after the
one that raised the condition.

If the condition was raised by a hardware exception, this meant that your program
continued on with some unknown value as the result of the operation, and this
often led to more errors.

Under the new compiler, if either ZERODIVIDE or OVERFLOW is left unhandled
by an ON-unit, then the condition will be promoted to ERROR.

Conditions raised when disabled
Under the old compiler, if a condition such as CONVERSION or
SUBSCRIPTRANGE was disabled, the condition would almost never be raised.

Under the new compiler, disabling a condition asserts that the condition will not
occur. However, the condition may still be raised.

For some code sequences, this allows the compiler to generate faster code. For
example, for an assignment of a CHAR(1) to a FIXED BIN, if CONVERSION is
enabled, the conversion will be done by a library call. But if CONVERSION is
disabled, the conversion will be done by very simple inline code that "ands out"
the left nibble in the CHAR(1) value. This code is possible only because
NOCONVERSION asserts that a conversion condition could not occur in this
statement. If this assertion is not true, your program is invalid.

However, for an assignment of a CHAR(2) to a FIXED BIN, the conversion will
always be done by a library call (because there are too many possibilities for what
may be held in those two characters), and even if NOCONVERSION is in effect,
the CONVERSION condition will be raised if the source does not contain a valid
numeric value. (Note also that if you know that the CHAR(2) source contains only
numeric digits, you could avoid this library call by using an appropriate picture
string in either the EDIT built-in function or in a variable declared as based on or
unioned with the source.)

Similarly, if SUBSCRIPTRANGE is disabled, you are asserting that all subscripts
are valid. For most statements, this means the compiler will not generate any code
to check the validity of the subscripts, and if any subscripts are invalid, your
program is in error. However, if a subscripted reference is used in a PUT DATA

© Copyright IBM Corp. 1999, 2011 113

statement, a library routine will evaluate that reference, and if any subscript is
invalid, the SUBSCRIPTRANGE condition will be raised - even if disabled.

Invalid RETURNs
Consider the following somewhat senseless, but illustrative, code fragment:

call y;

x: proc returns(pointer);
y: entry;
return(sysnull());

end;

This program fragment is in error because when the procedure is entered at Y no
value should be returned, but the code attempts to return a value nonetheless.

Under the old compiler, no condition would be intentionally raised when the
invalid return was attempted, and the program might fail in any number of ways
(and it might even complete "successfully").

Under the new compiler, the ERROR condition would be intentionally raised by
the generated code with ONCODE=9004.

GOTO holes
Consider the following code fragment:

dcl x(4) label;

goto x(n);
x(4):;
put skip list(n);
x(3):;
put skip list(n);
x(2):;
put skip list(n);
x(1):;
put skip list(n);

Note that if n < 1 or if n > 4, and if the SUBSCRIPTRANGE condition is not
enabled, then your program was in error.

Under the old compiler, a protection exception usually resulted.

Under the new compiler, the ERROR condition will be raised with ONCODE=9003
with the following message:
IBM0751S ONCODE=9003 A GOTO was attempted to an element of a label constant

array, but the subscripts for the element were not those of any
label in that array.

The scope of NOFOFL
As documented elsewhere, under Enterprise PL/I, the FIXEDOVERFLOW/
NOFIXEDOVERFLOW (or FOFL/NOFOFL) prefix applies only to FIXED
DECIMAL operations.

However, it should also be noted that the (NO)FOFL prefix when applied to a
PROCEDURE or BEGIN statement applies only to that block and to the blocks
statically contained within it. The prefix does not apply to any other code
dynamically called from within these blocks.

114 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Similarly, if the (NO)FOFL prefix is applied to a CALL statement or a statement
containing a function invocation, the setting in the prefix does not apply to the
code in the invoked routine: it applies only to any FIXED DECIMAL calculations
before or after the routine is invoked.

Code that will now not raise exceptions

FIXEDOVERFLOW for FIXED BIN
Under the old compiler, the FIXEDOVERFLOW (or FOFL) condition would be
raised if any FIXED BIN operation produced a result that required more than 31
binary digits. For example, if you multiplied a FIXED BIN variable equal to
100_000 by itself, then the FOFL condition would be raised.

Under the new compiler, the FOFL condition will not be raised for any FIXED BIN
computation (but it will still be raised for FIXED DEC computations when
needed). This makes the PL/I language match the C and JAVA languages, and it
also enables the compiler to generate inline code to perform adds and subtracts on
8-byte integers.

In fact, during run-time initialization, the bit in the PSW that enables integer FOFL
will not be set if all your code has been compiled by the C or by the new PL/I
compilers. It will be set on if there is any old PL/I code in the main module, and
that can have some negative performance consequences for some of your new
code.

CONVERSION when assigning blanks to numeric variables
Under the old compiler, the CONVERSION (or CONV) condition would be raised
if a character string consisting of one or more blanks (and nothing else) was
assigned to a numeric variable. However if a varying character string of length
zero was assigned to a numeric variable, CONVERSION would not have been
raised (even though a zero-length character string compares equal to character
string consisting only of blanks).

Under the new compiler, the CONVERSION condition will not be raised by the
assignment to a numeric variable of any character string that would compare equal
to a blank string.

ERROR when mapping excessively large aggregates
If your code declares an aggregate with adjustable extents, its size will be
determined at runtime. If its size would be greater than 2G and the compiler
generates a call to a library routine to map the variable, then the ERROR condition
will be raised.

However, for a simple aggregate with adjustable extents, the compiler will generate
inline code to determine the variable's size - unless the SIZE condition is enabled.
If such a variable had a size greater than 2G and SIZE was not enabled, then no
condition would be raised and your program would be invalid. Of course, if your
aggregates are reasonable in size, you will get far better performance if SIZE is not
enabled.

Chapter 14. Understanding when working code may need to be changed 115

Storage mapped differently

One-byte FIXED BIN
If you have any variables declared as FIXED BIN with a precision of 7 or less, they
occupy one byte of storage under Enterprise PL/I instead of two as under PL/I for
MVS & VM and earlier. If the variable is part of a structure, this usually changes
how the structure is mapped, and that could affect how your program runs. For
example, if the structure were read in from a file, fewer bytes would be read in
under Enterprise PL/I than under PL/I for MVS & VM or earlier PL/I release.

To avoid this difference, you could change the precision of the variable to a value
between 8 and 15 (inclusive).

To help you locate where you might have problems because of this difference, the
compiler will flag any FIXED BIN with precision <= 7 with message IBM1044.

The (NO)BIN1ARG suboption of the DEFAULT compiler option controls how the
compiler handles one-byte REAL FIXED BIN arguments passed to an
unprototyped function:
v Under BIN1ARG, the compiler will pass a FIXED BIN argument as is to an

unprototyped function.
v But under NOBIN1ARG, the compiler will assign any one-byte REAL FIXED

BIN argument passed to an unprototyped function to a two-byte FIXED BIN
temporary and pass that temporary instead.

Consider the following example:
dcl f1 ext entry;
dcl f2 ext entry(fixed bin(15));

call f1(1b);
call f2(1b);

If you specified DEFAULT(BIN1ARG), the compiler would pass the address of a
one-byte FIXED BIN(1) argument to the routine f1 and the address of a two-byte
FIXED BIN(15) argument to the routine f2. However, if you specified
DEFAULT(NOBIN1ARG), the compiler would pass the address of a two-byte
FIXED BIN(15) argument to both routines.

Note that if the routine f1 was a COBOL routine, passing a one-byte integer
argument to it would cause problems since COBOL has no support for one-byte
integers. In this case, using DEFAULT(NOBIN1ARG) might be helpful; but it
would be better to specify the argument attributes in the entry declare.

So, while BIN1ARG is the default suboption, you may find it useful to specify the
NOBIN1ARG suboption for increased compatibility.

Declarations handled differently

AREA with INITIAL
The new compiler ignores the INITIAL attribute for AREAs, and you should
convert any INITIAL clauses for AREAs into assignment statements.

For example, in the following code fragment, the elements of the array are not
initialized to a1, a2, a3, and a4:

116 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

dcl (a1,a2,a3,a4) area;
dcl a(4) area init(a1, a2, a3, a4);

However, you can rewrite the code as follows so that the array is initialized as
desired:

dcl (a1,a2,a3,a4) area;
dcl a(4) area;

a(1) = a1;
a(2) = a2;
a(3) = a3;
a(4) = a4;

The compiler will flag any declare of AREA with INITIAL with message IBM1196.

Conversions handled differently

Conversions from float to character
In some conversions from FLOAT (BIN or DEC) to CHARACTER, there may be a
difference of one in the last digit between the result produced under the old and
new compiler.

This difference does not reflect a difference in the underlying floating-point value
or in the calculations that led up to it. It is generally safe to ignore this difference.

Conversions from scaled FIXED BINARY
It is generally best to avoid scaled FIXED BINARY since its use generally causes
the compiler to produce less efficient code. Additionally, in some conversions of
scaled FIXED BINARY to FIXED DECIMAL, the new compiler may produce a
different (but more accurate) result than the old compiler.

For example, consider the following code
dcl i fixed bin(15) init(290);
dcl s fixed bin(31,16);
dcl d fixed dec(15,12);

d = i / 365;
put skip data(d);
s = i / 365;
d = s;
put skip data(d);

The results of the two PUT statements under the old compilers are:
D= 0.794509887700;
D= 0.794509887700;

The results of the two PUT statements under the new compiler are:
D= 0.794509887695;
D= 0.794509887695;

Note that while the second assignment above clearly involves a conversion of
scaled FIXED BIN to FIXED DEC, the first assignment also involves such a
conversion since the attributes of the expression i / 365 are, by the PL/I rules for
expression evaluation, FIXED BIN(31,16).

To understand what is happening here, it will help to look at the contents of the
variable s after it is assigned the result of the divide. s will then hold the hex value

Chapter 14. Understanding when working code may need to be changed 117

0000CB65. If viewed as a FIXED BIN(31,0) number, this would be the value 52069,
but since it has scale factor 16, it represents the value 52069/2**16. That value is
mathematically equivalent to 52069*5**16/10**16. So, to convert it from base 2 to
base 10, the compiler multiplies the value by 5**16 (or 152587890625). That would
produce a FIXED DEC value with scale factor 16; hence to produce the target
result with scale factor 12, the last 4 digits are dropped.

As can be verified on a calculator, 52069 times 5**16 is 7945098876953125, and
dropping the last digits yields the result produced by the new compiler.

The reason the old compiler produced a different result is that its generated code
multiplied s not by 152587890625, but 152587890626. This leads to a less accurate
result.

You can avoid this problem entirely by insuring that all divisions that could yield a
fractional result are performed in decimal. Using the DECIMAL built-in function is
one easy way to do this. For example, if, in the first assignment above, the
expression i / 365 were changed to dec(i) / 365 , the result of the assignment would
be 0.794520547945.

To alert you to situations such as the above, the compiler will issue message
IBM2810I when it detects conversions of scaled FIXED BIN to FIXED DEC.

Built-in functions handled differently

Arithmetic built-in functions with scale factors and FIXED BIN
Under the RULES(IBM) compile-time option, which is the default, variables can be
declared as FIXED BIN with a nonzero scale factor. Infix, prefix, and comparison
operations are performed on scaled FIXED BIN using the same semantics as the
old compilers.

However, the ADD, DIVIDE, or MULTIPLY built-in functions will not produce
FIXED BIN results with nonzero scale factors.

The new compiler evaluates these built-in function as FIXED DEC rather than as
FIXED BIN as the old compilers did if either of the following is true:
v their arguments are FIXED BIN with nonzero scale factors
v their arguments are FIXED BIN with zero scale factors but a nonzero value is

specified as their fourth argument

For example, the new compiler would evaluate the DIVIDE built-in function in the
assignment statement below as a FIXED DEC expression:

dcl (i,j) fixed bin(15);
dcl x fixed bin(15,2);

...

x = divide(i,j,15,2);

Note that in this example, the result is FIXED DEC(6,1) instead of FIXED
DEC(15,2). In the general case, for (p,q), the result is (t,s) where t = 1 + ceil(p/3.32)
and s = ceil(q/3.32). To get a result that has the attributes FIXED DEC(p,q), apply
the DECIMAL built-in function to all of the FIXED BIN arguments; so in this
example, the expression would become DIVIDE(DEC(X), DEC(Y) 15, 2). You can

118 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

also use the PRECTYPE compiler option to change the way the compiler interprets
the precision, but that potentially changes the interpretation of other statements.

The compiler will flag this difference with message IBM1053.

String-handling built-in function for conversion of DBCS
character strings

The Enterprise PL/I compiler still supports the CHAR built-in function although it
now views CHAR as an abbreviation for CHARACTER. The results of the CHAR
built-in function are the same as in the old PL/I for MVS compiler except when
the first argument has the GRAPHIC type:
v Under the PL/I for MVS compiler, the result was the byte value of that

argument enclosed in shift codes.
v Under the Enterprise PL/I compiler, the result is the string produced by

converting the GRAPHIC string to CHARACTER. If the conversion is not
possible, the CONVERSION condition will be raised.

For example, if X is GRAPHIC(3) and holds the byte .A.B.C, the results are as
follows:
v Under the PL/I for MVS compiler, GRAPHIC(X) yields <.A.B.C>.
v Under the Enterprise PL/I compiler, GRAPHIC(X) yields ABC.

The following examples show how to change your code to obtain the results
produced by the old compiler:
v Example 1:

add
dcl so char(1) value (’0e’x), si char(1) value(’0f’x);

then replace
A = CHAR(X);

by
UNSPEC(A) = UNSPEC(SO) || UNSPEC(X) || UNSPEC(SI);

v Example 2:
replace

CHAR(X)
by

OLDCHAR(X)
where OLDCHAR is defined by

oldchar: proc(x) returns(char(32767) var);
dcl x graphic(*);
dcl a char(32767) var;
dcl d char(2*length(x));
a = ’0e’x;
unspec(d) = unspec(x);
a = a || d;
a = a || ’0f’x;
return(a);

end;

For more information about the CHARACTER and CHARGRAPHIC built-in
functions, see CHARACTER and CHARGRAPHIC under the chapter Built-in
functions, pseudovariables, and subroutines in Enterprise PL/I for z/OS Compiler and
Run-Time Migration Guide.

MACRO preprocessor differences
This topic includes situations where you might need to change your code because
of differences between the old and new MACRO preprocessors.

Chapter 14. Understanding when working code may need to be changed 119

MACRO preprocessor and strings
Under the old compiler, the MACRO preprocessor would uppercase all text except
for text enclosed in strings and comments. But the old compiler recognized only
text delimited by '...' as strings: text delimited by "..." was not recognized as a
string and was uppercased.

The new compiler will, under the default preprocessor option of CASE(UPPER)
also uppercase all text except for text enclosed in strings and comments. However,
the new compiler recognizes both text delimited by '...' and text delimited by "..."
as strings and will not uppercase either.

This difference could cause a problem if you were running the MACRO
preprocessor before the SQL preprocessor and if you also had code in your SQL
statements such as:

WHERE "system" = ’Wilmer’

Under the old compiler, this would have become:
WHERE "SYSTEM" = ’Wilmer’

But under the old compiler, this becomes:
WHERE "system" = ’Wilmer’

The latter would probably not produce the results you want from DB2. If this is
the case, you must change your source so that the text delimited by "..." is in
uppercase (before any preprocessing).

SQL preprocessor differences
You might need to change your code because of differences between the old and
new SQL preprocessors.

Starting with Enterprise PL/I for z/OS V4R2, the SQL preprocessor no longer
supports the LOB option. If your program relies on how the preprocessor
translates LOB declarations, you must change it. See “SQL preprocessor differences
from Enterprise PL/I V4R1” on page 136 for detailed information on that and
other SQL preprocessor changes.

120 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 15. Linking your new objects

This chapter describes factors you must consider when you link-edit an object
module produced by the new Enterprise PL/I compiler.

For more information about linking your code, see the Enterprise PL/I for z/OS
Programming Guide.

Prelinker and PDSE considerations
As long as you use the Enterprise PL/I default compiler options of NORENT and
LIMITS(EXTNAME(7)), you do not need to use either the prelinker or PDSEs.

AMODE(24) considerations
For AMODE(24) support you must link your application program with SIBMAM24
concatenated in front of SCEELKED.

For more information about building AMODE(24) applications, see “AMODE(24)
restrictions” on page 70.

Using PLICALLA or PLICALLB Entry
If you use PLICALLA or PLICALLB as a main entry point in an Enterprise PL/I
program, you must concatenate SIBMCAL2 in front of SCEELKED.

CHANGE cards
Enterprise PL/I does not support the use of CHANGE cards during link-edit if
either the RENT option is specified or the LIMITS(EXTNAME(n)) option is
specified with a value of n greater than 8.

© Copyright IBM Corp. 1999, 2011 121

122 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 16. Using Language Environment with the new
compiler

Many of the same considerations that were discussed in Chapter 6, “Considerations
Before Migrating,” on page 35 apply to the new compiler as well. See that chapter
for run-time considerations when using the new compiler.

Chapter 13, “Understanding when working code must be changed,” on page 101
also contains useful information about differences between Enterprise PL/I
run-time results and previous versions of PL/I.

Using the right run-time options
Under Language Environment, some of the options available under the OS PL/I
run-time are no longer available, and some have been renamed, redefined, or
merged with other options. In addition, some important new options are now
available.

The dropped options are:
v COUNT
v FLOW

The renamed and merged options are:
v HEAP redefines HEAP
v NATLANG replaces LANGUAGE
v RPTSTG replaces REPORT
v STACK merges ISASIZE and ISAINC
v TRAP merges SPIE and STAE

Some of the important new options are:
v ABTERMENC
v ALL31
v DEPTHCONDLMT
v ERRCOUNT
v MSGFILE
v STORAGE
v XUFLOW

For more and complete information about run-time options, see the z/OS Language
Environment Programming Reference, but note the following key points:
v For compatibility with OS PL/I, use the following options:

– ABTERMENC(RETCODE)
– DEPTHCONDLMT(0)
– ERRCOUNT(0)
– TRAP(ON)
– XUFLOW(ON)

v You must specify the following options in your AMODE(24) applications:
– ALL31(OFF)
– STACK(,,BELOW)

v Never use RPTSTG(ON) in any performance-critical application.
v Never use STORAGE(,,00) in any performance-critical application.

© Copyright IBM Corp. 1999, 2011 123

v You must specify POSIX(ON) in any multi-threaded application.

Calling PL/I from assembler main programs
There are three ways Language Environment-conforming assembler routines can
pass control to a Enterprise PL/I subroutine:
1. Branch to a statically-linked Enterprise PL/I subroutine.
2. Use the Language Environment macro CEEFETCH to branch to a

separately-linked Enterprise PL/I subroutine.
3. Use assembler instructions such as LOAD and BALR to branch to a

separately-linked Enterprise PL/I subroutine.
In this case, your must explicitly link in the Language Environment-Enterprise
PL/I signature CSECT, CEESG011, to ensure the Language
Environment-PL/I-specific run-time environment is initialized.

For information on other assembler issues, see “Differences in Assembler Support”
on page 46.

Understanding when your results may vary

Return codes
The PLIRETC built-in subroutine will now accept a FIXED BIN(31) argument and
does not require the value to be <= 999.

Correspondingly, the PLIRETV built-in function will now return a FIXED BIN(31)
value.

The Language Environment run-time adds 3000 to the user return code for severity
3 conditions, and Language Environment classifies all PL/I conditions as severity 3
except:
v ATTENTION (when raised by a SIGNAL statement)
v CONDITION
v ENDPAGE
v FINISH
v NAME
v PENDING
v STRINGRANGE
v STRINGSIZE
v UNDERFLOW

When the run-time issues messages
Under Language Environment, there is a small difference in the timing of when
some run-time messages are issued for conditions with ON-units:
v without Language Environment, if a condition such as ZERODIVIDE or ERROR

occurred, the run-time would issue a message before invoking the ON-unit for
the condition

v with Language Environment, if a condition such as ZERODIVIDE or ERROR
occurs, the run-time will issue a message only if the END statement in the
ON-unit is executed

This change gives you the chance to handle a condition (and issue your own
message if you wish) and to continue your application via a GOTO without the
run-time also issuing its own message.

124 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

There is no change to the run-time behavior when there is no ON-unit.

Also, the SNAP traceback message produced by ON ERROR SNAP continues to be
issued before the ERROR ON-unit receives control.

When running Enterprise PL/I programs under Language Environment, some file
I/O errors are now detected during the OPEN process, which results in a different
but more meaningful error message and error code. As a result, the error will
result in an UNDEFINEDFILE condition instead of a TRANSMIT or other
condition that was received with older PL/I.

What the run-time messages say
PL/I for MVS & VM and Enterprise PL/I share the same set of run-time messages,
and this can lead to messages that should be read with understanding and
flexibility. For example, when the run-time issues a message for UNDEFINEDFILE
in an Enterprise PL/I program, the message will mention both MVS and VM
constructs even though Enterprise PL/I does not currently support VM. The
meaning should be clear nonetheless.

Also, if you compile with the compiler GONUMBER option, the run-time messages
will refer to a "statement" where your exception has occurred. This "statement" is,
for Enterprise PL/I, the line number in the source program of the statement that
raised the exception.

Finally, the format and content of run-time messages are different under the
Language Environment run-time than under the OS PL/I run-time. You can find
complete descriptions of the run-time messages in z/OS Language Environment
Run-Time Messages.

Where the run-time messages go
Under Language Environment, run-time messages go to the destination specified
in the run-time option MSGFILE. The default MSGFILE destination is SYSOUT, not
SYSPRINT, as it was under the old run-time. MSGFILE(SYSPRINT) is supported
under Enterprise PL/I only after applying the PTFs for the runtime APAR
PQ78307.

Math built-ins
The new compiler invokes the Language Environment-provided routines to
evaluate the mathematical built-in functions (such as SIN or COS) and for float
exponentiation. These routines are more precise than the routines provided with
the OS PL/I V2R3 library and can sometimes produce results with a different last
digit.

As an example of this difference, consider the following program which produces
the kind of table seen at the back of trigonometric textbooks:

trigtab: proc options(main);

dcl degrees fixed dec(5,1);
dcl minutes fixed dec(3,1);

do degrees = 0 to 359;
put skip edit(degrees) (f(5));
do minutes = 0 to .9 by .1;

put edit(sind(degrees+minutes)) (f(9,4));

Chapter 16. Using Language Environment with the new compiler 125

end;
end;

end;

The output of this program looks like:
0 0.0000 0.0017 0.0035 0.0052 0.0070 ...
1 0.0175 0.0192 0.0209 0.0227 0.0244 ...

The table produced depends on which math library is used, and even then there
are only 5 different values. For instance, with the old compilers using the pre-LE
math library, the result for 140.1 is 0.6414, while with the old compilers using the
Language Environment math library, the result is 0.6415. Since the new compiler
uses only the Language Environment math library, the result with it is also 0.6415.

Dumps
Calling PLIDUMP still produces a dump, but the format, contents, and destination
of dumps are now controlled by Language Environment. For more information on
the many resultant, but mostly small, differences, see “Differences in PLIDUMP”
on page 43.

Storage reports
The format, contents, and destination of the run-time storage report have changed.
For more and complete information about the run-time storage report, see the
description of the RPTSTG option in the z/OS Language Environment Programming
Reference.

Note that Language Environment does not use the PLIXHD declaration to provide
the heading for the run-time storage report. You can, however, specify the heading
via Language Environment's callable service CEE3RPH.

Prerequisite Language Environment PTFs
The following PTFs are required to compile and run PL/I applications using
Enterprise PL/I.
v For z/OS, Version 1 Release 4: PTF UQ70042 (APAR PQ66155) and PTF UQ88264

(APAR PQ88268).
v For z/OS, Version 1 Release 5: PTF UQ80236 (APAR PQ78173) and PTF UQ88263

(APAR PQ88065).
v For z/OS, Version 1 Release 6: PTFs UQ92073 and UQ92088 (APARs PQ92870

and PQ93118).
v For z/OS, Version 1 Release 7: PTF UK06652 (APAR PK10630).

126 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 17. Tuning for better CPU and storage utilization

After you migrate to Language Environment, you should retune your applications
to maximize the performance. When you retune an application, it is not always
possible to maximize CPU and storage at the same time. Often you will find that,
in order to obtain better CPU, you need to use more storage, or vice versa. This
section provides general tips to help you to retune your applications under
Language Environment.

For information on choosing compiler options for improved performance see
“Choosing options for improved performance” on page 79.

For more information on tools you can use to improve performance for your
applications, see z/OS Language Environment Programming Guide, z/OS Language
Environment Installation and Customization under OS/390 or z/OS Language
Environment Customization, and Enterprise PL/I for z/OS Programming Guide.

Improving CPU Utilization
The following discussion shows ways to help you obtain better CPU utilization:
v Reduce the number of GETMAINs and FREEMAINs issued by Language

Environment.
Use the Language Environment RPTSTG(ON) option to produce the storage
report. Specify the reported storage amount in the corresponding Language
Environment storage run-time options.

v Reduce the number of LOADs and DELETEs issued by Language Environment.
Put the commonly used Language Environment library routines in (E)LPA. The
following lists the recommended candidates for PL/I:
– CEEBINIT (LPA)
– CEEPLPKA (ELPA)
– CEEEV010 (ELPA) if you still have OS PL/I applications
– CEEEV011 (ELPA) for Enterprise PL/I applications
– CEEBLIIA (LPA) for OS PL/I applications not relinked
– IBMRLIB1 (LPA)
See z/OS Language Environment Installation and Customization under OS/390 or
z/OS Language Environment Customization for a complete list of library routines
that can be put in (E)LPA.

v Avoid AMODE switching between library routines.
Use AMODE(31) for your application, if possible, so you can specify Language
Environment ALL31(ON) option. If ALL31(ON) is in effect, there will be no
AMODE switching among library routines.

v Avoid overuse of PL/I conditions.
All PL/I condition handling is expensive and should only be used where
appropriate. Overuse of PL/I condition handling will degrade the performance
of your application.

v Use DF/SMS-provided system-determined BLKSIZE.
On MVS, use BLKSIZE(0) for an output file that can be blocked. DF/SMS
determines the optimal block size for you which can improve the file
performance.

v Use Language Environment Library Routine Retention facility (LRR).

© Copyright IBM Corp. 1999, 2011 127

You can get a better CPU performance if you use LRR. When LRR is used,
Language Environment keeps certain Language Environment resources in
storage when an application ends. Subsequent invocations of programs that use
LRR is much faster because the Language Environment resources left in storage
are reused.
For example, you can use LRR for your IMS/DC environment to improve
performance.
Note that because LRR leaves Language Environment resources in the storage
for a long period of time, you must assess your storage availability to
accommodate the situation.

Improving Storage Utilization
The following discussion helps you to obtain better storage utilization:
v Relink with Language Environment if you have not recompiled your OS PL/I

programs
The relinked OS PL/I load module has a smaller size because it contains the
Language Environment stubs only.

v Make your application AMODE(31) and RMODE(ANY).
Most likely the application will be loaded above the 16M line. You can specify
the Language Environment ALL31(ON) option which allows Language
Environment to allocate some of its control blocks above the 16M line.

v Avoid use of the HEAPPOOLS(ON) option.
The HEAPPOOLS option applies to Enterprise PL/I (although not to PL/I for
MVS and earlier PL/I code). Specifying the HEAPPOOLS(ON) option may lead
to a very large amount of storage being allocated to ANYHEAP.

v Use Language Environment option HEAP(,,ANY) option, if possible.
For PL/I, Language Environment will allocate the heap storage above the 16M
line if the following is true:
– The requestor is in AMODE(31)
– HEAP(,,ANY) is in effect
– The main program is in AMODE(31)

v Use Language Environment STACK(,,ANY) option, if possible.
Your application must be in AMODE(31). For PL/I, Language Environment will
allocate the stack storage above the 16M line if your application is relinked with
Language Environment and contains no edited stream I/O.

v Analyze the IBM-supplied default values in Language Environment storage
options and change them, if possible and as necessary, to make them optimal for
your applications.
Note that specifying a smaller value is not always better: if you use a smaller
value, Language Environment will allocate less storage initially, but this could
result in more GETMAINs and FREEMAINs being issued over the life of the
application - and GETMAINs are very expensive.

v Put commonly used Language Environment library modules in the (E)LPA.
The library routines in (E)LPA do not occupy storage in your application region,
so your application has more storage to use. See the recommended library
routines for (E)LPA in “Improving CPU Utilization” on page 127.

128 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Improving Performance under Subsystems
The following discussion helps you to obtain better performance under specific
subsystems:
v Under CICS

Use the PL/I FETCH/CALL statement instead of EXEC CICS LINK. The PL/I
FETCH/CALL statement has a much shorter path length than the path length of
EXEC CICS LINK.

v Under IMS
Use Language Environment Library Routine Retention (LRR) facility to reduce
the number of LOADs/DELETEs and GETMAINs/FREEMAINs issued by
Language Environment for each transaction.
Preload commonly used Language Environment library modules and frequently
used top-level applications.
In particular, it is especially beneficial for programs with any I/O to preload the
module IBMPOIOA or to put IBMPOIOA in the LPA.

Chapter 17. Tuning for better CPU and storage utilization 129

130 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 18. Adding Enterprise PL/I programs to existing PL/I
applications

When you add an Enterprise PL/I program to an existing application, you are
either recompiling an existing program with Enterprise PL/I or including a newly
written Enterprise PL/I program. When you add Enterprise PL/I programs to
your existing applications, you have the ability to upgrade your existing programs
incrementally, as your shop's needs dictate.

Important
After you add an Enterprise PL/I program to an existing application, that
application must run under Language Environment.

This chapter includes information on the following topics:
v Object and load module considerations
v Condition handling in mixed applications

Also note these important points:
v You cannot mix new and old object code if the old code does any multitasking.
v If you mix old and new code, you cannot do any FETCH from FETCH.

Object and load module considerations
While recompiling all your PL/I source is strongly recommended, if this isn't done,
the following options must be used when compiling Enterprise PL/I code that will
be mixed with older PL/I objects:
v CMPAT(V2) (or CMPAT(V1) if that's what you are currently using with old

PL/I)
v LIMITS(EXTNAME(7))
v NORENT
v BACKREG(5)
v BIFPREC(15)

In addition, as discussed in Chapter 11, “Understanding the new compiler's
options,” on page 73, you may also want to use some or all of these options:
v COMMON
v DEFAULT(LINKAGE(SYSTEM))
v DEFAULT(OVERLAP)
v EXTRN(FULL)
v NOWRITABLE(PRV)

Note that unless you use the NOWRITABLE(PRV) option, CONTROLLED
variables cannot be shared between old and new code.

Even if all the options listed above are used, there are some restrictions on mixing
old and new object code:

© Copyright IBM Corp. 1999, 2011 131

v FILE variables and constants cannot be shared between old and new code with
one exception: SYSPRINT can be shared by old and new code if the old code
was linked under LE. However, a file written out by old code can be read by
new code - and vice-versa.

v Whenever old code is used, all fetch/release restrictions from the older product
apply. In particular, if a new MAIN does successfully FETCH and CALL an old
module, then the old module cannot perform a subsequent FETCH of another
module.

v If any old code is present in an application, DLL code cannot be invoked.
v There is no support for mixing OS PL/I V1R4 object with Enterprise PL/I

objects.
v For old code compiled with OS PL/I V2R3 or earlier (but later than V1R4) :

– An old MAIN not linked with Language Environment cannot FETCH a new
module.

– A new MAIN cannot CALL or FETCH an old module unless either
1. the new MAIN has the signature CSECT CEESG010 linked in, or
2. the old module has been relinked with SCEELKED either

a. after the PTF for APAR PK23270 has been applied, or
b. with an explicit INCLUDE SYSLIB(CEESG010)

Previously, Enterprise PL/I had the restriction that if your old code did any I/O,
then MAIN must have been compiled with an old compiler. This restriction no
longer applies if you are using Language Environment 1.10 or later.

Sharing SYSPRINT
With the enhancement shipped via co-req APAR PK01919 (Enterprise PL/I) and
PK016197 (PL/I for MVS & VM), SYSPRINT can be shared between Enterprise
PL/I and PL/I for MVS & VM at the enclave level and also in a multi-enclave
environment.

Below are the restrictions and the extent to which this shared SYSPRINT is
supported:
v The compiler option STDSYS must not be used.
v SYSPRINT must have the default or declared attributes : EXTERNAL, STREAM,

OUTPUT, PRINT.
v The shared SYSPRINT could be directed to SYSOUT or to a permanent data set.
v Shared SYSPRINT is supported when MSGFILE(SYSPRINT) is specified

provided that there are no preinitialized programs and/or stored procedures in
the mix.

v In a multi-enclave environment, the first SYSPRINT that is opened will
determine the attributes of SYSPRINT. The second and subsequent SYSPRINT
will inherit all attributes from the first SYSPRINT.

v SYSPRINT will remain opened during the entire application. At enclave
termination, all other files will get closed except for SYSPRINT which will only
be closed at process termination.

v An explicit close of the shared SYSPRINT by either Enterprise PL/I or PL/I for
MVS & VM is honored. Any attempt to write to SYSPRINT afterward requires
SYSPRINT to be explicitly or implicitly opened again. If SYSPRINT was routed
to a data set which is reused for the second open, data previously written might
be lost.

132 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v SYSPRINT can only be opened (explicitly or implicitly) by the initial thread
(Enterprise PL/I multithreading) or by the main task (PL/I for MVS & VM
multi-tasking). Secondary thread and subtask should not explicitly or implicitly
open SYSPRINT and should not explicitly close SYSPRINT.

v SYSPRINT cannot be shared with older PL/I under TSO.

With support for shared SYSPRINT, the overriding of attributes has changed in the
following ways:
v when SYSPRINT is routed to SYSOUT, the SYSPRINT attributes specified via the

ENVIRONMENT option or the OPEN statement are allowed to override those
options specified on the DD statement

v when SYSPRINT is routed to a dataset (either TEMPORARY, NEW or OLD) any
mismatch between the attributes specified by the program and those specified
on the DD statment will cause the UNDEFINEDFILE condition to be raised

To aid in migration, APAR PK63659 introduces a new temporary environment
variable, PLI_SYSPRINT_ATTR_OVERRIDE. To get the same behavior as before the
shared SYSPRINT changes, specify PLI_SYSPRINT_ATTR_OVERRIDE=YES in the
PARM parameter or in the PLIXOPT string. This will allow attribute overrides
when SYSPRINT is routed to a TEMPORARY or NEW dataset. Note that attribute
overriding is never allowed when SYSPRINT is routed to an existing or 0LD
dataset and that it is always allowed when SYSPRINT is routed to SYSOUT.

Also note that support for this new environment variable is only temporary.
Starting with LE 1.10Z this environment variable will be ignored. Affected
programs and JCL will need to be changed or the UNDEFINEDFILE condition will
be raised.

Run-time option considerations
The HEAPPOOLS option cannot be used in mixed old and new PL/I code if the
old PL/I code tries to free storage allocated by new PL/I code.

Condition handling considerations
For the purposes of condition handling you must consider old PL/I programs and
Enterprise PL/I programs as separate languages. Both old PL/I and Enterprise PL/I
have their own signature CSECTs (CEESG010 for OS PL/I and PL/I for MVS &
VM and CEESG011 for VisualAge PL/I and Enterprise PL/I), and separate
run-time libraries in Language Environment.

This implies that when software conditions are raised in a PL/I source program on
one side (either old or new PL/I) and is expected to be handled by a PL/I source
program on the other side (new PL/I if it was raised in old PL/I, or old PL/I if it
was raised in new PL/I), the program that is supposed to handle the exception
will not even know about it because it uses a completely separate run-time library
than the program that raised the condition.

Hardware conditions (such as ZERODIVIDE) have a better chance of being
handled correctly across the old PL/I/new PL/I boundary because Language
Environment gets involved and bridges the gap between the two separate PL/I
run-time libraries.

Chapter 18. Adding Enterprise PL/I programs to existing PL/I applications 133

Partitioning PL/I source programs into units of execution
You will need to partition your PL/I source programs into units of execution to
accommodate the restrictions on mixing and condition handling between old and
new PL/I modules as described above.

Careful attention must be paid when partitioning your PL/I source programs into
units of execution. Your goal is to contain any restrictions on mixing old and new
PL/I modules within the boundaries of the units of execution that you define. For
example, if Program A defines a CONTROLLED EXTERNAL variable and Program
B references this variable and Program B also creates a file variable that it shares
with Program C, then all three Programs A, B, and C must be compiled with
Enterprise PL/I in order to work correctly.

Finally, note that when mixing old and new code, you must pay attention to the
differences between how the new and old compilers handle various language
constructs, as described in Chapter 13, “Understanding when working code must
be changed,” on page 101.

134 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 19. Migrating from earlier releases of Enterprise PL/I
to Enterprise PL/I V4R2

This book concentrates on the migration effort in migrating from OS PL/I or PL/I
for MVS & VM to Enterprise PL/I V4R2. If you have already moved to Enterprise
PL/I Version 3 Releases, or V4R1, migration to Enterprise PL/I V4R2 is relatively
easy.

This chapter focuses on differences in the compiler options and in the compiler
messages, but there are some other differences in the compiler output that might
possibly affect users of earlier release of Enterprise PL/I:
v The compiler itself is compiled with ARCH(6) and any use of it on a machine

with older hardware causes the compiler to stop.
v The macro preprocessor now leaves %include %xinclude, %inscan, and %xinscan

in the compiler listing as comments.
v Listings now include 7 columns for the line number in a file.
v The MAP output now also includes a list in order of storage offset (per block) of

the AUTOMATIC storage used by the block.
v The length of the mnemonic field in the assembler listing is increased to allow

for better support of the new z/OS instructions that have long mnemonics.
v More of the right margin is used in the attributes, cross-reference and message

listings.
v There are some small changes in the SYSADATA produced by the compiler:

– The chaining of the procedure records and their associated statements are
changed so that the block structure of a compilation is readily determined
(more details are available in the appendix in the Programming Guide).

– The edition and sysadata level numbers are updated (and these values could
be used to allow code to handle both the old and new chaining of the
procedure recodes).

v The MAXNEST option can flag some old code in which the nesting of DO, IF, or
PROCEDURE statements is too deep.

Migrating from Enterprise PL/I V4R1
The V4R2 compiler, like the V3R8, V3R9, and V4R1 compilers, must be installed in
a PDSE. Also, the Language Environment runtime option XPLINK must be ON
whenever you start the compiler. If you start the compiler under batch by using
IBMZPLI or under z/OS Unix System Services by using the pli command, the
compiler itself ensures that it runs with XPLINK(ON). However, if you are starting
the compiler in some other way, you must ensure that XPLINK(ON) is in effect.

Enterprise PL/I V4R2 contains some new options and some old options with new
suboptions. However, the defaults for these new options and suboptions produce
executable code that is compatible with the code that is produced by the Enterprise
PL/I V4R1 compiler (or any of the releases since V3R3).

If you use with PL/I V4R2 the same settings for your compiler options as you
used with the V4R1 and Version 3 releases, you can mix code compiled with V4R2
and earlier releases. You do not need to recompile all your code unless you change
the setting of a compiler option that changes the program semantics. For example,

© Copyright IBM Corp. 1999, 2011 135

you can freely change the ARCH or RULES option when mixing objects, but you
cannot do so if you change the BACKREG, BIFPREC, or CMPAT options.

The new options and added suboptions are listed as follows:

New options

v PPLIST
v UNROLL

Existing options with new suboptions

v CHECK supports (NO)STORAGE as a suboption.
v DEFAULT supports (NO)PSEUDODUMMY as a suboption.
v RULES supports NOLAXENTRY(LOOSE | STRICT), (NO)LAXRETURN,

and (NO)SELFASSIGN as suboptions.

SQL preprocessor differences from Enterprise PL/I V4R1
This topic describes the differences between the SQL preprocessors from the new
and the old compiler.

Dropped SQL preprocessor options
The V4R2 compiler dropped support for the following SQL preprocessor options:
v LOB(DB2 | PLI).
v ONEPASS | TWOPASS. The preprocessor now always acts as if the TWOPASS

option were on.
v SCOPE | NOSCOPE. In effect, SCOPE is always on. However, the restrictions

imposed previously when using SCOPE have been removed. The SQL
preprocessor now resolves names using the same rules as the compiler.

Handling of LOB declarations
The SQL preprocessor no longer supports the LOB option. If your program relies
on how LOBs are represented in the code that is generated by the SQL
preprocessor, you must change the program.

You can now use SQL TYPE anywhere other PL/I data attributes can be used.
Therefore, you can eliminate any dependency on how the preprocessor translates
LOB declarations in your code, and thus write simpler and cleaner code.

For instance, the variable XML_DOC_STRUC in the following example depends on
a particular implementation of the CLOB type. Therefore, the compiler cannot
compile the code if you use the SQL preprocessor from V4R2.

DCL
1 DOCM_STRUC,

2 MODEL_EXECN_ID_STRUC FIXED BIN(31),
2 DOCM_TYPE_CD_STRUC CHAR(1),
2 XML_DOC_STRUC,

3 XML_DOC_ARRY_LENGTH FIXED BIN(31),
3 XML_DOC_ARRY_DATA,

4 XML_DOC_DATA1(3) CHAR(32767),
4 XML_DOC_DATA2 CHAR(4099);

DCL MODEL_EXECN_ID_ARRY(5) FIXED BIN(31);
DCL DOCM_TYPE_CD_ARRY(5) CHAR(1);
DCL XML_DOC_ARRY(5) SQL TYPE IS XML AS CLOB(100K);

EXEC SQL FETCH NEXT ROWSET FROM DOCM_CSR FOR 5 ROWS

136 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

INTO :MODEL_EXECN_ID_ARRY
,:DOCM_TYPE_CD_ARRY
,:XML_DOC_ARRY;

XML_DOC_STRUC = XML_DOC_ARRY(I);

You can change the code in the previous example to the following code by using
SQL TYPE. The compiler can compile it with the SQL preprocessor or the
precompiler from V4R2, but you cannot compile it with the preprocessor from
V4R1 or earlier releases.

DCL
1 DOCM_STRUC,

2 MODEL_EXECN_ID_STRUC FIXED BIN(31),
2 DOCM_TYPE_CD_STRUC CHAR(1),
2 XML_DOC_STRUC SQL TYPE IS XML AS CLOB(100K);

DCL MODEL_EXECN_ID_ARRY(5) FIXED BIN(31);
DCL DOCM_TYPE_CD_ARRY(5) CHAR(1);
DCL XML_DOC_ARRY(5) SQL TYPE IS XML AS CLOB(100K);

EXEC SQL FETCH NEXT ROWSET FROM DOCM_CSR FOR 5 ROWS
INTO :MODEL_EXECN_ID_ARRY

,:DOCM_TYPE_CD_ARRY
,:XML_DOC_ARRY;

XML_DOC_STRUC = XML_DOC_ARRY(I);

Invalid host variable references
The new SQL preprocessor flags with warning messages the following two kinds
of invalid host variable references that the old preprocessor did not flag:
v Arrays of structures and structures that contain arrays are not valid as host

references. Take the following declarations as an example:
dcl 1 A(<bounds>), 2 B <data-type>;
dcl 1 A, 2 B (<bounds>) <data-type>;

If you use A as a host reference, the old SQL preprocessor would accept the
reference as valid. However, the new SQL preprocessor flags it with a warning
message. The reference should be changed to A.B.

v Structures that contain structures are not valid as a host reference. Take this
declaration as an example:
dcl 1 X, 2 X, 3 Y <data-type>, 3 Z <data-type>, ... /* and no other level-2 items */

If you use X as a host reference, the old SQL preprocessor would accept it as
valid. The new SQL preprocessor flags it with a warning message. The reference
should be changed to X.X.

Handling of SQL preprocessor messages
Before Enterprise PL/I for z/OS V4R2, the facility ID was SQL for messages that
were produced by the back end of the SQL preprocessor. You could use the IBM
supplied compiler user exit (IBMUEXIT) to suppress these messages or to change
the severity of them.

As of V4R2, the facility ID of all messages is IBM, and you cannot change the
severity of these messages by using the IBM supplied IBMUEXIT.

However, you can change the severity of DB2 messages or suppress them entirely
by modifying IBMUEXIT. For details on how to do this, see Chapter 22. Using user
exits in the Enterprise PL/I for z/OS V4R2 Programming Guide.

Chapter 19. Migrating from earlier Enterprise PL/I to Enterprise PL/I V4R2 137

Migrating from Enterprise PL/I Version 3 (all releases)
Enterprise PL/I V4R1 contains some new options and some old options with new
suboptions. However, the defaults for these new options and suboptions produce
executable code that is compatible with the code that is produced by the Enterprise
PL/I V3R9 compiler (or any of the releases since V3R3).

If you use with PL/I Version 4 the same settings for your compiler options as you
used with the Version 3 releases, you can mix code compiled with V4R1 and
earlier releases. You do not need to recompile all your code unless you change the
setting of a compiler option that changes the program semantics. For example, you
can freely change the ARCH or RULES option when mixing objects, but you
cannot do so if you change the BACKREG, BIFPREC, or CMPAT options.

The new options and changed options are listed as follows. They are described
fully in the Programming Guide.

New options

v DEPRECATE
v XREF

Existing options with added suboptions

v ARCH supports 9 as a suboption.
v GONUMBER supports (NO)SEPARATE as a suboption.
v RULES supports (NO)GLOBALDO and (NO)PADDING as suboptions.

Existing options with dropped suboptions

v The STORAGE suboption of the CHECK option
v The SAA and SAA2 suboptions of the LANGLVL option

Dropped SQL options

v (NO)OPTIONS. The SQL preprocessor options are always listed.

Changes in Enterprise PL/I Version 3 releases
This information lists some changes that have been made into earlier Enterprise
PL/I Version 3 releases:

Enterprise PL/I V3R9

v Since Enterprise PL/I V3R9, REORDER rather than ORDER is the
default suboption for the DEFAULT option.

v The V3R9 compiler also dropped support for the COMPACT and TUNE
options.

Enterprise PL/I V3R8
Since Enterprise PL/I V3R8, because of the new V3 suboption to CMPAT,
some of the message inserts generated by the compiler is 8-byte integers of
type FIXED BIN(63). This change has no effect unless you write your own
routine to be invoked by the EXIT compiler option. In this case, if you
have a SELECT statement for the possible types of message inserts, you
would probably have to add a new WHEN clause to that SELECT
statement.

Enterprise PL/I V3R7
Since Enterprise PL/I V3R7, the documentation for the following built-in
functions is removed and since V3R8 they are no longer supported:
v ACOSF

138 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v ASINF
v ATANF
v COSF
v EXPF
v LOGF
v LOG10F
v SINF
v TANF

Enterprise PL/I V3R6
Note that only under V3R6, the default for CEESTART option is
CEESTART(LAST). This makes the compiler place the CEESTART CSECT
at the end of its generated object deck. Though this is required if you are
using linker CHANGE cards, it is different from what was done under
earlier releases of the compiler.

Moreover, if you do not use an ENTRY CEESTART linker card when
binding your objects, this causes your code to behave incorrectly. You
might prefer to use the CEESTART(FIRST) option.

Enterprise PL/I V3R5
Since Enterprise PL/I V3R5, when you specify the PP option more than
once, the compiler behavior is changed. Before V3R5, the last specification
would replace any previous specification, but since V3R5, the option is
additive (as are the RULES and other options). So, if you specify PP(CICS)
PP(SQL), it is the same as if you specify PP(CICS SQL).

Messages that are introduced with V4R2
This topic includes new or changed messages that are introduced with V4R2,
which includes both compiler messages and preprocessor messages.

Compiler messages that are introduced with V4R2
New and changed messages introduced with V4R2 are listed as follows. Many of
these messages are produced only when certain compiler options are in effect. For
a fuller and more comprehensive explanation, see Enterprise PL/I for z/OS
Messages and Codes.
v IBM2211: flags the lack of a closing shift code on a line
v IBM2212: flags the INDICATORS built-in function when it is applied to an

element that is not a structure
v IBM2213: flags procedures and BEGIN blocks with too many label arrays
v IBM2214: flags the use of XMLATTR on parent structures
v IBM2215: flags the use of XMLATTR on unnamed elements
v IBM2216: flags the use of XMLATTR on arrays
v IBM2217: flags the use of XMLATTR on an element when the previous element

at that logical level does not also have the XMLATTR attribute
v IBM2218: flags the use of XMLOMIT on non-native float elements
v IBM2219: flags the use of INONLY with ASSIGNABLE
v IBM2220: flags the use of OUTONLY with only NONASSIGNABLE
v IBM2221 - IBM2228: flag invalid non-constant extents in BASED
v IBM2230: flags invalid POPCNT arguments
v IBM2231: flags the use of XMLCHAR with a non-native character set

Chapter 19. Migrating from earlier Enterprise PL/I to Enterprise PL/I V4R2 139

v IBM2232: flags multiple targets in BY DIMACROSS assignments
v IBM2233: flags non-structure targets in BY DIMACROSS assignments
v IBM2234: flags the use of arrays in BY DIMACROSS assignments
v IBM2235: flags invalid targets in BY DIMACROSS assignments
v IBM2419: flags the use of an option with an ARCH level that is too low
v IBM2449: flags violations of RULES(NOSELFASSIGN)
v IBM2820: flags options supported only on other platforms

Preprocessor messages that are introduced with V4R2
New and changed messages introduced with V4R2 are listed as follows. For a
fuller and more comprehensive explanation, see Enterprise PL/I for z/OS
Messages and Codes.
v IBM3024: transmits DB2 I-level messages
v IBM3259: transmits DB2 W-level messages
v IBM3314: flags host variables that must be fully qualified
v IBM3315: flags host variables that are arrays of structures
v IBM3316: flags host variables that are structures of arrays
v IBM3501: transmits DB2 E-level messages
v IBM3502: flags K constants that have too many digits
v IBM3503: flags K constants whose values are too large
v IBM3504: flags M constants that have too many digits
v IBM3505: flags M constants whose values are too large
v IBM3506: flags G constants that have too many digits
v IBM3507: flags G constants whose values are too large
v IBM3508: flags variables with a precision of zero in the DECLARE statement
v IBM3509: flags a DECLARE statement with invalid syntax
v IBM3515: flags scale factors that are greater than 127
v IBM3516: flags scale factors that are less than -128
v IBM3520: flags structure level values equal to 0
v IBM3521: flags structure levels that are too large
v IBM3528: flags a DECLARE statement with more than one precision value
v IBM3529: flags scale factors in a float declaration
v IBM3571: flags the inconsistent use of SQL and PL/I float options
v IBM3572: flags structure declarations in DECLARE statements with an initial

level value greater than 1
v IBM3573: flags structure declarations with missing level values
v IBM3574: flags declarations of nameless scalars
v IBM3575: flags duplicate specifications of attributes
v IBM3576: flags empty EXEC SQL statements
v IBM3577: flags INCONLY when it is preceded by other options
v IBM3640: flags declarations with invalid level values
v IBM3641: flags declarations with an invalid LIKE attribute
v IBM3751: flags a missing reference after a colon in an EXEC SQL statement
v IBM3752: flags too many dots in a reference in an EXEC SQL statement
v IBM3753: flags an overly large length value in SQL TYPE IS
v IBM3754: flags a missing left parenthesis in SQL TYPE IS

140 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v IBM3755: flags a missing integer in SQL TYPE IS
v IBM3756: flags a missing right parenthesis in SQL TYPE IS
v IBM3757: flags a missing left parenthesis in SQL TYPE IS XML AS
v IBM3758: flags a missing integer in SQL TYPE IS XML AS
v IBM3759: flags a missing right parenthesis in SQL TYPE IS XML AS
v IBM3766: flags declarations of structures with too many levels
v IBM3767: flags a length value of 0 in SQL TYPE IS
v IBM3771: transmits DB2 S-level messages
v IBM3782: flags a missing AS after SQL TYPE IS XML
v IBM3783: flags a missing type after SQL TYPE IS XML AS
v IBM3784: flags a missing LIKE after SQL TYPE IS TABLE
v IBM3785: flags a missing table-name after SQL TYPE IS TABLE LIKE
v IBM3786: flags a missing AS in SQL TYPE IS TABLE
v IBM3787: flags a missing LOCATOR in SQL TYPE IS TABLE
v IBM3788: flags an invalid type after SQL TYPE IS
v IBM3795: flags the lack of a closing shift code on a line
v IBM3799: flags host variables that are not declared in the SQL DECLARE

SECTION
v IBM3805: flags a missing LARGE in SQL TYPE IS XML
v IBM3806: flags a missing OBJECT in SQL TYPE IS XML
v IBM3807: flags a missing LARGE in SQL TYPE IS CHARACTER
v IBM3808: flags a missing LARGE in SQL TYPE IS BINARY
v IBM3809: flags a missing OBJECT in SQL TYPE IS BINARY LARGE
v IBM3877: reports an internal error during an SQL back-end initialization
v IBM3880: flags undefined host variable references
v IBM3881: flags ambiguous host variable references
v IBM3882: flags an indicator array with more than one dimension
v IBM3883: flags an indicator array with nonconstant bounds
v IBM3884: flags an indicator reference that is not an array
v IBM3885: flags a host variable reference with more than one dimension
v IBM3886: flags a host variable array with nonconstant bounds
v IBM3887: flags a host variable array that is not CONNECTED
v IBM3888: flags a host variable reference with no corresponding DB2 type
v IBM3889: flags a host variable reference that is a union
v IBM3890: flags a host variable reference that is an array of structures
v IBM3891: flags a host variables reference that contains an array
v IBM3892: flags a host variable reference that contains structures
v IBM3893: flags a host variable reference that contains unnamed subelements
v IBM3894: flags an indicator reference that is not FIXED BIN(15)
v IBM3895: flags an indicator reference that is a scalar used with an array
v IBM3929: flags EXEC SQL statements not enclosed in a procedure
v IBM3934: flags invalid syntax in EXEC SQL INCLUDE
v IBM3935: flags failure to fetch the SQL back end
v IBM3936: flags an SQL back end that is not at the latest level
v IBM3937: flags EXEC SQL statements that are too long

Chapter 19. Migrating from earlier Enterprise PL/I to Enterprise PL/I V4R2 141

v IBM3938: flags EXEC SQL statements with too many host variables

Compiler messages that are introduced with V4R1
The following are new and changed messages introduced with V4R1. Many of
these messages are produced only when certain compiler options are in effect. For
a fuller and more comprehensive explanation, see the Messages and Codes.

New messages
v IBM2210: flags invalid use of the VALUE type function
v IBM2442: flags violations of the RULES(NOPADDING) option
v IBM2443: flags violations of the RULES(NOGLOBALDO) option
v IBM2444: flags violations of the DEPRECATE(BUILTIN) option
v IBM2445: flags violations of the DEPRECATE(INCLUDE) option
v IBM2446: flags violations of the DEPRECATE(ENTRY) option
v IBM2447: flags violations of the DEPRECATE(VARIABLE) option
v IBM2640: flags assignments to the REFER object
v IBM2641: flags syntax errors in options
v IBM2642: flags the PROC(REENTRANT) statement when code might not be

reentrant
v IBM3658: flags violations of the DEPRECATE(INCLUDE) option

Changed messages
v IBM1204: does not flag the use of the static label arrays, when they are declared

as NONASGN
v IBM2016: flags only the use of the VALUE type function in the DEFINE

STRUCTURE statement

Compiler messages that are introduced with V3R9
The following are new messages introduced with V3R9. Many of these messages
will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see the Messages and Codes.
v IBM1985: includes C runtime message when a file open fails
v IBM1986: reports system (or user) abends occurring during compiles
v IBM2200: traps and flags DFP conversion errors when DFP hardware is absent
v IBM2201: flags invalid arguments to the ROUNDDEC built-in function
v IBM2202: flags use of MEMCU built-in functions without ARCH(7)
v IBM2203: flags invalid use of VALUE in structures
v IBM2204: flags invalid use of VALUE in structures
v IBM2205: flags invalid use of VALUE in structures
v IBM2206: flags invalid use of VALUE in structures
v IBM2207: flags invalid use of VALUE in structures
v IBM2208: flags invalid use of VALUE in structures
v IBM2209: flags BASED with variable extents
v IBM2435: flags FIXED(p,q) declares with q less than 0
v IBM2436: flags FIXED(p,q) declares with q greater than p
v IBM2437: flags duplicate invocation of PP(SQL)
v IBM2438: flags violations of RULES(NOSTOP)

142 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v IBM2439: flags violations of RULES(NOPROCENDONLY)
v IBM2440: flags violations of RULES(NOLAXQUAL(STRICT))
v IBM2441: flags violations of RULES(NOGOTO(LOOSE))
v IBM2635: flags operations producing FIXED(p,q) with q greater than p
v IBM2636: flags duplicate ORDINALs in SELECT statements
v IBM2637: flags ENTRYs declared without RETURNS and used as functions
v IBM2638: flags lines where the MAXGEN limit is exceeded
v IBM2639: flags statements where the MAXGEN limit is exceeded
v IBM2815: flags inappropriate use of BYVALUE
v IBM2816: flags inappropriate use of BYVALUE
v IBM2817: flags inappropriate use of BYVALUE
v IBM2818: flags FIXED DEC add operations that may raise FOFL
v IBM2819: flags FIXED DEC multiply operations that may raise FOFL
v IBM3518: flags violations of the NAMEPREFIX option
v IBM3810: flags too many labels on one statement during CICS preprocessing

Compiler messages that are introduced with V3R8
The following are new messages introduced with V3R8. Many of these messages
will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see the Messages and Codes.
v IBM2189: flags arrays with bounds greater than 2G-1
v IBM2190: flags arrays with bounds less than -2G
v IBM2191: flags OR, NOT or QUOTE with no valid characters
v IBM2192: flags invalid PLISAXC event structures
v IBM2193: flags invalid PLISAXC event structures
v IBM2194: flags invalid PLISAXC event structures
v IBM2195: flags invalid PLISAXC event structures
v IBM2196: flags invalid PLISAXC event structures
v IBM2197: flags invalid arguments to some UTF functions
v IBM2198: flags invalid arguments to some UTF functions
v IBM2199: flags code generation without XPLINK(ON)
v IBM2429: flags CMPAT(V3) without LIMITS(FIXEDBIN(*,63))
v IBM2430: flags mismatches between LINESIZE and RECSIZE
v IBM2431: flags options invalid with GOFF
v IBM2432: flags INITIAL with PARAMETER
v IBM2433: flags INITIAL with DEFINED
v IBM2434: flags unprototyped ENTRYs under RULES(NOLAXENTRY)
v IBM2630: flags operations producing FIXED(p,q) with q larger than p
v IBM2631: flags built-in functions mixing FIXED DEC and FLOAT BIN
v IBM2632: flags built-in functions mixing FIXED DEC and FLOAT DEC
v IBM2633: flags POINTER or OFFSET variables based on FIXED BIN variables
v IBM2634: flags FIXED BIN variables based on POINTER or OFFSET variables
v IBM2814: flags allocations where an aggregate is mapped via a library call

Chapter 19. Migrating from earlier Enterprise PL/I to Enterprise PL/I V4R2 143

Compiler messages that are introduced with V3R7
The following are new messages introduced with V3R7. Many of these messages
will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see the Messages and Codes.
v IBM2184: flags source files with too many lines
v IBM2185: flags invalid arguments to ISFINITE etc
v IBM2186: flags DFP arguments to SQRTF etc
v IBM2187: flags DFP literals with too large exponents
v IBM2188: flags DFP literals with too small exponents
v IBM2420: flags FLOAT(DFP) without ARCH(7)
v IBM2421: flags CLOSE of a file in its ENDFILE block
v IBM2422: flags use of HEX attribute with FLOAT DEC under FLOAT(DFP)
v IBM2423: flags use of IEEE attribute with FLOAT DEC under FLOAT(DFP)
v IBM2424: flags scale factors in FLOAT declarations
v IBM2425: flags ELSE-IF statements when RULES(NOELSEIF) applies
v IBM2426: flags excessive nesting of DO statements
v IBM2427: flags excessive nesting of IF statements
v IBM2428: flags excessive nesting of BEGIN/PROC statements
v IBM2621: flags ON ERROR blocks not starting with ON ERROR SYSTEM
v IBM2622: flags use of function to set the initial value in a DO loop
v IBM2623: flags mixing of FLOAT DEC and FIXED BIN under DFP
v IBM2624: flags mixing of FLOAT DEC and BIT under DFP
v IBM2625: flags mixing of FLOAT DEC and FLOAT BIN under DFP
v IBM2626: flags SUBSTR where third argument is 0
v IBM2627: flags REFER structures not supported by XINFO(XMI)
v IBM2628: flags BYVALUE parameters larger than 32 bytes
v IBM2629: flags variables for which no symbol table information is generated
v IBM2812: flags use of AUTO (and STATIC) variables as tables in TRANSLATE

and VERIFY
v IBM3325: flags %DECLARE without any data attributes
v IBM3820: flags invalid use under INCONLY suboption of PP(MACR0) of

INCLUDE or XINCLUDE as a macro procedure name
v IBM3821: flags invalid use under INCONLY suboption of PP(MACR0) of

INCLUDE or XINCLUDE as a macro statement label
v IBM3822: flags invalid use under INCONLY suboption of PP(MACR0) of

INCLUDE or XINCLUDE as a macro variable name

Compiler messages that are introduced with V3R6
The following are new messages introduced with V3R6. Many of these messages
will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see the Messages and Codes.
v IBM2180: flags use of KEYED DIRECT files without a KEY/KEYFROM clause
v IBM2181: flags invalid first argument to PICSPEC
v IBM2182: flags invalid second argument to PICSPEC
v IBM2183: flags mismatching arguments in PICSPEC
v IBM2619: flags unreferenced INCLUDE files

144 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v IBM2620: flags structure assignments that would alter REFER objects
v IBM2811: flags use of PICTURE as a loop control variable

Compiler messages that are introduced with V3R5
The following are new messages introduced with V3R5. Many of these messages
will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see the Messages and Codes.
v IBM2177: flags using a PDS member as the SYSADATA dataset
v IBM2178: flags %INCLUDE statements when the LINEDIR option is in effect
v IBM2179: flags %LINE directives that are too large for the margins
v IBM2416: flags using the LINEDIR option with the TEST(SEPARATE) option
v IBM2417: flags ALLOCATE and FREE of non-PARAMETER CONTROLLED in

FETCHABLE using PRV
v IBM2418: flags unreferenced variables
v IBM2615: flags one-time DO loops
v IBM2616: flags use of SIZE against CHAR(*) NONVARYING parameter in an

OPTIONS(NODESCRIPTOR) procedure
v IBM2617: flags passing a label as a parameter to a non-PL/I routine
v IBM2618: flags invalid suboptions of compiler suboptions
v IBM2805: flags conversions done by library call when the target can be named
v IBM2806: flags passing a label as a parameter
v IBM2809: flags implicit FIXED DEC to 8-byte integer conversions
v IBM2810: flags difference in conversion of scaled FIXED BIN to FIXED DEC

Compiler messages that are introduced with V3R4
The following are new messages introduced with V3R4. Many of these messages
will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see the Messages and Codes.
v IBM2165: flags use of NOWRITABLE(PRV) with LIMITS(EXTNAME(n)) if n is

bigger than 7
v IBM2166: flags use of NOWRITABLE(PRV) with RENT
v IBM2167: flags use of NOWRITABLE(PRV) with CMPAT(LE)
v IBM2170: flags too many instances of INTERNAL CONTROLLED
v IBM2171: flags any FETCHABLE ENTRY declared at the PACKAGE level if the

NOWRITABLE option is in effect
v IBM2172: flags any FILE CONSTANT declared at the PACKAGE level if the

NOWRITABLE option is in effect
v IBM2173: flags any CONTROLLED VARIABLE declared at the PACKAGE level

if the NOWRITABLE option is in effect
v IBM2174: flags REPLACEBY2 built-in function references where the result would

be longer than CHAR(32767)
v IBM2175: flags REPLACEBY2 built-in function references where the second and

third arguments are not restricted expressions
v IBM2176: flags HEX and HEXIMAGE built-in function references where the

result would require more than 32767 characters

Chapter 19. Migrating from earlier Enterprise PL/I to Enterprise PL/I V4R2 145

v IBM2402: flags the declaration of one variable as based on the address of a
second variable when the second variable is not large enough to contain the first
variable

v IBM2403: flags the use of *PROCESS statements
v IBM2404: flags the declaration of one variable as based on the address of a

second variable when the structure containing the second variable is not large
enough to contain the first variable

v IBM2405: flags declares and built-in functions that specify an even FIXED DEC
precision

v IBM2406: flags arithmetic precision specified in a DEFAULT statement but
outside of a VALUE clause

v IBM2407: flags string length specified in a DEFAULT statement but outside of a
VALUE clause

v IBM2408: flags AREA size specified in a DEFAULT statement but outside of a
VALUE clause

v IBM2409: flags RETURN; statements in functions
v IBM2410: flags the lack of any RETURN statements inside a function
v IBM2411: flags STRING of GRAPHIC aggregates that contain VARYING strings

or NONCONNTECT array slices
v IBM2412: flags RETURN statements that specify an expression if the containing

PROCEDURE statement does not specify the RETURNS option
v IBM2413: flags use of CONNECTED apart from on parameters and in descriptor

lists
v IBM2604: flags FIXED DEC assignments that could raise SIZE
v IBM2605: flags invalid carriage control characters
v IBM2607: flags PIC to FIXED DEC assignments that could raise SIZE
v IBM2608: flags PIC to PIC assignments that could raise SIZE
v IBM2609: flags semicolons in comments
v IBM2610: flags MULTIPLY, DIVIDE, ADD and SUBTRACT built-in function

references where one operand is FIXED DEC and the other is FIXED BIN or
FLOAT

v IBM2611: flags duplicate binary or bit WHEN values and identifies the duplicate
value

v IBM2612: flags duplicate character WHEN values and identifies the duplicate
value

v IBM2613: flags possibly uninitialized scalars used as ASGN BYADDR arguments
v IBM2614: flags expressions where the results of two compares are compared
v IBM2801: flags any arithmetic operation where one operand is FIXED BIN with

zero scale factor and the other is FIXED DEC with non-zero scale factor, thus
producing a FIXED BIN result with non-zero scale factor

v IBM2802: flags aggregate mapping done by library call
v IBM2803: flags statements where GET/PUT STRING EDIT has been optimized
v IBM2804: flags suboptimal compares
v IBM3270: flags EXEC CICS statements when the CICS option is not in effect
v IBM3271: flags EXEC CSPM statements when the CSPM option is not in effect
v IBM3272: flags EXEC DLI statements when the DLI option is not in effect

146 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Object compatibility
If you want to maintain object compatibility with code generated by VisualAge
PL/I or earlier Enterprise PL/I releases, it is imperative that you use, with this
Enterprise PL/I release, the same value from each of the following set of options
that you used with the earlier compiler:
v BACKREG(5) or BACKREG(11)
v BIFPREC(15) or BIFPREC(31)
v CMPAT(V2) or CMPAT(V1) or CMPAT(LE)
v CSECT or NOCSECT
v LIMITS(EXTNAME(n))
v NORENT or RENT
v WRITABLE or NOWRITABLE

The PTF for APAR PQ66252 changed VisualAge PL/I 2.2.1 (and corresponding
PTFs changed Enterprise PL/I 3.1 and 3.2) so that the results of conversions of
FLOAT to FIXED DEC and PICTURE would match those produced by the old
compilers.

This can cause a small difference in some conversions. For example given:
dcl f float dec(16);
dcl d2 dec(15,2);

f = 1.4417e+04;
f = f / 100;
d2 = f;

all the compilers will now assign the value 144.17 to d2, while before this PTF, the
new compilers would have assigned the value 144.16 to d2.

With APAR PK17575 (which applied to V3R3, V3R4, and V3R5), the compiler
generated code will set a flag in the CAA if MAIN contains an ON FINISH block.
With a corresponding library APAR, the library will check for this flag and unless
it is on, it will not raise FINISH. This pair of changes can yield signicificant
performance improvements. However, this alsos means that once you apply this
library APAR, you must recompile any old Enterprise PL/I objects that have an
ON FINISH block or else the ON FINISH block will not be entered.

Apart from these changes, there is complete object compatibility between code
compiled by the Enterprise PL/I V3R2 compiler and code compiled by either the
VisualAge PL/I or the Enterprise PL/I V3R1 compiler as long as you adhere to
these limitations:
v you must not mix code compiled with different CMPAT options
v you may mix RENT and NORENT code subject to the same restrictions as

before:
– code compiled with RENT cannot be mixed with code compiled with

NORENT if they share any EXTERNAL STATIC variables
– code compiled with RENT cannot call an ENTRY VARIABLE set in code

compiled with NORENT
– code compiled with RENT cannot call an ENTRY CONSTANT that was

FETCHed in code compiled with NORENT
– code compiled with RENT can FETCH a module containing code compiled

with NORENT if one of the following is true

Chapter 19. Migrating from earlier Enterprise PL/I to Enterprise PL/I V4R2 147

- all the code in the FETCHed module was compiled with NORENT
- the code containing the entry point to the module was compiled with

RENT
– code compiled with NORENT code cannot FETCH a module containing any

code compiled with RENT
– code compiled with NORENT WRITABLE cannot be mixed with code

compiled with NORENT NOWRITABLE if they share any external
CONTROLLED variables or any external FILEs

It remains our recommendation that all code be compiled with the same settings
for the RENT/NORENT and WRITABLE/NOWRITABLE options.

Runtime changes
Finally, the only change to the run time (apart from bug fixes and performance
enhancements) that affects the behavior of your code is that the SIZE condition is
no longer promoted to the ERROR condition if unhandled.

However, some of the compiler changes made in release V3R5 and later releases
require corresponding library changes. So, if you are using code compiled by one
of these releases, you must have the PTFs for these APARs installed:
v PQ97843 - for support of TEST(NOHOOK)
v PQ98938 - for support of less code for REFER
v PK03093 - for support of DebugTool starting after MAIN
v PK04110 - for support of PLITABS
v PK11161 - for support of alternate packed decimal signs in FIXED DEC(31)

operations
v PK12504 - for support of the DB2 date-time patterns
v PK12833 - for support of TEST(SEPARATE)
v PK50199 - for support of Turkish code pages
v PK50714 - for support of ONOFFSET built-in function
v PK50715 - for support of DFP built-in functions PRED, SUCC etc
v PK50717 - for support of DFP conversions via library code
v PK50718 - to report DFP setting in PLIDUMP output
v PK68704 - for support of the PLISAXC and ONLINE built-in functions
v PK68705 - for support of the UTF handling built-in functions
v PK68708 - for support of the UTF handling built-in functions
v PK72146 - for support of the DFP math built-in functions and CMPAT(V3)
v PK36059 - for support of LRECL=X
v PK74015 - for support of dynamic file allocation
v PK86153 - for support of dynamic file allocation
v PK90903 - for support of opening of SYSPRINT on the IPT
v PM11241 - for support of the new PLISAXD built-in function
v PM13775 - for enhanced support of AUTOMON in DebugTool
v PM19445 - for support of GONUMBER(SEPARATE)
v PM19344 - for support of the new ONAREA built-in function
v PM18574 - for tolerance of DB2 coprocessor XREF option in DB2 V8 and V9

systems

148 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Part 5. Subsystem and other language considerations

Chapter 20. Assembler considerations for PL/I
applications 151
Considerations for assembler programs mimicking
PL/I main procedures 151
Calling PL/I from assembler and Language
Environment conforming assembler 151
Condition handling and assembler programs . . . 152
Considerations for using assembler user exits . . 152

Specific considerations 152

Chapter 21. CICS considerations for PL/I
applications 153
General CICS considerations 153

Updating CICS System Definition (CSD) file . . 153
Macro-level interface 154

Compiler options for programs that run under
CICS 154
Linking CICS applications and run-time
considerations 154

Error-handling 154
FETCHing a PL/I MAIN procedure 154
Run-time output 154
Abend codes used by PL/I under CICS . . . 155

Migrating to the integrated CICS preprocessor . . 155

Chapter 22. IMS considerations for PL/I
applications 157
Interfaces to IMS 157
SYSTEM(IMS) compile-time option 157
PLICALLA support in IMS 157
PSB language options supported 158
Storage usage considerations 158
Coordinated condition handling under IMS . . . 158
Performance enhancement with Library Retention
(LRR) 159

Chapter 23. DB2 Considerations for PL/I
applications 161
General DB2 considerations 161
Migrating to the integrated SQL preprocessor . . 161

Programming and compilation considerations 161
FOR BIT DATA assignment notes. 162
Prerequisite DB2 APARs 162

© Copyright IBM Corp. 1999, 2011 149

150 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 20. Assembler considerations for PL/I applications

This chapter contains information for applications that contain mixed PL/I
programs and assembler programs. It includes information on:
v Considerations for assembler programs mimicking PL/I main procedures
v Calling PL/I from assembler and Language Environment conforming assembler
v Condition handling and assembler programs
v Considerations for using assembler user exits

The new compiler uses some different internal control blocks in its generated code
than did the old compiler. If you had assembler code that knew the layout and
meaning of such control blocks, that code is highly likely not to work now and
will probably have to be changed. Some examples where where these differences
would require code changes:
v assembler code that "knows" the layout of a PL/I label variable and uses that to

try to branch back from assembler into PL/I code
v assembler code that "knows" the layout of a PL/I file variable and associated file

control block and uses that to try to get the DCB for a file

Considerations for assembler programs mimicking PL/I main
procedures

If you have an assembler program mimicking a PL/I MAIN procedure you must
convert that assembler program to an Language Environment-conforming
assembler program that is MAIN.

An assembler program that is not LE-conforming cannot call a non-MAIN PL/I
procedure (unless it was called from a PL/I MAIN procedure).

For more information about this topic, see z/OS Language Environment Programming
Guide.

Calling PL/I from assembler and Language Environment conforming
assembler

With Language Environment, assembler programs that call a PL/I routine must
follow the calling conventions defined by Language Environment. For example,
Register 13 pointing to a save area, save areas properly back-chained, and the first
word of the save area being zero. For detailed information, see the z/OS Language
Environment Programming Guide.

If your PL/I main program is called by an assembler program and you want to
convert your assembler program to use Language Environment-conforming
assembler, you must either:
v Recompile your PL/I program with a newer PL/I compiler without

OPTIONS(MAIN), or
v Ensure the entry point receiving control is the real entry point of the PL/I

program.

© Copyright IBM Corp. 1999, 2011 151

In either case, the called PL/I program is treated as a subroutine. Either of these
programs run under the same Language Environment enclave where the assembler
program is the main program and the called PL/I program is a subroutine.

There are three ways Language Environment-conforming assembler can pass
control to an Enterprise PL/I subroutine:
1. Branch to a statically linked PL/I subroutine.
2. Use the Language Environment macro CEEFETCH to branch to a separately

linked Enterprise PL/I subroutine.
3. Use assembler instructions such as LOAD and BALR to a separately linked

Enterprise PL/I subroutine.

If you recompile PL/I subroutines that use method 1 or 2 with Enterprise PL/I
you don't need to include CEESG011 with your assembler program. If your
assembler program uses instructions as described in method 3, you must always
include CEESG011 with your assembler program, even if you recompile your PL/I
subroutine with Enterprise PL/I.

Condition handling and assembler programs
The condition-handling behavior of the LINK from assembler is now clearly
defined. For detailed information, see z/OS Language Environment Programming
Guide.

Considerations for using assembler user exits
The only Assembler user exit supported by Enterprise PL/I is the Language
Environment user exit CEEBXITA. IBMBXITA and IBMFXITA are not supported.
For a detailed parameter description for CEEBXITA, see OS/390 Language
Environment Programming Guide.

Specific considerations
v The PL1DUMP, PLIDUMP or CEEDUMP file for the dump output is treated as a

process resource and must not be cleared during enclave termination.
v The OS PL/I abend exit IBMBEER is ignored under Language Environment. See

“Differences in Condition Handling” on page 37 for information on how to force
an abend under Language Environment.

For more information on assembler language user exits, see OS/390 Language
Environment Programming Guide.

152 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 21. CICS considerations for PL/I applications

This chapter explains the source language considerations for programs that run
under CICS. It describes the actions that you need to take for applications that use
either CICS source or Enterprise PL/I source and involve the following functions:
v General CICS considerations
v Compiler options for programs that run under CICS
v Linking CICS applications and run-time considerations
v Migrating to the integrated CICS preprocessor

General CICS considerations

The CICS Storage Protect facility was introduced under CICS 3.3. This provides
more data integrity and security for the application program and especially for the
entire CICS region. Because of the new feature, you might discover that some of
your successfully running PL/I applications start to fail with ASRA(0C4) abend
and the CICS message DFHSR0622.

If the above problem occurs in your PL/I applications, set the CICS system
initialization parameter RENTPGM=NOPROTECT. This sets the protection of the
user program in user key. The default for RENTPGM is PROTECT.

If PUT statements are used in your Enterprise PL/I CICS application, especially
the PUT DATA statement, it might trigger the above error.

Remember also that in CICS programs these PUT statements are intended for
debugging purposes only. They have a negative impact on performance, and we
recommend that you don't use them in production programs.

If you mix old and new object code under CICS, you must adhere to all the rules
and restrictions described in “Object and load module considerations” on page 131.

Updating CICS System Definition (CSD) file
When you bring up a CICS region with Language Environment, you must ensure
the module names listed in Language Environment CEECCSD are defined in the
CSD. You can locate CEECCSD in SCEESAMP. If you use CICS Version 4
autoinstall facility, you do not need to define Language Environment modules
manually in the CSD.

In order to run a Enterprise PL/I CICS application, you need to define the
Enterprise PL/I member event handler CEEEV011 in the CICS CSD definition
table:
DEFINE PROGRAM(CEEEV011) GROUP(CEE) LANGUAGE(ASSEMBLER)
DEFINE PROGRAM(IBMPAM24) GROUP(CEE) LANGUAGE(ASSEMBLER)

In order to debug a PL/I transaction using Debug Tool, you need to define the
Debug Tool APIs in the CICS CSD definition table:
DEFINE PROGRAM(IBMPDAPI) GROUP(CEE) LANGUAGE(ASSEMBLER)

© Copyright IBM Corp. 1999, 2011 153

Macro-level interface
The CICS macro-level interface is not supported.

Compiler options for programs that run under CICS

The SYSTEM(CICS) or SYSTEM(MVS) option must be used when you compile
your CICS programs that are PL/I MAINs.

If a CICS program is to be reentrant (and most should be) and if it uses
CONTROLLED variables or FILEs, then it must also be compiled with the
NOWRITABLE option.

Linking CICS applications and run-time considerations

You are generally no longer required to take special action when you link an
Enterprise PL/I object module under CICS with the exception that for a routine
that is to be FETCHed, you must code the linkage editor ENTRY statement so that
it nominates the actual entry point.

PDSEs are supported by CICS Transaction Server 1.3 or later. See the CICS
Transaction Server for OS/390 Release Guide, GC34-5701, where there are several
references to PDSEs, and a list of prerequisite APAR fixes.

Error-handling
LE prohibits the use of the following EXEC CICS commands in any PL/I ON-unit
or in any code called from a PL/I ON-unit.
v EXEC CICS ABEND
v EXEC CICS HANDLE AID
v EXEC CICS HANDLE ABEND
v EXEC CICS HANDLE CONDITION
v EXEC CICS IGNORE CONDITION
v EXEC CICS POP HANDLE
v EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within an ON-unit. However, they
must be coded using the NOHANDLE option, the RESP option or the RESP2
option.

FETCHing a PL/I MAIN procedure
CICS does not support PL/I FETCHing a PL/I MAIN procedure.

Run-time output
When a program is compiled with DISPLAY(STD), all run-time output is
transmitted to a CICS transient data queue CESE.

When a program is compiled with DISPLAY(WTO), the DISPLAY output is routed
to the CICS JESLOG. All other run-time output is transmitted to a CICS transient
data queue CESE.

Language Environment ignores the MSGFILE option under CICS. Figure 2 on page
155 shows format of the output data queue.

154 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

In addition, the PL/I transient queues CPLI and CPLD are no longer used. As a
result, you do not need to specify entries for the CPLI and CPLD in the CICS
Destination Control Table (DCT).

Abend codes used by PL/I under CICS
The APLx abend codes that were issued under OS PL/I Version 2 are no longer
issued. Instead, Language Environment-defined abend codes are issued. For more
information about Language Environment abend codes, see z/OS Language
Environment Run-Time Messages.

Migrating to the integrated CICS preprocessor
When you are developing programs for execution under CICS, all the EXEC CICS
commands must be translated in one of two ways:
v by the command language translator provided by CICS in a job step prior to the

PL/I compilation
v by the PL/I CICS preprocessor as part of the PL/I compilation (this requires

CICS TS 2.2 or later)

To use the CICS preprocessor, you must also specify the PP(CICS) compile-time
option.

If your CICS program is a MAIN procedure, you must also compile it with the
SYSTEM(CICS) option. NOEXECOPS is implied with this option, and all
parameters passed to the MAIN procedure must be POINTERs.

If your CICS program includes any files or uses any macros that contain EXEC
CICS statements, you must also run the MACRO preprocessor before your code is
translated (in either of the ways described above). If you are using the CICS
preprocessor, you can specify this with one PP option as illustrated in the
following example:

pp (macro(...) cics(...))

Finally, in order to use the CICS preprocessor, you must have the CICS
SDFHLOAD dataset as part of the STEPLIB DD for the PL/I compiler.

For more information about the integrated PL/I CICS preprocessor, see the
Enterprise PL/I for z/OS Programming Guide.

Figure 2. CESE output data queue

Chapter 21. CICS considerations for PL/I applications 155

156 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 22. IMS considerations for PL/I applications

This chapter explains the considerations for running Enterprise PL/I programs that
use IMS under Language Environment. The following topics are discussed:
v Interfaces to IMS
v SYSTEM(IMS) compile-time option
v PLICALLA support in IMS
v PSB language options supported
v Storage usage considerations
v Coordinated condition handling under IMS
v Performance enhancement with Library Retention (LRR)

Interfaces to IMS
Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces
from a PL/I routine. It also supports CEETDLI interface from a Enterprise PL/I
routine running under IMS/ESA® Version 4.

Under Language Environment, CEETDLI is the recommended interface. CEETDLI
supports calls that use an Application Interface Block (AIB) or a Program
Communication Block (PCB). For more information about AIB and a complete
description of the CEETDLI interface, see IMS/ESA Version 4 Application
Programming Guide.

SYSTEM(IMS) compile-time option

The SYSTEM(IMS) option should be used when compiling all PL/I MAIN
programs invoked from IMS.

When you recompile your main procedure with Enterprise PL/I, the object module
assumes that the parameters are passed as BYVALUE. Language Environment
converts the parameters to the BYVALUE style for you, if necessary, so the
parameters are always passed correctly.

If the BYADDR attribute is specified or implied for the parameters to an IMS
MAIN routine, when you compile your main procedure with Enterprise PL/I, you
will receive an error message and the compiler will apply the BYVALUE attribute
instead.

For more information about the SYSTEM(IMS) compile-time option, see the
Enterprise PL/I for z/OS Programming Guide.

PLICALLA support in IMS

The PL/I PLICALLA entry point is supported under Language Environment.

See “PLICALLA Considerations” on page 39 for details.

© Copyright IBM Corp. 1999, 2011 157

PSB language options supported

Language Environment supports PL/I applications with the following PSBGEN
LANG options in the supported releases of IMS:

IMS/ESA Version 4
Table 12 shows support for PSB LANG options in IMS/ESA Version 4
Release 1, and later releases.

Table 12. PSB LANG options for IMS/ESA Version 4 Release 1, and later

SYSTEM option Entry point LANG=

IMS CEESTART PLI or other values except
PASCAL

IMS PLICALLA PLI

MVS PLICALLA PLI

MVS CEESTART PLI

Other - - Illegal

Storage usage considerations

With IMS/ESA Version 3 Release 1 or later, the parameters passed to the IMS
interfaces are no longer restricted to the area below the 16M line. The parameters
will be above the 16M line if you observe the following rules:
v If the parameters passed to IMS are in CONTROLLED or BASED storage,

specify the ANYWHERE suboption of the HEAP run-time option.
v If the parameters passed to IMS are in AUTOMATIC storage, specify the

ANYWHERE suboption of the STACK run-time option.
v If the parameters passed to IMS are in STATIC storage, link the load module

with the AMODE(31) attribute.

Coordinated condition handling under IMS

Language Environment and IMS condition handling are coordinated, which means
that if a program interrupt or abend occurs when your application is running in an
IMS environment, the Language Environment condition manager is informed
whether the problem occurred in your application or in IMS. If the problem occurs
in IMS, Language Environment, as well as any invoked HLL-specific condition
handler, percolates the condition back to IMS.

With Language Environment run-time option TRAP(ON), Language Environment
continues to support coordinated condition handling for the PLITDLI and
ASMTDLI interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or IMS/ESA Version 4, Language
Environment also supports the coordinated condition handling for CEETDLI,
CTDLI from a C routine, CBLTDLI from a COBOL program, AIBTDLI from a PL/I
program, and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of
IMS, or if a software condition of severity 2 or greater is raised outside of IMS, the
Language Environment condition manager takes normal condition handling actions

158 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

described in the z/OS Language Environment Programming Guide. In this case, in
order to give IMS a chance to do database rollback, you must do one of the
following:
v Resolve the error completely so that your application can continue.
v Issue a rollback call to IMS, and then terminate the application.
v Make sure that the application terminates abnormally by using the

ABTERMENC(ABEND) run-time option to transform all abnormal terminations
into system abends in order to cause IMS rollbacks.

v Make sure that the application terminates abnormally by providing a modified
assembler user exit (CEEBXITA) that transforms all abnormal terminations into
system abends in order to cause IMS rollbacks.
The assembler user exit you provide should check the return code and reason
code or the CEEAUE_ABTERM bit, and requests an abend by setting the
CEEAUE_ABND flag to ON, if appropriate. See the z/OS Language Environment
Programming Guide for details.

Performance enhancement with Library Retention (LRR)
If you use LRR, you can get an improvement in performance. See “Improving CPU
Utilization” on page 127 for details.

Chapter 22. IMS considerations for PL/I applications 159

160 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Chapter 23. DB2 Considerations for PL/I applications

This chapter explains the source language considerations for programs that run
with DB2. The following topics are discussed:
v General DB2 considerations
v Migrating to the integrated SQL preprocessor

General DB2 considerations

If you write a user-defined function in PL/I, DB2 passes some string-locator
descriptors to the PL/I procedure.

In order for such a program to run correctly under Enterprise PL/I, you must
compile the program with the CMPAT(V1) or CMPAT(V2) option.

Note: When you use CMPAT(V1) , the size of a BLOB, CLOB, or DBCLOB must be
less than 32 K.

Migrating to the integrated SQL preprocessor
The integrated PL/I SQL preprocessor approach eliminates the need for a separate
precompilation step with the DB2 precompiler in PL/I programs containing SQL
statements.

Notes:

1. You must have DB2 for OS/390 Version 7 Release 1 or later to use the SQL
preprocessor.

2. The PL/I SQL Preprocessor currently does not support DBCS.

Programming and compilation considerations
When you use the PL/I SQL Preprocessor the PL/I compiler handles your source
program containing embedded SQL statements at compile time, without your
having to use a separate precompile step. Although the use of a separate
precompile step continues to be supported, use of the PL/I SQL Preprocessor is
recommended. Interactive debugging with Debug Tool is enhanced when you use
the PL/I SQL Preprocessor because you see only the SQL statements while
debugging (and not the generated PL/I source).

In addition, using the PL/I SQL Preprocessor lifts some of the DB2 precompiler's
restrictions on SQL programs. When you process SQL statements with the PL/I
SQL Preprocessor, you can now
v use fully-qualified names for structured host variables
v include SQL statements at any level of a nested PL/I program, instead of in only

the top-level source file
v use nested SQL INCLUDE statements

The PL/I compiler listing includes the error diagnostics (such as syntax errors in
the SQL statements) that the PL/I SQL Preprocessor generates.

To use the PL/I SQL Preprocessor, you need to do the following things:

© Copyright IBM Corp. 1999, 2011 161

v Specify the following option when you compile your program
PP(SQL(’options’))

This compiler option indicates that you want the compiler to invoke the PL/I
SQL preprocessor. Specify a list of SQL processing options in the parenthesis
after the SQL keyword. The options can be separated by a comma or by a space
but must be enclosed in single or double quotes.
For example, PP(SQL('DATE(USA),TIME(USA)') tells the preprocessor to use the
USA format for both DATE and TIME data types.
In addition, for LOB support you must specify the option

LIMITS(FIXEDBIN(31,63) FIXEDDEC(31))

v Include DD statements for the following data sets in the JCL for your compile
step:
– DB2 load library (prefix.SDSNLOAD)

The PL/I SQL preprocessor calls DB2 modules to do the SQL statement
processing. You therefore need to include the name of the DB2 load library
data set in the STEPLIB concatenation for the compile step.

– Library for SQL INCLUDE statements
If your program contains SQL INCLUDE member-name statements that specify
secondary input to the source program, you need to include the name of the
data set that contains member-name in the SYSLIB concatenation for the
compile step.

– DBRM library
The compilation of the PL/I program generates a DB2 database request
module (DBRM) and the DBRMLIB DD statement is required to designate the
data set to which the DBRM is written.

– For example, you might have the following lines in your JCL:
//STEPLIB DD DSN=DSN710.SDSNLOAD,DISP=SHR
//SYSLIB DD DSN=PAYROLL.MONTHLY.INCLUDE,DISP=SHR
//DBRMLIB DD DSN=PAYROLL.MONTHLY.DBRMLIB.DATA(MASTER),DISP=SHR

For more information about the integrated PL/I SQL preprocessor, see the
Enterprise PL/I for z/OS Programming Guide.

FOR BIT DATA assignment notes
The old DB2 Precompiler services did not know about or handle CCSID values for
host variables. Because of this lack of knowledge, you could update FOR BIT
DATA columns with CHARACTER data.

The new DB2 V7.1 or later DB2 Precompiler services does know about CCSID
values and will assign them to host variables using the default CCSID value. This
will cause problems if you have code that updates FOR BIT DATA columns with
CHARACTER data. The integrated PL/I SQL preprocessor has created a new
option, CCSID0 / NOCCSID0 to handle these cases. The CCSID0 option, the
default, will cause a CCSID of 0 to be assigned to host variables allowing the
assignment of CHARACTER variables to FOR BIT DATA database columns.

Prerequisite DB2 APARs
The PTFs for the following APAR need to be installed when migrating to
Enterprise PL/I V4R1 and later releases:

PM18574 - for tolerance of DB2 coprocessor XREF option in DB2 V9 and
V8 systems.

162 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Part 6. Appendixes

© Copyright IBM Corp. 1999, 2011 163

164 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Appendix A. Conversion and Migration Aids

This section describes the conversion and migration tools available for your
assistance during the actual conversion and migration activities. These tools are:
v OS PL/I Routine Replacement Tool
v OS PL/I V1R5.1 main load module ZAP
v OS PL/I Shared library replacement tool
v OS PL/I object module relinking tool - APARs PN69803
v EDGE Portfolio Analyzer
v Vendor products

OS PL/I Routine Replacement Tool

Language Environment does not support OS PL/I Version 1 Release 3.0 - 5.0 load
modules. For these load modules, you can do one of the following:
v Relink the object modules directly with Language Environment.
v Replace the library routines in the load module with the Language Environment

stubs.

Language Environment provides two samples, located in SCEESAMP, that replace
the library routines in your OS PL/I Version 1 Release 3.0 - 5.1 and Version 2 load
modules with corresponding Language Environment stubs. These samples contain
a list of linkage editor REPLACE control statements that replace each library
routine in your load module with the corresponding stub in Language
Environment and are described as follows:
v IBMWRLK is for MVS non-CICS and VM.

For MVS non-CICS, use it to replace OS PL/I V1R3.0 - V1R5.1 and V2 load
modules, both multitasking and nonmultitasking. It contains a CHANGE
statement to rename the OS PL/I HLL user exit IBMBINT to CEEBINT.

v IBMWRLKC is for CICS.
Use it to replace OS PL/I V1R3.0 - V1R5.1 and V2 load modules. It contains a
CHANGE statement to rename the OS PL/I HLL user exit IBMBINT to
CEEBINT and PLIMAIN to CEEMAIN. It also contains INCLUDE statements to
ensure the load module works under CICS.
The CICS macro language is not supported.

The MVS JCL example below shows the replacement of run-time library routines
from a user load module while retaining the user object module. In the example,
MYPDS.LOAD is the data-set name of a load module library that contains the load
module with the name MYLMOD.
//RELINK EXEC PGM=IEWL,PARM=’LIST,MAP,XREF,SIZE(3072K,4K)’,REGION=5M
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=CEE.V1R4M0.SCEELKED,DISP=SHR
//SAMPLIB DD DSN=CEE.V1R4M0.SCEESAMP,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,200))
//SYSLMOD DD DSN=MYPDS.LOAD,DISP=OLD
//SYSLIN DD *

INCLUDE SAMPLIB(IBMWRLK)
INCLUDE SYSLMOD(MYLMOD)
NAME MYLMOD(R)

© Copyright IBM Corp. 1999, 2011 165

If you replace a load module under CICS, the CICS SDFHLOAD data set must be
specified in the SYSLIB.

OS PL/I Version 1 Release 5.1 main load module ZAP

Language Environment supports OS PL/I Version 1 Release 5.1 main load module
with the following restriction:
v If the main load module is for MVS non-Shared Library, non-CICS and

nonmultitasking, or VM, it must first be ZAPped with one of the Language
Environment-provided samples located in Language Environment SCEESAMP.
Detailed instructions for using the ZAP are provided in IBMRZAPM and
IBMRZAPV. The following describes each sample:
– IBMRZAPM for MVS non-Shared Library, non-CICS, nonmultitasking

The ZAPped main load module, including one that contains the OS PL/I fast
initialization and termination feature, continues to run under OS PL/I Version
1 Release 5.1 and Version 2. When the ZAPped main load module contains
the OS PL/I fast initialization and termination feature, it always dynamically
loads the OS PL/I run-time initialization routine IBMBPIIA once. IBMBPIIA is
not deleted until the task terminates. This one-time loading of IBMBPIIA
might affect the performance of your application. If you put IBMBPIIA in
LPA, the performance effect can be minimized.
The ZAPped main load module is supported by Language Environment
unless the load module contains the OS PL/I fast initialization and
termination feature. Language Environment always dynamically loads the
initialization and termination routines. If you put the Language Environment
library routines and CEEBLIIA in LPA(E) as recommended in z/OS Language
Environment Installation and Customization under OS/390 and z/OS Language
Environment Customization, the performance effect can be minimized.

– IBMRZAPV for VM
The ZAPped main load module is not supported under OS PL/I Version 1
Release 5.1 or Version 2. It is supported only under Language Environment.

If you do not ZAP your main load module, read “OS PL/I Routine Replacement
Tool” on page 165 to understand what else you can do. You can also recompile
your application with Enterprise PL/I or OS PL/I Version 2. See Chapter 7, “Object
and Load Module Considerations,” on page 47 to understand how Language
Environment supports OS PL/I object and load modules.

The sample ZAP is available in the IBM Support Center for customers who do not
have Language Environment but want to prepare to migrate to Language
Environment.

OS PL/I Shared library replacement tool

In order to support OS PL/I Version 1 Release 5.1 and Version 2 load modules that
use the Shared Library, the library module in that Shared Library must be replaced
with Language Environment stubs.

Language Environment provides the following two sample JCL, located in
SCEESAMP, to replace the Shared Library:
v IBMRLSLA for OS PL/I Version 1 Release 5.1 MVS CICS or multitasking and OS

PL/I Version 2 Shared Library

166 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

v IBMRLSLB for OS PL/I Version 1 Release 5.1 MVS non-CICS nonmultitasking
Shared Library

You must understand how Language Environment supports OS PL/I Shared
Library before you use the JCL.

OS PL/I Object Module Relinking Tool - APAR PN69803

OS PL/I Version 2 Release 3 provides APAR PN69803 help you migrate your
PL/I-COBOL ILC applications and PLISRTx applications.

ILC Applications
Language Environment does not support the OS PL/I-COBOL ILC applications.
You must relink any OS PL/I object module in a PL/I-COBOL ILC application. See
“Differences in Interlanguage Communication Support” on page 45 for ILC
support under Language Environment. If you relink your OS PL/I object module
in the PL/I-COBOL ILC application with PN69803, however, the resultant load
module is supported by Language Environment. PN69803 provides you the
flexibility to prepare the PL/I-COBOL ILC relinking while you are using OS PL/I
Version 2 Release 3. When you complete the relinking, you can switch to Language
Environment whenever you are ready.

Before you relink your PL/I-COBOL ILC applications with PN69803, you must first
apply the following PL/I-COBOL ILC APARs to PL/I and COBOL:

OS PL/I V2R3 common library: PN36844
VS COBOL II V1R3.0 library: PN13459
VS COBOL II V1R3.1 library: PN04721
VS COBOL II V1R3.2 library: PN09732

Note: VS COBOL II V1R4.0 has the above COBOL APARs in its base code.

If you have not applied the above APARs, PN69803 will not work. The above
APARs are not required if your applications do not contain PL/I-COBOL ILC.

Even though your PL/I-COBOL ILC applications are relinked with PN69803, you
might still be required to link them with Language Environment if they contain a
function described in this book or in COBOL for OS/390 & VM Migration Guide that
requires relinking. For example, you will still have to relink your application if it
contains any COBOL NORES or the load module contains an OS PL/I object
module that is not supported by Language Environment. In the latter case, you
must recompile your OS PL/I object module with Enterprise PL/I or OS PL/I
Version 2.

PLISRTx Applications
While OS PL/I applications that use PLISRTx are supported by Language
Environment for OS/390 & VM Release 1.4 and later, we recommend that you
relink your applications that use PLISRTx. See “Differences in PLISRTx Support”
on page 42 for the reasons. The recommended relinking can be done either with
Language Environment or with PN69803 on OS PL/I Version 2 Release 3. Either
method gives your load module the benefits of exploiting the Language
Environment DFSORT interface support.

Appendix A. Conversion and Migration Aids 167

EDGE Portfolio Analyzer
The Edge Portfolio Analyzer helps you to take an inventory of your existing OS
PL/I and PL/I for MVS & VM load modules. The Edge Portfolio Analyzer can:
v Determine which version and release of the OS PL/I compiler or the PL/I for

MVS & VM compiler created the load module
v Determine which compiler options were specified when the load module was

compiled
v Determine which load modules call for the current system date
v Determine which CSECTs need to be replaced

Note: The Edge Portfolio Analyzer is no longer sold by IBM, but you can still
purchase the product from Edge directly. For more information you can visit
their Web site at: www.edge-information.com

Vendor products
A number of non-IBM conversion tools are available to help you upgrade your
source programs to Enterprise PL/I programs and move to Language
Environment. IBM has compiled a list of vendor products enabled to work with
Language Environment and Enterprise PL/I in the Language Environment Enabled
Vendor Tools and Application Packages document. You can get this information: on the
Web at http://www.ibm.com/s390/le then go to the Library link.

168 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Appendix B. Compiler elements comparison

Enterprise PL/I has renamed its parts so that, if you want to, you can install it in
the same SMP/E zone as OS PL/I or PL/I for MVS & VM. To help you identify
the elements of each product, the following table lists the name differences:

Table 13. PL/I element names

OS PL/I PL/I for MVS & VM Enterprise PL/I

IEL0AA IEL1AA IBMZPLI

IKJEN00n IEL1IKJn

IEL0nn IEL1nn IBMZnn

PLInnnnn IEL1Mnnn IBMZMnnn

PLIXnnn IEL1nnn IBMZnnn

PLIHELP IEL1PLIH --

© Copyright IBM Corp. 1999, 2011 169

170 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Appendix C. Compiler option comparison

This appendix briefly describes which compiler options are available in the OS
PL/I, PL/I for MVS & VM, VisualAge PL/I, and Enterprise PL/I compilers.

Important
For complete descriptions of the Enterprise PL/I options, see the Enterprise
PL/I for z/OS Programming Guide.

Table 14. Compiler option comparison

Option

Available in

Abbreviated option descriptionOS PL/I

PL/I for
MVS &

VM
VisualAge

PL/I
Enterprise

PL/I

AGGREGATE
NOAGGREGATE

X X X X Creates an aggregate length table that gives
the lengths of arrays and major structures.

ARCH X X Specifies the architecture for which the
executable program's instructions are to be
generated.

ATTRIBUTES
NOATTRIBUTES

X X X X Specifies that the compiler includes a table of
source-program identifiers and their
attributes in the compiler listing.

BACKREG X Controls the backchain register

BIFPREC X Controls the precision of the FIXED BIN
result returned by various built-in functions.

BLANK X Specifies up to ten alternate symbols for the
blank character.

BLKOFF
NOBLKOFF

X Controls whether the offsets shown in the
psuedo-assembler listing are from the start of
the current module or from the start of the
current procedure.

CEESTART X Specifies whether the compiler should place
the CEESTART csect before or after all of the
other generated object code.

CHECK X X Alters the behavior of the ALLOCATE and
FREE statements.

CMPAT X X X X Controls object compatibility between
releases of PL/I.

CODEPAGE X Specifies the code page used for conversions
between CHARACTER and WIDECHAR and
used by the PLISAX built-in subroutines.

COMMON X Directs the compiler to generate CM linkage
records for EXTERNAL STATIC variables.

COMPILE
NOCOMPILE

X X X X Controls whether the compiler stops or
continues when it produces a message of the
specified severity.

© Copyright IBM Corp. 1999, 2011 171

Table 14. Compiler option comparison (continued)

Option

Available in

Abbreviated option descriptionOS PL/I

PL/I for
MVS &

VM
VisualAge

PL/I
Enterprise

PL/I

COPYRIGHT
NOCOPYRIGHT

X Places a string in the object module, if
generated.

CSECT
NOCSECT

X X Controls the generation of named CSECTs.

CSECTCUT X Controls how the compiler, when processing
the CSECT option, handles long names.

CONTROL X X Specifies that any compile-time options
deleted for your installation are available for
this compilation.

CURRENCY X X Allows you to specify an alternate character
for the dollar sign.

DBCS
NODBCS

X Ensures that the listing, if generated, is
sensitive to the possible presence of DBCS
even though the GRAPHIC options has not
been specified.

DD X X Allows you to specify alternate DD names
for the compiler listing, the primary source
file, the default include dataset and the
MDECK dataset.

DDSQL X Allows you to specify alternate DD names
for the dataset to be used by the SQL
preprocessor when resolving EXEC SQL
INCLUDE statements.

DECIMAL X Specifies how the compiler should handle
certain FIXED DECIMAL operations and
assignments.

DECK
NODECK

X X Specifies that the compiler produces an object
module in the form of 80-character records
and store it in the SYSPUNCH dataset.

DEFAULT X X Specifies defaults for attributes.

DISPLAY X X Determines where output of the DISPLAY
statement is directed.

DLLINIT
NODLLINIT

X X Applies OPTIONS(FETCHABLE) to all
external procedures that are not MAIN.

ESD
NOESD

X X Specifies that the external symbol dictionary
(ESD) is listed in the compiler listing.

EXIT
NOEXIT

X X Enables the compiler user exit to be invoked.

EXTRN X X Controls when EXTRNs are emitted for
external entry constants.

FLAG X X X X Specifies the minimum severity of error that
requires a message listed in the compiler
listing.

FLOAT X X Controls the use of additional floating-point
registers.

172 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Table 14. Compiler option comparison (continued)

Option

Available in

Abbreviated option descriptionOS PL/I

PL/I for
MVS &

VM
VisualAge

PL/I
Enterprise

PL/I

FLOATINMATH X Specifies the precision that the compiler
should use when invoking the mathematical
built-in functions.

GOFF
NOGOFF

X Instructs the compiler to produce an object
file in the Generalized Object File Format.

GONUMBER
NOGONUMBER

X X X X Specifies that the compiler produces
additional information that allows line
numbers for the source program to be
included in run-time messages.

GOSTMT
NOGOSTMT

X X Specifies that the compiler produces
additional information that allows statement
numbers for the source program to be
included in run-time messages.

GRAPHIC
NOGRAPHIC

X X X X Specifies that the source program can contain
double-byte characters.

HGPR
NOHGPR

X Specifies that the compiler is permitted to
exploit 64-bit General Purpose Registers
(GPRs) in 32-bit programs targeting
z/Architecture hardware.

IMPRECISE
NOIMPRECISE

X X Specifies that the compiler includes extra text
in the object module to localize imprecise
interrupts when executing the program with
an IBM System/390 Model 165 or 195.

INCAFTER X X Specifies a file to be included after a
particular statement in your source program.

INCDIR X X Includes a directory in the search path for the
location of include files.

INCLUDE X X X Specifies the file name extensions under
which include files are searched.

INCPDS X Specifies a PDS from which the compiler will
include files when compiling a program
under z/OS UNIX.

INITAUTO X Directs the compiler to add an INITIAL
attribute to any AUTOMATIC variable
declared without an INITIAL attribute.

INITBASED X Directs the compiler to add an INITIAL
attribute to any BASED variable declared
without an INITIAL attribute.

INITCTL X Directs the compiler to add an INITIAL
attribute to any CONTROLLED variable
declared without an INITIAL attribute.

INITSTATIC X Directs the compiler to add an INITIAL
attribute to any STATIC variable declared
without an INITIAL attribute.

INSOURCE
NOINSOURCE

X X X X Specifies that the compiler should include a
listing of the source program before the PL/I
macro preprocessor translates it.

Appendix C. Compiler option comparison 173

Table 14. Compiler option comparison (continued)

Option

Available in

Abbreviated option descriptionOS PL/I

PL/I for
MVS &

VM
VisualAge

PL/I
Enterprise

PL/I

INTERRUPT
NOINTERRUPT

X X X X Causes the compiled program to respond to
attention requests (interrupts).

LANGLVL X X X X Specifies the level of PL/I language
definition that you want the compiler to
accept.

LIMITS X X Specifies implementation limits for
EXTERNAL name, FIXED DECIMAL,
SIGNED FIXED BINARY, and NAME in your
source program.

LINECOUNT X X X X Specifies the number of lines per page for
compiler listings, including blank and
heading lines.

LINEDIR
NOLINEDIR

X Specifies that the compiler should accept
&LINE directives.

LIST
NOLIST

X X X X Provides a psuedo-assembler listing.

LISTVIEW X Specifies whether the compiler should show
the source in the source listing or whether it
should show the source after it has been
processed by one or more of the
preprocessors.

LMESSAGE
SMESSAGE

X X Produce messages in a long form (specify
LMESSAGE) or in a short form (specify
SMESSAGE).

MACRO
NOMACRO

X X X X Invokes the MACRO preprocessor.

MAP
NOMAP

X X X X Specifies that the compiler produces
additional information that can be used to
locate static and automatic variables in
dumps.

MARGINI
NOMARGINI

X X X X Provides a specified character in the column
preceding the left-hand margin, and also in
the column following the right-hand margin,
of the listings produced by the INSOURCE
and SOURCE options.

MARGINS X X X X Specifies which part of each compiler input
record contains PL/I statements, and the
position of the ANS control character that
formats the listing.

MAXMEM X X When compiling with OPTIMIZE, this option
limits the amount of memory used for local
tables of specific, memory intensive
optimizations to the specified number of
kilobytes.

MAXMSG X Specifies the maximum number of messages
with a given severity (or higher) that the
compilation should produce.

174 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Table 14. Compiler option comparison (continued)

Option

Available in

Abbreviated option descriptionOS PL/I

PL/I for
MVS &

VM
VisualAge

PL/I
Enterprise

PL/I

MAXNEST X Specifies the maximum nesting of various
kinds of statements that should be allowed
before the compiler flags your program as
too complex.

MAXSTMT X Under the MAXSTMT option, optimization
will be turned off for any block that has
more than the specified number of
statements.

MAXTEMP X Determines when the compiler flags
statements using an excessive amount of
storage for compiler-generated temporaries.

MDECK
NOMDECK

X X X X Specifies that the preprocessor produces a
copy of its output.

NAMES X X Specifies the extralingual characters that are
allowed in identifiers.

NAME
NONAME

X X X X Specifies that the TEXT file created by the
compiler will contain a NAME record.

NATLANG X Specifies the "language" for compiler
messages, headers, etc.

NEST
NONEST

X X X X Specifies that the listing resulting from the
SOURCE option indicates the block level and
the do-group level for each statement.

NOT X X X Specifies up to seven alternate symbols that
can be used as the logical NOT operator.

NUMBER
NONUMBER

X X X X Specifies that statements in the source
program are to be identified by the line and
file number of the file from which they
derived.

OBJECT
NOOBJECT

X X X X Specifies that the compiler creates an object
module.

OFFSET
NOOFFSET

X X X Specifies that the compiler is to print a table
of line numbers for each procedure and
BEGIN block with their offset addresses
relative to the primary entry point of the
procedure.

OPTIMIZE
NOOPTIMIZE

X X X X Specifies the type of optimization required.

OPTIONS
NOOPTIONS

X X X X Specifies that the compiler includes a list
showing the compile-time options to be used
during this compilation in the compiler
listing.

OR X X X Specifies up to seven alternate symbols as the
logical OR operator.

PP
NOPP

X X Specifies which (and in what order)
preprocessors are invoked prior to
compilation.

Appendix C. Compiler option comparison 175

Table 14. Compiler option comparison (continued)

Option

Available in

Abbreviated option descriptionOS PL/I

PL/I for
MVS &

VM
VisualAge

PL/I
Enterprise

PL/I

PPCICS
NOPPCICS

X Specifies options to be passed to the CICS
preprocessor if it is invoked.

PPINCLUDE
NOPPINCLUDE

X Specifies options to be passed to the
INCLUDE preprocessor if it is invoked.

PPLIST X Controls whether the compiler keeps or
erases the part of the listing that is generated
by each preprocessor phase.

PPMACRO
NOPPMACRO

X Specifies options to be passed to the MACRO
preprocessor if it is invoked.

PPSQL
NOPPSQL

X Specifies options to be passed to the SQL
preprocessor if it is invoked.

PPTRACE
NOPPTRACE

X X Specifies that, when a deck file is written for
a preprocessor, every nonblank line in that
file is preceded by a line containing a %LINE
directive.

PRECTYPE X Determines how the compiler derives the
attributes for the MULTIPLY, DIVIDE, ADD
and SUBTRACT built-in functions when the
operands are FIXED and at least one is
FIXED BIN.

PREFIX X X Enables or disables the specified PL/I
conditions in the compilation unit being
compiled without you having to changed the
source program.

PROCEED
NOPROCEED

X X Stops the compiler after processing by a
preprocessor is completed depending on the
severity of messages issued by previous
preprocessors.

PROCESS X Determines if *PROCESS statements are
allowed and, if they are allowed, if they are
written to the MDECK file.

QUOTE X Specifies up to seven alternate symbols that
can be used as the quote character.

REDUCE
NOREDUCE

X Specifies that the compiler is permitted to
reduce an assignment of a null string to a
structure into a simple copy operation - even
if that means padding bytes might be
overwritten.

RENT
NORENT

X X Specifies that the compiler is to take code
that is not naturally reentrant and make it
reentrant. compiler listing.

RESEXP
NORESEXP

X Controls whether the compiler is permitted
to evaluate all restricted expressions at
compile-time.

RESPECT X X Causes the compiler to honor any
specification of the DATE attribute and to
apply the DATE attribute to the result of the
DATE built-in function.

176 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Table 14. Compiler option comparison (continued)

Option

Available in

Abbreviated option descriptionOS PL/I

PL/I for
MVS &

VM
VisualAge

PL/I
Enterprise

PL/I

RULES X X Allows certain language capabilities and lets
you choose semantics when alternatives are
available.

SEMANTIC
NOSEMANTIC

X X Specifies that the execution of the compiler's
semantic checking stage depends on the
severity of messages issued prior to this
stage of processing.

SEQUENCE
NOSEQUENCE

X X Defines the section of the input record from
which the compiler takes the sequence
numbers.

SERVICE
NOSERVICE

X Places a string in the object module, if
generated.

SIZE X X Limits the amount of main storage the
compiler uses.

SOURCE
NOSOURCE

X X X X Specifies that the compiler includes a listing
of the source program in the compiler listing.

SPILL X Specifies the size of the spill area to be used
for the compilation.

STATIC X Controls whether INTERNAL STATIC
variables are retained in the object module
even if unreferenced.

STDSYS
NOSTDSYS

X Specifies that the compiler should cause the
SYSPRINT file to be equated to the C stdout
file.

STMT
NOSTMT

X X X Specifies that statements in the source
program are to be counted and that this
"statement number" is used to identify
statements in the compiler listing.

STORAGE
NOSTORAGE

X X X X Determines whether or not the compiler
produces a report in the listing that gives the
approximate amount of stack storage used by
each block in your program.

STRINGOFGRAPHIC X Determines whether the result of the STRING
built-in function when applied to a
GRAPHIC aggregate has the attribute
CHARACTER or GRAPHIC.

SYNTAX
NOSYNTAX

X X X X Specifies that the compiler continues into
syntax checking after preprocessing.

SYSPARM X X Allows you to specify the value of the string
that is returned by the macro facility built-in
function SYSPARM.

SYSTEM X X X X Specifies the format used to pass parameters
to the MAIN PL/I procedure, and generally
indicates the host system under which the
program runs.

Appendix C. Compiler option comparison 177

Table 14. Compiler option comparison (continued)

Option

Available in

Abbreviated option descriptionOS PL/I

PL/I for
MVS &

VM
VisualAge

PL/I
Enterprise

PL/I

TERMINAL
NOTERMINAL

X X X X Determines whether or not diagnostic and
information messages produced during
compilation are displayed on the terminal.

TEST
NOTEST

X X X X Specifies the level of testing capability that
the compiler generates as part of the object
code.

TUNE X Specifies the architecture for which the
executable program is optimized.

UNROLL X Controls loop unrolling under optimization.

USAGE X Lets you choose IBM or ANS semantics for
the ROUND and UNSPEC built-in functions.

WIDECHAR X X Specifies the format in which WIDECHAR
data will be stored.

WINDOW X X Sets the value for the window argument used
in various date-related built-in functions.

WRITABLE
NOWRITABLE

X Specifies that the compiler may treat static
storage as writable.

XINFO X X Specifies that the compiler should generate
additional files with extra information about
the current compilation unit.

XML X Allows the choice of the case of the names in
the XML generated by the XMLCHAR
built-in function.

XREF
NOXREF

X X X X Provides a cross-reference table of names
used in the program.

178 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Appendix D. Compiler limit comparison

The following table lists the compiler implementation limits for OS PL/I, PL/I for
MVS & VM, VisualAge PL/I, and Enterprise PL/I.

Table 15. Language element limits

Language
Element

Description OS PL/I PL/I for
MVS&VM

VisualAge
PL/I

Enterprise
PL/I

Arrays Maximum number
of dimensions for
an array

15 15 15 15

Minimum lower
bound

-2147483648 -2147483648 -2147483648 -2147483648

Maximum upper
bound

+2147483647 +2147483647 +2147483647 +2147483647

Structures Maximum number
of levels in a
structure

15 15 15 15

Maximum
level-number in a
structure

255 255 255 255

Arithmetic
Precisions

Maximum
precision for
FIXED DEC

15 15 31 31

Maximum
precision for
FIXED BINARY

31 31 63 63

Maximum
precision for
FLOAT DEC

33 33 33 33

Maximum
precision for
FLOAT BINARY

109 109 109 109

Maximum scale
factor for FIXED
data

127 127 127 127

Minimum scale
factor for FIXED
data

-128 -128 -128 -128

String and
AREA
Variables or
Constants

Maximum length
of CHARACTER

32767 32767 32767 32767

Maximum length
of BIT

32767 32767 32767 32767

Maximum length
of GRAPHIC

16383 16383 16383 16383

Maximum length
of WIDECHAR

n/a n/a 16383 16383

Maximum size of
AREA

2147483647 2147483647 2147483647 2147483647

© Copyright IBM Corp. 1999, 2011 179

Table 15. Language element limits (continued)

Language
Element

Description OS PL/I PL/I for
MVS&VM

VisualAge
PL/I

Enterprise
PL/I

Built-In
Functions

Maximum number
of arguments to
the IAND, IOR,
MAX, and MIN
functions

64 64 64 64

Program Size Maximum length
of an identifier

31 31 100 100

Maximum number
of procedures in a
program

255 255 255 255

Maximum number
of DEFAULT
statements in a
block

31 31 31 31

Maximum nesting
of %INCLUDE
statements

8 8 2046 2046

Maximum number
of lines in any
source file

65,535 65,535 1048575 1048575

Maximum number
of statements

32,767 32,767 16777215 16777215

Maximum number
of LIKE-attributes
in a block

63 63 63 63

Maximum number
of output
expressions in a
data-list

60 60 60 60

Maximum number
of repetitive DO-
specifications in a
data-list

25 25 50 50

180 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Table 15. Language element limits (continued)

Language
Element

Description OS PL/I PL/I for
MVS&VM

VisualAge
PL/I

Enterprise
PL/I

Program Size Maximum size of
a data aggregate
containing no
unaligned bits

2147483648 2147483648 2147483647 2147483647

Maximum size of
a data aggregate
containing some
unaligned bits

268435455 268435455 268435455 268435455

Maximum number
of arguments in a
CALL or function
reference

64 64 255 255

Maximum number
of parameters for
a procedure

64 63 4095 4095

Maximum nesting
of factored
attributes

15 15 15 15

Maximum nesting
of BEGIN and
PROCEDURE
statements

42 42 30 30

Maximum nesting
of DO-groups

38 38 49 49

Maximum nesting
of IF statements

80 80 49 49

Maximum nesting
of
SELECT-
statements

50 50 49 49

Maximum length
of %NOTE
message

256 256 32767 32767

Appendix D. Compiler limit comparison 181

Table 15. Language element limits (continued)

Language
Element

Description OS PL/I PL/I for
MVS&VM

VisualAge
PL/I

Enterprise
PL/I

Miscellaneous Maximum number
of picture
characters in a
character picture

511 511 511 511

Maximum number
of bytes in a
numeric picture

256 256 253 253

Maximum number
of numeric picture
characters in a
numeric picture

15 15 31 31

Maximum length
for a KEYTO
character string

120 120 120 120

Maximum length
for a KEYTO
graphic or
widechar string

60 60 60 60

Maximum KEY
length

8 8 32763 32763

Maximum line
size for LINESIZE

32,000 32,000 32,000 32,759 for
F-format or
U-format,
and 32,751
for V-format

Minimum line size
for LINESIZE

10 10 1 1

Maximum page
size for PAGESIZE

32,000 32,000 32,767 32,767

Miscellaneous Minimum page
size for PAGESIZE

1 1 1 1

Maximum size of
DISPLAY character
string

126 126 126 126

Maximum
DISPLAY reply
message.

72 72 72 72

182 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Appendix E. Batch processing sample

The following code samples show how to implement a 'batch compiler' with
Enterprise PL/I.

batch: proc options(main);

dcl eof bit(1);
dcl rc fixed bin(15);
dcl system builtin;
dcl source char(80);
dcl sysutz file output record sequential

env(fb,recsize(80));

dcl compin file input record sequential;

dcl plixopt ext static char(40) var
init(’errcount(0),heap(2m,1m,any,free)’);

open file(compin);

rc = 0;
eof = ’0’b;
data_read = ’0’b;
on endfile(compin) eof = ’1’b;

data_read = ’0’b;
open file(sysutz);
read file(compin) into(source);
do while(eof = ’0’b);

if substr(source,1,8) = ’*PROCESS’ then
if data_read then

do;
close file(sysutz);

rc = max(rc, system(’ibmzpli @dd:options’));

data_read = ’0’b;
open file(sysutz);

end;
else;

else
data_read = ’1’b;

write file(sysutz) from(source);
read file(compin) into(source);

end;

close file(sysutz);

rc = max(rc, system(’ibmzpli @dd:options’));
call pliretc(rc);

end;

This program when compiled and linked could be used as a "batch compiler" if the
following JCL were used when the program is run.

//SYSPRINT DD SYSOUT=*
//OPTIONS DD *
dd(*,sysutz) name
limits(extname(7)) norent cmpat(v2)
//COMPIN DD *
*PROCESS X(F);

x: proc;
dcl a ext char(80);

© Copyright IBM Corp. 1999, 2011 183

end;
*PROCESS NORENT;

y: proc;
dcl b ext char(40);

end;
//SYSLIN DD DSN=...,DISP=(MOD)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSUTZ DD DSN=&&SOURCE,DISP=(NEW),UNIT=SYSSQ,
// SPACE=(CYL,(3,1))

The first line in the OPTIONS DD specifies the DD(*,SYSUTZ) and NAME and is
necessary to make the program work as a batch compiler. The second line is used
merely as an example.

184 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Appendix F. Debugging tool comparison

Debug Tool is a program analyzer that runs within Language Environment and
supports a number of high level languages, including Enterprise PL/I.

For Enterprise PL/I, Debug Tool is orderable as a feature of the compiler.

Differences between debugging tools

IBM Debug Tool is the interactive debugger that supports PL/I and Language
Environment. Debug Tool functions are equivalent to PLITEST functions. Some
names of PLITEST commands, however, have changed in Debug Tool and are no
longer accepted. These are listed in Table 16.

You must have Language Environment for OS/390 & VM Release 4 or later
installed on your system before you can use Debug Tool with your OS PL/I
applications.

Table 16. PLITEST Commands and Their Debug Tool Equivalents

PLITEST Command Equivalent Debug Tool Command

CLEAR ON CLEAR AT OCCURENCE

LIST %FPRS LIST SHORT FLOATING

LIST %LPRS LIST LONG FLOATING

LIST %GPRS LIST REGISTERS

LIST SNAP LIST CALLS

MOVECURS CURSER

ON AT OCCURENCE

QUERY AT LIST AT

QUERY ATTRIBUTES DESCRIBE ATTRIBUTES

QUERY BEARINGS QUERY LOCATION

QUERY ENVIRONMENT DESCRIBE ENVIRONMENT

QUERY MONITOR LIST MONITOR

QUERY NAMES 'pattern' LIST NAMES 'pattern'

QUERY NAMES PROCEDURE LIST PROCEDURE

QUERY PROGRAM DESCRIBE PROGRAM

QUERY STATEMENT NUMBERS LIST STATEMENT NUMBERS

SEARCH FIND

SET GRAPHIC SET DBCS

SET LANGUAGE SET NATIONAL LANGUAGE

SET LAST n SET HISTORY n

SET FILE SET LOG

SIGNAL (ON cond) PROGRAM TRIGGER (ON cond)

SIGNAL (ON cond) TEST TRIGGER AT OCCURENCE (ON cond)

SIGNAL (AT cond) TEST TRIGGER AT (AT cond)

© Copyright IBM Corp. 1999, 2011 185

Table 16. PLITEST Commands and Their Debug Tool Equivalents (continued)

PLITEST Command Equivalent Debug Tool Command

VTRACE STEP

WINDOWS LAYOUT

186 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023

© Copyright IBM Corp. 1999, 2011 187

San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This book is intended to help the customer migrate from previous releases of PL/I
to Enterprise PL/I and z/OS Language Environment. This publication documents
intended Programming Interfaces that allow the customer to write programs to
obtain the services of Enterprise PL/I.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Windows is a trademark of Microsoft Corporation in the United States and/or
other countries.

Other company, product or service names may be the trademarks or service marks
of others.

188 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

PL/I publications

Enterprise PL/I for z/OS
Programming Guide, GI11-9145
Language Reference, SC14-7285
Messages and Codes, GC14-7286
Compiler and Run-Time Migration Guide, GC14-7284

PL/I for MVS & VM
Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114
Compile-Time Messages and Codes, SC26-3229
Diagnosis Guide, SC26-3149
Migration Guide, SC26-3118
Programming Guide, SC26-3113
Reference Summary, SX26-3821

PL/I for AIX
Programming Guide, SC14-7319
Language Reference, SC14-7320
Messages and Codes, GC14-7321
Installation Guide, GC14-7322

Related publications

DB2 UDB for z/OS
Administration Guide, SC18-7413
Application Programming and SQL Guide, SC18-7415
Command Reference, SC18-7416
Messages, GC18-9602
Codes, GC18-9603
SQL Reference, SC18-7426

DFSORT™

Application Programming Guide, SC33-4035
Installation and Customization, SC33-4034

IMS/ESA®

Application Programming: Database Manager, SC26-8015
Application Programming: Database Manager Summary, SC26-8037
Application Programming: Design Guide, SC26-8016
Application Programming: Transaction Manager, SC26-8017
Application Programming: Transaction Manager Summary, SC26-8038
Application Programming: EXEC DL/I Commands for CICS and IMS™, SC26-8018

© Copyright IBM Corp. 1999, 2011 189

Application Programming: EXEC DL/I Commands for CICS and IMS Summary,
SC26-8036

TXSeries for Multiplatforms
Encina Administration Guide Volume 2: Server Administration, SC09-4474
Encina SFS Programming Guide, SC09-4483
See also the Information Center: publib.boulder.ibm.com/infocenter/txformp/
v7r1/index.jsp

z/Architecture
Principles of Operation, SA22-7832

z/OS Language Environment
Concepts Guide, SA22-7567
Debugging Guide, GA22-7560
Run-Time Messages, SA22-7566
Customization, SA22-7564
Programming Guide, SA22-7561
Programming Reference, SA22-7562
Run-Time Application Migration Guide, GA22-7565
Writing Interlanguage Communication Applications, SA22-7563

z/OS MVS
JCL Reference, SA22-7597
JCL User's Guide, SA22-7598
System Commands, SA22-7627

z/OS TSO/E
Command Reference, SA22-7782
User's Guide, SA22-7794

z/OS UNIX System Services
z/OS UNIX System Services Command Reference, SA22-7802
z/OS UNIX System Services Programming: Assembler Callable Services Reference,
SA22-7803
z/OS UNIX System Services User's Guide, SA22-7801

Unicode® and character representation
z/OS Support for Unicode: Using Conversion Services, SC33-7050

190 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Index

Special characters
(NO)GOSTMT compiler option 68

A
abend codes

CICS considerations 55, 155
ABTERMENC run-time option 36, 123
accessibility

assistive technologies xv
keyboard navigation xv
of Enterprise PL/I for z/OS xv
of this information xv

ADDBUFF ENVIRONMENT option 64
ALL31 run-time option 36, 123, 127
AMODE(24)

link-edit considerations 121
mixing with 31-bit data 26
support 70

AMODE(31)
ALL31 considerations 36

APARs
Prerequisite LE 126

AREA
with INITIAL 116

array expressions restrictions 65
ASCII ENVIRONMENT option 64
ASMTDLI IMS interface 55, 157
assembler support

calling PL/I 124
IMS considerations 55, 158
invocation of PL/I 46, 151
invoking the compiler from 69
main parameter list 46
need to link CEESG011 124
PLIMAIN entry point 46
PLISTART entry point 46
user exits

specific considerations 152
assistive technologies xv

B
BACKWARDS file attribute 64
batch compilation

example 183
restrictions 68

BUFFERS ENVIRONMENT option 64
BUFOFF ENVIRONMENT option 64
built-in functions

DATE/TIME 42
math 125
over 100 new 8
restricted 66
with conversion from graphic to

character type 119
with scaled FIXED BIN 118

C
CEEBXITA user exit 152
CEESTART

and PLICALLA 39
using 46

CEEUOPT
and PLICALLB 39
and run-time options 36

CICS considerations
abend codes used by PL/I 55, 155
CSD file, updating 53, 153
discussion of 53, 153
dropping support for OS PL/I 5
error handling 53
integrated pr eprocessor 8
integrated preprocessor 155
invoking existing CICS

applications 32
linking Enterprise PL/I

applications 154
macro-level interface 54, 154
run-time output 54, 154
STACK run-time option, using 54
SYSTEM compiler option 154

CMPAT compiler option 74, 131
DB2 considerations 161

compatibility
compiler options

BIFPREC(15) 73
CMPAT(V*) 73
DFT(LINKAGE(SYSTEM)) 73, 77
DFT(NOBIN1ARG) 77
DFT(OVERLAP) 73, 77
EXTRN(FULL) 73, 75
LIMITS(EXTNAME(7)) 73, 75
NOREDUCE 73, 77
NORENT 73, 76
NORESEXP 73, 78
NOWRITABLE 78
RULES(LAXCTL) 73, 78

considerations
PLICALLA entry point 39
PLICALLB entry point 39

run-time options needed
ABTERMENC(RETCODE) 123
DEPTHCONDLMT(0) 123
ERRCOUNT(0) 123
TRAP(ON) 123
XUFLOW(ON) 123

compile unit definition 43
compiler advantages

FETCH 8
integrated preprocessors 8
multithreading, support of 8
new built-in functions 8

compiler limits 179
compiler messages

2603 90
EXIT option 100
IBM1044 87
IBM1053 87, 119

compiler messages (continued)
IBM1063 112
IBM1065 87
IBM1089 107
IBM1091 88
IBM1099 88
IBM1181 89
IBM1196 117
IBM1206 90
IBM1208 90
IBM1215 91
IBM1216 91
IBM1220 92, 107
IBM1927 92
IBM1936 70
IBM1948 93
IBM2063 82, 93
IBM2402 93
IBM2409 94
IBM2410 94
IBM2412 94
IBM2421 95
IBM2610 95
IBM2611 95
IBM2617 96
IBM2621 96
IBM2622 96
IBM2626 97
IBM2628 97
IBM2801 98
IBM2804 98
IBM2810 98
IBM2811 99
IBM2812 99
IBM5002 70

compiler options
BACKREG 73
BIFPREC 74
CMPAT 74, 131
compiler comparison 171
DEFAULT

LINKAGE 77, 131
NOBIN1ARG 77
NONASGN 79
NONCONNECTED 79
NOOVERLAP 80
OVERLAP 77, 131
REORDER 80

EXTRN 75, 131
GONUMBER 86
LIMITS

EXTNAME 75, 131
NOREDUCE 77, 80
NORENT 76, 81, 131, 147
NOWRITABLE 76, 78, 148
OPTIMIZE 80
PREFIX 86
REDUCE 80
RENT 76, 147
restricted 67

© Copyright IBM Corp. 1999, 2011 191

compiler options (continued)
RULES

LAXCTL 78
LAXSTRZ 85
NOLAXCTL 82
NOLAXDCL 83
NOLAXIF 83
NOLAXLINK 84
NOLAXMARGINS 84
NOMULTICLOSE 85

SYSTEM 76
TEST 86
unsupported 68
WRITABLE 76, 148

compiler options restricted
INCLUDE 67
LANGLVL 67
LIST 68
STMT 68
SYSTEM 68

compiler options unsupported
(NO)GOSTMT 68
CONTROL 68
COUNT 68
DECK 68
ESD 68
FLOW 68
IMPRECISE 68
LMESSAGE 68
SEQUENCE 68
SIZE 68
SMESSAGE 68

compiler restrictions
array expressions 65
built-in functions 66
DBCS 67
DEFAULT statement 65
extents of automatic variables 66
iSUB defining 66
LABEL arrays 66
MACRO preprocessor 67
multitasking facility 42
OPTIONS(REENTRANT) 66
pseudovariables 66
RECORD I/O 64
STREAM I/O 64
structure expressions 65
VM 9

compiler support dropped
CHARSET(48) 63
CHECK 63
EGCS 63
Fortran 63
invalid code 63
multitasking 63
VM 9

condition handling
differences 37
IBMBXITA and IBMBEER

differences 38
IMS considerations 56, 158
severity differences 38
timing differences 37
U4039 differences 38
unhandled condition differences 38

conditions
ERROR 37

conditions (continued)
FIXEDOVERFLOW 104, 115
OVERFLOW 113
UNDERFLOW 36
ZERODIVIDE 113

considerations
before migrating 35

assembler 151
condition handling 37
DATE/TIME built-in functions 42
debugging tools 185
ILC differences 45
performance retuning 127
PLIDUMP 43
preinitialized program 41
run-time message 43
run-time options 35
storage report 44
storage use retuning 127
user return code 42
using sort program 42

installation
Enterprise PL/I 23
OS/390 requirements 7
product configuration 169
product configuration,

SCEELKED 7
product configuration,

SCEERUN 7
link-edit

CHANGE card 121
math routines 52
NCAL linkage editor option 51
PLICALLA and PLICALLB 121
symbol table 51

subsystem
CICS 53, 153
DB2 57, 161
IMS 55, 157

Considerations
Before Migrating

Run-time messages 124, 125
CONTROL compiler option 68
COUNT compiler option 68
COUNT run-time option 35, 123
CPU utilization, improving 127
CSD file, updating 53, 153
CSECTs

IDR information 17, 168
symbol table 51

D
data sets

load module considerations 47
new, OS/390 7

DATE/TIME built-in functions 42
DB2 considerations 57, 161
DBCS restrictions 67

SQL Preprocessor 161
Debug Tool 185

comparing with PLITEST 185
product relationships 7

debugging tools, differences in 185
DECK compiler option 68
DEFAULT compiler option

LINKAGE 77, 131

DEFAULT compiler option (continued)
NOBIN1ARG 77
NONASGN 79
NONCONNECTED 79
NOOVERLAP 80
OVERLAP 77, 108, 131
REORDER 80

DEFAULT statement restrictions 65
DEPTHCONDLMT run-time option 36,

123
DFSORT, using 42
dump differences 126

E
education

Enterprise PL/I 23
Language Environment 16

element names 168
elements 168
Enterprise PL/I for z/OS

accessibility xv
Enterprise PL/I for z/OS library xiv
Enterprise PL/I library xiv
ENVIRONMENT options not

supported 64
ERRCOUNT run-time option 36, 123
ERROR condition 37
error handling, CICS considerations 53
ESD compiler option 68
EXCLUSIVE file attribute 64
EXEC DLI interface 55, 157
EXEC SQL statements 161
EXTERNAL

uninitialized STATIC 110
EXTRN compiler option 75, 131

F
FETCH

compiler advantages 8
file attributes not supported

BACKWARDS 64
EXCLUSIVE 64
TRANSIENT 64

FIXED BIN
and FIXEDOVERFLOW 115
with precision <= 7 116

FIXEDOVERFLOW
and SIZE 104
restricted to FIXED DEC 115

FLOAT
assignments to FLOAT 109

FLOW compiler option 68
FLOW run-time option 35, 123

G
GONUMBER compiler option 86

H
HEAP run-time option 35, 123, 128

192 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

I
IBMBEER user exit

differences 38
installation considerations 152

IBMBXITA user exit 152
differences 38

IBMFXITA user exit 152
IBMRLSLx, replacing Shared

Library 166
IBMWRLKx, replacing library

routine 165
IEEE floating point

support of 8
ILC (interlanguage communication)

differences in 45
enabled languages 45
migration considerations 18
PLIXOPT considerations 36

implementation limits 179
IMPRECISE compiler option 68
IMS considerations

assembler language options
support 55, 158

condition handling 56, 158
discussion of 55, 157
interfaces 55, 157
interfaces to 55, 157
PLICALLA support 55, 157
PSB language options 55, 158
STEPLIB use and LE 19
storage usage 56, 158
SYSTEM compiler option 55, 157

INCLUDE compiler option 67
INDEXAREA ENVIRONMENT

option 64
installation

Language Environment 15
interlanguage communication (ILC)

differences in 45
enabled languages 45

introduction
PL/I run-time environment 8

ISAINC run-time option 123
ISASIZE run-time option 35, 123
iSUB defining restrictions 66

K
keyboard navigation xv

L
LABEL array restrictions 66
LANGLVL compiler option 67
Language Environment

educating programmers 16
Enterprise PL/I prerequisite level 15
invoking existing CICS

applications 32
invoking existing non-CICS

applications 31
planning move to 15
running existing applications 31

Language Environment library xiv
LANGUAGE run-time option 35, 123

library routine replacement tool
using IBMWRLKx 165

LIMITS compiler option
EXTNAME 75, 131

link-edit considerations 121
link-edit

AMODE(24) considerations 121
and CHANGE 121
and PLICALLA 121
and PLICALLB 121
effects of LIMITS on 121
effects of RENT/NORENT on 121
existing applications with LE 32
math routines, using 52
NCAL option 51
symbol table 51
symbol tables

CSECT 51
discussion of 51

using NCAL option 51
linking applications under CICS 154
LIST compiler option 68
LMESSAGE compiler option 68
LNKLST

SCEERUN 4, 7
use in migration 18

load module
considerations for

data sets 47
OS PL/I Version 2 49

general considerations 47
identifying PL/I version 17, 168
IDR information 17, 168
Language Environment support

OS PL/I version 1 prior to release
3.0 49

OS PL/I version 1.3.0 - 1.4.0 49
OS PL/I version 1.5.0 48
OS PL/I version 1.5.1 47
OS PL/I version 2 49

loops
endless 106

LPALST
use in migration 18

LRECL
compiler SYSPRINT 70

M
macro-level interface, CICS

considerations 54, 154
main load module relinking aid

using sample ZAP 166
main load module, user

sample ZAP relinking aid 166
math built-ins

differences 125
math routines, using OS PL/I 52
messages

2603 90
EXIT option 100
IBM1044 87
IBM1053 87
IBM1065 87
IBM1091 88
IBM1099 88
IBM1181 89

messages (continued)
IBM1206 90
IBM1208 90
IBM1215 91
IBM1216 91
IBM1220 92
IBM1927 92
IBM1948 93
IBM2063 82, 93
IBM2402 93
IBM2409 94
IBM2410 94
IBM2412 94
IBM2421 95
IBM2610 95
IBM2611 95
IBM2617 96
IBM2621 96
IBM2622 96
IBM2626 97
IBM2628 97
IBM2801 98
IBM2804 98
IBM2810 98
IBM2811 99
IBM2812 99

migrating
to new compiler 23

migration
aid for replacing Shared Library 166
compiler, basics 4
cut to production 22
general tasks 10
ILC considerations 18
library routine replacement tool 165
LNKLST use 18
object module relinking tool 167
phasing in LE 18
PL/I application conversion 26
PL/I application priority 25
regression testing 21
relinking aid, using 167
relinking PLISRTx modules 167
run-time, basics 4
sample ZAP for relinking main load

module 166
STEPLIB example 20
STEPLIB use 19
taking application inventory 16, 24
tools and aids 165

MSGFILE run-time option 43, 123, 125
multitasking facility

support of 9
multithreading

support of 8

N
NATLANG run-time option 35, 123
NCAL linkage editor option 51
NCP ENVIRONMENT option 64
NOREDUCE compiler option 77, 80
NORENT compiler option 76, 81, 131,

147
link-edit considerations 121

notices 187

Index 193

NOWRITABLE compiler option 76, 78,
148

NOWRITE ENVIRONMENT option 64

O
object and load module

considerations 47, 51
object module

general considerations 47
ILC migration aid 167
Language Environment support

OS PL/I version 1 prior to release
3.0 49

OS PL/I version 1.3.0 - 1.4.0 49
OS PL/I version 1.5.0 48
OS PL/I version 1.5.1 47
OS PL/I version 2 49

OPTIMIZE compiler option 80
OS PL/I

service 5
Version 2 load modules 49

OVERFLOW condition 113

P
performance

compiler options
DFT(NONASGN) 79
DFT(NONCONNECTED) 79
DFT(NOOVERLAP) 80
DFT(REORDER) 80
NORENT 81
OPTIMIZE(2) 80
REDUCE 80
RULES(NOLAXCTL) 82

CPU utilization 127
FIXED BIN(15) as a loop control 112
FIXED DEC as a loop control 112
retuning for 127
storage utilization 128
TOTAL environment option 112
under CICS, improving 129
under IMS, improving 129

PLICALLA entry point
IMS considerations 55, 157
support for 39

PLICALLB entry point
support for 39

PLIDUMP
differences 43, 126
output produced by 43

PLIMAIN entry point 46
PLISRTx module relinking tool 167
PLISRTx, using 42
PLISTART

and PLICALLA 39
entry point 46

PLITDLI IMS interface 55, 157
PLITEST

comparing with Debug Tool 185
PLIXHD 71, 126
PLIXOPT

and PLICALLB 39
and run-time options 36

PREFIX compiler option 86

preinitialized program 41
preprocessors

CICS preprocessor 155
SQL preprocessor 161

product configuration
data sets

new 7
OS/390 7

discussion of 169
product relationships

Debug Tool 7
programs, preinitialized 41
PSB language options, IMS

considerations 55, 158
pseudovariables restricted 66
PTFs

Prerequisite LE 126

R
recompile

do I need to 3
RECORD I/O

restrictions 64
REDUCE compiler option 80
REENTRANT procedure option 66
REGIONAL ENVIRONMENT option 64
relinking OS PL/I-COBOL ILC

using the relinking tool 167
relinking user main load module

sample ZAP relinking aid 166
RENT compiler option 76, 147

link-edit considerations 121
replacing library routines

using IBMWRLKx 165
replacing OS PL/I Shared Library

sample replacement aid 166
REPORT run-time option 35, 123
retuning applications

CPU utilization 127
storage utilization, improving 128
under IMS, improving 129

return codes 124
RPTSTG run-time option 35, 123

using for tuning storage 16, 127
RULES compiler option

ANS 89
LAXCTL 78
LAXSTRZ 85
NOLAXCTL 82
NOLAXDCL 83
NOLAXIF 83
NOLAXLINK 84
NOLAXMARGINS 84
NOMULTICLOSE 85

run-time environment
for PL/I 8

run-time message differences 43
Run-time messages 124, 125
run-time options

ABTERMENC 36, 123
ALL31 36, 123, 127
COUNT 35, 123
DEPTHCONDLMT 36, 123
differences 35
ERRCOUNT 36, 123
FLOW 35, 123

run-time options (continued)
HEAP 35, 123, 128
ISASIZE 35
LANGUAGE 35
MSGFILE 43, 123, 125
NATLANG 35, 123
REPORT 35
RPTSTG 9, 35, 123, 127
SPIE 35
STACK 35, 123, 128
STAE 35
STORAGE 123
TRAP 35, 123
XUFLOW 36, 123

run-time output, CICS
considerations 54, 154

S
SCEELKED

and non-IBM names 32
configuration 7

SCEERUN
configuration 7
in LNKLST 4
in STEPLIB or JOBLIB 51

SEQUENCE compiler option 68
service

CICS support 5
OS PL/I 5

Shared Library replacement aid
using IBMRLSLx 166

Shared Library support 42
Shared Library, OS PL/I

sample replacement aid 166
SIS ENVIRONMENT option 64
SIZE

and FIXEDOVERFLOW 104
SIZE compiler option 68
SKIP ENVIRONMENT option 64
SMESSAGE compiler option 68
SPIE run-time option 35, 123
SQL preprocessor

EXEC SQL statements 161
new, integrated 8

SQL Preprocessor
restrictions lifted 161
using 161

STACK run-time option 35, 54, 123, 128
STAE run-time option 35, 123
STATIC

retaining unused INTERNAL 104
uninitialized EXTERNAL 110
writeable reentrant 8

STEPLIB
migration example 20
use in migration 19

STMT compiler option 68
storage

DASD requirements 15
Enterprise PL/I requirements 23
usage

IMS considerations 56, 158
retuning for 127

virtual requirements 16
storage report differences 44, 126
STORAGE run-time option 123

194 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

storage utilization, improving 128
STREAM I/O

restrictions 64
unprintable characters 110

structure expression restrictions 65
subsystem considerations

CICS 53, 153
DB2 57, 161
IMS 55, 157

subsystem performance, improving 129
symbol tables

considerations for 51
CSECT 51

SYSLIN DD
restrictions 70

SYSPRINT
LRECL value 70
sharing between old and new

PL/I 132
support for MSGFILE(SYSPRINT) 43,

125
SYSTEM compiler option 68, 76

CICS considerations 154
IMS considerations 55, 157

T
TEST compiler option 86
TOTAL environment option 112
TOTAL ENVIRONMENT option 64
TP ENVIRONMENT option 64
TRANSIENT file attribute 64
TRAP run-time option 35, 123
TRKOFL ENVIRONMENT option 64
TSO 69

U
U4039 ABEND 38
UNDERFLOW condition 36
UNICODE

support of 8
UNLOCK statement 64
user exits

assembler
specific considerations 152

CEEBINT 152
CEEBXITA 152
IBMBEER 152
IBMBXITA 152
IBMFXITA 152
installation considerations 152
user exits 152

user information xiii
user main load module

sample ZAP relinking aid 166
user return code differences 42

V
VM

support of 9

W
WRITABLE compiler option 76, 148

X
XUFLOW run-time option 36, 123

Z
ZAP, main load module relinking

aid 166
ZERODIVIDE condition 113

Index 195

196 Enterprise PL/I for z/OS V4.2 Compiler and Runtime Migration Guide

Readers’ Comments — We'd Like to Hear from You

Enterprise PL/I for z/OS
Compiler and Run-Time Migration Guide
Version 4 Release 2

Publication No. GC14-7284-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: 1-800-426-7773
v Send your comments via email to: comments@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
GC14-7284-01

GC14-7284-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department H150/090
555 Bailey Ave.
San Jose, CA
95141-1099

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Product Number: 5655-W67

Printed in USA

Enterprise PL/I for z/OS Library
GC14-7283

Licensed Program Specifications
GI11-9145

Programming Guide
GC14-7284

Compiler and Run-Time Migration Guide
SC14-7285

Language Reference
GC14-7286

Compile-Time Messages and Codes

GC14-7284-01

	Contents
	Tables
	Figures
	About this book
	Using your documentation
	PL/I information
	Language Environment information

	How to send your comments
	Accessibility
	Interface information
	Keyboard navigation
	Accessibility of this information
	IBM and accessibility

	Part 1. Overview
	Chapter 1. Do I need to recompile?
	Migration basics
	Run-time migration - Moving to Language Environment
	Compiler migration

	Migration Roadmap
	Service support for OS PL/I and PL/I for MVS & VM

	Chapter 2. Introducing the new compiler and run-time
	Product relationships - compiler, run-time, debug
	General PL/I compiler information
	Language Environment's run-time support for other programs
	Advantages of the new compiler and run-time
	Major changes with the new compiler and run-time
	General conversion tasks
	Planning your strategy
	Moving to the Language Environment run time
	Recompiling your source with Enterprise PL/I
	Adding Enterprise PL/I programs to existing applications

	Part 2. Conversion Strategies
	Chapter 3. Planning the move to Language Environment
	Prepare to move to the Language Environment run-time library
	Installing Language Environment
	Assessing storage requirements
	DASD storage requirements
	Virtual storage requirements

	Educating your programmers about Language Environment

	Take an inventory of your applications
	Vendor tools, packages, and products
	PL/I applications
	Existing PL/I load modules

	Decide how to phase in Language Environment
	Multilanguage conversion
	Determining how applications will have access to the library
	LNKLST/LPALST
	STEPLIB
	Problems with STEPLIB and IMS programs
	STEPLIB example

	Set up a regression testing procedure
	Take performance measurements

	Cut over to production use

	Chapter 4. Planning to move to the new compiler
	Prepare to move your source to the new compiler
	Installing Enterprise PL/I
	Assessing storage requirements
	Educating your programmers on new compiler features

	Take an inventory of your applications
	Taking an inventory of vendor tools, packages, and products
	Taking an inventory of PL/I applications
	Prioritizing your applications
	Determining conversion priority

	Setting up move/no move categories

	Make application program updates

	Part 3. Moving existing applications to Language Environment
	Chapter 5. Running existing applications under Language Environment
	Invoke existing applications
	For non-CICS applications
	Specify the correct library
	Specify alternate DDNAMES (optional)

	For CICS applications
	Output differences when using Language Environment on CICS

	Link-edit existing applications

	Chapter 6. Considerations Before Migrating
	Differences in Run-Time Options
	Deleted run-time options
	Replaced run-time options
	New run-time options

	Differences in Condition Handling
	Timing differences
	Unhandled condition differences
	IBMBXITA and IBMBEER differences
	ABEND U4039 differences
	Severity differences

	Differences in PLICALLA and PLICALLB Support
	PLICALLA Considerations
	PLICALLB Considerations

	Differences in Preinitialization Support
	Differences in PLISRTx Support
	Differences in Multitasking Support
	Differences in OS PL/I Shared Library support
	Differences in DATE/TIME Built-In Functions
	Differences in User Return Code
	Differences in Run-Time Messages
	Differences in PLIDUMP
	Differences in Storage Report
	Differences in Interlanguage Communication Support
	Differences in Assembler Support
	Assembler programs that find the main parameter list

	Chapter 7. Object and Load Module Considerations
	OS PL/I Version 1 Object Module and Load Module Compatibility
	OS PL/I Version 1 Release 5.1
	Object Module
	Load Module Not Using Shared Library:
	Load Module Using the Shared Library

	OS PL/I Version 1 Release 5
	Object Module
	Load Module

	OS PL/I Version 1 Release 3.0 - Release 4.0
	Object Module
	Load Module

	OS PL/I Version 1 Prior to Release 3.0

	OS PL/I Version 2 Object Module and Load Module Compatibility
	Summary of Support for OS PL/I Object and Load Modules

	Chapter 8. Link-Edit Considerations
	SCEERUN
	Symbol Table Considerations
	NCAL Linkage Editor Option
	ENTRY cards
	Using OS PL/I Math Routines

	Chapter 9. Subsystem Considerations
	CICS Considerations
	Updating CICS System Definition (CSD) File
	Error Handling
	Restrictions on User-Written Condition Handlers under CICS
	Macro-Level Interface
	FETCHing a PL/I MAIN Procedure
	STACK Run-Time Option
	Run-Time Output
	Abend Codes Used by PL/I under CICS

	IMS Considerations
	Interfaces to IMS
	SYSTEM(IMS) Compile-Time Option
	PLICALLA Support in IMS
	PSB Language Options Supported
	Storage Usage Considerations
	Coordinated Condition Handling under IMS
	Performance Enhancement with Library Retention(LRR)

	DB2 Considerations

	Part 4. Moving to the new compiler
	Chapter 10. Understanding the limitations of the new compiler
	Language Environment Requirements
	Language not supported
	Multitasking
	CHECK
	CHARSET(48) and CHARSET(BCD)
	EGCS
	Fortran
	Invalid code

	Language restricted
	RECORD I/O
	STREAM I/O
	Structure expressions
	Array expressions
	DEFAULT statement
	Extents of automatic variables
	Built-in functions
	DEFINED BIT aggregates
	OPTIONS(REENTRANT)
	iSUB defining
	LABEL arrays
	DBCS
	Macro preprocessor

	Options restricted
	Options not supported
	Restrictions on other interfaces to the compiler
	Batch compilation
	Invoking the compiler from assembler
	Compiling under TSO
	Specifying INCLUDE data set names
	Defining the SYSLIN data set

	Compiler time and space requirements
	AMODE(24) restrictions
	EXTERNAL names restricted
	Listing differences
	Control block differences
	ISAM support differences

	Chapter 11. Understanding the new compiler's options
	Understanding the effect of default options on compatibility
	BACKREG(5)
	BIFPREC(15)
	CMPAT(V2)
	EXTRN(FULL)
	LIMITS(EXTNAME(7))
	NORENT and WRITABLE
	SYSTEM
	SYSTEM(CICS)
	SYSTEM(IMS)
	SYSTEM(OS)

	Choosing non-default options for even more compatibility
	COMMON
	DFT(NOBIN1ARG)
	DEFAULT(LINKAGE(SYSTEM))
	DFT(OVERLAP)
	NOREDUCE
	NORESEXP
	RULES(LAXCTL)
	RULES(NOLAXINOUT NOLAXSEMI)
	NOWRITABLE

	Choosing options for improved performance
	ARCH
	BIFPREC(31)
	DEFAULT(NONASGN)
	DEFAULT(CONNECTED)
	DEFAULT(REORDER)
	DEFAULT(NOOVERLAP)
	OPTIMIZE(2)/OPTIMIZE(3)
	REDUCE
	NORENT
	RULES(NOLAXCTL)

	Choosing options for better quality
	RULES(NOLAXDCL)
	RULES(NOLAXIF)
	RULES(NOLAXLINK)
	RULES(NOLAXMARGINS)
	RULES(LAXSTRZ)
	RULES(NOMULTICLOSE)

	Choosing options for test
	CHECK(CONFORMANCE)
	GONUMBER
	PREFIX
	TEST

	Chapter 12. Understanding the new compiler's messages
	IBM1044: one-byte FIXED BIN
	IBM1053: scaled FIXED BIN evaluation
	IBM1065: imprecise float constants
	IBM1091: FIXED BIN precision warning
	IBM1099: mixed FIXED
	IBM1181: miscoded DO loops
	IBM1206: misuse of BIT operators
	IBM1208: incompletely initialized arrays
	IBM1215: incomplete declares
	IBM1216: incorrect structure declares
	IBM1220: pointless comparisons
	IBM1927: SIZE condition
	IBM1948: restricted expression evaluation
	IBM2063: invalid ALLOCATE
	IBM2402: storage overlay
	IBM2409: RETURN; in a function
	IBM2410: No RETURN in a function
	IBM2412: missing RETURNS option
	IBM2421: CLOSE in ENDFILE
	IBM2610: precision interpretation
	IBM2611, IBM2612: duplicate whens
	IBM2617: passing labels out of PL/I
	IBM2621: missing ON ERROR SYSTEM
	IBM2622: warning on poorly coded DO loops
	IBM2626: SUBSTR with a zero length
	IBM2628: large BYVLAUE parameters
	IBM2801: introduction of scaled FIXED BIN
	IBM2804: suboptimal compares
	IBM2810: conversion of scaled FIXED BIN
	IBM2811: use of PICTURE as DO control variables
	IBM2812: poor TRANSLATE and VERIFY
	PLIXOPT messages
	Using the compiler user exit

	Chapter 13. Understanding when working code must be changed
	Incorrect code
	Relying on the order of declarations
	Using invalid FIXED DECIMAL data
	Using invalid SUBSTR references
	Using dissimilar EXTERNAL declares
	Using an incorrect PLITABS declare

	Initializing variables
	Initializing AUTOMATIC
	Initializing BASED
	Initializing CONTROLLED
	Initializing STATIC

	Retaining unused declarations
	Retaining unused INTERNAL STATIC

	Incorrect code that will now raise exceptions
	FIXEDOVERFLOW when SIZE is disabled
	Invalid allocations

	Incorrect code that will now loop endlessly
	Even precision PICTURE loop control variables

	Assignments that will produce different results
	Source-target overlap
	Float-to-float assignments

	Other statements that will produce different results
	STREAM I/O with unprintable characters
	Uninitialized EXTERNAL STATIC
	Incompletely declared FILEs
	Dummy arguments and alignment
	Dummy arguments and CONTROLLED
	Pointer arithmetic

	Code that will not perform as well
	FIXED DEC as a loop control
	FIXED BIN(15) as a loop control
	I/O using TOTAL

	Chapter 14. Understanding when working code may need to be changed
	Code that will now raise an exception
	ZERODIVIDE and OVERFLOW promoted to ERROR
	Conditions raised when disabled
	Invalid RETURNs
	GOTO holes
	The scope of NOFOFL

	Code that will now not raise exceptions
	FIXEDOVERFLOW for FIXED BIN
	CONVERSION when assigning blanks to numeric variables
	ERROR when mapping excessively large aggregates

	Storage mapped differently
	One-byte FIXED BIN

	Declarations handled differently
	AREA with INITIAL

	Conversions handled differently
	Conversions from float to character
	Conversions from scaled FIXED BINARY

	Built-in functions handled differently
	Arithmetic built-in functions with scale factors and FIXED BIN
	String-handling built-in function for conversion of DBCS character strings

	MACRO preprocessor differences
	MACRO preprocessor and strings

	SQL preprocessor differences

	Chapter 15. Linking your new objects
	Prelinker and PDSE considerations
	AMODE(24) considerations
	Using PLICALLA or PLICALLB Entry
	CHANGE cards

	Chapter 16. Using Language Environment with the new compiler
	Using the right run-time options
	Calling PL/I from assembler main programs
	Understanding when your results may vary
	Return codes
	When the run-time issues messages
	What the run-time messages say
	Where the run-time messages go
	Math built-ins
	Dumps
	Storage reports

	Prerequisite Language Environment PTFs

	Chapter 17. Tuning for better CPU and storage utilization
	Improving CPU Utilization
	Improving Storage Utilization
	Improving Performance under Subsystems

	Chapter 18. Adding Enterprise PL/I programs to existing PL/I applications
	Object and load module considerations
	Sharing SYSPRINT
	Run-time option considerations
	Condition handling considerations
	Partitioning PL/I source programs into units of execution

	Chapter 19. Migrating from earlier releases of Enterprise PL/I to Enterprise PL/I V4R2
	Migrating from Enterprise PL/I V4R1
	SQL preprocessor differences from Enterprise PL/I V4R1
	Dropped SQL preprocessor options
	Handling of LOB declarations
	Invalid host variable references
	Handling of SQL preprocessor messages

	Migrating from Enterprise PL/I Version 3 (all releases)
	Changes in Enterprise PL/I Version 3 releases

	Messages that are introduced with V4R2
	Compiler messages that are introduced with V4R2
	Preprocessor messages that are introduced with V4R2

	Compiler messages that are introduced with V4R1
	Compiler messages that are introduced with V3R9
	Compiler messages that are introduced with V3R8
	Compiler messages that are introduced with V3R7
	Compiler messages that are introduced with V3R6
	Compiler messages that are introduced with V3R5
	Compiler messages that are introduced with V3R4
	Object compatibility
	Runtime changes

	Part 5. Subsystem and other language considerations
	Chapter 20. Assembler considerations for PL/I applications
	Considerations for assembler programs mimicking PL/I main procedures
	Calling PL/I from assembler and Language Environment conforming assembler
	Condition handling and assembler programs
	Considerations for using assembler user exits
	Specific considerations

	Chapter 21. CICS considerations for PL/I applications
	General CICS considerations
	Updating CICS System Definition (CSD) file
	Macro-level interface

	Compiler options for programs that run under CICS
	Linking CICS applications and run-time considerations
	Error-handling
	FETCHing a PL/I MAIN procedure
	Run-time output
	Abend codes used by PL/I under CICS

	Migrating to the integrated CICS preprocessor

	Chapter 22. IMS considerations for PL/I applications
	Interfaces to IMS
	SYSTEM(IMS) compile-time option
	PLICALLA support in IMS
	PSB language options supported
	Storage usage considerations
	Coordinated condition handling under IMS
	Performance enhancement with Library Retention (LRR)

	Chapter 23. DB2 Considerations for PL/I applications
	General DB2 considerations
	Migrating to the integrated SQL preprocessor
	Programming and compilation considerations
	FOR BIT DATA assignment notes
	Prerequisite DB2 APARs

	Part 6. Appendixes
	Appendix A. Conversion and Migration Aids
	OS PL/I Routine Replacement Tool
	OS PL/I Version 1 Release 5.1 main load module ZAP
	OS PL/I Shared library replacement tool
	OS PL/I Object Module Relinking Tool - APAR PN69803
	ILC Applications
	PLISRTx Applications

	EDGE Portfolio Analyzer
	Vendor products

	Appendix B. Compiler elements comparison
	Appendix C. Compiler option comparison
	Appendix D. Compiler limit comparison
	Appendix E. Batch processing sample
	Appendix F. Debugging tool comparison
	Differences between debugging tools

	Notices
	Programming interface information
	Trademarks

	Bibliography
	PL/I publications
	Enterprise PL/I for z/OS
	PL/I for MVS & VM
	PL/I for AIX

	Related publications
	DB2 UDB for z/OS
	DFSORT™
	IMS/ESA®
	TXSeries for Multiplatforms
	z/Architecture
	z/OS Language Environment
	z/OS MVS
	z/OS TSO/E
	z/OS UNIX System Services
	Unicode® and character representation

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

