The following examples illustrate the "Result Decimal Position" precision rules:
*..1....+....2....+....3....+....4....+....5....+....6....+....7...+.... * This example shows the precision of the intermediate values * using the two precision rules. D p1 s 26p 2 D p2 s 26p 2 D p3 s 26p 2 D p4 s 26p 9 D s1 s 26s 2 D s2 s 26s 2 D i1 s 10i 0 D f1 s 8f D proc pr 15p 3 D parm1 20p 5 value * In the following examples, for each sub-expression, * two precisions are shown. First, the natural precision, * and then the adjusted precision. /FREE // Example 1: eval p1 = p1 * p2 * p3; // p1*p2 -> P(52,4); P(52,4) // p1*p2*p3 -> P(78,6); P(63,0) (decimal positions are truncated) eval(r) p1 = p1 * p2 * p3; // p1*p2 -> P(52,4); P(52,4) // p1*p2*p3 -> P(78,6); P(63,2) (decimal positions do not drop // below target decimal positions) eval(rh)p1 = p1 * p2 * p3; // p1*p2 -> P(52,4); P(52,5) // p1*p2*p3 -> P(78,6); P(63,3) (decimal positions do not drop // below target decimals + 1) // Example 2: eval p4 = p1 * p2 * proc (s1*s2*p4); // p1*p2 -> P(52,4); P(52,4) // s1*s2 -> P(52,4); P(52,4) // s1*s2*p4 -> P(78,13); P(63,0) (decimal positions are truncated) // p1*p2*proc() -> P(67,7); P(63,3) (decimal positions are truncated) eval(r) p4 = p1 * p2 * proc (s1*s2*p4); // p1*p2 -> P(52,4); P(52,4) // s1*s2 -> P(52,4); P(52,4) // s1*s2*p4 -> P(78,13); P(63,5) // p1*p2*proc() -> P(67,7); P(63,7) (we keep all decimals since we are // already below target decimals) /END-FREE