Include the standard header <locale> to define a host of template classes and functions that encapsulate and manipulate locales.
namespace std {
class locale;
class ctype_base;
template<class E>
class ctype;
template<>
class ctype<char>;
template<class E>
class ctype_byname;
class codect_base;
template<class From, class To, class State>
class codecvt;
template<class From, class To, class State>
class codecvt_byname;
template<class E, class InIt>
class num_get;
template<class E, class OutIt>
class num_put;
template<class E>
class numpunct;
template<class E>
class numpunct_byname;
template<class E>
class collate;
template<class E>
class collate_byname;
class time_base;
template<class E, class InIt>
class time_get;
template<class E, class InIt>
class time_get_byname;
template<class E, class OutIt>
class time_put;
template<class E, class OutIt>
class time_put_byname;
class money_base;
template<class E, bool Intl, class InIt>
class money_get;
template<class E, bool Intl, class OutIt>
class money_put;
template<class E, bool Intl>
class moneypunct;
template<class E, bool Intl>
class moneypunct_byname;
class messages_base;
template<class E>
class messages;
template<class E>
class messages_byname;
// TEMPLATE FUNCTIONS
template<class Facet>
bool has_facet(const locale& loc);
template<class Facet>
const Facet& use_facet(const locale& loc);
template<class E>
bool isspace(E c, const locale& loc) const;
template<class E>
bool isprint(E c, const locale& loc) const;
template<class E>
bool iscntrl(E c, const locale& loc) const;
template<class E>
bool isupper(E c, const locale& loc) const;
template<class E>
bool islower(E c, const locale& loc) const;
template<class E>
bool isalpha(E c, const locale& loc) const;
template<class E>
bool isdigit(E c, const locale& loc) const;
template<class E>
bool ispunct(E c, const locale& loc) const;
template<class E>
bool isxdigit(E c, const locale& loc) const;
template<class E>
bool isalnum(E c, const locale& loc) const;
template<class E>
bool isgraph(E c, const locale& loc) const;
template<class E>
E toupper(E c, const locale& loc) const;
template<class E>
E tolower(E c, const locale& loc) const;
}
The template class describes an object that can serve as a locale facet, to control conversions between a sequence of values of type From and a sequence of values of type To. The class State characterizes the transformation — and an object of class State stores any necessary state information during a conversion.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
The template versions of do_in and do_out always return codecvt_base::noconv. The Standard C++ library defines an explicit specialization, however, that is more useful:
template<>
codecvt<wchar_t, char, mbstate_t>
which converts between wchar_t and char sequences.
template<class From, class To, class State>
class codecvt
: public locale::facet, codecvt_base {
public:
typedef From intern_type;
typedef To extern_type;
typedef State state_type;
explicit codecvt(size_t refs = 0);
result in(State& state,
const To *first1, const To *last1,
const To *next1,
From *first2, From *last2, From *next2);
result out(State& state,
const From *first1, const From *last1,
const From *next1,
To *first2, To *last2, To *next2);
result unshift(State& state,
To *first2, To *last2, To *next2);
bool always_noconv() const throw();
int max_length() const throw();
int length(State& state,
const To *first1, const To *last1,
size_t _N2) const throw();
int encoding() const throw();
static locale::id id;
protected:
~codecvt();
virtual result do_in(State& state,
const To *first1, const To *last1,
const To *next1,
From *first2, From *last2, From *next2);
virtual result do_out(State& state,
const From *first1, const From *last1,
const From *next1,
To *first2, To *last2, To *next2);
virtual result do_unshift(State& state,
To *first2, To *last2, To *next2);
virtual bool do_always_noconv() const throw();
virtual int do_max_length() const throw();
virtual int do_encoding() const throw();
virtual int do_length(State& state,
const To *first1, const To *last1,
size_t len2) const throw();
};
explicit codecvt(size_t refs = 0);
The constructor initializes its locale::facet base object with locale::facet(refs).
typedef To extern_type;
The type is a synonym for the template parameter To.
typedef From intern_type;
The type is a synonym for the template parameter From.
typedef State state_type;
The type is a synonym for the template parameter State.
bool always_noconv() const throw();
The member function returns do_always_noconv().
result in(State state&,
const To *first1, const To *last1, const To *next1,
From *first2, From *last2, From *next2);
The member function returns do_in(state, first1, last1, next1, first2, last2, next2).
int length(State state&,
const To *first1, const To *last1,
size_t len2) const throw();
The member function returns do_length(first1, last1, len2).
int encoding() const throw();
The member function returns do_encoding().
int max_length() const throw();
The member function returns do_max_length().
result out(State state&,
const From *first1, const From *last1,
const From *next1,
To *first2, To *last2, To *next2);
The member function returns do_out(state, first1, last1, next1, first2, last2, next2).
result unshift(State state&,
To *first2, To *last2, To *next2);
The member function returns do_unshift(state, first2, last2, next2).
virtual bool do_always_noconv() const throw();
The protected virtual member function returns true only if every call to do_in or do_out returns noconv. The template version always returns true.
virtual int do_encoding() const throw();
The protected virtual member function returns:
virtual result do_in(State state&,
const To *first1, const To *last1, const To *next1,
From *first2, From *last2, From *next2);
The protected virtual member function endeavors to convert the source sequence at [first1, last1) to a destination sequence that it stores within [first2, last2). It always stores in next1 a pointer to the first unconverted element in the source sequence, and it always stores in next2 a pointer to the first unaltered element in the destination sequence.
state must represent the initial conversion state at the beginning of a new source sequence. The function alters its stored value, as needed, to reflect the current state of a successful conversion. Its stored value is otherwise unspecified.
The function returns:
The template version always returns noconv.
virtual int do_length(State state&,
const To *first1, const To *last1,
size_t len2) const throw();
The protected virtual member function effectively calls do_in(state, first1, last1, next1, buf, buf + len2, next2) for some buffer buf and pointers next1 and next2, then returns next2 - buf. (Thus, it counts the maximum number of conversions, not greater than len2, defined by the source sequence at [first1, last1).)
The template version always returns the lesser of last1 - first1 and len2.
virtual int do_max_length() const throw();
The protected virtual member function returns the largest permissible value that can be returned by do_length(first1, last1, 1), for arbitrary valid values of first1 and last1. (Thus, it is roughly analogous to the macro MB_CUR_MAX, at least when To is type char.)
The template version always returns 1.
virtual result do_out(State state&,
const From *first1, const From *last1,
const From *next1,
To *first2, To *last2, To *next2);
The protected virtual member function endeavors to convert the source sequence at [first1, last1) to a destination sequence that it stores within [first2, last2). It always stores in next1 a pointer to the first unconverted element in the source sequence, and it always stores in next2 a pointer to the first unaltered element in the destination sequence.
state must represent the initial conversion state at the beginning of a new source sequence. The function alters its stored value, as needed, to reflect the current state of a successful conversion. Its stored value is otherwise unspecified.
The function returns:
The template version always returns noconv.
virtual result do_unshift(State state&,
To *first2, To *last2, To *next2);
The protected virtual member function endeavors to convert the source element From(0) to a destination sequence that it stores within [first2, last2), except for the terminating element To(0). It always stores in next2 a pointer to the first unaltered element in the destination sequence.
state must represent the initial conversion state at the beginning of a new source sequence. The function alters its stored value, as needed, to reflect the current state of a successful conversion. Typically, converting the source element From(0) leaves the current state in the initial conversion state.
The function returns:
The template version always returns noconv.
The class describes an enumeration common to all specializations of template class codecvt. The enumeration result describes the possible return values from do_in or do_out:
class codecvt_base {
public:
enum result {ok, partial, error, noconv};
};
The template class describes an object that can serve as a locale facet of type codecvt<From, To, State>. Its behavior is determined by the named locale s. The constructor initializes its base object with codecvt<From, To, State>(refs).
template<class From, class To, class State>
class codecvt_byname
: public codecvt<From, To, State> {
public:
explicit codecvt_byname(const char *s,
size_t refs = 0);
protected:
~codecvt_byname();
};
The template class describes an object that can serve as a locale facet, to control comparisons of sequences of type E.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E>
class collate : public locale::facet {
public:
typedef E char_type;
typedef basic_string<E> string_type;
explicit collate(size_t refs = 0);
int compare(const E *first1, const E *last1,
const E *first2, const E *last2) const;
string_type transform(const E *first,
const E *last) const;
long hash(const E *first, const E *last) const;
static locale::id id;
protected:
~collate();
virtual int
do_compare(const E *first1, const E *last1,
const E *first2, const E *last2) const;
virtual string_type do_transform(const E *first,
const E *last) const;
virtual long do_hash(const E *first,
const E *last) const;
};
explicit collate(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef basic_string<E> string_type;
The type describes a specialization of template class basic_string whose objects can store copies of the source sequence.
int compare(const E *first1, const E *last1,
const E *first2, const E *last2) const;
The member function returns do_compare(first1, last1, first2, last2).
long hash(const E *first, const E *last) const;
The member function returns do_hash(first, last).
string_type transform(const E *first,
const E *last) const;
The member function returns do_transform(first, last).
virtual int do_compare(const E *first1, const E *last1,
const E *first2, const E *last2) const;
The protected virtual member function compares the sequence at [first1, last1) with the sequence at [first2, last2). It compares values by applying operator< between pairs of corresponding elements of type E. The first sequence compares less if it has the smaller element in the earliest unequal pair in the sequences, or if no unequal pairs exist but the first sequence is shorter.
If the first sequence compares less than the second sequence, the function returns -1. If the second sequence compares less, the function returns +1. Otherwise, the function returns zero.
virtual long do_hash(const E *first,
const E *last) const;
The protected virtual member function returns an integer derived from the values of the elements in the sequence [first, last). Such a hash value can be useful, for example, in distributing sequences pseudo randomly across an array of lists.
virtual string_type do_transform(const E *first,
const E *last) const;
The protected virtual member function returns an object of class string_type whose controlled sequence is a copy of the sequence [first, last). If a class derived from collate<E> overrides do_compare, it should also override do_transform to match. Put simply, two transformed strings should yield the same result, when passed to collate::compare, that you would get from passing the untransformed strings to compare in the derived class.
The template class describes an object that can serve as a locale facet of type collate<E>. Its behavior is determined by the named locale s. The constructor initializes its base object with collate<E>(refs).
template<class E>
class collate_byname : public collate<E> {
public:
explicit collate_byname(const char *s,
size_t refs = 0);
protected:
~collate_byname();
};
The template class describes an object that can serve as a locale facet, to characterize various properties of a ``character'' (element) of type E. Such a facet also converts between sequences of E elements and sequences of char.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
The Standard C++ library defines two explicit specializations of this template class:
In this implementation, other specializations of template class ctype<E>:
All other operations are performed on char values the same as for the explicit specialization ctype<char>.
template<class E>
class ctype
: public locale::facet, public ctype_base {
public:
typedef E char_type;
explicit ctype(size_t refs = 0);
bool is(mask msk, E ch) const;
const E *is(const E *first, const E *last,
mask *dst) const;
const E *scan_is(mask msk, const E *first,
const E *last) const;
const E *scan_not(mask msk, const E *first,
const E *last) const;
E toupper(E ch) const;
const E *toupper(E *first, E *last) const;
E tolower(E ch) const;
const E *tolower(E *first, E *last) const;
E widen(char ch) const;
const char *widen(char *first, char *last,
E *dst) const;
char narrow(E ch, char dflt) const;
const E *narrow(const E *first, const E *last,
char dflt, char *dst) const;
static locale::id id;
protected:
~ctype();
virtual bool do_is(mask msk, E ch) const;
virtual const E *do_is(const E *first, const E *last,
mask *dst) const;
virtual const E *do_scan_is(mask msk, const E *first,
const E *last) const;
virtual const E *do_scan_not(mask msk, const E *first,
const E *last) const;
virtual E do_toupper(E ch) const;
virtual const E *do_toupper(E *first, E *last) const;
virtual E do_tolower(E ch) const;
virtual const E *do_tolower(E *first, E *last) const;
virtual E do_widen(char ch) const;
virtual const char *do_widen(char *first, char *last,
E *dst) const;
virtual char do_narrow(E ch, char dflt) const;
virtual const E *do_narrow(const E *first,
const E *last, char dflt, char *dst) const;
};
explicit ctype(size_t refs = 0);
The constructor initializes its locale::facet base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
virtual bool do_is(mask msk, E ch) const;
virtual const E *do_is(const E *first, const E *last,
mask *dst) const;
The first protected member template function returns true if MASK(ch) & msk is nonzero, where MASK(ch) designates the mapping between an element value ch and its classification mask, of type mask. The name MASK is purely symbolic here; it is not defined by the template class. For an object of class ctype<char>, the mapping is tab[(unsigned char)(char)ch], where tab is the stored pointer to the ctype mask table.
The second protected member template function stores in dst[I] the value MASK(first[I]) & msk, where I ranges over the interval [0, last - first).
virtual char do_narrow(E ch, char dflt) const;
virtual const E *do_narrow(const E *first, const E *last,
char dflt, char *dst) const;
The first protected member template function returns (char)ch, or dflt if that expression is undefined.
The second protected member template function stores in dst[I] the value do_narrow(first[I], dflt), for I in the interval [0, last - first).
virtual const E *do_scan_is(mask msk, const E *first,
const E *last) const;
The protected member function returns the smallest pointer p in the range [first, last) for which do_is(msk, *p) is true. If no such value exists, the function returns last.
virtual const E *do_scan_not(mask msk, const E *first,
const E *last) const;
The protected member function returns the smallest pointer p in the range [first, last) for which do_is(msk, *p) is false. If no such value exists, the function returns last.
virtual E do_tolower(E ch) const; virtual const E *do_tolower(E *first, E *last) const;
The first protected member template function returns the lowercase character corresponding to ch, if such a character exists. Otherwise, it returns ch.
The second protected member template function replaces each element first[I], for I in the interval [0, last - first), with do_tolower(first[I]).
virtual E do_toupper(E ch) const; virtual const E *do_toupper(E *first, E *last) const;
The first protected member template function returns the uppercase character corresponding to ch, if such a character exists. Otherwise, it returns ch.
The second protected member template function replaces each element first[I], for I in the interval [0, last - first), with do_toupper(first[I]).
virtual E do_widen(char ch) const;
virtual const char *do_widen(char *first, char *last,
E *dst) const;
The first protected member template function returns E(ch).
The second protected member template function stores in dst[I] the value do_widen(first[I]), for I in the interval [0, last - first).
bool is(mask msk, E ch) const;
const E *is(const E *first, const E *last,
mask *dst) const;
The first member function returns do_is(msk, ch). The second member function returns do_is(first, last, dst).
char narrow(E ch, char dflt) const;
const E *narrow(const E *first, const E *last,
char dflt, char *dst) const;
The first member function returns do_narrow(ch, dflt). The second member function returns do_narrow(first, last, dflt, dst).
const E *scan_is(mask msk, const E *first,
const E *last) const;
The member function returns do_scan_is(msk, first, last).
const E *scan_not(mask msk, const E *first,
const E *last) const;
The member function returns do_scan_not(msk, first, last).
E tolower(E ch) const; const E *tolower(E *first, E *last) const;
The first member function returns do_tolower(ch). The second member function returns do_tolower(first, last).
E toupper(E ch) const; const E *toupper(E *first, E *last) const;
The first member function returns do_toupper(ch). The second member function returns do_toupper(first, last).
E widen(char ch) const; const char *widen(char *first, char *last, E *dst) const;
The first member function returns do_widen(ch). The second member function returns do_widen(first, last, dst).
The class is an explicit specialization of template class ctype for type char. Hence, it describes an object that can serve as a locale facet, to characterize various properties of a ``character'' (element) of type char. The explicit specialization differs from the template class in several ways:
template<>
class ctype<char>
: public locale::facet, public ctype_base {
public:
typedef char char_type;
explicit ctype(const mask *tab = 0, bool del = false,
size_t refs = 0);
bool is(mask msk, char ch) const;
const char *is(const char *first, const char *last,
mask *dst) const;
const char *scan_is(mask msk,
const char *first, const char *last) const;
const char *scan_not(mask msk,
const char *first, const char *last) const;
char toupper(char ch) const;
const char *toupper(char *first, char *last) const;
char tolower(char ch) const;
const char *tolower(char *first, char *last) const;
char widen(char ch) const;
const char *widen(char *first, char *last,
char *dst) const;
char narrow(char ch, char dflt) const;
const char *narrow(const char *first,
const char *last, char dflt, char *dst) const;
static locale::id id;
protected:
~ctype();
virtual char do_toupper(char ch) const;
virtual const char *do_toupper(char *first,
char *last) const;
virtual char do_tolower(char ch) const;
virtual const char *do_tolower(char *first,
char *last) const;
virtual char do_widen(char ch) const;
virtual const char *do_widen(char *first, char *last,
char *dst) const;
virtual char do_narrow(char ch, char dflt) const;
virtual const char *do_narrow(const char *first,
const char *last, char dflt, char *dst) const;
const mask *table() const throw();
static const mask *classic_table() const throw();
static const size_t table_size;
};
The class serves as a base class for facets of template class ctype. It defines just the enumerated type mask and several constants of this type. Each of the constants characterizes a different way to classify characters, as defined by the functions with similar names declared in the header <ctype.h>. The constants are:
You can charaterize a combination of classifications by ORing these constants. In particular, it is always true that alnum == (alpha | digit) and graph == (alnum | punct).
class ctype_base {
public:
enum mask;
static const mask space, print, cntrl,
upper, lower, digit, punct, xdigit,
alpha, alnum, graph;
};
The template class describes an object that can serve as a locale facet of type ctype<E>. Its behavior is determined by the named locale s. The constructor initializes its base object with ctype<E>(refs) (or the equivalent for base class ctype<char> ).
template<class E>
class ctype_byname : public ctype<E> {
public:
explicit ctype_byname(const char *s,
size_t refs = 0);
protected:
~ctype_byname();
};
The class describes a locale object that encapsulates a locale. It represents culture-specific information as a list of facets. A facet is a pointer to an object of a class derived from class facet that has a public object of the form:
static locale::id id;
You can define an open-ended set of these facets. You can also construct a locale object that designates an arbitrary number of facets.
Predefined groups of these facets represent the locale categories traditionally managed in the Standard C library by the function setlocale.
Category collate (LC_COLLATE) includes the facets:
collate<char> collate<wchar_t>
Category ctype (LC_CTYPE) includes the facets:
ctype<char> ctype<wchar_t> codecvt<char, char, mbstate_t> codecvt<wchar_t, char, mbstate_t>
Category monetary (LC_MONETARY) includes the facets:
moneypunct<char, false> moneypunct<wchar_t, false> moneypunct<char, true> moneypunct<wchar_t, true> money_get<char, istreambuf_iterator<char> > money_get<wchar_t, istreambuf_iterator<wchar_t> > money_put<char, ostreambuf_iterator<char> > money_put<wchar_t, ostreambuf_iterator<wchar_t> >
Category numeric (LC_NUMERIC) includes the facets:
num_get<char, istreambuf_iterator<char> > num_get<wchar_t, istreambuf_iterator<wchar_t> > num_put<char, ostreambuf_iterator<char> > num_put<wchar_t, ostreambuf_iterator<wchar_t> > numpunct<char> numpunct<wchar_t>
Category time (LC_TIME) includes the facets:
time_get<char, istreambuf_iterator<char> > time_get<wchar_t, istreambuf_iterator<wchar_t> > time_put<char, ostreambuf_iterator<char> > time_put<wchar_t, ostreambuf_iterator<wchar_t> >
Category messages [sic] (LC_MESSAGE) includes the facets:
messages<char> messages<wchar_t>
(The last category is required by Posix, but not the C Standard.)
Some of these predefined facets are used by the iostreams classes, to control the conversion of numeric values to and from text sequences.
An object of class locale also stores a locale name as an object of class string. Using an invalid locale name to construct a locale facet or a locale object throws an object of class runtime_error. The stored locale name is “*” if the locale object cannot be certain that a C-style locale corresponds exactly to that represented by the object. Otherwise, you can establish a matching locale within the Standard C library, for the locale object x, by calling setlocale( LC_ALL, x.name. c_str()).
In this implementation, you can also call the static member function:
static locale empty();
to construct a locale object that has no facets. It is also a transparent locale — if the template functions has_facet and use_facet cannot find the requested facet in a transparent locale, they consult first the global locale and then, if that is transparent, the classic locale. Thus, you can write:
cout.imbue(locale::empty());
Subsequent insertions to cout are mediated by the current state of the global locale. You can even write:
locale loc(locale::empty(), locale::classic(),
locale::numeric);
cout.imbue(loc);
Numeric formatting rules for subsequent insertions to cout remain the same as in the C locale, even as the global locale supplies changing rules for inserting dates and monetary amounts.
class locale {
public:
class facet;
class id;
typedef int category;
static const category none, collate, ctype, monetary,
numeric, time, messages, all;
locale();
explicit locale(const char *s);
locale(const locale& x, const locale& y,
category cat);
locale(const locale& x, const char *s, category cat);
template<class Facet>
locale(const locale& x, Facet *fac);
template<class Facet>
locale combine(const locale& x) const;
template<class E, class T, class A>
bool operator()(const basic_string<E, T, A>& lhs,
const basic_string<E, T, A>& rhs) const;
string name() const;
bool operator==(const locale& x) const;
bool operator!=(const locale& x) const;
static locale global(const locale& x);
static const locale& classic();
};
locale();
explicit locale(const char *s);
locale(const locale& x, const locale& y,
category cat);
locale(const locale& x, const char *s, category cat);
template<class Facet>
locale(const locale& x, Facet *fac);
The first constructor initializes the object to match the global locale. The second constructor initializes all the locale categories to have behavior consistent with the locale name s. The remaining constructors copy x, with the exceptions noted:
locale(const locale& x, const locale& y,
category cat);
replaces from y those facets corresponding to a category c for which c & cat is nonzero.
locale(const locale& x, const char *s, category cat);
replaces from locale(s, all) those facets corresponding to a category c for which c & cat is nonzero.
template<class Facet>
locale(const locale& x, Facet *fac);
replaces in (or adds to) x the facet fac, if fac is not a null pointer.
If a locale name s is a null pointer or otherwise invalid, the function throws runtime_error.
typedef int category;
static const category none, collate, ctype, monetary,
numeric, time, messages, all;
The type is a synonym for int, so that it can represent any of the C locale categories. It can also represent a group of constants local to class locale:
You can represent an arbitrary group of categories by ORing these constants, as in monetary | time.
class facet {
protected:
explicit facet(size_t refs = 0);
virtual ~facet();
private:
facet(const facet&) // not defined
void operator=(const facet&) // not defined
};
The member class serves as the base class for all locale facets. Note that you can neither copy nor assign an object of class facet. You can construct and destroy objects derived from class locale::facet, but not objects of the base class proper. Typically, you construct an object myfac derived from facet when you construct a locale, as in:
locale loc(locale::classic(), new myfac);
In such cases, the constructor for the base class facet should have a zero refs argument. When the object is no longer needed, it is deleted. Thus, you supply a nonzero refs argument only in those rare cases where you take responsibility for the lifetime of the object.
class id {
protected:
id();
private:
id(const id&) // not defined
void operator=(const id&) // not defined
};
The member class describes the static member object required by each unique locale facet. Note that you can neither copy nor assign an object of class id.
static const locale& classic();
The static member function returns a locale object that represents the classic locale, which behaves the same as the C locale within the Standard C library.
template<class Facet>
locale combine(const locale& x) const;
The member function returns a locale object that replaces in (or adds to) *this the facet Facet listed in x.
static locale global(const locale& x);
The static member function stores a copy of x as the global locale. It also calls setlocale( LC_ALL, x.name. c_str()), to establishing a matching locale within the Standard C library. The function then returns the previous global locale. At program startup, the global locale is the same as the classic locale.
string name() const;
The member function returns the stored locale name.
bool operator!=(const locale& x) const;
The member function returns !(*this == x).
template<class E, class T, class A>
bool operator()(const basic_string<E, T, A>& lhs,
const basic_string<E, T, A>& rhs);
The member function effectively executes:
const collate<E>& fac = use_fac<collate<E> >(*this);
return (fac.compare(lhs.begin(), lhs.end(),
rhs.begin(), rhs.end()) < 0);
Thus, you can use a locale object as a function object.
bool operator==(const locale& x) const;
The member function returns true only if *this and x are copies of the same locale or have the same name (other than “*”).
The template class describes an object that can serve as a locale facet, to characterize various properties of a message catalog that can supply messages represented as sequences of elements of type E.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E>
class messages
: public locale::facet, public messages_base {
public:
typedef E char_type;
typedef basic_string<E> string_type;
explicit messages(size_t refs = 0);
catalog open(const string& name,
const locale& loc) const;
string_type get(catalog cat, int set, int msg,
const string_type& dflt) const;
void close(catalog cat) const;
static locale::id id;
protected:
~messages();
virtual catalog do_open(const string& name,
const locale& loc) const;
virtual string_type do_get(catalog cat, int set,
int msg, const string_type& dflt) const;
virtual void do_close(catalog cat) const;
};
explicit messages(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef basic_string<E> string_type;
The type describes a specialization of template class basic_string whose objects can store copies of the message sequences.
void close(catalog cat) const;
The member function calls do_close(cat);.
virtual void do_close(catalog cat) const;
The protected member function closes the message catalog cat, which must have been opened by an earlier call to do_open.
virtual string_type do_get(catalog cat, int set, int msg,
const string_type& dflt) const;
The protected member function endeavors to obtain a message sequence from the message catalog cat. It may make use of set, msg, and dflt in doing so. It returns a copy of dflt on failure. Otherwise, it returns a copy of the specified message sequence.
virtual catalog do_open(const string& name,
const locale& loc) const;
The protected member function endeavors to open a message catalog whose name is name. It may make use of the locale loc in doing so. It returns a value that compares less than zero on failure. Otherwise, the returned value can be used as the first argument on a later call to get. It should in any case be used as the argument on a later call to close.
string_type get(catalog cat, int set, int msg,
const string_type& dflt) const;
The member function returns do_get(cat, set, msg, dflt);.
catalog open(const string& name,
const locale& loc) const;
The member function returns do_open(name, loc);.
The class describes a type common to all specializations of template class messages. The type catalog is a synonym for type int that describes the possible return values from messages::do_open.
class messages_base {
typedef int catalog;
};
The template class describes an object that can serve as a locale facet of type messages<E>. Its behavior is determined by the named locale s. The constructor initializes its base object with messages<E>(refs).
template<class E>
class messages_byname : public messages<E> {
public:
explicit messages_byname(const char *s,
size_t refs = 0);
protected:
~messages_byname();
};
The class describes an enumeration and a structure common to all specializations of template class moneypunct. The enumeration part describes the possible values in elements of the array field in the structure pattern. The values of part are:
class money_base {
enum part {none, sign, space, symbol, value};
struct pattern {
char field[4];
};
};
The template class describes an object that can serve as a locale facet, to control conversions of sequences of type E to monetary values.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E,
class InIt = istreambuf_iterator<E> >
class money_get : public locale::facet {
public:
typedef E char_type;
typedef InIt iter_type;
typedef basic_string<E> string_type;
explicit money_get(size_t refs = 0);
iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostate& st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostate& st,
string_type& val) const;
static locale::id id;
protected:
~money_get();
virtual iter_type do_get(iter_type first,
iter_type last, bool intl, ios_base& x,
ios_base::iostate& st, string_type& val) const;
virtual iter_type do_get(iter_type first,
iter_type last, bool intl, ios_base& x,
ios_base::iostate& st, long double& val) const;
};
explicit money_get(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef InIt iter_type;
The type is a synonym for the template parameter InIt.
typedef basic_string<E> string_type;
The type describes a specialization of template class basic_string whose objects can store sequences of elements from the source sequence.
virtual iter_type do_get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostate& st,
string_type& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostate& st,
long double& val) const;
The first virtual protected member function endeavors to match sequential elements beginning at first in the sequence [first, last) until it has recognized a complete, nonempty monetary input field. If successful, it converts this field to a sequence of one or more decimal digits, optionally preceded by a minus sign (-), to represent the amount and stores the result in the string_type object val. It returns an iterator designating the first element beyond the monetary input field. Otherwise, the function stores an empty sequence in val and sets ios_base::failbit in st. It returns an iterator designating the first element beyond any prefix of a valid monetary input field. In either case, if the return value equals last, the function sets ios_base::eofbit in st.
The second virtual protected member function behaves the same as the first, except that if successful it converts the optionally-signed digit sequence to a value of type long double and stores that value in val.
The format of a monetary input field is determined by the locale facet fac returned by the (effective) call use_facet <moneypunct<E, intl> >(x. getloc()). Specifically:
If the sign string (fac.negative_sign or fac.positive_sign) has more than one element, only the first element is matched where the element equal to money_base::sign appears in the format pattern (fac.neg_format). Any remaining elements are matched at the end of the monetary input field. If neither string has a first element that matches the next element in the monetary input field, the sign string is taken as empty and the sign is positive.
If x.flags() & showbase is nonzero, the string fac.curr_symbol must match where the element equal to money_base::symbol appears in the format pattern. Otherwise, if money_base::symbol occurs at the end of the format pattern, and if no elements of the sign string remain to be matched, the currency symbol is not matched. Otherwise, the currency symbol is optionally matched.
If no instances of fac.thousands_sep() occur in the value portion of the monetary input field (where the element equal to money_base::value appears in the format pattern), no grouping constraint is imposed. Otherwise, any grouping constraints imposed by fac.grouping() is enforced. Note that the resulting digit sequence represents an integer whose low-order fac.frac_digits() decimal digits are considered to the right of the decimal point.
Arbitrary white space is matched where the element equal to money_base::space appears in the format pattern, if it appears other than at the end of the format pattern. Otherwise, no internal white space is matched. An element c is considered white space if use_facet <ctype<E> >(x. getloc()). is(ctype_base:: space, c) is true.
iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostate& st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
bool intl, ios_base& x, ios_base::iostate& st,
string_type& val) const;
Both member functions return do_get(first, last, intl, x, st, val).
The template class describes an object that can serve as a locale facet, to control conversions of monetary values to sequences of type E.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E,
class OutIt = ostreambuf_iterator<E> >
class money_put : public locale::facet {
public:
typedef E char_type;
typedef OutIt iter_type;
typedef basic_string<E> string_type;
explicit money_put(size_t refs = 0);
iter_type put(iter_type next, bool intl, ios_base& x,
E fill, long double& val) const;
iter_type put(iter_type next, bool intl, ios_base& x,
E fill, string_type& val) const;
static locale::id id;
protected:
~money_put();
virtual iter_type do_put(iter_type next, bool intl,
ios_base& x, E fill, string_type& val) const;
virtual iter_type do_put(iter_type next, bool intl,
ios_base& x, E fill, long double& val) const;
};
explicit money_put(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef InIt iter_type;
The type is a synonym for the template parameter OutIt.
typedef basic_string<E> string_type;
The type describes a specialization of template class basic_string whose objects can store sequences of elements from the source sequence.
virtual iter_type do_put(iter_type next, bool intl,
ios_base& x, E fill, string_type& val) const;
virtual iter_type do_put(iter_type next, bool intl,
ios_base& x, E fill, long double& val) const;
The first virtual protected member function generates sequential elements beginning at next to produce a monetary output field from the string_type object val. The sequence controlled by val must begin with one or more decimal digits, optionally preceded by a minus sign (-), which represents the amount. The function returns an iterator designating the first element beyond the generated monetary output field.
The second virtual protected member function behaves the same as the first, except that it effectively first converts val to a sequence of decimal digits, optionally preceded by a minus sign, then converts that sequence as above.
The format of a monetary output field is determined by the locale facet fac returned by the (effective) call use_facet <moneypunct<E, intl> >(x. getloc()). Specifically:
If the sign string (fac.negative_sign or fac.positive_sign) has more than one element, only the first element is generated where the element equal to money_base::sign appears in the format pattern (fac.neg_format or fac.pos_format). Any remaining elements are generated at the end of the monetary output field.
If x.flags() & showbase is nonzero, the string fac.curr_symbol is generated where the element equal to money_base::symbol appears in the format pattern. Otherwise, no currency symbol is generated.
If no grouping constraints are imposed by fac.grouping() (its first element has the value CHAR_MAX) then no instances of fac.thousands_sep() are generated in the value portion of the monetary output field (where the element equal to money_base::value appears in the format pattern). If fac.frac_digits() is zero, then no instance of fac.decimal_point() is generated after the decimal digits. Otherwise, the resulting monetary output field places the low-order fac.frac_digits() decimal digits to the right of the decimal point.
Padding occurs as for any numeric output field, except that if x.flags() & x.internal is nonzero, any internal padding is generated where the element equal to money_base::space appears in the format pattern, if it does appear. Otherwise, internal padding occurs before the generated sequence. The padding character is fill.
The function calls x.width(0) to reset the field width to zero.
iter_type put(iter_type next, bool intl, ios_base& x,
E fill, long double& val) const;
iter_type put(iter_type next, bool intl, ios_base& x,
E fill, string_type& val) const;
Both member functions return do_put(next, intl, x, fill, val).
The template class describes an object that can serve as a locale facet, to describe the sequences of type E used to represent a monetary input field or a monetary output field. If the template parameter Intl is true, international conventions are observed.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
The const static object intl stores the value of the template parameter Intl.
template<class E, bool Intl>
class moneypunct
: public locale::facet, public money_base {
public:
typedef E char_type;
typedef basic_string<E> string_type;
explicit moneypunct(size_t refs = 0);
E decimal_point() const;
E thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format( oonst;
pattern neg_format() const;
static const bool intl = Intl;
static locale::id id;
protected:
~moneypunct();
virtual E do_decimal_point() const;
virtual E do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;
};
explicit moneypunct(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef basic_string<E> string_type;
The type describes a specialization of template class basic_string whose objects can store copies of the punctuation sequences.
string_type curr_symbol() const;
The member function returns do_curr_symbol().
E decimal_point() const;
The member function returns do_decimal_point().
string_type do_curr_symbol() const;
The protected virtual member function returns a locale-specific sequence of elements to use as a currency symbol.
E do_decimal_point() const;
The protected virtual member function returns a locale-specific element to use as a decimal-point.
int do_frac_digits() const;
The protected virtual member function returns a locale-specific count of the number of digits to display to the right of any decimal point.
string do_grouping() const;
The protected virtual member function returns a locale-specific rule for determining how digits are grouped to the left of any decimal point. The encoding is the same as for lconv::grouping.
pattern do_neg_format() const;
The protected virtual member function returns a locale-specific rule for determining how to generate a monetary output field for a negative amount. Each of the four elements of pattern::field can have the values:
Components of a monetary output field are generated (and components of a monetary input field are matched) in the order in which these elements appear in pattern::field. Each of the values sign, symbol, value, and either none or space must appear exactly once. The value none must not appear first. The value space must not appear first or last. If Intl is true, the order is symbol, sign, none, then value.
The template version of moneypunct<E, Intl> returns {money_base::symbol, money_base::sign, money_base::value, money_base::none}.
string_type do_negative_sign() const;
The protected virtual member function returns a locale-specific sequence of elements to use as a negative sign.
pattern do_pos_format() const;
The protected virtual member function returns a locale-specific rule for determining how to generate a monetary output field for a positive amount. (It also determines how to match the components of a monetary input field. ) The encoding is the same as for do_neg_format.
The template version of moneypunct<E, Intl> returns {money_base::symbol, money_base::sign, money_base::value, money_base::none}.
string_type do_positive_sign() const;
The protected virtual member function returns a locale-specific sequence of elements to use as a positive sign.
E do_thousands_sep() const;
The protected virtual member function returns a locale-specific element to use as a group separator to the left of any decimal point.
int frac_digits() const;
The member function returns do_frac_digits().
string grouping() const;
The member function returns do_grouping().
pattern neg_format() const;
The member function returns do_neg_format().
string_type negative_sign() const;
The member function returns do_negative_sign().
pattern pos_format() const;
The member function returns do_pos_format().
string_type positive_sign() const;
The member function returns do_positive_sign().
E thousands_sep() const;
The member function returns do_thousands_sep().
template<class E, bool Intl>
class moneypunct_byname
: public moneypunct<E, Intl> {
public:
explicit moneypunct_byname(const char *s,
size_t refs = 0);
protected:
~moneypunct_byname();
};
The template class describes an object that can serve as a locale facet of type moneypunct<E, Intl>. Its behavior is determined by the named locale s. The constructor initializes its base object with moneypunct<E, Intl>(refs).
The template class describes an object that can serve as a locale facet, to control conversions of sequences of type E to numeric values.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E, class InIt = istreambuf_iterator<E> >
class num_get : public locale::facet {
public:
typedef E char_type;
typedef InIt iter_type;
explicit num_get(size_t refs = 0);
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
void *& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;
static locale::id id;
protected:
~num_get();
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long double& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
void *& val) const;
virtual iter_type
do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;
};
explicit num_get(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef InIt iter_type;
The type is a synonym for the template parameter InIt.
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long double& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
void *& val) const;
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;
The first virtual protected member function endeavors to match sequential elements beginning at first in the sequence [first, last) until it has recognized a complete, nonempty integer input field. If successful, it converts this field to its equivalent value as type long, and stores the result in val. It returns an iterator designating the first element beyond the numeric input field. Otherwise, the function stores nothing in val and sets ios_base::failbit in st. It returns an iterator designating the first element beyond any prefix of a valid integer input field. In either case, if the return value equals last, the function sets ios_base::eofbit in st.
The integer input field is converted by the same rules used by the scan functions for matching and converting a series of char elements from a file. (Each such char element is assumed to map to an equivalent element of type E by a simple, one-to-one, mapping.) The equivalent scan conversion specification is determined as follows:
The format of an integer input field is further determined by the locale facet fac returned by the call use_facet <numpunct<E>(x. getloc()). Specifically:
If no instances of fac.thousands_sep() occur in the numeric input field, no grouping constraint is imposed. Otherwise, any grouping constraints imposed by fac.grouping() is enforced and separators are removed before the scan conversion occurs.
The second virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;
behaves the same as the first, except that it replaces a conversion specification of ld with lu. If successful it converts the numeric input field to a value of type unsigned long and stores that value in val.
The third virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;
behaves the same as the first, except that it endeavors to match a complete, nonempty floating-point input field. fac.decimal_point() determines the sequence that separates the integer digits from the fraction digits. The equivalent scan conversion specifier is lf.
The fourth virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long double& val) const;
behaves the same the third, except that the equivalent scan conversion specifier is Lf.
The fifth virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
void *& val) const;
behaves the same the first, except that the equivalent scan conversion specifier is p.
The sixth virtual protected member function:
virtual iter_type do_get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;
behaves the same as the first, except that it endeavors to match a complete, nonempty boolean input field. If successful it converts the boolean input field to a value of type bool and stores that value in val.
A boolean input field takes one of two forms. If x.flags() & ios_base::boolalpha is false, it is the same as an integer input field, except that the converted value must be either 0 (for false) or 1 (for true). Otherwise, the sequence must match either fac.falsename() (for false), or fac.truename() (for true).
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
unsigned long& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
long double& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
void *& val) const;
iter_type get(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st,
bool& val) const;
All member functions return do_get(first, last, x, st, val).
The template class describes an object that can serve as a locale facet, to control conversions of numeric values to sequences of type E.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E, class OutIt = ostreambuf_iterator<E> >
class num_put : public locale::facet {
public:
typedef E char_type;
typedef OutIt iter_type;
explicit num_put(size_t refs = 0);
iter_type put(iter_type next, ios_base& x,
E fill, long val) const;
iter_type put(iter_type next, ios_base& x,
E fill, unsigned long val) const;
iter_type put(iter_type next, ios_base& x,
E fill, double val) const;
iter_type put(iter_type next, ios_base& x,
E fill, long double val) const;
iter_type put(iter_type next, ios_base& x,
E fill, const void *val) const;
iter_type put(iter_type next, ios_base& x,
E fill, bool val) const;
static locale::id id;
protected:
~num_put();
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, long val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, unsigned long val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, double val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, long double val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, const void *val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, bool val) const;
};
explicit num_put(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef InIt iter_type;
The type is a synonym for the template parameter OutIt.
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, long val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, unsigned long val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, double val) const;
virtual iter_type do_put(iter_type nextp ios_base& x,
E fill, long double val) const;
virtual iter_type do_put(iter_type nextp ios_base& x,
E fill, const void *val) const;
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, bool val) const;
The first virtual protected member function generates sequential elements beginning at next to produce an integer output field from the value of val. The function returns an iterator designating the next place to insert an element beyond the generated integer output field.
The integer output field is generated by the same rules used by the print functions for generating a series of char elements to a file. (Each such char element is assumed to map to an equivalent element of type E by a simple, one-to-one, mapping.) Where a print function pads a field with either spaces or the digit 0, however, do_put instead uses fill. The equivalent print conversion specification is determined as follows:
If x.width() is nonzero, a field width of this value is prepended. The function then calls x.width(0) to reset the field width to zero.
Padding occurs only if the minimum number of elements N required to specify the output field is less than x.width(). Such padding consists of a sequence of N - width() copies of fill. Padding then occurs as follows:
Finally:
The format of an integer output field is further determined by the locale facet fac returned by the call use_facet <numpunct<E>(x. getloc()). Specifically:
If no grouping constraints are imposed by fac.grouping() (its first element has the value CHAR_MAX) then no instances of fac.thousands_sep() are generated in the output field. Otherwise, separators are inserted after the print conversion occurs.
The second virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, unsigned long val) const;
behaves the same as the first, except that it replaces a conversion specification of ld with lu.
The third virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, double val) const;
behaves the same as the first, except that it produces a floating-point output field from the value of val. fac.decimal_point() determines the sequence that separates the integer digits from the fraction digits. The equivalent print conversion specification is determined as follows:
If x.flags() & ios_base::fixed is nonzero, or if x.precision() is greater than zero, a precision with the value x.precision() is prepended to the conversion specification. Any padding behaves the same as for an integer output field. The padding character is fill. Finally:
The fourth virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, long double val) const;
behaves the same the third, except that the qualifier l in the conversion specification is replaced with L.
The fifth virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, const void *val) const;
behaves the same the first, except that the conversion specification is p, plus any qualifier needed to specify padding.
The sixth virtual protected member function:
virtual iter_type do_put(iter_type next, ios_base& x,
E fill, bool val) const;
behaves the same as the first, except that it generates a boolean output field from val.
A boolean output field takes one of two forms. If x.flags() & ios_base::boolalpha is false, the generated sequence is either 0 (for false) or 1 (for true). Otherwise, the generated sequence is either fac.falsename() (for false), or fac.truename() (for true).
iter_type put(iter_type next, ios_base& x,
E fill, long val) const;
iter_type put(iter_type next, ios_base& x,
E fill, unsigned long val) const;
iter_type put(iter_type iter_type next, ios_base& x,
E fill, double val) const;
iter_type put(iter_type next, ios_base& x,
E fill, long double val) const;
iter_type put(iter_type next, ios_base& x,
E fill, const void *val) const;
iter_type put(iter_type next, ios_base& x,
E fill, bool val) const;
All member functions return do_put(next, x, fill, val).
The template class describes an object that can serve as a locale facet, to describe the sequences of type E used to represent the input fields matched by num_get or the output fields generated by num_get.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E, class numpunct : public locale::facet {
public:
typedef E char_type;
typedef basic_string<E> string_type;
explicit numpunct(size_t refs = 0);
E decimal_point() const;
E thousands_sep() const;
string grouping() const;
string_type truename() const;
string_type falsename() const;
static locale::id id;
protected:
~numpunct();
virtual E do_decimal_point() const;
virtual E do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_truename() const;
virtual string_type do_falsename() const;
};
explicit numpunct(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef basic_string<E> string_type;
The type describes a specialization of template class basic_string whose objects can store copies of the punctuation sequences.
E decimal_point() const;
The member function returns do_decimal_point().
E do_decimal_point() const;
The protected virtual member function returns a locale-specific element to use as a decimal-point.
string_type do_falsename() const;
The protected virtual member function returns a locale-specific sequence to use as a text representation of the value false.
string do_grouping() const;
The protected virtual member function returns a locale-specific rule for determining how digits are grouped to the left of any decimal point. The encoding is the same as for lconv::grouping.
E do_thousands_sep() const;
The protected virtual member function returns a locale-specific element to use as a group separator to the left of any decimal point.
string_type do_truename() const;
The protected virtual member function returns a locale-specific sequence to use as a text representation of the value true.
string_type falsename() const;
The member function returns do_falsename().
string grouping() const;
The member function returns do_grouping().
E thousands_sep() const;
The member function returns do_thousands_sep().
string_type falsename() const;
The member function returns do_truename().
The template class describes an object that can serve as a locale facet of type numpunct<E>. Its behavior is determined by the named locale s. The constructor initializes its base object with numpunct<E>(refs).
template<class E>
class numpunct_byname : public numpunct<E> {
public:
explicit numpunct_byname(const char *s,
size_t refs = 0);
protected:
~numpunct_byname();
};
The class serves as a base class for facets of template class time_get. It defines just the enumerated type dateorder and several constants of this type. Each of the constants characterizes a different way to order the components of a date. The constants are:
class time_base {
public:
enum dateorder {no_order, dmy, mdy, ymd, ydm};
};
The template class describes an object that can serve as a locale facet, to control conversions of sequences of type E to time values.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E, class InIt = istreambuf_iterator<E> >
class time_get : public locale::facet {
public:
typedef E char_type;
typedef InIt iter_type;
explicit time_get(size_t refs = 0);
dateorder date_order() const;
iter_type get_time(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
iter_type get_date(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
iter_type get_weekday(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
iter_type get_month(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
iter_type get_year(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
static locale::id id;
protected:
~time_get();
virtual dateorder do_date_order() const;
virtual iter_type
do_get_time(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type
do_get_date(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type
do_get_weekday(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type
do_get_month(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
virtual iter_type
do_get_year(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
};
explicit time_get(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef InIt iter_type;
The type is a synonym for the template parameter InIt.
dateorder date_order() const;
The member function returns date_order().
virtual dateorder do_date_order() const;
The virtual protected member function returns a value of type time_base::dateorder, which describes the order in which date components are matched by do_get_date. In this implementation, the value is time_base::mdy, corresponding to dates of the form December 2, 1979.
virtual iter_type
do_get_date(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match sequential elements beginning at first in the sequence [first, last) until it has recognized a complete, nonempty date input field. If successful, it converts this field to its equivalent value as the components tm::tm_mon, tm::tm_day, and tm::tm_year, and stores the results in pt->tm_mon, pt->tm_day and pt->tm_year, respectively. It returns an iterator designating the first element beyond the date input field. Otherwise, the function sets ios_base::failbit in st. It returns an iterator designating the first element beyond any prefix of a valid date input field. In either case, if the return value equals last, the function sets ios_base::eofbit in st.
In this implementation, the date input field has the form MMM DD, YYYY, where:
virtual iter_type
do_get_month(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match sequential elements beginning at first in the sequence [first, last) until it has recognized a complete, nonempty month input field. If successful, it converts this field to its equivalent value as the component tm::tm_mon, and stores the result in pt->tm_mon. It returns an iterator designating the first element beyond the month input field. Otherwise, the function sets ios_base::failbit in st. It returns an iterator designating the first element beyond any prefix of a valid month input field. In either case, if the return value equals last, the function sets ios_base::eofbit in st.
The month input field is a sequence that matches the longest of a set of locale-specific sequences, such as: Jan, January, Feb, February, etc. The converted value is the number of months since January.
virtual iter_type
do_get_time(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match sequential elements beginning at first in the sequence [first, last) until it has recognized a complete, nonempty time input field. If successful, it converts this field to its equivalent value as the components tm::tm_hour, tm::tm_min, and tm::tm_sec, and stores the results in pt->tm_hour, pt->tm_min and pt->tm_sec, respectively. It returns an iterator designating the first element beyond the time input field. Otherwise, the function sets ios_base::failbit in st. It returns an iterator designating the first element beyond any prefix of a valid time input field. In either case, if the return value equals last, the function sets ios_base::eofbit in st.
In this implementation, the time input field has the form HH:MM:SS, where:
virtual iter_type
do_get_weekday(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match sequential elements beginning at first in the sequence [first, last) until it has recognized a complete, nonempty weekday input field. If successful, it converts this field to its equivalent value as the component tm::tm_wday, and stores the result in pt->tm_wday. It returns an iterator designating the first element beyond the weekday input field. Otherwise, the function sets ios_base::failbit in st. It returns an iterator designating the first element beyond any prefix of a valid weekday input field. In either case, if the return value equals last, the function sets ios_base::eofbit in st.
The weekday input field is a sequence that matches the longest of a set of locale-specific sequences, such as: Sun, Sunday, Mon, Monday, etc. The converted value is the number of days since Sunday.
virtual iter_type
do_get_year(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The virtual protected member function endeavors to match sequential elements beginning at first in the sequence [first, last) until it has recognized a complete, nonempty year input field. If successful, it converts this field to its equivalent value as the component tm::tm_year, and stores the result in pt->tm_year. It returns an iterator designating the first element beyond the year input field. Otherwise, the function sets ios_base::failbit in st. It returns an iterator designating the first element beyond any prefix of a valid year input field. In either case, if the return value equals last, the function sets ios_base::eofbit in st.
The year input field is a sequence of decimal digits whose corresponding numeric value must be in the range [1900, 2036). The stored value is this value minus 1900. In this implementation, a numeric value in the range [0, 136) is also permissible. It is stored unchanged.
iter_type get_date(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns do_get_date(first, last, x, st, pt).
iter_type get_month(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns do_get_month(first, last, x, st, pt).
iter_type get_time(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns do_get_time(first, last, x, st, pt).
iter_type get_weekday(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns do_get_weekday(first, last, x, st, pt).
iter_type get_year(iter_type first, iter_type last,
ios_base& x, ios_base::iostate& st, tm *pt) const;
The member function returns do_get_year(first, last, x, st, pt).
The template class describes an object that can serve as a locale facet of type time_get<E, InIt>. Its behavior is determined by the named locale s. The constructor initializes its base object with time_get<E, InIt>(refs).
template<class E, class InIt>
class time_get_byname : public time_get<E, InIt> {
public:
explicit time_get_byname(const char *s,
size_t refs = 0);
protected:
~time_get_byname();
};
The template class describes an object that can serve as a locale facet, to control conversions of time values to sequences of type E.
As with any locale facet, the static object id has an initial stored value of zero. The first attempt to access its stored value stores a unique positive value in id.
template<class E, class OutIt = ostreambuf_iterator<E> >
class time_put : public locale::facet {
public:
typedef E char_type;
typedef OutIt iter_type;
explicit time_put(size_t refs = 0);
iter_type put(iter_type next, ios_base& x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;
iter_type put(iter_type next, ios_base& x,
char_type fill, const tm *pt, const E *first, const E *last) const;
static locale::id id;
protected:
~time_put();
virtual iter_type do_put(iter_type next, ios_base& x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;
};
explicit time_put(size_t refs = 0);
The constructor initializes its base object with locale::facet(refs).
typedef E char_type;
The type is a synonym for the template parameter E.
typedef InIt iter_type;
The type is a synonym for the template parameter OutIt.
virtual iter_type do_put(iter_type next, ios_base& x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;
The virtual protected member function generates sequential elements beginning at next from time values stored in the object *pt, of type tm. The function returns an iterator designating the next place to insert an element beyond the generated output.
The output is generated by the same rules used by strftime, with a last argument of pt, for generating a series of char elements into an array. (Each such char element is assumed to map to an equivalent element of type E by a simple, one-to-one, mapping.) If mod equals zero, the effective format is “%F”, where F equals fmt. Otherwise, the effective format is “%MF”, where M equals mod.
The parameter fill is not used.
iter_type put(iter_type next, ios_base& x,
char_type fill, const tm *pt, char fmt, char mod = 0) const;
iter_type put(iter_type next, ios_base& x,
char_type fill, const tm *pt, const E *first, const E *last) const;
The first member function returns do_put(next, x, fill, pt, fmt, mod). The second member function copies to *next++ any element in the interval [first, last) other than a percent (%). For a percent followed by a character C in the interval [first, last), the function instead evaluates next = do_put(next, x, fill, pt, C, 0) and skips past C. If, however, C is a qualifier character from the set EOQ#, followed by a character C2 in the interval [first, last), the function instead evaluates next = do_put(next, x, fill, pt, C2, C) and skips past C2.
The template class describes an object that can serve as a locale facet of type time_put<E, OutIt>. Its behavior is determined by the named locale s. The constructor initializes its base object with time_put<E, OutIt>(refs).
template<class E, class OutIt>
class time_put_byname : public time_put<E, OutIt> {
public:
explicit time_put_byname(const char *s,
size_t refs = 0);
protected:
~time_put_byname();
};
template<class Facet>
bool has_facet(const locale& loc);
The template function returns true if a locale facet of class Facet is listed within the locale object loc.
template<class E>
bool isalpha(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: alpha, c).
template<class E>
bool iscntrl(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: cntrl, c).
template<class E>
bool isdigit(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: digit, c).
template<class E>
bool isgraph(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: graph, c).
template<class E>
bool islower(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: lower, c).
template<class E>
bool isprint(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: print, c).
template<class E>
bool ispunct(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: punct, c).
template<class E>
bool isspace(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: space, c).
template<class E>
bool isupper(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: upper, c).
template<class E>
bool isxdigit(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). is(ctype<E>:: xdigit, c).
template<class E>
E tolower(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). tolower(c).
template<class E>
E toupper(E c, const locale& loc) const;
The template function returns use_facet< ctype<E> >(loc). toupper(c).
template<class Facet>
const Facet& use_facet(const locale& loc);
The template function returns a reference to the locale facet of class Facet listed within the locale object loc. If no such object is listed, the function throws an object of class bad_cast.
Certain materials included or referred to in this document are copyright P.J. Plauger and/or Dinkumware, Ltd. or are based on materials that are copyright P.J. Plauger and/or Dinkumware, Ltd.
Notwithstanding the meta-data for this document, copyright information for this document is as follows:
Copyright © IBM Corp. 1999, 2010. & Copyright © P.J. Plauger and/or Dinkumware, Ltd. 1992-2006.