
Rational Business Developer

VisualAge Generator to EGL Migration
Guide
Version 8 Release 0

SC31-6830-08

���

Rational Business Developer

VisualAge Generator to EGL Migration
Guide
Version 8 Release 0

SC31-6830-08

���

Note

Before using this document, read the general information under “Notices” on page 477.

Eighth Edition (January 2011)

© Copyright IBM Corporation 2004, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Preface

This document is intended for those who want to migrate from VisualAge
Generator 4.5 to the Enterprise Generation Language (EGL).

Who should read this book
This book is intended for programmers or system administrators who want to
migrate code from VisualAge Generator 4.5 to the Enterprise Generation Language
(EGL).

Related information
Related documents are provided in one or more of the following formats:
v Online book files (.pdf) on the product CD-ROM. Use Adobe Acrobat Reader to

view the manuals online and to print desired pages.
v HTML files (.htm) on the product CD-ROM.

The most recent version of this book is available as an online book file (.pdf) on
the following Web site:
http://www.ibm.com/software/rational/cafe/community/egl/vagen?view=documents

© Copyright IBM Corp. 2004, 2011 iii

iv Rational Business Developer: VisualAge Generator to EGL Migration Guide

Contents

Preface iii
Who should read this book iii
Related information iii

Part 1. Migration overview 1

Chapter 1. Migration overview 3
Terminology used in this book 3
What's new in EGL that requires migration? 4
Planning your migration 4
Determining whether you can migrate to EGL . . . 9

VisualAge Generator features not available in
EGL 11

Terminology differences 12
References 16

Chapter 2. Migration tool philosophy 19
Overview of the VisualAge Generator to EGL
migration tools 20

Migration tool terminology 20
Stage 1 details 21
Stage 2 details 24
Stage 3 details 25

Overview of single file migration 27
Migration challenges 29

Precise EGL syntax 29
When and how part names are resolved 31
Common code scenarios 31

Techniques used by the VisualAge Generator to EGL
migration tool 35

Overview of techniques 35
Editor and build descriptor preferences 35
Program properties 36
EGL build path and import statements 38
containerContextDependent Property 40
EGL part name restrictions 41
Placing parts in EGL files 42
Migrating with a program 45
Migrating with associated parts 46
Migrating without associated parts 46
Controlling the order for processing migration
sets 47
Overwriting and merging files 48
General rules 50

Determining how to organize your EGL source code 53
Differences in product capabilities for organizing
your code 54
Organization capabilities provided by the
migration tool 56
Limitations and tradeoffs of EGL source code
organization techniques 57

What's new for the VAGen migration tool since EGL
5.1.2? 59

What's new for the VAGen migration tool since EGL
6.0 iFix? 60
What's new for the VAGen migration tool since EGL
6.0.0.1? 60
What's new for the VAGen migration tool since EGL
6.0.1? 61
What's new for the VAGen migration tool since EGL
6.0.1.1? 61
What's new for the VAGen migration tool since EGL
6.0.1.1 ifix003? 62
What's new for the VAGen migration tool since EGL
7.1? 64
Known restrictions for the migration tools 64

Stage 1 64
Stages 2 and 3 64
Syntax migration 64

Chapter 3. Handling ambiguous
situations 65
Handling ambiguous situations for data items . . . 65

PACK data items with even length 65
Shared edits and messages 67
Map edit routine for shared data items 68
Fill characters for shared data items 70

Handling ambiguous situations for records 70
Redefined records 70
Level 77 items in records 71
Alternate specification records 72
Different definitions with the same record name 74
Reserved words and UI record names 75

Handling ambiguous situations for tables 76
Reserved words and table names 76

Handling ambiguous situations for map groups and
maps 77

Reserved words and FormGroup names 77
Map group and FormGroup requirements . . . 77
Floating areas and starting positions 78
Map names and help map names 79
Numeric variable fields 81
Map variable fields and edit routines 82
Map fields and the numeric hardware attribute 83
Map arrays and attributes 84
Unnamed map variable fields 85
Unprotected map constants 86
Fields at row=0, column=0 86

Handling ambiguous situations for programs . . . 87
Program names and reserved words 87
Implicit data items in programs 88
Associated program parts 89
Program with EZEDLPCB in called parameter list 91
Intermediate variables required for migration . . 92

Handling ambiguous situations for functions,
including I/O statements 94

DISPLAY I/O option for maps 94
I/O error routine 95

© Copyright IBM Corp. 2004, 2011 v

SQL I/O statements 96
SQL I/O and missing required SQL clauses . . . 98
SQL I/O and Execution time statement build 102
SQL I/O and !itemColumnName 103
SQL I/O with multiple UPDATE or SETUPD
functions 104
DL/I I/O and comparison value items 105

Handling ambiguous situations for other
statements 106

Implicit data items in statements 106
Level 77 items in statements 106
Table references in statements 107
MOVEA with a single row table as the source 107
Assignment statements 108
FIND statement 109
RETR statement 110
SET map PAGE statement 110
SET mapItem attributes 111
Checking for IN literal or scalar 112
Checking SQL and map items for NULL . . . 113
I/O error values UNQ and DUP 114
I/O error value LOK 116

Handling ambiguous situations for EZE words . . 117
EZELTERM 117
EZESYS 118
EZEWAIT 120

Part 2. Migrating from VisualAge
Generator 4.5 on Java to EGL . . . 121

Chapter 4. Stage 1 — Extracting from
Java 123
Installing the Stage 1 migration tool on VisualAge
for Java 123

Adding the migration feature 124
Creating the migration database 124

Setting Stage 1 preferences 124
Build Plans page 125
Mapping page 128
Renaming page 129
Execution page 130
Sample MigPreferences.xml file 133

Before you run the Stage 1 tool — hints and tips 135
Customizing the Stage 1 migration tool 135
Specifying your character set information . . . 136
Improving performance 137
Saving your workspace 138

Running the Stage 1 tool 138
Migration plans and high-level PLP projects . . . 139

Creating a high-level PLP project 140
Creating a migration plan file manually . . . 141

Part 3. Migrating from VisualAge
Generator 4.5 on Smalltalk to EGL . 145

Chapter 5. Stage 1 — Extracting from
Smalltalk 147

Installing the Stage 1 migration tool on VisualAge
Smalltalk 147

Loading the migration feature 148
Creating the migration database 148
Setting Stage 1 preferences 148

Build Plans page 149
Mapping page 151
Renaming page 154
Execution page 155
Sample MigPreferences.xml file 157
Deriving file names from your preferences . . 159

Before you run the Stage 1 tool — hints and tips 159
Customizing the Stage 1 migration tool 159
Specifying your character set information . . . 161
Improving performance 161
Saving your image 162

Running the Stage 1 migration tool 162
Repairing a migration database created using a
previous version of the Stage 1 tool 165
Migration plans and high-level configuration maps 165

Creating a high-level configuration map . . . 166
Creating a migration plan file manually . . . 167

Part 4. Stages 2 and 3 — common
migration steps 169

Chapter 6. Stage 2—Conversion to
EGL syntax 171
Setting DB2 performance information 171
Setting your workbench preferences 171

Start up parameters 171
Required EGL preferences 172
Suggested preferences 173
VAGen Migration preferences 174
Other suggested settings 179

Setting up the Stage 2 VAGen migration file . . . 180
Running Stage 2 184

Running Stage 2 from the user interface . . . 184
Running Stage 2 in batch mode 185

Chapter 7. Stage 3 — Import 189
Running the Stage 3 tool 189
Running Stage 3 in batch mode 192
Using the migration sets written to temporary
directories 192

Chapter 8. Running migration in
single file mode 195
Running single file migration using the user
interface 195
Running single file migration using batch mode 197

Part 5. Completing the migration 201

Chapter 9. Completing your migration 203
Setting the Build Order preference 203
Exporting your preferences 204
Saving a baseline for EGL projects and packages 204

vi Rational Business Developer: VisualAge Generator to EGL Migration Guide

Preliminary tasks for completing single file
migration 205
Common tasks for both Stage 1 — 3 and single file
migration 205

Reviewing your EGL source code 205
Reviewing your EGL build descriptor parts . . 206
Reviewing your EGL linkage options parts . . 210
Reviewing your EGL resource associations parts 211
Establishing a bind control part to use as a
template 212
Establishing a program-specific bind control
part 214
Reviewing link edit commands 214
Reviewing your VGWebTransactions 215
Preparing for debugging 216
Installing the EGL server product for zSeries 217
Installing the EGL server product for VSE . . . 219
Converting VAGen preparation templates and
procedures to EGL build scripts 219
Converting VAGen runtime templates 220
Converting the VAGen reserved words file . . 221
Generating and testing with COBOL generation 222
Generating and testing with Java generation . . 223
Reviewing your standards 224
Planning for dual maintenance of your source
code 224
Eliminating the use of VisualAge Generator
compatibility mode 225

Part 6. Language and runtime
differences 229

Chapter 10. Language and runtime
differences 231
Language differences 231
Runtime differences 231

General differences 231
Differences in SQL support 233
Differences in DL/I support 235
Differences in debug 237
Differences in generated COBOL 238
Differences in generated Java 239
Differences between host and workstation
environments 239
Differences between distributed CICS and native
workstation environments 240
Differences between generated C++ and
generated Java 243

Part 7. Appendixes 247

Appendix A. Reserved words 249
VisualAge Generator migration tool extended
reserved words 249
EGL reserved words 249
EGL enumeration words 250
SQL reserved words 253

SQL reserved words requiring special treatment 254
Java reserved words 255

Appendix B. Relationship of
VisualAge Generator and EGL
language elements 257
General syntax conventions 258
Data item 259
Record 265
Tables 281
Map groups 283
Maps 286
Programs 300
Functions 307
Statements 325
EZE words 339

Program flow EZE words 340
SQL EZE words 341
DL/I EZE words 341
Date and time EZE words 342
Other data EZE words 343
General function EZE words 345
String EZE words 346
Math EZE words 347
User interface EZE words 348
Object scripting EZE words 349

Service routines 349
PSBs 350
Control parts 352

Generation options part 354
Conversion table names used in generation
option parts 370
Conversion table names used in linkage table
and resource associations parts 371
Linkage table parts 372
resource associations part 379
Link edit part 383
Bind control part 383

Symbolic parameters 384
Other generation information 386

Preparation templates and procedures 386
Runtime templates 388

Other runtime information 390
Runtime environment variables 390
vgj.properties 392

Appendix C. Messages from the
migration tools 395
Messages from the VisualAge Generator to EGL
migration tool—Stage 1 395

Stage 1 common messages 395
Stage 1 on VisualAge for Java 399
Stage 1 on VisualAge Smalltalk 403

Messages from the VisualAge Generator to EGL
migration tool— Stage 2 405
Messages from the VisualAge Generator to EGL
migration tool—Stage 3 425

Appendix D. Messages in the
Problems view 427

Contents vii

Appendix E. IWN.xxx messages in the
Problems view 435
IWN.VAL messages for the .egl files 435
IWN.VAL messages for the .eglbld file 448
Java messages for JSPs 450
Reference information for messages - name
resolution and qualification rules 450

VisualAge Generator name resolution and
qualification rules 450
EGL name resolution and qualification rules . . 452
Validation messages due to differences in name
resolution and qualification rules 454

Appendix F. APARs required for
VisualAge Generator 457

Appendix G. Migration database . . . 459
Creating the DB2 migration database 459

Using DB2 on Windows XP 459
DB2 authority requirements 459
Creating the migration database 459

Resetting the migration database for Stage 1 . . . 460
Cataloging a remote database using DB2 461
Uncataloging a remote database using DB2 . . . 462
Useful queries 462

Determining the number of parts in the
migration database 463
Determining the number of parts migrated
during Stage 2 464
Reviewing the EGL file names 464

Queries to assist with specific error messages 465
Resetting the migration database for Stage 2 . . 465
Backing up and restoring the migration
database 466

Appendix H. Migration tool
performance 467
Number of projects, packages, parts, and programs 467
Number of migration sets and other migration
options 469
Processor speed 470
Number of lines in function parts 470
Clean Java workspace for Stage 1 471
Disk space requirements 471

Appendix I. VisualAge Generator and
EGL interoperability 473
VisualAge Generator and EGL interoperability on
z/OS CICS 473
VisualAge Generator and EGL interoperability on
iSeries 473
VisualAge Generator and EGL interoperability for
Web Transactions 475
Cross System Product interoperability 476

Notices 477
Trademarks 479

Index 481

viii Rational Business Developer: VisualAge Generator to EGL Migration Guide

Part 1. Migration overview

© Copyright IBM Corp. 2004, 2011 1

2 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 1. Migration overview

Products with the Enterprise Generation Language (EGL) component are the
successors to VisualAge® Generator. To move to EGL, you need to migrate your
VisualAge Generator (VAGen) source code.

This migration guide provides information about planning your migration, using
the migration tools to convert your source code, and additional steps needed to
complete your migration after running the migration tools.

Terminology used in this book
EGL is available with IBM® Rational® Business Developer, which can also be
installed with other Eclipse-based products. This book uses the following
terminology:

developer product
IBM Rational Business Developer, used as a stand alone product or
installed with other products such as the following products:
v IBM Rational Application Developer
v IBM Rational Developer for System i®

v IBM Rational Developer for System z®

EGL development environment
The Workbench and other windows that you see after starting IBM
Rational Business Developer.

EGL COBOL generator
Any of the products or features that provide EGL COBOL generation
support:
v For System i, EGL COBOL generation is included with IBM Rational

Business Developer.
v For System z, EGL COBOL generation is included with the Generation

for System z feature of IBM Rational Business Developer. You must
install this feature, but it is enabled automatically when you apply the
license for IBM Rational Business Developer.

v For VSE, EGL COBOL generation is included with the Generation for
VSE feature of IBM Rational Business Developer. You must install this
feature, and then must enable the feature by purchasing and applying
the license for IBM Rational Business Developer Extension for VSE.

EGL build server
Any of the products or features that provide the EGL build server support
for generated COBOL programs:
v For System i, the build server is included with IBM Rational Business

Developer, but must be uploaded and installed on System i.
v For System z, the build server is provided by IBM Rational COBOL

Runtime for zSeries®.
v For VSE, the equivalent of the build server is provided by preparation

JCL templates included with the Generation for VSE feature and
preparation JCL procedures included with IBM Rational COBOL
Runtime for z/VSE®.

© Copyright IBM Corp. 2004, 2011 3

EGL runtime server
Any of the products or features that provide the EGL runtime support for
generated COBOL programs:
v For System i, the runtime server is included with IBM Rational Business

Developer, but must be uploaded and installed on System i.
v For System z, the runtime server is provided by IBM Rational COBOL

Runtime for zSeries.
v For VSE, the runtime server is provided by IBM Rational COBOL

Runtime for z/VSE.

What's new in EGL that requires migration?
EGL includes major changes from and enhancements to VisualAge Generator. The
following types of changes can affect your migration to EGL:
v Changes to the VAGen language, including many enhancements such as new

data types, multidimensional structure field arrays, dynamic arrays, the case
statement, and improved Web support.

v Changes to the user interface you use to develop your programs, including
content assist, code templates to create a part, and a text editor for most part
types.

v Changes to the generation and preparation process, including only Java
generation rather than C++ and Java generation for distributed platforms, and
the use of an EGL build server instead of preparation JCL templates for COBOL
generation.

v Changes to runtime behavior, including the use of the EGL runtime server.
v Changes to library management, including the ability to choose your own source

code repository to interface with EGL.

The differences between the VAGen language and EGL are extensive. In the past
when you upgraded from one version of Cross System Product or VisualAge
Generator to a new version, there were only minor changes to the language. The
previous migration tools were able to migrate each part independently of any
other parts. However, due to the differences between the two languages, the
VisualAge Generator to EGL migration tool must migrate each part in the context
of other referenced or associated parts to determine the following factors:
v The part type of the referenced part
v Information that must move to the referencing part due to the new EGL syntax
v The location of the referenced part within the workspace

Cross-part migration is the term used to describe this situation in which the
migration of one part depends on other parts. Cross-part migration is required to
produce the best possible conversion from the VAGen language to EGL. This in
turn means that you need to carefully consider which groups of parts you migrate
together.

Given the differences between VisualAge Generator and EGL and the need for
cross-part migration, this migration is a major undertaking and needs to be
carefully planned.

Planning your migration
You need to consider the following tasks when planning your migration project:
v Plan a pilot project for migration:

4 Rational Business Developer: VisualAge Generator to EGL Migration Guide

– Select the developers and systems support personnel that will be involved in
the pilot project.

– Select a small subset of your source code to use in the pilot project. Use this
small subset to verify your environmental setup and your library
management procedures and tools.

– Upgrade to VisualAge Generator 4.5 with Fix Pack 5. Contact IBM Support to
obtain the fix pack or check the VAGen Web site at:
http://www.ibm.com/software/awdtools/visgen/support
Follow the link in the Download section. Also review Appendix F, “APARs
required for VisualAge Generator,” on page 457 for additional VAGen APARs
that might be necessary for your specific situation.

– Install or upgrade DB2® if it is not already available. You must use DB2 for
the migration database. The migration tool requires DB2 Version 8.1 with Fix
Pack 15 or DB2 Version 8.2 with Fix Pack 8. These two fix pack levels are
equivalent. DB2 Version 9.x is supported for Stage 1 on Smalltalk and Stages
2 and 3. DB2 Version 9.x is not supported for Stage 1 on Java.

– Review the prerequisites for the developer product that you plan to use. In
addition, review the prerequisites for your runtime environment, as in the
following examples:
- If you plan to generate COBOL for the z/OS® environment, be sure to

review the prerequisites for IBM Rational COBOL Runtime for zSeries.
- If you plan to generate Java for the UNIX System Services (USS)

environment and plan to build in that environment, be sure to review the
prerequisites for IBM Rational COBOL Runtime for zSeries.

- If you plan to generate COBOL for the z/VSE environment, be sure to
review the prerequisites for IBM Rational COBOL Runtime for z/VSE.

- If you plan to generate for iSeries®, be sure to review the prerequisites for
the runtime component of your developer product.

- If you plan to generate Java for a workstation environment, be sure to
review the prerequisites for your developer product.

– Review the build descriptor options and symbolic parameters that you might
need to accurately replicate the behavior of your programs in EGL. For more
information, see “Reviewing COBOL generation build descriptor options” on
page 208.

v Make key decisions about the scope of the pilot project, as in the following
examples:
– Determine whether you can freeze your VAGen development and

maintenance during the actual migration. This technique enables you to
migrate the production level of source code only. If you cannot freeze VAGen
development and maintenance, be sure to include the following tasks in your
pilot project:
- Develop and test procedures for migrating your work-in-process source

from VisualAge Generator to EGL.
- Develop and test procedures for dual maintenance of common (shared)

parts.
– Choose a back end source code repository.

v Build a task list, resource assignments, and a schedule for the pilot project.
v Obtain education for the pilot team in the following areas:

– Developer product environment
– EGL language

Chapter 1. Migration overview 5

– VisualAge Generator to EGL migration tools
– Your new source code repository

v Run the pilot project plan to perform the following tasks:
– Install the developer product for the pilot team, and be sure to install it on a

machine that has the same regional settings as you used for developing your
VAGen programs. The following examples show installations with special
requirements:
- If you developed your VAGen programs on a German machine, you should

install your developer product on a German machine. This ensures that the
comma used as a decimal point and German umlaut characters are
migrated correctly.

- If you developed your VAGen programs on a Chinese machine, you must
install your developer product on a Chinese machine using the same code
page. This ensures that your DBCS characters are migrated correctly.

– Determine how to organize your source code in EGL. Map this organization
to the equivalent VAGen organization. See “Determining how to organize
your EGL source code” on page 53 for considerations.

– Run the VAGen Migration Tool for the pilot set of code. See the following
sections for information on the migration tool:
- Chapter 2, “Migration tool philosophy,” on page 19
- Part 2, “Migrating from VisualAge Generator 4.5 on Java to EGL,” on page

121
- Part 3, “Migrating from VisualAge Generator 4.5 on Smalltalk to EGL,” on

page 145
- Part 4, “Stages 2 and 3 — common migration steps,” on page 169
- Part 5, “Completing the migration,” on page 201

– Test your source code in the EGL development environment by carrying out
the following tasks:
- Plan and install the connectivity required to use the EGL debug facility. If

you use any of the following capabilities when you test your VAGen
programs using the Interactive Test Facility (ITF), you need to plan how to
achieve comparable EGL debug capabilities:
v Non-EGL programs that you need to call from ITF.
v Access to DB2 databases.
v Access to DL/I databases.
v Access to VSAM files.

- Create your EGL build parts for debug. This includes the build descriptor
options, linkage options, and resource associations parts that you need for
debug.

- Test your source code using the EGL debug facility. Be sure to test each
type of connectivity to your host environments.

– Create your library management processes by carrying out the following
tasks:
- Select and install a source code repository.
- Provide access to the source code repository from the developer

workstations.
- Define change management procedures that work with your corporate

culture and your selected source code repository.
- Develop any tools you need for your change management procedures. For

example, you might need tools to assist with the following processes:

6 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v Checkin and checkout procedures
v Version control procedures
v Retrieve source code from the source code repository and load a

workspace or directory structure if you want to use batch generation
– Perform the following tasks in the iSeries COBOL target environment:

- Follow the directions in the Rational Business Developer EGL Server Guide for
IBM i.

– Perform the following tasks in the z/OS COBOL target environments:
- Install and enable TCP/IP. TCP/IP is the only method for transferring

output of COBOL generation to the z/OS host.
- Install prerequisites for the IBM Rational COBOL Runtime for zSeries,

including any changes to your COBOL compiler and runtime environment.
- Install IBM Rational COBOL Runtime for zSeries, including the latest PTFs.
- Create a new set of libraries to contain the output of COBOL generation

and the results from the EGL build server.
- If you use CICS® or IMS™, create a new region for testing the

EGL-generated COBOL. This technique avoids accidentally intermixing
your VAGen-generated code with the EGL-generated code and enables you
to continue maintaining the VAGen code while you are running the pilot
project.

- Customize the EGL runtime server, including running the customization
verification programs for all of your runtime environments.

- Customize the EGL build server and pseudo-JCL build scripts. See
“Converting VAGen preparation templates and procedures to EGL build
scripts” on page 219 for details.

– Perform the following tasks in the VSE COBOL target environments:
- Install and enable FTP. FTP is the only method for transferring output of

COBOL generation to the VSE host.
- Install prerequisites for IBM Rational COBOL Runtime for z/VSE, including

any changes to your COBOL compiler and runtime environment.
- Install IBM Rational COBOL Runtime for z/VSE, including the latest PTFs.
- Create a new set of libraries to contain the output of COBOL generation

and the results from the EGL build server.
- If you use CICS, create a new region for testing the EGL-generated COBOL.

This technique avoids accidentally intermixing your VAGen-generated code
with the EGL-generated code and enables you to continue maintaining the
VAGen code while you are running the pilot project.

- Customize the EGL runtime server, including running the customization
verification programs for all of your runtime environments.

- Customize the preparation JCL templates and procedures. For details, refer
to the VSE documentation listed in “References” on page 16.

– Perform the following tasks in the Java target environments:
- Review the runtime platform differences if you are changing platforms (for

example, from Windows CICS to Windows native). Make any code changes
that result. Based on your original and new runtime platform, see the
appropriate sections in Chapter 10, “Language and runtime differences,” on
page 231 for a list of the platform differences. See this same chapter if you
are changing from generating C++ to generating Java.

- Obtain JDBC support from your vendor if you are currently using ODBC
support.

Chapter 1. Migration overview 7

– Generate and prepare your programs by carrying out the following tasks:
- Review and modify your build parts (build descriptor, linkage option,

resource association, link edit and bind control parts). Based on the build
parts used for your runtime environment, see the appropriate sections in
Chapter 9, “Completing your migration,” on page 203 for details of changes
that cannot be handled by the VAGen Migration Tool.

- If you modified the VAGen reserved words, create an EGL reserved words
file.

- Optionally, build an EGL batch generation server machine. This requires
the use of a source code repository and the creation of tools to load a
directory with all the parts you need for generation.

– When you migrate certain types of programs, you must generate the EGL
programs or relink the VAGen programs to provide interoperability for the
VAGen and EGL programs. For details, see Appendix I, “VisualAge Generator
and EGL interoperability,” on page 473.

– Use the following procedures for testing:
- Test at least a representative sample of your generated programs to ensure

you understand any runtime differences between VisualAge Generator and
EGL. See “Runtime differences” on page 231 for a list of differences.

- Test your library management procedures and tools using typical changes
that you might make to the EGL source code. Be sure to test your
procedures for changing common code, forms, DataTables, and programs
for each target environment. Also test your procedures for adding common
code, forms, DataTables, and programs for each target environment.

- Run a pilot change cycle using typical changes for several developers to
ensure that your planned library management processes are acceptable.

- Plan and test backup and recovery procedures for your source code
repository.

– Refine your library management procedures and tools based on the results of
the pilot project.

– Document the findings of the pilot project, including:
- Code changes that need to be made, particularly if you are changing target

environments.
- Changes developers need to make to any personal build descriptor parts.
- References to sections of the Migration Guide that are particularly useful

for your developers based on the problems you encountered during the
pilot project.

- Changes in runtime behavior that your users will notice after migration.
- Final library management and change control process.

v Build a plan to complete your migration based on the findings from the pilot
project.

v Provide education for the remaining developers on the following topics:
– Developer product environment
– EGL language
– Your source code organization in EGL, including how the code is structured

into EGL projects, packages, and files
– Your new source code repository
– Your new library management process
– Your new generation process
– Mentoring, as needed, during the first few weeks of development

8 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Determining whether you can migrate to EGL
EGL is the strategic component in the Rational Developer products to which
VisualAge Generator customers should migrate. EGL support is not meant to be a
complete replacement for all functions and platforms supported by VisualAge
Generator Developer 4.5. Depending on your target environment and the types of
programs you have developed with VisualAge Generator, you might need to
consider other alternatives.

The EGL base product supports Java generation for the following VisualAge
Generator target environments:
v Unix System Services (VAGen OS/390® target environment)
v iSeries (VAGen OS/400® target environment)
v Windows Native
v Linux on Intel platforms
v AIX® Native
v HP-UX
v Solaris

The EGL base product also supports COBOL generation for the following
VisualAge Generator target environment:
v iSeries (VAGen OS/400 target environment)

The Generation for System z feature of IBM Rational Business Developer supports
COBOL generation for the following VisualAge Generator target environments:
v IMS BMP
v IMS/VS
v z/OS Batch (VAGen MVS™ Batch target environment)
v z/OS CICS (VAGen MVS CICS target environment)

The Generation for VSE feature of IBM Rational Business Developer supports
COBOL generation for the following VisualAge Generator target environments:
v VSE Batch
v VSE CICS

Note: While VisualAge Generator generates Java and C++ for certain platforms,
EGL only generates Java.

For additional considerations in these supported environments, see the following
information:
v Special considerations for migrating to EGL — File and database access, Table 1

on page 9
v Special considerations for migrating to EGL — User interface, Table 2 on page 10
v “VisualAge Generator features not available in EGL” on page 11

The following tables list special considerations for supported environments.

 Table 1. Special considerations for migrating to EGL — File and database access

VAGen file and database access Special consideration

SQL Supported in EGL.

Chapter 1. Migration overview 9

Table 1. Special considerations for migrating to EGL — File and database
access (continued)

VAGen file and database access Special consideration

Serial, indexed, and relative
records

Supported in EGL.

Message queue records Supported in EGL.

DL/I Supported in EGL for COBOL generation for the z/OS
and VSE environments. Also supported for debug if the
database is on IMS/VS. Not supported for debug if the
database is on CICS or VSE, but check for any changes
in the EGL documentation.

GSAM Supported in EGL.

IMS Message Queues Supported in EGL.

Btrieve Not supported in EGL.

Local VSAM Supported in the following cases:

v Java generation for AIX.

v COBOL generation.

Not supported for debug or for Java generation for other
environments.

Remote VSAM Supported in the following cases:

v Debug if the remote file is on z/OS.

v Java generation for Windows if the remote file is on
z/OS.

v COBOL generation for CICS on z/OS and VSE.

 Table 2. Special considerations for migrating to EGL — User interface

VAGen user interface Special considerations

Text user interface, including print Supported in EGL for both COBOL generation
and Java generation.

Web transactions and User Interface (UI)
records

Supported in EGL for both COBOL generation
and Java generation depending on the
environment.

JSP and Java servlets which use VAGen
Java wrappers

v You can migrate your JSP and Java servlets
to your new developer product using the
information provided by that product.

v You can migrate your VAGen server
programs to EGL using this VAGen
Migration Guide. You can generate the Java
wrappers using EGL.

Java GUI applications or applets that do
not use VAGen parts on the free form
surface, but which use VAGen Java
wrappers.

v You can migrate your Java applications or
applets to your new developer product
using the information provided by that
product for migrating Java code from
VisualAge for Java.

v You can migrate your VAGen server
programs to EGL using this VAGen
Migration Guide. You can generate the Java
wrappers using EGL.

Java GUI applications or applets that use
VAGen parts on the free form surface.

Not supported.

10 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 2. Special considerations for migrating to EGL — User interface (continued)

VAGen user interface Special considerations

Smalltalk GUI views or visual parts. Not supported. The views with VAGen parts
must be migrated to Java-based solutions. EGL
does not have any Smalltalk-based solutions.

VisualAge Generator features not available in EGL
In addition to the special considerations listed in Tables 1 and 2, if you need any of
the features in the following list, you should assess the impact of migrating now
versus migrating in the future:
v Support for Java or Smalltalk GUIs.
v Certain runtime environments including:

– MVS/TSO. You might want to consider z/OS CICS.
– VM and VM Batch. You might want to consider z/OS CICS and z/OS Batch.
– OS/2 and CICS for OS/2. You might want to consider using Java generation

for Windows.
– TX Series on distributed platforms (such as CICS for Windows, CICS for AIX,

and so on). You might want to consider using Java generation for the
equivalent native runtime environment (such as Windows, AIX, and so on).

However, if you plan to use Java generation, also determine if you use CICS
specific functions that cannot be converted to native runtime environments. See
“Differences between distributed CICS and native workstation environments” on
page 240 for details of the differences.

v Specialized editors and lists such as a listing of the program produced during
generation.

v Specialized functionality, including the following capabilities:
– Searching for references in a selected set of parts and limiting the search list

to a program and its associated parts.
– Filtering parts by part type or by subtype. EGL provides a search capability

so you might be able to search for a specific part type or subtype.
v Specialized debug support, including the following capabilities:

– DL/I database I/O if the database is on z/OS CICS or VSE CICS.
– Indexed on relative files if the file is anywhere other than a remote VSAM file

on z/OS.
– Calls to programs in the IMS environment that require static linkage (such as

PL/I) and which perform IMS or DL/I calls. Calls to programs that require
static linkage are permitted if there are no IMS or DL/I calls in the called
program.

– Calls to programs in the IMS environment that perform DL/I calls using
something other than CBLTDLI or AIBTDLI (such as PLITDLI or ASMTDLI).

v VisualAge Generator Templates.

Chapter 1. Migration overview 11

Terminology differences
VisualAge Generator Developer on Java, VisualAge Generator Developer on
Smalltalk, and EGL all use different terminology. The following tables relate the
VAGen terminology to the EGL terminology.

 Table 3. Code organization terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

Enterprise Generation
Language (EGL)

Workspace Image Workspace

Project Configuration map EGL project

Package Application EGL source folder and EGL
package containing one or
more EGL files

(No comparable concept) (No comparable concept) File (generally a Java package
or a Smalltalk application
splits into multiple files). An
EGL file contains one or more
EGL parts of one or more part
types.

Class or Type Class EGL part type

Method or Member Method (no comparable concept)

VAGen part VAGen part EGL part within a file

 Table 4. VAGen parts and concepts terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Shared data item Shared data item Type definition using a
DataItem part

Nonshared data item Nonshared data item Type definition using a
primitive data type

Data item part Data item part DataItem part

Record part Record part Record part
Note: The migration tool
converts all VAGen record
definitions to EGL structured
records to preserve VAGen
behavior.

PSB part PSB part Record part with the
PSBRecord stereotype.

User interface (UI) record User interface (UI) record Record part with the
VGUIRecord stereotype.

Structure items (structure
of fields in a record)

Structure items (structure of
fields in a record)

Structure fields

Array (multiply occurring
item in record or map)

Array (multiply occurring
item in record or map)

Structure field array

Table part Table part DataTable part

Map group part Map group part FormGroup

12 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 4. VAGen parts and concepts terminology differences (continued)

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Map part:

v display map

v printer map

Map part:

v display map

v printer map

Form:

v TextForm

v printForm

Function part Function part Standalone function part.
Note: The migration tool
converts all VAGen function
parts to EGL standalone
function parts.

I/O option and I/O object I/O option and I/O object EGL I/O statement

Java application or applet
(GUI)

Smalltalk view or visual part
(GUI)

v Smalltalk view and visual
parts are not supported.

v Java applications and
applets are supported if you
did not use VAGen parts on
the free form surface. If you
did use VAGen parts on the
free form surface, then the
Java application or applet is
not supported.

Generation options part Generation options part Build descriptor part

Generation option Generation option Build descriptor option

Linkage table part Linkage table part Linkage options part

 Table 5. VAGen with IDE Windows terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Log

v Shows error messages

v Product closes only if
you close both the Log
and the Workbench

v Workspace is always
saved when you close
the product

System Transcript

v Shows error messages

v Product closes if you close
either the System Transcript
or the VisualAge Organizer

v Image is optionally saved
when you close the product

Console

v Shows messages.

Problems view

v Shows messages, especially
those related to syntax
validation.

v Workspace is always saved
when you close the
product.

Workbench

v Shows the projects and
packages in the
workspace.

VisualAge Organizer

v Shows the applications in
the image.

EGL and Web perspectives:

v Navigator and Project
Explorer views show the
projects, source folders,
packages, and files in the
workspace.

v Error markers are displayed
in the Project Explorer view,
but not in the Navigator
view.

Scrapbook Workspace Scrapbook Page editor

Chapter 1. Migration overview 13

Table 5. VAGen with IDE Windows terminology differences (continued)

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Repository Explorer Application Editions Browser If you decide to use a
repository, the repository
might have a comparable
concept.

VAGen Parts Browser

v Three panes show
package, part type, and
VAGen parts

v Filtering and sorting is
included in the browser

VAGen Parts Browser

v Three panes show
application, part type, and
VAGen parts

v Filtering and sorting is
included in the browser

EGL and Web Perspectives:

v Navigator and Project
Explorer views show the
projects, source folders,
packages and files in the
workspace.

v Outline view shows the
parts within a file.

v EGL Parts List view
provides filtering and
sorting.

VAGen options VAGen preferences EGL preferences

VAJava options VASmalltalk preferences Other product preferences

References tool to find
parts that use a specific
part name or text string

References tool to find parts
that use a specific part name
or text string

EGL Search or File Search

Associates tool to find all
parts referenced by a
specific part

Associates tool to find all
parts referenced by a specific
part

EGL Parts Reference

 Table 6. VAGen Workspace management terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Repository Library None. CVS and Clear Case LT
are provided depending on
the product that you use. You
can choose your own
repository management
system.

Add / Delete Load / Unload If you decide to use a
repository, the repository
might have a comparable
concept.

Replace with Load another edition Replace with local history
Note: The repository you
decide to use might have
additional facilities.

Compare with Browse changes Compare with local history
Note: The repository you
decide to use might have
additional facilities.

14 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 7. VAGen Repository management terminology differences

VisualAge Generator on
Java

VisualAge Generator on
Smalltalk

EGL

Administrator Library Supervisor If you decide to use a
repository, the repository
might have a comparable
concept.

Repository management:

v Purge / Restore

v Compact

Library management:

v Purge / Salvage

v Clone

If you decide to use a
repository, the repository
might have a comparable
concept.

 Table 8. VAGen source code management terminology differences

VisualAge Generator
on Java

VisualAge Generator on
Smalltalk

EGL

Ownership:

v Project owner

v Package owner

v Class owner

Ownership:

v Configuration map
manager

v Application manager

v Class owner

If you decide to use a repository, the
repository might have a comparable
concept.

Version and release Version and release If you decide to use a repository, the
repository might have a comparable
concept.

Project:

1. A project is
required.

2. VAGen Project List
Part specifies
relationships
between projects.

3. The package
owner can always
release the
package to the
project.

Configuration map:

1. Usage is optional.

2. Required map specifies
relationships between
configuration maps.

3. Optionally, you can
delegate the release of
applications or restrict
their release to the
configuration map
manager.

Project:

1. A project is required.

2. EGL Build Path property for the
project. However, this does not
automate loading projects
together into the workspace.

3. No comparable concept, unless
provided by the repository.

Package:

1. No comparable
concept

2. No comparable
concept

3. No comparable
concept

4. Group members

5. Versioning the
project
automatically
versions the
included
packages.

Application:

1. Prerequisite application

2. Subapplications

3. Privileges

4. Group members

5. You must version the
application before you
version the configuration
map

Folder or Package:

v If you decide to use a repository,
the repository might have a
comparable concept.

Chapter 1. Migration overview 15

Table 8. VAGen source code management terminology differences (continued)

VisualAge Generator
on Java

VisualAge Generator on
Smalltalk

EGL

Class or Type:

v Versioning the
package or project
automatically
versions the
included classes

Class:

v You must version and
release the class before
you version the
application

EGL part type:

v No comparable concept in EGL.

VAGen parts:

v There is a date and
time stamp for each
part

v Packages
containing
duplicate part
names can be
added to the
workspace.

v There is a duplicate
parts tool to locate
the duplicate parts

VAGen parts:

v There is a date and time
stamp for each part

v Applications containing
duplicate part names
cannot be loaded into the
image.

EGL parts:

v Parts are in EGL files; only the
EGL file has a date and time
stamp.

v You can have duplicate parts in
the workspace. EGL uses a
combination of the EGL build
path for the project, the import
statements for the file, and the
containerContextDependent
property to determine the name
space that is searched to resolve
references to part names. Part
names must be unique within the
name space. The EGL build path
for a project limits which
additional projects are considered
when looking for a part name.
The import statement for a file
limits which additional packages
or parts within the EGL build
path are considered when looking
for a part name. The
containerContextDependent
property for a record or a
function specifies that EGL should
use the EGL build path and
import statements for the file
containing the program rather
than from the file containing the
record or function.

References
In addition to this Migration Guide, you should check the following resources for
additional or more current information:
v The Web site and news group for VisualAge Generator. The Web site is as at the

following address:
 http://www.ibm.com/software/awdtools/visgen/

v The Web site and forums for EGL. The Web site is as at the following address:
 http://www.ibm.com/software/rational/cafe/community/egl

v The Web site and forum for the product that you are using.

The following resources also contain details beyond the scope of this Migration
Guide:
v The online help system for EGL.

16 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v One of the EGL server guides, which describes how to set up the build server
and build scripts, as well as other reference material for creating your runtime
environment. Choose one of the following books based on the COBOL runtime
environment you use:
– IBM Rational COBOL Runtime Guide for zSeries Version 6.0.1 (SC31-6951-03).
– Rational Business Developer EGL Server Guide for IBM i Version 7.5 (SC31-6841).

v For VSE, the following volumes that explain the differences between VSE and
z/OS support as well as the preparation process and runtime server support:
– Program Directory for Rational COBOL Runtime for z/VSE (GI10-8803-00)
– Rational Business Developer V7.5 Generation for z/VSE feature Reference Manual

(SC19-2539-00)

The following white papers are also available to assist with migration:
v For migration from VisualAge Generator on Java:

– How to Consolidate Projects and Packages during Stage 1 of the VisualAge
Generator on Java to Enterprise Generation Language Migration Tool.

– For information on how to modify the EGL file location algorithm used in
Stage 1, see “Customizing the Stage 1 migration tool” on page 135.

v For migration from VisualAge Generator on Smalltalk:
– How to Consolidate Projects and Packages during Stage 1 of the VisualAge

Generator on Smalltalk to Enterprise Generation Language Migration Tool.

– For information on how to modify the EGL file location algorithm used in
Stage 1, see “Customizing the Stage 1 migration tool” on page 159.

v For migration from either VisualAge Generator on Java or VisualAge Generator
on Smalltalk:
– How to Create Records for Implicit Items when Migrating from VisualAge Generator

to Enterprise Generation Language.

– Using the Rename User Exit in the VisualAge Generator to Enterprise Generation
Language Migration Tool.

– How to Modify the Package Name in the JSP when Migrating Web Transactions
from VisualAge Generator to Enterprise Generation Language.

v For migration from Cross System Product or VisualGen (Version 2.2 and earlier):
– Migrating from Cross System Product Version 4.1 to Enterprise Generation

Language Version 7.5.1. While this white paper is specific to Cross System
Product Version 4.1, it includes an appendix that explains the differences
between migrating from earlier versions of Cross System Product and from
VisualGen (Version 2.2 and earlier).

All of the white papers are available in the VAGen Migration hub of the EGL
Cafe at the following Web site:
http://www.ibm.com/software/rational/cafe/community/egl/vagen?view=documents

Chapter 1. Migration overview 17

18 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 2. Migration tool philosophy

The VisualAge Generator to EGL migration tool is actually a series of tools. This
chapter provides a high-level overview of the tools and describes the techniques
used by the tools.

The design of the VisualAge Generator to EGL migration tools has several major
objectives:
v Preserve the program behavior from VisualAge Generator to EGL.
v Preserve the Java project and package structure from VisualAge Generator to

EGL when appropriate.
v Preserve the Smalltalk configuration map and application structure from

VisualAge Generator to EGL when appropriate.
v Enable you to perform incremental migration of subsystems, one subsystem at a

time.
v Enable you to migrate multiple versions of your subsystems.

The design of the VisualAge Generator to EGL migration tools also has several
secondary objectives:
v Use batch mode processing as much as possible with opportunities for you to

optionally review the planned migration at critical points before proceeding to
the next step.

v Store information about the planned migration in a database so that it can be
preserved across multiple project versions and multiple subsystems. This also
enables you to save intermediate results as backup. This is important if you have
large numbers of parts in your repository.

v Provide a set of sample programs for the tool that extracts the VAGen source
from your repository and loads the migration database. You can optionally tailor
the sample programs to more accurately reflect your environment.

The design of the VisualAge Generator to EGL migration tools is based on the
following assumptions:
v Migration is from VisualAge Generator 4.5 using External Source Format that is

produced by VisualAge Generator 4.5.
v The parts to be migrated are valid VisualAge Generator parts. Programs, tables,

and map groups can be validated and/or generated in VisualAge Generator 4.5.

There are two methods for using the VisualAge Generator to EGL migration tools:
v Stage 1 to 3 migration, which is described in “Overview of the VisualAge

Generator to EGL migration tools” on page 20. This is the primary technique for
migrating your source code.

v Single File Migration, which is described in “Overview of single file migration”
on page 27. This technique is useful for migrating a few programs to verify that
your environment is working properly.

© Copyright IBM Corp. 2004, 2011 19

Overview of the VisualAge Generator to EGL migration tools
To achieve the objectives listed, the VisualAge Generator to EGL migration tool is
actually a series of tools that are organized into three stages as shown in the
following figure.

v The tool for Stage 1 runs in the VAGen environment. The Stage 1 tool extracts

information about the organization of your source code and the source code
itself from your Java repository or Smalltalk library. The Stage 1 tool also
determines the placement of each part in the EGL project, package, and file
organization. The Stage 1 tool loads this information into a migration database.
The VAGen source code is stored in External Source Format.

v The tool for Stage 2 runs in the EGL environment. The Stage 2 tool uses the
information that is stored in the migration database to create EGL syntax for the
VAGen parts that were stored in the migration database during Stage 1. The
Stage 2 tool stores the resulting EGL source code in the migration database.

v The tool for Stage 3 also runs in the EGL environment. For each EGL project you
want to create, the Stage 3 tool extracts the EGL source for the parts that belong
to that project and creates an EGL project in the file system for you. Optionally,
if you are only working with one version of a set of projects, the Stage 3 tool can
import the projects into your workspace.

After you have the projects in your workspace, you can then manage the source
code using the tools provided by the source code repository that you have decided
to use.

Migration tool terminology
To achieve a good cross-part migration, when you migrate a part, you must
provide not only the part itself but all parts that it references. For example, when
you migrate a program, you should provide not only the program, but also all the
parts that the program references. For a program, the set of parts that you need
when you migrate the program is the same set of parts that you need when you
generate the program in VisualAge Generator. This set of parts is the associates list
for the program.

In VisualAge Generator, the following common techniques provide all the parts for
generation:
v Project List Parts (PLPs) in VisualAge Generator on Java
v Configuration maps in VisualAge Generator on Smalltalk

20 Rational Business Developer: VisualAge Generator to EGL Migration Guide

The migration tool makes use of these two techniques. The tool uses the following
terminology:
v If you are migrating from VisualAge Generator on Java:

– A high-level PLP project is a Java project that contains a Project List Part (PLP)
and is not referenced by any other PLP.

– A migration set consists of all the VAGen projects referenced in a Java
high-level PLP project, including all VAGen projects in the entire PLP chain
starting at the high-level PLP project.

v If you are migrating from VisualAge Generator on Smalltalk:
– A high-level configuration map is a Smalltalk configuration map that is not

listed as a required map by any other configuration map.
– A migration set consists of all the Smalltalk configuration maps listed as

required maps in a Smalltalk high-level configuration map, including all the
configuration maps from the entire chain of Smalltalk required maps starting
at the high-level configuration map.

v A migration plan is a file that specifies the information for one or more migration
sets. If you specify a migration plan file name in your Stage 1 preferences then
all the migration sets that match your repository filters are placed in the same
migration plan file. If you do not specify a migration plan file name, then each
migration set is placed in a separate migration plan file.

Note: If you are migrating from VisualAge Generator on Java and do not currently
use PLP projects, you can create PLP projects to use just for migration.
Alternatively, you can use one of the following solutions:
v If you have information in a database or other system that specifies what is

needed for generation in terms of Java project versions, then you can write a
tool to create the migration plan file (or files) automatically from your database.

v Create the migration plan file (or files) by hand.

If you are migrating from VisualAge Generator on Java, see the section “Migration
plans and high-level PLP projects” on page 139 for more details.

Stage 1 details
The Stage 1 tool is shipped as a sample program with the EGL developer product.
You install the sample program to run on either VisualAge Generator Developer on
Java or VisualAge Generator Developer on Smalltalk, depending on the VisualAge
Generator Developer 4.5 product that you currently use. The two sample programs
differ somewhat due to the differences in the Java and Smalltalk environments.
However, the basic steps for using the Stage 1 sample programs are the same in
both environments. The following basic steps are needed to run the Stage 1 tool:
1. Define rules and preferences to direct the Stage 1 migration.
2. Run the tool and produce one or more of the following results:
v One or more migration plan files.
v A log file containing messages about any problems detected.
v A migration database.
v A report showing how each migration plan file will be migrated during

Stages 2 and 3.

Step 1
Define rules and preferences that provide the Stage 1 tool with information about
what you want to migrate, including the following information:

Chapter 2. Migration tool philosophy 21

v How to filter Java project names so that only the projects you want to migrate
are considered. For Smalltalk, you specify how to filter the Smalltalk
configuration map names. This improves performance for Stage 1 because the
tool only processes those Java projects or Smalltalk configuration maps that
match your filters.
– From those Java projects that match your filters, the Stage 1 tool selects any

Java projects that contain a high-level Project List Part. A Java project contains
a high-level Project List Part (PLP) if the Java project is not referenced by any
other PLPs.

– From the Smalltalk configuration maps that match your filters, the Stage 1
tool selects any high-level configuration maps. A high-level configuration map
is one that is not listed as a required map by any other configuration map.

v Whether you want to create one migration plan that reflects everything that
could migrate based on your filter, or whether you want to create multiple
migration plans, with one migration plan for each Java high-level PLP project
version or Smalltalk high-level configuration map version.

v How to create the EGL project, package, and file names from the Java project
and package names or from the Smalltalk configuration map and application
names. This includes the following information:
– Rules that indicate which Java projects and packages or Smalltalk

configuration maps and applications contain common code.
– Renaming rules to be used when creating the EGL project and package

names.
– Names to be used for the EGL files that contain common parts or unused

parts.
– Name to be used as a suffix to the migration set name if maps from the same

map group are located in multiple Java projects or Smalltalk configuration
maps. Similarly, this may be a name to be used as a suffix to the project name
if maps from the same map group are located in multiple Java packages
within a single project or in multiple Smalltalk applications within a single
configuration map.

v The name of the migration database and the user ID and password that are
needed for access to the database.

v Which outputs you want the Stage 1 tool to produce in Step 2. You can choose
to create all the outputs in a single step or you can create the outputs in
sequence so that you have a chance to review your rules and preferences before
creating the next, more time-consuming output.

v The names of a log file and a debug file and the level of detail information that
you want included in the debug file.

Step 2
Based on the rules and preferences you have defined, the Stage 1 tool produces the
following possible output:
v Migration plan file (or files). A migration plan file contains migration sets. Each

migration set is one high-level PLP project version from the Java repository or
one high-level configuration map version from the Smalltalk library. The
dependent Java project versions or the required Smalltalk configuration map
versions are specified in the migration set.
– If the migration preference file does not specify a value for the migration plan

filename option, then multiple migration plan files are created. Each
high-level PLP project version for Java results in one migration plan file that

22 Rational Business Developer: VisualAge Generator to EGL Migration Guide

contains one migration set. Similarly, each high-level configuration map
version for Smalltalk results in one migration plan file that contains one
migration set version.

– If the migration preference file specifies a value for the migration plan
filename option, then each high-level PLP project version for Java results in a
migration set entry within the single migration plan file. Similarly, each
high-level configuration map version for Smalltalk results in a migration set
entry within the single migration plan file.

– For example, consider an Order Entry system that is made up of five Java
projects and a sixth Java project that contains a PLP that specifies the versions
of the other five projects. If you request multiple migration plans and three
versions, then the Stage 1 tool creates three migration sets, one for each
version of the Java Order Entry project that contains the PLP part. Similarly
for Smalltalk, if you want to migrate three versions of a configuration map
that reflects that code that makes up the Order Entry system, the Stage 1 tool
creates three migration sets, one for each version of this high-level
configuration map.

You can direct the Stage 1 tool to stop at this point so you have the opportunity
to review the migration plan file (or files) to ensure that the Java project versions
or Smalltalk configuration map versions that you want to migrate are correctly
reflected in the migration plan file (or files).

v A log file provides messages if any of the VAGen program, table, map group,
or control part names conflict with the EGL reserved word list. These parts are
not renamed during migration. You can either rename the parts in VisualAge
Generator or wait until you have migrated to EGL.
The log file also includes messages for any UI record names that conflict with
the EGL reserved word list or that starts with the # or @ symbol. UI records are
renamed during Stage 2 migration.

v A migration database loaded with the information and VAGen source code
based on the migration plan files. You can select one migration plan to use in
loading the database or all the migration plan files in a directory. The Stage 1
migration tool loads the database with the following information:
– Information about each migration set within the selected migration plan file

(or files).
– The set of associated Java projects or Smalltalk configuration maps for the

migration set.
– The VAGen part definitions in External Source Format for each VAGen part in

the set of Java projects or Smalltalk configuration maps.
– The corresponding EGL project, package, and file names for each Java project,

package and VAGen part or each Smalltalk configuration map, application
and VAGen part.

v A report showing how each migration set will be migrated during Stage 2 and
3. The report shows the following information:
– For Java, each migration set lists the project versions that are included. For

each project version, you can see the package versions, and for each package
version, you can see a list of the VAGen parts.

– For Smalltalk, each migration set lists the configuration map versions that are
included. For each configuration map version, you can see the application
versions, and for each application version, you can see a list of the VAGen
parts.

For each VAGen part, you can see the corresponding EGL project, package, and
file name where the part is placed. For each VAGen part, you can also see both

Chapter 2. Migration tool philosophy 23

the associates list created by VisualAge Generator and the EGL file where the
associate is placed. See the section “Placing parts in EGL files” on page 42 for
information on how the VAGen parts are assigned to files during Stage 1 – 3
migration.

The Stage 1 tool is shipped as a sample program for both the Java and Smalltalk
versions of VisualAge Generator. You can use the Stage 1 tool "as is" or you can
modify the sample program to better fit your environment. For example,
v You might currently store configuration information outside the Java repository

or Smalltalk library. This configuration information might specify which versions
of your source code are required for generation. In this situation, you could use
the sample programs as a guide to writing your own tool to load the migration
database from a combination of your configuration information and your Java
repository or Smalltalk library.

v You might want to change the parts placement algorithm. See “Determining how
to organize your EGL source code” on page 53 for considerations that might
cause you to modify the parts placement algorithm for the Stage 1 migration
tool.

If you modify the Stage 1 sample programs, you might want to modify the
migration database to include additional information to assist in the analysis of
your code. You can add additional columns to the existing SQL tables or you can
add additional tables to the migration database. However, these new columns and
tables are not used in Stages 2 and 3 of migration. Additionally, if you modify the
Stage 1 sample programs, you must be sure to populate the SQL tables with the
information shown in the sample programs. If you do not, Stages 2 and 3 are not
able to migrate your code.

See Chapter 4, “Stage 1 — Extracting from Java,” on page 123 for details about
installing and running the Stage 1 tool on VisualAge Generator Developer on Java.
See Chapter 5, “Stage 1 — Extracting from Smalltalk,” on page 147 for details
about installing and running the Stage 1 tool on VisualAge Generator Developer
on Smalltalk.

Stage 2 details
The Stage 2 tool is shipped in the Eclipse plug-in
com.ibm.etools.egl.vagenmigration and runs in the EGL environment. Because the
information you want to migrate is now in the migration database, you use the
same Stage 2 tool regardless of whether you are migrating from VisualAge
Generator on Java or VisualAge Generator on Smalltalk. The following basic steps
are needed to run the Stage 2 tool:
1. You define rules and preferences to tell the Stage 2 tool what you want to

migrate, including the following information:
v Specific details about how you want your EGL source code to be created. For

example, the Stage 2 migration tool must split VAGen working storage
records into two EGL basic records:
– A record that is named the same as the original working storage record

and which contains all the non-level 77 items.
– A second record that is named the same as the original working storage

record with a suffix and which contains all the level 77 items.
There is a Stage 2 migration preference that enables you to specify the suffix
you want the Stage 2 tool to use whenever it creates a new record to contain
level 77 items.

24 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v Which migration set or sets you want to migrate. For example, if you created
three migration sets to migrate three different versions of the Order Entry
system, you might want to migrate only one version initially. This gives you
the flexibility to limit migration, without having to migrate everything in the
migration database at the same time.

v The name of the migration database and the user ID and password that are
needed for access to the database. Both the Stage 2 and Stage 3 migration
tools attempt the database logon with the user ID and password used to log
on to the Windows machine if the database user ID and password are not
specified explicitly.

v Whether you want to automatically start the Stage 3 tool after Stage 2
completes. If you run Stage 3 automatically, you can choose to load one
version of the EGL projects into your workspace. You can also choose to load
the EGL projects into a temporary directory so that you can interface with
your source code repository at a later time.

2. Based on the rules and preferences you have defined, the Stage 2 tool does the
following things:
v Retrieves parts for one migration set from the database.
v Converts the External Source Format source code to EGL source code.
v Stores the EGL source code in the migration database. Messages associated

with part migration are also stored in the migration database. This improves
performance for Stage 2 because if the same part edition is used in another
migration set, the EGL source code is already available and is not converted
again.

v Creates a log file of any potential problems that are encountered, including
generatable parts that conflict with the EGL reserved word list or ambiguous
situations that the migration tool is unable to resolve.

v Iterates to process the next selected migration set.

You can run the Stage 2 migration tool in batch mode. See Chapter 6, “Stage
2—Conversion to EGL syntax,” on page 171 for details about running the Stage 2
tool in the EGL development environment. You cannot modify the Stage 2
migration tool.

Stage 3 details
The Stage 3 tool is shipped in the same Eclipse plug-in
(com.ibm.etools.egl.vagenmigration) as the Stage 2 tool and also runs in the EGL
environment. Because the information you want to migrate is now in the migration
database, you use the same Stage 3 tool regardless of whether you are migrating
from VisualAge Generator on Java or VisualAge Generator on Smalltalk. The
following basic steps are needed to run the Stage 3 tool:
1. You define rules and preferences to tell the Stage 3 tool what you want to

migrate, including the following information:
v Which migration set or sets you want to migrate. For example, if you created

three migration sets to migrate three different versions of the Order Entry
system, you might have migrated all three versions through the Stage 2 tool,
but only want to migrate one version through the Stage 3 tool. The most
common reason for doing just one version in Stage 3 is that you want to
version this code in your source code repository, then migrate the next
version with the Stage 3 tool and version it in your source code repository.

v The name of the migration database and the user ID and password that are
needed for access to the database.

Chapter 2. Migration tool philosophy 25

2. Based on the rules and preferences you have defined, the Stage 3 tool does the
following things:
v Creates a "to do" list for the migration set. This "to do" list contains a

consolidated list of the messages produced by Stage 2 that might require you
to perform additional tasks to complete the migration.

v Creates the EGL project and package structure in your workspace based on
the information stored in the migration database during Stage 1.

v Creates the .egl source files based on the EGL source code that was stored for
the VAGen parts during Stage 2. The .egl source files include most import
statements that are needed to resolve EGL part references. See “EGL build
path and import statements” on page 38 for details about the import
statements.

v Creates the .eglbld files based on the EGL XML source that was stored for
VAGen control parts during Stage 2. The control parts are generation options
(EGL build descriptor parts), linkage options, resource associations, bind
control and link edit parts.

v Invokes the tool that optimizes the EGL project build order.
v Refreshes the workspace so that EGL validation runs.

3. At this point you should follow these steps:
a. Optionally, version or commit the EGL projects into your source code

repository to establish a baseline that reflects the code exactly as it was
migrated.

b. Review the workspace for any messages in the Problems view to see if there
are any validation errors. You can do this in conjunction with the log
produced in Stage 2 or the "to do" list produced in Stage 3.

c. Generate (without preparing) all programs and DataTables to ensure proper
migration for your target environment. When you generate the programs, be
sure to use the genFormGroup and genHelpFormGroup build descriptor
options so that all your FormGroups are generated. This step is optional,
but can help detect generation problems early, without the overhead of the
preparation process.

d. Version or commit the EGL projects into your source code repository to
establish a new baseline that reflects any code changes you made to resolve
problems.

e. Generate and test the migrated code. Depending on your runtime
environment, this step might be required or optional. The advantage of
generating and testing is that this step helps ensure that you migrated the
correct version of your code, that the code migrated correctly, and that the
code runs the same way as in the VAGen runtime environments. If you do
not generate and test at this time, you might find differences in behavior
the first time you make a change to the program and have difficulties in
determining whether the differences are due to the change you just made or
due to the migration process.

You can run the Stage 3 migration tool in batch mode. See Chapter 7, “Stage 3 —
Import,” on page 189 for details about running the Stage 3 tool in the EGL
development environment. You cannot modify the Stage 3 migration tool.

26 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Overview of single file migration
When you are first getting accustomed to EGL and setting up your environment,
you might want to migrate just a few programs to verify your environment, ensure
generation and preparation are working properly, and ensure your runtime
environment is properly configured for EGL. In this case, you might not want to
go through the full Stage 1 to 3 migration. The migration tool provides a
mechanism for you to migrate a few programs using single file migration as shown
in the following figure:

Extract External Source Format Single File Migration

Build EGL filesENVY

VisualAge Generator
on Java or Smalltalk

EGL Plug-in

External
Source
Format

File

Export External
Source Format file

Import External
Source Format file

Single file migration is a more manual process than Stage 1 to 3 migration. In
single file mode, you use VisualAge Generator to export External Source Format
source code to a file. Then you use the EGL development environment to create an
EGL project and EGL package. You can then use the Import wizard to import the
External Source Format file into EGL source. The single file migration tool does the
following things:
v Creates the target EGL source file, if it does not exist. If the file does exist, you

have the option to overwrite or append to the file. Depending on your
preferences and the parts contained in the External Source Format file, the
migration tool might create additional EGL files.

v Converts the External Source Format source code to EGL source code.
v Creates a log file of any potential problems that are encountered, including

generatable parts that conflict with the EGL reserved word list or ambiguous
situations that the migration tool is unable to resolve.

The External Source Format to EGL conversion that occurs during single file
migration is essentially the same syntax conversion that occurs during Stage 2 of
the Stage 1 to 3 migration. However, single file migration has several limitations
that do not make it suitable for large scale migrations. The limitations include:
v Only parts in the single External Source Format file are considered during

migration. To achieve the best possible migration, include a program with all of
its associated parts in the External Source Format file.

v The placement of VAGen parts into files is different from that of Stage 1 – 3
migration. In single file mode, assuming you specified targetFile.egl as the target
EGL file name, the migration tool places the parts into files in the following
way:
– All control parts are placed in a file called targetFile.eglbld.
– Each UI record is placed in a file by itself called uiRecordName.egl, where

uiRecordName is the name of the UI record.
– If you do not select the preference to separate generatable parts into EGL

files, all the remaining parts are placed in a file called targetFile.egl.

Chapter 2. Migration tool philosophy 27

– If you select the preference to separate generatable parts into EGL files, the
migration tool places the parts into files in the following way:
- Each program part is placed in a file called programName.egl, where

programName is the name of the program.
- Each table part is placed in a file called tableName.egl, where tableName is

the name of the table.
- Each map group and all maps in the map group are placed in a file called

mapGroupName.egl, where mapGroupName is the name of the map group.
- All the remaining parts are placed in a file called targetFile.egl. targetFile can

be the same as programName.egl if you want to place all the remaining parts
in the same file as the program. The single file migration tool does not
attempt to determine which parts are shared by multiple generatable parts.

– All the files are placed in same EGL project, source folder, and package.
v Because all the output files are placed in the same EGL package, the migration

tool does not include any import statements. In addition, because all the parts
are placed in the same EGL package, your original Java project and package
structure are not preserved. Similarly, your original Smalltalk configuration map
and application structure are not preserved.

v If the same part occurs multiple times in the External Source Format file, only
the last definition is migrated.

v There are four alternative techniques for dealing with common parts when
migrating in single file mode. Be sure you understand the disadvantages of each
technique before choosing one of them. The following techniques are available:
– If you migrate one large External Source Format file containing several

programs and their associates, you can only specify one target file name.
Assuming you selected the Migration Preference to Separate parts into EGL
files, the migration tool places the data items, functions, PSBs, and non-UI
records into the single target file. Even if the programs share common parts
so that the same associate appears multiple times in the file, the migration
tool only migrates one definition of the part. Therefore, you do not have any
duplicate parts using this technique. However, if the programs have
numerous associated parts, the target file can be quite large.

– If you migrate two External Source Format files to the same EGL package and
the two files contain the same part and you specify different target file names,
the migration tool creates duplicate parts. Consider what happens if
Program1 and Program2 share some common parts and you migrate using
the following steps:
1. Migrate a file containing Program1 and its associates to a target file.
2. Migrate a second file containing Program2 and its associates using a

different target file.

In this case, the migration tool places the common parts in both target files. If
you place both target files in the same package, there are duplicate part
names in the package and EGL cannot resolve the part names. You can avoid
this problem by migrating each program and its associated parts to a separate
EGL package. This still results in duplicate parts in the workspace, but
because they are in different packages, EGL is able to resolve the part
references.

– If you migrate two External Source Format files to the same EGL package and
the two files contain the same part and you specify the same target file name,
you are prompted to specify whether you want to overwrite the existing
target file in the workspace.

28 Rational Business Developer: VisualAge Generator to EGL Migration Guide

- If you specify that you do not want to overwrite the existing target file,
then any data items, functions, PSBs, and non-VGUI records in the second
import are added to the target file. All the common parts in the second
import result in duplicate parts within the target file.

- If you specify that you want to overwrite the existing target file, then any
data items, functions, PSBs, and non-VGUI records in the second import
completely replace the target file. This results in the loss of any parts
included in the first import, but not included in the second import.

- If you selected the Migration Preference to Separate parts into EGL files,
the migration tool overwrites the files created for Programs, FormGroups,
and DataTables. If you did not select the preference, then these parts are
placed in the target file and added or overwritten based on your response
to the overwrite prompt.

- The migration tool always overwrites the files for VGUI records and .eglbld
files.

As in the first technique, you can avoid this problem by migrating each
program and its associated parts to a separate EGL package. This still results
in duplicate parts in the workspace, but because they are in different
packages, EGL is able to resolve the part references.

– If you split the common parts out into a separate External Source Format file,
you might not have all the information necessary to do a good VisualAge
Generator to EGL migration on a single-file basis. For example, if you have an
SQL record in one External Source Format file, and a function that uses
modified SQL for the record is in a different file, the migration tool cannot
completely build the I/O statement for the function. In addition, if the
common parts are in a different package, you must add EGL import
statements to each file that needs to reference the common package (or
packages).

v Single file mode migration does not include the following processing that is
included by Stages 2 and 3 migration:
– Nesting forms within FormGroups.
– Including multiple blank lines between the parts in the output files.

See “Migration challenges” on page 29 and “Techniques used by the VisualAge
Generator to EGL migration tool” on page 35 for a better understanding of the
differences between single file migration and Stage 1 to 3 migration.

Migration challenges
There are several differences between the VisualAge Generator and EGL
approaches to writing and managing source code. The following differences are of
particular importance to migration:
v EGL syntax in some cases is more precise than VisualAge Generator
v Differences in when and how part references are resolved
v Differences in handling common code

These differences are explained in more detail in the following sections.

Precise EGL syntax
Even though the syntax of the two languages differs greatly, the VAGen language
can, for the most part, be migrated to the EGL language while preserving the same
behavior as the original VAGen program. However, there are number of situations

Chapter 2. Migration tool philosophy 29

in which the EGL syntax is more precise or more restrictive than in VisualAge
Generator. These situations are rare in typical programs. However, when they do
occur, the migration tool requires cross-part migration to determine the exact EGL
syntax that preserves the behavior you required in VisualAge Generator. Cross-part
migration means that the migration tool needs to have one or more other
referenced parts available to be able to do a correct migration of the current part,
as in the following examples:
v In VisualAge Generator you use the DISPLAY I/O option for both display (text)

and printer maps. EGL provides the display statement for text forms and the
print statement for print forms. To facilitate migration from VisualAge
Generator, there is an EGL preference to indicate that you want VisualAge
Generator Compatibility. The VisualAge Generator Compatibility preference
permits the use of the display statement for print forms. During migration, if
the program, its map group, and the map are all available, then the migration
tool can determine whether to migrate to a display or print statement. However,
if the DISPLAY function is being migrated without a program, then the
migration tool cannot definitively determine whether to use an EGL display or
print statement. In this situation, the migration tool uses the display statement
because it is tolerated for print forms in VisualAge Generator compatibility
mode.

v In VisualAge Generator you use the SET map PAGE statement for both display
(text) and printer maps. This causes the screen to be cleared if the next
CONVERSE or DISPLAY is for a display map and a page eject if the next
DISPLAY is for a printer map. EGL provides the clearScreen() system library
function for text forms and the pageEject() system library function for print
forms. The VisualAge Generator compatibility preference does not affect the use
of clearScreen() or pageEject(). During migration, if the program, its map group,
and the map are all available, then the migration tool can determine whether to
migrate to the clearScreen() or pageEject() system library function. However, if
the SET map PAGE statement is used in a function that is being migrated
without a program, then the migration tool cannot definitively determine
whether to use the clearScreen() or pageEject() system library function. In this
situation, the migration tool uses EZE_SETPAGE, which is intentionally invalid
EGL syntax. This results in an error in the Problems view to make you aware
that you need to correct the function.

v In VisualAge Generator, you can specify either an edit table or an edit function
as the edit routine for a map variable field. You cannot specify both. In EGL,
you can specify both the validatorDataTable and the validatorFunction
properties. If the edit table or the edit function is available during migration, the
migration tool can determine whether to set the validatorDataTable or the
validatorFunction property. However, if the part specified by the edit routine is
not available, the migration tool cannot definitively determine whether to set the
EGL validatorDataTable or validatorFunction property. In this situation, the
migration tool attempts to determine whether the edit routine is a table or
function by using information such as the length of the edit routine name and
the existence of an edit message. If the migration tool still cannot make a
determination, it uses the validatorFunction property. EGL validation displays
an error message in the Problems view only if the validatorFunction is not a
function or cannot be found.

The migration tool uses all the available parts in the migration set to resolve
ambiguous situations. To minimize these ambiguous situations, always include all
of the associated parts when you migrate. For example, when you migrate a
program, be sure to include all the parts that you need to generate the program in

30 Rational Business Developer: VisualAge Generator to EGL Migration Guide

VisualAge Generator. This ensures the best possible migration of your parts. For an
overview of how the migration tool resolves ambiguous situations, see the
following sections:
v “Migrating with a program” on page 45
v “Migrating with associated parts” on page 46
v “Migrating without associated parts” on page 46

See Chapter 3, “Handling ambiguous situations,” on page 65 for a complete list of
the situations where the migration tool must do cross-part migration to achieve a
correct migration and the techniques the migration tool uses to try to make an
intelligent choice if the additional parts are not available.

When and how part names are resolved
At definition time, VisualAge Generator does not require that all parts exist. In the
program structure diagram, VisualAge Generator indicates missing maps, records,
tables and functions with a question mark. However, in other places such as the
use of a shared data item, there is no indication if the part does not currently exist.
When you save a part in VisualAge Generator, there is some basic syntax
validation, but there is no cross-part validation until you test, validate, or generate.
In EGL, whenever you save a file, there is more extensive validation, including
validation that all part names can be resolved. This gives you the earliest possible
warning when there is a problem.

VisualAge Generator searches all parts in the workspace to find a particular part
name. If there are duplicate part names in VisualAge for Java, then test and
generation are blocked until the duplicate part problem is fixed. VisualAge for
Smalltalk does not permit you to load duplicate parts into the image. In EGL, you
are permitted to have duplicate part names in your workspace. EGL uses a
combination of the EGL build path for a project, import statements in a file, and
the containerContextDependent property for records and functions to determine
which definition of a part to use.

When you migrate using Stage 1 to 3 migration, the migration tool sets the EGL
build path for projects and includes import statements in files based on the
available parts in the migration set. To obtain the correct EGL build path and
import statements, always include all the associated parts when you migrate. For
example, when you migrate a program, be sure to include all the parts that you
need to generate the program in VisualAge Generator. This ensures the best
possible migration of your parts. See the following sections for more details:
v “EGL build path and import statements” on page 38
v “containerContextDependent Property” on page 40

Common code scenarios
Common code is shared between subsystems or programs. The following figure
shows common code that is shared by two subsystems.

Chapter 2. Migration tool philosophy 31

Corporate Common Code

SubsystemA SubsystemB

Corporate
Common Code
shared by both

Subsystems

In this case, there are one or more Java projects or Smalltalk configuration maps
that contain Corporate Common Code. The code in these projects or configuration
maps can be shared by multiple subsystems. In this example, SubsystemA and
SubsystemB use subsets of the common code. Some of the Corporate Common
Code is used by both subsystems. For example, Corporate Common Code might
include SQL record definitions that are used by many subsystems.

The next figure shows the same basic sharing of Corporate Common Code by the
two subsystems, with SubsystemA shown in more detail.

Corporate Common Code

SubsystemA SubsystemB

SubsystemA
Common Code

Program1

Program2

SubsystemA has SubsystemA Common Code that is used by multiple programs
within SubsystemA, but only by programs within SubsystemA. In this case,
Program1 and Program2 each make use of some of the SubsystemA Common Code
as well as some of the Corporate Common Code. Between the two programs, there
is some overlap of both the SubsystemA Common Code and the Corporate
Common Code, including overlap with Corporate Common Code that SubsystemB
uses. For example, SubsystemA Common Code might include SQL record
definitions that are used only by programs within SubsystemA. SubsystemA
Common Code might also include a map group definition that is used by several
programs within SubsystemA.

32 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Common code and VisualAge Generator
To facilitate the use of common code, VisualAge Generator determines at test and
generation time how a particular piece of source code should be interpreted. The
advantage of this is that each subsystem or program can make slight variations in
the code, just by varying the specific map group that a program uses or by varying
data item or record definitions that are in the workspace during generation. The
following examples illustrate this idea:
v Much of the same logic can be shared by an online program that interacts with a

terminal and a batch program that prints a similar report as in the following
example:
– ProgramA is main transaction program using MapGrpA which contains

display maps named HEADER, DETAIL, and TRAILER. ProgramA displays
the partial HEADER map, displays DETAIL lines in a floating area, and then
converses the TRAILER map which contains an input field where the user can
request the next report. ProgramA uses the SET HEADER PAGE statement to
clear the screen.

– ProgramB is a main batch program using MapGrpB which contains printer
maps named HEADER, DETAIL, and TRAILER. Program B produces a
hardcopy version of the same report that ProgramA displays on a terminal.
ProgramB displays the partial HEADER map, displays the DETAIL print lines
in a floating area, and then displays the TRAILER map at the bottom of the
page. ProgramB uses the SET HEADER PAGE statement to force a page eject.

– The number of lines in the floating area differs between the main transaction
and the main batch programs. However, the logic for data retrieval, data
manipulation, and displaying the HEADER and DETAIL maps is the same for
both programs. Because of this, ProgramA and ProgramB were designed to
use common functions to retrieve data from the database, manipulate the
data, and display the HEADER and DETAIL maps.

– This common code technique works in VisualAge Generator because the same
DISPLAY I/O option can be used for both display and printer maps. In
addition, the same SET HEADER PAGE statement can be used for both
display and printer maps. VisualAge Generator interprets the DISPLAY I/O
option and the SET map PAGE statement based on the specific program it is
testing or generating.

– EGL requires different statements for display and print forms:
- display and converseLib.clearScreen() for a text form
- print and converseLib.pageEject() for a print form

In VisualAge Generator compatibility mode, the display statement is tolerated
for a print form. However, even in VisualAge Generator compatibility mode,
clearScreen() only applies to text forms and pageEject() only applies to print
forms.

v A less typical example is the use of a common error handler function called
SET-MESSAGE-TEXT which retrieves message text from a VAGen table called
MSGTBLE and stores it in a function parameter called MESSAGE-TEXT, where
MESSAGE-TEXT is a shared data item.
– Assume that SubsystemA and SubsystemB run in different CICS regions. In

this case, the two subsystems can each provide their own definition of the
MSGTBLE and their own definition of the MESSAGE-TEXT shared data item
which is used as a function parameter. This might occur if the subsystems
provide different size error message fields on their respective map definitions.

– VisualAge Generator uses the definition that is currently loaded in the
workspace when it generates a program. As long as each subsystem always
loads its own definition of the MESSAGE-TEXT data item into the workspace

Chapter 2. Migration tool philosophy 33

before test or generation, VisualAge Generator uses the definition that is
correct for that subsystem. The disadvantages of this technique are that you
must control what is in the workspace when you generate and you cannot
have both subsystems in the workspace at the same time.

– EGL permits you to have both subsystems in the workspace at the same time.
In this situation, EGL uses a combination of the EGL build path, import
statements, and the containerContextDependent property for the
SET-MESSAGE-TEXT function to resolve the reference to the MESSAGE-TEXT
DataItem part definition.

v A slightly different example is the use of a common error record called
ERROR-RECORD which contains a shared data item called MESSAGE-TEXT2.
– Assume that SubsystemA and SubsystemB have different definitions of

MESSAGE-TEXT2. This might occur if the subsystems need to build message
text for different screen sizes.

– VisualAge Generator uses the definition that is currently loaded in the
workspace when it generates a program. As long as each subsystem always
loads its own definition of MESSAGE-TEXT2, VisualAge Generator uses the
definition that is correct for that subsystem. The disadvantages of this
technique are similar to the SET-MESSAGE-TEXT function example. You must
control what is in the workspace when you generate and you cannot have
both subsystems in the workspace at the same time.

– EGL permits you to have both subsystems in the workspace at the same time.
In this situation, EGL uses a combination of the EGL build path, import
statements, and the containerContextDependent property for the
ERROR-RECORD to resolve the reference to the MESSAGE-TEXT2 DataItem
part definition.

Common code and the migration tool
Common code is used in multiple programs. You need to include the common
code in every migration set because it influences the migration tool in the
following ways:
v If common code is available, the migration tool is able to resolve most

ambiguous situations. This minimizes or eliminates the code changes you must
make manually. For example, you might have an SQL record stored in a VAGen
common project and used by functions in many different subsystem projects.
When the migration tool converts an SQL function, the migration tool must be
able to reference the SQL record that is the I/O option to properly convert the
SQL function. Therefore, you must include the VAGen common project
whenever you migrate the subsystem projects that use the SQL record.

v If common code is available, the migration tool can properly set the EGL build
path for projects and include the correct import statements for your EGL files.
This minimizes the need for you to change the EGL build path or add import
statements.

v The first time the migration tool migrates a part version, the tool stores the EGL
created for the part into the migration database. The original External Source
Format is also retained in the migration database. If another migration set uses
the same part version, the migration tool uses the original External Source
Format for reference when creating EGL for the new parts in the additional
migration set, but does not convert the part to EGL again. The migration tool
also uses the EGL for the part version when building the EGL projects, packages,
and files for the additional migration set. This technique provides the necessary
reference information for the migration tool to resolve ambiguous situations
during cross-part migration, while improving performance by only migrating
each part version one time.

34 Rational Business Developer: VisualAge Generator to EGL Migration Guide

To ensure the best possible results when you are migrating a subsystem, you
should always include Corporate Common Code and the Subsystem Common
Code in your migration set.

Techniques used by the VisualAge Generator to EGL migration tool

Overview of techniques
The migration tool uses the following techniques to determine the corresponding
EGL syntax and to preserve the VisualAge Generator behavior:
v Editor and build descriptor preferences
v Program properties
v EGL build path and import statements
v containerContextDependent property
v EGL part name restrictions
v Placing parts in EGL files
v Migrating with a program
v Migrating with associated parts
v Migrating without associated parts
v Controlling the order for processing migration sets
v Overwriting and merging files

These techniques are explained in the following sections. There are also some
general rules that govern the migration tool.

Editor and build descriptor preferences
Before you start Stage 2 of migration, you should turn on the VisualAge Generator
compatibility preference for your workspace. The EGL VisualAge Generator
compatibility preference provides support for the following VAGen behaviors:
v Cycles in the EGL build path. This means that ProjectA can reference ProjectB in

its build path at the same time that ProjectB references ProjectA in its own build
path.

v Use of the hyphen (-) and national language characters @ and # in part names.
However, these characters are not permitted as the first character of a name even
in VisualAge Generator compatibility mode.

v The primitive data types NUMC and PACF.
v Defaulting the subscript to 1 for single dimension structure-field arrays.
v The deleteAfterUse property on a use declaration for a DataTable, which is the

replacement for VAGen Keep After Use.
v A display printForm statement is implemented the same way as a print

printForm statement.
v The initial value of a form field is used only when displaying a field on the

screen that has not had a value assigned to it. The preference does not set the
initial value of the field in storage.

v If you specify an even-numbered length for an item of primitive type DECIMAL,
EGL increments the length by one except when the item is used as an SQL host
variable in a WHERE clause or in the EGL prepare statement.

The EGL VisualAge Generator compatibility preference provides the following
replacements for EZE data words:

Chapter 2. Migration tool philosophy 35

v The converseVar.segmentedMode system variable, which is the replacement for
EZESEGM.

v The vgLib.getVAGSysType system function, which provides the old VAGen
values for EZESYS.

v The vgVar.sqlIsolationLevel system variable, which is the replacement for
EZESQISL.

The EGL VisualAge Generator compatibility preference provides the following
replacements for EZE function words:
v The vgLib.connectionService system function, which is the replacement for

EZECONCT.

The VAGen migration tool automatically sets the vagCompatibility build
descriptor option to YES in every VAGen generation option part that it migrates to
an EGL build descriptor part. The vagCompatibility build descriptor option directs
generation to provide the same support as the VisualAge Generator compatibility
preference.

Note: If you think that you might want to eliminate the use of VisualAge
Generator compatibility mode in the future, see “Eliminating the use of
VisualAge Generator compatibility mode” on page 225 for details before you
migrate. For example, if you need to eliminate hyphen, @, or # from your
part names, you might want to use a Rename User Exit during migration.

There are migration preferences that enable you to minimize the use the
migration tool makes of VisualAge Generator compatibility mode. For
example, you can specify that the migration tool should not add the
vagCompatibility = "YES" build descriptor option to every VAGen
generation option part. For details, see “VAGen Migration preferences” on
page 174.

Regardless of how you set the preferences, the migration tool always turns
on VisualAge Generator compatibility mode when refreshing the workspace.

Program properties
The migration tool includes the following program properties in every program:
v includeReferencedFunctions = YES. The migration tool always includes this

program property so that functions do not have to be nested within the
program. This enables you to keep just one copy of common functions in a
separate project or package and import them, rather than including the common
functions in each program. When you use Stage 1 – 3 migration, the migration
tool also includes any necessary import statements for functions that are in a
different package from the program.

v allowUnqualifiedItemReferences = YES. The migration tool always includes
this program property so that references to fields (VAGen data items) do not
need to be qualified. The EGL rules for unqualified fields are similar to the
VAGen rules. In most cases, the unqualified fields resolve to the same record,
DataTable (VAGen table) or form (VAGen map) as in VisualAge Generator. The
migration tool does not add qualifications. However conflicts can arise if a
VAGen nonshared item or field on a map has the same name as a program,
map, table, or function. For details, see “Reference information for messages -
name resolution and qualification rules” on page 450.

v throwNrfEofExceptions = YES. The migration tool always includes this program
property so that NRF (noRecordFound) and EOF (endOfFile) are treated as

36 Rational Business Developer: VisualAge Generator to EGL Migration Guide

error conditions. In EGL, NRF and EOF are not normally treated as error
conditions. Therefore, throwNrfEofExceptions = yes is required to preserve
VAGen behavior.

v handleHardIOErrors = NO. The migration tool always includes this program
property so that the default value for vgVar.handleHardIOErrors is set to 0.
vgVar.handleHardIOErrors is the replacement for EZEFEC. The normal EGL
default value for vgVar.handleHardIOErrors is 1. However, the VAGen default
value for EZEFEC is 0. Therefore, handleHardIOErrors = no is required to
preserve VAGen behavior.

v V60ExceptionCompatibility = YES. The migration tool always includes this
program property so that exceptions do not propagate beyond the function in
which they occur. There are additional side effects of setting the
V60ExceptionCompatibility property to YES, all of which are consistent with
VAGen behavior.

v I4GLItemsNullable = NO. The migration tool always includes this program
property even though NO is the default value. The NO value is required to
preserve VAGen behavior and performance.

v textLiteralDefaultIsString = NO. The migration tool always includes this
program property so that text literals are treated as fixed-length CHAR,
DBCHAR, or MBCHAR fields depending on the type of data in the literal. This
provides better performance for EGL-generated COBOL programs and also
ensures that text literals are passed to non-EGL programs in the same way as in
VisualAge Generator.

v localSQLScope = YES. The migration tool always includes this program
property even though YES is the default value. The naming conventions that the
migration tool uses to create the result set ID and the prepare statement ID do
not guarantee uniqueness across programs. Therefore, setting the localSQLScope
property to YES is required to preserve VAGen behavior.

The migration tool includes the @DLI complex property for every DL/I or IMS
program and sets the following property fields:
v psb = psbVariableName. The migration tool includes this program property to

specify the name of the variable that provides the name of the PSBRecord part.
The migration tool always uses "psb" as the variable name.

v callInterface = DLICallInterfaceKind.CBLTDLI. The migration tool includes
this program property to ensure that CBLTDLI is used as the call interface.
CBLTDLI provides the same call interface that is used by VisualAge Generator.
EGL uses AIBTDLI as the default call interface. If you want to use AIBTDLI, you
must add PCB Name information to your IMS PSBs and your EGL PSBRecord
parts.

v handleHardDLIErrors = NO. The migration tool includes this program property
so that the default value for dliVar.handleHardDLIErrors is set to 0.
dliVar.handleHardDLIErrors is the replacement for EZEDLERR. The normal
EGL default value for dliVar.handleHardDLIErrors is 1. However, the VAGen
default value for EZEDERR is 0. Therefore handleHardDLIErrors = NO is
required to preserve VAGen behavior.

v psbParm = psbData. If the VAGen program includes EZEDLPSB as a called
parameter, the migration tool includes the psbParm property to indicate that the
entire PSB is passed to the program.

v pcbParms = [list of PCB parameters]. If the VAGen program includes
EZEDLPCB[n], where n is a numeric literal, as a called parameter, the migration
tool includes the pcbParms property to provide the mapping of the input PCB
parameters to the PCBs in the PSBRecord part for the program.

Chapter 2. Migration tool philosophy 37

Because the edit routines for UI records might have functions that perform I/O or
that call another program, the migration tool always includes the following
properties to preserve VAGen behavior when creating a VGUI record:
v throwNrfEofExceptions

v handleHardIOErrors

v V60ExceptionCompatibility

v I4GLItemsNullable

v textLiteralDefaultIsString

v localSQLScope

EGL build path and import statements
EGL enables you to have multiple definitions for a part name in the workspace at
the same time. The EGL build path for a project limits the other projects that are
considered when looking for a part name. The import statement in a file
determines which packages, other than the current package, and which parts
within the EGL build path are considered when looking for a part name.

In most situations, the EGL build path and import statements are sufficient to
resolve any part references. For example, the EGL build path and import
statements for a program are sufficient to resolve a record name if you use the
record as a type definition in a record declaration in a program. The EGL build
path and import statements are also sufficient to resolve DataItem part references
if you only have one definition of the DataItem part that can be used with a record
definition, function local storage or function parameter list.

For example, you might be working on SubsystemA and SubsystemB which have
two different definitions of RECORDX. All programs in SubsystemA need to use
the SubsystemA definition of RECORDX. EGL requires the build path and import
statements to be specified in the following way:
v The EGL build path property for projects in SubsystemA needs to include the

project that provides the definition of RECORDX for SubsystemA.
v Files for programs in SubsystemA that use RECORDX as a type declaration for a

record need to include an import statement for the package within SubsystemA
that contains the definition of RECORDX.

The EGL build path property for the SubsystemA projects limits the projects that
are searched to just the projects within SubsystemA and the common projects. The
import statements in the files within SubsystemA limit which packages within the
EGL build path are considered. Even if RECORDX uses DataItem part ITEM1 as a
type definition and the two subsystems have different definitions of ITEM1, the
EGL build path and import statements are sufficient to resolve the references to
ITEM1. The project that contains RECORDX in each subsystem must specify an
EGL build path property that includes the subsystem project that contains that
corresponding subsystem definition of ITEM1. The file containing RECORDX in
each subsystem must have an import statement that specifies the subsystem
package that contains the corresponding subsystem definition of ITEM1.

When you use Stage 1 through 3 migration, the migration tool performs the
following processing based on the parts in the migration set:
v The migration tool sets the EGL build path for each project based on the parts

the project needs to reference in other projects.
v The migration tool includes most import statements for each file based on the

parts the file needs to reference in other packages within the EGL build path for

38 Rational Business Developer: VisualAge Generator to EGL Migration Guide

the project that contains the file. These import statements are based on the
associated parts that were determined by VisualAge Generator during Stage 1 of
migration.

v The migration tool adds import statements for DataItem parts. During Stage 2
migration, the migration tool determines if a DataItem part has an edit routine.
If the table or function specified as the edit routine is included in the migration
set, then the migration tool updates the migration database to include the part
specified as the edit routine as an associate of the data item.

v The migration tool adds import statements for UI records. During Stage 2
migration, the migration tool determines if any field in the UI record specifies
program link information. If so and the referenced program and first UI record
are included in the migration set, then the migration tool updates the migration
database to include the program and first UI record as associates of the UI
record.

v The migration tool adds import statements for functions. During Stage 2
migration, the migration tool determines if any statement in the function
explicitly references a table. If so and the referenced table is included in the
migration set, then the migration tool updates the migration database to include
the table as an associate of the function.

v The migration tool does not add import statements for the following situations
because these are not associates in VisualAge Generator:
– For a function that transfers to a program using a CALL, DXFR, or XFER

statement. If you are generating for Java, you must add the import statement
for the package containing the program within the file containing the function
or fully qualify the program name with the package name. Alternatively, you
can use an entry in a linkage options part to specify the name of the package
where the program is located or use the programPackageName build
descriptor option to force all the generated Java programs to be placed in the
same runtime package.

– For build parts in .eglbld files. VAGen control parts, such as the generation
options parts, do not list their associated parts, so the information is not
readily available to the migration tool. In addition, due to the way EGL
processes build descriptor parts, you probably need to do some reordering of
the nextBuildDescriptor values (VAGen /OPTIONS). This reordering in turn
requires modification of any imports the migration tool might have done.

Note: The Stage 1 migration tool analyzes the parts in the migration set to
determine the associates for each part. To ensure that only parts for the
migration set are included in the analysis, the Stage 1 migration tool
deletes any Java projects from the workspace before loading the migration
set specified by a high-level PLP project. Similarly, the Stage 1 migration
tool deletes any Smalltalk configuration maps before loading the
migration set specified by a high-level configuration map. Because the
analysis of associates is limited to the migration set, the migration tool
does not set the EGL build path property to specify EGL projects that are
not included in the migration set. In addition, the migration tool does not
include import statements for EGL packages that are not included in the
migration set.

Single file mode migration does not include the following processing that is
included by Stages 2 and 3 migration:
v Setting the EGL build path because all parts in single file migration are placed in

the same project.

Chapter 2. Migration tool philosophy 39

v Including import statements because all parts in single file migration are placed
in the same package.

containerContextDependent Property

Note: This section describes a capability that is only partially implemented in EGL
version 7.1. If you specify the containerContextDependent property for a
function, the resolution of function invocations within that function occurs
at generation time (not at development time) and includes reference to the
name space of the program that uses the invoking function. At this time, the
containerContextDependent property has no effect on name resolution for
record or DataItem parts.

The following description reflects what is intended for the final
implementation.

As described in “EGL build path and import statements” on page 38, the EGL
build path and import statements are generally sufficient to provide the part name
resolution that you need. However, EGL expects to resolve all part name references
whenever you save a file. EGL adds an error message to the Problems view if it
cannot resolve the part name. Depending on your architecture, you might also
need to use the containerContextDependent property for records or functions.

Consider the situation where RECORDX is used as the type definition for a
function parameter in FUNCTIONY. Assuming that RECORDX and FUNCTIONY
are in different projects and packages, EGL expects the following information:
v The EGL build path for the project that contains FUNCTIONY must include the

project that contains the definition of RECORDX.
v The file containing FUNCTIONY must include an import statement for the

package that contains RECORDX.

If all subsystems have the same definition of RECORDX, then the EGL build path
and import statements are sufficient, and EGL can resolve the part reference for
RECORDX whenever you save the file containing FUNCTIONY.

However, consider the situation in which SubsystemA and SubsystemB both use
FUNCTIONY, but have different definitions of RECORDX. In this situation, the
EGL build path and import statements cannot point to both subsystems at the
same time. EGL supports the containerContextDependent property for functions.
In this situation, you can set the containerContextDependent property to YES for
FUNCTIONY. This specifies that the part name references for the function
parameters and local storage are not to be resolved until FUNCTIONY is used
within a program. When you test or generate a program that uses FUNCTIONY,
the EGL build path of the project containing the program and the import
statements of the file containing the program determine where to find the
definition of RECORDX. Setting the containerContextDependent property to YES
enables you to achieve the same flexibility provided by VisualAge Generator for
the function. The EGL build path for each project in the subsystem and the import
statement for any files containing programs in the subsystem point to the
definition of RECORDX for that subsystem.

The containerContextDependent property is also supported for record parts. For
example, SubsystemA and SubsystemB might both use the same definition of
RECORDZ. However, RECORDZ uses a type definition that references the
DataItem part called ITEM1. The subsystems have different definitions of ITEM1.
In this case, you can specify containerContextDependent = yes for RECORDZ so

40 Rational Business Developer: VisualAge Generator to EGL Migration Guide

that EGL validation does not attempt to resolve ITEM1 until RECORDZ is used in
a program. The EGL build path of the project containing the program and the
import statements of the file containing the program determine where to find the
definition for ITEM1.

The migration tool does not attempt to set the containerContextDependent
property for you. This is because the migration tool does not require that you
migrate all your subsystems at the same time and does not do a complete analysis
of all definitions of all parts to determine when there are duplicate part definitions.
You can add the containerContextDependent property as necessary if you
determine that there are duplicate part names that need to be resolved at test and
generation time (as in VisualAge Generator) rather than at definition time (as in
EGL).

EGL part name restrictions
EGL part and variable names have more restrictions than VAGen part and field
names. EGL has the following restrictions:
v EGL has a reserved word list. EGL parts and variables must not be named the

same as an EGL reserved word.
v EGL does not permit the use of the # or @ symbol as the first character of an

EGL part name, even when the VisualAge Generator compatibility preference is
selected.

v If an EGL part or variable name has the same name as an EGL property,
annotation, enumeration, or library name, EGL name resolution gives precedence
to the part or variable name.

To minimize conflicts, the migration tool creates an extended reserved word list
that includes all EGL reserved words, as well as all EGL property, annotation,
enumeration, and library names. If a VAGen part or field name is on this extended
reserved word list or starts with the # or @ symbol, the migration tool uses the
following rules to rename the part or field based on the part type:
v The migration tool does not rename programs, map groups, or tables because

these parts frequently have references from non-VAGen programs or the runtime
environment (for example, a CICS PROGRAM definition).

v The migration tool renames data items, records, maps, and functions by
prefixing the part name with a Renaming prefix. The Renaming prefix is one of
the VAGen Migration Preferences that you can specify for Stage 2 or single file
mode migration. Similarly, the migration tool renames fields by prefixing the
field name with the Renaming prefix.

Note: For the purposes of renaming, the migration tools treat a UI record the
same as other records. In addition, if a UI record must be renamed, the
Stage 3 migration tool changes the name of the .egl file that contains the
UI record so that the file name matches the new name for the record. The
migration tool sets the alias property for the VGUI record to the original
VAGen UI record name so that the EGL-generated record name matches
the original VAGen UI record.

v The migration tool does not rename control parts, except in the following
situations:
– The migration tool removes the .BND suffix from the end of a bind control

part name.
– The migration tool removes the .LKG suffix from the end of a link edit part

name.

Chapter 2. Migration tool philosophy 41

– The migration tool changes any other dots to underscores in control part
names. The tool also changes dots to underscores in control part names that
are referenced in the /OPTIONS, /RESOURCE, and /LINKEDIT generation
options.

The Stage 1 migration tools provide a list of the program, map group, table, and
control part names that conflict with the migration tool extended reserved word
list. If you do not rename these parts before you migrate, the Stage 2 migration
tool (or single file mode) also issues an error message. EGL validation also displays
an error message in the Problems view. You can correct the problem in EGL by
renaming the Program, FormGroup, or DataTable and optionally using the EGL
alias property.

Note: The Stage 2 migration tool issues a warning message for any UI record that
is renamed by the tool. Because the Stage 3 migration tool also renames the
.egl file, there is no error in the Problems view for UI records.

Placing parts in EGL files
When you migrate using Stage 1 – 3 migration, each Java package or Smalltalk
application migrates to the corresponding EGL package based on your Stage 1
renaming rules. The VAGen parts within the original Java package or Smalltalk
application are placed in one or more EGL files within the corresponding EGL
package based on the following conditions:
v The type of part:

– Generatable part -- program, table, map group, or UI record
– Control part -- generation options, resource associations, linkage table, link

edit, or bind control
– Other migratable parts -- data item, map, function, PSB, and records other

than UI records.
v A Stage 1 preference that enables you to identify Java project or package names

that contain common parts. Similarly, there is a Stage 1 preference for Smalltalk
that enables you to identify configuration map or application names that contain
common parts.

v Whether the part is used by some other part. The Stage 1 migration tool
determines whether a part is used based on the following conditions:
– A part is "used" if it appears on the VAGen associates list of any generatable

part in the migration set.
– A part is "used" if it is in a common Java project or package or in a common

Smalltalk configuration map or application as specified in your Stage 1
preferences.

The Stage 1 migration tool determines the placement of all parts. The Stage 1
migration tool places VAGen parts within a single Java package or Smalltalk
application into EGL files within the corresponding EGL package according to the
following rules:
v All control parts are placed in a single file called eglPackageName.eglbld, where

eglPackageName is the name of the corresponding EGL package.
v Each program part is placed in a file called programName.egl, where programName

is the name of the program.
v Each table part is placed in a file called tableName.egl, where tableName is the

name of the table.

42 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v Each map group and all maps in the map group are placed in a file called
mapGroupName.egl, where mapGroupName is the name of the map group. If there
is no map group part, the Stage 1 migration tool creates a dummy map group
part. Because the map group and all maps in the map group must be placed in
the same file, these parts must be considered as a group. This can result in some
parts being moved to a different EGL package or project if the parts were not
originally in the same Java package or Smalltalk application. The migration tool
determines where to place the mapGroupName.egl file according to the following
rules:
– If the map group and all its maps are in the same Java package, the

mapGroupName.egl file is placed in the corresponding EGL package. Similarly,
if the map group and all its maps are in the same Smalltalk application, the
mapGroupName.egl file is placed in the EGL package that corresponds to the
Smalltalk application. In this situation, the migration tool handles the
mapGroupName.egl file in the same manner as the program and table files.
This is the most common situation.

– If the map group and its maps are spread across several Java packages within
a project, then the project name, plus a suffix, is used to create the name of a
new EGL package to contain the mapGroupName.egl file. This new EGL
package is placed within the original project. Similarly, if the map group and
its maps are spread across several Smalltalk applications within a
configuration map, the configuration map name, plus a suffix is used to
create the name of a new EGL package to contain the mapGroupName.egl file.
For both Java and Smalltalk, you can control the suffix with a Stage 1
preference.

– If the map group and its maps are spread across several Java projects, then the
migration set name, plus a suffix is used to create the name of a new EGL
project that contains the mapGroupName.egl file. Similarly, if the map group
and its maps are spread across several Smalltalk configuration maps, the
migration set name, plus a suffix is used to create the name of a new EGL
project that contains the mapGroupName.egl file. For both Java and Smalltalk,
you can control the suffix with a Stage 1 preference.

v Each UI record is placed in a file called uiRecordName.egl, where uiRecordName is
the name of the UI record.

v All the remaining parts are placed according to the following rules:
– If the part is used by only one program in the migration set, the part is

placed in a file according to the following rules:
- If the part is in the same package as the program, then the part is placed in

the same file as the program. For example, the main function of a program
(ProgramA-MAIN) is placed in the same file as the program (ProgramA)
provided the function is not used in any other programs or in other
generatable parts. The file is named for the program – ProgramA.egl.

- If the part is in a different package from the program that uses it, the part
is placed in a file in the original package for the part. This file is named
commonParts.egl by default, but you can change the name through the
Common Parts Stage 1 preference.

– If the part is used by several programs or multiple generatable parts in the
migration set, then the part is placed in the file called commonParts.egl
within the original package. For example, if ProgramA calls ProgramB and
passes RecordR, then RecordR is placed in the file called commonParts.egl in
the EGL package that corresponds to the original Java package or Smalltalk
application that contains RecordR.

Chapter 2. Migration tool philosophy 43

– If the part is not used by any programs in the migration set, the part is
placed in a file according to the following rules:
- If the part is in a common Java project or package, then the part is placed

in the file called commonParts.egl within the EGL package that corresponds
to the original Java package that contains the part. Similarly, if the part is in
common Smalltalk configuration map or application, then the part is placed
the file called commonParts.egl within the EGL package that corresponds to
the original Smalltalk application that contains the part.

- If the part is not in a common Java project or package, then the part is
placed in a file within the EGL package that corresponds to the original
Java package that contains the part. Similarly, if the part is not in a
common Smalltalk configuration map or application, then the part is placed
in a file within the EGL package that corresponds to the original Smalltalk
application that contains the part. This file is named unusedParts.egl by
default, but you can change the name through the Unused Parts Stage 1
preference.

v The following special considerations apply:
– The migration tool places any function used as an edit routine in a map, UI

record, or data item part in the commonParts.egl file. The migration tool also
places all the associates of the edit routine function in the commonParts.egl
file. This technique ensures that edit routine functions used by parts other
than a program are visible outside the program file. If you later decide to nest
functions within a program, you can move the end statement for the program
after the last function in the program file without being concerned about the
visibility of functions that are used as edit routines.

– The migration tool places any shared item that is used in a table or UI record
in the commonParts.egl file. The migration tool never places shared items in
the same file with a table or UI record.

Note: If you migrate multiple migration sets or migration set versions without
clearing out the migration database, the first migration set version processed
in Stage 1 that contains a part edition controls the project, package and file
name for the EGL part. To ensure that parts are placed according to the
definition of each migration set version, you should clear out the migration
database between versions. Alternatively, migrate the most recent version of
the migration set through Stage 1 so that any part edition that has not
changed since earlier migration set versions is placed into an EGL file based
on the current usage of the part. For example:
v A part that was previously used by only one program might now be used

by several programs. Migrating the most recent version of the migration
set first causes the part to be placed into a common parts EGL file rather
than placed with the program that was the original (and sole) user of the
part.

v A part that was previously not used by any programs might now be used
by one or more programs. Migrating the most recent version of the
migration set first causes the part to be placed based on the current usage
of the part, rather than placed in the unusedParts.egl file.

The Stage 1 migration tools for Java and Smalltalk are provided as sample code.
You can modify the Stage 1 migration tools to place parts differently based on your
own library management philosophy. For example:
v If ProgramX calls ProgramY and passes records ProgramY-Parm and

Common-Parm, you might want ProgramY-Parm to be placed in the file with
ProgramY and Common-Parm to be placed in the commonParts file. Given

44 Rational Business Developer: VisualAge Generator to EGL Migration Guide

knowledge of your naming conventions, you can modify the Stage 1 migration
tool to change the file placement algorithm.

v For large packages, you might want to split the parts into separate files by part
type or by the first few characters of the part name.

v If the same part edition appears in multiple migration set versions, but should
be placed in different EGL projects, packages, or files depending on the
migration set version, you might want to update the migration database for the
new EGL project, package, and file name for each part whenever you process a
migration set version. If you make this change, be sure to process each migration
set version completely through Stages 1 – 3 before starting to migrate the next
migration set version.

v If you used a strategy of placing one program per Java package and one
package per project, you might want to combine packages or projects to reduce
the number of EGL projects and packages you need to manage in your source
code repository. Similarly, if you used a strategy of placing one program per
Smalltalk application and one application per configuration map, you might
want to combine applications or configuration maps when creating your EGL
projects and packages.

For examples of modifying the Stage 1 tools, see the Stage 1 white papers listed in
“References” on page 16. In addition, the Stage 1 tools have some built-in
customization capability. For more information on the Stage 1 tool on Java, see
“Customizing the Stage 1 migration tool” on page 135. For more information on
the Stage 1 tool on Smalltalk, see “Customizing the Stage 1 migration tool” on
page 159.

Migrating with a program
Normally when you migrate, you specify a migration set that identifies all the Java
projects or Smalltalk configuration maps that should be migrated as a group. Using
the migration set, the migration tool migrates programs and their associates first.
This enables the tool to use the context of a specific program to assist in resolving
situations where the EGL language is more precise or more restrictive than
VisualAge Generator. The first program and its associated parts to migrate
determines the EGL syntax for any ambiguous situation within that program or its
associated parts. A different program might result in a different resolution for the
same ambiguous situation in a shared data item, common record, map, table or
function. Because a part version is only migrated once, the first program that uses
the common part controls the resolution of any ambiguous situation for the parts
associated with it.

Consider the example in which ProgramA is a main transaction program using
display maps and ProgramB is a main batch program using printer maps. The
programs share common functions that display the HEADER and DETAIL maps.
The common functions also use the SET map PAGE statement to clear the screen or
force a page eject. In this case, if ProgramA migrates first, the migration tool
creates the EGL source for the functions to use the display statement and
converseLib.clearScreen() system library function. If ProgramB migrates first, the
migration tool creates the EGL source to use the print statement and the
converseLib.pageEject() system library function.

Whenever you migrate programs and their associates, the first program that uses a
shared data item, common record, map, table, or function controls the resulting
EGL code. In most cases, because the programs use the common code in the same
way, this technique provides the most appropriate migration of your VAGen
source. However, as you can see from this example, the specifics of what you

Chapter 2. Migration tool philosophy 45

intended the common code to accomplish might not be reflected in the resulting
EGL source. In this example, regardless of which program migrates first, you
cannot test or generate the program that migrates second. In VisualAge Generator
compatibility mode, you can use the display statement to resolve the problem with
the I/O statement. However, to resolve the problem with the choice of
clearScreen() or pageEject() might require adding a new variable,
TEXT-OR-PRINT, that each program initializes and which the common function
tests to determine whether to execute the clearScreen() or pageEject() system
library function.

Migrating with associated parts
If a program and its associated parts are not available, the migration tool makes
use of all the parts that are available in the migration set (or in the External Source
Format file if you are migrating in single file mode). In this case, if the additional
part that is needed for cross-part migration is available, the migration tool can
make a decision with a high probability that it is the correct choice.

Consider the example in which a map variable field specifies an edit routine. If a
VAGen table that is named the same as the edit routine is available in the same
migration set (or the External Source Format file), then the migration tool assumes
that this is the table that would always be used and migrates to the
validatorDataTable property. If there is a function that is named the same as the
edit routine, then the migration tool migrates to the validatorFunction property. In
either case, because there is a part with the same name as the edit routine, the
migration tool has a high probability that it made the correct choice. If a table or
function with the same name as the edit routine is not available, then the
migration tool processes the map variable field as though it was migrating without
associated parts.

In many cases, migration with associated parts can provide very similar migration
to what you would achieve when you migrate programs with their associates. The
disadvantage of migrating without the program is that you can quickly shift from
migrating with associated parts to migrating without associated parts even within
a single function based on the specific statement that is being migrated and the
other parts that are included in the migration set.

Migrating without associated parts
Sometimes even when a program is available, not all of its associated parts are
included in the migration set. Or you might be migrating some common parts that
were used in the past by a subsystem, but which are not currently in use. In this
case, the associates of a part that is being migrated might not be available. The
migration tool still converts the part using one of the following techniques:
v Flexibility in EGL syntax. For example, a DISPLAY I/O option is migrated

without an associated map. In this case the migration tool makes the choice of
using a display statement and includes a warning message in the migration log.
Even if the migration tool guessed incorrectly, because you use VisualAge
Generator compatibility mode, the display statement is accepted even if the
form is a print form.

v Intelligent guess. For example, a map variable field specifies an edit routine, but
there is no part named the same as the edit routine in the migration set. In this
case, the migration tool makes use of other information. The tool considers the
following factors when determining whether to use the validatorDataTable or
validatorFunction property:

46 Rational Business Developer: VisualAge Generator to EGL Migration Guide

– Length of the edit routine name, because 8 or more characters indicate it is a
function.

– Edit routine name is EZEC10 or EZEC11, which indicate it is a function.
– Edit message is also specified, because the message can only be used with an

edit table or EZEC10 or EZEC11.
The presence of any of these factors enables the migration tool to make an
intelligent choice between setting the validatorDataTable or validatorFunction
property. If there is nothing to make a definitive choice, the migration tool uses
the validatorFunction property and includes an error message in the migration
log. If the migration tool guessed incorrectly there should also be an error in the
Problems view.

v Deliberately invalid syntax. For example, a SET map PAGE is migrated without
an associated map. In this case, the migration tool could make the choice
between using an EGL converseLib.clearScreen() function for a text form and an
EGL converseLib.pageEject() function for a print form. However, both choices
are equally probable. Therefore, the migration tool creates intentionally invalid
syntax and converts to converseLib.EZE_SETPAGE. This results in an error in
the Problems view and forces you to correct the problem.

v Direct conversion without information due to missing associates. (The missing
associates can result in problems undetectable by the migration tools.) For
example, RecordA specifies that it is redefining the storage of RecordB. In
VisualAge Generator, the redefinition information is stored in the record
definition for RecordA. When you generate, RecordA and RecordB must be
available and the redefinition is done for the RecordA in the program. In EGL
the redefinition information is only stored in the program. If RecordA is not
available when migrating the program, the migration tool has no way to detect
that RecordA needs to include the redefines property within the program.
Without the redefines property, EGL debug and generation treat RecordA and
RecordB as separate data areas. The program does not run the same way that it
did in VisualAge Generator; data might not be initialized correctly and abends
could occur. This is why we strongly encourage you to generate and test your
migrated programs.

Controlling the order for processing migration sets
The Stage 1 migration tool processes migration sets in the following order:
v If you specify a .pln file or a directory containing .pln files, the Stage 1 migration

tool processes the migration sets within a single .pln file in the order in which
they are listed within the file. If there are multiple .pln files in a directory, the
Stage 1 migration tool processes the files in alphabetical order.

v If you do not specify a .pln file or a directory containing .pln files, the Stage 1
migration tool processes the Java high-level PLP projects that match the
specifications in alphabetical order. If multiple versions of the same Java
high-level PLP project are requested, the Stage 1 migration tool processes the
versions in order based on the date/time stamp. Similarly, the Stage 1 migration
tool processes the Smalltalk high-level configuration maps that match the
specifications in alphabetical order. If multiple versions of the same Smalltalk
high-level configuration map are requested, the Stage 1 migration tool processes
the versions in order based on the date/time stamp.

v If you need more control over the order in which migration sets are added to
the migration database, run the Stage 1 tool multiple times.

The Stage 2 and 3 migration tools process migration sets in the following order:

Chapter 2. Migration tool philosophy 47

v The Stage 2 and 3 migration tools process the migration sets in the same order
they are listed in the .vgmig file. By default, if all the migration set names are
unique, this is the same order in which the migration sets are listed in the
VAGen Migration wizard and is the same order in which the migration sets
were added to the migration database in Stage 1.

v If you need to change the order, clear Migrate now and save the .vgmig file.
Double-click the .vgmig file to change the order and then save the file.
Right-click the .vgmig file and then click Start Migration. Alternatively, run
Stage 2 and 3 multiple times, specifying just one migration set each time, in the
order in which you want the migration to occur.

Note: You should not process multiple versions of a migration set using online
mode.

Overwriting and merging files
The Stage 2 and 3 migration wizards provide the following related preferences that
control processing for multiple versions of the same migration set:
v Migrate remaining VAGen parts.
v Import into workspace, with or without Override existing files.
v Save migrated files to temporary directory.

Migrate remaining VAGen parts controls whether the migration tool converts all
parts in the migration set to EGL.
v For the purposes of the Migrate remaining VAGen parts preference, UI records

are treated like other records. This preference does not consider UI records to be
generatable parts.

v If you do not select Migrate remaining VAGen parts, only generatable parts and
their associates are converted into EGL and stored in the migration database.
Data items, records, and functions are not converted unless they are an associate
of one or more generatable parts. Control parts are not converted. Clearing the
Migrate remaining VAGen parts preference can be useful if you are migrating a
subsystem project and a common project in a single migration set. In this
situation, the migration tool migrates projects in the following way:
– For the subsystem project, only parts that are actually used within the

subsystem are converted.
– For the common project, any generatable parts and their associates are

converted. In addition, any data items, records, and functions that are used
by the subsystem are also converted. Other data items, records, and functions
that might be used by other subsystems but which are not used by the
current subsystem are not converted to EGL.

There are two advantages to clearing Migrate remaining VAGen parts:
– For the subsystem project, you have the opportunity to clean up your code

because the migration tool only converts parts that are actually used.
– For the common project, you can defer converting parts until they are actually

used by another subsystem. When you include the common project in the
migration set for another subsystem, any additional parts used by this
subsystem are converted to EGL and stored in the migration database. This is
particularly useful if your common project has associates in various
subsystems or contains parts that are associates of generatable parts in
various subsystems. Deferring the migration of the common parts until a
subsystem uses the part enables the common parts to migrate "with
associates." When you migrate the next migration set that contains the

48 Rational Business Developer: VisualAge Generator to EGL Migration Guide

common project, your selection for Override existing files controls what
happens to the originally migrated common parts files.

v If you select the Migrate remaining VAGen parts preference, the generatable
parts and their associates are converted to EGL and stored in the migration
database. Then any data items, records, and functions that are not associates of
generatable parts are converted to EGL. All control parts are also converted to
EGL. There are two advantages to selecting Migrate remaining VAGen parts:
– For the subsystem project, all the parts are converted to EGL regardless of

whether they are used or not. This is useful if you must preserve code for
historical purposes.

– For the common project, selecting Migrate remaining VAGen parts is
particularly useful if you know that the parts in the common project do not
have associates in the subsystem projects that you plan to migrate in the
future. You can convert all the common parts one time and have the EGL
stored in the migration database. Then if the common project is included in
the migration set for other subsystems, the EGL is already converted and
available to be imported into the workspace or saved into the temporary
directory with the new subsystem.

If you select Migrate remaining VAGen parts for your first migration set
version, you should continue to select Migrate remaining VAGen parts for other
migration set versions. You should also select Override existing files. By
selecting both options you ensure that all the parts in the migration set are
included in the EGL file.

The Import into workspace preference controls whether the migration tool builds
the EGL projects, packages, and files in your workspace. If you select Import into
workspace, there are additional options that you can select.
v If you are migrating multiple versions of a migration set, you can choose which

version to have imported into your workspace at the end of migration. You can
choose either the Latest version (most recent version) or the Oldest version. The
advantage of selecting the latest version is that this is the version which you are
most likely to want to generate for additional testing. The advantage of selecting
the oldest version is that this positions you to store the EGL projects, packages,
and files that correspond to the oldest version into your source code repository
first.

v You can specify how you want to handle the situation in which an EGL file that
is being created by the current migration already exists in your workspace.
– If you select the Override existing files preference, the EGL file is replaced by

a new file containing only parts in the current migration set. The migration
tool does not convert VAGen part editions again if they were already
converted for a previous migration set. However, the migration tool does
include the EGL for the part editions in the file if the parts are included in the
current migration set. Select the Override existing files preference if you
decide to change your VAGen Migration Preferences or Database I/O
Preferences or to modify your Rename User Exit Preferences. In this situation,
you could restore your database to the end of Stage 1 and then run Stage 2
and 3 again with your new preferences. Selecting the Override existing files
preference enables you to run Stage 2 and 3 without having to clean out the
EGL workspace first. Selecting Override existing files is also useful if you
select the Migrate remaining VAGen parts preference. In this situation, if you
migrate another version of a migration set, the EGL files are replaced by new
files containing the part editions that are included in the current migration set
version.

Chapter 2. Migration tool philosophy 49

– If you clear the Override existing files preference, the existing EGL file is
modified to contain any additional parts that are in the current migration set.
Parts that are already in the EGL file are not changed, even if the current
migration set uses a different part edition. Clearing the Override existing
files preference is useful only if you clear the Migrate remaining VAGen
parts preference and you are migrating just one version of a common project,
but with several different subsystems. In this situation, you can gradually
build up the EGL files for a common project in stages as you migrate different
subsystems. Only the common parts used by the first subsystem are initially
included in the EGL file. When you migrate the second subsystem, the
migration tool adds any additional parts required for the second subsystem
into the EGL file. The migration tool does a merge of the original file and the
additional parts so that the parts continue to be organized alphabetically
within part type.

You can select the Import into workspace preference when you are migrating
multiple versions of a migration set. However, the better technique is to clear
Import into workspace and instead select Save migrated files to temporary
directory. Using the temporary directory enables the migration tool to create all the
migration set versions.

The Save migrated files to temporary directory preference enables you to migrate
multiple versions of a migration set and store all the versions outside the
workspace. This option requires the use of multiple simultaneous instances of the
EGL development environment. Therefore, due to the large amount of memory
resource required, use it only in batch mode. When you select Save migrated files
to temporary directory, you must also specify a high level directory. The migration
tool creates a subdirectory for each migration set version within this high level
directory. Save migrated files to temporary directory works particularly well if
you also specify Migrate remaining VAGen parts. In this situation, each
subdirectory corresponding to a migration set version contains all the parts from
the VAGen project versions that are included in the migration set version.

General rules
There are some general rules that govern what the migration tool does when
migrating your source code. The following list summarizes important rules that are
discussed in other sections:
v Cross-part migration is required for a good conversion from VisualAge

Generator to EGL. Therefore, you must include common (shared) parts with
every migration set. The cross-part migration affects the migration of your parts
in the following ways:
– Stage 1 controls the parts placement. The first migration set in which a part

edition occurs for a data item, record, PSB, or function determines whether
the part is placed in the same file with a program, in a common parts file, or
in an unused parts file based on other parts included in that migration set.
The placement for the part edition is used for all subsequent migration sets
until you clean out the migration database.

– Stage 2 controls the conversion of the parts to EGL. The first migration set in
which a part edition occurs determines the conversion to EGL source using
cross-part migration based on other parts included in that migration set. The
conversion for the part edition is used for all subsequent migration sets until
you reset the migration information for the part edition.

50 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v Stage 3 always turns on the VisualAge Generator compatibility preference and
turns off the Build automatically preference before starting the build that occurs
at the end of migration. The migration tool does not restore these preferences to
their original values.

v For Stage 3, migration of multiple versions of a migration set or of migration
sets that contain different versions of the same project is only supported in batch
mode.

The following general rules also apply:
v The migration tool adds a few new item variables to each program. These

variables are needed to support the EGL replacement for EZE words or other
statements. Adding the variables to the program permits the variables to be used
by any function in the program. See “Intermediate variables required for
migration” on page 92 for details.

v You might have parts from Cross System Product or older releases of VisualAge
Generator that were migrated to VisualAge Generator 4.5, but never modified
within VisualAge Generator 4.5. In some cases, information is missing from the
External Source Format or is specified in a way that is not supported in EGL.
The migration tool attempts to supply the missing or incorrect information, as in
the following examples:
– For main transactions, if the VAGen segmentation information is missing, the

migration tool defaults the EGL segmented property to NO.
– For SQL records, if the SQL data code is missing, the migration tool converts

the item to a fixed length item.
– For SQL functions, the migration tool attempts to create any missing required

SQL clauses based on the record specified as the I/O object.
v Within a function, the migration tool converts all statements to something. This

preserves your IF / ELSE / END and WHILE / END logic. However, the
resulting statements might not be syntactically correct. For example:
– If an EZESYS value is not supported in EGL, the migration tool uses the

VAGen value. This preserves the unsupported values to facilitate finding
places where you might need to update your logic if you change from an
unsupported environment such as TSO to a supported EGL environment such
as ZOSCICS.

– The EZESCRPT special function word is converted to EZE_SCRPT. There is
no corresponding EGL replacement. Because EZESCRPT could not be used in
an IF, WHILE, or TEST statement, the logic structure of your function is
preserved. The migration tool issues an error message. EGL validation does
not display an error message in the Problems view.

v When trying to resolve a part reference without a program, the migration tool
looks at the parts in the migration set. Therefore it is important that you define
your migration sets to include groups of projects that are reasonable to use
together. For example:
– Do not include projects from several subsystems that have conflicting part

names.
– Do include common Java project or common Smalltalk applications when

migrating a subsystem.
v There are some things the migration tool does not do during migration:

– The migration tool does not add import statements for the following
situations because these are not associates in VisualAge Generator:
- For a function that transfers to a program using a CALL, DXFR, or XFER

statement. If you are generating for Java, you must add the import
statement for the package containing the program within the file containing

Chapter 2. Migration tool philosophy 51

the function or fully qualify the program name with the package name.
Alternatively, you can use an entry in a linkage options part to specify the
name of the package where the program is located, or use the
programPackageName build descriptor option to force all the generated
Java programs to be placed in the same runtime package.

- For build parts in .eglbld files. VAGen control parts, such as the generation
options parts, do not list their associated parts, so the information is not
readily available to the migration tool. In addition, due to the way EGL
processes build descriptor parts, you probably need to do some reordering
of the nextBuildDescriptor values (VAGen /OPTIONS). This reordering in
turn requires modification of any imports the migration tool might have
done.

Note: The Stage 1 migration tool analyzes the parts in the migration set to
determine the associates for each part. To ensure that only parts for the
migration set are included in the analysis, the Stage 1 migration tool
deletes any Java projects from the workspace before loading the
migration set specified by a high-level PLP project. Similarly, the Stage
1 migration tool deletes any Smalltalk configuration maps before
loading the migration set specified by a high-level configuration map.
Because the analysis of associates is limited to the migration set, the
migration tool does not set the EGL build path property to specify EGL
projects that are not included in the migration set. In addition, the
migration tool does not include import statements for EGL packages
that are not included in the migration set.

– EGL does not permit implicit items. VisualAge Generator permits implicit
items, but their use is not generally considered to be a good practice. Implicit
items are items that are used in a program, but which are not explicitly
defined in a record, table, or map used by the program. The migration tool
does not create definitions for implicit items due to the performance impact
of evaluating every unqualified data item to determine whether it is an
implicit item. You should provide definitions for implicit items before you
migrate. To resolve the problem before you migrate, validate the program in
VisualAge Generator to determine whether the program actually uses implicit
items. If implicit items are used, VAGen validation provides a message with
the correct definition of the item. If you do not create a definition for the
implicit item before you migrate, EGL validation displays an error message in
the Problems view and you can correct the problem in EGL. See “References”
on page 16 for information about a white paper that can help you create the
implicit items before you run Stage 1 of migration.

– The migration tool does not attempt to set the containerContextDependent
property. This is something you can add later to specific common records or
functions that have the need to reference other parts that are provided by a
subsystem. See the section “containerContextDependent Property” on page 40
for more details of how to use this property for records and functions.

– The migration tool assumes that the VAGen syntax is valid and that a
program using the parts included in your migration set can be successfully
validated in VisualAge Generator. The migration tool does not attempt to
repair invalid syntax. For example:
- If the elements of a map array have different edit characteristics or

attributes, the characteristics for the first element of the array determine
what is migrated to EGL. The migration tool does not issue a message.

- If the lengths of shared data items in a record have changed so that the
length of a parent item does not match the sum of the lengths of items in

52 Rational Business Developer: VisualAge Generator to EGL Migration Guide

its substructure, the migration tool does not change any item lengths and
does not issue a message. EGL validation displays an error message in the
Problems view indicating that sum of the lengths of the children does not
match the length of the parent.

– The migration tool does not attempt to improve inefficient code even if it
results in syntax errors in EGL. For example:
- If the same record is listed twice in the Tables and Additional Records list

for a program, the migration tool does not remove it and does not issue a
message. EGL validation displays an error message in the Problems view.
Similarly, if the same table is listed twice in the Tables and Additional
Records list for a program, the migration tool does not remove the extra
table and does not issue a message. EGL validation displays an error
message in the Problems view.

- If a record is not used in a program, but is listed in the Tables and
Additional Records list for the program, the migration tool does not
remove it and does not issue a message. EGL validation does not display
an error message in the Problems view. Similarly, if a table is not used in a
program, but is listed in the Tables and Additional Records list for a
program, the migration tool does not remove the table and does not issue a
message. EGL validation does not display an error message in the Problems
view.

- If a working storage record is listed in the Tables and Additional Records
list for a program and the record contains level 77 items only, the migration
tool does not remove the record and does not issue a message. EGL
validation displays an error message in the Problems view indicating the
record cannot be found. This is because the only record that now exists
includes your Level77 suffix preference as part of the record name.

- If a VAGen program includes a map group or a help map group, an actual
map group part did not have to exist. For example, if the program never
DISPLAYs or CONVERSEs a map and the program never uses a map as a
called parameter, an actual map group part did not have to exist. In this
situation, the migration tool includes the use statement for the FormGroup,
but does not include the import statement in the program because the map
group was not an associate of the program in VisualAge Generator. The
migration tool does not issue an error message. EGL requires an actual
FormGroup part. If there is no FormGroup part or if the FormGroup part is
not in the same package as the program, EGL validation displays an error
message in the Problems view indicating that the FormGroup specified in
the use declarations for the program cannot be found.

– The migration tool does not necessarily detect or provide warning messages
for the use of facilities that were not documented in VisualAge Generator,
even if there is no equivalent EGL support. For example:
- If a CALL statement specifies an unqualified item as an argument, and

there are multiple definitions for this item name within a program, VAGen
gives precedence to the level 77 item in the primary working storage record
for the program. EGL requires that the item be qualified. The migration
tool does not add the qualification for you and does not provide a warning
message. EGL validation displays an error message in the Problems view.

Determining how to organize your EGL source code
Before you attempt to organize your source code for EGL, you need to understand
the following concepts:

Chapter 2. Migration tool philosophy 53

v The differences between the VisualAge Generator and EGL products, particularly
in the following areas:
– The facilities the products provide for organizing code.
– The way the products determine which parts to consider during

development, test, and generation.
– How the products track the changes you make to a part.

v The capabilities provided by the migration tool to help you achieve the final
organization you want in EGL.

v The limitations and tradeoffs of various source code organization techniques in
EGL.

Differences in product capabilities for organizing your code
VisualAge Generator and EGL provide different methods for organizing your
source code. VAGen on Java uses projects and packages. VAGen on Smalltalk uses
configuration maps and applications. EGL uses projects, packages, and files.

VAGen on Java code organization
In VAGen on Java, the source code is organized into Java projects and packages.
For example, you might have ProjectA that includes all the packages that contain
code unique to SubsystemA, ProjectB that includes all the packages that contain
code unique to SubsystemB, and ProjectCommon that includes all the packages
that are shared by multiple subsystems.

The Java projects that you add into your workspace determine the source code that
is considered when you develop, test, or generate your VAGen programs. You can
use a project that contains a Project List Part (PLP) to point to other projects that
must be added to your workspace at the same time. For example, in addition to
specifying all the packages that contain code unique to SubsystemA, ProjectA can
include a PLP part that specifies that ProjectCommon is a VAGen required project.
Specifying the VAGen required project ensures that whenever you load ProjectA
into your workspace, the correct version of ProjectCommon and all the package
versions it contains is also loaded so that you have all the parts needed to develop,
test, and generate. You can add projects that contain duplicate part names into
your workspace, but you cannot test or generate if there are duplicate parts in
your workspace.

When you make a change to a part, VisualAge Generator creates a new edition of
the part in your workspace and in the ENVY repository. VisualAge Generator uses
a technique called versioning to freeze the code at a known level. The ENVY
repository stores all the versions of a Java project or package, but you can only
have one version in your workspace at a given time. Tools provide a way of
comparing the version in your workspace with previous versions in the ENVY
repository to see what has changed at the project, package, or part level. To keep
track of changes, you can use different versions of the same Java project for
development, each level of test, or production. An alternative technique for
tracking changes is to have one project for development, one for each level of test,
and one for production.

VAGen on Smalltalk code organization
In VAGen on Smalltalk, the source code is organized into Smalltalk configuration
maps and applications. For example, you might have ConfigurationMapA that
includes all the applications that contain code unique to SubsystemA,

54 Rational Business Developer: VisualAge Generator to EGL Migration Guide

ConfigurationMapB that includes all the applications that contain code unique to
SubsystemB, and ConfigurationMapCommon that includes all the applications that
are shared by multiple subsystems.

The Smalltalk configuration maps that you load into your image determine the
source code that is considered when you develop, test, or generate your VAGen
programs. Configuration maps provide an easy way of specifying which Smalltalk
applications to load into your image. For example, in addition to specifying all the
Smalltalk applications that contain code unique to SubsystemA,
ConfigurationMapA can specify that ConfigurationMapCommon is a required
configuration map. Specifying the required configuration map ensures that
whenever you load ConfigurationMapA into your image, the correct version of
ConfigurationMapCommon and all the application versions it contains is also
loaded so that you have all the parts needed to develop, test, and generate. You
cannot load two applications or configuration maps into your image if they contain
duplicate part names.

When you make a change to a part, VisualAge Generator creates a new edition of
the part in your image and in the ENVY manager. VisualAge Generator uses a
technique called versioning to freeze the code at a known level. The ENVY
manager stores all the versions of a Smalltalk configuration map or application, but
you can only have one version loaded into your image at a given time. Tools
provide a way of comparing the version in your image with previous versions in
the ENVY manager to see what has changed at the configuration map, application,
or part level. To keep track of changes, you can use different versions of the same
Smalltalk configuration map for development, each level of test, or production. An
alternative technique for tracking changes is to have one Smalltalk configuration
map for development, one for each level of test, and one for production.

EGL code organization
In EGL, the source code is organized into projects, packages, and files. For
example, you might have ProjectA that includes all the packages that contain code
unique to SubsystemA, ProjectB that includes all the packages that contain code
unique to SubsystemB, and ProjectCommon that includes all the packages that are
shared by multiple subsystems. This is similar to VAGen on Java, but differs in
two important ways:
v EGL does not have a concept similar to the PLPs in VAGen on Java. Instead, you

must determine which projects to load into your workspace so that all the parts
necessary to develop, debug, and generate are available.

v The EGL files provide a more detailed organization of your source code. For
example within ProjectA, you might have one package for data that is shared by
the programs in SubsystemA. This package might include all the data item parts
for SubsystemA and the records that are used by multiple programs in
SubsystemA. You might organize this package into files in several ways,
including any of the following schemes:
– One file that contains all the data items and records.
– One file that contains all the data items and another file that contains all the

records.
– One file that contains the data items that start with the letters A through M,

another file that contains the data items that start with the letters N through
Z, and one file that contains all the records.

Chapter 2. Migration tool philosophy 55

EGL requires that Program, DataTable, and FormGroup parts must each be in a
unique file, but the file can also contain other parts. For example, you might have
a file for ProgramX that contains the ProgramX part as well as functions and
records that are unique to ProgramX.

When you create an EGL project, you use the EGL Build Path to specify any other
projects to consider when you develop, test, or generate your EGL programs,
DataTables, or FormGroups. The EGL Build Path for a project limits which other
projects are considered when searching for a part name. EGL also uses import
statements within each file to determine which packages to include from within
the projects listed in the EGL Build Path when searching for a part name. You can
have duplicate part names in your workspace, but the part names within the EGL
Build Path and the set of import statements must be unique.

When you make a change to a part and save the file, EGL stores the file into the
file system and replaces the previous file. You use a source code repository to
retain multiple versions of the code. The source code repository provides tools
such as checkout and checkin, version control, and comparison tools so that you
can compare what is in your workspace with other versions of the code in the
source code repository. The source code repository also enables developers to share
their changes. There are a number of source code repositories that you can use
with EGL. Some examples are CVS and IBM Rational ClearCase®. Regardless of the
source code repository you select, you can only have one version of a project,
package, or file loaded into your workspace at a given time.

Organization capabilities provided by the migration tool
The Stage 1 migration tool determines the placement of each part in the EGL
project, package, and file organization. By default, the Stage 1 migration tool for
Java preserves your VAGen on Java project and package structure by converting
each VAGen on Java project to an EGL project and converting each VAGen on Java
package to an EGL package. Similarly, the Stage 1 migration tool for Smalltalk
preserves your VAGen on Smalltalk configuration map and application structure
by converting each VAGen on Smalltalk configuration map to an EGL project and
converting each VAGen on Smalltalk application to an EGL package. The only
exception to this default preservation policy occurs if maps and their
corresponding map group are in multiple Java projects or packages or multiple
Smalltalk configuration maps or applications. In the exception case, the migration
tool merges the maps and their map group into a new EGL package or project,
depending on the original placement of the maps and map group. See “Placing
parts in EGL files” on page 42 for details of the exception case and how the Stage
1 migration tool assigns VAGen parts to files.

There might be situations, such as those described in “Limitations and tradeoffs of
EGL source code organization techniques” on page 57, in which you want to
organize your EGL projects, packages, and files differently from the default used
by the Stage 1 migration tool. For this reason, the Stage 1 migration tool is shipped
as a sample program. You can modify the Stage 1 tool to better suit your
environment. The following documentation and white papers provide sample
modifications to the Stage 1 tool:
v File Location sections:

– For information about the Stage 1 tool on Java, see “Customizing the Stage 1
migration tool” on page 135.

– For information about the Stage 1 tool on Smalltalk, see “Customizing the
Stage 1 migration tool” on page 159.

56 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v Project Consolidation documents:
– How to Consolidate Projects and Packages during Stage 1 of the VisualAge

Generator on Java to Enterprise Generation Language Migration Tool.

– How to Consolidate Projects and Packages during Stage 1 of the VisualAge
Generator on Smalltalk to Enterprise Generation Language Migration Tool.

The two File Location sections show examples of modifying the parts placement
algorithms for common and unused parts to split the commonParts.egl and
unusedParts.egl files into smaller files based on the part type and the first
character of the part name. They also include information about how to move all
the data item parts to a new project. The two Project Consolidation white papers
show examples of merging multiple Java projects or Smalltalk configuration maps
into a single EGL project and merging multiple Java packages or Smalltalk
applications into a single EGL package.

The white papers are available in the VAGen Migration hub of the EGL Cafe at the
following Web site:
http://www.ibm.com/software/rational/cafe/community/egl/vagen?view=documents

Limitations and tradeoffs of EGL source code organization
techniques

EGL works best when you organize your projects along functional lines. This
technique can help minimize the number of EGL projects you need in your
workspace, thereby improving performance. Your VAGen on Java projects and
packages or your VAGen on Smalltalk configuration maps and applications might
already be organized along functional lines. In this case, you might be able to use
the default Stage 1 migration tool. However, you need to consider other factors
that might cause you to alter the default EGL project and package strategy or the
default file placement algorithm used by the Stage 1 migration tool.

The main factor to consider is that the size of EGL projects, packages, and files
matters. The size can affect EGL performance in any of the following areas:
v Time required for opening or saving a file.
v EGL build time that is required to validate the parts. If you turn on the

workbench preference to Build Automatically, an EGL build occurs whenever
you save a file. If you do not turn on this preference, an EGL build occurs when
you request it. As a minimum, an EGL build must occur before you attempt to
debug or generate your code.

v EGL generation time that is required to generate the Java or COBOL source
code.

The following table shows the limitations and tradeoffs of project, package, and file
sizes.

Chapter 2. Migration tool philosophy 57

Table 9. Limitations and tradeoffs of project, package, and file sizes

Limitations
Advantage of
Smaller Advantage of Larger

Project v Maximum of 1500
projects.

v Some source code
repositories might
have a smaller
maximum.

v If you only need a
subset of the
projects, then the
workspace is
smaller so the EGL
build time might
be quicker.

v Smaller projects
load quicker from
the source code
repository.

v Minimizes the
chance that two
developers need to
make changes to
the same project at
the same time.

v Fewer projects in
the EGL Build
Path.

v Less likelihood of
cycles and fewer
cycles in the EGL
Build Path.

v Fewer projects to
scroll through.

v Fewer projects to
load from the
source code
repository.

Package v Theoretical
maximum of 65K
parts on a drive
formatted as
FAT32, assuming
that the part
names are no
longer than 8
characters in
length. Longer part
names reduce this
maximum.

v An import
statement of the
form:

import package.*

includes fewer part
names so the EGL
build time might
be quicker.

v Minimizes the
chance that two
developers need to
make changes to
the same package
at the same time.

v Fewer import
statements in each
file.

v Fewer packages to
scroll through.

File v Performance to
open or save a file
degrades for large
file sizes.

v No maximum size,
but practical size is
<200K.

v When you save a
file, there are fewer
parts to check for
changes so the
EGL build time
might be quicker.

v With good naming
conventions, you
can quickly find
the file containing
a specific part.

v Minimizes the
chance that two
developers need to
make changes to
the same file at the
same time.

v Fewer files to
scroll through.

Given the tradeoffs in Table 9, you should avoid creating giant EGL projects,
packages, or files. Conversely, you should avoid creating lots of tiny EGL projects,

58 Rational Business Developer: VisualAge Generator to EGL Migration Guide

packages, or files. Both extremes can adversely affect performance. For example, a
file that contains 30,000 data items is probably very large and might take several
minutes to open or save. Conversely, having 30,000 files, each with just one data
item, results in too many files to reasonably scroll through in the various
workbench views. A compromise approach is better. For example, one possible
compromise if the first character of the data item names is evenly distributed
across the alphabet, is to create multiple files, with each file containing all the data
items that start with the same character. This technique creates smaller files that
are quicker to open, but minimizes the total number of files.

In addition, consider the following factors when structuring your EGL projects,
packages, and files:
v Consider your source code repository. The following list includes some of the

factors you might need to consider based on the source code registry you select:
– Whether the source code repository supports checkout and checkin at the

project, package, or file level.
– Whether the source code repository supports version control at the project,

package, or file level.
– How the source code repository deals with the situation in which several

developers might need to make changes to the same project, package, or file
at the same time and how likely that situation is to occur given the
organization of your EGL projects, packages, and files.

v If you use a source code repository, it might have support for the concepts of
ownership or access control. If so, you need to consider the following factors:
– Your ownership strategy should reflect how development and maintenance

responsibilities are divided. Organizing your source code along functional
lines is useful if one person or group is responsible for developing and
maintaining a functional area.

– Whether there are restrictions that limit access to certain programs or parts.
For example, access to a program that writes payroll checks might be limited
to just one or two developers. In this case, you might need to put the
program in an EGL project by itself so that you can restrict access to that
project.

What's new for the VAGen migration tool since EGL 5.1.2?

Note: If you created a migration database using EGL 5.1.2, you must create the
database again by following the instructions in “Creating the DB2 migration
database” on page 459.

The following functions are new or improved since EGL 5.1.2 General Availability.
Depending on your level of maintenance for the WebSphere® Developer 5.1.2
product, you might already have some of the Stage 1 enhancements.
v Stage 1 has been changed in the following ways:

– Updated DDL for the migration database. You must rerun SetupTables.bat
and rerun Stage 1 to place your source code in the migration database.

– Externalized the EGL reserved word list and included the reserved word list
version in the log information.

– Added new checkStage1.bat file to check the results of Stage 1 for errors.
v Both Stage 2 and 3 and single file mode migration now include the following

changes:
– Support for the new EGL syntax.

Chapter 2. Migration tool philosophy 59

– Optionally invoke a user exit to enable you to rename parts during Stage 2
migration or during single file migration. For example, you can write a user
exit to change a hyphen (-) to an underscore (_).

– New VAGen Syntax Migration Preferences to enable you to specify the
following options for fields in SQL records:
- The migration tool should omit the column property if the SQL column

name is the same as the item name.
- The migration tool should always omit the isSQLNullable = YES property.
- The migration tool should only include the isReadOnly = YES property if

there is only one SQL table specified for the SQL record and the VAGen
Read Only property is set to yes.

– New VAGen Syntax Migration Preference to enable you to specify that the
migration tool should change the decimal comma to a decimal point, even if
your workstation uses a locale that defaults to the decimal point.

v Stage 2 to 3 migration now also does the following things:
– Add import statements for DataItem parts that specify a validatorFunction or

validatorDataTable property.
– Sort parts in a file by the EGL part name within the part type.

The following EGL changes provide better support for migrated VAGen programs:
v Numeric variables can now be used in string concatenation. This provides

support for the VAGen SQL I/O Execution time statement build option that is
migrated to the EGL prepare statement.

v The Java runtime environments now permit you to change the EGL product
messages similar to the capability provided in VisualAge Generator.

What's new for the VAGen migration tool since EGL 6.0 iFix?

Note: If you created a migration database using EGL 6.0 iFix, you must create the
database again by following the instructions in “Creating the DB2 migration
database” on page 459.

The following functions are new or improved since EGL 6.0 iFix:
v Both Stage 2 and 3 and single file mode migration now include the following

changes:
– Better support for the user exit that enables you to rename parts during Stage

2 migration or during single file migration.
– New VAGen Migration Preferences to enable you to minimize the use of

VisualAge Generator compatibility mode.

What's new for the VAGen migration tool since EGL 6.0.0.1?

Note: If you created a migration database using EGL 6.0.0.1, you must create the
database again by following the instructions in “Creating the DB2 migration
database” on page 459.

The following functions are new or improved since EGL 6.0.0.1:
v Support for migrating Web transaction programs and UI records. Also support

for migrating generation options related to Web transactions.
v Support for migrating DL/I records, DL/I function I/O, PSB parts, EZEDL*

special functions words, and the CSPTDLI special function word. Also support

60 Rational Business Developer: VisualAge Generator to EGL Migration Guide

for migrating generation options, resource association options, and linkage table
options related to the IMSVS and IMSBMP environments, including GSAM and
message queue support.

What's new for the VAGen migration tool since EGL 6.0.1?

Note: If you created a migration database using EGL 6.0.1, you must create the
database again by following the instructions in “Creating the DB2 migration
database” on page 459.

The following functions are new or improved since EGL 6.0.1:
v Stage 1 Smalltalk now supports subapplications. See “Mapping page” on page

151 for details on the new Collapse subapplication preference.
v Syntax migration improvements:

– For single file mode, parts are now sorted by part name within part type in
each file.

– Record declarations within programs are now sorted by record name.
– SQL comparison operations using the not sign are now converted to code

page independent operators.
– DL/I record declarations are not automatically added to a program based on

the PSB for the program. The only DL/I record declarations that are added to
the program are the ones necessary for the I/O options used by the program.

– Maps containing arrays now use the indexOrientation, columns,
linesBetweenRows, and spacesBetweenColumns properties to provide
position information for standard arrays. This enables you to use the EGL
Form Editor for the maps.

– The migration tool always sets the sign property when migrating data items,
fields on maps, and nonshared fields in UI records.

v Stage 2 and 3:
– The migration tool adds an import statement if a function references a table.
– Better merging logic if multiple migration sets are migrated at the same time

or when parts are renamed using the Renamer user exit preference.
– Performance improvements.

What's new for the VAGen migration tool since EGL 6.0.1.1?

Note: If you created a migration database using EGL 6.0.1.1, you must create the
database again by following the instructions in “Creating the DB2 migration
database” on page 459.

The migration tool itself has not changed significantly for this interim release
(6.0.1.1 ifix3) of the Migration Guide. However, the Migration Guide has been
updated with the following new information:
v Chapter 1 has been changed in the following ways:

– Updated and expanded the section on “Terminology used in this book” on
page 3 based on the availability of IBM Rational COBOL Generation
Extension for zSeries and IBM Rational COBOL Runtime for zSeries.

– Updated and expanded the section on “Planning your migration” on page 4.
– Added the section on “References” on page 16. This section also includes a

list of the available white papers related to migrating from VisualAge
Generator to EGL.

Chapter 2. Migration tool philosophy 61

v Chapter 2 has added the following sections:
– “Determining how to organize your EGL source code” on page 53

v Chapter 9 has added the following sections:
– “Converting VAGen preparation templates and procedures to EGL build

scripts” on page 219
– “Converting VAGen runtime templates” on page 220
– “Converting the VAGen reserved words file” on page 221
– “Installing the EGL server product for zSeries” on page 217
– “Planning for dual maintenance of your source code” on page 224

v Chapter 10 has added the following sections:
– “Differences in SQL support” on page 233. This consolidates information on

SQL previously scattered throughout the chapter and expands the information
based on customer experience.

– Information about the migration of VAGen runtime environment variables
and runtime properties.

v Appendix B added the following sections:
– “Preparation templates and procedures” on page 386
– “Runtime templates” on page 388
– “Runtime environment variables” on page 390
– “vgj.properties” on page 392

v Appendix E has been changed in the following ways:
– Expanded the explanation for some messages and added new messages based

on customer experience and enhancements to the EGL validation messages.
– Added section “Reference information for messages - name resolution and

qualification rules” on page 450. This section provides information that is
useful in resolving messages that result from the differences between
VisualAge Generator and EGL for name resolution when there is a field with
the same name as another record, form, or DataTable.

v Appendix F has updated the list of APARs required for VisualAge Generator.

What's new for the VAGen migration tool since EGL 6.0.1.1 ifix003?
The following functions are new or improved since EGL 6.0.1.1 ifix003:
v Both Stage 1 tools now correctly place functions and data items that are

referenced by multiple generatable parts in the commonParts.egl file. In
addition, the Stage 1 tool on Smalltalk has been updated to add message tables
as associates of programs that specify a message table prefix. This problem did
not occur for the Stage 1 tool on Java.

v Both Stage 1 tools have been completely rewritten to improve the migration of
large migration sets. This results in the following differences when running the
Stage 1 tools:
– If you previously captured a Stage 1 database, you can run Stage 2 and 3

with that existing database. This enables you to obtain the new EGL Version
7.1 syntax for your existing database.

– If you want to run the new Stage 1 tools, you must follow these steps:
- Install DB2 Version 8.1 with Fix Pack 15 or DB2 Version 8.2 with Fix Pack 8.

These two fix pack levels are equivalent.
- From a DB2 Command Prompt window, run setupDatabase.bat and

setupTables.bat. You must run the two .bat files after installing the correct
level of DB2.

62 Rational Business Developer: VisualAge Generator to EGL Migration Guide

- If you restore a Stage 1 database from prior to EGL V7.1 and then decide to
run Stage 1 again, you must run setupDatabase.bat and setupTables.bat
again because the restore of the old database resets the database definition
to what was used for the earlier version of the migration tool.

- If you previously used the Stage 1 migration tool on Java, you need to
perform the following additional steps after you install the new version of
the Stage 1 tool:
1. In the VAGen on Java Workbench window, click the Projects tab.
2. Navigate to the IBM VisualAge Generator EGL Migration project.
3. Expand the migration project and then expand the com.ibm.vgj.mig

package.
4. Within the package, right-click the VAGenToEGLMigration class and

follow these steps:
a. Click Properties on the pop-up menu.
b. Click the Class Path tab.
c. Next to the Project path section, click Edit.
d. In the Class Path window, ensure that IBM VisualAge Generator

Runtime is selected.
e. Click OK to close the Class Path window.
f. Click OK again to close the Properties window.

5. Repeat step 4 for the PreferencesUI class.
- If you previously used the white papers to customize the Stage 1 tool on

Java, note the following changes:
v If you modified the file location, see “Customizing the Stage 1 migration

tool” on page 135 for information on how to use the built-in
customization to change the file location.

v If you consolidated projects or packages, your customization code still
applies, provided you limited your changes to the IBM VisualAge
Generator EGL Migration project, the com.ibm.vgj.mig package, the
Preferences class, and the applyRenameRulesTo(String,String) method
as described in the white paper titled How to Consolidate Projects and
Packages during Stage 1 of the VisualAge Generator on Java to Enterprise
Generation Language Migration Tool.

- If you previously used the white papers to customize the Stage 1 tool on
Smalltalk, note the following changes:
v If you modified the file location, see “Customizing the Stage 1 migration

tool” on page 159 for information on how to use the built-in
customization to change the file location.

v If you consolidated projects or packages, your customization code still
applies, provided you limited your changes to the
HptEGLMigrationBaseApp application, the VAGenToEGLMapper class,
the API class category and the convertProjectNameToWSED and
convertApplicationToWSEDPackageName public methods as described
in the white paper titled How to Consolidate Projects and Packages during
Stage 1 of the VisualAge Generator on Smalltalk to Enterprise Generation
Language Migration Tool.

v Syntax migration in Stage 2:
– The EGL source produced by the migration tool has been updated for the

EGL language changes in EGL V7.1.

Chapter 2. Migration tool philosophy 63

– Migration of SQL functions that specify the Execution time statement build
option has been improved for situations in which default SQL is used and for
situations in which a soft error occurs on the EGL prepare statement.

What's new for the VAGen migration tool since EGL 7.1?
There are no changes to the migration tool since EGL 7.1.

Known restrictions for the migration tools

Stage 1
v Stage 1 migration is not supported in the Linux or Vista environments.
v DB2 Version 9.x is not supported for Stage 1 migration in the Java environment.

Stages 2 and 3
v Restrictions for the VAGen Migration wizards:

– The Cancel button on the progress window is inoperable. You cannot cancel
the Stage 2 or 3 migration tool after it starts other than by using the Task
Manager.

v If you want to switch back and forth between your migration database and your
application databases, you must shut down the EGL development environment
each time you switch.

v Stage 2 and 3 are not supported on Linux environments.

Syntax migration
v The migration tool correctly converts SQL keywords used as column names

within the SQL record structure. However, the migration tool does not handle
SQL keywords used as column names within the SQL defaultSelectCondition
for a record or within the SQL clauses for a function. The workaround is to
modify the SQL defaultSelectCondition or SQL clause as described in “SQL
reserved words requiring special treatment” on page 254. This section provides a
list of SQL keywords and details of the syntax required for the SQL
defaultSelectCondition and SQL I/O statements.

v See “containerContextDependent Property” on page 40 for details on limitations
on your use of this property.

64 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 3. Handling ambiguous situations

There are a number of situations where the migration tool might not have all the
information from VisualAge Generator needed to produce the corresponding EGL
statement. These situations are called ambiguous situations because the
corresponding EGL statement could change or produce different results depending
on the inputs from VisualAge Generator. In these ambiguous situations, the
migration tool might not migrate to EGL statements that match what you intended
in VisualAge Generator. In many of the ambiguous situations, the EGL statements
that are produced vary, depending on your migration process:
v Whether you migrate with a program and its associated parts, and if so, the

order in which programs are migrated.
v Whether you migrate without a program, but with the necessary associated

parts, so that cross-part migration can still be accomplished.
v Whether you migrate without associates, so that the migration tool is limited in

the information it has available to make an intelligent choice.

Migrating with a program and its associated parts is the preferred way of
migrating with associates because it guarantees the maximum information. The
tables in this chapter explain the differences between migrating with and without
associated parts for the following part types:
v Data items
v Records
v Tables
v Map groups and maps
v Programs
v Functions, including I/O statements
v Other statements
v EZE words

The tables also show some potential problems that can arise for these ambiguous
situations and suggest possible solutions for these problems. No one solution is
best for every situation. For example, when there are two parts with the same part
name, renaming the one that is the least frequently used would have the least
effect in other areas of your code.

Handling ambiguous situations for data items

PACK data items with even length
VisualAge Generator: The length for PACK data items is specified as the number
of digits, up to a maximum of 18. Even lengths are recorded within the shared
data item definitions and for nonshared data items within record definitions.
However, in most editors, and in test and generation, the length that is used is the
next higher odd length, with a maximum of 18. Only the SQL Record Editor
displays the even length. For even length items used as host variables in SQL
WHERE clauses or in SQL statements that specify the Execution time statement
build option, test and generation create a temporary variable with the even length.

© Copyright IBM Corp. 2004, 2011 65

EGL: The DECIMAL primitive type is the replacement for the VAGen PACK type.
In VisualAge Generator compatibility mode, EGL test and generation provide the
same support as in VisualAge Generator. For DECIMAL items with even precision,
test and generation increase the precision by one in all records and use a
temporary variable with the even precision in SQL WHERE clauses or prepare
statements. If VisualAge Generator compatibility mode is not specified, EGL uses
the precision specified for the data item.

Associated part needed for migration: Not applicable.

 Table 10. PACK data items with even length

Migrating with the associated part Migrating without the associated part

The migration tool migrates PACK data items based
on the VAGen Do not honor evensql=y for items or
variables migration preference.

If the preference is not selected, the migration tool
does the following things:

v Uses the even or odd length specified in VisualAge
Generator for shared data item definitions,
regardless of whether the item is ever used in an
SQL row record.

v Uses the even or odd length specified in VisualAge
Generator for nonshared items in all record
definitions, because the item might be used as a
host variable in an SQL WHERE clause or prepare
statement.

v Uses an odd length (or 18 if the item is the
maximum length) for nonshared items in tables,
function parameters, function return values, and
function local storage because the information to
determine an even number of digits was not
recorded in VisualAge Generator in these situations.

If the preference is selected, the migration tool always
uses an odd length (or 18 if the item is the maximum
length) for all items or variables. The tool issues a
warning message for any data item that specifies
evensql=y.

The migration tool does the same things as mentioned in
the Migrating with the associated part column.

66 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 10. PACK data items with even length (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: A problem arises if you select
the preference so that evensql=y is migrated to an odd
length. In this situation, there might be a runtime
performance impact due to using host variable lengths
that do not match the SQL column definition.

Solution 1: Review the migration log information for
any DataItem part that specified evensql=y. Review
any SQL table and view definitions to determine
whether the definitions match the DataItem part
definition. Also review any SQL WHERE clauses and
prepare statements that use variables that specify the
DataItem part as a type definition.

Potential Problem 2: A problem also arises if you
clear the preference so that evensql=y is honored
during migration and you later decide to eliminate
the use of VisualAge Generator compatibility mode. In
this situation, overflow might occur due to having
fewer significant digits than in VisualAge Generator
compatibility mode.

Solution 2: Review all DECIMAL DataItem part
definitions and primitive fields in EGL records for
even length items. Assess whether overflow might
occur for any of these items.

Potential Problems: The same potential problems and
solutions as listed in the Migrating with the associated part
column apply.

Shared edits and messages
VisualAge Generator: A shared DataItem part definition can specify default edits
and messages for both maps and UI records.

EGL: There is only one set of edit and message properties for a DataItem part
definition. The migration tool merges the map and UI properties for the data
items.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 67

Table 11. Shared edits and messages

Migrating with the associated part Migrating without the associated part

The migration tool merges map and UI edits in the following ways:

v For each edit or message, the migration tool converts the edits
based on the first criterion in the following list that applies:

– If a UI edit is specified, the migration tool converts the UI edit
and its associated message information to the corresponding
EGL properties.

– If only a map edit is specified, the migration tool converts the
map edit and its associated message to the corresponding EGL
properties.

– If the UI message is specified without an associated UI edit,
the migration tool converts the UI message to the
corresponding EGL property.

– If the map message is specified without an associated map
edit, the migration tool converts the map message to the
corresponding EGL property.

– If UI and map edit and message information are not specified,
the migration tool does not set the corresponding EGL
properties. The normal EGL defaults apply.

v In VisualAge Generator, Justify and Hex edit are only specified
for map edits, so they are always used to set the corresponding
EGL properties.

v For a numeric data item, the tool migrates the sign edit in the
following way:

– If the sign edit is not specified, the migration tool sets the EGL
sign property to leading if any UI edit is specified.

– If no UI edits are specified, the migration tool sets the EGL
sign property to none.

Except as noted later in “Map edit routine for
shared data items” on page 68, the migration
tool migrates the default edits and messages
in the same way both with and without the
associated parts.

Potential Problem 1: A problem only arises if conflicting map edits
and UI edits exist in VisualAge Generator and you really intend the
edits to differ between maps and UI records. The problem does not
occur until the item is added to a text or print form.
Note: If you never used VAGen Web Transactions, only map edits
should exist in VisualAge Generator and you should not have a
problem.

Possible Solution: Other than adding a comment to the DataItem
part definition to list the VAGen map item edits and messages,
there is nothing you can do for the DataItem part definition. If you
add the item to a text or print form, you can override any
properties that need to differ for that particular form.

Potential Problem 2: A problem can also arise if you use the item in
an EGL VGUI record. The item might have some additional edits or
messages that were migrated from the VAGen map edits.

Solution: Always review the edits for fields defined with a type
definition in a VGUI record.

The same potential problems mentioned in the
Migrating with the associated part column apply.
You can use the same solutions.

Map edit routine for shared data items
VisualAge Generator: A shared data item definition can have a map edit routine
that is a table, a function, or EZEC10 or EZEC11. The edit message is only used if
the edit routine is EZEC10, EZEC11, or a table.

68 Rational Business Developer: VisualAge Generator to EGL Migration Guide

EGL: A data item can have both a validatorDataTable and a validatorFunction.
The data item can also have both a validatorDataTableMsgKey and a
validatorFunctionMsgKey.

Associated part needed for migration: Either the table or the function part.

 Table 12. Map edit routine for shared data items

Migrating with the associated part Migrating without the associated part

The first time the shared data item is migrated, the
migration tool converts the map edit routine based on
the first criterion in the following list that applies:

v If the editRoutineName is EZEC10 or EZEC11, the
migration tool sets the validatorFunction property
to the EGL equivalent system library function. The
migration tool also sets the
validatorFunctionMsgKey to the edit message, if
any.

v If the editRoutineName is a function, then the
migration tool sets the validatorFunction property.
The migration tool omits the
validatorFunctionMsgKey because it is not used in
VisualAge Generator. The migration tool also adds
the function as an associate of the data item part so
that an import statement is created in Stage 3.

v If the editRoutineName is a table, then the
migration tool sets the validatorDataTable property.
The migration tool also sets the
validatorDataTableMsgKey to the edit message, if
any. The migration tool also adds the table as an
associate of the data item part so that an import
statement is created in Stage 3.

v If the edit routine is not specified but the edit
message is specified, the migration tool sets the
validatorDataTableMsgKey to the edit message.

Note: Even when migrating in program context, the
editRoutineName might not be available if the shared
item is not used on a map or if the edits on the map
differ from what was specified in the shared item
definition.

If a function or table with the same name as the
editRoutineName is not available, the migration tool
converts the map edit routine based on the first criterion in
the following list that applies:

v If the editRoutineName is EZEC10 or EZEC11, the
migration tool sets the validatorFunction property to the
EGL equivalent system library function name. The
migration tool also sets the validatorFunctionMsgKey to
the edit message, if any.

v If the editRoutineName is longer than 7 characters, it
must be a function name, so the migration tool sets the
validatorFunction property. The migration tool omits the
validatorFunctionMsgKey because it is not used in
VisualAge Generator.

v If an edit message is specified, the migration tool sets the
validatorDataTable and validatorDataTableMsgKey.

v Otherwise, the migration tool sets the validatorFunction
property and issues an error message.

If the edit routine is not specified but the edit message is
specified, the migration tool sets the
validatorDataTableMsgKey to the edit message.

Potential Problem: A problem only arises if a function
and DataTable have the same name, most likely in
different subsystems. In this situation, one subsystem
uses a function and another subsystem uses a
DataTable. The problem does not occur until the item
is added to a text form.

Possible Solution: Rename the DataTable part so
there are no longer two parts with the same name.
Specify both a validatorFunction and
validatorDataTable property for the DataItem part. If
you add the item to a text form, delete the
validatorFunction or validatorDataTable property,
whichever is not needed for that particular form.

Disadvantage: You must modify your programs and
forms to use the new DataTable name.

Potential Problem 1: A problem arises if the migration tool
guesses incorrectly.

Possible Solution: Correct the data item definition.

Potential Problem 2: The same problem listed under the
Migrating with the associated part column can also occur. You
can use the same solution.

Chapter 3. Handling ambiguous situations 69

Fill characters for shared data items
VisualAge Generator: The default fill character for map edits is null for character,
mixed or DBCS; blank for numerics; and 0 for hex. The default fill character for UI
edits is blank for character, mixed, DBCS, unicode, and numerics, and 0 for hex.
Null is not a valid fill character for UI records. A different fill character can be
specified for map edits and UI edits.

EGL: There is only one default fillCharacter property for a DataItem part. The
migration tool merges the map and UI fillCharacter properties for the data items.

Associated part needed for migration: Not applicable.

 Table 13. Fill characters for shared data items

Migrating with the associated part Migrating without the associated part

The first time the shared data item is migrated, the
migration tool converts the fill character based on the
first criterion in the following list that applies:

v If the UI edits specify a fill character, the migration
tool migrates the character to the EGL fillCharacter
property. The tool converts N to N because null fill
is not valid for UI records in VisualAge Generator.

v If the map edits specify a fill character, the
migration tool migrates the character to the EGL
fillCharacter property. The tool converts N to null
fill.

v If neither the UI edits nor the map edits specify a
fill character, the migration tool does not set the
EGL fillCharacter property.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem: A problem only arises if you add a
field using a type definition to a DataItem part that
was migrated using one type of edits to a different
type of user interface (form or VGUI record).

Possible Solution: Always review the fillCharacter
property when adding a new field to a form or VGUI
record.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Handling ambiguous situations for records

Redefined records
VisualAge Generator: The redefined record type provides a different data item
layout for another record. The redefined record specifies the name of the record it
is redefining. For example, RecordA is a REDEFINED record that redefines
RecordB. VisualAge Generator determines whether RecordA is really a redefinition
of RecordB based on the use of RecordA within the program. If RecordA is used as
a called parameter, RecordA is not treated as a redefinition of RecordB.

EGL: RecordA is a BasicRecord. Redefinition information is only provided within a
program definition -- not in the definition of RecordA.

Associated part needed for migration:

v When migrating a redefined record: not applicable.
v When migrating a program: the redefined record (RecordA).

70 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 14. Redefined records

Migrating with the associated part Migrating without the associated part

When migrating a redefined record, the migration tool
does the following things:

v Migrates the redefined record (RecordA) to a
BasicRecord.

v Includes a VAGen Info comment in RecordA
indicating it redefined RecordB.

v Issues an informational message that RecordA
redefines RecordB.

When migrating a redefined record, the migration tool does
the same thing mentioned in the Migrating with the
associated part column.

When migrating a program, if RecordA is available,
the migration tool does the following things:

v If RecordA is treated as a redefinition of RecordB in
VisualAge Generator, the migration tool includes
the redefines property in the declaration for
RecordA.

v If RecordA is not treated as a redefinition of
RecordB in VisualAge Generator, the migration tool
does not include the redefines property in the
declaration for RecordA.

When migrating a program, if RecordA is not available, the
migration tool does not know that RecordA is a redefined
record. The migration tool does not include the redefines
property in the declaration for RecordA.

Considerations for new use: A problem only arises if
you need to use RecordA and RecordB in a new
program. You must remember to include the redefines
property for RecordA whenever you want RecordA to
be treated as a redefinition of RecordB.

Potential Problem: A problem arises if the VAGen program
uses RecordA as a redefinition. Immediately after
migration, the program is not a valid EGL program because
the definition for RecordA and the import statement are
missing. EGL validation displays an error message in the
Problems view. If you migrate RecordA and add the import
statement to the program, this converts the program into a
valid EGL program. However, two data areas are created:
one for RecordA and one for RecordB. EGL does not detect
this change during validation or generation. The program
does not run the same way that it did in VisualAge
Generator.

Solution: If you migrate additional records or add import
statements to a program, review the record definitions for a
VAGen Info comment. If there is a VAGen Info comment
specifying that RecordA is a redefinition for RecordB,
update the program to include the redefines property for
the declaration of RecordA.

Considerations: The same considerations for new use listed
under the Migrating with the associated part column can also
occur.

Level 77 items in records
VisualAge Generator: Working storage records can have level 77 items.

EGL: Records cannot have level 77 items.

Associated part needed for migration:

v When migrating a working storage record: not applicable.
v When migrating a program: the primary working storage record.
v When migrating a function: the working storage record.

Chapter 3. Handling ambiguous situations 71

Table 15. Level 77 items in records

Migrating with the associated part Migrating without the associated part

When migrating any working storage record that
contains level 77 items, the migration tool does the
following things:

v Splits the working storage record that contains
level 77 items into two BasicRecords -- one for
the working storage structure and one for the
level 77 items. The new level 77 record name is
the original working storage record name with
Level77 suffix. You can specify the Level77
suffix by setting the VAGen Migration Syntax
Preference.

v Places the new level 77 record in the same file
with the original working storage record.

v Issues an informational message that the level 77
record is being created.

When migrating any working storage record that contains
level 77 items, the migration tool does the same things
mentioned in the Migrating with the associated part column.

When migrating a program, if the primary working
storage record is available and contains level 77
items, the migration tool adds a record declaration
to the program for the new level 77 record if the
primary working storage record contained level 77
items.

When migrating a program, if the primary working storage
record is not available, the migration tool does not know
whether the primary working storage record contains level 77
items. The migration tool does not include a record declaration
for a level 77 record.

When migrating a function, if the working storage
record is available, the migration tool changes
qualified references to the level 77 items within the
function to use the new level 77 record name.

When migrating a function, if the working storage record is
not available, the migration tool does not change the
qualification of item names.

Potential Problem: A problem only arises for the
level 77 item if there are two records of the same
name, possibly in different subsystems, and the
item is a level 77 item in one record and not in
another.

Possible Solution: Move the item to a (new)
common record and change the item qualification
in all functions. Alternatively, do not qualify the
item in the functions.

Considerations for new use: There is a potential
problem if you specify the original working storage
record as the inputRecord property for a new
program. Be sure to consider whether you also
need to add a declaration for the new level 77
record.

Potential Problem 1: A problem arises if the primary working
storage record contained level 77s and the program used the
level 77s. Validation for the program fails due to missing item
definitions.

Solution: Add the level 77 record to the program.

Potential Problem 2: A problem arises for a function if the
qualified data item is really a VAGen level 77 item.

Solution: Modify the function to provide the correct qualifier
for the data item.

Potential Problem 3: The same problem listed under the
Migrating with the associated part column can also occur. You
can use the same solution.

Considerations: The same considerations for new use listed
under the Migrating with the associated part also apply.

Alternate specification records
VisualAge Generator: A record can specify another record as the alternate
specification (altspec) record. For example, if RecordA specifies an altspec of
RecordB, then RecordB provides the structure for RecordA. For SQL records,
RecordB also provides the list of SQL tables and keys for RecordA. If RecordA
specifies a key item, that key is merged with the keys from RecordB when
determining the default selection condition. For DL/I segment records, the field
names in RecordB are also the names of the fields in the DL/I PSB.

72 Rational Business Developer: VisualAge Generator to EGL Migration Guide

EGL: A record can embed another record to obtain the record structure. Only the
record structure is included. Each SQL record must explicitly state the entire set of
SQL tables and keys it references. For DL/I segment records, if RecordB is also a
DL/I segment, then RecordB can provide the dliFieldName property to specify the
name of the field in the DL/I PSB. Alternatively, if RecordB is not a DL/I segment,
then RecordA can provide the dliFieldName property as an override to the embed
keyword.

Associated part needed for migration: If RecordA is an SQL record or a DL/I
segment, you need the record specified as the altspec record (RecordB).

 Table 16. Alternate specification records

Migrating with the associated part Migrating without the associated part

If RecordA is an SQL record that specifies an alternate
specification of RecordB and RecordB is available, the
migration tool does the following things for RecordA:

v Creates the list of table names from the list of tables
specified in RecordB.

v Creates the list of keys by merging the following
items:

– The items, if any, in RecordB that specified
key=yes.

– The item, if any, in RecordA that is specified as
the key item.

The order of the keys is the order in which the items
appear in the structure of RecordB.

v Includes the embed keyword pointing to RecordB.

v Migrates any !itemColumnName variables in the
default selection conditions of RecordA to the
corresponding SQL column names from RecordB.

If RecordA is an SQL record that specifies an alternate
specification of RecordB, and RecordB is not available, the
migration tool does the following things for RecordA:

v Sets the tableNames property to
###TABLES_NOT_FOUND###

v Sets the keyItems property to
###KEYS_NOT_FOUND###, followed by the item, if
any, that is specified as the key item in RecordA.

v Includes the embed keyword pointing to RecordB.

v Migrates any !itemColumnName variables in the default
selection conditions of RecordA to !itemColumnName
without any substitution.

v Issues error messages that the tables and keys could not
be determined.

v Issues an error message if there are any
!itemColumnName variables.

If RecordA is a DL/I segment record that specifies an
alternate specification of RecordB and RecordB is
available and is not a DL/I segment record, the
migration tool does the following things for RecordA:

v Includes the embed keyword pointing to RecordB.

v Includes an override statement for each field from
RecordB that must be renamed. The override
statement sets the dliFieldName property to the
original VAGen field name so that the DL/I field
name is available in EGL.

If RecordA is a DL/I segment record that specifies an
alternate specification of RecordB and RecordB is not
available, the migration tool does the following things for
RecordA:

v Includes the embed keyword pointing to RecordB.

v Issues an error message that the tool cannot determine
whether any override statements are required to
preserve the dliFieldName information.

Chapter 3. Handling ambiguous situations 73

Table 16. Alternate specification records (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: A problem only arises for SQL if
the definition for RecordB differs, generally in different
subsystems.

Solution 1: Duplicate the definition of RecordA so that
each subsystem has its own definition of RecordA.

Potential Problem 2: A problem also arises for DL/I if
the definition for RecordB differs, generally in different
subsystems.

Solution 2: The solution is the same as that described
in Solution 1.

Problem 1: EGL validation for SQL record RecordA results
in messages in the Problems view.

Solution 1: Edit RecordA and include the appropriate table
and key information based on RecordB. Also replace any
!itemColumnName variables in the default selection
condition with the corresponding SQL column names from
RecordB.

Potential Problem 2: A problem arises for DL/I segment
RecordA if RecordB contains fields that must be renamed
due to reserved words or because they start with the # or
@ symbol. In this case, if the field is used in a default SSA
and the renamed field name is longer than 8 characters or
contains a character such as underscore that is invalid for
DL/I, then EGL validation displays an error message in
the Problems view.

Solution 2: Edit RecordA and include the override
statements to specify the DL/I field name.

Potential Problem 3: A problem also arises for DL/I
segment RecordA if the renamed field is used in a default
SSA and is not a valid DL/I name. In this case, there is a
runtime error when you run the program.

Solution 3: Edit RecordA and include the override
statements to specify the DL/I field name.

Different definitions with the same record name
VisualAge Generator: Records include shared data items based on the projects and
packages currently in the workspace. This enables different subsystems or
programs to have different definitions of the same record name.

EGL: Provides the containerContextDependent property for record definitions.
Setting this property to YES enables you to specify that the DataItem parts used for
type definitions are based on the name space of the program part.

Associated part needed for migration: Not applicable. You should have complete
understanding of your VAGen part structure for all subsystems to be able to set
this record property.

 Table 17. Different definitions with the same record name

Migrating with the associated part Migrating without the associated part

The migration tool does not set the
containerContextDependent property to YES for
record definitions. If you need this capability, you
must set the property for each record that requires
it.
Note: See “containerContextDependent Property”
on page 40 for details on limitations on using this
property.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

74 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Reserved words and UI record names
VisualAge Generator: VisualAge Generator does not have reserved words.
VisualAge Generator permits the # and @ symbols as the first character of a UI
record name or a field in a UI record.

EGL: EGL has reserved words. In addition, EGL does not permit the # or @ symbol
as the first character of a record name. A UI record name cannot be a reserved
word and the name cannot start with the # or the @ symbol. A field in a UI record
cannot be a reserved word and the name cannot start with the # or the @ symbol.
Name resolution conflicts can also occur if the UI record or field name is on the
migration tool extended reserved word list.

Associated part needed for migration: Not applicable.

 Table 18. Reserved word and UI record names

Migrating with the associated part Migrating without the associated part

When migrating a UI record, if the record name is
on the migration tool extended reserved word list
or starts with the # or @ symbol, the migration tool
does the following things:

v Renames the UI record by including the
Renaming prefix at the beginning of the record
name. This is identical to the renaming that the
migration tool does for other VAGen records. You
can specify the Renaming prefix by setting the
VAGen Migration Syntax Preference.

v Includes the alias property and sets it to the
original VAGen name for the UI record.

v Changes the .egl file name for the UI record to
match the renamed UI record during Stage 3 of
migration.

v Issues a warning message.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

When migrating a field in a UI record, if the field
name is on the migration tool extended reserved
word list or starts with the # or @ symbol, the
migration tool does the following things:

v Renames the field by including the Renaming
prefix at the beginning of the field name. This is
identical to the renaming that the migration tool
does for fields in other VAGen records.

v Includes the alias property for the field and sets
it to the original VAGen name for the field.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

The migration tool treats a UI record like any other
record for the purposes of renaming. The tool uses
the EGL part name for all references to a UI record.
This includes references in the following places:

v Program part:

– First UI record

– Record declaration

v UI record part - First UI record in the Link
parameters

v Function part - any use of the record in a
statement

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Chapter 3. Handling ambiguous situations 75

Table 18. Reserved word and UI record names (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: None. The alias property
provides the same JSP name as in VAGen.

Potential Problem: None. The alias property provides the
same JSP name as in VAGen.

Handling ambiguous situations for tables

Reserved words and table names
VisualAge Generator: VisualAge Generator does not have reserved words. The #
or @ symbols are not valid in VAGen table names.

EGL: EGL has reserved words. In addition, EGL does not permit the # or @ symbol
as the first character of a part name. A DataTable name cannot be a reserved word.
Name resolution conflicts can also occur if the DataTable name is on the migration
tool extended reserved word list.

Associated part needed for migration: Not applicable.

 Table 19. Reserved words and table names

Migrating with the associated part Migrating without the associated part

The migration tool does not rename the table for
you. The migration tool used in Stage 1 of migration
issues an error message if the table name is on the
migration tool extended reserved word list. If you do
not change the table name, the migration tool used
in Stage 2 of migration also issues an error message.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem: A problem only arises if a
DataTable name is on the migration tool extended
reserved word list. EGL validation displays an error
message in the Problems view.

Solution: Rename the table in VisualAge Generator
before you migrate, or rename the DataTable in EGL
after you migrate. If you change the name in
VisualAge Generator, be sure to change all references
to the table in programs, maps, functions, UI records,
and data item definitions. If you change the name in
EGL, you must change the name of the DataTable
and all references to it. This includes references in
the following places:

v Program use declaration statements

v Logic statements in programs and functions

v Data item validatorDataTable properties

v Form field validatorDataTable properties

v VGUI record validatorDataTable properties

If you want to keep the original table name as the
name for the generated DataTable, set the alias
property to the original DataTable name. If you do
not specify the alias property, be sure to change any
non-EGL references to the DataTable name, including
CICS program definitions.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

76 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Handling ambiguous situations for map groups and maps

Reserved words and FormGroup names
VisualAge Generator: VisualAge Generator does not have reserved words. The #
or @ symbol are not valid in VAGen map group names.

EGL: EGL has reserved words. In addition, EGL does not permit the # or @ symbol
as the first character of a part name. A FormGroup name cannot be a reserved
word. Name resolution conflicts can also occur if the FormGroup name is on the
migration tool extended reserved word list.

Associated part needed for migration: Not applicable.

 Table 20. Reserved words and FormGroup names

Migrating with the associated part Migrating without the associated part

The migration tool does not rename the FormGroup for you. The migration
tool used in Stage 1 of migration issues an error message if the map group
name is on the migration tool extended reserved word list. If you do not
change the map group name, the migration tool used in Stage 2 of
migration also issues an error message.

The migration tool does the same
thing as mentioned in the Migrating
with the associated part column.

Potential Problem: A problem only arises if the FormGroup name is on the
migration tool extended reserved word list. EGL validation displays an
error message in the Problems view.

Solution: Rename the map group in VisualAge Generator before you
migrate or the FormGroup in EGL after you migrate. If you rename the
map group in VisualAge Generator, be sure to rename all the maps that
belong to the map group. Also change all references to the map group in
all program definitions. If you rename the FormGroup in EGL, you must
change the name of the FormGroup and all references to it, including
references in program use declaration statements. If you want to keep the
original map group name as the name for the generated FormGroup, set
the alias property to the original map group (FormGroup) name. If you do
not specify the alias property, be sure to change any non-EGL references to
the FormGroup name, including CICS program definitions.

The same problem listed under the
Migrating with the associated part
column can occur. You can use the
same solution.

Map group and FormGroup requirements
VisualAge Generator: A map group is only required if there is a floating area
specification.

EGL: A FormGroup is always required to contain the forms.

Associated part needed for migration: The map group and all maps in the map
group.

Chapter 3. Handling ambiguous situations 77

Table 21. Map group and FormGroup requirements

Migrating with the associated part Migrating without the associated part

If a map group does not exist, the migration tool does
the following things:

v Creates a FormGroup for all maps with the same
map group name.

v Puts all the forms for the same FormGroup in the
same EGL file.

v Nests the forms within the FormGroup definition if
not migrating with single file migration.

v Issues an error message indicating that the
FormGroup requires editing to nest the forms if
migrating in single file mode.

The migration tool does the same things mentioned in the
Migrating with the associated part column. However, if you
do not have the map group and all its maps in the same
migration set, there might be problems.

Potential Problem: None. All maps for the map group
should be included in the same migration set. Because
the migration set represents what is generated, the
migration set should include all maps in the map
group.

If you are migrating in single file mode, be sure to
include all the maps in the map group in the same
External Source Format file.

Potential Problem: If all maps for the same map group
name are not included in the same migration set (or
External Source Format file for single file mode migration),
the FormGroup does not include all the forms.

Possible Solution 1: Be sure the migration set includes all
maps with the same map group name.

Possible Solution 2: Add the missing forms to the EGL
file and nest them within the FormGroup definition.

Floating areas and starting positions
VisualAge Generator: VisualAge Generator permits having different floating area
sizes and starting positions for different device types that have the same device
size. If no floating area is specified for a device, the entire device size is considered
to be the floating area.

EGL: EGL FormGroups and print forms only specify the device size. EGL text
forms specify both the device size and the form size. EGL only permits one set of
margin specifications for a device size.

Associated part needed for migration: Not applicable.

 Table 22. Floating areas and starting positions

Migrating with the associated part Migrating without the associated part

The migration tool does the following things:

v Issues an error message if two or more devices have
the same device size but different floating area sizes
or starting positions.

v Includes the EGL equivalent device size and margin
specifications for each VAGen floating area
specification. If two or more VAGen devices convert
to identical EGL device size and margin
specifications, the migration tool only includes one
entry for EGL.

The migration tool does the same things mentioned in the
Migrating with the associated part column.

78 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 22. Floating areas and starting positions (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: A problem arises if two or more
devices with the same device size specify different
floating area sizes or starting positions in VisualAge
Generator. EGL validation displays an error message in
the Problems view.

Possible Solution 1: Review the error messages. Edit
the FormGroup definition to specify the one floating
area size and starting position that you require for this
device size.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Potential Problem 2: A problem also arises if you used
created a floating form with multiple devices with the
same size and explicitly specified a floating area size
for some devices, but used the default (full screen)
floating area for other devices of the same size. In this
case, when the migration tool converts the map group,
it only converts the explicitly specified floating areas.
The migration tool does not issue a warning message.
One of the following things might occur:

v If the floating form is only intended for the device
that used the default (full screen) floating area, the
floating form might be too large to fit in the floating
area of the same-size device that explicitly specified
a floating area. In this case, EGL validation issues an
error message in the Problems view.

v If the floating form fits in the floating area of the
device that explicitly specified a floating area, then,
at runtime, if you use the physical device that
expected the default (full screen) floating area, the
floating form is displayed in the wrong place based
on the explicitly specified floating area.

Possible Solution 2: If there is an EGL error message
on the Problems view, set the margins for the explicitly
specified floating area to 0 (so the entire screen is the
floating area). If there is no EGL error message on the
Problems view, then testing is the only way to
determine that the problem has occurred.

Map names and help map names
VisualAge Generator: Map names are two-part names consisting of the map group
and the map name. The main map group and the help map group for a program
can both contain a map with the same name. For example, for Program X, main
map group GROUPA and help map group GROUPH can each contain a map
named MAP1. A map name is limited to 8 characters. A map name can be the
same as the program name. The # and @ symbols are not valid in VAGen map
group names, but the # and @ symbols are permitted in the map name portion of a
map name.

EGL: Form names do not include the FormGroup name. Instead, text and print
forms are defined within a FormGroup part. EGL also requires that all form names
in the main FormGroup and help FormGroup be unique (no duplicate form names
in the two FormGroups for a program). EGL does not permit a form name to be
the same as the name of a program. In addition, EGL does not permit the form
name to be a reserved word or to use the # or @ symbol as the first character of

Chapter 3. Handling ambiguous situations 79

the form name. EGL allows form names to be longer than 8 characters at definition
time. At generation time, if an alias is specified, the alias is used as the form name.
For COBOL generation, the form name or the alias is limited to 8 characters.
Duplicate names are permitted in the main FormGroup and help FormGroup for
the generated code.

Associated parts needed for migration: When migrating a map group, you need
the program and its map group, help map group, and all the maps in both map
groups.

 Table 23. Map names and help map names

Migrating with the associated parts Migrating without the associated
parts

Based on the first program to migrate either the main map group or the help
map group, the migration tool does the following things:

v Performs any renaming for map names due to the migration tool extended
reserved words list or the # or @ symbol being used as the first character
of the map name portion of the name. Maps in both the main map group
and help map group for the program are renamed as necessary.

v Checks the names of all maps in the help map group for the program for
duplicate names with the main map group.

v Compares the program name to the names of all maps in the main map
group and help map group for the program.

If a map in the help map group does not have the same name as any map in
the main map group, the migration tool does not change the help map name.

If a map in the help map group has the same name as any map in the main
map group for the program, the migration tool does the following things:

v If the help map contains only constants, the migration tool does the
following things:

– Renames the help map to helpMapName plus a customer-specified
suffix.

– Includes the alias property with the original help map name.

– Changes the helpForm property for any map to specify the new help
map name.

v If the help map contains variables, the migration tool does the following
things:

– Issues an error message.

– Does not rename the map.

This is because the map could be used by some other program that
specifies the help map group as the main map group for that program.

If a map in the help map group only contains constant fields and the map
name is the same as the program name, the migration tool renames the help
map. The same processing is done as occurs when renaming is done for
conflicting map names in the help map group and main map group.

If a map in the help map group contains any variable fields and is named the
same as the program name or if a map in the main map group is named the
same as the program, the migration tool does not rename the map. The same
processing is done as occurs when renaming cannot be done for conflicting
map names in the help map group and main map group.

When migrating map groups, if a
program is not available, the
migration tool does not know that
two map groups are related and
does not know whether a map
group is ever specified as a help
map group. The migration tool does
the following things:

v Performs any renaming for map
names due to the migration tool
extended reserved word list or the
or @ symbol.

v Does not check for additional
renaming of help maps.

80 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 23. Map names and help map names (continued)

Migrating with the associated parts Migrating without the associated
parts

Potential Problem 1: A problem can arise if a FormGroup is used as a main
FormGroup in one program and a help FormGroup in another program.

Possible Solution: Separate the help FormGroup into two FormGroups, one
containing only help forms and the other containing forms with variable
fields. Specify the FormGroup that contains only help forms as the help
FormGroup for the original program. Specify the FormGroup containing the
forms with variable fields as the main FormGroup and the FormGroup
containing only the help forms as the help FormGroup for the second
program.

Potential Problem 2: A problem arises if a map in the help FormGroup
contains variable fields and has the same name as a map in the main
FormGroup.

Possible Solution: Same as possible solution for Problem 1.

Potential Problem 3: A problem can arise if the same help FormGroup is
shared by multiple programs. In this case, the migration tool might not
rename all the help forms that need to be renamed for the various programs.

Possible Solution: Rename all the necessary forms in the help FormGroup by
adding your help map suffix to the name. Include the alias property to
provide the original help map name for use during generation. Change all
corresponding text forms in all FormGroups to specify the new help form
name.

Potential Problem: A problem only
arises if the FormGroup is used in a
program and there is a conflict
between the form names in the main
FormGroup and help FormGroup.

Possible Solutions: The same
solutions as shown for Migrating
with the associated part apply.

Numeric variable fields
VisualAge Generator: A numeric field on a map has one length. The length should
be long enough to allow for all the digits, the decimal point, sign, currency
symbol, and numeric separator. However, if the field is not long enough at
runtime, VisualAge Generator omits the currency symbol and numeric separator.
VisualAge Generator also omits the sign if it is positive. If necessary to fit into the
space allowed, VisualAge Generator drops the high order digits.

EGL: Variable fields on a form specify both a type definition, which includes the
number of digits and decimals, and a fieldLen property that specifies the space
that the data occupies on the form. If the field length is not big enough to contain
all the digits and formatting characters at runtime, EGL issues a runtime message.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 81

Table 24. Numeric variable fields

Migrating with the associated part Migrating without the associated part

When migrating a numeric field on the map, the
migration tool sets the length and fieldLen in the
following way:

v The migration tool always sets the fieldLen to the
same length as specified for the variable field in
VisualAge Generator.

v The migration tool sets the length and decimals in
the type definition in the following way:

– If the variable field does not specify decimals,
the migration tool sets the length in the type
definition to the fieldLen.

– If the variable field specifies decimals, the
migration tool sets the length in the type
definition to fieldLen minus 1 to allow for entry
of the decimal point. This technique avoids any
overflow problems that might occur at run time.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem: If the field length on the form is
not large enough at run time to contain all the digits,
decimal point, sign, currency symbol, and numeric
separator characters, EGL issues a run time error
message.

Solution: Change the form definition so that the
fieldLen is large enough to contain the largest
possible number that can occur at run time and all
the formatting characters that you specify.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Map variable fields and edit routines
VisualAge Generator: A map variable field can have an edit routine that is a table,
a function, EZEC10, or EZEC11. The edit message is only used if the edit routine is
EZEC10, EZEC11, or a table.

EGL: A form field can have both a validatorDataTable and a validatorFunction. A
form field can also have both a validatorDataTableMsgKey and a
validatorFunctionMsgKey.

Associated part needed for migration: Either the table or function part.

82 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 25. Variable map fields and edit routines

Migrating with the associated part Migrating without the associated part

The first time the map is migrated, the migration
tool converts the edit routine based on the first
criterion in the following list that applies:

v If the editRoutineName is EZEC10 or EZEC11,
the migration tool sets the validatorFunction
property to the EGL-equivalent system library
function. The migration tool also sets the
validatorFunctionMsgKey to the edit message, if
any.

v If the editRoutineName is a function, then the
migration tool sets the validatorFunction
property. The migration tool omits the
validatorFunctionMsgKey because it is not used
in VisualAge Generator.

v If the editRoutineName is a table, then the
migration tool sets the validatorDataTable
property. The migration tool also sets the
validatorDataTableMsgKey to the edit message,
if any.

If a function or table with the same name as the
editRoutineName is not available, the migration tool converts
the edit routine based on the first criterion in the following list
that applies:

v If the editRoutineName is EZEC10 or EZEC11, the
migration tool sets the validatorFunction property to the
EGL equivalent system library function name. The
migration tool also sets the validatorFunctionMsgKey to
the edit message, if any.

v If the editRoutineName is longer than 7 characters, it must
be a function name, so the migration tool sets the
validatorFunction property. The migration tool omits the
validatorFunctionMsgKey because it is not used in
VisualAge Generator.

v If an edit message is specified, the migration tool sets the
validatorDataTable and validatorDataTableMsgKey.

v If an edit message is not specified, the migration tool sets
the validatorFunction property and issues an error
message.

Potential Problem: A problem only arises if a
function and DataTable have the same name (most
likely in different subsystems) and two programs
share the same FormGroup (most likely in the same
subsystem) and one program expects to use the
function and the other program expects to use the
DataTable.

Possible Solution: Review programs that share a
FormGroup. If the situation arises, create a separate
FormGroup to use the validatorDataTable.

Disadvantage: There are now two FormGroups to
maintain. You can minimize this disadvantage by
moving identical forms to a common file and then
specifying the use formName statement in each
FormGroup to point to the common forms.

Potential Problem: A problem only arises if the migration tool
guesses incorrectly. Any program that uses this form might
expect a DataTable when the migration tool specified a
function.

Possible Solution: Review the uses of maps that have error
messages.

Map fields and the numeric hardware attribute
VisualAge Generator: VisualAge Generator supports the numeric hardware
attribute for character constant fields, character variable fields, and numeric
variable fields. The numeric hardware attribute prevents the user from typing
non-numeric data in a variable field.

EGL: EGL only supports the isDecimalDigit property for character variable fields.
Numeric fields have a soft edit to ensure that only valid numeric characters and
formatting characters such as a sign or decimal point are entered into the field.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 83

Table 26. Map fields and the numeric hardware attribute

Migrating with the associated part Migrating without the associated part

The migration tool does the following things:

v For any character variable on a map that specified
the numeric hardware attribute, the tool sets the
isDecimalDigit property to YES.

v For any character constant on the map, the tool
always omits the isDecimalDigit property.

v For any numeric variable field on the map, the
tool always omits the isDecimalDigit property.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem: There is a slight change in
runtime behavior. Users can now type non-numeric
data into numeric fields. EGL issues a runtime error
message if they do. In addition, the users cannot
enter a sign or a decimal point in the character
fields that have the isDecimalDigit property set to
YES.

Possible Solution: Consider notifying your users
that this is an expected difference when changing
from VAGen-generated code to EGL-generated code.
If the character field needs to contain a sign or a
decimal point, change the primitive type to numeric
and remove the isDecimalDigit property.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Map arrays and attributes
VisualAge Generator: VisualAge Generator permits using different attributes for
the elements of an array. including the following attributes:
v input required
v require fill on input
v numeric hardware attribute
v light pen detect

However, these attributes are generally set to the same value for all elements of the
array

EGL: In EGL, only the following properties can be overridden for an array item:
v the field presentation properties:

– color

– highlight

– intensity

– protect

– modified

– outline

v cursor,
v position

v value

Associated part needed for migration: Not applicable.

84 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 27. Map arrays and attribute fields

Migrating with the associated part Migrating without the associated part

The migration tool uses the following properties for
the first element of the array (array index 1) to set
the EGL equivalent properties:

v input required

v require fill on input

v numeric hardware attribute

v light pen detect

EGL uses the properties for the first element of the
array for all the elements of the array.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem: A problem only arises if you used
different attributes for the elements of the array.

Possible Solution: Change the properties for the first
element of the array to the least restrictive values
and add logic to a function specified in the
validatorFunction property to verify that each
element of the array meets the necessary criteria.
Also notify your users of any differences in the
appearance of the form at runtime.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Unnamed map variable fields
VisualAge Generator: VisualAge Generator permits unnamed variable fields on a
map. At generation time, unnamed variable fields are converted into constants.
Programs and functions can never reference the unnamed variable field.

EGL: EGL does not permit unnamed variable fields on a form.

Associated part needed for migration: Not applicable.

 Table 28. Unnamed map variable fields

Migrating with the associated part Migrating without the associated part

For any unnamed variable fields on the map, the
migration tool checks to see if any of the following
values are specified:

v Initial value

v Protect = yes

v Cursor = yes

v Outlining other than "No outlining"

v Highlighting other than "No highlighting"

If any of the listed values are specified, the
migration tool creates a constant field with the
corresponding EGL properties and issues a warning
message.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

If none of the properties (or only default values) are
specified for the unnamed variable field, the
migration tool does the following things:

v Does not create a constant field on the form.

v Issues a warning message.

The migration tool does the same thing as described in the
Migrating with the associated part column.

Chapter 3. Handling ambiguous situations 85

Table 28. Unnamed map variable fields (continued)

Migrating with the associated part Migrating without the associated part

Potential Problems: None. You could not reference
the field in VisualAge Generator.

Potential Problems: None.

Unprotected map constants
VisualAge Generator: VisualAge Generator supports the use of unprotected
constants on a map. At test and generation time, unprotected constants are treated
as though the protection is set to autoskip.

EGL: EGL does not support the use of unprotected constants on a form. For
constants on text forms, EGL supports setting the protect property to either protect
or skipProtect. For print forms, EGL does not support the protect property.

Associated part needed for migration: Not applicable.

 Table 29. Unprotected map constants

Migrating with the associated part Migrating without the associated part

When migrating a form, for an unprotected constant
field, the migration tool does the following things:

v If the form is a text form, the migration tool sets
the EGL protect property to skipProtect and
issues an error message.

v If the form is a print form, the migration tool
omits the protect property and does not issue a
message. The protect property is not used in EGL
print forms.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem: None. Potential Problem: None.

Fields at row=0, column=0
VisualAge Generator: VisualAge Generator Version 4.5 tolerates fields positioned
at row=0, column=0 from older releases of Cross System Product or VisualAge
Generator. However, VisualAge Generator Version 4.5 does not provide a way to
create fields at this position. You cannot set attribute information for fields
positioned at row=0, column=0.

EGL: EGL does not support fields positioned at row=0, column=0. Every field
must include an attribute byte.

Associated part needed for migration: Not applicable.

86 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 30. Fields at row=0, column=0

Migrating with the associated part Migrating without the associated part

When migrating a form, if a field is positioned at
row=0, column=0, the migration tool does the
following things:

v If the field is a constant field and the first
character of the value is blank, the migration tool
does the following things:

– Removes the first character from the value and
reduces the field length by 1.

– Sets the position property to [1,1].

– Includes default presentation properties for the
field.

– Issues a warning message.

v If the field is a constant field and the first
character of the value is not blank or if the field is
a variable field, the migration tool does the
following things:

– Does not change the value or the field length.

– Sets the position property to [0,0].

– Includes default presentation properties for the
fields.

– Issues an error message.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem 1: If the field cannot be changed
and is at position=[0,0], EGL validation displays an
error message in the Problems view.

Solution 1: Modify the form and change the position
of the field. You might need to move other fields or
reposition constants to make room for the attribute
byte for the field. Also review the default
presentation properties to ensure that the correct
color, highlighting, and so on are used.

Potential Problem 2: If a constant field is changed to
position=[1,1], there might be a different runtime
appearance due to the default presentation
properties.

Solution 2: Review the migration warning messages
and be sure to test any forms where the migration
tool adjusted the position of a field.

Potential Problem: The same problems listed under the
Migrating with the associated part column can occur. You can
use the same solutions.

Handling ambiguous situations for programs

Program names and reserved words
VisualAge Generator: VisualAge Generator does not have reserved words. The #
and @ symbols are not valid in VAGen program names.

EGL: EGL has reserved words. In addition, EGL does not permit the # or @ symbol
as the first character of a part name. A program name cannot be a reserved word.
Name resolution conflicts can also occur if the program name is on the migration
tool extended reserved word list.

Chapter 3. Handling ambiguous situations 87

Associated part needed for migration: Not applicable.

 Table 31. Program names and reserved words

Migrating with the associated part Migrating without the associated part

The migration tool does not rename the program for
you. The migration tool used in Stage 1 of migration
issues an error message if the program name is on the
migration tool extended reserved word list. If you do
not change the program name, the migration tool used
in Stage 2 of migration also issues an error message.

The migration tool does the same as mentioned in the
Migrating with the associated part column.

Potential Problem: A problem only arises if a program
name is on the migration tool extended reserved word
list. EGL validation displays an error message in the
Problems view.

Solution: Rename the program. You can do this either
in VisualAge Generator or in EGL after you migrate. If
you rename the program in EGL, you must change the
name of the program and all references to it, including
references on call, transfer, and show statements and
references in linkage options parts. Also change the
names of any bind control or link edit parts that
correspond to this program. If you want to keep the
original program name as the name for the generated
program, set the alias property to the original program
name. If you do not specify the alias property, be sure
to change any non-EGL references to the program name,
including CICS program and transaction definitions.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Implicit data items in programs
VisualAge Generator: VisualAge Generator permits the use of implicit data items
(items that are not explicitly defined in a record, map, table, called parameter list,
function parameter list, or function local storage). However, the use of implicit
items is not generally considered to be a good practice.

EGL: EGL does not permit implicit data items.

Associated part needed for migration: Not applicable.

 Table 32. Implicit data items in programs

Migrating with the associated part Migrating without the associated part

The migration tool does not create definitions for
implicit items for you. The migration tool used in
Stage 2 of migration issues a warning message if the
program allows implicit items.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

88 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 32. Implicit data items in programs (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: A problem only arises if the
program actually uses implicit items. Review the "TO
DO" list log for any programs that allow implicit items.
If the program actually used an implicit item, EGL
validation displays an error message in the Problems
view.

Solution: You can add a definition for the implicit item
to the program either in VisualAge Generator or in
EGL. VAGen validation shows the definition that is
needed for the implicit item. For information about a
white paper that can help you create the implicit items
before you run Stage 1 of migration, see “References”
on page 16.

The same problem listed under the Migrating with the
associated part column can occur. You can use the same
solution.

Associated program parts
VisualAge Generator: The associated parts for a program can be in multiple
projects and packages for VisualAge Java or in multiple configuration maps and
applications for VisualAge Smalltalk.

EGL: The associated parts for a program can be in multiple projects, folders,
packages, and files.

Associated parts needed for migration: For a program: All associates.

Note: See “EGL build path and import statements” on page 38 for additional
information on import statements.

Chapter 3. Handling ambiguous situations 89

Table 33. Associated program parts

Migrating with the associated part Migrating without the associated part

The migration tool does the following things:

v Includes a package statement to specify the package
in which the EGL file is to be placed.

v Includes import statements in the EGL file for any
packages that contain associates needed by any of
the parts in the current file and which are in a
different package from the current file. The import
statements are only included if you migrate using
Stages 1 through 3.

v For the program the migration tool does the
following things:

– Includes a declaration for the primary working
storage record for the program. If there are level
77s in the VAGen primary working storage
record, the tool also includes a declaration for the
new level 77 item record.

– Includes declarations for all records in the
VAGen Tables and Additional Records list,
including the redefines property, if applicable,
for any VAGen redefined records.

– Includes declarations for all I/O records.

– Includes declarations for records used as
parameters on MQ API calls (the records
specified as attributes of an MQ Message record
in VisualAge Generator).

– Includes declarations for UI records that are used
as the First UI Record, in a CONVERSE, or an
XFER statement.

– Includes declarations for DL/I segment records
that the program references in I/O options, either
directly or because they are in the hierarchical
path to the I/O object.

– Includes use declaration statements for any tables
in the VAGen Tables and Additional Records list.

– Includes a use declaration statement for a
message table if the table is explicitly referenced
in a statement in the program.

– Includes a use declaration statement for each
map within the main map group that the
program references in a CONVERSE, DISPLAY,
or CLOSE I/O option, in an XFER with a map
statement, as a called parameter, or as the First
Map of the program.

– Includes a use declaration statement for the help
map group of the program.

– Includes a variable declaration for the PSB for the
program, if the VAGen program specified a PSB.

The migration tool makes use of all program associates that
are available.

90 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 33. Associated program parts (continued)

Migrating with the associated part Migrating without the associated part

Potential problem: None. Potential Problem 1: A problem only arises if there are
missing parts. If the migration tool detects missing parts, it
issues a warning message that identifies the missing parts.
The migration tool does not make any assumption about
the missing part(s). This can result in a variety of problems
in the migrated program, including the following examples:

v Missing import statements.

v Missing level 77 record declaration.

v Missing redefines property for VAGen redefined records.

v Missing I/O record declarations.

v Missing declarations for records used as parameters on
MQ API calls.

v Missing UI record declarations.

v Missing DL/I segment record declarations for segments
referenced in SSAs.

v Missing use declaration statement for a message table if
the table is explicitly referenced in a statement in the
program.

v Missing use declaration statement for maps within the
map group.

Except for the missing redefines property, errors in the
Problems view can help you identify the problem(s).
Note: The migration tool does not detect all missing parts.

Possible Solution 1A: Change your migration set to include
all the parts that are needed to validate the program in
VisualAge Generator. Migrate the program again using the
new migration set so that all the associated parts for the
program are migrated together.

Possible Solution 1B: Locate the missing parts in EGL and
correct the EGL program.

Potential Problem 2: For missing level 77 items, see “Level
77 items in records” on page 71.

Potential Problem 3: For missing redefined records, see
“Redefined records” on page 70.

Program with EZEDLPCB in called parameter list
VisualAge Generator: VisualAge Generator uses EZEDLPCB[n] to indicate that a
program is to receive a PCB as a parameter. n must be a numeric literal. The value
of n must be 0 (for the I/O PCB) or a number that corresponds to one of the PCBs
defined in the PSB part for the program.

EGL: EGL uses a variable name with a type definition of xxxx_PCBRecord to
indicate that a program is to receive a PCB as a parameter. xxxx must be IO, ALT,
DB, or GSAM based on the type of the PCB. EGL also requires the pcbParms
property to provide the mapping of the PCB variable name to its corresponding
position in the PSBRecord for the program.

Associated part needed for migration: The PSB part.

Chapter 3. Handling ambiguous situations 91

Table 34. Program with EZEDLPCB in called parameter list

Migrating with the associated part Migrating without the associated part

When migrating the program, if the program specifies
EZEDLPCB[n] as a parameter and the PSB part is
available, the migration tool does the following things:

v Includes the variable pcbn as a parameter and
specifies the following type definitions based on the
corresponding PCB in the PSB:

– The migration tool sets the type definition of
EZEDLPCB[0] to IO_PCBRecord.

– If n corresponds to a PCB in the PSB part, the tool
sets the type definition based on the PCB type in
the PSB.

– If n is greater than the number of PCBs in the
PSB part, the tool issues a message and sets the
type definition to EZE_UNKNOWN_PCB_TYPE.

v Lists all the pcbn variables in their corresponding
place in the pcbParms property. The I/O PCB is
pcb0 and, if specified as a parameter, is listed in the
first position of the pcbParms property. The
remaining pcbn variables are listed at position n+1
in the pcbParms list.

When migrating the program, if the program specifies
EZEDLPCB[n] as a parameter and the PSB part is not
available, the migration issues a message and does the
following things:

v Includes the variable pcbn as a parameter and specifies
the following type definitions based on the PCB number:

– The migration tool sets the type definition of
EZEDLPCB[0] to IO_PCBRecord.

– The migration tool issues a message and sets the type
definition of all other pcbn variables to
EZE_UNKNOWN_PCB_TYPE.

v Issues a message and sets the pcbParms property to
EZE_UNKOWN_PCB_MAPPING.

Potential Problem: A problem only arises if the PSB
part contains fewer PCBs than the highest value of n
for an EZEDLPCB[n] parameter.

Solution: The program is invalid in VisualAge
Generator. Review your program logic to determine
whether to change the parameter list or the PSBRecord
for the program.

Potential Problem 1: The correct PCB type definitions and
pcbParms property must be provided.

Solution: Locate the PSBRecord for the program. Edit the
program and correct the PCB type definitions. Also provide
the correct mapping of the pcbn variables for the pcbParms
property.

Intermediate variables required for migration
VisualAge Generator: Some VAGen statements require intermediate variables to
provide the equivalent support in EGL.

EGL: EGL provides system library functions that provide some information
required for VAGen migration. This support is only available in VisualAge
Generator compatibility mode.

Associated part needed for migration: Not applicable.

92 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 35. Intermediate variables required for migration

Migrating with the associated part Migrating without the associated part

When migrating any program, the migration tool
always includes the following declarations:

v custPrefixEZEREPLY

v custPrefixEZE_ITEMLEN

v custPrefixEZE_WAIT_TIME

If the Do not initialize old EZESYS values migration
preference is not selected, the migration tool also does
the following things:

v Includes a declaration for custPrefixEZESYS.

v Includes an initialization statement to set the value
of custPrefixEZESYS to the old VAGen EZESYS
value.

custPrefix is the same prefix that is used for changing
part names that conflict with the migration tool
extended reserved word list. Use the VAGen
Migration Preferences to set the value for custPrefix.

The migration tool does the same things mentioned in the
Migrating with the associated part column.

The four variables are used for migrating the
following code:

v VAGen service routines if the (REPLY option is not
specified. In this situation, the current value of
handleSysLibraryErrors must be saved and
restored.

v The TEST nnn, +nnn, or -nnn statement which has
no direct equivalent in EGL. An EGL system library
function is used to determine the length of the data
the user entered.

v The EZEWAIT function. In this situation, the
migration tool adds logic to convert the time to
seconds.

v References to EZESYS in statements other than IF,
WHILE, and TEST where the old VAGen value is
required.

The migration tool does the same things mentioned in the
Migrating with the associated part column.

Potential Problems: A problem only arises if you
select the VAGen Migration Preference Do not
initialize old EZESYS values during migration and
you use EZESYS in statements other than IF, WHILE,
or TEST. In this situation the migration tool uses
custPrefixEZESYS in the statement, but programs do
not have a declaration and initialization statement for
custPrefixEZESYS. EGL validation displays an error
message in the Problems view.

Potential Solution 1: Change your EGL logic to use
the new values for sysVar.systemType .

Potential Solution 2: Add a declaration and an
initialization statement for custPrefixEZESYS to any
program that needs to use the old VAGen value for
EZESYS.

The same problem listed under Migrating with the associated
part column can occur. You can use the same solutions.

Chapter 3. Handling ambiguous situations 93

Handling ambiguous situations for functions, including I/O statements

DISPLAY I/O option for maps
VisualAge Generator: DISPLAY is used for both display maps and printer maps.

EGL: Two separate statements are used:
v display form is used for text forms.
v print form is used for print forms.

In VisualAge Generator compatibility mode, display form is accepted if the form is
a print form.

Associated part needed for migration: The map is needed to determine the device
type. The first map with this map name in any available map group is the map
that the migration tool uses. When migrating in program context, the migration
tool only looks at the main map group for the program.

 Table 36. Display I/O option for maps

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if a map
with this name is available, the migration tool converts to
the following EGL code:

v display textForm if the map is a display map

v print printForm if the map is a printer map

If a map with this name is not available, the migration
tool does the following things:

v Converts to display form

v Issues a warning message that the map type could not
be determined

94 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 36. Display I/O option for maps (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: The first program that migrated
used a print form so the migration tool migrated to the
print statement. Another program uses the same function,
but with a text form.

Solution 1: Use VisualAge Generator compatibility mode.
Edit the function and change the print statement to a
display statement.

Potential Problem 2: A problem arises if you want to
eliminate the use of VisualAge Generator compatibility
mode and two programs use the function -- one with a
text form and one with a print form.

Possible Solution 2A: If a specific target environment
always uses display maps and other environments always
use print maps, you could change the EGL function to
something similar to the following example:

if (sysVar.systemType is zoscics)
 DISPLAY_FUNCTION();
else
 PRINT_FUNCTION();
end

where DISPLAY_FUNCTION and PRINT_FUNCTION
use the display and print statements, respectively.

Possible Solution 2B: If the function migrated to a
display statement, as shown in the following code:

 before-logic
 display TextForm;
 after-logic

Consider changing the statements to use functions, as
shown in the following code:

 before-logic-function();
 display TextForm;
 after-logic-function();

Putting the before-logic and after-logic into separate
functions enables you to keep most of the logic in
common functions. Then you can make a copy of the
modified display function and change it to use the print
statement, but still use the common before-logic-function
and after-logic-function.

Disadvantage: This has the potential to ripple back into
functions that use the original DISPLAY function.

Potential Problem: The same potential problems and
possible solutions as listed in the Migrating with the
associated part column apply.

I/O error routine
VisualAge Generator: A function that does file or database I/O can specify an I/O
error routine. The I/O error routine can be a main function or a non-main
function; the syntax is the same. VisualAge Generator determines at test or
generation time whether the I/O error routine is a main function or non-main
function for the program. When a main function is used as the I/O error routine,
VisualAge Generator pops the function stack back to the top of the stack, starts the
stack over again with only the (I/O error routine) main function on the stack, and

Chapter 3. Handling ambiguous situations 95

then invokes the main function. When a non-main function is used as the I/O
error routine, VisualAge Generator adds the non-main function to the current
function stack and then invokes the function.

EGL: The try block and onException statement are used for error handling. The
syntax for an onException statement supports the following options:
v Transferring back to a main function using exit stack functionName;

v Invoking a non-main function using nonmainfunctionName();

v Invoking a main function with mainfunctionName(); This form is not supported
by VisualAge Generator. EGL adds the main function to the current function
stack and then invokes the main function.

Associated part needed for migration: The program with its list of main functions.

 Table 37. File and database I/O error routines

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if there is a
program available, the migration tool does the following
things:

v Changes an I/O error routine that specifies a program
main function to the following form:

try
 I/O-Statement;
 onException exit stack functionName;
end

v Changes an I/O error routine that specifies a non-main
function to the following form:

try
 I/O-Statement;
 onException functionName();
end

If there is no program available, the migration tool does
the following things:

v Assumes that the function named in an I/O error
routine is a non-main function and changes it to the
following form:

try
 I/O-Statement;
 onException functionName();
end

v Does not issue a warning message due to the high
volume of messages that could be issued and the
likelihood that messages would be ignored or hide
other serious error messages.

Potential Problem: A problem arises if this function is
used in a program where the I/O error routine differs in
its use as a main or non-main function from the original
program.
Note: EGL validation does not display an error message
in the Problems view. Generation does not detect an error.
However, the program does not run as it would in
VisualAge Generator. Instead of popping the stack as in
VisualAge Generator, EGL adds the main function to the
stack.

Possible Solution: If this situation arises, create a new
version of this I/O function with the proper syntax for
transferring to a main function.

Disadvantage: This technique has the potential to ripple
back into other functions that invoke the I/O function.

Potential Problem: A problem arises if this function is
used in a program where the I/O error routine is a main
function.
Note: EGL validation does not display an error message
in the Problems view. Generation does not detect an
error. However, the program does not run as it would in
VisualAge Generator. Instead of popping the stack as in
VisualAge Generator, EGL adds the main function to the
stack.

Possible Solution: The same solution listed for
Migrating with the associated part applies.

SQL I/O statements
VisualAge Generator: For SQL I/O, test and generation expand a single I/O
option into multiple SQL statements as needed based on the record definition and
the use of the Execution time statement build option. Test and generation always
create the tables clause for the I/O statement from the SQL record definition.

96 Rational Business Developer: VisualAge Generator to EGL Migration Guide

EGL: SQL statements must be explicitly specified in the EGL program. If an SQL
statement is modified, all SQL clauses except the INTO clause are required.
Execution time statement build is replaced by the prepare statement followed by
an open, get, or execute statement.

Associated part needed for migration: The SQL record and the record specified as
the alternate specification record, if any.

 Table 38. SQL I/O statements

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the SQL
record and its alternate specification record are
available, the migration tool creates the corresponding
EGL statement(s) based on the record definition, the
SQL statement within the function, and the use of the
Execution time statement build option. If the SQL
statement in the function was modified, the migration
tool does the following things:

v Builds the EGL SQL statement with all clauses,
including the INTO clause.

v Creates any required tables clause from the table
names in the SQL record or, if applicable, its
alternate specification record.

v Creates any other missing clauses that are required
for this SQL I/O statement based on the record
definition for the I/O object, or if applicable, the
record definition for the alternate specification
record for the I/O object.

v Converts any !itemColumnNames from the item
name to the corresponding SQL column name.

v Does not review the SQL statement for the SQL
reserved words that require special treatment. See
“SQL reserved words requiring special treatment”
on page 254 for the list of reserved words and the
changes you must make to your SQL statement if
you use one of these reserved words as a table or
column name.

Note:

v See “SQL I/O and missing required SQL clauses” on
page 98 for details on problems related to missing
SQL clauses.

v See “SQL I/O and !itemColumnName” on page 103
for details on problems related to using
!itemColumnNames.

If the SQL record or its alternate specification record are
not available, the migration tool has only the SQL
statement modifications and the Execution time statement
build information to use in creating the EGL SQL
statements. Because the migration tool does not have a
record definition available, the migration tool does the
following things:

v Builds the EGL SQL statement with all clauses, including
the INTO clause.

v Uses EZE_UNKNOWN_SQLTABLE as the table name
and T1 as the table label in any tables clause.

v Uses EZE_UNKNOWN_SQL_clausename for any missing
SQL clauses, where clausename is the External Source
Format key word for the missing SQL clause (for
example, SELECT or VALUES).

v Uses !itemColumnNames for any column name variables.

v Issues an error message that the function needs to be
reviewed.

v Does not review the SQL statement for the SQL reserved
words that require special treatment. See “SQL reserved
words requiring special treatment” on page 254 for the
list of reserved words and the changes you must make to
your SQL statement if you use one of these reserved
words as a table or column name.

Note:

v See “SQL I/O and missing required SQL clauses” on
page 98 for details on problems related to missing SQL
clauses.

v See “SQL I/O and !itemColumnName” on page 103 for
details on problems related to using !itemColumnNames.

Chapter 3. Handling ambiguous situations 97

Table 38. SQL I/O statements (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: A problem only arises if there are
two records with the same name that have different
SQL table names or table labels. This might occur in
different subsystems or when generating using
different tables for test and production.

Possible Solution 1A: If the problem is due to
changing the qualification for a table name between
test and production, change to use unqualified table
names and specify the qualification information at
BIND time.

Possible Solution 1B: If the problem is due to
different table names in different subsystems, make a
copy of the record and rename it. Then make a copy of
the I/O function to use the new record name. Correct
the new I/O function to have the proper tables clause.

Disadvantage: This has the potential to ripple back
into functions that use this I/O function.

Possible Solution 1C: If the problem is due to
different table names in different subsystems, change
the record to use the tableNameVariables property
and modify all functions that do I/O for this record to
set the table name variable before invoking the I/O
function -- possibly in the EGL main function for each
program. Alternatively, make the change to table name
host variables in VisualAge Generator and migrate the
program, record and function again.

Disadvantage: There are potential performance
implications because this changes from static to
dynamic SQL.

Potential Problem 2: A problem arises if any SQL
table name or column name is one of the SQL reserved
words that requires special treatment. The migration
tool does not enclose these SQL reserved words in
double-quotes. EGL validation displays an error
message in the Problems view.

Solution 2A: Edit the function and enclose the SQL
table name or column name in double quotes. See
“SQL reserved words requiring special treatment” on
page 254 for the list of SQL reserved words and an
example of the required syntax.

Potential Problem 1: A problem arises for any modified
SQL statement or any SQL statement that uses Execution
time statement build. Depending on whether the record is
missing and which specific SQL clauses are missing from
the SQL statement, there might be errors in the Problems
view.

Solution: Review the migration log for any messages
related to missing SQL clauses or table names.
Alternatively, search the workspace for any occurrences of
EZE_UNKNOWN_SQL. Determine the proper tables clause
based on the record definition. See “SQL I/O and missing
required SQL clauses” on page 98 for information about
recreating the SQL clause in EGL. See “SQL I/O and
!itemColumnName” on page 103 for information about
correcting any !itemColumnName variables.

Other potential problems: The same potential problems
and solutions as shown for Migrating with the associated part
apply.

SQL I/O and missing required SQL clauses
VisualAge Generator: VisualAge Generator Version 4.5 stores all the SQL clauses if
you modified any SQL clause. However, some earlier versions of Cross System
Product and VisualAge Generator only stored the clause that you modified. If a
function from an earlier version was never modified in VisualAge Generator
Version 4.5, then some of the required SQL clauses might be missing. In addition,
in VisualAge Generator Version 4.5, default SQL can be used with the Execution
time statement build option. At generation time, this results in an SQL PREPARE
statement, followed by an OPEN, and then (for INQUIRY or UPDATE) followed by

98 Rational Business Developer: VisualAge Generator to EGL Migration Guide

a FETCH. VisualAge Generator automatically creates the information required for
the SQL PREPARE statement. The following table shows which clauses, in addition
to the tables clause, that the migration tool might create for the various I/O
options:

 Table 39. SQL clauses that the migration tool might create

I/O option

Missing SQL clause with or
without Execution time statement
build

Default SQL with Execution time
statement build

ADD INSERTCOLNAME, VALUES not applicable

CLOSE not applicable not applicable

DELETE not applicable not applicable

INQUIRY SELECT, INTO SELECT, INTO, WHERE

REPLACE not applicable not applicable

SCAN not applicable not applicable

SETINQ SELECT, INTO SELECT, INTO, WHERE,
ORDERBY

SETUPD SELECT, INTO, FORUPDATEOF SELECT, INTO, WHERE,
FORUPDATEOF

SQLEXEC not applicable with a record and
model=UPDATE
UPDATE, SET, WHERE

with a record and
model=DELETE
DELETE, WHERE

UPDATE SELECT, INTO, FORUPDATEOF SELECT, INTO, WHERE,
FORUPDATEOF

EGL: If any SQL clause is modified, all SQL clauses for the SQL statement must be
specified. In addition, in EGL a prepare statement must specify the entire SQL
statement that is required for the SQL PREPARE.

Associated part needed for migration: The SQL record and the record specified as
the alternate specification record, if any.

 Table 40. SQL I/O and missing SQL clauses

Migrating with the associated part Migrating without the associated part

If the SQL record and its alternate specification record
are available, and if any SQL clause is present, but
some clauses are missing, the migration tool creates
the missing clauses as shown in the next rows of this
table. In addition, if default SQL is used with the
Execution time statement build option, the migration
tool creates all relevant clauses for that I/O option.
Based on the first migration of this function, the
migration tool uses the SQL record and its alternate
specification record, if any, to create the missing
clauses.

If the SQL record or its alternate specification record are not
available, and if any SQL clause is present, but some clauses
are missing, the migration tool creates the missing clauses as
shown in the next rows of this table. In addition, if default
SQL is used with the Execution time statement build option,
the migration tool creates all relevant clauses for that I/O
option. Based on the first migration of this function, the
migration tool creates intentionally invalid EGL syntax if the
SQL record or its alternate specification record is not
available.

Chapter 3. Handling ambiguous situations 99

Table 40. SQL I/O and missing SQL clauses (continued)

Migrating with the associated part Migrating without the associated part

Missing tables clause: The migration tool creates the
tables clause by listing all the SQL tables and table
labels from the record. The migration tool includes
both SQL table names and table name host variables
in the same order that they appear in the VAGen
record definition.

Missing tables clause: The migration tool sets the SQL table
name to EZE_UNKNOWN_SQLTABLE, sets the table label
to T1 and issues an error message.

Missing SELECT clause: The migration tool creates a
SELECT clause by listing all the SQL column names
from the record in the same order that the items
appear in the record.

Missing SELECT clause: The migration tool sets the SQL
column names for the SELECT clause to
EZE_UNKNOWN_SQL_SELECT and issues an error
message.

Missing INTO clause: The migration tool creates the
INTO clause by listing all the item names from the
record in the same order that the items appear in the
record.

Missing INTO clause: The migration tool sets the item
names for the INTO clause to EZE_UNKNOWN_SQL_INTO
and issues an error message.

Missing INSERTCOLNAME clause: The migration
tool creates the list of column names to be inserted
for a VAGen ADD function by listing the SQL column
names from the record in the same order that the
items appear in the record. The migration tool omits
the SQL column name for any item that is identified
as read only.

Missing INSERTCOLNAME clause: The migration tool sets
the SQL column names for the list to
EZE_UNKNOWN_SQL_INSERTCOLNAME and issues a
error message.

Missing VALUES clause: The migration tool creates
the VALUES clause for a VAGen ADD function by
listing the item names from the record in the same
order that the items appear in the record. The
migration tool omits the item name for any item that
is identified as read only.

Missing VALUES clause: The migration tool sets the item
names for the VALUES clause to
EZE_UNKNOWN_SQL_VALUES and issues an error
message.

Missing FOR UPDATE OF clause: The migration tool
creates the FOR UPDATE OF clause by listing the
SQL column names from the record in the same order
that the items appear in the record. The migration
tool omits the SQL column name for any item that is
included in the EGL keyItems property or any item
that is identified as read only.

Missing FORUPDATEOF clause: The migration tool sets
the SQL column names for the FOR UPDATE OF clause to
EZE_UNKNOWN_SQL_FORUPDATEOF and issues an error
message.

Missing SET clause: For modified SQL, there is only
one clause (the SET clause) other than the tables
clause. If the SET clause is missing from a REPLACE
I/O option, the I/O option uses default SQL. In this
situation, the migration tool does not create a SET
clause.

If Execution time statement build is specified with
default SQL and a record is specified and the model
option is set to UPDATE, the migration tool creates
the SET clause by listing the SQL column names and
setting each column to the value of the corresponding
item from the record. The migration tool lists the SQL
column and item name pairs in the same order that
the items appear in the record. The migration tool
omits the SQL column and item name pair for any
item that is included in the EGL keyItems property or
any item that is identified as read only.

Missing SET clause: For modified SQL, the migration tool
does the same thing as mentioned in the Migrating with the
associated part column.

If Execution time statement build is specified with default
SQL and a record is specified and the model option is set to
UPDATE, the migration tool sets the SET clause to
EZE_UNKNOWN_SQL_SET and issues an error message.

100 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 40. SQL I/O and missing SQL clauses (continued)

Migrating with the associated part Migrating without the associated part

Missing WHERE clause: For modified SQL, the
WHERE clause is not required. In this situation, the
migration tool does not create a WHERE clause.

If Execution time statement build is specified with
default SQL, the migration tool creates a WHERE
clause based on the I/O option in the following way:

v For a SETINQ or SETUPD, the migration tool
creates a WHERE clause in the following way:

– If there is a default select condition and no key
items or more than one key item, the migration
tool creates the WHERE clause from the default
select condition.

– If there is no default select condition, but there is
one key item, the migration tool creates the
WHERE clause using the key item.

– If there is a default select condition and one key
item, the migration tool creates the WHERE
clause using both the default select condition
and the key item.

– In all other cases, the migration tool omits the
WHERE clause

v For an INQUIRY, UPDATE, or SQLEXEC with the
model option set to UPDATE or DELETE, the
migration tool creates a WHERE clause in the
following way:

– If there is a default select condition and no key
items, the migration tool creates the WHERE
clause from the default select condition.

– If there is no default select condition, but there
are one or more key items, the migration tool
creates the WHERE clause using all key items.

– If there is a default select condition and one or
more key items, the migration tool creates the
WHERE clause using both the default select
condition and all the key items.

– In all other cases, the migration tool omits the
WHERE clause.

Missing WHERE clause: For modified SQL, the migration
tool does the same thing as mentioned in the Migrating with
the associated part column.

If Execution time statement build is specified with default
SQL and the I/O option is SETINQ, SETUPD, INQUIRY,
UPDATE, or SQLEXEC with the model option set to
UPDATE or DELETE, the migration tool sets the WHERE
clause to EZE_UNKNOWN_SQL_WHERE and issues an
error message.

Missing ORDER BY clause: For modified SQL, the
ORDER BY clause is not required. In this situation,
the migration tool does not create a ORDER BY
clause.

If Execution time statement build is specified with
default SQL, the migration tool creates an ORDER BY
clause based on the I/O option in the following way:

v For a SETINQ, the migration tool creates an
ORDER BY clause by listing the field position that
corresponds to each item in the EGL keyItems
property and then including the ASC option. The
first field in the record is considered position 1.

v For an INQUIRY, UPDATE, SETUPD, or SQLEXEC,
the migration tool does not create an ORDER BY
clause.

Missing ORDER BY clause: For modified SQL, the
migration tool does the same thing as mentioned in the
Migrating with the associated part column.

If Execution time statement build is specified with default
SQL and the I/O option is SETINQ, the migration tool sets
the SET clause to EZE_UNKNOWN_SQL_ORDERBY and
issues an error message.

Chapter 3. Handling ambiguous situations 101

Table 40. SQL I/O and missing SQL clauses (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: A problem only arises if there are
two records with the same name (generally in
different subsystems) that have different item names
or SQL column names.

Possible Solution: Make a copy of the function for
use in the second subsystem and modify the new
function to use the correct item names and SQL
column names.

Disadvantage: This has the potential to ripple back
into functions that use this I/O function.

Potential Problem 1: A problem arises for any modified
SQL statement or any SQL statement that uses Execution
time statement build.

Solution 1A: Review the list of error messages for any
messages related to missing SQL clauses. Modify the SQL
I/O function to include the missing clauses. The information
you need to build the missing clause is in the corresponding
row in the Migrating with the associated part column.

Solution 1B: Edit the function in VisualAge Generator and
use the SQL Editor to make a trivial change such as adding
a blank at the end of a line. Save the SQL clauses and then
migrate the function again. Be sure to include the record
definition so that the migration tool can include the SQL
table information in the EGL I/O statement.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associated part apply.

SQL I/O and Execution time statement build
VisualAge Generator: For an SQL INQUIRY, UPDATE, SETINQ, or SETUPD
function when the Execution time statement build option is specified, VisualAge
Generator creates an SQL PREPARE statement, followed by an OPEN, and then
(for INQUIRY or UPDATE) followed by a FETCH. If a soft error occurs on the SQL
PREPARE statement, processing continues with the SQL OPEN or GET. In
addition, for an SQLEXEC function when Execution time statement build option is
specified, VisualAge Generator creates an SQL EXECUTE IMMEDIATE statement.

EGL: An EGL prepare statement follows the normal I/O process. If a soft error
occurs, control passes to the onException block if one exists. This means that if a
soft error occurs on an SQL PREPARE statement, processing does not automatically
continue with the corresponding SQL OPEN, GET or EXECUTE statement. In
addition, EGL does not support the SQL EXECUTE IMMEDIATE statement. The
EGL prepare statement, followed by an execute statement, provides the closest
equivalent.

Associated part needed for migration: Not applicable.

102 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 41. SQL I/O and !itemColumnName

Migrating with the associated part Migrating without the associated part

For an SQL INQUIRY, UPDATE, SETINQ, or SETUPD
function with the Execution time statement build
option and an I/O error routine, the migration tool
converts the I/O option to the following code to
provide handling for a soft error on the EGL prepare
statement:

try
 prepareStatement;
end
if (recordName not HardIOError)
 try
 openOrGetStatement;
 onException
 IOErrorRoutineEquivalent;
 end
else
 IOErrorRoutineEquivalent;
end

If the function does not have an I/O error routine, the
migration tool converts the I/O option to the
following code and issues a warning message:

prepareStatement;
openOrGetStatement;

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

For an SQLEXEC function with the Execution time
statement build option, the migration tool converts the
I/O option to an EGL prepare statement followed by
an EGL execute statement. The migration tool issues a
warning message.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem 1: A problem arises if there is an
INQUIRY, UPDATE, SETINQ, or SETUPD function
that specifies the Execution time statement build
option and which does not specify an I/O error
routine. The migration tool issues a warning message.

Possible Solution 1: If you need processing to
continue after a hard error on the EGL prepare
statement, edit the function and add the logic shown
previously.

Potential Problem 2: A problem might arise if there is
an SQLEXEC function that specifies the Execution time
statement build option because the performance of the
prepare statement followed by the execute statement
in EGL might not be the same as the SQL EXECUTE
IMMEDIATE statement in VisualAge Generator. The
migration tool issues a warning message.

Possible Solution 2: None. Generate and test the
program to check that the performance is acceptable.

Potential Problem: The same potential problems and
possible solutions as listed in the Migrating with the
associated part column.

SQL I/O and !itemColumnName
VisualAge Generator: For SQL I/O, VisualAge Generator permits the use of
!itemColumnName in some clauses of the SQL statements. Test and generation
determine the SQL column name that corresponds to the item name in the SQL
row record.

Chapter 3. Handling ambiguous situations 103

EGL: The use of !itemColumnName is not supported.

Associated part needed for migration: The SQL record and the record specified as
the alternate specification record, if any.

 Table 42. SQL I/O and !itemColumnName

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the SQL
record and its alternate specification record are
available, the migration tool converts any
!itemColumnNames to the corresponding SQL column
name based on the SQL record or, if applicable, its
alternate specification record.

If the SQL record or its alternate specification record are
not available, the migration tool does the following things:

v Uses !itemColumnNames for any column name
variables.

v Issues an error message that the function needs to be
reviewed.

Potential Problem: A problem only arises if there are
two records with the same name (generally in different
subsystems) that have different SQL column names
corresponding to an !itemColumnName.

Possible Solution: Make a copy of the function for use
in the second subsystem and modify the new function
to use the correct SQL column names.

Disadvantage: This has the potential to ripple back
into functions that use this I/O function.

Potential Problem 1: A problem arises for any modified
SQL statement or any SQL statement that uses the
Execution time statement build option.

Solution: Review the list of error messages for any
messages related to !itemColumnNames. Modify the SQL
I/O function to include the correct column names based on
the SQL row record.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associated part
apply.

SQL I/O with multiple UPDATE or SETUPD functions
VisualAge Generator: For SQL I/O, if there are multiple UPDATE or SETUPD
functions in a program, each SQL REPLACE function must specify the name of its
corresponding UPDATE or SETUPD function. This is not required for non-SQL
I/O. SETUPD is not supported for non-SQL I/O.

EGL: For SQL I/O, if there are multiple get forUpdate or open forUpdate
statements, each SQL replace statement must specify the name of its corresponding
get or open statement. Each get and open statement specifies a resultSetID. The
replace statement specifies the resultSetID for the corresponding get or open
statement. The resultSetID is not applicable for non-SQL I/O.

Associated part needed for migration: The record that is the I/O object.

104 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 43. SQL I/O with multiple UPDATE or SETUPD functions

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the
record is available, the migration tool creates the
corresponding EGL statement(s) based on the record
type.

For SQL, the migration tool does the following things:

v Always includes a resultSetID when migrating any
UPDATE or SETUPD function. The resultSetID is
created using the function name and a
customer-specified suffix.

v Includes the resultSetID when migrating any
REPLACE function that specified a corresponding
UPDATE or SETUPD function name. The resultSeID
is created using the corresponding UPDATE or
SETUPD function name and a customer-specified
suffix.

For non-SQL, the migration tool always omits the
resultSetID when migrating an UPDATE or REPLACE
function. There are no SETUPD functions for non-SQL
I/O.

When migrating an UPDATE function, if the record is not
available, the migration tool does the following things:

v Attempts to determine if this function is for SQL I/O by
checking if the function also has SQL clauses or any
SQL-specific information such as Execution time
statement build, Single row select, or Declare cursor with
hold.

v If the migration tool can determine that this UPDATE
function is for an SQL record, the migration tool
includes the resultSetID in the get statement.

v Otherwise, the migration tool does not include the
resultSetID. The migration tool issues a warning
message.

When migrating a SETUPD function, the migration tool
always includes the resultSetID because SETUPD is only
valid for SQL.

When migrating a REPLACE function, the migration tool
includes the resultSetID if the function specifies a
corresponding UPDATE or SETUPD function name.

Potential Problem: None. Potential Problem: A problem only arises if an unmodified
UPDATE function really does refer to an SQL record and is
used in a program where there are multiple get or open
forUpdate statements. In this case, each replace statement
includes a resultSetID, but the get statement that was
migrated for the VAGen UPDATE function does not
include the resultSetID. Generation for the program fails.

Solution: Modify the function to include the resultSetID
for the get statement.

DL/I I/O and comparison value items
VisualAge Generator: For DL/I I/O, if the comparison value item is not qualified,
VisualAge Generator gives precedence to the record that corresponds to the
segment specified for the current Segment Search Argument (SSA). If the
comparison value item is not found in that record, the name resolution rules
varied over time. In general, VisualAge Generator looks next in working storage
records and then in other DL/I segment records such as the I/O object. Items in
the function local storage or parameter list are ignored. Records in the function
local storage or parameter list are considered, but only for items that are uniquely
named within the program.

EGL: For DL/I I/O, if the comparison value item is not qualified, EGL follows the
normal EGL qualification rules. EGL looks first at items in the function local
storage or parameter list; then fields in records in the function local storage,
parameter list, or I/O object; and finally all variables in the program.

Associated part needed for migration: DL/I segment record and the record
specified as the alternate specification record, if any.

Chapter 3. Handling ambiguous situations 105

Table 44. DL/I I/O and comparison value items

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the
comparison value item is not qualified, the migration
tool looks for the DL/I segment record associated with
the current SSA. If the DL/I segment record and its
alternate specification record are available, the
migration tool checks the record for the comparison
value item in the following way:

v If the item is in the record, the migration tool
qualifies the comparison value item with the DL/I
segment record name.

v If the item is not in the record, the migration tool
does the following things:

– Uses EZE_UNKNOWN_QUALIFIER as the record
name.

– Issues a message indicating that it cannot
determine the qualification for the item.

If the DL/I segment record or its alternate specification
record are not available, the migration tool does the
following things:

v Uses EZE_UNKNOWN_QUALIFIER as the record name.

v Issues a message indicating that it cannot determine the
qualification for the item.

Potential Problem: A problem only arises if the
comparison value item is not qualified and is not in
the associated DL/I segment record or its alternate
specification record.

Possible Solution: Review your program logic to
determine the correct qualification to use. You can also
review the generated COBOL source code from the last
time you generated the program. In VisualAge
Generator, at some points in time, the rules for the
qualification of the comparison value item varied. Due
to these variations, do not regenerate the program
using your current release of VisualAge Generator
unless you are certain that the release has not changed
since the last time you generated the program.

Potential Problem 1: A problem arises for any unqualified
comparison value item.

Solution: Modify the DL/I I/O function to include the
correct qualification for the comparison value item. Be sure
to check the DL/I segment record associated with the
qualification statement first.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associated part
apply.

Handling ambiguous situations for other statements

Implicit data items in statements
VisualAge Generator: VisualAge Generator permits the use of implicit data items
(items that are not explicitly defined in a record, map, table, called parameter list,
function parameter list, or function local storage). However, the use of implicit data
items is not generally considered to be a good practice.

EGL: EGL does not permit implicit items.

Associated part needed for migration: Not applicable.

 Table 45. Implicit data items in statements

Migrating with the associated part Migrating without the associated part

See “Implicit data items in programs” on page 88 See “Implicit data items in programs” on page 88

Level 77 items in statements
VisualAge Generator: Only working storage records can contain level 77 items. A
program can reference level 77 items only in the primary working storage record.

106 Rational Business Developer: VisualAge Generator to EGL Migration Guide

EGL: Level 77 items are not permitted.

Associated part needed for migration: When migrating a function, you need the
primary working storage record.

 Table 46. Level 77 items in statements

Migrating with the associated part Migrating without the associated part

See “Level 77 items in records” on page 71 See “Level 77 items in records” on page 71

Table references in statements
VisualAge Generator: If a function references a table, the table is not considered to
be an associate of the function.

EGL: If a function references a DataTable, the file containing the function must
include an import statement for the package containing the DataTable.

Associated part needed for migration: Table.

 Table 47. Table references in statements

Migrating with the associated part Migrating without the associated part

If the table is available, the migration tool adds the table
as an associate of the function during Stage 2 migration.
Stage 3 migration then adds the corresponding import
statement to the file containing the function.

If the table is not available, the migration tool does not
add the table as an associate of the function. The import
statement is not added during Stage 3.

Potential Problem: None. Potential Problem: A problem arises if the import
statement is not present due to the need to import a part
in the same package as the table, either for the function
or for some other part in the same file as the function.

Solution: Add the import statement to the file containing
the function.

MOVEA with a single row table as the source
VisualAge Generator: When a table with a single row of contents is used as the
source of a MOVEA statement, the source is treated as a scalar and the target array
is completely initialized by the scalar source. This is contrary to the VisualAge
Generator documentation, which indicates that the table should always be treated
as an array, which in turn would cause only the first element of the target array to
be initialized.

EGL: A move with the for modifier is always treated as a move of one array to
another. When a table with a single row of contents is used as the source of a
move with the for modifier, only the first element of the target array is initialized.

Associated part needed for migration: Table.

 Table 48. MOVEA with a single row table as the source

Migrating with the associated part Migrating without the associated part

When migrating a table, if the table contents only has a
single row, the migration tool issues a warning message.

When migrating a table, the migration tool does the
same thing as described in the Migrating with the
associated part column.

Chapter 3. Handling ambiguous situations 107

Table 48. MOVEA with a single row table as the source (continued)

Migrating with the associated part Migrating without the associated part

When migrating a statement, if the source for the
MOVEA statement is qualified and the qualifier is
available, the migration tool checks to determine if the
qualifier is a table with only a single row of contents. If
so, the migration tool issues an error message.

If the source for the MOVEA is not qualified or the
qualifier is not a table, the migration tool does not issue
a message.

When migrating a statement, if the source for the
MOVEA statement is qualified, the qualifier name is 7 or
fewer characters, and the qualifier is not available, the
migration tool issues a warning message.

Potential Problem 1: A problem arises for tables with a
single row of contents. The migration tool issues an error
message.

Possible Solution 1: If you need the entire target array
to be initialized, modify the program logic to use a loop
to initialize the elements of the target array from the
single row of the source table.

Potential Problem 2: A problem also arises if the source
is not qualified and resolves to a field in a table that only
has a single row of contents. In this case, the program
does not run the same as in VisualAge Generator.

Possible Solution 2: The solution is the same as for
Potential Problem 1.

Potential Problem: The same potential problems and
possible solutions as listed in the Migrating with the
associated part column.

Assignment statements
VisualAge Generator: Assignment statements are permitted for records and maps
and result in a "move corresponding." MOVE statements are permitted for items.

EGL: Assignment statements can only be used for data items or for a byte-by-byte
move of a record. Assignment statements cannot be used for forms. The move
byName statement is required for a "move corresponding" of records and forms.
You can use the move statement with the withV60Compat modifier to cause a
move corresponding if the source or target is a record or form, or an assignment
statement if the source or target is a field.

Associated part needed for migration: Not applicable.

108 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 49. Assignment statements

Migrating with the associated part Migrating without the associated part

To preserve as much common code as possible, the
migration tool does the following things if both the
source and target of an assignment or move statement
are unqualified, unsubscripted names:

v Checks the function parameter list, local storage,
and I/O object to try to determine whether the
source or target of an assignment or MOVE
statement is an item, record, or map. If the
migration tool can make the determination, it
migrates in the following way:

– To an assignment statement if the source or target
is an item.

– To a move byName statement if the source or
target is a record or map.

v If the migration tool cannot determine the part type,
it migrates assignment and MOVE statements to a
move statement with the withV60Compat modifier.

This is handled the same as mentioned in the Migrating
with the associated part column.

Potential Problem: None. EGL debug and generation
convert the move statement with the withV60Compat
modifier to a VAGen MOVE statement. This is an item
to item move or a move byName (move
corresponding), depending on the actual source and
target of the move. Any program can use the function
without modifying it.

Potential Problem: None. The same situation mentioned in
the Migrating with the associated part column applies.

FIND statement
VisualAge Generator: The search column in the FIND statement is optional. The
default is the first column of the VAGen table.

EGL: The FIND statement is replaced by an if statement. The search column is
required.

Associated part needed for migration: The VAGen table.

 Table 50. FIND statement

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the
search column is not explicitly specified and the table
is available, the migration tool expands the table to get
the name of search column from the first column of the
table.

If the search column is not explicitly specified and the
table is not available, the migration tool does the following
things:

v Sets the search-column to

EZE_UNKNOWN_SEARCH_COLUMN

v Issues an error message stating that the function must
be modified to use the proper column name.

Chapter 3. Handling ambiguous situations 109

Table 50. FIND statement (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: A problem only arises if two
DataTables, probably in different subsystems, have the
same DataTable name, but different search column
names.

Solution: For the second subsystem, add a field as a
substructure for the first column in the DataTable. The
name of this new field should be the same as the
search column in the first subsystem. This technique
enables you to share the common function without
changing any code in the second subsystem.

Potential Problem 1: The search column name must be
provided. EGL validation displays an error message in the
Problems view.

Solution: Edit the function and specify the correct column
name for the DataTable.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associated part
apply.

RETR statement
VisualAge Generator: The search and return columns for the RETR statement are
optional. The search column defaults to the first column of the VAGen table. The
return column defaults to the second column.

EGL: The RETR statement is replaced by an if statement. The search and return
columns are required.

Associated part needed for migration: The VAGen table.

 Table 51. RETR statement

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the
search or return column is not explicitly specified and
the table is available, the migration tool expands the
table to get the following information:

v The name of search column from the first column of
the table.

v The name of the return column from the second
column of the table.

If the search column or return column is not explicitly
specified and the table is not available, the migration tool
does the following things:

v Sets the search column to

EZE_UNKNOWN_SEARCH_COLUMN

v Sets the return column to

EZE_UNKNOWN_RETURN_COLUMN

v Issues an error message stating that the function must
be modified to use the proper column names.

Potential Problem: A problem only arises if two
DataTables, probably in different subsystems, have the
same DataTable name, but different search or return
column names.

Solution: For the second subsystem, add a field as a
substructure for the first column in the DataTable. The
name of this new field should be the same as the
search column in the first subsystem. Substructure the
second column of the DataTable with the name of the
return column in the first subsystem. This technique
enables you to share the common function without
changing any code in the second subsystem.

Potential Problem 1: The search and return column names
must be provided. EGL validation displays an error
message in the Problems view for each missing column.

Solution: Edit the function and specify the correct column
names for the DataTable.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associated part
apply.

SET map PAGE statement
VisualAge Generator: SET map PAGE is used for both display and print maps.

EGL: Two separate statements are used. The map name is not specified:

110 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v converseLib.clearScreen() for text (display) forms
v converseLib.pageEject() for print forms

Associated part needed for migration: The map is needed to determine the device
type. The first map with this map name in any available map group is the map
that the migration tool uses. When migrating in program context, the migration
tool only looks at the main map group for the program.

 Table 52. SET map PAGE statement

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the map
is available, the migration tool converts SET map PAGE
to one of the following functions:

v converseLib.clearScreen() for a text form

v converseLib.pageEject() for a print form

The migration tool also includes a comment with the
original map name.

If the map is not available, the migration tool does the
following things:

v Converts SET map PAGE to
converseLib.EZE_SETPAGE().

v Includes a comment with the original map name.

v Issues an error message that it was unable to determine
the map type.

Potential Problem: Any program that uses a different
map type from what was determined when the
function migrated might behave differently at run time.
This is because clearScreen() only applies to text forms
and pageEject() only applies to print forms. EGL
validation does not display an error message in the
Problems view. Generation does not fail for the
program.

Possible Solution: If a specific target environment does
printing and other environments always use display
maps, change the EGL function to something similar to
the following example:

if (sysVar.systemType is ZOSBATCH)
 converseLib.pageEject();
else
 converseLib.clearScreen();
end

Similar logic can be used based on transaction code,
user ID, and so on, depending on the specific details of
your system.

Potential Problem 1: If the function containing the
statement is used in a program, EGL validation displays
an error message in the Problems view. If the function is
not used in a program, there is no message in the
Problems view.

Solution: Edit the function and change EZE_SETPAGE() to
either converseLib.clearScreen() or
converseLib.pageEject(), depending on the map type.

Potential Problem 2: The same potential problem and
solution as shown for Migrating with the associated part
apply.

SET mapItem attributes
VisualAge Generator: VisualAge Generator tolerates attributes such as protect,
highlighting, and color for variables and constants on printer maps.

EGL: With the exception of underline, EGL does not support attributes for print
forms.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 111

Table 53. SET mapItem attributes

Migrating with the associated part Migrating without the associated part

When migrating a printer map, the migration tool
omits attributes that are not supported by EGL for
print forms.

When migrating a function, the migration tool migrates
the SET statement without regard to whether the map
is a display map or printer map.

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem: There is no problem for a text form.
A problem only arises if the function includes logic to
set attributes such as color, highlight, or protect for a
print form. EGL validation displays an error message
in the Problems view.

Solution: If the function is only used for print forms,
modify the function to remove the set statement. If the
function is used with both text and print forms, make a
copy of the function for use with print forms. Modify
the new function to remove the set statements and use
this new function for any print forms.

Disadvantage: This has the potential to ripple back into
functions that use the function with the set statement.

Potential Problem: The same potential problem and
solution as listed in the Migrating with the associated part
column apply.

Checking for IN literal or scalar
VisualAge Generator: VisualAge Generator supports the IF or WHILE statement
checking for a data item IN a literal or scalar. In this situation, VisualAge
Generator sets the value of EZETST and does a comparison for equality.

EGL: EGL does not support checking a data item for IN a literal or scalar.

Associated part needed for migration: Not applicable.

 Table 54. Checking for IN literal or scalar

Migrating with the associated part Migrating without the associated part

For an IF or WHILE statement that checks a data item
IN a literal, the migration tool does the following
things to match the VAGen behavior:

v Adds a statement to initialize sysVar.arrayIndex to 0.

v Changes the if or while statement to compare equal
(For example, if a == "b").

v Adds a statement immediately after the if or while
to set sysVar.arrayIndex to 1.

For an IF or WHILE statement that checks a data item
IN another data item, the migration tool does not
attempt to determine if the second data item is an
array or a scalar. The migration tool migrates to an
EGL in comparison. (For example: if a in b).

The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

112 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 54. Checking for IN literal or scalar (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: There is no problem if the
comparison is for a literal. A problem only arises if the
second data item is actually a scalar. In this case, EGL
validation displays an error message in the Problems
view.

Solution: Modify the function to initialize
sysVar.arrayIndex to 0 before the if or while statement
and to set sysVar.arrayIndex to 1 immediately after the
if or while statement. Also change the if or while
statement to compare using == rather than in.

Potential Problem: The same potential problem and
solution as listed in the Migrating with the associated part
column apply.

Checking SQL and map items for NULL
VisualAge Generator: IF, WHILE, and TEST support checking either an SQL item
or a map item for NULL.

EGL: SQL items can be checked for null. Form fields can be checked for blanks.

Associated part needed for migration: The record or map. If the item is not
qualified, you need the program and all of its associates.

 Table 55. Checking SQL and map items for NULL

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the item
is qualified, the migration tool does the following
things:

v Checks the qualifier to determine if it is a record or
map.

v Converts to checking for null if the qualifier is an
SQL record.

v Converts to checking for blanks if the qualifier is a
map.

The migration tool tries to determine the type of the item
in the following way:

v If the item is qualified and the qualifier is not available,
the migration tool does the following things:

– Checks if the qualifier is also the I/O object of the
function. If so, the CONVERSE and DISPLAY I/O
options guarantee the I/O object is a map. The
CLOSE I/O option is valid for either a record or map.
Other I/O options guarantee the I/O object is a
record.

– Also checks the function parameter list and local
storage. If the qualifier is found, the qualifier is a
record.

v If the migration tool can determine that the item is in an
SQL record or on a map, the tool migrates to one of the
following values:

– null for an SQL record

– blanks for a map item

v If the migration tool cannot determine that the item is in
an SQL record or on a map, then the tool does the
following things:

– Converts to EZE_NULL.

– Issues an error message indicating that this statement
should be reviewed.

Chapter 3. Handling ambiguous situations 113

Table 55. Checking SQL and map items for NULL (continued)

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the item
is not qualified, the migration tool does the following
things:

v Checks the function parameter list to see if the item
is specified there as either an SQLITEM or a
MAPITEM parameter. If so, the tool migrates on that
basis.

v If the program and its associated parts are available,
the migration tool uses the VAGen qualification rules
to determine which record or map contains the item
and then migrates on that basis.

If the item is not qualified, the migration tool checks the
function parameter list to see if the item is specified there
as either an SQLITEM or a MAPITEM.

If the migration tool can determine that the item is in an
SQL record or on a map, the tool migrates to one of the
following values:

v null for an SQL record

v blanks for a map item

If the migration tool cannot determine that the item is in
an SQL record or on a map, then the tool does the
following things:

v Converts to EZE_NULL.

v Issues an error message indicating that this statement
should be reviewed.

Potential Problem: None. Potential Problem 1: A problem arises if the migration tool
uses EZE_NULL. EGL validation displays an error
message in the Problems view.

Solution: Edit the function and change EZE_NULL to null
for an SQL item or blanks for a form variable field.

I/O error values UNQ and DUP
VisualAge Generator: UNQ and DUP are always soft errors for non-SQL and hard
errors for SQL. UNQ and DUP are always set for SQL based on the -803 SQL code.
If an I/O error routine is specified for the function, the error routine gets control in
the following circumstances:
v any soft error
v any hard error if EZEFEC = 1
v for DL/I I/O, any hard error if EZEDLERR or EZEFEC = 1

EGL: Duplicate is always a soft error and indicates the I/O was successful.
Unique is always a hard error and indicates the I/O failed. Duplicate is not
supported for SQL. The try block and onException statement are used for error
handling. If an onException statement is specified for the I/O statement, the
onException statement gets control in any of the following circumstances:
v any soft error
v any hard error if vgVar.handleHardIOErrors is set to 1
v for DL/I I/O, any hard error if dliVar.handleHardDLIErrors or

vgVar.handleHardIOErrors is set to 1

Associated part needed for migration: The record that is used in the statement.

114 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 56. I/O error values UNQ and DUP

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the
record is available, the migration tool does the
following things:

v If the record is non-SQL, the migration tool changes
DUP to duplicate and UNQ to unique .

v If the record is SQL, the migration tool changes both
DUP and UNQ to unique.

If the record is not available, the migration tool tries to
determine the type of the record in the following way:

v If the statement specifies the same record as the I/O
object for the function, the migration tool checks to see
if the function also has SQL clauses, or any SQL-specific
information, such as Execution time statement build,
Single row select, Declare cursor with hold, or an
UPDATE/SETUPD function. If so, the migration tool
assumes that the record is SQL and converts DUP and
UNQ to unique.

v In other situations, such as the following cases, the
migration tool cannot determine the record type:

– If the record is used as the I/O object of the function
but the function does not have SQL-specific
information.

– If the record is not used as the I/O object of the
function.

In the previous situations, and in other situations when
the migration tool cannot determine the record type, the
migration tool does the following things:

– Converts UNQ to unique.

– Converts DUP to EZE_DUPLICATE and issues an
error message.

Chapter 3. Handling ambiguous situations 115

Table 56. I/O error values UNQ and DUP (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: A problem only arises if the same
record name has different definitions, one for SQL and
one for non-SQL, most likely in different subsystems. If
the non-SQL record is available when the function is
migrated, and the function is used with an SQL record
and checks for duplicate, then EGL validation displays
an error message. If the SQL record is available when
the function is migrated, then the additional
information conveyed by the duplicate check is not
available for the non-SQL record.

Possible Solution: Copy the function and use the
original function for SQL and the new function for
non-SQL.

Disadvantage: This has the potential to ripple back into
functions that use the original function that checked for
UNQ or DUP.

Potential Problem for SQL: None. DUP and UNQ
were always set the same way and unique continues to
be a hard error.

Potential Problem 1 for non-SQL: A problem arises if
you do not set vgVar,handleHardIOErrors (EZEFEC) to
1 for the program. In this case, because unique is now
a hard error, the onException statement does not get
control and the program ends.

Solution: Make sure your programs set
vgVar,handleHardIOErrors to 1.

Potential Problem 2 for nonSQL: A problem also
arises if you are explicitly testing for hardIOError
(HRD). In this case, because unique is now a hard
error, hardIOError tests true in EGL in some cases,
even though it did not test true in the past on
VisualAge Generator. Validation and generation do not
detect an error. However, the program might not run as
it did in VisualAge Generator.

Possible Solution: You might need to reorder the
testing of the I/O error values in your program logic.

Potential Problem 1: EZE_DUPLICATE is not valid in
EGL.

Solution: Edit the function and change EZE_DUPLICATE
to duplicate or unique based on the record type.

Other Potential Problems: The same potential problems
and solutions as shown for Migrating with the associated part
apply.

I/O error value LOK
VisualAge Generator: LOK is always a soft error for OS/400. If an I/O error
routine is specified for the function, the error routine gets control in the following
circumstances:
v any soft error
v any hard error if EZEFEC = 1

EGL: LOK is replaced by deadlock, but it is a hard error. The try block and
onException statement are used for error handling. If an onException statement is
specified for the I/O statement, the onException statement gets control in the
following circumstances:
v any soft error

116 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v any hard error if vgVar.handleHardIOErrors is set 1

Associated part needed for migration: Not applicable.

 Table 57. I/O error value LOK

Migrating with the associated part Migrating without the associated part

The migration tool always changes LOK to deadlock. The migration tool does the same thing as mentioned in
the Migrating with the associated part column.

Potential Problem 1: A problem arises if you do not set
vgVar.handleHardIOErrors (EZEFEC) = 1 for the
program. In this case, because deadlock is a hard error,
the onException statement does not get control and the
program ends.

Solution: Make sure your programs set
vgVar.handleHardIOErrors to 1.

Potential Problem 2: A problem also arises if you are
explicitly testing for hardIOError (HRD). In this case,
because deadlock is a hard error, hardIOError tests
true in EGL in some cases where it did not test true in
VisualAge Generator. Validation and generation do not
detect an error. However, the program might not run as
it did in VisualAge Generator.

Possible Solution: You might need to reorder the
testing of the I/O error values in your program logic.

The same potential problems as in the Migrating with the
associated part column can occur. You can use the same
solutions.

Handling ambiguous situations for EZE words
For some EZE word replacements, the migration tool must declare an extra item
variable. The migration tool adds these new item variables to the program. This
permits the variables to be used by any function in the program.

EZELTERM
VisualAge Generator: EZELTERM is the conversation ID in a Web Transaction
program and the terminal ID in all other program types.

EGL: sysVar.conversationID is the conversation ID in a VGWebTransaction
program. sysVar.terminalID is the terminal ID in all other program types.
sysVar.conversationID and sysVar.terminalID are treated as synonyms so either
provides the correct information based on the program type.

Associated part needed for migration: The program.

 Table 58. EZELTERM

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the
program is available, the migration tool converts
EZELTERM based on the program type in the
following way:

v If the program is a Web Transaction program, the
migration tool uses sysVar.conversationID

v Otherwise, the migration tool uses
sysVar.terminalID

If the program is not available, the migration tool always
converts EZELTERM to sysVar.terminalID .

Chapter 3. Handling ambiguous situations 117

Table 58. EZELTERM (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: None. sysVar.conversationID and
sysVar.terminalID are treated as synonyms.

Potential Problem: None. sysVar.conversationID and
sysVar.terminalID are treated as synonyms.

EZESYS
VisualAge Generator: EZESYS is generally used in IF, WHILE, and TEST
statements with literal values specified by VisualAge Generator. However, EZESYS
is permitted in other statements.

EGL: The EGL system variable sysVar.systemType has different values from
VisualAge Generator. When EZESYS is used in statements other than IF, WHILE,
and TEST, the migration tool does not know what values the program might be
expecting and so must use the original VAGen values. The EGL system library
function vgLib.getVGSystemType provides the old VAGen values.

Associated part needed for migration: Not applicable.

 Table 59. EZESYS

Migrating with the associated part Migrating without the associated part

When migrating any program, if the Do not initialize
old EZESYS values migration preference is not
selected, the migration tool does the following things:

v Includes a declaration for custPrefixEZESYS.

v Includes an initialization statement to set the value
of custPrefixEZESYS to the old VAGen EZESYS
value.

If the preference is selected, the migration tool does
not include the declaration or initialization statement.

custPrefix is the same prefix that is used for changing
part names that conflict with reserved words. Use the
VAGen Migration Preferences to set the value of
custPrefix.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

118 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 59. EZESYS (continued)

Migrating with the associated part Migrating without the associated part

Based on the first migration of the function, the
migration tool does the following things:

v If EZESYS is used in an IF, WHILE, or TEST
statement, the migration tool converts EZESYS to

sysVar.systemType

The migration tool converts the EZESYS values to
their EGL equivalent value. If the EZESYS value
does not have an equivalent EGL value, the
migration tool migrates it "as is". For example, the
migration tool converts MVSBATCH to the EGL
equivalent ZOSBATCH. The migration tool migrates
OS2 and NTCICS to the same value as in VisualAge
Generator. See Table 123 on page 332 for specifics of
which values are converted.

v If EZESYS is used in any other statement, the
migration tool does the following things:

– Issues a warning message that this use results in
the old VAGen EZESYS values

– Uses

custPrefixEZESYS

to replace EZESYS in the statement.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem 1: A problem arises if you select the
Do not initialize old EZESYS values migration
preference and you use EZESYS in statements other
than IF, WHILE, or TEST. In this situation the
migration tool uses custPrefixEZESYS in the statement,
but programs do not have a declaration and
initialization statement for custPrefixEZESYS. EGL
validation displays an error message in the Problems
view.

Potential Solution 1A: Change your EGL logic to use
the new values for sysVar.systemType .

Potential Solution 1B: Add a declaration and an
initialization statement for custPrefixEZESYS to any
program that needs to use the old VAGen value for
EZESYS.

Potential Problem 2: A problem arises if you want to
use the new EGL values in statements other than if
and while.

Possible Solution 2: Modify the function and change
the logic to use sysVar.systemType instead of

custPrefixEZESYS

Be sure to change the old VAGen values to the new
EGL values in any DataTables, files, or databases that
you use for comparisons.

The same potential problems mentioned in the Migrating
with the associated part column apply. You can use the same
solutions.

Chapter 3. Handling ambiguous situations 119

EZEWAIT
VisualAge Generator: EZEWAIT specifies the time to wait in hundredths of a
second.

EGL: sysLib.wait, which is the replacement for EZEWAIT, specifies the time to
wait in seconds.

Associated part needed for migration: Not applicable.

 Table 60. EZEWAIT

Migrating with the associated part Migrating without the associated part

When migrating any program, the migration tool
always includes a declaration for

custPrefixEZE_WAIT_TIME.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

When migrating a function, if EZEWAIT is used, the
migration tool includes logic to calculate the time to
wait in seconds and stores the result in

custPrefixEZE_WAIT_TIME.

The migration tool does the same thing as mentioned in the
Migrating with the associated part column.

Potential Problem: None. However, if you use the
function in a new program, be sure to include a
declaration for

custPrefixEZE_WAIT_TIME

in the program.

The same potential problem mentioned in the Migrating
with the associated part column applies.

120 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Part 2. Migrating from VisualAge Generator 4.5 on Java to
EGL

© Copyright IBM Corp. 2004, 2011 121

122 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 4. Stage 1 — Extracting from Java

Before you can extract your source code from VisualAge Generator, you must
install the Stage 1 migration tool that runs on VisualAge for Java. You must also
create the DB2 migration database that is used to store the data you are migrating
from VisualAge Generator 4.5 (VAGen 4.5) to EGL.

Installing the Stage 1 migration tool on VisualAge for Java
The VisualAge Generator to EGL Stage 1 migration tool is shipped as a
self-extracting file called VAGenMigJava.exe To install this file, follow these steps:
1. Upgrade to VisualAge Generator 4.5 with Fix Pack 5. Also review Appendix F,

“APARs required for VisualAge Generator,” on page 457 for additional
VisualAge Generator APARs that might be necessary for your specific situation.

2. On your system, determine where VisualAge for Java is installed.
3. Shut down VisualAge for Java.
4. Run the self-extracting file VAGenMigJava.exe, which is in the following

directory:
 \installationDirectory\bin

Note: If you installed and kept a previous version of the developer product
before installing the product that you are using now, the installation
directory of interest may be the directory that was used in the earlier
install.

5. When the GUI prompt appears, navigate to the drive and directory where
VisualAge for Java is installed. (For example, c:\Program Files\IBM\VisualAge
for Java.) Then click Unzip.

When the self-extracting executable runs, it extracts the following files into your
VisualAge for Java installation directory:
v \ide\vgmigration\checkStage1.bat
v \ide\vgmigration\checkStage1.sql
v \ide\vgmigration\createdatabase.sql
v \ide\vgmigration\createindex.sql
v \ide\vgmigration\createtables.sql
v \ide\vgmigration\deletemigsets.bat
v \ide\vgmigration\MigPreferences.xml
v \ide\vgmigration\runStats.bat
v \ide\vgmigration\SetupDatabase.bat
v \ide\vgmigration\SetupIndex.bat
v \ide\vgmigration\SetupTables.bat
v \ide\vgmigration\VGMigReserved.txt
v \ide\features\com-ibm-vgj-mig\

This last directory contains the feature for the Stage 1 migration tool on Java. It
also contains the .xml files and their corresponding .dtd files that are used by the
Stage 1 migration tool on Java.

© Copyright IBM Corp. 2004, 2011 123

Adding the migration feature
To be able to use the Stage 1 migration tool, you must add the IBM VisualAge
Generator EGL Migration feature, using the following steps:
1. Start VisualAge Generator on Java.
2. Add the IBM VisualAge Generator EGL Migration feature by following these

steps:
a. From the Workbench window, press F2.
b. Select Features in the left column and then Add Feature in the right

column. Click OK.
c. Select IBM VisualAge Generator EGL Migration - versionNumber. Click OK.

The migration feature is loaded.
d. Click the Projects tab in the Workbench. You should see the IBM VisualAge

Generator EGL Migration project in your workspace.

Note: If you have problems adding the migration feature and are using a remote
repository, try either of the following techniques:
v Copy the following directory:

VAJavaInstallDirectory\ide\features\com-ibm-vgj-mig

to the features directory on the machine with the remote repository. Then
try the Add Feature step as described previously. This is the preferred
technique if several developers need to load the Stage 1 migration tool.

v Make sure you have the IBM VisualAge Generator Utilities project at
V4.5 FP5 loaded in your workspace. Then follow these steps:
1. From the Workbench window, click File -> Import.
2. Click Repository and then click Next.
3. Click Local repository and point to the .dat file in the following

directory:
VAJavaInstallDirectory\ide\features\com-ibm-vgj-mig

4. Click Projects and then click Details. Select the only project/version
that is in this .dat file and then click OK. Select the Add most recent
project edition to workspace checkbox. Click Finish.

The IBM VisualAge Generator EGL Migration project should be added
to your workspace.

Creating the migration database
See “Creating the DB2 migration database” on page 459 for information on
creating the migration database. You need to use the SetupDatabase.bat and
SetupTables.bat files that were placed in your VisualAge Java installation directory,
in subdirectory \ide\vgmigration directory.

Setting Stage 1 preferences
When you installed the Stage 1 migration tool on VisualAge for Java, the
installation process created a sample preferences file called MigPreferences.xml in
the directory VisualAge-Java-installation-directory\ide\vgmigration. You should make
a copy of the MigPreferences.xml file for backup purposes before you modify any
preferences. You might also want to copy the MigPreferences.xml file to a directory
outside the VisualAge for Java installation directory and make your modifications
in the copy. This avoids accidentally overwriting your modifications if you install a
new version of the migration tool.

124 Rational Business Developer: VisualAge Generator to EGL Migration Guide

You can use a text editor or the GUI editor that is provided with the Stage 1
migration tool to edit the MigPreferences.xml file. To use the GUI editor, follow
these steps:
1. Start VisualAge Generator for Java.
2. In the Workbench window, click the Projects tab.
3. Navigate to the IBM VisualAge Generator EGL Migration project. Expand the

migration project and then expand the com.ibm.vgj.mig package.
4. Within the package, select the PreferencesUI class.
5. Right-click the PreferencesUI class and then click Properties.
6. Click the Program tab.
7. On the Program page, set the Command line arguments field to point the

MigPreferences.xml file you want to edit:
-p filename

where filename is the drive, directory, and file name of your MigPreferences.xml
file.

8. Click OK to save the properties.
9. Right-click the PreferencesUI class and then click Run -> Run main. (Or you

can click the running man icon from the tool bar.) The Stage 1 GUI preferences
editor opens and loads the file that you pointed to in the program properties.

Note:

v If you do not use currently use Project List Parts (PLPs), see “Migration
plans and high-level PLP projects” on page 139.

v For preferences that require a drive and directory, you can specify the
information in either of two ways:
– An absolute path. For example: d:\tempMig\MySystem\
– A relative path. In this case the path is relative to the working

directory. For example, ..\tempMig\MySystem results in a path of :
VisualAge-Java-installation-directory\ide\project_resources
 \IBM VisualAge Generator EGL Migration\tempMig\MySystem.

v If you do not specify a drive and directory for the log, debug, and report
files, the files are written to the working directory which is:
VisualAge-Java-installation-directory\ide\project_resources
 \IBM VisualAge Generator EGL Migration

The preferences you can modify are described in the following sections, based on
the page within the GUI in which the preference appears:
v Build Plans page
v Mapping page
v Renaming page
v Execution page

Build Plans page
The Build Plans page identifies where the Stage 1 migration tool is to read or write
the migration plan file (or files), as well as which projects and versions you want
to migrate from your repository.

Migration Specification
The Migration Specification section identifies where the migration tool is
to write the migration plan file or files that the Stage 1 tool creates based

Chapter 4. Stage 1 — Extracting from Java 125

on your repository filters. Alternatively, if you have already created the
migration plan file (or files), the Migration Specification identifies where
the migration tool is to read the migration plan file (or files).

Note:

v Migration plan files have the file extension .pln before they are
used to load the migration database and .done after they have
been successfully processed.

v See “Running the Stage 1 tool” on page 138 for information on
setting the -o (override) option for the VAGenToEGLMigration
class, which is the actual Stage 1 migration tool.

Plan directory
The target directory where you want your migration plan file (or
files) to be placed by the Stage 1 migration tool or in which the
Stage 1 tool can find your existing migration plan file (or files).

Plan file name
An optional file name of the migration plan file you are creating or
using to load the migration database. When you run the Stage 1
migration tool, this file name is used in conjunction with the -o
(override) option you specify for the VAGenToEGLMigration class
in the following way:
v If you include the -o option in the properties for the

VAGenToEGLMigration class, the Stage 1 migration tool creates
new plan files based on the file name you specify in the
Migration Specifications:
– If you do not specify a Plan file name, the migration tool

deletes all the .pln files in the specified Plan directory before
creating new plan files. The migration tool creates one plan
file for each migration set. In this case, the migration Plan file
names are of the form migrationSetName_version.pln.

– If you specify a Plan file name, the migration tool deletes
only the specified .pln file from the specified Plan directory
before creating a new .pln file with your specified Plan file
name. In this case, the single Plan file lists all the migration
sets.

Use the -o option if you want the Stage 1 migration tool to create
the migration plan files for you based on your repository filters
and high-level PLP projects. If you need assistance creating a
PLP project, see “Creating a high-level PLP project” on page 140.

v If you omit the -o option from the properties for the
VAGenToEGLMigration class, the Stage 1 migration tool does
not create any new migration plan files. Instead, the Stage 1
migration tool uses the existing plan files, based on the Plan
directory and Plan file name you specify in the Migration
Specification:
– If you do not specify a Plan file name, the migration tool

runs using all of the .pln files in the specified Plan directory.
– If you specify a Plan file name, the migration tool runs using

only that one .pln file in the specified Plan directory.

Omit the -o option if you have previously created the migration
plan files and now want to run the Stage 1 migration tool to
load the migration database using these files. See “Creating a

126 Rational Business Developer: VisualAge Generator to EGL Migration Guide

migration plan file manually” on page 141 for details about
creating your own migration plan files.

Repository Filters
This section enables you to control which projects and versions in your
Java repository are considered by the Stage 1 migration tool. Limiting the
projects and versions can greatly enhance the performance of the Stage 1
migration tool. You can specify multiple filters. The Stage 1 migration tool
uses the Projects filter and the Version depth or Version name filters in
the following way:
v The migration tool matches each VAGen project in the repository against

the Projects filters.
– If the project name does not match at least one of the Projects filters,

the project is not considered for further processing.
– If the project name matches at least one of the Projects filters, the

versions of the project are processed in the following way:
- If you selected the Version depth filter, then the most recent

versions of the project, up to the number specified by the Version
depth filter, are considered for further processing. The default
Version depth filter is 1.

- If you selected the Version name filter, then each version name for
the project is matched against the list of Version name filters. If the
version name matches any of the Version name filters, then the
version is considered for further processing.

Note: Version depth and Version name are mutually exclusive. By
default, the Version name filter is included in the
MigPreferences.xml file. If you want to use the Version
depth filter, click the Version depth radio button and specify
the number of versions you want to migrate.

v If the project name and version name result in the project version being
considered for further processing, the Stage 1 migration tool processes
the project version in the following way:
– If the project version is a high-level PLP project, then the Stage 1

migration tool uses the project version as the basis for creating a
migration set. Each version of the high-level PLP project results in a
different migration set, assuming the version name matches the
version filter.

– If the project version is not a high-level PLP project, the project
version is not considered for further processing. The project version
might still be included in other migration sets, but no migration set is
specifically created for this project version.

Specify the Repository Filters information in the following way:
v Projects filter. The migration tool matches the project names in your

repository to the Projects filter that you specify. You can specify multiple
Projects filters. To add or remove filters, use the Add and Remove
buttons. To update a filter, overtype in the table. The filters are not case
sensitive. You can use wildcards in the following way:
– A project filter of *xyz* matches any project name in the repository

that has the string "xyz" anywhere in its name.
– A project filter of xyz* matches any project name in the repository that

begins with "xyz".

Chapter 4. Stage 1 — Extracting from Java 127

– A project filter of *xyz matches any project name in the repository that
ends with "xyz".

v Version depth filter. If a project name matches one of the Projects filters
and you selected the Version depth filter, the Stage 1 migration tool
processes the number of versions you have specified for the Version
depth. The default is 1, in which case the Stage 1 migration tool only
processes the most recent version of the project.

v Version name filter. If a project name matches one of the Projects filters
and you selected the Version name filter, the Stage 1 migration tool uses
the Version name filter to determine which, if any, of the project
versions should be considered for migration. You can specify multiple
Version name filters. To add or remove filters, use the Add and Remove
buttons. To update a filter, overtype in the table. The filters are not case
sensitive. You can use wildcards in the following way:
– A version name filter of *xyz* matches any project version name that

has the string "xyz" anywhere in the version name.
– A version name filter of xyz* matches any project version name that

begins with "xyz".
– A version name filter of *xyz matches any project version name that

ends with "xyz".

Mapping page
The Mapping page enables you to control the placement of parts in EGL files and
the names of some of the EGL projects, packages, and files that are created during
migration.

File Names
This section enables you to control the names of two EGL files that are
created during migration.

Common Parts
Enables you to specify the name of an EGL file to contain parts
that are common to multiple unique generatable parts within the
scope of the migration set. Specify the file name without an
extension or path. The migration tool creates a common parts file
in each EGL package that contains parts that are used by
(associated with) multiple generatable parts in the migration set or
which are in VAGen projects or packages that are identified as
common projects or packages. See “Placing parts in EGL files” on
page 42 for details about whether a part is placed with a program
or in the common parts file.

Unused parts
Enables you to specify the name of an EGL file to contain parts
that are not used within the scope of the migration set. Specify the
file name without an extension or path. The migration tool creates
an unused parts file in each EGL package that contains parts that
are not used by (associated with) any generatable part in the
migration set, provided the corresponding VAGen project and
package are not identified as common projects or packages.

Spanning Maps
This section enables you to specify suffixes that are used in the event that
one of your map groups includes maps from multiple projects or packages.

Project Suffix
Enables you to specify a suffix that the Stage 1 migration tool

128 Rational Business Developer: VisualAge Generator to EGL Migration Guide

concatenates to the migration set name to create a new EGL project
name. The migration tool only creates this new EGL project if a
map group and its maps are in multiple VAGen projects within the
migration set. The new project name is
migrationSetName_ProjectSuffix. The migration tool concatenates the
suffix to the migration set name after any Renaming Rules are
applied.

Package Suffix
Enables you to specify a suffix that the Stage 1 migration tool
concatenates to a project name to create a new EGL package name
within an EGL project. The migration tool only creates this new
EGL package if a map group and its maps are in multiple VAGen
packages within a project. The new package name is
projectName.PackageSuffix. The migration tool concatenates the suffix
to the project name after any Renaming Rules are applied.

Common Identifiers
This section enables you to specify a list of strings with wildcards that the
migration tool can use in determining which VAGen projects and packages
contain common (shared) parts.

Projects
The Projects list enables you to specify a list of strings that
identifies projects that contain common parts. The migration tool
matches this list of strings to each project name in the migration
set to determine if the project contains common parts. If any string
matches a project name, all parts within the project are considered
to be "used." Each non-generatable part is either placed in a
program file or in the file specified by your Common Parts
preference. The part is not placed in the unused parts file even if
the part is not used by any generatable part in the migration set.
You can specify multiple Projects filters. To add or remove filters,
use the Add and Remove buttons. To update a filter, type over it
in the table. The filters are not case sensitive. You can also use an *
as a wildcard at the beginning or end of the string.

Packages
The Packages list enables you to specify a list of strings that
identifies packages that contain common parts. The migration tool
matches this list of strings to each package name in the migration
set to determine if the package contains common parts. If any
string matches a package name, all parts within the package are
considered to be "used." Each non-generatable part is either placed
in a program file or in the file specified by your Common Parts
preference. The part is not placed in the unused parts file even if
the part is not used by any generatable part in the migration set.
You can specify multiple Packages filters. To add or remove filters,
use the Add and Remove buttons. To update a filter, type over it
in the table. The filters are not case sensitive. You can also use an *
as a wildcard at the beginning or end of the string.

Renaming page
The Renaming page enables you to specify renaming rules for your projects,
packages, and version names. The Renaming Rules section enables you to control
the names of the EGL projects and packages that are derived from your VAGen
project and package names. The number in the order column indicates the order in

Chapter 4. Stage 1 — Extracting from Java 129

which the Stage 1 migration tool is to apply the renaming rules, with the lowest
numbered rule applied first. To add or remove a renaming rule, use the Add and
Remove buttons. To update a renaming rule, overtype the contents of the cells in
the table. You can double-click any of the column headings to sort the rules based
on that column. You specify a rule by specifying the following information:

Order Specifies the order in which the rules are to be applied.

From String
Specifies the characters in the VAGen name that you want to change.

To String
Specifies the characters you want to use in the resulting EGL name.

String Context
Specifies the location in the VAGen name where the migration tool should
look for the from string during renaming. The following values are
available:

front The rule applies if the from string appears at the beginning of a
project, package, or version name.

back The rule applies if the from string appears at the end of a project,
package, or version name.

any The rule applies if the from string appears anywhere within a
project, package, or version name.

token The rule applies only if the from string is an exact match for the
project, package, or version name.

Mapping Context
Indicates whether the migration tool is to apply the renaming rule to a
project, package, or version name. The following values are available:

project
The renaming rule only applies to VAGen project names.

package
The renaming rule only applies to VAGen package names.

both The renaming rule applies to both VAGen project names and
VAGen package names.

version
The renaming rule applies to the version names for all project
names. Use a version renaming rule if your version names include
special characters such as a semicolon (;) that are not permitted in
directory or file names. The default MigPreferences.xml file
includes several version renaming rules to help ensure that your
version names do not result in invalid directory or file names. The
migration tools use the renamed versions to create the migration
plan file names in Stage 1 and to create directory names in Stage 3
of migration.

Execution page
Execution Options

The Execution Options section enables you to specify what you want the
Stage 1 migration tool to do.

Generate report
Specifies that you want to create a migration report showing where

130 Rational Business Developer: VisualAge Generator to EGL Migration Guide

each part will be placed in the EGL project, package and file
structure. This report is useful for reviewing the results of
preferences you specified for Common Parts and Unused Parts file
names, Spanning Maps suffixes, Common Identifiers for projects
and packages, and your Renaming Rules. If you select Generate
report, the migration tool creates the report in the drive, directory
and file you specify for the Report file name in the Verification
section.

Update database
Specifies that you want the Stage 1 migration tool to store the
migration plan information, including the External Source Format
for your parts, into the migration database.

You might run the Stage 1 migration tool in several steps, as in the
following example:
v Step 1 -- Clear both Generate report and Update database. This enables

you to review the migration plan files that are created, and to ensure
that your Repository Filters are set correctly to process the project
versions that you want. If you are not satisfied with the project versions
that are selected, you can refine your Repository Filters and run this
step again.

v Step 2 -- Select Update database, with or without Generate report.

Note:

v Updating the database can take some time. Therefore it is best to
review the .pln files to be sure that the migration tool will process
the project versions that you intend.

v You must update the database before the report can be run.
v Generating the report can also take some time. You might prefer

to run some simple queries to see the EGL file names rather than
generating the report. For sample queries that produce the EGL
file names, see “Reviewing the EGL file names” on page 464.

v If you generate the report, the report files are overwritten. If you
want to save previous report files, you must move the report files
to a different directory or point to a new directory for your new
report. Because the report files link to other files, renaming the
report files causes the links to be lost so the files are no longer
viewable.

Database
The Database section enables you to specify details about the migration
database:

Database driver
This value should always be COM.ibm.db2.jdbc.app.DB2Driver.

Database name
This value should be in one of the following formats:
v jdbc:DB2:databaseName if you are using a local database or a

locally catalogued remote database.

Note: databaseName is the name of the migration database into
which the migration tool is to write the migration set
information. By default, the databaseName is VGMIG. If you
changed the database name from VGMIG when you created

Chapter 4. Stage 1 — Extracting from Java 131

the migration database, you must change the database name
specified by this preference to match the name you used.

Schema
The name used as the qualifier for the database tables. By default,
the schema name is MIGSCHEMA. If you changed the schema
name from MIGSCHEMA when you created the migration
database, you must change the schema name specified by this
preference to match the name you used.

Userid
The user ID needed to connect to the migration database. If you do
not specify the user ID, the migration tool attempts to connect
using your logon user ID. If this attempt fails, the migration tool
displays a dialog window asking for the information.

Password
The password needed to connect to the migration database. If you
do not specify the password, the migration tool attempts to
connect using your logon password. If this attempt fails, the
migration tool displays a dialog window asking for the
information.

Note: The password is not encrypted in the preferences file. If this
is a concern, do not enter the password in the preferences
file. Wait for the prompt.

Service
The Service section enables you to specify details about the logging and
debug information you want to capture during Stage 1. You can specify the
following details:

Trace level
Enables you to specify the level of information that you want to
write to the log and debug files. Use the drop-down list to specify
one of the following values:

Fatal Fatal error messages are logged. If any of these messages
occur, the migration database might be updated, but the
migration plan file (.pln file) is not changed to have the
.done file extension. This enables you to process the .pln
file again.

Warning
Warning messages, as well as fatal error messages, are
logged.

Informational
Informational messages, as well as warning and fatal error
messages, are logged.

Debug
Debug information, as well as informational, warning, and
fatal error messages, are logged. This is the only trace level
that causes the migration tool to write information to the
debug file. This is the default value.

The Trace level only affects the log and debug files. All the
messages are written to the Console window.

132 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Log file name
Enables you to specify the drive, directory, and file name for a log
file. You can create the log file with any file extension, but it is best
viewed as an .xml file. If you omit the log file name, the migration
tool writes the log information to a file named miglog.xml in the
drive and directory that you specified in the Log file name field. If
you do not specify a log file drive and directory, the migration tool
writes the log file to the working directory.

Debug file name
Enables you to specify the drive, directory, and file name for a
debug file that might be needed by IBM support. You can create
the debug file with any file extension, but it is best viewed as an
.xml file. Information is only written to this file if the Trace level
preference is set to Debug. If you omit the debug file name and
you specify a Trace level of Debug, the migration tool writes the
debug file information to a file migdebug.xml in the drive and
directory that you specified in the Debug file name field. If you
do not specify a debug file drive and directory, the migration tool
writes the debug file to the working directory.

Verification
The Verification section enables you to specify the drive, directory, and file
name for the verification report that is produced when you select the
Generate report preference in the Execution Options section. If you select
Generate report, you must enter a Report file name. You should always
specify the .htm extension. If you do not specify a drive and directory, the
migration tool writes the report file to the working directory.

Sample MigPreferences.xml file
The following is a sample MigPreferences.xml file:
<preferences>
 <database>
 <driver>COM.ibm.db2.jdbc.app.DB2Driver</driver>
 <uri>jdbc:DB2:VGMIG</uri>
 <schema>MIGSCHEMA</schema>
 <userid></userid>
 <password></password>
 </database>
 <migrationSpec>
 <directory>d:\tempMig\MyMigSet</directory>
 <filename></filename>
 </migrationSpec>
 <repositoryFilters>
 <projectName>MyProject*</projectName>
 <versionName></versionName>
 </repositoryFilters>
 <service>
 <tracelevel>4</tracelevel>
 <debugfile>d:\tempMig\MyMigSet\Stage1\migdebug.xml</debugfile>
 <logfile>d:\tempMig\MyMigSet\Stage1\miglog.xml</logfile>
 </service>
 <eglMapping>
 <renameRule order = "1">
 <fromString> </fromString>
 <toString></toString>
 <stringContext>any</stringContext>
 <mappingContext>both</mappingContext>
 </renameRule>
 <renameRule order = "101">
 <fromString>Project</fromString>

Chapter 4. Stage 1 — Extracting from Java 133

<toString></toString>
 <stringContext>any</stringContext>
 <mappingContext>project</mappingContext>
 </renameRule>
 <renameRule order = "301">
 <fromString>.pkg</fromString>
 <toString></toString>
 <stringContext>any</stringContext>
 <mappingContext>package</mappingContext>
 </renameRule>
 <renameRule order = "302">
 <fromString>.sql</fromString>
 <toString>sql</toString>
 <stringContext>any</stringContext>
 <mappingContext>package</mappingContext>
 </renameRule>
 <renameRule order = "501">
 <fromString>:</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "503">
 <fromString>/</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "504">
 <fromString>\</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "505">
 <fromString>|</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "506">
 <fromString>?</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "507">
 <fromString>*</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "508">
 <fromString><</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "509">
 <fromString>></fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "510">
 <fromString>"</fromString>
 <toString>_</toString>

134 Rational Business Developer: VisualAge Generator to EGL Migration Guide

<stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order = "511">
 <fromString> </fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <verification>
 <generateReport>true</generateReport>
 <reportName>d:\tempMig\MyMigSet\report\MyReport.htm</reportName>
 </verification>
 <dbUpdate>true</dbUpdate>
 <spanningMapsProjectSuffix>MapsProject</spanningMapsProjectSuffix>
 <spanningMapsPackageSuffix>mapspackage</spanningMapsPackageSuffix>
 <commonPartsFileName>CommonParts</commonPartsFileName>
 <unusedPartsFileName>UnusedParts</unusedPartsFileName>
 <commonParts>
 <commonProject>*Common*</commonProject>
 <commonPackage>*common*</commonPackage>
 </commonParts>
 </eglMapping>
 </preferences>

Before you run the Stage 1 tool — hints and tips
Before you run the Stage 1 migration tool, you might need to perform the
following tasks:
v Customize the Stage 1 migration tool
v Specify your character set
v Take steps to improve the performance of the Stage 1 migration tool
v Save your workspace

Customizing the Stage 1 migration tool
The Stage 1 migration tool on Java has the following built-in customizations that
you can enable if they are appropriate to your environment:
v Move all data item parts to a new EGL project called ItemsProject. The items are

placed in packages that correspond to their original package name, with the
suffix .items (for example, my.original.pkg.items). This customization is
particularly useful if you plan to select the Stage 2 migration preference Convert
shared data items to primitive item definitions. By enabling this customization
in Stage 1, you can move all the data items parts to a single project during
migration and then remove that project from your EGL workspace.

v Split the common parts files by part type and, optionally, by part name. This
customization can reduce the size of the common parts files and make it easier
to locate specific parts.

In addition to the built-in customizations, there is a white paper that describes
how to consolidate projects and packages during Stage 1 on Java. For information
on obtaining this white paper, see “References” on page 16. Depending on your
VAGen project and package naming conventions, the white paper technique can be
easier to use than the Renaming rules preference described in “Renaming page”
on page 129.

Enabling the Stage 1 built-in customizations
To enable the customizations, follow these steps:

Chapter 4. Stage 1 — Extracting from Java 135

1. Expand the IBM VisualAge Generator EGL Migration project. Expand the
com.ibm.vgj.mig.db package. Expand the MigrationSetUtility class.

2. Edit the customizedPlacementScriptSet() method.
3. To enable the customization that moves all the data item parts to a new EGL

project,
a. Change the line:

boolean consolidate = false;

to
boolean consolidate = true;

By default, the Stage 1 tool sets the EGL file name to "Items", concatenated
with the first character of the data item name.

b. If you want to change the number of characters from the data item name
that are concatenated to the file name, change the value of suffixLength in
the customizedPlacementScriptSet() method.

c. If you want to change the name of the EGL Project or the suffix for the
packages, modify the consolidateDataItemsQuery() method.

4. To enable the customization that splits the common parts files by part type and
part name:
a. Change the line:

boolean redistribute = false;

to
boolean redistribute = true;

b. The following lines specify the number of characters from the part name
that you want to append to the name of the common parts files:
int suffixLength = 1;
suffixLength = 2;

By default, the value of suffixLength is set to use the first character from a
data item part name and the first 2 characters from record and function
names. However, you can change the value for suffixLength. For example:
v If you set this number to 0, the common parts files are named

CommonRecords.egl, CommonFunctions.egl, and CommonItems.egl.
v If you set this number to a digit, n, the first n characters of the part name

are used as a suffix for the file name. If you set n to 1, then the names are
CommonRecordsA, CommonRecordsB, and so on.

c. If you want the names of the files to be different, change the
redistributeCommonRecords(int), redistributeCommonFunctions(int), or
redistributeCommonItems(int) methods.

5. Save your changes and then version and release the class. You might also want
to version the package and project so that you have a record of your changes.

Specifying your character set information
The Stage 1 migration tool specifies a character set based on your VAGen national
language code. For single-byte languages this is "iso-8859-1"'; other values are used
for double-byte languages. If you need to use a different character set, you can
change this value by following these steps:
1. Expand the IBM VisualAge Generator EGL Migration project. Expand the

com.ibm.vgj.mig package. Expand the Preferences class.

136 Rational Business Developer: VisualAge Generator to EGL Migration Guide

2. Edit the determineXMLEncoding() method.
3. Change the value that is specified for xmlCharset to the character set that you

need. For example, you can change the last 4 lines of the method:
if (vgNLS.equals("PTB"))
 xmlCharset = "iso-8859-1";
return xmlCharset;
}

Add the line shown in bold:
if (vgNLS.equals("PTB"))
 xmlCharset = "iso-8859-1";
xmlCharset = "my required character set"; // new line with value you need
return xmlCharset;
}

4. Save your changes and then version and release the class. You might also want
to version the package and project so that you have a record of your changes.

Improving performance
Performance measurements have shown that the performance Stage 1 migration
tool can be improved dramatically by starting with a clean workspace. In one
series of tests, starting with a clean workspace reduced the time for Stage 1 to 25%
- 30% of the time without a clean workspace. If your existing workspace is larger
than 20 megabytes, starting with a clean workspace might help the Stage 1 tool
performance.

To start with a clean workspace, follow these steps:
1. Shut down VisualAge Generator.
2. See “Saving your workspace” on page 138 if you want to keep a backup copy

of your existing workspace to use after migration has completed.
3. Obtain a copy of a clean workspace (file name ide.icx) from the VisualAge

Generator download site at:
ftp://ftp.software.ibm.com/ps/products/visualagegen/fixes/v4.5/FixPack5/windows

4. Delete the features.sav and projects.sav files.
5. Restart VisualAge Generator.
6. Add the VisualAge Generator features that you need.
7. Add the IBM VisualAge Generator EGL Migration feature.
8. Shut down VisualAge Generator.

To reduce the time the Stage 1 migration tool spends analyzing which projects and
versions to migrate, consider creating a repository that only contains the project
versions that you want to migrate. If you have ongoing maintenance in VisualAge
Generator while you are migrating, a separate migration repository also has the
following advantages:
v There is a stable set of project versions to migrate. This is particularly important

if you use the Version depth preference to control what is to be migrated.
v You can compare the versions in the new migration repository against your

maintenance repository to determine what additional project versions still need
to be migrated.

If you do create a special repository, consider using it as a local repository to
improve Stage 1 migration performance.

Chapter 4. Stage 1 — Extracting from Java 137

Saving your workspace
The Stage 1 migration tool deletes all projects that contain VAGen parts from your
workspace at the beginning and end of Stage 1 processing. This helps to avoid
duplicate parts in the workspace and ensures that only parts in the migration set
are considered for the associate parts list during Stage 1. If you have a workspace
that you wish to save, you should follow these steps before running the Stage 1
tool:
1. Shut down VisualAge Generator.
2. Save backup copies of the following files in your \VisualAgeForJava-installation-

directory\ide\program:
v features.sav
v projects.sav
v ide.icx
v ide.ini — not necessary to save if you do not change any preferences while

running Stage 1
v hpt.ini — not necessary to save if you do not change any preferences while

running Stage 1
3. Start VisualAge Generator.

When you are finished running the Stage 1 tool, restore your workspace using the
following steps:
1. Shut down VisualAge Generator.
2. Restore the files you backed up before running the Stage 1 tool.
3. Start VisualAge Generator.

Running the Stage 1 tool
After you have finished editing your preferences, you are ready to run the Stage 1
migration tool to extract your source code from the Java repository. To do this,
perform the following steps:
1. Navigate to the IBM VisualAge Generator EGL Migration project.
2. Expand the migration project and then expand the com.ibm.vgj.mig package.
3. Within the package, select the VAGenToEGLMigration class.
4. Right-click the VAGenToEGLMigration class and then click Properties.
5. Click the Program tab.
6. On the Program page, set the Command line arguments field to point the

MigPreferences.xml file you want to use:

 Table 61. Valid command line options for VAGentoEGLMigration class

Option Meaning of option

—h Display help information that shows the valid options

—p filename filename is the name of the preferences file. You must
fully qualify the file name, including the drive and
directory.

—o Overwrite the migration files if they exist and recreate
them.

7. If this is the first time you are running the Stage 1 tool, follow these steps:
a. In the same Properties window, click the Class Path tab.

138 Rational Business Developer: VisualAge Generator to EGL Migration Guide

b. On the Class Path page, select the Extra directories path check box and
then click the Edit button for the Extra directories.

c. Click Add Jar/Zip.
d. In the File selection window, navigate to and select the db2java.zip file.
v If you used the default install directory when you installed DB2, the file

should be in the \SQLLIB\java directory.

After you select the db2java.zip file, the file name appears in the Extra
directories window. Click OK on the Extra Directories window.

e. On the Class Path page, click Compute Now and then click Yes at the
prompt.

8. Click OK to save the properties.
9. Right-click the VAGenToEGLMigration and then click Run -> Run main. (Or

you can click the running man icon on the tool bar.) The Stage 1 migration tool
starts and opens a Console window where it reports progress and any error
messages. The migration tool also writes the messages to the log file you
specified in your migration preferences.

Depending on the number of parts and the complexity of the associations between
parts, some steps of the Stage 1 migration tool can take a long time. The following
steps in the Console window can be particularly time-consuming (over an hour)
without noticeable activity:
v Executing partPlacementQuery 3
v Executing partPlacementQuery 4
v Executing setPartFilePathQuery 3
v Starting Migration Report Generation

When the Stage 1 migration tool finishes, if you selected the Update database
preference, then your migration plan information, including your VAGen code in
External Source Format, is stored in the migration database. After reviewing your
report and the Stage 1 messages, you might decide to make changes to your code
in VisualAge Generator and run Stage 1 again. If you select Update database again
and a migration set with the same name already exists in the database, the Stage 1
migration tool automatically deletes the old information about the migration set
from the database and then adds the new information for the migration set.
Therefore, there is no need for you to clean up a migration set from the database.
However, it can be much faster to use the techniques described in “Resetting the
migration database for Stage 1” on page 460.

After you are satisfied with the results of Stage 1 and have your final External
Source Format code stored in the migration database, you are ready to perform
Stage 2 of the migration. To run the Stage 2 migration tool, you use the EGL
development environment. See Chapter 6, “Stage 2—Conversion to EGL syntax,”
on page 171 for information about continuing your migration process.

Migration plans and high-level PLP projects
A migration plan file is simply an XML file that specifies the names of one or more
migration sets and, for each migration set, the list of project names and versions
that make up the migration set. The Stage 1 migration tool is designed to
automatically create a migration plan file for you based on the Repository Filter
preferences for project and version names. The Stage 1 tool uses these filters to
determine if a project version should be reviewed to determine if the project

Chapter 4. Stage 1 — Extracting from Java 139

version is a high-level PLP project. The Stage 1 tool uses each high-level PLP
project version as the basis for a migration set.

If you use PLP projects when generating your VAGen source code, then these PLP
projects are the same ones you should use for migration. This is because the PLP
projects provide groupings of parts that are used together during generation and
therefore have all the associated parts for a set of programs.

If you do not currently use PLP projects, you can use one of the following
techniques:
v Create a high-level PLP project to use for migration using the tool provided by

VisualAge Generator. This high-level PLP project needs to specify the list of
project versions that you want to migrate as a group. Using the tool provided by
VisualAge Generator ensures that the project and version names are spelled
correctly and have the correct case. After you create the high-level PLP project,
you can use the Stage 1 migration tool to create the migration plan.

v If you prefer not to create a high-level PLP project, you can create the migration
plan file yourself using one of the following techniques:
– If you have information in a database or other system that specifies what is

needed for generation in terms of Java project versions, then you can write a
tool to create the migration plan file or files automatically from your
database.

– Create the migration plan file or files manually.

Creating a high-level PLP project

Note: VisualAge Generator does not support PLPs if the project names or version
names include DBCS characters. If your project or version names include
DBCS characters, see “Creating a migration plan file manually” on page 141
for information on how to create the migration plan file without using a
PLP.

To create a high-level PLP project for use in migration follow these steps in
VisualAge Generator:
1. From the Workbench window, click the Projects tab.
2. Create a new Java project to contain the Project List Part. Be sure to give the

project a different name than that of any of your existing projects. For example,
create a project called MySubsystem1.

3. Right-click the new project and then click Manage -> Configure VAGen
Required Projects.

4. In the Configure VAGen Required Projects window, select each project that you
want to include in your migration set. For each project you can select a specific
version to include in the migration set. Alternatively, you can select Most
recent edition, which causes the migration tool to automatically include the
version that is currently at the top of the list whenever you use this project
during migration.

5. After you have selected all the project versions that you require for the
migration set, click OK.

6. Version and release the high-level PLP project, for example MySubsystem1.
7. Test that the PLP project correctly loads the project versions you want for your

migration set by following these steps:
a. Delete the high-level PLP project and any other VAGen projects from your

workspace.

140 Rational Business Developer: VisualAge Generator to EGL Migration Guide

b. Click Selected -> Add -> Project.
c. From the Add Project window, follow these steps:

1) Click Add projects from the repository.
2) Select the high-level PLP project that you just created and the version

that you created.
3) Also select Add VAGen required projects.
4) Click Finish.

d. The high-level PLP project and all the project versions it specifies are added
to your workspace.

e. From the VAGen Parts Browser, click Tools -> Show Duplicate Parts. There
should not be any parts on the list. If there are, you need to change the
high-level PLP project so that there are no duplicates. Note that the Stage 1
migration tool stops if there are any duplicate parts in the migration set.

f. You might also want to validate your programs and tables to ensure that
they are valid in VisualAge Generator and that you are not missing any
parts.

You can chain PLP projects. For example, you might create a PLP project that lists
the project versions for all your common projects. Then, for each subsystem, you
could create a high-level PLP project for that subsystem that includes all the
subsystem-specific project versions and the PLP project that specifies all the
common project versions. This way you do not have list each common project
version in the high-level PLP project for every subsystem.

When you are ready to run the Stage 1 migration tool, follow these steps:
1. When you set your Stage 1 preferences, on the Build plans page, in the

Repository Filters section, set the Projects list so that a filter in the list matches
the high-level PLP project you created.

2. When you instruct the Stage 1 tool which preferences file to use, also specify
the -o option. The -o option instructs the Stage 1 migration tool to create the
migration plan files for you based on your high-level PLP projects and to
overwrite any existing migration plan files.

Creating a migration plan file manually
If you already have external controls that determine what project versions to add
to your workspace when you generate in VisualAge Generator, you might decide
to create the migration plan file manually or to develop a tool to create the
migration plan file automatically from your external information. The migration
plan file must have a .pln extension and the following format:
<migrationDefinition>
 <migrationSet name="migrationSet1" version="migrationSet1Version1"
 vgName="migrationSet1" vgVersion="migrationSet1Version1">
 <project name="projectName1" version="projectName1Version1"></project>
 <project name="projectName2" version="projectName2Version1"></project>
 .
 .
 .
 <project name="projectNameN" version="projectNameNVersion1"></project>
 </migrationSet>
 <migrationSet name="migrationSet2" version="1.1"
 vgName="migrationSet2" vgVersion="1.1">
 <project name="projectNameA" version="projectNameAVersion1"></project>
 <project name="projectNameB" version="projectNameBVersion1"></project>
 .
 .

Chapter 4. Stage 1 — Extracting from Java 141

.
 <project name="projectNameZ" version="projectNameZVersion1"></project>
 </migrationSet>
</migrationDefinition>

The following discussion applies to the previous example:
v migrationSet1 is a name that you can use to refer to a group of projects that must

be migrated together. The migration set name is stored in the migration database
and is used in the later stages of migration in the following ways:
– In Stage 1 migration, if maps in a map group span projects, the migration set

name concatenated with a suffix is used to build the name of a new EGL
project to contain the map group and all its maps. The migration set name is
also used to remove information from the migration database if you change
renaming rules.

– In Stage 2 migration, the migration set name specifies which group of projects
in the migration database that you want to convert to EGL.

– In Stage 3, the migration set name specifies which group of projects in the
migration database you want to use to create EGL projects, packages, and
files in your workspace or in a temporary directory. The migration set name
and the migration set version are also used to create the high-level directory
name if you choose to save the outputs of Stage 3 to a temporary directory.

The migration set name is only used during migration as a way of identifying a
group of projects. Other than the situation in which maps span multiple projects
in VisualAge Generator, the migration set name is not used after migration.

v projectName1, projectName2, ..., projectNameN are the projects you want to migrate
as a group. You must list a projectName only once within a migration set. The
migration tool loads all project versions listed under the same migration set into
the workspace and processes them as a group.

v projectName1Version1, projectName2Version1, ..., projectNameNVersion1 are the
respective versions of each of these projects. You can only specify one version
for each project within a migration set.

v The project names and version names you specify must exactly match the project
names and version names in your repository. The names are case sensitive. The
information is used to add project versions to the workspace so that the parts
can be analyzed to build the Stage 1 migration report and to load the database.

You can build a migration plan file that contains just one migration set.
Alternatively, you can build a migration plan file that contains several migration
sets by repeating the information between the <migrationSet> and
</migrationSet> tags for each migration set.

To ensure the migration set is valid, test each migration set in your migration plan
by following these steps:
1. Delete all your VAGen projects from your workspace.
2. Manually add the project versions specified in the migration set to your

workspace. Be sure to add the version of each project that you specified in the
migration set. Note that the Stage 1 migration tool stops if a specified project
version or package version is not available in the repository.

3. From the VAGen Parts Browser, click Tools -> Show Duplicate Parts. There
should not be any parts on the list. If there are, you need to change your
migration set definition so that there are no duplicates. Note that the Stage 1
migration tool stops if there are any duplicate parts in the migration set.

142 Rational Business Developer: VisualAge Generator to EGL Migration Guide

4. You might also want to validate your programs and tables to ensure that they
are valid in VisualAge Generator and that you are not missing any parts.

5. The Stage 1 migration tool requires that the projects be versioned. Run a
Management Query to determine whether there are any open or scratch
editions of projects or packages. To run a Management Query, follow these
steps:
a. From the Workbench window, click Workspace -> Management Query.
b. From the Management Query window, follow these steps:

1) In the Program element section, select Projects and Packages. Be sure
that Types is cleared.

2) In the Status section, click Scratched.
3) In the Scope section, click Workspace.
4) In the Owners section, click Any User.
5) Click the Start Query button (the last button on the tool bar). There

should not be any scratch editions. If there are scratch editions, create
open editions of the projects and packages. If you are the owner, you
can create the open editions from the Status pane.

6) Change the Program element section to select Projects, Packages, and
Types.

7) In the Status section, click Open Edition.
8) Click the Start Query button.
9) There should not be any open editions other than for the IBM

VisualAge Generator EGL Migration project. If there are open editions,
version the projects, packages, or types. If you are the owner, you can
version them from the Status pane.

When you are ready to run the Stage 1 migration tool, follow these steps:
1. When you set your Stage 1 preferences, on the Build plans page, set the Plan

directory name to the drive and directory where you stored your migration
plan files. Specify the Plan file name if you want the Stage 1 migration tool to
run only one migration plan that you have created. Leave the Plan file name
blank if you want the Stage 1 migration tool to run using all the migration plan
files in the specified Plan directory.

2. When you instruct the Stage 1 tool which preferences file to use, be sure to
omit the -o option. Omitting the -o option instructs the Stage 1 tool to use the
existing migration plan files. That is, the tool is not to create any new migration
plan files.

Chapter 4. Stage 1 — Extracting from Java 143

144 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Part 3. Migrating from VisualAge Generator 4.5 on Smalltalk to
EGL

© Copyright IBM Corp. 2004, 2011 145

146 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 5. Stage 1 — Extracting from Smalltalk

Before you can extract your information from VisualAge Generator, you must
install the Stage 1 migration tool that runs on VisualAge Smalltalk. You must also
create the DB2 migration database that is used to store the data you are migrating
from VisualAge Generator 4.5 (VAGen 4.5) to EGL.

Installing the Stage 1 migration tool on VisualAge Smalltalk
The VisualAge Generator to EGL Stage 1 migration tool is shipped as a
self-extracting file called VAGenMigST.exe To install this file, follow these steps:
1. Upgrade to VisualAge Generator 4.5 with FixPack 4 and FixPack 5. Also review

Appendix F, “APARs required for VisualAge Generator,” on page 457 for
additional VisualAge Generator APARs that might be necessary for your
specific situation.

Note: An early version of Fix Pack 5 for VAGen on Smalltalk was not
cumulative. Check the readme file to ensure that the version of Fix Pack
5 you are using is cumulative. If necessary, download the Fix Pack again
or contact IBM Support.

2. On your system, determine where VisualAge Smalltalk is installed.
3. Shut down VisualAge Smalltalk.
4. Run the self-extracting VAGenMigST.exe file. The file is in the following

directory:
 \installationDirectory\bin

Note: If you installed and kept a previous version of the developer product
before installing the product that you are using now, the installation
directory of interest may be the directory that was used in the earlier
install.

5. When the GUI prompt appears, navigate to the drive and directory where
VisualAge Smalltalk is installed. Then click Unzip.

When the self-extracting executable runs, it extracts the following files into your
VisualAge Smalltalk installation directory:
v feature\vgMigST.ctl
v image\Messages.properties
v image\MigPreferences.xml
v image\VGMigReserved.txt
v import\vgMigST.dat
v checkStage1.bat
v checkStage1.sql
v createdatabase.sql
v createindex.sql
v createtables.sql
v deletemigsets.bat
v runStats.bat
v SetupDatabase.bat

© Copyright IBM Corp. 2004, 2011 147

v SetupIndex.bat
v SetupTables.bat

Loading the migration feature
To be able to use the Stage 1 migration tool, you must load the VAGen EGL
Migration feature. To do this, perform the following steps:
1. Start VisualAge Generator on Smalltalk.
2. Load the VAGen EGL Migration feature by following these steps:

a. From the System Transcript, click Tools -> Load/Unload Features.
b. On the Selection Required window, follow these steps:

1) Ensure the Show other features checkbox is selected.
2) In the Available features pane, select Other: VAGen EGL Migration -

versionName.

3) Click the >> button to move Other: VAGen EGL Migration -
versionName to the Loaded features pane.

4) Click OK. The VAGen EGL Migration feature is imported and loaded
into your image.

3. In the System Transcript, you should see messages that the VAGen EGL
Migration feature was loaded successfully. You should also see EGL Migration
Tools on the tool bar. In the VisualAge Organizer, you should see
HptEglMigrationGuiApp in the Applications pane.

4. After the VAGen EGL Migration feature is loaded, you are prompted to save
your image. Click Yes so you do not have to load the feature again.

Note:

1. If you have a problem loading the feature, check your abt.ini file
(contained in the VisualAge-Smalltalk-installation-directory\image
directory). Make sure the abt.ini file has the following fields filled in
under the [EmLibraryInterface] heading:
v ServerAddress=myserver.somecompany.somewhere.com. This value should

point to the server at your company that runs EMSRV. If you use a
local library, set ServerAddress=127.0.0.1.

v DefaultName=path-to-mgr50.dat\mgr50.dat. This value must be the
name of your Smalltalk library.

2. If you are using a remote library manager, you must run the
self-extracting executable on the remote server and extract based on the
[Feature Installation] heading and the values specified for
installationPath and importDirectory in your abt.ini file.

Creating the migration database
See “Creating the DB2 migration database” on page 459 for information on
creating the migration database. You need to use the SetupDatabase.bat and the
SetupTables.bat files that were placed in the VisualAge Smalltalk installation
directory when you ran the self-extracting VAGenMigST.exe file.

Setting Stage 1 preferences
When you installed the Stage 1 migration tool on VisualAge Smalltalk, the
installation process created a sample preferences file called MigPreferences.xml in
the directory VisualAge-Smalltalk-installation-directory\image. You should make a
copy of the MigPreferences.xml file for backup purposes before you modify any

148 Rational Business Developer: VisualAge Generator to EGL Migration Guide

preferences. You might also want to copy the MigPreferences.xml file to a directory
outside the VisualAge for Smalltalk installation directory and make your
modifications in the copy. This avoids accidentally overwriting your modifications
if you install a new version of the migration tool.

You can use a text editor or the GUI editor that is provided with the Stage 1
migration tool to edit the MigPreferences.xml file. You can start the Stage 1 GUI
editor in either of two ways:
v From the System Transcript, click EGL Migration Tools -> Preferences Editor.

The EGL Migration Preferences Editor appears. The preferences editor defaults
to the last preferences file that you modified (or to the MigPreferences.xml file
that is shipped with the Stage 1 tool if you have never modified preferences
before). If you need to point to a different preferences file, click Open.

v From the System Transcript, click EGL Migration Tools -> Migration Driver. In
the Migration File Preference section, specify a file name for your preferences
file and then click Edit. The EGL Migration Preferences Editor appears. The
advantage of this technique is that after you finish modifying the preferences
file, you are positioned to run the Stage 1 migration tool.

Regardless of which technique you use, the EGL Migration Preferences Editor
enables you to set preferences that control the Stage 1 migration tool. When you
are finished editing the preferences, click Save or Save As (specifying a new file
name), and then close the editor.

Note:

v If you do not use currently use configuration maps, see “Migration plans
and high-level configuration maps” on page 165.

v For preferences that require a drive and directory, you can specify the
information in either of two ways:
– an absolute path. For example: d:\tempMig\MySystem\
– a relative path. In this case the path is relative to the working directory.

For example:
- .\tempMig\MySystem results in an absolute path of

VisualAge-Smalltalk-installation-directory\image\tempMig\MySystem
- ..\tempMig\MySystem results in an absolute path of

VisualAge-Smalltalk-installation-directory\tempMig\MySystem

The preferences you can modify are described in the following sections, based on
the page within the GUI in which the preference appears:
v Build Plans page
v Mapping page
v Renaming page
v Execution page

Build Plans page
The Build Plans page enables you to specify information about where the
migration plan is to be placed. The Build Plans page also enables you to indicate
which configuration maps and versions in the library you want to consider for
migration. The Build Plans page is organized in the following sections:

Migration Plan Specification
Identifies where the Stage 1 migration tool is to read or write the migration
plan file (or files).

Chapter 5. Stage 1 — Extracting from Smalltalk 149

Plan Directory
The target directory where you want your migration plan file (or
files) to be placed.

Plan File Name
An optional file name of the migration plan file you are creating
and using to load the migration database. You can click Plan File
Name to view existing plan files in your plan directory. If you
need to see details within a plan file, click View Plans and expand
the plan file to see the migration sets.
v If you do not specify a Plan File Name, the migration tool

deletes all of the .pln files in the specified Plan Directory before
creating new plan files. The migration tool creates one plan file
for each migration set. In this case, the migration Plan File
names are of the form migrationSetName_version.pln.

v If you specify a Plan File Name, the migration tool deletes only
the specified .pln file from the specified Plan directory before
creating a new .pln file with your specified Plan File Name. In
this case, the single plan file lists all of the migration sets.

Repository Filters
This information enables you to control which configuration maps and
versions in your Smalltalk library are considered by the Stage 1 migration
tool. Limiting the configuration maps and versions can greatly enhance the
performance of the Stage 1 migration tool. You can specify multiple filters.
The Stage 1 migration tool uses the Configuration Maps filter and the
Version Name or Version Depth filters in the following way:
v The migration tool matches each configuration map name in the library

against the Configuration Maps filter.
– If the configuration map name does not match at least one of the

Configuration Maps filters, the configuration map is not considered
for further processing.

– If the configuration map name matches at least one of the
Configuration Map filters, the versions of the configuration map are
processed in the following way:
- If you specified any Version Name filters, then each version name

for the configuration map is matched against the list of Version
Name filters. If the version name matches any of the Version Name
filters, then the version is considered for further processing.

- If you specified the Version Depth filter and did not specify any
Version Name filters, then the most recent versions of the
configuration map, up to the number specified by the Version
Depth filter, are considered for further processing. The default
Version Depth filter is 1.

Note: Version Depth and Version Name are mutually exclusive.
By default, the Version Depth filter is included in the
MigPreferences.xml file.

v If the configuration map name and version name result in the
configuration map version being considered for further processing, the
Stage 1 migration tool processes the project version in the following
way:
– If the configuration map version is a high-level configuration map,

then the migration tool uses the configuration map version as the
basis for creating a migration set. Each version of the high-level

150 Rational Business Developer: VisualAge Generator to EGL Migration Guide

configuration map results in a different migration set, assuming the
version name matched the version filter.

– If the configuration map version is not a high-level configuration
map, the configuration map version is not considered for further
processing. The configuration map version might still be included in
other migration sets, but no migration set is specifically created for
this configuration map version.

Specify the Repository Filters information in the following way:

Configuration Maps
The migration tool matches the configuration map names in your library to
the Configuration Maps filter that you specify. You can specify multiple
Configuration Maps filters. To add, change, or remove filters, right-click a
filter and use the options on the pop-up menu. The filters are not case
sensitive. You can use wildcards in the filters in the following way:
v A configuration map filter of *xyz* matches any configuration map name

in the library that has the string "xyz" anywhere in its name.
v A configuration map filter of xyz* matches any configuration map name

in the library that begins with "xyz".
v A configuration map filter of *xyz matches any configuration map name

in the library that ends with "xyz".

Version Name
If a configuration map name matches the Configuration Maps filter, the
migration tool uses the Version Name filter to determine which, if any, of
the configuration map versions should be considered for migration. You
can specify multiple Version Name filters. To add, change or remove
filters, right-click a filter and use the options on the pop-up menu. The
filters are not case sensitive. You can use wildcards in the filters in the
following way:
v A version name filter of *xyz* matches any configuration map version

name that has the string "xyz" anywhere in the version name.
v A version name filter of xyz* matches any configuration map version

name that begins with "xyz".
v A version name filter of *xyz matches configuration map version name

that ends with "xyz".

If you leave the Version Name filters field empty, the migration tool uses
the Version Depth filter.

Version Depth
You can specify the number of previous versions you want to migrate. The
default is 1, in which case the migration tool only processes the most
recent version of the configuration map. If any Version Name filters are
specified, the Version Depth filter is ignored.

Mapping page
The Mapping page enables you to specify the following information:
v EGL file names for common parts and for unused parts.
v Suffixes that are used in building certain EGL project and package names.
v Options that control how your application names are converted to EGL package

names.
v Information about which VAGen configuration maps and applications contain

common parts.

Chapter 5. Stage 1 — Extracting from Smalltalk 151

This section describes the preferences on the Mapping page in more detail:

File Names
The File Names section enables you to control the names of two EGL files
that are created during migration.

Common Parts
Enables you to specify the name of an EGL file to contain parts
that are common to multiple unique generatable parts within the
scope of the migration set. Specify the file name without an
extension or path. The migration tool creates a common parts file
in each EGL package that contains parts that are used by
(associated with) multiple generatable parts in the migration set or
which are in VAGen configuration maps or applications that are
identified as common configuration maps or applications. See
“Placing parts in EGL files” on page 42 for details about whether a
part is placed with in a file with a program or in the common
parts file.

Unused Parts
Enables you to specify the name of an EGL file to contain parts
that are not used within the scope of the migration set. Specify the
file name without an extension or path. The migration tool creates
an unused parts file in each EGL package that contains parts that
are not used by (associated with) any generatable part in the
migration set, provided the corresponding VAGen configuration
map and application are not identified as common configuration
maps or applications.

Spanning Maps
The Spanning Maps section enables you to specify suffixes that are used
in the event that one of your map groups includes maps from multiple
configuration maps or applications.

Project Suffix
Enables you to specify a suffix that the Stage 1 migration tool
concatenates to the migration set name to create a new EGL project
name. The migration tool only creates this new EGL project if a
map group and its maps are spread across multiple VAGen
configuration maps within the migration set. The new project name
is migrationSetName_ProjectSuffix. The migration tool concatenates
the suffix to the migration set name after any Renaming rules are
applied.

Package Suffix
Enables you to specify a suffix that the Stage 1 migration tool
concatenates to a project name to create a new EGL package name
within an EGL project. The migration tool only creates this new
EGL package if a map group and its maps are spread across
multiple VAGen applications within a configuration map. The new
package name is projectName.PackageSuffix. The migration tool
concatenates the suffix after any Renaming rules are applied.

EGL Package Naming Options
The EGL Package Naming Options section enables you to specify general
rules about converting Smalltalk application names to Java package names.

Use package naming dot notation
If you select this option, the migration tool converts VAGen
application names to EGL package names by placing a dot before

152 Rational Business Developer: VisualAge Generator to EGL Migration Guide

each uppercase letter in the application name after the first. For
example, if you select this option, the migration tool changes
MyOrderEntryApp to My.Order.Entry.App.

Collapse subapplications
If you select this option, the migration tool converts each VAGen
subapplication to an EGL package. If you clear this option, the
migration tool converts the subapplication using dot notation.
Consider the situation in which there is an application named
MainApp that contains a subapplication named SubApp. If you
select Collapse subapplications, the migration tool creates two
packages--one named MainApp and one named SubApp so that
both packages are at the same level in the EGL folder structure. If
you clear Collapse subapplications, the migration tool also creates
two packages, but they are named MainApp and
MainApp.SubApp so that the two packages appear in a hierarchy
in the EGL folder structure. The default is selected.

Convert package names to lowercase
If you select this option, the migration tool converts VAGen
application names to EGL package names by changing uppercase
letters to lowercase. For example, if you select this option, the
migration tool changes MyOrderEntryApp to myorderentryapp.

In general, you should select both Use package naming dot notation and
Convert package names to lowercase. If both options are selected, the
migration tool changes MyOrderEntryApp to my.order.entry.app. The EGL
Package Naming Options are applied after any Renaming rules.

Common Identifiers
This section enables you to specify a list of strings with wildcards that the
migration tool can use in determining which configuration maps and
applications contain common (shared) parts. To add or delete a common
identifier, right-click the field and use the options on the pop-up menu.
When you add an identifier, the editor prompts you to enter the following
information:

Context
Indicates whether the string is to be matched to the configuration
map name, application name, or both.

ConfigMap
Enables you to specify a string that identifies configuration
maps that contain common parts. The migration tool
matches this string to each configuration map name in the
migration set to determine if the configuration map
contains common parts. If the configuration map name
matches any of the strings, all parts within the
configuration map are considered to be "used". Each
non-generatable part is placed either in a program file or in
the file specified by your Common Parts preference. The
part is not placed in the unused parts file even if the part
is not used by any generatable part in the migration set.
You can enter multiple ConfigMap strings.

Application
Enables you to specify a string that identifies applications
that contain common parts. The migration tool matches
this string to each application name in the migration set to

Chapter 5. Stage 1 — Extracting from Smalltalk 153

determine if the application contains common parts. If the
string matches an application name, all parts within the
application are considered to be "used". Each
non-generatable part is placed either in a program file or in
the file specified by your Common Parts preference. The
part is not placed in the unused parts file even if the part
is not used by any generatable part in the migration set.
You can enter multiple Application strings.

Both Enables you to specify a string that the migration tool
matches to both configuration map names and application
names within the migration set. Both is equivalent to
specifying the same string with a context of ConfigMap
and a context of Application.

Pattern to identify the common code
Enables you to specify the string the migration tool should match
based on the context you specified. You can use the * as a wildcard
at either the beginning or end of the string. The filters are not case
sensitive.

Renaming page
The Renaming page enables you to control the names of the EGL projects,
packages, and versions that are derived from your VAGen configuration map,
application, and version names. The number in the Order column indicates the
order in which the migration tool is to apply the renaming rules, with the lowest
numbered rule applied first. To add or delete a renaming rule, click a rule and use
the options on the pop-up menu. Add Rule always puts the new rule at the end of
the list. When you add a rule, the editor prompts you to enter the following
information:

from string
Specifies the characters in the VAGen name that you want to change.

to string
Specifies the characters you want to use in the resulting EGL name.

string context
Specifies the location in the VAGen name where the migration tool should
look for the from string during renaming. The following values are
available:

front The rule applies if the from string appears at the beginning of a
configuration map, application, or version name.

back The rule applies if the from string appears at the end of a
configuration map, application, or version name.

any The rule applies if the from string appears anywhere within a
configuration map, application, or version name.

token The rule applies only if the from string is an exact match for the
configuration map, application, or version name.

mapping context
Indicates whether the migration tool is to apply the renaming rule to a
configuration map, application, or version name. The following values are
available:

154 Rational Business Developer: VisualAge Generator to EGL Migration Guide

configMap
The renaming rule only applies to VAGen configuration map
names.

application
The renaming rule only applies to VAGen application names.

both The renaming rule applies to both VAGen configuration map
names and VAGen application names.

version
The renaming rule applies to the version names for all
configuration maps. Use a version renaming rule if your version
names include special characters such as a semicolon (:) that are
not permitted in directory or file names. The default
MigPreferences.xml file includes several version renaming rules to
help ensure that your version names do not result in invalid
directory or file names. The migration tools use the renamed
versions to create the migration plan file names in Stage 1 and to
create directory names in Stage 3 of migration.

Execution page
The Execution page enables you to specify information about the location of the
migration database, as well as the logging, debug, and report information you
want to capture during Stage 1. This section describes the preferences you can
specify on the Execution page in more detail:

Database
This section enables you to specify details about the migration database:

DB DB is the name of the migration database into which the migration
tool is to write the migration set information. If you changed the
database name from VGMIG when you created the migration
database, you must change the database name specified by this
preference to match the name you used.

Schema
The name used as the qualifier for the database tables. If you do
not specify the schema, the migration tool uses MIGSCHEMA as
the default. If you changed the schema name from MIGSCHEMA
when you created the migration database, you must change the
schema name specified by this preference to match the name you
used.

UserID
The user ID needed to connect to the migration database. If you do
not specify the user ID, the migration tool attempts to connect
using the user ID specified in your VAGen SQL Preferences as the
default. If the connection fails, the migration tool attempts to use
your logon user ID. If both attempts fail, the migration tool
displays a dialog window asking for the information.

Password
The password needed to connect to the migration database. If you
do not specify the password, the migration tool attempts to
connect using the password specified in your VAGen SQL
Preferences as the default. If the connection fails, the migration tool

Chapter 5. Stage 1 — Extracting from Smalltalk 155

attempts to use your logon password. If both attempts fail, the
migration tool displays a dialog window asking for the
information.

Note: The password is not encrypted in the preferences file. If this
is a concern, do not enter the password in the preferences
file. Wait for the prompt.

Service
This section enables you to specify details about the logging and debug
information you want to capture during Stage 1. You can specify the
following details:

Trace Level
Enables you to specify the level of information that you want to
write to the log and debug files. You can select one of the
following values:

FATAL
Error messages are logged. If any of these messages occur,
the migration database might be updated, but the
migration plan file (.pln file) is not changed to have the
.done extension. This enables you to process the .pln file
again.

WARN
Warning messages and error messages are logged.

INFO Informational, warning, and error messages are logged.

DEBUG
Debug information, as well as informational, warning, and
error messages are logged. DEBUG is the only trace level
that causes the migration tool to write information to the
debug file. This is the default value.

Log File Name
Enables you to specify the drive, directory, and file name for a log
file. You can create the log file with any file extension, but it is best
viewed as an .xml file. If you omit the log file name, a file named
migLog.xml is written to the drive and directory that you specified
in the Log File Name field. If you do not specify a drive and
directory, the migration tool writes the log file to the migration
plan directory.

Debug File Name
Enables you to specify the drive, directory, and file name for a
debug file that might be needed by IBM support. You can create
the debug file with any file extension, but it is best viewed as an
.xml file. Information is only written to this file if the Trace Level
preference is set to DEBUG. If you omit the debug file name and
you specify a Trace Level of DEBUG, a file named migDebug.xml
is written to the drive and directory that you specified in the
Debug File Name field. If you do not specify a drive and
directory, the migration tool writes the debug file to the migration
plan directory.

156 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Verification
This section enables you to specify information about the report file that
can be output from the Stage 1 migration tool. You can specify the
following information:

Report File Name
Enables you to specify the drive, directory, and file name to be
used for the report file. This report contains information about how
your VAGen files are going to be migrated. You should always
specify the .htm extension. If you omit the report file name, a file
named report\MigrationReport.htm is written to the drive and
directory that you specified in the Report File Name field. If you
do not specify a drive and directory, the migration tool writes the
report file to the migration plan directory.

Sample MigPreferences.xml file
The following is a sample MigPreferences.xml file:
<preferences>
 <database>
 <uri>VGMIG</uri>
 <schema>MIGSCHEMA</schema>
 <userid></userid>
 <password></password>
 </database>
 <migrationSpec>
 <directory>d:\TempMig\Stage1</directory>
 <filename></filename>
 </migrationSpec>
 <service>
 <traceLevel>4</traceLevel>
 <logfile>d:\TempMig\stage1\migLog.xml</logfile>
 <debugfile>d:\TempMig\stage1\migDebug.xml</debugfile>
 </service>
 <repositoryFilters>
 <projectName>MyConfigMap*</projectName>
 <versionNumber>1</versionNumber>
 </repositoryFilters>
 <verification>
 <reportName>d:\TempMig\report\MigrationReport.htm</reportName>
 </verification>
 <eglMapping>
 <commonPartsFileName>CommonParts</commonPartsFileName>
 <unusedPartsFileName>UnusedParts</unusedPartsFileName>
 <spanningMapsProjectSuffix>MapsProject</spanningMapsProjectSuffix>
 <spanningMapsPackageSuffix>mapspackage</spanningMapsPackageSuffix>
 <packageDotNotation>true</packageDotNotation>
 <collapseSubapplications>true</collapseSubapplications>
 <packageLowercase>true</packageLowercase>
 <commonParts>
 <commonConfigMap>*Common*</commonConfigMap>
 <commonApplication>*Common*</commonApplication>
 </commonParts>
 <renameRule order="1">
 <fromString> </fromString>
 <toString></toString>
 <stringContext>any</stringContext>
 <mappingContext>both</mappingContext>
 </renameRule>
 <renameRule order="101">
 <fromString>CM</fromString>
 <toString></toString>
 <stringContext>back</stringContext>
 <mappingContext>configMap</mappingContext>

Chapter 5. Stage 1 — Extracting from Smalltalk 157

</renameRule>
 <renameRule order="301">
 <fromString>App</fromString>
 <toString></toString>
 <stringContext>back</stringContext>
 <mappingContext>application</mappingContext>
 </renameRule>
 <renameRule order="501">
 <fromString>:</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="502">
 <fromString>/</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="503">
 <fromString>\</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="504">
 <fromString>|</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="505">
 <fromString>?</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="506">
 <fromString>*</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="507">
 <fromString><</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="508">
 <fromString>></fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="509">
 <fromString>"</fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>
 <mappingContext>version</mappingContext>
 </renameRule>
 <renameRule order="510">
 <fromString> </fromString>
 <toString>_</toString>
 <stringContext>any</stringContext>

158 Rational Business Developer: VisualAge Generator to EGL Migration Guide

<mappingContext>version</mappingContext>
 </renameRule>
 </eglMapping>
</preferences>

Deriving file names from your preferences
The Stage 1 migration tool derives the file names for the log, debug, and report file
names in the same way. The following table shows a name you as you might
specify it in the preferences and the resulting drive, directory and path name that
the migration tool uses. In this example, the Migration Plan Directory is
d:\myVAGenMig.

 Table 62. File name derived from preferences

Log File Name Preference File Name used by Stage 1 Migration Tool

Preference is left blank. d:\myVAGenMig\migLog.xml
Note:

v The default file name for the debug file is migDebug.xml.

v The default file name for the report file is \report\MigrationReport.xml

mine.xml d:\myVAGenMig\mine.xml

logs\mine.xml d:\myVAGenMig\logs\mine.xml

.mine.xml VisualAge-Generator-installation-directory\image\mine.xml

Before you run the Stage 1 tool — hints and tips
Before you run the Stage 1 migration tool, you might need to perform the
following tasks:
v Customize the Stage 1 migration tool
v Specify your character set information
v Take steps to improve the performance of the Stage 1 migration tool
v Save your image

Customizing the Stage 1 migration tool
The Stage 1 migration tool on Smalltalk has the following built-in customizations
that you can enable if they are appropriate to your environment:
v Move all data item parts to a new EGL project called ItemsProject. The items are

placed in packages that correspond to their original Smalltalk application name,
with the suffix .items (for example, my.original.app.items). This customization is
particularly useful if you plan to select the Convert shared data items to
primitive item definitions Stage 2 migration preference. By enabling this
customization in Stage 1, you can move all the data items parts to a single
project during migration and then remove that project from your EGL
workspace.

v Split the common parts files by part type and, optionally, by part name. This
customization can reduce the size of the common parts files and make it easier
to locate specific parts.

In addition to the built-in customizations, there is a white paper that describes
how to consolidate EGL projects and packages during Stage 1 on Smalltalk. For
information on obtaining this white paper, see “References” on page 16. Depending
on your VAGen project and package naming conventions, the white paper
technique can be easier to use than the Renaming rules preference described in
“Renaming page” on page 154.

Chapter 5. Stage 1 — Extracting from Smalltalk 159

Enabling the Stage 1 built-in customizations
To enable the customizations, follow these steps:
1. From the VisualAge Organizer, in the left pane, select the

HptEglMigrationUtilityApp application. In the center pane, double-click the
HptEglMigrationSetUtility class.

2. In the Script Editor window, toggle the class / instance button so that it is set
to instance. Toggle the private / public button so that it is set to public.

3. In the Categories pane, select PP - Accessors. In the methods pane, select
customizedPlacementScriptSet.

4. To enable the customization that moves all the data item parts to a new EGL
project, follow these steps:
a. Change the line:

consolidate := false.

to
consolidate := true.

By default, the Stage 1 tool sets the EGL file name to "Items", concatenated
with the first character of the data item name.

b. If you want to change the number of characters from the data item name
that are concatenated to the file name, change the value of suffixLength in
the customizedPlacementScriptSet method.

c. If you want to change the name of the EGL Project name or the suffix for
the packages, modify the consolidateDataItemsQuery: method.

5. To enable the customization that splits the common parts files by part type and
part name, follow these steps:
a. Change the line:

redistribute := false.

to
redistribute := true.

b. The following lines specify the number of characters from the part name
that you want to append to the name of the common parts files:
suffixLength := 2.
...
suffixLength := 1.

By default, the value of suffixLength is set to use the first character from a
data item part name and the first 2 characters from record and function
names. However, you can change the value for suffixLength. For example:
v If you set this number to 0, the common parts files are named

CommonRecords.egl, CommonFunctions.egl, and CommonItems.egl.
v If you set this number to a digit, n, the first n characters of the part name

is used as a suffix for the file name. If you set n to 1, then the names are
CommonRecordsA, CommonRecordsB and so on.

c. If you want the names of the files to be different, change the
redistributeCommonRecordsUsing:, redistributeCommonFunctionsUsing:,
or redistributeCommonItemsUsing: methods.

6. Save your changes, then version and release the class. You might also want to
version the application so that you have a record of your changes.

160 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Specifying your character set information
The Stage 1 migration tool specifies a character set based on your VAGen national
language code. For single-byte languages this is "iso-8859-1"'; other values are used
for double-byte languages. If you need to use a different character set, you can
change this value by following these steps:
1. From the VisualAge Organizer, click Applications -> View -> Show All

Applications.
2. In the left pane, select the application HptEglMigrationUtilityApp. In the

center pane, double-click the class EslmPreferences.
3. In the Script Editor window, toggle the instance/class button so that it is set to

instance. Toggle the public/private button so that it is set to public.
4. In the Categories pane, select Reports. In the methods pane, select

determineXmlEncoding.
5. Change the value that is specified for xmlCharset to the character set that you

need. For example, you can change the last 3 lines of the method:
(vgNLS = ’PTB’)
 ifTrue: [xmlCharset := ’iso-8859-1’].
 ^xmlCharset.

Add the line in bold:
(vgNLS = ’PTB’)
 ifTrue: [xmlCharset := ’iso-8859-1’].
xmlCharset := ’iso-8859-1’. "new line with the value you need"
 ^xmlCharset

Save the method.
6. Version and release the class. You also might want to version the application so

that you have a record of your changes.

Improving performance
To minimize the memory usage, it is best to clean up (or "scrub") the image before
running the Stage 1 migration tool. To clean up (or "scrub") the image, follow these
steps:
1. From the System Transcript, click Tools -> Open VAGen Tools Workspace.
2. Under the "Image Management" section, swipe through:

System abtScrubImage.

3. Then right-click and click Execute to run System abtScrubImage.
4. If you scrub the image, you might need to reload the VAGen EGL Migration

feature. See “Loading the migration feature” on page 148 for information on
how to load the feature. Alternatively, to add the EGL Migration Tools option
back onto the System Transcript tool bar, follow these steps:
a. Type the following into the System Transcript window:

HptEglMigrationGuiApp loaded

b. Swipe through the line you typed, then right-click and click Execute.

To reduce the time the Stage 1 migration tool spends analyzing which
configuration maps and versions to migrate, consider creating a library that only
contains the configuration map versions that you want to migrate. If you have
ongoing maintenance in VisualAge Generator while you are migrating, a separate
migration library also has the following advantages:

Chapter 5. Stage 1 — Extracting from Smalltalk 161

v There is a stable set of configuration map versions to migrate. This is
particularly important if you use the Version Depth preference to control what
is to be migrated.

v You can compare the versions in the new migration library against your
maintenance library to determine what additional configuration map versions
still need to be migrated.

If you do create a special library, consider using it as a local library to improve
Stage 1 migration performance.

Saving your image
The Stage 1 migration tool unloads all applications that contain VAGen parts from
your image at the beginning of Stage 1 processing. Only the last migration set to
be processed is left in your image when the Stage 1 tool finishes. Unloading all
applications ensures that only parts in the migration set are considered for the
associate parts list during Stage 1. If you have an image that you wish to save, you
should follow these steps before running the Stage 1 tool:
1. Shut down VisualAge Generator.
2. Save backup copies of the following files in your \VisualAgeForSmalltalk-

installation-directory\image:
v abt.icx
v abt.ini — not necessary to save if you do not change any preferences while

running Stage 1
v hpt.ini — not necessary to save if you do not change any preferences while

running Stage 1
3. Start VisualAge Generator.

When you are finished running the Stage 1 tool, restore your workspace using the
following steps:
1. Shut down VisualAge Generator.
2. Restore the files you backed up before running the Stage 1 tool.
3. Start VisualAge Generator.

Running the Stage 1 migration tool
After you have finished editing your preferences, you are ready to run the Stage 1
migration tool to extract your source code from the Smalltalk library. To do this,
perform the following steps:
1. Start the EGL Migration Driver View using one of the following techniques:
v If you modified the preferences by starting the Preferences Editor, start the

EGL Migration Driver View from the System Transcript by clicking EGL
Migration Tools -> Migration Driver.

v If you modified the preferences by starting the EGL Migration Driver, then
when you saved the preferences file, you are positioned back at the EGL
Migration Driver View.

2. Ensure the File Name for the Migration Preference File points to the file in
which you stored your preferences. Click Browse to point to a different
preferences file. Click Edit to review or make final modifications to your
preferences.

3. When you are satisfied with your preferences, select the Execution Options
that you want to use. The Execution Options control the output of the Stage 1
migration tool in the following way:

162 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Overwrite PLN
Controls the migration plan file or files in the following way:
v If you select Overwrite PLN, the Stage 1 migration tool creates new

plan files based on the Plan Directory that you specified in your
preferences:
– If your preferences file does not specify a file name for your .pln

file, the migration tool deletes all the .pln files in the specified
Plan Directory and creates new files.

– If your preferences file specifies a file name for your .pln file, the
migration tool only deletes the file with the same name from the
specified Plan Directory before creating a new .pln file.

Select the Overwrite PLN option if you want the Stage 1 migration
tool to create the migration plan files for you based on your
repository filters and high-level configuration maps. If you need
assistance creating a configuration map to use for migration, see
“Creating a high-level configuration map” on page 166.

v If you clear Overwrite PLN, the Stage 1 migration tool does not
create any new migration plan files. Instead, the Stage 1 migration
tool uses the existing plan files based on the Plan Directory and Plan
File Name you specified in your preferences:
– If your preferences file does not specify a file name for your .pln

file, the migration tool runs using all of the plans in the specified
Plan Directory.

– If your preferences file does specify a file name for your .pln file,
the migration tool runs using only that .pln file.

Clear the Overwrite PLN option if you have previously created the
migration plan files and now want to run the Stage 1 migration tool
to load the migration database using these files. For details about
creating your own migration plan files, see “Creating a migration
plan file manually” on page 167.

Generate Report
Controls whether the migration tool creates the report specified in the
Verification section of the preferences file. If you clear this option, the
report is not created. If you select this option, the migration tool creates
the report using the Report File Name that you specified in your
preferences. The report shows how your configuration maps,
applications, and VAGen parts are assigned to EGL projects, packages,
and files during migration.

Update Database

 Controls whether the migration tool updates the migration database
with the migration plan information. If you clear this option, the
migration database is not updated. If you select this option, the
migration database you specified in your preferences is updated with
information from the migration plan, including the External Source
Format for every VAGen part in the migration plan.

4. After you have selected your Execution Options, click OK to run Stage 1 of the
migration tool. The migration tool writes messages to the log file you specified
in your migration preferences. The tool also puts the same messages in the
System Transcript.

Chapter 5. Stage 1 — Extracting from Smalltalk 163

Depending on the number of parts and the complexity of the associations between
parts, some steps of the Stage 1 migration tool can take a long time. The following
steps in the System Transcript window can be particularly time-consuming (over
an hour) without noticeable activity:
v Executing partPlacementQuery 3
v Executing partPlacementQuery 8
v Executing eglPathBuilderQuery 8
v Starting Migration Report Generation

You might run the Stage 1 migration tool in several steps as follows:
1. Clear both Generate Report and Update Database. This enables you to review

the migration plan files that are created to ensure that your Repository Filters
are set correctly to process the configuration map versions that you want. If
you are not satisfied with the configuration map versions that are selected, you
can refine your Repository Filters and run this step again until you are satisfied
with the configuration map versions that the migration tool will process.

2. Select Update Database, with or without Generate Report.

Note:

v Updating the database can take some time. Therefore it is best to review
the .pln files to be sure that the migration tool will process the
configuration map versions that you intend.

v You must update the database before the report can be run.
v Generating the report can also take some time. You might prefer to run

some simple queries to see the EGL file names rather than generating the
report. For sample queries that produce the EGL file names, see
“Reviewing the EGL file names” on page 464.

v If you generate the report, the report files are overwritten. If you want to
save previous report files, you must move the report files to a different
directory or point to a new directory for your new report. Because the
report files link to other files, renaming the report files causes the links to
be lost so the files are no longer viewable.

v The Repair Message Table Associates option is only used if you need to
repair a migration database that was created with a previous version of
the Stage 1 migration tool. For details, see “Repairing a migration
database created using a previous version of the Stage 1 tool” on page
165.

When the Stage 1 tool finishes, if you selected the Update Database option, your
migration plan information, including your VAGen code in External Source
Format, is stored in the migration database. After reviewing your report and the
Stage 1 messages, you might decide to make changes to your code in VisualAge
Generator and run Stage 1 again. If you select Update Database again and a
migration set with the same name already exists in the database, the Stage 1
migration tool automatically deletes the old information about the migration set
from the database and then adds the new information for the migration set.
Therefore, there is no need for you to clean up a migration set from the database.
However, it can be much faster to use the techniques described in “Resetting the
migration database for Stage 1” on page 460.

After you are satisfied with the results of Stage 1 and have your final External
Source Format code stored in the migration database, you are ready to perform
Stage 2 of the migration. To run the Stage 2 migration tool, you use the EGL

164 Rational Business Developer: VisualAge Generator to EGL Migration Guide

development environment. See Chapter 6, “Stage 2—Conversion to EGL syntax,”
on page 171 for information about continuing your migration process.

Repairing a migration database created using a previous version of
the Stage 1 tool

Note: This section only applies if you have a migration database that was created
with the Stage 1 tool prior to the tool version of 20071022_1400.

If you use message tables and have a migration database that was created with a
version of the Stage 1 tool prior to version 20071022_1400, you might want to
update your migration database to include the message tables as associates of the
program. Using the repair tool before running the Stage 2 and 3 tools enables those
tools to set the EGL Build Path and import statements to include the message
tables as associates of the program parts. To update an old Stage 1 database, follow
these steps:
1. Set your migration preferences as described in “Setting Stage 1 preferences” on

page 148. For the purposes of the repair tool, you only need to set the
Database and Service information on the Execution page.

2. From the System Transcript, click EGL Migration Tools -> Migration Driver.
3. Ensure the File Name for the Migration Preference File points to the file in

which you stored your preferences.
4. Select Repair Message Table Associates.
5. Click OK. The repair tool runs and updates the program associates for any

program that specifies a message table prefix to include all message tables that
match the prefix.

Migration plans and high-level configuration maps
A migration plan file is simply an XML file that specifies the names of one or more
migration sets and, for each migration set, one high-level configuration map and
version that specifies the applications and their versions for the migration set. The
high-level configuration map can also specify other configuration maps and their
versions as required maps. However, only one high-level configuration map
version can be specified for a migration set. The Stage 1 migration tool is designed
to automatically create a migration plan file for you based on your Repository
Filters preferences for configuration map and version names. The Stage 1 tool uses
these filters to select the configuration map versions that should be reviewed to
determine which ones are high-level configuration map versions. The Stage 1 tool
uses each high-level configuration map version as the basis for a migration set.

If you use high-level configuration maps when generating your VAGen source
code, then these high-level configuration maps are the same ones you should use
for migration. This is because each high-level configuration map provides a
grouping of parts that are used together during generation and therefore has all
the associated parts for a set of programs.

If you do not currently use configuration maps at all, you must create a
configuration map to use for migration. In this situation, the easiest technique is to
create one configuration map version that includes all the application versions,
including common application versions, that you want to migrate as a group. See
“Creating a high-level configuration map” on page 166 for details. After you have
created the configuration map, you can use the Stage 1 migration tool to
automatically create the migration plan for you.

Chapter 5. Stage 1 — Extracting from Smalltalk 165

If you currently use configuration maps, you might not have high-level
configuration maps. For example, you might have a configuration map for
common applications and another configuration map for a subsystem. At
generation time you determine which version of each configuration map to load
into your image. In this situation, you can use one of the following techniques to
specify what you want to migrate as a group:
v Create a high-level configuration map to use during migration. This high-level

configuration map can specify a list of application versions, a list of required
configuration map versions, or a combination of application versions and
required configuration map versions. For example, the high-level configuration
map can list the common configuration map and the subsystem configuration
map so that both configuration maps are considered as a group when migrating.
See “Creating a high-level configuration map” on page 166 for details. After you
have created the high-level configuration map, you can use the Stage 1
migration tool to automatically create the migration plan for you.

v If you prefer not to create a high-level configuration map, you can create the
migration plan file yourself using one of the following techniques:
– If you have information in a database or other system that specifies what is

needed for generation in terms of Smalltalk configuration map versions, then
you can write a tool to create the migration plan file or files automatically
from your database.

– Create the migration plan file or files manually.

Creating a high-level configuration map
To create a high-level configuration map for use in migration, follow these steps in
VisualAge Generator:
1. From the VisualAge Organizer, click Options and be sure that Full Menus is

selected.
2. From the VisualAge Organizer, click Tools -> Configuration Maps.
3. From the Configuration Maps Browser, click Names -> Create.
4. In the Information Required window, enter the name of the configuration map

and then click OK. A new edition of the configuration map is automatically
created and selected.

5. Click Applications -> Add. Then select each application that you want to
migrate and the version of that application. You can only specify one version
for each application. Click OK when you have selected the version for each
application that you need to include.

6. Version the configuration map by clicking Editions -> Version.
7. Select the configuration map version and load it into your image by clicking

Editions -> Load.
8. After you have loaded your new high-level configuration map, you might also

want to validate your programs and tables to ensure that they are valid in
VAGen and that you are not missing any parts. When you validate your
programs, include /GENMAPS, /GENHELPMAPS, and /NOGENTABLES.
These 2 map options enable you to ensure that the maps are valid for the
programs in which they are used. /NOGENTABLES enables you to validate a
table just one time rather than revalidating the table with every program in
which the table is used.

Chaining configuration maps
You can chain configuration maps. For example, you can create a configuration
map that lists the version for each of your common applications. Then, for each
subsystem, create a high-level configuration map for that subsystem that includes

166 Rational Business Developer: VisualAge Generator to EGL Migration Guide

the version you need of each subsystem-specific application. You can include the
configuration map for the common applications in the subsystem configuration
map by following these steps:
1. From the Configuration Maps Browser, select an open edition of the subsystem

configuration map.
2. Click Expressions -> Add.
3. In the Information Required window, click OK to accept true as the expression.
4. Click true in the Config. Expressions pane. Then click Required Maps -> Add

-> As First. Then select the configuration map version that contains the
common applications.

5. Version the configuration map by clicking Editions -> Version.
6. Select the configuration map version and load it into your image by clicking

Editions -> Load With Required Maps.

Using required maps provides a simple way of specifying the common application
versions without having to explicitly list all of the common application versions in
the high-level configuration map for every subsystem.

Using configuration maps with the Stage 1 tool
When you are ready to run the Stage 1 migration tool, follow these steps:
1. When you set your Stage 1 preferences, on the Build Plans page, in the

Repository Filters section, set the Configuration Maps list so that a filter in the
list matches the high-level configuration map you created.

2. When you instruct the Stage 1 tool which preferences file to use, also select the
Overwrite PLN option. This option instructs the Stage 1 migration tool to
create the migration plan files for you based on your high-level configuration
maps and to overwrite any existing migration plan files.

Creating a migration plan file manually
If you already have external controls that determine what configuration map
versions to load into your image when you generate in VisualAge Generator, you
might decide to create the migration plan file by hand or to develop a tool to
create the migration plan file automatically from your external information. The
migration plan file must have a .pln file extension and the following format:
<migrationDefinition>
 <migrationSet
 name="migrationSet1"
 version="migrationSet1Version1"
 vgName="migrationSet1"
 vgVersion="migrationSet1Version1">
 <configMap
 name="configurationMap1"
 version="configurationMap1Version1">
 </configMap>
 <configMap
 name="configurationMap2"
 version="configurationMap2Version1">
 </configMap>
 .
 .
 .
 <configMap
 name="configurationMapN"
 version="configurationMapNVersion1">
 </configMap>
 </migrationSet>
</migrationDefinition>

Chapter 5. Stage 1 — Extracting from Smalltalk 167

The following discussion applies to the previous example:
v migrationSet1 is a name that you can use to refer to a group of configuration

maps that must be migrated together. The migration set name is stored in the
migration database and is used in the later stages of migration in the following
ways:
– In Stage 1 migration, if maps in a map group span configuration maps, the

migration set name concatenated with a suffix is used to build the name of a
new EGL project that contains the map group and all its maps. The migration
set name is also used to remove information from the migration database if
you change renaming rules.

– In Stage 2 migration, the migration set name specifies which group of
configuration maps in the migration database that you want to convert to
EGL.

– In Stage 3, the migration set name specifies which group of configuration
maps in the migration database you want to use to create EGL projects,
packages, and files in your workspace or in a temporary directory. The
migration set name and the migration set version are also used to create the
high-level directory name if you choose to save the outputs of Stage 3 to a
temporary directory.

The migration set name is only used during migration as a way of identifying a
group of configuration maps. Other than the situation in which maps span
multiple configuration maps in VisualAge Generator, the migration set name is
not used after migration.

v configurationMap1, configurationMap2, ... configurationMapN are the configuration
maps you want to migrate as a group. You must only list a configurationMap
once within a migration set.

v configurationMap1Version1, configurationMap2Version1, ...
configurationMapNVersion1 are the respective versions of each of these
configuration maps. You can only specify one version for each configuration
map within a migration set.

v The configuration map names and version names you specify must exactly
match the configuration map names and version names in your library. The
names are case sensitive. The information is used to add configuration map
versions to the image so that the parts can be analyzed to build the Stage 1
migration report and to load the migration database.

When you are ready to run the Stage 1 migration tool, follow these steps:
1. When you set your Stage 1 preferences, on the Build plans page, set the Plan

Directory to the drive and directory where you stored your migration plan
files. Specify the Plan File Name if you want the Stage 1 migration tool to run
only one migration plan that you have created. Leave the Plan File Name blank
if you want the Stage 1 migration tool to run using all the migration plan files
in the specified Plan Directory.

2. When you instruct the Stage 1 tool which outputs to produce, be sure to clear
Overwrite PLN. This causes the migration tool to run using the previously
created .pln file based on your Plan File Name preference.

168 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Part 4. Stages 2 and 3 — common migration steps

The remaining steps of the migration are the same whether you are migrating from
VisualAge Generator on Java or VisualAge Generator on Smalltalk.

© Copyright IBM Corp. 2004, 2011 169

170 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 6. Stage 2—Conversion to EGL syntax

Stage 2 of migration is the same whether you are migrating from Java or Smalltalk.

You must run another migration tool to convert your source from External Source
Format syntax to EGL syntax. This migration tool is a plug-in that is available after
you install EGL. You can run the tool in batch mode or interactive mode. You can
optionally specify that Stage 3 is to run automatically after Stage 2 completes.

Setting DB2 performance information
After you run Stage 1 and before you run Stage 2, you should use the DB2
runStats command to evaluate and set performance information for the DB2 tables.
To set the performance information, follow these steps:
1. From a DB2 Command Window, navigate to the directory where runStats.bat is

located.
v For Java, this is VisualAge-for-Java-install-directory\ide\vgmigration
v For Smalltalk, this is VisualAge-Smalltalk-install-directory

2. If you changed the default migration database name (VGMIG) or the default
schema name (MIGSCHEMA), change the runStats.bat file to use your database
name and schema name.

3. Run runStats.bat.

You might also want to backup the migration database. This enables you to restore
the database to the end of Stage 1 if you want to try different migration
preferences or options for Stage 2. For details, see “Backing up and restoring the
migration database” on page 466.

Setting your workbench preferences
Before you start to migrate you should set your workbench preferences, as
described in the following sections:
v Start up parameters
v Required EGL preferences
v Suggested preferences
v VAGen Migration Preferences
v Other suggested settings

Start up parameters
To improve the performance of the EGL development environment, you might
need to increase several start up parameters in the initialization file. The
parameters are the same regardless of the product that you use. The initialization
file is always in the product installation directory, but the name of the file varies
with the product that you are using. For example, if you are using Rational
Business Developer, the initialization file is named eclipse.ini. To set the start up
parameters, follow these steps:
1. Using a text editor, edit the initialization file.
2. Change the following parameters:

© Copyright IBM Corp. 2004, 2011 171

-Xms256m
-Xmx1024m

Setting -Xms increases the amount of memory that is used when starting the
product. Set this to a value that is less than or equal to your setting for -Xmx.
Setting -Xmx increases the available memory. Generally, set this to a value that
is less than your real memory. For example, if your real memory is 2000K, then
set -Xmx to 1024. This helps avoid the use of virtual memory.

3. Save the initialization file.
4. Start the EGL development environment. For example, if you are using Rational

Business Developer, start that product.

Required EGL preferences
Before you can you use the migration tool, you must enable both the EGL and the
migration tool capabilities. To enable these capabilities, follow these steps:
1. From the Workbench window, click Window -> Preferences.
2. Expand the General preference by selecting the + beside it and then select

Capabilities.
3. Click Advanced.
4. In the Advanced Capabilities Settings window, expand EGL Developer.
5. Select EGL VAGen Migration. Depending on the types of applications you

plan to migrate, you might also need to select the following capabilities:
v EGL DLI
v EGL MQ
v EGL Text UI
v EGL VG Web Transactions

6. Click OK to close the Advanced Capabilities Settings window.
7. Click OK to close the Preferences window.

You must also set the VisualAge Generator compatibility mode before you migrate.
Setting the VisualAge Generator compatibility mode avoids numerous messages in
the Problems view. To set this preference, follow these steps:
1. From the Workbench window, click Window -> Preferences.
2. Select EGL.
3. Select the VisualAge Generator compatibility preference.
4. Click OK.
5. When you are prompted for a full-rebuild of the workspace, click OK.

If you plan to migrate VAGen Web transaction programs, you should set the type
of EGL Web project. To set this preference, follow these steps:
1. From the Workbench window, click Window -> Preferences.
2. Select EGL.
3. In the Default EGL Web Project Facet Choices section, follow these steps:

a. Clear EGL support with JSF and EGL support with JSF Component
Interfaces.

b. Select EGL support with Legacy Web Transaction.
4. In the Code migration's default web runtime section, select the Web

Application Server that you plan to use. Select New and use the wizard to
specify any additional options you need for the server. These options are used
in Stage 3 of migration to create a valid EGL Web project.

172 Rational Business Developer: VisualAge Generator to EGL Migration Guide

5. Click OK.

If you plan to migrate any VAGen programs that use direct MQ API calls, you
should select the MQ API support preference by following these steps:
1. From the Workbench window, click Window -> Preferences.
2. Select EGL.
3. In the Default EGL Project Features Choices section, select EGL with low-level

MQ API support.
4. Click OK.

If you do not have any immediate plans to create reports using EGL, you should
clear the report-related preferences by following these steps:
1. From the Workbench window, click Window -> Preferences.
2. Select EGL.
3. In the Default EGL Project Features Choices section, clear the following options:
v EGL with BIRT report support

v EGL with Jasper report support

4. Click OK.

If you do not have any immediate plans to create services when you migrate your
VAGen source code, you might want to clear the EGL deployment descriptor
preferences in the following way:
1. From the Workbench window, click Window -> Preferences.
2. In the Default EGL Project Features Choices section, clear the following options:
v Create an EGL service deployment descriptor

3. Click OK.

If your VAGen control parts use non-English special characters, you might want to
set the encoding preference by following these steps:
1. From the Workbench window, click Window -> Preferences.
2. Select EGL.
3. In the Creating .eglbld Files section, use the drop-down list to select a code

page for the Encoding preference.
4. Click OK.

Suggested preferences
To set other preferences, click Window -> Preferences from the Workbench
window, and then select the appropriate preferences page. The following
preferences might be useful when you are resolving EGL validation messages in
the Problems view:
v EGL -> Editor. Select Show line numbers.
v General -> Editors -> Text Editors. Select Show line numbers.
v General -> Workspace. Decide whether to select or clear Build automatically. If

you select this option, whenever you save a file, EGL rebuilds everything in the
workspace and runs validation. The advantage of selecting the option is that you
get immediate feedback on the changes you have made. The disadvantage is
that rebuilding can take some time depending on the number of parts in your
workspace. If you clear this option, EGL does not rebuild anything when you
save a file. The advantage of clearing the option is that you avoid multiple
rebuilds when you are modifying a number of files. However, you must

Chapter 6. Stage 2—Conversion to EGL syntax 173

remember to rebuild the projects (Project -> Build Project or Project -> Build
All) to see the results of any changes on the messages in the Problems view. You
might want to clear Build automatically while you are working through the list
of messages in the migration log. This enables you to control when the rebuild
occurs. When you are doing normal code development, then you might want to
select this option. The Stage 3 Migration Tool always disables Build
automatically.

v General -> Workspace -> Local History. The .egl files that are produced by the
migration tool can be quite large. Therefore, you should change the Maximum
file size (MB) to a larger value (for example, 5). In addition, you might want to
change the Days to keep files and the Maximum entries per file based on your
backup requirements.

v General -> Perspectives. You might want to set either the EGL perspective or
the Web perspective as your default perspective. Use the EGL perspective if you
do not plan to develop Web applications. Use the Web perspective if you plan to
migrate Web transactions or develop Web applications. To set the default
perspective, select the perspective you want to use and then click Make Default.

VAGen Migration preferences
The preferences described in the following sections control the overall migration
process. Unless otherwise noted, these preferences are used both for Stage 2 during
Stage 1 - 3 migration and for single file migration. To set these preferences, click
Window -> Preferences -> VAGen Migration from the Workbench window.

Single File Mode Preferences:

v Separate parts into EGL files. This preference is only used during single file
migration. If you select this preference, each program, map group, and table is
placed in its own file; other parts are placed in the file you specify on the Import
VAGen External Source Format File wizard. This adheres to the EGL
requirement of one generatable part per file. If you clear this preference, all the
parts are placed in the EGL file you specify on the Import VAGen External
Source Format File wizard. For specifics of the parts placement algorithm for
single file mode, see “Overview of single file migration” on page 27.

Rename User Exit Information:

v Rename user exit. The VAGen migration tool provides simple renaming for data
items, records, functions, and maps based on adding a prefix to the part name or
part reference. Optionally, you can write a user exit routine to provide more
complex renaming. For example, you might want to change a hyphen (-) to an
underscore (_) during migration. Select the Rename user exit preference if you
are providing a user exit routine to rename parts. If you select this option, you
must provide additional information about your Rename user exit routine. See
the white paper "Using the Rename User Exit in the VisualAge Generator to
EGL Migration Tool" for details of how to create a Rename user exit, as well as
sample code.

v JAR file location. Specify the location on your system of the .jar file that
contains your Rename user exit routine.

v Package name. Specify the name of the package within the .jar file that contains
your Rename user exit routine.

v Class name. Specify the name of the class within the package that contains your
renaming logic. This class must contain the method renameUserExit(String s,
Connection c).

v Use a database. Select this option if your Rename user exit uses a database to
provide the relationship between the old part name and the new part name.

174 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Minimize VisualAge Generator Compatibility Mode: This group of preferences
enables you to minimize the automatic use of migration techniques that require
VisualAge Generator Compatibility mode. Use caution when selecting these
preferences because they can result in more error messages in the EGL Problems
view or changes in runtime behavior.
v Do not initialize old EZESYS values. If you select this preference, the migration

tool does not include a declaration and initialization statement in each program
for an extra variable to contain the old VAGen values for EZESYS. The migration
tool still uses the extra variable when it converts statements involving EZESYS
other than IF, WHILE, or TEST. If you select this preference and you have
statements involving EZESYS other than IF, WHILE, or TEST, EGL validation
displays an error message in the Problems view after migration. Consider
selecting this preference if you plan to convert all statements to use the new
EGL sysVar.systemType values or if you know that you did not use EZESYS in
statements other than other than IF, WHILE, or TEST. See “EZESYS” on page 118
for additional details.

v Do not include deleteAfterUse for tables. If you select this preference, the
migration tool always omits the deleteAfterUse property for the DataTable use
declaration statements in each program. The migration tool issues a warning
message for those situations in which the deleteAfterUse property is omitted.
Consider setting this preference if you are migrating directly from VisualAge
Generator Version 4.5 Fix Pack 4 or higher and all your production programs are
generated with that version and Fix Pack. If you are migrating from Cross
System Product or earlier releases of VisualAge Generator and you select this
preference, be sure to thoroughly test any program for which the deleteAfterUse
property is omitted from the use declaration for a DataTable.

v Do not honor evensql=y for items or variables. If you select this preference, the
migration tool always uses odd precision (or 18 if the item is the maximum
length) when migrating a PACK data item part or nonshared item in a record.
The migration tool issues a warning message for those situations in which the
VAGen item specified even precision (evensql=y). Consider setting this
preference if you are certain that your SQL tables do not use even precision for
columns that you might reference in an SQL WHERE clause or in an EGL
prepare statement. Alternatively, you can select this preference, migrate, and
then review all the item definitions for which the migration tool issued a
warning message. Using a precision other than what is specified in the SQL
table definition can result in poor performance for database access.

v Do not set compatibility mode. If you select this preference, the migration tool
always omits the vagCompatibility = "YES" build descriptor option whenever
the tool converts a generation options part. You should select this preference
only if you follow all of these steps:
1. Select all of the other three preferences in the "Minimize VisualAge Generator

Compatibility Mode" section.
2. Ensure that all of your migrated part names adhere to the EGL part naming

conventions when VisualAge Generator compatibility mode is disabled. You
can specify a Rename user exit and code the exit to rename the VAGen parts
during migration to achieve this.

3. Disable the EGL preference for VisualAge Generator compatibility after you
finish migration. Note: Regardless of how you set the preferences, the
migration tool always turns on VisualAge Generator compatibility mode
when refreshing the workspace.

Chapter 6. Stage 2—Conversion to EGL syntax 175

VAGen Migration Database I/O Preferences
The preferences described in the following section control the migration of the
VAGen syntax to EGL syntax for SQL and DL/I database I/O. Unless otherwise
noted, these preferences are used both for Stage 2 during a Stage 1 - 3 migration
and for single file migration. To set these preferences, from the Workbench
window, click Window -> Preferences -> VAGen Migration -> VAGen Migration
Database I/O Preferences.

SQL preferences:

v Result Set suffix. In VisualAge Generator, when an SQL REPLACE function
needs to reference the corresponding UPDATE or SETUPD function, the
REPLACE function must specify the function name. In EGL, multiple I/Os are
supported within a single function. A result set ID is used to uniquely identify a
get or open statement. The migration tool creates the result set ID from the
function name by appending the Result Set suffix. For example, if a function is
named MY-SETUPD and you use the default Result Set suffix of _RSI01, then the
result set ID that is included in the open statement for the function is
MY-SETUPD_RSI01. You can set the Result Set suffix to any value other than
blank. However, be sure to choose something that does not cause conflicts with
any of your part names.

v Prepare suffix. In VisualAge Generator, if you need to have an SQL I/O
statement prepared at runtime, you select Execution time statement build. The
corresponding EGL statement is the prepare statement. The prepare statement
includes a prepare statement ID so that other I/O statements such as close, get,
execute, and open can specify which prepare statement they are associated with.
The migration tool creates the prepare statement ID from the function name by
appending the Prepare suffix. For example, if there is a function named
MY-EXEC-TIME-BUILD and you use the default Prepare suffix of _PREP01, then
the prepare statement ID that is included in the prepare statement is
MY-EXEC-TIME-BUILD_PREP01. You can set the Prepare suffix to any value
other than blank. However, be sure to choose something that does not cause
conflicts with any of your part names.

v Omit column name. In VisualAge Generator, the SQL column name is always
specified for a field in an SQL record. In EGL, you can omit the SQL column
name if it is the same as the field name. If you select Omit column name, the
migration tool omits the EGL column property whenever the SQL column name
is the same as the field name. Omitting the column name can make your EGL
source code less cluttered.

v Omit isSQLNullable property. In VisualAge Generator, the null indicator
variable is always included for every field in the SQL record. To preserve the
VisualAge Generator behavior, the migration tool always includes the
isSQLNullable property for every field in an SQL record. However, in EGL, you
can omit the null indicator variable if the column is defined in SQL as not null.
If you select the Omit isSQLNullable property, the migration tool omits the
isSQLNullable property from every field in SQL records. Omitting the
isSQLNullable property can improve runtime performance and reduce the risk
of exceeding the DB2 precompiler limits. However, you should only select the
Omit isSQLNullable property if you are certain that all of your SQL columns
are defined as not null. If any of your SQL columns can be null, you should
clear Omit isSQLNullable property during migration. After migration, you can
remove the isSQLNullable property for selected fields in your SQL records if
you want to improve performance.

v Omit isReadOnly property. In VisualAge Generator, the Read Only property
must be explicitly set for each field in an SQL record. Read Only must always be
yes if there are multiple tables specified for the SQL record. By default, the

176 Rational Business Developer: VisualAge Generator to EGL Migration Guide

migration tool includes the isReadOnly property for every field in an SQL
record that references multiple SQL tables. However, the EGL isReadOnly
property defaults to NO if there is only one SQL table and to YES if there are
multiple SQL tables specified for the SQL record. If you select the Omit
isReadOnly property, the migration tool only includes isReadOnly if there is a
single table specified for the SQL record and the VisualAge Generator Read Only
property is set to yes. Omitting the isReadOnly property can make your EGL
source code less cluttered.

DL/I preferences:

v Database PCB suffix. In VisualAge Generator, the same database name can be
used multiple times in a PSB. In EGL, the PSB is a record. The database name
becomes a field name and must be unique. The migration tool creates the field
name in the PSB from the database name, a number (if necessary for
uniqueness), and the Database PCB suffix. This avoids conflicts between the
database name and any other names in the program. Consider the situation in
which the database name COURSE is used for two different PCBs and COURSE
is also the name of a DL/I segment record. If you use the default Database PCB
suffix of _dbPCB, then the field name created for the first COURSE PCB is
COURSE_dbPCB. The field name created for the second COURSE PCB is
COURSE_n_dbPCB, where n is the number of the PCB in the VAGen PSB. The
name of the DL/I segment is still COURSE. You can set the Database PCB suffix
to any value other than blank. However, be sure to choose something that does
not cause conflicts with any of your part names.

v GSAM PCB suffix. The GSAM PCB suffix is used for the GSAM PCBs similar to
the way the Database PCB suffix is used for database PCBs. You can set the
GSAM PCB suffix to any value that you want other than blank. However, be
sure to choose something that does not cause conflicts with any of your part
names.

VAGen Migration Syntax Preferences
The preferences described in the following section control the migration of the
VAGen syntax to the EGL syntax. Unless otherwise noted, these preferences are
used both for Stage 2 during a Stage 1 – 3 migration and for single file migration.
To set these preferences, from the Workbench window, click Window ->
Preferences -> VAGen Migration -> VAGen Migration Syntax Preferences.

Renaming preferences:

v Renaming prefix. The migration tool uses this prefix whenever a VAGen data
item, record, function, or map name is on the migration tool extended reserved
word list or starts with the # or @ symbol. The tool adds the Renaming prefix to
the beginning of the VAGen part name to create a valid EGL part name. For
example, "date" is an EGL reserved word. If you have a function named DATE
and use the default Renaming prefix of VAGen_, then the migration tool changes
the function DATE to VAGen_DATE. The tool also changes all references to the
function from DATE to VAGen_DATE. You can set the Renaming prefix to any
value other than blank, EZE, or a value that starts with the # or @ symbol. Be
sure to choose something that does not cause conflicts with any of your part
names.

v Level77 suffix. The migration tool uses this suffix whenever a VAGen working
storage record contains level 77 items. EGL does not support level 77 items. The
migration tool splits the VAGen working storage record into two EGL records.
The first record is named the same as the original VAGen working storage
record and contains all the non-level 77 items. The second record contains all the
level 77 items. The migration tool names this second record by appending the

Chapter 6. Stage 2—Conversion to EGL syntax 177

Level77 suffix to the original working storage record name. For example, if the
original working storage record is named MYRECORD and you use the default
Level77 suffix of _Level77Items, the EGL record that contains the level 77 items
is named MYRECORD_Level77Items. You can set the Level77 suffix to any value
other than blank. However, be sure to choose something that does not cause
conflicts with any of your part names.

v Help Map suffix. The migration tool uses this suffix whenever the main map
group and the help map group for a program have maps with the same name.
EGL requires that all forms in both FormGroups for a program have unique
names. The migration tool renames maps in the help map group that conflict
with map names in the main map group. Consider the following example. The
main map group for a program is MAPGP1 and contains MAP1. The help map
group for the same program is MAPGP2 and contains MAP1. Using the default
Help Map suffix of _helpmap, the migration tool renames the MAP1 in
MAPGP2 as MAP1_helpmap. You can set the Help Map suffix to any value
other than blank. However, be sure to choose something that does not cause
conflicts with any of your part names.

Other Conversion Options:

v Convert shared data items to primitive item definitions. If you select this
preference, then whenever shared data items are used in records, tables, function
local storage, function parameter lists, or program parameter lists, the migration
tool converts the shared items to primitive definitions. If you have current
organization standards that discourage the use of shared data items in new
applications, this option enables you to remove the use of shared data items
from existing applications as you migrate. Warning: Only the primitive
definition is included in the record. Therefore, clear this preference if you use
shared items in a UI record because the UI edit customizations for the shared
item are not copied to the EGL VGUI record.

v Change decimal comma to decimal point. The migration tool automatically
converts numeric literals to use the point if your workstation specifies a locale
that typically uses a comma to indicate decimal positions. For example, the
migration tool automatically converts the comma to a point for French and
German locales. However, some customers specify English as their locale and
override the normal decimal point setting to be a comma. If you use this
technique, you must select the Change decimal comma to decimal point
preference. This ensures that the migration tool converts the comma to a point in
numeric literals. EGL only supports the point as the decimal position indicator
for internal storage.

v Use VAGen logical operators (AND and OR). If you select this preference, the
migration tool uses "and" and "or" as the logical operators in EGL if and while
statements. If you clear this preference, the migration tool uses && and || as
the logical operators. Set this preference based on the coding standards you plan
to use when you write new EGL programs.

v Enclose CALL and DXFR program names in quotes. If you select this
preference, the migration tool encloses the program name in quotes for every
EGL call or transfer to program statement. If you clear this preference, the
migration tool does not enclose the program name in quotes. Regardless of the
preference setting, the migration tool does the following things:
– Never encloses sysVar.transferName (EZEAPP) in quotes.
– Always encloses the program name in quotes if the isExternal property is set

to yes (NONCSP). This includes the use of EZCHART.
The advantages of selecting this preference are:

178 Rational Business Developer: VisualAge Generator to EGL Migration Guide

– Any call and transfer to program statements that refer to a program that is
not in your workspace are not marked as errors, so you can generate the
program.

– If there is one (and only one) program with this name in your workspace,
you can debug the calling or transferring program.

The disadvantages of selecting this preference are that you do not get an error
message so there is no indication that you need to provide a linkage options
part to provide the package information if you generate for Java.

v Enclose XFER program names in quotes. If you select this preference, the
migration tool encloses the program name in quotes for an EGL transfer to
transaction or show statement. If you clear this preference, the migration tool
does not enclose the program name in quotes. Regardless of the preference
setting, the migration tool provides the following special treatment:
– Never encloses sysVar.transferName (EZEAPP) in quotes.
– Always encloses the program name in quotes if the isExternal property is set

to yes (NONCSP).
The advantages of selecting this preference are:
– Any transfer to transaction and show statements that refer to a program that

is not in your workspace are not marked as errors.
– For runtime environments in which the transfer-to name is a program, if there

is one (and only one) program with this name in your workspace, you can
debug the transferring program. For transactional runtime environments (for
example, CICS or IMS/VS) in which the transfer-to name is a transaction
name, you can debug as you would in VisualAge Generator by using the
program name at debug time and the transaction name at runtime.

The disadvantages of selecting this preference are that you do not get an error
message so there is no indication that you need to provide a linkage options
part to provide the package information if you generate for Java.

Other suggested settings
You might want to consider the following settings:
v Optionally, close the Welcome view.
v If you are not already using the EGL perspective, switch to it by clicking

Window -> Open Perspective -> Other -> EGL -> OK. Alternatively, if you plan
to migrate VAGen Web transaction programs or develop new EGL JSFHandlers,
you should switch to the Web perspective. You can close other perspectives by
right-clicking the icon for the perspective on the tab in the upper-right corner of
the window and then clicking Close.

v If the Navigator view is not already included with the perspective that you are
using, you might want to add this view. To add the Navigator view, click
Window -> Show View -> Other. From the Show View window, expand
General and then select Navigator.

Note: Some activities such as displaying error markers or deleting an EGL
package are not fully supported in the Navigator view. Always use the
Project Explorer view if you are restructuring your projects or packages.

v In the Problems view, click the Menu button (a downward-facing triangle) in the
upper right corner and then click Configure Contents. In the Configure
Contents window, click the On selected element only radio button. This limits
the error messages in the Problems view to the messages for the currently
selected file. When there are numerous errors, this can help you focus your

Chapter 6. Stage 2—Conversion to EGL syntax 179

attention on a single file at a time. The title bar of the Problems view provides a
count of the messages that matched the filter and the total number of messages
for all projects in your workspace.

v In the Problems view, click the Menu button and then click Preferences. In the
Preferences window, clear the Use marker limits option. Clearing this option
enables you to see all the messages in the Problems view

v When you have multiple files open for editing, you can configure the Project
Explorer or Navigator view to automatically bring an open file to the foreground
(make its editor session the active editor) every time you select that open file in
the Project Explorer or Navigator view. To do this, click the Link Open Editors
with content in the Navigator icon on the tool bar of the Project Explorer or
Navigator view.

Setting up the Stage 2 VAGen migration file
The tool that performs Stage 2 of the migration can be invoked through a wizard.
To create the Stage 2 migration preferences, follow these steps:
1. Start the EGL development environment. Be sure to set your workbench

preferences as explained in the section “Setting your workbench preferences”
on page 171.

2. The Stage 2 wizard asks you for your database driver location. You can set a
classpath variable to hold this value so that the wizard picks it up
automatically by following these steps:
a. Under Window->Preferences, click Java->Build Path->Classpath Variables.
b. Click New.
c. For Name, enter: DB2_DRIVER_PATH

d. For Path, click File and navigate to your db2java.zip file. (This is the same
db2java.zip file that you used in Stage 1. By default the file is in
\SQLLIB\java\db2java.zip.)

e. Click OK in the New Variable Entry window, then click OK in the
Preferences window.

3. Optionally, create a simple project that can contain your Stage 2 preferences file
if you choose to save it. This is required if you want to run Stage 2 in batch
mode. It is also useful to have a record of your settings if you run Stage 2 in
online mode. Follow these steps to create a simple project:
a. Start the New Project wizard by clicking File->New->Project. Expand

General, select Project, and then click Next.
b. Give the project a name, such as VAGENMIG. Click Finish.

4. Right-click your project and then click New->Other.
5. Expand VAGen Migration to EGL and then select VAGen Migration File.

Click Next.
6. Enter the appropriate Stage 2 preferences:

a. On the first page of the wizard, edit the preferences as described in the
following table. The migration tool does not validate any of the Database
Information fields until you tab out of the field. This prevents multiple
attempts to connect to the database while you are entering information.

180 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 63. Preferences to enter on first page of wizard

Preference Meaning Value

Load Existing File This allows you to select a
previously saved Stage 2 preferences
file. Click Choose File to select an
existing .vgmig file. Click Load File
to retrieve the preferences from that
file and display them in the wizard.

Optionally, choose and load an existing .vgmig file.

Database driver location This is the location of your DB2
driver.

path_to_db2java.zip\db2java.zip

Database driver This is the name of your DB2 driver. This value must always be
COM.ibm.db2.jdbc.app.DB2Driver. This value works
for both a local database or a remote database that
is cataloged locally.

Database name This is the name of the DB2
database you used in Stage 1 of
migration.

This value should be in the following format:

v jdbc:DB2:databaseName

databaseName is the name of the DB2 database you
used in Stage 1 of migration. VGMIG is the default
value for Stage 1.

Database schema This is the name of the DB2
database schema you used in Stage
1 of migration.

This value is the name of the DB2 schema you used
in Stage 1 of migration. MIGSCHEMA is the default
value for Stage 1.

Database user ID This is the database user ID you
used in Stage 1 of migration.

Use the same database user ID that you used for
Stage 1. (The default value is your logon ID.)

Database password This is the database password you
used in Stage 1 of migration.

Use the same database password that you used for
Stage 1. (The default value is your logon password.)

Log file location This is the location of the log file for
the Stage 2 messages.

Enter a valid location (drive and directory) in the
file system.

Log file name This is the name of the log file for
the Stage 2 messages.

Enter a valid file name.

b. On the second page of the wizard, edit the preferences as described in the
following table:

 Table 64. Preferences to enter on second page of wizard

Preference Meaning Value

Java or COBOL radio
button

This choice determines whether the
migration tool creates projects that
include JavaSource folders.

If you plan to generate COBOL only, click COBOL.
If you might generate Java, click Java.

Migrate remaining
VAGen parts

This determines whether or not
parts that are not referenced by any
generatable part in the migration set
are converted to EGL.
Note: For the purposes of the
Migrate remaining VAGen parts
preference, UI records are treated
like other records. This preference
does not consider UI records to be
generatable parts.

Select the checkbox to convert unreferenced parts to
EGL. Generally, you should select Migrate
remaining parts. If you clear Migrate remaining
parts, control parts and any other parts that are
unused within the migration set are not migrated to
EGL source.

For more information on the impact of selecting this
option, see “Overwriting and merging files” on
page 48.

Chapter 6. Stage 2—Conversion to EGL syntax 181

Table 64. Preferences to enter on second page of wizard (continued)

Preference Meaning Value

Import into workspace This determines whether or not
Stage 3 (importing EGL into files in
the current workspace) is
automatically started after Stage 2 is
complete.
Note: If you select this checkbox,
you must click one of the radio
buttons under this checkbox to
specify the version to import (latest
or oldest; see the next rows in this
table), because only one version of a
project can be in the workspace at a
time.

Select this checkbox to import EGL files directly
after the conversion of parts to EGL. Clear this
checkbox to import files later, during Stage 3.
Note: If you select this option, there is no need to
run Stage 3 separately. The migration tool
automatically starts Stage 3 (import) directly after
Stage 2 (conversion) and completes the migration
process.

For more information on the impact of selecting this
option, see “Overwriting and merging files” on
page 48.

Latest version or Oldest
version

This option specifies which version
of the desired migration sets should
be imported.

If the Import into workspace option is selected, you
must click one of these radio buttons.

Override existing files Stage 3 (the import process) uses
EGL produced by Stage 2 to create
and import the EGL files specified in
the Stage 1 report. If EGL files with
the same names as the EGL files that
Stage 3 is about to import already
exist in the workspace, this option
determines whether or not those
files are overwritten.

This option can only be selected if the Import into
workspace option is selected. The Override existing
files option enables you to specify how you want
the Stage 3 migration tool to handle the situation in
which the migration set you are currently migrating
contains parts that should be placed in a file that is
already in your workspace. If you select the
Override existing files option, the Stage 3
migration tool replaces the existing file and includes
only those parts that are in the current migration
set. If you clear the Override existing files option,
the Stage 3 migration tool merges any new parts
into the existing file. The new parts are placed
alphabetically by part type.

For more information on the impact of selecting this
option, see “Overwriting and merging files” on
page 48.

182 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 64. Preferences to enter on second page of wizard (continued)

Preference Meaning Value

Save migrated files to
temporary directory

This provides the option to save
EGL files to a location in the file
system. This allows you to access
EGL files for multiple versions of a
project at the same time (whereas
you can only see one version at a
time in the workspace). You can
move EGL files directly from here to
your repository.

If you plan to migrate multiple versions of a
migration set, then follow these steps:

1. Select this checkbox so that each version can be
written to a different subdirectory.

2. Specify the Folder under which the
subdirectories for the versions are placed.

3. Clear the Migrate now option. Migration to a
temporary directory should only be done in
batch mode because of the resource
requirements. If you do select Migrate now, the
migration tool asks you to confirm that you
really want to run in online mode.

4. Select the Save current configuration to file
option. You must also specify the project and file
name where the current configuration is to be
saved as a .vgmig file. The .vgmig file is
required if you select the Save migrated files to
temporary directory option, regardless of
whether you migrate in online or batch mode. If
you run Stage 2 in batch mode, point to the
saved .vgmig file to specify your migration
preferences.

Folder This is the directory in which you
want to save EGL files. Each
migration set version becomes a
subdirectory under the directory you
specify for Folder.

Specify an existing directory in your file system.

Migrate now This specifies that you want Stage 2
to run at this time, rather than just
setting up the preferences file to
migrate at a later time.

You must select either the Migrate now option to
run Stage 2 in online mode or the Save current
configuration to file option to save your
preferences so that you can run Stage 2 in batch
mode at a later time. You can select both options if
you want to retain a copy of your preferences for
later reference. Clear Migrate now if you have
already selected Save migrated files to temporary
directory. Saving to a temporary directory can only
be done in batch mode. Selecting Migrate now
indicates that you want to migrate in online mode.

Save current
configuration to file

This enables you to save the
preferences you are specifying to a
file. You can later run Stage 2 in one
of the following ways:

v In online mode, right-click the
saved .vgmig file and click Start
Migration.

v In batch mode, use the -importFile
option to specify the saved .vgmig
file. For details, see “Running
Stage 2 in batch mode” on page
185.

You must select either the Migrate now option to
run Stage 2 in online mode or the Save current
configuration to file option to save your
preferences so that you can run Stage 2 at a later
time. You can select both options if you want to
retain a copy of your preferences for later reference.

If you select this option you must also specify the
Path and File Name where the current
configuration is to be saved as a .vgmig file. When
you run Stage 2 later, point to the saved .vgmig file
to specify your migration preferences.

Path This specifies the project into which
the file should be saved.

\projectName, where projectName is the name of the
project that you want to contain your saved file.

Chapter 6. Stage 2—Conversion to EGL syntax 183

Table 64. Preferences to enter on second page of wizard (continued)

Preference Meaning Value

File name This specifies the name of the file to
which preferences are saved.

fileName, where fileName is the desired name for
your file without a file extension. The extension
.vgmig is automatically appended.

c. On the third page of the wizard, the wizard lists the migration sets in the
database you specified. Select the migration sets you want to migrate. If you
do not select any migration sets, then the migration tool migrates all the
migration sets in the database. Click Finish.

The combinations of the options that you specify determine the actions that are
performed by the wizard:
v If you select Save current configuration to file, all the options are saved in the

file you specified after you click Finish.
v If you select Migrate now, Stage 2 migration runs after you click Finish.
v If you also select either Import into workspace or Save migrated files to

temporary directory, Stage 3 starts automatically after Stage 2 completes.

Here is an example of a Stage 2 preferences file, stage2.vgmig:
databaseDriverLocation=d:\SQLLIB\java\db2java.zip
databaseDriver=COM.ibm.db2.jdbc.app.DB2Driver
databaseName=jdbc:DB2:VGMIG
databaseSchema=MIGSCHEMA
databaseUserid=myuserID
databasePassword=encoded:AAEDAwQFBwYKCwo+Pw==
configurationPlan=MyMigrationSetA,1.1
migrateRemainingParts=yes
workspaceImport=latest
overrideExistingFiles=yes
tempDirectory=
logFileLocation=D:\tempmig\MyMigrationSetA\stage2\MyMigrationSetA.log
migrateNow=yes
projectType=COBOL

Running Stage 2
The Stage 2 migration tool can be run in batch mode or from the user interface in
the EGL development environment.

Running Stage 2 from the user interface
The wizard described in “Setting up the Stage 2 VAGen migration file” on page
180 provides the option to save your preferences in a .vgmig file. If you select the
Migrate now option in the wizard, then Stage 2 migration starts when you click
Finish in the wizard. If you cleared Migrate now in the wizard, follow these steps
when you are ready to run Stage 2 migration using your saved .vgmig file:
1. From the Project Explorer or Navigator view, expand the project containing the

Stage 2 preferences file by clicking the + symbol next to the project name.
2. Right-click the .vgmig preferences file and then click Start Migration.

Stage 2 migration starts and converts the External Source Format for your specified
migration sets to EGL source and stores the EGL source in the migration database.
If you selected either Import into workspace or Save migrated files to temporary
directory, Stage 3 starts automatically after Stage 2 completes. After Stage 3, the
migration tool automatically starts a refresh of the workspace. The refresh step can

184 Rational Business Developer: VisualAge Generator to EGL Migration Guide

take some time, particularly if there is a large number of parts. When the refresh
step is complete, a pop-up window appears telling you that migration is complete.
Be sure to wait for the pop-up window.

When migration and the refresh step are complete, the following outputs are
available:
v The Stage 2 migration log file. The log file is in the directory you specified as the

Log file location. The log file contains information about what parts were
migrated and any informational, warning, or error messages that occurred
during Stage 2 migration.

v The "to do" list log file for the migration set. This "to do" list file is created at the
beginning of Stage 3 and contains a consolidated list of the messages produced
by Stage 2 that might require you to perform additional tasks to complete the
migration. The "to do" list is somewhat similar to the VisualAge Generator
generation messages in that the messages for each generatable part and its
associates are listed as a group. If a part has messages and is an associate of
several programs, the messages are listed once for each program. The "to do" list
differs from the VisualAge Generator generation messages in that messages for
unused, nongeneratable parts are listed by project, package, and file name at the
end of the "to do" list. The "to do" list is placed in the same directory as the
Stage 2 migration log file. The migration tool creates one "to do" list file for each
migration set version that it processes. The "to do" list file names are in the
form: TODO_migrationSetName_migrationSetVersion.

v If you selected the Import into workspace option, then Stage 3 automatically
starts and creates the EGL projects, source folders, packages, and EGL files that
are needed for your migration set. The Stage 3 tool also imports the projects into
your workspace and rebuilds the projects so that EGL validation is run.

v If you selected the Save migrated files to temporary directory option, Stage 3
automatically starts and creates the EGL projects, source folders, packages, and
EGL files that are needed for your migration set. The Stage 3 tool places the
projects for each migration set version in a separate subdirectory under the
temporary directory that you specified. The subdirectory names are in the form:
migrationSetName_migrationSetVersion. This enables you to migrate multiple
versions of a project at one time for later import into your workspace.

Running Stage 2 in batch mode
The Stage 2 wizard enables you to select one or more migration sets for immediate
migration. It also enables you to save the information in a file for later migration
in batch mode. If you want to use batch mode, you need to consider the following
restrictions:
v Regardless of your EGL preference settings, the .egldd file is not created.
v You can direct the EGL projects, packages, and files to either the current

workspace or a temporary directory. If you specify both a current workspace
and a temporary directory, the migration tool ignores the current workspace.

v If you want to write to temporary directories, you must create a directory and
workspace structure similar to the following scheme:
temporaryDirectoryName << temporaryDirectoryName can be any name
 stub << "stub" is the required workspace name
 projectName << projectName can be any name
 xxxx.vgmig << xxxx can be any name

Set up the stub workspace in the following way:
– Specify your EGL and VAGen migration preferences as described in “Setting

your workbench preferences” on page 171.

Chapter 6. Stage 2—Conversion to EGL syntax 185

– Set the tempDirectory option in the xxxx.vgmig file to point to the
temporaryDirectoryName in which the stub workspace is located. During Stage
3, the migration tool creates one workspace for each migration set version
under temporaryDirectoryName. The migration tool copies everything
(capabilities, preferences, projects, and so on) from the stub workspace to each
of the new workspaces.

– Set the -data option in the batch command file to point to
temporaryDirectoryName\stub.

To run in batch mode, follow these steps:
1. Follow the steps described in “Setting up the Stage 2 VAGen migration file” on

page 180, with the following exceptions:
v Select Save current configuration to file and specify the path and file name.

The file that is created automatically has the suffix .vgmig and is the file that
you need to specify as the -importFile when you run Stage 2 or Stage 3 in
batch mode.

v Be sure to clear Migrate now. Clearing this option indicates that you want to
save the information for migration at a later time.

v You can define multiple .vgmig files for later migration as a single batch.
2. Create a file with a .bat file extension.

For Windows environments, the .bat file should have the following contents:
set INSTALL_PATH=InstallDirectory
set SHARED_INSTALL_PATH=SharedInstallDirectory
set JDK_PATH=jdk\jre\bin
set PLUGIN_PATH=plugins
set MIG_JAR=com.ibm.etools.egl.vagenmigration_version.jar
set STARTUP_JAR=org.eclipse.equinox.launcher_version.jar
set path=%INSTALL_PATH%\%JDK_PATH%;%path%
set classpath=%SHARED_INSTALL_PATH%\%PLUGIN_PATH%\%MIG_JAR%;
 %INSTALL_PATH%\%PLUGIN_PATH%\%STARTUP_JAR%
cd InstallDirectory
java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG
 -importFile Path\vgmigFileName.vgmig
 -data Path\workspace
 >Path\LogName.log

Note:

v The following statements must be written so that the statement is all
on one line:
– For Windows environments, the set classpath statement.
– The java statement.

v Repeat the java statement once for each .vgmig file that you want to
migrate in batch mode. However, if you selected Import into
workspace when you created any of your .vgmig files, then be sure
that none of the .vgmig files result in the same EGL project names. If
you attempt to migrate multiple .vgmig files for the same EGL project
in the same .bat file, the EGL project only reflects the last of the .vgmig
files to be migrated.

v InstallDirectory is the drive and directory in which you installed the
EGL developer product. You must include the InstallDirectory for the
set INSTALL_PATH statement and the cd (change directory) statement.

v SharedInstallDirectory is the drive and directory in which you installed
the shared resources for the EGL developer product. You must include
the SharedInstallDirectory for the set SHARED_INSTALL_PATH
statement.

186 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Note: If you installed and kept a previous version of the EGL
developer product before installing the product that you are
using now, the installation directory or shared installation
directory of interest may be the directory that was used in the
earlier install.

v version is the plug-in version number. To determine the version
number, check the following plug-in directories:
– The MIG_JAR plug-in is in SharedInstallDirectory\plugins. The

version number might be similar to 7.5.0.RFB_20080811_1638.
– The STARTUP_JAR plug-in is in InstallDirectory\plugins. The

version number might be similar to 1.0.100.v20080509-1800.

In general, you should use the highest version number you see for the
.jar file in corresponding plug-in directory.

v Path\vgmigFileName.vgmig refers to the drive, directory, and file name
of the .vgmig file that specifies the migration sets you want to migrate
from the migration database. The directory must include the
workspace name. This is the .vgmig file you saved in step 1. (For
example, d:\myworkspace\mySimpleProject\
myMigrationInformation.vgmig.)

v Path\workspace is the drive, directory, and workspace name where you
have set your EGL and VAGen migration preferences. For details, see
“Setting your workbench preferences” on page 171. In addition, the
migration tool uses the path\workspace in the following ways:
– If your .vgmig file specifies that the Stage 3 output is to be written

to the current directory, path\workspace is the drive, directory and
workspace name where the migration tool places the EGL files. In
this case, the workspace name can be any name, for example,
d:\mypath\myworkspace.

– If your .vgmig file specifies that the Stage 3 output is to be written
to temporary directories, path is the drive and directory under
which the migration tool places one workspace for each migration
set version specified by the .vgmig file. The workspace name must
be stub.

v Path\LogName.log points to the drive, directory, and file name of the
log file you want to create for the java command. This log file lists any
problems with the java command itself. Any log messages produced
by Stage 2 or Stage 3 are placed in the log file that you specified on
the first page of the migration wizard and then saved into the .vgmig
file. If you include multiple java commands in the same .bat file, be
sure to specify a different log file name for each java command.

For Windows environments, an example of the java command might look
something like this (though it should be all on one line) :
java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG
 -importFile d:\myTempDirectory\stub\myProject\myMigrationInfo.vgmig
 -data d:\myTempDirectory\stub\
 >d:\migrationLogs\myMigrationInformationPiped.log

3. Shut down the EGL development environment.
4. Open a Command Prompt window, navigate to the directory containing your

.bat file, and run your .bat file.

Note: You can safely ignore the following message:

Chapter 6. Stage 2—Conversion to EGL syntax 187

PolicyClassLoader could not find policy
com.ibm.jxesupport.JxeClassLoaderPolicy.

5. When the process completes, your EGL project, source folders, packages, and
files are stored in the directories you specified for them. The log file
corresponding to each java command contains a list of the migrated parts and
any error messages. The messages are the same messages that are written to the
log file if you run Stage 2 using the user interface. Similarly, the "to do" list file
contains the same messages that are written to this file if you run Stage 2 using
the user interface.

6. Start the EGL development environment.
7. If you selected the Import into workspace option, you should see the EGL

projects, source folders, packages, and files in your workspace.

188 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 7. Stage 3 — Import

Stage 3 of the migration is also run with a plug-in supplied with EGL. In this
stage, you run another migration tool that builds EGL files from the EGL syntax
that was stored in the migration database during Stage 2.

Running the Stage 3 tool
There are two ways to run the Stage 3 tool:
v Automatically start Stage 3 at the end of Stage 2 by selecting either the Import

into Workspace or the Save migrated files to temporary directory option when
you set your options in the Stage 2 wizard (as described in “Setting up the Stage
2 VAGen migration file” on page 180). In general, this is the easiest way to run
Stage 3 because it starts automatically.

v Run Stage 3 as a separate step. From the EGL development environment, in the
Workbench window, follow these steps:
1. Click File->Import.
2. Expand Other and then select VAGen Migration from Database. Click Next.
3. Specify your preferences for this stage of migration:

a. On the first page of the wizard, edit the preferences as described in the
following table. The migration tool does not validate any of the Database
Information fields until you tab out of the field. This prevents multiple
attempts to connect to the database while you are entering information.

 Table 65. Preferences to enter on first page of wizard

Preference Meaning Value

Load Existing File This allows you to select a
previously saved Stage 3 preferences
file. Click Choose File to select an
existing .vgmig file. Click Load File
to retrieve the preferences from that
file and display them in the wizard.

Optionally, choose and load an existing .vgmig file.

Database driver location This is the location of your DB2
driver.

path_to_db2java.zip\db2java.zip

Database driver This is the name of your DB2 driver. This value must always be
COM.ibm.db2.jdbc.app.DB2Driver. This value works
for both a local database or a remote database that
is cataloged locally.

Database name This is the name of the DB2
database you used in Stage 1 of
migration.

This value should be in the following format:

v jdbc:DB2:databaseName

databaseName is the name of the DB2 database you
used in Stage 1. VGMIG is the default value for
Stage 1.

Database schema This is the name of the DB2
database schema you used in Stage
1 of migration.

This value is the name of the DB2 schema you used
in Stage 1. MIGSCHEMA is the default value for
Stage 1.

Database user ID This is the database user ID you
used in Stage 1 of migration.

Use the same database user ID that you used for
Stage 1. (The default value is your logon ID.)

© Copyright IBM Corp. 2004, 2011 189

Table 65. Preferences to enter on first page of wizard (continued)

Preference Meaning Value

Database password This is the database password you
used in Stage 1 of migration.

Use the same database password that you used for
Stage 1. (The default value is your logon password.)

Log file location This is the location of the log file for
the Stage 3 messages.

Enter a valid location (drive and directory) in the
file system.

Log file name This is the name of the log file for
the Stage 3 messages.

Enter a valid file name.

b. On the second page of the wizard, edit the preferences as described in the
following table:

 Table 66. Preferences to enter on second page of wizard

Preference Meaning Value

Java or COBOL radio
button

This choice determines whether the
migration tool creates projects that
include JavaSource folders.

If you plan to generate COBOL only, click COBOL.
If you might generate Java, click Java.

Latest version or Oldest
version

This option specifies which version
of the desired migration sets should
be imported into the workspace.

Click one of the radio buttons.

Override existing files Stage 3 (the import process) uses
EGL produced by Stage 2 to create
and import the EGL files specified
in the Stage 1 report. If EGL files
with the same names as the EGL
files that Stage 3 is about to import
already exist in the workspace, this
option determines whether or not
those files are overwritten.

The Override existing files option enables you to
specify how you want the Stage 3 migration tool to
handle the situation in which the migration set you
are currently migrating contains parts that should
be placed in a file that is already in your
workspace. If you select Override existing files, the
Stage 3 migration tool replaces the existing file and
includes only those parts that are in the current
migration set. If you clear Override existing files,
the Stage 3 migration tool merges any new parts
into the existing file. The new parts are placed
alphabetically by part type.

For more information on the impact of selecting this
option, see “Overwriting and merging files” on
page 48.

190 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 66. Preferences to enter on second page of wizard (continued)

Preference Meaning Value

Save migrated files to
temporary directory

This provides the option to save
EGL files to a location in the file
system. This allows you to access
EGL files for multiple versions of a
project at the same time. (You can
only see one version at a time in the
workspace). You can move EGL files
directly from here to your
repository.

If you plan to migrate multiple versions of a
migration set, then follow these steps:

1. Select this checkbox so that each version can be
written to a different subdirectory.

2. Specify the Folder under which the
subdirectories for the versions are placed.

3. Clear the Migrate now option. Migration to a
temporary directory should only be done in
batch mode because of the resource
requirements. If you do select Migrate now, the
migration tool asks you to confirm that you
really want to run in online mode.

4. Select the Save current configuration to file
option. You must also specify the project and file
name where the current configuration is to be
saved as a .vgmig file. The .vgmig file is
required if you select the Save migrated files to
temporary directory option regardless of
whether you migrate in online or batch mode. If
you run Stage 3 in batch mode, point to the
saved .vgmig file to specify your migration
preferences.

Folder This is the directory in which you
want to save the EGL files. Each
migration set version becomes a
subdirectory under the directory
you specify for your Folder.

Specify an existing directory in your file system.

Migrate now This specifies that you want Stage 3
to run at this time, rather than just
setting up the preferences file to
migrate at a later time.

You must select either the Migrate now option to
run Stage 3 in online mode, or the Save current
configuration to file option to save your
preferences so that you can run Stage 3 in batch
mode at a later time. You can select both options if
you want to retain a copy of your preferences for
later reference. Clear Migrate now if you have
already selected Save migrated files to temporary
directory. Saving to a temporary directory can only
be done in batch mode. Selecting Migrate now
indicates that you want to migrate in online mode.

Save current
configuration to file

This enables you to save the
preferences you are specifying to a
file. You can later run Stage 3 in one
of the following ways:

v In online mode, right-click the
saved .vgmig file and click Start
Migration.

v In batch mode, use the
-importFile option to specify the
saved .vgmig file. For details, see
“Running Stage 2 in batch mode”
on page 185.

You must select either the Migrate now option to
run Stage 3 in online mode, or the Save current
configuration to file option to save your
preferences so that you can run Stage 3 in batch
mode at a later time. You can select both options if
you want to retain a copy of your preferences for
later reference.

If you select this option, you must also specify the
Path and File Name where the current
configuration is to be saved as a .vgmig file. When
you run Stage 3 later, point to the saved .vgmig file
to specify your migration preferences.

Path Specifies the project into which the
file should be saved.

\projectName, where projectName is the name of the
project that you want to contain your saved file.

Chapter 7. Stage 3 — Import 191

Table 66. Preferences to enter on second page of wizard (continued)

Preference Meaning Value

File name This specifies the name of the file to
which preferences are saved.

fileName, where fileName is the desired name for
your file without a file extension. The extension
.vgmig is automatically appended.

c. On the third page of the wizard, select the migration sets to import.

Note: The VAGen Migration Import from Database wizard only lists
migration sets that have been migrated to EGL. This ensures that
you run Stage 2 to convert the migration set to EGL source and
store the EGL into the migration database before you run Stage 3.
If no migration sets are listed, check that you ran Stage 2 of
migration.

4. Click Finish.
5. The migration tool creates the EGL projects, EGL source folder, and EGL

packages based on the migration set you selected. The tool extracts the EGL
source from the migration database and creates the EGL files based on the
migration set. The migration tool also includes import statements and
updates the EGL build path for the project so that the part references can be
resolved.

Running Stage 3 in batch mode
The only difference between running Stage 2 and Stage 3 in batch mode is the
wizard that you use to create the .vgmig file. See “Running the Stage 3 tool” on
page 189 for details on setting up the .vgmig file to run just Stage 3. See “Running
Stage 2 in batch mode” on page 185 for details of the commands to include in your
.bat file and descriptions of the options you can specify for batch mode.

Using the migration sets written to temporary directories
If you direct the output of stage 3 to a temporary directory, the migration tool
creates one subdirectory for each migration set version. The subdirectory name is
of the form migrationSetName_versionName.

There are two techniques you can use to bring the projects into a workspace:
v Technique 1 is convenient if you only have a few projects in the subdirectory;

however, it does not support EGL Web projects (VAGen Web Transactions or UI
records). In this technique, you can point an existing workspace to each of the
projects. This technique does not require that you copy the projects into your
workspace; it merely makes the projects available to your workspace. When you
modify or delete files in the projects, the change is made on the file system in
the directory to which the workspace points.
1. From an existing workspace, click Window -> Preferences -> General ->

Workspace and clear Build automatically. This avoids multiple rebuilds
while you are bringing in each of the projects.

2. From the workbench view, click File -> Import. Expand General and then
select Existing Projects into Workspace. Click Next.

3. Click Select root directory. Click Browse to point to the subdirectory for a
migration set version in the form: migrationSetName_migrationSetVersion.

4. Select the projects that you want to include in your current workspace.
5. Optionally, select Copy projects into workspace.

192 Rational Business Developer: VisualAge Generator to EGL Migration Guide

6. Click Finish to import the projects into your workspace.
v Technique 2 is convenient if there are a number of projects in the subdirectory;

it is required if you use EGL Web projects. In this technique, you bring up a
workspace for the subdirectory by following these steps:
1. Start the EGL development environment.
2. When you are prompted for the workspace name, point to the subdirectory

containing a migration set version and then click OK.
3. Modify the following workbench preferences:

– Your EGL capabilities and preferences as described in “Required EGL
preferences” on page 172.

– Any other preferences that you normally set for a new workspace.
4. Build the workspace using one of the following techniques:

– Click Project -> Build Automatically.
– Click Project -> Clean. On the Clean window, click Clean all projects.

Then click OK.
5. If you have errors in the Problems view indicating that projects could not be

built, use the Project Explorer view to locate any closed projects. Closed
projects do not have the plus (+) symbol to the left of the project name. Open
the closed projects by clicking Open Project from the pop-up menu. The
projects should now be visible on the Project Explorer view.

Chapter 7. Stage 3 — Import 193

194 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 8. Running migration in single file mode

An alternative to running migration using Stages 1 – 3 is running migration in
Single File Mode. This process allows you to migrate one External Source Format
file directly to an EGL file. To run migration in this mode, you must first export
VisualAge Generator parts to an External Source Format file, and then import that
External Source Format file into EGL. During the import process, the External
Source Format file is migrated into one or more EGL files, depending on your
preferences.

To export parts from VisualAge Generator, follow these steps:
1. Start VisualAge Generator on Java (or VisualAge Generator on Smalltalk) and

open the VAGen Parts Browser.
2. Select the parts you want to export and right-click the selection.
3. From the pop-up menu, click Import/Export -> VAGen Export (or VAGen

Export with Associates).
4. Type a name for the External Source Format file in the box and click Save. (If

you type the name of an existing file, the tool asks if you would like to add
parts to the file or overwrite it. Choose the answer that is appropriate for you.)

To prepare for single file mode, follow these steps:
1. Start the EGL development environment and point to your workspace. (For

example, d:\workspaces\myworkspace.)
2. Set your EGL capabilities and preferences as described in “Required EGL

preferences” on page 172.
3. Set your migration preferences. See “VAGen Migration preferences” on page

174 for information on how to do this.
4. From the Workbench window, click Window -> Preferences -> VAGen

Migration. In general, you should always ensure that the Separate parts into
EGL files preference is selected. When you select this preference, each
program, map group, table, and UI record is placed in its own file. This
adheres to the EGL requirement of one generatable part per file. If you clear
Separate parts into EGL files, all the parts except UI records are placed in the
same EGL file. See “Overview of single file migration” on page 27 for specifics
of the parts placement algorithm for single file mode.

5. Create a new EGL project. (For example, MyProject.) Use a General Project if
you do not plan to migrate VAGen Web transactions, and a Web Project if you
plan to migrate VAGen Web transactions or develop new EGL JSFHandlers.

6. Under the EGLSource directory for the EGL project, create a new EGL package.
(For example, my.pkg)

7. See the section “Running single file migration using the user interface” on page
195 for details on running in online mode or “Running single file migration
using batch mode” on page 197 for details about creating a batch command file
to process multiple External Source Format files with a single command file.

Running single file migration using the user interface
To import the External Source Format file into EGL, follow these steps:

© Copyright IBM Corp. 2004, 2011 195

1. From the Project Explorer view, select the EGL package in which to put the
resulting EGL file.

 2. Right-click the package and then click Import.
 3. From the Import window, expand Other. Select VAGen External Source

Format File and click Next.
 4. In the Input file name field, enter the name of the External Source Format file

you want to import.
 5. In the Source folder field, enter the name of the project and source folder in

which to put the EGL file. (For example, MyProject\EGLSource)
 6. In the Package name field, enter the name of the package in which to put the

EGL file. The migration tool also uses the package name you specify for the
package statement within the EGL file. (For example, my.pkg)

 7. In the EGL file name field, enter the name of the EGL file that you want to
create from your External Source Format file. By default, the EGL file name is
the same as the External Source Format file, but with the .egl file extension.
See “Overview of single file migration” on page 27 for information about how
the migration tool uses the Separate parts into EGL files preference and the
type of parts in the External Source Format file to determine what files to
create during migration in single file mode.

 8. In the Log file location field, enter the drive and directory where the
migration log file is to be placed. In the Log file name field, enter the name
for the migration log file. The Log file name defaults to match the name of
the External Source Format file that you specified. The migration log file
contains any messages written during migration.

 9. Click Finish. If the file name you specified in the EGL file name field already
exists in the package you specified, you are prompted to append to or
overwrite the file. Based on your response to the overwrite prompt, the
migration tool places the parts into the EGL files in the following way:
v If you specify that you do not want to overwrite the existing targetFile, then

any data items, functions, PSBs, and non-VGUI records in the second
import are added to the targetFile. All the common parts in the second
import result in duplicate parts within the targetFile.

v If you specify that you want to overwrite the existing targetFile, then any
data items, functions, PSBs, and non-VGUI records in the second import
completely replace the targetFile. This results in the loss of any parts
included in the first import, but not included in the second import.

v If you selected the Separate parts into EGL files migration preference, the
migration tool overwrites the files created for Programs, FormGroups, and
DataTables. If you cleared the preference, then these parts are placed in the
targetFile and added or overwritten based on your response to the
overwrite prompt.

v The migration tool always overwrites the files for VGUI records and .eglbld
files.

10. When migration completes, the following output should appear:
v One or more EGL files should be listed in the project, EGLSource folder,

and package that you specified. See “Overview of single file migration” on
page 27 for information about how migration tool uses the Separate parts
into EGL files preference and the type of parts in the External Source
Format file to determine what files to create during migration in single file
mode.

196 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v The migration tool displays any error messages in a pop-up window. If you
did not specify a log file location, click Save to File to save the messages in
a file. Be sure to close the pop-up window.

11. If you have the Build automatically option selected, validation runs
automatically. Otherwise, right-click the project and then click Project -> Build
Project. This causes validation to run so that the Problems view reflects the
most current messages for all files in the project.

Running single file migration using batch mode
The user interface enables you to migrate one External Source Format file at a
time. With batch mode, you can migrate multiple External Source Format files in a
single command file. To use batch mode, follow these steps:
1. Create a file with a .bat file extension. For Windows environments, the .bat file

should have the following contents:
set INSTALL_PATH=InstallDirectory
set SHARED_INSTALL_PATH=SharedInstallDirectory
set JDK_PATH=jdk\jre\bin
set PLUGIN_PATH=plugins
set MIG_JAR=com.ibm.etools.egl.vagenmigration_version.jar
set STARTUP_JAR=org.eclipse.equinox.launcher_version.jar
set path=%INSTALL_PATH%\%JDK_PATH%;
set classpath=%SHARED_INSTALL_PATH%\%PLUGIN_PATH%\%MIG_JAR%;
 %INSTALL_PATH%\%PLUGIN_PATH%\%STARTUP_JAR%
cd InstallDirectory
java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG
 -importFile Path\ExternalSourceFormatFile.esf
 -eglFile Path\EGLFile.egl
 -data Path\workspace
 -package packageName
 -overwrite
 >Path\LogName.log

Note:

v The following statements must be written so that the statement is all
on one line:
– For Windows environments, the set classpath statement.
– The java statement.

v Repeat the java statement once for each External Source Format file
you want to migrate.

v InstallDirectory is the drive and directory in which you installed the
EGL developer product. You must include the InstallDirectory for the
set INSTALL_PATH statement and the cd (change directory) statement.

v SharedInstallDirectory is the drive and directory in which you installed
the shared resources for the EGL developer product. You must include
the SharedInstallDirectory for the set SHARED_INSTALL_PATH
statement.

Note: If you installed and kept a previous version of the EGL
developer product before installing the product that you are
using now, the installation directory or shared installation
directory of interest may be the directory that was used in the
earlier install.

v version is the plug-in version number. To determine the version
number, check the following plug-in directories:

Chapter 8. Running migration in single file mode 197

– The MIG_JAR plug-in is in SharedInstallDirectory\plugins. The
version number might be similar to 7.5.0.RFB_20080811_1638.

– The STARTUP_JAR plug-in is in InstallDirectory\plugins. The
version number might be similar to 1.0.100.v20080509-1800.

In general, you should use the highest version number you see for the
.jar file in corresponding plug-in directory.

v Path\ExternalSourceFormatFile.esf refers to the drive, directory, and file
name of the External Source Format file you want to migrate. (For
example, d:\temp\VAGenFiles\PROG1.esf.)

v Path\EGLFile.egl refers to the drive, directory, and file name of the
EGL file you want to create. The directory must include the
workspace, EGL source folder, and package where you want to place
the EGL source file. (For example, d:\myworkspace\MyProject\
EGLSource\my\pkg\prog1.egl.) EGLFile.egl is used in the same way
as the EGL file name field you specify when you use the Import
VAGen External Source Format File wizard. See “Overview of single
file migration” on page 27 for information about how migration tool
uses the Separate parts into EGL files preference and the type of
parts in the External Source Format file to determine what files to
create during migration in single file mode.

v Path\workspace is the drive, directory, and workspace name where you
want to place the EGL files (for example, d:\workspaces\
myworkspace) If you do not specify the -data option, anything you
specified in the VAGen Migration Preferences is ignored and the
migration tool uses the default VAGen Migration Preferences. If you
want to specify VAGen Migration Preferences, you must specify the
-data option and point to the workspace in which you set the
preferences.

v packageName is the name of the package with which you want to
associate the EGL file. (For example, my.pkg.) The package name is
also used in the package statement of the .egl files that the migration
tool creates.

v The -overwrite parameter is optional. This parameter tells the
migration tool whether or not to overwrite an existing EGL file in the
specified directory with the specified name.

v Path\LogName refers to the drive, directory, and file name of the log
file you want to create for the migration of the corresponding External
Source Format file. Sending your migration messages to a log file is
optional, but is the only way to obtain messages from the migration
tool in batch mode. If you include multiple java commands in the
same .bat file, be sure to specify a different log file name for each java
command.

For Windows environments, an example of the java command might look
something like this (though it should be all on one line):
java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG
 -importFile d:\temp\VAGenFiles\prog1.esf
 -eglFile d:\workspaces\myworkspace\MyEGLProject\EGLSource\my\pkg\prog1.egl
 -data d:\workspaces\myworkspace
 -package my.pkg -overwrite >d:\temp\EGLLogs\prog1.log

2. Shut down the EGL development environment.
3. Open a Command Prompt window, navigate to the directory containing your

.bat file, and run your .bat file.

198 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Note: You can safely ignore the following message:

PolicyClassLoader could not find policy
com.ibm.jxesupport.JxeClassLoaderPolicy.

4. When the process completes, your EGL files and log files are stored in the
directories you specified for them, respectively. The log file contains a list of the
migrated parts and any error messages. The messages are the same messages
that are listed in the pop-up window when you use the Import Wizard in
online mode.

5. Start the EGL development environment.
6. Right-click the project into which you imported External Source Format files

and then click Refresh. This refreshes the project from the file system so that
the EGL files that were created, appended, or overwritten during migration in
batch mode are recognized by EGL. If you have the Build automatically option
selected, this also causes validation to run so that the Problems view reflects
the most current messages for all files in the project. Then you can expand the
package you created to see your EGL files.

Chapter 8. Running migration in single file mode 199

200 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Part 5. Completing the migration

© Copyright IBM Corp. 2004, 2011 201

202 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 9. Completing your migration

After you have migrated your source code using Stages 1 – 3 migration or single
file migration, there are some additional tasks you should perform. This includes
the following tasks:
v Set the Build Order preference.
v Export your preferences.
v Save a baseline for the EGL projects and packages in your source code

repository.
v Preliminary tasks for completing single file migration.
v Review your EGL source code.
v Review your EGL build descriptor parts.
v Review your EGL linkage options parts.
v Review your EGL resource associations parts.
v Establish a bind control part to use as a template.
v Establish program-specific a bind control parts.
v Review your link edit commands.
v Review your VGWebTransactions.
v Prepare for debugging.
v Install the EGL server product.
v Convert VAGen preparation templates and procedures to EGL build scripts.
v Convert VAGen runtime templates.
v Convert the VAGen reserved words file.
v Generate and test with COBOL generation.
v Generate and test with Java generation.
v Review your standards.
v Plan for dual maintenance of your source code.
v Consider whether to eliminate the use of VisualAge Generator compatibility

mode.

Setting the Build Order preference
When EGL builds the workspace, it builds the projects based on the Build Order
preference. The default for this preference might not provide the best performance.
In general you want the projects that are referenced the most frequently (such as
common projects) to be built first. This ensures that when files in other projects
import packages, the location of the common parts is already known. To see or
manually change the current build order, follow these steps:
1. From the Workbench window, click Window -> Preferences.
2. Expand General and then Workspace. Select Build Order.
3. You can manually change the build order by following these steps:

a. Clear the Use default build order option.
b. Select projects in the Project build order list and use the Up and Down

buttons to modify the build order.
c. After making all the changes, click Apply and then click OK.

© Copyright IBM Corp. 2004, 2011 203

4. You can also change the Max iterations when building with cycles to reduce
or increase the number of times that the build tool cycles through the projects
when attempting to resolve validation messages.

For EGL projects, there is a tool to help you set the build order. The Stage 3
migration tool automatically invokes this tool to set the build order before it starts
the build. You might also need to run the build order tool if you add other projects
to the workspace. To run the build order tool, follow these steps:
1. From the Workbench window, click Project -> Optimize EGL Project Build

Order. The tool clears the Use default build order option and updates the
Project build order list so that projects that are the most frequently referenced
appear first in the build list.

2. Review the build order as described previously to determine if there are
additional changes that you need based on your understanding of the project
references.

Exporting your preferences
After you have worked with EGL during your pilot project, you might have set
additional preferences beyond those that are required or suggested in “Required
EGL preferences” on page 172, “Suggested preferences” on page 173, “VAGen
Migration preferences” on page 174, and “Setting the Build Order preference” on
page 203. For example, you might have set other preferences related to your source
code repository and the library management process you have chosen. You can
export your preferences to a file so that other developers can import the
preferences to have as a starting base for their own preferences. The export
technique is also an easy way to move preferences from one workspace to another.
To export your preferences, follow these steps:
1. From the Workbench window, click File -> Export.
2. On the Export page, expand General. Select Preferences. Click Next.
3. On the Export Preferences page, click Export all. Click Browse to specify a

directory and File name in which to save your preferences.
4. Click Finish.

Other developers can import your preferences into a workspace by following these
steps:
1. From the Workbench window, click File -> Import.
2. On the Import page, expand General. Select Preferences. Click Next.
3. On the Import Preferences page, click Import all. Click Browse to point to the

file that contains the preferences.
4. Click Finish.

Note: This technique does not have any effect on the settings for perspectives and
views. It only changes the preferences.

Saving a baseline for EGL projects and packages
Before you attempt to resolve any messages in the Problems view or modify any
migrated EGL code, you might want to create a version of the EGL projects and
packages in your source code repository. Storing and versioning the EGL projects
and packages immediately after migration provides a baseline so that you know
exactly what source code was produced by the migration tool. This baseline also
provides a way of tracking any code changes you have to make by hand. This is

204 Rational Business Developer: VisualAge Generator to EGL Migration Guide

especially useful during a pilot project as a way of capturing all the changes so
that you can document the types of changes that were necessary. This
documentation can serve as an aid in migrating additional subsystems.

Preliminary tasks for completing single file migration
Single file migration does not do everything that Stage 1 – 3 migration does. You
must do the following tasks manually:
v Nest any forms within their corresponding FormGroup. This is required if you

migrate two FormGroups to the same package and the two FormGroups contain
the same form name. (For example, MAP1).

v Resolve any duplicate parts within the same EGL package. This can occur if you
migrate two programs with their associates to the same EGL package and the
two programs share some common parts. You can split the common part
definitions into a centralized common file or you can remove the duplicate parts
from one of the files. If all the files are in the same package, you do not need to
modify the EGL build path property or add import statements.

v Update the EGL build path property for the current project to list all the projects
that the current project needs to reference to resolve any part names. To update
the EGL build path, right-click the current project in the Project Explorer view,
then click Properties. Select EGL Build Path. On the EGL Build Path page, click
the Projects tab to select the additional projects that the current project needs to
reference. Be sure to include in the EGL build path any projects that contain
packages that files in the current project need to import. For example, if FileA is
in ProjectB and FileA needs to import packageC, be sure to include the project
where packageC is located in the EGL build path for ProjectB.

v Add any import statements to your EGL file to point to the common packages
that your file needs to reference. The packages that you specify for the import
statement must exist in projects that are specified for the EGL build path of the
project in which the current EGL file is located. For example, if FileA is in
ProjectB, then the import statements in FileA can only reference packages that
are located in projects specified for the EGL build path of ProjectB.

Common tasks for both Stage 1 — 3 and single file migration

Reviewing your EGL source code
You need to perform the following tasks regardless of whether you used Stage 1 –
3 migration or single file migration:
v Review and resolve the errors in the migration log or the "TODO" list log. These

errors reflect ambiguous situations that the migration tool was not able to
resolve. Modify your EGL source code to resolve these errors. For example, if
you used the VAGen RETR statement and did not explicitly specify a search
column, then if the table was not available during migration, the EGL syntax
includes EZE_UNKNOWN_SEARCH_COLUMN. You must update your EGL
source code with the correct search column name based on the DataTable
definition. See Appendix C, “Messages from the migration tools,” on page 395
for help in resolving messages in the migration log or the "TODO" list log. See
Appendix D, “Messages in the Problems view,” on page 427 for help with
finding and resolving specific strings that the migration tool uses when it creates
intentionally invalid EGL syntax.

v If you have Program, DataTable, or FormGroup names that are reserved words,
you must change the part name. If you generate COBOL, you might want to set
the alias property for the part to specify the original part name. Specifying an

Chapter 9. Completing your migration 205

alias helps you avoid having to change any external references to the Program,
DataTable, or FormGroup. If you change the name of a program, be sure to also
change the name of any program-specific bind control or link edit parts that
have the same name as the program.

v Review and resolve any additional errors in the Problems view. See Appendix E,
“IWN.xxx messages in the Problems view,” on page 435 for help in resolving
common messages in the Problems view that are a result of the migration
process.

v Determine if you need to set the containerContextDependent property for any
records or functions. For more details, see “containerContextDependent
Property” on page 40.

Reviewing your EGL build descriptor parts
The migration tool converts VAGen generation options parts to EGL build
descriptor parts. However, some VAGen options have no EGL equivalent. In
addition, EGL has several new build descriptor options that you might need to set.
You might see errors in the Problems view due to either of these changes. See
Appendix E, “IWN.xxx messages in the Problems view,” on page 435 for help in
resolving common messages in the Problems view that are a result of the migration
process. You might need a text editor to resolve some of the problems. You need to
perform the following tasks regardless of whether you used Stage 1 – 3 migration
or single file migration:
v Review general build descriptor options.
v Review COBOL generation build descriptor options.
v Review Java generation build descriptor options.
v Establish a debug build descriptor part.

Reviewing general build descriptor options
You need to review the following build descriptor options regardless of whether
you plan to generate COBOL or Java:
v If you develop programs for a national language in which the decimal point is

the comma symbol, consider the following to determine whether to set the EGL
decimalSymbol and separatorSymbol build descriptor options:
– For programs that you generate to COBOL and that do not use print forms,

the decimalSymbol and separatorSymbol build descriptor options take their
default values from the language-dependent options module that is used at
runtime. You can override the default values by explicitly setting the build
descriptor options.

– For programs that you generate to COBOL and that use print forms, the
default value for the decimalSymbol option is a period, and the default value
for the separatorSymbol option is a comma. If these values are not
appropriate to your location, you must explicitly set these build descriptor
options.

– If you generate Java, you might want to set the decimalSymbol build
descriptor option to improve runtime performance. If you do not set the
decimalSymbol build descriptor option, you can set the
vgj.nls.number.decimal property in the properties file used at runtime.

v If you use the VAGen EZESYS special function word to determine your runtime
environment, you might want to set the EGL build descriptor option
eliminateSystemDependentCode. Refer to the online help for more information
about this option.

v Refer to the online help for information about master build descriptors. This
technique is a replacement for the VAGen preference for the Default generation

206 Rational Business Developer: VisualAge Generator to EGL Migration Guide

options part. The migration tool automatically splits any generation options part
that contains the NOOVERRIDE attribute into two build descriptor parts. One of
the build descriptor parts is named xxxxx, and the other is named
xxxxx_NOOVERRIDE, where xxxxx is the original VAGen generation options
part name. The part named xxxxx contains the EGL replacement for all the
VAGen generation options that did not specify the NOOVERRIDE attribute. The
part named xxxxx_NOOVERRIDE contains the EGL replacement for all the
VAGen generation options that specified the NOOVERRIDE attribute. This split
into two parts is required if you decide to use master build descriptors.

v If you used the VAGen /OPTIONS generation option to chain generation
options parts, review how your EGL build descriptor parts chain using the
nextBuildDescriptor option. You might need to modify this chaining to obtain
the same set of build descriptor options that you had in VisualAge Generator.

v If you generate Web transaction parts for the COBOL environments, refer to the
online help for information about the secondaryTargetBuildDescriptor that is
used for generating the Java parts associated with VGUI records. The migration
tool automatically splits any generation options part into two build descriptor
parts if the generation option part contains any of the following options:
/javadestdir, /javadesthost, /javadestpassword, /javadestuserid, or /javasystem.
One of the build descriptor parts is named xxxxx, and the other is named
xxxxx_TARGET2, where xxxxx is the original VAGen generation options part
name. The part named xxxxx contains the EGL replacement for all the VAGen
generation options that are used when generating the EGL VGWebTransaction
program for the primary (COBOL) runtime environment. The part named
xxxxx_TARGET2 contains the EGL replacement for all the VAGen generation
options that are used when generating the EGL VGUI record for the secondary
(Java) runtime environment. The migration tool places the EGL equivalent for
the following generation options in the secondary build descriptor part:
/javadestdir, /javadesthost, /javadestpassword, /javadestuserid, and
/javasystem. The migration tool places the EGL equivalent for the following
options in both the primary and secondary build descriptor parts: /genout,
/genresourcebundle, /msgtableprefix, /resourcebundlelocale, and /targnls. The
migration tool includes the secondaryTargetBuildDescriptor option in the
primary build descriptor part and sets the value for the option to the name of
the secondary build descriptor part.

v If you generate Web transaction parts and use message tables, you might need
to change the msgTablePrefix build descriptor option. The message table is
specified by the program that uses a VGUI record. If the message table and the
VGUI record are in different packages, you must modify the secondary build
descriptor part and include the package name (for example, msgTablePrefix =
"packageName.prefixID").

v The migration tool does not create a default build descriptor for you when it
creates the EGL non-Web projects. This enables you to specify one of your
migrated build descriptor parts as the default build descriptor. You can establish
a default build descriptor for a file, package, EGL source folder, project, or
workbench levels. The default build descriptor that is closest to the generatable
part is the one that is used. For example, you can specify a default build
descriptor for just one file and specify a different default build descriptor for the
workbench. In this situation, if you generate the program contained in the file,
the default build descriptor for the file is used. When you generate any other
program, then the workbench default build descriptor is used. Use one of the
following techniques to set a default build descriptor.
– To set a preference for a particular file, package, EGL source folder, or project,

right-click the resource (file, package, folder, or project), then click Properties.
Select EGL Default Build Descriptors in the left pane. Select the build

Chapter 9. Completing your migration 207

descriptor that you want to use as the default for all generatable parts in this
resource. Assuming there is no closer EGL default build descriptor, the Target
system build descriptor is the default that is used whenever you generate
anything in this resource. The Debug build descriptor is the default that is
used when you use the debugging tool.

– To set a workbench preference for a build descriptor part, click Window ->
Preferences -> EGL -> Default Build Descriptor. This preference applies to
all projects, packages, source folders, and files if you do not specifically
override it. You can set both a Target system build descriptor to use for
generation and a Debug build descriptor to use with the debugging tool.

v The migration tool creates a default build descriptor for you when it creates the
first EGL Web project in a migration set. This ensures that the VGUI records can
be generated into JSPs when the workspace is refreshed at the end of Stage 3.
You can change the default build descriptor for the project, the EGL source
folder, or any packages or files the project contains.

v If your control parts (build descriptor, linkage options, resource association, bind
control, and link edit parts) are not all in the same file, you must modify the
current file to include import statements for the files that contain other build
parts that you want to reference from the current file. For example, if
buildDescriptorPartA references a linkageTableB that is in a different file, the file
containing buildDescriptorPartA must include an import statement for the file
that contains linkageTableB. Use the EGL Build Parts Editor to add the import
statement.

Reviewing COBOL generation build descriptor options
If you plan to generate COBOL, you need to review or set the following build
descriptor options:
v For VisualAge Generator, the outputs of COBOL generation are transferred to

the host to run the preparation steps.
– The transfer step requires a code page conversion. You should test that all the

special characters that you use are transferred correctly. For example, the ¬
(not sign symbol) converts to different code points when using the default
VAGen and default EGL conversion tables for U. S. English. In VAGen, the
default value for the /contable generation option is ELACNENU. The
equivalent EGL build descriptor options are serverCodeSet="IBM-037" and
clientCodeSet="IBM-1252". However, the EGL defaults for these build
descriptor options are serverCodeSet="IBM-037" and clientCodeSet="IBM-850".
Therefore, you might need to set the serverCodeSet and clientCodeSet build
descriptor options if you have special characters or use a language other than
U. S. English.

– EGL uses a build server to handle the preparation steps. For the EGL z/OS
and iSeries build servers, you must specify the destPort build descriptor
option that is used to transfer the outputs of generation. Contact the person
who installed and configured the build server to determine the port number
on which the remote build server is listening for build requests.

v If your COBOL compiler supports only a maximum of 18 digits for numeric
fields, set the maxNumericDigits build descriptor option to NO.

v If your program uses SQL, and any SQL statement uses an SQL built-in function
such as sum or other math operations, you should add the symbolic parameter
ADDSPACESAROUNDSQLHYPHENS and set the value to YES. This symbolic
parameter ensures that EGL inserts a blank between the column names and the
operators and matches the default behavior for VisualAge Generator. If you do
not use this symbolic parameter, you might see one or both of the following
errors:

208 Rational Business Developer: VisualAge Generator to EGL Migration Guide

– SQLCODE -206 or SQL0206N
– SQLCODE -113 or SQL0113N

v If you do not use Web transactions and do not plan to create EGL page handlers,
you might want to set the EGL build descriptor option genResourceBundle to
NO in your build descriptor parts that generate for COBOL runtime
environments. This prevents the Java generation of your DataTables.

v If you generate COBOL for the z/OS environment, you might also need to
perform the following tasks:
– Establish a bind control part to use as a template. (See “Establishing a bind

control part to use as a template” on page 212.)
– Establish a program-specific bind control part. (See “Establishing a

program-specific bind control part” on page 214.)
– Review link edit commands. (See “Reviewing link edit commands” on page

214.)
– If you generate COBOL for the VSE environment, you might also need to

review link edit commands. (See “Reviewing link edit commands” on page
214.)

Reviewing Java generation build descriptor options
If you plan to generate Java, you need to review or set the following build
descriptor options:
v Add the genProject build descriptor option to specify where the outputs of Java

generation are to be placed. There is no VAGen generation option that migrates
to the EGL genProject build descriptor option. The genProject option is required
in the following cases:
– If you generate for HP-UX or SOLARIS
– If you generate VGWebTransactions or VGUI records or their associated parts

such as DataTables. In this case, be sure that the genProject option specifies
an EGL Web project.

v There are some EGL build descriptor options that have somewhat different
behavior from their corresponding VAGen generation option. Refer to the online
help for information about the following build descriptor options to determine
whether you need to set or modify them for your environment:
– genProperties, which is set by the migration tool based on the VAGen

/genproperties option.
– enableJavaWrapperGen and wrapperCompatibility, which are set by the

migration tool based on the VAGen /system=JAVAWRAPPER option.
v There are some new EGL build descriptor options that have no corresponding

VAGen generation option. Refer to the online help for information about the
following build descriptor options to determine whether you need to set them
for your environment:
– dateMask

– sessionBeanID

– sqlJDBCDriverClass

– sqlValidationConnectionURL

– tempDirectory (for VGUI records only)

Establishing a debug build descriptor part
Create a build descriptor part that contains the build descriptor options that you
want to use during debug. See the online help for guidance on creating a debug
build descriptor part.

Chapter 9. Completing your migration 209

Reviewing your EGL linkage options parts
The migration tool converts VAGen linkage table parts to EGL linkage options
parts. However, some VAGen options have no EGL equivalent. In addition, EGL
has several new linkage options that you might need to set. You might see errors
in the Problems view due to either of these changes. See Appendix E, “IWN.xxx
messages in the Problems view,” on page 435 for help in resolving common
messages in the Problems view that are a result of the migration process. Also refer
to the online help for details about the linkage options that are supported for your
environment. You need to perform the following tasks regardless of whether you
used Stage 1 – 3 migration or single file migration:
v Review and resolve the messages in the migration log and in the Problems view.

You might need a text editor to resolve some of the problems.
v For the callLink element, consider the following points:

– Not all of the linktypes from VisualAge Generator are supported in EGL. For
example, CSOCALL is no longer supported. The migration tool converts
CSOCALL to a remoteCall. However, the attributes you must specify for an
EGL remoteCall differ from those for CSOCALL.

– Not all of the remoteComType values from VisualAge Generator are
supported in EGL. For example, DCE, DCESECURE, and APPCIMS are no
longer supported. The migration tool converts these unsupported values
exactly as they are, which results in an invalid EGL linkage options part. This
ensures that there is an error in the Problems view as a reminder that you
must modify the linkage options part to specify the option you want to use
with EGL.

– If you use remote calls to CICS, you need to specify additional properties
based on the remoteComType values:
- If you change to using remoteComType = "CICSECI", you must add the

ctgPort and ctgLocation properties.
- If you change to using remoteComType = "CICSSSL", you must add the

ctgKeyStore and ctgKeyStorePassword properties. In addition, if you have
not already included the ctgPort and ctgLocation properties in your VAGen
linkage table, you must include them for the EGL remoteComType =
"CICSSSL".

- If you change to using remoteComType = "CICSJ2C", you must add the
pgmName, conversionTable, remotePgmType, luwControl, remoteBind,
location, and parmForm properties.

Regardless of the communications protocol that you choose, you must set up
and configure a CICS Transaction Gateway infrastructure. Direct calls to CICS
using the CICS Client product are no longer supported.

– If you change to using remoteComType = "IMSTCP" as a replacement for
APPCIMS, refer to the online help for assistance in setting the additional
properties that are necessary. Also review the online help for existing
properties because the values that must be specified have different meanings
for IMSTCP.

– conversionTable = "BINARY" is not supported in EGL. The migration tool
converts this value exactly as it is so that there is a place holder in the EGL
linkage options part. However, you must modify the value.

– You might need to add callLink entries. EGL requires callLink elements for
the following situations:
- If a generated Java program calls a native C++ or a VAGen generated

program, it is always a remote call even if the programs are running on the
same workstation. A callLink entry is required.

210 Rational Business Developer: VisualAge Generator to EGL Migration Guide

- If you used the VAGen generation option /system=JAVAWRAPPER for a
called program, you must create an EGL callLink entry with the
javaWrapper property set to YES. If you do not have the entry, EGL does
not generate the Java wrapper.

- If you generate Java and a called program name conflicts with an EGL
reserved word, you must create an EGL callLink entry and set the alias
property to the actual name of the called program.

- If you generate for CICS and the called program requires special linkage,
such as a PL/I program. For example, if you call a PL/I program, the
VAGen default linkage is CICSLINK and COMMPTR regardless of whether
the call is to a VAGen or non-VAGen program. In EGL, the default linkage
for calls to EGL programs is DYNAMIC and COMMPTR and the default
linkage for calls to non-EGL programs is CICSLINK and COMMPTR. In
this case, if your call statement does not specify isExternal = yes, then you
must create a callLink entry and set linkType = "CICSLINK", parmForm =
"COMMPTR", and pgmType = "EXTERNALLYDEFINED" so that the
correct linkage is used for the PL/I program.

– If you shared a linkage options part in VAGen for ITF and COBOL
generation, you might have errors in the EGL Problems view for remoteCall
options that are not supported during COBOL generation. In this case, split
your EGL linkage options part into two separate linkage options parts. For
example, you might use the following technique:
- Copy your original linkage options part to use for COBOL generation.

Remove the remoteCall entries that are used only during debug. Be sure to
keep any remoteCall entries that are used at runtime to call programs in
another CICS region.

- Make another copy of your original linkage options part to use for debug.
Remove the localCall entries that are used only during COBOL generation.
Be sure to keep any localCall entries that might be used for calling a native
Java or C++ program during debug.

v For a fileLink element, conversionTable = "BINARY" is not supported in EGL.
The migration tool converts this value exactly as it is so that there is a place
holder in the EGL linkage options part. However, you must modify the value.

v For an asynchLink element (VAGen crtxlink), conversionTable = "BINARY" is
not supported in EGL. The migration tool converts this value exactly as it is so
that there is a place holder in the EGL linkage options part. However, you must
modify the value.

v The EGL transferToProgram element is the equivalent of the VAGen dxfrlink
entry. If you generate for Java and use the VAGen XFER statement, you might
need to add EGL transferToProgram entries. Refer to the online help for
information about this new linkage entry.

Reviewing your EGL resource associations parts
The migration tool converts VAGen resource associations parts to EGL resource
associations parts. However, some VAGen options have no EGL equivalent. In
addition, EGL has several new resource association options that you might need to
set. You might see errors in the Problems view due to either of these changes. See
Appendix E, “IWN.xxx messages in the Problems view,” on page 435 for help in
resolving common messages in the Problems view that are a result of the migration
process. Also refer to the online help for details about the resource association
options that are supported for your environment. You need to perform the
following tasks regardless of whether you used Stage 1 – 3 migration or single file
migration:

Chapter 9. Completing your migration 211

v Review and resolve the messages in the migration log and in the Problems view.
You might need a text editor to resolve some of the problems.

v Not all of the file types from VisualAge Generator are supported in EGL. For
example, BTRIEVE and MFCOBOL are no longer supported. The migration tool
converts these unsupported options exactly as they are so that there is a place
holder in the resource associations part. This ensures that there is an error in the
Problems view as a reminder that you must modify the resource associations
part to specify the option you want to use with EGL. Depending on the EGL file
type option you select, there might be additional properties you must set for the
resource association entry.

v Review the online help for the formFeedOnClose and text properties to
determine if you need to set these values for your environment. In VisualAge
Generator, the equivalent options, /noff and /text respectively, can only be
specified in a runtime resource association file for the workstation environment.
Therefore, these options are not set by the migration tool because the tool only
processes resource associations parts.

Establishing a bind control part to use as a template

Note: This section applies to you only if you generate COBOL for the z/OS
environments.

VisualAge Generator uses a bind control template to create default bind control
commands. The default VAGen template binds a DB2 plan, but you might have
modified the template so that it binds a package or made other changes to conform
to the standards of your organization. The VAGen templates are stored outside the
workspace in files named EFK2MBDx.tpl where x is a letter. Bind control parts are
only required if you need to do a special bind for a particular program. Table 67
shows the VAGen bind control templates based on the runtime environment and
database access.

 Table 67. VAGen bind command templates

Environment and Database Access VisualAge Generator BIND Template

MVS CICS - with DB2 EFK2MBDA

MVS Batch - with DL/I and DB2 EFK2MBDA

MVS Batch - with DB2 only EFK2MBDD

IMS/VS- with DL/I with DB2 work
database

EFK2MBDC

IMS/VS- with DL/I and DB2 with DB2
work database

EFK2MBDB

IMS/VS- with DL/I and DB2 without DB2
work database

EFK2MBDA

IMS BMP - with DL/I and DB2 EFK2MBDA

EGL does not use externally defined bind control templates. Instead EGL uses an
internal template or a bind control part. If you bind packages, you can achieve an
effect similar to VisualAge Generator templates by creating an EGL bind control
part that contains a template to use for all the binds and store this part in your
workspace.

212 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Note: The technique described in this section does not work if you bind plans. See
“Establishing a program-specific bind control part” on page 214 if you bind
plans.

If you modified the VAGen bind control template so that you bind a package for
each program, you can adapt that template for use as an EGL bind control part.
You might have a VAGen bind control template that looks like the following
example:
DSN SYSTEM(%MYDB2SUBSYSTEM%)
BIND PACKAGE(%MYCOLLECTIONNAME%) -
 MEMBER(%EZEMBR%) -
 .
 .
 .

In the previous example, MYDB2SUBSYSTEM and MYCOLLECTIONNAME are
symbolic parameters you set in your VAGen generation options and EZEMBR is
set automatically with the name of the program currently being generated.

For binding packages, the EGL bind control part that you need to create is very
similar to the VAGen template, but requires three additional lines and a change to
the EZEMBR symbolic parameter. The corresponding EGL bind control part looks
like the following example, with the additional and changed lines highlighted in
bold:
TSOLIB ACTIVATE DA(’%DSNLOAD%’)
ALLOC FI(DBRMLIB) SHR DA(’%EZEPID%.%SYSTEM%.DBRMLIB’ +
’%ELA%.SELADBRM’)
DSN SYSTEM(%MYDB2SUBSYSTEM%)
BIND PACKAGE(%MYCOLLECTIONNAME%) -
 MEMBER(%EZEALIAS%) -
 .
 .
 .

DSNLOAD, EZEPID, and ELA all have the same meaning as they did in VisualAge
Generator. EZEALIAS is the EGL replacement for EZEMBR when you need the
runtime name of the program being generated in a bind control part. SYSTEM is
the EGL replacement for EZEENV. You might need to modify the first three lines
of the bind control part if you use different data set naming conventions on your
EGL build server. Contact the person who installed and configured the EGL build
server to determine what the additional three lines need to be based on the
naming conventions for your organization. You might also need to modify your
EGL build descriptor options to set the projectID build descriptor option and the
DSNLOAD and ELA symbolic parameters if you did not set these values in
VisualAge Generator. See “Symbolic parameters” on page 384 for changes to the
names of the symbolic parameters. Also see the online help for more information
about using a template for the EGL bind control part and setting the values of EGL
symbolic parameters.

In addition to creating the EGL bind control part to serve as a template, you must
also modify your build descriptor parts to include the bind build descriptor option
to point to your bind control part. To minimize the number of build descriptor
parts you need to modify, consider adding the bind build descriptor option to one
of your existing, common build descriptor parts.

Note: Be sure to compare the VAGen bind control templates for any of your target
environments. If the templates are different, you might be able to add
additional symbolic parameters to support the differences. Alternatively, you

Chapter 9. Completing your migration 213

might need to set different bind build descriptor options on a program basis
to point to different EGL bind control parts that are needed as templates for
different target environments.

Establishing a program-specific bind control part

Note: This section applies to you only if you generate COBOL for the z/OS
environments.

If you bind plans in VisualAge Generator, then generally each program requires a
different bind command. In this case, you need a program-specific bind command
to bind a plan for the program with all the other programs that are in the same
run unit. The typical way to do this is to create a bind control part called
xxxxx.BND, where xxxxx is the name of the program. You then set the VAGen
generation option /BIND=BND to specify the suffix that you want VisualAge
Generator to use when searching for a program-specific bind command. The .BND
suffix can also be used if you bind packages for the rare situations in which one
program requires something different from what the template provides.

The EGL bind build descriptor option does not permit you to specify a suffix.
Instead, the bind build descriptor option must specify the name of a specific bind
control part. In EGL, if you do not specify the bind build descriptor option, then
EGL looks for a bind control part with the same name as the program. In general,
the easiest technique is to bind packages and follow the process described in
“Establishing a bind control part to use as a template” on page 212. However, if
you want to bind plans or if you have the situation in which one program requires
something other than what is provided by the bind control part template, you can
create program-specific bind control parts.

If you have VAGen program-specific bind control parts that used the default .BND
suffix, then the migration tool automatically removes the .BND suffix for you and
adds the three additional statements required for an EGL bind control part.
Assuming that your naming convention was programName.BND and you always
have program-specific bind command parts, then you do not need to specify the
EGL bind build descriptor option for this program. However, if you are using the
EGL bind build descriptor to specify a bind control part for most programs to use
as a template and you need to provide a program-specific bind control part for a
program, then you must create a build descriptor part for this specific program
and set the bind build descriptor option to point to the program-specific bind
control part. Otherwise, EGL uses the bind control part that is the template because
that is what your normal bind build descriptor option specifies.

Reviewing link edit commands

Note: This section applies to you only if you generate COBOL for the z/OS or
VSE environments.

VisualAge Generator provides default link edit commands based on the target
environment and database access. However, in some cases, you might have a
program that requires specific link edit commands. (For example, to link in a PL/I
program for the MVS Batch environment.) The typical way to do this is to create a
link edit part called xxxxx.LKG, where xxxxx is the name of the program. You then
set the VAGen generation option /LINKEDIT=LKG to specify the suffix that you
want VisualAge Generator to use when searching for the program-specific link edit
command.

214 Rational Business Developer: VisualAge Generator to EGL Migration Guide

The EGL linkEdit build descriptor option does not permit you to specify a suffix.
Instead, the linkEdit build descriptor option must specify the name of a specific
link edit part. In EGL, if you do not specify the linkEdit build descriptor option,
then EGL looks for a link edit part with the same name as the program. If EGL
does not find a link edit part with the same name as the program, then EGL
creates default link edit commands based on the target environment and database
access similar to what VisualAge Generator does. Therefore, the only time you
need to specify the linkEdit build descriptor option is if you create a link edit part
with a different name from the program. You might need to do this if you generate
the same program for several COBOL environments.

If you have VAGen program-specific link edit parts that used the default .LKG
suffix, then the migration tool automatically removes the .LKG suffix for you.
Assuming that your naming convention was programName.LKG, then you do not
need to specify the EGL linkEdit build descriptor option for this program. EGL
finds the program-specific part first, before it attempts to create a default link edit
command.

Reviewing your VGWebTransactions
You should consider the following points when reviewing your migrated
VGWebTransaction programs:
v Before you debug your VGWebTransaction programs, you must generate all the

VGWebTransaction programs and VGUIRecords.
v When you deploy or use an EGL-generated bean, you must perform the

following tasks:
– Regenerate all the VGUIRecords that you plan to include in the new WAR

file.
– Regenerate all of the corresponding VGWebTransaction programs.
– Migrate and generate any programs that the VGWebTransaction program calls

or transfers to using the call, transfer, or show statements (VAGen CALL,
DXFR, or XFER statements).

You do not need to migrate and generate programs that are referenced in a
program link or hyper link.

v If the EGL package name differs from the VAGen package name, you must
update your JSPs and properties files. The package name might have changed
for any of the following reasons:
– You used the Stage 1 migration tool renaming rules to rename packages

because they conflict with EGL reserved words.
– You used the Stage 1 migration tool renaming rules or modified the Stage 1

tool to consolidate packages in EGL.
– You used the VAGen /packagename generation option to specify the runtime

package name, which can be different from the package name of the VAGen
source code. In EGL, the runtime package name is normally the same as the
package name of the EGL source.

For information about a white paper that can help you update the package name
in your modified JSPs for use with EGL, see “References” on page 16.

v To deploy your EGL Web transactions, refer to the online help for assistance. Be
sure to perform the following tasks:
– Review and modify the default gw.properties file in the src folder for the

project. Be sure to set the hptEntryPage and the hptEntryApp values. You
might be able to copy this information from the corresponding gw.properties
file in your VisualAge Generator system. You might need to set additional

Chapter 9. Completing your migration 215

options depending on the modifications you made to the VisualAge
Generator gw.properties file. The hptDisableRMIIDManager option was
added in a VisualAge Generator Fix Pack. If this option is new to you, review
the EGL online help for assistance in setting the value.

– Review and modify the default csogw.properties file in the src folder for the
project. You might need to update the serverLinkage entries to change the
javaProperty information to reflect any changes to your package names. Be
sure to include the information to specify which applications are to be found
on which server. You might be able to copy this information from the
corresponding csogw.properties file in your VisualAge Generator system. You
might need to set additional options depending on the modifications you
made to the VisualAge Generator csogw.properties file.

– Review and modify the default Vagen1EntryPage.jsp in the WebContent
folder for the project. Be sure to update the OPTION information for
hptAppId to include the names of your VGWebTransaction programs and the
associated text that you want to display for each program in the list. You
might be able to copy this information from the corresponding JSP file in
your VisualAge Generator system.

– Generate the project.
– Create an Enterprise Application Resource (EAR) project by following these

steps:
1. From the Workbench window, in the Project Explorer view, click New ->

Other -> J2EE -> Enterprise Application Project.
2. Enter the Name of the EAR project.
3. Click Next.
4. Select the projects to include in the EAR Project.
5. Click Finish.

– Define a Web Application Server.
– Add the EAR Project to the server.
– Run the application by right-clicking the EGLWebStartup.jsp in the

WebContent folder for the project and then clicking Run -> Run on Server.

Preparing for debugging
To prepare for debugging, you should perform the following tasks:
v From the Workbench window, click Window -> Preferences -> EGL -> Debug.

Refer to the online help to determine which, if any, of these preferences you
need to set for your environment. For example:
– If you used the VAGen Test preference to Run in EBCDIC mode, you should

set the EGL Debug preference Character Encoding to the EBCDIC code page
for your host system.

– You might also want to select Stop at first line of a program and Enable
hotswapping.

v If you used the VAGen Test preference Programs in Library to Bypass, you
might need to provide information in the EGL -> Debug -> Debug Behavior
Mapping preference page. In VisualAge Generator, the Test Facility looks at the
linkage table part first and then checks whether the information was overridden
by the Test preferences. In EGL, the EGL -> Debug -> Debug Behavior
Mapping preference specifies the situations in which the Debugger looks at the
linkage options part. Therefore, on the Called Program page, you need to list all
the non-EGL (or generated EGL) programs that you want to call on the host. Use
generated as the mapping mode. If the program is not listed on the Called

216 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Program page, then the Debugger displays a pop-up window when the EGL
source cannot be found in the workspace. For additional details about the
Debug Behavior Mapping preference, refer to the EGL online help.

v Also review the EGL-> Default Build Descriptor preferences. You might want
to set the default Debug build descriptor for your entire workspace.
Alternatively, you can set the default Debug build descriptor for a project, EGL
source folder, package, or file.

v The VAGen Date Formats preference enables you to specify the date format used
in Test Facility for the VAGen EZE formatted date words (EZEDAYLC or
EZEDTELC) and the Date edit masks for fields defined on maps or in UI
records. In EGL, you must provide the equivalent date format information in the
debug build descriptor part. To avoid problems due to differences in the default
date formats, specify this information for EGL even if you did not have to for
VisualAge Generator. Use the following steps to set the date format:
 1. Edit your debug build descriptor part.
 2. Click Show Java Run-time Properties (the icon is on the upper right side of

the tool bar within the editor).
 3. In the Date Masks section of the editor, click Add.
 4. In the Locale field, click once to get a drop down list to set your locale (for

example, ENU).
 5. Click in the Long Gregorian Mask field to get a drop down list to set the

Gregorian format used for your locale (for example, yyyy-MM-dd).
 6. Click in the Long Julian Mask field to get a drop down list to set the Julian

format used for your locale (for example, yyyy-DDD).
 7. Similarly, set the Short Gregorian Mask and the Short Julian Mask fields

(for example yy-MM-dd and yy-DDD respectively).
 8. Repeat steps 3 through 7 to add information for any other locales that you

use.
 9. Click Show General Build Descriptor Options to return to the main build

descriptor editor.
10. Save and close your build descriptor file.

Note: For z/OS and VSE, the values you specify for a locale should match the
values that your installation specifies for the corresponding
language-dependent options module in Rational COBOL Runtime for
zSeries or Rational COBOL Runtime for z/VSE.

v If you are calling generated EGL or non-EGL programs on a remote CICS system
from the debugger, you need to set up and configure a CICS Transaction
Gateway infrastructure. Direct calls to CICS using the CICS Client product are
no longer supported.

v If you plan to use the EGL debugger for programs that use DL/I database I/O,
or to call programs on a remote IMS system, you need to configure a number of
files. Refer to the EGL Programmer's Guide for assistance.

v If you are using remote VSAM files on z/OS, you need to install and use the
Distributed File Manager (DFM). Refer to the EGL Generation Guide for details of
how to install DFM and specify the resource association entries for debug.

Installing the EGL server product for zSeries

Note: This section applies to you only if you generate COBOL for the z/OS
environments.

Chapter 9. Completing your migration 217

For z/OS, the EGL server must be installed in a separate SMP/E zone and have
different target libraries from the VisualAge Generator Server for MVS, VSE, and
VM (VAGen server product).

If you placed any of the VAGen server product load modules in the LPA, you must
replace them with the EGL server product load modules before migration is
complete. When you make this change be sure to avoid having a combination of
modules from VAGen server product and the EGL server product because this can
cause unpredictable results. Therefore, if you removed the VAGen server product
load modules from the VAGen SELALMD load library when you originally placed
the load modules in the LPA, follow these steps to keep the sets of load modules
consistent:
1. Put the VAGen modules back into the VAGen SELALMD load library.
2. Remove the VAGen load modules from the LPA.
3. Add the EGL server product load modules to the LPA.
4. Remove the EGL server product load modules from the EGL SELALMD load

library

Even though EGL uses a build server for the preparation process, the EGL server
product includes the same preparation JCL procedures as the VAGen server
product. If you plan to continue generating VAGen programs, but use the EGL
runtime server, you must tailor the EGL preparation JCL procedures (or retailor
your existing VAGen preparation JCL procedures) to point to the EGL runtime
server libraries.

The EGL server product is also compatible with VAGen-generated programs.
Therefore, you can migrate to the EGL server product before you migrate your
source code to EGL. For example, your IMS or CICS regions might evolve over
time in the following way:
v A production region with the VAGen server load library and an application load

library with VAGen-generated programs. A test region that is identical to the
production region.

v A production region with the VAGen server load library and an application load
library with VAGen-generated programs. A test region with the EGL server load
library and an application load library with VAGen-generated programs so that
you can ensure that existing VAGen programs run the same as before.
Optionally, a second test region with the EGL server load library and an
application load library with EGL-generated programs so that you can test
programs during your pilot migration.

v A production region with the EGL server load library and an application load
library with VAGen-generated programs. A test region with the EGL server load
library and an application load library with VAGen-generated programs so that
you can continue developing and maintaining programs in VisualAge Generator
during your pilot migration. A second test region with EGL server load library
and an application load library with EGL-generated programs so that you can
test EGL programs during your pilot migration.

v A production region with the EGL server load library with a mixture of
VAGen-generated and EGL-generated programs. A test region with the EGL
server load library with a mixture of VAGen-generated and EGL-generated
programs. The test region has more EGL-generated programs than the
production region. If you migrate all your source code to EGL at the same time,
you can skip this configuration of regions.

v A production region with the EGL server load library with EGL-generated
programs. A test region that is identical to the production region.

218 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Installing the EGL server product for VSE

Note: This section applies to you only if you generate COBOL for the VSE
environments.

For VSE, you must install IBM Rational COBOL Runtime for z/VSE. Refer to the
Program Directory for details.

Converting VAGen preparation templates and procedures to
EGL build scripts

Note: This section applies to you only if you generate COBOL.

In VisualAge Generator, for COBOL generation, preparation templates are used to
control the preparation process. The template that is used depends on the type of
part that is generated, the runtime environment, and, for program parts, the type
of database access. The /TEMPLATES generation option points to the drive and
directory that contains the preparation templates. The templates vary by
environment in the following way:
v For the MVS runtime environments, preparation templates are used to generate

the JCL necessary to do the DB2 precompile, CICS translate, COBOL compile,
link edit, and bind. The preparation templates invoke JCL procedures to provide
the actual steps in the preparation process.

v For the VSE runtime environments, preparation templates are used to generate
the JCL necessary to do the DB2 precompile, CICS translate, COBOL compile,
and link edit. The preparation templates invoke JCL procedures to provide the
actual steps in the preparation process.

v For the OS/400 runtime environment, preparation templates are used to
generate the control language (CL) to do the compile and bind.

In EGL, the preparation process is handled in the following way:
v For zSeries and iSeries, preparation is handled by an EGL build server. The EGL

build scripts merge the information previously contained in the VAGen
preparation templates and preparation procedures.

v For VSE, the preparation process is still handled by preparation templates and
procedures. For details, refer to the documentation for the Generation for VSE
feature.

For zSeries, review your VAGen preparation templates and procedures to
determine whether you customized them. If so, the best way to modify and debug
an EGL build script is to follow these steps:
1. Set the prep build descriptor option to NO.
2. Generate a program for your runtime environment. Review the preparation file

that is created to determine the name of the build script that is being used for
this type of program, database access, and runtime environment.

3. Manually upload the outputs of generation to the data sets you plan to use on
the z/OS host.

4. Create preparation JCL for the program. You can use your VAGen preparation
templates and procedures as a starting point and then modify them to point to
the EGL data sets. Also compare the preparation templates and procedures to
the build scripts supplied by EGL to determine if there are additional steps,
libraries, and so on required for EGL.

Chapter 9. Completing your migration 219

5. Test the preparation JCL until you are satisfied that your modifications are
correct.

6. Convert the preparation JCL to pseudo-JCL so it can be used as a build script.
For details, refer to the IBM Rational COBOL Runtime Guide for zSeries.

7. Set the prep build descriptor option to YES.
8. Generate the program again for your runtime environment. The outputs of

generation should now be uploaded and prepared automatically using the
build server.

9. Repeat the process for programs that access each type of database in each
runtime environment. Be sure to generate FormGroups (with both text and
print forms) and DataTables for all your runtime environments because these
use different build scripts.

For zSeries, also see “Preparation templates and procedures” on page 386 for a list
of the VAGen templates and procedures and their corresponding EGL build scripts.
VisualAge Generator also uses bind control templates for the MVS runtime
environments. See “Establishing a bind control part to use as a template” on page
212 for details of how to convert the MVS bind control templates.

For iSeries, refer to the Rational Business Developer EGL Server Guide for IBM i for
information about how to customize the build script.

Converting VAGen runtime templates

Note: This section applies to you only if you generate COBOL.

In VisualAge Generator, runtime templates are used to generate the following code:
v Sample runtime JCL for the MVS Batch and IMS BMP runtime environments.
v Sample runtime JCL for the VSE Batch environment.
v Sample control language for the iSeries environment.

The /TEMPLATES generation option points to the drive and directory that
contains the runtime templates. The template that is used depends on the type of
program, the runtime environment, and the type of file or database access. The
following types of runtime JCL templates are used for MVS Batch, IMS BMP, and
VSE:
v Execution JCL templates that create the main portion of the sample runtime JCL.
v File and database allocation templates that create DD statements that are

included in the sample JCL for DL/I databases, serial, indexed, or relative files
based on the runtime environment and the file implementation specified by the
resource association information.

v File and database allocation placeholder templates that create comments that are
included in the sample JCL when the program does something that might
require additional DD statements, but the information is not available to
generation. For example, if ProgramA calls ProgramB, when you generate
ProgramA, there is no way to determine the DD statements required by
ProgramB. The file and database allocation placeholder templates include a
comment in the sample runtime JCL for ProgramA to indicate that it calls
ProgramB.

Similarly, for OS/400, there are several runtime CL templates.

220 Rational Business Developer: VisualAge Generator to EGL Migration Guide

In EGL, there are also runtime templates. The templateDir build descriptor option
points to the directory where the templates reside. The default directory is the
following subdirectory within your shared product installation directory:
plugins\com.ibm.etools.egl.generators.cobol_version\MVStemplates

plugins\com.ibm.etools.egl.generators.cobol_version\VSEtemplates

plugins\com.ibm.etools.egl.generators.cobol_version\iSeriesTemplates

version is the highest version level of COBOL generation that you have installed.

If you need to tailor the EGL runtime JCL or CL templates, consider the following
points:
v Create your own directory outside the product installation directory. This

simplifies installing EGL maintenance because you do not have to worry about
overlaying your customized templates.

v Consider putting this directory on a shared drive where it can be accessed by all
developers. This makes it easier to change a template because you do not have
to distribute the new template to all the developer workstations.

v For a list of the VAGen runtime templates and the corresponding EGL runtime
templates, see the following information:
– For zSeries and iSeries, see “Runtime templates” on page 388.
– For VSE information, refer to the Rational Business Developer V7.5 Generation

for z/VSE feature Reference Manual (SC19-2539-00)

Use your VAGen runtime templates as a starting point and compare each
template to the corresponding EGL template to determine the tailoring you
might require. Be sure to change the VAGen symbolic parameters to the
corresponding EGL symbolic parameters as shown in “Symbolic parameters” on
page 384.

Converting the VAGen reserved words file

Note: This section applies to you only if you generate COBOL.

In VisualAge Generator, the /RESVWORD generation option points to the drive,
directory, and file name of an optional reserved words file. This file contains all the
COBOL, SQL, and CICS reserved words that are not permitted as part or field
names in the generated COBOL programs. The default reserved words file is
shipped with VisualAge Generator. If you specified the /RESVWORD generation
option, you probably added additional words to the list. If you never made
modifications to the reserved words list, you can skip this section.

In EGL, the standard COBOL, SQL, and CICS reserved words are predefined in the
COBOL generator. The EGL reserved words file only contains your additions to the
list.

Consider whether you still really need additions to the EGL reserved word list. If
so, create a file on the workstation with a list of the additional words you require.
Then modify your EGL build descriptor parts to include the reservedWord build
descriptor option and point this option to your reserved words file. You might
want to put the reserved words file on a shared drive so that everyone can access
a single copy of the file rather than propagating the file to every developer
workstation. This technique simplifies making a change to the reserved words file.

Chapter 9. Completing your migration 221

Generating and testing with COBOL generation
To prepare for COBOL generation, perform the following tasks:
v You might want to create another version of the EGL projects and packages in

your source code repository at this time. This provides another baseline of code
that reflects the changes you made manually and before generation.

v Be sure that the EGL runtime server for your environment is installed with all of
the latest PTFs.

v For z/OS and iSeries, be sure the EGL build server is installed with all of the
latest PTFs. Also, be sure it is configured in your host environment. In
VisualAge Generator, customization was done to the preparation process for
z/OS and iSeries by changing preparation templates on the workstation. In EGL,
this customization is done on the host machine. For more information, see
“Converting VAGen preparation templates and procedures to EGL build scripts”
on page 219.

v For VSE, customize the preparation JCL templates and procedures.
v Contact the person who installed and configured the EGL build server. Be sure

you understand any changes to the naming conventions for the host data sets
that contain the outputs of generation and preparation. For example, in
VisualAge Generator when you generate for MVS Batch, the default name of the
data sets is xxxx.MVSBATCH.yyyy, where xxxx is the high-level qualifier you
specify in the /projectid generation option and yyyy is the type of code. (For
example, EZESRC for the COBOL source.) With EGL, because the target
environment names have changed, the corresponding default data set names are
xxxx.ZOSBATCH.yyyy. This means that you might need to define a new group of
data sets on the host.

v Generate your programs and DataTables. When you generate the programs, use
the following build descriptor options:
– genFormGroup="YES"
– genHelpFormGroup="YES"
– genDataTables="NO"

This enables you to generate the FormGroups with the programs that use them,
but to only generate each DataTable one time regardless of the number of
programs that use that DataTable. Resolve any validation errors that are caught
during generation.

Note: For details of when you must generate the EGL programs or relink the
VAGen programs, see Appendix I, “VisualAge Generator and EGL
interoperability,” on page 473.

v VAGen and EGL create the names of COBOL records and items differently. The
EGL names result in a more readable COBOL program, but can result in a
generated COBOL program that exceeds the SQL statement precompiler limits,
depending on your SQL product. The following are examples of precompiler
limits:
– Maximum number of processed lines. All SQL statements must occur in the

program prior to this limit. COBOL generation places the SQL statements as
early as possible in the Procedure Division. However, a program might
encounter this limit if it has many SQL functions or large numbers of data
items in records or on forms.

– Maximum number of unique host variables. Each host variable that allows
nulls also has an indicator variable that counts toward the maximum. By
default, the VAGen to EGL Migration tool sets the isSQLNullable property to
YES for each field in the SQL records to preserve the VAGen behavior.

222 Rational Business Developer: VisualAge Generator to EGL Migration Guide

– Maximum number of lines or characters for an SQL statement.
If any of the SQL precompiler limits is exceeded, you need to make one or more
of the following changes to the program:
– If some of the columns in your SQL tables are defined as NOT NULL, remove

the isSQLNullable = yes property from the corresponding field in the EGL
SQL record definitions. This reduces the number of unique host variables
which in turn reduces the number of characters and lines for an SQL
statement and the total number of lines for the program. This technique has
the biggest impact for the least amount of work and also has the potential of
improving runtime performance.

– Review the use of default SQL statements. If the default statements are
retrieving more columns than you actually need, modify the statements to
specify only the required columns.

– Shorten the name of the SQL record.
– Split the SQL statements into multiple statements. For example, change one

get statement into multiple get statements and retrieve a subset of the
columns in each statement.

– Split the program into multiple programs.
v Test the generated code.
v You might want to create another version of the EGL projects and packages in

your source code repository at this time. This provides another baseline of code
that reflects the changes you made as a result of problems found during
generation and testing.

Generating and testing with Java generation
To prepare for Java generation, perform the following tasks:
v You might want to create another version of the EGL projects and packages in

your source code repository at this time. This provides another baseline of code
that reflects the changes you made by hand and before generation.

v Generate your programs and DataTables. When you generate the programs, use
the following build descriptor options:
– genFormGroup="YES"
– genHelpFormGroup="YES"
– genDataTables="NO"

This enables you to generate the FormGroups with the programs that use them,
but to only generate each DataTable one time regardless of the number of
programs that use that DataTable. Resolve any validation errors that are caught
during generation.

Note: For details of when you must generate the EGL programs or relink the
VAGen programs, see Appendix I, “VisualAge Generator and EGL
interoperability,” on page 473.

v If you modified the VAGen product message text, you can make similar
modifications to the EGL message text.

v Test the generated code.
v You might want to create another version of the EGL projects and packages in

your source code repository at this time. This provides another baseline of code
that reflects the changes you made as a result of problems found during
generation and testing.

Chapter 9. Completing your migration 223

Reviewing your standards
You might want to review your current coding standards and set new standards to
be used for any new code that is written. For example, if you generate COBOL,
some standards that you might want to consider:
v Use underscore rather than hyphens in your part names. COBOL programs do

not permit the use of underscore for names. However, COBOL generation
automatically changes the underscore to a hyphen, so the generated COBOL is
still readable. The only time an alias name is assigned is if there are duplicate
part or variable names after changing the underscore to a hyphen.

v To improve the readability of generated COBOL code, avoid the use of names
that cause generation to assign an alias. You can do this by using the following
naming conventions:
– Record and function names should be 18 or fewer characters. This is the same

limit as in VisualAge Generator.
– DataItem names should be 27 or fewer characters. This is slightly less than

the VAGen suggested limit of 30 characters for COBOL generation and the
maximum of 32 characters for VisualAge Generator.

v Program and DataTable names can now be 8 characters.

Planning for dual maintenance of your source code
You can migrate your VAGen source code to EGL. However, you cannot migrate
an EGL source file back to VisualAge Generator. If you are not migrating all of
your VAGen source code at the same time and have parts that are needed by both
the VAGen and the EGL code, you need to make changes to the common parts in
one of the following ways:
v Make the change in both the VAGen and EGL versions of the part.
v Make the change in VAGen and then export an external source format file for

the part. Depending on the changes, to ensure that cross-part migration can be
done, you might need to include parts used by the changed part, as well as
parts that use the changed part in the external source format file. Import the
external source file into a new file in EGL. Then compare the changes for the
newly-migrated parts to the original EGL parts and move the changes to the
correct location within the EGL workspace.

The simplest solution to the dual maintenance problem is to avoid the problem
completely in the following way:
v Freeze your VAGen development and maintenance while you are migrating to

EGL.
v Generate and test all the VAGen programs that are currently work-in-progress

and move them into production. This enables you to migrate just the production
version of your source code.

If you cannot migrate everything at the same time, try to limit the changes to a
small number of parts and then make the changes in both the VAGen and the EGL
versions of the part. Making the changes in both places can be easier than
changing the part in VAGen and migrating it to EGL again because you do not
have to determine all the related parts that are required for cross-part migration
and you do not have to move the newly-migrated parts to the correct location
within the EGL workspace.

224 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Eliminating the use of VisualAge Generator compatibility
mode

VisualAge Generator compatibility mode supports a number of behaviors that
make it easier to preserve the behavior of your VAGen programs. It is not
necessary to turn off VisualAge Generator compatibility mode. However,
particularly if you use only a few of these compatibility behaviors, you might want
to eliminate the use of VisualAge Generator compatibility mode. The following list
describes the EGL behavior when VisualAge Generator compatibility mode is
turned on and provides information that might be helpful in removing the need to
use the behavior.
v EGL permits the use of the hyphen (-) and the national language characters @

and # in part names. If you plan to eliminate the use of VisualAge Generator
compatibility mode, you should create a Rename user exit to use during Stage 2
migration. Create the Rename user exit so that it eliminates the use of the
hyphen, @, and #. For example, if you never use the underscore in your VAGen
part names, you can create a Rename user exit that renames parts by changing
the hyphen to an underscore. See “VAGen Migration preferences” on page 174
for details of how to specify a Rename user exit for Stage 2 migration. If you
turn off VisualAge Generator compatibility mode, EGL validation displays an
error message in the Problems view for any part name or variable name that
contains a hyphen, @ or #. You can correct the problem by changing the name.
For examples of creating an exit routine, see the white paper on using the
Rename user exit listed in “References” on page 16.

v EGL permits the use of the primitive data types NUMC and PACF. NUMC is
similar to NUM except that NUMC uses the C as the positive sign indicator.
PACF is similar to DECIMAL (VAGen PACK) except that PACF uses the F as the
positive sign indicator. If you turn off VisualAge Generator compatibility mode,
EGL validation displays an error message in the Problems view for any
DataItem definition or variable declaration that specifies a primitive type of
NUMC or PACF. You might be able to correct the problem by changing the
primitive type to NUM or DECIMAL respectively and then making any related
program changes required for the new positive sign indicator. Depending on
how the NUMC or PACF field is being used, you might also need to change the
data in databases, files, or DataTables.

v EGL defaults the subscript to 1 for single-dimension, structure-field arrays.
Single-dimension, structure-field arrays are the EGL equivalent of a VAGen array
or multiply occurring item in a record, map or table. If you turn off VisualAge
Generator compatibility mode, EGL validation displays an error message in the
Problems view for any statement that specifies a structure-field array that now
requires a subscript. To correct the problem, you must modify the statement to
explicitly specify a subscript of 1.

v EGL permits the deleteAfterUse property on a use declaration for a DataTable.
The deleteAfterUse property is the replacement for the VAGen Keep After Use
property. If you turn off VisualAge Generator compatibility mode, EGL
validation displays an error message in the Problems view for each program that
contains a use declaration that specifies deleteAfterUse. You can correct the
problem by removing the deleteAfterUse property, in which case EGL treats the
table similarly to a VAGen table that specifies Keep After Use = yes.
If your production programs are already generated using VisualAge Generator
Version 4.5 Fix Pack 4 or higher, there is no impact from eliminating the EGL
deleteAfterUse property. If you are migrating from Cross System Product or an
earlier version of VisualAge Generator, you should thoroughly test any program
that you change to eliminate the deleteAfterUse property.

Chapter 9. Completing your migration 225

If you select the Do not include deleteAfterUse migration preference for tables,
the migration tool automatically omits the deleteAfterUse property and issues a
warning message for the affected program and table.

v EGL implements a display printForm statement in the same way as a print
printForm statement. You can minimize the use of display printForm by including
the maps in your migration set. This enables the migration tool to correctly
migrate to a display statement for text maps and a print statement for printer
maps. If you turn off VisualAge Generator compatibility mode, EGL validation
displays an error message in the Problems view for each display printForm
statement. You can correct the problem by modifying the statement to be a print
statement.

v EGL uses the value property of a form field only when displaying a field on the
screen that has not had a value assigned to it. The value property does not set
the initial value of the form field in storage. The migration tool includes the
value property when it migrates the map. If you turn off VisualAge Generator
compatibility mode, EGL uses the value property to set the initial value of the
form field in storage. There might or might not be an error in the Problems
view. For example, in VisualAge Generator, a numeric map variable field can
have an initial value of "MM/DD/YYYY" to provide a value for the Map Editor
Preview mode and to provide output to the user if the program does not move
any data to the field before the DISPLAY or CONVERSE I/O option. In this
example, if you turn off VisualAge Generator compatibility mode, there might be
a message in the Problems view because the value is not compatible with the
NUM primitive type; you might also see a runtime error. However, if the initial
value is a number such as 5, there is no message in the Problems view, but the
program might not behave in the same way it did in VisualAge Generator. If
you turn off VisualAge Generator compatibility mode, in addition to correcting
the messages in the Problems view, you should also search your EGL forms for
the value property and then determine the program changes necessary to
prevent any change in behavior. This might include removing or changing the
value property for the form fields.

v EGL supports even precision for DECIMAL fields (VAGen PACK fields) by
incrementing the precision by 1 except for host variable references in SQL
WHERE clauses and the EGL prepare statement. If you turn off VisualAge
Generator compatibility mode, EGL validation does not display an error message
in the Problems view. However, the program might not run the same as in
VisualAge Generator. Specifically, DECIMAL fields that have even precision
might be too small for the data contained in the database. In general you need
to carefully evaluate each DataItem part or variable to determine whether you
can safely turn off VisualAge Generator compatibility mode. In VisualAge
Generator, you can search all DataItem and Record parts using the References
tool for the text string evensql = Y (one blank before and after the = sign). This
search can help you determine if you have any items or records that specified
even precision. In EGL, you can search for an even precision DECIMAL field by
searching for decimal(2, decimal(4, decimal(18. If you did not use even precision
DECIMAL fields, then you can safely turn off VisualAge Generator compatibility
mode. If you did use even precision DECIMAL fields, you need to consider the
performance impact on your SQL access of changing to the next higher odd
precision. SQL provides better performance for DECIMAL fields if your EGL
host variables exactly match the precision of the SQL column definitions.
If you select the Do not honor evensql=y for items or variables migration
preference, the migration tool automatically uses odd precision (or 18 if the item
is the maximum length) and issues a warning message for the affected data item
part or nonshared record item.

226 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v EGL permits the use of the converseVar.segmentedMode system variable. This
is the replacement for VAGen EZESEGM, which enables you to switch between
segmented and nonsegmented mode in a CICS main transaction program at
runtime. If you turn off VisualAge Generator compatibility mode, EGL
validation displays an error message in the Problems view for each statement
that uses converseVar.segmentedMode. In many cases, because EZESEGM is
rarely used, there might not be any errors in the Problems view. If there is an
error, removing the use of converseVar.segmentedMode might require
restructuring the program to avoid the need to switch between segmented and
nonsegmented mode.

v EGL permits the use of the vgLib.getVAGSysType() system function. The
migration tool declares a variable named customerPrefixEZESYS and initializes it
in each program to the results of vgLib.getVAGSysType. customerPrefix is the
Renaming prefix you specify during Stage 2 migration. vgLib.getVAGSysType
provides the original VAGen EZESYS system values (for example, MVSCICS or
OS400) for use when migrating statements other than IF, WHILE, or TEST. If you
turn off VisualAge Generator compatibility mode, EGL validation displays an
error message in the Problems view for each program for the statement that
initializes customerPrefixEZESYS. You can correct the problem by changing the
program to remove the customerPrefixEZESYS declaration and the initialization
statement. When you save the program, EGL validation displays an additional
error message in the Problems view for each statement that uses
customerPrefixEZESYS. To correct this error, you can change the statement to use
the EGL sysVar.systemType system variable, which provides the new EGL
system values. Depending on how customerPrefixEZESYS is being used, you
might also need to change the values in databases, files, or DataTables from the
old VAGen system values to the new EGL system values. See “EZESYS” on page
118, as well as “EZESYS state conditions” on page 336.
If you select the Do not initialize old EZESYS values migration preference, the
migration tool automatically omits the variable declaration and initialization
statement from each program. EGL validation displays an error message in the
Problems view for any statement that uses customerPrefixEZESYS.

v EGL permits the use of the vgLib.connectionService() system function. This is
the replacement for VAGen EZECONCT system function, which provides a
variety of SQL connection services depending on the arguments you specify and
your runtime environment. If you turn off VisualAge Generator compatibility
mode, EGL validation displays an error message in the Problems view for each
statement that uses vgLib.connectionService(). You can correct the error by
changing to use one of the new EGL specialized system functions (for example,
sysLib.connect(), sysLib.disconnect(), sysLib.disconnectAll(), or
sysLib.queryDatabase()). Which EGL system function you use depends on the
arguments you specified for the VAGen EZECONCT system function and your
runtime environment. You should also check for any use of
vgVar.sqlIsolationLevel because this might affect your choice of the EGL system
function or the arguments that you need to specify for it.

v EGL permits the use of the vgVar.sqlIsolationLevel system variable. This is the
replacement for VAGen EZESQISL, which is used to control the SQL isolation
level in older releases of Cross System Product and VisualAge Generator for the
VSE runtime environments and in VisualAge Generator 4.5 for accessing ODBC
databases. If you turn off VisualAge Generator compatibility mode, EGL
validation displays an error message in the Problems view for each statement
that uses vgVar.sqlIsolationLevel. In many cases, because EZESQISL is rarely
used, there might not be any error in the Problems view. If there is an error, you
might be able to remove vgVar.sqlIsolationLevel entirely if it is not being used
to control your program logic. Alternatively, if vgVar.sqlIsolationLevel is used

Chapter 9. Completing your migration 227

to control some of your program logic, you can replace vgVar.sqlIsolationLevel
with a new variable that you declare in the program. Be sure to check for any
use of vgLib.connectionService() because the behavior for that system function
might depend on the value in vgVar.sqlIsolationLevel.

If you do turn off the VisualAge Generator compatibility mode preference, be sure
to remove vagCompatibility = "YES" from each of your build descriptor parts. If
you select the Do not set compatibility mode migration preference, the migration
tool automatically omits vagCompatibility = "YES" from each build descriptor
part.

228 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Part 6. Language and runtime differences

There are various language and runtime differences between VisualAge Generator
and EGL.

© Copyright IBM Corp. 2004, 2011 229

230 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Chapter 10. Language and runtime differences

Language differences
See “Determining whether you can migrate to EGL” on page 9 for information
about areas in which EGL is not a complete replacement for VisualAge Generator
Developer.

See Chapter 3, “Handling ambiguous situations,” on page 65 for details about
VAGen language elements or migration strategies that do not allow a precise
migration to the EGL language.

See Appendix B, “Relationship of VisualAge Generator and EGL language
elements,” on page 257 for details about how each VAGen language element is
migrated to EGL.

Runtime differences
After you have migrated your source code to EGL, you should generate and
thoroughly test your code to ensure that it runs the same as in VisualAge
Generator. The specific runtime differences vary depending on the target
environment and what the program does. These differences are described in the
following sections:
v General differences.
v Differences in SQL support.
v Differences in DL/I support.
v Differences in debug.
v Differences in generated COBOL.
v Differences in generated Java.
v Differences between host and workstation environments.
v Differences between distributed CICS and native workstation environments.
v Differences between generated C++ and generated Java.

General differences
The following runtime behavioral differences can occur without any messages in
the migration log or the Problems view. The problems can occur during debug or
when running the generated Java or COBOL code:
v The following differences apply to text programs and print forms:

– A runtime error occurs if a form field is not long enough to contain all the
digits and formatting information (sign, decimal point, currency symbol, and
numeric separator).

– Non-default fill characters are always honored, even if the program does not
issue a SET formItem FULL statement.

– Arrays on forms always use the validation and formatting properties of the
first element of the array. This might result in slightly different behavior from
VisualAge Generator, which allowed some of these properties to vary for the
elements of the array. For details, see “Map arrays and attributes” on page 84.

© Copyright IBM Corp. 2004, 2011 231

– If any maps contained fields at row=0, column=0, be sure to test the
programs that use the corresponding forms for any differences in appearance
or behavior. For details, see “Fields at row=0, column=0” on page 86.

– If you used different floating area specifications (including using the default
specification of the full screen size) for two or more devices that have the
same physical size, the location of a floating form might not be the same as in
VisualAge Generator. VisualAge Generator tolerated, but did not recommend,
using different floating area specifications for devices of the same size. EGL
permits only one floating area specification for a physical device size.

– For workstation platforms, including debug, the following key mappings are
used for textForms:

 Table 68. Key mappings for textForms

3270 Keys VAGen mappings
EGL mappings on
Windows

EGL mappings on
Linux and AIX

PF1–PF12 F1–F12 F1–F12 F1–F12

PF13–PF24 Alt+F1–Alt+F12 Shift+F1–Shift+F12 press Ctrl+S and then
press F1–F12

PA1–PA3 Ctrl+F1–Ctrl+F3 Ctrl+F1–Ctrl+F3 press Ctrl+A and
then press F1–F3

Note:

- + indicates that you must press 2 keys simultaneously.
- For Linux and AIX, the Ctrl+S and Ctrl+A work as a toggle. If you press

the combination of keys by mistake, you can press them again to turn it off.
Pressing Ctrl+S and then pressing a key other than F1–F12 has no effect.
Similarly, pressing Ctrl+A and then pressing a key other than F1–F3 has no
effect.

v If a record that is a VAGen REDEFINED record is not available when migrating
a program, the migration tool does not include the EGL redefines property in
the data declarations. This results in two separate record areas, rather than a
single area with two definitions as in VisualAge Generator. Errors, including
abends, can result due to uninitialized or invalid data. See “Redefined records”
on page 70 for details.

v Hard I/O errors occur in more situations in EGL than in VisualAge Generator:
– In VisualAge Generator, UNQ for non-SQL records is a soft error so the HRD

I/O error state is not set. In EGL, unique is a hard error so hardIOError also
tests true. See “I/O error values UNQ and DUP” on page 114 for details.

– For iSeries, the VAGen I/O error value LOK is migrated to the EGL deadlock
I/O error state. In VisualAge Generator, LOK is a soft error so the HRD I/O
error state is not set. In EGL, deadlock is a hard error so hardIOError also
tests true. See “I/O error value LOK” on page 116 for details.

v If the I/O error routine is not available when migrating a function, the migration
tool assumes that the I/O error routine is not a main function and converts to a
function invocation. In VisualAge Generator, if the I/O error routine is a main
function and an error occurs at runtime, VisualAge Generator clears the current
execution stack of functions and starts a new stack with just the main function
that is specified as the I/O error routine. This also clears out any storage for the
execution stack. In EGL, because the migration tool converted to a function
invocation, if an error occurs at runtime, EGL adds the main function to the
current execution stack rather than cleaning out the stack and starting a new

232 Rational Business Developer: VisualAge Generator to EGL Migration Guide

stack with just the main function. This has the potential for an infinite loop or a
large use of resources if functions have local storage or parameter lists. See “I/O
error routine” on page 95 for details.

v Using a field in a DataTable with a single row of contents to initialize a
structured field array in a record or an array on a form results in different
initialization from VisualAge Generator. In this situation in VisualAge Generator,
the source is treated as a scalar and the target array is completely initialized by
the scalar source. In EGL, only the first element of the target array is initialized.
Errors, including abends, can result due to uninitialized or invalid data in the
target array. For details, see “MOVEA with a single row table as the source” on
page 107.

Differences in SQL support
The differences in SQL support can affect program behavior in the following
situations:
v If you generate COBOL, the differences between DB2 on the host and JDBC used

by the debugger might affect the behavior of your program when you debug in
EGL.

v If you previously generated C++ and now generate Java, the differences between
DB2 or ODBC and JDBC used by Java generation might affect the behavior of
your program both when you debug in EGL and when you run the program in
the native workstation environment.

The following are differences in SQL behavior:
v ODBC is not supported in EGL. If you use an SQL database manager other than

DB2, you must obtain a JDBC driver for your database manager.
v JDBC does not support two-phase commit. Therefore, there are the following

differences:
– There are separate calls to the SQL manager and MQ series manager for

commit and rollback. Therefore, if a problem occurs, it is possible for one
resource to commit or rollback without the corresponding commit or rollback
for the other resource.

– EZECONCT (EGL vgLib.connectionService()). In VisualAge Generator, the R
option for the unit of work argument changes the connection to another
database without ending the current connection. This permits you to update
multiple databases within the same unit of work. In EGL, the R option, as
well as the D1C, D2A, D2C, and D2E options for the unit of work argument
are all treated as though you specified D1E. D1E is a one-phase commit, but
does not automatically release the database connection. You must explicitly
request the DISC, DCURRENT, or DALL option to disconnect the database.
See the online help for the vgLib.connectionService() for details.

v JDBC always runs dynamic SQL. Generated COBOL (in both VAGen and EGL)
and generated C++ (in VAGen) use static SQL except when you use the VAGen
Execution time statement build option (EGL prepare statement) or a table name
host variable. Therefore, there are the following differences:
– In dynamic mode, single row select can result in more than one row being

returned without setting sysVar.sqlData.sqlCode to -811.
v JDBC handles code page conversion differently than DB2. If your database is on

the host and includes a CHAR, DBCHAR, or MBCHAR SQL column defined as
"FOR BIT DATA", DB2 does not do any code page conversion. However, JDBC
does convert the data. If you have this situation, change the EGL SQL record
definition to add the asBytes = yes property for the field that corresponds to the
SQL column that is defined as "FOR BIT DATA".

Chapter 10. Language and runtime differences 233

v In VisualAge Generator, you use CHAR fields for SQL columns that contain
DATE, TIME, or TIMESTAMP data. The SQL date/time format used by DB2 on
the host might differ from that returned by JDBC. When you are debugging a
program intended for the host environment or generating a Java program that
uses a host DB2 database, the interface is through JDBC. Therefore, you might
need to use one of the following techniques to obtain the date/time format that
you require:
– Technique 1: This technique uses DB2 Version 9, Fix Pack 4 or higher. Set

your connection URL to include the following DB2 properties:
- dateFormat

- timeFormat

- timestampFormat

– Technique 2: This technique uses DB2 Version 8. Use the DB2 APP Driver
instead of the default Universal Driver. To use the APP Driver to control the
date, time, and timestamp formats, follow these steps:
1. To use the APP Driver, set the following information:

 Field Value

Driver name com.ibm.db2.jdbc.app.DB2Driver

Driver location db2java.zip

Sample connection URL jdbc:db2:MYHOSTDB

2. To set the date format, enter the following command from a DB2
Command Prompt window:
db2 update cli cfg for section COMMON using DateTimeStringFormat xxx

where xxx is EUR, ISO, USA and so on based on the DB2 date format that
you want to use.

3. Confirm the setting by entering the following command:
db2 get cli cfg

4. Start your EGL developer product.
– Technique 3: This technique uses EGL only. Set the sqlDataCode property for

the CHAR fields that contain SQL DATE, TIME, or TIMESTAMP columns.
Use the following values for the sqlDataCode property:

 Data type sqlDataCode

DATE 385

TIME 389

TIMESTAMP 393

In addition, you might also need to set the following system variables so that
they correspond to the date, time, and timestamp formats in DB2:
- strLib.defaultDateFormat

- strLib.defaultTimeFormat

- strLib.defaultTimestampFormat

You can initialize the default date/time formats either directly in your
programs or by setting the following build descriptor options:
- defaultDateFormat

- defaultTimeFormat

- defaultTimeStampFormat

234 Rational Business Developer: VisualAge Generator to EGL Migration Guide

For details, refer to the EGL Language Reference and the EGL Generation Guide.
v Other changes in the EZE words related to SQL when using JDBC:

– EZESQISL (EGL vgVar.sqlIsolationLevel). In VisualAge Generator, a value of
1 means you want cursor stability. In EGL a value of 1 means you want
serializable transactions.

– EZESQRRM (EGL sysVar.sqlData.sqlerrmc) is not supported.
– EZESQWN6 (EGL sysVar.sqlData.sqlwarn[7]) is not supported.
– EZESQLCA (EGL sysVar.sqlData.sqlca) fields are limited. They do not

include values for EZESQRRM and EZESQWN6.

Differences in DL/I support
The following differences occur with DL/I support:
v VisualAge Generator always uses CBLTDLI when it generates IMS or DL/I

support. For CBLTDLI, the IMS or DL/I PSBs do not need to include a PCB
name for the PCBs. EGL-generated programs use either CBLTDLI or AIBTDLI
depending on the callInterface property that is specified for the program. The
migration tool converts the programs to use CBLTDLI because that is what
VisualAge Generator uses. However, regardless of the setting for the
callInterface property, the EGL debug facility always uses AIBTDLI. AIBTDLI
requires a PCB name for the PCBs in the IMS or DL/I PSB. Therefore, to use the
EGL debug facility, you must add a PCB name for all database PCBs in your
IMS or DL/I PSBs. You can add the PCB name either by specifying a label on
each PCB marco or by specifying the PCBNAME parameter on each PCB macro.
Because the EGL debug facility only supports debugging DL/I databases, you
only need to add the PCB name for database PCBs. If you want to change your
programs to use AIBTDLI, you must include the PCB name for all the PCBs in
the IMS or DL/I PCB and specify the corresponding PCB name in the EGL PSB.
The migration tool attempts to prepare the EGL PSB for use by the debugger by
setting the pcbName property to database name from the VAGen PSB. When
you add the PCB name to your IMS or DL/I PSBs, you can use the database
name from the VAGen PSB as a starting point to minimize the changes to the
EGL PSB. However, the VAGen PSB tolerates the same database name for
multiple PCBs in a PSB because the names are not used in the generated
COBOL. IMS and DL/I PSBs require that the PCB names be unique. Therefore,
the PCB names provided by the migration tool might not be acceptable. The
migration tool issues an error message when there are multiple PCBs with the
same database name in a PSB.
The following example shows a VAGen PSB, the corresponding EGL PSB
produced by the migration tool, and the IMS PSB both before and after adding
the PCB name. The VAGen PSB has PCBs numbered 3 and 4 with the same
database name, DDDDDDDD. The migrated EGL PSB uses the database name as
the value for the pcbName property. The IMS PSB cannot use DDDDDDDD for
both PCBs, so you must use a different name DDDDDDDX and then update the
corresponding PCB in the EGL PSB to specify the correct name.
PSB Example

Note:

– The PCB names are in bold
– Only the PCB names for the database PCBs must be added to use the

EGL debugger
VAGen PSB

Chapter 10. Language and runtime differences 235

PCBs

1 TP (alternate I/O PCB)

2 TP (express alternate I/O PCB)

3 DB DatabaseName = DDDDDDDD,otherPCBInformation

4 DB DatabaseName = DDDDDDDD,otherPCBInformation

5 DB DatabaseName = OTHERDB,otherPCBInformation

6 DB DatabaseName = ELAWORK

7 GSAM DatabaseName = GGGGGGGG

EGL PSBRecord created by the migration tool
 iopcb IO_PCBRecord { @PCB { pcbType = PCBKind.TP } };
 pcb0 IO_PCBRecord { redefines = iopcb};
 ELAALT ALT_PCBRecord { @PCB {pcbType = PCBKind.TP } };
 pcb1 ALT_PCBRecord { redefines = ELAALT };
 ELAEXP ALT_PCBRecord { @PCB {pcbType = PCBKind.TP } };
 pcb2 ALT_PCBRecord { redefines = ELAEXP };
 DDDDDDDD_dbPCB DB_PCBRecord
 { @PCB { pcbType = PCBKind.DB, pcbName = "DDDDDDDD",
 otherPCBinformation
 } }
 pcb3 DB_PCBRecord { redefines = DDDDDDDD_dbPCB };
 DDDDDDDD_4_dbPCB DB_PCBRecord
 { @PCB { pcbType = PCBKind.DB, pcbName = "DDDDDDDD",
 // pcbName in the above line must be changed to DDDDDDDX
 // to match the IMS PSB
 otherPCBinformation
 } }
 pcb4 DB_PCBRecord { redefines = DDDDDDDD_4_dbPCB };
 OTHERDB_dbPCB DB_PCBRecord
 { @PCB { pcbType = PCBKind.DB, pcbName = "OTHERDB",
 otherPCBinformation
 } }
 pcb5 DB_PCBRecord { redefines = OTHERDB_dbPCB };
 ELAWORK DB_PCBRecord
 { @PCB { pcbType = PCBKind.DB } }
 pcb6 DB_PCBRecord { redefines = ELAWORK };
 GGGGGGGG_gsamPCB GSAM_PCBRecord
 { @PCB { pcbType = PCBKind.GSAM, pcbName = "GGGGGGGG" } } ;
 pcb7 GSAM_PCBRecord { redefines = GGGGGGGG_gsamPCB };

Original IMS PSB
 TITLE ’PSB FOR PROCESSING SAMPLE DATABASES’
 PRINT NOGEN
 PCB TYPE=TP,MODIFY=YES
 PCB TYPE=TP,MODIFY=YES,EXPRESS=YES
 PCB TYPE=DB,DBDNAME=XXXXXXXX,otherPCBInformation
 PCB TYPE=DB,DBDNAME=XXXXXXXX,otherPCBInformation
 PCB TYPE=DB,DBDNAME=XXXXXXXX,otherPCBInformation
 PCB WORKDB=ELAWORK
 PCB TYPE=GSAM,DBDNAME=YYYYYYYY,otherPCBInformation
 PSBGEN LANG=ASSEM,CMPAT=YES,otherPSBInformation
 END

Modified IMS PSB
 TITLE ’PSB FOR PROCESSING SAMPLE DATABASES’
 PRINT NOGEN
ELAALT PCB TYPE=TP,MODIFY=YES
ELAEXP PCB TYPE=TP,MODIFY=YES,EXPRESS=YES
DDDDDDDD PCB TYPE=DB,DBDNAME=XXXXXXXX,otherPCBInformation
DDDDDDDX PCB TYPE=DB,DBDNAME=XXXXXXXX,otherPCBInformation
OTHERDB PCB TYPE=DB,DBDNAME=XXXXXXXX,otherPCBInformation

236 Rational Business Developer: VisualAge Generator to EGL Migration Guide

ELAWORK PCB WORKDB=ELAWORK
GGGGGGGG PCB TYPE=GSAM,DBDNAME=YYYYYYYY,otherPCBInformation
 PSBGEN LANG=ASSEM,CMPAT=YES,otherPSBInformation
 END

v In general, the same restrictions on testing IMS and DL/I programs apply to
both VAGen and EGL programs:
– The following things are supported by EGL debug:

- Calls to a program running in the IMS/VS environment
- Use of DL/I database I/O through the EGL I/O statements

– The following things are not supported by EGL debug:
- Use of DL/I database I/O if the database is located on z/OS CICS or VSE.
- Serial files that are associated with the IMS message queue or GSAM files.

For debug use seqws instead.
- System functions such as AUDIT (EGL sysLib.audit()) or CREATX (EGL

VGLib.startTransaction())
- vgLib.VGTDLI(), dliLib.EGLTDLI(), or dliLib.AIBTDLI() system functions

to make IMS or DL/I calls that perform any of the following actions:
v Access to the I/O PCB, TP PCBs, GSAM PCBs, or FastPath databases
v CHKP, GSCD, PCB, TERM, or XRST calls

Differences in debug
There are some differences in debug that might affect your testing. If you generate
for COBOL environments, you need to be particularly aware of these differences
because debug does not provide the same support as generated COBOL in the
following areas:
v The following differences apply to text forms:

– Blink is not supported for text forms.
– The isDecimalDigit property is only supported for character fields. It is

implemented as a software edit, not as a hardware attribute. Numeric fields
also have a software edit. See “Map fields and the numeric hardware
attribute” on page 83 for details.

– One of the values specified for the screenSizes property for a floating text
form must match one of the screenSize entries specified for the
@ScreenFloatingArea property for the FormGroup. Similarly, one of the
values specified for the formSize property for a floating print form must
match one of the pageSize entries specified for the @PrintFloatingArea
property for the FormGroup.

v For indexed records that have an alternate index record defined, the setting for
the DUP I/O error value differs from VisualAge Generator. For VisualAge
Generator, for a SET record SCAN followed by a SCAN or SCANBACK I/O
option, the DUP I/O error value is not set for the SET record SCAN statement.
The DUP I/O error value is set for each of the duplicate-keyed records other
than the last record retrieved with a duplicate key. For Java generation, a set
record position followed by a get next or get previous statement results in the
duplicate state being set on the set record position rather than on the first
duplicate-keyed record retrieved. The remaining duplicate-keyed records result
in the duplicate state being set as it is in VisualAge Generator. The EGL
duplicate state is set on all records other than the first and last of the
duplicate-keyed records. See the online help for more information about indexed
records and alternate index records and their use with set record position, get
next, and get previous.

Chapter 10. Language and runtime differences 237

v Interactive Test Facility (in VisualAge Generator) uses DB2 or ODBC. Generated
COBOL (in both VisualAge Generator and EGL) use DB2. Generated C++ (in
VisualAge Generator) uses DB2 or ODBC. EGL debug and Java generation use
JDBC. If you generate COBOL or previously generated C++, this results in
differences in when you debug your program using the EGL debugger. See
“Differences in SQL support” on page 233 for details.

v Interactive Test Facility (in VisualAge Generator) uses CBLTDLI. EGL debug uses
AIBTDLI. For more information see “Differences in DL/I support” on page 235.

v Handling of NUM or NUMC data that contains invalid data differs from
VisualAge Generator. In VisualAge Generator, if you clear the Stop on invalid
numeric data preference, invalid data, including blanks, is tolerated by ITF for
NUM and NUMC fields. If a NUM or NUMC field contains blanks, it is treated
as though the value is 0. For example, if the field is compared to 0, the
comparison tests true. If a NUM or NUMC field contains invalid data other than
blanks, the comparison tests false. In effect, this simulates the use of the COBOL
generation option /SPZERO, which specifies that blanks are tolerated in NUM
and NUMC fields and are treated as though the field contains 0. Any other use
of invalid data in the NUM or NUMC fields results in a runtime error, including
an abend. If you do not use the /SPZERO generation option, any invalid data in
an NUM or NUMC field, including blanks, results in a runtime error. The
/SPZERO generation option has no effect on BIN, PACK, or PACF fields. In
EGL, the spacesZero build descriptor option provides the same support as
/SPZERO for generated COBOL programs. The EGL debugger does not have a
preference that corresponds to the VAGen Stop on invalid numeric data
preference. Instead, both the EGL debugger and Java generation honor the
spacesZero build descriptor option. Therefore, if you use spacesZero for COBOL
generation, you should add this option to your debug build descriptor part.

Differences in generated COBOL
The following differences occur for generated COBOL code:
v For z/OS, EGL generated COBOL text and basic programs are fully compatible

with VisualAge Generator programs. You do not have to regenerate or recompile
a VAGen program for either of the following situations:
– A VAGen program uses CALL, DXFR, or XFER as a way of transferring to an

EGL program.
– An EGL program uses call, transfer, or show as a way of transferring to a

VAGen program.

The restrictions on calling or transferring between EGL and VAGen programs
are similar to those for calling or transferring between two VAGen programs.
For example, a VAGen called program cannot use the DXFR or XFER statements
to transfer to other programs. Similarly, an EGL called program cannot use
transfer to program, transfer to transaction, or show to transfer to other
programs.

v For z/OS CICS, there are certain situations in which you must relink all
programs in the run unit to use the IBM Rational COBOL Runtime for zSeries.
For details, see “VisualAge Generator and EGL interoperability on z/OS CICS”
on page 473.

v For iSeries, you must generate the programs in accordance with the rules
described in “VisualAge Generator and EGL interoperability on iSeries” on page
473.

v The following differences apply to forms:

238 Rational Business Developer: VisualAge Generator to EGL Migration Guide

– The isDecimalDigit property is only supported for character fields. It is
implemented as a software edit, not as a hardware attribute. Numeric fields
also have a software edit. See “Map fields and the numeric hardware
attribute” on page 83 for details.

– For z/OS Batch and IMS BMP, if you are writing print forms to a data set, be
sure that you specify the following attributes:
- LRECL=137, BLKSIZE=141, RECFM=VBA if the form group does not

contain any DBCS forms
- LRECL=654, BLKSIZE=658, RECFM=VBA if the form group contains any

DBCS forms
In some cases, VisualAge Generator tolerated smaller values for LRECL and
BLKSIZE. EGL requires the correct LRECL and BLKSIZE.

Differences in generated Java
The following differences occur for generated Java code:
v VAGen-generated Java programs use a vgj.properties file to control the runtime

environment. EGL-generated Java programs use either programName.properties
or rununit.properties, depending on the value of the genProperties build
descriptor option. See “vgj.properties” on page 392 for the correspondence
between the VisualAge Generator and EGL runtime properties.

v EGL generated Java programs are not fully compatible with VisualAge
Generator programs.
The following program interactions are supported:
– An EGL program can call a VAGen generated Java or C++ program using a

remote call. Similarly, a VAGen generated Java or C++ program can call an
EGL program using a remote call.

– An EGL VGWebTransaction program can use the show VGUIRecord statement
to indirectly transfer to a VAGen Web Transaction program. Similarly, a
VAGen Web Transaction program can use the XFER with a UI record
statement to indirectly transfer to an EGL VGWebTransaction program.

The following program interactions are not supported:
– An EGL program cannot call a VAGen generated Java or C++ program using

a local call. Similarly, a VAGen generated Java or C++ program cannot call an
EGL program using a local call.

– An EGL program cannot transfer to a VAGen program using the transfer or
show TextForm statements. Similarly, a VAGen program cannot transfer to an
EGL program using the DXFR or XFER statements.

Differences between host and workstation environments
If you change from generating for a host environment (such as CICS) to generating
for a workstation environment (such as native AIX), you need to consider the
following differences:
v The collating sequence for the host environments is EBCDIC. The collating

sequence for Java generation is UNICODE. Therefore, you need to review the
following areas of your code:
– Range match valid tables
– Specific values coded for a high-value or low-value of a key
– Comparison of keys for a 2-file match

v Users need to know the following information:

Chapter 10. Language and runtime differences 239

– The mapping for the function keys because workstation keyboards do not
typically have keys for PF13 - PF24 and PA1 - PA3. For the keyboard
mapping, see Table 68 on page 232.

– It is not necessary to enter SO/SI characters when shifting out/into DBCS
mode.

v The total length of all records passed on a call from AIX native to CICS cannot
exceed 32567. This is a CICS restriction. If you previously generated for CICS
and used the default parmform=COMMPTR, then the total length of all records
might have exceeded this limit. If you previously used parmform=COMMDATA,
then the total length of all records is within this limit.

v Also review the information in these sections:
– “Differences between distributed CICS and native workstation environments”
– “Differences between generated C++ and generated Java” on page 243

Differences between distributed CICS and native workstation
environments

To run generated EGL code in a workstation environment, you must change to run
as a native process instead of having the option to run under Transaction Series
(TX Series or CICS). The following list outlines the differences or changes that are
necessary to move from a CICS environment to a native environment. The list uses
VAGen terminology, but you must make the changes in the corresponding EGL
language elements. Refer to Appendix B, “Relationship of VisualAge Generator and
EGL language elements,” on page 257 to determine the corresponding EGL
language element.
v The following general differences occur:

– Multiple users cannot run in the same address space on a server. Users run
on their own workstations.

– Client unit of work is not supported.
– There is a change from C++ generation to Java generation. Be sure to review

the section on “Differences between generated C++ and generated Java” on
page 243.

– Be sure to test performance and scalability when migrating from CICS to
native environments.

– Communication protocols are different between CICS and native
environments. You must determine which protocol you plan to use and then
change your EGL linkage options parts and resource associations parts
accordingly.

– VAGen-generated programs for distributed CICS use environment variables to
control the runtime environment. EGL-generated Java programs use either
programName.properties or rununit.properties, depending on the value of the
genProperties build descriptor option. See “Runtime environment variables”
on page 390 for the correspondence between the VisualAge Generator
environment variables and the EGL runtime properties.

v The following CICS-specific special function words and service routines are not
supported in native environments:
– AUDIT (EGL sysLib.audit()) for writing a CICS journal entry. You can create

your own non-EGL program named AUDIT to write similar information to a
file for the native environment.

– EZEPURGE (EGL sysLib.purge()) for deleting a temporary storage queue.
You must remove references to sysLib.purge(). Alternatively, you can check

240 Rational Business Developer: VisualAge Generator to EGL Migration Guide

sysVar.systemType and only use sysLib.purge() when you are running in the
CICS for z/OS environment. If you use this technique, be sure to set the EGL
eliminateSystemDependentCode build descriptor option to YES.

– EZELOC (EGL sysVar.remoteSystemID) for setting the location of a remote
file, remote program, or the location at which a remote transaction is to be
started using CREATX (EGL sysLib.startTransaction()).

v CICS-specific resource associations are not supported in native environments.
You must change your resource associations part to use options that are
supported for EGL native environments. The following are CICS-specific
resource associations that are not supported for generation for a native
environment:
– CICS spool file.
– Transient data queue, including transient data queue with a trigger level of 1.
– Temporary storage queue.
– Local VSAM files, except for the AIX environment.

v The following CICS-supplied features are not supported in native environments:
– Security services.
– Database connection and retention.
– CICS file management, including the use of recoverable files.
– True segmentation support.
– Program management.

v The following differences occur when transferring between programs:
– For main programs other than Web transactions, the XFER statement in CICS

transfers to the next transaction ID. For native environments, the XFER
statement transfers to a program name. Therefore, all the EGL transfer to
transaction and show statements must be modified to specify the program
name.

– XFER or DXFR to non-VAGen programs is supported in the CICS
environment. For native environments, transfer and show are not supported
to non-EGL programs.

v The following commit and rollback differences occur:
– CICS supports a two-phase commit. Native environments support only a

single-phase commit.
– Files can be defined to CICS as recoverable files. This is not possible for

native environments.
– Message queues are committed or rolled back at the same time as other

resources in a CICS environment. Native environments support only a
single-phase commit so the message queues might not be committed or rolled
back simultaneously with SQL resources if a problem occurs during commit
or rollback.

v The following CALL CREATX (EGL sysLib.startTransaction()) differences occur:
– CALL CREATX starts another transaction in CICS and honors the parameters

prid and recip. EGL sysLib.startTransaction() starts another program for a
native environment and ignores the parameters prid and recip. As a minimum,
you must change sysLib.startTransaction() to specify a program name if you
generate for a native environment.

– CICS supports both local and remote CALL CREATX. EGL
sysLib.startTransaction() only supports starting a local program.

v SQL connection services using EZECONCT (EGL vgLib.connectionService()). In
VisualAge Generator, for the CICS environment, EZECONCT ignores the

Chapter 10. Language and runtime differences 241

password. In EGL, for native environments, vgLib.connectionService() uses the
password. See “Differences between generated C++ and generated Java” on page
243 for additional differences due to changing to Java generation.

v The following differences occur for the EZE special data word:
– EZEAPP (EGL sysVar.transferName). In VisualAge Generator, for the CICS

environment, when EZEAPP is used with an XFER statement, EZEAPP
contains the name of the new transaction to be started. In EGL, for native
environments, when sysVar.transferName is used with a transfer to
transaction or show statement, sysVar.transferName contains the name of the
new program to be started.

– EZEDEST (EGL recordName.resourceAssociation). In VisualAge Generator, for
the CICS environment, EZEDEST contains the system resource name
associated with a record while the program is running. In EGL, for native
environments, recordName.resourceAssociation also contains the system
resource name associated with a record. However, the format of the
information varies depending on the runtime environment and the file type.
Therefore, because you are changing both the runtime environment and the
file type, you must review any use of recordName.resourceAssociation to
ensure that the information provided by your program is correct for your
native environment and file type.

– EZEDESTP (EGL converseVar.printerAssociation). In VisualAge Generator,
for the CICS environment, EZEDESTP contains the destination associated
with the print file. In EGL, for native environments,
converseVar.printerAssociation also contains the file name associated with
the print file. However, the format of the information varies depending on the
runtime environment and the file type. Therefore, because you are changing
both the runtime environment and the file type, you must review any use of
converseVar.printerAssociation to ensure that the information provided by
your program is correct for your native environment and file type.

– EZELTERM (EGL sysVar.terminalID). In VisualAge Generator, for the CICS
environment, EZELTERM contains the CICS terminal identifier and is
equivalent to EZEUSR. In EGL, for native environments, sysVar.terminalID is
initialized from the user.name Java Virtual Machine system property. If this
property cannot be retrieved, sysVar.terminalID contains blanks.

– EZERCODE (EGL sysVar.returnCode). In VisualAge Generator, for the CICS
environment, the value in EZERCODE is not passed back to the system or
calling program. In EGL, for native environments, the value in EZERCODE is
ignored.

– EZERT8 (EGL sysVar.errorCode). In VisualAge Generator, for the CICS
environment, EZERT8 is in one of two forms:
- RSnnnnnn, where nnnnnn is a VAGen return code based on file access and

the problem that occurred.
- nnnnnnnn, where the first two characters are the hexadecimal

representation of the first byte of the EIBFN from the CICS EXEC interface
block. The remaining 6 characters contain the hexadecimal representation of
bytes 0-2 of the EIBRCODE from the CICS EXEC interface block.

In EGL, for native environments, the return code information varies based on
the file type. You should review your use of sysVar.errorCode to ensure that
the values you are checking are correct for your environment and file type.

– EZESEGTR (EGL sysVar.transactionID). In VisualAge Generator, for the CICS
environment, EZESEGTR is initialized to the current transaction ID and also
used to set a new transaction ID to take effect after a CONVERSE. EZESEGTR

242 Rational Business Developer: VisualAge Generator to EGL Migration Guide

can be used to control program logic. In EGL, for native environments,
EZESEGTR is ignored and cannot be used to control program logic.

– EZEUSR (EGL sysVar.sessionID). In VisualAge Generator for the CICS
environment, EZEUSR contains the CICS terminal identifier and is equivalent
to EZELTERM. In EGL, for native environments, sysVar.sessionID is
initialized from the user.name Java Virtual Machine system property. If this
property cannot be retrieved, sysVar.sessionID contains blanks.

– EZEUSRID (EGL sysVar.userID). In VisualAge Generator, for the CICS
environment, EZEUSRID contains the CICS user ID if the user is signed on to
the system; otherwise it contains blanks. In EGL, for native environments,
sysVar.userID is initialized from the user.name Java Virtual Machine system
property. If this property cannot be retrieved, sysVar.userID contains blanks.

Differences between generated C++ and generated Java
The following differences occur if you change from generated C++ to generated
Java:
v VAGen-generated C++ programs use environment variables to control the

runtime environment. EGL-generated Java programs use either
programName.properties or rununit.properties, depending on the value of the
genProperties build descriptor option. See “Runtime environment variables” on
page 390 for the correspondence between the VisualAge Generator environment
variables and the EGL runtime properties.

v Generated Java is not interoperable with VAGen generated C++ programs. An
EGL program that is generated for Java cannot transfer to or from a VAGen
program that is generated for C++. An EGL program that is generated for Java
can call a VAGen called batch program that is generated for C++.

v A call from a generated Java program to a native C++ or VAGen generated C++
program is always a remote call even if the programs are running on the same
workstation. Therefore, you must add a linkage options element for this
situation.

v In VAGen generated C++ programs, binary data is stored in Intel format
(reversed byte order). In EGL generated Java programs, binary data is not stored
in Intel format. The EGL conversion tables convert binary data that is passed on
calls between generated Java and generated C++ programs. However, you must
write a program to convert any binary data in files that were written by C++
programs before using the file in a generated Java program.

v For generated Java programs, the following name resolution rules for the
transfer or show statements apply:
– If the transfer or show statement explicitly specifies both the package name

and program name, this is the program that is used (for example: transfer
to program mypackage.program1).

– If the transfer or show statement explicitly specifies only the program name,
then the first of the following criteria that applies is used to resolve the
program name:
- The file containing the transfer or show statement explicitly imports the

package and program (for example: import mypackage.program1 and
transfer to program program1).

- The build descriptor option programPackageName points to the package
that contains the transfer-to program.

- The file containing the transfer or show statement imports a package that
contains the transfer-to program (for example: import mypackage.* and
transfer to program program1).

Chapter 10. Language and runtime differences 243

- The linkage options part used at generation includes a transferToProgram
or transferToTransaction entry for the transfer-from program that specifies
the transfer-to program and the package that contains it. For the show
statement, the transfer link entry must be in the form of a
transferToTransaction entry.

- The transfer-to program is in the same package as the transfer or show
statement.

– If the transfer or show statement uses sysVar.transferName and the
transfer-to program is in a different package, you must use a linkage options
part or the programPackageName build descriptor option to specify the
package that contains the transfer-to program.

v The following general differences occur:
– Resource association is done at runtime when using VisualAge Generator

generated C++ code. In EGL, you have the option to specify resource
association information at generation time and have it generated into the
properties file for you. Set the resourceAssociations build descriptor option to
point to your resource associations part.

– Set the genProperties build descriptor option to GLOBAL or PROGRAM.
Refer to the online help for details of these build descriptor options.

v The following differences occur for text forms:
– Blink is not supported for text forms.
– The isDecimalDigit property is only supported for character fields. It is

implemented as a software edit, not as a hardware attribute. Numeric fields
also have a software edit. See “Map fields and the numeric hardware
attribute” on page 83 for details.

– One of the values specified for the screenSizes property for a floating text
form must match one of the screenSize entries specified for the
@ScreenFloatingArea property for the FormGroup. Similarly, one of the
values specified for the formSize property for a floating print form must
match one of the pageSize entries specified for the @PrintFloatingArea
property for the FormGroup.

v For indexed records that have an alternate index record defined, the setting for
the DUP I/O error value differs from VisualAge Generator. For VisualAge
Generator, for a SET record SCAN followed by a SCAN or SCANBACK I/O
option, the DUP I/O error value is not set for the SET record SCAN statement.
The DUP I/O error value is set for each of the duplicate-keyed records other
than the last record retrieved with a duplicate key. For Java generation, a set
record position followed by a get next or get previous statement results in the
duplicate state being set on the set record position rather than on the first
duplicate-keyed record retrieved. The remaining duplicate-keyed records result
in the duplicate state being set the same way as in VisualAge Generator. The
EGL duplicate state is set on all records other than the first and last of the
duplicate-keyed records. See the online help for more information about indexed
records and alternate index records and their use with set record position, get
next, and get previous.

v The following differences occur for SQL:
– In VisualAge Generator, generated C++ uses either DB2 or ODBC. EGL debug

and Java generation use JDBC. This results in differences in both debug and
runtime. See “Differences in SQL support” on page 233 for details.

v The following differences occur for EZE special data words:
– EZECONVT (EGL sysVar.callConversionTable). In VisualAge Generator for

C++ generation, the conversion table names are in the format ELAxxyyy,

244 Rational Business Developer: VisualAge Generator to EGL Migration Guide

where xx indicates the system and yyy indicates the language. In EGL, for
Java generation, the conversion table names provided by EGL are in the
format CSOBxxxx, where CSO is a fixed prefix, B indicates the byte order of
the target system, and xxxx indicates the code page of the target system. Valid
values for B are X for Unix systems, I for Intel systems, and E for EBCDIC
systems. EGL automatically translates the ELA table names to CSO table
names for you so you do not need to change any code. However, EGL does
not provide the ability for you to create your own CSO conversion table.

– EZERCODE (EGL sysVar.returnCode). In VisualAge Generator, for C++
generation, EZERCODE is passed back to the system or calling program. If
the program ends abnormally, a VAGen return code is passed back rather
than the value in EZERCODE. In EGL, for Java generation, EZERCODE is
ignored.

Chapter 10. Language and runtime differences 245

246 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Part 7. Appendixes

© Copyright IBM Corp. 2004, 2011 247

248 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix A. Reserved words

VisualAge Generator migration tool extended reserved words
The VisualAge Generator migration tools rename data items, records, PSBs, maps,
and functions when they conflict with an EGL reserved word and provide error
messages when other parts conflict with an EGL reserved word. In fact, to avoid
name conflicts, the migration tool renames parts or issues error messages based on
an extended reserved word list. This list contains the following words:
v EGL reserved words (for example, program, sql, or YES)
v EGL part stereotypes (for example, SQLRecord, BasicProgram, or TextForm)
v EGL properties (for example, column or fieldLen)
v EGL exceptions (for example, AnyException or FileIOException)
v EGL enumeration names (for example, colorKind or signKind)
v EGL system library and system variable names (for example, sysLib and sysVar)
v EGL reserved records (for example, IO_PCBRECORD and DB_PCBRECORD)
v SQL reserved words (for example, authorization or doubleprecision
v Additional words that the migration tool uses for specific purposes (for example,

psb as the variable name of the PSBRecord for a program).

EGL reserved words
There are a large number of reserved words in EGL. The reserved words cannot be
used as part names. The migration tool renames functions, data items, records, and
maps if the part name is an EGL reserved word. The migration tool does not
rename tables, map groups, or programs. The following words are reserved in
EGL:

 Table 69. EGL reserved words

Letter Reserved words

A absolute, add, all, and, any, as

B bigInt, bin, bind, blob, boolean, by, byName, byPosition

C call, case, char, clob, close, const, continue, converse, current

D DataItem, DataTable, date, dbChar, decimal, decrement, delete, display, dli

E else, embed, end, escape, execute, exit, extends

F false, field, first, float, for, forEach, form, FormGroup, forUpdate, forward, freeSql, from, function

G get, goto, group

H handler, hex, hold

I if, implements, import, in, inOut, inParent, insert, int, interface, interval, into, is, isa

L label, languageBundle, last, library, like

M matches, mbChar, money, move

N new, next, nil, no, not, nullable, num, number, numc

O of, onEvent, onException, open, openUI, or, otherwise, out

P pacf, package, passing, prepare, previous, print, private, program

R record, ref, relative, replace, return, returning, returns

© Copyright IBM Corp. 2004, 2011 249

Table 69. EGL reserved words (continued)

Letter Reserved words

S scroll, self, service, set, show, singleRow, smallFloat, smallInt, sql, sqlCondition, stack, static, string

T this, time, timeStamp, to, transaction, transfer, true, try, type

U unicode, update, url, use, using, usingKeys, usingPCB

W when, where, while, with, wrap

Y yes

Note: EGL part names cannot start with EZE, the # symbol, or the @ symbol.

EGL enumeration words
VisualAge Generator has a fixed list of valid values for each property. EGL
provides an enumeration list that contains the valid values for the corresponding
property. For example, EGL stores the valid values for the align property in an
EGL enumeration called AlignKind. In addition, EGL permits the use of variables
and expressions for property values. When EGL resolves a property value, EGL
looks first for a variable by that name. If there is no variable by that name, then
EGL looks at the enumeration that corresponds to the property to validate the
property value. For example, in a form, if a variable field has the property align =
center, EGL looks first for a variable named center within the form. If there is no
variable named center within the form, EGL then uses AlignKind.center. Table 70
shows the EGL enumeration names, the list of valid values in the enumeration,
and the parts where the property is used in a way that can cause a collision
between variable names and the values in the enumeration.

In addition, there are several properties that can be set using EGL library constants
and variables. Table 71 lists the EGL properties that use EGL library constants and
variables for reference purposes. However, the migration tool only uses the EGL
library variables and constants that are indicated by an asterisk (*) in the table.

To avoid conflicts when you write new code, you can use one of the following
techniques:
v Avoid the use of variable names that match any of the list of valid values when

you are defining variables that might have a collision with that name.
v Always qualify the enumeration value for a property (for example, always

specify align = AlignKind.center).
v Qualify the enumeration value for a property whenever there is a conflict (for

example, specify align = AlignKind.center whenever there is a field named
center within a specific form).

The migration tool uses a combination of the three techniques, based on
anticipated frequency of use, the properties that the migration tool actually uses,
and migration performance considerations. To minimize the need to rename your
parts and variables, the migration tool does the following things:
v The tool always renames parts or variables named YES or NO because these are

EGL reserved words.
v The tool always renames parts or variables named PFn, where n is between 1

and 24. In effect, the migration tool treats these values as reserved words. This
improves the appearance of the helpKey and validationBypassKeys properties
for programs and forms without a migration performance impact.

250 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v Within a FormGroup, the migration tool does the following things:
– Always fully qualifies the deviceType property value. This improves

performance by avoiding the need to review all the field names in all the
forms within the FormGroup.

– Never uses the helpKey or validationBypassKeys properties because there
are no VAGen equivalent properties for a map group.

v Within a form, the migration tool only qualifies property values on the form if
one or more fields within the form is named the same as one of the enumeration
values, EGL constants, or EGL variables that can be used on a form. If there is a
conflict for any field on the form, the migration tool fully qualifies all property
values for all fields within the form with the corresponding enumeration or
library name.

v Within a VGUI record, the migration tool only qualifies property values in the
record if one or more fields within the record is named the same as one of the
enumeration values or EGL variables that can be used in a VGUI record. If there
is a conflict for any field in the record, the migration tool fully qualifies all
property values for all fields within the record with the corresponding
enumeration or library name.

v Within a PSBRecord, the migration tool always fully qualifies the pcbType
property.

v Within a program, the migration tool always fully qualifies the callInterface
property.

v The migration tool never qualifies property values within other part types
because there is no possibility of a conflict between a part name and the
enumeration values.

Note: Table 70 on page 251 and Table 71 on page 253 are for reference purposes.
Therefore, the tables include Library, ConsoleUI, JSFHandler, Service, and
Interface parts, which the migration tool never creates.

 Table 70. EGL enumerations

EGL enumeration
Valid values list which imposes
restrictions on variable names Parts with possible collision

AlignKind center, left, none, right Form

CallingConventionKind I4GL (lib is reserved for future use) Library

CaseFormatKind defaultCase, lower, upper ConsoleUI

ColorKind black, blue, cyan, defaultColor, green,
magenta, red, white, yellow

Note: black is only valid for
ConsoleUI

Form
ConsoleUI

ConvertDirection local, remote not applicable

DataSource databaseConnection, reportData,
sqlStatement

Report

DeviceTypeKind doubleByte, singleByte FormGroup

DisplayUseKind button, hyperlink, input, output,
secret, table

Any record used with a JSFHandler

DLICallInterfaceKind AIBTDLI, CBLTDLI Program

Appendix A. Reserved words 251

Table 70. EGL enumerations (continued)

EGL enumeration
Valid values list which imposes
restrictions on variable names Parts with possible collision

EventKind afterDelete, afterField, afterInsert,
afterOpenUI, afterRow, beforeDelete,
beforeField, beforeInsert,
beforeOpenUI, beforeRow,
menuAction, onKey

ConsoleUI

ExportFormat html, pdf, text, xml Report

HighlightKind blink, defaultHighlight, noHighlight,
reverse, underline

Form
ConsoleUI

IndexOrientationKind across, down Form

IntensityKind bold, defaultHighlight, dim, invisible,
normalIntensity

Form
ConsoleUI

LineWrapKind character, compress, word ConsoleUI

OrderingKind byKey, byInsertion, none Dictionary

OutlineKind bottom, left, right, top, box,
noOutline

Form

PCBKind TP, DB, GSAM PSBRecord

PfKeyKind pfn, where (1 <= n <=24) Form
FormGroup
Program

ProtectKind noProtect, protect, skipProtect Form

ScopeKind application, request, session Any record used with a
JSFHandler

SelectTypeKind index, value Any record used with a
JSFHandler

SignKind leading, none, parens, trailing Form
VGUI record
Any record used with a
 JSFHandler

UITypeKind hidden, input, inputOutput, none,
output, programLink, submit,
submitBypass, uiForm

VGUI record

WindowAttributeKind color, commentLine, errorLine,
formLine, highlight, intensity,
menuLine, messageLine, promptLine

ConsoleUI

252 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 71. EGL Enumerations that use sysLib constants and sysVar variables

EGL property EGL constants and variables (* = value used by migration tool)

Parts with
possible
collision

dateFormat v strLib.defaultDateFormat*

v strLib.eurDateFormat

v strLib.isoDateFormat

v strLib.jisDateFormat

v strLib.usaDateFormat

v vgVar.systemGregorianDateFormat*

v vgVar.systemJulianDateFormat*

Note: The migration tool only uses defaultDateFormat in DataItem and VGUI
record parts.

ConsoleUI
Form,
VGUI record

fillCharacter v strLib.nullFill* Form

timeFormat v strLib.defaultTimeFormat

v strLib.eurTimeFormat

v strLib.isoTimeFormat

v strLib.jisTimeFormat

v strLib.usaTimeFormat

Any record
used with a
JSFHandler

timeStampFormat v strLib.db2TimeStampFormat

v strLib.odbcTimeStampFormat

ConsoleUI

SQL reserved words
There are a large number of SQL reserved words that EGL does not permit in SQL
clauses. The migration tool renames functions, data items, records, PSBs, and maps
if the part name is an SQL reserved word. The migration tool does not rename
tables, map groups, or programs. The following words are reserved in SQL:

 Letter Reserved words

A absolute, action, add, alias, all, allocate, alter, and, any, are, as, asc, assertion, at, authorization, avg

B begin, between, bigint, binaryLargeObject, bit, bit_length, blob, boolean, both, by

C call, cascade, cascaded, case, cast, catalog, char, char_length, character, character_length,
characterLargeObject, characterVarying, charLargeObject, charVarying, check, clob, close, coalesce, collate,
collation, column, comment, commit, connect, connection, constraint, constraints, continue, convert, copy,
corresponding, count, create, cross, current, current_date, current_time, current_timestamp, current_user,
cursor

D data, database, date, dateTime, day, deallocate, dec, decimal, declare, default, deferrable, deferred, delete,
desc, describe, diagnostics, disconnect, distinct, domain, double, doublePrecision, drop

E else, end, endExec, escape, except, exception, exec, execute, exists, explain, external, extract

F false, fetch, first, float, for, foreign, found, from, full

G get, getCurrentConnection, global, go, goto, grant, graphic, group

H having, hour

I identity, image, immediate, in, index, indicator, initially, inner, input, insensitive, insert, int, integer,
intersect, into, is, isolation

J join

K key

Appendix A. Reserved words 253

Letter Reserved words

L language, last, leading, left, level, like, local, long, longint, lower, ltrim

M match, max, min, minute, module, month

N national, nationalCharacter, nationalCharacterLargeObject, nationalCharacterVarying,
nationalCharLargeObject, nationalCharVarying, natural, nchar, ncharVarying, nclob, next, no, not, null,
nullIf, number, numeric

O octet_length, of, on, only, open, option, or, order, outer, output, overlaps

P pad, partial, position, prepare, preserve, primary, prior, privileges, procedure, public

R raw, read, real, references, relative, restrict, revoke, right, rollback, rows, rtrim, runtimeStatistics

S schema, scroll, second, section, select, session, session_user, set, signal, size, smallint, some, space, sql,
sqlcode, sqlcondition, sqlerror, sqlstate, substr, substring, sum, system_user

T table, tablespace, temporary, terminate, then, time, timestamp, timezone_hour, timezone_minute, tinyint,
to, trailing, transaction, translate, translation, trim, true

U uncatalog, union, unique, unknown, update, upper, usage, user, using

V values, varbinary, varchar, varchar2, varGaphic, varying, view

W when, whenever, where, with, work, write

Y year

Z zone

SQL reserved words requiring special treatment
The following SQL reserved words require special treatment in EGL if they are
used as SQL table names or column names:
call, from, group, having, insert, order, select, set, union,
update, values, where

To use these SQL reserved words, use the following techniques:
v To specify the column property for an item in an SQLRecord, specify:

column = "\"reservedWord\""

For example:
column = "\"FROM\""

v To specify the tableNames property for an SQLRecord, specify:
tableNames = [["\"reservedWord2\""]]

For example:
tableNames = [["\"ORDER\""]]

v To use one of the reserved words as an SQL column name in the
defaultSelectCondition for a record, specify:
defaultSelectCondition = #sqlCondition{ "reservedWord" = ... }

For example:
defaultSelectCondition = #sqlCondition{ "FROM" = ... }

v To use one of the reserved words as an SQL column name in an SQL I/O
statement, specify:
... #sql{ select "reservedWord" from "reservedWord2" } ...

For example:
... #sql{ select "FROM" from "ORDER" } ...

254 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Java reserved words
Java has reserved words that cannot be used for the package names. If you are
generating Java, you may want to avoid using these names:

 Letter Reserved word

A abstract

B boolean, break, byte

C case, catch, char, class, const, continue

D default, do, double

E else, extends

F false, final, finally, float, for

G goto

I if, implements, import, instanceof, int, interface

L long

N native, new, null

P package, private, protected, public

R return

S short, static, super, switch, synchronized

T this, throw, throws, transient, true

V void, volatile

W while

Appendix A. Reserved words 255

256 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix B. Relationship of VisualAge Generator and EGL
language elements

The tables in this appendix have 3 columns:
v VisualAge Generator 4.5 -- this column shows the VAGen language element. In

the sections related to part type, the organization of the tables and the
terminology used correspond to the VAGen user interface. The tables for
statements, EZE words, and service routines are organized based on the type of
statement, EZE word, or service routine.

v EGL produced by the migration tool -- this column shows the corresponding
EGL language element. This column only shows the information needed for
migration and is not intended to be the complete EGL syntax. Additional
properties, values, and options might be available for certain EGL language
elements. For example, the EGL set statement provides additional options that
are not available in VisualAge Generator. The only set statement options listed
in these tables are the ones that correspond to VAGen language elements. Use
this column as a guide for finding more detailed information in the EGL
documentation.

v Migration tool considerations -- this column contains additional information
about how the migration tool handles the conversion from VisualAge Generator
to EGL. It also provides references to the sections on ambiguous situations,
where necessary, to provide details about migration with and without the
associated part and the potential problems that can occur when migrating the
VAGen language element.

For each part type, the first row in the first table of the section provides:
v VisualAge Generator 4.5 - an overview of the information you can specify in

various windows for the part type in VisualAge Generator.
v EGL — the overall EGL syntax for the corresponding EGL part type, using the

syntax that the migration tool uses. Other variations of the syntax might be
possible. For example, when migrating a VAGen table, the migration tool always
places the DataTable contents after the DataTable structure so that is the syntax
shown in the Tables section. EGL syntax also permits the DataTable contents to
be placed before the DataTable structure.

The following syntax is used in the tables:
v | - choice of a few options. The order of the choices is the same in both the

VisualAge Generator 4.5 and the EGL columns.
v bullet list - choice of a longer list of options or values. The order of the choices

is the same in both the VisualAge Generator 4.5 and the EGL columns.
v italics - values that the migration tool fills in when migrating from VisualAge

Generator or that you fill in when writing new EGL statements.
v bold - EGL key words and symbols that must be specified as shown.
v { } - encloses information that can be repeated 0 to n times.
v { } - encloses an EGL property list; properties are always separated by commas.
v [] - encloses optional information.
v [] - encloses an EGL list of values; values are always separated by commas

© Copyright IBM Corp. 2004, 2011 257

General syntax conventions
There are some differences in the overall syntax of VisualAge Generator and EGL.

 Table 72. General syntax conventions

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Comments are specified in the
following formats:

v Prologs for programs, tables, and
records.

v Descriptions for items and
functions.

v Comments within functions are
indicated by:

– a semicolon (;). Everything on
the same line after the
semicolon is treated as a
comment.

– /*. Everything on the same
line after the /* is treated as a
comment.

Comments are specified in the
following formats:

v // indicates a line comment.
Everything on the same line after
the // is treated as a comment. The
comment is only for one line.

v /* comment */. Everything after the
/* is treated as a comment until the
next */. The comment can span
multiple lines.

The migration tool converts in the
following way:

v Prologs and part descriptions are
converted to EGL // line comments.

v Descriptions for items used as fields
in records, tables, maps, function
local storage, function parameters,
or function return values are
converted to EGL // line comments.

v Comments within functions are
converted to /* comment */

v Informational comments added by
the migration tool are in the form of
EGL // line comments.

Decimal point can be either a
period or a comma depending on
your locale.

Decimal point during development is
always the period. Generation and
runtime use either a period or a
comma depending on the runtime
locale and the decimalSymbol and
symbolSeparator build descriptor
options.

During migration, if your locale uses
the comma for the decimal point by
default or if you select the Migration
Syntax Preference Convert decimal
comma to decimal point, the
migration tool converts the comma to
a period.

Properties are entered in
specialized editors using check
boxes, drop-down lists, and so on.

Properties are entered in a text editor
and must be separated by a comma.

There are a few specialized editors
such as the Source Assistant for
DataItem parts and the EGL Form
Editor for form parts.

No special considerations.

Lists of values are entered in
specialized editors. For example,
the table names for an SQL record
are entered in the SQL Row
Properties window.

Lists of values must be enclosed in
square brackets [].

No special considerations.

Property values that reference
other parts are entered in
specialized editors. For example,
the Edit routine for a map variable
field is entered on the Edits page
of the Variable Field Properties
window.

Property values that refer to other
parts or variables that must be in the
naming scope for the current part are
not enclosed in quotes (for example,
the keyItems property in an SQL
record). Property values that refer to
other parts or variables that can be
outside the naming scope for the
current part must enclosed in double
quotes (for example, the
recordNumItem property for a relative
record).

No special considerations.

258 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 72. General syntax conventions (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Resolution of names within
statements is context sensitive and
is based on the statement type.

Resolution of names within statements
always follows the same rules
regardless of the statement type.

No special considerations. Most
differences in name resolution result in
EGL validation messages in the
Problems view. If a message occurs,
see “Reference information for
messages - name resolution and
qualification rules” on page 450.

Data item
The data item section is organized into the following tables:
v Data item - general syntax, data type, length, decimals, and description, Table 73

on page 259
v Default map properties and User Interface properties - general information,

Table 74 on page 261
v Default map properties and User Interface properties - general edits, Table 75 on

page 261
v Default map properties and User Interface properties - numeric edits, Table 76

on page 263
v Default map properties and User Interface properties - error messages, Table 77

on page 264
v User Interface properties - label and help, Table 78 on page 265

Note: In EGL, there is only one set of edit and message properties for a DataItem
part. The migration tool merges the map and UI properties for the data
item.

 Table 73. Data item — general syntax, data type, length, decimals, and description

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen data item part:

v itemName

v Basic information:

– Data type

– Length

– Decimals

– Description

v Default Map Properties

v User Interface (UI) Properties

EGL syntax example:

// Description
DataItem itemName
 dataType(lengthInformation)
 { [{formattingProperties}]
 [{validationProperties}]
 [{JSFHandlerFieldProperties}]
 }
end

The migration tool uses the VAGen
data type, length, and decimals to
determine the EGL dataType and
lengthInformation.

The migration tool merges the VAGen
default map properties and the UI
properties into the single set of EGL
formatting, validation, and JSFHandler
field properties.

Appendix B. Relationship of VisualAge Generator and EGL language elements 259

Table 73. Data item — general syntax, data type, length, decimals, and description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Character item types:

v Char

v Hex

v DBCS

v Mixed

v Unicode (VisualAge for Java
only)

Length is the number of
characters. In the record editor you
can also show the number of
bytes.

Corresponding character item types:

v CHAR

v HEX

v DBCHAR

v MBCHAR

v UNICODE

Length is the number of characters.

The migration tool converts character
data items to the corresponding type
and length.

Numeric character (zoned decimal)
types:

v Num

v Numc

Length is the total number of
digits, with a maximum of 18.
Decimals is the number of digits
to the right of the decimal point.
In the record editor, you can also
show the number of bytes.

Corresponding numeric types:

v NUM

v NUMC

Precision is the total number of digits.
Scale is the number of digits to the
right of the decimal point.

The maximum precision for NUM
fields is 32 for debug and Java
generation or 31 for COBOL
generation. The maximum precision for
NUMC fields is 18.

The migration tool converts to the
corresponding type, precision, and
scale. The migration tool omits the
scale if decimals is 0.

Packed decimal types:

v Pacf

v Pack

Length is the total number of
digits, with a maximum of 18.
Decimals is the number of digits
to the right of the decimal point.
The length for Pacf must be odd
or 18. The length for Pack can be
odd or even. Except for a length of
18, even lengths are recorded
within the data item definition,
but are treated as the next higher
odd length for test, generation,
and in the Data Item and Record
editors. Only the SQL Record
editor shows the even lengths and
only SQL records support even
length for test and generation. The
even length is only used in SQL
WHERE clauses and in SQL
functions that use the Execution
time statement build option. In the
record editor you can also show
the number of bytes.

Corresponding numeric types:

v PACF

v DECIMAL

Precision is the total number of digits.
Scale is the number of digits to the
right of the decimal point.

The maximum precision for PACF
fields is 18. The maximum precision
for DECIMAL fields is 32 for debug
and Java generation or 31 for COBOL
generation.

The length for PACF must be odd or
18. The length for DECIMAL fields can
be odd or even. Even lengths are
supported for DataItem part
definitions and all record types.

At test and generation, if you use
VisualAge Generator compatibility
mode, EGL does the following things
for DECIMAL items with even
precision:

v Increases the precision by one in all
records.

v EGL uses a temporary variable with
the even precision in SQL WHERE
clauses or PREPARE statements.

The migration tool converts to the
corresponding type, precision, and
scale. The migration tool omits the
scale if decimals is 0. For a Pack item,
if an even length was recorded in the
DataItem part definition, by default
the migration tool migrates it as the
even length.

If you select the Do not honor
evensql=y for items or variables
migration preference, the migration
tool automatically uses odd precision
for a Pack item (or 18 if the item is the
maximum length) and issues a
warning message for the affected data
item part or nonshared record item.

260 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 73. Data item — general syntax, data type, length, decimals, and description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Binary item types:

v Bin, length 4, no decimals

v Bin, length 9, no decimals

v Bin, length 18, no decimals

v Bin, length 4, 9, or 18 with
decimals

Corresponding binary types:

v SMALLINT (no precision or scale)

v INT (no precision or scale)

v BIGINT (no precision or scale)

v BIN with precision and scale

The migration tool converts binary
data items to the corresponding type
based on the length and number of
decimals. The BIN type is only used if
decimals (scale) is specified.

Description Not applicable. The migration tool converts the item
description to a comment that
precedes the DataItem definition.

 Table 74. Default map properties and User Interface properties - general information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Data items can have both default
map properties and user interface
(UI) properties specified. The
following kinds of properties are
supported:

v formatting edits

v validation edits

v error messages

UI properties also include a label
and help text.

Explicitly setting some properties
in VisualAge Generator
automatically causes other
properties to be set. For example,
setting numeric separator also
explicitly sets fill character, input
required, justify, currency symbol,
and sign.

DataItem parts can have the following
kinds of properties:

v formatting properties

v validation properties

v JSFHandler field properties

The categories for some properties are
changed from VisualAge Generator.
For example, error messages are
grouped with the validation properties.
JSFHandler field properties include the
UI label and help text. The EGL
column in the following tables shows
the category for the EGL property.

The migration tool merges the default
map properties and UI properties,
giving precedence to the UI properties.
Validation edits and their associated
error messages are migrated as a pair.
The migration tool only migrates
properties that were explicitly set in
VisualAge Generator. The tool does not
automatically insert default values for
EGL properties. See information about
Merging map and UI edits in “Shared
edits and messages” on page 67 for
details and potential problems.

Also see information about map item
edits for shared data items in “Map
edit routine for shared data items” on
page 68 for details and potential
problems.

 Table 75. Default map properties and User Interface properties - general edits

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit type (UI only) - values:

v None

v Boolean

v Date

v Time

EGL supports multiple properties:

v not applicable

v isBoolean = yes

v dateFormat = defaultDateFormat

v timeFormat = "HH:mm:ss"

(formatting properties)

No special considerations.

Edit function (UI only) validatorFunction
(validation property)

No special considerations.

Edit table (UI only) validatorDataTable
(validation property)

No special considerations.

Run edit function on Web (UI
only)

runValidatorFromProgram The EGL property is the reverse of the
VAGen property. The migration tool
converts yes to no and no to yes.

Appendix B. Relationship of VisualAge Generator and EGL language elements 261

Table 75. Default map properties and User Interface properties - general edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit routine (map only) validatorFunction
OR
validatorDataTable
(validation property)

If the UI edit function and edit table
are not specified, the migration tool
sets the EGL property in the following
way:

v Sets the validatorFunction property
if the map edit routine is EZEC10 or
EZEC11.

v Sets the validatorFunction property
if the edit routine is a function.

v Sets the validatorDataTable
property if the edit routine is a
table.

If the UI edit function or edit table are
specified, the migration tool does not
migrate the map Edit routine.

Special considerations apply if the edit
routine is not available during
migration. See information about map
edit routines in “Map edit routine for
shared data items” on page 68 for
additional details and potential
problems.

Justify - Left | Right | None
(map only)

Note:

v For map items, the default is
right for numeric fields and left
for all other fields.

v For UI items, justify is not
supported.

align = left | right | none
(formatting property)

Note:

v For form fields, the default is right
for numeric fields and left for all
other fields.

v For JSFHandler fields and VGUI
record fields, align is not supported.

No special considerations.

Date edit mask (map only)

The following values are valid:

v SYSGREGRN

v SYSJULIAN

v dateEditPattern

dateFormat = value

The following values are valid:

v systemGregorianDateFormat

v systemJulianDateFormat

v "dateEditPattern"

(formatting property)

Note: In the dateEditPattern, the
migration tool converts to the
following EGL notation:

v yy or yyyy indicates the year.

v MM indicates the month.

v dd indicates the day of the month.

v DDD indicates the day of the year.

If the UI edit type does not specify
Date, the migration tool sets the
dateFormat based on the Date edit
mask specified in VisualAge Generator,
if any. If the UI edit type specifies
Date, the migration tool does not
migrate the map Date edit mask.

Minimum input minimumInput
(validation property)

No special considerations.

262 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 75. Default map properties and User Interface properties - general edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Fill character

Note:

v The default fill character for
items used in a UI record is
blank for character, MIXED, and
numeric fields. The default fill
character is zero for hex fields.
Blank is the required fill
character for DBCS and Unicode
fields. Null is not a valid fill
character.

v The default fill character for
items used on a map is null for
character, DBCS, or MIXED
fields. The default fill character
is blank for numeric fields and
zero for hex fields.

fillCharacter
(formatting property)

Note:

v The same default fillCharacter is
used for JSFHandler fields, form
fields, and VGUI record fields unless
overridden in the specific page,
form, or VGUI record.

v strLib.nullFill is the EGL constant
for the null fill character.
Alternatively, use "" (two
consecutive double quotes).

v Non-blank characters are permitted
for UNICODE fields in a VGUI
record.

The migration tool converts N to one
of the following values:

v N for a UI fill character

v nullFill for a map field character

Special considerations apply because
there is only one default fill character
in EGL. See information about
ambiguous data items and fill
characters in “Fill characters for shared
data items” on page 70 for details and
potential problems.

Fold upperCase
(formatting property)

No special considerations.

Hex edit (map only) isHexDigit
(validation property)

No special considerations.

Input required inputRequired
(validation property)

No special considerations.

Check SO/SI space needsSOSI
(validation property)

No special considerations.

 Table 76. Default map properties and User Interface properties - numeric edits

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Minimum value and Maximum
value

Note: If either Minimum value or
Maximum value is specified, both
must be specified.

validValues = [[minimumValue,
maximumValue]]
(validation property)

Note: Multiple pairs of values and
single values can be listed in the
validValues property.

The migration tool combines the
minimum and maximum value into the
EGL validValues property.

Appendix B. Relationship of VisualAge Generator and EGL language elements 263

Table 76. Default map properties and User Interface properties - numeric edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Sign - None | Leading | Trailing

Note:

v The default sign for numeric
items in a UI record is Leading.

v The default sign for numeric
items on a map is None.

sign = none | leading | trailing
(formatting property)

Note: The default sign for a numeric
field is always leading.

For a numeric field, the migration tool
migrates based on the first of the
following criteria that applies:

v If the UI sign edit is specified, the
tool migrates to the corresponding
sign property.

v If a UI edit type of date, time, or
Boolean is specified, the tool sets the
sign property to none.

v If there are any other UI edits
specified, the tool sets the sign
property to leading.

v If the map sign edit is specified, the
tool migrates to the corresponding
sign property.

v If the map sign edit is not specified,
the tool sets the sign property to
none .

Currency (both map and UI)
Currency symbol (UI only)

currency = yes | no |
currencySymbol = "symbol"
(formatting property)

Note:

v The currencySymbol also applies to
forms.

v If currency = yes, but the
currencySymbol is not specified;
the actual currency symbol used at
runtime is set the same way it is in
VisualAge Generator.

The migration tool migration tool
migrates based on the first of the
following criteria that applies:

v If the UI Currency symbol is
specified, the tool migrates to
currency = yes, currencySymbol =
"symbol".

v If the UI Currency edit is set to yes
or no, the tool sets the currency
property to yes or no, respectively.

v If the map Currency edit is set to yes
or no, the tool sets the currency
property to yes or no, respectively.

Separator numericSeparator
(formatting property)

No special considerations.

Zero edit zeroFormat
(formatting property)

No special considerations.

 Table 77. Default map properties and User Interface properties - error messages

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit table (UI only) validatorDataTableMsgKey
(validation property)

No special considerations.

EZE function (UI only) validatorFunctionMsgKey
(validation property)

No special considerations.

264 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 77. Default map properties and User Interface properties - error messages (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit routine (map only) validatorDataTableMsgKey
OR
validatorFunctionMsgKey
(validation properties)

Special considerations apply. See
“Shared edits and messages” on page
67 for details on how the migration
tool determines whether to migrate the
map edit routine message. If the
migration tool migrates the map edit
routine message, the tool sets the EGL
property in the following way:

v Sets validatorFunctionMsgKey if the
edit routine is EZEC10 or EZEC11.

v Sets validatorDataTableMsgKey if
the edit routine is a table.

v Does not migrate the edit routine
message if the edit routine is a
function because the message is not
used in this situation in VisualAge
Generator.

Special considerations apply. See
information about ambiguous data
items and map edit routines in “Map
edit routine for shared data items” on
page 68 for additional details and
potential problems.

Minimum input minimumInputMsgKey
(validation property)

No special considerations.

Input required inputRequiredMsgKey
(validation property)

No special considerations.

Data type typeChkMsgKey
(validation property)

No special considerations.

Numeric range validValuesMsgKey
(validation property)

No special considerations.

 Table 78. User Interface properties - label and help

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

UI label displayName
(JSFHandler field property)

No special considerations.

Help text help
(JSFHandler field property)

No special considerations.

Record
The record section is organized into the following tables:
v Record - general syntax, record type, properties, and prolog, Table 79 on page

266
v Record - record structure for most record types, Table 80 on page 268
v Record - SQL properties and SQL record structure, Table 81 on page 270
v Record - DL/I properties and DL/I record structure, Table 82 on page 274
v Record - UI record properties and UI record structure, Table 83 on page 276
v Record - UI item properties - general, Table 84 on page 277

Appendix B. Relationship of VisualAge Generator and EGL language elements 265

v Record - UI item properties - edits, Table 85 on page 278
v Record - UI item properties - error messages, Table 86 on page 279
v Record - UI item properties - help, Table 87 on page 279
v Record - UI item properties - submit, Table 88 on page 280
v Record - UI item properties - program link, Table 89 on page 280

Note: The migration tool always converts VAGen records to EGL structured
Record parts.

 Table 79. Record - general syntax, record type, properties, and prolog

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen record part:

v recordName

v Basic information

– Record type

– Record structure (item list)

v Properties (vary based on record type)

v Prolog

Note: The record structure can be given
by specifying an alternate specification
record or by including the item list.

EGL record example:

//*** Record=recordName***
// prolog
//*******************
Record recordName type recordType
 { [recordProperties] }
 recordStructure
end // end recordName

Note: The record structure can be
given by specifying an embed keyword
or by including the item list.

No special considerations.

Record types:

v Working Storage

v Redefined

v Serial

v Indexed

v Relative

v Message Queue

v SQL Row

v User Interface

v DL/I Segment

EGL Record types:

v BasicRecord

v BasicRecord

v SerialRecord

v IndexedRecord

v RelativeRecord

v MQRecord

v SQLRecord

v VGUIRecord

v DLISegment

The migration tool migrates a
redefined record to a
BasicRecord. The tool includes
a comment with the record
definition to provide the name
of the record that was
redefined. Special
considerations apply for
redefined records. See the
information in “Redefined
records” on page 70 for details
and potential problems.

Working storage record properties:

v Alternate specification

BasicRecord properties:

v embed keyword

The migration tool migrates an
alternate specification to the
embed keyword.

266 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 79. Record - general syntax, record type, properties, and prolog (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Redefined record properties:

v Redefinition

Note: The Redefinition property specifies
the name of another record that provides
the physical storage. The current record
provides a different data item layout of
the same physical storage.

BasicRecord properties:

v Not applicable. Redefinition
information is only specified in
programs that use the record. The
same record can be used as a
redefinition of another record or as a
normal record.

The migration tool includes a
comment with the record
definition to provide the name
of the record that was
redefined.

The migration tool also
includes the redefines property
on the declaration statement
for the record in programs that
use the record.

Special considerations apply
depending on how the record
is used in the program and on
whether the record is available
during migration. See the
information in “Redefined
records” on page 70 for details
and potential problems.

Serial record properties:

v File name

v Alternate specification

v Variable length item

v Occurrences item

serialRecord properties:

v fileName

v embed keyword

v lengthItem

v numElementsItem

The migration tool migrates an
alternate specification to the
embed keyword.

Indexed record properties:

v File name

v Record ID

v Alternate specification

v Variable length item

v Occurrences item

indexedRecord properties:

v fileName

v keyItem

v embed keyword

v lengthItem

v numElementsItem

The migration tool migrates an
alternate specification to the
embed keyword.

Relative record properties:

v File name

v Record ID

v Alternate specification

relativeRecord properties:

v fileName

v recordNumItem

v embed keyword

The migration tool migrates an
alternate specification to the
embed keyword.

Message Queue record properties:

v File name

v Alternate specification

v Include message in transaction

v Open queue for exclusive use on input

v Record length item

v Occurrences item

v Queue descriptor record

v Open options record

v Message descriptor record

v Get options record

v Put options record

mqRecord properties:

v queueName

v embed keyword

v includeMsgInTransaction

v openQueueExclusive

v lengthItem

v numElementsItem

v queueDescriptorRecord

v openOptionsRecord

v msgDescriptorRecord

v getOptionsRecord

v putOptionsRecord

The migration tool migrates an
alternate specification to the
embed keyword.

SQL row record properties:

v See Table 81 on page 270.

SQL row record properties:

v See Table 81 on page 270.

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 267

Table 79. Record - general syntax, record type, properties, and prolog (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

DL/I segment record properties:

v See Table 82 on page 274.

DL/I segment record properties:

v See Table 82 on page 274.

No special considerations.

UI record properties:

v See Table 83 on page 276.

UI record properties:

v See Table 83 on page 276.

No special considerations.

Prolog Not applicable. The migration tool converts the
prolog to a comment that
precedes the record definition.

 Table 80. Record - record structure for most record types

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 1:
Alternate specification. If RecordA
specifies an alternate specification
of RecordB, RecordB provides all
the items for RecordA. There is no
item structure in RecordA.

If RecordB contains level 77 items,
RecordA only contains the
non-level 77 items from RecordB.

Record structure - variation 1: The EGL
embed keyword specifies the record
that provides the field structure for the
current record. RecordA embeds
RecordB. For example:

embed RecordB;

The migration tool migrates an
alternate specification to the embed
keyword

Special considerations apply for level
77 items in working storage records.
See information in “Level 77 items in
records” on page 71 for details and
potential problems.

Record structure - variation 2 with
Shared Items:

v itemName

v Occurs

v Shared

v levelNumber is hidden, but it is
based on the data item hierarchy
within the record.

Note: Type, Length, Decimals and
Description are visible in the
Record Editor, but are not stored in
the record.

Record structure - variation 2 with
EGL type definitions example:

levelNumber itemName
 itemName [occurs];

Note: Type, Length, Decimals and
Description are not visible in the editor.

If you select the Convert shared data
items to primitive item definitions
migration syntax preference, and the
data item part is available, the
migration tool converts the shared
item to an EGL variable that is
defined using a primitive type
definition based on the type, length,
and decimals specified for the data
item part. Migration of type, length,
and decimals information is the same
as described in Table 73 on page 259.

If you clear the Convert shared data
items to primitive item definitions
migration syntax preference, or the
data item part is not available, the
migration tool converts the shared
item to an EGL variable that is
defined using a type definition. For
migration, the type definition is
always the same as the item name.

The migration tool omits the occurs
information if occurs is 1.

Special considerations apply for level
77 items in working storage records.
See information in “Level 77 items in
records” on page 71 for details and
potential problems.

268 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 80. Record - record structure for most record types (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 2 with
Nonshared Items:

v itemName

v Occurs

v Type

v Length

v Decimals

v Nonshared

v Description

v levelNumber is hidden, but is
based on the data item hierarchy
within the record.

Note: Type, Length, Decimals and
Description are stored with the
item in the record.

Record structure - variation 2 with
EGL primitive types example:

levelNumber itemName
 dataType(lengthInformation)
 [occurs];
 // Description

Note: Type, Length, Decimals and
Description are visible in the editor.

The migration tool converts a
nonshared item to an EGL variable
that is defined using a primitive type.
Migration of type, length, and
decimals information is the same as
described in Table 73 on page 259.

The migration tool omits the occurs
information if occurs is 1.

Special considerations apply for level
77 items in working storage records.
See information in “Level 77 items in
records” on page 71 for details and
potential problems.

Appendix B. Relationship of VisualAge Generator and EGL language elements 269

Table 81. Record - SQL properties and SQL record structure

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SQL record properties:

v Default key item

v Alternate specification

v SQL tables:

– Label

– Name

Note:

v If a record does not specify an
alternate specification, the key
items are the items in the record
structure that specify key=yes.
The Default key item is ignored.

v If a record specifies an alternate
specification, the key items are
the Default key item in the
current record merged with the
items in the alternate
specification record that specify
key=yes. The keys are merged in
the order in which the items
appear in the record structure. If
the Default key item in the
current record is also specified
as key=yes in the alternate
specification record, the item is
only included once in the
merged list of keys.

v SQL table names can be an
actual table name (normal
situation) or a table name host
variable that is substituted at
run time. Table name host
variables start with a semicolon
(:).

SQLRecord properties:

v keyItems

v embed keyword

v tableNames or tableNameVariables
or both

Note:

v The keyItems property is a list of all
keys for the record. key=yes is not
specified for items in the record
structure.

v The tableNames property is a list of
the table names and table labels
when the table name is not a host
variable. The tableNameVariables
property is a list of the table names
and table labels when the table
name is a host variable that is
substituted at run time. The table
names in the tableNameVariables
property do not start with a
semicolon. The tableNames and
tableNameVariables properties can
both be used in the same record
definition.

The migration tool builds the
keyItems property in the following
way:

v If the VAGen alternate specification
is not specified, the tool uses any
items from the record structure that
specify key=yes, but does not
include the VAGen default key
item.

v If the VAGen alternate specification
is specified, the tool merges any
items from the alternate
specification record that specify
key=yes and the default key item
from the current record. The keys
are listed in the same order as the
items appear in the record
structure. If the default key item
from the current record is the same
as one of the key items from the
alternate specification record, the
item is only included once in the
keyItems properties.

The migration tool builds the lists for
the tableNames and
tableNameVariables properties in the
following way:

v tableNames is built from the table
names and table labels when the
table name is not a host variable.

v tableNameVariables is built from
the table names and table labels
when the table name is a host
variable.

Special considerations apply. See
information about SQL alternate
specification in “Alternate
specification records” on page 72 for
details and potential problems.

270 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 81. Record - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SQL Default Conditions:

v whereClauseText

Note:

v The SQL default conditions
enable you to specify a WHERE
clause, most typically for join
conditions when multiple tables
are used in the SQL row record.
The syntax is SQL syntax.

v !itemColumnName variables are
permitted. These variables
specify the name of an item in
the SQL row record. At test or
generation time, VisualAge
Generator substitutes the
corresponding SQL column
name.

Example of default selection
conditions:

defaultSelectCondition =
 #sqlCondition{
 whereClauseText
 }

Note:

v The defaultSelectCondition
property is used for the same
purpose as in VisualAge Generator.

v !itemColumnName variables are not
supported. Actual SQL column
names must be used.

The migration tool converts any
!itemColumnName variables to their
corresponding SQL column name.

Special considerations apply. See
information about SQL alternate
specification in “Alternate
specification records” on page 72 for
details and potential problems.

Record structure - variation 1:
Alternate specification. If RecordA
specifies an alternate specification
of RecordB, RecordB provides all
the items for RecordA. There is no
item structure in RecordA.

Record structure - variation 1: The EGL
embed keyword specifies the record
that provides the field structure for the
current record. RecordA embeds
RecordB. For example:

embed RecordB;

The migration tool migrates an
alternate specification to the embed
keyword.

Appendix B. Relationship of VisualAge Generator and EGL language elements 271

Table 81. Record - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 2 with
Shared Items:

v itemName

v Read Only

v Key

v SQL Column Name

v SQL Code

v Shared

Note:

v Type, Length, Decimals and
Description are visible in the
Record Editor, but are not stored
in the record.

v Level numbers are never used in
SQL records.

v The SQL Code is not included in
the External Source Format for
pack and binary fields. If the
SQL Code is not included in the
External Source Format for char,
dbchar, or unicode fields, the
field is treated as a fixed length
field. This only occurs for
records that were migrated from
earlier releases of VisualAge
Generator and never modified
using VisualAge Generator 4.5.

Record structure - variation 2 with
EGL type definitions example:

levelNumber itemName itemName
 { [sqlDataCode=sqlCodeNumber]
 [column="SQLColumnName"]
 [isReadOnly=yes]
 [isSQLNullable = yes]
 [sqlVariableLen = yes] };

Note:

v Type, Length, Decimals and
Description are not visible in the
editor.

v Level numbers are optional in SQL
records. If level numbers are
included, the SQL record is a
structured record. If level numbers
are not included, the SQL record is
not a structured record.
Non-structured records permit the
use of the EGL data types of BLOB,
CLOB, and STRING. However, other
behavior of non-structured records is
not compatible with VAGen
behavior.

If you select the Convert shared data
items to primitive item definitions
preference, and the data item part is
available, the migration tool does the
following things:

v Converts the shared item to an EGL
variable that is defined using a
primitive definition based on the
type, length, and decimals specified
for the data item part as described
in Table 73 on page 259.

v Includes the sqlDataCode property
for hex items.

v Sets the sqlVariableLen property to
YES for CHAR, DBCHAR, or
UNICODE fields if the VAGen SQL
data code indicates the item is
variable length. The migration tool
omits the sqlVariableLen property
if the VAGen SQL data code
indicates the item is fixed length.

If you clear the Convert shared data
items to primitive item definitions
preference, or the data item part is not
available, the migration tool does the
following things:

v Converts the shared item to an EGL
variable that is defined using a type
definition. For migration, the type
definition is always the same as the
item name.

v Includes the sqlDataCode property
if it is included in the External
Source Format and is not one of the
values for VAGen binary or packed
fields.

v Sets the sqlVariableLen property to
YES if the VAGen SQL data code
indicates the item is variable length.
The migration tool omits the
sqlVariableLen property if the
VAGen SQL data code indicates the
item is fixed length.

The migration tool does the following
things:

v Includes any key=yes items in the
EGL keyItems property for the
SQLRecord.

v Always adds a level number to
items in the SQLRecord so that the
record is a structured record. This
preserves VAGen behavior.

272 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 81. Record - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 2 with
Nonshared Items:

v itemName

v Type

v Length

v Decimals

v Read Only

v Key

v SQL Column Name

v SQL Code

v Nonshared

v Description

Note:

v Type, Length, Decimals and
Description are stored with the
item in the record.

v Level numbers are never used in
SQL records.

v The SQL Code is not included in
the External Source Format for
pack and binary fields. If the
SQL Code is not included in the
External Source Format for char,
dbchar, or unicode fields, the
field is treated as a fixed length
field. This only occurs for
records that were migrated from
earlier releases of VisualAge
Generator and never modified
using VisualAge Generator 4.5.

Record structure - variation 2 with
EGL primitive types example:

levelNumber itemName
 dataType(lengthInformation)
 // Description
 { [sqlDataCode=sqlCodeNumber]
 [column="SQLColumnName"]
 [isReadOnly=yes]
 [isSQLNullable = yes]
 [sqlVariableLen = yes] };

Note:

v Type, Length, Decimals and
Description are visible in the editor.

v Level numbers are optional in SQL
records. If level numbers are
included, the SQL record is a
structured record. If level numbers
are not included, the SQL record is
not a structured record.
Non-structured records permit the
use of the EGL data types of BLOB,
CLOB, and STRING. However, other
behavior of non-structured records is
not compatible with VAGen
behavior.

The migration tool converts the
nonshared item to an EGL variable
that is defined using a primitive type.
Migration of type, length, and
decimals information is the similar to
what is described in Table 73 on page
259.

The migration tool includes the
sqlDataCode property only for hex
items.

The migration tool sets the
sqlVariableLen property to YES for
CHAR, DBCHAR, and UNICODE
data items if the VAGen SQL data
code indicates the item is variable
length. The migration tool omits the
sqlVariableLen property if the VAGen
SQL data code indicates that the item
is fixed length.

The migration tool does the following
things:

v Includes any key=yes items in the
EGL keyItems property for the
SQLRecord.

v Always adds a level number to
items in the SQLRecord so that the
record is a structured record. This
preserves VAGen behavior.

VAGen data type - Char

v data code - 453

v data code - 449 or 457

EGL data type:

v CHAR; omit sqlVariableLen

v CHAR, with sqlVariableLen set to
YES

No special considerations.

VAGen data type - DBCS

v data code - 469

v data code - 465 or 473

EGL data type:

v DBCHAR; omit sqlVariableLen

v DBCHAR, with sqlVariableLen set
to YES

No special considerations.

VAGen data type - Unicode

v data code - 469

v data code - 465 or 473

EGL data type:

v UNICODE; omit sqlVariableLen

v UNICODE, with sqlVariableLen set
to YES

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 273

Table 81. Record - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SQL Column Name

Note: The SQL Column Name is
required.

column = "SQLColumnName"

Note: The column property is
optional. If the column property is
omitted, it defaults to the field name.

The migration tool migrates based on
the Omit column name preference.

v If you select the preference, the tool
does the following things:

– Omits the column property if the
SQL Column Name is the same
as the field name.

– Includes the column property if
the SQL Column Name is
different from the field name.

v If you clear the preference, the tool
always includes the column
property.

No corresponding property.

Note: VisualAge Generator always
includes the null indicator variable
for SQL items.

isSQLNullable = yes | no

Note: The default for isSQLNullable
is no.

The migration tool migrates based on
the Omit isSQLNullable property
preference.

v If you select the preference, the tool
does not include the isSQLNullable
property, which defaults to no.

v If you clear the preference, the tool
always includes isSQLNullable =
yes. This preserves VAGen
behavior.

Read Only

Note: Read Only is always
explicitly set. Read Only must
always be yes if there are multiple
tables specified for the SQL record.

isReadOnly = YES | NO

Note: isReadOnly defaults to YES if
there are multiple tables specified for
the SQL record. isReadOnly defaults
to NO if there is only one table
specified for the SQL record.

The migration tool migrates based on
the Omit isReadOnly property
preference.

v If you select the preference, the tool
only includes the isReadOnly
property if there is a single table
specified for the record and the
VAGen Read Only property is set to
yes.

v If you clear the preference, the tool
includes the isReadOnly property
whenever the VAGen Read Only
property is set to yes.

 Table 82. Records - DL/I properties and DL/I record structure

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

DL/I record properties:

v Key item

v Alternate specification

v Record length item

Note: The record name must be
the same as the segment name in
the DL/I PSB.

DLISegment properties:

v keyItem

v embed keyword

v lengthItem

Note: EGL permits the record name to
differ from the segment name in the
DL/I PSB. In this situation, the EGL
segmentName property provides the
name used in the DL/I PSB.

If the migration tool renames the
record due to a conflict with an EGL
reserved word or because the record
name starts with the # or @ symbol,
the tool includes the segmentName
property to provide the original
record name.

274 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 82. Records - DL/I properties and DL/I record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 1:
Alternate specification. If RecordA
provides an alternate specification
of RecordB, RecordB provides all
the items for RecordA. There is no
item structure in RecordA.

Note: The field names in the
alternate specification must be the
same as the field names in the
DL/I PSB.

Record structure - variation 1: The EGL
embed keyword specifies the record
that provides the field structure for the
current record. RecordA embeds
RecordB. For example:

embed RecordB;

EGL permits the field names in the
record to differ from the field names in
the DL/I PSB. If the embedded record
is not a DLISegment and the field
names differ, set the dliFieldName
property in the following way:

embed RecordB
 { fieldInRecordB
 {dliFieldName="nameInPSB"} } ;

The migration tool migrates an
alternate specification to the embed
keyword.

If the alternate specification record is
not a DL/I segment, the tool
overrides the dliFieldName property
for any item that was renamed due to
a conflict with an EGL reserved word
or because the field name starts with
the # or @ symbol.

Special considerations apply. For
details, see “Alternate specification
records” on page 72.

Record structure - variation 2 with
Shared Items:

v itemName

v Occurs

v Shared

v levelNumber is hidden, but is
based on the data item
hierarchy within the record.

Note:

v Type, Length, Decimals and
Description are visible in the
Record Editor, but are not
stored in the record.

v The field names must be the
same as the field names in the
DL/I PSB.

Record structure - variation 2 with EGL
type definitions example:

 levelNumber itemName
 itemName [occurs]
 {dliFieldName="nameInPSB"};

Note:

v Type, Length, Decimals and
Description are not visible in the
editor.

v EGL permits the field names in the
record to differ from the field names
in the DL/I PSB.

If you select the Convert shared data
items to primitive item definitions
migration syntax preference, and the
data item part is available, the
migration tool converts the shared
item to an EGL variable that is
defined using a primitive type
definition based on the type, length,
and decimals specified for the data
item part. Migration of type, length,
and decimals information is the same
as described in Table 73 on page 259.

If you clear the Convert shared data
items to primitive item definitions
migration syntax preference, or the
data item part is not available, the
migration tool converts the shared
item to an EGL variable that is
defined using a type definition. For
migration, the type definition is
always the same as the item name.

The migration tool omits the occurs
information if occurs is 1.

If an item is renamed due to a conflict
with an EGL reserved word or
because the name starts with the # or
@ symbol, the migration tool includes
the dliFieldName property.

Appendix B. Relationship of VisualAge Generator and EGL language elements 275

Table 82. Records - DL/I properties and DL/I record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 2 with
Nonshared Items:

v itemName

v Occurs

v Type

v Length

v Decimals

v Nonshared

v Description

v levelNumber is hidden, but is
based on the data item
hierarchy within the record.

Note:

v Type, Length, Decimals and
Description are stored in the
record.

v The field names must be the
same as the field names in the
DL/I PSB.

Record structure - variation 2 with EGL
primitive types example:

levelNumber itemName
 dataType(lengthInformation)
 [occurs]
 {dliFieldName="nameInPSB"};
// Description

Note:

v Type, Length, Decimals and
Description are visible in the editor.

v EGL permits the field names in the
record to differ from the field names
in the DL/I PSB.

The migration tool converts a
nonshared item to an EGL variable
that is defined using a primitive type.
Migration of type, length, and
decimals information is the same as
described in Table 73 on page 259.

The migration tool omits the occurs
information if occurs is 1.

If an item is renamed due to a conflict
with an EGL reserved word or
because the name starts with the # or
@ symbol, the migration tool includes
the dliFieldName property.

 Table 83. Records - UI record properties and record structure

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

UI record properties:

v General

– UI title

– Submit value item

– Edit function

– Run edit function on Web

v Input Edit Order

v Help text

VGUI record properties:

v General properties

– title

– commandValueItem

– validatorFunction

– runValidatorFromProgram

v validationOrder

v help

Note: The validationOrder property is
specified on each item in the record.

The following example shows a VGUI
record definition:

Record recordName type VGUIRecord
 {throwNrfEofExceptions = yes,
 handleHardIOErrors = no,
 V60ExceptionCompatibility = yes,
 I4GLItemsNullable = no,
 textLiteralDefaultIsString = no,
 localSQLScope = yes,
 alias="originalVAGenName",
 commandValueItem=itemX,
 validatorFunction=functionY,
 runValidatorFromProgram=yes,
 title="Page Title",
 help="help text line"
 }
 recordStructure
end // end recordName

The EGL runValidatorFromProgram
property is the reverse of the VAGen
property. The migration tool converts
yes to NO and no to YES.

The migration tool always includes
the following properties to preserve
VAGen behavior:

v throwNrfEofExceptions

v handleHardIOErrors

v V60ExceptionCompatibility

v I4GLItemsNullable

v textLiteralDefaultIsString

v localSQLScope

276 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 83. Records - UI record properties and record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not applicable. alias If the record name conflicts with an
EGL reserved word or starts with the
or @ symbol, the migration tool
does the following things:

v Renames the UI record.

v Sets the alias property to the
original VAGen UI record name.

Special considerations apply. See
“Reserved words and UI record
names” on page 75 for additional
details.

The record structure is similar to
that of a working storage record,
except there is additional
information for each data item:

v UI type

v UI properties

The record structure is similar to that of
a basic record except that there are
additional properties for each field:

v uiType

v validation properties, formatting
properties, and JSFHandler field
properties

No special considerations.

 Table 84. Record - UI item properties - general

VisualAge Generator 4.5 EGL Migration tool considerations

Not applicable alias If the field name conflicts with the
migration tool extended reserved
word list or starts with the # or @
symbol, the migration tool does the
following things:

v Renames the field.

v Sets the alias property to the
original field name.

Special considerations apply. See
“Reserved words and UI record
names” on page 75 for additional
details.

UI types - values are:

v Form

v Hidden

v Input

v Input/Output

v None

v Output

v Program Link

v Submit

v Submit Bypass

uiType - values are:

v uiForm

v hidden

v input

v inputOutput

v none

v output

v programLink

v submit

v submitBypass

No special considerations.

UI label displayName
(JSFHandler field property)

No special considerations.

Array items:

v Occurrences item

v Selected index item

Structured field arrays:

v numElementsItem

v selectedIndexItem

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 277

Table 85. Record - UI item properties - edits

VisualAge Generator 4.5 EGL Migration tool considerations

Edit type – values are:

v None

v Boolean

v Date

v Time

EGL supports multiple properties:

v Not applicable

v isBoolean = yes

v dateFormat = defaultDateFormat

v timeFormat = "HH:mm:ss"

(formatting properties)

No special considerations.

Edit function validatorFunction
(validation property)

No special considerations.

Run edit function on Web runValidatorFromProgram
(validation property)

The EGL property is the reverse of the
VAGen property. The migration tool
converts yes to NO and no to YES.

Edit table validatorDataTable
(validation property)

No special considerations.

Minimum input minimumInput
(validation property)

No special considerations.

Fill character

Note:

v The following default fill
characters are used:

– Blank for character, mixed,
and numeric items.

– 0 for hex items.

v The fill character must be blank
for DBCS and unicode items.

v Null is not a valid fill character.

fillCharacter
(formatting property)

Note:

v The following default fill characters
are used:

– Blank for character, MBCHAR,
and numeric items.

– 0 for HEX items.

v The fill character must be blank for
DBCHAR. Any character is valid as
the fill character for UNICODE.

v null is not a valid fill character.

No special considerations.

Fold upperCase
(formatting property)

No special considerations.

Input required inputRequired
(validation property)

No special considerations.

Check SO/SI space needsSOSI
(validation property)

No special considerations.

Currency and Currency symbol currency = YES | NO
currencySymbol = "symbol"

No special considerations.

Minimum value and Maximum
value

Note: If either Minimum value or
Maximum value is specified, both
must be specified.

validValues = [[minimumValue,
maximumValue]]
(validation property)

The migration tool combines the
Minimum value and Maximum value
into the EGL validValues property.

278 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 85. Record - UI item properties - edits (continued)

VisualAge Generator 4.5 EGL Migration tool considerations

Sign - None | Leading | Trailing

Note: The default sign for
numeric items in a UI record is
Leading.

sign = none | leading | trailing
(formatting property)

Note: The default sign for a numeric
field is always leading.

v For a numeric field with a UI type
of hidden, input, output, or
input/output, the migration tool
converts the sign based on the first
of the following criteria that
applies:

– If the UI sign edit is specified,
the tool migrates to the
corresponding sign property.

– If a UI edit type of date, time, or
Boolean is specified, the tool sets
the sign property to none.

– The tool sets the sign property to
the default value of leading.

v For a numeric field with any other
UI type, the migration tool omits
the sign property.

Separator numericSeparator
(formatting property)

No special considerations.

Zero edit zeroFormat
(formatting property)

No special considerations.

 Table 86. Record -- UI item properties - error messages

VisualAge Generator 4.5 EGL Migration tool considerations

Edit table validatorTableMsgKey
(validation property)

No special considerations.

EZE function validatorFunctionMsgKey
(validation property)

No special considerations.

Minimum input minimumInputMsgKey
(validation property)

No special considerations.

Input required inputRequiredMsgKey
(validation property)

No special considerations.

Data type typeChkMsgKey
(validation property)

No special considerations.

Numeric range validValuesMsgKey
(validation property)

No special considerations.

 Table 87. UI item properties - help

VisualAge Generator 4.5 EGL Migration tool considerations

Help text help (JSFHandler field property) No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 279

Table 88. UI item properties - submit

VisualAge Generator 4.5 EGL Migration tool considerations

Initial value Initializer in the following format for a
field that is not an array:

 ="initialValue"

Initializer in the following format for a
structured field array:

 =["initialValue1","initialValue2"]

No special considerations.

 Table 89. Record - UI item properties - program link

VisualAge Generator 4.5 EGL Migration tool considerations

Program link information:

v Program

v First UI record

v Open as new window

v Link parameters

Program link information:

v programName

v uiRecordName

v newWindow

v linkParms

EGL combines the VAGen program link
properties into a complex property in
the following way:

 @programLinkData {
 programName = "PRGA",
 uiRecordName = "MYUI",
 newWindow = yes
 [, linkParmsInfo]
 }

Note: See the next row in the table for
the details of the optional linkParmsInfo.

No special considerations.

Link parameters:

v Item in the First UI record

v Value

– Literal

– Item in the current record

Note:

v When using the program link
customizations for a form UI
type, data within the current
form is automatically moved by
name to the First UI record of
the next program. Additional
fields within the First UI record
can be initialized by listing
them in the Link parameters.

v When using the program link
customizations for a program
link UI type, only fields in the
First UI record that are explicitly
listed in the Link parameters are
initialized.

EGL combines the VAGen link
parameters into a complex property:

linkParms = [
@LinkParameter
 { name = "item1InFirstUI",
 value = "literal" },
@LinkParameter
 { name = "item2InFirstUI",
 valueRef = itemInCurrentUI}]

Note: EGL follows the same rules as
VisualAge Generator for program link
customizations for both the uiForm and
the programLink UI types.

No special considerations.

280 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Tables
The VAGen tables section is organized into the following tables:
v VAGen tables - general syntax, table type, properties, and prolog, Table 90 on

page 281
v VAGen tables - table structure, Table 91 on page 282
v VAGen tables — table contents, Table 92 on page 283

 Table 90. Tables — general syntax, table type, properties, and prolog

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen table part:

v tableName

v Basic information

– Table type

– Table structure (item list)

v Properties

v Prolog

v Table Contents

Note: Table Contents are optional.

EGL syntax example:

//*** DataTable=tableName***
// prolog
//*******************
DataTable tableName
 type tableType
 { [otherTableProperties]
 [alias =
 "originalTableName"] }
 tableStructure
 [{ contents =
 [{rowContents}] }]
end // end tableName

Note: The contents property is
required.

The migration tool does not rename
tables for you even if the name conflicts
with the EGL reserved word list. The
migration tool does not set the alias
property. If you must rename a table,
you can use the alias property to specify
the original name of the VAGen table.
See the information about table names
in “Reserved words and table names”
on page 76 for details.

Table types:

v Unspecified

v Match Invalid

v Match Valid

v Range Match Valid

v Message

DataTable types:

v basicTable

v matchInvalidTable

v matchValidTable

v rangeChkTable

v msgTable

No special considerations.

Properties — Runtime attributes:

v Resident

v Shared

DataTable properties:

v resident

v shared

No special considerations.

Properties - Fold table contents Not applicable. If you want the table
contents to be folded, you must enter
the contents in upper case.

If the VAGen table specifies that the
table contents should be folded, the
migration tool ensures that the char,
hex, and mixed data in the table
contents is converted to upper case.

Prolog Not applicable. The migration tool converts the prolog
to a comment that precedes the
DataTable definition.

Appendix B. Relationship of VisualAge Generator and EGL language elements 281

Table 91. Tables — Table structure

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen Table structure - with
Shared Items:

v itemName

v Shared

v levelNumber is hidden, but it is
based on the data item
hierarchy within the record.

Note: Type, Length, Decimals and
Description are visible in the Table
Editor, but are not stored in the
table.

DataTable structure - with EGL type
definitions:

levelNumber itemName
 itemName ;

Note: Type, Length, Decimals, and
Description are not visible in the
editor.

If you select the Convert shared data
items to primitive item definitions
migration syntax preference, and the
data item part is available, the migration
tool converts the shared item to an EGL
variable that is defined using a primitive
definition based on the type, length, and
decimals specified for the data item
part. Migration of type, length, and
decimals information is the same as
described in Table 73 on page 259.

If you clear the Convert shared data
items to primitive item definitions
migration syntax preference, or the data
item part is not available, the migration
tool converts the shared item to an EGL
variable that is defined using a type
definition. For migration, the type
definition is always the same as the item
name.

VAGen Table structure — with
Nonshared Items:

v itemName

v Type

v Length

v Decimals

v Nonshared

v Description

v levelNumber is hidden, but it is
based on the data item
hierarchy within the table.

Note: Type, length, decimals, and
description are stored with the
item in the table.

DataTable structure — with EGL
primitive types:

levelNumber itemName
 dataType(lengthInformation) ;
 // Description

Note: Type, Length, Decimals, and
Description are visible in the editor.

The migration tool converts a nonshared
item to an EGL variable that is defined
using a primitive type. Migration of
type, length, and decimals information
is the same as described in Table 73 on
page 259.

282 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 92. Tables — table contents

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Table contents:

v Table contents are entered in a
formatted editor. Table contents
are entered for the top level
(parent) items in the table
structure.

v Character and hex data is not
enclosed in quotes.

DataTable contents:

v The contents of each row are
enclosed in square brackets. There is
an outer set of square brackets that
encloses the entire set of rows.

v Values within the row contents
must be separated by commas.

v Character data including hex data
must be enclosed in double-quotes.

Example:

contents = [[rowContents]
 { , [rowContents] }
]
where
 rowContents = value { , value}

If the VAGen table specifies that the
table contents should be folded, the
migration tool ensures that the char,
hex, and mixed data in the table
contents is converted to upper case.

The migration tool also encloses
character data, including hex data, in
double-quotes.

Map groups
The map groups section is organized into the following tables.
v Map Groups — general information, Table 93 on page 283
v Map Groups — general syntax and floating areas, Table 94 on page 284
v Map Groups — device names, types, and sizes, Table 95 on page 286

 Table 93. Map Groups — general information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

The map group part is only
required if there are floating areas.

If there is no map group part,
VisualAge Generator automatically
generates all maps with the same
map group name as though the
map group part did exist.

The FormGroup is required. The migration tool creates a
FormGroup part if one does not exist
in the migration set.

Map names consist of a map group
name and a map name.

The form name does not include the
FormGroup name.

A form can be defined (nested) within
a FormGroup.

Alternatively, a form can be outside the
FormGroup. In this case, the
FormGroup must include a use
statement to specify the form name and
an import statement to import the
package in which the form is located.
This technique enables you to have one
definition of a common form (for
example, a pop-up list form) and make
it available in many different
FormGroups.

The migration tool migrates all maps
to forms. The tool does not attempt
to identify common, identical map
definitions across multiple map
groups.

If you migrate in single file mode,
the migration tool includes a use
statement for each form within a
FormGroup. You should move the
forms so that they are nested within
the FormGroup.

If you migrate using Stage 1 – 3
migration, the migration tool
automatically nests all forms within
the FormGroup.

Appendix B. Relationship of VisualAge Generator and EGL language elements 283

Table 93. Map Groups — general information (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

When a program specifies a map
group, the program can use any
map within the map group just by
referencing the map name.

VisualAge Generator only considers
the maps that are explicitly
referenced in the program in a
CONVERSE, DISPLAY, or CLOSE
I/O option, in an XFER statement,
as a program parameter, or the first
map when resolving an unqualified
field name.

When a program includes a use
statement to indicate which
FormGroup it is using, the program
can reference any form within the
FormGroup just by referencing the
form name.

If the use statement specifies the
FormGroup without listing the specific
forms, EGL considers all the forms in
the FormGroup when resolving an
unqualified field name in the program.

If the use statement specifies forms
within the FormGroup statement, EGL
considers only the specified forms in
the FormGroup when resolving an
unqualified field name in the program.

The migration tool creates the use
statement so that it only lists the
specific forms referenced in the
program.

 Table 94. Map Groups — general syntax and floating areas

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

The map group part can contain
the following information:

v Map group name

v Floating area information

– Device name

– Device size

– Size

- Lines

- Columns

– Position

- Starting line

- Starting column

The FormGroup can contain the following
information:

v FormGroup name

v FormGroup properties

v Screen floating area information

v Print floating area information

v use statements for the forms that are
included in the FormGroup.

The following example shows the format
of a FormGroup:

FormGroup groupName {
 [alias="generationName"]
 [ScreenFloatingAreas = [
 @ScreenFloatingArea
 { screenFloatingAreaInfo }
] ,
]
 [PrintFloatingAreas = [
 @PrintFloatingArea
 { printFloatingAreaInfo }
],
]
 }
 Form formName type TextForm
 {formProperties}
 [variableFields]
 [constantFields]
 end // end formName
 use formName2;
end // end groupName

The migration tool uses the
VAGen device type to determine
whether the floating area
information is for a display map
(screenFloatingArea) or a printer
map (printFloatingArea).

See Table 95 on page 286 for
information about determining
whether the device is display or
printer.

284 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 94. Map Groups — general syntax and floating areas (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not applicable. alias The migration tool does not
rename map groups even if they
conflict with an EGL reserved
word. Special considerations apply.
See “Reserved words and
FormGroup names” on page 77 for
details and potential problems.

Floating area information:

v Device name

v Device size (rows x columns)

v Floating area specification

– Size

- Lines

- Columns

– Position

- Starting line

- Starting column

Note:

v In VisualAge Generator, you
define the size and starting
position of the floating area.

v Different floating area
specifications are permitted for
devices that have the same size.

Floating area information:

v Device size

v Margin information

Print floating area information also
includes the device type.

Here is an example of the screen floating
area that is used for text forms:

ScreenFloatingAreas = [
 @ScreenFloatingArea {
 screenSize=[lines,columns],
 topMargin=nn,
 bottomMargin=nn,
 leftMargin=nn,
 rightMargin=nn
 }]

Here is an example of the print floating
area that is used for print forms:

PrintFloatingAreas = [
 @PrintFloatingArea {
 deviceType=singleByte,
 pageSize=[lines,columns],
 topMargin=nn,
 bottomMargin=nn,
 leftMargin=nn,
 rightMargin=nn
 }]

Note: Only one floating area specification
is permitted for a screenSize or pageSize.

The migration tool uses the
VAGen device type to determine
whether the floating area
specification is for display maps
(screenFloatingArea) or print
maps (printFloatingArea).

The migration tool computes the
margin information in the
following way:

v The topMargin is set to the
VAGen floatingAreaStartingLine
- 1.

v The bottomMargin is set to the
VAGen deviceRows -
(floatingAreaStartingLine +
floatingAreaLines) + 1.

v The leftMargin is set to the
VAGen
floatingAreaStartingColumn - 1.

v The rightMargin is set to the
VAGen deviceColumns -
(floatingAreaStartingColumn +
floatingAreaColumns) + 1.

See Table 95 on page 286 for
information about determining
whether the device is a display or
printer.

Printer types:

v Printer

v DBCS printer

deviceType=singleByte | doubleByte

Note: The deviceType property is only
specifed for print forms.

The migration tool sets the EGL
deviceType property based on the
VAGen printer type.

The migration tool always
qualifies the deviceType value
with DeviceTypeKind (for
example, deviceType =
DeviceTypeKind.doubleByte). This
avoids any name conflicts with
variable fields on forms within the
FormGroup.

Appendix B. Relationship of VisualAge Generator and EGL language elements 285

Table 95. Map Groups — device names, types, and sizes

VisualAge Generator
Device Name

Device Size
(lines x
columns)

Device Type Migration tool considerations

3643–2 6 x 40 Display No special considerations.

3277–1 12 x 40 Display No special considerations.

3643–4 16 x 64 Display No special considerations.

3278–1, 3278–1B,
ANY–1D

12 x 80 Display No special considerations.

3278–2, 3278–2B,
ANY–2D

24 x 80 Display No special considerations.

3278–3, 3278–3B,
ANY-3D

32 x 80 Display No special considerations.

3278–4, 3278–4B,
ANY-4D

43 x 80 Display No special considerations.

3278–5, 3278–5B,
ANY-5D

27 x 132 Display No special considerations.

ANY-D (3290 configured
as 62x160)

255 x 160 Display No special considerations.

5550D 24 x 80 DBCS Display No special considerations.

3767, PRINT-B,
PRINTER

255 x 132 Printer For the @printFloatingArea complex property, the
EGL deviceType = singleByte

5550P 255 x 158 DBCS Printer For the @printFloatingArea complex property, the
EGL deviceType = doubleByte

Maps
The maps section is organized into the following tables.
v Maps — general information, Table 96 on page 286
v Display maps — general syntax, map type, and properties, Table 97 on page 288
v Printer maps — general syntax, map type, and properties, Table 98 on page 290
v Map constant and variable fields — general information, Table 99 on page 291
v Map constant and variable fields — general syntax, data type, length, decimals,

and description, Table 100 on page 293
v Map constant and variable fields — attributes, Table 101 on page 296
v Map variable fields — general edits, Table 102 on page 298
v Map variable fields — numeric edits, Table 103 on page 299
v Map variable fields — error messages, Table 104 on page 300

 Table 96. Maps — general information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

There are two types of maps:

v Display maps

v Printer maps

There are two types of forms:

v Text forms

v Print forms

No special considerations.

286 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 96. Maps — general information (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Map names consist of a map
group name and a map name.

The form name does not include the
FormGroup name.

A form can be defined (nested) within a
FormGroup.

Alternatively, a form can be outside the
FormGroup. In this case, the FormGroup
must include a use statement to specify
the form name and an import statement
to import the package in which the form
is located. This technique enables you to
have one definition of a common form
(for example, a pop-up list form) and
make it available in many different
FormGroups.

The migration tool migrates all maps
to forms. The tool does not attempt to
identify common, identical map
definitions across multiple map groups.

If you migrate in single file mode, the
migration tool includes a use statement
for each form within a FormGroup.
You should move the forms so that
they are nested within the FormGroup.

If you migrate using Stage 1 – 3
migration, the migration tool
automatically nests all forms within the
FormGroup.

When a program specifies a map
group, the program can use any
map within the map group just
by referencing the map name.

VisualAge Generator only
considers the maps that are
explicitly referenced in the
program in a CONVERSE,
DISPLAY, or CLOSE I/O option,
in an XFER statement, as a
program parameter, or the first
map when resolving an
unqualified field name.

When a program includes a use
statement to indicate which FormGroup
it is using, the program can reference
any map within the FormGroup just by
referencing the form name.

If the use statement specifies the
FormGroup without listing the specific
forms, EGL considers all the forms in
the FormGroup when resolving an
unqualified field name in the program.

If the use statement specifies forms
within the FormGroup statement, EGL
considers only the specified forms in the
FormGroup when resolving an
unqualified field name in the program.

The migration tool creates the use
statement so that it only lists the
specific forms referenced in the
program.

Appendix B. Relationship of VisualAge Generator and EGL language elements 287

Table 97. Display maps — general syntax, map type, and properties

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Display maps can contain the
following information:

v Map group name and map
name

v Map properties

– General properties

- Help map name

- Help key

- Bypass keys

- Variable field folding

– Layout properties

- Map size

- Starting position

- Floating map

– Devices

- Type (Display or Print)

- Supported devices

v Constant fields

v Variable fields

v Field edit order for variable
fields

Text form parts can contain the
following information:

v Form name

v Form type

v Form properties

v Constant fields

v Variable fields

v Validation order for variable fields

The following example shows the
format of a text form created by the
migration tool:

Form mapName type TextForm
 { screenSizes=[sizeList],
 formSize=[24,80], position=[1,1],
 helpForm="helpFormName",
 helpKey=pf1,
 validationBypassKeys=[pf3],
 msgField="VAGen_EZEMSG"}
 [variableFields]
 [constantFields]
end // end mapName

The migration tool uses the VAGen
device type to determine whether the
map is a Display map (text form) or a
Printer map (print form).

See Table 95 on page 286 for
information about determining whether
the device is a display or printer.

Help map name helpForm No special considerations.

Help key helpKey No special considerations.

Bypass keys

You can specify a maximum of 5
Bypass keys for a map.

validationBypassKeys

You can specify a maximum of 5
validationBypassKeys for a form.

No special considerations.

Variable field folding Not supported for a form. Each CHAR
or MBCHAR variable field on the form
must specify whether the data the user
enters is to be automatically converted
to upper case.

The migration tool does the following
things:

v If Variable field folding is specified
for the entire map, the migration tool
sets the upperCase property to YES
for every CHAR and MBCHAR field.

v If Variable field folding is not
specified for the entire map, the
migration tool uses the Fold
information specified for each CHAR
and MBCHAR field to determine
whether to set the upperCase
property for that field.

When you work with EGL, you might
add a variable field to a form that was
previously migrated and that had
variable field folding set to true. In that
case, remember to set the upperCase
property for the new field.

Map size — Lines and Columns formSize = [Lines, Columns] No special considerations.

288 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 97. Display maps — general syntax, map type, and properties (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Starting position - Line and
Column

NEXT,SAME is required if the
map is a floating map.

position = [Line, Column]

If the position property is omitted, the
form is a floating form

If Floating map is selected, the
migration tool omits the position
property.

Floating map Not applicable. If the position property
is omitted, the form is a floating form.

If Floating map is selected, the
migration tool omits the position
property.

Device Type - Display or DBCS
Display

type TextForm The migration tool uses the device type
information to determine whether to
migrate the map to a text or print form.

Supported devices

Note: Supported devices shows
the device type, number of lines,
and number of columns

screenSizes = [[Lines, Columns],
 [Lines, Columns]]

Note: Include a [Lines, Columns] pair for
each screen size that you want to have
supported for the form.

The migration tool uses the device type
information to determine the
corresponding screenSizes property. If
several VAGen devices have the same
screen size, the migration tool only
includes the screen size once.

Not applicable. In VisualAge
Generator, the message field is
always named EZEMSG.

msgField

This is the name of the field that is to
contain any EGL error messages.

The migration tool sets the msgField
property if EZEMSG is anywhere on
the map.

Not applicable. alias The migration tool includes the alias
property if the map has to be renamed
due to a conflict with the migration
tool extended reserved word list or
because the map name starts with the #
or @ symbol. The migration tool also
includes the alias property for a map in
the help map group if the map has to
be renamed due to a conflict with the
name of a map in the main map group
for the program.

Special considerations apply. See “Map
names and help map names” on page
79 for details.

Appendix B. Relationship of VisualAge Generator and EGL language elements 289

Table 98. Printer maps — general syntax, map type, and properties

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Printer maps can contain the
following the information:

v Map group name and map
name

v Map properties

– General properties

- Help map name

- Help key

- Bypass keys

- Variable field folding

- SO/SI take position

– Layout properties

- Map size

- Starting position

- Floating map

– Devices

- Type (Display or print)

- Supported devices

v Constant fields

v Variable fields

v Field edit order for variable
fields

Print forms can contain the following
information:

v Form name

v Form properties

v Constant fields

v Variable fields

The following example shows the
format of a print form created by the
migration tool:

Form mapName type printForm
 {formSize=[255,158], position=[1,1],
 addSpaceForSOSI=yes }
 [variableFields]
 [constantFields]
end // end mapName

The migration tool uses the VAGen
device type to determine whether the
map is a Display map (text form) or a
Printer map (print form).

The migration tool always omits the
following properties for print forms:

v General properties

– Help map name

– Help key

– Bypass keys

– Variable field folding

v Devices

– Supported devices

v Field edit order for variable fields

See Table 95 on page 286 for
information about determining whether
the device is a display or printer.

Help map name Not applicable for a print form. The migration tool omits this property
for a print form.

Help key Not applicable for a print form. The migration tool omits this property
for a print form.

Bypass keys Not applicable for a print form. The migration tool omits this property
for a print form.

Variable field folding Not applicable for a print form. The migration tool omits this property
for a print form.

SO/SI take position addSpaceForSOSI No special considerations.

Map size — Lines and Columns formSize = [Lines, Columns] No special considerations.

Starting position - Line and
Column

NEXT,SAME is required if the
map is a floating map.

position = [Line, Column]

If the position property is omitted, the
form is a floating form.

If Floating map is selected, the
migration tool omits the position
property.

Floating map Not applicable. If the position property
is omitted, the form is a floating form.

If Floating map is selected, the
migration tool omits the position
property.

Device Type - Printer or DBCS
Printer

type printForm The migration tool uses the device type
information to determine whether to
migrate the map to a text or print
form.

Supported devices Not applicable for a print form. The migration tool omits this property
for a print form.

290 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 98. Printer maps — general syntax, map type, and properties (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not applicable. In VisualAge
Generator, the message field is
always named EZEMSG.

msgField

This is the name of the field that is to
contain any EGL error messages.

The migration tool sets the msgField
property if EZEMSG is anywhere on
the map.

Not applicable. alias The migration tool includes the alias
property if the map has to be renamed
due to a conflict with the migration
tool extended reserved word list or
because the map name starts with the #
or @ symbol. The migration tool also
includes the alias property for a map
in the help map group if the map has
to be renamed due to a conflict with
the name of a map in the main map
group for the program.

Special considerations apply. See “Map
names and help map names” on page
79 for details.

 Table 99. Map constant and variable fields — general information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

All positions on a map must be
accounted for in one of the
following ways:

v as a variable field

v as a constant field

v as an attribute byte at the
beginning of a constant or
variable field

All positions on a form do not have to
be accounted for. Blank constants that
have the default properties
(noHighLight, normalIntensity,
skipProtect, defaultColor, no outlining,
and no cursor) do not need to be
specified.

The migration tool omits blank
constants that have the default
properties.

Constant fields on display maps
can have attributes specified that
do not really apply to constants.
For example:

v Unprotected

v Input required

v Require fill on input

v Numeric attribute

v Modified data tag

Constant fields on text forms cannot
specify properties that do not make
sense for a constant.

The migration tool omits properties for
constants on text form if the properties
are not supported.

Constant fields on printer maps
can have attributes that do not
really apply to printers. For
example:

v Color

v Intensity

v Highlighting other than
underscore

v Protection

v Initial cursor field

v Light pen detect

Constant fields on print forms cannot
specify properties that do not make
sense for a constant.

The migration tool omits properties for
constants on print forms if the
properties are not supported.

Appendix B. Relationship of VisualAge Generator and EGL language elements 291

Table 99. Map constant and variable fields — general information (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Variable fields on printer maps
can specify attributes that do not
really apply to printers. For
example:

v Color

v Intensity

v Highlighting other than
underscore

v Protection

v Initial cursor field

v Input required

v Require fill on input

v Numeric attribute

v Modified data tag

v Light pen detect

Variable fields on print forms cannot
specify properties that to not make sense
for a print form.

The migration tool omits properties for
variable fields on print forms if the
properties are not supported.

Variable fields on printer maps
can specify edits that do not
really apply to printers. For
example:

v Edit routine

v Minimum input

v Fold

v Hex edit

v Input required

v Minimum value

v Maximum value

v Edit messages

Variable fields on print forms cannot
specify properties that to not make sense
for a print form.

The migration tool omits properties for
variable fields on print forms if the
properties are not supported.

292 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 100. Map constant and variable fields — general syntax, data type, length, decimals, and description

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

A variable field on a map can
contain the following
information:

v Name

v Information based on what
you dropped on the map:

– Data type

– Position

v Basic information:

– Descripton

– Initial value

– Length in bytes

– Array index

– Numeric edit

v Attributes

v Edits, including number of
decimals

v Error messages

Note: Position is the position of
the attribute byte. The length in
bytes is the length of the field in
bytes, excluding the attribute
byte. The length in bytes is also
used for the length of the data
value.

A variable field on a form can contain
the following information:

v Name

v Type and length in characters for
character fields

v Type, precision, and scale for numeric
fields

v Position

v Field length in bytes

v Presentation properties

v Formatting properties

v Validation properties

v Value

In general, VAGen map and EGL form
information corresponds in the following
ways:

v VAGen attributes correspond to EGL
presentation properties.

v VAGen edits and messages
correspond to EGL formatting
properties or validation properties.

v However, some of the VAGen
attributes and edits are merged into a
single EGL property or moved to a
different category.

Here is an example of an EGL variable
field:

itemName
 dataType(lengthInformation)
 // description
 { position=[row,column],
 fieldLen=length,
 validationOrder=n,
 [presentationProperties]
 [formattingProperties]
 [value="initialValue"]
 [arrayInformation]
 }

Note: position is the position of the
attribute byte. fieldLen is the length of
the field in bytes, excluding the attribute
byte. The primitive information given in
dataType(lengthInformation) is the length
of the data value.

The migration tool sets the EGL
fieldLen property to the VAGen length
in bytes. The tool sets the
lengthInformation for the dataType in the
following way:

v For CHAR, DBCHAR, and
MBCHAR fields, migration tool sets
the lengthInformation to the number
of characters, not the number of
bytes.

v For VAGen char fields that specify
the Numeric edit, the migration tool
does the following things:

– Converts the field to the EGL
NUM type.

– Sets the precision to the VAGen
length in bytes and then reduces
the precision by one if decimals
are specified for the field in
VisualAge Generator.

– Sets the scale to the number of
decimals specified in VisualAge
Generator.

Special considerations apply. For more
information, see the following sections:

v “Numeric variable fields” on page
81

v “Unnamed map variable fields” on
page 85

v “Fields at row=0, column=0” on
page 86

Appendix B. Relationship of VisualAge Generator and EGL language elements 293

Table 100. Map constant and variable fields — general syntax, data type, length, decimals, and
description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

A constant field on a map can
contain the following
information:

v Information based on what
you dropped on the map:

– Data type

– Position

v Basic information:

– Initial value

– Length in bytes

v Attributes

Note: Position is the position of
the attribute byte. The length in
bytes is the length of the field in
bytes, excluding the attribute
byte.

A constant field on a form can contain
the following information:

v Position

v Field length

v Presentation properties

v Value

In general, VAGen map and EGL form
information corresponds in the following
ways:

v VAGen attributes correspond to EGL
presentation properties.

v Attributes that apply only to input
editing are not supported for EGL
constant fields.

The data type for a constant is
determined based on the value property.

Here is an example of an EGL constant
field:

{ position=[row,column],
 fieldLen=length,
 [presentationProperties]
 [value="initialValue"] }

Note: position is the position of the
attribute byte. fieldLen is the length of
the field in bytes, excluding the attribute
byte.

The migration tool sets the EGL
fieldLen property to the VisualAge
Generator Length.

Special considerations apply. For more
information, see the following sections:

v “Unprotected map constants” on
page 86

v “Fields at row=0, column=0” on
page 86

Data type:

v Character constant

v Character variable

v DBCS constant

v DBCS variable

v Mixed constant

v Mixed variable

v Character variable with the
Numeric edit selected

Note: The type is determined
based on the type of field you
drop on the map and whether
you select the Numeric edit box.

EGL data type:

v Not applicable

v CHAR

v Not applicable

v DBCHAR

v Not applicable

v MBCHAR

v NUM

No special considerations.

Description Not applicable. The migration tool converts the
description to a comment that follows
the data type and length information.

294 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 100. Map constant and variable fields — general syntax, data type, length, decimals, and
description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Initial value value

Note:

v In VisualAge Generator compatibility
mode, the value property is only used
when displaying a field on the screen
that has not had a value assigned to
it. The value property is not used to
set the initial value of the field in
storage.

v When VisualAge Generator
compatibility mode is not specified,
the value property provides the initial
value of the field in the program
when the program starts.

No special considerations.

Length An EGL variable field has the following
characteristics:

v A length, which is the number of
characters or digits in the field.

v A fieldLen property, which is the
space the field occupies on the map,
excluding the attribute byte.

The migration tool uses the VAGen
length to set both the EGL length and
the EGL fieldLen property. Special
considerations apply for numeric
fields. See “Numeric variable fields”
on page 81 for details.

Array index

Note:

v The array size is determined
based on the highest array
index for the variable field.

v You can override some
attributes such as cursor
position, color, highlighting,
intensity, protection, and
cursor position for elements of
the array.

v You can also override the
initial value for elements of
the array.

itemName
datatype(lengthInfo)
[arraySize]
{ propertiesForIndex1 ,
indexOrientation = across | down,
columns = n1,
linesBetweenRows = n2,
spacesBetweenColumns = n3,
this[n]
{ propertiesForIndexN }
}

itemName
 datatype(lengthInfo)
 [arraySize]
 { propertiesForIndex1,
 this[n]
 { positionForIndexN,
 propertiesForIndexN }
 }

Note:

v The array size is specified
immediately after the datatype and
lengthInfo.

v You can override cursor location, and
presentation properties such as color,
highlight, intensity, and protect.

v You can also override the value
property.

For standard arrays, the migration tool
uses the indexOrientation, columns,
linesBetweenRows, and
spacesBetweenColumns properties to
provide position information. The tool
only includes this[n] if the cursor
location or presentation properties of
an array element differ from the first
element of the array.

For nonstandard arrays, the migration
tool includes this[n] for each element
of the array after the first to provide
the position = [row,column] property.
The tool also includes the cursor
location or presentation properties for
an array element if they differ from the
first element of the array.

Appendix B. Relationship of VisualAge Generator and EGL language elements 295

Table 100. Map constant and variable fields — general syntax, data type, length, decimals, and
description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Field Edit Order

Note:

v Field Edit Order is specified
from the Define menu.

v The default Field Edit Order is
based on the position of the
variable fields on the map, left
to right, then top to bottom.

v Some versions of Cross
System Product and
VisualAge Generator did not
record the field edit order in
the External Source Format.

validationOrder

Note: The default validationOrder is
based on the position of the variable
fields on the map, left to right, then top
to bottom.

The migration tool omits the
validationOrder property if it is not
included in the External Source Format
for the map.

 Table 101. Map constant and variable fields — attributes

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Intensity:

v Normal

v Dark

v Bright

intensity:

v normalIntensity

v invisible

v bold

(presentation property)

No special considerations.

Highlight:

v No highlight

v Blink

v Reverse video

v Underscore

highlight:

v noHighlight

v blink

v reverse

v underline

(presentation property)

No special considerations.

Protection:

v Unprotected

v Protected

v Autoskip

protect:

v noProtect

v protect

v skipProtect

(presentation property)

No special considerations.

Color:

v Mono

v Blue

v Red

v Pink

v Green

v Turquoise

v Yellow

v White

color:

v defaultColor

v blue

v red

v magenta

v green

v cyan

v yellow

v white

(presentation property)

No special considerations.

296 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 101. Map constant and variable fields — attributes (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Initial cursor field cursor = yes | no
(form field property)

No special considerations.

Input required inputRequired
(validation property)

The migration tool merges the VAGen
Input required attribute and the Input
required edit in the following way:

v If either the Input required attribute
or the Input required edit is selected,
the migration tool includes the
inputRequired property.

v If neither is selected, the migration
tool omits the inputRequired
property.

Require fill on input fill
(validation property)

No special considerations.

Numeric attribute

Note: This property is
supported for CHA fields,
including CHA fields that have
Numeric edit selected.

isDecimalDigit
(validation property)

Note: This property is only supported
for CHAR fields.

If the Numeric attribute is selected, the
migration tool does the following
things:

v Includes the isDecimalDigit
property for CHAR fields.

v Omits the isDecimalDigit property
for numeric fields. EGL provides a
software edit for numeric fields to
maintain compatibility with VAGen.

See “Map fields and the numeric
hardware attribute” on page 83 for
additional details.

Modified data tag modified
(presentation property)

No special considerations.

Light pen detect detectable
(presentation property)

No special considerations.

Outlining:

v left

v right

v over

v under

v box

outline:

v left

v right

v top

v bottom

v box

(presentation property)

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 297

Table 102. Map variable fields — general edits

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit routine validatorFunction
OR
validatorDataTable
(validation property)

The migration tool does the following
things:

v Sets the validatorFunction property
if the map edit routine is EZEC10 or
EZEC11.

v Sets the validatorFunction property
if the edit routine is a function.

v Sets the validatorDataTable property
if the edit routine is a table.

Note: Special considerations apply if
the edit routine is not available during
migration. See “Map variable fields
and edit routines” on page 82 for
additional details and potential
problems.

Justify - Left | Right | None

Note: For map items, the default
is right for numeric fields and
left for all other fields.

align = left | right | none
(formatting property)

Note: For form fields, the default is
right for numeric fields and left for all
other fields.

No special considerations.

Date edit mask

The following values are
available:

v SYSGREGRN

v SYSJULIAN

v dateEditPattern

dateFormat = value

The following EGL values correspond to
the VAGen values:

v systemGregorianDateFormat

v systemJulianDateFormat

v "dateEditPattern"

(formatting property)

Note: In the dateEditPattern, the
migration tool converts to the following
EGL notation:

v yy or yyyy indicates the year.

v MM indicates the month.

v dd indicates the day of the month.

v DDD indicates the day of the year.

No special considerations.

Minimum input minimumInput
(validation property)

No special considerations.

Fill character

Note: The default fill character
for items used on a map is null
for character, DBCS, or MIXED
fields; blank for numeric fields;
and 0 for hex fields.

fillCharacter
(formatting property)

Note:

v The default fill character for items
used on a map is null for CHAR,
DBCHAR, or MBCHAR fields; blank
for numeric fields; and 0 for HEX
fields.

v strLib.nullFill is the EGL constant for
the null fill character. Alternatively,
use "" (two consecutive quotation
marks).

No special considerations.

298 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 102. Map variable fields — general edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Fold upperCase
(formatting property)

The migration tool does the following
things:

v If Variable field folding is specified
for the entire map, the migration
tool sets the upperCase property to
YES for every CHAR and MBCHAR
field.

v If Variable field folding is not
specified for the entire map, the
migration tool uses the Fold
information specified for each CHAR
and MBCHAR field to determine
whether to set the upperCase
property for that field.

Hex edit isHexDigit
(validation property)

No special considerations.

Input required inputRequired
(validation property)

The migration tool merges the VAGen
Input required attribute and the Input
required edit in the following way:

v If either the Input required attribute
or the Input required edit is selected,
the migration tool includes the
inputRequired property.

v If neither is selected, the migration
tool omits the inputRequired
property.

Check SO/SI space needsSOSI
(validation property)

No special considerations.

 Table 103. Map variable fields — numeric edits

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Minimum value and Maximum
value

Note: If either Minimum value
or Maximum value is specified,
both must be specified.

validValues = [[minimumValue,
maximumValue]]
(validation property)

Note: Multiple pairs of values and single
values can be listed in the validValues
property.

The migration tool combines the
Minimum value and Maximum value
into the EGL validValues property.

Sign = None | Leading |
Trailing

Note: The default sign for
numeric items on a map is
None.

sign = none | leading | trailing
(formatting property)

Note: The default sign for a numeric field
is always leading.

For a numeric field, the migration
tool migrates the sign based on the
first of the following criteria that
applies:

v If the map sign edit is specified, the
tool migrates to the corresponding
sign property.

v If the map sign edit is not
specified, the tool sets the sign
property to none.

Appendix B. Relationship of VisualAge Generator and EGL language elements 299

Table 103. Map variable fields — numeric edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Currency currency = YES | NO
currencySymbol = "symbol
(formatting property)

Note: If currency = YES but the
currencySymbol is not specified, the
actual currency symbol used at runtime is
set the same way it is in VisualAge
Generator.

The migration tool only sets currency
to YES or NO. The tool never sets
currencySymbol = "symbol" for form
variable fields because there was no
equivalent information in VisualAge
Generator.

Separator numericSeparator
(formatting property)

No special considerations.

Zero edit zeroFormat
(formatting property)

No special considerations.

 Table 104. Map variable fields — error messages

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit routine validatorFunctionMsgKey
OR
validatorDataTableMsgKey
(validation properties)

The migration tool migrates the
edit routine message in the
following way:

v Sets validatorFunctionMsgKey if
the edit routine is EZEC10 or
EZEC11.

v Sets validatorDataTableMsgKey
if the edit routine is a table.

v Does not migrate the edit routine
message if the edit routine is a
function because the message is
not used in this situation in
VisualAge Generator.

See “Map variable fields and edit
routines” on page 82 for additional
details and potential problems.

Minimum input minimumInputMsgKey
(validation property)

No special considerations.

Input required inputRequiredMsgKey
(validation property)

No special considerations.

Data type typeChkMsgKey
(validation property)

No special considerations.

Numeric range validValuesMsgKey
(validation property)

No special considerations.

Programs
The programs section is organized into the following tables:
v Programs - general syntax, program type, called parameters, and prolog

Table 105 on page 301
v Programs - program specifications, properties, tables and additional records list

Table 106 on page 303
v Programs - main functions and flow statements Table 107 on page 307

300 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 105. Programs — general syntax, program type, called parameters, and prolog

VisualAge Generator 4.5 EGL produced by the migration
tool

Migration tool considerations

Program part:

v programName

v Program type

v Specifications (vary based on
program type):

– Working Storage record

– PSB

– Firstmap

– First UI Record

– Map Group

– Help Map Group

v Tables and Additional Records

v Called Parameters

v Prolog

v Properties (vary based on program
type)

v Structure diagram

– Main Functions

– Flow Statements (hidden in the
structure diagram, but can be
specified for any main function)

EGL syntax sample:

//*** Program=programName
// prolog
//*******************
Program programName
 type eglProgramType
 //vagenProgramType
[(calledParameters)]
{
[alias= "originalProgramName"]
includeReferencedFunctions
 =yes,
allowUnqualifiedItemReferences
 =yes,
throwNrfEofExceptions=yes,
handleHardIOErrors=no
V60ExceptionCompatibility = yes,
I4GLItemsNullable = no,
textLiteralDefaultIsString = no,
localSQLScope=yes,[propertiesBasedOnType]
}
 [dataDeclarations]
 [useDeclarations]
 function main ()
 { functionLabel:
 functionName() ;
 [{functionFlowStatements}]}
 end // end main
end // end programName

The migration tool does not rename
programs for you even if they conflict
with the EGL reserved word list. The
migration tool does not set the alias
property. If you must rename a
program, you can use the alias
property to specify the original name
of the VAGen program. See “Program
names and reserved words” on page
87.

The migration tool includes the
VAGen program type as a comment in
the program definition.

The migration tool migrates the Tables
and Additional Records list in the
following way:

v Records migrate to dataDeclarations.

v Tables migrate to useDeclarations.

The migration tool always includes the
following properties to preserve
VAGen behavior:

v includeReferencedFunctions

v allowUnqualifiedItemReferences

v throwNrfEofExceptions

v handleHardIOErrors

v V60ExceptionCompatibility

v I4GLItemsNullable

v textLiteralDefaultIsString

v localSQLScope

Programs types:

v Main transaction

v Called Transaction

v Main Batch

v Called Batch

v Web Transaction

Note: See later row on "Main
Transaction Exection Mode Values"
for additional details.

EGL program types:

v textUIProgram

v textUIProgram

v basicProgram

v basicProgram

v VGWebTransaction

The migration tool includes the
VAGen program type as a comment in
the program definition. See Table 106
on page 303 for information on how
the segmentation values correspond to
EGL properties.

Appendix B. Relationship of VisualAge Generator and EGL language elements 301

Table 105. Programs — general syntax, program type, called parameters, and prolog (continued)

VisualAge Generator 4.5 EGL produced by the migration
tool

Migration tool considerations

Called Parameters

Note:

v Called parameters are entered in a
special window.

v The parameter type indicates
whether the parameter is an item,
record, or map.

v The parameter name is always the
name of another VAGen part.
There is no equivalent of an EGL
type definition or primitive type.

v Two special function words are
supported as parameters:

– EZEDLPSB

– EZEDLPCB[n], where n is a
numeric literal

See the next rows of this table for
details.

EGL called parameters example:

(parameterName typeInfo
 { , parameterName typeInfo })

Note:

v Parameters must be separated by
commas.

v A parameter can be a DataItem,
record, or form. There is no direct
correspondence to the VAGen
parameter types.

v The EGL typeInfo can be:

– a primitive type for a DataItem

– a type definition for a
DataItem, Record, or Form.

The migration tool includes the
original VAGen parameter type as a
comment.

If you select the Convert shared data
items to primitive item definitions
migration syntax preference, and the
data item part is available, the
migration tool converts the shared
item to an EGL parameter that is
declared using a primitive definition
based on the type, length, and
decimals specified for the data item
part. Migration of type, length, and
decimals information is the same as
described in Table 73 on page 259.

If you clear the Convert shared data
items to primitive item definitions
migration syntax preference, or the
data item part is not available, the
migration tool converts the shared
item to an EGL parameter that is
declared using a type definition. For
migration, the type definition is
always the same as the item name.

Special considerations apply. See
“Redefined records” on page 70 for
details and potential problems.

Called parameter: EZEDLPSB EGL called parameter example to
pass the PSB:

 parameter list:
(psbData PSBDataRecord)
program properties:
{ @DLI { psb = psb,
psbParm = psbData }}

No special considerations.

302 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 105. Programs — general syntax, program type, called parameters, and prolog (continued)

VisualAge Generator 4.5 EGL produced by the migration
tool

Migration tool considerations

Called parameter: EZEDLPCB[n]
where n is a numeric literal

EGL called parameter example to
pass the PCBs:

 parameter list:
(pcbName
 pcbType_PCBRecord)
program properties:
{ @DLI { psb = psb,
 pcbParms = [pcbList] } }
Note:

v The pcbList is used to match the
name of the PCB parameter to its
corresponding position within the
PSBRecord for the program.

v The values for pcbType are:

– IO

– ALT

– DB

– GSAM

The migration tool always uses a
pcbName in the form: pcbn, where n is
the same numeric literal used in
VAGen called parameter list.

If the PSB part specified by the
program is available, the migration
tool does the following things:

v Includes the pcbType information.

v Includes the pcbList information to
associate each PCB parameter with
the corresponding PCB in the EGL
PSBRecord.

Special considerations apply if the PSB
part for the program is not available.
For details, see “Program with
EZEDLPCB in called parameter list”
on page 91.

Prolog Not applicable. The migration tool converts the prolog
to a comment that precedes the
program definition.

 Table 106. Programs — program specifications, properties, tables and additional records list

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

General information:

v Some VAGen properties and
specifications migrate to EGL
properties, data declarations, or
use declarations.

General information:

v The rows that follow indicate
whether the corresponding EGL
language element is a program
property, data declaration, or use
declaration.

No special considerations.

Main Transaction Execution Mode
values:

v Nonsegmented

v Segmented

v Single segment

Note: Called transactions always
run in nonsegmented mode.

segmented — values:

v segmented = no

v segmented = yes

v segmented = yes

(program property)

Note: The segmented property is not
specified for called programs.

If the segmented information is not in
the External Source Format file, the
migration tool sets the segmented
property to the default value of NO.

Appendix B. Relationship of VisualAge Generator and EGL language elements 303

Table 106. Programs — program specifications, properties, tables and additional records list (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Working Storage record
(Specifications)

v The Working Storage record can
be specified for both main and
called programs. It is sometimes
referred to as the primary working
storage record for the program.

v The primary working storage
record is always initialized.

inputRecord
(program property)

v The inputRecord property can
only be specified for main
programs.

v The input record is always
initialized.

v A data declaration is also required.

The migration tool converts the
primary working storage record to the
inputRecord property for main
programs.

The migration tool also includes a
data declaration for the primary
working storage record for both main
and called programs. The tool
includes the initialized = yes property
for the data declaration in called
programs.

If the primary working storage record
contains level 77 items, the migration
tool includes a data declaration
statement for the level 77 record.

See “Level 77 items in records” on
page 71 for details and potential
problems.

PSB (Specifications)

Note: In VisualAge Generator, the
PSB is a part type.

EGL uses both program properties
and a record declaration to specify a
PSB:

 program properties:
{ @DLI { psb = psbName,
 callInterface =
 DLICallInterfaceKind.CBLTDLI,
 handleHardDLIErrors = yes }}

program record declaration:
 psbName psbRecordName ;

Note: In EGL, the PSB is a
stereotype of the Record part.

The migration tool always uses psb as
value for the psb property. This
ensures that any function that needs
to reference a variable in the PSB can
qualify the variable with psb.

The migration tool always includes
the following properties for an IMS or
DL/I program to preserve VAGen
behavior:

v callInterface

v handleHardDLIErrors

The migration tool includes a
declaration of a variable called psb
and sets psbRecordName to the name of
the VAGen PSB part after any
required renaming.

Firstmap (Specifications) inputForm
(program property)

No special considerations.

First UI Record (Specifications) inputUIRecord
(program property)

No special considerations.

Map Group (Specifications) use FormGroup.formName {, FormGroup.formName }

Note: use FormGroup is also
permitted. In this case, all forms
within the FormGroup are used to
resolve unqualified variable names in
the program.

The migration tool includes the
following maps:

v Maps used in CONVERSE,
DISPLAY, and CLOSE I/O options.

v Maps used in an XFER with a map
statement.

v Maps listed in the called parameter
list for the program.

v The map specified as the First Map
for the program.

Help Map Group (Specifications) use FormGroup { helpGroup=yes }
(use declaration)

No special considerations.

304 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 106. Programs — program specifications, properties, tables and additional records list (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Message table prefix (Program
property)

msgTablePrefix
(program property)

No special considerations.

Allow implicit data items (Program
property)

Not supported. The migration tool does not create
implicit definitions for you. See
“Implicit data items in programs” on
page 88 for details and potential
problems.

Keys assignment:

v Help key (1 key)

v Bypass keys (up to 5 keys)

v F1–12 = F13–24

(Program property)

Note: The keys assignment is
specified once for the program and
applies to both the map group and
the help map group.

EGL keys assignment example:

use FormGroup
 { [helpGroup = yes,]
 helpKey = pfNumber,
 validationBypassKeys =
 [pfNumberList] ,
 pfKeyEquate = yes | no } ;

(use declaration properties for the
FormGroup and help FormGroup for
the program)

Note:

v The values in the
validationBypassKeys list must be
separated by commas.

v The validationBypassKeys
property is not specified in the use
declaration for the help
FormGroup for the program.

The migration tool includes the EGL
equivalent of the keys assignment
information on the use declaration
statements for both the FormGroup
and the help FormGroup. The
migration tool omits the
validationBypassKeys property from
the use declaration for the help
FormGroup.

Appendix B. Relationship of VisualAge Generator and EGL language elements 305

Table 106. Programs — program specifications, properties, tables and additional records list (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Tables and Additional Records:

v Records

Note:

v Redefinition information is stored
in the VAGen Redefined record,
not in the program.

v Records that are used as I/O
objects are never included in the
Tables and Additional Records list.

EGL additional record example:

recordName recordName
 [{ redefines = otherRecord}];

(data declaration)

Note:

v The redefines property must be
specified when the record is
declared in a program if the record
provides a different record layout
for the same physical storage as
another record.

v Data declarations are required for
all records used in the program,
including the I/O records.

The migration tool always uses the
same record name as the type
definition.

If a VAGen record is used in the
program as a redefined record, the
migration tool includes the redefines
property on the data declaration
statement. See “Redefined records” on
page 70 for details and potential
problems.

The migration tool also includes data
declarations for all records that are
used as I/O objects by the program.

The migration tool includes data
declarations for records that are
specified as attributes of any MQ
Message record that is used as an I/O
object by the program.

If the program specifies a PSB, the
migration tool includes data
declarations for all DL/I segments
used as I/O objects or in the
hierarchical path to an I/O object.

For Web transaction programs, the
migration tool includes data
declarations for UI records that are
referenced in a CONVERSE I/O
statement or in an XFER statement.

Tables and Additional Records:

v Tables

v You can specify Keep After Use
for each table.

EGL use declaration example:

use tableName
 [{deleteAfterUse = yes}];

(use declaration)

The migration tool converts tables on
the Tables and Additional Records list
to use declarations.

The deleteAfterUse property has the
opposite meaning from the VAGen
Keep After Use. The migration tool
reverses yes and no.

If you select the Do not include
deleteAfterUse for tables migration
preference, the migration tool
automatically omits the
deleteAfterUse property and issues a
warning message for the affected
program and table.

306 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 107. Programs — main functions and flow statements

VisualAge Generator 4.5 EGL produced by the migration
tool

Migration tool considerations

VAGen programs specify the main
functions as the top-level functions
in the VAGen Structure Diagram. All
other functions appear only when
you expand the Structure Diagram.

Each main function can have flow
statements. These statements do not
appear in the Structure Diagram, but
can be accessed from the diagram.

EGL programs specify only one main
function. This function is always
named main.

There are no flow statements.

The following example shows the
syntax for an EGL main function:

function main ()
 { functionLabel:
 functionName() ;
[{ functionFlowStatements }] }
end // end main

The migration tool builds the EGL
main function. The tool includes the
following information within the EGL
main function for each VAGen main
function:

v functionLabel so that the VAGen
main function can be referenced in
an EGL exit stack functionLabel
statement. The tool always sets the
functionLabel to the functionName.

v function invocation statement to
invoke the VAGen main function.

v flow statements, if any, for the
VAGen main function.

See the following sections for details
on the migration of flow statements:

v See “Statements” on page 325

v See “EZE words” on page 339

v See “Service routines” on page 349

Functions
The following tables compare the VAGen function part with the EGL function and
describe how the migration tool handles the conversion.

The functions section is organized into the following tables:
v Functions - general syntax, description, parameters, return value, and local

storage, Table 108 on page 308
v Functions - EXECUTE I/O option, Table 109 on page 310
v Functions - I/O options for maps and UI records, Table 110 on page 311
v Functions - I/O for files or databases — general information and I/O error

routine, Table 111 on page 311
v Functions - I/O options for serial, indexed, relative, and message queue records,

Table 112 on page 312
v Functions - I/O options for default (unmodified) SQL statements, without

Execution time statement build, Table 113 on page 313
v Functions - I/O options for modified SQL statements, without Execution time

statement build, Table 114 on page 315
v Functions - I/O options for SQL statements with Execution time statement build,

Table 115 on page 318
v Functions - I/O options for default (unmodified) DL/I statements, Table 116 on

page 321
v Functions - Segment Search Arguments for modified DL/I statements, Table 117

on page 322

Appendix B. Relationship of VisualAge Generator and EGL language elements 307

Table 108. Functions — general syntax, description, parameters, return value, and local storage

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Function parts can contain the
following information:

v Function name

v Function parameters

v Function return value

v Function local storage

v Properties:

– Error routine

– Description

v I/O option

v I/O object

v SQL statement

v DL/I call

v Statements before the I/O
option

v Statements after the I/O option

Note: Only one I/O option is
permitted in a function.

Functions can contain the following
information:

v functionName

v functionParameterList

v returnItemType

v dataDeclarations

v Statements before the I/O statement

v I/O statement

v Statements after the I/O Statements

The following example shows the
format of a function created by the
migration tool:

// Description
Function functionName
 (functionParamterList)
 [returns(returnItemType)]
 [dataDeclarations]
 [beforeStatements]
 [IOStatement]
 [afterStatements]
end // end functionName

Note:

v The VAGen I/O option, I/O object,
error routine, SQL statement, and
DL/I call are used to create the EGL
IOStatement.

v More than one IOStatement is
permitted in a function.

The migration tool converts all VAGen
function parts to EGL standalone
function parts.

For details on how the migration tool
handles the Description, Function
return value, Function parameters, and
Function local storage, see the
following rows in this table.

See the following sections for details
on the migration of before and after
statements:

v For statements, see “Statements” on
page 325.

v For EZE words, see “EZE words” on
page 339.

v For service routines, see “Service
routines” on page 349.

See the following tables for details on
I/O options and error routines:

v See Table 109 on page 310 for the
EXECUTE I/O option.

v See Table 110 on page 311 for I/O
options for maps and UI records.

v See Table 111 on page 311 general
information on file and database
I/O.

v See Table 112 on page 312 for I/O
options for serial, indexed, relative,
and message queue records.

For details on SQL statements, see the
following tables in this section:

v See Table 113 on page 313 for I/O
options for unmodified SQL
statements.

v See Table 114 on page 315 for I/O
options for modified SQL statements
without Execution time statement
build.

v See Table 115 on page 318 for I/O
options for SQL statements with
Execution time statement build.

For details on DL/I calls, see the
following tables in this section:

v See Table 116 on page 321 for I/O
options for default (unmodified)
DL/I statements.

v See Table 117 on page 322 for
Segment Search Arguments for
modified DL/I statements.

308 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 108. Functions — general syntax, description, parameters, return value, and local storage (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Description Not applicable The migration tool converts the
function description to a comment that
precedes the Function definition.

Function parameters:

v Function parameters are entered
in a special window.

v Items used as function
parameters can be shared or
nonshared. The definition for
nonshared items is stored in the
function.

Function parameters:

v Parameters must be separated by
commas.

v Each parameter has type
information.

v Optionally, each parameter has
parameter type information.

The following example shows the
format of function parameters:

(parameterName typeInfo
 [parameterType]
 { , parameterName typeInfo
 [parameterType] })

The following specific example shows
function parameters:

(parmSharedItem parmSharedItem
 field,
 parmNonSharedItem char(10)
 sqlNullable,
 parmRecord parmRecord)

The migration tool sets the typeInfo in
the following way:

v For a record, the typeInfo is a type
definition that specifies the same
record name.

v If the item type is one of the VAGen
Any* types, the typeInfo is the
corresponding EGL special item
type.

v If the item is a shared data item,
then the migration tool does the
following things:

– If you select the Convert shared
data items to primitive item
definitions migration syntax
preference, and the data item part
is available, the migration tool
converts the shared item to an
EGL function parameter that is
declared using a primitive
definition based on the type,
length, and decimals specified for
the data item part. Migration of
type, length, and decimals
information is the same as
described in Table 73 on page
259.

– If you clear the Convert shared
data items to primitive item
definitions migration syntax
preference, or the data item part
is not available, the migration
tool converts the shared item to
an EGL function parameter that is
declared using a type definition.
For migration, the type definition
is always the same as the item
name.

v If the item is a nonshared data item,
then the typeInfo is migrated based
on the item type, length, and
decimals, and follows the rules
described in Table 73 on page 259.

Function parameters:

v Function parameter types:

– Record

– Item

– Map item

– SQL item

Function parameters:

v Function parameter types:

– Not applicable

– Not applicable

– field

– sqlNullable

Function parameters:

v Special item types, length is not
specified:

– AnyChar

– AnyDBCS

– AnyMix

– AnyHex

– AnyUnicode

– AnyNumeric

Function parameters:

v Special item types, length is not
specified:

– CHAR

– DBCHAR

– MBCHAR

– HEX

– UNICODE

– number

Function return value:

v Data type

v Length

v Decimals

v Description

EGL returns value:

v The following is an example of the
returns statement format:

 returns(returnItemType)
 // Description

If the function includes a return value,
the migration tool migrates the data
type, length, and decimals based the
rules described in Table 73 on page
259.

Appendix B. Relationship of VisualAge Generator and EGL language elements 309

Table 108. Functions — general syntax, description, parameters, return value, and local storage (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Function local storage:

v Function local storage is entered
in a special window.

v Items used as function local
storage can be shared or
nonshared. The definition for
nonshared items is stored in the
function.

Function variable declarations:

v Function variable declarations must
include variable names and their
associated type information.

v The following example shows the
format of function variable
declarations:

// Function Declarations
 variableName typeInfo ;
 { variableName typeInfo ; }

The migration tool sets the typeInfo in
the following way:

v For a record, the typeInfo is a type
definition that specifies the same
record name.

v If the item is a shared data item,
then the migration tool does the
following things:

– If you select the Convert shared
data items to primitive item
definitions migration syntax
preference, and the data item part
is available, the migration tool
converts the shared item to an
EGL variable that is declared
using a primitive definition based
on the type, length, and decimals
specified for the data item part.
Migration of type, length, and
decimals information is the same
as described in Table 73 on page
259.

– If you clear the Convert shared
data items to primitive item
definitions migration syntax
preference, or the data item part
is not available, the migration
tool converts the shared item to
an EGL variable that is declared
using a type definition. For
migration, the type definition is
always the same as the item
name.

v If the item is a nonshared data item,
then the typeInfo is migrated based
on the item type, length, and
decimals, and follows the rules
described in Table 73 on page 259.

Function local storage:

v Function local storage types:

– Record

– Item

Function local storage:

v Function local storage types:

– Not applicable

– Not applicable

 Table 109. Functions — EXECUTE I/O option

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: none

v I/O option: EXECUTE

No equivalent statement. The migration tool eliminates the
EXECUTE I/O option.

310 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 110. Functions — I/O options for maps and UI records

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: mapName

v I/O option: DISPLAY

Note: DISPLAY is used for both
display and printer maps.

To display a text form, use the display
statement. To print a print form, use
the print statement.

The following examples show a
display statement and a print
statement:

display mapName;

print mapName;

Note: In VisualAge Generator
compatibility mode, display printForm
is treated as though it is print
printForm.

The migration tool converts to the
display or print statement based on
the map type. See “DISPLAY I/O
option for maps” on page 94 for
details and potential problems.

v I/O object: mapName

v I/O option: CONVERSE

Use the converse statement.

The following example shows a
converse statement:

converse mapName;

No special considerations.

v I/O object: UIRecordName

v I/O option: CONVERSE

Use the converse statement.

The following example shows a
converse statement:

converse UIRecordName;

No special considerations.

 Table 111. Functions — I/O for files or databases — general information and I/O error routine

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen record I/O:

v I/O option

v I/O object (always a record)

v I/O error routine (optional)

Note: The record can be a serial,
indexed, relative, message queue,
SQL row, or DL/I segment record.

EGL record I/O:

v An I/O statement

v Record name

v try ... onException statements with
error routine name (optional)

If an I/O error routine is specified, the
statements are enclosed within a try
block. The following example shows
file or database I/O with an error
routine:

try
 add recordName ;
 [onException error-routine ;]
end

The migration tool does the following
things:

v Changes the VAGen I/O option to
the corresponding EGL I/O
statement.

v Includes the try ... onException
statements if there is a VAGen error
routine.

Appendix B. Relationship of VisualAge Generator and EGL language elements 311

Table 111. Functions — I/O for files or databases — general information and I/O error routine (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

An error routine is optional for
functions that do file or database
I/O.

Note: The error routine is
invoked if there is a soft error or
if EZEFEC = 1.

An error routine is optional for
functions that do I/O for records. The
following example shows I/O without
an error routine:

add recordName;

The following example shows I/O with
an error routine:

try
 add recordName ;
 onException error-routine ;
end

Note: The onException statement is
invoked if there is a soft error or if
vgVar.handleHardIOErrors is set to 1.
If the function does DL/I I/O, the
onException statement is also invoked
if vgVar.handleHardDLIErrors is set to
1.

The migration tool does the following
things:

v If the error-routine is not specified,
the tool does not include the try ...
onException statements.

v If an error-routine is specified, the
tool includes the try block.

v The migration tool converts to the
onException statement based on the
VAGen error routine name. When
the migration tool migrates
programs, it always migrates the
VAGen main function names to both
the main function label and the
main function invocation statement.
That way, when migrating the I/O
error routine for a function, the
mainFunctionLabel is always the same
as the mainFunctionName.

Special considerations apply for the
migration of error routines that are
function names. See “I/O error
routine” on page 95 for details and
potential problems.

Special considerations also apply for
SQL I/O functions that specify
Execution time statement build. For
more information, see “SQL I/O and
Execution time statement build” on
page 102.

Error routine values:

EZECLOS
EZEFLO
EZERTN
mainFunctionName

nonmainFunctionName

onException block statements:

onException exit program;
onException exit stack;
Omit the onException statement.
onException exit stack
 mainFunctionLabel;
onException
 nonmainFunctionName();

 Table 112. Functions — I/O options for serial, indexed, relative, and message queue records

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: ADD

Use the add statement. The following
is an example:

add recordName;

No special considerations.

v I/O object: recordName

v I/O option: SCAN

Use the get next statement. The
following is an example:

get next recordName;

No special considerations.

v I/O object: recordName

v I/O option: SCANBACK

Use the get previous statement. The
following is an example:

get previous recordName;

No special considerations.

v I/O object: recordName

v I/O option: CLOSE

Use the close statement. The following
is an example:

close recordName;

No special considerations.

v I/O object: recordName

v I/O option: INQUIRY

Use the get statement. The following is
an example:

get recordName;

No special considerations.

312 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 112. Functions — I/O options for serial, indexed, relative, and message queue records (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: UPDATE

Use the get forUpdate statement. The
following is an example:

get recordName forUpdate;

No special considerations.

v I/O object: recordName

v I/O option: DELETE

Use the delete statement. The
following is an example:

delete recordName;

No special considerations.

v I/O object: recordName

v I/O option: REPLACE

Use the replace statement. The
following is an example:

replace recordName;

No special considerations.

 Table 113. Functions — I/O options for default (unmodified) SQL statements without Execution time statement build)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: ADD

Use the add statement. The following
is an example:

add recordName;

No special considerations.

v I/O object: recordName

v I/O option: SCAN

Use the get next statement. The
following is an example:

get next recordName;

No special considerations.

v I/O object: recordName

v I/O option: CLOSE

Use the close statement. The following
is an example:

close recordName;

No special considerations.

v I/O object: recordName

v I/O option: INQUIRY

(with and without Single row
select)

Use the get statement. If you are doing
a single row select, also use
singleRow. The following example
shows a get statement without single
row select:

get recordName;

The following example shows single
row select:

get recordName singleRow;

If Single row select is specified in
VisualAge Generator, the migration
tool includes the EGL singleRow
option.

v I/O object: recordName

v I/O option: UPDATE

Use the get forUpdate statement. The
following is an example:

get recordName forUpdate
 resultSetID;

The migration tool always includes the
resultSetID when migrating an
UPDATE I/O option for an SQL
record. The tool sets the resultSetID to
the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

Special considerations apply if the
migration tool cannot determine if the
record is SQL or non-SQL. See “SQL
I/O with multiple UPDATE or
SETUPD functions” on page 104 for
details and potential problems.

v I/O object: recordName

v I/O option: DELETE

Use the delete statement. The
following is an example:

delete recordName;

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 313

Table 113. Functions — I/O options for default (unmodified) SQL statements without Execution time statement
build) (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: REPLACE

(with or without
UPDATE/SETUPD functionName)

Use the replace statement. The
following are some examples:

replace recordName;

replace recordName from
 resultSetID;

If the UPDATE/SETUPD function
name was included in VisualAge
Generator, the migration tool includes
the resultSetID and sets the resultSetID
to the UPDATE/SETUPD function
name followed by a customer-specified
suffix. You can control the suffix with
the Stage 2 VAGen Migration
Preferences.

v I/O object: recordName

v I/O option: SETINQ

(with and without Declare cursor
with hold)

Use the open statement. If you are
doing a Declare cursor with hold, also
use the hold option. The following are
examples of both types of statement:

open resultSetID for recordName;

open resultSetID hold
 for recordName;

The migration tool sets the resultSetID
to the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

If Declare cursor with hold is selected
in VisualAge Generator, the migration
tool includes the EGL hold option.

v I/O object: recordName

v I/O option: SETUPD

(with and without Declare cursor
with hold)

Use the open forUpdate statement. If
you are doing a Declare cursor with
hold, also use the hold option. The
following are examples of both types
of statements:

open resultSetID forUpdate
 for recordName;

open resultSetID hold forUpdate
 for recordName;

The tool sets the resultSetID to the
function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

If Declare cursor with hold is selected
in VisualAge Generator, the migration
tool includes the EGL hold option.

v I/O object: recordName

v I/O option: SQLEXEC

with Model SQL Statement

Note:

v The SQL record name is
included in this form of
SQLEXEC.

v The values for the model type
are:

– None

– Update

– Delete

v If the model type is None,
VisualAge Generator does not
do any I/O. Generation still
processes the I/O error routine,
but no errors occur at runtime.

Use the execute statement. The
following is an example:

execute modelType for recordName;

Note: modelType is either update or
delete.

The migration tool sets the EGL
modelType based on the VAGen Model
SQL Statement value.

If the VAGen Model SQL Statement is
None, the migration tool omits the I/O
statement because the VAGen I/O
statement did not do anything. The
migration tool includes the try ...
onException statements based on the
I/O error routine for the function.

314 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 114. Functions — I/O options for modified SQL statements, without Execution time statement build

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

General Information for modified
SQL statements:

v VisualAge Generator builds the
table clause from the SQL row
record at test and generation
time. The following table
clauses are used:

– insert into sqlTableName for
the ADD I/O option

– from sqlTableName
sqlTableLabel for the
INQUIRY, UPDATE,
SETINQ, and SETUPD I/O
options

– update sqlTableName for the
REPLACE I/O option

v Depending on when the
function was last modified,
other SQL clauses might not be
stored in the function
definition. If the SQL clause is
not stored, VisualAge
Generator creates a default
clause based on the record
definition of the I/O object.

v !itemColumnName variables
are permitted. These variables
specify the name of an item in
the SQL row record. At test or
generation time, VisualAge
Generator substitutes the
corresponding SQL column
name.

v SQL clauses are written in SQL
syntax.

General Information for modified SQL
statements:

v If you need to modify any SQL
clause, EGL requires that all clauses
be explicitly specified. The table
clause must be explicitly included in
the SQL statement. The following
table clauses are used:

– insert into sqlTableName for the
add statement.

– from sqlTableName sqlTableLabel for
the get and open statements.

– update sqlTableName for the
replace statement.

v EGL requires that all clauses be
explicitly specified if any SQL clause
is specified. The required SQL
clauses vary with the type of I/O.

v EGL requires that the SQL column
names be explicitly included in the
SQL statement. !itemColumnName
variables are not supported.

v SQL clauses are written in SQL
syntax.

The migration tool uses the tables and
table labels from the SQL row record
to build the tables clause for the EGL
I/O statement. Both table names and
table name host variables are included
in the table clause of the EGL I/O
statement.

If a required SQL clause is not stored
in the function definition, the
migration tool creates a default clause
based on the record definition in the
same way as in VisualAge Generator.

The migration tool converts any
!itemColumnName variables to their
corresponding SQL column name.

The migration tool converts VAGen
comments (/*) to SQL comments (—)

Special considerations apply if the SQL
record and its alternate specification
record, if any, are not available during
migration. For more information and
potential problems, see the following
sections:

v “SQL I/O statements” on page 96

v “SQL I/O and missing required SQL
clauses” on page 98

v “SQL I/O and !itemColumnName”
on page 103

v I/O object: recordName

v I/O option: ADD

Clauses that can be modified:

v INSERTCOLNAMES

v VALUES

Use the add statement. The following is
an example:

add recordName
 with #sql{
 insert into
 sqlTablename
 (columnName1, columnName2)
 values
 (valueInfo1, valueInfo2)
};

The migration tool creates the INSERT
INTO clause based on the table name
in the record definition. Special
considerations apply. See “SQL I/O
statements” on page 96 for details and
potential problems.

Appendix B. Relationship of VisualAge Generator and EGL language elements 315

Table 114. Functions — I/O options for modified SQL statements, without Execution time statement build (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: INQUIRY

(with and without Single row
select)

Clauses that can be modified:

v SELECT

v INTO

v WHERE, GROUP BY, HAVING

v ORDER BY

Use the get statement.

The following is an example with
single row select:

get recordName singleRow
 with #sql{
 select
 Name1,
 Name2,
 Age
 from
 sqlTable1 sqlLabel1,
 sqlTable2 sqlLabel2
 where
 Name1 = :Namex
 order by
 Age
}
into
 nameA, nameB, myage;

If Single row select is specified in
VisualAge Generator, the migration
tool includes the EGL singleRow
option.

The migration tool creates the FROM
clause based on the table names and
table labels in the record definition.
Special considerations apply. See “SQL
I/O statements” on page 96 for details
and potential problems.

v I/O object: recordName

v I/O option: UPDATE

Clauses that can be modified:

v SELECT

v INTO

v WHERE

v FOR UPDATE OF

Use the get forUpdate statement .

The following is an example:

get recordName forUpdate
 resultsetID
 with #sql{
 select
 Name1, Name2, Age
 from
 sqlTable1 sqlLabel1
 where
 Name1 = :Namex
 for update of
 Name2, Age
 }
 into
 Name1, Name2, Age;

The migration tool always includes the
resultSetID when migrating an
UPDATE I/O option for an SQL
record. The tool sets the resultSetID to
the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

The migration tool creates the FROM
clause based on the table name and
table label in the record definition.
Special considerations apply. See “SQL
I/O statements” on page 96 for details
and potential problems.

v I/O object: recordName

v I/O option: REPLACE

(optional UPDATE/SETUPD
functionName)

Clause that can be modifed:

v SET

Use the replace statement.

The following is an example of the
replace statement:

replace recordName
 with #sql{
 update
 sqlTableName
 set
 columnName1 = value1,
 columnName2 = value2
 }
 from resultSetID;

If an UPDATE/SETUPD function name
is included in VisualAge Generator, the
migration tool includes the from
resultSetID clause. The migration tool
sets the resultSetID to the
UPDATE/SETUPD function name
followed by a customer-specified
suffix. You can control the suffix with
the Stage 2 VAGen Migration
Preferences.

The migration tool creates the
UPDATE clause based on the table
name in the record definition. Special
considerations apply. See “SQL I/O
statements” on page 96 for details and
potential problems.

316 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 114. Functions — I/O options for modified SQL statements, without Execution time statement build (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O object: SETINQ

(with or without Declare cursor
with hold)

Clauses that can be modified:

v SELECT

v INTO

v WHERE, GROUP BY, HAVING

v ORDER BY

Use the open statement. If you are
doing a Declare cursor with hold, also
use the hold option.

The following is an example of an
open statement using the hold option:

open resultSetID hold
 with #sql{
 select
 Name1, Name2
 from
 sqlTable1 sqlLabel1,
 sqlTable2 sqlLabel2
 where
 Name1 > :Name2
 order by
 Name1
 }
 into Name1, Name2
 for recordName;

The migration tool sets the resultSetID
to the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

If Declare cursor with hold is selected
in VisualAge Generator, the migration
tool includes the EGL hold option.

The migration tool creates the FROM
clause based on the table names and
table labels in the record definition.
Special considerations apply. See “SQL
I/O statements” on page 96 for details
and potential problems.

v I/O object: record

v I/O option: SETUPD

(with or without Declare cursor
with hold)

Clauses that can be modified:

v SELECT

v INTO

v WHERE

v FOR UPDATE OF

Use the open forUpdate statement. The
following is an example using the hold
option:

open resultSetID hold forUpdate
 with #sql{
 select
 Column1, Column2
 from
 sqlTable1 sqlLabel1
 where
 Column1 > :Item1
 for update of
 Column2
 }
 into Item1, Item2
 for recordName;

The migration tool sets the resultSetID
to the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

If Declare cursor with hold is selected
in VisualAge Generator, the migration
tool includes the EGL hold option.

The migration tool creates the FROM
clause based on the table name and
table label in the record definition.
Special considerations apply. See “SQL
I/O statements” on page 96 for details
and potential problems.

v I/O object: record

v I/O option: SQLEXEC

with Model SQL Statement

Note:

v The SQL record name is
optional in this form of
SQLEXEC.

v The following values are valid
for the model type:

– None

– Update

– Delete

Use the execute statement. The
following is an example of the
statement:

execute modelType
 #sql{
 UPDATE mysqltable
 set Column1 = Column1 * 2
 where Column2 = :Column2
 }
 for recordName;

Note: The values for modelType include
Update and Delete.

The migration tool does the following
things:

v Converts SQLEXEC to the execute
statement.

v Uses the I/O object, if it is specified,
as the recordName in the for clause.

The migration tool includes the VAGen
Model SQL Statement value, if any, as
a comment on the EGL execute
statement.

The migration tool migrates the
VAGen SQLEXEC clauses to EGL SQL
clauses.

Appendix B. Relationship of VisualAge Generator and EGL language elements 317

Table 115. Functions - I/O options for SQL statements with Exection time statement build

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Execution time statement build
can only be used with the
following I/O options:

v INQUIRY

v UPDATE

v SETINQ

v SETUPD

v SQLEXEC

Note:

v You specify Execution time
statement build to cause
VisualAge Generator to prepare
the SQL statement dynamically
every time the I/O statement is
executed.

v You can use Execution time
statement build with either
unmodified (default) SQL or
modified SQL.

In EGL, you code the EGL prepare
statement directly whenever you want
the SQL statement to be dynamically
prepared. You must also code the open,
execute, or get statement that follows
the prepare. The following example
shows the EGL equivalent of a VAGen
INQUIRY I/O option with Execution
time statement build:

prepare prepID from
 "sqlStatementString"
 for recordName;
get recordName with prepID
 into itemList;

Note:

v The sqlStatementString in the prepare
statement is a concatenated string of
constants and variables that is
written in SQL notation. The
following example shows a WHERE
clause that uses both column names
and variables:

[other clauses]
+ " where columnName = "
+ itemName
+ " AND columnName2 = "
+ itemName2
+ [other clauses]

v The examples shown in the rest of
this table do not include splitting the
variables outside the double quotes.

v The SQL statement must be
explicitly specified in the prepare
statement.

v Additional EGL logic is required to
obtain the same error handling as in
VisualAge Generator. For examples,
see the following two rows of this
table.

The migration tool sets the prepID to
the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

The migration tool uses the SQL
clauses in the function and the table
names and table name variables in the
record definition to build the
sqlStatementString. The migration tool
builds the sqlStatementString in the
following way:

v Does all the processing as though
the Execution time statement build is
not specified, including:

– Using the table names and table
labels from the SQL row record to
build the tables clause for the
EGL I/O statement. Both table
names and table name host
variables are included.

– Creating default clauses as
necessary based on the record
definition.

– Converting !itemColumnName
variables to their corresponding
SQL column name.

– Converting VAGen comments (/*)
to EGL comments (//) in the
prepare statement.

Then the migration tool does
additional processing to create the
sqlStatementString, including:

v Enclosing constants, column names
and SQL operators in double quotes.

v Placing variables outside double
quotes.

v Using the + string concatenation
operator to concatenate the strings
and variables together.

Special considerations apply if the SQL
record and its alternate specification
record, if any, are not available during
migration. For more information and
potential problems, see the following
sections:

v “SQL I/O statements” on page 96

v “SQL I/O and missing required SQL
clauses” on page 98

v “SQL I/O and !itemColumnName”
on page 103

318 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 115. Functions - I/O options for SQL statements with Exection time statement build (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

For the INQUIRY, UPDATE,
SETINQ, and SETUPD I/O
options, the entire I/O statement
is treated as a unit for the
purposes of error handling. If a
soft error occurs during the SQL
PREPARE step, processing still
continues with the other SQL
statements required for the I/O
option.

Each I/O statement is treated
separately for error handling purposes.
To achieve the same error handling as
in VisualAge Generator, use the
following as an example:

try
 prepare prepID from
 "sqlStatementString"
 for recordName;
end
if (recordName not HardIOError)
 // continue on soft error
 try
 get recordName with prepID
 into itemList ;
 onException errorRoutine;
 end
else // hard error on prepare
 errorRoutine;
end

If the VAGen function specifies an I/O
error routine, the migration tool
includes special error handling logic in
EGL so that processing continues if a
soft error occurs on the EGL prepare
statement. For the relationship between
the VAGen I/O error routine and the
EGL onException statement, see
Table 111 on page 311.

If the VAGen function does not specify
an I/O error routine, the migration tool
cannot include the extra logic so it
issues a warning message instead.

The remaining rows of this table do
not show the error handling logic, but
only the prepare and get or open
statements.

For an SQLEXEC I/O option, the
statement is treated as an SQL
EXECUTE IMMEDIATE, which
does the prepare, execute and
destroy as a single SQL
command. If a soft error occurs,
processing continues or not based
on SQL handling for the specific
error.

The closest equivalent EGL code is a
prepare statement followed by an
execute statement. The following is an
example:

try
 prepare prepID from
 "sqlStatementString"
 for recordName;
 execute prepID
 for recordName ;
 onException errorRoutine;
end

If the VAGen function uses default SQL
and specifies a record and a model
option of Update or Delete, the
migration tool uses the record
definition to create the corresponding
default SQL clauses for the prepare
statement and execute statements.

If the VAGen function uses modified
SQL, the migration tool uses that SQL
to create the prepare and execute
statements.

The remaining rows of this table do
not show the error handling logic, but
only the prepare and execute
statements.

v I/O object: record

v I/O option: INQUIRY

(Single row select is not
supported with Execution time
statement build.)

Clauses that can be modified:

v SELECT

v INTO

v WHERE, GROUP BY, HAVING

v ORDER BY

Use the prepare statement followed by
a get statement. The following is an
example:

prepare prepID from
 " select columnName "
 + ", columnName2 "
 + " from table1 t1 "
 + "[where whereClause]"
 + "[order by orderByClause]"
 for recordName;
get recordName with prepID
 into itemList;

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 319

Table 115. Functions - I/O options for SQL statements with Exection time statement build (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: record

v I/O option: UPDATE

Clauses that can be modified:

v SELECT

v INTO

v WHERE

v FOR UPDATE OF

Use the prepare statement followed by
a get forUpdate statement. The
following is an example:

prepare prepID from
 " select columnName "
 + ", columnName2 "
 + " from table1 t1 "
 + "[where whereClause]"
 + " for Update of columnList "
 for recordName;
get recordName forUpdate
 resultSetID
 with prepID
 into itemList;

The migration tool always includes the
resultSetID when migrating an
UPDATE I/O option for an SQL
record. The tool sets the resultSetID to
the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

v I/O object: record

v I/O option: SETINQ

(with or without Declare cursor
with hold)

Clauses that can be modified:

v SELECT

v INTO

v WHERE, GROUP BY, HAVING

v ORDER BY

Use the prepare statement followed by
an open statement. The following is an
example:

prepare prepID from
 " select columnName "
 + ", columnName2 "
 + " from table1 t1 "
 + "[where whereClause]"
 + "[order by orderByClause]"
 for recordName;
open resultSetID [hold]
 with prepID
 into itemList
 for recordName;

The migration tool sets the resultSetID
to the function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

If Declare cursor with hold is selected
in VisualAge Generator, the migration
tool includes the EGL hold option.

v I/O object: record

v I/O option: SETUPD

(with or without Declare cursor
with hold)

Clauses that can be modified:

v SELECT

v INTO

v WHERE

v FOR UPDATE OF

Use the prepare statement followed by
an open forUpdate statement. The
following is an example:

prepare prepID from
 " select columnName "
 + ", columnName2 "
 + " from table1 t1 "
 + "[where whereClause] "
 + " for update of columnList "
 for recordName;
open resultSetID [hold]
 forUpdate
 with prepID
 into itemList
 for recordName;

The tool sets the resultSetID to the
function name followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

If Declare cursor with hold is selected
in VisualAge Generator, the migration
tool includes the EGL hold option.

v I/O object: record

v I/O option: SQLEXEC

with Model SQL Statement
Note:

v The SQL record name is
optional in this form of
SQLEXEC.

v The following values are valid
for the model type:

– None

– Update

– Delete

Use the prepare statement followed by
an execute statement. The following is
an example:

prepare prepID from
 " grant " + group_privileges
 + " on " + table_name
 + " to " + userid
 [for recordName] ;
execute prepID
 [for recordName] ;
 // model = type

If the VAGen function uses default SQL
and specifies a record and a Model
option of Update or Delete, the
migration tool uses the record
definition to create the corresponding
default SQL clauses for the prepare
statement and execute statements. The
tool includes the VAGen Model SQL
Statement value, if any, as a comment
on the EGL execute statement.

If the VAGen function uses modified
SQL, the migration tool converts the
VAGen SQLEXEC clauses to EGL SQL
clauses.

320 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 116. Functions — I/O options for default (unmodified) DL/I statements

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: ADD

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the add statement. The following
is an example:

add recordName
 [usingPCB pcbInfo];

The migration tool includes the
usingPCB keyword if the VAGen
function specifies the Database
identifier. The migration tool sets the
pcbInfo value based on the information
stored in the VAGen function:

v databaseName followed by a
customer-specified suffix. You can
control the suffix with the Stage 2
VAGen Migration Preferences.

v pcbn, where n is the pcbNumber
specified in VisualAge Generator.

v I/O object: recordName

v I/O option: SCAN

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

v SCAN options:

– Scan update

– Scan parent

Use the get next statement. The
following is an example:

get next recordName
 [usingPCB pcbInfo];

The following example shows both
Scan update and Scan parent:

get next inParent
 recordName forUpdate
 [usingPCB pcbInfo];

The migration tool includes the
usingPCB keyword if the VAGen
function specifies the Database
identifier as described for the ADD
I/O option.

The migration tool includes the
inParent keyword if the VAGen
function specifies the Scan parent
option.

The migration tool includes the
forUpdate keyword if the VAGen
function specifies the Scan update
option.

v I/O object: recordName

v I/O option: INQUIRY

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the get statement. The following is
an example:

get recordName
 [usingPCB pcbInfo] ;

The migration tool includes the
usingPCB keyword if the VAGen
function specifies the Database
identifier as described for the ADD
I/O option.

v I/O object: recordName

v I/O option: UPDATE

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the get forUpdate statement. The
following is an example:

get recordName forUpdate
 [usingPCB pcbInfo] ;

The migration tool includes the
usingPCB keyword if the VAGen
function specifies the Database
identifier as described for the ADD
I/O option.

v I/O object: recordName

v I/O option: DELETE

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the delete statement. The
following is an example:

delete recordName
 [usingPCB pcbInfo] ;

The migration tool includes the
usingPCB keyword if the VAGen
function specifies the Database
identifier as described for the ADD
I/O option.

v I/O object: recordName

v I/O option: REPLACE

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the replace statement. The
following is an example:

replace recordName
 [usingPCB pcbInfo] ;

The migration tool includes the
usingPCB keyword if the VAGen
function specifies the Database
identifier as described for the ADD
I/O option.

Appendix B. Relationship of VisualAge Generator and EGL language elements 321

Table 117. Functions - Segment Search Arguments for modified DL/I statements

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

General information specified for
a modified DL/I call with SSAs:

v I/O option

v I/O object

v PSB

v Database identifier

v Scan update

v Scan parent

v Zero, one or more SSAs that
include:

– Segment Name

– Command Codes

– Boolean Operator

– Segment Field

– Relational Operator

– Comparison Value Item

Note:

v SSAs are entered in a
specialized DL/I Call Editor.

v VisualAge Generator formats
the SSAs at generation time.

General format for a modified DL/I
call with SSAs is that SSAs are entered
between braces in the following way:

with #dli
 { dliFunction
 SSAList } ;

For example:

 ioOptionWithModifiers
 recordNameList
 [usingPCB pcbInfo]
 with #dli
 { dliFunction
 segmentName1*cmdCodes
 (segmentFieldA
 relationalOperatorA
 :comparisonValueItemA
 booleanOperator
 segmentFieldB
 relationalOperatorB
 :comparisonValueItemB)
 segmentName2*cmdCodes
 (segmentFieldC
 relationalOperatorC
 :comparisonValueItemC)
 };

Note:

v SSAs are entered in a text editor.

v EGL formats the SSAs at generation
time according to the DL/I
formatting rules.

The migration tool builds the
recordNameList based on a combination
of the I/O object and the command
codes specified for the SSAs.

Modified DL/I call with all SSAs
deleted.

Note: This technique is used in
scanning all segments in the
database.

General format for a modified DL/I
call with all SSAs deleted:

ioOptionWithModifiers
 recordNameList
 [usingPCB pcbInfo]
 with #dli{ dliFunction };

The migration tool sets the
recordNameList to the name of the I/O
object.

VisualAge Generator I/O options:

v ADD

v SCAN

v SCAN - Scan update

v SCAN - Scan parent

v SCAN - Scan update and Scan
parent

v INQUIRY

v UPDATE

v DELETE

v REPLACE

Corresponding EGL
ioOptionWithModifiers:

v add

v get next

v get next forUpdate

v get next inParent

v get next inParent forUpdate

v get

v get forUpdate

v delete

v replace

No special considerations. The
ioOptionWithModifiers are the same
values that are used when converting
unmodified DL/I I/O options.

322 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 117. Functions - Segment Search Arguments for modified DL/I statements (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator I/O options:

v ADD

v SCAN

v SCAN - Scan update

v SCAN - Scan parent

v SCAN - Scan update and Scan
parent

v INQUIRY

v UPDATE

v DELETE

v REPLACE

Corresponding EGL dliFunction:

v ISRT

v GN

v GHN

v GNP

v GHNP

v GU

v GHU

v DLET

v REPL

Note: The dliFunction must be
consistent with the
ioOptionWithModifiers.

No special considerations.

VisualAge Generator I/O option,
SSAs, and Command Codes

Note:

v Command codes are optional.
There is a maximum of 4
command codes for an SSA.

v VisualAge Generator does
special processing at generation
and runtime to support the D
and N command codes that are
related to path calls.

EGL I/O option, recordNameList, SSAs
and Command Codes

Note:

v The * is only specified if one or
more optional command codes are
specified. There is a maximum of 4
command codes for an SSA.

v The EGL recordNameList varies based
on the I/O option and the command
codes specified for the SSAs. See the
next rows of this table for details.

The migration tool builds the
recordNameList based on a combination
of the I/O object and the command
codes specified for the SSAs.

VisualAge Generator I/O object
and Command Codes without the
D or N Command Codes

Note: Only the I/O object (target
DL/I segment) is retrieved or
updated in the database.

The EGL recordNameList is the name of
the target DL/I segment.

The migration tool sets the
recordNameList to the name of the I/O
object.

VisualAge Generator ADD I/O
option with the D Command
Code

Note:

v The D command code indicates
the top segment of the
hierarchy that is to be inserted
into the database. All segments
after the D command code are
also inserted.

v Only one segment can specify
the D command code.

v The target segment never
specifies the D command code.

Use the add statement. All segments
that are to be inserted must be listed
as objects of the I/O statement. The
following is an example for specifying
a DL/I Insert call:

 add recordName1 ,
 recordName2 ,
 recordName3
 [usingPCB pcbInfo]
 with #dli{ ISRT
 recordName1*D
 recordName2
 recordName3
 } ;

The migration tool creates the
recordNameList for the I/O statement to
include the DL/I segment record that
specifies the D command code and all
subsequent DL/I segment records in
the hierarchy.

Appendix B. Relationship of VisualAge Generator and EGL language elements 323

Table 117. Functions - Segment Search Arguments for modified DL/I statements (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator SCAN,
INQUIRY, and UPDATE I/O
options with the D Command
Code

Note:

v The D command code indicates
a segment of the hierarchy that
is to be retrieved from the
database. Each segment other
than the target segment that is
to be retrieved from the
database must specify the D
command code. The target
segment is always retrieved.

v Multiple SSAs can specify the D
command code.

v The target segment never
specifies the D command code.

Use the form of the get statement that
corresponds to the I/O option. All
segments that are to be retrieved from
the database must be listed as objects
of the I/O statement. The following is
an example for specifying a DL/I Get
Hold Next in Parent call:

get next inParent
 recordName1 ,
 recordName3
 forUpdate
 [usingPCB pcbInfo]
 with #dli{ GHNP
 recordName1*D
 recordName2
 recordName3
 } ;

The migration tool creates the
recordNameList for the I/O statement to
include each DL/I segment record that
specifies a D command code and the
target segment.

VisualAge Generator REPLACE
I/O option with the N Command
Code

Note:

v The N command code indicates
that a segment is not to be
replaced even though it was
retrieved for update with the D
command code on a previous
SCAN or UPDATE.

v Multiple segments can specify
the N command code.

v The target segment never
specifies the N command code.

Use the replace statement. Only the
target segment is specified in the
recordNameList. The following is an
example for specifying a DL/I Replace
call:

replace recordName3
 [usingPCB pcbInfo]
 with #dli{ REPL
 recordName1*N
 recordName3
 } ;

The migration tool sets the
recordNameList to the name of the I/O
object.

VisualAge Generator Relational
Operators for SSAs:

v EQ and =

v GT and >

v LT and <

v GE and >= and =>

v LE and <= and =<

v NE and ^= and =^

Corresponding EGL relational
operators for SSAs:

v =

v >

v <

v >=

v <=

v !=

Note:

v EGL only supports one variant of
the relational operators for SSAs.

v EGL converts != to a not equal
operator that is acceptable to DL/I.

No special considerations.

324 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 117. Functions - Segment Search Arguments for modified DL/I statements (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator Boolean
Operators for SSAs:

v AND and &

v OR and |

Note: VisualAge Generator does
not provide support for the
dependent OR.

Corresponding EGL Boolean operators
for SSAs:

v &

v | (vertical bar)

Note:

v EGL only supports one variant of
the Boolean operators for SSAs.

v EGL also supports the dependent
OR (# symbol).

No special considerations.

Comparison Value Item

Note:

v The comparison value item can
be any item in the program.

v If the item is not qualified,
VisualAge Generator looks first
for the item in the segment
record associated with the
current SSA.

Comparison value item

Note:

v The comparison value item can be a
literal or any item in the program.

v If the item is not qualified, EGL
looks first in the target segment,
which is the lowest segment in the
hierarchy.

v The comparison value item must be
preceded by a semicolon to indicate
a host variable. For example:
 :qualifier.itemName

EGL removes the semicolon during
generation.

If a comparison value item is not
qualified, the migration tool checks the
DL/I segment record associated with
the current SSA to determine if the
item is in that record. If so, the
migration tool includes the DL/I
segment record as the qualifier for the
comparison value item.

Special considerations apply if the
DL/I segment record is not available
or if the comparison value item is not
in the record. For details and potential
problems, see “DL/I I/O and
comparison value items” on page 105.

Statements
The statements section is organized into the following tables:
v General rules - data item qualification and numeric literals, Table 118 on page

326
v Function invocation, Table 119 on page 327
v Assignment, MOVE, and MOVEA, Table 120 on page 327
v SET, Table 121 on page 329
v RETR and FIND, Table 122 on page 331
v IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values,

Table 123 on page 332
v CALL, Table 124 on page 337
v DXFR, Table 125 on page 338
v XFER, Table 126 on page 338

Appendix B. Relationship of VisualAge Generator and EGL language elements 325

Table 118. Statements - General rules - data item qualification and numeric literals

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Item qualification rules: If an item is
not qualified, VisualAge Generator
looks for the item in the following
order:

v Items in the function local storage
or parameter list.

v The I/O object for the function
and records in the function local
storage or parameter list. If the
item name is not unique in this
category, the item name must be
qualified.

v Records, maps, and tables in the
primary working storage record
for the program, called parameter
list, Table and Additional Records
list, and all I/O objects. If the
item name is not unique in this
category, the item name must be
qualified.

v If the item name is not found
within the program and the
program allows implicit items,
VisualAge Generator creates a
data item definition based on the
use of the item.

Item qualification rules: If a field is not
qualified or is partially qualified, EGL
looks for the field in the following
places, in order:

v Variables declared at the function
level, including item variable names
and record variable names in the
function local storage and parameter
list.

v I/O objects, fields within the I/O
objects, and fields in any record
variables declared in the function
local storage or parameter list.

v Record variable names and item
variable names declared at the
program level or specified in the
parameter list for the program

v Forms listed on the use forms
statement for the program. If the use
statement only specifies the
FormGroup name, then all forms in
the FormGroup are considered.

v DataTable names specified in the use
declarations for the program.

v Fields in any record variables, forms,
or DataTables declared for the
program. If the use form statement
only specifies the FormGroup name,
then all fields on all forms in the
FormGroup are considered.

v Fields in a user library specified in
the use declarations for the program.

v Fields in a system library.

v EGL does not permit implicit items.
Every item must be explicitly
defined.

See “Level 77 items in records” on
page 71 and “Implicit data items in
programs” on page 88 for details
and potential problems.

Numeric literals:

v Not enclosed in quotes.

v Can use either a period (.) or a
comma (,) as the decimal point,
depending on the national
language.

v Floating point literals are not
supported.

Numeric literals:

v Not enclosed in quotes.

v Must use the period as the decimal
point. At generation time, the
decimalSymbol build descriptor
option determines whether the
period or comma is used as the
decimal point in the generated Java
or COBOL code.

v Floating point literals are supported.

The migration tool converts the
commas used as decimal points to a
period except for initial values of
form variable fields.

326 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 118. Statements - General rules - data item qualification and numeric literals (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Character, mixed, and DBCS literals:

v Must be enclosed in quotes.

v If a character literal is enclosed in
single quotes, the literal is folded
to uppercase.

v If a character literal is enclosed in
double quotes, the literal is used
as entered.

Character, mixed, and DBCS literals:

v Must be enclosed in double quotes.

v The literal is used as entered.

v HEX and UNICODE literals are also
supported.

v Can optionally specify a one-letter
prefix to indicate the type of the
literal:

– C - CHAR

– D - DBCHAR

– M - MBCHAR

– X - HEX

v Can optionally specify a two-letter
prefix to indicate an unprintable
character such as a form feed:

– CX - CHAR

– DX - DBCHAR

– MX - MBCHAR

– UX - UNICODE

v If there is no prefix, the literal is
treated as a STRING data type.

The migration tool does not include
the one- or two-character prefix for
a literal.

The migration tool sets the
textLiteralDefaultIsString property
to NO for all programs and VGUI
records.

 Table 119. Statements — Function invocation

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen syntax example:

functionName([argumentList]);

Note: A function invocation is a
single, complete statement.

EGL syntax example:

functionName([argumentList]);

Note: A function invocation can be
used as an argument to another
function or call statement or as an
operand in other statements such as an
if or while statement

See “EZE words” on page 339 for
the EGL equivalent system library
functions.

See Table 111 on page 311 for
function invocations from an I/O
error routine.

In flow statements:

functionName();

Flow statements are not supported.

goto functionName;

No special considerations.

 Table 120. Statements — Assignment, MOVE, and MOVEA

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen syntax example:

target = functionName
 ([argumentList]) ;

EGL syntax example:

target = functionName
 ([argumentList]) ;

See “EZE words” on page 339 for
the EGL equivalent system library
functions.

target = numericExpression;

OR

target = numericExpression (R;

target = numericExpression ;

OR

target = mathLib.round
 (numericExpression,
 -mathlib.decimals(target)) ;

If the (R option is specified, the
migration tool converts the option
to the EGL mathlib.round() system
function.

Appendix B. Relationship of VisualAge Generator and EGL language elements 327

Table 120. Statements — Assignment, MOVE, and MOVEA (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

target = source;

OR

MOVE source [TO] target;

Note:

v The target can be a record, map,
data item, or certain EZE data
words.

v The source can be a record, map,
literal, data item, or certain EZE
data words.

v If the target is a record or map,
the source must also be a record
or map. A move corresponding
occurs.

target = source ;

OR

move source to target byName ;

OR

move source to target withV60Compat;

Note:

v For assignment statements:

– The target can be a record, item, or
certain system variables. If the
target is a record, the source must
also be a record; the source is
moved to the target on a
byte-by-byte basis.

– The source can be a record, literal,
item, or certain system variables.

– Forms cannot be used in
assignment statements.

– Move corresponding is never done
for an assignment statement.

v For move statements:

– The target and source can be the
same as in VisualAge Generator
assignment or MOVE statements.

– If byName is specified, EGL does
a move corresponding.

– If withV60Compat is specified, the
move is either an item to item
move or a move corresponding
depending on the part type of the
source.

The data conversion and truncation
rules are the same as in VisualAge
Generator.

EGL supports more data conversions
than VAGen. For example, you can
assign an INT field to a CHAR field

The migration tool considers the
following EGL rules when
migrating assignment and move
statements:

v EGL prefers that the assignment
statement be used for
item-to-item moves.

v The move byName statement is
required for moves involving
records or forms to preserve the
VAGen move corresponding
behavior.

v The move withV60Compat
statement is tolerated and treated
as an item-to-item move or a
move corresponding depending
on the part type of the source.

Therefore, the migration tool does
the following things:

v Converts to an assignment
statement in any of the following
situations:

– The source or target is an EZE
data word (for example:
EZEAPP).

– The source is a literal.

– The source or target is a
qualified or subscripted item.

– The source or target is an item
in the function parameter list
or local storage.

v Converts to a move byName if
the source or target is the I/O
object for a function or a record
in the function parameter list or
local storage.

v Converts to a move
withV60Compat in all other
situations.

See “Assignment statements” on
page 108 for details and potential
problems.

328 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 120. Statements — Assignment, MOVE, and MOVEA (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

MOVEA source [TO] target;

OR

MOVEA source [TO] target
 FOR occurrence;

Note: The source can be an array or
a scalar.

move source to target for all ;

OR

move source to target
 for occurrence ;

The migration tool converts the
MOVEA statement to a move
statement with the for modifier. The
tool also does the following things:

v Includes the for all option if the
FOR occurrence option was not
specified in VisualAge Generator.

v Includes the for occurrence option
if the FOR occurrence option was
specified in VisualAge Generator.

v Sets the target subscript to 1 if
the subscript was not previously
specified.

v Does not set the subscript to 1 for
the source because the source can
be an array or a scalar item.

 Table 121. Statements — SET

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

General information:

v Commas or blanks can be used to
separate multiple options on a
single SET statement.

General information:

v Commas are required to separate
multiple options on a single set
statement.

No special considerations.

SET record SCAN;

OR

SET record EMPTY;

Note: SET record EMPTY does not
affect level 77 items.

set record position;

OR

set record empty;

The migration tool does not add a
statement for the level 77 record.

SET sqlItem NULL;

Note: sqlItem can be an item in an
SQL row record or an SQLITEM
parameter for a function.

sqlItem = null;

Note: sqlItem can be an item with the
isSQLNullable property set to YES in
an SQL row record or a nullable
parameter for a function.

No special considerations.

SET map [ALARM |
 [CLEAR | EMPTY]] ;

Note:

v CLEAR and EMPTY are mutually
exclusive.

v ALARM and either CLEAR or
EMPTY can be combined with the
PAGE option.

set form [alarm |
 [initial | empty]] ;

Note:

v initial and empty are mutually
exclusive.

v The replacement for the PAGE option
cannot be combined with any other
options.

If ALARM, CLEAR, or EMPTY are
used in combination with the PAGE
option, the migration tool splits the
VAGen statement into two EGL
statements.

Appendix B. Relationship of VisualAge Generator and EGL language elements 329

Table 121. Statements — SET (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SET map PAGE ;

Note: PAGE can be combined with
ALARM and with either CLEAR or
EMPTY.

converseLib.clearScreen();
 // display form

OR

converseLib.pageEject();
 // printer form

Note: The replacement for the PAGE
option cannot be combined with any
other options.

The migration tool migrates SET
map PAGE in the following way:

v If SET map PAGE is used in
combination with any other
options, the migration tool splits
the VAGen statement into two
EGL statements.

v If the map is a display map, the
migration tool converts the
statement to
converseLib.clearScreen();

v If the map is a printer map, the
tool converts the statement to
converseLib.pageEject();

v If the map is not available to
determine the map type, the
migration tool converts the
statement to the invalid function
name
converseLib.EZE_SETPAGE() as a
placeholder.

See “SET map PAGE statement” on
page 110 for details and potential
problems.

SET mapItem
 [CURSOR | FULL |
 [NORMAL | DEFINED]] ;

Note:

v mapItem can be a field on a map
or a MAPITEM parameter for a
function.

v NORMAL and DEFINED are
mutually exclusive.

v CURSOR and FULL can be
combined with either NORMAL
or DEFINED.

v VisualAge Generator tolerates
setting CURSOR, FULL,
NORMAL, and DEFINED for
print maps, but they had no effect
on the printed output.

set formField
 [cursor | full |
 [normal | initialAttributes]] ;

Note:

v formField can be a variable field on a
form or a field parameter for a
function.

v normal and initialAttributes are
mutually exclusive.

v cursor and full can be combined with
either normal or initialAttributes .

v EGL does not support setting cursor,
full, normal, or initialAttributes for
print forms.

The migration tool migrates to the
EGL equivalent of each option
without regard to whether the
formField is on a text or print form.
See “SET mapItem attributes” on
page 111 for details and potential
problems.

330 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 121. Statements — SET (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SET mapItem
 [CURSOR | FULL |
 color | extendedHighlight |
 MODIFIED |
 [BRIGHT | DARK] |
 [PROTECT | AUTOSKIP]] ;

Note:

v mapItem can be a field on a map
or a MAPITEM parameter for a
function.

v BRIGHT and DARK are mutually
exclusive.

v PROTECT and AUTOSKIP are
mutually exclusive.

v Any of the other options can be
combined.

v VisualAge Generator tolerates
setting these attributes for print
maps. However, only the
extended highlighting option of
USCORE has any effect on the
printed output.

set formField
 [cursor | full |
 color | extendedHighlight |
 modified |
 [bold | invisible] |
 [protect | skip]] ;

Note:

v formField can be a variable field on a
form or a field parameter for a
function.

v bold and invisible are mutually
exclusive.

v Protect and skip are mutually
exclusive.

v Any of the other options can be
combined.

v Except for the extendedHighlight
option of underline, EGL does not
support setting these attributes for
print forms.

The migration tool migrates to the
EGL equivalent of each option
without regard to whether the
formField is on a text or print form.
See “SET mapItem attributes” on
page 111 for details and potential
problems. See later rows in this
table for color and extendedHighlight
information.

color: MONO |
 BLUE |
 GREEN |
 PINK |
 RED |
 TURQ |
 YELLOW |
 WHITE

color: defaultColor |
 blue |
 green |
 magenta |
 red |
 cyan |
 yellow |
 white

No special considerations.

extendedHighlight:
 NOHILITE |
 BLINK |
 RVIDEO |
 USCORE

extendedHighlight:
 noHighLight |
 blink |
 reverse |
 underline

No special considerations.

 Table 122. Statements — RETR and FIND

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool
considerations

RETR DataItem1
 table[.searchColumn]
 DataItem2
 [returnColumn] ;

Note:

v If the searchColumn is not
specified, the default is the first
column in the table.

v If the returnColumn is not
specified, the default is the
second column in the table.

if (DataItem1 in
 DataTable.searchColumn)
 DataItem2 =
 DataTable.returnColumn[sysVar.arrayIndex];
end

Note: The searchColumn and returnColumn are
required.

The migration tool converts
the RETR statement to an if
statement and an
assignment statement.

Special considerations apply
if the table is not available
during migration. See
“RETR statement” on page
110 for details and potential
problems.

Appendix B. Relationship of VisualAge Generator and EGL language elements 331

Table 122. Statements — RETR and FIND (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool
considerations

FIND DataItem
 table[.searchColumn]
 trueStatement;

OR

FIND DataItem
 table[.searchColumn]
 , falseStatement ;

OR

FIND DataItem
 table[.searchColumn]
 trueStatement
 [,] falseStatement ;

Note:

v If the searchColumn is not
specified, the default is the first
column in the table.

v If FIND is used in program flow,
the trueStatement and the
falseStatement can be the name of
a main function or EZECLOS.

v If FIND is used in a function, the
trueStatement and the
falseStatement can be the name of
any function, EZECLOS,
EZEFLO, or EZERTN.

if (DataItem in DataTable.searchColumn)
 EGLtrueStatement ;
end

OR

if (DataItem in DataTable.searchColumn)
else
 EGLfalseStatement ;
end

OR

if (DataItem in DataTable.searchColumn)
 EGLtrueStatement ;
else
 EGLfalseStatement ;
end

Note: The searchColumn is required.

The migration tool converts
the FIND statement to an if
statement and the EGL
equivalent of the true and
false statements. See the
next rows in this table for
conversion of the
trueStatement and
falseStatement to the
corresponding EGL
statements.

true/falseStatement in flow:

v functionName() (main only)

v EZECLOS

Corresponding EGL replacements:

v goto functionName;

v exit program;

No special considerations.

true/falseStatement in a function:

v functionName (any function)

v EZECLOS

v EZEFLO

v EZERTN

Corresponding EGL replacements:

v functionName();

v exit program;

v exit stack;

v return;

No special considerations.

 Table 123. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

IF logicalExpression ;
 { statement ; }
[ELSE;
 { statement ; }]
END;

if (EGLLogicalExpression)
 { EGLStatement ; }
[else
 { EGLStatement ; }]
end

See later rows in this table for the
relationship between the VAGen
logical expressions and the EGL
logical expressions.

WHILE logicalExpression ;
 { statement ; }
END;

while (EGLLogicalExpression)
 { EGLStatement ; }
end

See later rows in this table for the
relationship between the VAGen
logical expressions and the EGL
logical expressions.

332 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 123. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

TEST testCondition
 trueStatement ;

TEST testCondition
 , falseStatement ;

TEST testCondition
 trueStatement
 [,] falseStatement ;

Note:

v The TEST statement is similar to
an IF ... IS statement. The
exception to this is TEST mapItem
nnn, +nnn, and -nnn, which does
not have an IF statement
equivalent.

v If TEST is used in program flow,
the trueStatement and the
falseStatement can be the name of
a main function or EZECLOS.

v If TEST is used in a function, the
trueStatement and the
falseStatement can be the name of
any function, EZECLOS, EZEFLO,
or EZERTN.

if (EGLLogicalExpression)
 EGLtrueStatement ;
end

if (EGLLogicalExpression)
else
 EGLfalseStatement ;
end

if (EGLLogicalExpression)
 EGLtrueStatement ;
else
 EGLfalseStatement ;
end

With the following exceptions, the
migration tool converts the TEST
statement to the equivalent if ... is
statement and the EGL equivalent
of the true and false statements.
The exceptions are:

v TEST mapItem nnn, +nnn, and
-nnn.

v TEST sqlItem NULL

See later rows in this table for the
relationship between the VAGen
logical expressions and the EGL
logical expressions.

See later rows in this table for the
conversion of TEST mapItem nnn,
+nnn, and -nnn.

See later rows in this table for the
conversion of TEST sqlItem NULL.

See later rows in this table for
conversion of the trueStatement and
falseStatement to the corresponding
EGL statements.

VisualAge Generator boolean
operators for IF and WHILE:

v AND

v OR

Corresponding EGL boolean operators
for if and while:

v && or and

v || or or

If you clear the Use VAGen logical
operators (AND and OR)
migration preference, the migration
tool uses && and || as the logical
operators. If you select the
preference, the migration tool uses
and and or as the logical operators.

VisualAge Generator relational
operators for IF and WHILE:

v EQ and =

v NE and ^=

v LE and <= and =<

v LT and <

v GE and >= and =>

v GT and >

Corresponding EGL relational operators
for if and while:

v ==

v !=

v <=

v <

v >=

v >

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 333

Table 123. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator state operators
for IF and WHILE:

v IS

v NOT

Corresponding EGL state operators for
if and while:

v is

v not

In most cases, the migration tool
does the following things:

v Migrates IS and NOT as shown.

v Migrates a VAGen TEST
statement to an EGL if ... is
statement.

The exceptions are:

v TEST mapItem nnn, +nnn, and
-nnn

v TEST mapItem NULL

See later rows in this table for
details of the exceptions.

VisualAge Generator array operator
for IF and WHILE:

v IN

To search starting from a specific
element of an array, use: X IN Y[Z]
where Z is the index in the array
from which to start searching. If no
subscript is specified for the array,
the search starts from the beginning
of the array.

Corresponding EGL state operators for
if and while:

v in

To search starting from a specific
element of an array, use: X in Y from Z
where Z is the index in the array from
which to start searching. If no subscript
is specified for the array, the search
starts from the beginning of the array.

Special considerations apply. See
“Checking for IN literal or scalar”
on page 112.

VisualAge Generator mapItem state
conditions:

v BLANK or BLANKS

v CURSOR

v DATA

v MODIFIED

v NULL or NULLS

v NUMERIC

Corresponding EGL form field state
conditions:

v blanks

v cursor

v data

v modified

v blanks

v numeric

The migration tool converts to the
equivalent EGL state conditions.

Special considerations apply to
mapItem NULL. See “Checking SQL
and map items for NULL” on page
113 for details and potential
problems.

Special mapItem state condition for
the TEST statement: nnn | +nnn |
-nnn

Note: This compares the length of
the data the user entered to nnn.
The test is =, >, or < corresponding
to nnn, +nnn, or -nnn.

EGL does not provide direct support for
this state condition. However, you can
achieve the equivalent result by
following these steps:

1. Use the system library function
converseLib.fieldInputLength(),
which returns the length of the data
entered by the user.

2. Use an if statement to compare the
resulting length for == , >, or <
corresponding to nnn, +nnn, or -nnn,
respectively.

When migrating any program, the
migration tool always includes a
declaration for:

<custPrefix>EZE_ITEMLEN

The migration tool does the
following things for TEST nnn,
+nnn, or -nnn:

v Adds an extra statement just
before the TEST statement to set

<custPrefix>EZE_ITEMLEN

using the system library function
converseLib.fieldInputLength().

v Changes the TEST statement to
an if statement and compares

 <custPrefix>EZE_ITEMLEN

to == nnn, > nnn, or < nnn.

334 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 123. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator map state
conditions:

v MODIFIED

Corresponding EGL form state
conditions:

v modified

No special considerations.

VisualAge Generator EZEAID state
conditions:

v ENTER

v BYPASS

v PAn, where n = 1, 2, 3

v PFn, where n is 1 to 24

v PA

v PF

Corresponding EGL
converseVar.eventKey state conditions:

v enter

v bypass

v pan, where n = 1, 2, 3

v pfn, where n is 1 to 24

v pakey

v pfkey

No special considerations.

VisualAge Generator sqlItem state
conditions:

v BLANK or BLANKS

v NULL

v NUMERIC

v TRUNC

Note: Checking an sqlItem for
NULLS uses the IS or NOT operator,
the same as for checking for any
other state.

Corresponding EGL SQL item state
conditions:

v blanks

v null

v numeric

v trunc

Note: Checking an SQL item for null is
done by using:
sqlItem == null
OR
sqlItem != null
rather than using the is or not operator.

The migration tool converts to the
equivalent EGL state conditions.

Special considerations apply to
sqlItem NULL. See “Checking SQL
and map items for NULL” on page
113 for details and potential
problems.

VisualAge Generator record state
conditions:

v DED

v DUP

v EOF

v ERR

v FMT

v FNA

v FNF

v FUL

v HRD

v LOK

v NRF

v UNQ

Note:

v DUP is supported for both SQL
and non-SQL records.

v For SQL records, DUP and UNQ
are equivalent and are always
hard errors.

v For non-SQL records, DUP and
UNQ are not equivalent; both are
soft errors.

v LOK is only supported on
OS/400 and is a soft error.

Corresponding EGL record state
conditions:

v deadLock

v duplicate or unique

v endOfFile

v ioError

v invalidFormat

v fileNotAvailable

v fileNotFound

v full

v hardIOError

v deadLock

v noRecordFound

v unique

Note:

v duplicate is only supported for
non-SQL records and is a soft error.

v unique is a hard error for both SQL
and non-SQL records.

v LOK is converted to deadlock, which
is always a hard error.

The migration tool converts to the
equivalent EGL state conditions.

Special considerations apply to
migrating DUP based on the record
type. See “I/O error values UNQ
and DUP” on page 114 for details
and potential problems.

Special considerations also apply to
migrating LOK. See “I/O error
value LOK” on page 116 for details
and potential problems.

Appendix B. Relationship of VisualAge Generator and EGL language elements 335

Table 123. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator UI record state
conditions:

v MODIFIED

Corresponding EGL VGUI record state
conditions:

v modified

No special considerations.

VisualAge Generator DataItem state
conditions:

v BLANK or BLANKS

v NUMERIC

Corresponding EGL data item state
conditions:

v blanks

v numeric

No special considerations.

VisualAge Generator EZESYS state
conditions:

v AIX

v AIXCICS

v HP

v IMSBMP

v IMSVS

v MVSBATCH

v MVSCICS

v NTCICS

v OS2

v OS2CICS

v OS2GUI

v OS400

v SCO

v SOLACICS

v SOLARIS

v TSO

v VMCMS

v VMBATCH

v VSEBATCH

v VSECICS

v WINGUI

v WINNT

v ITF

Corresponding sysVar.systemType state
conditions:

v aix

v AIXCICS

v hpux

v imsbmp

v imsvs

v zosbatch

v zoscics

v NTCICS

v OS2

v OS2CICS

v OS2GUI

v iseriesc

v SCO

v SOLACICS

v solaris

v TSO

v VMCMS

v VMBATCH

v vsebatch

v vsecics

v WINGUI

v win

v debug

The migration tool converts to the
equivalent EGL state conditions.

Special considerations apply to
checking the state for EZESYS. See
“EZESYS” on page 118 for details
and potential problems.

Note: Not all of the VAGen
runtime environments are
supported. However, the migration
tool always converts to an
equivalent value, even if it is not
valid in EGL. The migration tool
preserves the unsupported values
to facilitate finding places where
you might need to update your
logic if you change from an
unsupported environment such as
TSO to a supported EGL
environment such as ZOSCICS.

true/falseStatement in flow:

v functionName() (main only)

v EZECLOS

Corresponding EGL replacements:

v goto functionName ;

v exit program;

No special considerations.

true/falseStatement in a function:

v functionName (any function)

v EZECLOS

v EZEFLO

v EZERTN

Corresponding EGL replacements:

v functionName();

v exit program;

v exit stack;

v return;

No special considerations.

336 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 124. Statements — CALL

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

CALL programName argument
 [{ [,] argument}]
 [(options] ;

OR

CALL serviceRoutine argument
 [{ [,] argument}]
 [(options] ;

Note:

v Commas to separate the
arguments are optional.

v The argument list is not enclosed
in parentheses.

v The programName or serviceRoutine
is never enclosed in quotes.

call programName (argument
 [{ , argument }])
 [{ options }] ;

Note:

v Commas to separate the arguments
are required.

v The argument list must be enclosed
in parentheses.

v The programName cannot be a
reserved word. If the program is a
non-EGL program, use a linkage
options element to specify the real
name.

v The programName must be enclosed in
quotes if the program is not in the
workspace.

See later rows in this table for
conversion of the options to the
corresponding EGL statements or
options.

If you select the Enclose CALL and
DXFR program names in quotes
migration preference, the migration
tool encloses the programName in
quotes. If you clear the preference,
the migration tool does not enclose
the programName in quotes.

Regardless of the preference setting,
the migration tool does the
following things:

v If the (NONCSP option is
specified, encloses programName
in quotes.

v If the programName is EZCHART,
encloses the programName in
quotes and sets the isExternal
property to yes.

See “Service routines” on page 349
for information on migrating the
CALL statement for them.

REPLY option If the REPLY option is specified in
VisualAge Generator, the migration tool
converts the option to the following
EGL statements:

try
 call programName (argument
 [{ , argument }])
 [{ otherOptions }] ;
end

The migration tool includes the try
block if the REPLY option is
specified.

otherOptions:

v NOMAPS

v NONCSP

Corresponding EGL otherOptions:

v isNoRefresh = YES

v isExternal = YES

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 337

Table 125. Statements — DXFR

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

DXFR target
 [recordName]
 [(NONCSP] ;

where target is
v programName
v EZEAPP

Note:

v Any record can be passed.

v If a working storage record is
passed, any level 77 items are not
included.

v The programName is never
enclosed in quotes.

transfer to program target
 [passing recordName]
 [isExternal = YES] ;

where target is:

v programName

v sysVar.transferName

Note:

v Any record can be passed.

v The progranName cannot be a
reserved word. If the program is a
non-EGL program, use a linkage
options element to specify the real
name.

v The programName must be enclosed in
quotes if the program is not in the
workspace.

If you select the migration
preference Enclose CALL and
DXFR program names in quotes,
the migration tool encloses the
programName in quotes. If you clear
the preference, the migration tool
does not enclose the programName in
quotes.

Regardless of the preference setting,
the migration tool does the
following things:

v Encloses programName in quotes if
the (NONCSP option is specified.

v Never encloses
sysVar.transferName in quotes.

 Table 126. Statements — XFER

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Variation 1 - Migrate to Transfer
(no map or UI record)

XFER target
 [recordName]
 [(NONCSP] ;

where target is
v transactionName
v EZEAPP

Note:

v This format of XFER does not
include a map or UI record.

v Any record can be passed. If a
working storage record is passed,
any level 77 items are not
included.

EGL syntax for transfer statement:

transfer to transaction target
 [passing recordName]
 [isExternal = YES] ;

where target is

v transactionName

v sysVar.transferName

Note: Any record can be passed.

If there is no comma in the
statement, the migration tool
converts the XFER to an EGL
transfer to transaction statement.

For more information on
transactionName, see a later row in
this table.

338 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 126. Statements — XFER (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Variation 2 - Migrate to Show
(XFER with a map or XFER with a
UI record)

XFER target
 [recordName]
 , mapName
 [(NONCSP] ;
 OR

XFER target
 [recordName]
 , UIRecordName ;

where target is

v transactionName

v EZEAPP

v ' ' for XFER with a UI record

Note:

v Any record can be passed. If a
working storage record is passed,
any level 77 items are not
included.

v (NONCSP is only supported for
XFER with a map.

EGL syntax for show statement varies
depending on whether a form or a
VGUI record is used.

show formName
 returning to target
 [passing recordName]
 [isExternal = YES] ;
 OR

show UIRecordName
 [returning to target]
 [passing recordName] ;

where target is

v transactionName

v sysVar.transferName

Note:

v Any record can be passed.

v For show with a VGUI record, if the
target is ' ', the returning to target
clause is omitted.

If there is a comma in the
statement, the migration tool
converts the XFER statement to an
EGL show statement.

For more information on
transactionName, see a later row in
this table.

transactionName
Note:

v transactionName is the program
name in nontransactional
environments.

v The transactionName is never
enclosed in quotes.

transactionName
Note:

v transactionName is the program name
in nontransactional environments.
The transactionName cannot be a
reserved word.

v If the program is a non-EGL
program, use a linkage options
element to specify the real name.

v The transactionName must be enclosed
in quotes if the program is not in the
workspace.

If you select the Enclose XFER
program names in quotes
migration preference, the migration
tool encloses the transactionName in
quotes. If you clear the preference,
the migration tool does not enclose
the transactionName in quotes.

Regardless of the preference setting,
the migration tool does the
following things:

v Encloses transactionName in
quotes if the (NONCSP option is
specified

v Never encloses
sysVar.transferName in quotes.

EZE words
The EZE words section is organized into the following sections:
v “Program flow EZE words” on page 340
v “SQL EZE words” on page 341
v “DL/I EZE words” on page 341
v “Date and time EZE words” on page 342
v “Other data EZE words” on page 343
v “General function EZE words” on page 345
v “String EZE words” on page 346
v “Math EZE words” on page 347

Appendix B. Relationship of VisualAge Generator and EGL language elements 339

v “User interface EZE words” on page 348
v “Object scripting EZE words” on page 349

Program flow EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

 Table 127. Program flow EZE words

EZE word in VisualAge Generator 4.5 EGL

EZECLOS This depends on the location:

v If used in an I/O error routine, the
migration tool converts EZECLOS to the
following EGL code, within the try block:

onException exit program;

v Used anywhere else, including use as the
true or false operand of a TEST or FIND, the
migration tool converts EZECLOS to the
following EGL code:

exit program;

Note: The exit program statement has a
default return code of sysVar.returnCode,
which is the equivalent of EZERCODE. This
default provides the same capability as
VisualAge Generator.

EZEFLO

Note: EZEFLO cannot be used in flow
statements.

This depends on the location:

v If used in an I/O error routine, the
migration tool converts EZEFLO to the
following EGL code, within the try block:

onException exit stack;

v Used anywhere else, including use as the
true or false operand of a TEST or FIND, the
migration tool converts EZEFLO to the
following EGL code:

exit stack;

EZERTN or EZERTN(return value)

Note:

v EZERTN cannot be used in flow
statements.

v EZERTN(return value) cannot be used as
an I/O error routine.

This depends on the location:

v If used in an I/O error routine, the
migration tool includes the try block but
omits the onException statement.

v Used anywhere else, the migration tool
converts EZERTN to the following EGL
code:

return;

OR

return(returnValue);

Note: If the returnValue is EZESYS, see the
EZESYS information in “Other data EZE
words” on page 343 for additional
considerations.

340 Rational Business Developer: VisualAge Generator to EGL Migration Guide

SQL EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

 Table 128. SQL EZE words

EZE word in VisualAge Generator 4.5 EGL definition

EZECONCT vgLib.connectionService()

The arguments are the same as in VAGen.
However, for debug and Java generation, not all
of the values for the unit of work argument are
supported. JDBC only supports single-phase
commit. For more information, see “Differences
in SQL support” on page 233.

EZESQCOD sysVar.sqlData.sqlcode

EZESQISL

Note:

v For VisualAge Generator 4.5,
EZESQISL is supported for use with
ODBC.

v Otherwise, EZESQISL is not supported
or is ignored in VisualAge Generator
for all environments, but it has been
kept for compatiblity.

vgVar.sqlIsolationLevel

Note: EGL supports vgVar.sqlIsolationLevel
for the following uses:

v vgLib.connectionService() regardless of
whether VAGen compatibility mode is
selected

v sysLib.connect() only when VAGen
compatibility mode is selected

EZESQLCA sysVar.sqlData.sqlca
Note: sysVar.sqlData.sqlca is only partially
supported in EGL. For debug and Java
generation, EGL does not set the fields within
sysVar.sqlData.sqlca that contain the values for
sysVar.sqlData.sqlerrmc and
sysVar.sqlData.sqlwarn[7].

EZESQRD3 sysVar.sqlData.sqlerrd[3]
Note: The migration tool changes this to an
array reference.

EZESQRRM sysVar.sqlData.sqlerrmc
Note: sysVar.sqlData.sqlerrmc is not supported
for debug or Java generation.

EZESQWN1 sysVar.sqlData.sqlwarn[2]
Note: The migration tool changes this to an
array reference.

EZESQWN6 sysVar.sqlData.sqlwarn[7]
Note: The migration tool changes this to an
array reference. sysVar.sqlData.sqlwarn[7] is
not supported for debug or Java generation.

N/A sysVar.sqlData.sqlState
Note: This is new for EGL and has no
equivalent in VisualAge Generator 4.5. The
migration tool does not convert anything to
this.

DL/I EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

Appendix B. Relationship of VisualAge Generator and EGL language elements 341

Table 129. DL/I EZE words

EZE word in VisualAge Generator 4.5 EGL

EZEDLCER dliVar.cicsError

EZEDLCON dliVar.cicsCondition

EZEDLDBD dliVar.dbName

EZEDLERR dliVar.handleHardDLIErrors

EZEDLKEY dliVar.keyArea[1:dliVar.keyAreaLen]

EZEDLKYL dliVar.keyAreaLen

EZEDLLEV dliVar.segmentLevel

EZEDLPCB
Note: This is an array; the default
subscript is 1.

The migration tool always sets the variable
that declares the PSBRecord for the program to
psb. Therefore, in statements, the migration tool
converts EZEDLPCB[n] in the following way:

v EZEDLPCB[0] converts to psb.iopcb.

v EZEDLPCB converts to psb.pcb1, because 1
is the default subscript.

v EZEDLPCB[n], where n is a numeric literal
converts to psb.pcbn.

In the called parameter list for a program,
special considerations apply. For details, see
Table 105 on page 301.

EZEDLPRO dliVar.procOptions

EZEDLPSB In statements except the CALL statement,
EZEDLPSB converts to:
dliLib.psbData.psbName

In the CALL statement, EZEDLPSB converts to:
dliLib.psbData

In the called parameter list for a program,
special considerations apply. For details, see
Table 105 on page 301.

EZEDLRST dliVar.cicsRestart

EZEDLSEG dliVar.segmentName

EZEDLSSG dliVar.numSensitiveSegs

EZEDLSTC dliVar.statusCode

EZEDLTRM
Note: EZEDLTRM is equivalent to
EZECNVCM. The migration tool converts
both EZE words to
converseVar.commitOnConverse.

converseVar.commitOnConverse

Date and time EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

342 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 130. Date and time EZE words

EZE word in VisualAge Generator
4.5

EGL definition

EZEDAY vgVar.currentShortJulianDate

EZEDAYL vgVar.currentJulianDate

EZEDAYLC vgVar.currentFormattedJulianDate

EZEDTE vgVar.currentShortGregorianDate

EZEDTEL vgVar.currentGregorianDate

EZEDTELC vgVar.currentFormattedGregorianDate

EZETIM vgVar.currentFormattedTime

Other data EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL.

 Table 131. Other data EZE words

EZE word in VisualAge
Generator 4.5

EGL definition

EZEAID converseVar.eventKey

EZEAPP sysVar.transferName

EZECNVCM converseVar.commitOnConverse

EZECONVT sysVar.callConversionTable

record.EZEDEST record.resourceAssociation

Note: The qualification is still the record name.

EZEDESTP converseVar.printerAssociation

EZEFEC vgVar.handleHardIOErrors

EZELOC sysVar.remoteSystemID

EZELTERM sysVar.terminalID for a text program.

sysVar.conversationID for a VGWebTransaction program.

Note:

v In a text program, both sysVar.terminalID and
sysVar.conversationID provide the terminalID
information.

v In a VGWebTransaction program, both sysVar.terminalID
and sysVar.conversationID provide the conversationID
information.

Appendix B. Relationship of VisualAge Generator and EGL language elements 343

Table 131. Other data EZE words (continued)

EZE word in VisualAge
Generator 4.5

EGL definition

EZEMNO v If EZEMNO is used as the target of a MOVE or
assignment, the migration tool does the following things:

– If EZEMNO is set from a numeric literal other than
9999, EZEMNO becomes:

converseLib.validationFailed(numericLiteral);

– If EZEMNO is set from numeric literal 9999, EZEMNO
becomes:

converseLib.validationFailed();

– If EZEMNO is set from an item, EZEMNO becomes:

if (itemName == 9999)
 converseLib.validationFailed();
else
 converseLib.validationFailed(itemName);
end

v If EZEMNO is used anywhere else, it is replaced with:

converseVar.validationMsgNum

EZEMSG

Note: EZEMSG as a data
item exists only if it is
placed on a map. If it is
placed on multiple maps,
EZEMSG must be qualified.

custPrefixEZEMSG

Note:

v custPrefix is the RenamingPrefix you specified during
Stage 2 migration.

v There is no dot between custPrefix and EZEMSG

v Where EZEMSG is used in functions, the migration tool
keeps the same qualifications for custPrefixEZEMSG that
were used by EZEMSG in those functions. For example,
xxxx.EZEMSG becomes xxxx.custPrefixEZEMSG

v Where EZEMSG is used in maps, the migration tool does
the following things:

– Changes the field name to custPrefixEZEMSG

– Sets the msgField property of the form to
custPrefixEZEMSG

EZEOVER vgVar.handleOverflow

EZEOVERS sysVar.overflowIndicator

EZERCODE

Note: VisualAge Generator
tolerates negative values and
values greater than 512 for
EZERCODE.

sysVar.returnCode

Note: EGL does not permit negative values or values greater
than 512 for sysVar.returnCode.

EZEREPLY vgVar.handleSysLibraryErrors

EZERT2

Note: In VisualAge
Generator 4.5, EZERT2 is
used only as the condition
code for MQ Series access.

vgVar.mqConditionCode

344 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 131. Other data EZE words (continued)

EZE word in VisualAge
Generator 4.5

EGL definition

EZERT8

Note: EZERT8 is set in the
following situations:

v CALL statements if the
(REPLY option is
specified.

v EZE system function
invocations if EZEREPLY
is set to 1.

v I/O statements for serial,
indexed, relative, and
message queue records.

sysVar.errorCode

Note: sysVar.errorCode is set in the following situations:

v All call statements.

v All sysLib system function invocations.

v Some strLib, mathLib, and vgLib system function
invocations

v I/O statements for serial, indexed, relative, and message
queue records.

The value of sysVar.errorCode changes more frequently in
EGL than it did in VisualAge Generator.

EZESEGM converseVar.segmentedMode

EZESEGTR sysVar.transactionID

EZESYS To use the EGL values in an if or while statement, use:

sysVar.systemType

To get the old VAGen values for use in any other statement,
use:

myItem = vgLib.getVAGSysType();

and then use myItem in the statement.

If you need to use the old VAGen value in a migrated
VAGen program, use:

custPrefixEZESYS

where custPrefix is the Renaming Prefix you specified
during Stage 2 of migration. Based on the Do not initialize
old EZESYS values migration preference, the migration tool
includes or omits a data declaration for custPrefixEZESYS
and a statement to initialize it to the old VAGen value.

See “EZESYS” on page 118 for details and potential
problems.

EZETST

Note: Set for IF...IN, and
MOVEA. EZETST is 2–byte
binary.

sysVar.arrayIndex

Note: arrayIndex is an INT (4–byte binary).

EZEUSR sysVar.sessionID

EZEUSRID sysVar.userID

General function EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL. Except
where noted, the argument lists are the same in VisualAge Generator as they are in
EGL, so they are omitted from the table.

Appendix B. Relationship of VisualAge Generator and EGL language elements 345

Table 132. General function EZE words

EZE word in VisualAge
Generator 4.5

EGL definition

result =
EZEBYTES(itemOrRecord)

Note: VisualAge Generator
documents that only items and
records can be used as
arguments for EZEBYTES.
However, VisualAge Generator
tolerates a map as the argument
for EZEBYTES.

result = sysLib.bytes (itemOrRecordOrForm)

Note: EGL supports a form as the argument for
sysLib.bytes(). The migration tool converts the
argument without regard to whether it is an item,
record, or map.

EZECOMIT() sysLib.commit()

Note: Debug and Java generation use JDBC for SQL
support. JDBC only supports single-phase commit. For
more information see “Differences in SQL support” on
page 233.

EZECONV(target, direction,
conversionTable)

Note: The direction must be
specified as a literal; either 'L' or
'R'

sysLib.convert()

Note: The direction must be specified as a value from
the ConvertDirection enumeration: either
ConvertDirection.local or ConvertDirection.remote

EZEC10(xxx, yyy, zzz) sysLib.verifyChkDigitMod10()

EZEC11(xxx, yyy, zzz) sysLib.verifyChkDigitMod11()

EZEG10(xxx, yyy, zzz) sysLib.calculateChkDigitMod10()

EZEG11(xxx, yyy, zzz) sysLib.calculateChkDigitMod11()

EZEPURGE(queueName) sysLib.purge()

EZEROLLB() sysLib.rollback()

EZEWAIT(variableName)

Note: variableName provides the
time in hundredths of a second.

sysLib.wait (variableName);

Note:

v variableName provides the time in seconds.

v The migration tool converts the time to seconds. See
“EZEWAIT” on page 120 for details and potential
problems.

String EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL. The
argument lists are the same in VisualAge Generator as they are in EGL, so they are
omitted from the table.

 Table 133. String EZE words

EZE word in VisualAge Generator 4.5 EGL definition

EZESBLKT strLib.setBlankTerminator()

EZESCCWS vgLib.concatenateWithSeparator()

EZESCMPR vgLib.compareBytes()

EZESCNCT vgLib.concatenateBytes()

346 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 133. String EZE words (continued)

EZE word in VisualAge Generator 4.5 EGL definition

EZESCOPY vgLib.copyBytes()

EZESFIND vgLib.findStr()

EZESNULT strLib.setNullTerminator()

EZESSET vgLib.setSubStr()

EZESTLEN strLib.byteLen()

EZESTOKN strLib.getNextToken()

Math EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL. In
VisualAge Generator, the EZE math functions are written as a complete statement
in the form:
result = EZEMathFunction(argument1, argument2, ... argumentN);

In EGL, many of the math functions can be used in a portion of a statement (for
example, as the operand in an if or while statement). Therefore, the result must be
assigned using the mathLib.assign() function in the following way:
mathLib.assign(EGLMathFunction(argument1, argument2, ... argumentN), result);

The following tables indicate which of the EGL math function must use the
mathLib.assign() function to obtain the result. Otherwise, except where noted, the
argument lists for the corresponding math functions are the same in VisualAge
Generator as they are in EGL, so they are omitted from the table.

 Table 134. Math EZE words — General math functions

EZE word in VisualAge Generator 4.5 EGL definition

EZEABS mathLib.assign(mathLib.abs(...), result)

EZECEIL mathLib.ceiling()

EZEEXP mathLib.assign(mathLib.exp(...), result)

EZEFLOOR mathLib.floor()

EZEFREXP mathLib.assign(mathLib.frexp(...), result)

EZELDEXP mathLib.assign(mathLib.ldexp(...), result)

EZELOG mathLib.assign(mathLib.log(...), result)

EZELOG10 mathLib.assign(mathLib.log10(...), result)

EZEMAX mathLib.assign (mathLib.max (...), result)

EZEMIN mathLib.assign (mathLib.min(...), result)

EZEMODF mathLib.assign (mathLib.modf(...), result)

EZENCMPR vgLib.compareNum()

EZEPOW mathLib.assign (mathLib.pow(...), result)

EZEPRSCN mathLib.precision()

Appendix B. Relationship of VisualAge Generator and EGL language elements 347

Table 134. Math EZE words — General math functions (continued)

EZE word in VisualAge Generator 4.5 EGL definition

EZEROUND mathLib.round()

Note: mathLib.round() is also used to replace
VAGen assignment statements that use the (R
option. The migration tool converts this type of
assignment statement to the following syntax:

result =
 mathLib.round(numericExpression,
 -mathLib.decimals(result));

EZESQRT mathLib.assign(mathLib.sqrt(...), result)

 Table 135. Math EZE words — Trigonometric math functions

EZE word in VisualAge Generator 4.5 EGL definition

EZEACOS mathLib.assign(mathLib.acos(...), result)

EZEASIN mathLib.assign(mathLib.asin(...), result)

EZEATAN mathLib.assign(mathLib.atan(...), result)

EZEATAN2 mathLib.assign(mathLib.atan2(...), result)

EZECOS mathLib.assign(mathLib.cos(...), result)

EZECOSH mathLib.assign(mathLib.cosh(...), result)

EZESIN mathLib.assign(mathLib.sin(...), result)

EZESINH mathLib.assign(mathLib.sinh(...), result)

EZETAN mathLib.assign(mathLib.tan(...), result)

EZETANH mathLib.assign(mathLib.tanh(...), result)

 Table 136. Math EZE words — Floating point math functions

EZE word in VisualAge Generator 4.5 EGL definition

EZEFLADD mathLib.assign(vgLib.floatingSum(...), result)

EZEFLDIV mathLib.assign(vgLib.floatingQuotient(...), result)

EZEFLMOD mathLib.assign(vgLib.floatingMod(...), result)

EZEFLMUL mathLib.assign(vgLib.floatingProduct(...), result)

EZEFLSET mathLib.assign(..., result)

EZEFLSUB mathLib.assign(vgLib.floatingDifference(...),
result)

User interface EZE words
The left table column shows the VisualAge Generator 4.5 EZE word. The right
column shows what the migration tool converts the EZE word to in EGL. The
argument lists are the same in VisualAge Generator as they are in EGL, so they are
omitted from the table.

 Table 137. User interface EZE words

EZE word in VisualAge Generator 4.5 EGL definition

EZEUIERR sysLib.setError

EZEUILOC sysLib.setLocale

348 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Object scripting EZE words
 Table 138. Object scripting EZE words

EZE word in VisualAge Generator 4.5 EGL definition

EZESCRPT(targetScriptName) EZE_SCRPT(targetScriptName)

There is no corresponding EGL function that
replaces EZESCRPT. The migration tool creates
intentionally invalid syntax and issues an error
message.

Service routines
The service routines section is organized into the following tables:
v Service Routines - general syntax, Table 139 on page 349
v Service Routines - VisualAge Generator and EGL equivalent routines, Table 140

on page 349

 Table 139. Service Routines - general syntax

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

CALL serviceRoutine
 [argumentList] ;

eglSystemLibrary.EGLSystemFunction
 ([argumentList]);

Note: EGL system functions use the
same argument list as in VisualAge
Generator.

No special considerations.

CALL serviceRoutine
 [argumentList] (REPLY ;

try
 eglSystemLibrary.EGLSystemFunction
 ([argumentList]);
end;

Note: EGL system functions use the
same argument list as in VisualAge
Generator.

If the (REPLY option is included in
VisualAge Generator, the migration tool
includes a try block.

 Table 140. Service Routines - VisualAge Generator and EGL equivalent routines

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

CALL AUDIT sysLib.audit() No special considerations.

CALL COMMIT sysLib.commit() No special considerations.

CALL CREATX vgLib.startTransaction() No special considerations.

CALL CSPTDLI vgLib.VGTDLI()

Note: EGL also supports EGLTDLI
and AIBTDLI.

No special considerations.

CALL EZCHART call "EZCHART" [arguments]
 { isExternal = YES } ;

Note: There is no replacement for
EZCHART in EGL.

The VAGen migration tool converts
EZCHART to a call to an externally
defined program.

If the REPLY option is specified in
VisualAge Generator, the migration tool
nests the call statement within a try
block.

CALL RESET sysLib.rollback() No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 349

PSBs
In VisualAge Generator, the PSB is a part type. The PSB contains a subset of the
information in the IMS or DL/I PSB. There is no name associated with a TP PCB.
The database name associated with DB and GSAM PCBs does not have to be
unique. A DL/I I/O function can refer to a specific PCB within the PSB either by
the database name or by the PCB number. In statements and in the called
parameter list for a program, the EZEDLPCB special function word enables you to
refer to a PCB by number. The I/O PCB is not explicitly included in the VAGen
PSB, but is always present for the IMSVS, IMSBMP, and MVS Batch target
environments. The I/O PCB is considered to be PCB number 0.

In EGL, the PSB is a subtype of the record part type. The PSBRecord is a
non-structured record. The name of each PCB variable within the PSBRecord must
be unique. A DL/I I/O function can refer to a specific PCB by using the name
given to the PCB variable within the PSBRecord. Similarly, in statements and in the
parameter list for a program, you use the name given to the PCB variable within
the PSB.

The migration tool creates a variable name for each TP PCB based on its numeric
position within the VAGen PSB. The tool creates a variable name for each DB or
GSAM PCB using a combination of the database name from the VAGen PSB, a
customer-specified suffix indicating the type of the PCB, and, if necessary, a
number to create a unique variable name. The tool also creates a variable to
redefine the named DB and GSAM PCBs. The redefinition variable is based on the
numeric position of the PCB within the VAGen PSB. This enables the migration
tool to use either variable (database name or PCB number) during migration.

350 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 141. PSB

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

PSB information:

v Name

v PCB information varies by PCB
type

– Number

– Type

- TP

- DB

- GSAM

– Database

– Segment

– Parent

– Index Key

Note:

v The PSB is a separate part type.

v The I/O PCB is not explicitly
specified, but must be in the
DL/I PSB for the IMSVS, IMS
BMP, and MVS Batch
environments.

EGL syntax example:

Record psbName type PSBRecord
 {defaultPSBName =
 "originalPSBName"}
 iopcb IO_PCBRecord;
 { @PCB { pcbType=PCBKind.TP }};
 pcb0 IO_PCBRecord
 { redefines=iopcb };
 [otherPCBInformation]
end // end psbName

Note:

v The PSBRecord is a record stereotype.

v The I/O PCB must be explicitly
specified.

v EGL uses the @PCB complex
property to specify the PCB type.

v EGL provides record definitions for
the following records:

– IO_PCBRecord

– ALT_PCBRecord

– DB_PCBRecord

– GSAM_PCBRecord

v EGL ignores (removes) the I/O PCB
variable when generating for a CICS
environment.

The migration tool only includes the
defaultPSBName property if the PSB
must be renamed due to a reserved
word or because the name started
with the # or @ symbol.

The migration tool always adds the
variable iopcb and the pcb0
redefinition to every PSBRecord.

PCB Type - TP

v Number

ELAALT ALT_PCBRecord
 {@PCB { pcbType = PCBKind.TP }};
pcb1 ALT_PCBRecord
 { redefines = ELAALT };
ELAEXP ALT_PCBRecord
 {@PCB { pcbType = PCBKind.TP }};
pcb2 ALT_PCBRecord
 { redefines = ELAEXP };
pcbn ALT_PCBRecord
 { @PCB { pcbType = PCBKind.TP }};

Note:

v EGL ignores (removes) the alternate
PCB variables when generating for a
CICS environment.

The migration tool uses ELAALT and
ELAEXP as the names for the first
two TP PCBs in the VAGen PSB. The
migration tool also creates
redefinitions for these two TP PCBs
so they can be referred to by number.

If there are additional TP PCBs, the
migration tool creates a variable name
for the TP PCB based on the PCB
number within the PSB. This enables
the migration tool to use pcbn as the
replacement for EZEDLPCB[n].

Appendix B. Relationship of VisualAge Generator and EGL language elements 351

Table 141. PSB (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

PCB Type - DB

v Number

v Database

v Segment

v Parent

v Index Key

Note:

v The same database name can be
used for multiple PCBs in the
PSB.

DBName_dbSuffix DB_PCBRecord
{ @PCB { pcbType = PCBKind.DB,
 pcbName = "DBName",
 secondaryIndex = "indexKeyName",
 secondaryIndexItem =
 "renamedIndexKey",
 hierarchy =
 [@Relationship
 { segmentRecord =
 segmentName,
 parentRecord =
 parentSegmentName }] } };

pcbn DB_PCBRecord
{ redefines = DBName_dbSuffix };

Note:

v Because the PSB is a record and each
database name becomes a field within
the record, each database name must
be unique.

The migration tool creates the
variable name for a DB PCB based on
the VAGen Database name followed
by a suffix. You can specify the suffix
with the Stage 2 VAGen Migration
Database I/O Preferences.

If necessary, to create a unique
DBName, the migration tool includes
a number. For example:
DBName_n_dbSuffix, where n is the
same number as in the pcbn
redefinition.

The migration tool sets the pcbName
property to the Database name from
the corresponding VAGen PCB. If you
use the VAGen Database name as the
PCBNAME in your IMS or DL/I PSB,
this facilitates testing using the EGL
Debugger.

The migration tool only includes the
secondaryIndexItem property if the
VAGen Index Key must be renamed
due to a conflict with an EGL
reserved word or because the name
starts with the # or @ symbol.

The migration tool also creates a
redefinition of the DB PCB based on
the PCB number within the VAGen
PSB.

PCB Type - GSAM

v Number

v Database

DBName_gsamSuffix GSAM_PCBRecord
 { @PCB
 { pcbType = PCBKind.GSAM }};
 pcbn GSAM_PCBRecord
 { redefines =
 DBName_gsamSuffix };

Note:

v Because the PSB is a record and each
database name becomes a field within
the record, each GSAM database
name must be unique.

v EGL ignores (removes) the GSAM
PCB variables when generating for a
CICS environment.

The migration tool creates the
variable name for a GSAM PCB based
on the VAGen Database name
followed by a suffix. You can specify
the suffix with the Stage 2 VAGen
Migration Database I/O Preferences.

If necessary, to create a unique
DBName, the migration tool includes
a number. For example:
DBName_n_gsamSuffix, where n is
the same number as in the pcbn
redefinition.

The migration tool also creates a
redefinition of the GSAM PCB based
on the PCB number within the
VAGen PSB.

Control parts
In VisualAge Generator, control parts are entered using a free-form text editor. The
control parts are not validated until they are actually used during generation.
Whether something is in upper or lower case is not significant.

352 Rational Business Developer: VisualAge Generator to EGL Migration Guide

In EGL, control parts are stored in .eglbld files in XML notation, with a special
editor for each type of control part. In EGL, upper and lower case are significant.

The tables in this section compare the information you enter in the VisualAge
Generator free-form text editor with the XML tag or attribute value that is used in
EGL. The tables only show the tag or attribute values, not the actual XML syntax.

Note:

v The migration tool includes as comments those generation options,
linkage table options, and resource association options that have no
corresponding EGL replacement but which might be useful to you in
determining related information that is required for EGL. For example,
the migration tool includes the generation option /jspreldir as a comment.
These comments are not displayed when you use the normal EGL Build
Part Editor. However, you can see the comments if you open the file with
the Text Editor.

v The migration tool eliminates generation options that have no
corresponding EGL replacement if the information is not useful in
determining current or future EGL options. For example, there is no
replacement for /lineinfo, which was an option to assist IBM support in
debugging the VAGen generator. This option is not useful for the EGL
generator, so the migration tool does not include it as a comment.

v The migration tool does not rename control parts, except in the following
situations:
– The migration tool removes the .BND suffix from the end of a bind

control part name.
– The migration tool removes the .LKG suffix from the end of a link edit

part name.
– The migration tool changes any other dots to underscores in control

part names.
– The tool also changes dots to underscores in control part names that

are referenced in the /OPTIONS, /RESOURCE, and /LINKEDIT
generation options.

– The migration tool issues an error message if the part name conflicts
with an EGL reserved word.

The control parts section is organized into the following tables:
v General control part information, Table 142 on page 354
v Generation options, Table 143 on page 354
v Generation options: conversion table values, Table 144 on page 370
v Linkage and resource associations: conversion table names, Table 145 on page

371
v Linkage table options for :callLink, Table 146 on page 372
v Linkage table options for :filelink, Table 147 on page 376
v Linkage table options for :crtxlink, Table 148 on page 377
v Linkage table options for :dxfrlink, Table 149 on page 378
v Resource association, Table 150 on page 379
v Link edit options, Table 151 on page 383
v Bind control, Table 152 on page 383
v Part-related symbolic parameters, Table 153 on page 384
v File-related symbolic parameters, Table 154 on page 385

Appendix B. Relationship of VisualAge Generator and EGL language elements 353

v User-defined symbolic parameters, Table 155 on page 385

 Table 142. General control part information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen control part names:

v Can include the period (.) in
the name.

v For bind and link edit parts,
any portion of the name after
the first period is treated as a
suffix. The suffix can be
specified in the /bind and
/link edit generation options.

EGL build parts:

v The period (.) is not valid in a build
part name.

The migration tool changes the period
(.) to an underscore (_).

Upper and lower case are not
significant in VAGen control part
tags and values.

Upper and lower case are significant in
EGL control part tags and values.

The migration tool converts the
control part tags and values to the
correct case required for EGL.

Generation options part
 Table 143. Generation options

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen generation options part:

v Contains one or more
generation options.

v Can be chained using the
/options generation option.

v Can reference any other
control part that is included in
the workspace at generation
time. The referenced control
parts are not considered to be
associates of the generation
options part.

EGL build descriptor part:

v Contains one or more build descriptor
options.

v Can be chained using the
nextBuildDescriptor build descriptor
option

v Can only reference other build parts
when one of the following criteria is
satisfied:

– The build parts are included in the
same .eglbld file.

– The build parts are in files that are
imported by the .eglbld file.

If your VAGen control parts are all in
the same VisualAge Java package or
VisualAge Smalltalk application, the
control parts are all placed in the
same .eglbld file. In this situation, no
import statements are required.

If your VAGen control parts are in
different VisualAge Java packages or
VisualAge Smalltalk applications, the
migration tool does not create the
import statements. You must add the
import statements. EGL validation
displays an error message in the
Problems view if EGL is unable to
resolve references to other control
parts.

VAGen generation option values
are only enclosed in quotes if
they contain special characters
for a directory or file name.

EGL build descriptor option values must
be enclosed in quotes. However, if you
use the EGL Build Parts Editor, the editor
automatically inserts the quotes for you
into the XML source. You do not see the
quotes in the editor.

The migration tool includes the
quotes automatically when it builds
the XML source for the .eglbld file.

354 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Many VAGen generation options
can be specified as /xxxx or
/noxxxx to reflect the positive or
negative of the generation
option. The following is an
example:

v /prep indicates that you want
the preparation step to be
automatically started
immediately after generation.

v /noprep indicates that you do
not want the preparation step
to be started automatically
because you plan to run it at a
later time.

Many EGL build descriptor options can
be specified as xxxx="YES" or xxxx="NO"
to reflect the positive or negative of the
build descriptor option. The following is
an example:

v prep = "YES" indicates that you want
the preparation step to be
automatically started immediately after
generation.

v prep = "NO" indicates that you do not
want the preparation step to be started
automatically because you plan to run
it at a later time.

The migration tool processes the
options in the following way:

v The migration tool converts /xxxx
to the corresponding xxxx="YES"
option unless otherwise indicated.

v The migration tool converts
/noxxxx to the corresponding
xxxx="NO" option unless otherwise
indicated.

/ansisql Not supported. The migration tool includes this
option as a comment.

/bidicontable=xxxx bidiConversionTable="xxxx" No special considerations.

/bind=xxxx

In VisualAge Generator, xxxx is
the suffix of the bind part. The
bind part for a program is
named pgmname.xxxx, where
xxxx is the suffix specified by the
/bind option. You might specify
a /bind=suffix for either of the
following reasons:

v A special bind is needed for
the program because you bind
the program into multiple DB2
plans.

v VisualAge Generator did not
enable you to easily create a
bind part with exactly the
same name as the program.

bind="xxxx"

The meaning of the bind option is not
the same as in VisualAge Generator. In
EGL, xxxx is the full name of the bind
part. The bind option only needs to be
specified if the bind part name differs
from that of the program. In most cases,
the program and bind part have the
same name, so there is no need to
include the bind option.

The bind option is only necessary if you
generate the same program for multiple
runtime environments and require special
bind commands for each environment.

Another use for the bind option is to
specify the name of a part that contains a
template for your bind command. A
project administrator or DBA can define
a bind part that includes substitutable
SYMPARMS for member-specific
parameters. You can use the EGL bind
option to point to this template part. This
technique works well if you bind a
package for each program.

Because the value for the bind option
has different meanings in VisualAge
Generator and EGL, the migration
tool cannot migrate this option. The
migration tool includes /bind as a
comment.

For more information on how to set
the bind build descriptor option, see
the following sections:

v “Establishing a bind control part to
use as a template” on page 212.

v “Establishing a program-specific
bind control part” on page 214.

/checktype=xxxx

xxxx is one of the following
values:

v none

v low

v all

checkType="xxxx"

The following EGL values correspond to
the VAGen values:

v NONE

v LOW

v ALL

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 355

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/cicsdbcs Not supported. The migration tool does not include
this option as a comment because all
supported CICS translators now
include support for DBCS.

/cicsentries=xxxx

xxxx is one of the following
values:

v none

v rdo

v macro

cicsEntries="xxxx"

The following EGL values correspond to
the VAGen values:

v NONE

v RDO

v MACRO

No special considerations.

/cobollevel=le | vs Not supported. The migration tool includes this
option as a comment.

commentlevel=n
 or
/commentlevel=commentText

n or commentText has one of the
following values:

v 0 or minimum

v 1 or info

v 2 or logic

v 3 or data

v 4 or statements

Note:

v Either the numeric value or its
equivalent commentText can be
specified.

v 0 = genoption comments only

v 1 = alias names, standard
generation information

v 2 = program and table prolog,
and function descriptions

v 3 = record prologs and data
item descriptions

v 4 = source statements and
comments

v For C++, the only valid values
are 0 = none and 1 =
comments

commentLevel="n"

 The following EGL values correspond to
the VAGen values:

v 0

v 1

v 1

v 1

v 1

Note:

v 0 = no comments

v 1 = comments are included

The migration tool migrates
/commentlevel=0 or minimum to 0
and all other values to 1.

/configmapname="xxxx"

xxxx is the name of a VisualAge
Smalltalk configuration map.

Not supported. The migration tool includes this
option as a comment because it might
be useful in determining groups of
related EGL projects that should be
checked into your source code
repository as a unit.

356 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/configmapversion="xxxx"

xxxx is the version name of the
VisualAge Smalltalk
configuration map specified by
/configmapname.

Not supported. The migration tool includes this
option as a comment because it might
be useful in determining groups of
related EGL projects that should be
checked into your source code
repository as a unit.

/contable=xxxx

xxxx is the name of a conversion
table.

clientCodeSet = "yyyy"
serverCodeSet = "zzzz"

yyyy and zzzz are the names of the client
and server conversion tables, respectively.

The migration tool sets both the
clientCodeSet and the serverCodeSet
options from the VAGen /contable
generation option. See Table 144 on
page 370 for the correspondence
between the VAGen and EGL values.
If the value for /contable=xxxx is not
in Table 144 on page 370, the
migration tool sets both
clientCodeSet and serverCode to
xxxx.

/createdds genDDSFile = "YES" | "NO"
Note: This is for ISERIESC.

No special considerations.

/currency=xxx (1 to 3 characters) currencySymbol = "xxx" No special considerations.

/data = 24 | 31 data = "24" | "31" No special considerations.

/dbms=xxxx

xxxx has one of the following
values:

v db2

v oracle

v odbc

Note: In VisualAge Generator,
Oracle and ODBC are only
supported for certain workstation
platforms.

dbms = "xxxx"

The following EGL values correspond to
the VAGen values:

v DB2

v ORACLE

v DB2

Note:

v In EGL, Oracle is only supported if
you use Java generation.

v EGL Java generation supports JDBC
instead of ODBC.

v EGL also supports the following
databases:

– CLOUDSCAPE

– DERBY

– INFORMIX

– SQLSERVER

The migration tool changes odbc to
DB2 and issues a warning message.

/dbpassword=xxxx sqlPassword = "xxxx" The migration tool merges the VAGen
/dbpassword and /sqlpassword
options into the EGL sqlPassword
option. If a generation options part
includes both /dbpassword and
/sqlpassword, the migration tool
includes the sqlPassword twice. EGL
validation displays an error message
in the Problems view.

Appendix B. Relationship of VisualAge Generator and EGL language elements 357

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/dbuser=xxxx sqlID = "xxxx" The migration tool merges the VAGen
/dbuser and /sqlID options into the
EGL sqlID option. If a generation
options part includes both /dbuser
and /sqlID, the migration tool
includes the sqlID twice. EGL
validation displays an error message
in the Problems view.

/debugtrace debugTrace = "YES" | "NO" No special considerations.

/destaccount=xxxx Not supported. The migration tool includes this
option as a comment.

/destdir=xxxx destDirectory = "xxxx" No special considerations.

/desthost=xxxx destHost = "xxxx" No special considerations.

/destlib=xxxx destLibrary = "xxxx"
Note: This is for ISERIESC.

No special considerations.

/destpassword=xxxx destPassword = "xxxx" No special considerations.

/destuid=xxxx destUserID = "xxxx" No special considerations.

/dxfrcancel cancelAfterTransfer = "YES" | "NO" No special considerations.

/dxfrxctl useXctlForTransfer = "YES" | "NO" No special considerations.

/ejbgroup=xxxx Not supported. The migration tool includes this
option as a comment.

/endcommarea endCommarea = "YES" | "NO" No special considerations.

/errdest=xxxx errorDestination = "xxxx"
Note: This is for IMS.

No special considerations.

/fastpath imsFastPath = "YES" | "NO"
Note: This is for IMS.

No special considerations.

/fold Not supported. The migration tool includes this
option as a comment.

/ftptranslationcmddbcs=xxxx Not supported. EGL only supports
TCP/IP for transferring files to the host.

The migration tool includes this
option as a comment.

/ftptranslationcmdsbcs=xxxx Not supported. EGL only supports
TCP/IP for transferring files to the host.

The migration tool includes this
option as a comment.

/genauthortimevalues
/nogenauthortimevalues

Not supported. The migration tool includes this
option as a comment.

/genhelpmaps genHelpFormGroup = "YES" | "NO" No special considerations.

/genmaps genFormGroup = "YES" | "NO" No special considerations.

358 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/genout=xxxx genDirectory = "xxxx" The migration tool converts /genout
and places the result in both the
original build descriptor and the new
build descriptor part referenced by
the secondaryTargetBuildDescriptor
option.

If you generate for Java, you might
need to specify the genProject build
descriptor option in addition to or
instead of the genDirectory option.
genProject is required in these cases:

v If you generate for HP-UX or
SOLARIS

v If you generate VGWebTransactions
or VGUI records

/genproperties
/nogenproperties

genProperties = "GLOBAL"
genProperties = "NO"

EGL also provides genProperties =
"PROGRAM".

The migration tool converts
/genproperties to the EGL
genProperties = "GLOBAL" option
because this is the closest value in
terms of what is generated.

/genresourcebundle genResourceBundle = "YES" | "NO" The migration tool converts
/genresourcebundle and places the
result in both the original build
descriptor and the new build
descriptor part referenced by the
secondaryTargetBuildDescriptor
option.

/genret genReturnImmediate = "YES" | "NO" No special considerations.

/gentables genDataTables = "YES" | "NO" No special considerations.

/genuirecords genVGUIRecords = "YES" | "NO" No special considerations.

/groupname=xxxx Not supported. The migration tool includes this
option as a comment.

/inedit=all
/inedit=inonly

validateOnlyIfModified = "NO"
validateOnlyIfModified = "YES"

No special considerations.

/initaddws

In VisualAge Generator:

v This option applies to both
main and called programs.

v The primary working storage
record is always initialized.
The /initaddws generation
option provides initialization
of other working storage
records specified on the Tables
and Additional Records list.

initNonIODataOnCall = "YES" | "NO"

In EGL, this option applies only to called
programs.

No special considerations.

/initrecd

In VisualAge Generator, this
option applies to both main and
called programs.

initIORecordsOnCall = "YES" | "NO"

In EGL, this option applies only to called
programs.

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 359

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/javadestdir=xxxx destDirectory = "xxxx" The migration tool converts
/javadestdir and places the result in
the new build descriptor part
referenced by the
secondaryTargetBuildDescriptor
option.

/javadesthost=xxxx destHost = "xxxx" The migration tool converts
/javadesthost and places the result in
the new build descriptor part
referenced by the
secondaryTargetBuildDescriptor
option.

/javadestpassword=xxxx destPassword = "xxxx" The migration tool converts
/javadestpassword and places the
result in the new build descriptor
part referenced by the
secondaryTargetBuildDescriptor
option.

/javadestuid=xxxx destUserID = "xxxx" The migration tool converts
/javadestuid and places the result in
the new build descriptor part
referenced by the
secondaryTargetBuildDescriptor
option.

/javasystem=xxxx

xxxx has one of the following
values:

v AIX

v LINUX

v OS2

v OS390

v OS400

v SOLARIS

v WINNT

system = "xxxx"

The following EGL values correspond to
the VAGen values:

v AIX

v LINUX

v not supported

v USS

v ISERIESJ

v SOLARIS

v WIN

The migration tool converts the
supported /javasystem values and
places the result in the new build
descriptor part referenced by the
secondaryTargetBuildDescriptor
option.

The tool includes unsupported values
as a comment in the original build
descriptor part.

/jobcard=xxxx Not supported. The equivalent function
is provided in the following way:

v The z/OS and iSeries build servers
handle the jobcard. These
environments ignore the JOBCARD
symbolic parameter.

v VSE supports the JOBCARD symbolic
parameter.

The migration tool converts this
option to the JOBCARD symbolic
parameter.

360 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/jobname=xxxx Not supported. The equivalent function
is provided in the following way:

v For z/OS and iSeries, you can use
$USERID as the job name in the build
script. EGL generation substitutes
$USERID with the value from the
destUserID build descriptor option
concatenated with a number to
provide a unique job name. These
environments ignore the JOBNAME
symbolic parameter.

v VSE supports the JOBNAME symbolic
parameter.

The migration tool converts this
option to the JOBNAME symbolic
parameter

/jspreldir="xxxx" Not supported. The migration tool includes this
option as a comment.

/leftjust leftAlign = "YES" | "NO" No special considerations.

/lineinfo Not supported. The migration tool does not include
this option as a comment because the
option was only meaningful for IBM
support to debug the VAGen
generator. It had no effect on the
generated COBOL.

/lines=nn Not supported. The migration tool includes this
option as a comment.

/linkage=xxxx

xxxx is the name of a VAGen
linkage table part.

linkage = "xxxx"

xxxx is the name of an EGL linkage
options part.

No special considerations.

/linkedit=xxxx

In VisualAge Generator, xxxx is
the suffix of the link edit part.
The link edit part for a program
is named pgmname.xxxx, where
xxxx is the suffix specified by the
/linkedit option. You might have
specified a /linkedit=suffix for
either of the following reasons:

v A special linkedit is needed for
the program such as for static
link edit to PL/I.

v VisualAge Generator did not
enable you to easily create a
link edit part with exactly the
same name as the program.

linkEdit = "xxxx"

The meaning of the linkEdit option is
not the same as in VisualAge Generator.
In EGL, xxxx is the full name of the link
edit part. The linkEdit option only needs
to be specified if the link edit part name
differs from that of the program. In most
cases, the program and link edit part
have the same name, so there is no need
to include the linkEdit option.

The linkEdit option is only necessary if
you generate the same program for
multiple runtime environments and
require special link edit commands for
each environment.

Because the value for the linkedit
option has different meanings in
VisualAge Generator and EGL, the
migration tool cannot migrate this
option. The migration tool includes
/linkedit as a comment.

For more information, see “Reviewing
link edit commands” on page 214.

/listing
/listingonerror
/nolisting
Note: This is a three-way switch.

Not supported. The migration tool includes this
option as a comment.

/locvalid Not supported. The migration tool includes this
option as a comment.

Appendix B. Relationship of VisualAge Generator and EGL language elements 361

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/log=xx

OR

/nolog

imsLogID = "xx"

OR

include /nolog as a comment

Note: This is for IMS.

The migration tool processes this
option in the following way:

v /log=xx is converted to imsLogID
= "xx"

v /nolog is converted to a comment.

/math=xxxxx

xxxxx has one of the following
values:

v cobol

v cspae

math = "xxxxx"

The following EGL values correspond to
the VAGen values:

v COBOL

v CSPAE

No special considerations.

/mfsdev =
 ('deviceName',
 'MFSInfo',
 'eAI'
)

Note:

v The VAGen deviceName is
used. MFSInfo provides the
corresponding MFS
information to use for the
VAGen device. eAI provides
the extended attribute
information.

v The values for eAI are: EATTR,
NOEATTR, and NCD.

v Multiple MFSInfo and eAI
values can be provided for a
single deviceName.

v Refer to the VisualAge
Generator Server Guide for MVS,
VSE, and VM for the details of
this generation option.

<mfsDevice
 width="nn", height="nn",
 devStmtParms="MFSInfo",
 extendedAttributes="eAI"
 />

Note:

v The EGL device size (width and
height) are used. MFSInfo and eAI
provide the same information as in
VisualAge Generator.

v The values for eAI are: YES, NO, and
NCD.

v Multiple MFSInfo and eAI values can
be provided for a single device size.

v Refer to the EGL Generation Guide for
the details of this build descriptor
option.

The migration tool converts the
VAGen deviceName to the
corresponding width and height. For
the relationship between the device
names and sizes, see Table 95 on page
286. If two deviceNames convert to
the same width and height and have
the same values specified for MFSInfo
and eAI, the migration tool only
includes one entry.

The migration tool does not change
the value of MFSInfo.

The migration tool converts the
values of eAI to the corresponding
EGL values.

/mfseattr
/nomfseattr
/mfseattrncd

In VisualAge Generator, these 3
options provide a 3-way switch
to give information that is
needed to generate extended
attribute support for maps in
MFS format.

mfsExtendedAttr = "YES"
mfsExtendedAttr = "NO"
mfsExtendedAttr = "NCD"

Note: This is for IMS.

No special considerations.

/mfsignore mfsIgnore = "YES" | "NO"

Note: This is for IMS

No special considerations.

/mfstest mfsUseTestLibrary = "YES" | "NO"

Note: This is for IMS

No special considerations.

362 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/msgtableprefix=xxxx

In VisualAge Generator, the
message table prefix is specified
on the program. When you
generate the UI record by itself
you must specify the message
table prefix during generation.

msgTablePrefix = "xxxx"

In EGL, the same considerations for the
msgTablePrefix apply as in VisualAge
Generator.

The migration tool converts
/msgtableprefix and places the result
in both the original build descriptor
and the new build descriptor part
referenced by the
secondaryTargetBuildDescriptor
option.

If you generate a VGUIRecord by
itself without generating the program
that uses it, you must include the
package name with the message table
prefix (for example, msgTablePrefix =
"packageName.prefixID").

/msp=xxxx

xxxx has one of the following
values:

v all

v gsam

v mfs

v seq

formServicePgmType = "xxxx"

The following EGL values correspond to
the VAGen values:

v ALL

v GSAM

v MFS

v SEQ

Note: This is for IMS BMP and z/OS
Batch.

No special considerations.

/nullfill fillWithNulls = "YES" | "NO" No special considerations.

/numovfl checkNumericOverflow = "YES" | "NO" No special considerations.

/options=xxxx

xxxx is the name of another
VAGen generation options part.

nextBuildDescriptor = "xxxx"

xxxx is the name of another EGL build
descriptor part.

No special considerations.

/packagename=xxxx

In VisualAge Generator, the
/packagename generation option
is used when generating Java,
Java wrappers, or the Java
components for Web
Transactions.

wrapperPackageName = "xxxx"

In EGL, wrapperPackageName is used
only when the enableJavaWrapperGen
build descriptor option is set to "ONLY"
or "YES"; otherwise,
wrapperPackageName is ignored.

No special considerations.

/possign=x

x has one of the following
values:

v f

v c

positiveSignIndicator = "x"

The following EGL values correspond to
the VAGen values:

v F

v C

Note: This is for ISERIESC.

No special considerations.

/prep prep = "YES" | "NO" No special considerations.

/prepfile buildPlan = "YES" | "NO" No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 363

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/printdest=xxxx

xxxx has one of the following
values:

v ezeprint

v termid

printDestination = "xxxx"

The following EGL values correspond to
the VAGen values:

v PROGRAMCONTROLLED

v TERMINALID

No special considerations.

/project="xxxx"[,"version"]

xxxx is the name of a VisualAge
for Java project, and version is the
version name for the specified
project.

Not supported. The migration tool includes this
option as a comment because it might
be useful in determining groups of
related EGL projects that should be
checked into your source code
repository as a unit.

/projectid=xxxx projectID = "xxxx" No special considerations.

/recovery restoreCurrentMsgOnError = "YES" |
"NO"

Note: This is for IMS.

No special considerations.

/resource=xxxx

xxxx is the name of a VAGen
resource associations part.

resourceAssociations = "xxxx"

xxxx the name of an EGL resource
associations part.

No special considerations.

/resourcebundlelocale=xxxx resourceBundleLocale = "xxxx" The migration tool converts
/resourcebundlelocale and places the
result in both the original build
descriptor and the new build
descriptor part referenced by the
secondaryTargetBuildDescriptor
option.

/resvword=xxxx reservedWord = "xxxx" No special considerations.

/rt=xxxx returnTransaction = "xxxx" No special considerations.

/runfile genRunFile = "YES" | "NO" No special considerations.

/sendtranslationcmddbcs=xxxx Not supported.

Note: EGL only supports TCP/IP for
transferring files to the host.

The migration tool includes this
option as a comment.

/session=xxxx Not supported.

Note: EGL only supports TCP/IP for
transferring files to the host.

The migration tool includes this
option as a comment.

/setfull setFormItemFull = "YES" | "NO" No special considerations.

/sp checkToTransaction = "YES" | "NO" No special considerations.

/spa=xxxx,ADF,yyyy

Note: ADF is optional. yyyy is
optional so all of the following
combinations of options are valid
in VisualAge Generator:
/spa=xxxx
/spa=xxxx,ADF,yyyy
/spa=xxxx,,yyyy

In EGL, there are 3 separate options:
spaSize = "xxxx"
spaADF = "YES" | "NO"
spaStatusBytePosition = "yyyy"

The migration tool splits the /spa
option into the 3 EGL options.

The migration tool only includes
spaADF if the value is YES.

364 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/spzero

Note: This option is supported
for COBOL generation only.

spacesZero = "YES" | "NO"

Note: This option is supported for
COBOL generation, Java generation, and
debug.

No special considerations.

/sqldb=xxxx sqlDB = "xxxx" No special considerations.

/sqlid=xxxx sqlID = "xxxx" The migration tool merges the VAGen
/dbuser and /sqlID options into the
EGL sqlID option. If a generation
options part includes both /dbuser
and /sqlID, the migration tool
includes the sqlID twice. EGL
validation displays an error message
in the Problems view.

/sqlpassword=xxxx sqlPassword = "xxxx" The migration tool merges the VAGen
/dbpassword and /sqlpassword
options into the EGL sqlPassword
option. If a generation options part
includes both /dbpassword and
/sqlpassword, the migration tool
includes the sqlPassword twice. EGL
validation displays an error message
in the Problems view.

/sqlvalid validateSQLStatements = "YES" | "NO" No special considerations.

/symparm=pppppppp,'vvvv'

v pppppppp is the name of the
symbolic parameter. pppppppp
is 1 - 8 characters.

v vvvv is the value. Two
consecutive single-quotes
within the value is one
single-quote.

EGL supports many of the same
predefined symbolic parameters as
VisualAge Generator. You can also use
any user-defined symbolic parameters as
long as they do not conflict with any of
the new EGL symbolic parameters.

The migration tool processes symbolic
parameters in the following way:

v The migration tool converts any
VAGen-defined symbolic
parameters to the corresponding
EGL symbolic parameter.

v If there is no corresponding EGL
symbolic parameter, the migration
tool converts the VAGen-defined
symbolic parameter to the syntax
of an EGL symbolic parameter
without changing the parameter
name or value. The migration tool
also issues an error message.

v The migration tool converts any
user-defined symbolic parameters
to the syntax of an EGL symbolic
parameter without changing the
parameter name or value.

/SYMPARM=EZALTXTR,'xxxx' transferErrorTransaction = "xxxx" No special considerations.

/SYMPARM=EZONEAS2,'xxxx' oneFormItemCopybook = "YES" No special considerations.

/syncdxfr synchOnPgmTransfer = "YES" | "NO"

Note: This is for DL/I for the CICS
environment.

No special considerations.

/syncxfer synchOnTrxTransfer = "YES" | "NO" No special considerations.

/syscodes sysCodes = "YES" | "NO" No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 365

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/system=xxxx

xxxx has one of the following
values:

v MVSBATCH

v MVSCICS

v IMSBMP

v IMSVS

v AIX

v JAVALINUX

v JAVAOS390

v JAVAOS400

v JAVAWINNT

v JAVAWRAPPER

v WINNT

v LINUX

v OS400

v HP

v SOLARIS

v VSEBATCH

v VSECICS

The following environments can
also be specified in VAGen, but
are not converted by the
migration tool: JAVA, JAVAGUI,
WINGUI, OS2GUI, OS2,
OS2CICS, AIXCICS, NTCICS,
SOLACICS, TSO, VMCMS,
VMBATCH

system = "xxxx"

The following EGL values correspond to
the VAGen values:

v ZOSBATCH

v CICS for z/OS

v IMSBMP

v IMSVS

v AIX

v LINUX

v USS

v ISERIESJ

v WIN

v WIN

v WIN

v LINUX

v ISERIESC

v HPUX

v SOLARIS

v VSEBATCH

v VSECICS

The migration tool processes this
option in the following way:

v If /system=xxxx has a
corresponding value in EGL, the
migration tool migrates to the
corresponding EGL value.

v If /system=xxxx does not have a
corresponding value in EGL, the
migration tool includes
/system=xxxx as a comment.

v For /system=JAVAWRAPPER, the
migration tool also sets the
followingEGL build descriptor
options:

– enableJavaWrapperGen =
"ONLY". This specifies that the
you want to generate only the
Java wrapper for a program.

– wrapperCompatibility = "V4".
This option specifies that the
Java wrapper must be
compatible with VisualAge
Generator.

v For the COBOL environments, the
migration tool issues a warning
message that you need to set the
destPort build descriptor option.

/targnls=xxx

xxx is a 3-character national
language code.

targetNLS="xxx"

xxx is the 3-character national language
code. All the values except ENP
(uppercase English) are identical in
VisualAge Generator and EGL. ENP does
not have a counterpart in EGL.

The migration tool converts /targnls
and places the result in both the
original build descriptor and the new
build descriptor part referenced by
the secondaryTargetBuildDescriptor
option.

The migration tool uses the VAGen
value as the targetNLS value. If the
value is ENP, EGL validation displays
an error message in the Problems
view. You can edit the .eglbld file and
change the value. You might want to
use ENU (mixed case English) as a
replacement for ENP.

366 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/templates=xxxx

In VisualAge Generator,
templates are used to generate
the preparation and runtime JCL,
as well as to generate CICS
transaction and program entries.

templateDir = "xxxx"

In EGL, build scripts replace preparation
templates for z/OS and iSeries. The only
templates that are used are to produce
runtime JCL for the ZOSBATCH,
IMSBMP, and VSEBATCH runtime
environments, runtime CL for the
ISERIESC target environment, and
preparation JCL for the VSE runtime
environment.

No special considerations.

/trace=xxxx,yyyy

xxxx has one of the following
values:

v none

v sqlerr

v sqlio

yyyy is optional. If yyyy is
present, it is set to stmt.

Any combination of none, sqlerr,
or sqlio, with or without ,stmt , is
valid.

/trace splits into multiple build
descriptor options:

v If sqlerr is included, sqlErrorTrace =
"YES"

v If sqlio is included, sqlIOTrace =
"YES"

v if stmt is included, statementTrace =
"YES"

No special considerations.

/transfertype=xxxx

xxxx has one of the following
values:

v tcpip

v sna

Not supported.

Note: EGL only supports TCP/IP for
transferring files to the host.

The migration tool includes this
option as a comment.

/transid=primaryID,restartID

In VisualAge Generator,
/transid=,restartID is valid, with
the primary transaction
defaulting to the first 4
characters of the program name.

/transid splits into multiple build
descriptor options:

v If primaryID is included,
startTransactionID = "primaryID"

v If restartID is included,
restartTransactionID = "restartID"

No special considerations.

/twaoff=nnnn twaOffset = "nnnn" No special considerations.

/unload

In VisualAge Generator /unload
directed batch generation to
unload all VisualAge Java
projects or VisualAge Smalltalk
configuration maps that
contained VAGen parts before
loading the projects or
configuration maps being
requested for the current
generation process.

Not supported. The migration tool does not include a
comment for this option.

/validmix validateMixedItems = "YES" | "NO" No special considerations.

/vmloadlib=xxxx Not supported. The migration tool includes this
option as a comment.

Appendix B. Relationship of VisualAge Generator and EGL language elements 367

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/vselib=xxxx vseLibrary = "xxxx" No special considerations.

/workdb=xxxx

xxxx has one of the following
values:

v aux

v main

v dli

v sql

workDBType = "xxxx"

The following EGL values correspond to
the VAGen values:

v AUX

v MAIN

v DLI

v SQL

No special considerations.

Not used. vagCompatibility = "YES" Based on the Do not set
compatibility mode migration
preference, the migration tool adds or
omits this option to every build
descriptor part.

Not used. v60NumWithCharBehavior = "YES"
v60SQLNullableBehavior = "YES"
checkIndices = "NO"
truncateExtraDecimals = "YES"
v60DecimalBehavior = "YES"

The migration tool always adds these
options to every build descriptor part.
This technique is used to explicitly
show the default values that must be
used to preserve VAGen behavior.

For COBOL generation, in
programs that do not use print
forms, the decimal symbol and
numeric separator symbol
default to the values in the
language-dependent options
module used at runtime. In
programs that use print forms,
the decimal symbol defaults to a
period and the numeric separator
symbol defaults to a comma.

For Java generation, the
decimalSymbol is a runtime
property. The numeric separator
is the opposite (for example, if
the decimalSymbol is a period,
the numeric separator symbol is
a comma).

decimalSymbol = "x"
separatorSymbol = "y"

x and y are one of the following symbols:

v a period (.)

v a comma (,)

x and y cannot have the same value.

For COBOL generation, if you specify
this information at generation time, the
generation information takes precedence.
If you do not specify it at generation
time, for programs that do not use print
forms, the symbols are set in the same
way as in VisualAge Generator. For
programs that use print forms, the
symbols default to a period as the
decimal symbol and a comma as a
separator symbol.

For Java generation, if you specify this
information at generation time it is used
to set the runtime properties. If you do
not specify it at generation time, you can
set it in the properties file used at
runtime.

The migration tool does not set the
decimalSymbol or the
separatorSymbol. You can add these
options to your build descriptor part.
Alternatively, use one of the following
techniques:

v For programs that you generate to
COBOL, and that do not use print
forms, you can continue to use the
language-dependent options
module as you did in VisualAge
Generator.

v For Java generation, you can set the
information directly in the
properties file used at runtime.

368 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not used. destPort = "xxxx"

In EGL, destPort specifies the port to use
when transferring generation outputs to
a host system to prepare them for
execution. The destPort build descriptor
option is required for COBOL generation
target environments.

The migration tool does not set
destPort. The default value varies by
target environment in the following
ways:

v For z/OS environments, there is no
default value for destPort. You
must add the destPort build
descriptor option and the value
must match the value you use in
the JCL that starts the z/OS build
server. The sample JCL for starting
a z/OS build server uses port 5555.

v For iSeries environments, there is
no default value for destPort. You
must add the destPort build
descriptor option. The value must
match the value used by the iSeries
build server.

v For VSE environments, the default
value for the destPort is 21. You
only need to specify the destPort
build descriptor option if the value
is different from 21.

Not used. genProject = "xxxx" If you generate for Java, you might
need to specify the genProject build
descriptor option in addition to or
instead of the genDirectory option.
genProject is required in the
following cases:

v If you generate for HP-UX or
SOLARIS; or

v If you generate VGWebTransactions
or VGUI records.

Not supported. tempDirectory = "xxxx" If you generate VGUI records, the
tempDirectory option enables you to
specify the directory where the
generated JSP is placed if there is
already a JSP by the same name in
the genProject directory. If
tempDirectory is not specified, the
JSP is generated into the genProject
directory, but with a name of
newxxxx.JSP, where xxxx is the VGUI
record name.

Not supported.

In VisualAge Generator, even if
your program checks the value
of EZESYS, all the VAGen source
code must be valid for every
target environment for which
you might generate the program.

eliminateSystemDependentCode =
"YES" | "NO"

In EGL, if your program checks the value
of sysVar.systemType, you can choose to
omit source code that can never be run
for your current target generation
environment. This can make the resulting
COBOL or Java source code smaller.

The migration tool does not set
eliminateSystemDependentCode.
The default value is "YES".

Appendix B. Relationship of VisualAge Generator and EGL language elements 369

Table 143. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not used. sessionBeanID = "xxxx" The migration tool does not set
sessionBeanID. If you are generating
Java or Java wrappers, see the EGL
online help to determine if you need
to set the sessionBeanID build
descriptor option.

In VisualAge Generator, you
include the SQL JDBC driver
class, JNDI name, and connection
URL information in a properties
file that is used at runtime.

sqlJDBCDriverClass = "xxxx"
sqlValidationConnectionURL = "xx"

In EGL, you can specify this information
at generation time or at runtime.

The migration tool does not set the
sqlJDBCDriverClass and
sqlValidationConnectionURL build
descriptor options. If you want to
specify these values at generation
time, use one of the following
techniques:

v Specify workspace preferences. This
technique only works if you are
generating in the Eclipse
environment.

v Specify the build descriptor options
in your build descriptor parts. This
technique works when you
generate in the Eclipse environment
as well as when you generate in
batch.

In either case, you must also set the
genProperties build descriptor option
to "GLOBAL" or "PROGRAM" so that
the properties file is generated.

If you want to specify the value at
runtime, you can modify the runtime
properties in the properties file.

Conversion table names used in generation option parts
 Table 144. Generation options: conversion table names

Language Conversion Table VAGen
/contable value

EBCDIC Character Set EGL
serverCodeSet

ASCII Character Set EGL
clientCodeSet

Arabic ELACNARA IBM-420 IBM-1256

Chinese, simplified ELACNCHS IBM-935 IBM-1381

Chinese, simplified ELACNGBK IBM-1388 IBM-1386

Chinese, traditional ELACNCHT IBM-937 IBM-950

Danish ELACNDKN IBM-277 IBM-1252

Eastern European ELACN870 IBM-870 IBM-1250

English (UK) ELACN285 IBM-285 IBM-1252

English (US) ELACNENU IBM-037 IBM-1252

Finnish ELACNFIN IBM-298 IBM-1252

French ELACNFRA IBM-297 IBM-1252

German ELACNDEU IBM-273 IBM-1252

Greek ELACNGRE IBM-875 IBM-1253

370 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 144. Generation options: conversion table names (continued)

Language Conversion Table VAGen
/contable value

EBCDIC Character Set EGL
serverCodeSet

ASCII Character Set EGL
clientCodeSet

Hebrew ELACNHEB IBM-424 IBM-1255

Italian ELACNITA IBM-280 IBM-1252

Japanese, Katakana ELACNJPN IBM-930 IBM-943

Japanese, Latin ELACNJPL IBM-939 IBM-943

Korean ELACNKOR IBM-933 IBM-949

Norwegian ELACNDKN IBM-277 IBM-1252

Portuguese ELACNPTB IBM-037 IBM-1252

Russian ELACNCYR IBM-1025 IBM-1251

Spanish ELACNESP IBM-284 IBM-1252

Swedish ELACNSWE IBM-278 IBM-1252

Swiss German ELACNDES IBM-500 IBM-1252

Turkish ELACNTUR IBM-1026 IBM-1254

User–defined (not
listed in the
previous rows of
this table)

XXXXXXXX XXXXXXXX XXXXXXXX

Conversion table names used in linkage table and resource
associations parts

The migration tool converts the VAGen /contable option to the EGL
conversionTable attribute in the following way:
v If the first 4 characters of the conversion table name are "CSOX" (AIX Server) or

"CSOI" (OS/2 or Windows Server), the migration tool converts the first 4
characters to "CSOJ" and does not change the remaining portion of the name.
The conversion table names converted for an OS/2 Server might result in invalid
EGL conversion table names or in a valid (but incorrect) conversion table name.

v If the first 4 characters of the conversion table name are "CSOE" (MVS or
OS/400 Server), the migration tool does not change the conversion table name.

v If the first 5 characters of the conversion table name are "ELACN" or "ELAAX",
the migration tool converts the table name as shown in Table 145.

v If the name is not found in the table or follows any other naming convention,
the migration tool converts the table name "as is".

 Table 145. Linkage table and resource associations parts: conversion table values

Language

VAGen
/contable Local:
ASCII Remote:
EBCDIC

EGL conversion
Table

VAGen
/contable Local:
Windows
Remote: AIX,
HP-UX, or
Solaris

EGL conversion
Table

Arabic ELACNARA CSOE420 ELAAXARA CSOJ1046

Chinese,
simplified

ELACNCHS CSOE935 BINARY CSOJ1381

Appendix B. Relationship of VisualAge Generator and EGL language elements 371

Table 145. Linkage table and resource associations parts: conversion table
values (continued)

Language

VAGen
/contable Local:
ASCII Remote:
EBCDIC

EGL conversion
Table

VAGen
/contable Local:
Windows
Remote: AIX,
HP-UX, or
Solaris

EGL conversion
Table

Chinese,
simplified

ELACNGBK CSOE935 Not supported CSOJ1386

Chinese,
traditional

ELACNCHT CSOE937 BINARY CSOJ950

Danish ELACNDKN CSOE277 ELAAX850 CSOJ850

Eastern
European

ELACN870 CSOE870 ELAAX912 CSOJ852

English (UK) ELACN285 CSOE285 ELAAX850 CSOJ850

English (US) ELACNENU CSOE037 ELAAX437 CSOJ850

Finnish ELACNFIN CSOE298 ELAAX850 CSOJ850

French ELACNFRA CSOE297 ELAAX850 CSOJ850

German ELACNDEU CSOE273 ELAAX850 CSOJ850

Greek ELACNGRE CSOE875 ELAAXGRE CSOJ813

Hebrew ELACNHEB CSOE424 ELAAXHEB CSOJ856

Italian ELACNITA CSOE280 ELAAX850 CSOJ850

Japanese,
Katakana

ELACNJPN CSOE930 BINARY CSOJ943

Japanese, Latin ELACNJPL CSOE939 BINARY CSOJ943

Korean ELACNKOR CSOE933 BINARY CSOJ1363

Norwegian ELACNDKN CSOE277 ELAAX850 CSOJ850

Portuguese ELACNPTB CSOE037 ELAAX850 CSOJ850

Russian ELACNCYR CSOE1025 ELAAXCYR CSOJ866

Spanish ELACNESP CSOE284 ELAAX850 CSOJ850

Swedish ELACNSWE CSOE278 ELAAX850 CSOJ850

Swiss German ELACNDES CSOE500 ELAAX850 CSOJ850

Turkish ELACNTUR CSOE1026 ELAAXTUR CSOJ920

Linkage table parts
The linkage table parts are Calllink, Filelink, Crtxlink, and Dxfrlink.

callLink
 Table 146. Linkage table options for :callLink

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

:callLink callLink No special considerations.

372 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 146. Linkage table options for :callLink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

linktype=xxxx

xxxx has one of the following
values:

v dynamic

v static

v cicslink

v remote

v csocall

v sessionejb

Type of call.

The following EGL values correspond to
the VAGen values

v localCall

v localCall

v localCall

v remoteCall

v remoteCall

v ejbCall

If the VAGen linktype is omitted, the
migration tool uses localCall. The
migration tool also uses linktype in
additional places to set other
properties for the EGL callLink entry.

applname=programName

programName is the name of the
program being called. Wildcards
are permitted.

pgmName = "programName" No special considerations.

externalname=applname alias = "applname" If your VAGen program had to be
renamed because the name was an
EGL reserved word, you can use the
alias property either in the program
definition or in the linkage options
part to provide the original VAGen
name for the program as the name of
the generated program. Either
technique can help you avoid having
to modify non-VAGen programs that
are called by the VAGen program.

package=packageName package = "packageName" If you generate Java and the calling
and called programs are in different
packages, you can include the
package name in the linkage entry for
the called program. Alternatively,
change the call statement to explicitly
qualify the program with the package
name or include an import statement
for the package in the file that
contains the call statement.

library=libraryName
 OR
dllname=libraryName

In VisualAge Generator, library
and dllname are treated as
synonyms.

library = "libraryName" The migration tool merges the VAGen
library or dllname into the EGL
library property.

linktype=xxxx

xxxx has one of the following
values:

v dynamic

v static

v cicslink

linkType = "xxxx"

The following EGL values correspond to
the VAGen values:

v DYNAMIC

v STATIC

v CICSLINK

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 373

Table 146. Linkage table options for :callLink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

parmform=xxxx

xxxx has one of the following
values:

v oslink

v commptr

v commdata

v cicsoslink

parmForm = "xxxx"

The following EGL values correspond to
the VAGen values:

v OSLINK

v COMMPTR

v COMMDATA

v CICSOSLINK

No special considerations.

contable=xxxx

xxxx has one of the following
values:

v a conversionTableName

v *

v EZECONVT

v BINARY

v NONE

conversionTable = "xxxx"

The following EGL values correspond to
the VAGen values:

v conversionTableName

v *

v PROGRAMCONTROLLED

v not supported

v not supported

The migration tool uses the
information in “Conversion table
names used in linkage table and
resource associations parts” on page
371 to convert the conversionTable
property for the EGL callLink
element.

The migration tool migrates the
VAGen contable=BINARY to BINARY,
which is an unsupported value in
EGL. The migration tool also issues
an error message. EGL validation
displays an error message in the
Problems view. You must correct the
error by editing the .eglbld file and
selecting the supported value that you
want to use.

The migration tool omits the
conversionTable property if the
VAGen contable=NONE.

location=xxxx

xxxx has one of the following
values:

v systemName

v EZELOC

location = "xxxx"

The following EGL values correspond to
the VAGen values:

v systemName

v PROGRAMCONTROLLED

No special considerations.

374 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 146. Linkage table options for :callLink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

remotecomtype=xxxx

xxxx has one of the following
values:

v appcims

v ca400

v cicsclient

v dce

v dcesecure

v direct

v exci

v ipc

v java400

v lu2

v tcpip

remoteComType = "xxxx"

The following EGL values correspond to
the VAGen values:

v not supported

v not supported

v CICSECI

v not supported

v not supported

v DIRECT

v not supported

v DISTINCT

v JAVA400

v not supported

v TCPIP

The migration tool converts cicsclient
to CICSECI because that is the closest
corresponding EGL value. If the
VAGen :callLink entry did not already
specify the ctgPort and ctgLocation,
the migration tool issues an error
message to remind you to specify
these values.

The migration tool migrates the
values listed as not supported "as is"
and issues a message. You must
determine what communications
protocol you want to use now and
then update the EGL callLink entry
with the correct information. EGL
validation displays an error message
in the Problems view until you correct
the callLink entry.

If you decide to use CICSSSL, you
must add the ctgPort, ctgLocation,
ctgKeyStore, and
ctgKeyStorePassword properties to
the EGL callLink entry.

If you decide to use CICSJ2C, you
must add the pgmName,
conversionTable, remotePgmType,
luwControl, remoteBind, location,
and parmForm properties to the EGL
callLink entry.

The migration tool migrates APPCIMS
"as is" because it is not supported and
the values of other properties are
quite different. The best replacement
for APPCIMS is IMSTCP.

remoteapptype=xxxx

xxxx has one of the following
values:

v vg

v nonvg

v vgjava

v itf

remotePgmType = "xxxx"

The following EGL values correspond to
the VAGen values:

v EGL

v EXTERNALLYDEFINED

v not applicable

v not supported

If the VisualAge Generator
remoteapptype=vgjava, the migration
tool migrates the :callLink entry, but
omits the remotePgmType property.

If remoteapptype=itf, the migration
tool turns the entire :callLink entry
into a comment.

serverid=serverName serverID="serverName" No special considerations.

luwcontrol=xxxx

xxxx has one of the following
values:

v client

v server

luwControl = "xxxx"

The following EGL values correspond to
the VAGen values:

v CLIENT

v SERVER

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 375

Table 146. Linkage table options for :callLink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

remotebind=xxxx

xxxx has one of the following
values:

v generation

v runtime

remoteBind = "xxxx"

The following EGL values correspond to
the VAGen values:

v GENERATION

v RUNTIME

No special considerations.

providerURL=URLName providerURL = "URLName" No special considerations.

ctglocation='tcpipInfo' ctgLocation = "tcpipInfo" No special considerations.

ctgport=portID ctgPort = "portID" No special considerations.

bitmode=nn

nn has one of the following
values:

v 16

v 32

Not supported. The migration tool includes this
option as a comment.

binform=xxxx

xxxx has one of the following
values:

v intel

v host

Not supported. The migration tool includes this
option as a comment.

Not supported.

In VisualAge Generator, you
specify the NOMAPS option on a
CALL statement to achieve better
performance if the called
program does not send any maps
to the screen.

refreshScreen = "YES" | "NO" The migration tool does not set this
property. If you previously specified
NOMAPS for a VAGen CALL
statement, you can continue to use the
isNoRefresh = YES property on the
EGL call statement. Alternatively, you
can obtain the same support by
specifying refreshScreen = "NO" on
the callLink entry for the called
program.

Not used.

None of the communication
protocols supported by
VisualAge Generator required
this information.

ctgKeyStore
ctgKeyStorePassword

The migration tool does not set these
properties. ctgKeyStore and
ctgKeyStorePassword are required if
you decide to use remoteComType =
"CICSSSL".

Not used.

In VisualAge Generator, you use
the /system=JAVAWRAPPER
generation option whenever you
want to generate a Java wrapper
for a called batch program.

javaWrapper = "YES" | "NO" The migration tool does not set this
property. You must specify
javaWrapper = "YES" if you want a
Java wrapper to be generated
whenever you generate the called
program.

fileLink
 Table 147. Linkage table options for :filelink

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

:filelink fileLink No special considerations.

376 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 147. Linkage table options for :filelink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

linktype=xxxx

xxxx has one of the following
values:

v local

v remote

In VisualAge Generator, the
default is local.

Type of file.

The following EGL values correspond to
the VAGen values:

v localFile

v remoteFile

If the VAGen linktype is not specified,
the migration tool converts to
localFile.

filename=fileName

fileName is the name of a file in a
VAGen record definition.
Wildcards are permitted.

fileName = "fileName" No special considerations.

contable=xxxx

xxxx has one of the following
values:

v a conversionTableName

v *

v EZECONVT

v BINARY

conversionTable="xxxx"

The following EGL values correspond to
the VAGen values:

v conversionTableName

v *

v PROGRAMCONTROLLED

v not supported

The migration tool uses the
information in “Conversion table
names used in linkage table and
resource associations parts” on page
371 to convert the conversionTable
property for the EGL fileLink
element.

The migration tool migrates the
VAGen contable=BINARY to BINARY,
which is an unsupported value in
EGL. The migration tool also issues
an error message. EGL validation
displays an error message in the
Problems view. You must correct the
error by editing the .eglbld file and
selecting the supported value that you
want to use.

location=xxxx

xxxx has one of the following
values:

v CICS

v EZELOC

locationSpec="xxxx"

The following EGL values correspond to
the VAGen values:

v CICS

v PROGRAMCONTROLLED

No special considerations.

Crtxlink
 Table 148. Linkage table options for :crtxlink

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

:crtxlink asynchLink No special considerations.

linktype=xxxx

xxxx has one of the following
values:

v local

v remote

Note: In VisualAge Generator the
default is local.

Type of invocation.

The following EGL values correspond to
the VAGen values:

v localAsynch

v remoteAsynch

If the VAGen linktype is not specified,
the migration tool converts to
localAsynch.

Appendix B. Relationship of VisualAge Generator and EGL language elements 377

Table 148. Linkage table options for :crtxlink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

recdname=recordName

recordName is the name of a
VAGen record definition.
Wildcards are permitted.

recordName = "recordName" No special considerations.

contable=xxxx

xxxx has one of the following
values:

v a conversionTableName

v *

v EZECONVT

v BINARY

conversionTable = "xxxx"

The following EGL values correspond to
the VAGen values:

v conversionTableName

v *

v PROGRAMCONTROLLED

v not supported

The migration tool uses the
information in “Conversion table
names used in linkage table and
resource associations parts” on page
371 to convert the conversionTable
property for the EGL asynchLink
element.

The migration tool converts the
VAGen contable=BINARY to BINARY,
which is an unsupported value in
EGL. The migration tool also issues
an error message. EGL validation
displays an error message in the
Problems view. You must correct the
error by editing the .eglbld file and
selecting the supported value that you
want to use.

location=xxxx

xxxx has one of the following
values:

v CICS

v EZELOC

locationSpec = "xxxx"

The following EGL values correspond to
the VAGen values:

v CICS

v PROGRAMCONTROLLED

No special considerations.

package=packageName package = "packageName" No special considerations.

Dxfrlink
 Table 149. Linkage table options for :dxfrlink

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

:dxfrlink transferToProgram No special considerations.

fromappl=programName

programName is the name of the
program that is transferring with
a DXFR to another program.
Wildcards are not permitted.

fromPgm = "programName" No special considerations.

toappl=programName2

programName2 is the name of the
program to which the transfer is
occurring.

toPgm = "programName2" No special considerations.

378 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 149. Linkage table options for :dxfrlink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

linktype=xxxx

xxxx has one of the following
values:

v dynamic

v static

v noncsp

linkType = "xxxx"

The following EGL values correspond to
the VAGen values:

v DYNAMIC

v STATIC

v EXTERNALLYDEFINED

If you previously specified NONCSP
for a VAGen DXFR statement, you
can continue to use the isExternal =
"YES" property on the EGL transfer to
program statement. Alternatively, you
can obtain the same support by
specifying linkType =
"EXTERNALLYDEFINED" on the
transferToProgram element for the
program to which you are
transferring.

Not supported. alias = "applname" If your VAGen program had to be
renamed because the name was an
EGL reserved word, you can use the
alias property either in the program
definition or in the linkage options
part to provide the original VAGen
name for the program as the name of
the generated program. Either
technique can help you avoid having
to modify non-VAGen programs that
you transfer to from the VAGen
program.

resource associations part
 Table 150. Resource association

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

In VisualAge Generator, a
resource associations part
specifies how a file is to be
implemented for a specific target
environment. The file is the File
Name specified in a VAGen
record definition.

The resource associations part
can also specify how print output
is to be implemented for a
specific target environment.

When generating a program, the
fileName for each indexed, serial,
relative or print output is
matched to the resource
associations part. The first entry
that matches based on the
fileName and generation target
environment is the entry that is
used for that file.

The EGL resource associations part
specifies how a file is to be implemented
for a specific target environment. The file
is the fileName property that is specified
in an EGL record definition.

The resource associations part can also
specify how print output is to be
implemented for a specific target
environment.

When generating a program, the
fileName property for each indexed,
serial, relative or print output is matched
to the resource associations part. The
first entry that matches based on the
fileName and generation target
environment is the entry that is used for
that file.

No special considerations.

For VisualAge Generator, if you
generate C++, resource
association files are also used at
runtime.

For EGL, resource association
information is stored in EGL parts.

The migration tool includes support
for converting additional options that
were only valid in VAGen resource
association files.

Appendix B. Relationship of VisualAge Generator and EGL language elements 379

Table 150. Resource association (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

file = fileName
 | EZEPRINT

fileName="fileName" | "printer" No special considerations.

/system=targetSystem

targetSystem has one of the
following values:

v AIX *

v AIXCICS *

v HP-UX *

v IMSBMP

v IMSVS

v LINUX **

v MVSBATCH

v MVSCICS

v NTCICS *

v OS2 *

v OS2CICS

v OS400

v SCO *

v SOLACICS *

v SOLARIS *

v TSO

v VMCMS

v VMBATCH

v VSEBATCH

v VSECICS

v WINNT **

Note:

v * — Indicates environments
used for C++ generation.

v ** — Indicates environments
used for Java generation.

v /system is optional.

v VisualAge Generator supports
an * as a wildcard in the target
system. (For example, MVS* or
*CICS).

This is the EGL target environment.

The following EGL values correspond to
the VAGen values:

v aix

v not supported

v hpux

v imsbmp

v imsvs

v linux

v zosbatch

v zoscics

v not supported

v not supported

v not supported

v iseriesc

v not supported

v not supported

v solaris

v not supported

v not supported

v not supported

v vsebatch

v vsecics

v win

Note: Wildcards are not supported.

The migration tool processes the
/system option in the following way:

v For a target system that is listed as
not supported, the migration tool
includes the information for the
VAGen resource association entry
as a comment in the EGL resource
associations part. This helps
preserve as much of your
information as possible.

v If the /system option is omitted
from the VAGen resource
association entry, the migration tool
uses any as the EGL resource
association target environment.

v If the /system option uses a
wildcard, the migration tool
migrates the option exactly as it is,
including the wildcard (for
example, mvs* or *cics). The
migration tool also issues an error
message.

380 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 150. Resource association (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/filetype=fileType

fileType has one of the following
values:

v BTRIEVE

v GSAM

v IBMCOBOL

v MFCOBOL

v MMSGQ

v MQ

v OS2COBOL

v SEQ

v SEQRS

v SMSGQ

v SPOOL

v TEMPAUX

v TEMPMAIN

v TRANSIENT

v VSAM

v VSAMRS

The EGL file type.

The following EGL values correspond to
the VAGen values:

v not supported

v gsam

v ibmcobol

v not supported

v mmsgq

v mq

v not supported

v seq or seqws

v seqrs

v smsgq

v spool

v tempaux

v tempmain

v transient

v vsam

v vsamrs

The migration tool processes the
/filetype option in the following way:

v If the /filetype option is omitted
from the VAGen resource
association entry, the migration tool
uses default as the EGL file type.

v If the /system option specifies a
host target environment, the
migration tool converts the VAGen
SEQ file type to the EGL seq file
type.

v If the /system option is a
workstation environment, the
migration tool converts the VAGen
SEQ file type to the EGL seqws file
type.

v For unsupported file type values, if
the resource association is for a
/system that is supported, the
migration tool creates an EGL
resource association entry using the
VAGen file type and issues an error
message. EGL validation displays
an error message in the Problems
view. You must fix this error before
you can use the EGL resource
associations part.

/sysname=systemName systemName = "systemName" The migration tool converts any
symbolic parameters that are used
within the /sysname option to the
corresponding EGL replacement
symbolic parameter.

/replace
/noreplace

replace = "YES"
replace = "NO"

No special considerations.

/dup
/nodup

duplicates = "YES"
duplicates = "NO"

Note: This is for ISERIESC.

No special considerations.

/commit
/nocommit

These options are only used for
the OS/400 target environment.

commit = "YES"
commit = "NO"

Note: This is for ISERIESC.

No special considerations.

/blksize=xxxx,yyyy,zzzz

In VisualAge Generator, this
option is only used for VSE
target environments.

blockSize = "xxxx,yyyy,zzzz" No special considerations.

/sysnum=xxxx

In VisualAge Generator, this
option is only used for VSE
target environments.

systemNumber = "xxxx" No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL language elements 381

Table 150. Resource association (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/label
/nolabel

In VisualAge Generator, this
option is only used for VSE
target environments.

standardLabel = "YES"
standardLabel = "NO"

No special considerations.

/pcbno=n

This is only valid for IMSVS or
IMSBMP target environments or
for MVS Batch if the file type is
GSAM.

pcbName = "pcbn" The migration tool converts the PCB
number to a name by concatenating
the literal "pcb" and the number.

/noff

There is no /FF option in
VisualAge Generator. This option
is only supported in VAGen
resource association files.

FormFeedOnClose = "NO" | "YES" The migration tool converts /noff to
FormFeedOnClose = "NO".

/text

There is no /NOTEXT option in
VisualAge Generator. This option
is only supported in VAGen
resource association files.

text = "YES" | "NO" The migration tool converts /text to
text = "YES".

/contable=xxxx

xxxx has one of the following
values:

v a conversionTableName

v EZECONVT

This option is only supported in
VAGen resource association files.

conversionTable ="xxxx"

The following EGL values correspond to
the VAGen values:

v a conversionTableName

v PROGRAMCONTROLLED

The migration tool uses the
information in “Conversion table
names used in linkage table and
resource associations parts” on page
371 to convert the conversionTable
property for the EGL resource
association element.

/keys=xxxx

In VisualAge Generator, this
option is only used with
/filetype=BTRIEVE. This option
is only supported in VAGen
resource association files.

keys = "xxxx" Because BTRIEVE is used in
supported target environments, the
migration tool migrates the /keys
option to an EGL keys property.

/basename=xxxx

In VisualAge Generator, this
option is only used for the OS/2
target environment. This option
is only supported in VAGen
resource association files.

Not supported. The migration tool comments out any
entry for the OS/2 target
environment.

382 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Link edit part
 Table 151. Link edit part

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

In VisualAge Generator, the link
edit part is typically named
programName.suffix, where the
first part of the name is the same
as the VAGen program name and
the suffix is LKG. The VAGen
/linkedit generation option
specifies the value for the suffix.

By default, in EGL the link edit part
name must be the same name as the
program name. If this is the case you do
not need to specify the linkEdit build
descriptor option.

If you have multiple runtime
environments, you might need a
different link edit part for each
environment. In this case, all except one
of the link edit part names must differ
from the program name. To refer to the
different link edit part names, specify the
complete link edit part name in the
linkEdit build descriptor option.

If the suffix is .LKG, the migration
tool removes the suffix when creating
the new EGL link edit part. If the
suffix is anything other than .LKG,
the migration changes .suffix to _suffix
because periods (.) are not valid
characters in EGL part names.

A VAGen link edit part contains
the link edit statements needed
for link editing a program during
the preparation process in a host
environment.

In EGL, a link edit part contains the link
edit statements needed for link editing a
program during the build process in a
host environment.

The migration tool does the following
things:

v Converts any symbolic parameters
that are used within the link edit
part to the corresponding EGL
replacement symbolic parameter.

v Uses the same indentation as in the
VAGen part.

Bind control part
 Table 152. Bind control part

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

In VisualAge Generator, the bind
control part is typically named
programName.suffix, where the
first part of the name is the same
as the VAGen program name and
the suffix is BND. The VAGen
/bind generation option specifies
the value for the suffix.

By default, in EGL the bind control part
name must be the same name as the
program name. If this is the case you do
not need to specify the bind build
descriptor option.

If you have multiple runtime
environments, you might need a
different bind control part for each
environment. In this case, all except one
of the bind control part names must
differ from the program name. To refer
to the different bind control part names,
specify the complete bind control part
name in the bind build descriptor
option.

If the suffix is .BND, the migration
tool removes the suffix when creating
the new EGL bind control part. If the
suffix is anything other than .BND,
the migration changes .suffix to _suffix
because periods (.) are not valid
characters in EGL part names.

Appendix B. Relationship of VisualAge Generator and EGL language elements 383

Table 152. Bind control part (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

A VAGen bind control part
contains the DB2 bind commands
needed for binding the DB2
DataBase Resource Module
(DBRM) for a program during
the preparation process in an
MVS host environment.

In EGL, a bind control part contains the
bind commands needed for binding the
DBRM for a program during the build
process in a z/OS host environment.

The migration tool does the following
things:

v Adds additional commands at the
beginning of the bind control part.
These commands are needed by the
build server.

v Converts any symbolic parameters
that are used within the bind
control part to the corresponding
EGL replacement symbolic
parameter.

v Uses the same indentation as in the
VAGen part.

Symbolic parameters
The following tables show the relation between VAGen symbolic parameters and
EGL symbolic parameters.

 Table 153. Part-related symbolic parameters

Part-related symbolic parameters Corresponding EGL symbolic parameter

EZECOBOLTYPE Not supported

EZEDATA DATA or EZEDATA in the build plan

EZEDBCS Not supported

EZEDESTLIB EZEDESTLIBRARY

EZEDESTNAME Not supported

EZEDLI EZEDLI — DL/I only

EZEENTRY Not supported

EZEENV SYSTEM or EZEENV in the build plan

EZEGDATE EZEGDATE

EZEGENOUT Not supported

EZEGMBR EZEGMBR

EZEGTIME EZEGTIME

EZEJOB Not supported

EZEMBR In a JCL script, link edit, or bind part, EZEALIAS. Otherwise, EZEMBR

EZEMBRPATH Not supported

EZEMSG Not supported

EZENLS EZENLS

EZEPID EZEPID

EZEPREPDESTACCOUNT Not supported

EZEPREPDESTHOST Not supported

EZEPREPDESTDIR Not supported

EZEPREPDESTPASSWORD Not supported

EZEPREPDESTUID EZEDESTUSERID

384 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 153. Part-related symbolic parameters (continued)

Part-related symbolic parameters Corresponding EGL symbolic parameter

EZEPREPFTPCMDSBCS Not supported

EZEPREPFTPCMDBCS Not supported

EZEPREPSENDCMDDBCS Not supported

EZEPREPSESSION Not supported

EZEPREPSP Not supported

EZEPREPSQLDB Not supported

EZEPREPWORKDB Not supported

EZEPSB Not supported — DL/I and IMS only

EZEPTYPE Not supported

EZESQL EZESQL

EZETBLNAME Not supported

EZETPROC Not supported

EZETRAN EZETRAN

EZETRANSFERTYPE Not supported

EZETRO Not supported

EZETWASIZE Not supported

EZEUSERID Not supported

EZEVMLOADLIB Not applicable — VM only

EZEVSELIB EZEVSELIB — VSE only

EZEXAPP Not supported.

 Table 154. File-related symbolic parameters

File-related symbolic parameters Corresponding EGL symbolic parameter

EZEBLK EZEBLK

EZEDBD Not supported

EZEDD EZEDD

EZEDLBL EZEDLBL — VSE only

EZEDSN EZEDSN

EZELRECL EZELRECL

EZERECFM EZERECFM

 Table 155. User-defined symbolic parameters

User-defined symbolic parameters Corresponding EGL symbolic parameter

COB2LIB COBCICS

COBLIST Not supported

DBDLIB DBDLIB — DL/I only

DSNLOAD DSNLOAD

DSYS DSYS

ELA ELA

Appendix B. Relationship of VisualAge Generator and EGL language elements 385

Table 155. User-defined symbolic parameters (continued)

User-defined symbolic parameters Corresponding EGL symbolic parameter

EZALTXTR Special migration to normal build descriptor option; see Generation
Options section, transferErrorTransaction = "xxx"

EZONEAS2 Special migration to normal build descriptor option; see Generation
Options section, oneFormItemCopybook = "YES"

EZUAUTH EZUAUTH

EZUINST EZUINST

PSBLIB PSBLIB — DL/I only

PROCLIB PROCLIB — VSE only

PWRCLASS PWRCLASS — VSE only

RESLIB RESLIB — DL/I and IMS only

SQLDBNAM SQLDBNAM — VSE only

SQLPKGNM SQLPKGNM — VSE only

SQLPROPT SQLPROPT — VSE only

SQLSTMDE SQLSTMDE — VSE only

SQLSTOPT SQLSTOPT — VSE only

SQLUSRPW SQLUSRPW — VSE only

VMFMODE Not applicable — VM only

VMDISKADDR Not applicable — VM only

VUSERLIB VUSERLIB — VSE only

Other generation information
This section is organized in the following tables:
v MVS preparation templates and procedures, Table 156 on page 387
v MVS runtime templates, Table 157 on page 388
v MVS file and database allocation templates, Table 158 on page 389
v MVS file and database allocation placeholder templates, Table 159 on page 389
v OS/400 runtime templates, Table 160 on page 390

Note: For VSE information, refer to the Rational Business Developer V7.5 Generation
for z/VSE feature Reference Manual (SC19-2539-00)

Preparation templates and procedures
Table 156 on page 387 shows the VAGen preparation templates and procedures
used for preparing the outputs of COBOL generation for the MVS runtime
environments. The table only includes the MVS runtime environments that have a
corresponding EGL z/OS runtime environment. The template name is shown first,
followed by the procedure name. For most of the procedure names, the first three
characters are ELA and the remaining characters indicate the steps included in the
procedure in the following way: P (DB2 precompile), T (CICS translate), C (COBOL
compile), L (link edit), and B (DB2 bind).

Note:

386 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v For the MVS runtime environments, VisualAge Generator also uses bind
control templates. See “Establishing a bind control part to use as a
template” on page 212 for details of how to convert the bind control
templates.

v The Generation for VSE feature continues to use preparation templates
and procedures similar to VisualAge Generator. However, the template
and procedure names have changed. For details, refer to the Rational
Business Developer V7.5 Generation for z/VSE feature Reference Manual
(SC19-2539-00).

v OS/400 is not included in the following table because the EGL build
script FDAPREP replaces all of the VAGen OS/400 preparation templates.
Comments in the FDAPREP build script indicate which VAGen
preparation template formed the basis for that section of the build script.

 Table 156. MVS preparation templates and procedures

Environment
Part type and
database

VisualAge Generator
template and procedure EGL build script

MVS CICS Program - without
DB2

EFK2MPCB ELATCL FDATCL

Program - with DB2 EFK2MPCA ELAPTCLB FDAPTCL followed by
FDABIND

Map Group - print
services

EFK2MMCA ELACL FDACL

Map Group - format
module

EFK2MMTF ELAL FDALINK

MVS Batch Program - without
DB2

EFK2MPBA ELACL FDABCL

Program - with both
DL/I and DB2

EFK2MPBB ELAPCLB FDAPCL followed by
FDABIND

Program - with DB2
only

EFK2MPBC ELAPCLB FDAPCL followed by
FDABIND

Map Group - print
services

EFK2MMCA ELACL FDACL

IMS/VS Program - with
DL/I only

EFK2MPIC ELACL FDABCL

Program - with
DL/I and a DB2
work database

EFK2MPID ELACLB FDABCL followed by
FDABIND

Program - with both
DL/I and DB2

EFK2MPIE ELAPCLB FDAPCL followed by
FDABIND

Map Group - print
services for MFS

EFK2MMCB ELACL FDACL

Map Group - MFS,
with /mfstest
generation option

EFK2MMST MFSTEST FDAMFS

Map Group - MFS,
with /nomfstest
generation option

EFK2MMSU MFSUTL FDAMFS

Appendix B. Relationship of VisualAge Generator and EGL language elements 387

Table 156. MVS preparation templates and procedures (continued)

Environment
Part type and
database

VisualAge Generator
template and procedure EGL build script

Map Group - format
module

EFK2MMTF ELAL FDALINK

IMS BMP Program - with
DL/I only

EFK2MPIA ELACL FDABCL

Program - with both
DL/I and DB2

EFK2MPIB ELAPCLB FDAPCL followed by
FDABIND

Map Group - print
services for SEQ
and GSAM

EFK2MMCA ELACL FDACL

Map Group - print
services for MFS

EFK2MMCB ELACL FDACL

Map Group - MFS,
with /mfstest
generation option

EFK2MMST MFSTEST FDAMFS

Map Group - MFS,
with /nomfstest
generation option

EFK2MMSU MFSUTL FDAMFS

All MVS
environments

Relink program EFK2MPRE ELARLINK FDALINK

Table EFK2MMCA ELACL FDACL

Runtime templates
Table 157 shows the VAGen runtime templates that are used to generate the basic
runtime JCL for the MVS Batch and IMS BMP environments. Table 158 shows the
file and database allocation templates that are used to create DD statements within
the generated runtime JCL. Table 159 shows the file and database allocation
placeholder templates that are used to indicate that additional DD statements
might be required for another program that is called or transferred to with an
XFER or DXFR statement or for a program that uses EZEDEST or EZEDESTP.
Table 160 shows the VAGen runtime templates that are used to generate the control
language (CL) for the OS/400 environment. All 4 tables include the corresponding
VAGen and EGL information.

Note: VSE Batch is not included in the tables because the Generation for VSE
feature uses similar templates to VisualAge Generator. However, the
template names have changed. For details, refer to the Rational Business
Developer V7.5 Generation for z/VSE feature Reference Manual (SC19-2539-00).

 Table 157. MVS runtime templates

Environment
Program type and
database

VisualAge Generator
runtime JCL
template

EGL runtime JCL
template

MVS Batch Called program EFK2MEBA fda2meba.tpl

Main program - No
databases

EFK2MEBE fda2mebe.tpl

388 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 157. MVS runtime templates (continued)

Environment
Program type and
database

VisualAge Generator
runtime JCL
template

EGL runtime JCL
template

Main program - DL/I
only

EFK2MEBC fda2mebc.tpl

Main program - DB2
only

EFK2MEBD fda2mebd.tpl

Main program - DL/I
and DB2

EKF2MEBB fda2mebb.tpl

IMS BMP Called program EFK2MEBA fda2meba.tpl

Main program - DL/I
only

EFK2MEIB fda2meib.tpl

Main program - DL/I
and DB2

EFK2MEIA fda2meia.tpl

 Table 158. MVS file and database allocation templates

Environment File or database type

VisualAge Generator
runtime JCL
template

EGL runtime JCL
template

MVS Batch and IMS
BMP

DL/I database in
MVS Batch

EFK2MDLI fda2mdli.tpl

VSAM or VSAMRS
input for serial,
indexed, or relative
files

EFK2MVSI fda2mvsi.tpl

VSAM or VSAMRS
output for serial,
indexed, or relative
files

EFK2MVSO fda2mvso.tpl

SEQ or SEQRS input
for serial files

EFK2MSDI fda2msdi.tpl

SEQ or SEQRS
output for serial files

EFK2MSDO fda2msdo.tpl

GSAM input for
serial files

EFK2MGSI fda2mgsi.tpl

GSAM output for
serial files

EFK2MGSO fda2mgso.tpl

GSAM file in an IMS
BMP

EFK2MIMS fda2mims.tpl

 Table 159. MVS file and database allocation placeholder templates

Environment

File and database
allocation
placeholder type

VisualAge Generator
runtime JCL
template

EGL runtime JCL
template

MVS Batch and IMS
BMP

XFER or DXFR to
EZEAPP

EFK2MEZA fda2meza.tpl

Appendix B. Relationship of VisualAge Generator and EGL language elements 389

Table 159. MVS file and database allocation placeholder templates (continued)

Environment

File and database
allocation
placeholder type

VisualAge Generator
runtime JCL
template

EGL runtime JCL
template

CALL, XFER or
DXFR to a specific
application or RT
generation option
transfers to a specific
application

EFK2MCAL fda2mcal.tpl

Application uses
EZEDEST or
EZEDESTP

EFK2MEZD fda2mezd.tpl

 Table 160. OS/400 runtime templates

Environment Purpose of template
VisualAge Generator
runtime template

EGL runtime JCL
template

OS/400 Provides the CL to
add libraries to the
client/server job and
to start commitment
control if this is the
first server program
called by a client

EFK24EBC fda24ebc.tpl

Provides epilogue to
the runtime CL to
handle errors that
occur

EFK24EEC fda24eec.tpl

Other runtime information
This section is organized in the following tables:
v Runtime environment variables, Table 161 on page 390
v vgj.properties, Table 162 on page 392

Runtime environment variables
The VAGen runtime environment variables are used for generated COBOL for
CICS OS/2 and for generated C++ for the workstation environments. Most VAGen
runtime environment variables do not have a corresponding EGL runtime property.
Even when there is a correspondence, the values for the EGL runtime properties
have different values or slightly different meanings. In addition, there are
numerous new EGL runtime properties. Therefore, use the material in this section
as an aid in creating your EGL runtime properties, but be sure to carefully review
all the EGL runtime properties in the online help to determine if there are
additional properties you need to set.

 Table 161. Runtime environment variables

VAGen runtime environment variables EGL runtime properties

BTRINTF Not used -- CICS OS/2 only

CICSCOBCOPY Not used -- CICS OS/2 only

CICSRGRP Not used -- CICS OS/2 only

390 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 161. Runtime environment variables (continued)

VAGen runtime environment variables EGL runtime properties

CICSCOBOL Not used -- CICS OS/2 only

CICSRD Not used -- CICS OS/2 only

CICSWRK Not used -- CICS OS/2 only

COBPATH Not used -- CICS OS/2 only

CSODIR Not used

CSO_DUMP_CONV Not used

CSO_DUMP_DATA Not used

CSOTIMEOUT (time in seconds) cso.cicsj2c.timeout (time in milliseconds)

CSOTROPT tcpiplistener.trace.flag or vgj.trace.type,
depending on what you need to trace

CSOTROUT tcpiplistener.trace.file or
vgj.trace.device.spec, depending on what
you need to trace

DB2INSTANCE Not used

DLITROPT Not supported -- remote DL/I only

DLITROUT Not supported -- remote DL/I only

DPATH Not used

ELAPATH Not used

ELARTRDB_tttt where tttt is the CICS
transaction code

Not used -- CICS OS/2 only

EZERGRGL_xxx where xxx is the NLS
language code

vgj.datemask.gregorian.long.locale

EZERGRGS_xxx where xxx is the NLS
language code

vgj.datemask.gregorian.short.locale

EZERJULL_xxx where xxx is the NLS
language code

vgj.datemask.julian.long.locale

EZERJULS_xxx where xxx is the NLS
language code

vgj.datemask.julian.short.locale

EZERNLS vgj.nls.code

EZERSQLDATE Not supported -- EGL uses JDBC

EZERSQLDB vgj.jdbc.database.SN, where SN is the server
name; format of the value differs from
EZERSQLDB

EZERSQLM1 Not supported -- EGL uses JDBC

EZERSQLM2 Not used -- EGL uses JDBC

EZERSQLMF Not used -- EGL uses JDBC

EZERSQLUS Not supported -- EGL uses JDBC

FCEOPT Not used -- C++ generation only

FCETROPT Not used -- C++ generation only

FCWCOMP Not used -- C++ generation only

FCWDB2DIR Not used -- EGL uses JDBC

Appendix B. Relationship of VisualAge Generator and EGL language elements 391

Table 161. Runtime environment variables (continued)

VAGen runtime environment variables EGL runtime properties

FCWDBNAME_programName vgj.jdbc.default.database.programName;
format of the value differs from
FCWDBNAME

FCWDBNOOP Not used -- distributed CICS only

FCWDBPASSWORD vgj.jdbc.default.password

FCWDBUSER vgj.jdbc.default.userid

FCWDBVERSION (Oracle version) Not used -- EGL uses JDBC

FCWDPATH (directory for tables and
resource association)

Not used. Tables must be in the classpath.
Resource association becomes vgj.ra.*
properties

FCWFIODB Not used -- distributed CICS only

FCWLIBPATH Not used -- C++ generation only

FCWMAKE Not used -- C++ generation only

FCWRSC (raf file name) Not used. Resource association becomes
vgj.ra.* properties

FCWOPT (map field with date mask) Not supported

FCWTRDB_tttt where tttt is the CICS
transaction code

Not used -- distributed CICS only

FCWTROPT vgj.trace.type; values and meanings differ
from FCWTROPT

FCWTROUT vgj.trace.device.spec; must also specify
vg.trace.device.option=2

INFORMIXDIR Not supported -- ODBC only

MDLROOT Not supported -- VAGen Templates only

ORACLE_HOME Not used -- EGL uses JDBC

RMTDLI_PARTNER_LU Not supported -- remote DL/I on MVS only

RMTDLI_PARTNER_TP Not supported -- remote DL/I on MVS only

RMTDLI_SERVER_ENV Not supported -- remote DL/I on MVS only

VSEDLI_CFG Not supported -- remote DL/I on VSE only

VSEDLI_TRACE Not supported -- remote DL/I on VSE only

vgj.properties
The VAGen vgj.properties file is used for Java generation for the workstation
environments. Most VAGen vgj.properties variables have a corresponding EGL
runtime property. However, in some cases, the values for the EGL runtime
properties (also called settings) have different values or slightly different meanings.
In addition, there are numerous new EGL runtime properties. Therefore, use the
material in this section as an aid in creating your EGL runtime properties, but be
sure to carefully review all the EGL runtime properties in the online help to
determine if there are additional properties you need to set.

 Table 162. vgj.properties

VAGen vgj.properties EGL runtime properties

cso.application.xxx where xxx is the server
group

Not used -- EGL uses a linkage properties
file

392 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 162. vgj.properties (continued)

VAGen vgj.properties EGL runtime properties

cso.linkagetable.xxx where xxx is the linkage
table name

cso.linkageOptions.LO, where LO is the
linkage options part name and the
corresponding linkage properties file is
named LO.properties

cso.serverLinkage.xxx.yyy where xxx is the
server group and yyy is the attribute name.

Not used -- EGL uses a linkage properties
file

vgj.datemask.gregorian.long.xxx where xxx is
the NLS language code

vgj.datemask.gregorian.long.locale

vgj.datemask.julian.long.xxx where xxx is the
NLS language code

vgj.datemask.julian.long.locale

vgj.java.command vgj.java.command

vgj.jdbc.database.SN where SN is the server
name

vgj.jdbc.database.SN where SN is the server
name; format of the value differs from
EZERSQLDB

vgj.jdbc.default.database vgj.jdbc.default.database or
vgj.jdbc.default.database.programName

vgj.jdbc.default.database.user.id vgj.jdbc.default.userid

vgj.jdbc.default.database.user.password vgj.jdbc.default.password

vgj.jdbc.drivers vgj.jdbc.drivers

vgj.nls.code vgj.nls.code

vgj.nls.number.decimal vgj.nls.number.decimal

vgj.powerserver.location Not used

vgj.ra.FN.contable where FN is the logical
file name

vgj.ra.QN.conversionTable, where QN is the
MQ Series message queue name; not all of
the VAGen values are valid

vgj.ra.FN.filetype vgj.ra.FN.fileType

vgj.ra.FN.replace vgj.ra.FN.replace

vgj.ra.FN.sysname vgj.ra.FN.sysname

vgj.ra.FN.text vgj.ra.FN.text

vgj.trace.device.option vgj.trace.device.option

vgj.trace.device.spec vgj.trace.device.spec

vgj.trace.type vgj.trace.type; values and meanings differ
from FCWTROPT

Appendix B. Relationship of VisualAge Generator and EGL language elements 393

394 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix C. Messages from the migration tools

This section contains the messages that are issued by the migration tools. You can
find the messages based on their prefix in the following sections:
v HPT.EGL.00xxx - Stage 1 Common Messages
v HPT.EGL.01xxx - Stage 1 on VisualAge for Java
v HPT.EGL.02xxx - Stage 1 on VisualAge Smalltalk
v IWN.MIG - Stages 2 and 3 in EGL

The character in the last position of each message number is a suffix that indicates
the severity of the message:
v i — Informational message to indicate status or that the migration tool

eliminated information during migration due to the differences between the
VisualAge Generator and EGL languages. No user action is required.

v w — Warning message to indicate a possible problem. For example, the
migration tool made a best guess for the EGL syntax. User action is only
required if validation or generation detects an error.

v e — Error message. The migration tool was unable to make a reasonable guess
for the EGL syntax. User action is required to provide missing or incomplete
information.

v t - Trace message to indicate more detailed status than is provided by the
informational messages. The trace message include details about when commit
points are taken. The trace messages are self-explanatory and are not included in
this migration guide.

Messages from the VisualAge Generator to EGL migration tool—Stage
1

The Stage 1 migration tools are shipped as samples. The messages are not
translated within the sample tool itself. However, the messages as shipped with the
samples are translated here in the Migration Guide.

Stage 1 common messages
The following messages are common to the VAGen migration tool on both
VisualAge for Java and VisualAge Smalltalk

HPT.CM.215.e File filename cannot be opened. The
return code is returnCode (returnCodeText).

Explanation: The specified file cannot be opened. The
returnCode and returnCodeText indicate the reason why.
returnCode 2 indicates the file cannot be found.

User response: Provide a valid file for the migration
tool.

HPT.EGL.0001.w Table name tableName is a reserved
word. It must be renamed.

Explanation: The migration tool does not rename
tables for you.

User response: You must change the name of the table
and all references to it, including references in the Table
and Additional Records lists for any programs, logic
statements, data item edit routines, map edit routines,
and UI edit tables. Be sure to change any non-VAGen
references to the table name, including CICS program
definitions. Alternatively, you can wait until you have
migrated, rename the DataTable in EGL, and use the
EGL alias property to specify the original table name.

HPT.EGL.0002.w Map group name mapGroupName is
a reserved word. It must be renamed.

Explanation: The migration tool does not rename map
groups for you.

© Copyright IBM Corp. 2004, 2011 395

User response: You must change the name of the map
group, the names of all maps in the map group, and all
references to the map group, including references as the
main map group or help map group in any program.
Be sure to change any non-VAGen references to the
map group name, including CICS program definitions.
Alternatively, you can wait until you have migrated,
rename the FormGroup in EGL, and use the EGL alias
property to specify the original map group name.

HPT.EGL.0003.w Program name programName is a
reserved word. It must be renamed.

Explanation: The migration tool does not rename
programs for you.

User response: You must change the name of the
program and all references to it, including references on
CALL, DXFR, and XFER statements and references in
linkage table parts. Also change the names of any bind
control or link edit parts that correspond to this
program. Be sure to change any non-VAGen references
to the program name, including CICS program and
transaction definitions. Alternatively, you can wait until
you have migrated, rename the program in EGL, and
use the EGL alias property to specify the original
program name.

HPT.EGL.0004.w Control part name partName is a
reserved word. It must be renamed.

Explanation: The specified control part name uses dot
notation, where the name before the dot is a reserved
word. The migration tool assumes that the name before
the dot is a program name and that this control part is
closely tied to a program. Because the migration tool
does not rename programs, it also does not rename
control parts that are in dot notation.

User response: You must change the name of the
program and all references to it, including references on
CALL, DXFR, and XFER statements and references in
linkage table parts. Also change the names of any bind
control or link edit parts that correspond to this
program. Be sure to change any non-VAGen references
to the program name, including CICS program and
transaction definitions. Alternatively, you can wait until
you have migrated, rename the program in EGL, and
use the EGL alias property to specify the original
program name. Refer to Appendix Appendix A,
“Reserved words,” on page 249 that lists the EGL
reserved words.

HPT.EGL.0005.w UI Record recordName is a reserved
word or starts with the # or @ symbol. It
must be renamed.

Explanation: The Stage 1 migration tool does not
rename UI records for you. However, the Stage 2 tool
renames the record using your Stage 2 Renaming
prefix. The Stage 2 tool also includes the alias property
for the VGUI record so that the names in the EGL

generated outputs are identical to those in VisualAge
Generator. The Stage 3 tool also renames the file that
contains the VGUI record. If you migrate in single file
mode, the migration tool makes the same changes.

User response: None. Allow the Stage 2 migration tool
to rename the record for you. This also changes all
references to the record and the file name.

HPT.EGL.0006.i Migration of preferenceFile will
produce outputList.

Explanation: Migration of preferenceFile produces
outputList. Possible outputs are migration plans, report,
and database updates.

User response: None.

HPT.EGL.0007.w No migration files were created
based on the current filters.

Explanation: No migration files were created based on
the current filters.

User response: Change the filter preferences. Also
check for other error messages that might provide more
details about the error.

HPT.EGL.0008.e PreferenceValue is an invalid value for
preference option preferenceOption.

Explanation: The value is invalid for the preference
option.

User response: Changes the preference option value in
the preferences file.

HPT.EGL.0009.e Migration set migrationSetName
requires the preferences for the
spanning maps suffixes be specified.

Explanation: The specified migration set contains one
or more map groups that span multiple projects or
multiple packages. The migration tool requires you to
specify the spanning maps suffix preferences so that it
can create the EGL project or package necessary for the
map group.

User response: Edit the Stage 1 migration preferences
file. On the Mapping page, in the Spanning Maps
section, specify values for the Project suffix and
Package suffix fields. See “Mapping page” on page 128
for Java or “Mapping page” on page 151 for Smalltalk
for more details.

HPT.EGL.0010.w No migration action was requested.

Explanation: You have not selected any output
options for the Stage 1 migration tool.

User response: Select one or more options. The
options enable you to create a migration plan file,
create a report, or update the database.

396 Rational Business Developer: VisualAge Generator to EGL Migration Guide

HPT.EGL.0011.i Starting the database clean up of
migration set migrationSetName.

Explanation: The migration database already
contained information for the specified migration set.
The migration tool deleted the migration set
information in preparation for running Stage 1 with a
new set of preferences.

User response: None.

HPT.EGL.0012.i Completed the database clean up of
migration set migrationSetName.

Explanation: The migration database already
contained information for the specified migration set.
The migration tool deleted the migration set
information in preparation for running Stage 1 with a
new set of preferences.

User response: None.

HPT.EGL.0013.e Each renaming rule must have a
unique order value.

Explanation: Two or more renaming rules have the
same order number.

User response: Edit the Stage 1 migration preferences
file and change the renaming rules so that each rule
has a unique order number.

HPT.EGL.0014.i Migration set migrationSetName-
migrationSetVersion produced n error
messages, n warning messages, and n
informational messages.

Explanation: n is the number of messages issued by
the Stage 1 migration tool for the specified migration
set. The count for the informational messages includes
message HPT.EGL.0014.i.

User response: None.

HPT.EGL.0015.e Derived EGL project name
eglProjectName contains invalid
character(s): characterList. Modify the
renaming rules.

Explanation: Using the renaming rules that you
specified, the Stage 1 migration tool has created a
proposed EGL project name that does not meet the
EGL project naming conventions. The characters that
are invalid shown in the characterList.

User response: Edit the Stage 1 migration preferences
file and modify the project renaming rules so that they
result in valid EGL project names. When you modify
the renaming rules, be sure to consider the effect of any
renaming rules that specify a Mapping Context of both.

HPT.EGL.0016.e Derived EGL package name
eglPackageName contains invalid
character(s): characterList. Modify the
renaming rules.

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed
EGL package name that does not meet the EGL
package naming conventions. The characters that are
invalid shown in the characterList.

User response: Edit the Stage 1 migration preferences
file and modify your package renaming rules so that
they result in valid EGL package names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both.

HPT.EGL.0017.e Derived EGL project name
eglProjectName cannot end with a period
(.). Modify the renaming rules.

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed
EGL project name that ends in a period. This name
does not meet the EGL project naming conventions.

User response: Edit the Stage 1 migration preferences
file and modify your project renaming rules so that
they result in valid EGL project names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both. Also consider the effect of any
renaming rules that specify a String Context of any,
back, or token.

HPT.EGL.0018.e Derived EGL package name
eglPackageName cannot begin with a digit
or end with a period (.). Modify the
renaming rules.

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed
EGL package name that ends in a period or begins with
a digit. This name does not meet the EGL package
naming conventions.

User response: Edit the Stage 1 migration preferences
file and modify your package renaming rules so that
they result in valid EGL package names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both .

HPT.EGL.0019.i The Migration Feature featureName
versionName is loaded.

Explanation: This informational message provides the
migration feature name and version that is currently
loaded into your Java workspace or Smalltalk image.
For VAGen on Java, the message is repeated to provide
information about the VAGen Utilities feature. For both

Appendix C. Messages from the migration tools 397

VAGen on Java and VAGen on Smalltalk, the message
is repeated to provide the version of the reserved word
list that is loaded

User response: None.

HPT.EGL.0020.i The Migration Feature featureName
versionName is not loaded. listOfNames
are not loaded.

Explanation: This informational message provides the
migration feature name and version that should be
added to your Java workspace or loaded into your
Smalltalk image. However, one or more Java packages
or Smalltalk applications are not at the version
expected for the migration feature. The listOfNames
provides the list of Java packages or Smalltalk
applications that are currently loaded but which are not
at the expected version.

User response: If you have not modified the Stage 1
migration tool, try adding the migration feature again
for Java or loading the migration feature again for
Smalltalk. If you have modified the Stage 1 migration
tool, then this message serves as a reminder of the Java
packages or Smalltalk applications that you have
modified.

HPT.EGL.0021.e The Externalized EGL Reserved
Word List cannot be loaded. Verify
fileName.

Explanation: The specified fileName cannot be found.
The fileName is the full path name of the file. The file
should have the correct name and location if you
installed the Stage 1 migration tool as described in
Chapter 4, “Stage 1 — Extracting from Java,” on page
123 or Chapter 5, “Stage 1 — Extracting from
Smalltalk,” on page 147.

User response: Verify that the EGL Reserved Word file
is located in the correct path and has the correct file
name. If not, check your installation steps for the Stage
1 migration tool.

HPT.EGL.0022.e Part partName has invalid External
Source Format.

Explanation: The Stage 1 migration tool has made 3
attempts to extract the External Source Format from the
repository. However, the opening tag and ending tag
for the part are not a valid pair (for example, :record
and :erecord). The Stage 1 migration tool continues
processing. However, the migration database does not
contain correct External Source Format for the specified
partName.

User response: Try looking at the External Source
Format in the repository to see if there are any obvious

errors in the part. If you are using a remote repository,
try copying it to a local drive and running the Stage 1
migration tool again. If you are unable to resolve the
problem, contact IBM support.

HPT.EGL.0023.e Part partName has invalid External
Source Format due to duplicate parts.

Explanation: One or more parts of the same part type
have the same part name. The migration tool cannot
determine which External Source Format to store in the
migration database.

User response: Modify your migration set so that
there are no duplicate part names in the migration set.

HPT.EGL.0024.e Derived map group name
mapGroupName is the same as the name
of another part.

Explanation: VisualAge Generator only requires a
map group part if there is a floating area specification.
EGL always requires a form group part. The Stage 1
migration tool attempted to create a map group part
using the map group portion of the map names.
However, the map group name is the same as one of
the other parts in the migration set. The Stage 1
migration tool ends the processing without modifying
the migration database.

User response: Change the names of the maps so that
the map group portion of the name does not conflict
with any of the other parts in the migration set. Also
change any programs that use the map group to
specify the new map group name. Run Stage 1 again.

HPT.EGL.0025.e Migration database does not have
all the required tables. Rerun
setupdatabase.bat and setuptables.bat.

Explanation: The migration database changed for EGL
Version 7.1 and now requires some additional tables. In
addition, the DB2 prerequisites have changed.

User response: Ensure that DB2 is installed at the
proper level. Then run the setupdatabase.bat and
setuptables.bat files to define the migration database
and its tables. For details, see “Creating the migration
database” on page 459.

HPT.EGL.0026.i Migration database server version is
versionNumber.

Explanation: This informational message provides the
version information for DB2.

User response: None.

398 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Stage 1 on VisualAge for Java
The following messages occur only in the VisualAge for Java version of the
VisualAge Generator to EGL migration tool.

HPT.EGL.0101.e Current package name
vagenPackageName - results in EGL
package name eglPackageName, which
starts with symbol # or @ or uses
reserved word(s) reservedWordList. It
must be renamed.

Explanation: EGL reserved words cannot be used as
any word in the dot notation for EGL package names.

User response: Use the Stage 1 renaming rules to
create an EGL package name that does not violate the
EGL naming restrictions. Refer to Appendix
Appendix A, “Reserved words,” on page 249 that lists
the EGL reserved words. Be sure that the resulting EGL
package name does not start with the # or @ symbol.

HPT.EGL.0102.e Migration Set migrationSetName -
migrationSetVersion references version
projectVersion1 and projectVersion2 of
project projectName. The migration set
was not created.

Explanation: The migration tool expanded the
high-level PLP project for the specified migration set
version. The expanded high-level PLP project contains
multiple versions of the same project name. Migration
cannot continue.

User response: If you are using PLP projects, modify
the high-level PLP project and any lower-level PLP
projects that it references so that only one version of
each project is included in the PLP chain. If you created
the migration plan file by hand, modify the migration
plan file so that only one version of each project is
specified for the migration set.

HPT.EGL.0103.e An error occurred while loading the
database driver. driver: driverName.

Explanation: The database driver that is specified in
the Stage 1 preferences file could not be found.

User response: One of the following situations might
have occurred:

v The database information (database driver, database
name, schema, userid, or password) that is specified
in the Stage 1 preferences file might be incorrect. For
more information on how to set these values, see
“Execution page” on page 130.

v The classpath that is specified in the Properties for
the VAGenToEGLMigration class does not include
the db2java.zip file. For more information on how to
set the Properties, see “Running the Stage 1 tool” on
page 138.

v The PATH or CLASSPATH environment variable is
too long. Try moving the directories related to SQL

to the beginning of the PATH or CLASSPATH
environment variable. Alternatively, try copying the
db2jdbc.dll from your db2InstallationDirectory\
SQLLIB\BIN to your vajavaInstallationDirctory\ide\
program directory. The default db2InstallationDirectory
is c:\Program Files\IBM\SQLLIB. The default
vajavaInstallationDirectory is c:\Program
Files\IBM\VisualAge for Java4.0.

v The version of DB2 is not supported for Stage 1 on
Java. For example, you might be trying to use DB2
Version 9.x. See Appendix G, “Migration database,”
on page 459 for the versions of DB2 that are
supported for Stage 1 on Java.

HPT.EGL.0104.e An error occurred while connecting
to the database. database: databaseName.

Explanation: The Stage 1 migration tool was not able
to connect to the migration database.

User response: Check the following things:

v Make sure that the specified database has been
created.

v Review your user ID and password settings in the
Stage 1 preferences file to ensure that they are
correct.

v Ensure that you updated the Properties for the
VAGenToEGLMigration class to include the location
of db2java.zip on the Class Path page and that you
clicked Compute Now on the Class Path page to
complete the update.

v Check your system environment variables:

– The classpath environment variable must include:

sqlInstallationDirectory\SQLLIB\java\db2java.zip

– The path environment variable must include:

sqlInstallationDirectory\SQLLIB\BIN
sqlInstallationDirectory\SQLLIB\FUNCTION

This problem can occur when the classpath or path
statement is too long, resulting in some of the
subdirectories being omitted. If you used the default
installation directory "Program Files", try to shorten
the path environment variable by using one of the
following techniques:

– Change "Program Files" (without the quotes) to
"Progra~1" (without the quotes).

– Reinstall DB2 using shorter product directory
names without blanks (for example, SQLLIB
instead of the default "Program Files\SQLLIB").

Alternatively, try one of the following techniques:

– Try moving the SQL-related information to the
beginning of the classpath and path environment
variables.

Appendix C. Messages from the migration tools 399

– Try copying the db2jdbc.dll file from the \SQLLIB
directory to a directory that is in your path
environment variable (for example, to
vajavaInstallDirectory\ide\program).

HPT.EGL.0105.e Error occurred when closing the
database connection.

Explanation: The Stage 1 migration tool was not able
to close the connection to the migration database.

User response: The Stage 1 migration tool does any
commits before it tries to close the database connection.
You should be able to shut down VisualAge Generator
to force the connection to close.

HPT.EGL.0106.e Error accessing repository in method
methodName(optionalErrorCode).

Explanation: The specified method for the Stage 1
migration tool was not able to access the repository.

User response: Verify that your repository is accessible
and that there are no network problems if you are
using a remote repository. Also try the following
techniques based on the optionalErrorCode:

v optionalErrorCode is ToolEnv. Expand the IBM
VisualAge Generator EGL Migration project and
then expand the com.ibm.vgj.mig package.
Right-click the VAGenToEGLMigration class and
click Properties. Click the Class Path tab. Next to the
Extra directories path, click Edit. Select the relative
path entry for:

 ..\IBM IDE Utility local implementation\

Then click Add Directory and change the entry to
use an explicit path by using the following format:

drive:\VAJavaInstallDirectory\ide\
 project_resources\
 IBM IDE Utility local implementation

where drive is the drive and VAJavaInstallDirectory is
the directory where VisualAge for Java is installed.
Click OK twice to return to the Class Path page.
Click Compute Now to update the Complete class
path information. Then click OK.

v No optionalErrorCode. There should be additional
messages in the log files or Console window. Use
these messages to resolve the problem.

After resolving the problem, try migrating again.

HPT.EGL.0107.e Error occurred while writing out
XML file fileName.

Explanation: The Stage1 migration tool was not able
to write the specified file name.

User response: Verify that there is sufficient space
available for the file. Then try migrating again.

HPT.EGL.0108.w partType part was excluded from
migration due to invalid whitespace in
the name partName. The part is in
package packageName, versionName.

Explanation: In VisualAge Generator, it is possible to
create a part that contains blanks at the end of the part
name. Frequently when this occurs, there are two parts
with the same name, except that one part has blanks at
the end of its name. These are not duplicate parts
because the names differ slightly. However, the part
name in the External Source Format file is identical,
even though the rest of the source code for the parts
might differ. The Stage 1 migration tool omits any part
name that contains blanks from the migration set. This
is because the part name that ends with blanks cannot
be referenced by any other VAGen part. In the case
where there is no similarly named part, this technique
ensures that a part that cannot be referenced by other
parts is not migrated. In the case where there is a
similarly named part, this technique ensures that the
Stage 2 migration tool converts the correct part
definition to EGL.

User response: None. However, you might want to
review the part in VisualAge Generator to determine if
there were similarly named parts. Use the VAGen Parts
Browser, and search all parts in the migration set for
partName*.

HPT.EGL.0109.e An unexpected exception occurred:
javaExceptionStackTrace

Explanation: An unexpected error occurred during the
Stage 1 migration tool.

User response: Review the javaExceptionStackTrace.
Depending on the error it might be something you can
ignore or correct. For example:

v You can ignore a message that indicates a character
that could not be converted was replaced by a
substitute character. This message occurs if an
invalid character occurs in the External Source
Format. The character is replaced by a blank in the
migration database. The Stage 1 migration tool
continues processing. You can use your migration
database for Stage 2 and 3.

v You can correct the problem if the message indicates
that an SQL column is too short to contain the EGL
file name. In this case, the Stage 1 migration tool
stops processing because the information in the
migration database is invalid. You can correct the
problem by modifying the SQL table definition to
increase the length of the column and then running
Stage 1 again. However, before you increase the
length of the SQL column, consider whether you
want to scroll these long names after migration and
whether a longer name might exceed the EGL limits.
After you have modified your renaming rules or the
SQL column, run Stage 1 migration again.

400 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v If javaExceptionStackTrace contains either of the
following SQL messages, check that the DB2 user ID
that is being used to run migration has sufficient
authority for the migration database:

– SQL2311N The user does not have the authority to
run the Run Statistics utility on table
"migrationTable"

– SQL0551N "userid" does not have the privilege to
perform operation "sqlOperation" on object
"migrationTable"

This problem can occur if the user ID that created
the migration database is different from the user ID
that is running the Stage 1 migration tool. See “DB2
authority requirements” on page 459 for details
about the authority and privileges that are required.

v If javaExceptionStackTrace contains the following SQL
message, check your system environment variables
as described for message HPT.EGL.0104.e:

– SQL0444N Routine "routine-name" (specific name
"specific-name") is implemented with code in
library or path "library-or-path", function
"function-code-id" which cannot be accessed. Reason
code: "code".

v If the message indicates that there is an SQL problem
with ADMIN_CMD or RUNSTATS, this indicates
that the migration database was created before you
installed the required level of DB2. See Appendix G,
“Migration database,” on page 459 for the correct
level of DB2. Install the correct level and then run
setupdatabase.bat and setuptables.bat again.

v If javaExceptionStackTrace indicates that there was a
java.lang.NullPointerException the error varies
depending on which tool you are running:

– If you are running either the Preferences Tool or
the Migration Tool, locate the following directory:

vajavaInstallDirectory\ide\features\
com-ibm-vgj-mig\projects.dat.pr\
IBM VisualAge Generator EGL Migration\
version\data

The directory must contain the following files:

- MigPreferences.dtd

- MigPreferences.xml

- tableNodes.xml

- VGMigrationDef.dtd

Files might be missing if you installed VisualAge
Java and VisualAge Generator and used long
directory names or a directory name that contains
spaces. Try unzipping the migration tool to
another directory and copying the missing files to
the product directory. Alternatively, try reinstalling
both VisualAge Java and VisualAge Generator
using a short directory name (for example, vag).

– If you are running the Migration Tool, determine
whether the details of the stack trace mention the
following files:

- com.ibm.vgj.mig.XMLFileParser.readXML

- com.ibm.vgj.mig.ConfigPlanEntity

- com.ibm.vgj.mig.VAGenToEGLMigration.
loadConfigPlans

If so, check that you have a valid migration plan
file (.pln file). Also check whether you are using
the -o option. This error can occur if you omit the
-o option and the existing .pln file is empty or
invalid. To correct the problem, either create a
valid .pln file by hand or specify the -o option so
that the migration tool creates a new (valid) .pln
file for you. For more information about the -o
option, see “Running the Stage 1 tool” on page
138. For more information about how to create the
.pln file by hand, see “Creating a migration plan
file manually” on page 141.

v Check the information that follows this message for
additional details. Also check the Console for
additional messages such as HPT.EGL.0110.e and
follow the instructions for that message.

If you are not able to resolve the problem, contact IBM
support for assistance.

HPT.EGL.0110.e Project projectName version
versionName is not defined in the
repository.

Explanation: The Stage 1 migration tool expanded the
high-level PLP for the migration set, including the
chain of PLP projects. The specified project version is
referenced in the PLP chain, but is not available in the
repository or is an empty version.

User response: Determine whether the project and
version should be included in the migration set. If so,
check to see whether the requested version of the
project has been purged from the repository. If so,
restore the project version and then migrate again. If
you are not able to resolve the problem, contact IBM
support for assistance.

HPT.EGL.0111.e Original VAGen project name
projectName - results in a derived empty
EGL project name. Modify the renaming
rules.

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed
EGL project name that does not contain any characters.

User response: Edit the Stage 1 migration preferences
file and modify your project renaming rules so that
they result in valid EGL project names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both.

Appendix C. Messages from the migration tools 401

HPT.EGL.0112.e Original VAGen package name
packageName - results in a derived empty
EGL package name. Modify the
renaming rules.

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed
EGL package name that does not contain any
characters.

User response: Edit the Stage 1 migration preferences
file and modify your package renaming rules so that
they result in valid EGL package names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both .

HPT.EGL.0113.e Migration Set migrationSetName -
migrationSetVersion contains number
duplicate parts. Duplicates are not
permitted.

Explanation: The Stage 1 migration tool requires
unique part names so that it can associate the correct
source code with the part edition. The specified
migration set contains duplicate part names. Number
specifies the number of pairs of duplicate part names.
Message HPT.EGL.0115.e provides the part names and
the package names in which the parts occur. There is
one message for each pair of part names.

User response: The project versions from the
migration set are still in the workspace. From the
VAGen Parts Browser, click Tools -> Show Duplicate
Parts to determine which parts have duplicate names.
Correct the problem, version the projects, update your
migration set definition, and then run the Stage 1 tool
again.

HPT.EGL.0114.e Package packageName version
packageVersionName in project projectName
version projectVersionName is not defined
in the repository.

Explanation: The Stage 1 migration tool expanded the
high-level PLP for the migration set, including the
chain of PLP projects. The specified package version is
referenced by the specified project version in the PLP
chain, but is not available in the repository. The
packageVersionName might be in the format: Missing -
(versionDateTimeStamp).

User response: Determine whether the package
version should be included in the project. If so, check
to see whether the requested version of the package has
been purged from the repository. If so, restore the
package version and then migrate again. If you are not
able to resolve the problem, contact IBM support for
assistance.

HPT.EGL.0115.e Duplicate part partName was found
in packageName1 with type partType1 and
in packageName2 with type partType2.

Explanation: The Stage 1 migration tool requires
unique part names so that it can associate the correct
source code with the part edition. The specified part
name occurs in one or more packages, possibly with
different part types. Message HPT.EGL.0115.e is
repeated for each pair of part names.

User response: The project versions from the
migration set are still in the workspace. From the
VAGen Parts Browser, click Tools -> Show Duplicate
Parts to determine which parts have duplicate names.
Correct the problem, version the projects, update your
migration set definition, and then run the Stage 1 tool
again.

HPT.EGL.0116.w Project projectName matches a
project name filter. The project does not
have a version that matches any version
name filter.

Explanation: The specified PLP project was found in
the repository, but does not have the specified version.

User response: Correct the version name in the
repository filters of the migration preferences file. The
version name is case sensitive.

HPT.EGL.0118.w Unable to determine VAGen NLS
setting. Default encoding was used for
output files.

Explanation: The migration tool was not able to
determine the locale to use to set the encoding for the
output files from Stage 1. One of the VAGen product
projects might be missing from the class path. The
Stage 1 tool continues processing, but you might have
difficulties using the output files.

User response: Use one of the following techniques to
correct the problem:

v Set the class path information using the following
steps:

1. In the Workbench window, click the Projects tab.

2. Navigate to the IBM VisualAge Generator EGL
Migration project.

3. Expand the migration project and then expand
the com.ibm.vgj.mig package.

4. Within the package, right-click the
VAGenToEGLMigration class and follow these
steps:

a. Click Properties on the pop-up menu.

b. Click the Class Path tab.

c. Next to the Project path section, click Edit.

d. In the Class Path window, ensure that IBM
VisualAge Generator Runtime is selected.

e. Click OK to close the Class Path window.

402 Rational Business Developer: VisualAge Generator to EGL Migration Guide

f. Click OK again to close the Properties
window.

5. Repeat step 4 for the PreferencesUI class.

6. Run Stage 1 migration again.

v Follow the steps described in “Specifying your
character set information” on page 136 and then run
the Stage 1 migration again.

To avoid running Stage 1 migration again, make the
following changes:

v To view the miglog.xml and migdebug.xml files,
change the value for the encoding property in the
following line of the files to indicate your required
encoding:

<?xml version="1.0" encoding="iso-8859-1"?>

To view the report files, change the value for the
charset property in the following line of the .html
files to indicate your required encoding:

<META http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1">

Alternatively, given the potentially large number of
.html report files, run Stage 1 migration again,
specifying that just the report is to be created by
specifying the following lines in your
MigPreferences.xml file:

<verification>
 <generateReport>true<generateReport>
 <reportName>c:\tempMigJ\JTurbo\report\
 MigrationReport.htm<reportName>
<verification>
<dbUpdate>false</dbUpdate>

If you use the Preferences GUI to modify the
MigPreferences.xml file, select Generate report and
clear Update database on the Execution page of the
GUI.

Stage 1 on VisualAge Smalltalk
The following messages occur only in the VisualAge Smalltalk version of the
VisualAge Generator to EGL migration tool.

HPT.EGL.0201.e Current application name
vagenApplicationName - results in EGL
package name eglPackageName, which
starts with # or @ or uses reserved
word(s) reservedWordList. It must be
renamed.

Explanation: EGL reserved words cannot be used as
any word in the dot notation for EGL package names.

User response: Use the Stage 1 renaming rules to
create an EGL package name that does not violate the
EGL naming restrictions. Refer to Appendix
Appendix A, “Reserved words,” on page 249 that lists
the EGL reserved words. Be sure that the resulting EGL
package name does not start with the # or @ symbol.

HPT.EGL.0202.e Migration set migrationSetName
references Configuration map
configurationMapName, which is not
defined in the repository.

Explanation: The Stage 1 migration tool expanded the
high-level configuration map for the specified
migration set. However, when the tool expanded the
high-level configuration map and the chain of required
maps and applications, one or more required maps was
not available in the library.

User response: Determine whether the required map
should be included in the migration set. If so, check to
see whether the requested version of the configuration
map has been purged from the library. If so, salvage
the requested configuration map and then migrate
again.

HPT.EGL.0203.e ProgramContext encountered a
database error errorMessage.

Explanation: A database error occurred. Possible
problems are invalid schema name, user authority
restrictions, incorrect level of DB2, or missing SQL
tables.

User response: Review the errorMessage. Depending
on the error, different actions might be required. For
example:

v If errorMessage includes information about SQL error
code SQL0440N, this indicates that the wrong level
of DB2 is installed. See Appendix G, “Migration
database,” on page 459 for the correct level of DB2.
Install the correct level and then run
setupdatabase.bat and setuptables.bat again.

v If errorMessage contains either of the following SQL
messages, check that the DB2 user ID that is being
used to run migration has sufficient authority for the
migration database:

– SQL2311N The user does not have the authority to
run the Run Statistics utility on the table

– SQL0551N "userid" does not have the privilege to
perform operation "sqlOperation" on object
"migrationTable"

This problem can occur if the user ID that created
the migration database is different from the user ID
that is running the Stage 1 migration tool. See “DB2
authority requirements” on page 459 for details
about the authority and privileges that are required.

v Check the information in the migration preferences
file.

Appendix C. Messages from the migration tools 403

If you are not able to resolve the problem, contact IBM
support for assistance.

HPT.EGL.0204.e An error occurred while connecting
to the database. ErrorMessage.

Explanation: A database error occurred on connect.
Possible problems are invalid userid or password name
or invalid database name.

User response: Correct the migration preferences file.
If the problem persists, contact IBM support for
assistance.

HPT.EGL.0205.i Migration produced n migration sets
from the v versions of configuration
map configMapName. The preference file
specified the version depth as d.

Explanation: The Stage 1 migration preferences file
specified that you wanted to migrate the number of
versions specified by d. The Stage 1 migration tool
should have produced d migration sets -- one for each
version of the specified configuration map. However,
the migration tool only created the number of
migration sets specified by n. The number specified by
v is the number of versions of the specified
configuration map that the migration tool found in the
library. If v is less than d, this means that there were
not as many versions of the configuration map as you
anticipated. In this case, n and v should be equal,
indicating that all the configuration map versions
resulted in migration sets. If v is greater than d, this
means that there are more versions of the configuration
map in the library. In this case, n and d should be
equal, indicating that your version depth preference
was met.

User response: None.

HPT.EGL.0206.e Migration set migrationSetName
encountered a load error.

Explanation: The migration set could not be loaded
into your image. This could occur because there are
duplicate part names in the migration set.

User response: Review the System Transcript to
determine the cause of the error. Correct the problem
and then run Stage 1 migration again.

HPT.EGL.0207.w partType part was excluded from
migration due to invalid whitespace in
the name partName. The part is in
application applicationName, versionName.

Explanation: In VisualAge Generator, it is possible to
create a part that contains blanks at the end of the part
name. Frequently when this occurs, there are two parts
with the same name, except that one part has blanks at
the end of its name. These are not duplicate parts
because the names differ slightly. However, the part

name in the External Source Format file is identical,
even though the rest of the source code for the parts
might differ. The Stage 1 migration tool omits any part
name that contains blanks from the migration set. This
is because the part name that ends with blanks cannot
be referenced by any other VAGen part. In the case
where there is no similarly named part, this technique
ensures that a part that cannot be referenced by other
parts is not migrated. In the case where there is a
similarly named part, this technique ensures that the
Stage 2 migration tool converts the correct part
definition to EGL.

User response: None. However, you might want to
review the part in VisualAge Generator to determine if
there were similarly named parts. Use the VAGen Parts
Browser, and search all parts in the migration set for
partName*.

HPT.EGL.0208.e Database column
schemaName.tableName.columnName has
truncated data.

Explanation: One or more of your renaming rules
resulted in an EGL project, package, or version name
that is longer than fits in the corresponding SQL
columns.

User response: Modify your renaming rules so that
they result in shorter EGL project, package, or version
names. Alternatively, you can modify the DB2 table to
increase the length of the SQL column. However, before
you increase the length of the SQL column, consider
whether you want to scroll these long names after
migration and whether a longer name might exceed the
EGL limits. After you have modified your renaming
rules or the SQL column, run Stage 1 migration again.

HPT.EGL.0211.e Original VAGen configuration map
name configurationMapName - results in a
derived empty EGL project name.
Modify the renaming rules.

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed
EGL project name that does not contain any characters.

User response: Edit the Stage 1 migration preferences
file and modify your configuration map renaming rules
so that they result in valid EGL project names. When
you modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both.

HPT.EGL.0212.e Original VAGen application name
applicationName - results in a derived
empty EGL package name. Modify the
renaming rules.

Explanation: Using the renaming rules that you
specified, the migration tool has created a proposed

404 Rational Business Developer: VisualAge Generator to EGL Migration Guide

EGL package name that does not contain any
characters.

User response: Edit the Stage 1 migration preferences
file and modify your application renaming rules so that
they result in valid EGL package names. When you
modify the renaming rules, be sure to consider the
effect of any renaming rules that specify a Mapping
Context of both .

HPT.EGL.0213.i The message table utility for
migration set migrationSetName -
versionName added count new associate
rows

Explanation: This information message indicates the
number of message tables that were added as
associates of programs based on the message table
prefix in the program parts. The message tables are
added as associates in Stage 1 so that the Stage 3
migration tool can set the EGL Build Path correctly and
also include the correct import statements for the
program parts. This message is also issued if you select
the option to Repair Message Table Associates when
running the Stage 1 migration tool.

User response: None.

Messages from the VisualAge Generator to EGL migration tool— Stage
2

The following messages are produced by Stage 2. The message inserts are always
the VAGen part name, before any required renaming for EGL reserved words.

IWN.MIG.0001.e Exception parsing External Source
Format file fileName - invalid External
Source Format header.

Explanation: The migration tool only processes
External Source Format that is exported from VisualAge
Generator 4.5. The first line of the specified External
Source Format file does not have the proper header for
a VisualAge Generator 4.5 External Source Format file.

User response: Import the External Source Format file
into VisualAge Generator 4.5. This converts your
current parts to VisualAge Generator 4.5 format. Then
export the parts using VisualAge Generator 4.5 and run
migration again.

IWN.MIG.0002.e Exception parsing External Source
Format file fileName, partType, partName -
exceptionText

Explanation: A problem occurred parsing the External
Source Format syntax from VisualAge Generator.
Possible causes of this problem are:

v Mismatched quotation marks, such as using a
quotation mark in the currency field for a data item

v Mismatched comment delimiters in a control part.

v National language characters that are not valid for
your locale. For example, attempting to migrate
VAGen source code that uses double-byte characters
such as Chinese on a workstation that is not set for a
double-byte locale.

User response: Correct the part in VisualAge
Generator and export the External Source Format again.
Then run the Stage 2 migration tool to process the file.
If you are unable to correct the part in VisualAge
Generator, contact IBM support for assistance. Be
prepared to provide the External Source Format source
for the file.

IWN.MIG.0003.e Exception converting to EGL for
file fileName, partType, partName -
exceptionText

Explanation: A problem occurred during the creation
of the EGL source. The exceptionText identifies the
specific problem that occurred.

User response: Contact IBM support for assistance. Be
prepared to provide the External Source Format source
for the file.

IWN.MIG.0004.e Output file fileName1 and UI record
have the same name - UI record placed
in file fileName2.

Explanation: During single file migration, fileName1 is
the specified output file. The external source format file
contains a UI record that has the same name as the
specified output file. The file also contains some other
parts. The migration tool placed the other parts in the
specified output file before it processed the UI record.
The tool then placed the UI record into an EGL file
named fileName2. EGL validation displays an error
message in the Problems view.

User response: Give fileName1 a different name. Give
fileName2 the same name as that of the VGUI record.

IWN.MIG.0047.i Migration set Name_version —
migration started.

Explanation: This is an informational message to
indicate status from the migration tool.

User response: None.

IWN.MIG.0048.i Migration set Name_version -
migration completed.

Explanation: This is an informational message to

Appendix C. Messages from the migration tools 405

indicate status from the migration tool.

User response: None.

IWN.MIG.0049.i partType partName for EGL
projectName, packageName, fileName -
migration started

Explanation: This is an informational message to
indicate status from the migration tool. The partType
has one of the following values: Program, Map Group,
or Table. The associates for the specified partName are
migrated at the same time. The associates might be in
the same file as the partName or in different projects,
packages, or files based on information in the migration
database. When migration of a program starts, each
associated map group is migrated, followed by each
associated table. Finally, any remaining associates
(records, shared items, and functions) are migrated.

User response: None.

IWN.MIG.0050.i Program programName - migration of
other associates started

Explanation: This is an informational message to
indicate status from the migration tool. When migration
of a program starts, each associated map group is
migrated, followed by each associated table. Finally,
any remaining associates (records, shared items, and
functions) are migrated. Message IWN.MIG.0050.i is
issued when the migration of the remaining associates
for the program starts.

User response: None.

IWN.MIG.0051.e Exception parsing migration set
planName, partType, partName - invalid
External Source Format header.

Explanation: The migration tool only processes
External Source Format that is exported from VisualAge
Generator 4.5. The first line of the External Source
Format for the specified part does not have the proper
header for a VisualAge Generator 4.5 External Source
Format file. This might occur if you modified the
sample Stage 1 migration tool or if you wrote your
own Stage 1 migration tool to load the migration
database.

User response: Import the External Source Format file
into VisualAge Generator 4.5. This converts your
current parts to VisualAge Generator 4.5 format. Then
use the Stage 1 migration tool to export the migration
set.

IWN.MIG.0052.e Exception parsing migration set
planName, partType, partName -
exceptionText.

Explanation: A problem occurred parsing the External
Source Format syntax from VisualAge Generator.
Possible causes of this problem are:

v Mismatched quotation marks, such as using a
quotation mark in the currency field for a data item.

v Mismatched comment delimiters in a control part.

v National language characters that are not valid for
your locale. For example, attempting to migrate
VAGen source code that uses double-byte characters
such as Chinese on a workstation that is not set for a
double-byte locale.

User response: Correct the part in VisualAge
Generator and run Stage 1 migration again to correct
the database. Then run the Stage 2 migration tool again
to process the updated parts. If you are unable to
correct the part in VisualAge Generator, contact IBM
support for assistance. Be prepared to provide a small
repository (.dat file) or External Source File containing
the parts that have problems.

IWN.MIG.0053.e Exception converting to EGL for
migration set planName, partType,
partName - exceptionText.

Explanation: A problem occurred during the creation
of the EGL source. The exceptionText identifies the
specific problem that occurred.

User response: Contact IBM support for assistance. Be
prepared to provide the External Source Format source
for the part.

IWN.MIG.0054.e Invalid External Source Format for
migration set migrationSetName, partType,
partName.

Explanation: The External Source Format stored for
the specified part is not valid. The migration tool
continues processing other parts in the specified
migration set. For the purposes of migrating with
associated parts, the migration tool considers the
specified part to be unavailable. The migration tool
stores intentionally invalid EGL in the migration
database for the specified part. The EGL that is stored
is EZE_UNKNOWN_PARTTYPE partName; This ensures
that EGL validation displays an error message in the
Problems view.

User response: Review the specified part in VisualAge
Generator. Try exporting External Source Format for the
part and migrating the part in single file mode. If you
are unable to resolve the problem, contact IBM support
for assistance. Be prepared to provide a small
repository (.dat file) or External Source File containing
the parts that have problems.

IWN.MIG.0055.e Migration halted - error limit
exceeded.

Explanation: The error threshold has been exceeded
for parts with invalid External Source Format. The
migration tool stops processing.

User response: Review all occurrences of message

406 Rational Business Developer: VisualAge Generator to EGL Migration Guide

IWN.MIG.0054.e. If you created your own tool to load
the migration database, there might be a problem with
the way the tool is loading External Source Format
code into the migration database. See Appendix G,
“Migration database,” on page 459 for some queries
that might be useful in determining what is causing the
problem.

IWN.MIG.0060.e An error occurred while loading the
database driver. driver: driverName

Explanation: The specified database driver cannot be
located.

User response: Correct the database driver name. Also
confirm that your database driver location is correct.

IWN.MIG.0061.e An error occurred while connecting
to the database. database:
databaseName.errorText

Explanation: The migration tool cannot connect to the
specified database using the specified schema name.
The errorText field provides additional details of why
the connection failed.

User response: Correct the database name. If you are
connecting to a remote database, be sure that you have
cataloged the database locally.

IWN.MIG.0063.e Error occurred when closing the
database connection.

Explanation: Migration completed successfully, but the
migration tool was not able to close the database
connection.

User response: Shut down the EGL development
environment before attempting to backup your
database.

IWN.MIG.0070.e The user exit method
renameUserExitName(partName) does not
exist.

Explanation: The JAR file that you specified for your
Rename user exit or the package and class within the
JAR file could not be found.

User response: Check the JAR file location, Package
name, and Class name that you specified for your
Rename user exit in the VAGen Migration Preferences.

IWN.MIG.0071.e The user exit method
renameUserExitName(partName) does not
have the required method signature.

Explanation: The Rename user exit requires that you
include a method with the signature
renameUserExit(String s, Connection c). This method did
not exist in the JAR file, package, and class that you

specified for your Rename user exit in the VAGen
Migration Preferences.

User response: Review your class definition and
ensure that you included the required method
signature. Also ensure that you specified the correct the
JAR file location, Package name, and Class name for
your Rename user exit in the VAGen Migration
Preferences.

IWN.MIG.0072.e The user exit method
renameUserExitName(partName) enforces
Java language access control and the
underlying method is inaccessible.

Explanation: The migration tool does not have access
to the definition of the specified user exit class.

User response: Verify that Rename user exit class is
defined as public and it is in the specified package.

IWN.MIG.0073.e The user exit method
renameUserExitName(partName) abruptly
terminated by throwing an exception.

Explanation: The method renameUserExit(String s,
Connection c) returned a null value. Migration
continues. The migration tool uses the original VAGen
part name.

User response: Place a try block around the code in
your Rename user exit. If there is an exception, return
the original VAGen part name to avoid getting this
message.

IWN.MIG.0080.i VAGen Migration Preferences file
pref_store.ini not found; defaults
assumed.

Explanation: There is no VAGen migration preferences
file. The migration tool uses the default values for the
preferences (for example, the Renaming suffix and
Help Map suffix). This might be because you specified
a new workspace during migration so that preferences
do not exist. The preferences file is located in

workspace-directory\.metadata\.plugins
 \org.eclipse.core.runtime\.settings
 \com.ibm.etools.egl.vagenmigration.prefs

User response: See “VAGen Migration preferences” on
page 174 for information about the default values for
the migration preferences.

IWN.MIG.0081.i File fileName - migration completed.

Explanation: The migration tool has completed
processing for the specified file.

User response: Review the log messages to see the
results of the migration.

Appendix C. Messages from the migration tools 407

IWN.MIG.0082.e File fileName - required parameters
are not specified.

Explanation: One or more required parameters have
not been specified. The -importFile parameter is always
required. If the -importFile parameter specifies an
External Source Format file, then the -eglFile and
-package parameters are also required.

User response: Review the batch command file to
determine which parameters were not specified. Add
the parameters and then run the batch command file
again.

IWN.MIG.0083.e File fileName - parameter parmName
has not been assigned a value.

Explanation: parmName refers to one of the following
parameters:

v -importFile

v -eglFile

v -package

The parameter names are case sensitive.

User response: Correct the batch command file and
then run it again.

IWN.MIG.0084.e File fileName - parameter parmName,
value value is not valid.

Explanation: parmName refers to one of the following
parameters:

v -importFile

v -eglFile

v -package

The parameter names are case sensitive.

User response: Correct the batch command file and
then run it again.

IWN.MIG.0085.e File fileName - invalid parameters
are passed in the parameter list.

Explanation: There is a problem with the batch
command file. One or more of the parameters is
entered incorrectly. The only valid parameters are:
-importFile, -eglFile, -package, and -overwrite.

User response: Correct the batch command file and
then run it again.

IWN.MIG.0095.e Function functionName - EZESCRPT
is not supported for migration.

Explanation: The specified function contains
statements that use the EZESCRPT special function
word. There is no replacement for this EZE function in
EGL. The migration tool converts EZESCRPT to
EZE_SCRPT to preserve the logic of your function.

However, you cannot use this function in EGL.

User response: Review the EGL function. You cannot
generate or run programs that use this function.

IWN.MIG.0101.e Data item DataItemName - Unable to
determine edit routine type for
editRoutineName; function assumed.

Explanation: VisualAge Generator supports EZEC10,
EZEC11, a function or a table as the map edit routine
for a data item. EGL supports both a validatorFunction
and a validatorDataTable property for a DataItem part.
The migration tool converts the map edit routine in the
following way:

v EZEC10 and EZEC11 migrate to the
validatorFunction property.

v If the part specified by editRoutineName is available
during migration and is a function, the
editRoutineName migrates to the validatorFunction
property. The migration tool also migrates the edit
routine to the validatorFunction property if the
editRoutineName is longer than 7 characters because
table names are limited to 7 characters in VisualAge
Generator.

v If the part specified by editRoutineName is available
and is a table, the editRoutineName migrates to the
validatorDataTable property. The migration tool also
migrates the edit routine to the validatorDataTable
property if an edit message is specified for the item
because VisualAge Generator only uses the edit
message in conjunction with EZEC10, EZEC11, or a
table.

v If the part specified by the editRoutineName is not
available during migration and the editRoutineName
is 7 or fewer characters and an edit message is not
specified, the migration tool assumes that
editRoutineName is a function and migrates to the
validatorFunction property. Message
IWN.MIG.0101.e is only issued in this situation.

User response: If the specified edit routine is not a
function, modify the EGL DataItem definition and
change the validatorFunction property to the
validatorDataTable property. For additional
considerations, see the information on edit routines in
“Map edit routine for shared data items” on page 68.

IWN.MIG.0102.e Part partName uses shared data item
DataItemName - Unable to migrate to a
primitive definition; using a type
definition

Explanation: You selected the preference that migrates
VAGen shared data items to EGL primitive definitions
whenever a shared data item is used in a record, table,
called parameter list, function parameter list, or
function local storage. The item specified by
DataItemName is used in the part specified by partName.
However, the data item definition is not available
during migration. The migration tool uses the data item

408 Rational Business Developer: VisualAge Generator to EGL Migration Guide

name as a type definition so that the migrated code is
valid.

User response: If you want to use the type definition,
you might need to add an import statement to import
the package in which the DataItem part resides. If you
want to use a primitive definition, modify the specified
part to use the correct item characteristics.
Alternatively, include the shared data item in your
migration set (or the External Source Format file if you
are migrating in single file mode) and migrate again.

IWN.MIG.0103.w Data item DataItemName -
preferences caused evensql=y to be
ignored.

Explanation: The specified data item part is a VAGen
PACK (EGL DECIMAL) item with evensql=y. Your
VAGen Migration Preferences specified that evensql=y
is not to be honored. Based on your preferences, the
migration tool converted the PACK item to the next
higher odd precision, with a maximum length of 18.
The migration tool determines the EGL precision for
PACK items in the following way:

v If evensql=n is specified for an item, the EGL
precision is always calculated as (VAGen bytes * 2) -
1 with a maximum value of 18.

v If evensql=y is specified for an item, the EGL
precision is calculated based on the preference:

– If the Do not honor evensql=y for items or
variables preference is selected, the EGL precision
is calculated as:

 (VAGenBytes * 2) - 1

with a maximum value of 18. Message
IWN.MIG.0103.w is only issued in this situation.

– If the preference is not selected (honor evensql=y),
the EGL precision is calculated as

 (VAGenBytes * 2) - 2

with a maximum value of 18. Message
IWN.MIG.0103.w is not issued.

User response: None. However, you might want to
review the use of this item in any SQL WHERE clauses
or EGL prepare statement. There might be an impact
on performance if the definition of this item does not
exactly match the SQL table definition. For details, see
information about EVENSQL in “Eliminating the use of
VisualAge Generator compatibility mode” on page 225
and “PACK data items with even length” on page 65.

IWN.MIG.0201.i Record recordName - Contains level
77 items; creating additional record
named level77RecordName.

Explanation: VisualAge Generator supports level 77
items in working storage records. EGL does not
support level 77 items. EGL does permit the definition
of independent data items. The migration tool splits

working storage records that contain level 77 items into
two separate BasicRecords -- one containing the
non-level 77 items and one containing the level 77
items. If the working storage record contains only level
77 items, then the migration tool only creates the level
77 BasicRecord. If a program specifies a primary
working storage record that contains level 77 items, the
migration tool includes declarations for both the
original BasicRecord and the level 77 BasicRecord in
the program definition.

User response: None. For additional considerations,
including the effect if recordName is not available
during the migration of programs and statements, see
the information on level 77 items in records in “Level
77 items in records” on page 71.

IWN.MIG.0202.i Record recordName - Redefines
redefinedRecordName.

Explanation: recordName is a VAGen Redefined record
that specifies redefinedRecordName as the record being
redefined. recordName provides a different item layout
for the same physical storage that is used by the
redefinedRecordName. EGL does not retain redefinition
information in the record parts. That information is
kept only in the programs. The migration tool includes
a comment in recordName to provide the original
VAGen redefinedRecordName information. When
migrating programs, if recordName is available and
results in an overlay definition in VisualAge Generator,
the migration tool includes the redefines property for
the recordName declaration.

User response: None. For additional considerations,
including the effect if recordName is not available
during migration of a program, see the information on
redefined records in “Redefined records” on page 70.

IWN.MIG.0203.w Record recordName - Does not
contain any items.

Explanation: VisualAge Generator permits you to save
a record part that does not contain any items. However,
the record cannot be used in any programs because it is
invalid. EGL tolerates record parts that do not contain
any fields. The migration tool migrates the record.

User response: Determine whether you still need to
have the record. If so, edit the record and add one or
more data items. If not, delete the record.

IWN.MIG.0204.e Record recordName - alternate
specification record altspecRecord is not
available; SQL table names cannot be
determined.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName. In
VisualAge Generator, for SQL records, the alternate
specification record also provides the SQL table names.

Appendix C. Messages from the migration tools 409

In EGL, the alternate specification record only provides
the structure by using the embed keyword. The table
names must be specified in each SQL record part
definition. When migrating recordName, the record
specified as the alternate specification record is not
available during migration. The migration tool cannot
determine the correct table names and sets the
tableNames property to ###TABLES_NOT_FOUND###.
The definition for recordName is invalid.

User response: Edit recordName and copy in the
tableNames and tableNameVariables properties from
the VAGen alternate specification record (altspecRecord).
The tableNames property provides the actual SQL table
names. The tableNameVariables property provides
table name host variables. Both the tableNames and
the tableNameVariables properties can be used if the
recordName references a mixture of actual SQL table
names and SQL table name host variables. For
additional considerations, see the information in
“Alternate specification records” on page 72.

IWN.MIG.0205.e Record recordName - alternate
specification record altspecRecord is not
available; SQL key items cannot be
determined.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName.
When VisualAge Generator determines the default
selection condition for an SQL record, VisualAge
Generator merges any items that specify key=yes in the
alternate specification record with the key item, if any,
specified in recordName. The keys are merged based on
the order in which the items are listed in the record
structure. In EGL, the alternate specification record only
provides the structure by using the embed keyword.
All key items must be specified in each SQL record part
definition. When migrating recordName, the record
specified as the alternate specification record is not
available during migration. The migration tool cannot
determine the correct key items and sets the keyItems
property to ###KEYS_NOT_FOUND###, followed by
the key item, if any, from recordName. The definition for
recordName is invalid.

User response: Edit recordName and change the
keyItems property to replace
###KEYS_NOT_FOUND### with the list of item names
that specified key=yes in the VAGen alternate
specification record (altspecRecord). Be sure to merge the
key items from the alternate specification record with
the key item specified in the VAGen definition for
recordName so that the keyItems property lists the items
in the same order they appear in the record structure. If
an item is specified as key=yes in the alternate
specification record and as the key item in recordName,
only include the item once in the merged list of
keyItems in recordName. For additional considerations,
see the information on “Alternate specification records”
on page 72.

IWN.MIG.0206.i SQL Record recordName - Contains a
key item keyItem without specifying an
alternate specification record.

Explanation: VisualAge Generator permits you to save
an SQL record that specifies a key item even if you do
not specify an alternate specification record. However,
in this situation, VisualAge Generator ignores the key
item during test and generation. The key item only has
meaning when there is also an alternate specification
record.

User response: None. The key item was ignored in
VisualAge Generator. The migration tool eliminates it
during migration.

IWN.MIG.0207.i Record recordName - Specifies
alternate specification record
altspecRecord with only level 77 items;
embed keyword omitted.

Explanation: The record specified by altspecRecord is a
working storage record that only contains level 77
items. When recordName specifies a working storage
record as the alternate specification, VisualAge
Generator uses only the structure (the non-level 77
items) from altspecRecord. The migration tool omits the
embed keyword because there are no items in the
structure of altspecRecord.

User response: None. However, you might want to
delete recordName because it is an empty record. Be
sure to delete all references to recordName in your
programs.

IWN.MIG.0208.e Record recordName - Alternate
specification record altspecRecord is not
available; cannot determine SQL column
name for !itemColumnName variables.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName.
When VisualAge Generator determines the default
selection condition for an SQL record, VisualAge
Generator converts any !itemColumnName variables to
the corresponding SQL column name. In EGL,
!itemColumnName variables are not supported. The
SQL columns must be explicitly named in the default
selection condition for each SQL record part definition.
When migrating recordName, the record specified as the
alternate specification record is not available during
migration. The migration tool cannot determine the
correct SQL column name that corresponds to one or
more !itemColumnName variables in the default
selection condition. The migration tool uses
!itemColumnName in the EGL default selection
condition. The definition for recordName is invalid.

User response: Edit recordName and change the
defaultSelectCondition property to replace the
!itemColumnName variables with the corresponding

410 Rational Business Developer: VisualAge Generator to EGL Migration Guide

SQL column names from the VAGen alternate
specification record (altspecRecord). For additional
considerations, see the information on
!itemColumnName variables in “Alternate specification
records” on page 72.

IWN.MIG.0209.e Record recordName - alternate
specification record altspecRecord has no
items; embed keyword omitted.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName.
However, the alternate specification record does not
have any data items. The migration tool omits the
embed keyword from the definition for recordName.

User response: None. However, you should review
recordName and altspecRecord to determine whether you
need to include data items or whether the two records
can be deleted. Be sure to delete all references to these
records in your programs.

IWN.MIG.0210.e Record recordName - Unable to
determine column names for
!itemColumnName variables.

Explanation: The default select condition for the
specified record uses one or more VAGen
!itemColumnName variables. A VAGen
!itemColumnName variable specifies the name of an
item in the SQL record definition which corresponds to
the actual SQL column name. VisualAge Generator
determines the actual SQL column names for any
!itemColumnName variables from the SQL record at
test and generation time. EGL does not support
!itemColumnName variables. Instead, EGL requires that
the actual SQL column names be used in any modified
SQL statement. Message IWN.MIG.0210.e is issued
when the record specified by recordName is invalid in
VisualAge Generator. In this case, the record uses one
or more !itemColumnName variables that are not
defined within the record or its alternate specification
record. The migration tool is unable to substitute the
actual SQL column name.

User response: Edit the record and change the
!itemColumnName variables to the correct SQL column
names.

IWN.MIG.0211.w Record recordName, data item
DataItemName - preferences caused
evensql=y to be ignored.

Explanation: The specified record contains the
specified nonshared data item. The record definition
specifies that this nonshared data item is a VAGen
PACK (EGL DECIMAL) item with evensql=y. Your
VAGen Migration Preferences specified that evensql=y
is not to be honored. Based on your preferences, the
migration tool converted the PACK item to the next
higher odd precision, with a maximum length of 18.

The migration tool determines the EGL precision for
PACK items in the following way:

v If evensql=n is specified for an item, the EGL
precision is always calculated as (VAGen bytes * 2) -
1 with a maximum value of 18.

v If evensql=y is specified for an item, the EGL
precision is calculated based on the preference:

– If the Do not honor evensql=y for items or
variables preference is selected, the EGL precision
is calculated as:

 (VAGenBytes * 2) - 1

with a maximum value of 18. Message
IWN.MIG.0211.w is only issued in this situation.

– If the preference is not selected (honor evensql=y),
the EGL precision is calculated as

 (VAGenBytes * 2) - 2

with a maximum value of 18. Message
IWN.MIG.0211.w is not issued.

User response: None. However, you might want to
review the use of this item in any SQL WHERE clauses
or EGL prepare statement. There might be an impact
on performance if the definition of this item does not
exactly match the SQL table definition. For details, see
information about EVENSQL in “Eliminating the use of
VisualAge Generator compatibility mode” on page 225
and “PACK data items with even length” on page 65.

IWN.MIG.0212.e Record recordName - alternate
specification record altspecRecord is not
available; cannot determine whether any
item names require an override for the
dliFieldName property.

Explanation: The record recordName specifies an
alternate specification record named altspecRecord,
which provides the item structure for recordName. In
VisualAge Generator, the field names in a DL/I
segment record must match the names in the DL/I
PSB. In EGL, field names cannot be reserved words or
start with the # or @ symbol. EGL also permits the field
names in a DL/I segment record to be longer than the
8-character limitation imposed for the DL/I PSB. If the
field name in a DL/I PSB does not match the EGL field
name, EGL uses the dliFieldName property to provide
the name used in the DL/I PSB for the corresponding
EGL field name. Because the alternate specification
record is not available, the migration tool cannot
determine whether any of the field names are renamed
due to the EGL naming conventions.

User response: Review the record definition for
altspecRecord to determine if any field names in the
record must be renamed due to the EGL naming
conventions. If any field name was renamed, edit
recordName and add overrides to the embed keyword
for each renamed field to specify its corresponding
dliFieldName property. The value for the

Appendix C. Messages from the migration tools 411

dliFieldName property must be the original VAGen
field name.

 For an example of how to code the embed keyword
with an override for a field, see Table 82 on page 274.

IWN.MIG.0251.w UI record recordName is a reserved
word or starts with the # or @ symbol. It
was renamed to newRecordName.

Explanation: The UI record recordName conflicts with
an EGL reserved word or starts with the # or @ symbol.
The Stage 2 migration tool renamed the UI record to
newRecordName, based on the Renaming prefix you
specified in your migration preferences. The Stage 2
tool also includes the alias property for the VGUI
record so that the names in the EGL generated outputs
are identical to those in VisualAge Generator. The Stage
3 migration tool changed the file name for the VGUI
record to newRecordName.egl because EGL requires that
the VGUI record name and its file name must match. If
you migrate in single file mode, the migration tool
makes the same changes.

User response: None.

IWN.MIG.0301.e Table name tableName is a reserved
word. It must be renamed.

Explanation: The migration tool does not rename
tables for you.

User response: You must change the name of the table
and all references to it. This includes references in the
following places:

v Program use declaration statements

v Logic statements in programs and functions

v Data item validatorDataTable properties

v Form field validatorDataTable properties

v VGUI record field validatorDataTable properties

If you want to keep the original table name as the
name for the generated DataTable, set the alias
property to the original DataTable name. If you do not
specify the alias property, be sure to change any
non-EGL references to the DataTable name, including
CICS program definitions.

IWN.MIG.0302.w Table tableName - has only one row
of contents. Check its use as the source
of a MOVEA statement.

Explanation: In VisualAge Generator, when a table
with a single row of contents is used as the source of a
MOVEA statement, the source is treated as a scalar and
the target array is completely initialized by the scalar
source. This is contrary to the VisualAge Generator
documentation, which indicates that the table should
always be treated as an array, which in turn would
cause only the first element of the target array to be
initialized. In EGL, a move with a for modifier is

always treated as a move of one array to another, so
only the first element of the target array is initialized.

User response: Review your programs to determine
whether you used the specified table as the source of a
MOVEA statement. If the table name is used as a
qualifier for the source field in a MOVEA statement,
the migration tool also issues message HPT.EGL.0710.e.
To find MOVEA statements that might reference the
fields in the table without using the table name as
qualifier, you might run DB2 queries against the
migration database. For details, see “Queries to assist
with specific error messages” on page 465. If the table
is used as the source of a MOVEA in VisualAge
Generator, modify the program logic to use a loop to
initialize the target array from the source element of the
table.

IWN.MIG.0401.e Map group (FormGroup) name
mapGroupName is a reserved word. It
must be renamed.

Explanation: The migration tool does not rename map
groups (FormGroups) for you.

User response: You must change the name of the
FormGroup and all references to it, including references
in program use declaration statements. If you want to
keep the original map group name as the name for the
generated FormGroup, set the alias property to the
original map group (FormGroup) name. If you do not
specify the alias property, be sure to change any
non-EGL references to the FormGroup name, including
CICS program definitions.

IWN.MIG.0402.e Map group mapGroupName -
Multiple devices have the same depth
and width, but different floating areas;
devices are: devicesList

Explanation: VisualAge Generator permits different
floating area sizes for device types that have the same
device size. EGL only permits one floating area for each
device size. The migration tool migrates the floating
area size for each device type. If two or more VAGen
devices convert to identical EGL device size and
margin specifications, the migration tool only includes
one entry for EGL. If the VAGen devices convert to
identical EGL device sizes but have different margin
specifications, the migration tool includes both entries.
The FormGroup definition is invalid. This message is
repeated for each group of same-size device types that
specified different floating area information in
VisualAge Generator.

User response: Edit the FormGroup and delete all
except one floating area specification for each group of
same-size devices.

412 Rational Business Developer: VisualAge Generator to EGL Migration Guide

IWN.MIG.0403.e FormGroup FormGroupName -
Requires editing to nest forms within
the FormGroup.

Explanation: When you migrate in single file mode,
the migration tool does not nest forms within the
FormGroup. Instead, the migration tool inserts an EGL
use statement to indicate the name of the forms that
belong to the FormGroup. The migration tool includes
comments at the beginning and end of each form to
indicate its FormGroup.

User response: Edit the file containing the FormGroup
and move the forms so that they are nested within the
FormGroup. The use statements in the FormGroup
indicate where the forms should be moved. After you
have nested the form within the FormGroup, remove
the use declaration statement.

IWN.MIG.0501.e Help map group mapGroupName
contains map mapName with variable
fields - mapName conflicts with the same
map name in the program's main map
group.

Explanation: VisualAge Generator permits the same
map name to be used in both the main map group and
the help map group for a program. EGL does not
permit any duplicate form names in the two
FormGroups for a program. This restriction applies
even if the forms with duplicate names are not used by
the program. The migration tool renames maps in the
help map group for the program if they conflict with
maps in the main map group for the program and the
help maps only contain constant fields. The migration
tool does not rename a map in the help map group if it
contains variable fields, even if the name conflicts with
a map name in the main map group. This is because
the map could be used by some other program that
specifies the help map group as the main map group
for that program.

User response: Edit the help FormGroup and change
the name of the form. Also be sure to change the form
definition and all references to this form in all
programs that use the FormGroup. For additional
considerations, see the information on map names in
“Map names and help map names” on page 79.

IWN.MIG.0502.e Map group mapGroupName, map
mapName and variable field mapItemName
- Unable to determine edit routine type
for editRoutineName; function assumed.

Explanation: VisualAge Generator supports EZEC10,
EZEC11, a function or a table as the map edit routine
for a map variable. EGL supports both a
validatorFunction function and a validatorDataTable
property for a form field. The migration tool converts
the map edit routine in the following way:

v EZEC10 and EZEC11 migrate to the
validatorFunction property.

v If the part specified by editRoutineName is available
during migration and is a function, the
editRoutineName migrates to the validatorFunction
property. The migration tool also migrates the edit
routine to the validatorFunction property if the
editRoutineName is longer than 7 characters because
table names are limited to 7 characters in VisualAge
Generator.

v If the part specified by editRoutineName is available
and is a table, the editRoutineName migrates to the
validatorDataTable property. The migration tool also
migrates the edit routine to the validatorDataTable
property if an edit message is specified for the form
field because VisualAge Generator only uses the edit
message in conjunction with EZEC10, EZEC11, or a
table.

v If the part specified by the editRoutineName is not
available during migration and the editRoutineName
is 7 or fewer characters and an edit message is not
specified, the migration tool assumes that
editRoutineName is a function and migrates to the
validatorFunction property. Message
IWN.MIG.0502.e is only issued in this situation.

User response: If the specified edit routine is not a
function, modify the form field and change the
validatorFunction property to the validatorDataTable
property. For additional considerations, see the
information on edit routines in “Map variable fields
and edit routines” on page 82.

IWN.MIG.0503.w Map group mapGroupName, map
mapName - Unnamed variable field
converted to constant field at
position(row,column).

Explanation: VisualAge Generator permits unnamed
variable fields on maps. The program cannot access
these unnamed variable fields. At test and generation,
unnamed variable fields are converted to constants. The
migration tool converted this unnamed variable field to
a constant because one or more properties are
non-default values.

User response: Review the form definition and ensure
that a constant field is the correct migration for this
field. For additional considerations, see the information
on unnamed variable fields in “Unnamed map variable
fields” on page 85.

IWN.MIG.0504.w Map group mapGroupName, map
mapName - Unnamed variable field
removed from position(row,column).

Explanation: VisualAge Generator permits unnamed
variable fields on maps. The program cannot access
these unnamed variable fields. At test and generation,
unnamed variable fields are converted to constants. The
migration tool removed this unnamed variable field
because all of its properties specify the default values
for a constant field. EGL does not require that constants

Appendix C. Messages from the migration tools 413

with default properties be explicitly defined for the
form.

User response: Review the form definition and ensure
removing this field is the correct migration. For
additional considerations, see the information on
unnamed variable fields in “Unnamed map variable
fields” on page 85.

IWN.MIG.0506.e Map Group mapGroupName, map
mapName - Unprotected constant at row,
column; changed to protect=skipProtect.

Explanation: VisualAge Generator permits
unprotected constants on both display and printer
maps. For constants, EGL requires that the protect
property be set to either skipProtect or protect. The
migration tools sets the protect property to skipProtect
for the field.

User response: No action is required if skipProtect is
acceptable. When the protect property is set to
skipProtect for a constant field, the user can continue
typing at the end of any immediately preceding
variable field and the additional characters are placed
in the next unprotected variable field. When the protect
property is set to protect for a constant field, the user is
prevented from continuing to type at the end of any
immediately preceding variable field. The user must
tab to the next variable field to continue typing.

IWN.MIG.0507.w Map Group mapGroupName, map
mapName - constant at row=0, column=0
changed to row=1, column=1.

Explanation: VisualAge Generator tolerates, but does
not fully support, a constant at position row=0,
column=0 on a map. Fields at row=0, column=0 cannot
specify any attribute information. EGL does not
support any field at row=0, column=0. The field at
row=0, column=0 is a constant and the first byte is
initialized to blank. The migration tool changes the
position to row=1, column=1 and deletes the first byte
of the constant value. The migration tool does not
include any field presentation properties such as color
or highlight for the field because this information was
not recorded in the External Source Format file.

User response: Test any programs that use this form
to determine if there is a change in the appearance of
the display. If there is, edit the form and set the field
presentation properties to obtain the desired
appearance.

IWN.MIG.0508.e Map Group mapGroupName, map
mapName - constant at row=0, column=0
cannot be changed.

Explanation: VisualAge Generator tolerates, but does
not fully support, a constant at position row=0,
column=0 on a map. Fields at row=0, column=0 cannot
specify any attribute information. EGL does not

support any field at row=0, column=0. The field at
row=0, column=0 is a constant and the first byte is not
initialized to blank. The migration tool does not change
the position for the field because this could cause the
constant to be moved or eliminated from the form and
change the appearance. The migration tool does not
include any field presentation properties such as color
or highlight for the field because this information was
not recorded in the External Source Format file. EGL
validation displays an error message in the Problems
view.

User response: Edit the form and change the constant
field to position the field at row=1, column = 1. If
necessary, modify the constant field to eliminate one
byte to compensate for the attribute byte that now
occupies row=1, column=1. Be sure to test any
programs that use this form to determine if there is a
change in the appearance of the display. If there is, edit
the form and set the field presentation properties to
obtain the desired appearance.

IWN.MIG.0509.e Map Group mapGroupName, map
mapName - variable at row=0, column=0
cannot be changed.

Explanation: This map might be from an older version
of Cross System Product or VisualAge Generator.
VisualAge Generator 4.5 does not support variables at
row=0, column=0. Fields at row=0, column=0 cannot
specify any attribute information. EGL does not
support any field at row=0, column=0. The field at
row=0, column=0 is a variable field. The migration tool
does not change the position for the field because this
would either cause the field to be moved or result in
the loss of the first byte of data. The migration tool
does not include any presentation properties such as
color or highlight for the field because this information
was not recorded in the External Source Format file.
EGL validation displays an error message in the
Problems view.

User response: Edit the form and change the field to
position the field at row=1, column=1. If necessary,
modify other fields around the variable field to avoid
the loss of any data due to the attribute byte that now
occupies row=1, column=1. Be sure to test any
programs that use this form to determine if there is a
change in the appearance of the display. If there is, edit
the form and set the field presentation properties to
obtain the desired appearance.

IWN.MIG.0510.e Map Group mapGroupName, map
mapName - mapName conflicts with
program name.

Explanation: The program uses a map group or help
map group that contains a map that is named the same
as the program. VisualAge Generator permits the map
name to be the same as the program name. EGL does
not permit the form name to be the same as the
program name. The migration tool renames a map in

414 Rational Business Developer: VisualAge Generator to EGL Migration Guide

the help map group for the program if the map name
is the same as the program name and the map does not
have any variable fields. However, the migration tool
does not rename a map in the following situations:

v The map is a map with variable fields in the help
map group for the program.

v The map is in the main map group for the program.

User response: Edit the FormGroup and change the
name of the form. Also be sure to change the form
definition and all references to this form in all
programs that use the FormGroup. For additional
considerations, see the information on map names in
“Map names and help map names” on page 79.

IWN.MIG.0512.e Map Group mapGroupName, map
mapName - duplicate cursor removed
from field fieldName.

Explanation: In some customizations of VisualAge
Generator Templates (VAGT), multiple cursors are
specified on a map. In this case, VisualAge Generator
tolerates the duplicate cursor. For test facility and
generation, VisualAge Generator places the cursor on
the first field that specifies the cursor and ignores all
the other fields. The first field in this case is the first in
row and column order, not first in the edit order. EGL
does not tolerate a duplicate cursor. The migration tool
removes the cursor property from all fields except the
first field that specifies the cursor. If multiple cursors
are specified on array elements, the migration tool
removes the cursor property from all elements of the
array except the first element that specifies the cursor.

User response: No action is required if the cursor
position on the first field that specifies the cursor is
acceptable.

IWN.MIG.0601.w Function functionName, I/O object
recordName - Unable to determine record
type for UPDATE option; non-SQL
record assumed.

Explanation: For SQL, if there are multiple UPDATE
or SETUPD functions in a program, VisualAge
Generator requires that the REPLACE function specifies
the name of the corresponding UPDATE or SETUPD
function. EGL uses the resultSetID for SQL statements
to specify the relationship between a replace statement
and its corresponding get or open statement. The
record specified by recordName is not available during
migration. The migration tool assumes that the
UPDATE function is for a non-SQL record and does not
include the resultSetID.

User response: If EGL validation displays an error
message because there are multiple get or open
statements for the same record in the program, edit the
function and add a resultSetID to the get forUpdate
statement. The resultSetID must be unique within the
program. To ensure this, use the function name
followed by the Result Set suffix preference you used

during migration as the resultSetID. For additional
considerations, see the information in “SQL I/O with
multiple UPDATE or SETUPD functions” on page 104.

IWN.MIG.0602.w Function functionName - Unable to
determine map type for I/O object
mapName; display map assumed.

Explanation: VisualAge Generator uses the DISPLAY
I/O option for both display and printer maps. EGL
uses the display statement only for text forms and the
print statement for print forms. In VisualAge Generator
compatibility mode, the display statement can also be
used for print forms. The map specified as mapName is
not available during migration. The migration tool
assumes that the map is a display map and migrates to
the EGL display statement.

User response: No action is required as long as you
continue to use VisualAge Generator compatibility
mode or if the map is a display map. If the map is a
print map and you want to discontinue use of
VisualAge Generator compatibility mode, you must
change the function to use the print statement. For
additional considerations, see “DISPLAY I/O option for
maps” on page 94.

IWN.MIG.0603.e Function functionName, SQL I/O
object recordName - Unable to determine
SQL table name(s).

Explanation: VisualAge Generator determines the SQL
table names from the SQL record at test and generation
time. EGL requires that the table names be included in
any modified SQL statement. The record specified by
recordName is not available during migration. The
migration tool uses EZE_UNKNOWN_SQLTABLE for
the table name to ensure that EGL validation displays
an error message. The migration tool also sets the table
label for the statement to T1.

User response: Edit the function and specify the
correct table name(s) and table label(s) based on the
record definition. The table names are in either or both
of the tableNames and tableNameVariables properties
in the EGL record definition. For additional
considerations, see the information on
EZE_UNKNOWN_SQLTABLE in Appendix D,
“Messages in the Problems view,” on page 427.

IWN.MIG.0604.e Function functionName, SQL I/O
object recordName - Unable to determine
column names for !itemColumnName
variable(s).

Explanation: The modified SQL statement used one or
more VAGen !itemColumnName variables. A VAGen
!itemColumnName variable specifies the name of an
item in the SQL record definition which corresponds to
the actual SQL column name. VisualAge Generator
determines the actual SQL column names for any
!itemColumnName variables from the SQL record at

Appendix C. Messages from the migration tools 415

test and generation time. EGL does not support
!itemColumnName variables. Instead, EGL requires that
the actual SQL column names be used in any modified
SQL statement. The record specified by recordName, or
its alternate specification record, is not available during
migration. The migration tool uses the
!itemColumnNames in the modified SQL statement to
provide as much information as possible.

User response: Edit the function and specify the SQL
column names based on the record definition. For each
!itemColumnName, locate the corresponding item in
the SQL record definition. The column name for that
item is the column name you need to use in the EGL
I/O statement. For additional considerations, see the
information in “SQL I/O and !itemColumnName” on
page 103.

IWN.MIG.0605.w Function functionName, SQL I/O
object recordName - SQLEXEC with
model=none and no SQL clauses.

Explanation: The SQLEXEC I/O option specifies a
model type of none, but does not contain any SQL
clauses. The recordName is omitted if no I/O object is
specified in VisualAge Generator. VisualAge Generator
in effect generates a no op for this I/O option. The
migration tool generates an EGL no op statement (just
a semi-colon) and includes a VAGen Info comment to
indicate that the model type was none. If the VAGen
function specifies an error routine, the migration tool
includes the try...onException blocks appropriate for
that error routine.

User response: Review the function to determine
whether the I/O statement should be eliminated or
expanded.

IWN.MIG.0607.e Function functionName, SQL I/O
object recordName - Unable to determine
SQL I/O clause clauseName.

Explanation: The specified recordName is not available
during migration. The migration tool is unable to create
the specified clause in one of the following situations:

v The function uses modified SQL, but some of the
clauses are missing. In VisualAge Generator, at some
points in time, only the SQL clause that was
modified was saved with the function. In this
situation, VisualAge Generator creates the remaining
clauses from the record definition that is specified as
the I/O object for the function. The clauseNames that
might be listed in this situation are: SELECT, INTO,
INSERTCOLNAME, VALUES, and FORUPDATEOF.

v The function uses default SQL and specifies the
Execution time statement build option. In this
situation, VisualAge Generator creates all the clauses
from the record definition that is specified as the I/O
object for the function. The clauseNames that might be

listed in this situation are: SELECT, INTO,
INSERTCOLNAME, VALUES, FORUPDATEOF, SET,
WHERE, and ORDERBY.

The migration tool builds a skeleton clause and
includes EZE_UNKNOWN_SQL_clauseName.

User response: Locate the record specified in the
message. Edit the function to include the missing SQL
clauses. To determine what the missing SQL clauses
need to be, use the VAGen SQL Statement Editor to
view the SQL clauses. For more information and for
potential problems, see “SQL I/O and missing required
SQL clauses” on page 98 or “SQL I/O and Execution
time statement build” on page 102. See the information
on EZE_UNKOWN_SQL_clauseName in Appendix D,
“Messages in the Problems view,” on page 427.

IWN.MIG.0608.e Function functionName, SQL I/O
object recordName - Unable to determine
SQL I/O clause clauseName for alternate
specification altspecRecordName.

Explanation: The specified recordName is available
during migration. However, the recordName specifies an
alternate specification record altspecRecordName which is
not available during migration. The migration tool is
unable to create the specified clause in one of the
following situations:

v The function uses modified SQL, but some of the
clauses are missing. In VisualAge Generator, at some
points in time, only the SQL clause that was
modified was saved with the function. In this
situation, VisualAge Generator creates the remaining
clauses from the record definition that is specified as
the I/O object for the function. The clauseNames that
might be listed in this situation are: SELECT, INTO,
INSERTCOLNAME, VALUES, and FORUPDATEOF.

v The function uses default SQL and specifies the
Execution time statement build option. In this
situation, VisualAge Generator creates all the clauses
from the record definition that is specified as the I/O
object for the function. The clauseNames that might be
listed in this situation are: SELECT, INTO,
INSERTCOLNAME, VALUES, FORUPDATEOF, SET,
WHERE, and ORDERBY.

The migration tool builds a skeleton clause and
includes EZE_UNKNOWN_SQL_clauseName.

User response: Locate the alternate specification
record specified in the message. Edit the function to
include the missing SQL clauses. To determine what the
missing SQL clauses need to be, use the VAGen SQL
Statement Editor to view the SQL clauses. For more
information and for potential problems, see “SQL I/O
and missing required SQL clauses” on page 98 or “SQL
I/O and Execution time statement build” on page 102.
See the information on
EZE_UNKOWN_SQL_clauseName in Appendix D,
“Messages in the Problems view,” on page 427.

416 Rational Business Developer: VisualAge Generator to EGL Migration Guide

IWN.MIG.0609.e Function functionName - record
recordName in SSAs is not available;
qualification of comparison value item
itemName cannot be determined.

Explanation: The modified DL/I statement used an
unqualified comparison value item. By default,
VisualAge Generator searches first for the item in the
DL/I segment record associated with the current SSA.
The specified DL/I segment record recordName
associated with the current SSA is not available.
Therefore, the migration tool is not able to determine
the qualification for the comparison value item.

User response: Locate and review the record specified
in the message. If the item is in the record, edit the
function to include the missing qualification for the
comparison value item. If the item is not in the record,
review your program logic to determine the correct
qualification to use. You can also review the generated
COBOL source code from the last time you generated
the program. In VisualAge Generator, at some points in
time, the rules for qualification of the comparison value
item varied. Therefore, due to the variations in the
qualification of the comparison value item, do not
regenerate the program using your current release of
VisualAge Generator unless you are certain that the
release has not changed since the last time you
generated the program.

IWN.MIG.0610.e Function functionName - record
recordName in SSAs has alternate
specification record altspecRecordName
that is not available; qualification of
comparison value item itemName cannot
be determined.

Explanation: The modified DL/I statement used an
unqualified comparison value item. By default,
VisualAge Generator searches first for the item in the
DL/I segment record associated with the current SSA.
The specified DL/I segment record recordName
associated with the current SSA is available during
migration. However, recordName specifies an alternate
specification record altspecRecordName which is not
available during migration. Therefore, the migration
tool is not able to determine the qualification for the
comparison value item.

User response: Locate and review the records
specified in the message. If the item is in the alternate
specification record, edit the function to include the
missing qualification for the comparison value item. If
the item is not in the record, review your program logic
to determine the correct qualification to use. You can
also review the generated COBOL source code from the
last time you generated the program. In VisualAge
Generator, at some points in time, the rules for
qualification of the comparison value item varied.
Therefore, due to the variations in the qualification of
the comparison value item, do not regenerate the
program using your current release of VisualAge

Generator unless you are certain that the release has
not changed since the last time you generated the
program.

IWN.MIG.0611.e Function functionName - comparison
value item itemName is not in record
recordName; qualification cannot be
determined.

Explanation: The modified DL/I statement used an
unqualified comparison value item. By default,
VisualAge Generator searches first for the item in the
DL/I segment record associated with the current SSA.
The migration tool searched the DL/I segment record
associated with the current SSA, but could not find the
item. In VisualAge Generator, at some points in time,
the rules for qualification of the comparison value item
varied. The migration tool is not able to determine
which record should be used to qualify the comparison.

User response: Review your program logic to
determine the correct qualification to use. You can also
review the generated COBOL source code from the last
time you generated the program. Due to the variations
in the qualification of the comparison value item, do
not regenerate the program using your current release
of VisualAge Generator unless you are certain that the
release has not changed since the last time you
generated the program.

IWN.MIG.0612.e Function functionName - invalid
relational operator for SSA; correct
operator cannot be determined.

Explanation: The modified DL/I statement used a
relational operator that is invalid. This can occur due to
a problem in VisualAge Generator that caused it to
store an incorrect value for the relational operator. The
migration tool is not able to determine the correct
relational operator. The migration tool uses
EZE_UNKNOWN_RELOP as the relational operator.

Note: The most likely operators to cause the problem
are the symbols used for not equal. The symbol
for not equal in an EGL SSA is !=.

User response: Use the DL/I Call Editor in VisualAge
Generator to review the SSAs for the specified function.
The correct operator is shown in the DL/I Call Editor
even though it is stored incorrectly in the External
Format File for the function. Edit the function in EGL
and change EZE_UNKNOWN_RELOP to the correct
value.

IWN.MIG.0613.w Function functionName - no I/O
error routine when using Execution time
statement build.

Explanation: In VisualAge Generator, the specified
function for an INQUIRY, UPDATE, SETINQ, or
SETUPD I/O option uses the Execution time statement
build option, but does not specify an I/O error routine.

Appendix C. Messages from the migration tools 417

At generation time, this results in an SQL PREPARE
statement, followed by an OPEN, and then (for
INQUIRY or UPDATE) followed by a FETCH. If a soft
error occurs on the SQL PREPARE statement,
processing continues. The migration tool converts the
I/O option to an EGL prepare statement followed by
either a get (for INQUIRY or UPDATE) or open (for
SETINQ or SETUPD). However, because there was no
I/O error routine in VisualAge Generator, the migration
tool cannot include a try...onException block around
the EGL I/O statements and therefore cannot include
additional logic so that processing continues after a soft
error on the EGL prepare statement. As a result of the
migration, if a soft error occurs on the EGL prepare
statement, processing stops.

User response: If a soft error is possible for the
prepare statement and you want processing to
continue, place a try...onException block around the
EGL prepare statement and include the appropriate
error handling logic so that processing can continue
after the soft error.

IWN.MIG.0614.w Function functionName - uses
SQLEXEC with Execution time
statement build.

Explanation: In VisualAge Generator, the specified
function uses the SQLEXEC I/O option and also
specifies the Execution time statement build option. At
generation time, this results in an SQL EXECUTE
IMMEDIATE which causes a PREPARE, EXECUTE, and
DESTROY to be done by this single SQL statement. The
migration tool converts the SQLEXEC to an EGL
prepare statement followed by an execute statement,
which is the closest EGL equivalent.

User response: None. However, test any programs
that use this function to be sure that the behavior and
performance are the same as in VisualAge Generator.

IWN.MIG.0701.e Function functionName - Unable to
determine map type for mapName used
in SET map PAGE statement; used
converseLib.EZE_SETPAGE();

Explanation: VisualAge Generator uses SET map
PAGE to indicate that the screen is to be cleared for a
display map or that a page eject is to occur for a
printer map. EGL uses the converseLib.clearScreen()
function only for text forms and the
converseLib.pageEject() function for print forms. The
map specified as mapName is not available during
migration. The migration tool does not make an
assumption about the map type. Instead, the migration
tool uses the converseLib.EZE_SETPAGE() placeholder
to ensure that EGL validation displays an error
message. The migration tool includes the original map
name as a comment.

User response: Review the function and determine
whether converseLib.clearScreen() or

converseLib.pageEject() is the correct choice. For
additional considerations, see the information in “SET
map PAGE statement” on page 110.

IWN.MIG.0702.e Function functionName - Unable to
determine return column name for
RETR statement due to missing table
tableName.

Explanation: If the return column is not specified on a
RETR statement, VisualAge Generator automatically
determines the return column name based on the
second column of the specified table. The EGL
replacement for RETR is an if statement, followed by
an assignment statement. The return column name
must be explicitly specified in the assignment
statement. The table specified by tableName is not
available during migration. The migration tool uses
EZE_UNKNOWN_RETURN_COLUMN to ensure that
EGL validation displays an error message. If this
problem occurs in program flow statements, the
program name appears in the message instead of a
function name.

User response: Edit the function and specify the
correct return column based on the table definition. The
second column in the table is the default return column
that is used in VisualAge Generator. For additional
considerations, see the information in “RETR
statement” on page 110.

IWN.MIG.0703.e Function functionName - Unable to
determine search column name for
RETR statement due to missing table
tableName.

Explanation: If the search column is not specified on a
RETR statement, VisualAge Generator automatically
determines the search column name based on the first
column of the specified table. The EGL replacement for
RETR is an if statement, followed by an assignment
statement. The search column name must be explicitly
specified in the if statement. The table specified by
tableName is not available during migration. The
migration tool uses
EZE_UNKNOWN_SEARCH_COLUMN to ensure that
EGL validation displays an error message. If this
problem occurs in program flow statements, the
program name appears in the message instead of a
function name.

User response: Edit the function and specify the
correct search column based on the table definition. The
first column in the table is the default search column
that is used in VisualAge Generator. For additional
considerations, see the information in “RETR
statement” on page 110.

418 Rational Business Developer: VisualAge Generator to EGL Migration Guide

IWN.MIG.0704.e Function functionName - Unable to
determine search column name for
FIND statement due to missing table
tableName.

Explanation: If the search column is not specified on a
FIND statement, VisualAge Generator automatically
determines the search column name based on the first
column of the specified table. The EGL replacement for
FIND is an if statement, followed by a function
invocation statement. The search column name must be
explicitly specified in the if statement. The table
specified by tableName is not available during
migration. The migration tool uses
EZE_UNKNOWN_SEARCH_COLUMN to ensure that
EGL validation displays an error message. If this
problem occurs in program flow statements, the
program name appears in the message instead of a
function name.

User response: Edit the function and specify the
correct search column based on the table definition. The
first column in the table is the default search column
that is used in VisualAge Generator. For additional
considerations, see the information in “FIND
statement” on page 109.

IWN.MIG.0706.e Function functionName - Unable to
determine record type for recordName
used in IF, WHILE, or TEST DUP
statement; used EZE_DUPLICATE.

Explanation: VisualAge Generator supports checking
both DUP and UNQ for both non-SQL and SQL
records. For SQL records, DUP and UNQ are identical.
EGL supports both duplicate and unique for non-SQL
records. EGL only supports unique for SQL records.
The record specified by recordName is not available
during migration. The migration tool migrates DUP to
EZE_DUPLICATE to ensure that EGL validation
displays an error message.

Note: The migration tool migrates the TEST statement
to an if statement.

User response: Edit the function and change
EZE_DUPLICATE to one of the following values:

v unique for an SQL record

v duplicate for a non-SQL record

For additional considerations, see the information in
“I/O error values UNQ and DUP” on page 114.

IWN.MIG.0707.e Function functionName - Unable to
determine if item itemName is in a
record or map when used in IF, WHILE,
or TEST NULL statement; used
EZE_NULL.

Explanation: VisualAge Generator supports checking
for NULL for both a map item and an SQL item.
Checking a map item for NULL is equivalent to

checking it for blanks. Checking an SQL item for NULL
checks the null indicator variable to determine if the
column is null in the database. The equivalent EGL
statement is to check a form field for blanks and an
SQL field for null. The item specified in itemName is
not available during migration. The migration tool
migrates NULL to EZE_NULL to ensure that EGL
validation displays an error message.

Note: The migration tool migrates the TEST statement
to an if statement.

User response: Edit the function and change
EZE_NULL to one of the following values:

v blanks for a form field

v null for an SQL field

For additional considerations, see the information in
“Checking SQL and map items for NULL” on page 113.

IWN.MIG.0708.w Function functionName - Uses
EZESYS in statement other than IF,
WHILE, or TEST; old VAGen values
will be used.

Explanation: VisualAge Generator supports the use of
EZESYS in statements other than IF, WHILE, and TEST.
The migration tool migrates EZESYS based on the
statement type. In IF, WHILE, and TEST statements, the
migration tool converts EZESYS to sysVar.systemType
and also converts the values to the new EGL values.
For statements other than IF, WHILE, or TEST, the
migration tool converts to custPrefixEZESYS, where
custPrefix is the Renaming prefix preference you set for
migration. When migrating programs, if you clear the
Do not initialize old EZESYS values migration
preference, the migration tool includes a declaration for
custPrefixEZESYS and a statement to initialize
custPrefixEZESYS to the original VAGen values. The
original VAGen values are used in this statement.

User response: Review the function and determine
whether you want to use the original VAGen values or
the new EGL values. If you want to use the new EGL
values, change custPrefixEZESYS to sysVar.systemType.

 If you want to use the original VAGen values and you
selected the Do not initialize old EZESYS values
migration preference during migration, you must add a
declaration and an initialization statement for
custPrefixEZESYS to any program that uses the
specified function. If you want to use the original
VAGen values and you cleared the Do not initialize
old EZESYS values migration preference, no change is
necessary. The declaration and initialization statements
for custPrefixEZESYS are already included in all the
migrated programs.

Appendix C. Messages from the migration tools 419

IWN.MIG. 0710.e Function functionName - MOVEA
for table tableName, but the table only
has one row.

Explanation: The MOVEA statement specifies a table
as the qualifier for the source field. In VisualAge
Generator, when a table with a single row of contents is
used as the source of a MOVEA statement, the source
is treated as a scalar and the target array is completely
initialized by the scalar source. This is contrary to the
VAGen documentation, which indicates that the table
should always be treated as an array, which in turn
causes only the first element of the target array to be
initialized. In EGL, a move with a for modifier is
always treated as a move of one array to another, so
only the first element of the target array is initialized. If
this problem occurs in program flow statements, the
program name appears in the message instead of a
function name.

User response: Review the program logic to verify
that you intended to initialize the entire target array. If
so, modify the program logic to use a loop to initialize
the target array from the source element of the table.

IWN.MIG.0711.w Function functionName - MOVEA
for qualifier tableName, but the qualifier
is not available.

Explanation: The MOVEA statement specifies a
qualifier for the source field. In VisualAge Generator,
when a table with a single row of contents is used as
the source of a MOVEA statement, the source is treated
as a scalar and the target array is completely initialized
by the scalar source. This is contrary to the VAGen
documentation, which indicates that the table should
always be treated as an array, which in turn causes
only the first element of the target array to be
initialized. In EGL, a move with a for modifier is
always treated as a move of one array to another, so
only the first element of the target array is initialized.
Because the qualifier is not available, the migration tool
is not able to determine if it is a table that only has a
single row of contents. If this problem occurs in
program flow statements, the program name appears in
the message instead of a function name.

User response: If the message is issued when a map
group is being migrated, you can ignore this message.
If the message is issued when a program is being
migrated, review the definition of the specified qualifier
to determine whether it is a record, a map, or a table
with multiple rows. If so, no action is necessary. If the
qualifier is a table with only a single row of contents,
see the User response for message IWN.MIG.0710.e for
information on how to resolve the problem.

IWN.MIG.0801.e Program name programName is a
reserved word. It must be renamed.

Explanation: The migration tool does not rename
programs for you.

User response: You must change the name of the
program and all references to it, including references on
call, transfer, and show statements and references in
linkage options parts. Also change the names of any
bind control or link edit parts that correspond to this
program. If you want to keep the original program
name as the name for the generated program, you can
specify the alias property. If you do not specify the
alias property, be sure to change any non-EGL
references to the program name, including CICS
program and transaction definitions.

IWN.MIG.0802.w Program programName - Allows
implicit items. Migration does not create
definitions for implicit items.

Explanation: In VisualAge Generator, a program can
specify that it allows implicit data items. If a program
that allows implicit data items actually uses an item
without defining it, VisualAge Generator automatically
creates the definition for you at test and generation
time. EGL does not allow implicit items. The migration
tool does not create implicit definitions for you.

User response: Validate the program in VisualAge
Generator to determine if any implicit items are being
used. If so, VisualAge Generator provides the
definitions for the implicit items in the validation
messages. In EGL, edit the program definition and add
the corresponding EGL primitive field declarations. You
do not need to create a record to contain the fields. You
can add the primitive field declarations directly to the
program. For information about a white paper that can
help you create the implicit items before you run Stage
1 of migration, see “References” on page 16.

IWN.MIG.0804.w Program programName - Unable to
determine part type for I/O object
partName used with CLOSE I/O option;
record assumed.

Explanation: In VisualAge Generator, the I/O objects
are automatically included at test or generation time.
The CLOSE I/O option can be used for both records
and print maps. In EGL, records used in I/O
statements must be explicitly declared in the program.
Forms are not explicitly declared, but there must be a
use declaration for the FormGroup. The CLOSE I/O
option is used in the specified program and the
specified partName is used as the I/O object for the
CLOSE. However, the specified partName is not
available during migration. The migration tool assumes
that the part is a record and includes the data
declaration.

User response: If the migration tool guesses

420 Rational Business Developer: VisualAge Generator to EGL Migration Guide

incorrectly, EGL validation displays an error message in
the Problems view. Edit the program, remove the
record declaration, and add the use declaration for the
form..

IWN.MIG.0805.w Program programName - execution
mode not specified; nonsegmented
assumed.

Explanation: In VisualAge Generator, at some points
in time, the execution mode was not saved with the
program part. Execution mode only applies to main
transaction programs. The specified programName is a
main transaction program, but does not include the
execution mode in the external source format. The
migration tool assumes that the execution mode is
nonsegmented and sets the segmented property to NO
in the EGL source.

User response: No action is required if the program
should run in nonsegmented mode. If the program
should run in segmented mode, edit the program and
change the segmented property to YES.

IWN.MIG.0806.w Program programName, use
declaration for table tableName -
preferences caused deleteAfterUse=yes
to be omitted.

Explanation: The specified program contains a use
declaration for the specified table. In Cross System
Product and some releases of VisualAge Generator, the
keep after use flag determined when memory for a
table was freed by a program. The VisualAge Generator
keep after use flag is normally migrated to the EGL
deleteAfterUse property on the use declaration for the
table. However, your VAGen Migration Preferences
specified that the migration tool should not include the
deleteAfterUse property.

User response: None. If your VAGen programs were
generated using VisualAge Generator 4.5 Fix Pack 4 or
later, then there should not be any difference in
behavior. For details, see information about
deleteAfterUse in “Eliminating the use of VisualAge
Generator compatibility mode” on page 225.

IWN.MIG.0807.e Program programName - PSB
psbName is not available; DLI segment
records for the PSB cannot be
determined.

Explanation: In VisualAge Generator, all the DL/I
segment records specified in the PSB for the program
are automatically included at test or generation time
because they might be used in creating a default SSA or
explicitly used in a modified SSA. In EGL, the DL/I
segment records must be explicitly declared in the
program if they are used in a default SSA or explicitly
used in a modified SSA. The specified psbName is not
available during migration. Therefore, the migration
tool cannot determine whether any DL/I segment

records need to be added to the list of data declarations
for the program.

User response: Check the EGL Problems view for a
message about an ambiguous or unresolved DL/I
segment records for this function or program. If there is
no message, this indicates that a declaration for the
DL/I segment record is already included for the
program (most likely as the result of I/O directly
against the DL/I segment record). If there is a message,
edit the program and add the declaration for the DL/I
segment record.

IWN.MIG.0808.e Called program programName - PSB
psbName is not available; PCB types
cannot be determined.

Explanation: In VisualAge Generator, EZEDLPCB[n]
where n is a numeric literal, is used to indicate a PCB
that is passed to a program as a parameter. VisualAge
Generator uses the PCB without regard to whether the
PCB is an I/O, alternate, database, or GSAM PCB.
EZEDLPCB[0] is always the I/O PCB and is not
explicitly listed in the VAGen PSB part. An error occurs
if the DL/I PCB is not of the correct type when the
PCB is used at runtime. In EGL, the PCB name from
the PSBRecord for the program is used as the
parameter name. The PCB type must be explicitly
specified for each program parameter by giving the
appropriate type definition using a record name
(IO_PCBRecord, ALT_PCBRecord, DB_PCBRecord, or
GSAM_PCBRecord). The migration tool always uses
IO_PCBRecord as the type definition for EZEDLPCB[0].
The program programName specifies one or more
EZEDLPCB[n] parameters where n is greater than 0.
However, the specified psbName is not available during
migration. Therefore, the migration tool cannot
determine the type to include for the PCB in the
parameter list. The migration tool uses
EZE_UNKNOWN_PCB_TYPE for all the PCBs in the
parameter list.

User response: Locate the specified PSBRecord. Edit
the program and change the type definitions to specify
the correct xxxx_PCBRecord based on the
corresponding PCB type in the specified EGL
PSBRecord.

IWN.MIG.0809.e Called program programName - PSB
psbName is not available; PCB mapping
cannot be determined.

Explanation: In VisualAge Generator, EZEDLPCB[n]
where n is a numeric literal, is used to indicate a PCB
that is passed to a program as a parameter. VisualAge
Generator automatically associates EZEDLPCB[n] with
the corresponding PCB in the VAGen PSB part.
EZEDLPCB[0] is always the I/O PCB and is not
explicitly listed in the VAGen PSB part. An error occurs
if the DL/I PSB does not have the expected number of
PCBs at runtime. In EGL, the PCB name from the
PSBRecord for the program is used as the parameter

Appendix C. Messages from the migration tools 421

name. The pcbParms property is used to explicitly
associate each PCB in the parameter list with the
corresponding position within the EGL PSBRecord. The
program programName specifies one or more
EZEDLPCB[n] parameters, but the specified psbName is
not available during migration. Therefore, the
migration tool cannot determine the number of PCBs to
include in the pcbParms property. The migration tool
uses EZE_UNKNOWN_PCB_MAPPING for the value
of the pcbParms property.

User response: Locate the specified PSBRecord. Edit
the program and change the pcbParms property to
provide the mapping between the PCB parameters and
the PCBs in the specified EGL PSBRecord.

IWN.MIG.0810.e Called program programName -
parameter list references higher PCB
numbers than exist in PSB psbName;
PCB types and PCB mapping are not
complete.

Explanation: In VisualAge Generator, EZEDLPCB[n]
where n is a numeric literal, is used to indicate a PCB
that is passed to a program as a parameter. VisualAge
Generator automatically associates EZEDLPCB[n] with
the corresponding PCB in the VAGen PSB part. The
association is done without regard to whether the PCB
is an I/O, alternate, database, or GSAM PCB.
EZEDLPCB[0] is always the I/O PCB and is not
explicitly listed in the VAGen PSB part. A runtime error
occurs if the DL/I PSB does not have the expected
number of PCBs or if the DL/I PCB is not of the
correct type. In EGL, the PCB name from the
PSBRecord for the program is used as the parameter
name. The PCB type must be explicitly specified for
each program parameter by giving the appropriate type
definition using a record name (IO_PCBRecord,
ALT_PCBRecord, DB_PCBRecord, or
GSAM_PCBRecord). The migration tool always uses
IO_PCBRecord as the type definition for EZEDLPCB[0].
In addition, the pcbParms property is used to explicitly
associate each PCB in the parameter list with the
corresponding position within the EGL PSBRecord. The
program programName specifies one or more
EZEDLPCB[n] parameters, but some of the values for n
are greater than the number of PCBs in the specified
psbName. Therefore, the migration tool cannot
determine the type definition to include for some of the
PCBs in the parameter list. The migration tool uses
EZE_UNKNOWN_PCB_TYPE for any PCB in the
parameter list that does not correspond to a PCB in the
specified psbName. In addition, the migration tool
cannot determine the number of PCBs to include in the
pcbParms property. The migration tool creates PCB
mapping information for all EZEDLPCB[n] parameters,
up to and including the highest value of n. However,
this list does not match the available PCBs in the
specified psbName.

User response: Locate the specified PSBRecord.
Review the PSBRecord and the program logic to

determine which is correct. Add any additional PCBs to
the PSBRecord. Edit the program and change the
parameter type definitions to specify the correct
xxxx_PCBRecord based on the corresponding PCB type
in the specified EGL PSBRecord. Also change the
pcbParms property to provide the correct mapping
between the PCB parameters and the PCBs in the
specified EGL PSBRecord.

IWN.MIG.0811.w Program programName - does not
appear to use any maps; use statement
for FormGroup FormGroupName
commented out.

Explanation: VisualAge Generator requires that a
main transaction or called transaction program always
specify map group, even if the program does not use
any maps. In this situation, the map group part did not
have to exist. EGL does not require that a program
specify a FormGroup unless the program actually uses
a form. The migration tool determined that the
program specifies a map group, but does not appear to
use a map as an I/O object, in an XFER with a map
statement, as a called parameter, or as the First Map of
the program. Therefore, the migration tool commented
out the use statement for the FormGroup in the EGL
program. The migration tool also commented out the
use statement for the help FormGroup if one was
present.

User response: None. However, if there are additional
functions for this program that were not included in
the migration set or in the External Source Format file,
these functions might use maps from the specified map
group. If you need to use forms within the FormGroup,
change the EGL program to uncomment the use
statement for the FormGroup and help FormGroup. If
there are multiple forms within the form group, you
might need to change the use declaration so that it
specifies the specific forms within the FormGroup that
the program uses. Listing specific forms can help avoid
unresolved or ambiguous references in EGL.

IWN.MIG.0901.w PSB psbName has multiple PCBs
with the same database name
databaseName.

Explanation: In VisualAge Generator, for a DL/I I/O
function, you can specify which PCB to use by
specifying either the database name or the PCB number
from the VAGen PSB. The same database name can be
specified for multiple PCBs in the VAGen PSB. There is
no PCB name in the VAGen PSB. The actual database
name is never used by test, generation, or runtime. The
DL/I PSBs do not need to include the PCBNAME
parameter. In EGL, for debugging, the PCBNAME
parameter (or a label to provide the PCB name) is
required for each database PCB in the DL/I PSB. The
PCBNAME parameter must match the pcbName
property for the corresponding PCB in the EGL
PSBRecord. The migration tool uses the original

422 Rational Business Developer: VisualAge Generator to EGL Migration Guide

database name from the VAGen PSB concatenated with
your Database PCB suffix migration preference to
create the name of the EGL PCB record. The migration
tool also sets the pcbName property for the EGL PCB
record to the original database name from the VAGen
PSB. In general, when you add the PCBNAME to your
DL/I PSBs, you can use the VAGen database name as
the PCBNAME. However, the PCBNAMEs must be
unique in the DL/I PSB. Therefore, the migration tool
issues this message whenever there are multiple PCBs
in the VAGen PSB with the same database name. In
this situation, the pcbName property set by the
migration tool cannot be used for all of the PCBs.

User response: When you modify your DL/I PSB to
include the PCBNAME parameters, you must use
unique PCB names. After you set the PCB names in
your DL/I PSB, you must update the pcbName
property EGL PSBRecord to reflect the actual PCB
names in your DL/I PSB.

IWN.MIG.1001.e Generation options part partName is
a reserved word. It must be renamed.

Explanation: The migration tool does not rename
programs for you. Because a program might have a
special generation options part named as
programName.opt, the migration tool also does not
rename generation options parts.

User response: When you change the program name,
be sure to change the name of the corresponding
generation options part.

IWN.MIG.1002.w Generation options part partName -
/dbms=odbc is migrated to dbms="DB2".

Explanation: The specified generation options part
includes the VAGen generation option /dbms=odbc.
EGL only supports DB2 or Oracle. The migration tool
converts /dbms=odbc to dbms="DB2" in the EGL build
descriptor part. EGL provides DB2 support by using a
JDBC driver. If you have a JDBC driver for your
database, you might be able to use the build descriptor
option dbms="DB2" as the database type.

Note: In EGL, Oracle is supported only if you use Java
generation.

User response: Be sure to migrate, generate, and test a
variety of VAGen programs that used ODBC support to
ensure that all the functions you require work correctly
with your JDBC driver. For more information, see
“Differences in SQL support” on page 233.

IWN.MIG.1003.e Generation options part partName -
/system=systemType is not supported.

Explanation: The specified generation options part
includes the VAGen /system generation option and
specifies a runtime environment that is not supported
by EGL. The migration tool converts the /system

generation option to a comment in the EGL build
descriptor part.

User response: Determine whether this build
descriptor part is used by other build descriptor parts.
If not, you can delete the build descriptor part.
Alternatively, you might want to keep the build
descriptor part for reference if EGL supports this
runtime environment at sometime in the future.

IWN.MIG.1004.w Generation options part partName -
/system=systemType requires that
destPort be set.

Explanation: The specified generation options part
includes the /system generation option and specifies a
COBOL runtime environment. The EGL build process
requires you to specify a destination port using the
destPort build descriptor option.

User response: Modify the build descriptor part that
corresponds to the generation options part and include
the destPort build descriptor option. Consider the
following environments when specifying the value of
destPort:

v For z/OS environments, there is no default value for
destPort. You must add the destPort build descriptor
option and the value must match the value you use
in the JCL that starts the z/OS build server. The
sample JCL for starting a z/OS build server uses
port 5555.

v For iSeries environments, there is no default value
for destPort. You must add the destPort build
descriptor option. The value must match the value
used by the iSeries build server.

v For VSE environments, the default value for destPort
is 21. You only need to specify the destPort build
description option if the value is different from 21.

IWN.MIG.1099.e Control part partName - symparm
symparmName is not supported.

Explanation: The specified control part uses or sets a
symparm which is not supported in EGL. The
migration tool migrates the symparm "as is" using the
original VAGen symparm name. However, in EGL the
SymbolicParameter is not set during generation.

User response: Modify the control part to set a default
value for the SymbolicParameter. Alternatively, modify
the control part so that it no longer uses the specified
SymbolicParameter.

IWN.MIG.1101.e Linkage table part partName is a
reserved word. It must be renamed.

Explanation: The migration tool does not rename
control parts for you.

User response: Modify the linkage options part name
so that it is not a reserved word. When you change the
linkage options part name, be sure to change all the

Appendix C. Messages from the migration tools 423

build descriptor parts that reference the linkage options
part.

IWN.MIG.1102.e Linkage table partName -
/contable=BINARY is not supported. It
must be changed.

Explanation: VisualAge Generator supports
/contable=BINARY in the linkage table part. EGL does
not support this value. The migration tool sets the
conversionTable property in the EGL linkage options
part to "BINARY". This value is invalid, but is not
detected until generation.

User response: You must change the conversionTable
property to a value that is supported by EGL. Refer to
the information about linkage options parts in the
online help for details about the EGL conversionTable
property and the options that are available.

IWN.MIG.1103.e Linkage table part partName -
/remotecomtype=CICSCLIENT is not
supported. Defaulted to CICSECI.

Explanation: VisualAge Generator supports
/remotecomtype=CICSCLIENT in the linkage table
part. EGL does not support this value. The migration
tool includes the remoteComType="CICSECI" in the
EGL linkage options part. This value is valid, but might
not be what you plan to use. If you want to use
CICSECI, you need to set the ctgPort and ctgLocation
properties.

User response: If you plan to use CICSECI, modify
the linkage options part and set the values of ctgPort
and ctgLocation for the entry that specifies CICSECI as
the remoteComType. If you do not plan to use
CICSECI, refer to the information about linkage options
parts in the online help for details about the EGL
remoteComType property and the options that are
available in EGL.

IWN.MIG.1104.e Linkage table part partName -
/remotecomtype=communicationType is
not supported. It must be changed.

Explanation: VisualAge Generator supports
/remotecomtype=communicationType in the linkage table
part. EGL does not support this communications
protocol. The migration tool sets the remoteComType
property to "communicationType" in the EGL linkage
options part. This value is not valid and must be
changed.

User response: Determine the communication protocol
that you plan to use. Then edit the part and change the
remoteComType to a value that is supported by EGL.
Refer to the information about linkage options parts in
the online help for details about the EGL
remoteComType property and the options that are
available in EGL.

IWN.MIG.1201.e Resource association part partName
is a reserved word. It must be renamed.

Explanation: The migration tool does not rename
control parts for you.

User response: Modify the resource associations part
name so that it is not a reserved word. When you
change the resource associations part name, be sure to
change all the build descriptor parts that reference the
resource associations part.

IWN.MIG.1202.e Resource association part partName -
/filetype=fileType is not supported. It
must be changed.

Explanation: VisualAge Generator supports
/filetype=BTRIEVE and /filetype=MFCOBOL for some
workstation environments. EGL does not support these
file types. The migration tool includes the filetype
information in the EGL resource associations part. The
value is invalid; EGL validation displays an error
message in the Problems view.

User response: You must change the filetype value to
a value that is supported by EGL. Refer to the
information about resource associations parts in the
online help for details about the EGL filetype property
and the options that are available.

IWN.MIG.1203.e Resource association part partName -
/system is targetSystem, which is not
supported; migrated based on /filetype
fileType information.

Explanation: The resource associations part contains
an entry that uses the specified targetSystem. This target
system is not supported in EGL. The migration tool
migrates the resource association entry based on the
fileType. For example, if the targetSystem is mvs* and the
fileType is transient, the migration tool creates an EGL
resource association entry and sets the EGL system to
mvs*. This is invalid; EGL validation displays an error
message in the Problems view. You can correct the
entry by specifying a valid EGL system (zoscics for this
example).

User response: If there is an error in the Problems
view, correct the entry in the resource associations part
by specifying a valid target system.

IWN.MIG.1301.e Linkedit part partName is a reserved
word. It must be renamed.

Explanation: The migration tool does not rename
programs for you. Because the program name must
match its corresponding link edit part, the migration
tool also does not rename the link edit part.

User response: When you change the program name,
be sure to change the name of the corresponding link
edit part.

424 Rational Business Developer: VisualAge Generator to EGL Migration Guide

IWN.MIG.1401.e Bind control part partName is a
reserved word. It must be renamed.

Explanation: The migration tool does not rename
programs for you. Because the program name must
match its corresponding bind control part, the

migration tool also does not rename the bind control
part.

User response: When you change the program name,
be sure to change the name of the corresponding bind
control part.

Messages from the VisualAge Generator to EGL migration tool—Stage
3

The following messages are produced by Stage 3.

IWN.MIG.0030.i Migration set Name_version -- import
analysis started.

Explanation: This is an information message to
indicate status from the migration tool.

User response: None.

IWN.MIG.0031.i Migration set Name_version -- import
analysis completed.

Explanation: This is an information message to
indicate status from the migration tool.

User response: None.

IWN.MIG.0032.i Migration set Name_version -- not
processed for Stage 3.

Explanation: This is an information message to
indicate status from the migration tool. The specified
migration set version was not processed during Stage 3.
This is because another version of the migration set is
imported into the workspace. For example, you
requested to import the latest version of the migration
sets and the specified version is not the latest version
of the specified migration set.

User response: None.

IWN.MIG.0033.e Exception merging EGL Source file
fileName - exceptionText.

Explanation: During Stage 3 migration, you cleared
the option to Override existing files. New parts from
the current migration set are supposed to be merged
into existing files. However, the migration tool was not
able to do the merge for the specified file.

User response: Contact IBM support for assistance. Be
prepared to provide the workspace and the migration
database that you used during Stage 3 migration.

Appendix C. Messages from the migration tools 425

426 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix D. Messages in the Problems view

In an ambiguous situation, the migration tool is not always able to determine the
correct EGL syntax to build during migration. This typically occurs when an
associated part is not available during migration. In these cases, the migration tool
sometimes creates intentionally invalid EGL syntax so that EGL validation displays
an error message in the Problems view or a compile error occurs. The following
table lists the specific text string that caused the error. The specific EGL error
message or compiler message might vary, but the text string listed in the left
column appears near the EGL statement that is flagged as an error. Whenever the
migration tool includes these text strings, the tool also issues a message to the
migration log.

 Table 163. VAGen migration text that causes EGL syntax or validation errors

VAGen migration text in EGL syntax Problem and Solution

###KEYS_NOT_FOUND### Problem: The current SQL record embeds the structure from another
record. During migration the record named by the embed keyword
was not available. Any key item specified for the current SQL record
in VAGen is included in the keyItems property, but the keys from the
embedded record are missing.

Solution: Find the EGL record named by the embed keyword.
Replace the ###KEYS_NOT_FOUND### text with the keys listed in
the embedded SQL record. Be sure to merge the embedded record
keys with the key item from the current record in the order that the
fields appear in the record structure of the embedded record. If the
key item from the current record is also specified in the keyItems
property of the embedded record, only include the field once in the
EGL keyItems property.

###TABLES_NOT_FOUND### Problem: The current SQL record embeds the structure from another
record. During migration the record named by the embed keyword
was not available.

Solution: Find the EGL record named by the embed keyword and
copy the tableNames and tableNameVariables properties into the
current SQL record.

EZE_DUPLICATE Problem: The record named in a VAGen IF, WHILE, or TEST
statement was not available during migration.

Solution: Find the EGL record named on the EGL if or while
statement. Change EZE_DUPLICATE to one of the following values:

v duplicate for a non-SQL record

v unique for an SQL record

EZE_NULL Problem: The migration tool could not determine whether the item
named on a VAGen IF, WHILE, or TEST statement is in an SQL
record or on a map.

Solution: Review the program and determine whether the field is in
an SQL record or on a form. Replace EZE_NULL with one of the
following values:

v null for an SQL field

v blanks for a form field

© Copyright IBM Corp. 2004, 2011 427

Table 163. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_SCRPT Problem: In a VisualAge Generator GUI, EZESCRPT is used to invoke
a Java or Smalltalk method. EGL does not have a corresponding
system function. The migration tool uses EZE_SCRPT to indicate a
statement that cannot be converted to EGL.

Solution: Either change the function or move it to a project that
contains unused functions.

EZE_SETPAGE(); Problem: The map named on a VAGen SET map PAGE statement was
not available during migration.

Solution: Find the form named on the // VAGen Info comment that
accompanies the EZE_SETPAGE() statement. Change EZE_SETPAGE
to one of the following functions:

v converseLib.clearScreen() for a text form

v converseLib.pageEject() for a print form

EZE_UNKNOWN_PARTTYPE Problem: The External Source Format stored in the migration
database was not valid. The migration tool was not able to determine
the part type and was not able to convert the part to EGL syntax.

Solution: The part named on the EZE_UNKNOWN_PARTTYPE
statement is not valid. If this problem only occurs for a few parts, try
exporting External Source Format from VisualAge Generator and
migrating these parts in single file mode.

If you created your own tool to load the migration database, there
might be a problem with the way the tool is loading External Source
Format code into the migration database. See Appendix G, “Migration
database,” on page 459 for some queries that might be useful in
determining what is causing the problem.

EZE_UNKNOWN_PCB_MAPPING Problem: The PSB part specified for the program was not available
during migration. The migration tool was not able to determine the
values to specify for the pcbParms property.

Solution: Find the data declaration in the program for the variable
named psb. The type definition that is specified for psb is the name
of the EGL PSBRecord part for the program. Change the pcbParms
property for the program to map the input PCB parameters to the
corresponding PCBs within the EGL PSBRecord part. For additional
details, see message IWN.MIG.0809.e (on page 421).

EZE_UNKNOWN_PCB_TYPE Problem: The PSB part specified for the program was not available
during migration or contained fewer PCBs than specified by the
parameter list for the program. The migration tool was not able to
determine the type definitions to use for the PCB parameters for the
program. Each PCB in the parameter list is pcbn, where n is a
numeric literal that corresponds to a PCB in the EGL PSBRecord.

Solution: Find the data declaration in the program for the variable
named psb. The type definition that is specified for psb is the name
of the EGL PSBRecord part for the program. Change the PCB
parameters for the program to specify the correct type definition
record (IO_PCBRecord, ALT_PCBRecord, DB_PCBRecord, or
GSAM_PCBRecord) based on the type definition for the
corresponding PCB in the EGL PSBRecord. For additional details, see
message IWN.MIG.0808.e (on page 421).

428 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 163. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_QUALIFIER Problem: The current Segment Search Argument (SSA), contains an
EGL host variable (VAGen comparison value item) that is not
qualified. The DL/I segment record or its alternate specification
record for the SSA was not available during migration. Alternatively,
the record was available but did not contain the comparison value
item. The migration tool was not able to determine the qualifier for
the EGL host variable.

Solution: Find the DL/I segment record or its alternate specification
record for the current SSA. Determine whether the host variable is an
item in the record. If so, change the qualifier for the host variable to
the DL/I segment record name. If not, determine the correct qualifier
to use. For additional details on how to determine the correct
qualifier, see message IWN.MIG.0611.e (on page 417)

EZE_UNKNOWN_RELOP Problem: The modified DL/I statement used a relational operator
that is invalid. This can occur due to a problem in VisualAge
Generator that caused it to store an incorrect value for the relational
operator. The migration tool was not able to determine the correct
relational operator.

Solution: Use the DL/I Call Editor in VisualAge Generator to review
the SSAs for the specified function. The correct operator is shown in
the DL/I Call Editor even though it is stored incorrectly in the
External Format File for the function. Edit the function in EGL and
change EZE_UNKNOWN_RELOP to the correct value.
Note: The most likely operators to cause the problem are the symbols
used for not equal. The symbol for not equal in an EGL SSA is !=.

EZE_UNKNOWN_RETURN_COLUMN Problem: The VAGen table named on the VAGen RETR statement
was not available during migration.

Solution: Find the EGL DataTable named on the assignment
statement and replace EZE_UNKNOWN_RETURN_COLUMN with
the name of the second column in the DataTable.

EZE_UNKNOWN_SEARCH_COLUMN Problem: The VAGen table named on the VAGen FIND or RETR
statement was not available during migration.

Solution: Find the EGL DataTable named on the if statement and
replace EZE_UNKNOWN_SEARCH_COLUMN with the name of the
first column in the DataTable.

EZE_UNKNOWN_SQLTABLE Problem: The SQL record named as the I/O object was not available
during migration. The migration tool was not able to determine the
correct tables clause for the EGL I/O statement.

Solution: Find the record named in the I/O statement and determine
the correct tables clause from the tableNames or tableNameVariables
record properties, or both.

Appendix D. Messages in the Problems view 429

Table 163. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_SQL_FORUPDATEOF Problem: VisualAge Generator created a default FOR UPDATE OF
clause for the SQL UPDATE or SETUPD I/O option. The SQL record
named as the I/O object was not available during migration.
Therefore, the migration tool was not able to determine the correct
FOR UPDATE OF clause for the EGL I/O statement.

Solution: Find the record named in the I/O statement and determine
the correct FOR UPDATE OF clause from the list of fields in the
record. The default FOR UPDATE OF clause in VisualAge Generator
is the list of column names from the record in the same order as the
fields are listed in the record, but omitting the columns for the
following cases:

v Any column name that is listed in the EGL keyItems property for
the record.

v Any column name that is specified with the EGL isReadOnly =
YES property.

If the record named in the I/O statement embeds another SQL record,
use the two records to determine the column names in the following
way:

v Use the record named by the embed keyword to determine the
order of the columns and the isReadOnly = YES property.

v Use the record named in the I/O statement (the embedding record)
to determine the keyItems property.

If the FOR UPDATE OF clause is used in an EGL prepare statement,
enclose the list of column names within double-quotes.

EZE_UNKNOWN_SQL_INSERTCOLNAME Problem: VisualAge Generator created a default list of columns for
the SQL ADD I/O option. The SQL record named as the I/O object
was not available during migration. Therefore, the migration tool was
not able to determine the correct list of column names for the EGL
add statement.

Solution: Find the record named in the I/O statement and determine
the correct list of columns from the list of fields in the record. The
default list of column names in VisualAge Generator is the list of
column names from the record in the same order as the fields are
listed in the record, but omitting any column name that is specified
with the EGL isReadOnly = YES property. If the record named in the
I/O statement embeds another record, use the record named by the
embed keyword to determine the order of the columns and the
isReadOnly = YES property. This list of column names is never used
in an EGL prepare statement.

EZE_UNKNOWN_SQL_INTO Problem: VisualAge Generator created a default list of data items for
the INTO clause for the SQL INQUIRY, SETINQ, UPDATE, or
SETUPD I/O option. The SQL record named as the I/O object was
not available during migration. Therefore, the migration tool was not
able to determine the correct INTO clause for the EGL I/O statement.

Solution: Find the record named in the I/O statement and determine
the correct list of fields for the INTO clause. The default list of fields
in VisualAge Generator is the list of fields from the record in the
same order as the fields are listed in the record. If the record named
in the I/O statement embeds another record, use the record named by
the embed keyword to determine the order of the fields. The INTO
clause is never used in an EGL prepare statement.

430 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 163. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_SQL_ORDERBY Problem: VisualAge Generator created a default list of column
positions for the SQL ORDER BY clause for the SQL SETINQ I/O
option when default SQL was used and the Execution time statement
build option was specified. The SQL record named as the I/O object
was not available during migration. Therefore, the migration tool was
not able to determine the correct ORDER BY clause for the EGL I/O
statement.

Solution: Find the record named in the I/O statement and determine
the correct list of column positions for the ORDER BY clause. The
default list of column positions in VisualAge Generator is the list of
field positions that correspond to each item in the EGL keyItems
property followed by the ASC option. The first field in the record is
considered to be position 1. If the record named in the I/O statement
embeds another record, use the EGL keyItems property for the record
named in the I/O statement, not the embedded record, to determine
the ORDER BY clause. Create the ORDER BY clause for the EGL
prepare statement in the following format:

"order by keyField1Position, keyField2Position asc"

EZE_UNKNOWN_SQL_SELECT Problem: VisualAge Generator created a default list of columns for
the SELECT clause for the SQL INQUIRY, SETINQ, UPDATE, or
SETUPD I/O option. The SQL record named as the I/O object was
not available during migration. Therefore, the migration tool was not
able to determine the correct SELECT clause for the EGL I/O
statement.

Solution: Find the record named in the I/O statement and determine
the correct list of column names for the SELECT clause. The default
list of column names in VisualAge Generator is the list of column
names from the record in the same order as the fields are listed in the
record. If the record named in the I/O statement embeds another
record, use the record named by the embed keyword to determine
the order of the columns. If the SELECT clause is used in an EGL
prepare statement, enclose the list of column names within
double-quotes.

Appendix D. Messages in the Problems view 431

Table 163. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_SQL_SET Problem: VisualAge Generator created a default list of columns and
values for the SQL SET clause when the SQL SQLEXEC I/O option
was used with default SQL, the model option was set to UPDATE
and the Execution time statement build option was specified. The
SQL record named as the I/O object was not available during
migration. Therefore, the migration tool was not able to determine the
correct SET clause for the EGL I/O statement.

Solution: Find the record named in the I/O statement and determine
the correct list of columns and values for the SET clause. The default
list of columns and values in VisualAge Generator is the list of
columns and their corresponding field names from the record in the
same order as the columns and fields are listed in the record, but
omitting the column and its corresponding field for the following
cases:

v Any column name that is listed in the EGL keyItems property for
the record.

v Any column name that is specified with the EGL isReadOnly =
YES property.

If the record named in the I/O statement embeds another SQL record,
use the two records to determine the column names in the following
way:

v Use the record named by the embed keyword to determine the
order of the columns and the isReadOnly = YES property.

v Use the record named in the I/O statement (the embedding record)
to determine the keyItems property.

Create the SET clause for the prepare statement in the following
format:

" set columnName1 = " + fieldName1
+ " , columnName2 = " + fieldName2

EZE_UNKNOWN_SQL_SQLEXEC Problem: One of the following situations occurred for an SQLEXEC
I/O option in VisualAge Generator:

v No record and no SQL clause were specified.

v A record was specified but the Model option was set to NONE.

The function is invalid in VisualAge Generator. Therefore, the
migration tool cannot determine what I/O statement, if any, is
supposed to be created.

Solution: Review your VAGen source code to determine was is really
intended for this function.

432 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Table 163. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_SQL_VALUES Problem: VisualAge Generator created a default list of data items to
provide the values for the SQL ADD I/O option. The SQL record
named as the I/O object was not available during migration.
Therefore, the migration tool was not able to determine the correct list
of field names for the VALUES clause of the EGL add statement.

Solution: Find the record named in the I/O statement and determine
the correct list of fields for the VALUES clause. The default list of
field names in VisualAge Generator is the list of fields from the
record in the same order as the fields are listed in the record, but
omitting any field that is specified with the EGL isReadOnly = YES
property. If the record named in the I/O statement embeds another
record, use the record named by the embed keyword to determine
the order of the fields and the isReadOnly = YES property. The
VALUES clause is never used in an EGL prepare statement.

EZE_UNKNOWN_SQL_WHERE

where the VAGen I/O option is one of the
following options:

v INQUIRY

v UPDATE

v SQLEXEC with the model option set to
UPDATE or DELETE

Problem: VisualAge Generator created an SQL WHERE clause for the
SQL INQUIRY, UPDATE, or SQLEXEC I/O options when default SQL
was used and the Execution time statement build option was
specified. The SQL record named as the I/O object was not available
during migration. Therefore, the migration tool was not able to
determine the correct WHERE clause for the EGL I/O statement.

Solution: Find the record named in the I/O statement and determine
the correct WHERE clause from the defaultSelectCondition and
keyItems properties in the EGL record. Create the WHERE clause for
the prepare statement in the following way:

v If there is a defaultSelectCondition and there are no key items,
create the WHERE clause from the defaultSelectCondition. For
example:

" where " + recordDefaultSelectCondition

v If there is no defaultSelectCondition, but there are one or more
fields listed in the EGL keyItems property, create the WHERE
clause using all key items. For example:

" where keyColumn1 = " + keyField1
+ " and keyColumn2 = " + keyField2

v If there is a defaultSelectCondition and there are one or more
fields listed in the EGL keyItems property, create the WHERE
clause using both the default select condition and all the key items.
For example:

" where " + recordDefaultSelectCondition
+ " and keyColumn1 = " + keyField1
+ " and keyColumn2 = " + keyField2

v If the WHERE clause includes the information from the
defaultSelectCondition property, convert column information and
operators to text literals and omit the semicolon from the host
variable names, as is shown for the keyItems property.

v In all other cases, omit the WHERE clause.

Appendix D. Messages in the Problems view 433

Table 163. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_SQL_WHERE

where the VAGen I/O option is one of the
following options:

v SETINQ

v SETUPD

Problem: VisualAge Generator created a WHERE clause for the SQL
SETINQ or SETUPD I/O options when default SQL was used and the
Execution time statement build option was specified. The SQL record
named as the I/O object was not available during migration.
Therefore, the migration tool was not able to determine the correct
WHERE clause for the EGL I/O statement.

Solution: Find the record named in the I/O statement and determine
the correct WHERE clause from the defaultSelectCondition and
keyItems properties in the EGL record. Create the WHERE clause for
the prepare statement in the following way:

v If there is a defaultSelectCondition and no key items or more than
one key item, create the WHERE clause from the
defaultSelectCondition. For example:

 " where " + recordDefaultSelectCondition

v If there is no defaultSelectCondition, but there is exactly one field
listed in the EGL keyItems property, create the WHERE clause
using the key item. For example:

" where keyColumn >= " + keyField

v If there is a defaultSelectCondition and there is exactly one field
listed in the EGL keyItems property, create the WHERE clause
using both the default select condition and the key item. For
example:

" where " + recordDefaultSelectCondition
+ " and keyColumn = " + keyField

v If the WHERE clause includes the information from the
defaultSelectCondition property, convert column information and
operators to text literals and omit the semicolon from the host
variable names, as is shown for the keyItems property.

v In all other cases, omit the WHERE clause.

434 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix E. IWN.xxx messages in the Problems view

Some IWN.SYN, IWN.VAL, and IWN.XML messages are more likely to occur for
EGL source code that was migrated from VisualAge Generator than for code that
you develop completely within EGL. This section lists messages that have a special
meaning for migrated code.

If there are numerous errors in a file, it is best to resolve the errors in the following
order:
v IWN.SYN messages for invalid syntax. These messages are typically the result of

one of the following things:
– An EGL reserved word used as the name of a Program, FormGroup, Form, or

DataTable that cannot be renamed by the migration tool.
– Deliberately invalid syntax used by the migration tool. See Appendix D,

“Messages in the Problems view,” on page 427 for details on resolving these
errors.

v IWN.VAL messages for a part that cannot be resolved or is ambiguous,
including messages such as IWN.VAL.3260.e, IWN.VAL.6619.e, and
IWN.VAL.6620.e.

v IWN.VAL warning messages for a statement that indicate there is a field with
the same name as another Record, Form, or DataTable, including messages such
as IWN.VAL.6570.w, IWN.VAL.6571.w, and IWN.VAL.6621.w.

v Other messages.

Note: EGL produces a maximum of 40 messages per file. Therefore, you might
need to resolve some messages, save the file, and rebuild the workspace
before you can see additional messages.

IWN.VAL messages for the .egl files

IWN.VAL.3012.e The same name recordName also
appears as variable, parameter, use or
constant declaration in Function,
Program, or Library programName.

Explanation: VisualAge Generator tolerated specifying
the same record name in the parameter list and in the
Tables and Additional Records list. In this situation,
VisualAge Generator ignored the record in the Tables
and Additional Records list.

User response: Edit the program and remove the
record declaration.

IWN.VAL.3260.e The type partName cannot be
resolved.

Explanation: The specified part cannot be found. The
meaning for migrated VAGen code varies based on the
context as described under User response.

User response: The meaning varies based on the
following contexts:

v partName is a record used as a type definition in the
record declarations list for the program. Check to see
if there is a record named partName_level77Suffix,
where _level77Suffix is the preference you specified
during Stage 2 of migration. VisualAge Generator
tolerates working storage records that contain only
level 77 items on the Tables and Additional Records
list for a program. However, these level 77 items
cannot be referenced in the program. Only level 77
items in the primary working storage record for the
program can be referenced in the program. Because
the record contained only level 77 items, the
migration tool created only a level 77 record. If this
is the case, edit the program and delete the
declaration for the original record name. Do not add
the corresponding level 77 record because none of its
items were referenced in the VAGen program.

v partName is used as the help FormGroup. The VAGen
program specified a help map group, but none of the
maps that the program converses specifies a help
map. Edit the program. Either remove the use

© Copyright IBM Corp. 2004, 2011 435

statement for the help FormGroup or add an import
statement for the package containing the help
FormGroup.

v partName is used as the segmentRecord or
parentRecord property in a PSBRecord. VisualAge
Generator does not issue an error message for a
missing DL/I segment record in the PSB unless the
segment is actually used in a program for DL/I I/O
or to build a default SSA for a lower level segment.
In EGL, all DL/I segment records referenced in the
PSB must be defined. Review the PSBRecord and the
logic for all the programs that use the PSB. If the
PCB that specifies the missing DL/I segment record
is only used as a place holder to pass through to a
non-EGL program, consider changing the PCB to
remove the hierarchy information. Alternatively,
create or import the missing DLISegment record
definition.

IWN.VAL.4925.e The variable declaration recordName
for programName could not be resolved.

Explanation: If the program uses DL/I, the specified
recordName might be the name of a DL/I segment
specified in the PSBRecord for the program. In
VisualAge Generator, all DL/I segments specified in the
PSB for the program are considered to be associates of
the program. This ensures that any DL/I segment that
might be used in a default SSA is available to the
program. However, VisualAge Generator does not issue
an error message for a missing DL/I segment record
unless the segment is actually used for DL/I I/O or to
build a default SSA for a lower level segment. If the
program specifies a PSB, the migration tool
automatically includes data declarations for all DL/I
segments used as I/O objects or in the hierarchical path
to an I/O object.

User response: Review the program to determine
whether the DL/I segment record is needed. If the
record is not used and is not required to build default
SSAs for lower level segments, then edit the program
and remove the record declaration.

IWN.VAL.4930.e The value of use declaration
FormGroupName in program programName
is invalid. You must use a FormGroup,
DataTable, enumeration, or a library
part.

Explanation: The specified FormGroupName is either
missing or a reserved word.

User response: Migrate the missing FormGroup. If the
FormGroup name is a reserved word, change the
FormGroup name and all programs that reference the
FormGroup.

IWN.VAL.5004.e The DataTable tableName is defined
with n1 column(s), but the contents are
defined with n2 column(s).

Explanation: The number of validly defined columns
in the DataTable does not match the list of contents.
One of the following situations might have occurred:

v One or more of the fields is defined with a type
definition, but the type definition cannot be resolved.

v In VisualAge Generator, you used a comma as the
decimal separator for numeric fields. EGL always
uses the period. The migration tool converts the
comma to decimal if you select the Change decimal
comma to decimal point migration syntax
preference.

User response: If one of the fields has a type
definition that cannot be resolved, correct that problem
first and rebuild the project containing the DataTable. If
there are still problems and you used a comma as the
decimal separator in VisualAge Generator, review the
preference setting. Save the import statements from the
file containing the DataTable, then migrate the table
again using Single File Mode to correct the table
contents, then add the import statements to the file.

IWN.VAL.5052.e programName - Records can only be
compared to null.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as a record. In VisualAge Generator, the name
resolution is context sensitive so that the name resolves
to the field. In EGL, the name resolves to the record,
but a record is not permitted for this type of
comparison. Note that all VAGen records migrate to
EGL structured Records.

User response: If the problem is caused by name
resolution, qualify the field name with the name of the
record, form, or DataTable that contains the field. See
the User response for message IWN.VAL.6621.w for
information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

IWN.VAL.5085.e programName - The element
operandName is not valid for use in the
expression.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that the name resolves to the field for an
arithmetic expression. In EGL, the name resolves to a
record, form, or DataTable, but these are not permitted
for an arithmetic expression.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
record, form, or DataTable that contains the field. See

436 Rational Business Developer: VisualAge Generator to EGL Migration Guide

the User response for message IWN.VAL.6621.w for
information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

IWN.VAL.5089.e programName - operandName1 is not
valid for compare to operandName2.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that the name resolves to the field for this
type of comparison. In EGL, the name resolves to a
record, form, or DataTable, but these are not permitted
for this type of comparison. The name resolution
problem can occur due a name conflict for either
operandName1 or operandName2.

User response: If the problem is caused by name
resolution, qualify operandName1 or operandName2 with
the name of the record, form, or DataTable that
contains the field. See the User response for message
IWN.VAL.6621.w for information about how to confirm
that name resolution is the problem and how to
determine the possible qualifiers.

IWN.VAL.5090.e programName - The operand
operandName in the in condition must be
an item or a literal.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that the name resolves to the field for the
FIND, RETR, IF x IN array, or WHILE x IN array
statements. In EGL, the name resolves to a record,
form, or DataTable, but these are not permitted for an
if x in or while x in statement. Note that both the
VAGen FIND and RETR statements migrate to an EGL
if x in structuredFieldArray statement.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
record, form, or DataTable that contains the field. See
the User response for message IWN.VAL.6621.w for
information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

IWN.VAL.5093.e programName - The operand
operandName in the is/not condition must
be a text form field.

Explanation: In general, this error occurs when there
is a field in a form with the same name as another
record, form, or DataTable. In VisualAge Generator, the
name resolution is context sensitive so that the name
resolves to the map field for statements such as IF x IS
CURSOR or IF x NOT DATA. In EGL, the name
resolves to a record, form, or DataTable, but these are

not permitted for this type of if statement.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
form that contains the field. See the User response for
message IWN.VAL.6621.w for information about how
to confirm that name resolution is the problem and
how to determine the possible qualifiers.

IWN.VAL.5094.e programName - operandName is
invalid for the current is/not expression.
Variable Text Form fields, CHAR,
MBCHAR, DBCHAR and UNICODE are
valid types for use with the mnemonic
blanks.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that the name resolves to the field for the
IF x IS BLANKS statement. In EGL, the name resolves
to a record, form, or DataTable, but these are not
permitted for the if x is blanks statement. Note that
the VAGen mnemonics BLANK, BLANKS, and NULLS
migrate to the EGL mnemonic blanks. The VAGen
mnemonic NULL migrates to the EGL mnemonic
blanks if the comparison is for a map field and to null
if the comparison is for an SQL field. See “Checking
SQL and map items for NULL” on page 113 for details.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
record, form, or DataTable that contains the field. See
the User response for message IWN.VAL.6621.w for
information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

IWN.VAL.5095.e programName - The operand
operandName in the is/not condition is
not valid for use with the mnemonic
null.

Explanation: In general, this error occurs when there
is a field in an SQL record with the same name as
another record, form, or DataTable. In VisualAge
Generator, the name resolution is context sensitive so
that the name resolves to the field for the IF x IS NULL
statement. In EGL, the name resolves to a record, form,
or DataTable, but these are not permitted for the if x is
null statement. Note that the VAGen mnemonic NULL
migrates to the EGL mnemonic blanks if the
comparison is for a map field and to null if the
comparison is for an SQL field. See “Checking SQL and
map items for NULL” on page 113 for details.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
record or form that contains the field. See the User
response for message IWN.VAL.6621.w for information
about how to confirm that name resolution is the

Appendix E. IWN.xxx messages in the Problems view 437

problem and how to determine the possible qualifiers.

IWN.VAL.5101.e mainFunctionName - It is invalid to
use the xxxxx system word in this
statement location.

Explanation: The program that uses the specified
main function in turn invokes other functions. One of
the functions in the function invocation chain uses the
specified system word in a statement. The migration
tool always qualifies the EGL system words that are
replacements for the VAGen EZE words. If the xxxxx
system word is not qualified with sysLib, sysVar,
mathLib, strLib, vgLib, vgVar, converseLib,
converseVar, dliLib, or dliVar, the following causes are
the most likely:

v The VAGen program permitted implicit data items
and the definition of xxxxx was automatically created
during generation. EGL does not permit implicit data
items. The migration tool also does not create
implicit data item definitions for you.

v The record, map, or table was not included in the
migration set so the migration tool could not include
the necessary import statement in the program.

User response: Check whether the VAGen program
allowed implicit items. If so, validate the program in
VisualAge Generator. A message on the VAGen View
Messages list provides the correct definition of the
implicit data item. Add the definition for the data item
to the declarations section of the program. For
information about a white paper that can help you
create the implicit items before you run Stage 1 of
migration, see “References” on page 16.

 If the VAGen program did not allow implicit items,
create an associates list for the program in VisualAge
Generator. From the associates list, use the VAGen
References tool to search for the specified data item.
The results of the References tool provide a clue to
which record, map, or table might be missing from the
migration set.

IWN.VAL.5143.e programName - operandName is
invalid for the current is/not expression.
CHAR, MBCHAR, UINCODE and
STRING are the only valid types for use
with the mnemonic numeric.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that the name resolves to the field for the
IF x IS NUMERIC statement. In EGL, the name resolves
to a record, form, or DataTable, but these are not
permitted for the if x is numeric statement.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
record, form, or DataTable that contains the field. See
the User response for message IWN.VAL.6621.w for

information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

IWN.VAL.5168.e xxxxx is not valid for use within an
is/not expression.

Explanation: The specified value is not valid. The
meaning for migrated VAGen code varies based on the
context as described under User response.

User response: The meaning varies based on the
following contexts:

v If the value is EZE_DUPLICATE or EZE_NULL, the
migration tool was not able to determine how to
migrate the statement because the associated part
was not included in the migration set. See
Appendix D, “Messages in the Problems view,” on
page 427 for details and solutions.

IWN.VAL.5177.e programName - The operand
operandName in the is/not condition must
be an item in an SQLRecord.

Explanation: In general, this error occurs when there
is a field in an SQL record with the same name as
another record, form, or DataTable. In VisualAge
Generator, the name resolution is context sensitive so
that the name resolves to the field for statements such
as IF x IS TRUNC. In EGL, the name resolves to a
record, form, or DataTable, but these are not permitted
for statements such as if x is trunc.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
SQL record that contains the field. See the User
response for message IWN.VAL.6621.w for information
about how to confirm that name resolution is the
problem and how to determine the possible qualifiers.

IWN.VAL.5196.e programName - Invalid for count
countName. The for count must be an
integer item or literal.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that the name resolves to the field for the
count in a MOVEA statement. In EGL, the name
resolves to a record, form, or DataTable, but these are
not permitted as the for count in a move statement.

User response: If the problem is caused by name
resolution, qualify countName with the name of the
record, form, or DataTable that contains the field. See
the User response for message IWN.VAL.6621.w for
information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

438 Rational Business Developer: VisualAge Generator to EGL Migration Guide

IWN.VAL.5313.e Property: formSize. The value for
this property in formName is invalid. The
value must be in the format [rows,
columns], where rows and columns
must be positive integers. The size of
the form must be such that it fits in its
corresponding output device.

Explanation: In general, this error occurs if you
defined different floating area specifications (including
using the default specification of the full screen size)
for two or more devices that have the same physical
size in VisualAge Generator. VisualAge Generator
tolerated, but did not recommend, using different
floating area specifications for devices of the same size.
EGL only permits one floating area specification for a
physical device size. The meaning for the message
varies based on the situations described under "User
response."

User response: The meaning varies based on the
following situations:

v The VAGen map group explicitly specified different
size floating areas for two or more devices with the
same physical device size. In this case the migration
tool converts both floating areas to the EGL
screenFloatingArea or printFLoatingArea properties.
There is a message from the migration tool, as well
as an EGL validation message in the Properties view
explaining that there were duplicate definitions of
the floating area for a particular device size. You
corrected the problem by removing all except one of
the floating area definitions. However, the one
remaining floating area definition has margins that
are so large that the formName specified in the error
message cannot be contained within the floating
area. Correct the problem by adjusting the margins
for the floating area.

v The VAGen map group includes a floating map for
multiple devices of the same size. The map group
explicitly specifies a floating area for one of the
devices and uses the default floating area size (full
screen) for another device of the same physical
device size. In this case, the migration tool only
migrates the explicitly specified floating area size.
However, the formName specified in the error
message is intended to be used only with the
physical device that used the VAGen default full
screen specification. Correct the problem in one of
the following ways:

– Remove the floating area specification for the
device size so that EGL uses the default floating
area. Use this technique if you know that your
organization no longer uses the physical device
for which the floating area was explicitly
specified.

– Change the margins for the floating area
specification so that the specified formName fits
within the margins. Note that this will change the
location of the form when it is displayed at

runtime for both the device that had the default
specification and for the device for which the
margins were changed. Use this technique if you
know that your organization continues to use both
physical devices.

– Change the definition for formName so that it fits
within the existing margins. Use this technique if
you know that your organization no longer uses
the physical device which had the default floating
area.

IWN.VAL.5340.e Property: position. The value for
this property for field fieldName in
formName is invalid. The value must be
in the format [row, column], where row
and column are positive integers.

Explanation: VisualAge Generator tolerates map fields
at row=0, column=0. The field cannot specify any
attributes and uses the same attributes as the previous
field on the map. EGL requires that every field have an
attribute byte. If a constant field at row=0, column=0
begins with a blank, the migration tool adjusts the field
position by removing the first character and changing
the position to row=1, column=1. This field is either a
constant field (fieldName is *) that does not contain a
blank as the first character or is a variable field.

User response: Use the EGL Editor to change the
form. Adjust the length, fieldLen, position, value, and
other properties of the field as necessary so the field
fits on the form. Add presentation properties to achieve
the same appearance for the field as it had in
VisualAge Generator. After you have made these
changes, you can use the EGL Form Editor to make
future changes to the form.

IWN.VAL.6501.e The sqlStatement SQL I/O statement
requires the sqlClause clause, which is
missing.

Explanation: See message IWN.VAL.6506.e.

User response: See message IWN.VAL.6506.e.

IWN.VAL.6503.e The xxxxx SQL I/O statement has
clauses that are out of order. yyyyy must
appear before the zzzzz clause.

Explanation: See message IWN.VAL.6506.e.

User response: See message IWN.VAL.6506.e.

IWN.VAL.6506.e The xxxxx SQL I/O statement allows
only one yyyyy clause.

Explanation: There are several situations in which this
message can occur:

v In VisualAge Generator, SQL keywords are permitted
as column names. In EGL, certain SQL keywords are
not permitted.

Appendix E. IWN.xxx messages in the Problems view 439

v In VisualAge Generator, certain SQL clauses do not
have to be parenthesized. In EGL, these clauses must
be parenthesized. For example, a subselect and its
related FROM, WHERE, GROUP BY, and ORDER BY
clauses must be enclosed in parentheses.

User response: If you are not using subselects, see
“SQL reserved words requiring special treatment” on
page 254 for the list of SQL keywords and techniques
you can use to resolve the problem with the column
names.

 If you are using subselects, add parentheses around the
subselect and its related FROM, WHERE, GROUP BY,
and ORDER BY clauses. For example, consider the
following SQL statement:

 with #sql{
 SELECT EMPNO, COUNT(*) WORKDEPT
 FROM EMPLOYEE T1
 WHERE WORKDEPT LIKE ’%E%’
 GROUP BY WORKDEPT
 UNION ALL
 SELECT EMPNO
 FROM EMP_ACT
 WHERE PROJNO IN(’MA2100’, ’MA2112’)
 }

To fix the problem, change the SQL statement to add
parentheses around the second SELECT, as in the
following updated code:

 with #sql{
 SELECT EMPNO, COUNT(*) WORKDEPT
 FROM EMPLOYEE T1
 WHERE WORKDEPT LIKE ’%E%’
 GROUP BY WORKDEPT
 UNION ALL
 (SELECT EMPNO
 FROM EMP_ACT
 WHERE PROJNO IN(’MA2100’, ’MA2112’))
 }

IWN.VAL.6507.e The xxxxx SQL I/O statement does
not allow the yyyyy clause.

Explanation: See message IWN.VAL.6506.e.

User response: See message IWN.VAL.6506.e.

IWN.VAL.6531.e The sqlClause SQL clause cannot be
empty.

Explanation: See message IWN.VAL.6506.e.

User response: See message IWN.VAL.6506.e.

IWN.VAL.6541.e programName - The passing record
identifier operandName must be a record
variable.

Explanation: In general, this error occurs when there
is a field in the I/O object for the function that has the
same name as another record in the program. In
VisualAge Generator, the name resolution is context
sensitive so that operandName resolves to the record for

an XFER or DXFR statement. In EGL, the fields in the
I/O object have a higher precedence than records used
elsewhere in the program. In addition, the show
statement (VAGen XFER with map or UI record) is an
I/O statement in EGL.

 Note that the migration tool converts the VAGen
statements in the following way:

v XFER without a map or a UI record migrates to an
EGL transfer to transaction statement.

v XFER with map and XFER with a UI record migrate
to an EGL show statement.

v DXFR migrates to an EGL transfer to program
statement.

User response: If the problem is caused by name
resolution, specify the EGL keyword this as the
qualifier (for example, this.operandName) so that the
name resolves to the record. See the User response for
message IWN.VAL.6621.w for information about how
to confirm that name resolution is the problem and
how to determine the possible qualifiers.

IWN.VAL.6570.w programName - The item access
fieldName resolved to a record, form, or
DataTable. There is an item called
fieldName in record, form, or DataTable
containerName.

Explanation: In general, this warning occurs when
there is a field (fieldName) in a record, form, or
DataTable (containerName) with the same name as
another record, form, or DataTable. In VisualAge
Generator, the name resolution is context sensitive so
that the name resolves to a field, record, map, or
DataTable, depending on the statement. In EGL, the
name resolves to a function parameter item, function
local storage item, record, form, or DataTable, which is
valid, but not necessarily the same resolution as in
VisualAge Generator.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
record, form, or DataTable that contains the field. See
the User response for message IWN.VAL.6621.w for
information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

IWN.VAL.6571.w programName - The item access
fieldName resolved to an item in record,
form, or DataTable containerName. There
is a record, form, or DataTable called
fieldName that is known to the program.

Explanation: In general, this warning occurs when
there is a field (fieldName) in the I/O object
(containerName) with the same name as another record,
form, or DataTable in the program. In VisualAge
Generator, the name resolution is context sensitive so
that the name resolves to the field, record, map, or

440 Rational Business Developer: VisualAge Generator to EGL Migration Guide

DataTable, depending on the statement. In EGL, the
name resolves to the field in the I/O object, which is
valid, but not necessarily the same resolution as in
VisualAge Generator.

User response: The meaning varies based on the
context. Be sure to consider name resolution differences
first, before considering other possibilities. See the User
response for message IWN.VAL.6621.w for information
about how to confirm that name resolution is the
problem and how to determine the possible qualifiers.

IWN.VAL.6583.e programName - The subscript
subscriptName in array reference
arrayName[subscriptName] must be an
integer item or integer literal.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that the name resolves to the field for the
subscript. In EGL, the name resolves to a record, form,
or DataTable, but these are not permitted as a subscript.

User response: If the problem is caused by name
resolution, qualify subscriptName with the name of the
record, form, or DataTable that contains the field (for
example, containerName.fieldName). See the User
response for message IWN.VAL.6621.w for information
about how to confirm that name resolution is the
problem and how to determine the possible qualifiers.

IWN.VAL.6619.e programName - variableName cannot
be resolved.

Explanation: The variableName might be a record
name, form name, or a field in a record, form,
DataTable, or function. The meaning for migrated
VAGen code varies based on the context as described
under User response.

User response: The meaning varies based on the
following contexts:

v Determine if the VAGen program permits implicit
item definitions and variableName is an unqualified
field name. If so, validate the program in VisualAge
Generator. The VAGen validation messages provide
the definition of the implicit items used in the
program. Edit the EGL program to add variable
definitions for the implicit items using the VAGen
validation messages as a guide to the necessary
primitive type definition. For information about a
white paper that can help you create the implicit
items before you run Stage 1 of migration, see
“References” on page 16.

v Determine if the program uses DL/I and the
specified variableName is the name of a DL/I segment
specified in the PSBRecord for the program. If the
message points to a DL/I I/O statement such as an
add or get, the DL/I segment record is required to
build the default SSA for a lower level segment.

Review the program logic to determine whether the
DL/I segment record is required to build a default
SSA. If so, edit the program and add a declaration
for the specified record.

v Determine if the program uses DL/I and the
qualifier is EZE_UNKNOWN_QUALIFIER. Over
time, VisualAge Generator varied how the qualifier
was determined for DL/I comparison value items.
The migration tool was not able to determine what
qualifier to use. For details, see the
EZE_UNKNOWN_QUALIFIER information in
Appendix D, “Messages in the Problems view,” on
page 427, message IWN.MIG.0611.e (on page 417),
and “DL/I I/O and comparison value items” on
page 105.

v Determine if the program uses DL/I and the
specified variableName is dliVar.name. VisualAge
Generator permits the use of EZE DL/I status words
(EZEDL* words) even if the program does not
specify a PSB. EGL only permits the use of the
variables in dliVar if the program declares a
PSBRecord. Edit the program to add a declaration for
the PSBRecord or to remove the use of the variables
in the dliVar library.

v If you did not migrate all the parts in your migration
set, the migration tool cannot include the appropriate
import statements. If the part exists in the
workspace, you might need to add an import
statement to the file containing the error.

v If variableName is a qualified name (for example,
X.Z), the qualifier (X) is ambiguous. In VisualAge
Generator, the only permitted qualifier is a record,
table, or map name because a field name can only
occur once within a record, table, or map. In EGL, a
qualifier can also be a field within a record or
DataTable because the same field name is permitted
in multiple substructures within a record or
DataTable. Determine if the program has a record,
DataTable, or form name that is the same as a field
within one of the records or DataTables. For example,
you might have a form named X that contains a field
named Z and a record named Y that contains a field
named X, where field X has a subfield named A. In
VAGen X.Z is a valid reference because X can only
mean form X. In EGL, X.Z is ambiguous because X
can be either form X or the field X within record Y. X
is ambiguous and until X is resolved X.Z cannot be
resolved even if Z only occurs within the form
named X. Try using the EGL keyword this as a
qualifier (for example, this.X.Z). Alternatively, either
change the name of the form or change the name of
the field (X) within the record (Y). A similar situation
occurs if a DataTable has the same name as a field
within a record.

v If variableName is not qualified, see message
IWN.VAL.6621.w for additional possibilities.

Appendix E. IWN.xxx messages in the Problems view 441

IWN.VAL.6620.e programName - The variable access
xxxxx is ambiguous.

Explanation: The variableName might be a field in a
record, form, DataTable, or function. The meaning for
migrated VAGen code varies based on the context as
described under User response.

User response: The meaning varies based on the
following contexts:

v If variableName is an unqualified item name,
determine if the problem occurs for a call statement
or system function invocation. VisualAge Generator
gives precedence to Level 77 items in the primary
working storage record for a program if an
unqualified item name is used for a CALL statement
or EZE function invocation. EGL does not provide
the same precedence. If the field specified by
variableName exists in the Level 77 record that
corresponds to the inputRecord program property,
change the call statement or system function
invocation to qualify the item with the Level 77
record name. However, you must be sure that all
programs that invoke this function use the same
Level 77 record.

v Check the function that has the error to determine if
there is an EGL show statement (VAGen XFER with
a map or XFER with a UI record). The VAGen XFER
with map and XFER with UI Record statements are
not considered to be I/O statements. The EGL show
statement is an I/O statement. The presence of an
EGL show statement changes the name resolution
rules for all the statements in the function and can
result in causing the name resolution to be
ambiguous. Consider the following situations:

– A field in the original I/O object for the function
is named the same as a field in the form or
VGUIRecord used in the EGL show statement. In
VAGen, the name resolves to the field in the
original I/O object. In EGL, both the field in the
original I/O object and the field I/O object for the
show statement are now in the same category for
name resolution. If the name should resolve to a
field in the original I/O object, then qualify the
field name with the name of the original I/O
object (for example, recordName.xxxxx).

– A field in the original I/O object for the function
is named the same as the form or the VGUIRecord
used in the EGL show statement. In VAGen, the
name resolves to the field in the original I/O
object. In EGL, the field name and the form or
VGUIRecord used in the show statement are in
the same category for name resolution so the
name is ambiguous. If the name should resolve to
a field in the original I/O object, then qualify the
field name with the name of the original I/O
object (for example, recordName.xxxxx).

v If variableName is a function invocation, the name
might conflict with the name of a field in a record,
form, or DataTable. In VisualAge Generator, name

resolution is context sensitive so that it is possible for
a nonshared field name to be the same as a function
name. EGL does not permit this. Rename the
function and all uses of the function. Alternatively,
qualify the function invocation with the name of the
package that contains the function. For example:

packageName.functionName(argumentList);

IWN.VAL.6621.w programName - The operand
operandName1 resolved to a form, record,
or DataTable, and the operand
operandName2 resolved to a primitive
item. In VAGen, both operands might
have resolved to an item.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable with the same
name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that operandName1 resolves to a field. In
EGL, the name resolves to the record, form, or
DataTable. See “Reference information for messages -
name resolution and qualification rules” on page 450
for details on the differences in the resolution rules. A
variety of EGL messages can result from this difference
in name resolution, depending on the statement
context. The name resolution problem can occur due a
name conflict for either operandName1 or operandName2.

User response: Specific messages and meanings vary
depending on the statement context and whether the
field has the same name as a record, form, or
DataTable. In general, try the following techniques to
resolve the problem:

v Check the function that has the error to determine if
there is an EGL show statement (VAGen XFER with
a map or XFER with a UI record). The VAGen XFER
with map and XFER with UI Record statements are
not considered to be I/O statements. The EGL show
statement is an I/O statement. The presence of an
EGL show statement changes the name resolution
rules for all the statements in the function and can
result in changing the resolution in either of the
following ways:

– A record, form or table in VisualAge Generator
now resolves to a field within the I/O object for
the show statement in EGL

– A field in the original I/O object in VisualAge
Generator now resolves to the form or
VGUIRecord used in the show statement.

v Confirm that the problem is due to a field in a
record, form, or DataTable having the same name as
another record, form, or DataTable. In VisualAge
Generator, follow these steps:

1. Generate the program to ensure that it is a valid
program.

2. Use the Associates tool to find all the associates
for the program.

442 Rational Business Developer: VisualAge Generator to EGL Migration Guide

3. Run the References tool against the Associates
list. Specify the following information for the
References tool:

– Set Search for to a Text search.

– Set the Text string to operandName1.

– Set the Search scope to All Parts in List.

4. The results from the References tool can help you
determine whether operandName1 is the name of
an item and also the name of a record, map, or
table. The results can also help you determine the
possible qualifiers for operandName1. Repeat the
process for operandName2.

5. If there are multiple possible qualifiers, review
the VAGen qualification rules in “Reference
information for messages - name resolution and
qualification rules” on page 450 to determine the
correct qualifier. If the statement in error is a call
statement or a function invocation, you might
need to check the VAGen-generated COBOL
program to determine how VisualAge Generator
resolved the name.

v Change the EGL source code in one of the following
ways:

– If the name should resolve to a record or item
variable in the function parameter list or the local
storage, consider changing the name of the
variable in the function parameter list or local
storage. Do not change the record or item type
definition. This technique limits the change to just
the function in which the error is occurring. Be
sure to change all references to the variable within
the function.

– If the name should resolve to a VAGen level 77
item, qualify the EGL field name with the name of
the record, including the level 77 suffix that you
specified during migration (for example,
recordName_level77Suffix.operandName1). However,
you must be sure that all programs that invoke
this function use the same Level 77 record.

– If the name should resolve to any other field,
qualify the field name with the name of the
record, form, or DataTable that contains the field
(for example, recordName.operandName1).

– If the name should resolve to a record or form
and the statement is in a function in which the
I/O object contains a field with the same name as
the record or form, specify the EGL keyword this
as the qualifier (for example, this.operandName1).

IWN.VAL.6650.e programName - targetName is a record,
so the assignment source must be a
record, or evaluate to CHA, HEX or
MBCHAR.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable that has the
same name as a record. In VisualAge Generator, the
name resolution is context sensitive so that targetName

resolves to the field when the source is a numeric
literal or numeric field. In EGL, the name resolves to
the record.

User response: If the problem is caused by name
resolution, qualify targetName with the name of the
record, form, or DataTable that contains the field. See
the User response for message IWN.VAL.6621.w for
information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

IWN.VAL.6653.e programName - primitiveType1 and
primitiveType2 are not compatible types
in the expression expressionText.

Explanation: The meaning for migrated VAGen code
varies based on the context as described under User
response.

User response: The meaning varies based on the
following contexts:

v If primitiveType1 is HEX and the variable is the result
for the mathLib functions ceiling, floor,
compareNum, precision, or round, EGL does not
support HEX as the result for these functions.
Change your program logic to use a result variable
with the primitive type specified by primitiveType2.

v This error can also occur when there is a field in a
record, form, or DataTable that has the same name as
another form or DataTable. In VisualAge Generator,
the name resolution is context sensitive so that
variable represented by primitiveType1 resolves to the
field. In EGL, the name resolves to the form or
DataTable. If the problem is caused by name
resolution, qualify the variable name with the name
of the record, form, or DataTable that contains the
field. See the User response for message
IWN.VAL.6621.w for information about how to
confirm that name resolution is the problem and
how to determine the possible qualifiers.

IWN.VAL.6665.e programName - Invalid move source
operandName. The source must be a
record, form, item, literal, or constant.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable that has the
same name as another DataTable. In VisualAge
Generator, the name resolution is context sensitive so
that operandName resolves to the field. In EGL, the
name resolves to the DataTable.

User response: If the problem is caused by name
resolution, qualify operandName with the name of the
record, form, or DataTable that contains the field. See
the User response for message IWN.VAL.6621.w for
information about how to confirm that name resolution
is the problem and how to determine the possible
qualifiers.

Appendix E. IWN.xxx messages in the Problems view 443

IWN.VAL.6676.e programName - Invalid move target
targetName[subscriptName]. The target
must be an item array of compatible
type with the source scalar.

Explanation: In general, this error occurs when there
is a field in a record, form, or DataTable that has the
same name as another record, form, or DataTable. In
VisualAge Generator, the name resolution is context
sensitive so that both the source and the target
(targetName) resolve to fields. In EGL, the source or the
target resolves to the record, form, or DataTable. A
name resolution problem can occur due to a name
conflict for either the source or the target field.

User response: If the problem is caused by name
resolution, qualify the source or the target (targetName)
with the name of the record, form, or DataTable that
contains the field. See the User response for message
IWN.VAL.6621.w for information about how to confirm
that name resolution is the problem and how to
determine the possible qualifiers.

IWN.VAL.6695.e functionName - The state XXXXX is
not allowed for this item reference.

Explanation: The meaning for migrated VAGen code
varies based on the context as described under User
response.

User response: The meaning varies based on the
following contexts:

v If state is PROTECT, SKIP, INVISIBLE, BLINK,
INITIALATTRIBUTES, or a color, the field is on a
print form. VisualAge Generator tolerates setting
these attributes for printer forms. EGL does not.
Modify the function to remove the statement.
Alternatively, if the same function is used for both a
text form and a print form, you must create a copy
of the function for use with print forms or move the
statement to the text form functions that invoke the
current function.

v If state is EMPTY, determine if a form or record was
not available during migration. EGL permits the
definition of independent data items and assumes
that if a type definition cannot be found, the
definition is for an item. EGL does not support the
use of set empty for a field in a record or form.
Define or migrate the missing record or form.

IWN.VAL.6697.e programName - The state
formFieldStateName is not allowed for a
record reference.

Explanation: In general, this error occurs when there
is a field in a form that has the same name as a record.
In VisualAge Generator, the name resolution is context
sensitive so that the name resolves to the field on the
map when the SET statement is for a property such as
CURSOR, a color, and so on. In EGL, the name resolves
to the record.

User response: If the problem is caused by name
resolution, qualify the field specified in the set
statement with the name of the form. See the User
response for message IWN.VAL.6621.w for information
about how to confirm that name resolution is the
problem and how to determine the possible qualifiers.

IWN.VAL.6716.e programName - The argument
argumentName cannot be passed to the
inOut parameter parameterName of the
function functionName. The types type1
and type2 are not reference compatible.

Explanation: functionName is the name of the invoked
function. An argument passed to an inOut parameter is
required to be reference compatible. Reference
compatible means that the argument and parameter
types must match exactly. This error can occur for
either of the following reasons:

v VisualAge Generator does not support, but in some
cases tolerates, different types for the argument and
parameter.

v There is a field in a record, form, or DataTable that
has the same name as another record, form, or
DataTable.

The meaning for migrated VAGen code varies based on
the context as described under User response.

User response: The meaning varies based on the
following contexts:

v functionName is a system function and EGL resolves
to a record or form. This might be a situation in
which VisualAge Generator tolerates a record or
form even when it does not make sense. For
example, VisualAge Generator tolerates passing a
record as the argument for an EZE math function
and passing a form as the argument to a string
function. Review the program logic to determine
what is intended.

v functionName is a system function and EGL resolves
to a field, but the field is not of the correct type.
VisualAge Generator tolerates some argument types
that are not compatible with the parameter types.
EGL requires the types to be compatible. Add a
substructure (or parent field) for the argument to
provide a field that has the correct definition. For
example, if the problem occurs for the third
argument in sysLib.startTransaction and the third
argument is an INT field, add a CHAR parent field
to use as the third argument. Specifying the CHAR
field as the parent field ensures that when the record
is initialized, the substructure INT field is initialized
to binary zeroes.

v The invoked function is a user function and EGL
resolves to a field, but the field is not of the correct
type. In this situation, you might be able to change
the invoked function to use a function parameter
type such as number that permits a wider variety of
argument types and lengths. Alternatively, review the
invoked function and all the places where it is

444 Rational Business Developer: VisualAge Generator to EGL Migration Guide

invoked. You might have to split the invoked
function into multiple functions, each with a different
definition of the parameter.

v Also consider whether there is a field with the same
name as another record, form, or DataTable. See the
User response for message IWN.VAL.6621.w for
information about how to confirm that name
resolution is the problem and how to determine the
possible qualifiers.

IWN.VAL.6731.e programName - The argument
argumentName cannot be passed to the in
or out parameter parameterName of the
function functionName. The types type1
and type2 are not assignment
compatible.

Explanation: functionName is the name of the invoked
function. An argument passed to an in or out
parameter is required to be assignment compatible.
VisualAge Generator tolerates some types that are not
assignment compatible. EGL does not permit
incompatible types. The meaning for migrated VAGen
code varies based on the context as described under
User response.

User response: See the User response for message
IWN.VAL.6716.e.

IWN.VAL.6736.e programName - Invalid expression
argumentName for the convert operation.
The expression must evaluate to a
record or have a primitive type besides
blob or clob.

Explanation: functionName is the name of the invoked
function. The argument must be a fixed-length record
or primitive type. The migration tool converts all
VAGen records to structured Records. VisualAge
Generator tolerates some types that are not assignment
compatible. EGL does not permit incompatible types.
The meaning for migrated VAGen code varies based on
the context as described under User response.

User response: See the User response for message
IWN.VAL.6716.e.

IWN.VAL.6741.e programName - The argument
argumentName in function invocation
functionName is invalid. The argument
must be of primitive type char, mbchar,
dbchar, hex, num, or unicode.

Explanation: functionName is the name of the invoked
function. The argument is limited to the listed primitive
types. VisualAge Generator tolerates some types that
are not assignment compatible. For example, VisualAge
Generator tolerates passing records as arguments to
string functions, even though this is not valid based on
the VAGen documentation. EGL does not permit
incompatible types. The meaning for migrated VAGen

code varies based on the context as described under
User response.

User response: See the User response for message
IWN.VAL.6716.e.

IWN.VAL.6742.e programName - The argument
argumentName in function invocation
functionName is invalid. The argument
must be of primitive type char, dbchar,
hex, num, bin, int, smallint, bigint, pacf,
money, or decimal.

Explanation: functionName is the name of the invoked
function. The argument is limited to the listed primitive
types. VisualAge Generator tolerates some types that
are not assignment compatible. EGL does not permit
incompatible types. The meaning for migrated VAGen
code varies based on the context as described under
User response.

User response: See the User response for message
IWN.VAL.6716.e.

IWN.VAL.6743.e programName - The argument
argumentName cannot be passed to the
loose parameter parameterName of the
function functionName. It must be of
primitive type type1.

Explanation: functionName is the name of the invoked
function. The argument is limited to the listed primitive
types. VisualAge Generator tolerates some types that
are not assignment compatible. EGL does not permit
incompatible types. The meaning for migrated VAGen
code varies based on the context as described under
User response.

User response: If the functionName is strLib.byteLen(),
you might be able to substitute sysLib.bytes(), which
supports all primitive types. For additional possibilities,
see the User response for message IWN.VAL.6716.e.

IWN.VAL.6744.e programName - The argument
argumentName cannot be passed to the
loose parameter parameterName of the
function functionName. It must have a
numeric primitive type.

Explanation: functionName is the name of the invoked
function. The argument is limited to the numeric
primitive types. VisualAge Generator tolerates some
types that are not assignment compatible. For example,
VisualAge Generator tolerates passing forms and
records as arguments to math functions and to index
and length arguments of string functions. EGL does not
permit incompatible types. The meaning for migrated
VAGen code varies based on the context as described
under User response.

User response: See the User response for message
IWN.VAL.6716.e.

Appendix E. IWN.xxx messages in the Problems view 445

IWN.VAL.6746.e The function reference functionName
cannot be resolved.

Explanation: The meaning for migrated VAGen code
varies based on the context as described under "User
response."

User response: The meaning varies based on the
following contexts:

v The message is issued as an error (suffix "e"). The
specified function cannot be found. If you did not
include all the parts in your migration set, the
migration tool might have incorrectly "guessed" that
an edit routine was a function and migrated to the
validatorFunction property. Find the part specified
by functionName. If the part is a DataTable, edit the
file that is in error and change the validatorFunction
property to validatorDataTable. If the part is a
function, you might need to add an import statement
to the file that is in error to point to the package that
contains the function.

v The message is issued as a warning (suffix "w"). In
VisualAge Generator, if a function is specified as the
edit routine of a DataItem part, an error only occurs
if the DataItem is used as a shared data item in a UI
record. In EGL, the validatorFunction should be
available, regardless of whether (or where) the
DataItem part is used as a type definition. In this
situation, if you want to eliminate the warning
message, either remove the validatorFunction
property from the DataItem part or add an import
statement to the file that is in error to point to the
package that contains the function.

IWN.VAL.6751.e programName - The target for a
function invocation must be a function
or a delegate.

Explanation: The name of the function conflicts with
the name of a field in a record, form, or DataTable. In
VisualAge Generator, name resolution is context
sensitive so that it is possible for a nonshared field
name to be the same as a function name. EGL does not
permit this.

User response: Rename the function and all uses of
the function. Alternatively, qualify the function
invocation with the name of the package that contains
the function. For example:

packageName.functionName(argumentList);

IWN.VAL.7553.e functionName - Argument n for
systemFunctionName must be a string
item, string constant or a string literal.

Explanation: functionName is the name of the invoked
function. The argument is limited to the listed types.
VisualAge Generator tolerates some types that are not
assignment compatible. EGL does not permit
incompatible types. The meaning for migrated VAGen

code varies based on the context as described under
User response.

User response: See the User response for message
IWN.VAL.6716.e.

IWN.VAL.7696.e The DataTable DataTableName cannot
be used as a validatorDataTable for item
type1. For tables of type
MatchValidTable and
MatchInvalidTable, the type of the first
column must match the type of the item.
The types type1 and type2 do not match.

Explanation: VisualAge Generator tolerates the use of
a table as an edit routine for a data item even if the
type of the data item does not match the type of the
first column in the table. EGL does not permit this
situation.

User response: Remove the validatorDataTable
property from the DataItem part or change the type of
the first column in the table.

IWN.VAL.7740.e programName - variableName is
read-only and cannot be assigned to.

Explanation: variableName is one of the EGL system
variables such as sysVar.userID. The migration tool
always qualifies the EGL system variables with the
EGL library name. If variableName is not qualified and
is in uppercase, it might be an implicit item that is
created automatically in VisualAge Generator. EGL
does not permit implicit items.

User response: Validate the program in VisualAge
Generator to determine whether it allows implicit items
and if variableName is one of the implicit data items
created for the program. If so, modify the EGL program
to add a variable declaration for variableName. Use the
information in the VAGen validation messages to
determine the correct definition of the item in EGL. For
information about a white paper that can help you
create the implicit items before you run Stage 1 of
migration, see “References” on page 16.

IWN.VAL.7755.w Unreachable code

Explanation: A statement such as exit program, exit
stack, or return is followed by one or more statements.
The statements after exit program, exit stack, or return
can never be executed.

User response: No changes are required. However, if
you want to remove the warning, comment out or
remove the unreachable code.

IWN.VAL.7757.e The number of elements in the
initializer array must be no greater than
the number of occurs of item fieldName.
number1 elements found for occurs size
number2.

446 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Explanation: For a VGUI record, the list of values for
a submit or submitBypass button array is too big for
the size of the array. VisualAge Generator ignores any
extra values during generation. EGL requires that the
array size match the number of values in the list.

User response: Edit the VGUI record and remove the
additional values.

IWN.VAL.7789.e The propertyName item fieldName
cannot be a multiply occurring item.

Explanation: For UI records, VisualAge Generator
tolerates the Occurrences item as an array, but treats it
as though it was not an array. EGL does not permit the
numElementsItem property to specify a multiply
occurring item.

User response: Edit the VGUI record and change the
specified fieldName so that it not an array. You might
have to move the field outside a multiply occurring
parent field.

IWN.VAL.7868.e programName - stateName is not a
valid state for a DL/I segment record.

Explanation: For a DL/I record, the stateName in an if
or while statement is not valid. VisualAge Generator
tolerates some stateNames that do not make sense for
DL/I (for example, FMT). EGL does not permit this
stateName.

User response: Review your program logic to
determine what you really intended the program to do.
Change or comment out the statement.

Appendix E. IWN.xxx messages in the Problems view 447

IWN.VAL messages for the .eglbld file

IWN.VAL.3999.e (first of ten alternatives) XML
Validation Error - Attribute "xxxxx" was
already specified for element "yyyyy".

Explanation: Attribute xxxxx is specified multiple
times in the same control part. The XML parser stops
processing the .eglbld file. As a result, this error can
mask other errors. Because this error ends the
processing of the .eglbld file, there might be errors for
unresolved parts that are in the .eglbld file, but which
are defined after the point of the error.

User response: Edit the current .eglbld file using the
Text Editor. Change the control part so that there is
only one specification for xxxxx in the control part.
When you save the .eglbld file, the messages in the
Problems view should be updated. Because the XML
parser stops processing at the first duplicate attribute in
the .eglbld file, you might have to resolve several errors
before the entire file can be parsed.

IWN.VAL.3999.e (second of ten alternatives) XML
Validation Error - The content of
element type "xxxxx" must match
"(listOfValues)".

Explanation: In VisualAge Generator, one or more of
the values specified for a resource association is a valid
value. This value is not supported by EGL. The
migration tool migrates the value even though it is
invalid, so that EGL validation displays an error
message in the Problems view to remind you to resolve
the problem.

User response: Review the EGL online help for the
options that are valid for xxxxx. When you decide
which option to use, you might need to open the build
descriptor file with the Text Editor to be able to make
the necessary change.

IWN.VAL.3999.e (third of ten alternatives) XML
Validation Error - Attribute xxxxx with
value yyyyy must have a value from the
list zzzzz.

Explanation: Not all VAGen values have a
corresponding replacement in EGL.

User response: For details on how migration converts
the values, see the tables for linkage table and resource
association in “Control parts” on page 352. For
information on the choices available in EGL, refer to
the EGL documentation.

IWN.VAL.3999.e (fourth of ten alternatives) XML
Validation Error - Attribute xxxxx must
be declared for element type "yyyyy"

Explanation: Not all VAGen values have a
corresponding replacement in EGL. In some cases,

combinations of values that are valid in VisualAge
Generator are not valid in EGL. For example:

v In a linkage options part, the library attribute is not
valid for a localCall entry. In EGL, calls from
generated Java code to a native C++ DLL are
considered to be remote calls even when running on
the same machine.

v In a linkage options part, the remotePgmType
attribute is not valid for a localCall entry. In VAGen,
the remoteAppType option is ignored for local calls.
In EGL, XML validation is more restrictive—only
attributes that are meaningful are permitted.

User response: For details on how migration converts
the values, see the tables for linkage table and resource
association in “Control parts” on page 352. For
information on the choices available in EGL, refer to
the EGL documentation.

IWN.VAL.3999.e (fifth of ten alternatives) XML
Validation Error - Element type "xxx"
must be followed by either attribute
specifications, ">" or "/>".

Explanation: In a resource associations part, the target
environment information is invalid. This can occur
when the original VAGen resource association entry
contains /system=xxx*yyy or /system=xxx*. The
wildcard * is valid in VAGen, but not in EGL. The
migration tool does not attempt to convert the entry to
all possible EGL target systems that might be valid.

User response: Change the entry to be a valid EGL
runtime environment. Repeat the entry as many times
as necessary for all of your EGL runtime environments
that apply. For example, if the original VAGen entry is
/system=mvs*, repeat the entry for the EGL
environments ZOSBATCH and ZOSCICS. Because the
XML parser stops processing at the first resource
association entry that contains an * in the target
environment, you might have to resolve several errors
before the entire file can be parsed.

IWN.VAL.3999.e (sixth of ten alternatives) XML
Validation Error - The content of
elements must consist of well-formed
character data or markup.

Explanation: In a resource associations part, the target
environment information is invalid. This can occur
when the original VAGen resource association entry
contains /system=*xxx or /system=*. The wildcard * is
valid in VAGen, but not in EGL. The migration tool
does not attempt to convert the entry to all possible
EGL target systems that might be valid.

User response: Change the entry to be a valid EGL
runtime environment. Repeat the entry as many times
as necessary for all of your EGL runtime environments

448 Rational Business Developer: VisualAge Generator to EGL Migration Guide

that apply. For example, if the original VAGen entry is
*cics, the only valid EGL runtime environment is
zoscics. Because the XML parser stops processing at the
first resource association entry that contains an * in the
target environment, you might have to resolve several
errors before the entire file can be parsed.

IWN.VAL.3999.e (seventh of ten alternatives) XML
Validation Error - Attribute "xxxxx" is
required and must be specified for
element type "yyyyy".

Explanation: In VisualAge Generator, some attributes
were not required. In EGL, the attribute specified by
xxxxx is required when the element specified by yyyyy
is defined

User response: Use the Text Editor to add the
required attribute. For information on the choices
available in EGL, refer to the EGL documentation.

IWN.VAL.3999.e (eighth of ten alternatives) XML
Validation Error - Element type
elementType must be declared.

Explanation: Not all VAGen values have a
corresponding replacement in EGL. In some cases,
combinations of values that are valid in VisualAge
Generator are not valid in EGL. For example, in a
resource association file, the value BTRIEVE was valid
as a file type for the AIX environment. In EGL, the
value BTRIEVE is not valid..

User response: Use the Text Editor to correct the part.
For details on how migration converts the values, see
the tables for linkage table and resource association in
“Control parts” on page 352. For information on the
choices available in EGL, refer to the EGL
documentation.

IWN.VAL.3999.e (ninth of ten alternatives) XML
Validation Error - The string "--" is not
permitted within comments.

Explanation: XML does not permit a string of
hyphens in a comment. This problem generally occurs
when the VAGen control part contained comments and
used lines of hyphens to separate sections of a block
comment.

User response: Use the Text Editor to correct the part.
Replace the string of "--" with a string of "==".

IWN.VAL.3999.e (tenth of ten alternatives) XML
Validation Error - Invalid byte 2 of
3-byte encodingSequence sequence.

Explanation: One or more of the build parts in the file
contains national language characters that are not valid
for the encoding sequence specified for the file. The
default encoding sequence is UTF-8.

User response: To change the default encoding

sequence before single file migration or Stage 2
migration, from the EGL developer environment, click
Windows -> Preferences -> EGL. Use the drop-down
list to select a value for the Encoding preference that
supports your national language characters. To change
the default encoding sequence after migration, use the
system editor to change the encoding information in
the file. You cannot open the file with the EGL Build
Parts Editor until the encoding information is corrected.

IWN.VAL.4300.e The part named partName could not
be resolved or did not resolve to one of
the following types: partTypeList

Explanation: The meaning for migrated VAGen code
varies based on the context as described under User
response.

User response: The meaning varies based on the
following contexts:

v The specified control part does not exist. Create the
part or remove the reference to it.

v The specified control part is in a different project or
package from the control part that has the error. The
migration tool does not create import statements for
control parts because control parts do not have
associates in VisualAge Generator. If the specified
control part is in a different project, update the EGL
Build Path in the properties of the current project to
include the project where the specified control part
resides. If the specified control part is in a different
package, edit the current .eglbld file to add an
import statement for the package where the specified
control part resides.

v The XML parser was not able to completely process
the .eglbld file. In this case, the specified control part
might exist in the same file as the control part that
has the error. Check for message IWN.VAL.3999.e
XML Validation Error - Attribute "xxxxx" was
already specified for element "yyyyy". This message
indicates that the attribute xxxxx is specified multiple
times in the same control part. Edit the current
.eglbld file so that there is only one specification for
xxxxx in the control part. Assuming that you have
Build Automatically selected, when you save the
.eglbld file, the message in the Problems view should
be updated. Because the XML parser stops
processing at the first duplicate attribute in the
.eglbld file, you might have to resolve several errors
before the entire file can be parsed. When all the
IWN.VAL.3999.e messages have been resolved, the
specified control part should be available if it is in
the same .eglbld file as the referencing control part.

Appendix E. IWN.xxx messages in the Problems view 449

Java messages for JSPs

Invalid character constant

Explanation: This can occur in the following
situations:

v For the xxxxxBean.java generated for a VGUI record,
the setFillCharacter method uses a value of 'nullFill'.
In VisualAge Generator, a shared data item has two
sets of properties: one for maps and one for UI
records. In EGL, a DataItem part has one set of
properties. The migration tool merges the two sets of
properties, giving precedence to the UI properties.
However, the migration tool cannot predict whether
the data item part is used in a map, a UI record, or
both. The data item did not specify a UI default fill
character so the migration tool used the map default

character, which was null. When the shared data
item was used in a UI record, VisualAge Generator
used blank as the default fill character because no UI
fill character was specified. When the data item part
is used as a type definition in a VGUI record, EGL
generates using the null fill character, which is not
valid.

User response: If the problem is due to the
setFillCharacter method with a value of "nullFill", edit
the VGUI record and add an override property for the
item to set the fillCharacter property to "". This
preserves nullFill as the default fill character for use on
EGL forms.

Reference information for messages - name resolution and
qualification rules

The VisualAge Generator and EGL name resolution and qualification rules differ
due to enhancements in the EGL. In most cases, the differences in the VAGen and
EGL name qualification and name resolution rules do not pose a problem.
However, in the case where a field in a record, form, or DataTable has the same
name as another record, form, or DataTable, VisualAge Generator and EGL might
resolve the names differently. The following sections review the rules for the two
products and then describe the messages that EGL validation might display in the
Problems view when this situation occurs.

VisualAge Generator name resolution and qualification rules
VisualAge Generator does not permit two parts to have the same name. However,
nonshared items defined in the following places might have the same name as a
record, map, or table:
v A nonshared item in a record or table.
v A field on a map (which is always treated as a nonshared item).
v A nonshared field in function local storage or parameter list.

In addition, multiple items might have the same name. For example, the same item
name can be used in the following places:
v Function local storage or function parameter list.
v Level 77 item in the primary working storage record for the program.
v Item in the called parameter list for the program.
v Item in an I/O object for a function.
v Item in any other record, map, or table for the program.

In the situations in which the same name is defined in multiple places within a
program, the VAGen name resolution is context sensitive. For example:
v VAGen name resolution uses an item in the following situations:

– An assignment statement or a MOVE statement in which one of the following
occurs:
- The source is a literal, another item, or, in the case of an assignment

statement, an arithmetic expression.

450 Rational Business Developer: VisualAge Generator to EGL Migration Guide

- The target is another item.
– A subscript in any statement.
– The source, target, or for count in a MOVEA statement.
– An IF, WHILE, or TEST statement in which the right-hand side of the

comparison can only be used with an item (such as BLANKS, NUMERIC,
NULLS, TRUNC) or in which the other side of the comparison is a literal or
another item.

– A SET statement in which the value being set can only be used with an item
(such as NULL or CURSOR).

– A FIND or RETR statement.
– If the item name is not qualified and there are multiple items with the same

name, VisualAge Generator resolves the name based on categories VG1
through VG3 as described later in this section.

v VAGen name resolution uses a record in the following situations:
– A MOVE statement in which the source or target is another record or map.
– An IF, WHILE, or TEST statement in which the right-hand side of the

comparison can only be used with a record (such as DUP or ERR).
– A SET statement in which the value being set can only be used with a record

(such as EMPTY or SCAN).
– A DXFR statement
– An XFER or XFER with UI record statement.

v VAGen name resolution uses a map in the following situations:
– A MOVE statement in which the source or target is another record or map.
– A SET statement in which the value being set can only be used with a map

(such as EMPTY, CLEAR, or PAGE).
– An XFER with map statement.

v In cases in which the statement context does not determine the part type that is
expected, the precedence varies based on the statement, whether the statement is
in an I/O function, and whether an item and a record, map, or table have the
same name. For example:
– For a CALL statement or a system function invocation in which the argument

names are all unique, there is no problem. In the case where a field has the
same name as another record, map, or table, the observed VAGen name
resolution varies based on the use of level 77 items, called parameters, records
in the tables and additional records list, the use of records or forms as I/O
objects, and so on.

Note: Based on tests using VisualAge Generator 4.5 Fix Pack 5, no consistent
pattern was determined for CALL statements or function invocations.
In the event of a name resolution conflict for a CALL statement or
system function invocation, generating the COBOL program might be
the quickest method of determining how VisualAge Generator resolved
the name.

– For the statement IF x IS MODIFIED, x might be a map or a field on another
map. In this case, the map is used. To reference the field in the other map,
you must qualify the name as mapName.x. Similarly, if x is a UI record or a
field in another UI record, the UI record is used. To reference the field in the
other UI record, you must qualify the name as UIRecord.x.

When VisualAge Generator expects to find an item, the following name
qualification rules are used to determine where the item is located.

Appendix E. IWN.xxx messages in the Problems view 451

v If the item name is qualified, the qualifier can be a record, map, or table.
Multiple levels of qualification are not necessary (and are not supported)
because an item name must be unique within a record, map, or table.

v If an item name is not qualified, data items are checked to determine the
qualifier in the following order:
– Category VG1 - Item names in the local storage and parameter list for this

function.
– Category VG2 - The following records and maps that are specific to this

function:
- I/O object and its items.
- Records in the function parameter list and their items.
- Records in the function local storage list and their items.
- If the name is not unique in this category, it must be qualified.

– Category VG3 - The following records, maps, and tables in the program:
- Program working storage record and its items.
- Table and Additional Records list and their items.
- Records and maps in the called parameter list and their items.
- I/O objects of other functions in the program and their items.
- If the name is not unique in this category, it must be qualified.

– If the program allows implicit data items, VisualAge Generator creates an
implicit definition based on usage.

For a CALL statement or function invocation, records tend to take precedence over
fields (because a record name cannot be qualified) and level 77 items tend to take
precedence over other fields (because long ago, only level 77 items could be used
in a CALL statement). However, based on tests using VisualAge Generator 4.5 Fix
Pack 5, no consistent pattern was determined for CALL statements or function
invocations.

EGL name resolution and qualification rules
In EGL, the name resolution rules differ from the VisualAge Generator rules due to
the following EGL enhancements:
v The same field name can be included multiple times in a record under different

substructures. Multiple levels of qualification are supported and in some cases
are required. The qualifier can be a field within the record (for example,
MYRECORD.SHIPPING.ADDRESS or just SHIPPING.ADDRESS).

v A function can have multiple I/O statements and therefore, multiple I/O objects.
v The show statement (VAGen XFER with map or UI record) is considered to be

an I/O statement.
v Fields (item variables) can be declared at the program level.
v EGL does not have level 77 items. The migration tool includes the level 77 items

in a separate basic record that is declared in the program.
v New EGL parts such as libraries.
v The EGL keyword this, which can be used to indicate that you want to use a

record variable declared at the program level or a form specified in the use
forms statement for the program rather than a name in Categories EGL1 and
EGL2 as described later in this section.

When EGL finds a name, the following name resolution and qualification rules are
used to determine where the field is located.

452 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v If the program does not set the allowUnqualifiedItemReferences property to
yes, all field references must be qualified. If the field is in a substructure, the
field must be fully qualified. For example, if allowUnqualifiedItemReferences is
not set to yes and CUSTOMER_RECORD contains the field NAME which is the
parent of LASTNAME, then CUSTOMER_RECORD.NAME.LASTNAME is valid,
but CUSTOMER_RECORD.LASTNAME is not valid.

v The qualifier can be a record, form, DataTable, or another field within a
structured record or DataTable. Multiple levels of qualification are permitted and
in some cases are required.

v If a field is not qualified or is partially qualified, EGL checks the fields to
determine the qualifier in the following order:
– Category EGL1 - The following variables declared at the function level:

- Item variable names declared in the local storage and parameter list for this
function.

- Record variable names declared in the local storage and parameter list for
this function.

- Names must be unique in this category.
– Category EGL2 - The following I/O objects and other fields that are specific

to this function:
- I/O objects and their fields. In EGL, a function can have multiple I/O

statements. In addition, in EGL the show statement (VAGen XFER with
map or XFER with UI record) is considered to be an I/O statement.

- The fields in record variables in the function parameter list.
- The fields in record variables in the function local storage list.
- If the name is not unique in this category, it must be qualified.

– Category EGL3 - The following variables declared at the program level:
- Record variable names from the record declarations for the program. The

record declarations list includes records specified by the inputRecord
property or used in I/O statements in any function of the program.

- Item variable names declared at the program level.
- Item variable and record variable names listed in the parameter list for the

program.
- If the name is not unique in this category, it must be qualified.

– Category EGL4 - A form name from the use forms statement for the program.
This list includes forms specified by the inputForm property, program
parameter list, or used in I/O statements in any function of the program. If
the use form statement only specifies a FormGroup, then all forms within the
FormGroup are considered.

– Category EGL5 - A DataTable name that is specified in the use declarations
for the program.

– Category EGL6 - The following fields used anywhere in the program:
- Fields from record variables, forms, and DataTables in categories EGL3

through EGL5.
- If the use form statement only specifies a FormGroup, then all fields on all

forms within the FormGroup are considered.
- If the name is not unique in this category, it must be qualified

– Category EGL7 - Fields in a user library specified in the use declarations for
the program. (This category does not affect migrated VAGen programs
because nothing migrates to an EGL library.)

Appendix E. IWN.xxx messages in the Problems view 453

– Category EGL8 - Fields in a system library. (The migration tool always
qualifies fields migrated from the VAGen EZE words with the EGL system
library name.)

– Implicit definitions are not permitted in EGL.

The EGL name resolution and qualification rules are consistent -- they are not
affected by the type of statement or function being invoked.

Validation messages due to differences in name resolution
and qualification rules

In most cases, the differences in the VisualAge Generator and EGL name resolution
and qualification rules do not pose a problem. However, in the case where a field
in a record, form, or DataTable has the same name as another record, form, or
DataTable, VisualAge Generator and EGL might resolve the names differently. This
can result in the following situations:
v Invalid EGL statements which are detected by normal EGL validation (for

example, trying to set the color for a record rather than a field on a form). In
these cases, EGL validation displays an error message in the Problems view.

v Special EGL warning messages that are produced by validation if you are using
VisualAge Generator compatibility mode. These warning messages indicate that
the name resolution might be different between VisualAge Generator and EGL.

v No EGL message is issued for situations in which there is a level 77 item or
called parameter that received precedence for a CALL statement or function
invocation in VisualAge Generator, and which results in a different resolution in
EGL.

The following are examples of situations in which name resolution might change
between VAGen and EGL if there are things that have the same name.

Example 1
Resolution changes from field in one record to another record:
ProgramA:
 Tables and Additional Records List
 RECORDA - a record that contains field RECORDZ defined as CHAR
 RECORDZ - a record that contains other fields
 FunctionA:
 MOVE "abc" to RECORDZ;
 /* VAGen-resolves to field RECORDA.RECORDZ, */
 /* based on statement context; */
 /* record is invalid if source is a literal */
 /* EGL -resolves to record RECORDZ, */
 /* based on Category EGL3; a record is valid */
 /* -message IWN.VAL.6621.w is issued */

Example 2
Resolution changes from a field in the original I/O object to being ambiguous due
to the name of a form used in show statement:
ProgramB:
 FORMF is a form in the program FormGroup for the program
 FunctionB:
 INQUIRY RECORDB /* RECORDB contains field FORMF defined as BIN */
 XFER PGMBX , FORMF;/* converts to EGL show statement */
 FORMF = 123; /* VAGen-resolves to field RECORDB.FORMF */
 /* based on statement context; */
 /* form is invalid if source is a literal */
 /* EGL -cannot resolve between field or form FORMF;*/
 /* based on Category EGL2; form is not valid */

454 Rational Business Developer: VisualAge Generator to EGL Migration Guide

/* -FORMF is now an I/O object for show */
 /* -a form is invalid; */
 /* -message IWN.VAL.6620.e is issued */

Example 3
Resolution changes from a record to a field in a form used in show statement
ProgramC:
 FORMF is a form in the FormGroup for the program and contains
 field RECORDZ Tables and Additional Records List
 RECORDZ - a record that contains some fields
 FunctionC:
 XFER PGMCY , FORMF;/* converts to EGL show statement */
 CALL PGMCX RECORDZ;/* VAGen-resolves to record RECORDZ */
 /* based on statement context; */
 /* record receives precedence on a CALL */
 /* EGL -resolves to field FORMF.RECORDZ; */
 /* based on Category EGL2 */
 /* -FORMF is now an I/O object for show */
 /* -message IWN.VAL.6571.w is issued */

Example 4
Resolution changes from a field in the original I/O object to being ambiguous due
to a field in a form used in show statement.
ProgramD:
 FORMF is a form in the FormGroup for the program and
 contains a field named ITEMD defined as BIN
 FunctionD:
 INQUIRY RECORDD /* RECORDD contains field ITEMD defined as BIN */
 XFER PGMDX , FORMF;/* converts to EGL show statement */
 ITEMD = 123; /* VAGen-resolves to field RECORDD.ITEMD */
 /* based on Category VG2 */
 /* - RECORDD is I/O object */
 /* - FORMF is not an I/O object */
 /* EGL -cannot resolve between 2 fields ITEMD */
 /* based on Category EGL2 */
 /* -FORMF is now an I/O object for show */
 /* -message IWN.VAL.6620.e is issued */

Appendix E. IWN.xxx messages in the Problems view 455

456 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix F. APARs required for VisualAge Generator

There are currently no known APARs that are required beyond what is included in
VisualAge Generator Developer V4.5 Fix Pack 5.

© Copyright IBM Corp. 2004, 2011 457

458 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix G. Migration database

Creating the DB2 migration database
Except where noted, the following instructions apply regardless of whether you are
migrating from Java or Smalltalk.

The migration database requires DB2 Version 8.1 with Fix Pack 15 or DB2 Version
8.2 with Fix Pack 8. These two fix pack levels are equivalent. DB2 Version 9.x is
supported for Stage 1 on Smalltalk and Stages 2 and 3. DB2 Version 9.x is not
supported for Stage 1 on Java.

Using DB2 on Windows XP
The migration tool has the following requirements:
v The user ID that is used to access the migration database must not contain any

blanks.
v The Windows user ID needs to have administrator authority, not limited

authority, for the migration sets to be visible in the migration tool wizards in
Stages 2 and 3.

DB2 authority requirements
The db2 user ID that is used when running the migration tool must be granted
select, insert, update, delete, and control authority for all the migration tables,
views and indexes. Control authority is required by the RUNSTATs commands
issued during Stage 1 to improve the performance for the remaining migration
steps.

Creating the migration database
After you install or upgrade DB2 to the appropriate level, create the migration
database by following these steps:
1. Make sure that DB2 and any other applications that use it are shut down. For

example, shut down VisualAge Generator and the EGL development
environment.

2. Open a DB2 Command Window.
v If you are migrating from Java, navigate to the VisualAgeJava-installation-

directory\ide\vgmigration directory.
v If you are migrating from Smalltalk, navigate to the VisualAge-Smalltalk-

installation-directory.
3. Run the file named SetupDatabase.bat. This runs a file in the same directory

called createdatabase.sql and saves the output to a file called createdatabase.out
in the same directory. This creates a DB2 database called VGMIG, connects to
the database, and configures the database parameters. It might take up to a
minute to create the database. Be sure to wait until all the commands finish
executing.

Note:

v The first command that appears in the console might result in an error
message. You can ignore this message. It simply means that the
VGMIG database did not already exist.

© Copyright IBM Corp. 2004, 2011 459

v If you want to create a database with a name other than VGMIG, you
must change all occurrences of VGMIG in createdatabase.sql to your
desired database name. You must also remember to change VGMIG in
your Stage 1 – 3 migration tool preferences.

v By default the VGMIG database is not password protected. If you
need password protection, you must change the database to be
password protected.

4. Run the file named SetupTables.bat. This runs a file in the same directory called
createtables.sql and saves the output to a file called createtables.out in the same
directory. This creates all the tables and views that the migration tool needs in
the migration database. The tables are created with a high-level qualifier (a
schema) called MIGSCHEMA. It might take up to a minute to create the
database. Be sure to wait until all the commands finish executing.

Note:

v The first commands that appear in the console might result in error
messages. You can ignore these messages. They simply mean that the
tables and views did not already exist.

v If you want to create a schema with a name other than MIGSCHEMA,
you must change all occurrences of MIGSCHEMA in createtables.sql to
your desired schema name. You must also remember to change
MIGSCHEMA in your Stage 1 – 3 migration preferences.

v If you ever need to completely clean out the migration database, you
can rerun the SetupTables.bat file from a DB2 Command Window.

5. Close the DB2 Command Window.

At this point the migration database, schema, tables, and views have been created.
You are now ready to create a preferences file for the Stage 1 migration tool to use.
If you are migrating from Java, see “Setting Stage 1 preferences” on page 124. If
you are migrating from Smalltalk, see “Setting Stage 1 preferences” on page 148.

Resetting the migration database for Stage 1
If you need to reset the migration database (for example, due to changing your
renaming rules), use one of the following techniques:
v Use the tool that deletes and recreates all the tables in the migration database.

Use this tool in the following situations:
– If you need to delete all your migration plans.
– If you have migrated multiple versions of a Java project.
– If you have migrated multiple versions of a Smalltalk configuration map.
To run the tool that deletes and recreates all the tables, follow these steps:
1. From a DB2 Command Window, navigate to the directory where

SetupTables.bat is located.
– For Java, this is your VisualAge-for-Java-install-directory\ide\vgmigration.
– For Smalltalk, this is your VisualAge-Smalltalk-install-directory.

2. Run SetupTables.bat.
v Use the tool that deletes a specified migration set. Use this tool if you need to

delete only a few migration sets. To run the tool that deletes a specified
migration set, follow these steps:
1. Determine the migration set ID that you need to delete from the migration

database by following these steps:

460 Rational Business Developer: VisualAge Generator to EGL Migration Guide

a. Using the DB2 Control Center or an SQL query, look at the
CONFIGPLAN table.

b. Find the CONFIGPLANNAME that you want to delete.
c. The migration set ID you need to specify is the value in the

corresponding CONFIGPLANID column.
2. From a DB2 Command Window, navigate to the directory where

deletemigsets.bat is located.
– For Java, this is your VisualAge-for-Java-install-directory\ide\vgmigration.
– For Smalltalk, this is your VisualAge-Smalltalk-install-directory.

3. Run the deletemigsets.bat file, using one of the following formats:
– If you want to delete just one migration set, use the following format:

deletemigsets n

where n is the value in the CONFIGPLANID column corresponding to the
migration set ID that you want to delete.

– If you want to delete several migration sets, use the following format:
deletemigsets "n1,n2"

where n1 and n2 are the migration set IDs that you want to delete.

Cataloging a remote database using DB2
The migration tool provides better performance if you use a local DB2 database.
However, if you decide to use a remote database, this section provides information
that can be helpful. You need the following information to catalog a remote
database on DB2:
v Hostname or IP address of the remote machine where the database resides
v Port number and protocol on the client (for example: 60000/tcp)
v Node name (alias that describes the remote machine (for example: db2node)
v Database name
v Database alias (optional)

To establish a TCP/IP connection to a remote database using DB2, follow these
steps:
1. Bring up a DB2 Command Prompt window on Windows .
2. To catalog the node, enter the following command all on one line:

db2 catalog tcpip node nodeName remote [hostName | ipAddress]
 server [svcename | portNumber]

You can enter either the hostName or the ipAddress. For example, to catalog a
remote server on node db2node with the IP address 9.10.11.123 using port
number 60000, enter the following command:
db2 catalog tcpip node db2node remote 9.10.11.123 server 60000

3. To catalog the database, enter the following command all on one line:
db2 catalog database databaseName
 [as databaseAlias] at node nodeName

The "as databaseAlias" is optional. If you do not specify databaseAlias, the alias is
the same as the database name. The nodeName must be the same nodeName you
used in step 2.
For example, to catalog a remote database called SAMPLE so that it has the
alias sam1 on node db2node, enter the following command:

Appendix G. Migration database 461

db2 catalog database sample as sam1 at node db2node

4. To test the connection to the database, enter the following command all on one
line:
db2 connect to databaseAlias use userName using password

If you did not specify an alias (databaseAlias) in step 3, use the database name.
For example, to connect to database SAMPLE with the alias sam1 for user
db2user who has a password db2password, enter the following command:
db2 connect to sam1 user db2user using db2password

If you did not specify sam1 as the database alias in step 2, then enter the
following command:
db2 connect to SAMPLE user db2user using db2password

5. You should see the Database Connect Information.

For additional assistance, go to the following Web site:
https://aurora.vcu.edu/db2help/db2i4/frame3.htm#idx

Uncataloging a remote database using DB2
You need the following information to uncatalog a remote database on DB2:
v Database alias or the database name if no alias was specified when you

cataloged the database

To uncatalog a remote database using DB2, follow these steps:
1. Bring up a DB2 Command Prompt window on Windows.
2. To uncatalog the database, enter the following command, where databaseAlias is

the database alias:
db2 uncatalog database databaseAlias

For example, to uncatalog database SAMPLE (which was given the alias sam1),
enter the following command:
db2 uncatalog database sam1

If you did not specify a database alias when you cataloged the database, use
the name of the database. For example, if you did not specify a database alias
for the SAMPLE database, enter the following command:
db2 uncatalog database SAMPLE

For additional assistance, go to the following Web site:
https://aurora.vcu.edu/db2help/db2i4/frame3.htm#idx

Useful queries
If you modify the sample Stage 1 migration tool or develop your own Stage 1
migration tool, the following SQL queries might be useful in verifying your
changes.

Note:

v These examples can run from a DB2 Command Window.
v These examples assume that you use the default migration database name

(VGMIG) and the default schema (MIGSCHEMA).
v Unless noted otherwise, the entire DB2 command must be entered on one

line. The commands shown later in this document might be on several
lines due to space limitations.

462 Rational Business Developer: VisualAge Generator to EGL Migration Guide

v These examples require that you connect to the database first. To connect
to the database, run the following command:
db2 connect to VGMIG

To assist in determining if the Stage 1 migration tool ran correctly, run the
following .bat file that is located in your VAGen-installation\ide\vgmigration
directory for Java or your VAGen-installation directory for Smalltalk:

checkStage1.bat

The .bat file runs several queries:
v List of the migration plan names in the database
v Total number of parts in the database. This number includes any dummy map

group parts that were created by the Stage 1 migration tool.
v Other queries to check the validity of the External Source Format and parts

placement into EGL files.

The results of the first two queries should be greater than 0. The results of the
other queries should be 0. If your results differ, then there was a problem during
Stage 1 migration and you should contact IBM Support.

To determine if a VAGen part has been migrated:
 db2 select configplanname, configplanversion, vgpartname, vgparttime, is_migrated
 from migschema.vgpart where vgpartname = ’yourPartName’

To verify the first few characters of the External Source Format for all parts in the
migration database:
 db2 select vgpartname, substr(vgesfsource,1,n) from migschema.vgpart

n specifies the number of characters you want to display.

To determine if any parts in the migration database do not begin with valid
External Source Format tags:
 db2 select vgpartname, substr(vgesfsource,1,n) from migschema.vgpart
 where vgesfsource not like ’:%’

n specifies the number of characters you want to display.

Determining the number of parts in the migration database
To determine the total number of parts in the migration database:
db2 select count(*) from migschema.vgpart

To determine the number of parts of a specific part type in the migration database:
db2 select count(*) from migschema.vgpart where vgparttype = nnnnnnn

where nnnnnnn varies based on the part type as shown in the following table.

 Table 164. Part type values

Part type vgparttype values

Function 65536

Link Edit 131072

Bind Control 262144

Resource Associations 524288

Appendix G. Migration database 463

Table 164. Part type values (continued)

Part type vgparttype values

Linkage Table 1048576

Generation Options 2097152

Table 8388608

Record 33554432

PSB 67108864

Map 268435456

Map Group 536870912

Data Item 1073741824

Program 2147483648

Determining the number of parts migrated during Stage 2
To determine how many new parts were done by the Stage 2 migration, run this
query before and after the migration:
select count(*) from migschema.vgpart where is_migrated = ’Y’

Reviewing the EGL file names
As an alternative or supplement to reviewing the report from Stage 1, you might
want to list all the EGL directory and file names that are produced by the Stage 1
migration tool. The easiest way to do this is to create a .bat file containing DB2
commands similar to those in the following lines:
db2 connect to VGMIG
db2 set schema migschema
db2 select distinct(’ListOfEGLFileNames ’) from configplan
 >>%1\DBResults%2.txt
db2 select distinct(substr(eglfilename, 1, 130)) from eglfile order by 1
 >>%1\DBResults%2.txt
db2 select distinct(’ListOfVAGenPartsAndEGLFileNames’) from configplan
 >>%1\DBResults%2.txt
db2 select substr(vgpartname, 1, 32), substr(eglfilename,1,130)
 from vgpart_lineage order by 1, 2
 >>%1\DBResults%2.txt
db2 disconnect VGMIG

Notes:

1. The first and last commands connect and disconnect from the migration
database.

2. The db2 set command specifies the schema name so that the table names do
not have to be qualified in the rest of the .bat file.

3. The db2 select distinct('ListOfEGLFileNames ') and db2 select
distinct('ListOfVAGenPartsAndEGLFileNames') commands simply provide
separators in the output report.

4. The db2 select distinct(substr(eglfilename, 1, 130)) command produces a list of
all the EGL file names, sorted by file name. The eglfilename includes the EGL
project, package, and file name, so this query provides a quick look at the
organization of your EGL workspace. You can change the value 130 to be as
long as necessary to contain your complete file names. The maximum length
for the default eglfile table is 512 characters.

5. The db2 select substr(vgpartname, 1, 32), substr(eglfilename,1,130) command
produces a list of all the VAGen parts and their corresponding EGL file sorted

464 Rational Business Developer: VisualAge Generator to EGL Migration Guide

by part name and file name. This query includes any dummy map groups that
are created by the Stage 1 migration tool. Depending on your naming
conventions, this query can be helpful in determining whether parts are placed
conveniently for future EGL development. Similar to the previous query, you
can change the value 130 to be as long as necessary to contain your complete
file names. You might also want to modify this query to include (and sort by)
the part type. See Table 164 on page 463 for the correspondence between the
VAGen part types and the numeric part type that is stored in the migration
database.

6. The results of the queries are piped to a file using:
>>%1\DBResults%2.txt

where
v %1 is the first parameter for the .bat file and provides the name of the drive

and directory where you want the output file placed.
v %2 is the second parameter for the .bat file and provides a meaningful suffix

for the file name so you can distinguish the output from different runs of the
Stage 1 migration tool.

To run the .bat file, follow these steps:
1. Open a DB2 Command Prompt window.
2. Run the .bat file and specify the two parameters. For example:

reportStage1Results.bat c:\myTestMigration\stage1 _TrialA

The results are placed in:
c:\myTestMigration\stage1\DBResults_TrialA.txt

Queries to assist with specific error messages
The queries in the following sections might be useful to resolving specific error or
warning messages.

IWN.MIG.0302.w
This message occurs when a table has only a single row of contents. These tables
can cause problems if they are used as the source for a MOVEA statement. To
locate MOVEA statements in which fields in the table are used as the source for a
MOVEA statement without using the table name as a qualifier, use the following
queries:
db2 connect to VGMIG
db2 set schema migschema
db2 select vgpartname, eglpartname from vgpart
 where vgparttype in (65536, 2147483648)
 and vgesfsource like ’%MOVEA fieldName%’
 >>message302Results.txt

fieldName is a field in the table. You should repeat the query for each field in the
table. You might also need to vary the number of blanks following MOVEA.

Resetting the migration database for Stage 2
To reset all parts in the migration database if you want to rerun Stage 2 and 3 of
migration without rerunning Stage 1, use the following DB2 commands:
 db2 update migschema.vgpart set is_migrated = ’N’, eglsource = NULL,
 eglpartname = NULL
 db2 delete from migschema.translation_msgs

Appendix G. Migration database 465

Backing up and restoring the migration database
To back up the migration database:
 db2 backup database vgmig to x:\mybackups\backupName

x:\mybackups\backupName is the drive and directory where you want the backup to
be placed. Several subdirectories are created under x:\mybackups\backupName.

To restore the migration database that you previously backed up:
 db2 restore database vgmig from x:\mybackups\backupName REPLACE EXISTING

x:\mybackups\backupName is the drive and directory where you want the backup to
be placed.

466 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix H. Migration tool performance

The following factors can affect the performance of the migration tool:
v General performance for Stages 1, 2 and 3:

– Memory.
– Processor speed.
– Local or remote DB2 database. For remote databases, the speed of the

network connection is critical.
– Number of Java projects and packages or number of Smalltalk configuration

maps and applications.
– Number of parts and the distribution by part type.
– Number of migration sets.
– Number of lines in function parts.

v Performance for Stage 1:
– Clean Java workspace or Smalltalk image before starting migration.
– Local or remote Java repository or Smalltalk library. For remote repositories or

libraries, the speed of the network connection is critical. Some customers
improve the processing speed by copying their repository to the machine
where migration is running.

– Complexity of the renaming rules.
– Whether the migration set already exists in the migration database. If you are

recreating a migration set with a different set of renaming rules, it is more
efficient to recreate the SQL tables by running setuptables.bat than to have the
Stage 1 migration tool clean out the original migration set. Recreating the SQL
tables is only practical if there are no other migration sets in the migration
database.

v Performance for Stage 2 and 3:
– Migration options.

Given the number of factors involved, there is no specific formula that can predict
migration run time. However, the following sections provide some antedotal
guidance on how long the various stages of migration might take:
v Number of projects, packages, parts and programs
v Number of migration sets and other migration options
v Processor speed
v Number of lines in function parts
v Clean Java workspace for Stage 1

In addition, there is a section that provides some information that you can use to
help plan your disk space requirements.

Number of projects, packages, parts, and programs
The next table provides information on how long the various stages of migration
might take. These tests were run using Windows XP with a 2.0 GB of memory and
a 2.1 gigaHertz processor speed. The measurements are for EGL 7.1, and all times
are in minutes.

© Copyright IBM Corp. 2004, 2011 467

Table 165. Effect of migration set size on migration times

Test
case

Number
of
projects

Number
of
packages

Number
of parts

Number of
programs

Stage 1
time

Stage 2
time

Stage 3
time to
write
files

Stage 3
time to
refresh
or build

1 4 93 10,614 25 14 1 1 2

2 478 516 11,350 163 21 3 2 16

3 3 44 12,083 249 24 3 1 6

4 6 118 15,281 71 40 5 2 3

5 7 8 16,800 107 224 5 1 5

6 11 226 19,453 225 87 9 4 8

7 1 99 20,486 1,246 21 3 3 10

8 52 1,592 48,323 2,191 155 9 9 37

Here are some further details about the test cases in Table 165:
v Stage 1 for test case 5 used Stage 1 on Smalltalk; all other test cases used Stage 1

on Java.
v Test case 6 used the white paper technique to consolidate packages. It also used

the built-in customization to split the common files by part type and part name.
v Test case 8 used the built-in customization to split the common files by part

type.

Here are some general observations based on Table 165:
v Test cases 6 and 7 have similar numbers of parts, but test case 6 takes more than

4 times as long to run Stage 1 and 3 times as long to run Stage 2. Test case 7 has
many more programs, but the programs are very small with very few associated
parts. Conversely, test case 6 has relatively few programs, but each program is
quite complex with many associated parts. The number of programs and their
associated parts impacts performance in the following ways:
– In Stage 1, all associates must be analyzed to determine whether to place the

parts with the program or in a common parts file.
– In Stage 2, even though a part is only converted to EGL once, the part must

still be reviewed for each program in which it is used as an associate. For
example, the I/O object of a function must be added to the record
declarations or use form statement of each program in which the function is
used.

v Test case 8 has about 3 times the number of parts and about 20 times the
number of programs as test case 5. The programs in test case 5 are extremely
complex, so test case 5 has about 30% more associates than test case 8. This
contributes to the longer Stage 1 runtime for test case 5. In addition, Stage 1 on
Smalltalk seems to be a bit slower than Stage 1 on Java, but, because there is
only one large test case for Smalltalk, a performance comparison between
Smalltalk and Java is unrealistic.

v Test case 8 has more than twice the number of parts as test case 7, but takes
nearly 4 times as long to build the workspace. Test case 7 only has one project,
so there are no cycle dependencies. Conversely, test case 8 has many cycle
dependencies between the 52 projects. Even though the Stage 3 migration tool
automatically invokes the tool that optimizes the EGL project build order, the
build takes longer to resolve the cycle dependencies.

468 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Based on the information in Table 165 on page 468, if you have several hundred or
even 1000 programs you might want to migrate them as a single migration set
even if the programs are split across several subsystems. This assumes that the
subsystems all use the same version of your common projects and that the
subsystems do not have any duplicate part names.

Number of migration sets and other migration options
Table 166 shows the impact of consolidating into a smaller number of migration
sets. It also shows the impact of the Stage 2 Migrate remaining VAGen parts
option and the Stage 3 Override existing files option. The table shows the same
set of VAGen projects migrated using three different techniques. There are 10
projects, 226 packages, 19453 parts, and 225 programs. The two common projects
contain 7734 parts and 41 programs. This represents 40% of the parts. Each of the
eight migration sets represents one subsystem and includes the two common
projects. There are no duplicate parts in the eight subsystems so it is possible to
migrate all the subsystems as a single migration set as shown in TestCase 6C. The
measurements for EGL 7.1, and all times are in minutes.

 Table 166. Effect of number of migration sets and migration options

Test
case

Number
of
migration
sets

Migrate
remaining
VAGen
parts

Override
existing
files

Stage 1
time

Stage 2
time

Stage 3
time to
write files

Stage 3
time to
refresh or
build

6A 8 No No 234 11 5 9

6B 8 Yes Yes 234 10 5 7

6C 1 Yes Yes 87 9 4 8

Here are some general observations based onTable 166:
v Test cases 6A and 6B use the same Stage 1 database as the starting point for

Stages 2 and 3. These two test cases differ only in the options chosen for Stage 2
and Stage 3.
– In Stage 2, there is little impact due to selecting the Migrate remaining

VAGen parts option. This is probably due to the relatively small number
(250) of unused parts.

– In Stage 3, the time to merge newly migrated files with existing files in 6A is
no different than the time to completely rewrite the files. The advantage of
clearing the Override existing files option is that the import statements from
the various migration sets are all included in the final EGL files.

v Test case 6C added one project that contains a high-level PLP part that points to
the 10 other projects. This technique enables all eight subsystems to migrate as a
single migration set.
– In Stage 1, there is a significant savings in time because the common parts do

not need to be loaded and analyzed for each migration set.
– In Stage 2, there is some savings because the common parts do not have to be

analyzed for cross part migration in multiple migration sets. However,
because the migration tool does convert all the parts, there is not as big a
percentage savings as in Stages 1 and 3.

– In Stage 3, there is a small savings in time due to a combination of several
factors:
- The common parts are only analyzed once to determine the import

statements.

Appendix H. Migration tool performance 469

- The EGL files are only written one time.
- There is no need for any merge logic for the files because all the parts are

migrated at the same time.

Processor speed
Table 167 shows the impact of changing the machine memory and processor speed.
Test case 8A used a machine with 1.0 GB of memory and 1.1 gigaHertz processor
speed. Test case 8B used a machine with 2.0 GB of memory and 2.1 gigaHertz
processor speed. The measurements are for EGL 7.1, and all times are in minutes.

 Table 167. Effect of processor speed on migration times

Test
case

Number
of
projects

Number
of
packages

Number
of parts

Number of
programs

Stage 1
time

Stage 2
time

Stage 3
time to
write
files

Stage 3
time to
refresh
or build

8A 52 1,592 48,323 2,191 290 not
available

not
available

not
available

8B 52 1,592 48,323 2,191 155 9 9 37

Based on Table 167, you might want to use a machine with faster processor speed
during migration.

Number of lines in function parts
At one point in time, VisualAge Generator had a problem that resulted in a series
of blank lines being inserted into functions. In some cases, as many as 32,000 blank
lines were inserted. These extraneous blank lines have a severe impact on
performance. Table 168 shows the impact of the number of lines in a function on
the migration times. The test case contains 2 projects, 17 packages, 919 parts, and
87 programs. There were 497 functions, 8 of which had numerous blank lines
(suspected to be in the 30,000 range). The measurements are for EGL 5.1.2, using a
machine with 1.0 GB of memory and 1.1 gigaHertz processor speed. All times are
in minutes.

 Table 168. Effect of in-function lines on migration times

Before removing blank lines in
VAGen

After removing blank lines in VAGen

Test
case

Stage 1
time

Stage 2
time

Stage 3
time to
write
files

Stage 3
time to
refresh
or build
files

Stage 1
time

Stage 2
time

Stage 3
time to
write
files

Stage 3
time to
refresh
or build
files

9 40 25 1 3 12 11 1 3

There is a dramatic difference in the Stage 1 and 2 processing time just from
removing the extraneous blank lines before starting migration. If you know of
functions that have large numbers of blank lines, you should eliminate them before
migration. However, due to the rarity of the problem in VisualAge Generator, it is
probably not cost effective to search for these functions prior to migration. If there
are more than 3 consecutive blank lines, the migration tool automatically
eliminates the additional blank lines during Stage 2 migration. Therefore, there is

470 Rational Business Developer: VisualAge Generator to EGL Migration Guide

no change in the processing time for Stage 3. There is improved performance in
EGL due to the elimination of these blank lines.

Clean Java workspace for Stage 1
The next table shows the impact of having a clean workspace at the start of Stage 1
migration. Test case 13 contains 3 projects, 29 packages, 2660 parts, and 33
programs. Test case 14 contains 7 versions of a migration set. The first version
contains 3 projects, 4 packages, 30 parts and no programs. The last version contains
6 projects, 11 packages, 66 parts, and 7 programs. The measurements are for EGL
5.1.2, using a machine with 1.0 GB of memory and 1.1 gigaHertz processor speed.
All times are in minutes.

 Table 169. Effect of clean Java workspace on migration times

Test case Stage 1 Time without Clean
Workspace

Stage 1 Time with Clean
Workspace

10 17 12

11 11 1

Based on Table 169, you should consider starting with a clean workspace if you are
migrating from VisualAge Java. For details on how to start with a clean Java
workspace, see “Improving performance” on page 137.

For VisualAge Smalltalk, similar time savings are likely. Therefore, if you are
migrating from VisualAge Smalltalk, you should also consider starting with a clean
image. For details on how to start with a clean Smalltalk image, see “Improving
performance” on page 161.

Disk space requirements
There is no direct relationship between the disk space requirements of a VisualAge
Generator application and the corresponding EGL application.

The next table provides disk space requirements for the same test cases shown in
Table 165 on page 468. The EGL measurements were all done immediately after
migration, before correcting any messages in the Problems view and before doing
any generation. The measurements are for EGL 7.1, and all sizes are in megabytes
(MB).

 Table 170. Disk space requirements

Test case VAGen
.dat file
size

DB2
backup file
size for
Stage 1

EGL project
interchange
file

EGL
workspace
size

EGL
.metadata
directory
size

EGL total
workspace
size

1 11.4 114.7 8.2 40.6 40.0 80.6

2 33.4 163.9 6.3 157.5 41.5 199.0

3 15.3 163.9 9.5 155.7 59.3 215.0

4 13.6 180.3 1.5 86.4 26.6 113.0

5 15.8 426.1 3.6 190.6 38.4 229.0

6 24.2 262.2 3.0 169.3 31.7 201.0

7 26.1 196.7 6.7 147.0 46.0 193.0

8 64.1 393.3 32.5 453.0 156.0 609.0

Appendix H. Migration tool performance 471

Here are some general observations based on Table 170 on page 471:
v The VAGen .dat file size is the size of an exported VisualAge Java repository file

that contains only the VAGen projects and packages from the migration set.
v The DB2 backup file size is the size of the backup file for the migration database

at the end of Stage 1 after running the DB2 runstats.bat command file. The Stage
2 size is larger due to the addition of EGL source code to the database.

v Test cases 1, 3, and 8 all have VAGen Web Transaction programs and UI records.
The migration tool creates EGL Web projects for each project within the test case
that contains either a VAGen Web Transaction or UI record. EGL Web projects
contain the contain the following files:
– standard .properties files such as the csogw.properties and gw.properties files
– standard .jar files such as the fda7.jar, hpt.jar and hptGateway.jar files
– standard .jsp files such as the Vagen1LogonPage.jsp and CSOERRORUIR.jsp

files
– .jsp files that are generated for the UI records in the project

These files result in a much larger project interchange file size than for projects
that do not contain VAGen Web Transaction programs or UI records.

472 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Appendix I. VisualAge Generator and EGL interoperability

When you migrate the following types of programs, you must generate the EGL
programs or relink the VAGen programs to provide interoperability for the VAGen
and EGL programs:
v CICS programs
v iSeries programs
v VAGen Web Transactions
v Cross System Product

VisualAge Generator and EGL interoperability on z/OS CICS
All programs in the same z/OS CICS run unit must be linked with the same
runtime server product. A run unit for z/OS CICS consists of all programs that run
under the same CICS transaction, including any program transferred to using a
call or transfer to program (VAGen DXFR) statement. After any program in the
run unit is linked with the IBM Rational COBOL Runtime for zSeries, you do not
necessarily need to migrate the remaining VAGen programs to EGL or regenerate
other previously migrated programs with EGL, but, as a minimum, you must
relink all the programs in the run unit to use the IBM Rational COBOL Runtime
for zSeries. If you do not relink all the programs in the run unit ASRA abends can
occur.

VisualAge Generator and EGL interoperability on iSeries
The runtime libraries for VisualAge Generator and EGL do not readily facilitate
coexistence of programs generated with VisualAge Generator and programs
generated with EGL. This section outlines modifications that you can make to
achieve the coexistence.

This section uses the following terminology:
v QVGEN is the runtime library shipped with the VAGen product
v QEGL is the runtime library shipped with EGL
v PREP step refers to the task of deploying the generated objects from the

generator machine to the target host machine. This step involves compiling and
creating a program. Other objects that must be deployed include message tables,
DataTables, and format modules.

For VisualAge Generator, you can customize the PREP step by modifying the
templates that reside on the VAGen Developer client workstations. The following
templates are used in the PREP step:
v efk24pcl.tpl
v efk24pmn.tpl
v efk24psc.tpl
v efk24psm.tpl
v efk24wcl.tpl
v efk24wsc.tpl
v efk24ppm.tpl

© Copyright IBM Corp. 2004, 2011 473

For EGL, the PREP step is carried out by the build server (shipped with QEGL)
using a REXX build script named FDAPREP. You can customize the build script to
change the compiler or CRTPGM options. In addition, you can control the logic of
FDAPREP by setting up user symbolic parameters in the build descriptors and
having FDAPREP act on the value of these symbolic parameters.

The following problems can occur when calling programs in a mixed environment:
v Problem 1: The main problem occurs when invoking called programs (generated

either with VisualAge Generator or EGL). When main programs are initialized
their heap memory is allocated by a service routine in QVGNMEM which is a
server program in QVGEN or in QEGL, depending on which product is in the
library list. For example, if QEGL is in the library list (alone or ahead of
QVGEN) then QEGL/QVGNMEM is used. However, any called programs are
bound during the PREP step to either QVGEN/QVGNMEM or to
QEGL/QVGNMEM, depending whether the PREP step specifies the VisualAge
Generator or EGL library. For a main program to invoke a called program
correctly, both must be bound to the same QVGNMEM. Otherwise heap memory
is corrupted and an abend occurs.
Solution: Use one of the following techniques to ensure that the same
QVGNMEM is used for both the calling and the called program:
– Technique 1: Use QEGL consistently by following these steps:

1. Change the PREP step for VAGen called programs so that they use
BNDDIR(QEGL/QEGLBND) instead of BNDDIR(QVGEN/QVGN). You
can make this change by modifying the VAGen template efk24pcl.tpl.

2. At runtime, set LIBL so that the QEGL library is listed before the QVGEN
library.

– Technique 2: Use QVGEN consistently by following these steps:
1. Change the PREP step for EGL called programs so that they use

BNDDIR(QVGEN/QVGN) instead of BNDDIR(QEGL/QEGLBND). You
can make this change by modifying the procedure PCL in the EGL build
script FDAPREP.

2. At runtime, set LIBL so that the QVGEN library is listed before the QEGL
library.

Technique 1, using QEGL, requires that you run the PREP step again for all
VAGen called programs, whether they are called by EGL-generated programs
now or in the future, to bind the VAGen called programs with the correct
(QEGL) library. Technique 2, using QVGEN, requires that you run the PREP
step again for all the EGL programs when QVGEN goes out of service. In
either case, when all your VAGen programs are migrated, you can remove the
QVGEN library. To determine which technique to use, you should consider
the number of programs for which you must run the PREP step. For example,
if you expect to create a number of new systems using EGL and these
systems might call programs previously written in VisualAge Generator, then
you might want to use Technique 1 so that the new systems start with the
new QEGL library.

v Problem 2: A VAGen-generated Java client program can only do a remote call
using the VAGen catcher program, which in turn can only call programs that are
bound with the VAGen QVGEN module. Similarly an EGL-generated Java client
program can only do a remote call using the EGL catcher program, which in
turn can only call programs that are bound with the EGL QEGL module. This
restriction affects programs called remotely from Java, including programs called
from Java wrappers.

474 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Solution: Use one of the following techniques to ensure that the QVGNMEM
module for the called program matches that for the catcher program:
– Technique 1: If the client program is generated with EGL, then bind the

called program and any programs it calls with QEGL regardless of whether
the programs are generated with VisualAge Generator or EGL. This is the
preferred technique.

– Technique 2: If the client program is generated with VisualAge Generator,
then bind the called program and any programs it calls with QVGEN,
regardless of whether the called program is generated with VisualAge
Generator or EGL.

v Problem 3: VAGen-generated Web Transaction programs are not interoperable
with EGL-generated Web Transactions, including any programs that are called or
transferred to using the call, transfer, or show statements.
Solution: You must migrate all the VisualAge Generator Web Transactions to
EGL at the same time. Otherwise, the results might not be predicable, and
crashes in the called or transferred-to program might occur.

The following table summarizes the interoperability of VisualAge Generator and
EGL programs for iSeries:

 Program kind Problem

Main programs None. VisualAge Generator main programs can run in the QEGL
library and EGL main programs can run in the QVGEN library.

Called programs See Problem 1, described previously

Remotely called
programs

See Problem 2, described previously

Web transaction
programs

See Problem 3, described previously

Print services programs None

Format modules None

Message tables None

Data tables None

DDS files None

VisualAge Generator and EGL interoperability for Web Transactions
For Web Transaction programs and UI records (EGL VGWebTransaction programs
and VGUIRecords), the following rules apply:
v Before you debug your VGWebTransaction programs, you must generate all the

VGWebTransaction programs and VGUIRecords.
v When you deploy or use an EGL-generated bean, you must perform the

following tasks:
– Regenerate all the VGUIRecords that you plan to include in the new WAR

file.
– Regenerate all of the corresponding VGWebTransaction programs.
– Migrate and generate any programs that the VGWebTransaction program calls

or transfers to using the call, transfer, or show statements (VAGen CALL,
DXFR, or XFER statements).

Appendix I. VisualAge Generator and EGL interoperability 475

You do not need to migrate and generate programs that are referenced in a
program link or hyperlink.

Cross System Product interoperability
You must generate the following programs and their related DataTables and
FormGroups:
v Any programs and associated DataTables and Form Groups that were generated

with Cross System Product Version 3.3 or earlier, including programs generated
with the Cross System Product Version 3.3 COBOL generation facility.

v Any programs and associated DataTables and FormGroups that were generated
with Cross System Product Version 4.1. These programs must be generated with
EGL in accordance with the following rules:
– If you generate a program with EGL, you must also generate the following

parts with EGL:
- All FormGroups used by the program.
- All DataTables that are specified with the validatorDataTable property for

any form field in the FormGroup.
– If you generate a FormGroup with EGL, you must also generate the following

parts with EGL:
- All programs that use the FormGroup.
- All DataTables that are specified with the validatorDataTable property for

any form field in the FormGroup
– If you generate a DataTable with EGL, you do not need to generate any

programs or FormGroups that use the DataTable.
– As soon as you generate any program, DataTable or FormGroup with EGL,

then you must use the EGL server product for your runtime environment.

476 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Notices

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this
documentation in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2004, 2011 477

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
3600 Steeles Avenue East
Markham, ON
Canada L3R 9Z7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to

478 Rational Business Developer: VisualAge Generator to EGL Migration Guide

IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.html.

Intel is a trademark of Intel Corporation in the United States, other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names, may be trademarks or service marks of
others.

Notices 479

480 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Index

A
alternate specification record 411, 412
ambiguous situations 25, 27, 30, 34, 65,

205, 257
data items 65
EZE words 117
functions 94
map groups and maps 77
other statements 106
programs 87
records 70
tables 76

appendix index entry 249, 259, 265, 281,
283, 286, 307, 325, 339, 349, 352, 395,
427, 457

array 35, 277, 293, 327, 332, 341
dynamic 4
map 52
multidimensional 4

associated parts 4, 30, 31, 35, 39, 52, 65,
140, 165, 406

migrating with 46
migrating without 46

associated program parts 89
AUDIT 240

B
batch mode 19, 25, 26, 171, 180, 184,

186, 197, 199
bind control 208
bind control part 209, 213

program-specific 214
using as template 212

build descriptor 206, 208
debug 209

default 216
default 207
EGL 213

build descriptor option 213
bind 214
genproject 209
link edit 214

build descriptor options 206, 209, 222,
223

COBOL generation
reviewing 208

Java generation
reviewing 209

reviewing
general 206

build descriptor parts 203
reviewing 206

build parts 39, 52, 354
build path 15, 31, 34, 35, 38, 39, 40, 192,

205

C
CALL AUDIT 349
CALL COMMIT 349
CALL CREATX 349
CALL CSPTDLI 349
CALL EZCHART 349
CALL RESET 349
CICS 7, 9, 33, 41, 76, 77, 88, 231, 354,

372, 376, 377, 379, 385, 395, 396, 412, 420
CALL CREATX differences 241
commit differences 241
EZE special data word differences

EZEAPP 242
EZEDEST 242
EZEDESTP 242
EZELTERM 242
EZERCODE 242
EZERT8 242
EZESEGTR 242
EZEUSR 242
EZEUSRID 242

EZECONCT differences 241
features not supported

native environments 241
function words

not supported, native
environments 240

resource associations
not supported, native

environments 241
rollback differences 241
service routines

not supported, native
environments 240

XFER, DXFR 241
COBOL generation

generating and testing 222
common code 8, 22, 29, 31, 32, 33, 34,

35, 45, 109, 154
common parts 128, 130, 151, 152
comparison value items

DL/I I/O 105
configuration map 12, 15, 19, 20, 21, 22,

23, 25, 28, 32, 42, 43, 44, 45, 89, 149, 150,
151, 152, 153, 154, 161, 163, 165, 166,
167, 190, 354, 460

containerContextDependent property 15,
31, 34, 35, 40, 52

control part 23, 27, 42, 181, 352, 353,
354, 396, 423

bind control 26, 41, 42, 383, 425
generation option 26, 41
generation options 39, 42, 52, 353,

354
link edit 26, 41, 42, 383, 423, 424
linkage option 26
linkage table 372

Calllink 372
Crtxlink 377
Dxfrlink 378
Filelink 376

control part (continued)
linkage table options 353
resource association 26, 42, 379
resource associations 353

converse 30, 33, 53, 113, 311
cross-part migration 4, 20, 30, 31, 34, 46,

65

D
data item 12, 33, 36, 38, 39, 42, 52, 65,

66, 70, 112, 117, 259, 325, 326, 395, 405,
408, 409, 411, 412, 427

assignment statements 108
implicit 88, 106, 420
preferences 178
renaming 41, 177, 249, 253
shared 31, 33, 34, 40, 44, 45, 65, 67,

68, 70, 74
database 9, 19, 20, 21, 23, 33, 95, 96, 131,

140, 142, 180, 181, 184, 189, 354, 396,
403, 404, 419, 423

DB2
performance information 171

debug
EZESQLCA 237
EZESQRRM 237
EZESQWN6 237
runtime differences 237

maps 237
SQL 237

deleteAfterUse 421
destPort 423
display 30, 33, 35, 45, 46, 53, 94, 110,

284, 286, 288, 291, 311, 414, 415, 418, 427
DL/I I/O

comparison value items 105

E
edit function 30
edit routine 30, 44, 46, 68, 82, 264, 298,

300, 395, 408, 413
edit table 30, 47, 261, 264, 278, 279
error messages

HPT 395
IWN.MIG 405
IWN.VAL 435
IWN.XML 448

evensql 409, 411
export 27, 195, 405, 406
External Source Format 20, 23, 25, 27,

28, 34, 46, 51, 78, 97, 131, 139, 163, 164,
171, 184, 195, 197, 293, 405, 406, 408,
409, 414, 421, 427, 457, 463

EZE words 51, 65, 257, 339
date and time

EZEDAY 342
EZEDAYL 342
EZEDAYLC 342

© Copyright IBM Corp. 2004, 2011 481

EZE words (continued)
date and time (continued)

EZEDTE 342
EZEDTEL 342
EZEDTELC 342
EZETIM 342

DL/I
EZEDLCER 341
EZEDLCON 341
EZEDLDBD 341
EZEDLERR 341
EZEDLKEY 341
EZEDLKYL 341
EZEDLLEV 341
EZEDLPCB 341

EZELTERM
ambiguous situations 117

EZESYS
ambiguous situations 118

EZEWAIT
ambiguous situations 120

floating point math functions
EZEFLADD 348
EZEFLDIV 348
EZEFLMOD 348
EZEFLMUL 348
EZEFLSET 348
EZEFLSUB 348

general function
EZEBYTES 345
EZEC10 345
EZEC11 345
EZECOMIT 345
EZECONV 345
EZEG10 345
EZEG11 345
EZEPURGE 345
EZEROLLB 345
EZEWAIT 345

general math functions
EZEABS 347
EZECEIL 347
EZEEXP 347
EZEFLOOR 347
EZEFREXP 347
EZELDEXP 347
EZELOG 347
EZELOG10 347
EZEMAX 347
EZEMIN 347
EZEMODF 347
EZENCMPR 347
EZEPOW 347
EZEPRSCN 347
EZEROUND 347
EZESQRT 347

math 347
object scripting

EZESCRPT 349
other data

EZEAID 343
EZEAPP 343
EZECNVCM 343
EZECONVT 343
EZEDEST 343
EZEDESTP 343
EZEFEC 343

EZE words (continued)
other data (continued)

EZELOC 343
EZELTERM 343
EZEMNO 343
EZEMSG 343
EZEOVER 343
EZEOVERS 343
EZERCODE 343
EZEREPLY 343
EZERT2 343
EZERT8 343
EZESEGM 343
EZESEGTR 343
EZESYS 343
EZETST 343
EZEUSR 343
EZEUSRID 343

program flow
EZECLOS 340
EZEFLO 340
EZERTN 340

SQL
EZECONCT 341
EZESQCOD 341
EZESQISL 341
EZESQLCA 341
EZESQRD3 341
EZESQRRM 341
EZESQWN1 341
EZESQWN6 341

string
EZESBLKT 346
EZESCCWS 346
EZESCMPR 346
EZESCNCT 346
EZESCOPY 346
EZESFIND 346
EZESNULT 346
EZESSET 346
EZESTLEN 346
EZESTOKN 346

trigonometric math functions
EZEACOS 348
EZEASIN 348
EZEATAN 348
EZEATAN2 348
EZECOS 348
EZECOSH 348
EZESIN 348
EZESINH 348
EZETAN 348
EZETANH 348

user interface
EZEUIERR 348
EZEUILOC 348

EZEDLPCB 92
EZELOC 241
EZEPURGE 240

F
fill character 70, 261, 278, 298
filter 22, 23, 179, 396

configuration map 150
configuration maps 151
packages 129

filter (continued)
projects 127, 129
repository 21, 125, 126, 127, 131, 139,

141, 150, 165, 167
version 127
version depth 127, 128, 150, 151
version name 127, 128, 150, 151

FormGroup 77, 205
function 15, 29, 30, 31, 36, 39, 40, 42, 43,

44, 45, 46, 51, 65, 68, 69, 71, 72, 76, 82,
83, 85, 94, 95, 96, 99, 103, 104, 105, 106,
107, 109, 110, 111, 113, 115, 117, 118, 120,
176, 300, 301, 307, 308, 310, 311, 325,
327, 406, 408, 413, 415, 416, 418, 419, 438

common 33, 45, 52
DL/I I/O 321
DL/I statements 322
I/O 312
renaming 41, 177, 249, 253
SQL 51, 176
SQL I/O 313, 315, 318

functions
handling ambiguous situations 94
SQL I/O 97

G
general function EZE words 345
generate 31, 33, 34, 40, 46, 47, 416

program 8, 20, 30, 408, 423
programs 26
report 130, 131, 133, 163
tables 26
VisualAge Generator 141

generation option 12, 353, 354, 383, 422,
423

conversion table values 370
VisualAge Generator 36

generation option part 12
generation options 206

H
help map 80, 288, 290, 301
help map group 53, 80, 178, 396, 413,

414
help map names 79
high-level PLP project 21, 22, 127, 139,

140, 141
creating 140

I
I/O options for default (unmodified)

DL/I statements 322
implicit item 52, 106, 420

in programs 88
import 36, 181, 185, 189, 190, 195, 405,

406
External Source Format 27
Stage 3 tool 20

import into workspace 181, 184, 186
import statement 26, 28, 31, 34, 35, 36,

38, 39, 40, 51, 53, 90, 192, 205, 283, 286,
354

isDecimalDigit 83, 296

482 Rational Business Developer: VisualAge Generator to EGL Migration Guide

IWN.MIG 405
IWN.VAL 435
IWN.XML 448

J
Java and C++ differences

EZE special data words
EZECONVT 244
EZERCODE 244

general 244
maps 244
SQL

EZESQLCA 244
EZESQRRM 244
EZESQWN6 244

Java generation
generating and testing 223

JSP
invalid character constant 450

L
library 14, 149, 151, 161, 372

management 4, 5, 6, 8, 15, 44
Smalltalk 20, 24, 148, 150, 162

link edit 208
linkage options 208
linkage options parts 203

reviewing 210
log file 21, 23, 25, 27, 139, 163, 187, 188,

196, 198, 199
name 132, 156, 181, 189
name preference 159
Stage 2 migration 185

M
map 28, 31, 36, 44, 45, 52, 65, 67, 68, 80,

94, 109, 142, 205, 249, 327, 415, 418, 419,
427

assignment statements 108
constant field 291, 293, 296
display 30, 33, 45

general syntax, map type, and
properties 288

EZEMSG 343
numeric hardware attribute 83
print 420
printer 30, 33, 45

general syntax, map type, and
properties 290

renaming 41, 177, 253
spanning 152
unnamed variable fields 85
unprotected constants 86
variable field 30, 46, 82, 291, 293,

296, 298, 299
error messages 300

XFER with 338
map edits 70
map group 28, 30, 32, 33, 41, 42, 43, 65,

77, 142, 395, 406, 412, 413, 414
general syntax and floating areas 284
renaming 249
spanning 128, 152

map group part 12
map groups 283

ambiguous situations 77
device names, types, sizes 286
general information 283

map item
checking for NULL 113
edit routine 68
implicit 88

map names 79
map part 12
map properties

error messages 264
general edits 261
general information 261
numeric edits 263

maps 286
ambiguous situations 77
functions and I/O options 311
general information 286

messages 23, 67, 73, 78, 83, 87, 99, 103,
104, 139, 148, 163, 188, 196, 199, 261,
279, 288, 290, 291, 293

debug 132, 156
fatal 156
from migration tools 395
HPT 395
informational 132, 156
IWN.MIG 405
IWN.VAL 435
IWN.XML 448
Problems view 26, 173, 179, 199, 427
Stage 1 common 395
Stage 1 on VisualAge for Java 399
Stage 1 on VisualAge for

Smalltalk 403
Stage 2 185, 405
Stage 3 181, 189
warning 132, 156

MigPreferences.xml 123, 124, 125, 127,
130, 138, 147, 148

sample 133, 157
migration database 21, 22, 23, 24, 25, 34,

123, 126, 131, 132, 139, 142, 147, 148,
150, 155, 163, 164, 187, 189, 192, 406,
427, 457, 462, 463

creating 459
resetting

tables 460
tables 460
views 460

migration feature 148
adding 124
loading 148

migration plan 21, 22, 23, 125, 126, 131,
132, 139, 140, 142, 149, 150, 155, 156,
157, 162, 163, 164, 167, 396, 460

creating manually 141
high-level configuration maps 165
multiple 23

migration set 21, 22, 23, 25, 30, 31, 34,
35, 42, 43, 45, 46, 51, 52, 78, 90, 126, 127,
128, 129, 138, 139, 140, 142, 150, 152,
153, 155, 162, 165, 181, 184, 185, 187,
192, 283, 397, 405, 406, 460

migration sets
processing 35

migration tool performance 466

O
output files 28, 29
Overwrite PLN 162, 167

P
package 12, 13, 15, 19, 22, 23, 26, 27, 28,

34, 36, 38, 39, 40, 42, 43, 51, 53, 74, 89,
90, 125, 128, 129, 130, 131, 138, 142, 151,
152, 163, 185, 187, 188, 192, 195, 196,
198, 199, 205, 255, 283, 354, 372, 377,
399, 403, 406

naming 152
renaming 129, 154

part name 15, 35, 38, 41, 205
conflicting 51, 93, 176, 178, 353
duplicate 31, 41
invalid 41, 76, 77, 87, 249, 253, 383,

423, 424
renaming 177, 253
resolution 31, 40, 41
VisualAge Generator 405

part name restrictions 35
parts 22

large numbers 19
placement 42

single file mode 27
Stages 1, 2, 3 27, 42

placing 35
single file mode 195, 196
Stages 1 to 3 42

Project List Parts (PLP) 20
Stages 1, 2 , 3 26
Stages 1, 2, 3 20

performance
migration tool 466

planning your migration 3, 4
preference file 404

migration 162
Java 22

preferences 22, 27, 189, 190, 396, 403,
404

build descriptor 35
deriving file names 159
editor 35
renaming 177
repository filters 165
required EGL 172
sample file 124
setting 195
Single File Mode 174
SQL 155, 176
Stage 1 21, 23, 42, 167

Java 21
setting 141, 143
setting on Java 124
setting on Smalltalk 148

Stage 2 24, 25, 184
setting 180

Stage 3 25, 26
suggested 173
VAGen Migration Preferences 41,

174, 198, 318

Index 483

preferences (continued)
VAGen Migration Syntax

Preferences 177
VAGen Syntax Migration

Preferences 313, 315
workbench

setting 171
Problems view 13, 30, 40, 42, 47, 51, 52,

53, 69, 73, 77, 78, 87, 88, 96, 97, 109, 110,
111, 112, 113, 173, 197, 204, 206, 211, 354,
372, 376, 377, 406, 414, 420, 424, 427,
435, 448

program 30, 31, 33, 35, 41, 42, 43, 44, 46,
53, 65, 70, 80, 90, 96, 113, 141, 205, 301,
303, 307, 396, 406, 420, 421

behavior 19, 29
implicit data items 88
migrating with 45
properties 35, 36
renaming 249, 253
sample

Stage 1 tool 21, 24
programs 300

sample 19
single file migration 27

project list part 15
project list part (PLP) 22, 140
project name 22, 43, 127, 128, 129, 130,

139, 140, 142, 152, 185, 186
PSB 303, 350

R
record 31, 36, 52

renaming 41
records 31, 65, 70, 74, 75, 90, 109, 265,

266, 409, 410, 411, 419, 420
alternate specification 72, 73, 268
assignment statements 108
common 52
DL/I 274
I/O 311
indexed 312
level 77 items 71, 72
message queue 312
redefined 70, 71
relative 312
renaming 249, 253
serial 312
SQL 270, 427
User Interface (UI) 23, 42, 276, 277,

278, 279, 280, 311, 396
working storage 24, 177

Rename
User Exit Information 174

renaming 22, 23, 42, 80, 125, 130, 131,
149, 405, 407

Renaming page 129, 154
Renaming Prefix 41, 177, 343, 419
renaming rules 131, 152, 153, 399, 403,

460
report 21, 23, 33, 125, 139, 396

Stage 1 migration 142, 155, 157, 159,
164, 181, 190

repository 14, 15, 19, 125, 137, 142, 181
Java 20, 22, 24, 138
source code 4, 6, 8, 20, 25, 26, 354

Repository explorer 13
Repository Filter 151
repository management 15
reserved word list 41
reserved words 23, 25, 27, 42, 249, 276,

281, 288, 290, 301, 396
EGL

list 249
FormGroup names 77
Java

list 255
program names 87
SQL 177

list 253
table names 76
UI record names 75

resource association 208, 354, 379, 424,
448

resource associations parts 203
EGL

reviewing 211
results

intermediate 19
migration 407
pilot project 8
reviewing 130
Stage 1 139

migration database 164
running the tool

Stage 1 24, 162, 457
Java 138
Smalltalk 162

Stage 2 24, 184
batch mode 25, 185
user interface 184

Stage 3 25, 189
batch mode 26

runtime differences
COBOL

CALL 238
DXFR 238
maps 238
XFER 238

Java
CALL 239
DXFR 239
XFER 239

S
service routine 93, 257, 349

general syntax 349
VisualAge Generator and EGL

equivalent routines 349
SET map PAGE 110
single file migration

batch mode 197
user interface 195

single file mode 27, 28, 29, 41, 42, 46, 78,
196, 198, 283, 286, 406, 409, 413, 427

migration 195
parts placement 195
set up 195

source code 3, 8, 19, 20, 23, 24, 25, 26,
27, 29, 33, 50, 140, 165, 203, 205, 231,
349, 435

extracting from Java 123, 138

source code (continued)
extracting from Smalltalk 162
pilot project 5
reviewing 205

SQL 9, 29, 259, 266, 354, 410, 416
checking item for NULL 419
checking items for NULL 113
hard errors 114
statements 65
WHERE clause 35, 65

SQL clauses
FOR UPDATE OF 315, 318
GROUP BY 315, 318
HAVING 315, 318
INTO 315, 318
ORDER BY 315, 318
SELECT 315, 318
WHERE 315, 318

SQL EZE words 341
SQL I/O 415, 416

Execution time statement build 176
SQL I/O and !itemColumnName 102,

103
SQL I/O and missing SQL clauses 98
SQL I/O options

ADD 313, 315, 318
CLOSE 313, 315, 318
DELETE 313, 315, 318
INQUIRY 313, 315, 318
REPLACE 313, 315, 318
SCAN 313, 315, 318
SETINQ 313, 315, 318
SETUPD 313, 315, 318
SQLEXEC 313, 315, 318
UPDATE 313, 315, 318

SQL I/O statements 96
SQL I/O with multiple updates 104
SQL query 461, 462
SQL record 51, 410
SQL record definition 32
SQL records

alternate specification 72
SQL row record 66
SQL statements

modified
with Execution time statement

build 318
without Execution time statement

build 315
unmodified

without Execution time statement
build 313

SQL table 409, 410
SQL tables 24, 97
Stage 1 20

Java 123
preferences 42, 43, 124
running 138

Smalltalk 147
preferences 42, 43, 148
running 162

Stage 2 20, 171
preferences

setting 180
running 184

batch mode 185
user interface 184

484 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Stage 3 20, 189
preferences 189
running 189

statements 51, 118, 257, 301, 311, 325
use declaration 76
ambiguity in I/O 94
assignment, MOVE, MOVEA 327
CALL 337, 343
CALL, DXFR, XFER 396
call, transfer, show 88, 420
display 94
DXFR 338
FIND 109
flow 300, 307, 340
function invocation 327
general rules

data item qualification and
numeric literals 326

I/O 65, 176, 343, 420
IF, WHILE, TEST 332
level 77 items 106
link edit 383
print 94
produced in ambiguous situations 65
RETRIEVE, FIND 331
SET 329
SETUPD, UPDATE 415
SQL 102, 103, 104, 307
use declaration 77, 303, 412
XFER 338

subsystem 19, 31, 32, 33, 34, 35, 38, 40,
41, 46, 51, 52, 69, 72, 73, 74, 83, 97, 99,
103, 104, 109, 110, 141, 166, 204

symbolic parameters 354, 379, 383, 384
file-related 385
part-related 384
user-defined 385

syntax 27, 95
assignment, MOVE, MOVEA

examples 327
data item examples 259
EGL 4, 20, 29, 30, 35, 45, 177, 189,

205, 257, 395, 427
conversion (Stage 2) 171
errors 53
invalid 99
precise 29

general conventions
differences between VisualAge

Generator and EGL 258
general display map examples 288
general function examples 308
general printer map examples 290
general program examples 301
general record examples 266
general table examples 281
map group examples 283
program main function example 307
service routine general examples 349
SET examples 329
statement examples

function invocation 327
tables 257
VAGen 31, 52, 177, 405, 406
XFER examples 338

system library function 30, 45, 69, 92,
118, 327, 332

T
table 31, 36, 41, 52, 141
tables 65, 66, 73, 96, 281, 412

database 132, 155
FIND statement 109
renaming 249, 253
RETR statement 110

Tables and Additional Records list 53,
90, 303, 354

terminology 3
trace 354

level 132, 156
messages 395

U
UI record 44

renaming 41
unused parts 22, 128, 130, 151, 152, 153
update database 131, 163, 164
use declaration 421

V
VAGen Migration Preferences 187

W
Windows XP

using DB2 459
wizard

import 27, 199
workbench

preferences
setting 171

workspace 4, 7, 12, 13, 20, 25, 26, 33, 34,
35, 38, 74, 124, 135, 140, 141, 142, 173,
179, 185, 187, 188, 190, 195, 198, 354,
397, 398, 407

clean 137
duplicate parts 28, 31
restoring 138, 162
saving 138, 159

Index 485

486 Rational Business Developer: VisualAge Generator to EGL Migration Guide

Readers’ Comments — We'd Like to Hear from You

Rational Business Developer
VisualAge Generator to EGL Migration Guide
Version 8 Release 0

 Publication No. SC31-6830-08

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: 1-800-227-5088(US and Canada)
v Send your comments via email to: kfrye@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
 SC31-6830-08

SC31-6830-08

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg. 503
P.O. Box 12195
Research Triangle Park, NC
 27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Product Number: 5724-J19

Printed in USA

SC31-6830-08

	Preface
	Who should read this book
	Related information

	Contents
	Part 1. Migration overview
	Chapter 1. Migration overview
	Terminology used in this book
	What's new in EGL that requires migration?
	Planning your migration
	Determining whether you can migrate to EGL
	VisualAge Generator features not available in EGL

	Terminology differences
	References

	Chapter 2. Migration tool philosophy
	Overview of the VisualAge Generator to EGL migration tools
	Migration tool terminology
	Stage 1 details
	Step 1
	Step 2

	Stage 2 details
	Stage 3 details

	Overview of single file migration
	Migration challenges
	Precise EGL syntax
	When and how part names are resolved
	Common code scenarios
	Common code and VisualAge Generator
	Common code and the migration tool

	Techniques used by the VisualAge Generator to EGL migration tool
	Overview of techniques
	Editor and build descriptor preferences
	Program properties
	EGL build path and import statements
	containerContextDependent Property
	EGL part name restrictions
	Placing parts in EGL files
	Migrating with a program
	Migrating with associated parts
	Migrating without associated parts
	Controlling the order for processing migration sets
	Overwriting and merging files
	General rules

	Determining how to organize your EGL source code
	Differences in product capabilities for organizing your code
	VAGen on Java code organization
	VAGen on Smalltalk code organization
	EGL code organization

	Organization capabilities provided by the migration tool
	Limitations and tradeoffs of EGL source code organization techniques

	What's new for the VAGen migration tool since EGL 5.1.2?
	What's new for the VAGen migration tool since EGL 6.0 iFix?
	What's new for the VAGen migration tool since EGL 6.0.0.1?
	What's new for the VAGen migration tool since EGL 6.0.1?
	What's new for the VAGen migration tool since EGL 6.0.1.1?
	What's new for the VAGen migration tool since EGL 6.0.1.1 ifix003?
	What's new for the VAGen migration tool since EGL 7.1?
	Known restrictions for the migration tools
	Stage 1
	Stages 2 and 3
	Syntax migration

	Chapter 3. Handling ambiguous situations
	Handling ambiguous situations for data items
	PACK data items with even length
	Shared edits and messages
	Map edit routine for shared data items
	Fill characters for shared data items

	Handling ambiguous situations for records
	Redefined records
	Level 77 items in records
	Alternate specification records
	Different definitions with the same record name
	Reserved words and UI record names

	Handling ambiguous situations for tables
	Reserved words and table names

	Handling ambiguous situations for map groups and maps
	Reserved words and FormGroup names
	Map group and FormGroup requirements
	Floating areas and starting positions
	Map names and help map names
	Numeric variable fields
	Map variable fields and edit routines
	Map fields and the numeric hardware attribute
	Map arrays and attributes
	Unnamed map variable fields
	Unprotected map constants
	Fields at row=0, column=0

	Handling ambiguous situations for programs
	Program names and reserved words
	Implicit data items in programs
	Associated program parts
	Program with EZEDLPCB in called parameter list
	Intermediate variables required for migration

	Handling ambiguous situations for functions, including I/O statements
	DISPLAY I/O option for maps
	I/O error routine
	SQL I/O statements
	SQL I/O and missing required SQL clauses
	SQL I/O and Execution time statement build
	SQL I/O and !itemColumnName
	SQL I/O with multiple UPDATE or SETUPD functions
	DL/I I/O and comparison value items

	Handling ambiguous situations for other statements
	Implicit data items in statements
	Level 77 items in statements
	Table references in statements
	MOVEA with a single row table as the source
	Assignment statements
	FIND statement
	RETR statement
	SET map PAGE statement
	SET mapItem attributes
	Checking for IN literal or scalar
	Checking SQL and map items for NULL
	I/O error values UNQ and DUP
	I/O error value LOK

	Handling ambiguous situations for EZE words
	EZELTERM
	EZESYS
	EZEWAIT

	Part 2. Migrating from VisualAge Generator 4.5 on Java to EGL
	Chapter 4. Stage 1 — Extracting from Java
	Installing the Stage 1 migration tool on VisualAge for Java
	Adding the migration feature
	Creating the migration database

	Setting Stage 1 preferences
	Build Plans page
	Mapping page
	Renaming page
	Execution page
	Sample MigPreferences.xml file

	Before you run the Stage 1 tool — hints and tips
	Customizing the Stage 1 migration tool
	Enabling the Stage 1 built-in customizations

	Specifying your character set information
	Improving performance
	Saving your workspace

	Running the Stage 1 tool
	Migration plans and high-level PLP projects
	Creating a high-level PLP project
	Creating a migration plan file manually

	Part 3. Migrating from VisualAge Generator 4.5 on Smalltalk to EGL
	Chapter 5. Stage 1 — Extracting from Smalltalk
	Installing the Stage 1 migration tool on VisualAge Smalltalk
	Loading the migration feature

	Creating the migration database
	Setting Stage 1 preferences
	Build Plans page
	Mapping page
	Renaming page
	Execution page
	Sample MigPreferences.xml file
	Deriving file names from your preferences

	Before you run the Stage 1 tool — hints and tips
	Customizing the Stage 1 migration tool
	Enabling the Stage 1 built-in customizations

	Specifying your character set information
	Improving performance
	Saving your image

	Running the Stage 1 migration tool
	Repairing a migration database created using a previous version of the Stage 1 tool
	Migration plans and high-level configuration maps
	Creating a high-level configuration map
	Chaining configuration maps
	Using configuration maps with the Stage 1 tool

	Creating a migration plan file manually

	Part 4. Stages 2 and 3 — common migration steps
	Chapter 6. Stage 2—Conversion to EGL syntax
	Setting DB2 performance information
	Setting your workbench preferences
	Start up parameters
	Required EGL preferences
	Suggested preferences
	VAGen Migration preferences
	
	VAGen Migration Database I/O Preferences
	VAGen Migration Syntax Preferences

	Other suggested settings

	Setting up the Stage 2 VAGen migration file
	Running Stage 2
	Running Stage 2 from the user interface
	Running Stage 2 in batch mode

	Chapter 7. Stage 3 — Import
	Running the Stage 3 tool
	Running Stage 3 in batch mode
	Using the migration sets written to temporary directories

	Chapter 8. Running migration in single file mode
	Running single file migration using the user interface
	Running single file migration using batch mode

	Part 5. Completing the migration
	Chapter 9. Completing your migration
	Setting the Build Order preference
	Exporting your preferences
	Saving a baseline for EGL projects and packages
	Preliminary tasks for completing single file migration
	Common tasks for both Stage 1 — 3 and single file migration
	Reviewing your EGL source code
	Reviewing your EGL build descriptor parts
	Reviewing general build descriptor options
	Reviewing COBOL generation build descriptor options
	Reviewing Java generation build descriptor options
	Establishing a debug build descriptor part

	Reviewing your EGL linkage options parts
	Reviewing your EGL resource associations parts
	Establishing a bind control part to use as a template
	Establishing a program-specific bind control part
	Reviewing link edit commands
	Reviewing your VGWebTransactions
	Preparing for debugging
	Installing the EGL server product for zSeries
	Installing the EGL server product for VSE
	Converting VAGen preparation templates and procedures to EGL build scripts
	Converting VAGen runtime templates
	Converting the VAGen reserved words file
	Generating and testing with COBOL generation
	Generating and testing with Java generation
	Reviewing your standards
	Planning for dual maintenance of your source code
	Eliminating the use of VisualAge Generator compatibility mode

	Part 6. Language and runtime differences
	Chapter 10. Language and runtime differences
	Language differences
	Runtime differences
	General differences
	Differences in SQL support
	Differences in DL/I support
	Differences in debug
	Differences in generated COBOL
	Differences in generated Java
	Differences between host and workstation environments
	Differences between distributed CICS and native workstation environments
	Differences between generated C++ and generated Java

	Part 7. Appendixes
	Appendix A. Reserved words
	VisualAge Generator migration tool extended reserved words
	EGL reserved words
	EGL enumeration words
	SQL reserved words
	SQL reserved words requiring special treatment

	Java reserved words

	Appendix B. Relationship of VisualAge Generator and EGL language elements
	General syntax conventions
	Data item
	Record
	Tables
	Map groups
	Maps
	Programs
	Functions
	Statements
	EZE words
	Program flow EZE words
	SQL EZE words
	DL/I EZE words
	Date and time EZE words
	Other data EZE words
	General function EZE words
	String EZE words
	Math EZE words
	User interface EZE words
	Object scripting EZE words

	Service routines
	PSBs
	Control parts
	Generation options part
	Conversion table names used in generation option parts
	Conversion table names used in linkage table and resource associations parts
	Linkage table parts
	callLink
	fileLink
	Crtxlink
	Dxfrlink

	resource associations part
	Link edit part
	Bind control part

	Symbolic parameters
	Other generation information
	Preparation templates and procedures
	Runtime templates

	Other runtime information
	Runtime environment variables
	vgj.properties

	Appendix C. Messages from the migration tools
	Messages from the VisualAge Generator to EGL migration tool—Stage 1
	Stage 1 common messages
	Stage 1 on VisualAge for Java
	Stage 1 on VisualAge Smalltalk

	Messages from the VisualAge Generator to EGL migration tool— Stage 2
	Messages from the VisualAge Generator to EGL migration tool—Stage 3

	Appendix D. Messages in the Problems view
	Appendix E. IWN.xxx messages in the Problems view
	IWN.VAL messages for the .egl files
	IWN.VAL messages for the .eglbld file
	Java messages for JSPs
	Reference information for messages - name resolution and qualification rules
	VisualAge Generator name resolution and qualification rules
	EGL name resolution and qualification rules
	Validation messages due to differences in name resolution and qualification rules
	Example 1
	Example 2
	Example 3
	Example 4

	Appendix F. APARs required for VisualAge Generator
	Appendix G. Migration database
	Creating the DB2 migration database
	Using DB2 on Windows XP
	DB2 authority requirements
	Creating the migration database

	Resetting the migration database for Stage 1
	Cataloging a remote database using DB2
	Uncataloging a remote database using DB2
	Useful queries
	Determining the number of parts in the migration database
	Determining the number of parts migrated during Stage 2
	Reviewing the EGL file names
	Queries to assist with specific error messages
	IWN.MIG.0302.w

	Resetting the migration database for Stage 2
	Backing up and restoring the migration database

	Appendix H. Migration tool performance
	Number of projects, packages, parts, and programs
	Number of migration sets and other migration options
	Processor speed
	Number of lines in function parts
	Clean Java workspace for Stage 1
	Disk space requirements

	Appendix I. VisualAge Generator and EGL interoperability
	VisualAge Generator and EGL interoperability on z/OS CICS
	VisualAge Generator and EGL interoperability on iSeries
	VisualAge Generator and EGL interoperability for Web Transactions
	Cross System Product interoperability

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

	Readers’ Comments — We'd Like to Hear from You

