uDeploy® User Guide
4.7.2

uDeploy User Guide: 4.7.2

Publication date October 2012
Copyright © 2012 UrbanCode, Inc.

UrbanCode, AnthillPro, uDeploy and any other product or service name or slogan or logo contained in this documentation are trademarks of
UrbanCode and its suppliers or licensors and may not be copied, imitated, or used, in whole or in part, without the prior written permission of
UrbanCode or the applicable trademark holder. Ownership of al such trademarks and the goodwill associated therewith remains with UrbanCode
or the applicable trademark holder.

Reference to any products, services, processes, or other information, by trade name, trademark, or otherwise does not constitute or imply
endorsement, sponsorship, or recommendation thereof by UrbanCode.

All other marks and logos found in this documentation are the property of their respective owners. For adetailed list of all third party intellectua
property mentioned in our product documentation, please visit: http://www.UrbanCode.com/html/company/legal/trademarks.html.

Document Number: 4.7.2.2

http://www.UrbanCode.com/html/company/legal/trademarks.html

F A o Lo U I TFST = o 1

How ThisS BOOK 1S Organizedoeiuuiiiiiiii e e e e e e e 1
L foTo 1§ Tox ST o] o (T 1
DOCUMENE COMVEMLIONSutieieeiisee et e ettt e et e et e e et s e e e et s e e e et r e e e et aeaeataaeeeennns 1
g1 o [0 ot [' o RPN 3
L@ N Y= U 4
L00]10/00 10T 0| K53 PTPTRT 5
COMPONENT PrOCESSES ...uviite ettt e e e e e e e e e aees 5

[1 o T 7
Component Versions and the CodeStation REPOSITOrYcc.ovevviieiiiieiiiiieiinneennn. 7

PN o o1 1 o P 8
APPHICAION PrOCESSvuiiiieii e e e e e e e e e e e e aaneees 8
ENVITONIMENES ...oiiieii e e 8

S F= 01 10 8

N = 01T PP PPN 9
RESDUITES ... ettt ettt e et et et e e e e e e e e e e aees 9
RESOUICE GIOUPS ...ttt ittt e e e et e e e et e e e en 9

F Y o 1 (= 10 = PSP 10
S LYol T PRSP 11
(O[T 5 £ U 14

(D - N = S PP 14
Relational Datalasecovvvvniiiiiiii e 14

File Storage—CodeStationccuuieiiiiiiiii e e 14

Data Center CONfigUIationoeeuuieiiiiieiiie e e e e e e e s e e e eaneens 15

N6 (= 01T PP 17
Server-Agent COMMUNICAHIONuiiiiieiiiee e e e e e e e e e eeees 18

Remote Agents—-Crossing Network Boundaries and Firewalls..................ccccoee.. 19

AGENE SECUMTY Leniiitiei e e e e e e e e e e et e e et e e eaaees 20

USEr IMPErSONALION ...ovvuiii i e e e e e e e e e e e e e e e et e e eaneeeanaes 20

SSL Mutual Key-based Authenticationcooevviieiiiiiiiii e 21

LT 11110 S = 1 =0 [23
UDEPIOY ROAAMBD ...evviciiieiiii e e e e e e e e e et e e et e e e e e st e e e e eaaeeeen 24
Installing and Upgrading Servers and AQENEScviiieiiiei e e e e 28
Installation RECOMMENUALIONSooiiiiiiiiiiii e 28
SYSLEM REQUITEMENTSuuiiiiciii e et e et e e e e e e e s e e e et e e st e e et e e san e eaneeannaees 29
Server Minimum Installation ReqUIrEMENtSccuuveiiieiiiieeiin e 29
Recommended Server INStallationcoovveuiieiiiiinieriiie e 29

Agent Minimum REQUITEMENESiiuuiiiiiieeiieeeie e e e e e e e e e e e e e eanes 30

32- and 64-bit IVIM SUPPOITcceuneiiiieeeeee e e e e e 30
Performance RECOMMENAELIONSccvvvtnieeiiiiiie et e e e 30

DoWNI0ad UDEPIOYccvueiiieiiie e e e e e e e e e e e e e 31
Database INSEEEHONooveeiiieie e 31
INSEAIING OFaCl@ ...iveiiiii e e 31

INSEAING MYSQL .oiniiiiiiei e e e e e e e e e aaaas 32

Installing Microsoft SOL SEIVErveiiiiiiiiie e e e 33

SEVEr INSEAIIBLION ..uuiiiiii e 34
Windows Server INStallationccoouiiiiiiiiiieii e 34
Unix/LinUX INSEAHEEIONuiiiiiiieeces e 36

AGENt INSEAIEEION ...oveiee e e e 37
INSEAliNG @N AQENL ...oiei e 37
Connecting Agents to AgeNt REIAYSccuviiii i 39

INStalling AQent REIAYSuiiiiciie e 39
UPGrading UDEPIOYcevuneiiieeiiee e e e e e e e e e e e e e e et e e et e e et e e st e e eanaeeaneees 41

S S I o 1o 0= 1 Lo o 41

uDeploy® User Guide

Configuring SSL Unauthenticated Mode for HTTP Communications.................. 42
Configuring Mutual AUtheNtiCationcoeeviiiiiiiie e 42
RUNNING UDEPIOY ...iiiiiii et e e e e e et e e e et eeaanas 44
RUNNING the SEIVESeii e 44
RUNNING 8N AGENT ...t e e e e e e e e et e e eaaaeees 44
RUNNING an AQENt REIAY .. .covniiii e 44
ACCESSING UDEPIOY ..vuieeieeiiieii e et e e et e e e e e e e e e e e e e e e e e e aanas 44
Quick Start—helloWorld DeploymMeNtoevuiiiiiiiie e 45
Creating COMPONENESiiuieiiiie e ee e e e e e e e e s e e e et e e et e eaaeeetn e eanaeaanaees 45
helloWOrld DEPIOYMENTuuiiiiiieii e e e eaens 46

A NoOte BEFOre YOU BEJIN .vviiiiicii et 46
helloWorld CompOoNnENnt VEISIONcccuuiiiiieiiiieeiie e e e e e e e e e e e e e e eaaeees 46
COMPONENT PrOCESSititiiii ittt e e e e e e n e anes 49
hellOWOTTd ProCeSS DESION ...vuuiiiiieiiii e e e e e e e e e e e e e et e e e e ean s 50
helloWOrld APPLICALIONcoveiii e e e e e e 55
Creating an APPLICALIONoiviiiii e e 56
Adding the helloWorld Component to the Applicationc.cccoeeiiiiiiiinennnnn. 56
Adding an Environment to the Applicationcceeviiii i 56
Adding a Process to the AppliCationcc.veviiiiiiii i 58
Designing the PrOCESS SEEPScvvvniiiii e e e e 58
RUNning the APPIICAIONiiii e e 60

L LS T T U1 o] KoY 63
(0] 1[0 0o 0| KT 64
Creating COMPONENESiiuieiii et ee e e e e e e e e s e et e e et e e et e e et e e stn e ranaaannaees 64
Importing/EXporting COMPONENESoivieeiieeeiiee e e e ee e e e e eeanes 66
(000107010 0 = 1] 1= 4 1= 68
COMPONENE VEISIONS ...ovuiiiiiieiii et et e e e e e e e e e e e e e et e e st e e et e e et e eaneeannaees 69
Importing Versions Manuallycc.oviiiiiiiiiicii e e 70
Importing Versions AutomMatiCallycooveueiiiiiiiiiici e, 71
ComponeNt VErSION SEAIUSESuuevvieiiiieiiee et ee e e e e e e e e e et e et e e aaeeeanas 72
Deleting Component VEISIONScvuuiiiiiieiiieeii e e e e e e e e e e eeanas 72
COMPONENT PrOCESSES ...ttt e e et et e e aees 72
Configuring CoOmMpPONENt PrOCESSESuiiiviieiiieiiieeie e e e e e e e e aenas 72
0o =S S o] (o PP 74
To Display the Process EditOrcc.veiiiiiiiiiiiii e 74
UsiNg the Process EAIOrccuuiiiiiiiiie e 75
AddiNG ProCESS SEEPS . oevuiiiiieii e e e e e e e e e e e eaens 76
CONNECEING PrOCESS SEEPS ...vvviciii e e e e e e e 78
ProCESS PrOPEITIES ...ovuiiiii et 79
Switch Steps and Conditional ProCESSEScevviiiiiiieiii e 80
Process StEP PropertieS ... cvvv i 81
Component Manual Tasksccuuiiiiiiiiic e 82
Creating Component Manual TasksScoevuiiiiiieiiiieeiiie e ee e e 82
Using Component Manual TasKSc.uveiuieiiiieiiiieeiii e ieeiee e e e e e e eanns 82
POSI-PrOCESSES ...t ettt e 83
CompPONENt TEMPIBEESivvi e e e e e e e e e e e e et e e et e e eaaeee 83
Creating a Component TEMPIAEEc.uuiiiiiieiieee e e e 83
Importing\EXporting TEMPIAIESoeiiiiiiii e 84
Component Template Propertiescoceuuieiiii i 85
Using Component TEMPIAtEScccvuiiiiieiii e 87
Configuration TEMPIEEEScvvueiii e e e e e e 87
ComponeNt ChangE LOGScvvuiiiiieiiiee e e e e e e e e e e e e e et eeaaeeeeen 88
Deleting and Deactivating COMPONENESueiuueiiieiiiie et e et e et e eaie e eeaaeeaneens 88
[C S o0 {0/ PP 90

uDeploy® User Guide

RESOUICE GGIOUPDS ...ttt e e e e e e e e et et e e et en 90
Creating @ RESOUICE GIOUDcvvuneiitieiiieeii e e e e e e e e e e e e te e et e e et e e aaneeeeas 90
RESOUICE ROIES ...ttt et e e e e e et e e e et s e e e eatnneeaee 92
R0 E= o (0] 0= = 92
N6 (= 01 T PP 92
Remote Agent INStallationc.oeeviiiiiiiii e 93
Managing Agents REMOLEYcovuiiiiiiiiie e e e e 94
AGENE POOIS ..oieciicci e e 95
Creating an Agent POOIcouuiiiii e 95
Managing Agent POOISccouiiiiiie e 95

PN o o[1 o] = 96
Creating APPIICALIONSovuiiii e e 97
Adding Components to an APPlICaLIONceiviiiiiiiieiie e e 98
Importing/Exporting APPlICaLIONSveiiiieiiie e e 98
AppPlication ENVIFONMENTSuiiiiiiii e e e e e e e e e e e e e e e aens 100
Creating an ENVIFONMENTuiiiiiiiiii e e e 100
Mapping Resources to an ENVIironmentcoocevieeiiiieiiii e eeiieeeieeeineens 101
ENVIronment ProPertieScouuiiiiiiii e 102
APPIICAION PrOCESSESivviiiiiieii et e et e e e e e e e e e e e e e e e e e e et e e eanaaees 102
Creating AppliCation PrOCESSEScivvuiiiiieii e e e 103
APPlICAION ProCESS SEEPS ...vuuiiieeiiiieeiie et e e e e e e e e e e e e e e eaanas 104
Application Process Steps DEtailSveevneeiiiieiiieeie e, 104
Application Manual Taskscc.oiiiiiiiiiiiiii e 107
Creating Application Manual Tasksc.veveeiiiiiiieiiieee e 107
USING MANUaAl TaSKSciviiiiiieiiiieeii e e e e e e e e e e e e e e e e et e e ea e e eanees 108

PN o007 I = (0 Tor = 108
WOTK TEBIMIS .t e e e e 108

S F=T 01 10 PPN 109
Creating SNaPShOLScovuiii e 109
SNAPSNOL VEISIONS ...uiiiiiiii e e e e e e e e e e et e e e eaens 109
Snapshot CoNfigQUIaEioNc.uueeiiiiiii e e e e e e e 110
USING SNBPSNOLS ...oevuiiiiieii e e e e e e e e e e e e e e et e e et e e et e e aaeeaenas 110

PN oo 1o 1 o] g I 7 = 110
(O (o [T | =-P 110

1= 010011 01 €= 113
Scheduling DEPIOYMENLSccovuiiiiiei e e e e e e e e aaes 116
< 0] 1 PP 117
D= 0 o) 001= A R = o0 T 117
Deployment Detail REPOITcvvvniiiiiiiii e eaes 118
Deployment Count REPOIcivunciiiiieiii e e e e e e e e 120
Deployment Average Duration REPOMcccuiviiiiiiiieciii e eee e e 123
Deployment Total Duration REPOIToevvniiiiiieiiie e e e 126

S ol L1 YA R (= o0 =T 128
Application SeCUrity REPOMcovuiiii i e 128
Component SECUNtY REPOMoiieeiiiii e e 129
Environment Security REPOIccouiiiiii e 130
RESOUICe SECUNtY REPOIT .. .ccvuiiii i e e e eaans 130
Saving and Printing REPOISciiuiiiiieii e e e e eaaes 131
S Y La (e RS oo A DT - L 131
Saving REPOrt FilTErS ...oovnii e 131
Printing REPOIMSouiiiiii e e aens 132
Yo |00 T1 g K = o o PP 133
UDEPIOY SECUMLY tvuuieiieiii e et e e e e e e e e e e e e e e et e e et e e et e e et e e et eean e eaanas 134
ROIES 8N PEIMISSIONSiiiiiiee et e et e e e e s 135

uDeploy® User Guide

DefaUlt ROIESvuiieiii e 135
Creating and EAiting ROIESiiiiiiiiii e 136
AGENE ROIES ..o e e 136
APPIICAION ROIESceviici e 137
Component TeEMPIate ROIESccvuiiiiiciie e 137
CompPONENt ROIES ... covicii e e 137
ENVIironment ROIESoiviviiiiii e 138
LICENSE ROIES ..ottt 138
RESOUICE ROIES ...t e s 138

[Dc =0 L = 4TSS T PN 139
Setting Default PErMISSIONScovuiiiiieii e 139
AULhONZation REAIMSuuiiiiiii et e e eea e e 140
Creating an LDAP Authorization Realmccocoiiiiiiiiiiiiiii e, 140

L] (018 o 1= T PP PP 141
AUthentication REAIMSiiiiiiiie e 142
Creating an Authentication Realmooeviiiiiiiiiiiie e, 142
(0= g To [0 P 143
IMPOrting LDAP USEI'S . .ovuiiiiii et e e e e aans 143
TOKENS .t e 143
USer INterfate SECUNTYu.iiveiii e e e e e 144
VS (= LIRS = w1 1 145
TS (= LIS = 1] 146
INSEAIING PIUGFINS .. e e e e e e e eaas 146
LOCKS ettt e 146
ManNagiNGg LOCKScovuniiiiiiii e e 146
POSt-PrOCESSING SCIIPS ... iivieiiiiei e e e e e e e e e e e e eaneees 147
Inventory and COmMPONENE SLBEUSESu.eivrierei e eei e eaeeeeee e e e et e st e e e e aanaas 148
Creating SEAIUSESuuiivieiii i ei e e et e e e e e e e e e et e et e et e e aa e aanns 148
USING SEAEUSES ... cvvteiiteeeiee et e e e e e e e e e e e e a e et e et e e et e e et a e e et e e aneeeenss 149

L0 1SR 149
AdAING 8 LICENSE ...t 149
Adding AgentSt0 @ LiCENSEviviiiiii i 150

[0 TS 11110 PP 150
NEIWOIK SEEINGS «.vvviiii e e e e e e e e e e eaaaas 150
NOUTICELIONS ..ottt e e n e et e e e et e e e e aen e 151
L@ 1111 011 | oo I PP PRPPN 153
VS (= L 0 0= £ (1= 153
VS (= LIS 1] 0T 1 154
Preview VErsion ClEaNUDocvuiiiiiii e e e e aaans 155
(00011 To 8= 1 o] o NP 156
Application CONfigUIationciiiiieiiii e e e e e 156
Adding Application Configuration PropertieSccoeevviviiiiieeiineciineeeeeeennn, 157
Modifying and Deleting Application Configuration Properties...............c.cc.uu.... 158
Component CoNfIGUIAIONcvuueiiii e e e e e e e e e et eea e eees 158
Environment Configurationieiiiiiiiiiii e e e 158
10177 0100 Y PP PP PP 160
RESOUICES INVENTOIY ...eiiiie e e e e e aas 160
COMPONENT TNVENTOTY .. vuitiie e e e e e e e e e ae e 160
ENVIrONMENt INVENTOY ...uuuiiiiiii e e e e e et e e e e e e aanas 161
R EIBINCE ...ttt a e 162
Component SoUrce CONfIQUIAIONciiueieiiii e e e e e e e e e e e e aaa s 163
BaSIC FIEIOS ..o 163
File System (Basic and VErSIONE)couuiiiiiieiiiieiii e e e e e e 164
File SYyStem (BaSiC) ...ucvvuueiiiiiii e e e e e e e e e e e e 164

Vi

uDeploy® User Guide

File System (Versioned)cceeuiiiiiiiiiiecii e e 164
1o T 0 PPN 166
StaNdard PIUG-INS ...oveei e 167
(0= gTo [11 o T 167
The pluginaxXml FIlE ..cove e 168
Plug-in Steps--the <st ep-type> Elementcoooiiiiiiiiiiin e, 170

The <command> Elementooooiiiiiiii e 171

The <post - processi Ng> Elementccooiiiiiiiiiiiniiie e, 172
Upgrading PlUG-iNScouiiii e e e e 173

The INFOXMI FIlE cooeve e 174
EXAMPIE PlUGFIN oo e e 174
S = o B o 0] 0= =S 176

S (< o J O] 11710 7= S 178

The <post - processi Ng> Elementccooiiiiiiiiiiiniiie e, 180
UDEPIOY PrOPEITIES . ovuiiii i ettt e e e e e e e et e et e e e e e et 181
Command Line Client (CLI) REFEIENCEccuuiiiiiicii e 185
ComMMANG FOMMELeeviieiii e e e e e et e e et e e e e aan s 185
L@00] 091017200 SRR 186
addActionTOROIEFOrAPPIICALIONSccvviiiiiceii e e 186

addA ctionTOROIEFOrCOMPONENEScvueiiii e e e e e e e e e 186

addA ctionTOROIEFOTENVIFONMENESvvvieeiiiiie e 187

addA CtioNTOROIEFOITRESOUICESccvviieeeiiiiee e 187
addACtONTOROIEFOTUL .. .oeviiiiii e 187

=0 (o TN 0 1= g 1 0] o o | PN 188
addComponentTOAPPHCALIONcvviieiie e e 188
addGroupTOROIEFOrAPPlICALIONcivvciii e e 189
addGroupTOROIEFOrCOMPONENTiviieiiieeie e e e e e e e e 189
addGroupTOROIEFOTENVIFONMENTuiiiiiciie e 190
addGroupTOROIEFOTRESOUICEivvieeiii e e e e e e e e e eanns 190
addGroupTOROIEFOIULovi e 191

2o (0| I Yo s 0 PP 191
addNameCoNAitioNTOGIOUDu.vvveeeiiieeiiie e ee e e e e e e e e e e e e e eeannes 191
addPropertyConditionTOGIOUDccvvueirieeiiieeeireeieeei e e e e e e et e e e eanaens 192

=0 (0 RS o (o= o€ (01U o N 192
BOAROIETORESOUICEeeviieeeiii e e et e et e e et e e e et e e e eeta e eeeees 193
addRoleTOResoUrCEWIthPrOPErtiESccvvciii e 193

=T (o (WS = g o1 (| o 194
addUserTOROIEFOrAPPIICALIONcovviiii e e 194
addUserTOROIEFOrCOMPONENTvuiiiiieiiieeeii e e e e e e e e e e e eanns 194
addUserTOROIEFOrENVIFONMENToeiiiiiieeeiiie e 195
addUSErTOROIEFOIRESOUITEcevvieeeeiiie et 195
addUSEITOROIEFOIULuviiiiiiii e e eaees 196
BAAVErSIONFIIES ...coviieiiii e e 196
BOAVErSIONSIALUS ...vvueeeiiiie et e e et e e e et e e e e eaaaeeeees 197
CrEaAEAGENTPOON . .oveiiii e 197

o =7 (=AY o] 0 [Tor= 4 o] o [198
CreateAPPIICAIONPIOCESSivvi e e 198
CrEALECOMPONENE . vui ettt ettt e e e e e e e e n e e e e anaans 199
CreateCOMPONENTPIOCESS .. .vuivii i e 199
CreateDYNamIiCRESOUICEGIOUDuuvvineeiieeeiiieeitie e e e et e e et e ean e eat e eeaneeeannes 200
CrEAtEENVITONMENT .. euutiiiiiii ettt e e e et e e e e e e e 200
CIEALEGIOUD . .uvutieiie ettt et e e e e e e e e e e e e e e e e e 201

(o= =AY =T o1 o [201
CIEALERESOUITEiieteeieet et et ettt et et et et e et e e r et e e e et e e e en e eneeens 201

Vii

uDeploy® User Guide

CrealERESOUICEGIOUD ...ovuieieiit ettt et et e e aeans 202
createROIEFOrAPPIICALIONScovvi i 202
CreateROIEFOrCOMPONENTSuiiii e e e e e e 203
CreateROIEFOTENVIFONMENESvuiiiiiii e e 203
CreatEROIEFOTRESOUITESiieviieiiei ettt e e e e e eaees 204
CreatEROIEFOTUI .. .oiiii e 204
CrEAtESUDIESOUICEviieeeii e 204
(0= (S0 L < PP TP 205
(o= 1=V = = To o SO UPPRTRPPP 205
(012 1= =Y 0 1= o | N 206
AelEtAGENTPOON .. .oeiiiie e 206
(012 1= =] (01 L P 206
JEIEEERESOUICE ... e e e e 207
el EERESOUICEGIOUD . .vvuivieiei et e et e e e e e et e e e e e e e et e e et e e eaneeeees 207
el EtERESOUICEPTOPEIYevvtieiii e et e e e e e e e e e e e et e eeaaeeees 207
0 1c 1 (= LS P 208
L2010 (€ o U o P 208
DO A DN ettt 208
QELAGENTPOO!coueiiii i 209
QELAQGENTPOOIS ... ceveiii e 209
DO A GBS oottt 209
(o1 7AN o] o] I Tor= (o] o NS 210
(o1 7AN o] o] TTor= 10 g] o o Tor= s 210
getApplicationProCeSSREQUESESIAIUSuovvvneiiiieiieeeieee e e e e e eaaeens 210
(o 1c7AN o] o] ITor= (o]0 = Fo] 0 1= 4 11 P 211
(o 1S 7AN o] o] ITor= (o]0 = Fo] 0= 4 |V 211
(o1 7AY o] o] [Tor= 1)1 211
[0S (@00Ta01070] 01 o) PP TPRUPRPS 212
getComponentEnvironmMentPropertiesc..uvviiiiiii i 212
getComponentENVIiroNMENtPrOPEIYvvviiiiii e e e e e 212
OELCOMPONENEPIOCESS ...ttt 213
JELCOMIPONENES L.ttt ettt e e e e e e e 213
getComponeNntSINAPPIICAIONuuiiiiieiie e e e e e e 214
getCOMPONENTPIOPEITIES .. .ivvi i e e 214
getCOMPONENEPIOPEITY ..oviieiei i 214
01001V (0] 011 1= o | P 215
QEtENVIFONMENTPIOPEITIES ... oevi e 215
QEtENVIFONMENTPIOPEITY ..ovviiiii e e 215
getENvVironmentsINAPPIICAIONc.vuiiiiciie e 216
OELGrOUPSFOrRESOUICE ... cviiviiiiei it 216
o101 = o o 1 oo RPN 217
getMappingsForApplicationENVIironmMentcooeeieiiii e e 217
gEtM APPINGSFOrGIOUD ...uiieiiiii e e e e e 217
JEIRESOUICE ... e e e e 218
JELRESOUICEGIOUD .. euitiieitt ettt ettt e e e 218
JELRESOUICEGIOUDS ...vitiiitieieeii ettt e et et e e e e e e n e aas 218
JEtRESOUICEPTOPEITIESivvi e e 219
JELRESOUICEPTOPEITY .uiviiiiiie it as 219
JEIRESOUICES .. oeitiii i es 219
OEtRESOUICESINGIOUD vttt ees 220
JELRESOUICESECUNTY ..ivvuiiiiieii e et e e e e e e e e e e e e e e et e e et e e e e eaaaas 220
QEtROIEFOrAPPIICALIONSvuiiii e e e 220
QEtROIEFOrCOMPONENES ... ivvteiii e e e e e e e e e e e e e e e e e e aneeeen 221
QEtROIEFOrENVITONMENES ..\tiiiicii e e e e e e e e e e e e 221

uDeploy® User Guide

EtROIEFOIRESOUICES ... ivviieiii et e e e e e e e e e e e e e ean s 221
o1 0 (0] 1= o 1 | P 222
EtROIESFOIRESOUICEivvieiii e et et e e e e e e e et e e e e e e e e e ean s 222
(01 VS (= 0] (0] 1= 1] =N 222
OELSY SEMPIOPEITY ..iviieitii e 223
GO BT it 223
0] 010 (o o 223
IMPOIEVEISIONS ...evuieeii e i e e et e e e e e e e e e e e e e e e et e e e e et e eannes 224
INACHIVAEEENVIFONMENT ..uuiiiiii e et e et e e eaa e e eaaens 224
1S = Ao = o | PP 225
oo 1 226
oo | P 226
removeA ctionFromRoleFOrAppliCationSccuvveiiiiiii e, 226
removeA ctionFromRoleFOrCOMPONENtSuvevviieeiiieeei e 227
removeA ctionFromROIEFOrENVIFONMENESeeiiiiieeeiiiineeec e 227
removeA ctionFromMROIEFOrRESOUICESuuieiiiiiiieieiie e 228
removeA CtionFromMROIEFOTUILooiiiiiiiiiis e 228
removeAgeNtFrOMPOOLoiii i 228
removeGroupFromRoleFOrAPPIICALIONcccuuiiiiiieiie e 229
removeGroupFromRoleFOrCOMPONENtuieiiiieiiieeii e e 229
removeGroupFromROlEFOrENVIFONMENToevvieiiiieeiii e, 230
removeGroupFromMROIEFOrRESOUICEuuiiiiieii e e e e e aens 230
removeGroupFromMROIEFOrUIc.iiiiiiiiii e 231
= 0010 V7= V= To] 11 o 231
remoVERESOUNCEFTOMGIOUDvuiniiiie e 232
removeR0oIEFOrAPPIICAIONSeivii i 232
removeROIEFOrCOMPONENESc.vuiiii e e e 232
remoVvEROIEFOTENVIFONMENTSuiiiiiiiiiee it e e e e e 233
FEeMOVEROIEFOTRESOUICESevvuieiiiii et e e e e e e e eeeaa e eeees 233
reMOVEROIEFOTUL .. .ouiiiiii e 234
remMOVEROIEFTOMRESOUICEuviieiiiiiie e e 234
FeMOVEUSENFIOMGIOUD ...vuiiiii it e e e 234
removeUserFromRoleFOrAPPIICAIONcvvviiiiiie e 235
removeUserFromRoleFOrCOMPONENtveiviieiiiieii e e e e e 235
removeUserFromRoleFOrENVIFONMENtovveiiiiiiieiiiineecee e 236
removelUserFromROIEFOrRESOUICEovviiiiiieiiiiie e 236
removeUserFromROIEFOIULooiiiiiiiii e 237
FEMOVEV EFSIONSEAEUS ...vvvieeieiieeeeeiie ettt e ettt e e et e e et e e e eaa e e e et e eeenenes 237
repeat ApplicatioNProCESSREQUESEcvuviiiiieiii e e 238
reqUESLAPPIICAIONPIOCESScivi i e e 238
FESL A T A DN .ottt 238
(S 7AY o] o TTor= 1o g = (] o= 1 YA 239
SELCOMPONENEPIOPEITY ..ovieiii it 239
setComponentENVIroNMENtPrOPEYviiiieii e e 240
SEtENVIFONMENTPIOPEITY ..ovviiei e 240
SELRESOUICEPTOPEITY .uiviieieii et en 241
SELSY SEMPIOPEITY .. evitiiti et 241
LS 01010 (011 a0 = o | 242
0SS 7 AN [o | PPN 242
0010z (.U £ = P 243
... 244
... 248

About This Book

This book describes how to use UrbanCode's uDeploy product and is intended for all users.

This book is available in PDF and HTML formats at UrbanCode's Documentation portal: http://
docs.urbancode.com/. uDeploy's online Help is installed along with the product software and can be
accessed from the product's web-based user interface. A PDF version is also included with the product's
installation package.

How This Book is Organized

This book is organized into the following parts.

Table 1. Organization of the User Guide

Part Description

Introduction Provides an overview of the product's significant
features and describes its architecture.

Getting Started Provides a roadmap to uDeploy productivity,
describes how to install the product, and contains a
step-by-step introductory tutorial .

Using uDeploy Contains comprehensive chapters for uDeploy's
core features, such as components, applications,
and resources.

Administration Describes uDeploy's security system and explains

how to configure product features.

Reference Contains several reference-type chapterson
topics like: the command-line interface, product
properties, writing plug-ins, as well as others.

Glossary Contains definitions of products features and
terms.

Product Support

The UrbanCode Support portal, http://support.urbancode.com/, provides information that can address any
of your questions about the product. The portal enables you to:

* review product FAQs

* download patches

* view release notes that contain last-minute product information
* review product availability and compatibility information

* access white papers and product demonstrations

Document Conventions

This book uses the following special conventions..

About This Book

* Programlistings, code fragments, and literal exanples are
presented in this typeface.

* Product navigation instructions are provided like this:

Home > Conponents > [selected conponent] > Versions > [selected
version] > Add a Status [button]

This example, which explains how to add a status to a component version, means. from the uDeploy
home page click the Componentstab (which displays the Components pane); select acomponent (which
displays a pane with information for the selected component); click the Versions tab (which displays a
pane with information about the selected version); and click the Add a Status button.

» User interface objects, such asfield and button names, are displayed with initial Capital Letters.
» Variable text in path names or user interface objectsis displayed in italic text.

* Information you are supposed to enter isdi spl ayed in this format.

Introduction

Overview

At its base, software deployment is a simple concept that sometimes gets obscured by jargon. A
deployment is the process of moving software (broadly defined) through various preproduction stages
to final production. Typicaly, each stage represents a step of higher criticality, such as quality
assurance to production. Complexity arises from the sheer volume of things deployed, the number
and variety of deployment targets, constantly-decreasing deployment cycles, and the ever-increasing
rate of technological change. While virtualization provides some relief to the process, it also—perhaps
paradoxically—increases the challenge with its exponential growth of deployment targets.

uDeploy helps you meet the challenge by providing tools that improve deployment speeds while
simultaneously improving their reliability. uDeploy's release automation tools provide complete visibility
into n-tiered deployments, enabling you to model processes that orchestrate complex deployments across
every environment and approval gate. uDeploy's drag-and-drop design tools decrease design-time by
making it easy to visualize the end-to-end deployment process and develop the big picture—the What,
How, and Where of the deployment workflow:

» What: the deployable items—binaries, static content, middieware updates, database changes and
configurations, and anything else associated with the software—that uDeploy delivers to target
destinations.

* How: refers to combining deployable items with processes to create components, and designing
applications that coordinate and orchestrate multi-component deployments.

» Where: the target destination's hosts and environments—uDeploy can scale to any environment.

Figure 1. Deployment Process

What How Where

Server

Component

App.
Process

Code-
Station

target
environment

deployable
artifacts

Overview

In uDeploy, deployable items are combined into logical groupings called components. Components are
deployed by component processes which consist of user-configured steps, many taken from integrations
with third-party tools called plug-ins. Multi-component deployments are handled by user-assembled
applications.

uDeploy represents deployment targets by what it calls resources. Resources—databases, servers, and so
on—reside on hosts. Complex deployments can contain numerous components that target multiple hosts.
Deployments are managed by agentsresiding on the hosts. Components can al so remain independent of one
another, which enables incremental or targeted deployments. Of course, you can model your components
as you see fit—uDeploy is flexible and works the way you work.

Server

The uDeploy server isastandalone server that provides uDeploy's core services such as the user interface,
component and application configuration tools, workflow engine, and security services, among others.
Many services are REST-based.

uDeploy supports cross-network deploymentswith relay servers. Relay serversenable network-to-network
communications.

Agents

An agent is alightweight process that runs on a host and communicates with the uDeploy server. Agents
manage the resources that are the actual deployment targets. Each machine participating in a deployment
usually has an agent installed on it. When not performing deployments, agents run in the background with
minimal overhead. See the section called “Resources’.

Repository

The uDeploy-supplied artifact repository, CodeStation, provides secure and tamper-proof storage. It tracks
artifact versions asthey change and maintainsan archivefor each artifact. Associations between repository
files and components are built-in and automatic.

Security

In uDeploy’s role-based security system, users are assigned roles, and role-permissions are assigned
to things such as projects, build configurations, and other resources. For example, a developer may be
permitted to build a project, but only view non-project related material. See uDeploy Security.

Components

Understanding how uDeploy uses the term component is critical to understanding uDeploy. Components
represent deployable items along with user-defined processes that operate on them, usually by deploying
them. Deployable items--also called artifacts--can be files, images, databases, configuration materials, or
anything el se associated with a software project. Components have versions which are used to ensure that
proper component instances get deployed.

Artifacts can come from a number of sources: file systems, build servers such as AnthillPro, source
version control systems, Maven repositories, as well as many others. When you create a component, you
identify the source and define how the artifacts will be brought into uDeploy. If the source is Subversion,
for example, you specify the Subversion repository containing the artifacts. Each component represents
artifacts from a single source.

Component Processes

A component process is a series of user-defined steps that operate on a component's artifacts. Each
component has at least one process defined for it and can have several. A component process can be as

Overview

simple as asingle step or contain numerous steps and relationships. The switch step, for instance, enables
you to create conditional processes. Y ou might, say, take artifacts from a source like an AnthillPro project
and map the ones that get deployed to an HTTP server into one component; those that get deployed to a
J2EE container to another; and those that get deployed to a database to yet another. Or, to take another
example, asingle-component deployment might consist of two processes: the first moves component files
to aserver on Friday night (alengthy operation), while the second deploys the files Saturday morning.

Figure 2. Process Editor with a Component Process Containing a Switch Step

b
- Download Artifacts

)

Which File Enension?v

. ¥ ()
b b

- Run WLDeploy o> = Restore Backup

L)
20 '
o Launch Old Versionv
\\-'f' g
inish . [4€@~©

e

Component processes are created with uDeploy's process editor. The process editor is visua drag-and-
drop editor that enables you to drag process steps onto the design space and configure them as you go.
As additional steps are placed, you visually define their relationships with one another. Process steps are
selected from a menu of standard steps that replace typical deployment scripts and manual processes.
uDeploy providesstepsfor several utility processes, such asinventory management, and workflow control.
Additional process steps are provided by plug-ins. Plug-ins provide integration with common deployment
tools and application servers, such as WebSphere, Microsoft I1S, and many others. Out-of-the-box,
uDeploy provides plug-insfor many common processes, such as downloading and uploading artifacts, and
retrieving environment information. A component process can have steps from more than one plug-in.

A component process is defined for a specific component. A component can have more than one process
defined for it, but each component requires at |east one process.

For example, deploying a J2EE EAR file to WebSphere server typically consists of the following
operations:

1. transfer the EAR file to the target machine

Overview

2. stop the WebSphere server instance

3. invoke wsAdmin with deployment properties

4. start the WebSphere instance

5. verify that the deployment succeeded by accessing a specified URL

The WebSphere plug-in provides a configurable process step for each operation.

A frequently used component process can be saved as atemplate and applied later to new components.

Component processes are executed by uDeploy agents running on hosts. One instance of a component
process is invoked for each resource mapped to a component in the target environment, see the section
called “Resources”.

Plug-ins

Plug-ins provide basic processing functions as well as integration with third-party tools. uDeploy ships
with plug-insfor several common deployment processes, and othersarereadily availablefor awide variety
of tools, such as middleware tools, databases, servers, and other deployment targets.

Third-party tools exhibit wide and varied functions, of course. Plug-in integration is achieved by breaking
down atool's functions into simple, discrete steps that invoke a specific behavior. A plug-in step might
invoke atool, or invoke different functionsin atool, such as extracting or inserting some type of data.

When you use plug-ins to create a component process, you can use steps from several plug-ins and
configure the steps as you go. For example, you might create a process using a plug-in for asource control
tool that deploys acomponent to amiddleware server, and another plug-in to configure astep that removes
the component from the server.

A component process that contains a plug-in step requires an agent. Unless the agent needsto interact with
the host's file system or system processes, the agent does not have to be on the same host as the target
resource.

uDeploy enables you to download and install numerous component plug-ins. UrbanCode does not charge
any additional fees for plug-ins. The plug-in system is open and extensible--plug-ins can be written in
any language.

Component Versions and the CodeStation Repository

After defining a component's source and processes, you import its artifacts into uDeploy's artifact
repository CodeStation. Artifacts can be imported automatically or manually. By default, a complete
copy of an artifact's content is imported into CodeStation (the original artifacts are untouched). This
provides several benefits, such as tamper-proof storage, and the ability to review and validate artifacts
with uDeploy's user interface. But if you have storage concerns or use atool like Maven, you can limit
CodeStation to using references to the artifacts instead of actually copying them.

Each time a component is imported, including the first time, it is versioned. Versions can be assigned
automatically by uDeploy, applied manually, or come from a build server. Every time a component's
artifacts are modified and reimported, a new version of the component is created. So a component might
have several versionsin CodeStation and each version will be unique.

A version can befull orincremental. A full version containsall component artifacts; anincremental version
only contains artifacts modified since the previous version was created.

Overview

Applications

An applications is the mechanism that initiate component deployments; they bring together components
with their deployment targets, and orchestrate multi-component deployments.

Application Process

When you create an application, you identify the included components and define an application process.
Application processes, like component processes, are created with the process editor. uDeploy provides
several common process steps, otherwise application processes are assembled from processes defined for
their associated components.

Application processes can run manually, automatically on some trigger condition, or on a user-defined
schedule. When a component has several processes defined for it, the application determines which ones
are executed and in which order. For instance, an n-tiered application might have aweb tier, amiddieware
tier, and a database tier. And, continuing the example, the database tier must be updated before the other
two, which are then deployed concurrently. An application can orchestrate the entire process, including
putting servers on- and off-line for load-balancing as required.

When an application process executes, it interacts with a specific environment. An environment is a
collection of one or more resources. At least one environment must be associated with the application
before the process can be executed. Application processes are environment agnostic; processes can be
designed independently of any particular environment. This enables a single application to interact with
separate environments, such as QA, or production. To use the same application process with multiple
environments (a typical scenario), you associate each environment with the application and execute the
process separately for each one.

In addition to deployments, several other common processes are available, such as rolling-back
deployments. uDeploy tracks the history of each component version, which enables application processes
to restore environments to any desired point.

Environments

An environment is a user-defined collection of resources that host an application. Environments are
typically model ed on some stage of the software project life cycle, such asdevel opment, QA, or production.
A resource is a deployment target, such as a database or J2EE container. Resources are usually found on
the same host where the agent that manages them is located. A host can be a physical machine, virtual
machine, or be cloud-based.

Environments can have different topol ogies--for example: an environment can consist of asingle machine;
be spread over several machines; or spread over clustersof machines. Environments are application scoped.
Although multi-tenant machines can be the target of multiple applications, experience has shown that most
IT organizations use application-specific environments. Additionally, approvals are generally scoped to
environments.

uDeploy maintains an inventory of every artifact deployed to each environment and tracks the differences
between them.

Snapshots

A snapshot isacollection of specific component versions, usually versionsthat are known to work together.
Typically, a snapshot is generated in an uncontrolled environment--meaning one without— approvals.
When a snapshot is created, a picture of the application's current stateis captured. As an application moves
through different environments, snapshots can ensure that proper component versions are used.

Overview

Snapshots help manage complex deployments—deployments with multiple tiers and devel opment teams.
For example, after testing and confirming that team A's component works with teams B's, a snapshot can
be taken. Then, as devel opment progresses, additional snapshots can be taken and used to model the effort
and drive the entire deployment, coordinating versions, configurations, and processes.

Agents

An agent is a process that runs on target host and communicates with the uDeploy server. Agents are
integral to uDeploy's client/server architecture. Agents perform the actual work of deploying components
and so relievesthe server from the task, making large deploymentsinvolving thousands of targets possible.

Typically, an agent runs on the same host where the resources it handles are located. A single agent can
handle all resources on its host. If ahost has several resources, an agent process is invoked separately for
each resource. For example, atest environment might contain a single web server, a single middieware
server, and a single database server all running on the same host (machine). A deployment to this
environment might have one agent and three separate resources.

Depending on the number of hosts in an environment, a deployment might require a large number of
agents. Agents are unobtrusive and secure. Agent communications use SSL encryption and mutual key-
based authentication. For added security, agents do not listen to ports, but open direct connections to the
server instead.

Resources

A resourceisauser-defined construct based on uDeploy'sarchitectural model. Resourcesaid bookkeeping;
inventory istracked for resources. Resources are created and managed through the user interface.

A resource represents adepl oyment target--aphysical machine, virtual machine, database, J2EE container,
and so on. Components are deployed to resources by agents (which are physical processes). Resources
generaly reside on the same host where its managing agent runs. A host can have more than one resource.
If an agent is configured to handle multiple resources, a separate agent process isinvoked for each one.

A resource can represent a physical machine, which is the simplest configuration, or a specific target on
a machine, such as a database or server. So a host (machine) can have several resources represented on
it. In addition, a resource can represent a process distributed over severa physical or virtua machines.
Finally, environments consist of resources.

To perform adeployment, at | east one resource must be defined and (usually) at least one agent. ("Usually"
because trivial deployments can be done without an agent.) Typically, each host in a participating
environment has an agent running on it to handle the resources located there.

A proxy resource is a resource effected by an agent on a host other than the one where the resource is
located. If an agent does not require direct interaction with the file system or with process management
on the host, a proxy resource can be used. When a deployment needs to interact with a service exposed on
the network (a database or J2EE server, for instance), the interaction can happen from any machine that
has access to the networked service.

Resource Groups

A resource group is a logical collection of resources. Resource groups enable collections of resources
to be easily reused. Resource groups can manage multi-tenant scenarios, for example, in which several
machines share the same resources.

Architecture

uDeploy architecture consists of a service tier and a data tier. The service tier has a central server that
provides a web server front-end and core services, such as workflow, agent management, deployment,
inventory, security, aswell asothers. A service can bethought of asaself-contained mechanismfor hosting
apiece of business logic. Services can be consumed by clients\agents or other services. Deployments are
orchestrated by the server and performed by agents distributed throughout the network. Most clients use
browsers to communicate with the web server via HTTP(S). Most server-agent communication is done
viaJMS (discussed below) but HTTP(S) is also used as required.

uDeploy uses statel ess communications for server-agent communications (JM S-based) as well as client-
web service communications. Stateless, as used here, means the server retains little session information
between requests and each request contains all the information required to handle it. The server sets-up
listening sockets and listens for agents, relays, and users (clients). For added security, agents do not listen
on ports. Agents send reguests when they are ready to make the transition to a new state.

Server-agent communication is built around transferring—deploying—components. Components can
contain any business-meaningful content, such as environment information, configuration data, source,
static files, or anything else associated with a software project. Because JM S connections are persistent
and not based on a request-response protocol, uDeploy does not have to continually open and close ports,
which enables the server to communicate with agents at any time while remaining secure and scalable.

Many uDeploy services are REST-type (representational state transfer). REST-style services are web
servicesthat focus on transferring resources over HTTP. A resource can be any business-meaningful piece
of data. Resources are transferred by a self-describing format such as XML or JSON (JavaScript Object
Notation). The XML and JSON representations typically model resource states at the time of agent/client
requests. REST-style services achieve statelessness by ensuring that requests include all the data needed
by the server to make a coherent response.

The data tier's relational database stores configuration and run-time data. The data tier's file store—
CodeStation—contains log files, artifacts, and other non-structured data objects. Reporting tools can
connect directly to the relational database.

10

Architecture

Figure 3. Architectural Overview

w
€ -
o Browser Clients Agent Q
(W] =X
L) \
K /
= 7
[Agent Agent
9 Server A Relay Agent g
c o
g |
& !
2 - -
‘u
-
o
()

SAN RAC

Service Tier

The uDeploy server provides avariety of services, such as: the user interface, component and application
configuration tools, workflow engine, and security services among others. The REST-based user interface
provides the web-based front-end that is used to create components and fashion workflows; request
processes, and manage security and resources, among other things.

When a workflow is requested, many services are used to fulfill the request, which are shown in the
following illustration:

11

Architecture

Figure 4. Services and Process Wor kflow

uest from
MUIJCLI Server
Ul service
request scheduled™, Y - add to
process T < calendar
N
N) Calendar
required service
?
Y
wait for
I—E\rem: i approval
|service I Approval
[used by | l service
| several other I
[SETVIOes | N Work Item
fail “—— 5 service
Y
Security sor
service has all queue wzi:lfur
required request settime
permissions Deploy
service
Notilﬁcatio n Workflow
EEINIEE send start engine
notifications workflow
|
. N perform
plug-ins agentless
7 workflow
Y
Inventory Agent
send plug-in
e update comfnagd service
inventory to agent

12

Architecture

Workflow requests are initiated with the user interface, either the web-based application or the CLI

(command line interface).

Table 2. Services

Service

Description

User Interface

Used to create components and fashion workflows, request processes and
manage security and resources, among other things. REST-based.

Workflow Engine

Manages workflows—application and component processes. Calls the agent
responsible for performing the workflow's current plug-in step. When the
workflow isfinished, alerts the notification and inventory services. Called by
the deploy service. REST-based.

Agent

Tracks installed agents and routes plug-in commands to affected agents.
Commands come from plug-in steps. Invoked by the workflow service.
REST-based.

Work Item

Operatesin tandem with the approval service; provides approver alerts and
enables approvers to accept or reject workflows. If a scheduled workflow
remains unapproved at run-time, the job fails automatically. REST-based.

Plug-in Manager

uDeploy can interact with virtually any system through its extensible plug-
in system; plug-ins provide functions by breaking-down tool featuresinto
automated steps. Plug-ins can be configured at design- and run-time. When
aplug-in step executes, the controlling agent invokes its run-time process to
execute the step.

When anew component version is available, the agent compares the current
component version and downloads and only new or changed artifacts.

Event

The event service is ubiquitous; it alerts other services as various trigger
conditions occur.

Deployment Service

Manages deployments. When a deployment process is requested, invokes the
workflow engine to perform the process. Works in tandem with the security
service to ensure users have required permissions. REST-based.

Notification Manager

Notifies users about the status of deployments; notifications are sent to
approversif the system is configured with an email server and the user has an
email address. Invoked by the workflow manager. REST-based.

Inventory Manager

When aworkflow finishes, the inventory manager updates affected inventory
records. uDeploy maintains an inventory of every deployed artifact in every
environment, which provides complete visibility across environments.
REST-type service.

Approval Engine

Enables creation of approval-requiring jobs and approver roles. Worksin
tandem with the work item service to ensure required approvals are made
before scheduled jobs. REST-based.

Security Controls what users can do and see; maps to organizational structures by
teams, roles, activities, etc. REST-based.

Calendar Used to schedule processes to being at some future point; works in tandem
with the approval and work item services. REST-based.

CodeStation Handles versioning of artifacts; agents invoke it when downloading

component versions. REST-based.

13

Architecture

Clients

Web browsers are uDeploy's most common client (agents are discussed in another topic, see the section
called “ Agents’) but other clients can be devel oped to access the web services. Clients are deployed locally
(on the same LAN as the uDeploy server) or remotely, and communicate with the server via HTTP or
HTTPS. The uDeploy browser-based GUI isaRich Internet Application (RIA) that maintains much of its
functionality in the browser. Clientsinteract with RESTful (representational state transfer) services on the
server as needed. A command line client is available that provides most of features found in the browser-
based GUI. The command line client is also built on top of RESTful services.

Data Tier

Relational Database

Your relational database is a critical element for performance and disaster recovery. The provided Derby
database, while sufficient for proof-of-concept work, is generally insufficient for the enterprise. Full-
featured databases like Oracle, MS SQL Server, or MySQL are better options. Ideally, the database
—whichever is used—should be configured for high-availability, high-performance, and be backed-up

regularly.

10-20 GB of database storage should be sufficient for most environments. For Oracle, an architecture
based on Oracle RAC is recommended; for Microsoft SQL Server, a clustered configuration is preferred;
for MySQL, utilize MySQL Cluster.

File Storage—CodeStation

The datatier also provides log file and Codestation artifact storage. Artifacts represent deployable items
such as files, images, databases, configuration materials, or anything else associated with a software
project. By default, these are stored in the var subdirectory in the uDeploy server installation directory.
In an enterprise environment, the default installation might not be ideal, see the section called “ Relocating
Codestation” for adiscussion about enterprise options.

uDeploy's secure and tamper-proof artifact repository ensures that deployed components are identical to
those tested in preproduction environments. Without the repository, artifacts would have to be pulled from
network shares or some other system, increasing both security risks and the potential for error.

The artifact repository uses content addressable storage to maximize efficiency while minimizing disk
use. The repository tracks file versions and maintains a complete history for all components. Maximizing
efficiency is important, since the artifact repository stores files that are much larger than source files.
Association of fileswith Componentsisbuilt into the system. Without any configuration, each Component
gets its own area of the repository for its files. There is no chance of confusion or mix-up of files to
Components. And, each Component Package is mapped to aspecific set of filesand versions corresponding
to the Component.

The artifact repository comeswith a client application that provides remote access to the repository. Using
the client, the user can add/modify files, create Packages, retrieve files, as well as view the history of
changes. The client application provides afile transfer capability that can be used to deliver filesto target
servers during deployments. This built-in transfer mechanism verifies the integrity of all transferred files
against their expected cryptographic signatures, thus guaranteeing that files have not been corrupted during
transmission or tampered with during storage. In addition to the client application, the artifact repository
exposes REST-based web services. These services are used to build integrations between build systems

14

Architecture

such as AnthillPro and uDeploy. Such integrations automatically place the artifacts produced by the build
process in the artifact repository, thus making the artifacts available for deployment.

Relocating Codestation

By default, the data tier'slog files and Codestation artifacts are stored in the var subdirectory within the
uDeploy server directory. Ideally, this data should be stored on robust network storage that is regularly
synchronized with an off-site disaster recovery facility. In addition, the uDeploy server should have afast
network connection to storage (agents do not need access to the storage location). In Unix environments,
you can use symboliclinksfromthevar subdirectory to network storage. On Windows platformsthere are
several options for redirecting logs and artifacts, including nkl i nk (supported in Windows 7 and later).

If you want to relocate Codestation, relocate both the var directory as well as the \ | ogs\ st ore
directory. A good rule-of-thumb for determining Codestation storage requirements is. aver age
artifact size * nunber of versions inported per day * average nunber
of days before cleanup

Distributed teams should al so take advantage of uDeploy |ocation-specific Codestation proxiesto improve
performance and lower WAN usage.

Data Center Configuration

This section provides several installation recommendations.

Cold Standby

uDeploy employs the cold standby HA strategy for the application tier. When the primary system fails,
the cold standby is brought online and promoted to primary server. Once online, the standby reestablishes
connectionswith all agents, performsrecovery, and proceedswith any queued processes. Because the most
intense work is handed-off to agents, a high performance configuration should not have an agent installed
on the same hardware as the main server.

The uDeploy server aggressively utilizes threading and takes advantage of any additional CPU cores
assigned to it. A small to midrange server with 2-4 multi-core CPUs isideal, but, because it is relatively
easy to movean existing uDepl oy server installation to anew machine, starting small and scaling as needed
isavery legitimate strategy. The memory available to the application tier should also be increased from
the default 256 M B to something on the order of 1 GB.

Platform Considerations
uDeploy agents are platform agnostic, and can be installed on anything that provides a Java 1.5 JDK.
The server process is also platform agnostic. Our customer base includes large uDeploy installations on
Windows, Solaris, AlX, HP-UX, other Unix flavors and various Linux platforms, al running successfully.

We have seen somewhat better performance from Unix and Linux operating systems, but recommend
installing on the platform with which you are most familiar and comfortable.

Recommended Server Installation
» Two server-class machines

UrbanCode recommends two machines for the server: a primary machine and a standby for fail-over.
In addition, the database should be hosted on a separate machine.

15

Architecture

e Separate machinefor the database
» Processor 2-4 CPUs, 2+ cores for each.

* RAM 8GB

 Storage Individual requirements depend on usage, retention policies, and application types. In general,
the larger number of artifacts kept in uDeploy's artifact repository (CodeStation), the more storage

needed.

» Network Gigabit (1000) Ethernet with low-latency to the database.

Agent Minimum Requirements

Designed to be minimally intrusive, agents require 64-256 MB of memory and 100 MB of disk space.
Additional requirements are determined by the processes the agent will run. Agents should beinstalled on
separate machines. For evaluation purposes, a good option isto install an agent on a virtual machine.

Typical Data Center Configurations

Most organizations configure the data tier with network storage and a clustered database. The servicetier
performs best when it's on a dedicated, stable, multi-core machine with a fast connection to the datatier.
A standby machine should be maintained and kept ready in case the primary server goes down.

The following figuresillustrate typical uDeploy configurations.

Figureb5. Single Data Center Configuration

Data Center

company.com

Server

SAN

Cold

16

Architecture

There are no remote agents or agent relays in this configuration.

Figure 6. Multiple Data Centers

com Jan)lcom

Oracle RAC

replication

Recovery Using a Database Back-up

To prepare a back-up of your uDeploy installation, copy the database and server files. Back-up the server
by copying the server directory along with all subdirectories. This ensures that you can revert to a server
version that matches your configuration, while also preserving your artifact repository.

If you are not using the Derby database, copy the database too. If you are using Derby, it was copied along
with the server files.

Install the back-up using the original path, or some configuration files will need to be changed.

Agents

Agents play a central role in the uDeploy architecture. An agent is a lightweight process that runs
on a deployment-target host and communicates with the uDeploy server. Agents perform the actual
work of deployment which relieves the server from the task. All processes—packaging, configuration,
deployments, and so on—reguested by the uDeploy server are executed on hardware assigned to agents.
Once an installed agent has been started, the agent opens a socket connection to the uDeploy server.
Communication between server and agents uses a JM S-based (Java M essage Service) protocol and can be
secured using SSL, with optional mutual key-based authentication for each end-point. Thiscommunication
protocol is stateless and resilient to network outages (the benefits of statel essness are discussed below).

While we characterize an agent as a single process, technically an agent consists of aworker process and
amonitor process. The worker isamulti-threaded process that performs the actual deployment work after

17

Architecture

receiving commands from the server. Work commands come from plug-in steps which provide seamless
integration with many third-party tools. The monitor isaservice that manages the worker process--starting
and stopping, handling restarts, upgrades, and security, for example. Agents are rarely upgraded because
their functionality is derived from plug-ins, which can be upgraded at will. Once an agent isinstalled, it
can be managed from the uDeploy web application.

Figure 7. Agent Processes

b
/, A
, \
y Y
LY
s \
’ \
Y
pd Agent \
Fd
’ \\
s LY
’ N
s Y
s \
’ \
~ Work R
. orKer -
¢ Monitor Plug_ln b1
\\ {IMS) Run-time
ns a -] non-1MS
N insalled li-threaded
\\asen'ice ,’ HTTP
N ,/
. ’
. 7/
~ ra
. ’
N 7’
. s,
- ’
N s
b
N ,/
N

Agentsare an important part of uDeploy's scalability. By adding more agents, the throughput and capacity
of the system increases almost exponentially and so can scale to fit even the largest enterprise.

Server-Agent Communication

Most agent communication is done with IMS, but some agent activities—posting logs, transmitting test
results, or posting files to CodeStation, for example—use the web tier viaHTTP(s) as needed. The IMS
channel isuDeploy's primary control channel; it'sthe channel the server usesto send agent commands. By
default the server listens on only three ports: port 7918 for IMS, 8080 for HTTP, 8443 for HTTPS.

The agent monitor service uses JIMS for all server communications and for sending commands, such as
"run step,” to the worker process. The worker process uses IMS for system communications, and HTTP
REST services when performing plug-in steps or retrieving information from the server.

Statel ess server-agent communication provides significant benefits to performance, security, availability,
and disaster recovery. Because each agent request is self-contained, a transaction consists of independent
message which can be synchronized to secondary storage as it occurs. Either endpoint--server or agent—
can be taken down and brought back up without repercussion (other than lost time). If communicationsfail
mid-transaction, no messages are lost. Once reconnected, the server and agent automatically determine
which messages got through and what work was successfully completed. After an outage, the system
synchronizesthe endpoints and recovers affected processes. Theresults of any work performed by an agent
during the outage are communicated to the server.

18

Architecture

Figure 8. Stateless Communication

HTTP port: 80 HTTPS port: 443

L N

HTTP(S) REST

Server Agent
JMS channel

IMS port: 7918

In Figure 8, “ Stateless Communication”, the arrow represent the direction in which communications was
established, but the flow can be in both directions with IMS.

Remote Agents--Crossing Network Boundaries and
Firewalls

uDeploy supports remote agents—cross-network deployments. Aslong asthereisat least alow bandwidth
WAN connection between the server and remote agents, the uDeploy server can send work to agents
located in other geographic locations. To aid performance and ease maintenance, uDeploy uses agent
relaysto communicate with remote agents. An agent relay requiresthat only asingle machinein the remote
network contact the server. Other remote agents communicate with the server by using the agent relay.
All agent-server communication from the remote network goes through the relay. Agent relays can be
configured as CodeStation proxiesin order to optimize the transfer of large objects.

The following, asimple artifact move, illustrates the mechanics of remote communications:

1. A remote agent starts and establishes a connection to the agent relay viaJMS, which, in turn, aertsthe
uDeploy server viaJM S that the remote agent is online.

2. The server sends, say, an artifact download command to the relay via M S, and the relay delivers the
message to the remote agent (also viaJMS).

3. The server locates the artifacts, and then:

» Uploads the artifacts to the relay over HTTP(s), which begins streaming them directly to the agent
over the server-relay HTTP(s) connection.

» Once the remote agent completes the work, it informs the server viaJMS.

19

Architecture

Figure 9. Crossing Network Boundaries

network A network B
firewall
Agent
Server | — Relay Agent
IMS & —

HTTP(S) \——
Agent

Agents use JM5 & HTTP(5)
to communicate with the relay

By default, agent relays open the connection to the uDeploy server, but the direction can be reversed if
your firewall requires it. Remote agents open connections to the agent relay.

In configurations with relay agents, agents local to the uDeploy server continue to use direct
communications.

Agent Security

uDeploy agents employ user impersonation when required to perform tasks for which they would not
otherwise have permission. To run a database update script, for example, an agent might need to be the
"oracle" user; but to update the application, the agent might need to be the "websphere" user. By using
impersonation, the same agent can run the script and update the application, which enablesyou to combine
these steps into a single process. For information about user impersonation, see the section called “User
I mpersonation”

User Impersonation

uDeploy can use user impersonation when an agent must execute a command for which it might not
otherwise have permission, or when a specific user must be employed for a given process. On Unix/Linux
systems the su/sudo commands are used to impersonate users, on Windows uDeploy provides a utility
program to handle impersonation. Y ou implement impersonation when you configure acomponent's plug-
in process step.

Using su/sudo

The su command (as used by uDeploy) enables a user to start ashell as another user (process steps can be
considered individual shells). When you configure a process step (see the section called “ Process Editor”),
you can tell uDeploy to use impersonation for the step. By default, su is used but you can use sudo
instead. To configure impersonation, you supply the user name required by the target host. When the
impersonation-configured process step runs, the su or sudo command runs the step as the impersonated
user. Each step that needs user impersonation must be configured independently.

20

Architecture

Before sudo can be used, impersonation privileges must be defined in the/ et ¢/ sudoer s file. When
you configure sudoer s, ensure that the impersonating user does not have to supply a password.
Typically, you would configurethe/ et ¢/ sudoer s filelikethis:

Defaults: X 'requiretty
X ALL=(Y) NOPASSVD: ALL

where X and Y are user names. Configured this way, user X can run any command as user Y without
supplying a password.

su and sudo maintain a record in the system logs of all of their activity. su can be used without
configuring the sudoer s file. For information about su/ sudo see the Unix/Linux documentation.

Note

For Unix- or Linux-based agents the password option isignored.

Impersonation on Windows Systems

For agents running on Windows platforms, uDeploy provides a program that handles impersonation. Y ou
implement impersonation for Windows-based agents the same way you do for Unix- or Linux-based
agents: when you configure aprocess step, you specify thelocal user credentials—user name and password
—that will be used when the step is processed. For impersonation purposes, alocal user is one whose user
name and password are stored on the target computer and who is part of the administration group and has,
at aminimum, the following privileges:

e SE | NCREASE QUOTA NANME (adjust memory quotas for a process)
e SE ASSI GNPRI MARYTOKEN NANME (replace a process-level token)
» SE | NTERACTI VE_LOGON_NANME (local logon)

Y ou can aso impersonate the Windows L ocal System account. The Local System account is installed on
every Windows machine and is the equivalent of the root user on Unix/Linux. It is guaranteed to have
the privileges listed above.

Note

For Windows-based agents the sudo option isignored if selected.

SSL Mutual Key-based Authentication

SSL (Secure Socket Layer) technology enables clients and servers to communicate securely by
encrypting all communications. Data are encrypted before being sent and decrypted by the recipient—
communications cannot be deciphered or modified by third-parties.

SSL technology can be used in several modes. In unauthenticated mode, communication is encrypted/
decrypted but users do not have to authenticate or verify their credentials. By default uDeploy uses this
mode for its IMS-based server/agent communication. By default, JIM S-based communication uses port
7918.

SSL unauthenticated mode can also be used for HT TP communication. Y ou can implement this mode for
HTTPduring server/agent install ation, or activateit afterward. Seethe section called “ SSL Configuration”.

21

Architecture

In mutual authentication mode, communications are encrypted as usual, but users are also required to
authenticate themselves by providing digital certificates. A digital certificateisacryptographically signed
document intended to assure others as to the identity of the certificate's owner. uDeploy certificates are
self-signed.

When mutual authentication mode is active, uDeploy usesit for JM S-based server/agent communication.
In thismode, the uDeploy server providesadigital certificate to each agent, and each agent provides oneto
the server. This mode can be implemented during server/agent installation, or activated afterward. Seethe
section called “ SSL Configuration” for information about activating this mode and exchanging certificates
between the server and agents.

Unauthenticated modefor HT TP and mutual authentication modefor JM Sare optional; you canimplement
one without implementing the other, or implement both.

22

Getting Started

uDeploy Roadmap

This chapter provides information that will help you quickly become productive with uDeploy. First, it
describes the steps performed to install and configure uDeploy. Next, it provides the "happy path” to
productivity: it describes how to create components and define applications to deploy them, and, finally,
describes how to perform deployments. The following topics should be reviewed in order.

 Creating components
 Creating applications
» Deploying components

Other topics you might find of interest are provided in the section called “ Other Topics’. This book also
provides a step-by-step tutorial on creating components and applications.

Installing uDeploy

A basic configuration consists of a server, a database, and at |east one agent. In production environments,

all three should be installed on separate machines.

The following table summarizes basic install ation steps. Related topics are listed below the table.

Table 3. Installation Steps

Step

Description

1. Review installation recommendations

Requirements and recommendations, including
performance recommendations, are provided.

2. Download uDeploy installation files

Download the server, agent, agent relay, and

CLI client (command lineinterface) installation
packages. Installation files can be downloaded
from the UrbanCode support portal http://
support.urbancode.com. If you areinstalling an
evaluation version, the license isincluded with the
downloaded files. For evaluations, the agent relay
(used to communicate with remote networks) and
the CLI client can be skipped. At aminimum, an
installation must have the server, adatabase, and at
least one agent.

3. Install the database

Create an empty database for uDeploy. uDeploy
supports Oracle, MySQL, and Microsoft SQL
Server. For installation information, see the
section called “ Database Installation”. Note,

the installation package includes a lightweight
database—Derby—that can be used for evaluation
purposes.

4, Install the server

For installation information, see the section
caled “ Server Installation”. Y ou will need to
supply valuesfor the IP address, portsfor HTTP
communication (secured and unsecured), port for
agent communication, and URL. The installation
program provides default values for many
parameters. The properties set during installation

24

http://support.urbancode.com
http://support.urbancode.com

uDeploy Roadmap

Step Description

arerecorded inthei nst al | ed. properti es
filelocatedintheserver _instal |l /conf/
server/ directory. If youintend to turn on SSL,
see the section called “SSL Configuration”.

5. Install agents Agents are installed on target machines and
communicate with the server. When installing an
agent, you supply several values defined during
server installation. See the section called “Agent
Installation” for instructions about installing
agents. An agent requires various access privileges
for the machine where it isinstalled, which are
described in that section.

6. Confirm installation Start the server and agents. For information

about running the product, see the section called
“Running uDeploy”. To determineif the agent is
in communication with the server, display the web
application's Resource pane. A value of Onl i ne
in the agent's Status field means the agent is
successfully connected.

Related topics:

e How toinstall aremote relay
» How to configure mutual authentication
» How to upgrade the server

Create a Component

Components are the centerpiece of uDeploy's deployment engine. Components associate items that will
be deployed—artifacts—with processes that will deploy them. The following table summarizes the basic
steps performed to create components. Related topics are listed below the table.

Table 4. Component Creation Steps

Step Description

1. Define source configuration Define the source type and identify the artifacts
associated with the component. The source

type can be any or nearly any associated with a
software project. Once defined, all artifacts must
be of the defined type. See the section called
“Creating Components”.

2. Create component version Create the initial component version by
importing artifactsinto the artifact repository,
CodeStation. Versions can be imported manually
or automatically. Version imports can be full

(al artifacts are imported) or incremental (only
changed artifacts are imported). uDeploy tracks
all artifact changes which enables you to rollback
components or deploy multiple versions of the
same one.

25

uDeploy Roadmap

Step Description

3. Create component process Use the process design editor to create a process
for the component. Component processes
consist of user-configured steps that operate on
the component, usually by deployingit. The
available steps are provided by installed plug-
ins. As shipped uDeploy provides plug-ins

for many common functions. Numerous other
plug-ins are available from UrbanCode—http://
plugins.urbancode.com.

Related topics:

* How to create manual tasks

» How toinstall plug-ins

» How to create and use templates
» How to import components

Create an Application

Applications associate components with the agents that will manage them, and define processesto perform
deployments.

The following table summarizes the steps performed to create applications.

Table5. Application Creation Steps

Step Description
1. Create an application and identify its After defining the application, identify the
components components it will manage. Associating a

component makes its processes and properties
available to the application. An application can
have any number of components associated with it.

2. Create an environment Define an environment and use it to map an agent
to component(s). Mapping means assigning an
agent to manage the component. Each component
can be mapped to the same agent, a different one,
or some combination. An application can have
more than one environment defined for it.

3. Create an application process Use the process design editor to create a process.
Application processes are created with the same
editor used to create the component process, but
uses a different toolkit of process steps. Previously
defined component processes can be incorporated
into the process.

Related topics:

 Learn about uDeploy properties
» How to create snapshots
» How to import applications

26

http://plugins.urbancode.com
http://plugins.urbancode.com

uDeploy Roadmap

Deploy the Component

Components are deployed by application processes. The following table summarizes the steps performed
to run an application process.

Table 6. Deployment Steps

Step Description

1. Select environment Application processes are run at the environment
level; you run a process for a particular
environment. Selecting an environment
automatically selectsits agent(s). All processes
defined for the application are available.

2. Run processs Y ou run aprocess by selecting it for agiven
environment and specifying certain other
parameters. Processes can also be run with the
CLI, or scheduled for afuture time.

3. Check results When aprocessis started, the Application Process
Request pane displays information about the
application's status and provides linksto logs and
the application manifest. If an approval or manual
task was used, this pane enables affected users to
respond.

Related topics:

» How to create notification schemes
» How to setup authorizations
» How to create application gates

Other Topics

The following list provides links to additional topics.

* How to setup security

* How to run reports

* How to use the command line interface
* How to create plug-ins

» How to add agentsto a product license

27

Installing and Upgrading Servers and
Agents

A uDeploy installation consists of the uDeploy server (with a supporting database), and at least one
agent. Typically, the server, database, and agents are installed on separate machines, although for asimple
evaluation they can all be installed on the same machine. In addition, Java must be installed on all agent
and server machines.

Note

For evaluation purposes, the supplied Derby database should be adequate and can be
installed on the machine where the server is located. If you are installing uDeploy in a
production environment, UrbanCode recommends the use one of the supported databases--
Oracle Database (all versions), SQL Server, or MySQL.

Installation Steps

1. Review the system requirements. See the section called “ System Requirements”.

2. Ensure that Javais installed on the server and agent machines (and agent relay machine if used). All
machines require Java JRE 5 or greater. Set the JAVA_HOME environment variable to point to the
directory you intend to use. A JDK can be used.

3. Download the uDeploy server and agent installation files from the UrbanCode support portal. If you
areinstalling an evaluation version, the license is included with the downloaded files.

4. If you areinstalling an agent relay, download the agent relay installation files as well.

5. If you are not installing an evaluation version, install one of the supported databases. The database
should be installed before the server and on a separate machine. See the section called “Database
Installation”

6. Complete database installation by configuring the appropriate JDBC driver (typically supplied by the
database vendor).

7. Create an empty database for uDeploy and at least one dedicated user account.

8. Install the server. Seethe section called “ Server Installation”.

9. If you are using an agent relay, install the relay. See the section called “Installing Agent Relays”.
10.Findly, install at least one agent. See the section called “ Agent Installation”.

For information about using the CL1 (command lineinterface, see Command Line Client (CLI) Reference.

For information about running the installed items and accessing the uDeploy web application, see the
section called “Running uDeploy”.

Installation Recommendations

Because the uDeploy agent performs most of the deployment processing, agent installation is critical for
good performance. Except for eval uation purposes, an agent should never beinstalled on the same machine

28

Installing and Upgrading
Servers and Agents

asthe server. In addition, many uDeploy users have found that by following some general guidelines they
are able to reduce the chances of performance-related issues:

Install the server as a user account. The server should be installed as a dedicated system account
whenever possible. While not recommended, uDeploy can run as the root user (or local system user on
Windows) and running in this manner avoids all permission errors.

Install each agent asa dedicated system account. |deally, the account should only be used by uDeploy.
Because uDeploy agents are command execution engines, it is advisable to limit what they can do on
host machines by creating dedi cated users and then granting them appropriate privileges. If youinstall an
agent as the root user (or local system user on Windows), ensure that agent processes cannot adversely
effect the host file system.

Except for evaluation purposes, do not install an agent on the uDeploy server machine. Because
the agent is resource intensive, installing one on the server machine can degrade performance.

Install a single agent per host machine. Multiple agents on the same machine can negatively
impact each other's performance. When you must install multiple agents, you might see performance
degradation when multiple agents are busy simultaneously.

System Requirements

uDeploy will run on Windows and Unix-based systems. While the minimum requirements provided below
are sufficient for an evaluation, you will want server-class machines for production deployments.

Server Minimum Installation Requirements

Windows: Windows 2000 Server (SP4) or later.
Processor: Single core, 1.5 GHz or better.

Disk Space: 300 MB or more.

Memory: 2 GB, with 256 MB available to uDeploy.

Javaversion: JRE 5 or greater.

Recommended Server Installation

Two server -class machines

UrbanCode recommends two machines for the server: a primary machine and a standby for fail-over.
In addition, the database should be hosted on a separate machine.

Separ ate machine for the database

Processor 2 CPUSs, 2+ cores for each.

RAM 8 GB

Storage Individual requirements depend on usage, retention policies, and application types. In general,

the larger number of artifacts kept in uDeploy's artifact repository (CodeStation), the more storage
needed.

29

Installing and Upgrading
Servers and Agents

Note

CodeStation isinstalled when the uDeploy server isinstalled.
For production environments, use the following guidelines to determine storage requirements:
« 10-20 GB of database storage should be sufficient for most environments.
¢ To calculate CodeStation storage requirements:

average artifact size * nunber of versions inported per day * average
nunber of days before cleanup

* Approximately IMB per deployment of database storage; varies based on local requirements.
For further assistance in determining storage requirements, contact UrbanCode support.

* Network Gigabit (1000) Ethernet with low-latency to the database.

Agent Minimum Requirements

Designed to be minimally intrusive (typically, an idle agent uses 5Mz CPU), agents require 64-256 MB
of memory and 100 MB of disk space. Additional requirements are determined by the processes the agent
will run. For a simple evaluation, the agent can be installed on the same physical machine as the server.
In production environments, agents should be installed on separate machines.

32- and 64-bit JVM Support

The uDeploy server must use the 32-bit JDK for the Windows 2003 64-hit server; the 64-bit JDK can be
used for agents. Because uDeploy does not require amulti-gigabyte heap, thereislittle advantage to using
a 64-hit VM. For 64-bit Windows installations, uDeploy uses a 32-bit JVM; for other 64-bit platforms,
uDeploy uses a 64-bit VM, as the following tableillustrates:

Table7. JVM Support

Operating System Operating System JVM 64-bit
Windows 32-bit yes NA
Windows 64-hit yes yes
Non-Windows 32-hit yes NA
Non-Windows 64-bit yes yes

Performance Recommendations

Sincethe uDeploy agent performs most of the processing, optimal agent configuration isimportant. Except
when evaluating uDepl oy, an agent should not beinstalled on the same machine wherethe server islocated.

By following these recommendations, you should avoid most performance-related issues:
» Install the server as a dedicated user account. The server should be installed as a dedicated system

account whenever possible. However, uDeploy runs well as a root user (or local system user on
Windows), and running this way is the easiest method to avoid permission errors.

30

Installing and Upgrading
Servers and Agents

Install the agent as dedicated system account. Ideally, the account used should be dedicated to
uDeploy. Because uDeploy agents are remote command-execution engines, it is best to create a user
just for the agent and grant it only the appropriate privileges.

Do not install an agent on the uDeploy server machine. Because the agent is resource intensive,
installing one on the server machinewill degrade server performance whenever alarge deployment runs.

Install one agent per machine. Several agents on the same machine can result in significant
performance reduction, especially when they are running at the same time.

Download uDeploy

Theinstallation package is available from the UrbanCode support portal--Supportal. If you are evaluating
uDeploy, the Supportal account where you download uDeploy also enables you to create support tickets.

1

Navigate to the UrbanCode Support Portal support. U banCode. com t asks/ | ogi n/
Logi nTasks/ | ogi n. If you do not have an account, please create one.

Note

Y ou must have alicense in order to download the product. For an evaluation license, go
to Ur banCode. coni ht m / pr oduct s/ depl oy/ defaul t. htm .

. Click the Productstab and select the uDeploy version you want to download.

. Select the appropriate package for your environment for the server, agent, command line client, and

agent relay. The contents of the zip and tar packages are the same.

uDeploy enables you to install agents on any supported platform, regardless of the operating system
where the server isinstalled.

. Download the license. If you do not see a license, ensure that you are the Supportal account

administrator. Licenses are not available to all Supportal users.

Database Installation

Currently, uDeploy supports Derby, Oracle, SQL Server, and MySQL.

Installing Oracle

Before installing the uDeploy server, install an Oracle database. If you are evaluating uDeploy, you can
install the database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the Oracle connection information, and a user account with table
creation privileges.

uDeploy supportsthefollowing editions:

Oracle Database Enterprise
Oracle Database Standard

Oracle Database Standard One

31

Installing and Upgrading
Servers and Agents

 Oracle Database Express

Version 10g or later is supported for each edition.

Toinstall the database

1.

6.

Obtain the Oracle JDBC driver. The JDBC jar fileisincluded among the Oracle installation files. The
driver is unique to the edition you are using.

. Copy the JDBC jar fileto uDeploy_installer_directory\lib\ext.

. Begin server installation, see the section called “ Server Installation”. When you are prompted for the

database type, enter or acl e.

. Provide the JDBC driver class uDeploy will use to connect to the database.

The default valueisor acl e. j dbc. dri ver. Oracl eDri ver.

. Providethe JDBC connection string. The format depends on the IDBC driver. Typically, itissimilar to:

jdbc:oracle:thin: @DB _URL]: [DB_PORT]
For example:

jdbc: oracl e:thin: @ocal host: 1521.

Finish by entering the database user name and password.

Note

The schema name must be the same as the user name.

Installing MySQL

Before installing the uDeploy server, install MySQL. If you are evaluating uDeploy, you can install the
database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the MySQL connection information, and a user account with
table creation privileges.

Toinstall the database

1

Create a database:
CREATE DATABASE uDepl oy;
GRANT ALL ON uDepl oy * TO ' uDepl oy' @ %

| DENTI FI ED BY ' password' W TH GRANT OPTI ON,

. Obtain the MySQL JDBC driver. The JDBC jar fileisincluded among the installation files. The driver

is unique to the edition you are using.

. Copy the JDBC jar fileto uDeploy_installer_directory\lib\ext.

32

Installing and Upgrading
Servers and Agents

4. Begin server installation, see the section called “ Server Installation”. When you are prompted for the
database type, enter mysql .

5. Provide the JDBC driver class uDeploy will use to connect to the database.
The default valueiscom nysql . Dri ver.

6. Next, provide the IDBC connection string. Typically, it is similar to:
jdbc:mysqgl [DB_URL] : [DB_PORT] : [DB_NAME]
For example:
jdbc: nysql :/ /1 ocal host: 3306/ uDepl oy.

7. Finish by entering the database user name and password.

Installing Microsoft SQL Server

Before installing the uDeploy server, install a SQL Server database. If you are evaluating uDeploy, you
can install the database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the SQL Server connection information, and a user account with
table creation privileges.

Before installing the uDeploy server, install an SQL Server database. If you are evaluating uDeploy, you
can install the database on the same machine where the uDeploy server will be installed:

CREATE DATABASE uDepl oy;

USE uDepl oy;

CREATE LOG N uDepl oy W TH PASSWORD = ' password' ;

CREATE USER uDepl oy FOR LOG N uDepl oy W TH DEFAULT_SCHEMA = uDepl oy;
CREATE SCHENMA uDepl oy AUTHORI ZATI ON uDepl oy;

GRANT ALL TO uDepl oy;

1. Obtain the SQL Server JDBC driver from the Microsoft site. The JDBC jar file is not included among
theinstallation files.

2. Copy the JDBC jar fileto uDeploy_installer_directory\lib\ext.

3. Begin server installation, see the section called “ Server Installation”. When you are prompted for the
database type, enter sql server.

4. Provide the JDBC driver class uDeploy will use to connect to the database.
The default valueiscom mi cr osof t. sql server. jdbc. SQLServerDri ver.

5. Next, provide the JIDBC connection string. The format depends on the JDBC driver. Typicaly, it is
similar to:

jdbc: sqgl server://[DB_URL]: [DB_PORT] ; dat abaseNane=[DB_NANE]

33

Installing and Upgrading
Servers and Agents

For example:
j dbc: sqgl server:/ /1 ocal host: 1433; dat abaseNanme=uDepl oy.

6. Finish by entering the database user name and password.

Server Installation

The server provides services such as the user interface used to configure application deployments, the
work flow engine, the security service, and the artifact repository, among others. The properties set during
installation are recorded in the i nst al | ed. properti es file located in the server _instal |/

conf/server/ directory.

If the following steps fail, contact UrbanCode support and provide the log from standard out put.

Note

If you areinstalling the server in aproduction environment, install and configure the database
you intend to use beforeinstalling the server. See the section called “ Database Installation”.

Windows Server Installation

1. Download and unpack the installation filesto theinstaller_directory.

2. Fromtheinstaller_directory, runi nst al | - server. bat .

Note

Depending on your Windows version, you might need to run the batch file as the
administrator.

The uDeploy Installer is displayed and prompts you to provide the following information:

3. Enter thedirectory wherethe uDeploy Server will beinstalled. Enter the directory where you want
the server located. If the directory does not exist, enter Y to instruct the Installer to create it for you.
If you enter an existing directory, the program will give you the option to upgrade the server. For
information about upgrading, see the section called “ Upgrading uDeploy”.

Note

Any default values suggested by the program (displayed within brackets) can be accepted
by simply pressing Enter. If two options are given, such as Y/ n, the capitalized option
isthe default value.

4. Please enter the homedirectory of the JRE/JDK used to run the server.

If Java has been previoudy installed, uDeploy will suggest the Java location as the default value. To
accept the default value, press ENTER, otherwise override the default value and enter the correct path.

5. Enter the I P address on which the Web Ul should listen. UrbanCode suggests accepting the default
vaueal | available to this machine.

6. Do you want the Web Ul to always use secur e connectionsusing SSL ?

Installing and Upgrading
Servers and Agents

Default valueis.

If you use SSL, turn it on for agents too, or the agents will not be able to connect to the server. This
also appliesif using mutual authentication. If you change the port numbers for agent communication,
you need to provide the port numbers when installing the agents.

This sats the install.server.web. al ways. secure= property in the
i nstall ed. properti es file

7. Enter theport whereuDeploy should listen for secureHTTPSrequests. Thedefault valueis8443.
Thissetsthei nstal | . server. web. i p=property inthei nst al | ed. properti es file

8. Enter the port on which the uDeploy server should redirect unsecured HTTP requests.
The default value is8080.

9. Enter the URL for external accessto the web Ul.

10.Enter the port to use for agent communication.
The default valueis 7918.

11.Do you want the Server and Agent communication to require mutual authentication?

If you select Y, amanual key must be exchanged between the server and each agent. The default value
isN.

Thissetstheser ver. j ms. mut ual Aut h= property inthei nst al | ed. properti es file.
12 Enter the database type uDeploy should use.

The default value is the supplied database Der by. The other supported databases are: mysql ,
oracl e, and sql server.

If you enter a value other than der by, the uDeploy Installer will prompt you for connection
information, which was defined when you installed the database. See the section called “Database
Installation”.

13.Enter the database user name.. The default value is uDepl oy. Enter the user name you created
during database installation.

14 Enter the database password.. The default value ispasswor d.
15.Do you want to install the Server as Windows service?. The default valueis N.
When installed as a service, uDeploy only captures the value for the PATH variable. Vaues captured

during installation will always be used, even if you make changes later. For recent Windows versions,
you will need to execute the command as Administrator.

Note
If you install the server as a service, the user account must have the following privileges:

e SE INCREASE QUOTA_NAME "Adjust memory quotas for a process"

35

Installing and Upgrading
Servers and Agents

e SE ASSIGNPRIMARYTOKEN_NAME "Replace a process level token"
e SE_INTERACTIVE_LOGON_NAME "Logon locally"

TheLOCAL SY STEM account ison every Windows machine and automatically hasthese
privileges. Y ou might want to useit as it requires minimal configuration.

Unix/Linux Installation

1. Download and unpack the installation files to the installer _directory.

Note

If you areinstalling uDeploy on Solaris, UrbanCode recommends the Korn shell (ksh).

2. From the installer_directory run i nst al | - server. sh. The uDeploy Instaler is displayed and
prompts you to provide the following information:

3. Enter thedirectory wherethe uDeploy Server will beinstalled. If the directory does not exist, enter
Y to instruct the Installer to create it for you. The default valueisY.

Note

Whenever the uDeploy Installer suggests a default value, you can press ENTER to accept
the value.

4. Please enter the homedirectory of the JRE/JDK used to run the server.

If Java has been previoudly installed, uDeploy will suggest the Java location as the default value. To
accept the default value, press ENTER, otherwise override the default value and enter the correct path.

5. Enter the | P address on which the Web Ul should listen. UrbanCode suggests accepting the default
vaueal | available to this machine.

6. Do you want the Web Ul to always use secur e connectionsusing SSL ?
Default valueis.
If you use SSL, turn it on for agents too, or the agents will not be able to connect to the server. This
also appliesif using mutual authentication. If you change the port numbers for agent communication,

you need to provide the port numbers when installing the agents.

This sats the install.server.web. al ways. secure= property in the
i nstall ed. properti es file

7. Enter theport whereuDeploy should listen for secureHTTPSrequests. Thedefault valueis8443.
Thissetsthei nstal | . server. web. i p=property inthei nst al | ed. properti es file.

8. Enter the port on which the uDeploy should redirect unsecured HTTP requests.
The default value is 8080.

9. Enter the URL for external accesstotheweb Ul.

36

Installing and Upgrading
Servers and Agents

10.Enter the port to use for agent communication.
The default valueis 7918.
11.Do you want the Server and Agent communication to require mutual authentication?

If you select Y, amanual key must be exchanged between the server and each agent. The default value
isN.

Thissetstheser ver. j ms. mut ual Aut h= property inthei nst al | ed. properti es file
12 Enter the database type uDeploy should use.

The default value is the supplied database Der by. The other supported databases are: mysql ,
oracl e, and sqgl server.

If you enter a value other than der by, the uDeploy Installer will prompt you for connection
information, which was defined when you installed the database. See the section called “Database
Installation”.

13.Enter thedatabase user name.. Thedefault valueisuDepl oy. Enter the user name you created when
you installed the database.

14 Enter the database password.. The default value ispasswor d.

Agent Installation

For production environments, UrbanCode recommends creating a user account dedicated to running the
agent on the machine where the agent is installed.

For simpleevaluations, the administrative user can run the agent on the machinewherethe server islocated.
But if you plan to run deployments on several machines, a separate agent should be installed on each
machine. If, for example, your testing environment consists of three machines, install an agent on each
one. Follow the same procedure for each environment the application uses.

Each agent needs the appropriate rights to communicate with the uDeploy server (if the agent will
communicate with uDeploy via an agent relay, see the section called “Connecting Agents to Agent
Relays’).

At aminimum, each agent should have permission to:

» Create a cache. By default, the cache is located in the home directory of the user running the agent.
The cache can be moved or disabled.

» Open aTCP connection. The agent uses a TCP connection to communicate with the server's IM S port.

» Open aHTTP(S) connection. The agent must be able to connect to the uDeploy user interface in order
to download artifacts from the CodeStation repository.

» Accessthefile system. Many agents need read/write permissions to items on the file system.

Installing an Agent

After downloading and expanding the installation package, open the installer_directory.

37

Installing and Upgrading
Servers and Agents

Fromtheinstaller_directoryruni nst al | - agent . bat (Windows) ori nst al | - agent . sh (Unix-
Linux).

Note

If you install the agent as a Windows service, the user account must have the following
privileges:

e SE INCREASE QUOTA_NAME "Adjust memory quotas for a process"
* SE_ASSIGNPRIMARYTOKEN_NAME "Replace a process level token"
» SE INTERACTIVE_LOGON_NAME "Logon locally"

The LOCAL SYSTEM account is on every Windows machine and automatically has these
privileges. Y ou might want to use it asit requires minimal configuration.

The uDeploy Installer is displayed and prompts you to provide the following information. Any default
values suggested by the program (displayed within brackets) can be accepted by simply pressing Enter.
If two options are given, such as Y/ n, the capitalized option is the default value.

1

Enter the directory where agent should beinstalled.. For example: C:\Program Files\urban-deploy
\agent (Windows) or /opt/urban-deploy/agent (Unix). If the directory does not exist, enter Y to instruct
the Installer to createit for you. If you enter an existing directory, the program will give you the option
to upgrade the agent. For information about upgrading, see the section called “Upgrading uDeploy”.

Note

Any default values suggested by the program (displayed within brackets) can be accepted
by simply pressing Enter. If two options are given, such as Y/ n, the capitalized option
isthe default value.

. Please enter thehomedirectory of the JRE/JDK used to run the agent. If Java has been previously

installed, uDeploy will suggest the Javalocation as the default value. To accept the default value, press
ENTER, otherwise override the default value and enter the correct path.

. Will the agent connect to a agent relay instead of directly to the server? The default valueis N. If

the agent will connect to an agent relay, see the section called “ Connecting Agents to Agent Relays”.

. Enter the host name or address of the server the agent will connect to. The default value is

| ocal host .

. Enter the agent communication port for the server. The default valueis 7918.

. Doesthe server agent communication use mutual authentication with SSL?. Default valueis'Y.

If you use SSL, turn it on for server too or the agent will not be able to connect to the server. Thisalso
applies if using mutual authentication. If you change the port numbers for agent communication, you
need to provide them when installing the agents.

. Enter the name for this Agent. Enter a unique name; the name will be used by uDeploy to identify

this agent. Names are limited to 256 characters and cannot be changed once connected.

. Doyou want toinstall the Agent asWindows service? (Windowsonly). The default valueisN. When

installed as a service, uDeploy only captures the value for the PATH variable. Values captured during

38

Installing and Upgrading
Servers and Agents

installation will always be used, even if you make changes later. For recent Windows versions, you
will need to execute the command as Administrator.

Agents that will run on Unix machines can also be installed directly from the uDeploy web application,
see the section called “ Agents”

Note

If the agent is configured properly, uDeploy will recognizeit automatically—you do not need
to perform further actionsin order to start using it.

Connecting Agents to Agent Relays

Remote agents--agents that will communicate with the server viaan agent relay--are installed in much the
sameway local agents are installed (see the section called “Agent Installation”): you run the install script,
i nstal |l -agent. bat, and supply agent configuration information as described above, along with the
relay-specific parameters.

When you answer Yes when asked if you want to connect the agent to aagent relay, you will be prompted
to configure the following parameters:

Table 8. Agent-Agent Relay Connection

Parameter Description
hostname or address of the agent relay the Enter the host name or | P address of the agent
agent will connect to relay. Supply the value you used when you

installed the agent relay.

agent communication port for theagent relay | Enter the port which the agent will use for IMS-
based communications with agent relay. The
default valueis 7916.

HTTP proxy port for the agent relay Enter the port on which the agent will use for
HTTP communications with the agent relay. The
default value is 20080.

Installing Agent Relays

An agent relay isacommunication proxy for agentsthat arelocated behind afirewall or in another network
location. As long as there is at least a low bandwidth WAN connection between the server and remote
agents, the uDeploy server can send work to agents located in other geographic locations via the relay.
An agent relay requires that only a single machine in the remote network contact the server. Other remote
agents communicate with the server by using the agent relay. All agent-server communication from the
remote network goes through the relay.

You can download the agent relay installation package from the UrbanCode support portal--Supportal.
Before installing, ensure that:

» Javalb.0or laterisinstalled.
» The server with which the relay will connect is already installed.

* The user account and password created during server installation is available.

39

Installing and Upgrading
Servers and Agents

Toinstall an agent relay:

1. Expand the compressed installation file.

2. Fromwithin the expanded agent - r el ay-i nst al | directory runthei nstal | . cnd script.

3. Theinstalation program will prompt you for the following information. Any default values suggested
by the program (displayed within brackets) can be accepted by simply pressing Enter. If two options
are given, such as Y/ n, the capitalized option is the default value.

Table 9. Agent Relay Configuration

Parameter

Description

Directory where you would like to install the
agent relay

Enter the directory where you want the agent
relay installed. If you enter an existing directory,
the program will prompt you to upgrade the
relay. For information about upgrading, see the
section called “Upgrading uDeploy”.

Java home

Directory where Javaisinstalled. Ensure that the
JAVA_HOME environment variable pointsto
this directory.

Name of thisrelay

Enter the name of the agent relay. Each relay
must have a unique name. The default nameis
agent -rel ay.

I P or hostname which this agent relay should
use

Enter the IP or hostname on which the relay will
listen.

Port which this agent relay should proxy
HTTP requestson

Enter the port on which the agent relay should
listen for HTTP requests coming from agents.
The default value is 20080.

Port which this agent relay should use for
communication.

Enter the port on which the agent relay will use
for IM S-based communi cations with remote
agents. The default value is 7916.

Connect the agent relay to a central server?

Specify whether you want the relay to connect to
the uDeploy server.

I P or hostname of your central server

If you indicated that you want to connect the
relay to the server, enter the IP or host name
where the relay can contact the server.

Port which the central server usesfor
communication

If you indicated that you want to connect the
relay to the server, enter the port the server uses
to communicate with agents. The default valueis
7918.

Use secure communication between the agent,
relay and server?

Specify whether you want to use SSL security
for communications between server, relay, and
remote agents. The default valueis'.

| mportant

To usetherelay, you must answer
yes. Answering yes activates SSL
security for HTTP- and IMS-
based communications. If you

40

Installing and Upgrading
Servers and Agents

Parameter Description

answer no, the relay will not be
able to communicate with the
server (which uses IMS for most
communications).

Use mutual authentication between the agent, |If mutual authentication isrequired, enter Y.
relay and server. See the section called “ SSL Configuration”
for information about activating mutual
authentication.

Install the Agent Relay asWindows service? | If you areinstalling the relay on Windows, you
can install it as a Windows service. The default
valueisN.

If you need to modify the relay, you can edit these propertiesin the agent r el ay. properti es file
locatedinther el ay_i nstal | ati on\ conf directory.

Upgrading uDeploy

You upgrade the uDeploy server, agents, and agent relays independently. Before upgrading, download
the appropriate installation package from the UrbanCode support portal (upgrades are done with the same
package used for installation), and uncompress it.

1. Run the installation script for the item you want to upgrade. To upgrade the server, for example, run
thei nstal | - server script; to upgrade an agent, run thei nst al | - agent script.

2. When prompted for the location of the installation directory, enter the path to an existing installation.
When you specify an existing installation, uDeploy will ask if you want to upgrade the installation
(instead of installing a new version). If you answer Yes, the script will lead you through the required
steps. The upgrade steps are a subset of the installation steps. If you need information about the steps,
see the section related to the item you are upgrading--server, agent, agent relay.

SSL Configuration

SSL (Secure Socket Layer) technology enables clients and serversto communicate securely by encrypting
all communications. Dataare encrypted before being sent and decrypted by the reci pient--communications
cannot be deciphered or modified by third-parties.

uDeploy enables the server to communicate with its agents using SSL in two modes: unauthenticated
and mutual authentication. In unauthenticated mode, communication is encrypted but users do not have
to authenticate or verify their credentials. uDeploy automatically uses this mode for IM S-based server/
agent communication (you cannot turn this off). SSL unauthenticated mode can also be used for HTTP
communication. Y ou can implement this mode for HT TP communication during server/agent/agent relay
installation, or activate it afterward, as explained below.

I mportant

uDeploy automatically uses SSL in unauthenticated mode for JM S-based communications
between the server and agents (IMSis uDeploy's primary communication method). Because
agent relays do not automatically activate SSL security, you must turn it on during relay
installation or before attempting to connect to the relay. Without SSL security active, agent
relays cannot communicate with the server or remote agents.

41

Installing and Upgrading
Servers and Agents

In mutual authentication mode, the server, local agents, and agent relays each provide adigital certificate
to one another. A digital certificateisacryptographically signed document intended to assure others about
the identity of the certificate's owner. uDeploy certificates are self-signed. When mutual authentication
mode is active, uDeploy usesit for IMS-based server, local agents, and agent relay communication.

To activate this mode, the uDeploy server provides adigital certificate to each local agent and agent relay,
and each local agent and agent relay provides one to the server. Agent relays, in addition to swapping
certificates with the server, must swap certificates with the remote agents that will use the relay. Remote
agents do not have to swap certificates with the server, just with the agent relay it will use to communicate
with the server. This mode can be implemented during installation or activated afterward, as explained
below

Note

When using mutual authentication mode, you must turnit on for the server, agents, and agent
relays, otherwise they will not be able to connect to one another--if one party uses mutual
authentication mode, they all must useit.

Configuring SSL Unauthenticated Mode for HTTP
Communications

To activate unauthenticated mode for HTTP:

1. Open the i nstal | ed. properti es file which is located in the server i nstall/conf/
server directory. Thei nst al | ed. properti es file contains the properties that were set during
installation.

2. Ensurethat thei nstal | . server. web. al ways. secur e property issetto Y.

3. Ensure that thei nstal | . server. web. i p property is set to the port the server should use for
HTTPS requests.

4, Savethefile and restart the server.

Note

To complete unauthenticated mode for HT TP, contact UrbanCode Support.

Configuring Mutual Authentication

To use mutual authentication, the server and agents must exchange keys. Y ou export the server key (asa
certificate) and import it into the agent keystore, then reverse the process by exporting the agent key and
importing it into the server keystore. When using an agent relay, the relay must swap certificates with the
server and with the remote agents that will use the relay.

Befor e exchanging keys, ensurethat the following properties are set:

1. Theserver.j ns. mut ual Aut h property intheserver'si nst al | ed. properti es file(located
intheserver _install/conf/server directory) isset totrue.

2. For each agent, the |ocked/agent.nnutual _auth property in the agent's
i nstal |l ed. properties file(located intheagent _i nst al I \ conf\ agent directory) is set
totrue.

3. For each agent relay, the agentrel ay.jns_proxy.secure property in the relay's
agentrel ay. properti es file(locatedinther el ay_i nstal | \ conf directory) is set to true.

42

Installing and Upgrading
Servers and Agents

4. For each agent relay, the agentrel ay. | ns_proxy. mut ual Aut h property in the relay's
agentrel ay. properti es fileisset to true.

To exchange keys:
1. Open ashell and navigate to the server installation conf directory.
2. Run:

keyt ool -export -keystore server.keystore -storepass changeit
-alias server -file server.crt

3. Copy the exported file (certificate) to the local agent/agent relay installation conf directory.

4. Import the file by running from within the agent's conf directory (or agent relay's j ns-r el ay
directory):

keytool -inmport -keystore ud.keystore -storepass changeit
-alias server -file server.crt -keypass changeit -nopronpt

Youshould seetheCertificate was added to keystor e message.

Note

For agent relays, replace ud. keyst or e with the name of the relay's keystore--
agentrel ay. keystore

5. For each local agent or agent relay , export the key by running the following (change the name of the
file argument to match the agent name):

keyt ool -export -keystore ud.keystore -storepass changeit
-alias ud_agent -file [agent_nane].crt

Youshould seetheCertificate stored in file (agent_nane.crt) message.

Note

For agent relays, replace ud. keyst or e with the name of the relay's keystore--
agentrel ay. keystore

6. Copy the exported file to the server'sconf directory.

7. From within the server's conf directory, import each certificate by running the following command
(change the name of the file argument and alias to match the certificate's name):

keytool -inport -keystore ud.keystore -storepass changeit
-alias [agent_nane] -file [agent_nane].crt -keypass changeit -nopronpt

YoushouldseetheCertifi cate was added to keystor e message.
8. Restart the server and agents/agent relays.

To connect an agent relay with the remote agentsthat will useit, swap certificates as explained above: each
remote agent must import the certificate for the relay it will use, and the relay must import the certificate
from each remote agent that will useit. Agents using relaysdo not have to swap certificateswith the server.

To list the certificates |oaded into a keystore, run the following from within the keystore directory:

43

Installing and Upgrading
Servers and Agents

keyt ool -list -keystore ud.keystore -storepass changeit

Running uDeploy

Both Unix- and Windows-based installations require the uDeploy server and at lest one agent. If you are
using a Oracle or MySQL database, make sure you have installed and configured the appropriate driver,
see the section called “Database Installation”.

Running the Server

1. Navigateto the server_installation\bin directory

2. Runther un_server. cnd batch file (Windows), or st art _ser ver. cnd (Unix/Linux).

Running an Agent

After the server has successfully started:
1. Navigateto the agent_installation\bin directory
2. Runther un_udagent . cnd batch file (Windows), or st art _udagent . crd (Unix/Linux).

3. Once the agent has started, navigate to the uDeploy web application and display the Resour ces tab. If
installation went well, the agent should be listed with a status of Onl i ne.

Running an Agent Relay

After the server has successfully started:
1. Navigatetothe agent_relay installation\bin directory

2. Run the run_agent r el ay. cnd batch file (Windows), or start _agentrel ay. cnd (Unix/
Linux).

Start the agent relay before starting any agents that will communicate through it.

Accessing uDeploy

1. Open aweb browser and navigate to the host name you configured during installation.
2. Log onto the server by using the default credentials.

User name: admi n

Password: adni n

You can change these later by using the Settings tab on the uDeploy web application, see System
Settings

3. Activate the license. A license is required in order for the agents to connect to the server. Without a
license, uDeploy will be unable to run deployments. For information about acquiring and activating a
license, see the section called “Licenses’.

Quick Start—helloWorld Deployment

This section gets you started by providing immediate hands-on experience using key product features. The
helloWorld walk-through demonstrates how to create a simple deployment using out-of-the-box features.

Note

This section assumes you have installed the uDeploy server and at least one agent. For the
walk-through, the agent can beinstalled on the same machine where the server isinstalled. If
the agent or server have not been installed, see Installing and Upgrading Servers and Agents
for installation information.

In outline, deployments are done by performing the following steps:

Define Components

Components represent deployable artifacts: files, images, databases, configuration materials, or
anything else associated with a software project. Components have versions which ensure that proper
component instances are deployed. See Components for more information about creating components.

Define Component Processes

Component processes operate on components, usually by deploying them. Each component must have
at least one component process defined for it. For helloworld you will create a single component that
contains a number of text-type files (artifacts), and define a simple process that moves—deploys—the
artifacts.

Define Application

An application brings together all deployment components by identifying its components and defining
a process to move them through a target environment (by running component processes, for instance).
See Applications for more information about creating applications.

Configure Environment

An environment is a collection of resources that represent deployment targets--physical machines,
virtual machines, databases, J2EE containers, and so on. Each application must have at least one
environment defined for it.

Identify Agent

Agentsaredistributed processesthat communicate with the uDeploy server and perform the actual work
of deploying artifacts. Generally, an agent isinstalled on the host where the resources it managesreside.
Agents are associated with applications at the environment level.

Creating Components

Components contain the artifacts--files, images, databases, etc.--that you manage and deploy. When
creating a component, you:

1. Identify source type.

First, you define the artifacts source type (all artifacts must be of the same type) and identify where
they are stored.

45

Quick Start—helloWorld Deployment

2. Import aversion.
After you identify the artifacts, they areimported into the artifact repository, CodeStation. Artifacts can
be imported manually or automatically. When artifacts are imported, they are assigned a version 1D,
which enables multiple versions to be kept and managed. Snapshots, for example, can employ specific
versions.

3. Define process.
The process defines how the component artifacts are deployed. A process is designed by assembling

plug-in steps. A plug-in step is abasic unit of automation. Steps replace most deployment scripts and/
or manual processes. Processes are designed using the drag-and-drop process editor.

helloWorld Deployment

The helloWorld deployment moves somefilesonthelocal file system to another location on thefile system,
presumably alocation used by an application server. helloworld is a very simple deployment but it uses
many key product features—features you will use every day.

Plug-ins provide integration with many common deployment tools and application servers. In addition to
Start and Finish steps, each process has at least one step, which can be thought of as a distinct piece of

user-configurable automation. By combining steps, complex processes can be easily created. Plug-ins are
available for Subversion, Maven, Tomcat, WebSphere, and many other tools.

A Note Before You Begin

You can read the walk-through without actually performing the steps, or you can perform them as you
read along. If you want to perform the steps as we go, do the following before starting:

1. Create a directory somewhere on your system named helloWorld.
2. Within helloWorld create a sub-directory named anything you like. | named mine hello.

3. Within the subdirectory place severa—say 5—files. For speed, text-type files should be used. These
files represent the artifacts that will be deployed. We will create a component that contains these files.

Reminder: If you want to perform the exercise steps, ensure that you have an active agent installed.

helloWorld Component Version

1. Display the Create New Component dialog (Honme > Conponent s > Cr eat e New Conponent).

46

Quick Start—helloWorld Deployment

Figure 10. Create New Component Dialog

Create New Component

Name * |
Description

Template pope
Source Config Type Nope

Import Versions
Automatically

Copy to CodeStation
Default Version Type * Full
Inherit Cleanup Settings

Theinitialy displayed fields are the same for every source type. Other fields appearing depend on the
source type and are displayed after avalueis selected in the Sour ce Confi g Type field.

2. Enter hel | oWbr | d inthe Namefield.

The name is used when assembling the application. If the component will be used by more than one
application, the name should be generic rather than project-specific. For components that are project-
specific, aname that conveys something meaningful about the project should be used.

3. Enter adescription in the Description field.

The optional description can be used to convey additiona information about the component. If the
component is used by more than one application, for example, entering "Used in applications A and
B" can help identify how the component is used. If you are unsure about what to enter, leave the field
blank. Y ou can always return to the component and edit the description at any time. In an attempt to
appear hip, | entered Euro store for my component.

For this exercise, ignore the Template field. Templates provide a way to reuse commonly used
component configurations. For information about templates, see the section called “Component
Templates’.

4. Select Fil e Syst em (Ver si oned) from the Source Config Typefield.

Selecting a value displays several fields required by the selected type.

47

Quick Start—helloWorld Deployment

Figure 11. Source Config Type

Create New Component

*
Name helloWorld

Description
Template pgne

Source Config Type |File System (Versioned)
Base Path * c:\helloworld

Preserve Execute
Permissions

Import Versions
Automatically

Copy to CodeStation
Default Version Type * Full
Inherit Cleanup Settings

File System (Versioned) isone of the simplest configuration options and can be used to
quickly set-up a component for evaluation purposes, as we do here.

. Complete this option by entering the path to the artifacts.

In our example, the artifacts are stored inside the subdirectory created earlier. Fil e System
(Ver si oned) assumesthat subdirectorieswithin the base directory are distinct component versions,
which is why we placed the files (artifacts) inside a subdirectory. Fi | e Syst em (Ver si oned)
can automatically import versionsinto CodeStation. If a new subdirectory is discovered when the base
directory is checked, its content isimported and a new version is created.

. Check the Import Versions Automatically check box.

When this option is selected, the source location will be periodically polled for new versions. If this
optionisnot selected, youwill haveto manually import anew version every timeonebecomesavailable.
The polling interval is controlled by the Automatic Version Import Check Period (seconds) field on the
Settings pane (Home > Settings > Systen). The default value is 15 seconds.

. Ensure the Copy to CodeStation check box is selected.

This option, which is recommended and selected by default, creates a tamper-proof copy of the
component's artifactsand storesthem in the embedded artifact management system, CodeStation. If you
already have an artifact repository, such as AnthillPro or Maven, you might leave the box unchecked.

For this exercise, you can accept the default values for the remaining options and save your work.

. After the interval specified by the system settings, the initial component version (the files inside
the subdirectory created earlier) should be imported into CodeStation. To ensure the artifacts were
imported, display the Versions pane (Hone > Conponents > hell oWwrld > Versions >
ver si on_nane) . Thispanedisplaysall versionsfor the selected component. If things went well, the

48

Quick Start—helloworld Deployment

artifacts will be listed. The base path, asyou will recall, isC: \ hel | oWor | d. Withinhel | oWor | d
isthe single subdirectory (hel | o on my machine).

Figure 12. Imported Artifacts

Home » Components » helloWorld » Versions » Version: hello
Version: hello
Ll it [Properties |
Statuses
Status Description Created By Actions
No statuses have been assigned to this version. - Refresh

Add a Status
Artifacts
Total: 12 KB (5 files)

Name Size Last Modified Version Actions
I:l settings_license.xml 2.3KB 1/30/12 12:38 PM 1 Download
|:l settings_network.xml 2.3 KB 1/30/12 12:39 PM 1 Download
I:l settings_notifications.xml 2.3KB 1/30/12 12:40 PM 1 Download
|:l settings_properties.xml 2.3 KB 1/30/12 12:41 PM 1 Download
I:l settings_system.xml 2.3KB 1/30/12 12:42 PM 1 Download

Component Process

Once a component has been created and a version imported, a process to deploy the artifacts—called a
component process—is defined.

To Configure the helloworld Component Process:

1. Display the Create New Process dialog for the hel | oWor | d component (Hone > Conponent s
> hell owbrld > Processes > Create New Process).

Figure 13. Create New Process

Create New Process

*
Name ™ hallo_worldInstall

Description

Process Type * Deployment
Inventory Status * Active

Default Working
Directory *
Required Component Role Ngne

${p:resource/work.dir}/${p:comj

2. Inthe Create New Process dialog, enter aname in the Name field.

49

Quick Start—helloWorld Deployment

The name and description typically reflect the component's content and process type.
3. Enter ameaningful description in the description field.
If the process will be used by several applications, you can specify that here.
4. Accept the default values for the other fields.
You might be wondering what the Default Working Directory field does. This field points to the
working directory (for temporary files, etc.) used by the agent running the process. The default value
resolves to agent_directory\work\component_name_directory. The default properties work for most
components; you might need to change it if a component process cannot be run at the agent's location.
When you are done, save your work.
So far you have created a place-holder for the actual process you will define next. The name you gave

the process is listed on the component's Process pane. A component can have any number of processes
defined for it.

helloWorld Process Design

Now we will complete the process by defining the actual plug-in steps. In addition to the Start and Finish
stepswhich are part of every process, aprocess must have at |east one additional step. The steps are defined
with the Process Design pane. Y ou define the steps by dropping them onto the design area and arranging
them in the order they are to be executed.

To Definethehel | oWor | d Process Steps:

1. Display the Process Design pane for the process created earlier (Home > Conponents >
hel | oWwbrl d > process_nane).

50

Quick Start—helloworld Deployment

Figure 14. Process Design Pane

Process: hello_worldInstall

Description
Version 1of1
4P M
Design m Changelog
Tools
a9 32X I,
Start
L
Available Plugin Steps every ﬁ;icgf: rtbsetge';s with
Iz Finish contains plug-in steps
[Utility Steps
[Repositories
|| Resource Tools .
|_) Scripting D esl g n
") System Utility S pace

The steps are listed in the Available Plug-in Steps list-box. Take a moment to expand the listings and
review the available steps. Many commonly used plug-in steps are available out-of-the-box.

2. IntheAvailable Plug-in Stepsbox, expandtheuDepl oy menuitem (Repositories > Arti f act
> uDepl oy).

3. Drag the Downl oad Artifacts step onto the design space and release it. For now, don't worry
about where the step is rel eased—a step's position in the workflow is defined after its parameters are
configured.

51

Quick Start—helloworld Deployment

Figure 15. Adding a Step to the Process

Process: hello_worldInstall

Description
Version 1of1
4 M

Tools

AR5 e X I

Add Steps

Available Plugin Steps

T+ Finish

* [Utility Steps ~
+ [Application Server (o JJJ
* [Database
* [Deploy
[Infrastructure
== Repositories
= Artifact

= uDeploy

T+ Download Artifacts

The Edit Properties dialog is displayed when the mouse-pointer is released over the design space.

52

Quick Start—helloWorld Deployment

Figure 16. Edit Properties Dialog

Edit Properties

Name * pownload Artifacts

Directory Offset * |

Prompt for a value on use
Includes *

Prompt for a value on use
Excludes

Prompt for a value on use
Sync Mode sync

Prompt for a value on use
Full verification

Prompt for a value on use
Set File Execute Bits

Prompt for a value on use
Verify File Integrity

Prompt for a value on use
Allow Failure

Working Directory
Post Processing Script gtep Default

Precondition

Use Impersonation

Thisdialog displays al configurable parameters associated with the selected step.

For this exercise, we can achieve our goal by entering data into a single field—Directory Offset.
Recall that the goal for this ambitious deployment is to move the source files in the base directory to
another location. As you might guess, several methods for accomplishing this are available. Pointing
the Directory Offset field to the target location is one of the simplest.

4. In the Directory Offset field, enter the path to the target directory. Because uDeploy can create a
directory during processing, you specify any target directory. | entered c: \ hel | o which did not exist
on my system, and let uDeploy create it for me.

If the field is left blank, the process will use the working directory defined earlier. Entering the
path overrides the previous value and will cause the source files to be moved—deployed—to the
entered location when the process runs. The default value would move (download) the files to
agent_directory\work\component_name_directory.

After entering the target path, save your work and close the dialog box.
5. Next, the step must be positioned within the process workflow. There's no requirement that a step be
positioned immaculately after it's created; you could place several more before defining their positions,

but because thisis the only step we are adding, it makes sense to define its position now.

A step'sposition in theworkflow isdefined by dragging connection arrowsto/fromit. The arrowsdefine
the direction of the workflow.

53

Quick Start—helloWorld Deployment

Hover the mouse pointer over the St ar t step to display the connection tool, as shown in the following
illustration. Each step has a connection tool which is used to connect it to other steps.

Figure 17. Connection Tool

Connectio

>

Download Artifacts

Grab the connection tool and drag it over the Downl oad Artifacts step then release it. A
connection arrow connects the two steps. The arrow indicates the direction of process flow—from the
originating step to the destination step.

Figure 18. Finished Connection

Download Artifacts

6. Complete the process by connecting the Downl oad Arti facts steptotheFi ni sh step. A step
can have more than one arrow originating from it and more than one connecting to it.

Quick Start—helloWorld Deployment

Figure 19. Completed Process

Start

(%)
2

- Download Artifacts
} %5’ Downld2d Artifacts (v. 1?)

ale
o

Finish

7. Save the component by using the Save tool on the Tools menu.

Once the process steps are defined, the final task is to define an application that uses the component—and
the component process you just created.

helloWorld Application

To deploy the helloWorld component, you must create an application. An application, as used by uDeploy,
is a mechanism that deploys components into environments using application processes—processes
similar to the component process just defined.

To create an application, you: identify the componentsit controls (an application can manage any humber
of components); define at least one environment into which the componentswill be deployed; and createa
process to perform the work. An environment maps components to agents and handles inventory, among
other things.

An application process is similar to but not identical with a component process. While application
processes consists of steps configured with the processeditor, like component processes, they are primarily
intended to direct underlying component processes and orchestrate multi-component deployments. The
Install Component step, which we will use shortly, enables you to select acomponent process from among
those defined for each component (remember that a component can have more than one process defined
for it).

Y ou perform a deployment by running an application process for a specific environment.

You might be wondering why you need to create an application-level process when the process you
created for the component should be ableto perform the deployment by itself. Whileindividual component
processes can be run outside an application process, an environment must still be defined (environments
are defined at the application level) and an agent associated with it. For a single-component deployment
like helloworld, an application-level process might not be required. You might also want to skip an

55

Quick Start—helloWorld Deployment

application-level process when you are testing or patching a component. But for non-trivial deployments,
and especially for deployments that have more than one component, you will want to create one or more
application-level processes.

Creating an Application

To create an application:

1. Display the Create New Application dialog (Home > Applications > Create New
Appl i cation [button]).Unlikethe Create New Component dialog box where somefields vary
depending on the artifacts source, none of the fields here are variable.

2. Enter aname and description.

| entered helloWorld_application. While there is no naming requirements, the number of associated
items—components, processes, applications, environments, etc.—can become large, so it's useful to
employ a scheme that makes it easy to identify related items.

3. Accept the default value of None from the Notification Scheme drop-down list box, and save the
application.

uDeploy integrates with LDAP and e-mail servers which enables it to send event-based notifications.
For example, the default notification schemewill send an e-mail (if an email server has been configured,
seethe section called “ System Settings”) when a deployment finishes. Notifications can also play arole
in deployment approvals. See uDeploy Security for information about security roles.

Adding the helloWorld Component to the Application

After the application is saved, we identify the component—helloWorld—it will manage. While we have
only one component to deploy, an application can manage any number of components.

1. Display the Add a Component dialog for the application just created, helloWorld application in my
case (Hone > Applications > hellowrld application > Conponents > Add
Conponent [button]).

2. Select hellowWorld from the Select a Component drop-down list box, then save your selection.

The simple act of selecting a component accomplishes alot. The the component processes defined for

the component become available to the application, for example, and many application process steps
will have default values set to values defined by the helloWorld component.

Adding an Environment to the Application

Before an application can run, it must have at |east one environment created for it. An environment defines
the agents used by the application, among other things.

1. Display the Create New Environment dialog (Hone > Appli cations >
hel | oWor | d_application > Create New Environnent).

56

Quick Start—helloWorld Deployment

Figure 20. Create New Environment

Create New Environment

Name * |
Description

Require Approvals

Color D
|
||
HENm EREEnm
HEN EEEEN
EEEEEEEEENn
EEEEEEEEEN

Inherit Cleanup Settings

2. Usethe Create New Environment dialog to define the environment:

The value in the Name field will be used in the deployment.

If you check the Require Approvals check box, approvals will be enforced. See Deployments for
information about the approval process. Thisis our first deployment so an uncontrolled environment
will do fine--leave the box unchecked.

Selecting a color provides a visual identifier for the environment in the Ul. Typicaly, each
environment will be assigned its own color.

Leave the Inherit Cleanup Settings check box checked. Clean-up refers to archiving component
versions. When a component is archived, its artifacts are combined into a ZIP file and saved. The
corresponding component is removed form CodeStation. When checked, settings are inherited from
the system settings, otherwise they are inherited from the application's components, see the section
called “ System Settings’.

. Next, add an agent that will execute the application's process steps. Display the Add a Resource dialog

(Applications > helloWwrld_application > Environnments > Environnent:
nanme > Conponent Mappi ngs > Add a Resource).

Select any of the agents that were created when uDeploy was installed.

While our example uses only a single resource, deployments can use many resources and resource
groups. Resource groups provide a way to combine resources, which can be useful when multiple
deployments use overlapping resources. See Resources for information about resource groups.

57

Quick Start—helloworld Deployment

Figure 21. Component M appings

Home » Applications » helloWorld_application » Environments » Environment: helloWorld_env

Environment: helloWorld_env for helloWorld_application
Description

Component Mappings

Component Mappings

helloworld
Resource Groups

No Data Found.

Add a Resource

Select a Resource * h

Adding a Process to the Application

Now that our application has an environment, we can create an application-level processthat will perform
the deployment.

1. Display the Create an Application Process dialog (Applications >
hel | owbrl d_application > Processes > Create New Process).

2. Enter aname in the Namefield.
Accept the default values for the other fields:

* The Required Application Role drop-down field is used to restrict who can run this process. The
default value, None, means anyone can run the process. The available options are derived from the
uDeploy Security System. For information about security roles, see uDeploy Security

» The Inventory Management field determines how inventory for the application's components are
handled. If you want to manually control inventory, you would select the Advanced option. See
Inventory for information about inventory management.

3. Save your work when you are finished.

Designing the Process Steps

To create an application-level process, you define the individual steps as you did earlier (see the
section called “ Component Processes’) when you used the Process Design pane to create the helloworld
component process.

58

Quick Start—helloWorld Deployment

1. Display the Process Design pane (Appl i cati ons > application_nanme > Processes >
pr ocess_nane). The out-of-box process steps are listed in the Add a Component Process list box.

2. Dragthel nstal | Component step onto the design area and release. The Edit Properties dialog
isdisplayed.

Figure 22. Edit Properties Dialog

Start

Edit Properties

Name * |

Component * hello_ world

Use Versions Without Active
Status *

Component Process * hello_worldInstall
Ignore Failure
Limit to Resource Role apy

Run on First Online
Resource Only

Precondition

Select a component from the Component drop-down list box. If you followed the Quick Start Guide,
thehel | oWor | d component will be listed.

If wewanted thisapplication to install multiple components, we could add aseparate Install Component
step for each one.

3. Usethe Component Process list box to select the component process you created earlier. All processes
defined for the selected component arelisted. If the component had another processthat deployedittoa
different location, you could add another I nstall Component step that used that process—simultaneously
installing the component into two different locations.

Accept the default values for the other fields (see Applications for information about the other fields),
and click Save.

4. Connect thesteptothe St art and Fi ni sh steps.

59

Quick Start—helloWorld Deployment

Figure 23. Finished Application Process

5. Save the process by clicking the Save tool on the Tools bar.

Running the Application

Now that the component, environment, and process are complete, you are ready—finally!—to run the
application.

1. Onthe Application pane, click the Request Process button for the environment you created earlier.

Figure 24. Request Process

Application: helloWorld_application

Description
Environments

Drag environments by their label boxes to order them.

Actions

et Proces

Inactivate hello world

helloWorld env

10 per page

2. On the Run Process dialog:

60

Quick Start—helloworld Deployment

* Select the process you created from the Process drop-down list box. Applications can have more than
one process defined for them..

» Select Latest Version from the Version drop-down list box. This option ensures that the latest (or
first and only) version is affected.

Figure 25. Run Process Dialog

Environments

Drag environments by their label boxes to order them.

Actions

Run Process on helloWorld_env X e

Only Changed Versions ./
Process * helloworld_appProcess I
Snapshot gpe

Version for helloWorld | atest Version

Schedule Deployment? e

Description

3. Click Submit to run the application.

The Application Process pane is displayed. This pane displays the application's status.

Figure 26. Application Process Request

R properties | Manifest
Expand All Collapse All Sort By: Graph Order Start Time
Step Progress Start Duration Status Actions
helloAppPro 1of1 3:42:47 PM 0:00:03 Success
tph-agent 1of1 3:42:47 PM 0:00:02 Success
hello 3:42:47 PM 0:00:02 Success Details
Total Execution 10f1 3:42:47 PM 0:00:03 Success

61

Quick Start—helloWorld Deployment

Take a few moments to examine the information on this pane; hopefully, you will see a Success
message. To see additional information (Output Log, Error Log, Application Properties), click the
Details link.

62

Using uDeploy

Components

Components represent deployable items along with user-defined processes that operate on them, usually
by deploying them. Deployableitems, or artifacts, can befiles, images, databases, configuration materials,
or anything else associated with a software project. Artifacts can come from a number of sources: file
systems, build servers such as AnthillPro, as well as many others. When you create a component, you
identify the source and define how the artifacts will be brought into uDeploy.

Component Versions and the CodeStation Repository

After defining a component's source and processes, you import its artifacts into uDeploy's artifact
repository CodeStation. Artifacts can beimported automatically or manually. By default, acomplete copy
of an artifact's content is imported into CodeStation (the original artifacts are untouched). Each time a
component isimported, including the first time, it isversioned. Versions can be assigned automatically by
uDeploy, applied manually, or come from a build server. Every time a component's artifacts are modified
and reimported, a new version of the component is created.

Component Processes

A component process is a series of user-defined steps that operate on a component's artifacts. Each
component has at least one process defined for it and can have several. A component process can be as
simple as a single step or contain numerous relationships, branches, and process switches. Component
processes are created with uDeploy's process editor. The process editor isavisual drag-and-drop editor that
enables you to drag process steps onto the design space and configure them as you go. As additional steps
are placed, you visually define their relationships with one another. Process steps are selected from amenu
of standardized steps. uDeploy provides stepsfor several utility processes, such asinventory management,
and workflow control. Additional process steps are provided by plug-ins. A component process can have
steps from more than one plug-in. See Plug-ins.

Additionally, you can create processes and configure properties and save them as templates to create new
components. See the section called “ Component Templates’.

Creating Components

In general, component creation is the same for al components. When creating a component, you:
1. Define source type.

You name the component and identify the artifacts source, such as AnthillPro, a file system, or
Subversion. A component can contain any number of artifacts but they must all share the same source.

2. Assemble process(es).

A process defines what uDeploy does with the component's artifacts. A process might consist of any
number of steps, such as starting and starting servers, and moving files. In addition to deploying, other
processes can import artifacts and perform various utility tasks.

To reiterate, then, a component consists of artifacts all sharing the same source type, plus one or more
processes. In addition to hand-crafting a component, you can use a template to create one (see the
section called “Component Templates’), or you can import a component directly (see the section called
“Importing/Exporting Components”).

To create a component:

Components

1. Display the Create New Components dialog (Home > Conponents > Create New
Conponent). Severd fields are the same for every source, while others depend on the source type
selected with the Source Config Typefield.

Figure 27. Create New Component Dialog

Create New Component

Name *
Description

Template
Source Config Type

Import Versions
Automatically

Copy to CodeStation
Default Version Type *
Inherit Cleanup Settings

None

None

Full

2. Define standard parameters. The fieldsin the following table are available for every sourcetype. If you
select avalue in the Source Config Type field, fields specific to the selected type are also displayed.

Table 10. Fields Available for All Source Types

Field Description

Name | dentifies the component; appears in many Ul features. Required.

Description The optional description can be used to convey additiona
information about the component. If the component is used by more
than one application, for example, entering "Used in applications A
and B" can help identify how the component is used.

Template A component template enables you to reuse component definitions;

components based on templates inherit the template's source
configuration, properties, and process. Any previously created
templates are listed. A component can have a single template
associated with it. The default valueis None.

If you select a template, the Template Version field is displayed
which is used to select a template version. By controlling the
version, you can roll-out template changes as required. The
default value is Latest Version which means the component will
automatically use the newest version (by creation date). See the
section called “Component Templates’.

Note

If you select atemplate that hasasource configured for
it, the dialog box will change to reflect values defined

65

Components

Field

Description

for the template. Several fields, including the Source
Config Typefield, will become populated and locked.

Sour ce Config Type

Defines the source type for the component's artifacts; all artifacts
must have the same source type. Selecting a value displays
additional fields associated with the selection. Source-dependent
fields (see Component Source Configuration) are used to identify
and configure the component's artifacts. If you selected atemplate,
thisfield islocked and its value isinherited from the template.

Import Versions
Automatically

If checked, the source location is periodically polled for new
versions; any found are automatically imported. The default polling
periodis 15 seconds, which can be changed with the System Settings
pane. If left unchecked, you can manually create versions by using
the Versions pane. By default, the box is unchecked.

Copy to CodeStation

This option—selected by default—creates a tamper-proof copy of
the artifacts and stores them in the embedded artifact management
system, CodeStation. If unchecked, only meta data about the
artifacts are imported. UrbanCode recommends that the box be
checked.

Default Version Type

Defines how versions are imported into CodeStation. Ful |
means the version is comprehensive and contains al artifacts;
I ncrenental means the version contains a subset of the
component's artifacts. Default valueis: Full. Required.

Inherit Cleanup Settings

Determines how many component versions are kept in CodeStation,
and how long they are kept. If checked, the component will use
the values specified on the System Settings pane. If unchecked, the
Days to Keep Versions (initially set to -1, keep indefinitely) and
Number of Versionsto Keep (initially set to -1, keep all) fields are
displayed, which enable you to define custom values. The default
value is checked.

3. If you select a source type, enter values into the source-specific field. See Component Source
Configuration for information about the source types and parameters.

4. When finished, save your work. Saved components are listed in the Component pane.

Importing/Exporting Components

Components can be imported and exported. Importing/exporting can be especially useful if you have
multiple uDeploy servers, for example, and need to quickly move or update components.

Exporting Components

Exporting a component creates a JSON file (file extension j son) that contains the component's
source configuration information, properties, and processes. For information about JSON, see http://

WWW.json.org/.

To export a component:

On the Components pane (Hone > Conponent s), click theExpor t link inthe Actionsfield. You can
load the file into atext editor, or saveit. If you saveit, afileis created with the same name as the selected
component, for example, hel | oWor | d. j son.

66

http://www.json.org/
http://www.json.org/

Components

Importing Components

When you import a component, you can create an entirely new component or upgrade an existing one.
Additionally, if the imported component was created from atemplate, you can useit or create a new one.

Note

If the imported component has the Import Versions Automatically parameter set to true, the
new component will automatically import component versions as long as the artifacts are
accessible to the importing server.

To Import a Component

1. Display the Import Component dialog (Conponent s > | nport Conponent [button]).

Figure 28. Import Component Dialog

Import Component

Upgrade Component
Component Template Upgrade Type Use Existing Template E

Browse...
Submit

2. Enter the path to the JSON file containing the component definition or use the Browse button to select
one.

3. If you want to upgrade an existing component, check the Upgrade Component check box. To create a
new component, leave the box unchecked.

If the component'snamein the JSON file (not the name of thefileitself) matches an existing component,
the component's parameters are updated with the new values, and new items—such as processes—are
added. If the name of the component is not found, the command has no effect.

Note

The component's name is the first parameter in the JSON file; for example,

nane": "hell oWorl d",

4. If the imported component was originally created from a template, use the Component Template
Upgrade Type drop-down box to specify how you want to use the template. For these options, the
template must be on the importing server. If the imported component was not created from atemplate,
these options are ignored.

» To use the imported component's template, select Use Existing Template. The new component will
be an exact copy of the imported one and contain a pointer to the imported component's templ ate.
Thisoption isespecially useful if you are importing alot of components based on the same templ ate.

If you are upgrading, the component will also point to the imported template.

67

Components

» Tocreate anew template, select Create New Template. The new component will be an exact copy of
the imported one and contain a pointer to the newly created template (which is based on theimported
component's templ ate).

If you are upgrading a component, a new template is also created used.

» When you want to create a fresh installation and ensure a template is not on the importing server,
select Fail if Template Exists. If you are creating a component, it will create both a new component
and template unless the template already exists, in which case the component is not imported.

If you are upgrading acomponent, the upgrade will fail if theimported component's templ ate already
exists.

» To ensurethe template is on the importing server, select Fail if Template Does Not Exist. If you are
creating acomponent, it will create both anew component and templ ate unless the templ ate does not
exist, in which case the component is not imported.

If you are upgrading a component, the upgrade will fail if the imported component's template does
not exist on the importing server.

» Toupgradethetemplate, select Upgradeif Exists. Thisoption createsanew component and upgrades
the template on the importing server. If the template does not exist, anew oneis created.

5. Click Submit.

Component Properties

There are three types of component properties available: custom, environment, and version (another type,
component, is defined by template and becomes part of any component created from the template, see the
section called “ Component Template Properties’). Property versions (changes) are maintained and remain
available.

The three types can be defined on the component's Properties pane (Conponents > [sel ected
conponent] > Properti es). Thethreetypesare described in the following table.

Table 11. Component Properties

Type Description

Properties Custom property; can be used in scripts and plug-
ins. Those inherited from templates cannot be
modified on the component level.

Referenced: ${ p: conponent /
propertyNane}.

Environment Available to environments that use the
component. The property will appear on

the environment's Component Mappings

pane (Appl i cations > [sel ected
application] > Environnents >

[sel ected environnment] > Conponent
Mappi ngs), see the section called “ Application
Environments’. Each property must have atype:

e Text

68

Components

Type

Description

Enables users to enter text characters.
« Text Area

Enables usersto enter an arbitrary amount of
text, limited to limited to 4064 characters.

* Check Box

Displays a check box. If checked, avalue of true
will be used; otherwise the property is not set.

* Sel ect

Requires alist of one or more values which
will be displayed in a drop-down list box.
Enables a single selection. Note: not currently
implemented.

« Multi Sel ect

Requires alist of one or more values which will
be displayed in a drop-down list box. Enables
multiple selections.

* Secure

Used for passwords. Similar to Text except
values are redacted.

A value set on component environment overrides
one with the same name set directly on an
environment property. Component environment
properties enable you to centralize properties,
tracking type and default values, for instance.
Environment properties provide ad-hoc lists of
property=value pairs.

Referenced: ${ p: envi r onnment /
propertyNane}.

Version

Available to every component version
(Conmponents > [sel ected component]
> Versions > [sel ected version]

> Properties). Vauescan be set at the
individual version level. Each property must have
atype (described above).

Referenced: ${ p: ver si on/ propert yNane}.

Component Versions

69

Components

Each time a component's artifacts are imported into the repository, including the first time, it is versioned.
Versions can be assigned automatically by uDeploy, applied manually, or come from abuild server. Every
time a component's artifacts are modified and reimported, a new version of the component is created. So
a component might have several versionsin CodeStation and each version will be unique.

A version can befull orincremental. A full version containsall component artifacts; an incremental version
only contains artifacts modified since the previous version was created.

Importing Versions Manually

1. Display the Version pane for the component you want to use (Conponents > [sel ect
conponent] > Versions).

Figure 29. Component Version Pane

Component: helloWorld

Used By
del (Inactive), filevvV, helloWorld, helloworldComp, helloWorldImp,

helloWorld_application

 History [Edit | inventory | Calendar | Properties | Templates INLLLILRY Processes [Tasks | Changes | security

Versions
Version Latest Status Type Created By Date Description Actions
Show Filters
21 Full admin 8/6/12 11:38 AM Inactivate Delete
hello Full admin 7/10/12 4:12 PM Inactivate Delete
installation Full admin 7/10/12 4:10 PM Inactivate Delete
images Full admin 7/10/12 4:10 PM Inactivate Delete
helloworld Full admin 7/10/12 4:10 PM Inactivate Delete
Docl files Full admin 7/10/12 4:10 PM Inactivate Delete
aa Full admin 7/10/12 4:10 PM Inactivate Delete
3 Full admin 7/10/12 4:10 PM Inactivate Delete
10 per page 8 records - Refresh Print 1/1

Show Inactive Versions

Import New Versions

All versions; statuses come from; active/inactive Sour ce Confi g Type field.
2. Enter hel | oWor | d inthe Namefield.

Display the Import .
3. Enter adescription in the Description field.

The optional description can be used to convey additional information about the component. If the
component is used by more than one application, for example, entering "Used in applications A and
B" can help identify how the component is used. If you are unsure about what to enter, leave the field
blank. Y ou can always return to the component and edit the description at any time. In an attempt to
appear hip, | entered Euro store for my component.

For this exercise, ignore the Template field. Templates provide a way to reuse commonly used
component configurations. For information about templates, see the section called “Component
Templates’.

70

Components

4, SelectFil e Syst em (Ver si oned) from the Source Config Typefield.

Selecting a value displays several fields required by the selected type.

Figure 30. Source Config Type

Create New Component

*
Name helloWorld

Description
Template pone

Source Config Type File System (Versioned)
Base Path * c:\helloworld

Preserve Execute
Permissions

Import Versions
Automatically

Copy to CodeStation
Default Version Type * Full
Inherit Cleanup Settings

File System (Versioned) isone of the simplest configuration options and can be used to
quickly set-up a component for evaluation purposes, as we do here.

5. Complete this option by entering the path to the artifacts.

In our example, the artifacts are stored inside the subdirectory created earlier. Fil e System
(Ver si oned) assumesthat subdirectorieswithin the base directory are distinct component versions,
which is why we placed the files (artifacts) inside a subdirectory. Fi | e Syst em (Ver si oned)
can automatically import versionsinto CodeStation. If a new subdirectory is discovered when the base
directory is checked, its content isimported and a new version is created.

6. Check the Import Versions Automatically check box.

When this option is selected, the source location will be periodically polled for new versions. If this
optionisnot selected, youwill haveto manually import anew version every timeonebecomesavailable.
The polling interval is controlled by the Automatic Version Import Check Period (seconds) field on the
Settings pane (Home > Settings > Systemn). Thedefault valueis 15 seconds.

Importing Versions Automatically

When this option is selected, the source location is periodically polled for new versions; any found are
automatically imported. The default polling period is 15 seconds, which can be changed with the System
Settings pane, see the section called “ System Settings”).

71

Components

Component Version Statuses

Component version statuses are user-managed values that can be added to component versions. Once a
status is added to a version, the value can be used in component processes or application geates (see the
section called “ Application Gates’).

Version statuses can be applied to a component version though the user interface (Conponents >
[sel ected conmponent] > Versions > [selected version] > Add a Status
[but t on]), or by the Add Status to Version plug-in step.

uDeploy-provided statuses are defined in an XML file which you can freely edit to add your own values.

Deleting Component Versions

Component version statuses are user-managed values that can be added to component versions. Once a
status is added to a version, the value can be used in component processes or application gates (see the
section called “ Application Gates”).

Version statuses can be applied to a component version though the user interface (Conmponents >
[sel ected conponent] > Versions > [selected version] > Add a Status
[but t on]), or by the Add Status to Version plug-in step.

uDeploy-provided statuses are defined in an XML file which you can freely edit to add your own values.

Component Processes

A component process is a series of user-defined steps that operate on a component's artifacts. Each
component has at least one process defined for it and can have several. Component processes are created
with uDeploy's process editor. The process editor isavisual drag-and-drop editor that enablesyou to drag
process steps onto the design space and configure them as you go. Process steps are selected from amenu
of standard steps. See the section called “ Process Editor”

uDeploy provides stepsfor several utility processes such asinventory management and workflow control.
Additional process steps are provided by plug-ins. Out-of-the-box, uDeploy provides plug-ins for many
common processes, such as downloading and uploading artifacts, and retrieving environment information.
See Plug-ins.

A frequently used process can be saved as a template and applied to other components. See the section
called “ Component Templates’.

Configuring Component Processes

A component processis created in two steps: first, you configure basic information, such as name; second,
you use the process editor to assemble the process.

To configure a component process.

1. Display the Create New Process dialog (Hone > Conponents > Conponent:
conponent _nane > Create New Process).

72

Components

Figure 31. Create New Process Dialog

Create New Process

*
Name hello_worldInstall

Description
Process Type * Deployment

Inventory Status * Active

Default Working
Directory *

&{p:resource/work.dir}/${p:com

Required Component Role pNone

2. Thediaog'sfields are described in the following table.

Table 12. Create New Process Fields

Field Description

Name I dentifies the process; appears in many Ul elements. Required.

Description The optional description can be used to convey additiona
information about the process.

Process Type Defines the process type. Available values are:

» Deployment: deploys a component version to the target resource
and updates the inventory after a successful execution.

» Configuration Deployment: configuration-only deployment with
no component version or artifacts—simply applies the
configuration (using properties, or configuration templates) to
the target agent and updates the resource configuration inventory
afterwards.

e Uninstall: standard uninstall that removes a component version
from atarget resource and the resource's inventory.

» Operationa (With Version): operational process which does not
add or remove any artifacts or configuration; runs arbitrary steps
given acomponent version. Useful when you want to start or stop
some service for apreviously deployed component version.

* Operationa (No Version Needed): same asthe previoustype, but
does not require a component version.

Required.

73

Components

Field Description

Inventory Status Status applied to component versions after being successfully
executed by thisprocess. Act i ve indicates the component version
is deployed to its target resource; St aged means the component
version isin a pre-deployment location. The status appears on the
Inventory panes for the component itself and environments that ran
the process. Required.

Default Working Directory Defines the location used by the agent running the process
(for temporary files, etc.). The default value resolves to
agent_directory\work\component_name_directory. The default
propertieswork for most components; you might need to changeit if
acomponent process cannot be run at the agent'slocation. Required.

Required Component Role Restricts who can run the process. The available options are derived
from the uDeploy security system. The default value is None,
meaning anyone can run the process. For information about security
roles, see uDeploy Security.

3. Save your work when you are finished. The processiis listed on the Processes pane for the associated
component.

Process Editor

After configuring a process with the Create New Process dialog, use the process editor to assemble the
process.

To Display the Process Editor

1. Onthe Component: name pane, click the Processes tab.

2. Click on the name of the process you want to edit.

Figure 32. Component Processes

Home » Components » hello_world

Component: hello_world

Description Euro store
history | it | inventory | Calendar | Propertie | Tamplates) versions gttt
Processes

Process Description
hello worldInstal hello_world remate install Edit Cc
10 per page lrecord - Refresh
.| Show Inactive Processes
Create New Process

The Process Design paneis displayed.

74

Components

Figure 33. Process Design Pane

Description
Version 1of1

Tools

:;j'a :'jla "EP.J - é H)(

Add Steps

Available Plugin Steps

[z Finish contains plug-in steps
+) Utility Steps
* [Repositories
*] Resource Tools
*) Scripting
+1) system Utility

Process: hello_worldInstall

q [I N //j

| IR RN
O Start o
B---0----0

every process begins with
the Start step

Design
Space

Available steps are listed in the Available Plug-in Steps list. uDeploy provides severa utility steps and
plug-ins which are highlighted in the accompanying illustration. Theillustration also shows several user-

installed plug-ins.

Using the Process Editor

When the Process Design pane opens, the Design view is displayed. Processes are assembled with the
Design view. Several other views can be displayed by clicking the associated tab:

Table 13. Available Views

View

Description

Edit

Displays the Edit view where you can change
process parameters. See the section called
“Component Processes’.

Properties

Displays the Properties view where you can
create and change process properties.

Changelog

Displays the Process Changelog view. Thisview
provides arecord for every process change--
property add or delete, and process save or delete.

In outline, processes are assembled by dragging individual steps onto the design space and configuring and
connecting them as they are placed. When a step is dragged onto the design space, a pop-up is displayed

75

Components

that is used to configure the step. Once configured and the pop-up closed, relationships between steps are
formed by dragging connection handles between associated steps.

Figure 34. Typical Process Step

edit tool delete tool

0 u\\ g/
| Add Inventory
T |

' o

O

resize handles connection handle

Graphically, each step (except for the Start step which cannot be del eted or edited) isthe sameand provides:

Table 14. Anatomy of a Step

Item Description
edit tool displays the step configuration pop-up where you
can modify configuration parameters
deletetool removes the step from the design space
resize handle enables you to resize the step graphic
connection tool used to create connections between steps
Note

If you delete a step, its connections (if any) are also deleted.

Adding Process Steps

Toadd a step:

1. Inthe Available Plug-in Steps list, click and hold down the mouse on the step you want to use, and
drag it onto the design space.

The cursor changes to the step toal.

76

Components

Figure 35. Adding a Step

[Deploy o =

L Infrastructure] Start O

=" Repositories |::|.-__-|:|-_-__|::|
= Artifact

= uDeploy drag step onto the workspace
5

T+ Upload Artifacts

Download Artifacts| .h____\ step tool

” &

2. Release the step tool over the design space.

The Edit Properties pop-up is displayed. Because connections are created after configuring the step's
properties, you can place the step anywhere on the design space. Steps can be dragged and positioned
at any time. See Plug-ins for information about configuring specific steps.

Figure 36. Typical Edit Properties Pop-up

-
Edit Properties

Name * Download Artifacts
Directory Offset *

Prompt for a value on use
Includes * s/«

Prompt for a value on use
Excludes

Prompt for a value on use
Sync Mode

Prompt for a value on use
Set File Execute Bits

Prompt for a value on use
Verify File Integrity

Prompt for a value on use
Use Compression

Prompt for a value on use
Use Cache

Brnmnt far o smliin An e

Configuration dialogs are tailored to the selected step--only parameters associated with the step type
are displayed.

3. After configuring the step's properties, save the step by clicking the Save button.
The step isin the design space and ready to be connected to other steps. If you change your mind, click

the Cancel button to remove the step from the design space. You can add connections immediately
after placing a step or place several steps before defining connections.

77

Components

Connecting Process Steps

Connections control process flow. The originating step will process before the target step. Creating a
connection between stepsisasimple process: you drag a connection from the originating step to the target
step. Connections are formed one at a time between two steps, the originating step and the target step.

To create a connection:
1. Hover the cursor over the step that you want to use as the connection's origin.

The connection tool is displayed.

Figure 37. Connection Tool

connection tool
L2

2. Drag the connection tool over the target step.

The step beneath the connection toal is highlighted.

Figure 38. Dragging the Connection Over a Target Step

g
-

proposed link

w0

Downloag Artifa

connection tool over target step

3. Release the connection tool over the target step to compl ete the connection.

78

Components

Figure 39. Completed Connection

w0

Shell
L]
completed connection
connection delete
" o o

conditional flag

7 Upload Artifacts

Each connection has a connection del ete tool, conditional flag, and might have others depending on the
originating step. Remove a connection by clicking on the delete tool.

Process Properties

A processing property is a way to add user-supplied information to a process. A running process can
prompt users for information and then incorporate it into the process. Properties are defined with the Edit
Property diaog.

To define a property:

1. Onthe Propertiestab, click the Add Property button.
Figure 40. Edit Properties Dialog

Edit Property

Name * ‘
Description
Label

Required
Type ¥ Text
Default Value

2. Inthe Edit Propertiesdiaog, enter anamein the Namefield.

3. Optionally, enter adescription in the Description field.

79

Components

4. Enter alabel in the Label field.
The label will be associated with the property in the user interface.
5. If the property isrequired, check the Required check box.
Default value is unchecked--not required.
6. Specify the type of expected value with the Type drop-down list box.

Supported types are: t ext, text area, check box, select, multi select, and
secur e. Default typeist ext .

7. Inthe Default Valuefield, enter adefault value (if any).
8. To save your work, click the Save button. To discard changes, use the Cancel button.

To use a property in a process, reference it when you configure (see the section called “Component
Processes’) a step that usesiit.

Switch Steps and Conditional Processes

Every connection (except connections from the Start step) has a delete tool and conditional flag. The
conditional flag enablesyou to set acondition on aconnection. The condition refersto the processing status
of the originating step--success or failure. Possible flag conditions are: success (the process completed
successfully), fail (the process did not finish successfully), or both (accept either status). By defaullt,
all connections have the flag set to checked (true), meaning the originating step must successfully end
processing before the target step starts processing.

To change aflag's value, cycle through possible values by clicking the flag.

80

Components

Figure 41. Process with Switch Step

w0

Unzip Shell

s

. Restore Backup Shell

> e
fail flag

A switch step is a uDeploy-supplied utility step that enables process branching based on the value of a
property set on the step. The accompanying figureillustrates aswitch step. In this case, the switch property
isver si on. nane. The connections from the switch step represent process branches dependent on the
valueof ver si on. nane. In thisexample, regardless of which branch is taken, the process will proceed
tothe Run WLDepl oy step. Notethat Run W.Depl oy has success and fail conditions.

See Plug-ins for information about configuring specific steps.
Note

If a step has multiple connections that eventually reach the same target step, determining
whether the target will execute depends on the value of the intervening flags. If all of the
intervening connections have success flags, the target will only process if al the steps are
successful. If the intervening connections consist of an assortment of success and fail flags,
the target will process the first time one of these connectionsis used.

For a process to succeed, execution must reach a Finish step. If it does not end with Finish, the process
will fail every time.

Process Step Properties

All steps havethefollowing properties: exi t Code, status, |ines of interest (LOI—items
the post-processing script finds in the step's output log).

81

Components

You can view the properties by using the component's Log pane to examine the step's output log
(Components > [sel ected conponent] > [View Request action] > [Input/
Qut put Properties action]).

Inventory and versions statuses, which are defined with the st at us property, can be used in application
approval gates (see the section called “Application Gates’). The other properties can be used by post-
processing scripts, see the section called “The <post - pr ocessi ng> Element”.

Component Manual Tasks

A component manual task is a mechanism used to interrupt a component process until some manual
intervention isperformed. A task-interrupted processwill remain suspended until thetargeted user or users
respond. Typically, manual tasks are removed after the process has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with component-,
environment-, or resource-defined user roles. Affected users can respond—approve—by using the Work
Items pane (see the section called “Work Items”). Unlike approvals, manual tasks are incorporated within
acomponent process.

Creating Component Manual Tasks

To create atask:

1. Display the Create New Task Definition dialog (Conponents > [sel ected conponent] >
Tasks > Create New Task Definition [button]).

2. Name the task then select atemplate from the Template Name field.

The individual tasks map to the notification scheme used by the application(see the section called
“Notifications”). If aschemeis not specified, the default scheme is used. The available tasks are:

» ApplicationDeploymentFailure

* Approval Created

» TaskCreated

* ProcessRequestStarted

» DeploymentReadied

 ApplicationDeploymentSuccess

» Approval Failed

Using Component Manual Tasks

Component manual tasks are implemented with the Manual Task component process step. Use the step to
insert amanual task trigger into a component process.

Table 15. Component Manual Task Properties

Field Description

Name Typically the name and description correspond to
the component process.

Task Definition Used to select a user-defined task, as described
above.

Component Role Select the role expected to respond. The user
mapped to this role will have to respond to the

82

Components

Field

Description

generated work item before the process can
continue.

Environment Role

Select the role expected to respond. The user
mapped to this role will have to respond to the
generated work item before the process can
continue.

Resource Role

Select the role expected to respond. The user
mapped to this role will have to respond to the
generated work item before the process can
continue.

If multiplerolesare selected, all affected userswill haveto respond beforethe process can continue. Seethe
section called “Notifications’ for information about notification schemes; see the section called “Process

Editor” for information about creating component processes.

Post-Processes

When a plug-in step finishes processing, its default post-processing element is executed. The post-
processing element is defined in the plug-in's XML definition, see the section called “ Creating Plug-ins’

You can override the default behavior by entering your own script into the step's Post Processing
Script field. A post-processing script can contain any valid JavaScript code. Although not required, it's

recommended that scripts be wrapped in a CDATA element.

See the section called “ The <post - pr ocessi ng> Element” for more information.

Component Templates

There are two types of templates available:

A component template enables you save and reuse component processes and properties and create new

components from them; template-based components inherit the template's properties and process.

A configuration template istypically used to save server or property configurations.

Creating a Component Template

Tocreateatemplate:

1. Display the Create New Component Template dialog (Conponents > Tenpl ates > Create

New Tenpl ate [button]).

83

Components

Figure 42. Create New Component Template Dialog

Create New Component Template
Name * i

Description !

Status Plugin * Default
Source Config Type None

2. Enter the template's name in the Name field.
3. Enter adescription in the Description field.

The optional description can be used to convey additional information about the template.
4. Select aplug-in from the Status Plug-in field.

If you previously created any status-related plug-ins, they will be listed here. The default value is
Def aul t , meaning that the template will have uDeploy-supplied steps available for use.

5. Select the source for the artifacts from the Sour ce Config Type drop-down list.
Selecting avalue other than the default None, displays additional fields associated with your selection.

Source-dependent fields are used to identify and configure the artifacts. If you select a source,
components based on the template will use the same source. See Component Source Configuration

Note

If you select asource, any propertiesyou configurewill be set for any components created
with the template.

6. Click the Save button to save the template.
Saved templates are listed in the Component Templates pane.

You create a process for the template in the same way processes are created for components. For
information about creating component processes, see the section called “ Process Editor”.

Importing\Exporting Templates

Templates can be imported and exported.

Exporting Templates

Exporting atemplate creates a JISON file (file extension j son) that contains the template's configuration
information, properties, and processes.

Toexport atemplate:

Components

On the Component Templates pane (Conponents > Tenpl at es), click the Export link in the
Actions field. You can load the file into a text editor, or save it. If you save it, afile is created with the
same name as the selected component, for example, hel | oWor | dTenpl at e. j son.

Importing Templates
When you import atemplate, you can create an entirely new template or upgrade an existing one.
Toimport atemplate:

1. Display the Import Template dialog (Conponents > Tenplates > Inport Tenplate
[button]).

2. Enter the path to the JSON file containing the template or use the Browse button to select one.

3. If you want to upgrade an existing template, check the Upgrade Template check box. To create a new
template, leave the box unchecked.

If the template's name in the JSON file (not the name of the file itself) matches an existing template,
the template will be upgraded. If the name is not found, the command has no effect.

Note

The template's nameis the first parameter in the JSON file; for example,

"nanme": "hel |l oWorl dTenpl ate",

4, Click Submit.

Component Template Properties

Component template properties ensure that every component created from a template has the same
properties. The three types of available properties are described in the following table.

Table 16. Component Template Properties

Type Description

Properties Custom property. Every component will inherit
the value defined in the template (it cannot be
overridden by a component). If you change the
value, the change will be reflected in components
created from the template, including those
previously created.

Component Property Definitions Every component will have this property; it will
appear on the Create New Component dialog
for every component created from this template
(see the section called “ Creating Components”)
A value defined here can be changed by created
components. Each property must have atype:

e Text

Enables users to enter text characters.

85

Components

Type

Description

Text Area

Enables usersto enter an arbitrary amount of
text, limited to limited to 4064 characters.

Check Box

Displays a check box. If checked, avalue of true
will be used; otherwise the property is not set.

Sel ect

Requires alist of one or more values which
will be displayed in a drop-down list box.
Enables a single selection. Note: not currently
implemented.

Multi Sel ect

Requires alist of one or more values which will
be displayed in a drop-down list box. Enables
multiple selections.

Secure

Used for passwords. Similar to Text except
values are redacted.

Environment Property Definitions

Every environment that uses a component

created by thistemplate will have this

property. The property will appear on

the environment's Component Mappings

pane (Appl i cations > [sel ected
application] > Environnents >

[sel ected environnent] > Conponent
Mappi ngs), see the section called “ Application
Environments’. A value defined here can be
changed by environment. Each property must have
atype:

Text
Enables users to enter text characters.
Text Area

Enables usersto enter an arbitrary amount of
text, limited to limited to 4064 characters.

Check Box

Displays a check box. If checked, avalue of true
will be used; otherwise the property is not set.

Sel ect

86

Components

Type

Description

Requires alist of one or more values which
will be displayed in a drop-down list box.
Enables a single selection. Note: not currently
implemented.

« Multi Sel ect

Requires alist of one or more values which will
be displayed in a drop-down list box. Enables
multiple selections.

e Secure

Used for passwords. Similar to Text except
values are redacted.

Using Component Templates

When you create a component based on a template, the component inherits the template's process (if
any, see the section called “Component Processes’), and properties (if any, the section called “ Creating

Components”).

To create atemplate-based component:

1. Display the Create New Component dialog (Conponents > Tenplates > [selected

tenpl ate] > Create New Conponent

[button]).

The Create New Component dialog (the same dialog used to create non template-based components)
is used to configure component. Properties defined in the template will be predefined. If a source
was selected in the template, the source is set here and the Source Config Type field is locked. For
information about using this dialog, see the section called “ Creating Components”

2. After configuring editable properties, save the component.

Templates used to create components are listed in the Templates view.

Components created from templates are listed in the Components view.

Configuration Templates

Configuration templates, as the name implies, contain configuration data. Typically, the dataisfor server
configurations Tomcat servers, for instance, but the data can be for any purpose.

To createa configuration template:

1. Display the Create New Configuration Template dialog (Conponents > [sel ected
conponent] > Tenplates > Create New Configuration Tenplate [button]).

87

Components

Figure 43. Create New Configuration Template Dialog

Create New Configuration Template

Name * tomEura|

Template locked/agent.keystore=../conf/ud.keystore

locked/agent.http.proxy.port=

locked/agent.jms.remote. port=@AGENT_REMOTE_PORT@
locked/agent.home=@AGENT_HOME
locked/agent.brokerUrl=failover\:(ah3\://@AGENT_REMOTE_HOST@
\:@AGENT_REMOTE_PORT@)

locked/agent.mutual_auth=false

locked/agent.name=@AGENT _NAME@

UrbanDeploy/java.hon JVM_HOME@

locked/agent.http.prox

locked/agent.keystore. pwd=pbe{7mAgcNtask3FXS56P1igeqcwd5zwh
[VeNBa9FGb2SIw\=}
locked/agent.jms.remote.host=@AGENT_REMOTE_HOST@

2. Enter ameaningful name in the Name field.

3. Inthe Templatefield, enter or paste the template text. Text can be in any script—or no script at all. The
amount of text is based on the database used by uDeploy. Practically there is no limit to the amount
of text used for a configuration template.

4. Save your work when you are finished.

Configuration templates can be edited at any time by using the Edit action.

Component Change Logs

Change logs provide information about modifications to components. To see change details, display the
log for a selected component-related activity (Hone > Conponents > Changes [sel ected
conponent] > Changes > Changes [action for selected iteny.).Informationfor
any change that triggered a Commit ID is displayed.

Deleting and Deactivating Components

Components can be deactivated and deleted. To delete or deactivate a component, use the desired action
on the Components pane for the intended component.

When a component is deactivated, it remains in the database and CodeStation and can be activated later.
To activate acomponent, first click the Show Inactive Components check box, then usethe Activate action
for the component.

88

Components

When a component is deleted, it, along with all version, is removed from the database and CodeStation
and cannot be activated at alater time (the original artifacts are not affected—only CodeStation copies are
deleted). Components cannot be deleted if they are used by an application. To delete a component used
by an application, first remove the component from the application.

89

Resources

Torunadeployment, uDeploy requiresan agent (resource) or proxy agent on thetarget machine. Typically,
an agent isinstalled in every environment that an application passesthrough. A typical production pipeline
might be, say, SIT, UAT, PROD (the application passes through two testing environments before reaching
production). In this scenario, at least three agents need to be installed--one per environment. If different
components run on different machines within a given environment, you might want to install multiple
agents in that environment.

Whether you need one or multiple resources per environment is determined by your current infrastructure,
deployment procedures, and other requirements. Many uDeploy users have significant differences among
environments--in SIT you might need to deploy a component to one machine, while in UAT you might
need to deploy the component to multiple machines. Y ou could, for example, configure sub-groups for
the single agent in the SIT environment and then set up individual resources for each agent in the UAT
environment.

Resource Groups

uDeploy uses the concept of resource groups to help you organize and manage the agents installed in
different environment throughout the network. Y ou need to create at |east one resource group per installed
agent, aswhen configuring your Processes you will need to select the appropriate Group. What groupsyou
create and how you organize the groups, e.g., using subgroups, depends on your existing organizational
processes and infrastructure.

Note

Before continuing, ensure that at least one agent has been installed in atarget environment
(for evaluation purposes, the agent can be on the same machine as the server).

Figure 44. Groups
Groups

Resource Groups

To view and select groups:
Click a group name to select it or view its contents in the detail pane.
Haold CTRL {or Command on a Mac) and dick on additional groups to select or deselect them.

To move or copy groups:

Drag a group {or multiple selected groups) into another group to move them into that group
Haold CTRL {or Command on a Mac) before dropping to copy groups instead of moving them.,

Name size @ | Actions

All Resource Groups 1(0) =
1(1) & BB
1(1) & 04 03
1(1) & BB
1(1) & 04 03
1(1) & BB

Creating a Resource Group

1. GotoResources > G oups. and click on the folder icon.

90

Resources

Figure 45. Action Tool

Home » Resources

Resouryes

Resour ps

To view and select groups:
Click a group name to select it or view its contents in the detail pane.
Haold CTRL {or Command on a Mac) and dick on additional groups to select or deselect them.,

To move or copy groups:
Drag a group (or multiple selected groups) into another group to move them into that group.

Haold CTRL {or Command on a Mac) before dropping to copy groups instead of moving them.,

Name size @ | Actions

+ All Resource Groups 1(0)

2. For the Type, most often Static is used.
Name and description. Typically, the name will correspond to either the Environment the Resource

participates in, the Component that uses the Resource Group, or a combination of both (e.g., SIT, DB,
or SIT-DB). What description you give depends on how you intend to use the Resource that this Group

isassigned to, etc.
Figure 46. Create a Resour ce Group Dialog

Create a Resource Group

Dynamic | =

with = are required.

Save Cancel

3. Once the Resource has been created, select the pencil icon to edit the Group.

91

Resources

Figure 47. Add a Resource Dialog

Resource Group: /QA

Add a Resource

Select a Resource f""‘-\ -

 Denloy PROD
Deploy SIT
Deploy UAT
Master

Add Resource

4. Once you assign a Group to a Resource, you add Subresources. A subresource enables you to apply
logical identifiers, or categories, within any given Group. During deployment configuration, you can
Select a given Subresource that the Process will run on. To create a Subresource, select the New
Resource icon for the Group. Configuration is similar to Resource Group creation.

Figure 48. Sub-resour ces

Mame size @ Actions

- All Resource Groups 1(0) =3
PROD 0(0) &
QA 1y R

Resource Roles

A role enables you to further refine how aresource is utilized, and is similar to sub resources. For most
deployments, you will not need to define a role. During process configuration, you select a specific role
when determining the resource. A role can be used to set up uDeploy for rolling deployments, balancing,
etc. For example, you can set up your process to only deploy to a percentage of targets first; add a manual
task in the middle of the process that requires a user to execute (e.g., after they have tested the partial
deployment); and then once the manual task has completed the rest of the process is assigned a second
role responsible for deploying to the rest of the target machines.

Role Properties

When you create arole, you can define properties for it then whenever you add the role to a resource,
you can set the values for the properties. For example, if you create a role caled "WS" and define a
property call "serverURL," you can access the property like this: ${ p: r esour ce/ W5/ ser ver URL} .
For information about uDeploy properties, see uDeploy Properties

Agents

An agent is a lightweight process that runs on a target host and communicates with the uDeploy server.
Agents perform the actual work of deploying components and so relievesthe server from the task, making

92

Resources

large deploymentsinvolving thousands of targets possible. Usually, an agent runs on the same host where
the resources it handles are located; a single agent can handle all the resources on its host. If a host has
several resources, an agent process is invoked separately for each one. Depending on the number of hosts
in an environment, a deployment might require a large number of agents.

Agents are installed with the batch files provided with the installation files, see the section called “ Agent
Installation”. Agentsthat will beinstalled on Unix machines can also beinstalled remotely using uDeploy's
web application, which is described below. Agents are run using the batch files included with the
installation package.

Once an installed agent has been started, the agent opens a socket connection to the uDeploy server
(securable by configuring SSL for server-agent communication) based on the information supplied during
installation. Agentson networks other than the one where the server islocated might need to open afirewall
to establish connection. Once communication is established, the agent will be visible in the uDeploy web
application where it can be configured. Active agents--regardless of OS--can be upgraded using the web
application.

Agent configuration consists of assigning an agent to at least one environment; agents can be assigned
to multiple environments. If an agent is assigned to severa environments, it can perform work on behalf
of al of them.

Remote Agent Installation

Y ou caninstall an agent onto a Unix machine using the web application. A remotely installed agent cannot
beinstalled as a service.

Toinstall an agent:

1. Display the Install New Agent dialog by clicking the Install New Agent button on the Agents pane
(Home > Resources > Agents).

2. Enter the required information into the dialog's fields:

Table 17. Remote Agent Installation Fields

Field Description

Target Hosts* Host names or IP addresses of the machines
where the agent will be installed.

SSH Port* SSH port addresses of the machines where the
agent will beinstalled.

SSH Username* SSH user name used on the machines where the
agent will be installed.

Use Public Key Authentication Check this box if you want to authenticate using
public key authentication instead of a password.

SSH Password* SSH password associated with the user name
used on the machines where the agent will be
installed.

Agent Name* Name of the agent.

Agent Dir* Directory where agent should be installed.

Java Home Path* Path to Java on the machine where the agent will
beinstalled.

93

Resources

Field Description

Temp Dir Path* Path to the directory used to perform the
installation on the target machine.

Server Host* Host name or | P address of the uDeploy server or
agent relay to which the agent will connect.

Server Port* uDeploy server port (7918) or agent relay (7916)
to which the agent will connect.

Mutual Authentication Check this box if the agent should enforce
certificate validation for mutual authentication.

Proxy Host Host name or | P address of the agent relay if
used.

Proxy Port HTTP port of the agent relay (20080) if used.

3. Click Save when you are done.

Remotely installed agents will start running automatically. If aremotely installed agent stops running, it
must be restarted on the host machine.

Managing Agents Remotely

While we characterize an agent as a process (singular), technically an agent consists of two processes: a
worker process and a monitor process. Worker processes perform the actual work of deployment, such
as handling plug-in steps. Monitor processes manage the worker process: handling restarts, upgrades, and
testsfor example. Once an agent isinstalled, you can manage (viathe monitor process) many of it features
from the uDeploy web application. Agent properties can be changed directly by editing the agent'sconf /
agent/install ed. properti es fileand restarting the agent.

To manage an agent:
1. Display the Agentspane (Home > Resources > Agents).

2. Click an action link for the desired agent. Actions are described in the following table.

Table 18. Agent M anagement

Action Description

Edit This option enables you to edit the agent's
description.

Restart This option will shutdown and restart the agent.
While the agent is shutdown, its status will be
O fline.

Upgrade This option will shutdown the agent and apply

the upgrade. While the agent is shutdown, its
statuswill be OF f | i ne. After the upgrade
isapplied, the agent will be restarted. Before
itsstatusis Onl i ne, it might briefly be
Connect ed.

Test This option will perform an agent settings and
connection test. Test results are displayed in the
Connection Test dialog.

94

Resources

Action Description

Inactivate This option will deactivate the agent. Agents that
are deactivated cannot perform deployments.

To reactivate the agent, check the Show

I nacti ve Agent s check box onthe Agents
pane, then click Act i vat e for the agent.

Delete Removes the agent.

Agent Pools

Similar to resource groups, agent pools help you organize and manage agents installed in different
environments.

Creating an Agent Pool

To create an agent pool:

1. Display the Create New Agent Pool diaog by clicking the Create New Agent Pool button on the
Agent Pools pane (Homre > Resources > Agent Pool s).

2. Enter the pool namein the Nane field.
3. Optionally, enter adescriptioninthe Descri pti on field.

4. Clickthe Pool Menber s field to add agentsto the pool. A selection-type pop-up is displayed listing
the available agents.

5. Select the agent or agents you want to add to the pool. Optionally, you can filter the listed agents by
entering search text into the text field.

6. When you are finished, click Save.
Managing Agent Pools

To manage agent pools:
1. Display the Agent Pools pane (Hone > Resources > Agent Pool s).

2. Click an action link for the desired pool. Actions are described in the following table.

Table 19. Agent Pool M anagement

Action Description

Edit This option enables you to add/remove agents
and edit the pool's name and description.

Copy Copies (creates a new pool with the same agents
as the selected pool) the pool.

Inactivate This option will deactivate the agent pool.

Delete Removes the agent pool.

95

Applications

Applications are responsible for bringing together all the components that need to be deployed together.
This is done by defining the different versions of each component as well as defining the different
environments the components must go through on the way to production. In addition, Applications also
map the constituent hosts and machines (called resources) a component needs within every environment.

Applications also implement automated deployments, rollbacks, etc. These are called Processes; however,
at the Application level Processes are only concerned with the Components and Resources necessary for
deployment, etc. -- differentiating Application-processes from those of Components (which are concerned
with running commands, etc.).

Applications also introduce Snapshots to manage the different versions of each Component. A snapshot
represents the current state of an Application in the Environment. Typically, the Snapshot is generated in
an Environment that has no Approval gates -- called an uncontrolled Environment. For most users, the
Snapshot is pushed through the pipeline.

Note

Before configuring an Application, you will need to ensure that at least one agent has been
installed in a target environment (for evaluation purposes, the agent can be on the same
machine as the server). In addition, you will also need to add at least one Resource Group
to the agent. See Resources.

Environments

An Environment is a collection of Resources that host the Application. Environments typically include
host machines and uDeploy agents. When a deployment is run, it is aways done so in an Environment.
While Environments are collections of Resources, Resources can vary per Environment.

For example, Environment 1 may have a single web server, a single middleware server, and a single
database server, that must be deployed to; uDepl oy representsthese asthree, separate Resourcesrunningin
Environment 1. Environment 2, however, may have acluster of Resources that the same Application must
be deployed to. uDeploy compensates for these differences with Resource Groups (more at Resources by
keeping an Inventory of everything that is deployed to each Environment: uDeploy knows exactly the
Environment and Server(s) where the Application was deployed to: and tracks the differences between
the Environments.

Processes

A process plays a coordination role. They are authored using a visual drag-n-drop editor, and composed
of Steps that call the Component Processes. For example, to deploy the Application you may invoke a
Process called Deploy. This Deploy Processwould inturn call out to the requisite Components and execute
the deployment.

Snapshots

Snapshots specify what combination of Component versions you deploy together. They are models you
create before deploying the Application. A Snapshot specifies the exact version for each Component in
the Application. When a Snapshot is created, uDeploy gatherstogether information about the Application,
including the Component versions, for a given Environment. Typically, the Snapshot is generated in
an Environment that has no Approval gates -- called an uncontrolled Environment. For most users,
the Snapshot is pushed through the pipeline. Typicaly, one of the Environment will aways remain
uncontrolled to allow for Snapshots. When a successful deployment has been run in the uncontrolled

96

Applications

Environment, a Snapshot is created based on the A pplication's state within the Environment: thus capturing
the different versions of the Components at that time. As the Application moves through various testing
Environments, for example, uDeploy ensures that the exact versions (bit for bit) are used in every
Environment. Once all the appropriate stages and Approvals for a Snapshot are complete, the Snapshot
is pushed to Production.

Creating Applications

Y ou can create an application from scratch or import an existing one. See the section called “Importing/
Exporting Applications’ for information about importing applications. After creating an application, you:

* add components (the section called “ Adding Components to an Application”)
* create an environment (the section called “Creating an Environment”)
* associate an agent with the environment (the section called “Mapping Resources to an Environment™)

« create an application process (the section called “ Application Processes”)

Before configuring an application, ensure that at least one agent has been installed in atarget environment
(for evaluation purposes, the agent can be on the same machine as the server). See Resources.

To create an application:

1. Display the Create New Application dialog Appl i cations > Create New Application
[but t on], and enter the following:

Figure 49. Create New Application Dialog

Create New Application

Name *
Description
Notification Scheme |None

Enforce Complete
Snapshots

» Typicaly the name and description correspond to the application you plan on deploying.

* Notification Scheme. uDeploy includes integrations with LDAP and e-mail serversthat enableit to
send out notifications based on events. For example, the default notification scheme will send out an
e-mail when an application deployment fails or succeeds. Notifications also play arolein approving
deployments: uDeploy can be configured to send out an e-mail to either a single individual or to a
group or people (based on their security rol€) notifying them that they need to approve a requested
deployment. See the section called “Notifications’.

« If youwant the application to require that every component isversioned, click the Enforce Complete
Snapshots check box.

97

Applications

2. Save your work when done.

Adding Components to an Application

Next, add at least one component to the application. Applications bring the different components (their
versions and processes) together so they can be deployed as a single unit.

Toadd componentsto an application:

1. Display the Add a Component dialog Applications > [select application] >
Components > Add Conponent [button]

Figure 50. Selecting a Component

Add a Component

Description

Select a Component * | h

-)

2. Use the Select a Component list box to choose a component. Components are selected one at atime.
Importing/Exporting Applications

Applications can be imported and exported. Importing/exporting can be especially useful if you have
multiple uDeploy servers, for example, and need to quickly move or update applications.

Exporting Applications

Exporting an application creates a JSON file (file extension j son) that contains the application's
properties, components (and their associated properties and processes), and processes. For information
about JSON, see http://www.json.org/.

Toexport an application:

On the Applications pane (Horre > Appl i cati ons), click the Export link inthe Actionsfield. You
can load the file into a text editor, or save it. If you save it, afile is created with the same name as the
selected component, for example, hel | oWor | dAppl i cati on. j son.

Importing Applications

When you import an application, you can create an entirely new application or upgrade an existing
one. Components—including their properties and processes—associated with the application are also
imported (if available to the importing server). For information about templates associated with imported
components, see the section called “ Importing/Exporting Components”.

98

http://www.json.org/

Applications

Note

If imported components have the Import Versions Automatically parameter set to true,
uDeploy will automatically import component versions as long as the artifacts are accessible
to the importing server.

To Import an Application
1. Display thelmport Applicationdialog (Appl i cations > | nport Application [button]).

2. Enter the path to the JSON file containing the application definition or use the Browse button to select
one.

3. If you want to upgrade an existing application, check the Upgrade Application check box. To create a
new application, leave the box unchecked.

If the application's name in the JSON file (not the name of the file itself) matches an existing
application, the application's parameters are updated with new values, and new items—such as
processes, environments, and components—are added. If the name is not found, the command has no
effect.

Note

The application's name is the first parameter in the JSON file; for example,

nane": "hel |l owbrl dAppli cation",

4. Specify how imported components should be handled with the Component Upgrade Type drop-down
box. For these options, the components must be on the importing server.

» To use the same components used by the imported application, select Use Existing Component.
The new application will contain references to the imported applications components. Thisoptionis
especially useful if you areimporting alot of applications.

If you are upgrading, the application will use the imported components, and no longer use any not
used by the imported application.

» To create new components based on those used by the imported application, select Create New
Component. New components will be created (based on the imported application's components).

If you are upgrading, the application will use the newly created components and no longer use any
it previously used.

» When you want to create a fresh installation, select Fail if Component Exists. If you are creating
an application, it will create both a new application and component unless the component already
exists, in which case the application is not imported.

If you are upgrading, the upgrade will fail if any imported components already exist on theimporting
server.

» To ensure acomponent is on the importing server, select Fail if Component Does Not Exist. If you
are creating an application, it will create both anew application and component unlessthe component
does not exist, in which case the application is not imported.

99

Applications

If you are upgrading, the upgrade will fail if an imported component does not aready exist on the
importing server.

» To upgrade existing components, select Upgrade if Exists. This option creates an application and
upgrades existing components with data from the imported application.

If you are upgrading and exi sting components match imported ones (all must match), the components
will be upgraded. If none of the imported components match existing ones, the imported components
will be used.

5. Click Submit.

Application Environments

An environment is a user-defined collection of resources that hosts an application. An environment is
the application's mechanism for bringing together components with the agent that actually deploys them.
Environments are typically modeled on some stage of the software project life cycle, such as development,
QA, or production. A resource is a deployment target, such as a database or J2EE container. Resources
are usually found on the same host where the agent that manages them islocated. A host can be a physical
machine, virtual machine, or be cloud-based.

Environments can have different topol ogies—for example: an environment can consist of asingle machine;
be spread over several machines; or spread over clustersof machines. Environmentsare application scoped.
Although multi-tenant machines can be the target of multiple applications, experience has shown that most
IT organizations use application-specific environments. Additionally, approvals are generally scoped to
environments.

uDeploy maintains an inventory of every artifact deployed to each environment and tracks the differences
between them.

Creating an Environment

Before you can run a deployment, you must define at least one environment that associates components
with an agent on the target host. Thisinitial environment istypically uncontrolled and often used to create
snapshots.

To create an environment:

1. Display the Create New Environment dialog Appl i cati ons > [sel ect application] >
Envi ronnents > Add New Environnent [button] ,thenenterthefollowing:

100

Applications

Figure51. Create New Environment dialog

Create New Environment

Name *
Description
Require Approvals
Lock Snapshots

Color I:l
||
||
Ll L
HEN HEEEN
EEEEEEEEENn

Inherit Cleanup Settings

» Nameand Description. The nameisused as part of the deployment process and typically corresponds
to the target environment. For example, if you are deploying to an integration environment, "SIT"
might appropriate.

» To ensure that components cannot be deployed to the environment without first being approved,
click the Require Approvals check box. If checked, uDeploy will enforce an approva process
before the deployment can be deployed to the environment. Initial deployments aretypically donein
uncontrolled environments, but once the deployment is successful, you can configure an approvals
process as the application moves along the development pipeline. If you are setting up more than one
environment, consider creating an approvals process for at least one of them.

* If the Lock Snapshots check box is selected, all snapshots used in this environment are locked to
prevent changes.

» The Color picker enablesyou to apply avisual identifier to the environment. The selected color will
appear in the UI.

* The Inherit Cleanup Settings check box determines how many component versions are kept in
CodeStation, and how long they are kept. If checked, the application will use the values specified
on the System Settings pane. If unchecked, the Days to Keep Versions (initially set to -1, keep
indefinitely) and Number of Versionsto Keep (initially set to -1, keep al) fields are displayed, which
enable you to define custom values. The default value is checked.

2. Saveyour work when you are done.

Mapping Resources to an Environment

1. After you have added a component to the application, define where its artifacts should be deployed by
selecting aresource (agent) or resource group. See Resources.

1. Display the Component Mappings pane (Appl i cations > [sel ected application] >
Envi ronnents > [sel ected environnment] > Conponent Mappi ngs).

101

Applications

Figure 52. Component M apping

hain | Inventory | Calendar | Propertics Kot et Sl it |
Component Mappings

Dummy Component

Resource Groups

Resource [/ Group

local-agent

test-component

42-agent

UrbanDeploy-agent

Add a Resource Group

2. If the application has severa components associated with it, select the one you want to use from the
component list. Each component associated with this application can be mapped to a different agent
(resource).

3. To associate aresource with the selected component:

» To add aresource group, click the Add a Resource Group button and select a resource group. For
information about creating resources, see the section called *“ Resource Groups’.

» To add aresource, click the Add a Resource button and select an resource.

After mapping components and resources, make the application deployment ready by creating an
application process, which is described in the following section.

Environment Properties

Environment properties can be created with the environment's Properties pane (Appl i cati ons >
[sel ected application] > Environnents > [selected environnent] >
Properti es).

A value set on component environment overrides one with the same name set directly on an environment
property. Component environment properties enable you to centralize properties, tracking type and default
values, for instance. Environment properties provide ad-hoc lists of pr oper t y=val ue pairs.

Referenced: ${ p: envi r onnment / pr oper t yNane} .

Application Processes

Application processes, like component processes, are created with the process editor. uDeploy provides
several common process steps, otherwise application processes are assembled from processes defined for
their associated components.

Application processes can run manually, automatically on some trigger condition, or on a user-defined
schedule. When a component has several processes defined for it, the application determines which ones
are executed and in which order.

An application process is always associated with a target environment. When an application process
executes, it interacts with a specific environment. At least one environment must be associated with the

102

Applications

application before the process can be executed. Application processes are environment agnostic; processes
can be designed independently of any particular environment. To use the same process with multiple
environments (a typical scenario), you associate each environment with the application and execute the
process separately for each one.

In addition to deployments, several other common processes are available, such as rolling-back
deployments. uDeploy tracks the history of each component version, which enables application processes
to restore environments to any desired point.

Creating Application Processes

1. Display the Create an Application Processdialog (Appl i cati ons > [sel ect application]
> Create New Process [button]),andenter the following information:

Name and Description. Typically the name and description correspond to the application you plan on
deploying.

Figure 53. Create New Application Dialog

Create a Application Process

Name *
Description
Required Application Role [pone

Inventory Management * Automatic

Offfine Agent Handling * Check Before Execution

Table 20. Application Process Fields

Field Description

Name/Description Typically the name and description correspond to
the application you plan on deploying.

Required Application Role Use this drop-down list box to select therole a
user must have in order to run the application.
For information about creating application roles,
see the section called “Roles and Permissions”.
The default value is None.

Inventory Management If you want to handle inventory manually,
select Advanced. To have inventory handled
automatically, leave the default value,

Aut omat i ¢, selected.

Offline Agent Handling Specify how the process reacts if expected agents
are offline:

» Check Before Execution: checksto seeif
expected agents are on line before running the

103

Applications

Field Description
process. If agents are off line, the process will

not run.

Use All Available; Report Failure: process
will run aslong as st least one agent defined in
the environment is on line; reports any failed
deployments due to off line agents. Useful for
rollbacks or configuration deployments.

Always Report Success: process will run
aslong as st least one agent defined in the
environment is on line; reports successful
deployments.

2. Save your work.

Application process—the steps comprising them—are configured with the process editor. For information
about using the process editor, see the section called “Process Editor”. For information about individual
process steps, see the section called “ Application Process Steps’.

Application Process Steps

Application processes, like component processes, are created with the process editor. uDeploy provides
several common process steps, otherwise application processes are assembled from processes defined for
their associated components.

Application Process Steps Details

The application process steps are described in the following topics.
Finish

Ends processing. A process can have more than one Finish step.

Install Component

Installs the selected component using one of the processes defined for the component.

Table 21. Install Component Properties

Field

Description

Name

Can be referenced by other process steps.

Component

Component used by the step; a step can affect a
single component. All components associated with
the application are available. If you want to install
another component, add another install step to the
process.

Use Versions Without Status

Restricts the components that can be used by the
step—components with the selected status are

104

Applications

Field

Description

ignored. Available statuses: Act i ve meansignore
components currently deployed; St aged means
ignore components currently in pre-depl oyment
locations.

Component Process

Select a process for the component sel ected above.
All processes defined for the component are
available. Only one process can be selected per

step.

Ignore Failure

When selected, the step will be considered to have
run successfully.

Limit to Resource Role

User-defined resource role the agent running the
step must have.

Run on First Online Resource Only

Instead of being run by all agents mapped to
the application, the step will only be run by the
first online agent identified by uDeploy. The
mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition

A JavaScript script that defines a condition that
must exist before the step can run. The condition
must resolve to true or false.

Uninstall Component

Uninstalls the selected component.

Table 22. Uninstall Component Properties

Field Description
Name Can be referenced by other process steps.
Component Component used by the step; a step can affect a

single component. All components associated with
the application are available. If you want to install
another component, add another install step to the
process.

Remove Versions With Status

Restricts the components that are affected by the
step, only components with the selected status are
affected. Available statuses: Act i ve means use
components currently deployed; St aged means
use components currently in pre-deployment
locations.

Component Process

Select a process for the component selected above.
All processes defined for the component are
available. Only one process can be selected per

step.

Ignore Failure

When selected, the step will be considered to have
run successfully.

Limit to Resource Role

User-defined resource role the agent running the
step must have.

105

Applications

Field

Description

Run on First Online Resource Only

Instead of being run by all agents mapped to
the application, the step will only be run by the
first online agent identified by uDeploy. The
mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition

A JavaScript script that defines a condition that
must exist before the step can run. The condition
must resolve to true or false.

Rollback Component

Rolls-back a component version; replaces a component version with an earlier one.

Table 23. Rollback Component Properties

Field Description
Name Can be referenced by other process steps.
Component Component used by the step; a step can affect a

single component. All components associated with
the application are available. If you want to install
another component, add another install step to the
process.

Remove Versions With Status

Restricts the components that are affected by the
step, only components with the selected status are
affected. Available statuses: Act i ve means use
components currently deployed; St aged means
use components currently in pre-deployment
locations.

Component Process

Select a process for the component sel ected above.
All processes defined for the component are
available. Only one process can be selected per

step.

Ignore Failure

When selected, the step will be considered to have
run successfully.

Limit to Resource Role

User-defined resource role the agent running the
step must have.

Rollback type

Determines the type of rollback. Available
statuses: Renbve Undesired | ncrenent al
Ver si ons and Repl ace with Last

Depl oyed.

Run on First Online Resource Only

Instead of being run by all agents mapped to
the application, the step will only be run by the
first online agent identified by uDeploy. The
mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition

A JavaScript script that defines a condition that
must exist before the step can run. The condition
must resolve to true or false.

106

Applications

Manual Application Task (Utility)

A manual task is a mechanism used to interrupt an application process until some manual intervention
is performed. A task-interrupted process will remain suspended until the targeted user or users respond.
Typically, manual tasks are removed after the process has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with environment- or
application-defined user roles. Affected users can respond—approve—by using the Work Items pane (see
the section called “Work Items”). Unlike approval s, manual tasks can beincorporated within an application
process.

Thetask used to configurethis step must have been previously defined with the Create New Task Definition
dialog.

Table 24. Manual Application Task Properties

Field Description

Name Typically the name and description correspond to
the application.

Task Definition Used to select a user-defined task.

Environment Role Select the role expected to respond. The user

mapped to this role will have to respond to the
generated work item before the process can
continue.

Application Role Select the role expected to respond. The user
mapped to this role will have to respond to the
generated work item before the process can
continue.

If both roles are selected, all affected users will have to respond before the process can continue. See the
section called “Notifications”.

Application Manual Tasks

A manual task is a mechanism used to interrupt an application process until some manual intervention
is performed. A task-interrupted process will remain suspended until the targeted user or users respond.
Typically, manual tasks are removed after the process has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with environment- or
application-defined user roles. Affected users can respond—approve—by using the Work Items pane (see

the section called “Work Items”). Unlike approval s, manual tasks can beincorporated within an application
process.

Creating Application Manual Tasks

To create atask:

1. Display the Create New Task Definitiondialog (Appl i cati ons > [sel ect ed applicati on]
> Tasks > Create New Task Definition [button]).

2. Name the task then select atemplate from the Template Name field.

107

Applications

The individual tasks map to the notification scheme used by the application(see the section called
“Notifications”). If aschemeis not specified, the default scheme is used. The available tasks are:

» ApplicationDeploymentFailure

» Approval Created

» TaskCreated

» ProcessRequestStarted

* DeploymentReadied

» ApplicationDeploymentSuccess

» Approval Failed

Using Manual Tasks

Manual tasks are implemented with the Manual Application Task process step. Use the step to insert a
manual task trigger into an application process.

Approval Process

An approval process enables you to define the job that needs approved and the role of the approver. An
approval process must be created if the Requires Approval check box is selected when creating/editing an
environment. If a scheduled deployment requiring approval reaches its start time without approval given,
the process will not run and act as a rejected request. To resubmit a request, you must request a hew
process. If an approval-requesting process does not have a scheduled deployment time, the process will
remain idle until a response has been made.

Creating an Approval Process
To create an approval process, display the Approval Process Design Pane.

(Home>Appl i cat i ons>Application_Name>Envi r onnent s>Envi r onnment : Environment_Name>Appr oval
Process)

Oncethe paneisdisplayed, select the steps that need approval from the process editor. The steps are based
on job type and the role of the approver. Y ou have the option of selecting three job types: the Application,
Component, and/or Environment. For hel p using the process editor see the section called “ Process Editor”.

Reviewing Status

To view the status of the request, display the Deployment Detail pane on the Reports tab. If a request
has been approved it will display as success. However, if the request was rejected it will show failed. If a
request is failed display the Application Process Request by clicking view request.

If acomment has been made regarding the process, you can view it by clicking the log button in the actions
column on the Application Process Request.

Work Iltems

If ajob requiring approval is created, an approval process will have to be created. The job requiring
approva will display in the approvers Work Items tab. Until approved, the job will remain idle if
unscheduled. If time has el apsed on a schedul ed job needing approval, the job will fail. This control allows
the approver to verify the deployment details, and choose the time it is deployed. Notifications are sent to
users who are eligible to complete an approval step if the system is configured with an email server and
the user has an email address set.

108

Applications

View Details of Process

In the Works Items tab, the approver can view the name of the process, when the request was submitted,
who requested the process, and the snapshot or version used. The approver can aso view details of the
environment or resource by clicking the link in the Environment/Resource column. They can view the
details of the target by clicking the link in the target column. Or view details on the request by selecting
the View Request in the Actions column. The Actions column is also where the approver can respond to
the request.

Responding to Request

To respond to arequest, display the Respond dialog box by clicking Respond in the Actions column. The
approver hasthe option of leaving acomment. If arequest isrejected the processwill not run. If approved,
the process will begin.

Snapshots

A snapshot is a collection of specific component versions and processes, usually versions that are
known to work together. Typically, a snapshot is created when a successful deployment has been run
in an uncontrolled environment. Snapshots can be created in a controlled environments as well. As the
application moves components through various environments, uDeploy ensuresthat the exact versionsand
processes you selected are used in every environment. Snapshots help manage complex deployments--
deployments with multiple environments and development teams.

Creating Snapshots

To create asnapshot, display New Application Snapshot pane(Horre > Appl i cati on > Snapshot s
> Create New Snapshot).

1. Enter the name of your snapshot in the Name field.
2. Inthe Process Version Locking field, specify how you want uDeploy to select component processes:

» Always use Latest Version Use the most recently defined component process version for each
component in the application (default).

» Lock to Current Versions Use the current component process version for each component.
3. For each component in the application, you can specify which version to use:
e Add Version Enables you to select any version in Codestation for the component.
» Copy From Environment Uses the currently deployed (in this environment) component version.
» Remove All Removes all deployed component versions from this environment.

4. Instead of specifying a version for each component, you can use the most recently deployed version
(in this environment) for each component in the application by using the Copy All From Environment
button.

If you want to discard any selected component versions, use the Clear All Components button.

Snapshot Versions

To use, the Snapshot go to:

109

Applications

Home>A pplication>Application_Name>Snapshots>snapshots; Shapshot Name

On the main pane, click Request Process in the Environment of your choice.

Snapshot Configuration

To use, the Snapshot go to:
Home>A pplication>Application_Name>Snapshots>snapshots: Shapshot_Name

On the main pane, click Request Process in the Environment of your choice.

Using Snapshots

To use, the Snapshot go to:
Home>A pplication>Application_Name>Snapshots>snapshots: Shapshot Name

On the main pane, click Request Process in the Environment of your choice.

Application Gates

Gates provide a mechanism to ensure that component versions cannot be deployed into environments
unless they have the gate-specified status. Version statuses are user-defined values that can be applied
to component versions and used in component processes or application gates. Version statuses can be
applied though the user interface (Conponents > [sel ected conponent] > Versions >
[sel ected version] > Add a Status [button]),orbythe Add Statusto Version plug-in
step. They are displayed in the Latest Status field on the component's Versions pane (Conponent s >
[sel ected component] > Versions).

Component version statuses are defined on the Statusestab (Set t i ngs > St at uses), seethe section
called “Inventory and Component Statuses’. Component versions do not have to have gates. Gates are
defined at the environment level; an environment can have a single gate defined for it.

Creating Gates

To create a gate:

1. Display the Gates pane for the target application (Applicati ons > [sel ected
application] > Gates).

110

Applications

Figure 54. Gates Pane

environments KRR History | Edi] Properties | Components

Environments

|Add a new c.ondition...| v |
Add a new condition...

Latest
Passed Tests

Add a new condition... =

euroStore2

Add a new condition... =

comp2

2. Select avalue from the Add anew condition list box.
The available statuses are defined in the def aul t . xm file (discussed below). The default statuses
—Latest, Passed Tests, Archived—are supplied as examples; it is assumed you will
supply your own values.

Selecting a value provides both And and Or selection boxes.

Figure 55. Gate Definition

Passed Tests €3

- 0r -

Add a new condition...| =

Using the And box adds an additional value to the condition that must be satisfied. Using the default
values for example, defining the following gate Passed Tests And Lat est means that only

111

Applications

component versions with both statuses—Passed Test s and Lat est —satisfy the condition and
can be deployed into the environment. A single condition can have as many And-ed values asthere are
statuses defined inthe def aul t . xm file.

Usingthe Or box addsan additional condition to the gate. Additional conditions are defined in the same
way as the first one. A gate with two or more conditions means the component will be deployed if it
meets any of the conditions. For example, if the following two gates are defined, Passed Test s,
and Lat est , a component will pass the gate if it has either status (or both). A single gate can have
any number of conditions.

3. Save your work when finished.

See the section called “ Component Version Statuses’ for more information about component statuses.

112

Deployments

Deployments are done with applications (see the section called “ Creating Applications’ for information
about creating applications). Performing a deployment is straightforward: you run a deployment-type
process defined for an application in one of its environments. (Application processes can do things other
then deploying, such as rolling-back or uninstalling components.) An application process is run by the
Request Process command on the application's Environment pane (Application > selected_application >
Environment).

Figure 56. Request Process Actions

Application: hello_world

Description Hello world app

Environments

Drag environments by their label boxes to order tt

Actions
‘ Request Process)
Compare I Copy
Inactivate

hello worldEn

I<

Actions

‘ Request Process ,

hello worldTEST [[CilayRee]
Inactivate

Torun an application:
1. Inthe uDeploy web application, display the Application tab.
2. Click the name of the application.

3. Use the Request Process action for the environment where you want the deployment performed. The
Run Process dialog is displayed.

In theillustration above, the application has two environments defined for it; you would click the Run
Process link for the environment you want to use.

113

Deployments

Figure 57. Run Process Dialog

Run Process on hello_worldEnv

Snapshot pope

Only Changed Versions

Schedule Deployment?

Version for hello_world |pngne ~

Process * hello_worldAppProc (copy)

4. If you want to use a snapshot, select it from the Snapshot drop-down list-box. If you select a
snapshot, the deployment will automatically use the component version(s) defined for the snapshot. For

information about snapshots, see the section called “ Snapshots’.

5. If you did not select a snapshot, select acomponent version from the Version list-box. If more than one
component is mapped to the application, each one is listed separately. Version options are described

in the following table:

Table 25. Version Options

Version Option

Description

None

No version for this component. Useful when
performing multi-component deployments or
testing.

Specific Version

Enables you select any version already in
Codestation.

Latest Version

Automatically uses the most recently imported
version.

Latest With Status

All versions (creation order—oldest to newest)
with the selected status. This might effect
multiple versions, which is useful for an
incremental component. Default values are:
Latest, Passed Test, Archived.

All With Status

All component versions with the selected status
will be deployed. Default values are: Lat est
Passed Test, Archived.

All in Environment

Deploys al versions (in order of deployment)
with the given inventory status in the current
environment; useful if you need to run an
operational process for whatever isaready in
the environment. Default valuesare: Act i ve,
St aged.

114

Deployments

Version Option Description

All in Environment (Rever sed) All component versions already deployed in the
environment with the selected inventory status
will be deployed in reverse order.

6. Use the Only Changed Version check box to ensure that only changed versions are deployed (it is
checked by default). If checked, no previously deployed versionswill be deployed. If, for example, you
check the box and sel ect aspecific version that was already deployed, theversion will not be redeployed.
Uncheck the box if you want to deploy a version regardless of whether or not it was already deployed
(if theinventory isout of date, for instance).

7. Select the process you want to run from the Process list box. All processes created for the application
arelisted.

8. If youwant toruntheprocessat alater time, click the Schedule Deployment? check box (it isunchecked
by default). If checked, fields appear enabling you to specify the date and time when the process will
run. You can also make the process run on arecurring basis.

9. When finished, click Submit to start the process. An application process will start immediately unless
scheduled for alater time.

When a process starts, use the Application Process Request pane to review the deployment's status. This
pane isalso used if the process requires approvals.

Figure58. Application Process Request Pane

Application Process Request: doubleH

Process wH (Version 3)
Environment wH
Only Changed Versions false
Date Requested 5/25/12 1:54 PM
Requested By admin
Scheduled For 5/25/12 1:54 PM
View Deployment Request
Approval Progress
Task Role Target Status Completed By Actions
Environment Approval Admin wH Complete admin on 5/25/12 1:54 PM
Execution
Expand All Collapse All Sort By: Graph Order Start Time
Step Progress Start Duration Status Actions
hwi 1of1 1:54:16 PM 0:00:03 Success
remote-agentl 1of1l 1:54:16 PM 0:00:03 Success
1.0 1:54:16 PM 0:00:03 Success @
+ hwv 0of 0 1:54:16 PM 0:00:00 Success
Total Execution 1ofl 1:54:16 PM 0:00:03 Success

After a process finishes, click the Details action to display the Deployment of Component pane, which
can be used to review the deployment details.

115

Deployments

Figure 59. Deployment of Component Pane

Deployment of Component: hello_world

Process hello_worldInstall (Version 3)
Version 1.0

Resource remote-agenti

Date 5/25/12 4:32 PM

Requested By admin

View Application Process Execution
Log

Sort By: Graph Order Start Time

Duration Status Actions

Download Artifacts UrbanCode Versioned File Storage v. 10.249680 4:32:29 PM 0:00:02 Success

Total Execution 4:32:29 PM 0:00:02 Success

The actions available for this pane enable you to review the deployment's output log, error log, and input/
output parameters.

Scheduling Deployments

uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-
out dates, for your Deployments. Deployments for an individual Application are scheduled on a per-
environment basis, set when you run a deployment of a Snapshot or Deployment Process. Black-out dates
are set within the individua Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling
a Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of
the type of deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, uDeploy will prompt you to give the date and time you
want the deployment to run. The Make Recurring setting will deploy the Application on aregular schedule.
For example, if you are practicing Continuous Delivery, the Daily option will deploy the Application to
the target Environment every day.

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the
Scheduled Deployment, you can edit, delete, or investigate the deployment.

Setting Blackouts

A blackout is a set per-environment, per-application. Once set, no deployments (nor snapshots) can
be scheduled to occur in that environment. Any previously scheduled deployments to the Environment
will fail if they fall within the blackout date you set. To set up a blackout, go to (Appl i cati on >
Envi ronnents > Cal endar > Add Bl ackout). If you need to set blackouts for more than one
environment, you must do this for each individual one. uDeploy will prompt you to give the dates and
times for the blackout.

116

Reports

uDeploy provides deployment- and security-type reports:

» Deployment reports contain historical information about deployments. Data can befiltered in avariety
of ways and reports can be printed and saved. In addition, you can save search criteriafor later use. See
the section called “ Deployment Reports”

» Security reports provide information about user roles and privileges. See the section called “ Security
Reports’

For information about saving and printing reports, see the section called “ Saving and Printing Reports”

The following tables summarize the out-of-the-box reports.

Table 26. Deployment Reports

Report Description

Deployment Detail Provides information about deployments executed during a user-
specified reporting period. Each report row represents a deployment
that executed during the reporting period and matched the filter
conditions. See the section called “ Deployment Detail Report”.

Deployment Average Duration | Average deployment times for applications executed during a user-
specified reporting period. See the section called “Deployment
Average Duration Report”.

Deployment Total Duration Total deployment times for applications executed during a user-
specified reporting period. See the section called “Deployment Total
Duration Report”.

Deployment Count Provides information about the number of deployments executed
during a user-specified reporting period. See the section called
“Deployment Count Report”.

Table 27. Security Reports

Report Description

Application Security Provides information about user roles and privileges defined for
uDeploy-managed applications. See the section called “Application
Security Report”.

Component Security Information about user roles and privileges defined for components.
See the section called “ Component Security Report”.

Environment Security Information about user roles and privileges defined for environments.
See the section called “ Environment Security Report”.

Resource Security Information about user roles and privileges defined for resources. See
the section called “Resource Security Report”.

Deployment Reports

Deployment Reports contain historical information about deployments, such as the total number executed
and their average duration. Data can befiltered in avariety of ways and reports can be printed and saved.
In addition, you can save search criteriafor later use. See the section called “ Saving and Printing Reports’

117

Reports

Deployment Detail Report

The Deployment Detail Report provides information about deployments executed during a user-specified
reporting period. Each report row represents a deployment that executed during the reporting period and

matched the filter conditions.

Reports can be filtered in a variety of ways (discussed below), and columns selectively hidden. Reports
can be saved and printed. See the section called “ Saving and Printing Reports”.

When selected, the report runs automatically for the default reporting period--current month--and with all
filters set to Any. The default report represents all deployments that ran during the current month.

Deployment Detail Fields
Initialy, all fields are displayed.

Table 28. Deployment Detail Fields

Field

Description

Application

Name of the application that executed the
deployment.

Environment

Target environment of the deployment.

Date

Date and time when the deployment was executed.

User

Name of the user who performed the deployment.

Status

Final disposition of the deployment. Possible
values are;

» Success
e Failure
e Runni ng
* Schedul ed
* Approval Rejected

e Awai ti ng Approval

Duration

Amount of time the deployment ran. For a
successful deployment, the value represents the
amount of time taken to complete successfully.

If deployment failed to start, no valueis given. If

a deployment started but failed to complete, the
value represents the amount of time it ran before it
failed or was cancelled.

Action

Thisfield provides links to additional information
about the deployment. The Vi ew Request link
displaysthe Application Process Request pane.
See Applications.

Running the Deployment Detail Report

Torun areport:

118

Reports

1. Usethe Dat e Range date-picker to set the report's start- and end-dates.

Table 29. Date Range

Field Description

Current, Prior Week Start day is either Sunday or Monday, depending
on what is defined in your system.

Current, Prior Month Start day isfirst day of the month.

Current, Prior Quarter Quarters are bound by calendar year.

Current, Prior Year Current year includes today's date.

Custom Displays the Custom pop-up which enables you

to pick an arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.
The end-time is automatically set to 24:00 for the selected date.
2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set afilter, select it from the corresponding
property list box.

Table 30. Report Filters

Field Description

Application Only deployments executed by the selected
application appear in the report. Default value:
Any.

Environment Only deployments executed by the application

selected with the Application list box that also
used this environment appear in the report. If the
application valueis Any, the available valueis
Any; otherwise, environments defined for the
selected application are listed.

User Only deployments executed by the selected user
appear in the report. Default value: Any.

Status Only deployments with the selected status appear
in the report. Default value: Any.
Plugin Only deployments that used the selected plug-in

appear in the report. Default value: Any. Note:
the Any value aso includes deployments that did
not use a plug-in.

3. Run thereport.
Click the Run button to apply your filter conditions to the data and produce the report.

By default, the report is sorted by Appl i cati on. You can sort the report on any field by clicking on
the column header.

For information about saving and printing reports, see the section called “ Saving and Printing Reports’.

119

Reports

Sample Reports

Thefollowing table contai nsexamples of reportsthat can be produced using the Deployment Detail Report.

Table 31. Sample Reports

Field Description

Show me: All failed deployments that occurred on o
July 4th during the previous year. * Application: Any

» Status: Failure

» Date Range: Use the Custom pop-up to set the
start- and end-dates to July 4th.

Show me: Deployments for an application that Application: Select the value from the drop-
used a specific environment. down list box.

¢ Environment: Select the environment from the
drop-down list box.

When an application is selected, only
environments defined for it are availablein the
Environment drop-down list box.

Show me: Failed deployments that used a specific |+ Status: Failure
plug-in yesterday.
e Plugin : Select the value from the drop-down

list box.

« Date Range: Use the Custom pop-up to set the
start- and end-dates to the previous day.

Show me: My deployments that used a specific Application: Select the value from the drop-
application during the past month. down list box.

e User: Select your user ID.

« DateRange: Select Pri or Nbnt h.

Deployment Count Report

The Deployment Count Report provides information about the number of deployments executed during a
user-specified reporting period. The report provides both atabular presentation and line graph of the data.
Each table row represents an environment used by an applications for the reporting period and interval.

The line graph elements are;

* y-axisrepresents the number of deployments

» X-axis represents reporting intervals

* plot lines represent environments used by applications

Theunitsalong the y-axis are scal ed to the number of records reported. The unitsalong the x-axis represent
thereporting interval, which can be: months, weeks, or days. Each color-coded plot linerepresentsasingle
environment used by the deployment during the reporting period.

120

Reports

When selected, the report runs automatically for the default reporting period (current month)and reporting
interval (days), and with all filters set to Any. The default report provides a count of all deployments that
ran during the current month.

Deployment Count Table Fields

Table 32. Deployment Count Fields

Field Description

Application Name of the application that executed the
deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the number of the
deployments for the selected reporting interval.

Running the Deployment Detail Report
To run areport:
1. Set the reporting period.
Use the Dat e Range date-picker to set the report's start- and end-dates. The selected value(s)

determines the columnsin the tabular report, and the coordinate interval on the graph's x-axis. Default
value: Current Month.

Table 33. Date Range

Field Description

Current, Prior Week Start day is either Sunday or Monday, depending
on what is defined in your system. Reporting
interval is set to days.

Current, Prior Month Start day isfirst day of the month. Reporting
interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting
interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you

to pick an arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.
The end-time is automatically set to 24:00 for the selected date.
2. Set thereport filters.

Filters are set with the properties drop-down list boxes. To set afilter, select it from the corresponding
property list box.

121

Reports

Table 34. Filters

Field

Description

Application

Only deployments executed by the selected
application(s) appear in the report. To select
applications:

a. Click the Application button.

b. Toinclude an application in the report, click
the corresponding check box. If alarge
number of applications are listed, type the first
few letters of the application's name in the text
box to scroll the list. Multiple applications can
be selected.

c. Click OK.

Status

Only deployments with the selected status appear
in the report. Default value: Success or
Fai | ur e, which means all deployments.

Plugin

Only deployments that used the selected plug-in
appear in the report. Default value: Any. Note:
the Any vaue aso includes deployments that did
not use a plug-in.

3. Runthereport.

Click the Run button to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced.

Figure 60. Deployment Count Graph

Date Range Application Status Plugin

Custom 7 zelected Success or Failure Any Run Save

property filters

click to hide/display corresponding

Deployment » Deployment Count csv plot line

bdd-app-3 \ -+ DEV

Deployment Count . Enva

30

click can drag anywhere on S

the graph to zoom - DEV

ALL

:=_- 20 - Env0
é hover the mouse-pointer over a EnE
8 coordinate point ~———__ = EnvG
& 10 to display information Enva
- Env7

’J Env3

o . ,—-% —— < Dev

2 1-11 2011-12-02 = UAT
2011-11 11-29)

Each environment used by a reporting application is represented by an individual plot line and table row.
Y ou can hide aplot line by clicking the corresponding item in the graph legend. To see information about
agraph coordinate, hover the mouse over the graph point.

122

Reports

Y ou can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see the section called “ Saving and Printing Reports”.

Sample Reports

Thefollowing table contains examples of reportsthat can be produced using the Deployment Count Report.

Table 35. Sample Reports

Field Description

Show me: The number of successful deployments Application: Select both applications from the
for two specific applications during the past ten Applications dialog.

days that used a particular plug-in.
+ Status: Success

* Plugin: Select the plug-in from the drop-down
list box.

» Date Range: Use the Custom pop-up to set the
ten-day range.

Show me: The number of failed deploymentsfor a |« Application: Select the value from the
given application during the past month Applications dialog.

e Status. Fai l ure

» DateRange: Select Pri or Nbnt h.

Show me: The number of failed deploymentsthat | Application: Select the applications from the
used a specific plug-in yesterday. Applications dialog.

e Status. Fai l ure

* Plugin: Select the value from the drop-down list
box.

» Date Range: Use the Custom pop-up to select
the previous day.

Deployment Average Duration Report

The Deployment Average Duration Report provides average deployment times for applications executed
during a user-specified reporting period. The report provides both a tabular presentation and line graph
of the data. Each table row represents an environment used by an application for the reporting period and
interval.

Theline graph elements are:

* y-axis represents deployment duration average times

» X-axis represents reporting intervals

* plot lines represent environments used by the applications

Theunitsalong they-axis are scal ed to the number of records reported. The unitsalong the x-axis represent
thereporting interval, which can be: months, weeks, or days. Each color-coded plot linerepresentsasingle
environment used by the deployment during the reporting period.

123

Reports

When selected, the report runs automatically for the default reporting period (current month)and reporting
interval (days), and with all filters set to Any. The default report provides average deployment times for
all deployments that ran during the current month.

Deployment Average Duration Fields

Table 36. Average Duration Fields

Field Description

Application Name of the application that executed the
deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the average
deployment times for the reporting interval.

Running the Deployment Average Duration Report
To run areport:
1. Set the reporting period.
Use the Dat e Range date-picker to set the report's start- and end-dates. The selected value(s)

determines the columnsin the tabular report, and the coordinate interval on the graph's x-axis. Default
value: Current Month.

Table 37. Date Range

Field Description

Current, Prior Week Start day is either Sunday or Monday, depending
on what is defined in your system. Reporting
interval is set to days.

Current, Prior Month Start day isfirst day of the month. Reporting
interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting
interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you

to pick an arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.
The end-time is automatically set to 24:00 for the selected date.
2. Set thereport filters.

Filters are set with the properties drop-down list boxes. To set afilter, select it from the corresponding
property list box.

124

Reports

Table 38. Filters

Field Description

Application Only deployments executed by the selected
application(s) appear in the report. To select
applications:

a. Click the Application button.

b. Toinclude an application in the report, click
the corresponding check box.

If alarge number of applications are listed,
type thefirst few letters of the application's
name in the text box to scroll the list. Multiple
applications can be selected.

c. Click OK.

Status Only deployments with the selected status appear
in the report. Default value: Success or
Fai | ur e, which means all deployments.

Plugin Only deployments that used the selected plug-in
appear in the report. Default value: Any. Note:
the Any vaue aso includes deployments that did
not use a plug-in.

3. Run thereport.
Click the Run button to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced. Each environment used by a reporting application is
represented by an individual plot line and table row. Y ou can hide aplot line by clicking the corresponding
item in the graph legend. To see information about a graph coordinate, hover the mouse over the graph
point.

Y ou can zoom a graph area by dragging the mouse over the area.
For information about saving and printing reports, see the section called “ Saving and Printing Reports’.
Sample Reports

The following table contains examples of reports that can be produced using the Deployment Average
Duration Report.

Table 39. Sample Reports

Field Description

Show me: Average durations for two specific » Application: Select both applications from the
applications during the past ten days that used a Applications dialog.

particular plug-in.
» Status: Success or Failure

 Plugin: Select the plug-in from the drop-down
list box.

125

Reports

Field Description

« Date Range: Use the Custom pop-up to set the
ten-day range.

Show me: Average durations for successful Application: Select the application from the
deployments for a given application during the Applications dialog.

past six months.
e Status. Success

« Date Range: Use the Custom pop-up to set the
range to the previous six months.

Deployment Total Duration Report

The Deployment Total Duration Report provides total deployment times for applications executed during
a user-specified reporting period. The report provides both a tabular presentation and line graph of the
data. Each table row represents an environment used by one of the selected applications for the reporting
period and interval.

The line graph elements are:

* y-axis represents deployment duration times

» X-axis represents reporting intervals

* plot lines represent environments used by the applications

Theunitsalong they-axis are scaled to the number of records reported. The unitsalong the x-axis represent
thereporting interval, which can be: months, weeks, or days. Each color-coded plot linerepresentsasingle
environment used by an application during the reporting period.

When selected, the report runs automatically for the default reporting period (current month)and reporting
interva (days), and with all filters set to Any. The default report provides total deployment times for al
deployments that ran during the current month.

Deployment Total Duration Fields

Table 40. Total Duration Fields

Field Description

Application Name of the application that executed the
deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the total
deployment times for the reporting interval.

Running the Deployment Total Duration Report
To run areport:
1. Set the reporting period.

Use the Dat e Range date-picker to set the report's start- and end-dates. The selected value(s)
determines the columnsin the tabular report, and the coordinate interval on the graph's x-axis. Default
value: Current Month.

126

Reports

Table 41. Date Range

Field Description

Current, Prior Week Start day is either Sunday or Monday, depending
on what is defined in your system. Reporting
interval is set to days.

Current, Prior Month Start day isfirst day of the month. Reporting
interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting
interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you

to pick an arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.
The end-time is automatically set to 24:00 for the selected date.
2. Set thereport filters.

Filters are set with the properties drop-down list boxes. To set afilter, select it from the corresponding
property list box.

Table42. Filters

Field Description

Application Only deployments executed by the selected
application(s) appear in the report. To select
applications:

a. Click the Application button.

b. Toinclude an application in the report, click
the corresponding check box.

If alarge number of applications are listed,
type thefirst few letters of the application's
name in the text box to scroll the list. Multiple
applications can be selected.

c. Click OK.

Status Only deployments with the selected status appear
in the report. Default value: Success or
Fai | ur e, which means all deployments.

Plugin Only deployments that used the selected plug-in
appear in the report. Default value: Any. Note:
the Any vaue aso includes deployments that did
not use a plug-in.

3. Run thereport.

127

Reports

Click the Run button to apply your filter conditions to the data and produce the report.
A tabular report and line graph are produced. Each environment used by a reporting application is
represented by an individual plot line and table row. Y ou can hide aplot line by clicking the corresponding
item in the graph legend. To see information about a graph coordinate, hover the mouse over the graph
point.
Y ou can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see the section called “ Saving and Printing Reports”.

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Total
Duration Report.

Table 43. Sample

Field Description

Show me: Total duration times for two specific » Application: Select both applications from the
applications during the past ten days that used a Applications dialog.

particular plug-in.
» Status: Success or Failure

* Plugin: Select the plug-in from the drop-down
list box.

» Date Range: Use the Custom pop-up to set the
ten-day range.

Show me: Total duration times for successful Application: Select the application from the
deployments for a given application during the Applications dialog.
past six months.

e Status. Success
* TimeUnit: Mont hs

« Date Range: Use the Custom pop-up to set the
six-month range.

Security Reports

Security Reports provide information about user roles and privileges defined with the uDeploy security
system.

Application Security Report

TheApplication Security Report providesinformation about user rolesand privilegesdefined for uDeploy-
managed applications. Each report row represents an individual application. When selected, the report
runs automatically for all applications.

128

Reports

Application Security Fields

Table 44. Application Security Fields

Field Description
Application Name of the application.
Run Component Processes Users who have component process execution

privileges. For information about component
processes, see the section called “ Creating
Components”.

Execute Users who have application execution privileges.
For information about applications, see
Applications.

Security Users who can define privileges for other users.
For information about security, see uDeploy
Security.

Read Users who can review information about the
application but not changeit.

Write Users who can access and edit the application.

Thereport issorted by Appl i cat i on. You can change the sort order by clicking on the column header.

For information about saving and printing reports, see the section called “ Saving and Printing Reports’.

Component Security Report
The Component Security Report provides information about user roles and privileges defined for

components. Each report row represents an individual component. When selected, the report runs
automatically for al components.

Component Security Fields
Fields are:

Table 45. Component Security Fields

Field Description
Component Name of the component.
Execute Users who have component process execution

privileges. For information about component
processes, see the section called “ Creating

Components”.

Security Users who can define privileges for other users.
For information about security, see uDeploy
Security

Read Users who can review information about the

component but not change it.

Write Users who can access and edit the component.

Thereport is sorted by Conponent . You can change the sort order by clicking on the column header.

129

Reports

For information about saving and printing reports, see the section called “ Saving and Printing Reports”.

Environment Security Report

The Environment Security Report provides information about user roles and privileges defined for
environments. Each report row represents an individual environment. When selected, the report runs
automatically for al environments.

Environment Security Fields

Table 46. Environment Security Fields

Field Description

Application Name of the application.

Environment Name of the environment.

Execute Users who have execution privileges for the
environment. For information about environments,
see Applications.

Security Users who can define privileges for other users.
For information about security, see uDeploy
Security.

Read Users who can review information about the
environment (but not change it).

Write Users who can access and edit the environment.

The report can be sorted by Application or Environment. By default, it is sorted by
Appl i cati on. You can change the sort order by clicking on the column header.

For information about saving and printing reports, see the section called “ Saving and Printing Reports”.

Resource Security Report

The Resource Security Report provides information about user roles and privileges defined for resources.
Each report row represents an individual resource. When selected, the report runs automatically for all
resources.

Resource Security Fields
Fields are:

Table 47. Resour ce Security Fields

Field Description

Resource Name of the resource.

Execute Users who have execution privileges for the
resource. For information about resources, see
Resources.

Security Users who can define privileges for other users.
For information about security, see uDeploy
Security.

130

Reports

Field Description

Read Users who can review information about the
resource but not change it.

Write Users who can access and edit the resource.

Thereport is sorted by Resour ce. Y ou can change the sort order by clicking on the column header.

For information about saving and printing reports, see the section called “ Saving and Printing Reports”.

Saving and Printing Reports

You can print and save report data for al report types. In addition, you can save filter and sort order
information for deployment-type reports.

Saving Report Data

uDeploy saves report datain CSV files (comma separated value).
Tosavereport data:

1. Set thefilters (if any) an run the report.

2. Click the CSV buitton.

3. Use the Opening File dialog. You can save the data to file, or open the data with an application
associated with CSV-type files on your system.

Note

Sort-order and hidden/visible column information is not preserved in the CSV file.

Saving Report Filters

Y ou can save filter and sort-order settings for deployment reports. Saved reports can be retrieved with the
My Reports menu on the Reports pane.

Tosaveareport:

1. Setthefilter conditions.

2. Define the reporting period.
3. Run thereport.

4. Optionally, set the sort order. Y ou can change the sort order for any column by clicking the column
header.

5. Optionaly, change column visibility. Click the Edit button to display the Select Columns dialog. By
default, al columns are selected to appear in areport. To hide acolumn, click the corresponding check
box.

6. Click the Save button. The Save Current Filtersdiaog is displayed.

7. Enter aname for thefile, and save your work.

131

Reports

To run your report, click the report name in the My Reports menu.

To delete your report, click the Delete button.

Printing Reports
Toprint areport:
1. Set thefilter conditions.
2. Define the reporting period.
3. Runthereport.
4. Optionally, set the sort order. Y our changes are reflected in the printed report.

5. Optionally, change column visibility. By default, all columns are selected to appear in the printed report.
Hidden columns will not appear in the output.

6. Click the Print button to print your report.

132

Administration

uDeploy Security

uDeploy providesaflexible, role-based security model that mapsto your organizational structure. Different
product areas, such as components, can be secured by roles. Each area has a set of permissions available
to it. To configure security for an area, you create roles using the available permissions—execute, read,
write, and so forth.

So, how are permissions applied to users? First, global default permissions can be granted. Default
permissions are granted by product area and apply to all users. If default permissions are granted for, say,
the agent area, a user will have those permissions even if sheisalso part of agroup or role that does not.

Another way users can be granted permissions is by being a member of a group. Groups can have default
permissions that apply to all group members. If a user is assigned to a group with default permissions
for the agent area, as above, she will have those permissions even if sheis also assigned a role that does
not have them.

Finally, users can be assigned to roles. Role membersinherit arole's permissions. Except for Ul and system
security, users are assigned to roles on an item by item basis. For example, a user can be assigned arole
that enables them to see only one application or only one component. Both groups and individual users
can be assigned to roles.

Roles and permissions, including default permissions, are configured on an area by area basis; granting
the execute permission to one role does not grant it to another. The default admin role has all permissions,
but you can create another user with all permissions by creating arole for each area with all permissions
granted, then assigning the user to each role. Typically, new roles are added to product areas during setup
and occasionally thereafter.

While any number of roles can be created for an area, areas themselves cannot be created, modified (the
available pool of permissions cannot be changed), or deleted.

Generally, you perform the following stepsin order when setting-up security:

1. Create Roles Create roles and define permissions for the various product areas. For most evaluations,
the default roles should be adequate.

Use the Ul security areato quickly assign access permissions to the different areas of uDeploy.

Use the system security area to assign usage permissions, including the ability to define security for
other users.

2. Authorization Realms. Authorization realms are used by authentication realmsto associate users with
groups and to determine user access. uDeploy includes both an internal database for storing security
information as well as integration with the Lightweight Directory Access Protocol (LDAP). LDAP is
a widely-used protocol for accessing distributed directory information over IP networks. If you are
implementing a production version of uDeploy, the LDAP integration is recommended. If you are
evaluating uDeploy, it is not necessary to set up the LDAP integration—full security is configured and
enforced by the server.

3. Create Groups and Define Default Permissions. Determine default permissions by product area.
Global default permissions can be granted.

4. Create Authentication Realm. The authentication realm is used to determine a user's identity within
an authorization realm. If more than on realm has been configured, user authentication is determined

134

uDeploy Security

following the hierarchy of realms defined on the Authentication pane. When a user attemptsto log in,
all realms are polled for matching credentials.

5. Add Users. Add users to an authentication realm, then assign them to groups and roles. If your are
using LDAP, you can import users and map them to the security system.

Roles and Permissions

Rolesprovidethebuilding blocksfor the security system. Roleshave permissionsthat definetheactionsthe
roles can perform with product features. Typical actionsinclude changing or executing an item, such asan
application process, or modifying its security settings. Users or groups assigned to arole are automatically
granted the permissions configured for it. The default roles can be edited and new roles can be created.

uDeploy mapskey product features or areasto security roles. Each areahas several permissionsdefined for
it (listed below). When you create arole, you first specify the product area. Selecting aproduct areadefines
the set of permissions available to the new role—only permissions defined for the area are available.

Generdly, permissionsfall into one of these groups:

Table 48. Common Permissions

Permission Description

Security Enables users to change an item's security settings.
For example, auser with this permission for agents
can determine which users can view, configure,
and set security for them.

Write Enables users to add, change, and delete items.
A user with this permission for components can
create a component.

Read Enables usersto read (view) an item, but not

change it or create another of itstype. A user with
this permission for agents, say, will be able to

see agents within the user interface, but will not
be able to modify them or create another unless
granted additional permissions.

Execute Enables users to run processes associated with
applications, components, environments, and
resources. Users must also have read permission
for an item before actually executing it.

Default Roles

uDeploy ships with several role types mapped to product areas. Every area or type has a set of available
permissions. The application type, for instance, has the Manage Snapshots permission in addition to the
common permissions. User-defined roles within a type can choose from among the permissions available
for that type.

Every product area has one role typically called Admi n or Admi ni st rat or that has all permissions
available for that area. Deleting a default Admin role for one role type does not affect the Admin role
for another type.

135

uDeploy Security

Figure 61. Application Role Permissions

Create Role

Name * ‘
Description

Manage Snapshots

Run Component
Processes

Execute
Security
Read
Write

You can quickly grant arole type's permissions to all users using the Default Permissions tab. Note that
default permissions cannot be granted for system and Ul security.

Creating and Editing Roles

1. Display the Role Configuration pane (Setti ngs > Security Rol e Configuration).
2. Fromthe list of product areas, select the area where you want to add arole.
3. Display the Create Role dialog (Cr eat e Rol e [button]).
All permission available for this product area are displayed.
4. Select the permissions you want granted to thisrole.

All roles have the following permissions available. Other permissions—if any—are described in the
following sections.

Table 49. Permissions Available for Every Role

Permission Description

Security Manage security for the effected feature area.

Write Create, edit, or delete items for this product area.

Read Access or view items for this product area.
Agent Roles

Agent roles define the functions users can perform with agents and agent pools. Available permissions
areread, write, and security.

To add users to agent roles:

1. Display the Security tab for the target agent (Resources > Agents/Agent Pools >
[sel ected agent/agent pool] > Security).

All roles defined for agents and agent pools are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

136

uDeploy Security

All users are available. As shipped, uDeploy provides an Adni n role with al configured permissions
granted. By default, Admi n hasasingle user—admi n.

Application Roles

Application roles define the functions users can perform with applications. In addition to the standard
permissions, others are:

Table 50. Application Roles

Permission Description

Manage Snapshots Create and edit snapshots for this application.

Run Component Processes Run associated component processes outside of the
application.

To add users to application roles:

1. Display the Security tab for the target application (Appli cations > [selected
application] > Security).

All defined roles are displayed.
2. Usethe Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Adni n role with all configured permissions
granted. By default, Admi n hasasingle user—admi n.

Component Template Roles

These roles define the functions users can perform with component templates. Available permissions are
read, write, and security.

To add users to component template roles:

1. Display the Security tab for the target template (Conponents > Tenpl ates > [sel ected
tenplate] > Security).

All defined roles are displayed.
2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Adni n role with al configured permissions
granted. By default, Adni n hasasingle user—admi n.

Component Roles

These roles define the functions users can perform with components. In addition to the standard
permissions, others are available:

Table51. Component Roles

Permission Description

Manage Versions Create and delete versions for this component.

137

uDeploy Security

To add users to component roles:

1. Display the Security tab for the target component (Conponents > [sel ected conponent]
> Security).

All defined roles are displayed.
2. Usethe Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Admni n role with al configured permissions
granted. By default, Adni n hasasingle user—admi n.

Environment Roles

These roles define the functions users can perform with environments. Available permissions are read,
write, execute, and security.

To add users to environment roles:

1. Display the Security tab for the target environment (Conponent s > [sel ect ed conponent]
> Security).

All defined roles are displayed.
2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Adni n role with al configured permissions
granted. By default, Adni n has asingle user—admi n.

License Roles

These roles define the functions users can perform with licenses. Available permissions are read, write,
and security.

To add users to license roles:
1. Display the Security tab for licenses (Setti ngs > Li censes > Security).
All defined roles are displayed.
2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Adni n role with al configured permissions
granted. By default, Admi n hasasingle user—admi n.

Resource Roles

These roles define the functions users can perform with resources. Available permissions are read, write,
execute, and security.

To add users to resource roles:

1. Display the Security tab for the target resource (Resources > [sel ected resource] >
Security) . (For resource groups. Resources > Resource Goups > [Edit G oup
action] > Security).

138

uDeploy Security

All defined roles are displayed.
2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides Adni n role with al configured permissions
granted. By default, Adni n has asingle user—admi n.

Default Permissions

Default permissions can be set globally for al usersfor aproduct area, or for individual user groupswithin
an area. By default, a product areas permissions are not enabled for any user or group (except for the
admin user which has all permissions for all role types granted). Use the Default Permissions tab to set
default permissions, for both the groups you create and those shipped with the product.

Users added to a group inherit the group's default permissions.

Setting Default Permissions

To set default permissions:
1. Display the Default Permissionspane (Setti ngs > Def aul t Per mi ssi ons).

2. Fromthelist of product areas, select the area you want to use.

Figure 62. Default Permissionsfor Agent Area

Agent
Agent
Agent Pool
Application Default Permissions for All Users
Component Security
Component Template Write
Environment Read
License
Process Default Permissions for Groups
Resource Group Security Write Read
Resource Group Show Filters
Admin Group
Approve Group
Configuration Group
Deploy Group
10 per page 4records - Refresh Print 1/1

Selecting an area displays the permissions available for it. User-defined groups are configured
independently.

3. Check the permissions you want to grant for the selected group.

The following table lists the available permission.

Table 52. Product Area Privileges

Role Read Write Security | Execute | Snapshots| Comp. Versions
Procss.

Agent X X X

139

uDeploy Security

Role Read Write Security | Execute | Snapshots| Comp. | Versions
Procss.

Agent X X X

Pool
Application X X X X X X
Component X X X X X
Component X X X

Template
Environment X X X X

License X X X

Resource X X X X

Resource X X X X

Group

Authorization Realms

The Authorization Realms pane is used to create user groups and authorization realms. Authorization
realms associ ate users with roles and work with authentication realmsto determine which users can access
uDeploy. The authorization realms available are:

* Internal Storage. Uses internal role management. The default authorization realm—I nt er nal
Securi t y—isof thistype.

» LDAP. Uses external LDAP role management.

Creating an LDAP Authorization Realm

An LDAP authorization realm uses an external LDAP server for authorization.

To createan LDAP authorization realm:

1. Display the Create Authorization Realm dialog (Setti ngs > Security > Authori zation
> Create Authorization Real m[button]).

Figure 63. Create Authorization Realm Dialog

Create Authorization Realm

Name *

Description

Type *

User Group Attribute
Group Search Base
Group Search Filter
Group Name

Search Group Subtree

LDAP

140

uDeploy Security

2. Ensure that LDAP is selected in the Type list box, then specify the following:.

Table 53. LDAP Authorization Realm Properties

Field Description

User Group Attribute Name of the attribute that contains role names
in the user directory entry. If user groups are
defined in LDAP as an attribute of the user, the
Group Attribute configuration must be used

Group Search Base Base directory used to execute group searches,
such as ou=employees,dc=mydomain,dc=com.

Group Search Filter LDAP filter expression used when searching

for user entries. The name will be substituted in
place of 0in the pattern, such asuid={ 0}. If this
isnot part of the DN pattern, wrap the valuein
parenthesis, such as ud=(0).

Group Name Directory name used to bind

to LDAP for searches, such as
cn=Manager,dc=mycompany,dc=com. If not
specified, an anonymous connection will be
made. Required if the LDAP server cannot be
anonymously accessed.

Search Group Subtree Searches the subtree for the rolesiif checked.

Groups

Groups are logical containers that serve as a mechanism to grant permissions to multiple users; members
automatically share a group's permissions. Default permissions are granted to groups (or all users), not
individual users. Additionally, when a group is assigned a role, its members are automatically assigned
therole aswell.

Tocreateagroup:

1. Display the Create Group dialog (Setti ngs > Security > Authorization > G oups
> Create Group [button]).

2. Provide aname for the group. The name appearsin the Default Permissions pane.
3. Select an authorization realm. Groups are only valid for the selected realm.

uDeploy provides several default groups and users, which are listed in the following table. The default
groups and users are part of the internal security authorization realm.

Table 54. Default Groups

Group Users
Admin Group admin
Approve Group approve
Configuration Group config
Deploy Group deploy

141

uDeploy Security

Authentication Realms

The Authentication Realms pane is used to create authentication realms and users. Authentication realms
determine a user's identity within an authorization realm. Authentication is determined following the
hierarchy of realms displayed on the Authentication Realms pane. In the example below, authentication
will first be determined in the Internal Security realm followed by the LDAP realm. A user listed in the
LDAP realm may have different authorizations from those in the other realms.

Figure 64. Authentication Realms Precedence

Authentication Realms

Internal Security W ==
LDAP AV =

Create New Realm operation
tools

If you have anumber of authentication realms, you can reorder them using the operation tools. Each realm
can be moved up to a higher priority, moved down, or deleted by using the operation tools.

Creating an Authentication Realm

1. Display the Create New Authentication Realm (Settings > Security > Authentication

> Create New Real m.

2. Enter aname and description and other basic parameters:;

Allowed Login Attempts. Number of attempts allowed. A value of 0 means unlimited attempts.

Authorization Realm. Requires that the authorization realm was previously created.

Type. Selecting | nt er nal St or age completes the process.

Creating an LDAP Authentication Realm

If you selected LDAP, provide information about your LDAP installation:

Table55. LDAP Authentication Realm Properties

Field

Description

Context Factory

Context factory class used. This may vary
depending upon your Java implementation.
The default for Sun Javaimplementations:
com.sun.jndi.ldap.L dapCtxFactory.

LDAP URL URL to the LDAP server beginning with Idap:// or
Idaps://. Separate additional servers with spaces.
Use DN Pattern User directory entry pattern; the name will be

substituted in place of 0 in the pattern, such as
cn={ 0} ,ou=empl oyees,dc=yourcompany,dc=com.

142

uDeploy Security

Field

Description

User Search Base

Base directory used to execute group searches,
such as ou=employees,dc=mydomain,dc=com.

User Search Filter

LDAP filter expression used when searching

for user entries. The name will be substituted in
place of 0 in the pattern, such asuid={ 0} . If this
isnot part of the DN pattern, wrap the valuein
parenthesis, such as ud=(0).

Search User Subtree

If the LDAP user names are case sensitive, check
the box to treat different-case names as different
users.

Search Connection DN

Directory name used to bind

to LDAP for searches, such as
cn=Manager,dc=mycompany,dc=com. If not
specified, an anonymous connection will be
made. Required if the LDAP server cannot be
anonymously accessed.

Search Connection Password

Password used when connecting to LDAP to
perform searches.

Name Attribute

Contains the user's name, as set in LDAP.

Email Attribute

Contains the user's email address, as setin LDAP.

Once configuration is complete, when anew user logs on using their LDAP credentials, they will belisted
on the Authentication Realm Users pane. It isbest practice not to manage user passwords nor remove users
from the list. If an active user is removed from uDeploy, they will still be able to log onto the server as
long astheir LDAP credentials are valid.

Creating Users

When adding a new user, the user name and password is what the individual will use when logging into
uDeploy. The user name will also be displayed when setting up additional security.

Once the new user has been successfully added to a group, you might need to configure additional
permissions. This can happen when the new user is mapped to a group that has limited permissions.

Importing LDAP Users

Unless using LDAP authorization realm, valid LDAP users can log on but will have no permissions. To
provide permissions, import them first and define their permissions before they log on. Y ou can import
users from existing L DAP systems into uDepl oy-managed authentication realms.

To Import LDAP Users

1. Display the Create User didog(Setti ngs > Security > Authentication Realns >

[sel ect LDAP realnl > | nport

2. Enter the name of the user.

User

[button]).

If you enter asearch filter in the User nane field, the filter must be enclosed in parentheses.

Tokens

143

uDeploy Security

Tokens provide authorization for agents and users. Agents use tokens when performing process steps and
communicating with the uDeploy server and external services. Users can use tokens with the CLI client,
and instead of supplying a user name and password in certain situations.

Y ou can create tokens in addition to those shipped with the product.
Tocreateatoken:

1. Display the Create New Token dialog (Setti ngs > Security > Tokens > Create New
Token [button]).

2. From the User drop-down list box, select the user who will use the token.
3. Specify the expiration date and time.

Tokens can be used immediately after being created.

User Interface Security

These roles determine which parts of the uDeploy web application users can access. Each tab, such as
Reports, on the web application's home page can be restricted. Available permissions are:

Table56. Web Ul Permissions

Permission Description

Resources Access the Resources tab.
Applications Access the Applications tab.
Components Access the Components tab.
Configuration Access the Configuration tab.
Reports Access the Reports tab.
Deployment Calendar Access the Calendar tab.
Work Items Access the Work Items tab.
Settings Access the Settings tab.
Dashboard Access the Dashboard tab.

To add users to Web Ul roles:

1. Display the System Security tab (Setti ngs > Security > Security). (For resource groups.
Resources > Resource Groups > [Edit Group action] > Security).

All defined roles are displayed.
2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides the following roles:

Table57. Default Web Ul Roles

Role Description
Deployment Engineer Access the Reports, Calendar, Work Items, and
Dashboard tabs.

144

uDeploy Security

Role Description

Approver Access the Reports, Work Items, and Dashboard
tabs.

Administrator Accessdl tabs.

Configuration Engineer Access all tabs except Calendar and Work Items.

System Security

These roles define the functions users can perform with the uDeploy server (also referred to as system

security). Available permissions are;

Table58. Server Permissions

Permission Description

Security Manage security configuration; users without this
permission cannot access or change the security
functions.

Manage Plug-ins Grants users the ability to install new plug-ins.

Create Subresources Ability to create subresources.

Creaté\M anage Resource Roles

Create and delete resource roles.

Create Components Create components.
Create Applications Create applications.
Create Component Templates Create component templates.

Manage Licenses

Add and remove licenses.

To add users to system security roles:

1. Display the System Security tab (Setti ngs > Security > Security).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides Confi guration

Manager and

System Admi ni strator roles; the latter has all configured permissions granted. By defaullt,
System Admi ni strator role has asingle group—Adm n G oup (with user admin), and the
Confi gurati on Manager role aso hasasingle group—Confi gurati on G oup (with user

config).

145

System Settings

Installing Plug-ins

Plug-ins can be installed at any time. Download plug-ins from UrbanCode's plug-in page:
http://plugins.urbancode.com
Toingtall aplug-in:.

1. Download the plug-in from the UrbanCode plug-in page using the link supplied above. Plug-ins are
provided in compressed format (ZIP files). There is no need to decompress thefile.

Y ou can a'so load your own plug-ins. For information about creating plug-ins, see Plug-ins.

2. From the Automation Plug-ins pane, display the Load Plug-in dialog (Setti ngs > Pl ugi ns >
Load Plugin [button]).

3. Enter the path to the compressed plug-in file then use the Submit button.

If the plug-in loaded successfully, it will be listed on the Automation Plug-ins pane as soon as the process
finishes. Onceinstalled, plug-in functiondlity is available immediately.

Locks

Alock isaroutinely used to ensure that processes do not interfere with one another. Normally, once alock
isno longer needed it is released. Sometimes alock will not get released and its associated process will be
unable to complete. The lock management feature enables you to quickly identify and resolve abnormal
lock conditions.

Managing Locks

A running process with alock, like all active processes, appears on the Dashboard tab with a status of
Runni ng. If alocked process takes longer to complete than expected, you can cancel the process from
the Dashboard, or investigate it fully with the Set t i ngs tab.

1. Display the Lock pane by clicking the Locks link on the Settings tab (Hone > Settings >
Locks).

The Lock pane displays the following information:

Table59. Lock Fields

Field Description

Name The name identifies the lock. The displayed
name is a concatenation of the component or
application name (depending on type) + process
name + resource name.

Type Indicates whether the process creating the lock
is acomponent- or application-type. Locks can

146

http://plugins.urbancode.com

System Settings

Field

Description

only be applied to component or application
processes.

Component/Application

Displays the name of the component or
application containing the lock. Clicking an item
displays (depending on the type) the Component
pane, or Application pane, where you can
investigate the lock.

Resource/Environment

Displays the name of the resource or
environment containing the lock. Clicking
an item displays (depending on the type) the
Resour ce pane, or Environment pane.

Process Displays the name of the process containing the
lock. Clicking an item displays the processin the
process editor.

Actions Lists the available actions.

2. Resolvethelock by selecting an action:

Table 60. Lock Actions

Action

Description

View Request

Displays the process log for the process
containing the lock. You can usethe Act i ons
field on the displayed pane to see the name of the
process step causing the lock.

Release

Releases the lock which enables the associated
process to continue processing.

If the uDeploy server and or agents go down while alocked processis running, uDeploy will automatically
restore any interrupted processes along with any locks they might contain once serviceis restored.

Post-Processing Scripts

uDeploy component processes perform post-processing whenever a plug-in step finishes execution.
Typically, post-processing scripts ensure that expected results occurred. Y ou can use your own JavaScript
script instead by instructing uDeploy to use your script when you define the step. See the section called

“Process Editor”.

When a step finishes, the agent performing the step will run your script (the script must be written in
JavaScript). When the agent runs the script, it first loads the server log file and finds the exit code property
of the target step using regular expressions defined in the script. It then applies any actions defined in the

script before processing the next step.

To create a script:

1. Display the Edit Script dialog (Setti ngs > Post Processing Scripts).

147

System Settings

Figure 65. Edit Script Dialog

Edit Script

Name *

Description

Script Body *

2. Enter a name for the script into the Nane field. The name must match the name you specified when
you defined the process step. See the section called “Process Editor”.

3. Enter or paste the script into the Scri pt Body field. See the roll-over help next to the field for
information about the properties and variables available for user-defined scripts.

The uDeploy server log file is normally found in the following location: uDepl oy_r oot \ var\ | og
\ depl oyserver. out.

Inventory and Component Statuses

Statuses can be used to track component version and inventory states. Inventory statuses can track
component versionsin environments and resources. Y ou can create inventory statusesfor any requirement
—for instance, you might copy filesto an agent without running them, and apply aSt aged statusto them;
when you install the version, you might set the statusto Act i ve.

Version statuses are used with application gates (see the section called “ Application Gates’) to ensure that
only component versions that meet certain criteria are deployed.

Creating Statuses

Component version and inventory statuses are defined with the Statusestab (Set t i ngs > St at uses).
To creste a status:
1. Usethe Add St at us button for the type—inventory, version—you want to create.

2. Configure the status using the Add Status dialog box:

Table 61. Status Parameters

Parameter Description

Name/Description The name identifies the status and isused in
process steps and in the UI.

Color Displayed in the UI.

Unique When checked, only one instance of the status

can be used for the component. For inventory

148

System Settings

Parameter Description

statuses, an application will remove the status
from any existing version in the environment

or resource inventory. For version statuses, the
status can only be used by one version at agiven
time.

Reguired Component Role User role required before a user can add the
status to a component.

3. Save your work when finished.

Statuses are stored in the uDeploy database.

Using Statuses

Version statuses can be added to components on the Versions tab (Conponents > [sel ected
conponent] > Versions > [sel ected version]).

Inventory statuses can be added to a component with the Inventory Update application process step or the
Add Inventory Status plug-in step.

Licenses

The Licenses pane is where you manage user licenses—-adding or deleting licenses, and assigning agents
to them. Display the Licenses pane by clicking the Li censes link on the Settings window (Hone >
Settings > License).You can aso access the pane through the Resour ces tab (Resour ces >
Agents > License).

Figure 66. Licenses Pane

Licenses
ID | Description License Type Agents Created Expiration Actions
-50 Evaluation 1/999 Thu Aug 18 08:53:54 EDT 2011 none Details Edit Assign Agents Delete
10 per page 1record - Refresh Print 1/1

Adding a License

Toadd alicense:

1. Display the Add New License dialog by clicking the Add New L icense button.
2. Paste the license text supplied by UrbanCode into the Li cense field.

3. Optionally, add a description.

4. Click Save when you are done.

To see information about alicense, display the License Details pop-up by clicking the Det ai | s link.

149

System Settings

Adding Agents to a License

Agents can be assigned to licenses automatically or manually. This section explains how to add agents
manually. To automatically add agents, ensure that the Aut omati ¢ Li cense Managemnent check
box on the System Settings pane is checked. See the section called “ System Settings’.

To add an agent to alicense manually:

1. Display the Assign Agentsto License pop-up by clickingthe Assi gn Agent s link for the intended
license.

2. Select an agent by clicking the Agent s field. A selection-type pop-up is displayed listing any agents
not already assigned to the selected license.

Figure 67. Assign Agentsto License Pop-up

0 selected
Select the agent or agents you want to add to the license.

3.
4. Optionally, you can filter the listed agents by entering search text into the text field.
5. After select agents, click OK to close the selection pop-up.

6. If you want to restart the selection process, click Reset.

7. When you are finished, click Save.

Modifying or Deleting a License
To modify or update an existing license:
1. Display the Edit License diaog by clicking the Edi t link for the license you want to change.
2. Edit the information shownin the Li cense field.
3. Click Save when you are done.

To delete an existing license, click the Del et e link for the selected license.

Log Settings

Logging is done with the Log4j logging framework from Apache. Log4j logging is configured
withtheserver install _directory\conf\server\log4j.properties file and can be
configured at run time.

The uDeploy server log file can be found in the following location: server _i nstal |l _directory
\var\| og\ depl oyserver. out.

Network Settings

150

System Settings

Network Relay

A network relay is used in conjunction with an agent relay. The network relay reverses the direction of
communication through afirewall between the uDeploy server and agent relay. A network relay is only
used when you want the server to connect to the relay instead of the reverse (which is default). To create
anetwork relay an agent relay must be created. (See the section called “ Installing Agent Relays’ to create
an agent relay)

Creating a Network Relay

To create a network relay, display the network pane (Hone>Setti ngs>Systen>Create New
Net wor k Rel ay).

1. Enter the name of the network relay.
2. ldentify the Host and Port.

3. Indicateif the Network Relay will be Active by checking the box.

Notifications

uDeploy can send email notificationswhenever user-defined trigger eventsoccur. Notifications can be sent
when a deployment finishes or an approval is required, for example. Notification recipients are defined
with the security system's (see uDeploy Security) LDAP integration. If you have not already done so, set
up LDAP prior to configuring notifications. uDeploy relies on LDAP and an associated e-mail server to
send notifications.

Note

uDeploy requires an external SMTP mail server to send notifications. For information about
configuring amail server, see the section called “ System Settings”.

When setting up notifications, you select both the triggering events and the role, which is inherited from
the security system, to determine which users will receive notification. For example, it is common for an
administrator or environment owner to be notified when awork item (as part of the approval process) has
been generated. The default notification scheme, which sends notifications to the application and admin
default roles (see uDeploy Security), can be edited or you can create your own scheme.

To set up your own notifications, display the Notifications pane (Set ti ngs > Noti fi cati ons).

Figure 68. Notification Schemes

[Plugins | Properties| Notifications
Notification Schemes

Notification Scheme Description Actions
Default Notification Scheme

My Notification Scheme

0 mETTEGE 2records - Refresh 1]/1

Create New Notification Scheme

Configure the new Scheme. Here, you will be setting up the who/when for notifications. Once configured,
you can come back add additional Entries to the Scheme or edit an existing one.

Notification Type. The process type is determined mainly by the type of recipient. For example, a
deployment engineer would be interested in being notified about afailed deployment.

151

System Settings

Figure 69. Notification Type

Add Notification Entry

Process Success | - |

Target * Process Success
Role * Process Failure
Approval Completed
Template Name * ure
Approval Failed

AllTields marked with — are required.

Save Cancel

Notification Target. When setting the target, the application option will only send out notifications
when the event selected above corresponds to an Application. For example, the "Process Success' event,
when pared with the "Application” Target would trigger a notification when a Process (an application
deployment) issuccessful. Similarly, the same event type, when used with the " Environment” target would
instigate a notification when a successful deployment has been run in an Environment (e.g., SIT, PROD).

Figure 70. Notification Target

Add Notification Entry

Type * | Process Success |

Application | +

Role * Application

Environment
Template Hame * — ——hentFailure

All fields marked with ™ are required.

Save Cancel

Notification Role. The Role corresponds to those set in the Security System. Any individual assigned the
Role you select will receive an e-mail.

Figure 71. Notification Role

Add Notification Entry

Type * | Process SUCCess |
Torget”
Template Name * Admin @

Approve
My Mew Role '

* are required.

R

Test Role

152

System Settings

Template Name.The available templates are provided by default and should suffice for all your needs;
they format the e-mail being sent. Which template you use is based on why you want to set up anctification
and the recipients of the notification. However, if the default templates do not suit your needs, you can
create your own.

Application deployment failure/success. Sends notifications about a specific application to the specified
users, based on the role setting.

Task readied/created/completed. Thistemplate is used to report back on the state of manual tasks.

Deployment readied. A specialized e-mail template for letting people know a deployment has been
prepared.

Approval created/failed. These templates are used to notify the status of an approval.

Once you have the entry done, add others using the same process. If you want to use the new notification
scheme with existing applications, modify the application settings.

Creating Notification Templates

Notification Templates are XML files located on the server's conf/server/ notificati on-
t enpl at e filefolder. If the default notification templates do not suit your needs, you can create new ones.

To create anew Notification Template:

1. Start anew XML file.

2. Enter Script. (Notification templates only supports Velocity Reports)

3. Savefileintheserver'sconf/server/notification-tenpl at e filefolder.

4. Restart the server.

Output Log

Server output is written to the server _i nstal | _directory/var/ | og/ depl oyserver. out
log file. You can open the file directly or accessit fromthe Ul (Setti ngs > System > CQut put
Log).

The information written to the log file is determined by the settings in the | og4j . pr operti es file
which is found a server _install _directory\conf\server\l og4j.properties. You
can edit the file directly or through the Ul, see the section called “Log Settings ”

System Properties

System properties are global variables. System properties are available on the Settings tab (Set t i ngs
> Properties).

System properties are referenced like this:
${ p: syst eni propert yNane}
If you create system variable SUCCESS, for example, you would reference it like this:

echo ${p: syst em SUCESS}

153

System Settings

Output in this case:

SUCESS

System Settings

Table 62. System Settings Field

Field

Description

External URL*

URL used by agents and users to connect to the
uDeploy server.

Only Groups in Security Roles

When checked, privileges are assigned to user
groups, not individual users.

Automatic Version Import Check Period
(seconds)*

The number of seconds between when uDeploy
polls components for new versions. If changed,
the server must be restarted before the change
becomes effective. UrbanCode recommends that
the value be set no lower than 15 seconds.

Mail Server Host

Host name of the mail server used for
notifications. uDeploy can send notifications to
users based on user-configured trigger events
(to set up notifications, see the section called
“Notifications”). uDeploy requires an external
SMTP mail server to send messages. To disable
notifications, leave the field blank.

Mail Server Port

SMTP port used by the naotifications mail server.

Secure Mail Server Connection

Specifies whether the SMTP connection is secure.
The default value is unchecked--not secure.

Mail Server Sender Address

Sender address for email notifications.

Mail Server Username

User name for sending email notifications. Some
e-mail serversand firewallstreat e-mailswith
different sender and user names suspiciously--you
might want to use the same name for both fields.

Mail Server Password

User password for sending email notifications.

Hour to Clean Versions*

Time of day when versions are cleaned. Value
must be an integer between 0 (midnight) and 23
(11 pm).

Daysto Keep Versions*

Number of days component versions are kept. A
value of - 1 meansthey are kept indefinitely.

Number of Versions to Keep*

Number of component versions to keep. A value of
- 1 meansall are kept.

Archive Path

Path where the compressed file containing
archived component versionsis written. If blank,
the compressed file is not written (and no archive

kept).

Automatic License Management

Determines whether new agents are assigned
to alicenses automatically. If checked, agents
are assigned to the license with the most time

154

System Settings

Field Description

remaining before it expires. The default valueis
checked--assign agents automatically.

* = required

Preview Version Cleanup

To preview the component versions that will be archived the next time an archivefileis created, click the
Previ ew Version C eanup link. Using the link displays the Version Cleanup Preview diaog,
which lists the to-be-archived component versions.

155

Configuration

The uDeploy Configuration tool enables you to directly manage application, component, and environment
configuration data.

Configuration data is manipulated at the application, component, and environment levels:
» Component

A component refersto any file that you want to include in the build process, components are associated
with the configuration data required to deploy them.

» Application
Applications represent a group of components deployed together by component version and
environment. Applications also map the hosts and machines (called resources) components require
within every environment.

» Environment
An environment is a collection of resources that host an Urban Deploy application.

Figure 72. Configuration Tab

Home » Configuration

ADPICALION / COMPONENL) ENVIGNIMent N

JPetstore application Application: stressTestNov1

FPetstore-APP component

c Properties
SIT environment
B Add Property
UAT environment
. MName Value Description Actions
France 1 environment Show Filters
Feisore0s COMpoNent Mo properties found, - Refresh

s Add Property

FetStoreWEE component
s
UAT

Francel

stressTesthov1 application

Access the Configuration Tool by clicking on the Configuration tab.

Application Configuration

You attach properties to an application by using the Configuration Tool's Appl i cati on: Add
Property button. Typica application-level properties include items that are the same in all
environments, such as base-install paths.

156

Configuration

Figure 73. Application Properties panel

Home » Configuration

Application / Component / Environment n

JPetStore

= JPetStore-APP

Application: JPetStore

Properties
Add Property

Name Value

10 per page
Add Property

Description
Show Filters

record - Refresh

Actions

Francel

= JPetStore-WEB

ST

uAT

France1

1 -

Access the Configuration Tool Application panel by clicking on an application in the Appl i cati on/
Conponent / Envi ronnent list box.

Adding Application Configuration Properties

To add a property to the selected application:
1. Usethe Add Property button.

The Edit Property pop-up is displayed.

Figure 74. Edit Property pop-up

Application: JPetStore

Properties

Add Property Edit Property

name * ||
Description

Secure

Add Property Value
Save ‘Cancel

2. Enter the property's namein the Nane field.
While component fields can be of any size, configuration properties are restricted to 4,000 characters.
3. Enter adescription of the property inthe Descri pti on field.
4. Specify whether the property is secure by using the Secur e check box.
Secure properties are stored encrypted and displayed obscured in uDeploy's user interface.
5. Enter avalue for the property in the Val ue field.

6. Save the property by using the Save button.

157

Configuration

7. Todiscard your work, usethe Cancel button.

Modifying and Deleting Application Configuration
Properties

Moaodifying Application Configuration Properties

To modify a previously created property, use the Edi t link in the Action column to display the Edit
Property pop-up.

Deleting Application Configuration Properties

To delete a property, usethe Del et e link in the Action column.

Component Configuration

The Urban Deploy Configuration tab enables you to configure applications and their components from a
single location. Configuration datais manipulated at the application, component, and environment levels:

* component

A component refersto any file that you want to include in the build process; components are associated
with the configuration data required to deploy them.

 application

Applications represent a group of components deployed together by component version and
environment. Applications also map the hosts and machines (called resources) components require
within every environment.

* environment
An environment is a collection of resources that host an Urban Deploy application.

Access the Configuration Tool by clicking on the Configuration tab.

Environment Configuration

The Urban Deploy Configuration tab enables you to configure applications and their components from a
single location. Configuration datais manipulated at the application, component, and environment levels:

* component

A component refersto any file that you want to include in the build process; components are associated
with the configuration data required to deploy them.

 application

Applications represent a group of components deployed together by component version and
environment. Applications also map the hosts and machines (called resources) components require
within every environment.

e environment

158

Configuration

An environment is a collection of resources that host an Urban Deploy application.

Access the Configuration Tool by clicking on the Configuration tab.

159

Inventory

The Inventory shows what Applications and Components have been deployed, including the current
Versions that are running on the Resource within an Environment. The inventory provides complete
visibility into the different VVersions of your Applicationswhich can be tracked back to the original artifacts
imported into uDeploy. Theredifferent views of the current inventory, depending on wherein uDeploy you
are. Inventory information is available on the individual Components, for every Application Environment,
aswell asfor each Resource (agent).

Resources Inventory

If you want to see what Components are sitting on the SIT Environment, go to Resources and select the
agent that is running in the Environment. From here, selecting either the Component or its Version will
take you to the Component's page if you need more information.

Figure 75. Resour ceinventory

Resource: SIT Environment
Description Agent installed in SIT.

Current Inventory

Component Version
My Application (WEB) 8[18/11 10:43 AM Active
¢ Application (APF) 8/18/11 10:43 AM Active
My APt 10 8/18/11 10:36 AM Staged
10 per page 3records - Refresh

Component Inventory

Unlike the Resource Inventory, the component inventory tells you what Version of the Component is
running on a Resource. For example, if the Component is currently deployed to multiple machines, they
would all be displayed. For here, you can go navigate to the Resource.

Figure 76. Component inventory

Home » Components » My Application (WEB)

Component: My Application (WEB)

Description The web tier of My Application.

[Properties [Versions | PA

Resources With This Component

¢ alendar

Rexzaurce Version
8/18/11 10:43

lrecord - |

160

Inventory

Environment Inventory

For any given Application Environment, the environment inventory tells you both what version of any
given Component is running on a particular Resource. If multiple Versions are running on different
Resources, they will all be listed.

161

Reference

Component Source Configuration

Basic Fields

Thesefields appear for all sourcetypes; they are displayed when the Create New Component dialog opens.
Other fields, discussed below, are displayed when a source type is selected.

Table 63. Fields Availablefor All Source Types

Field Description

Name I dentifies the component; appears in many Ul features. Required.

Description The optional description can be used to convey additional information
about the component. If the component is used by more than one
application, for example, entering "Used in applications A and B" can
help identify how the component is used.

Template A component template enables you to reuse component definitions;

components based on templates inherit the template's source
configuration, properties, and process. Any previously created
templates are listed. A component can have a single template
associated with it. The default valueis None.

If you select a template, the Template Version field is displayed
which isused to select atemplate version. By controlling the version,
you can roll-out template changes as required. The default value is
Latest Version which means the component will automatically usethe
newest version (by creation date). See the section called “Component
Templates’.

Note

If you select atemplate that has a source configured for
it, the dialog box will changeto reflect values defined for
thetemplate. Several fields, including the Source Config
Type field, will become populated and locked.

Sour ce Config Type

Defines the source type for the component's artifacts; al artifacts
must have the same source type. Selecting a value displays additional
fields associated with the selection. Source-dependent fields (see
Component Source Configuration) are used to identify and configure
the component'sartifacts. If you selected atempl ate, thisfieldislocked
and its value is inherited from the template.

Import Versions Automatically

If checked, the source location is periodically polled for new versions;
any found are automatically imported. The default polling period is 15
seconds, which can be changed with the System Settings pane. If left
unchecked, you can manually create versions by using the Versions
pane. By default, the box is unchecked.

Copy to CodeStation

This option—selected by default—creates a tamper-proof copy of
the artifacts and stores them in the embedded artifact management
system, CodeStation. If unchecked, only meta data about the artifacts
are imported. UrbanCode recommends that the box be checked.

163

Component Source Configuration

Field

Description

Default Version Type

Defines how versions areimported into CodeStation. Ful | meansthe
version is comprehensive and contains all artifacts; | ncr enent al
means the version contains a subset of the component's artifacts.
Default value is: Full. Required.

Inherit Cleanup Settings

Determines how many component versions are kept in CodeStation,
and how long they are kept. If checked, the component will use
the values specified on the System Settings pane. If unchecked, the
Days to Keep Versions (initially set to -1, keep indefinitely) and
Number of Versions to Keep (initialy set to -1, keep al) fields are
displayed, which enable you to define custom values. The default
valueis checked.

File System (Basic and Versioned)

See the section called “Basic Fields” for information about the standard fields which apply to each source

type.

File System (Basic)

Imports everything in the target directory whenever you import versions. You can set up a template to
auto-increment version numbers. Automatic import is not available for this source type.

Table 64. File System (Basic) Source Fields

Field

Description

Base Path

Defines how the property is presented to usersin the uDeploy editor.
This element has severa attributes:

Always Use Name Pattern

Used to specify values for a select-box. Each value has a mandatory
| abel attribute which is displayed to users, and a value used by the
property when selected. Values are displayed in the order they are
defined.

Version Name Pattern

Defines how the property is presented to usersin the uDeploy editor.
This element has severa attributes:

Next Version Number

Defines how the property is presented to usersin the uDeploy editor.
This element has severa attributes:

Save File Execute Bits

Defines how the property is presented to usersin the uDeploy editor.
This element has severa attributes:

File System (Versioned)

The File System (Versioned) source type interacts with file-system-based artifacts. It assumes that
subdirectories within the base directory are distinct component versions. File System (Versioned) can
automatically import versions into CodeStation.

Table 65. File System (Versioned) Sour ce Fields

Field

Description

Base Path

Path to directory containing artifacts. The content of each subdirectory
within the base directory is considered a distinct component version.

164

Component Source Configuration

Field

Description

The subdirectory with the most recent time-stamp is considered the
"|atest version."

Save File Execute Bits

Defines how the property is presented to usersin the uDeploy editor.
This element has severa attributes:

165

Plug-ins

uDeploy plug-ins provide tools for creating component processes. Plug-ins consist of configurable steps
which can bethought of asdistinct piecesof automation. By combining stepsin the uDeploy editor, you can
create fully-automated deployment processes. In addition to basic plug-ins, others integrate many third-
party tools into uDeploy, such as application servers and software configuration management products.
For example, the Tomcat and WebSphere plug-ins--to name just two--provide steps that start and stop
those servers, install and uninstall applications, as well as perform other tool-specific tasks. Finaly, you
can write your own plug-in (see the section called “ Creating Plug-ins’.

A plug-in consists of a number of steps, which varies from plug-in to plug-in. Each step consists of a
number of properties, acommand that performs the function associated with the step, and post-processing
instructions (typically used to ensure that expected results occurred). Step properties can serve a wide
variety of purposes, from providing information required by the step's command, to supplying some or al
of the actual command itself. When you create a process, you drag steps onto the editor's design area and
definetheir properties asyou go. Property val ues can be supplied when defining acomponent process or at
run-time. The process flow is defined by drawing connections between steps. In the following illustration,
you can see a series of plug-in steps and the connections between them. For information about creating
component processes, see the section called “Component Processes’; for information about creating your
own post-processing scripts, see the section called “ Post-Processing Scripts’.

Figure 77. Example Process

Process: Deploy Application

Description Deploys my Web Application
LU Edit | Properties |
Tools
A LEkX
Add Steps

: . & ()

Available Plugin Steps , Fetch the Artifacts
[:
= Manual Task w Download Artifacts By 1
T+ Add Inventory Status i
w0

T:: Remove Inventory Status

'y Stop Applicatiol
(3 Artifacts ;5 Stop Applicati
+| | meifehang) o

/ N
= Deploy , Undeploy Apprmatiaﬁ

Elpe, A ppCmd \(.;;' Undeploy Ap ion
+ 0 JBoss

m

+] Tomeat \‘_ g
== Deploy Applicatiol
+!] Urbancode Package Manager "(_‘;" Deploy Ap i
+1 0 webSphere
+ 0 wLDeploy]
S

)\
+ 2 Files | L tart igprmtp
+ 3 Scripting
+ 00 squ)

< 1 3 © 4 Add Inventory Status: ive

K

Finish

Plug-insat Run-time

166

Plug-ins

Component processes are run by agents instaled in the target environment. For a process to run
successfully, the agent must have accessto all resources, tools, and files required by the plug-in steps used
in the process. When installing an agent, ensure that:

» The agent running the process has the necessary user permissions to execute commands and access
any required resources. This typically entails granting permissions if an externa tool isinstaled as a
different user; installing the agent as a service; or impersonating the appropriate user (see the section
called “User Impersonation”.

» Any external tools required by plug-in steps are installed in the target environment.
* The required minimum version of any external tool isinstalled.

For information about installing agents, see the section called “Agent Installation”.

Standard Plug-ins

uDeploy also includes a standard set of automation steps that can be used to add additional automation to
any process. These will typically be used for advanced processes or where there is no standard integration
step available from one of the integrations.

Shell

The Shell integration consists of a single step that you can include in any deployment process or other
process. The most common use case opening and running a shell script on the target machine. If the step
is used within alarger process, ensure that you set the order correctly. For example, if you have to run a
shell script prior to executing another process, you will need to add the Shell step above the other step.

UrbanCode Package M anager

Thisisfor advanced usage. The stepswork in conjunction with uDeploy to create and manage application
packages for deployments. These steps will not generally be used as part of aregular deployment.

uDeploy

These advanced automation steps will retrieve properties and environments from uDeploy.

Creating Plug-ins

A plug-in consists of two mandatory XML files--plugin.xml and upgrade.xml--along with any supporting
script filesrequired by the plug-in. The plugin.xml file definesthe steps comprising the plug-in; aplug-in's
functionality isdefined by itssteps. Each stepisan independently configurable entity inthe uDeploy editor.

The upgrade.xml file is used to upgrade the plug-in to a new version. Optionally, you can include an
info.xml file which contains a version ID and other information used by the UrbanCode plug-in page.
Although optional, UrbanCode recommends the use of the info.xml file.

A plug-in step is defined by a <st ep-t ype> element that contains. one <pr operti es> element,
one <command> element, and one <post - pr ocessi ng> element. The <pr operti es> element is
a container for <pr opert y> child elements, and can contain any number of <pr opert y> elements.
Property values can be supplied at design- or run-time. The <post - pr ocessi ng> element provides
error-handling capabilities and sets property values that can be used by other steps. The <conmand>
element performs the step's function. The function can be defined completely by the element, or be
constructed in part or entirely from the step's properties at design- or run-time.

In addition to a step's own properties, acommand has access to properties set earlier by other stepswithin
the process, to properties set by the application that invoked the component process, as well as to those

167

Plug-ins

on the target environment and resource. Step property values become unavailable once the component
process ends.

Plug-in steps are performed by an agent installed in the target environment, which meansthat plug-ins can
be written in any scripting language as long as the agent can access the required scripting tools on the host.
Once aplug-iniscreated, upload it into uDeploy to make it available to users. To upload a plug-in, create
a ZIP archive that contains the XML files (plugin.xml and upgrade.xml) along with any scripts required
by the plug-in, then import the ZI P file with the Automation Plugins pane (Set t i ngs > Aut ormati on
Pl ugi ns > Load Pl ugin).

The plugin.xml File

A plug-in is defined with the plugin.xml file. The structure of this file consists of a header element
and one or more st ep-t ype elements. Theheader identifiesthe plug-in. Each st ep-t ype element
defines a step; steps are available to users in the uDeploy process editor and used to construct component
processes.

After the document type declaration, the pl ugi n root element identifies the XML schema type,
PluginXML Schema_v1.xsd, which is used by all plug-ins. The following presents the basic structure of
plugin.xmi:

<?xm version="1. 0" encodi ng="UTF-8""?>
<plugi n xm ns="http://ww. U banCode. conml Pl ugi nXM_Scherma_v1"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" >
<header >
<identifier id="plugin_id" version="version_nunber"” nane="Plug-in Name"/>
<descri ption/ >
<t ag>Pl ugi n_t ype/ Pl ugi n_subt ype/ Pl ugi n_nanme</t ag>
</ header >
<step-type name="Step_Nane">
<descri ption/ >
<properties>
<property nane="porperty_name" required="true">
<property-ui type="textBox" |abel="Driver Jar"
description="The full path to the jdbc driver jar to use."
def aul t - val ue="${p: resour ce/ sql Jdbc/j dbcJar}"/>
</ property>
</ properties>
<post - processi ng>

<! [CDATAl
if (properties.get("exitCode") = 0) {
properties.put("Status", "Failure");
}
el se {
properties. put("Status", "Success");
}

11>

</ post - pr ocessi ng>

<conmand progran¥"${path_to_t ool ">
<arg val ue="paraneters_passed_to_tool"/>
<arg pat h="${p:jdbclar}"/>

168

Plug-ins

<arg file="command_to_run"/>
<arg file="${PLUG N_| NPUT_PROPS}"/ >
<arg file="${PLUG N _QUTPUT_PROPS}"/ >
</ conmand>
</ step-type>
</ pl ugi n>

The <header > Element

The mandatory header element identifies the plug-in and contains three child elements:

Table 66.

<header > Child Elements Description

<identifier> This element's three attributes identify the plug-in:
e version

APl version (the version number used for upgrading plug-ins is
defined in the info.xml file).

eid
Identifies the plug-in.
* nane

The plug-in name appears on uDeploy's web application
Automation Plugins pane, and on the UrbanCode.com plug-in page.

All values must be enclosed within single-quotes.

<descri pti on> Describes the plug-in; appears on uDeploy's web application
Automation Plugins pane, and on the UrbanCode.com plug-in page.

<t ag> Defines where the plug-in is listed within the uDeploy editor's
hierarchy of available plug-ins. The location is defined by a
string separated by dashes. For example, the Tomcat definition is:
Application Server/Javal/ Tontat. The Tomcat steps will
be listed beneath the Tomcat item, which in turn is nested within the
other two.

The following is a sample header definition:

<header >
<identifier version="3" id="com &conpany; . air.plugin. Toncat" name="Tontat"/>
<descri pti on>
The Tontat plugin is used during deploynments to execute Tontat run-book
aut omati ons and depl oy or undepl oy Tontat applications.
</ descri pti on>
<t ag>Appl i cati on Server/Javal/ Tontat </t ag>
</ header >

169

Plug-ins

Plug-in Steps--the <st ep-t ype> Element

Plug-in steps are defined with the st ep- t ype element; each st ep-t ype represents a single step in
the uDeploy process editor. A st ep-t ype element has a name attribute and severa child elements:
descri ption, properties,command, and post - pr ocessi ng.

The mandatory name attribute identifies the step. The description and name appear in uDeploy's web
application and on the UrbanCode.com plug-in page.

<step-type name="Start">
<description>Start Apache HTTP server</description>

Note

A step name cannot contain the /" character.

Step Properties--the <pr operti es> Element

Thepr operti es element isacontainer for properties which are defined with the pr oper t y tag. Each
stephasasinglepr operti es element; apr opert i es element can contain any number of pr operty
child elements.

A pr oper t y tag hasamandatory nane attribute, optional r equi r ed attribute, and two child elements,
property-ui andval ue, which are defined in the following table.

Table67. The<pr opert y> Element

<pr opert y> Child Elements |Description

<property-ui> Defines how the property is presented to usersin the uDeploy editor.
This element has several attributes:

* | abel

Identifies the property in the editor's Edit Properties dialog box.
e description

Text displayed to usersin the associated roll-over help box.
» defaul t-val ue

Property value displayed when the Edit Properties dialog box is
displayed; used if unchanged.

» type
Identifiesthe type of widget displayed to users. Possible values are:
e text Box

Enables usersto enter an arbitrary amount of text, limited to 4064
characters.

170

Plug-ins

<pr operty> Child Elements |Desc

ription

e t ext AreaBox

Enables users to enter an arbitrary amount of text (larger input
areathan textBox), limited to limited to 4064 characters.

secur eBox

Used for passwords. Similar to textBox except values are
redacted.

checkBox

Displays a check box. If checked, a value of true will be used;
otherwise the property is not set.

sel ect Box

Reguires alist of one or more values which will be displayed in
adrop-down list box. Configuring avalue is described below.

<val ue> Used

defin

| abel attribute which is displayed to users, and a value used by the
property when selected. Values are displayed in the order they are

to specify values for a selectBox. Each value has a mandatory

ed.

Hereisasample <pr oper t y> definition:

<property name="onerror" re

qui red="true">

<property-ui type="sel ect Box"

def aul t - val ue="abort"

description="Action to p

| abel ="Error Handling"/>
<val ue | abel =" Abort " >abort
<val ue | abel =" Conti nue">co
<val ue | abel =" St op" >st op</
</ property>

The <command> Element

erformwhen statenent fails: continue, stop,

</ val ue>
nti nue</ val ue>
val ue>

Steps are executed by invoking the scripting tool or interpreter specified by the <comand> element. The
<comand> element'spr ogr amattribute definesthelocation of thetool that will perform the command.
It bears repeating that the tool must be located on the host and the agent invoking the tool must have access
to it. In the following example, the location of the tool that will perform the command--the Java-based

scripting tool groovy in thisinstance--is

defined.

<command progranF' ${ GROOVY_HOVE}/ bi n/ gr oovy' >

The actual command and any parameters it requires are passed to the tool by the <command> element's
<ar g> child element. Any number of <ar g> elements can be used. The <ar g> element has several

attributes:

171

abort."

Plug-ins

Table 68. <ar g> Element Attributes

Attribute Description

<val ue> Specifies a parameter passed to the tool. Format is tool-specific; must
be enclosed by quotes.

<pat h> Path to files or classes required by the tool. Must be enclosed by
quotes.

<file> Specifies the path to any files or classes required by the tool. Format
is tool-specific; must be enclosed by quotes.

Because <ar g> elements are processed in the order they are defined, ensured the order conforms to that
expected by the toal.

<command progranE' ${ GROOVY_HOME}/ bi n/ gr oovy' >

<arg val ue='-cp' />

<arg pat h='cl asses: ${sdkJar}: i b/ conmons- codec. j ar:
lib/activation-1.1.1.jar:
i b/ commons-1ogging.jar:lib/httpclient-cache.jar:
lib/httpclient.jar:lib/httpcore.jar:
lib/httpmne.jar:lib/javamail-1.4.1.jar' />

<arg file="regi sterlnstancesWthLB. groovy' />

<arg file="${PLUG N_| NPUT_PROPS}' />

<arg file="${PLUG N_QUTPUT_PROPS}' />

</ command>

The <arg file=" ${PLUG N_I NPUT_PROPS}' / > specifies the location of the tool-supplied
propertiesfile. The<arg fil e=" ${ PLUG N_OUTPUT_PROPS} ' / > specifiesthe location of thefile
that will contain the step-generated properties.

Note: new lines are not supported by the <ar g> element and are shown in this example only for
presentation.

The <post - processi ng> Element

When a plug-in step's <command> element finishes processing, the step's mandatory <post -

processi ng> element is executed. The <post - processi ng> element sets the step's output
properties (step name/property name, see uDeploy Properties) and provides error handling. The <post -

processi ng> element can contain any valid JavaScript script (unlike the <command> element,
<post - pr ocessi ng> scripts must be written in JavaScript). Users can also provide their own scripts
when defining the step in the uDeploy editor, see the section called “ Post-Processing Scripts’. Although
not required, it's recommended that scripts be wrapped in a CDATA element.

You have accessto aj ava. util . Properti es variable called properti es. Theproperti es
variable has several special properties: exi t Code contains the process exit code, and St at us contains
the step's status. A St at us value of Success means the step completed successfully.

Another available variable—scanner — can scan the step's output log (scanning occurs on the agent)
and take actions depending on the results. scanner has several public methods:

e register(String regex, function call) registersafunctionto becalled whentheregular
expression is matched.

172

Plug-ins

e addLO (I nteger |ineNunber) addsalineto thelines of interest list, which are highlighted in
the Log Viewer; implicitly called whenever scanner matchesaline.

e getLinesOInterest() returnsajavadutil.List of lines of interest; can be used to remove lines.

e scan() scansthelog. Use after al regular expressions are registered.

The post-processing script can examine the step's output log, and take actions based on the result. In the
following code fragment, scanner . r egi st er () registers a string with a regular expression engine,
then takes an action if the string is found. Once al strings are registered, it callsscanner. scan() on
the step's output log line by line.

<! [CDATA
properties. put ("Status", "Success");
if (properties.get("exitCode") = 0) {
properties.put("Status", "Failure");
}
el se {
scanner.register("(?)ERROR at line", function(lineNunber, Iine)
var errors = properties.get("Error");
if (errors == null) {
errors = new java. util.ArrayList();

}
errors.add(line);
properties.put("Error", errors);
properties.put("Status", "Failure");

1),

scanner.scan();
var errors
if (errors

errors
}

properties.put("Error", errors.toString());
}

properties.get("Error");
= null) {
new java. util.ArrayList();

1]

Y ou can use a post-processing scripts to set output properties that can be used in other steps in the same
process, which enables complex workflows. Reference prior step output properties this way:

${ p: st epNane/ pr opNane}
Upgrading Plug-ins

To create an upgrade, first, increment the number of the ver si on attribute of the <i denti fi er >
element in plugin.xml. Next, createa<mi gr at e> element in upgrade.xml withat o- ver si on attribute

173

Plug-ins

containing the new number. Finaly, place the property and step-type elements that match the updated
plugin.xml file within this element, as shown in the following example.

<?xm version="1.0" encodi ng="UTF-8"?>
<pl ugi n- upgr ade
xm ns="http://ww. &onpany; . conf Upgr adeXM_Schema_v1"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" >
<m grate to-version="3">
<m gr at e-command nanme="Run SQ.Pl us script">
<m grat e-properti es>
<m grate-property nane="sql Files" old="sqlFile"/>
</ m grate-properties>
</ m gr at e- conmand>
</ m grat e>
<m grate to-version="4">
<m gr at e-command nanme="Run SQ.Plus script" />
</ m grat e>
<m grate to-version="5">
<m gr at e-command nanme="Run SQ.Plus script" />
</ m grat e>
</ pl ugi n- upgr ade>

Of course, you can also make a script-only upgrade, that is, an upgrade that contains changes to the step's
associated scripts and files but does not change plugin.xml. This mechanism can be useful for plug-in
development and for minor bug-fixes/updates.

The info.xml File

Use the optional info.xml file to describe the plug-in and provide release notes to users. The file's
<r el ease- ver si on< element can be used for version releases.

Example Plug-in

A plug-in consists of oneor more steps. A step representsaunit of functionality that can be user-configured
and combined with other steps into a process. Creating a plug-in consists in defining its individual steps
and then grouping them together for presentation in uDeploy.

Plug-in steps are performed by an agent installed in the target environment. What this meansis that plug-
ins can be written in any scripting language as long as the agent can access the required scripting tools
on the host.

In this section, we examine the mechanics of plug-ins by examining a plug-in step in detail. The example
plug-in we use is the UrbanCode-created plug-in FileUtils, which contains severa steps related to file
manipulation. The FileUtils plug-in is shipped with uDeploy.

Each plug-in step isan individually configurable object in the editor. In the following illustration you can
see some of FileUtils individual stepsin the process editor.

174

Plug-ins

Figure 78. Plug-in Steps

“plugin:

Py

<!-— Copy Directory
Py

Py

<!-— Create Directory
Py

Py

“!-- Create File

-

-
-

-
-

Available Plugin Steps

7 FileUtis

'_TB’Cop\,' Directory
'_I-’-'Create Directories

Py
<atep-type name="Create File®:»

= atep-typeas

</plugin>

T*Create File
= Create Zip Archive

T-: Delete Files and Directories

We examine the Create File step in this example. Create Fileis straightforward and—as the nameimplies

—creates afile.

Each step—st ep- t ype element—has the same structure:

* properties element can contain any number of <pr oper t y> child elements; property values can

be supplied at design- or run-time

» post - processi ng element provides error-handling and sets property values that can be used by

other steps

» command element performsthe step's function; the function can be defined completely by the element,
or be constructed in part or entirely from the step's properties at design- or run-time

The following figureillustrates the structure of the Create File step.

175

Plug-ins

Figure 79. Create File Step Structure

<step-type name="Create File"»
zdescriprion=Create & new Fils.</description>

<properties>

<property name="file" regquired="true™>
<property-ui cype="teaxtDox™

label="File Hazme"

</ PIopRTtYF
<pIoperty NAmE="COnTentE™>
<property-ui type="textAreaBox"
label="Contentcs™

label="Cverwrite

.

-

description="The na=e cf the new fiiq.'.n':v
-

.
descriprion="The contents of-ghe new file "/> ~
</ prepazty> \\ \\
cpropert ="overvrite”y ™~ . ,
<property-ul type="checkBoX™. '\\ \\

5 iaka®
i exists

s
~
S
T,
™

i w . e i1e miw N
description="Check h;tq\ o overwrite an exigting file."/ />
</pEopeTTY> ~ \ .
</pzopezties>
<post-processing> ™~ " N N
<} [CDATAL e A Y
[propezties.get ("exitCode™) “ks 0) | . \\ !
propercies. puc (new java.lang.Stxing 'sr.a'r.ua'h\\nev java.lang.String !'Eailu:é—l'i Vi
} e N 5
" A
b 1 “Edz Properties’, N \
preperties.pus{"Status”, "Success”); - N \.\ '\
}
11> N Mame T cregte el \
</pest-processing> N File NAme = T
. \, _‘ .
<cosmand program="${GROOVY_HOME)}/bin/groovy”™ A ! Brompt for &'walue on we
<arg file="creace_file.groovy® /> \\ Corlb!ﬂ\tl: 5
<arg file="${PLUGIN_INPUT_PROFS}"/> ‘\ N i
€arg file==${PLUGIN_OUTEUT_DROES}=/> \ \)
</ earmand> 5, \ .
</facep=cyper kY "-‘
\ \

M
Overwrite if exists .

Post Processing Script

Step Properties

In the context of our discussion, properties are valuesthat are used by the step's command. Step properties

are defined with the pr oper t y element.

Asyou can seein Figure 79, “ Create File Step Structure”, the Create File step has three properties:

» fil e containsthe name of thefile the command will create; it isrepresented asatext box in the process

designer

» cont ent s will contain thefile's content; it is represented by atext-area box, which can contain alarge

amount of data

* overwite isused to specify whether the file can overwrite an existing file; it is represented by a

check box in the process designer

These properties are displayed in the dialog box that appears when the step is added to a component
process. The other properties in the dialog are displayed for every step (post-processing is discussed

\ Promot for 3 value oo use
Allgw Failure |
Waorking Directory |
Defadt -
Precondition

Use Impersonation

176

Plug-ins

below). Property values can be entered into the dialog box by the process designer at design-time, or left
to be furnished at run-time by the user running the application.

Y ou can configure most propertieswiththepr oper t y- ui child element (thesel ect Box typerequires
theval ue child element aswell). Seethe section called “ Step Properties--the<pr oper t i es> Element”
for information about the options available for presentation in the Ul. Default values can be defined when
you cresgte the step.

In addition to a step's own properties, acommand has access to properties set earlier by other stepswithin
the process, to properties set by the application that invoked the component process, as well as to those
on the target environment and resource.

The following illustrates the properties available to an individual step. Step property values become
unavailable once the component process ends.

Figure 80. Properties

Properties Available to Component Steps

Environment

Component Process

Resource

Previous Steps

${p:stepName/propiame}

Current Step

{p:propertyName}

${p:resource/propertyName}
${p:resource/role/propertyNamea}

${p: component /propertyName}

${p:environment/propertyName}

Run-time defined properties are combined with those defined earlier and together sent to the agent. Earlier
properties—those defined outside the current process—are retrieved from the database. How properties
are processed and consumed is discussed further in the next section.

177

Plug-ins

Step Commands

The step'scommand element specifies the scripting tool that will perform the step and identifies the file
containing the actual script. The agent that will perform the step will download the plug-in and expect to
find the script among the downloaded files. Of course, the agent must also have access to the scripting
tool. Any other arguments required by the script/tool can aso be specified withthearg fi | e attribute.
Thear g fil e attributes should be defined in the order compatible with the scripting tool.

The Create File command script iswritten in Groovy. Groovy is a Java-like scripting language.

Figure 81. create file.groovy

<command prograp="§{GROOVY HOME}/bin/groovy"”>
<arg file="create file.groouy" />
<arg £ile="${PLUGIN_INPUT DROES}"/>
<arg f£ile="35{PFLUGIN OUIPUI_ EFROES }\""_1?:
</command> .
S

\\

&

Y
final def workDir = new File('.') _rln:n:}\"falt
final def paops = new Fropectiesil: 3

b

£inal def inpucPropsFile = naw Filelazgs(0]is
inputFropsfcrean = new FilelnpucSoream{inputfropaFilel;
propa . load (inpucPropaStream) ; 3

] A

casch (I0Excepticn &) { A
theow new RuntiseExceprticsiel \

'r \

final def filelame = props("file’]
final def overvrite = props([‘overwrite®]?.toBoclean()
final def contents = props|’contente’]TiC”

def file = new File(filelame).cancnicalFile
if (file. exise &E loverwrice] |

pring ile $file alieady exists!”™ L
Systasm. exiz 1

else |
file wrice{contenta)
println "Successfully ${overvrite? replaced’':'created"} file $file with contents:"
println contents

H

catch [Excepr 1
println " or creating file $file: ¥{e.message}”
System.exit (1]

}

Systam. axiv(l)

create_file.groovy

Thiscommand instructsthe Groovy interpreter toruncr eat e_fi |l e. gr oovy (moreabout Groovy and
the particulars of thisfilein the following section).

Thisline (which is part of every command):

<arg file="${PLUG N_| NPUT_PROPS}"/ >

sends afile containing the properties required by the step to the agent. The propertiesin the file are those
furnished at run-time and others defined earlier that are required by the step. See Figure 80, “ Properties’.
The ${ PLUG N_I NPUT_PROPS} variable resolves to the location of this uDeploy-managed properties
file.

And thisline (which is also part of every command):

178

Plug-ins

<arg file="${PLUG N_OUTPUT_PROPS}"/ >

refers to the file returned by the agent after finishing the step. The properties in this file are available to
later steps in the process. The ${ PLUG N_OUTPUT_PROPS} variable resolves to the location of this
uDeploy-managed propertiesfile.

create_file.groovy

Thecreate file.groovy file contains the Groovy script that will perfrom the step's command.
Groovy is a dynamic scripting language (similar to Python, Ruby, and Perl) for the Java platform. Most
Javacodeisaso syntactically valid Groovy, which makes Groovy popular with Java programers. Groovy
provides native support for regular expressions.

Thisfirst lines of the script create a properties object, pr ops, then attempts to load the properties from
thefile sent from the server (specified by the ${ PLUG N_OUTPUT_PROPS} variable). If it can load the
file, it populates pr ops; otherwise, it throws an exception.

final def workDir = new File('.").canonicalFile

final def props = new Properties();

final def inputPropsFile = new File(args[O0]);

try {
i nput PropsStream = new Fi | el nput Streamn(i nput PropsFile);
props. | oad(i nput PropsStrean);

}

catch (1 OException e) {
t hrow new Runti meException(e);

}

To perform the command—create afile—the script uses the properties defined by the step itself. The script
retrieves the three properties from pr ops and creates corresponding local variables.

Next, the script creates a file with a name specified by f i | eName, and tests the over wr i t e boolean
variable. If afile with the same name existsand over wri t e isfalse, the script ends (fails) with an exit
code of 1. Exit codes can be examined during post-processing.

Otherwise, the file is written with the content of cont ent s, a message is written to the output log, and
the exit code is set to 0 (success).

final def fileName = props['file']
final def overwite = props['overwite']?.toBool ean()
final def contents = props['contents']?:""'

try {
def file = new File(fileNanme).canonical File

if (file.exists() & !'overwite) {
println "File $file already exists!"

179

Plug-ins

Systemexit 1

}
el se {
file.wite(contents)
println "Successfully ${overwite? replaced :'created} file
$file with contents:™”
println contents
}

}
catch (Exception e) {

println "Error creating file $file: ${e.nessage}"
Systemexit (1)
}

System exit (0)

The <post - processi ng> Element

When a plug-in step's <comand> element finishes processing, the step's mandatory <post -
processi ng> element is executed. The <post - pr ocessi ng> element sets the step's output
properties (step name/property name, see uDeploy Properties) and provides error handling. The <post -
processi ng> element can contain any valid JavaScript script (unlike the <command> element,
<post - processi ng> scripts must be written in JavaScript).

You have accessto aj ava. uti |l . Properti es variable called properti es. Theproperties
variable has several special properties: exi t Code contains the process exit code, and St at us contains
the step's status. A St at us value of Success means the step completed successfully. The Create File
step's post-processing examines the command's exi t Code then setsthe St at us property accordingly.

Another available variable—s canner — can scan the step's output |og and take actions depending on the
results. See the section called “ Post-Processing Scripts’ for an example of scanner usage.

T

You can use a post-processing script to set output properties that can be used in other steps in the same
process, which enables complex workflows. Reference prior step output properties this way:

${ p: st epNane/ pr opNane}

The script defined in the <post - pr ocessi ng> element is the step's default behavior. Users can also
provide their own script—overriding the default behavior—when defining the step in the uDeploy editor,
see the section called “Post-Processing Scripts”.

180

uDeploy Properties

Properties can be set for the following items:

Also, on any process (component process or application process) you can define properties on the
Properties tab to be provided at runtime. - component/application process property

Table 69. Property Contexts

Context Description

environment Available on the the component’s or
environment’s Properties tab.

Referenced: ${ p: envi r onnent /
propertyNane}.

Both versions use the same syntax. A value set
on component environment overrides one with
the same name set directly on an environment
property. Component environment properties
enable you to centralize properties, tracking type
and default values, for instance. Environment
properties provide ad-hoc lists of property=value
pairs.

resource Selects all the properties with the same valuein a
given environment.

resourcerole Selects all properties with the sasme valueina
given resource.

application Available on the application's Properties
tab (Appl i cation > [sel ected
application] > Properties).

Referenced: ${ p: appl i cati on/

propertyNane}.

component Selects all properties with the samevalueina
given system.

process Available on the application's Properties

tab (Appl i cation > [sel ected
application] > Properties).

Referenced: ${ p: appl i cati on/
propertyNane}.

A process step has access to properties set earlier
by other steps within the process, to properties

set by the application that invoked the component
process as well as those on the target environment
and resource. Step property values become
unavailable once the component process ends.

181

uDeploy Properties

Context Description
Referenced: ${ p: pr opert yNane}.
system System (global) properties are available on the

Settingstab (Setti ngs > Properties).

Referenced: ${ p: syst em pr opert yNane}.

Table 70. uDeploy Properties

Property Description

version.name A user defined name to distinguish the version
from others. A version nameis entered when a
new version isimported.

version.id The number assigned to the version. A version

id is created when anew version isimported in
CodeStation.

component.name

A user defined name to distinguish it from other
components. A component name is entered when
creating a new component.

component.id

A unique number uDeploy assigns to distinguish
the component from others. The component id is
created when a component is created in uDeploy.

resource.name

A user defined name to distinguish it from other
resources. The resource name is entered when
editing or creating a new resource.

resource.id

A unique number given to aresource. A resource
id is assigned when anew resource is created.

application.name

A user defined name to distinguish it from others.
An application name is entered when editing or
creating a new application.

application.id

A unique number given to an application. An
application id is assigned when a new application
is created in uDeploy.

environment.name

A user defined name to distinguish the
environment from others. An environment
name is entered when editing or creating a new
environment.

environment.id

A unique number given to an environment.
An environment id is assigned when a new
environment is created.

agent.id A unique number uDeploy gives the agent to
distinguish it from others with similar names. An
agent id is assigned when it isinstalled on the
system.

agent.name A user defined name to distinguish the

agent from others. The agent's name can be
entered by editing the agent'sconf / agent /

182

uDeploy Properties

Property Description
i nstal |l ed. properti es fileand restarting
the agent.

stepname/propertyname All steps have the following properties:

exit Code, status, l|ines of
i nt er est (LOlI—items the post-processing
script finds in the step's output 1og).

Y ou can view the properties by using the
component's Log pane to examine the step's
output log (Conponent s > [sel ect ed
component] > [Vi ew Request

action] > [Input/Qutput Properties
action]).

Inventory and versions statuses, which are
defined with the st at us property, can beused in
application approval gates (see the section called
“Application Gates'). The other properties can be
used by post-processing scripts, see the section
called “The<post - pr ocessi ng> Element”.

Y ou can use a post-processing scripts to set output
properties that can be used in other stepsin the
same process, which enables complex workflows.
Reference prior step output properties this way:

${ p: st epNane/ pr opNane}

To set an environment property from a post-
processing script, for example, you set the output
property for the step in the post-processing

script then use a Set Environment Property step
afterwards that consumes the output property.

property_name

Component or application process property;
defined on the process's Properties tab. Given
value by whoever runs the process.

component/property_name

Component custom property; set on the
component's Properties tab.

environment/property_name

Environment property. Defined on the
component's or environment's Properties tab.
While both use the same syntax, the latter is

not associated with any specific component.
Values are supplied on the associated environment
or component. A value set on component
environment overrides one with the same name set
directly on an environment property.

resource/property_name

Resource properties. This can include the built-in
agent properties aswell as any custom properties.
Each of these has their own tab on the resource.

183

uDeploy Properties

Property Description

resource/role name/property name Resource role properties. These are defined on
resource roles, and the values are set when you add
aroleto aresource.

application/property name Application custom properties. These are set on
the application's properties tab.

system/property name Global system properties. These are set on the
System Properties tab in the Settings area.

All of thefollowing are comma-separated series of name=value pairs, including each property on the given
object. Thisis useful for token replacement.

Table 71. Name/VValue Pairs

Property Description

component/all Properties Selects all the properties with the same valuein a
given component.

environment/all Properties Selects all the properties with the same valuein a
given environment.

resource/all Properties Selects all properties with the same valuein a
given resource.

system/allProperties Selects all properties with the samevalueina
given system.

Using Properties
Properties are referenced with the following format: ${ p: pr operty}.
If, say, you create an environment variable UAT, you would referenceit like this:
echo ${p: envi ronnment/ UAT}
Output in this case:
UAT

uDeploy escapes the following characters:

Replace "\" with "\"; "\=" with "="; and "\," with ",".

184

Command Line Client (CLI) Reference

CLI is acommand-line interface that provides access to the uDeploy server. It can be used to find or set
properties, and perform numerous functions, described below.

To ingtall the tool, download the udcl i ent . zi p from the uDeploy release page on Supportal (http://

support.UrbanCode.com).

Command Format

To perform a command, open a command window and invoke udcl i ent aong with the command and

parameters. Command's have the following format:

udclient [global-args...] [global-flags...] <command> [args...]

The global arguments are:

Table 72.

Argument

Description

-authtoken, --authtoken

Optional. Can be set via the environment variable
DS AUTH_TOKEN. An authentication token
generated by the server. Either an authtoken or a
username and password is required.

-password, --password

Optional. Can be set via the environment variable
DS PASSWORD. A password to authenticate with
the server. Either an authtoken or a username and
password is required.

-username, --username

Optional. Can be set via the environment variable
DS USERNAME. A username to authenticate with
the server. Either an authtoken or a username and
password is required.

-weburl, --weburl

Reguired. Can be set via the environment variable
DS WEB _URL. The base URL of the uDeploy
server— http://ds.domain.com:8585.

The global flags are;

Table 73.

Flag Description

-t, --getTemplate Show the JSON template for the command instead
of running the command. If a file argument is
provided, the template will be output to that file.

-h, --help Print the full description and help of the given
command instead of running the command.

-v, --verbose Print extrainformation during execution.

Note

CLI commands and parameters are case sensitive.

185

Command Line Client
(CLI) Reference

Here is an example using the get Resour ces command:

udclient -weburl http://1ocal host: 8080 -usernane admin -password adm n
get Resour ces

Commands

Note

CLI commands do not support new lines. Entries below are broken for display purposesonly.

addActionToRoleForApplications

Add action to arole for applications.

Format

udclient [global-args...] [global-flags...]
addActi onToRol eFor Appl i cations [args...]

Options

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Nanme of the action

addActionToRoleForComponents

Add action to arole for components

Format

udclient [global-args...] [global-flags...]
addAct i onToRol eFor Components [args. . .]

Options

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Name of the action

186

Command Line Client
(CLI) Reference

addActionToRoleForEnvironments

Add action to arole for environments

Format

udclient [global-args...] [global-flags...]
addActi onToRol eFor Envi ronments [args. . .]

Options

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Nane of the action

addActionToRoleForResources

Add action to arole for resources

Format

udclient [global-args...] [global-flags...]
addAct i onToRol eFor Resources [args. . .]

Options

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Nane of the action

addActionToRoleForuUl

Add action to arole for the Ul

Format

187

Command Line Client
(CLI) Reference

udclient [global-args...] [global-flags...]
addActi onToRol eFor Ul [args...]

Options

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Nane of the action

addAgentToPool

CAdd an agent to an agent pool.

Format

udclient [global-args...] [global-flags...]
addAgent ToPool [args...]

Options

- pool, --pool
Requi red. Nane or |ID of the Agent Pool

-agent, --agent
Requi red. Nane or ID of the Agent to add

addComponentToApplication

Add a component to an Application.

Format

udclient [global-args...] [global-flags...]
addConponent ToAppl i cation [args...]

Options

- conmponent, --conponent
Requi red. Nane of the component to add

-application, --application

188

Command Line Client
(CLI) Reference

Requi red. Nanme of the application to add it to.

addGroupToRoleForApplication

Add agroup to arolefor an application

Format

udclient [global-args...] [global-flags...]
addG oupToRol eFor Application [args...]

Options

-group, --group
Requi red. Nane of the group

-role, --role
Requi red. Nane of the role

-application, --application
Requi red. Nane of the application

addGroupToRoleForComponent

Add agroup to arole for acomponent

Format

udclient [global-args...] [global-flags...]
addG oupToRol eFor Conponent [args. . .]

Options

-group, --group
Requi red. Nane of the group

-role, --role
Requi red. Nane of the role

- conmponent, --conponent
Requi red. Nane of the component

189

Command Line Client
(CLI) Reference

addGroupToRoleForEnvironment

Add agroup to arole for an environment

Format

udclient [global-args...] [global-flags...

addG oupToRol eFor Envi ronment [args. . .]

Options

-group, --group
Requi red. Nane of the group

-role, --role
Requi red. Nane of the role

-application, --application
Requi red. Nanme of the application

-envi ronnent, --environment
Requi red. Name of the environnent

addGroupToRoleForResource

Add agroup to arole for aresource

Format

udclient [global-args...] [global-flags...

addG oupToRol eFor Resource [args. . .]

Options

-group, --group
Requi red. Nane of the group

-role, --role
Requi red. Nane of the role

-resource, --resource
Requi red. Name of the resource

190

Command Line Client
(CLI) Reference

addGroupToRoleForUl

Add agroup to arole for the Ul

Format

udclient [global-args...] [global-flags...]
addG oupToRol eFor Ul [args...]

Options
-group, --group
Requi red. Nane of the group
-role, --role
Requi red. Nane of the role
addLicense

Add alicense to the server.

Format

udclient [global-args...] [global-flags...]
addLi cense [args...]

Options

No options for this command.

addNameConditionToGroup

Add a name condition to aresource group. Only works with dynamic groups.

Format

udclient [global-args...] [global-flags...]
addNanmeCondi ti onToG oup [args...]

Options

191

Command Line Client
(CLI) Reference

- conparison, --conparison
Requi red. Type of the conparison

-val ue, --value
Requi red. Val ue of the conparison

-group, --group
Required. Path of the parent resource group

addPropertyConditionToGroup

Add a property condition to aresource group. Only works with dynamic groups.

Format

udclient [global-args...] [global-flags...]
addPropertyConditi onToG oup [args...]

Options
-property, --property
Requi red. Nanme of the property
-conparison, --conparison
Requi red. Type of the conparison
-val ue, --value
Requi red. Val ue of the conparison
-group, --group
Required. Path of the parent resource group
addResourceToGroup

Add aresource to aresource group. Only works with static groups.

Format

udclient [global-args...] [global-flags...]
addResour ceToG oup [args...]

Options

192

Command Line Client
(CLI) Reference

-resource, --resource
Requi red. Nane of the resource to add

-group, --group
Required. Path of the resource group to add to

addRoleToResource

Add arole to aresource.

Format

udclient [global-args...] [global-flags...]
addRol eToResource [args...]

Options

-resource, --resource
Requi red. Name of the parent resource.

-role, --role
Requi red. Name of the new resource.

addRoleToResourceWithProperties

Add arole to aresource. This command takes a JSON request body. Use the -t flag to view the template
for the data required for this command.

Format

udclient [global-args...] [global-flags...]
addRol eToResourceWt hProperties [args...] [-] [filenange]

Read JSON i nput fromthe stdin. See command for requirenents.

filenane

Read JSON input froma file with the given filename. See conmand for

requirenents.

Options

193

Command Line Client
(CLI) Reference

No options for this command.

addUserToGroup

Add auser to agroup

Format

udclient [global-args...] [global-flags...

addUser ToGroup [args...]

Options

-user, --user
Requi red. Nane of the user

-group, --group
Requi red. Nane of the group

addUserToRoleForApplication

Add auser to arole for an application

Format

udclient [global-args...] [global-flags...

addUser ToRol eFor Appl i cation [args...]

Options

-user, --user
Requi red. Nane of the user

-role, --role
Requi red. Nane of the role

-application, --application
Requi red. Nanme of the application

addUserToRoleForComponent

Add auser to arole for acomponent

194

Command Line Client
(CLI) Reference

Format

udclient [global-args...] [global-flags...

addUser ToRol eFor Conponent [args...]

Options

-user, --user
Requi red. Nane of the user

-role, --role
Requi red. Nane of the role

- component, --conponent
Requi red. Nane of the component

addUserToRoleForEnvironment

Add auser to arole for an environment

Format

udclient [global-args...] [global-flags...

addUser ToRol eFor Envi ronnment [args. . .]

Options

-user, --user
Requi red. Nane of the user

-role, --role
Required. Nane of the role

-application, --application
Requi red. Nane of the application

-environment, --environnment
Requi red. Nanme of the environnent

addUserToRoleForResource

Add auser to arole for aresource

195

Command Line Client
(CLI) Reference

Format

udclient [global-args...] [global-flags...

addUser ToRol eFor Resource [args. ..]

Options

-user, --user
Requi red. Nane of the user

-role, --role
Requi red. Nane of the role

-resource, --resource
Requi red. Nanme of the resource

addUserToRoleForuUl

Add auser to arole for the Ul

Format

udclient [global-args...] [global-flags...

addUser ToRol eFor Ul [args. . .]

Options

-user, --user
Requi red. Nane of the user

-role, --role
Requi red. Nane of the role

addVersionFiles

Upload filesto aversion

Format

udclient [global-args...] [global-flags...

addVersionFiles [args...]

196

Command Line Client
(CLI) Reference

Options

-conponent, --component

Optional. Nane/ 1D of the conponent (Only required if not using
version | D)

-version, --version
Requi red. Nane/ID of the version

- base, --base
Requi red. Local base directory for upload. Al files inside this
will be sent.

-of fset, --offset

Optional. Target path offset (the directory in the version files to
whi ch these files should be added)

addVersionStatus

Add astatusto aversion

Format

udclient [global-args...] [global-flags...]
addVersionStatus [args...]

Options

-conponent, --conponent
Optional. Name/ 1D of the conponent (Only required if not using
version | D)

-version, --version
Requi red. Nane/ID of the version

-status, --status
Requi red. Nane of the status to apply

createAgentPool

Create an agent pool. This command takes a JSON request body. Use the -t flag to view the template for
the data required for this command.

Format

197

Command Line Client
(CLI) Reference

udclient [global-args...] [global-flags...]
creat eAgent Pool [args...]

Options

No options for this command.

createApplication

Create a new application. This command takes a JISON regquest body. Use the -t flag to view the template
for the data required for this command.

Format

udclient [global-args...] [global-flags...]
createApplication [args...] [-] [fil enane]

Read JSON i nput fromthe stdin. See comand for requirenents.

fil enane
Read JSON input froma file with the given filenane. See command for

requi renents.

Options

No options for this command.

createApplicationProcess

Create a new application process. This command takes a JSON request body. Use the -t flag to view the
template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
createApplicationProcess [args...] [-] [filenane]

Read JSON i nput fromthe stdin. See command for requirenents.
fil enane

Read JSON input froma file with the given filename. See conmand for
requirenents.

Options

198

Command Line Client
(CLI) Reference

No options for this command.

createComponent

Create a new component. This command takes a JSON request body. Use the -t flag to view the template
for the data required for this command.

Format

udclient [global-args...] [global-flags...]
creat eConmponent [args...] [-] [filenane]

Read JSON i nput fromthe stdin. See command for requirenents.

fil enane
Read JSON input froma file with the given filename. See conmand for

requirenents.

Options

No options for this command.

createComponentProcess

Create a new component process. This command takes a JISON request body. Use the -t flag to view the
template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
creat eConmponent Process [args...] [-] [fil enane]

Read JSON i nput fromthe stdin. See command for requirenents.

fil enane
Read JSON input froma file with the given filename. See conmand for

requirenents.

Options

No options for this command.

199

Command Line Client
(CLI) Reference

createDynamicResourceGroup

Create a new static resource group.

Format

udclient [global-args...] [global-flags...]
cr eat eDynani cResourceG oup [args...]

Options

-path, --path
Required. Path to add the resource group to (parent resource group
pat h) .

-name, --name

Requi red. Nanme of the new resource group.

createEnvironment

Create a new environment.

Format

udclient [global-args...] [global-flags...]
createEnvironment [args...]

Options

-application, --application
Required. Application to add the environnment to.

-name, --name
Requi red. Name of the new environment.

-description, --description
Optional. Description of the new environment.

-color, --color
Optional. Color of the new environment.

-requi reApproval s, --requireApprovals
Optional. Does the environment require approval s?

200

Command Line Client
(CLI) Reference

createGroup

Add anew group

Format

udclient [global-args...] [global-flags...] createGoup [args...

Options

-group, --group
Requi red. Nane of the group

createMapping

Create a new mapping.

Format

udclient [global-args...] [global-flags...]
creat eMapping [args...]

Options
-envi ronment, --environnent
Requi red. The environment for the mapping.
- conponent, --conponent
Requi red. The conponent for the napping.
-resourceG oupPat h, --resourceG oupPath
Requi red. The resource group for the mapping.
-application, --application
Optional. The application for the mapping. Only necesary if
speci fying env nane instead of id.
createResource
Create aresource.

201

Command Line Client
(CLI) Reference

Format

udcl i ent

[global -args...] [global-flags...]

createResource [args...]

Options

- par ent Agent,

Optional .

par ent Resour ce,

- par ent Resour ce,

Opt i onal .

- par ent Agent Pool ,

Opt i onal .

- nane,
Requi r ed.

-description,

- - par ent Agent
Narme or | D of the parent
par ent Agent Pool or source mnust
- - par ent Resour ce

Nanme or I D of the parent resource or

- - par ent Agent Pool

Narme or |1 D of the parent agent pool.

--nane

Nane of the new resource.

--description

Optional. Description of the resource.
-source, --source
Optional. Name of a subresource to copy.
createResourceGroup
Create anew static resource group.
Format
udclient [global-args...] [global-flags...]

creat eResourceGoup [args...]

Options

Required. Path to add the resource group to (parent

-path, --path
pat h).
-nane, --nane

agent. (One of parentAgent,

be specified)

agent .

Requi red. Name of the new resource group.

createRoleForApplications

Create arole for applications

resource group

202

Command Line Client
(CLI) Reference

Format

udclient [global-args...] [global-flags...

creat eRol eFor Applications [args...]

Options

-role, --role
Requi red. Nane of the role

createRoleForComponents

Create arole for components

Format

udclient [global-args...] [global-flags...

cr eat eRol eFor Conponents [args...]

Options

-role, --role
Requi red. Nane of the role

createRoleForEnvironments

Create arole for environments

Format

udclient [global-args...] [global-flags...
cr eat eRol eFor Envi ronments [args...]

Options

-role, --role
Requi red. Nane of the role

203

Command Line Client
(CLI) Reference

createRoleForResources

Create arole for resources

Format

udclient [global-args...] [global-flags...

cr eat eRol eFor Resources [args. . .]

Options

-role, --role
Requi red. Nane of the role

createRoleForUl

Create arolefor the Ul

Format

udclient [global-args...] [global-flags...

createRol eForUl [args...]

Options
-role, --role
Required. Nane of the role
createSubresource

Create a new subresource.

Format

udclient [global-args...] [global-flags...

creat eSubresource [args...]

Options

204

Command Line Client
(CLI) Reference

-parent, --parent
Requi red. Name of the parent resource.

-name, --name
Requi red. Name of the new resource.

-description, --description
Optional. Description of the resource.

createUser

Add a new user This command takes a JSON request body. Use the -t flag to view the template for the
data required for this command.

Format

udclient [global-args...] [global-flags...]
createUser [args...] [-] [filenane]

Read JSON i nput fromthe stdin. See command for requirenents.

fil enane
Read JSON input froma file with the given filename. See conmand for

requirenents.

Options

No options for this command.

createVersion

Create anew version for a component

Format

udclient [global-args...] [global-flags...]
createVersion [args...]

Options

- conmponent, --conponent
Requi red. Nane/ID of the conmponent

205

Command Line Client
(CLI) Reference

-name, --name
Requi red. Nane of the new version

deleteAgent
Remove an agent.
Format
udclient [global-args...] [global-flags...]
del et eAgent [args...]
Options

-agent, --agent
Requi red. Nane or |ID of the agent

deleteAgentPool
Remove an agent pool.
Format
udclient [global-args...] [global-flags...]
del et eAgent Pool [args...]
Options

- pool, --pool
Requi red. Nane or |ID of the agent pool

deleteGroup

Delete agroup

Format

udclient [global-args...] [global-flags...

del eteGoup [args...]

Options

-group, --group
Requi red. Nane of the group

206

Command Line Client
(CLI) Reference

deleteResource

Remove aresource.

Format

udclient [global-args...] [global-flags...]
del et eResource [args...]
Options

-resource, --resource
Requi red. Nane of the resource to configure

deleteResourceGroup

null

Format
udclient [global-args...] [global-flags...]
del et eResourceG oup [args...]

Options

-group, --group
Required. Path of the resource group to delete

deleteResourceProperty

Remove a custom property from aresource

Format

udclient [global-args...] [global-flags...]
del et eResourceProperty [args...]

Options

-resource, --resource
Requi red. Name of the resource to configure

207

Command Line Client
(CLI) Reference

-name, --name
Requi red. Nanme of the property

deleteUser

Delete a user

Format

udclient [global-args...] [global-flags...

del et eUser [args...]

Options
-user, --user
Requi red. Nane of the user
exportGroup
Add anew group
Format

udclient [global-args...] [global-flags...

exportGoup [args...]

Options

-group, --group
Requi red. Nane of the group

getAgent

Get a JSON representation of an agent.

Format

udclient [global-args...] [global-flags...]
get Agent [args...]

208

Command Line Client
(CLI) Reference

Options

-agent, --agent
Requi red. Nanme of the Agent Pool to | ook up

getAgentPool

Get a JSON representation of an agent pool.

Format

udclient [global-args...] [global-flags...]
get Agent Pool [args...]
Options

-pool, --pool
Requi red. Nanme of the Agent Pool to | ook up

getAgentPools

Get aJSON array of all agent pools.

Format

udclient [global-args...] [global-flags...]
get Agent Pool s [args...]

Options

-active, --active
Optional. List active agent pools - Default true

-inactive, --inactive
Optional. List inactive agent pools - Default true

getAgents

Get aJSON array of all agents.

Format

udclient [global-args...] [global-flags...]
get Agents [args...]

Options

-active, --active

209

Command Line Client
(CLI) Reference

Optional. List active agents - Default true

-inactive, --inactive
Optional. List inactive agents - Default false

getApplication

Get a JSON representation of an application

Format

udclient [global-args...] [global-flags...]
get Application [args...]

Options

-application, --application
Requi red. Nanme of the application to | ook up

getApplicationProcess

Get a JSON representation of an Application Process

Format

udclient [global-args...] [global-flags...]
get Appl i cati onProcess [args...]

Options

-application, --application
Requi red. Nanme of the application

-applicationProcess, --applicationProcess
Requi red. Nane of the process

getApplicationProcessRequestStatus
Repeat an application process request.

Format

210

Command Line Client
(CLI) Reference

udclient [global-args...] [global-flags...]
get Appl i cati onProcessRequest Status [args. ..]

Options

-request, --request
Required. ID of the application process request to view

getApplicationProperties
Get the values of custom properties for an application.
Format
udclient [global-args...] [global-flags...]
get Appl i cationProperties [args...]
Options

-application, --application
Required. Nane or id of the application

getApplicationProperty

Get the value of custom property for an application.
For mat
udclient [global-args...] [global-flags...]
get ApplicationProperty [args...]
Options
-application, --application
Required. Nane or id of the application

-name, --nane
Requi red. Name of the property

getApplications

Get a JSONArray representation of al applications

Format

211

Command Line Client
(CLI) Reference

udclient [global-args...] [global-flags...]
get Applications [args...]

Options

No options for this comand.

getComponent

Get a JSON representation of a component

Format

udclient [global-args...] [global-flags...]
get Conponent [args...]

Options

- component, --conponent
Requi red. Name of the component to | ook up

getComponentEnvironmentProperties

Get all values of custom properties for acomponent.
For mat
udclient [global-args...] [global-flags...]
get Conponent Envi ronnent Properties [args...]
Options
- conponent, --conponent

Required. Nane or id of the conponent

-envi ronnment, --environnment
Required. Nanme or id of the environnment

-application, --application
Optional. Nane or id of the application

getComponentEnvironmentProperty

212

Command Line Client
(CLI) Reference

Get the value of a custom property on a component.

Format

udclient [global-args...] [global-flags...]
get Conponent Envi ronnent Property [args...]
Options

-name, --name

Required. Nanme of the property to | ook up

- conmponent, --conponent
Required. Nane or id of the conponent

-envi ronnent, --environnent
Required. Nanme or id of the environnment

-application, --application
Optional. Nane or id of the application

getComponentProcess

Get a JSON representation of a componentProcess

Format

udclient [global-args...] [global-flags...]
get Conponent Process [args...]

Options
-conmponent, --conponent
Requi red. Nane of the conponent
- conmponent Process, --conponent Process
Requi red. Nane of the conponent
getComponents

Get a JSONArray representation of al components

Format

udclient [global-args...] [global-flags...]
get Components [args. ..]

213

Command Line Client
(CLI) Reference

Options

No options for this command.

getComponentsinApplication

Get all componentsin an application

Format

udclient [global-args...] [global-flags...]
get Component sl nApplication [args...]

Options

-application, --application
Requi red. Nane of the application to get conmponents for

getComponentProperties

Get the values of all of a component's custom properties.

Format

udclient [global-args...] [global-flags...]
get Conmponent Properties [args...]
Options

-conmponent, --conponent
Requi red. Nane of the conponent

getComponentProperty

Get the value of a component's custom property.

Format

udclient [global-args...] [global-flags...]
get Conmponent Property [args...]

214

Command Line Client
(CLI) Reference

Options
-conmponent, --conponent
Requi red. Nane of the conponent

-name, --name
Requi red. Name of the property

getEnvironment

Get a JSON representation of an environment

Format

udclient [global-args...] [global-flags...]
get Envi ronment [args...]

Options

-envi ronment, --environnent
Requi red. Nane of the environment to | ook up

getEnvironmentProperties

Get the value of all custom properties for an environment.
Format

udclient [global-args...] [global-flags...]
get Envi ronnment Properties [args...]

Options

-envi ronment, --environnent
Required. Name or id of the environment

-application, --application

Optional. Nane or id of the application (required unless environnent
idis specified)

getEnvironmentProperty

Get the value of a component's custom propert.

215

Command Line Client
(CLI) Reference

Format
udclient [global-args...] [global-flags...]
get Envi ronment Property [args...]
Options
-name, --name
Requi red. Nanme of the property to | ook up

-environnent, --environnent
Required. Nanme or id of the environnment

-application, --application

Optional. Nane or id of the application (required unless environnent
idis specified)

getEnvironmentsinApplication

Get al environments for an application.

Format

udclient [global-args...] [global-flags...]
get Envi ronnment sl nApplication [args...]
Options

-application, --application

Requi red. Nanme of the application to get environnents for

-active, --active
Optional. List active environnments - Default true

-inactive, --inactive
Optional. List inactive environments - Default false

getGroupsForResource

Get aJSON array representation of all the groups to which a resource belongs.
For mat

udclient [global-args...] [global-flags...]

get G oupsFor Resource [args...]

Options

-resource, --resource

216

Command Line Client
(CLI) Reference

Required. Nane/id of the resource.
getMapping

Get a JSON representation of a mapping

Format

udclient [global-args...] [global-flags...]
get Mapping [args...]

Options

- mappi ng, - - nmapping
Required. ID of the mapping to | ook up

getMappingsForApplicationEnvironment

Get the component mappings for an application environment.

Format

udclient [global-args...] [global-flags...]
get Mappi ngsFor Appl i cati onEnvi ronment [args...]

Options

-envi ronnment, --environnent
Required. Nanme or ID of the environnment to | ook up

-application, --application

Optional. Nane of the application - required if using environnent
name instead of |ID.

getMappingsForGroup

Get the component environment mappings for a resource group.

Format

udclient [global-args...] [global-flags...]
get Mappi ngsForGroup [args...]

Options

217

Command Line Client
(CLI) Reference

-group, --group
Required. Path of the resource group to get nmappings for

getResource

Get a JSON representation of aresource

Format

udclient [global-args...] [global-flags...]
get Resource [args...]

Options
-resource, --resource
Requi red. Nane of the resource to | ook up
getResourceGroup

Get a JSON representation of aresource group

Format

udclient [global-args...] [global-flags...]
get ResourceG oup [args. ..]

Options
-group, --group
Required. Path of the resource group to show
getResourceGroups

Get a JSONArray representation of all resource groups

Format

udclient [global-args...] [global-flags...]
get ResourceG oups [args...]

Options

218

Command Line Client
(CLI) Reference

No options for this command.

getResourceProperties
Get all property values for aresource.
Format
udclient [global-args...] [global-flags...]
get Resour ceProperties [args...]
Options

-resource, --resource
Requi red. Nane/id of the resource

getResourceProperty

Get the value of a custom property on aresource

Format

udclient [global-args...] [global-flags...

get Resour ceProperty [args...]

Options
-resource, --resource
Requi red. Name of the resource
-nanme, --nane
Requi red. Name of the property
getResources

Get a JSONArray representation of all resources

Format

udclient [global-args...] [global-flags...

get Resources [args...]

219

Command Line Client
(CLI) Reference

Options

No options for this command.

getResourcesInGroup

Get a JSONArray representation of all resourcesin agroup

Format

udclient [global-args...] [global-flags...]
get Resourcesl nG oup [args...]

Options

-group, --group
Required. Path of the resource group

getResourceSecurity

Get alist of security roles and members for aresource.

Format

udclient [global-args...] [global-flags...]
get Resour ceSecurity [args...]

Options

-resource, --resource
Required. Nane/id of the resource

getRoleForApplications

Get a JSON representation of arole

Format

udclient [global-args...] [global-flags...]
get Rol eFor Applications [args...]

Options

220

Command Line Client
(CLI) Reference

-role, --role
Requi red. Nane of the role

getRoleForComponents

Get a JSON representation of arole

Format

udclient [global-args...] [global-flags...

get Rol eFor Components [args. ..]

Options

-role, --role
Requi red. Nane of the role

getRoleForEnvironments

Get a JSON representation of arole

Format

udclient [global-args...] [global-flags...

get Rol eFor Envi ronments [args. . .]

Options

-role, --role
Requi red. Nane of the role

getRoleForResources

Get a JSON representation of arole

Format

udclient [global-args...] [global-flags...

221

Command Line Client
(CLI) Reference

get Rol eFor Resources [args. . .]

Options

-role, --role
Requi red. Nane of the role

getRoleForUl

Get a JSON representation of arole

Format

udclient [global-args...] [global-flags...

get Rol eForUl [args...]

Options

-role, --role
Requi red. Nane of the role

getRolesForResource
Get alist of rolesfor aresource.
Format
udclient [global-args...] [global-flags...]
get Rol esFor Resource [args...]
Options

-resource, --resource
Requi red. Nane/id of the resource

getSystemProperties

Get all system property values.

Format

222

Command Line Client
(CLI) Reference

udclient [global-args...] [global-flags...]
get SystenProperties [args...]

Options

No opti ons.

getSystemProperty

Get a system property value.

Format

udclient [global-args...] [global-flags...]
get SystenProperty [args...]

Options

-name, --nane
Requi red. Name of the property

getUser

Get a JSON representation of a user

Format

udclient [global-args...] [global-flags...]
get User [args...]

Options

-user, --user
Requi red. Nane of the user

iImportGroup

Add anew group This command takes a JSON request body. Use the -t flag to view the template for the
data required for this command.

Format

udclient [global-args...] [global-flags...]
importGroup [args...] [-] [fil enane]

223

Command Line Client
(CLI) Reference

Read JSON i nput fromthe stdin. See command for requirenents.
fil enane

Read JSON input froma file with the given filenane. See command for
requi renents.

Options

No options for this comand.

importVersions

Run the source config integration for a component This command takes a JSON request body. Use the -t
flag to view the template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
i mportVersions [args...] [-] [fil enange]

Read JSON i nput fromthe stdin. See comand for requirenents.

fil enane
Read JSON input froma file with the given filenane. See command for
requi renents.

Options

No options for this comand.

inactivateEnvironment

Set an environment to inactive.

Format

udclient [global-args...] [global-flags...]
i nacti vat eEnvi ronment [args...]

Options

-envi ronnent, --environment

224

Command Line Client
(CLI) Reference

Required. Name or ID of the environment to | ook up

-application, --application
Optional. Nane of the application - required if using environnent
name instead of ID.

installAgent

Install an agent.

Format

udclient [global-args...] [global-flags...]
instal |l Agent [args...]

Options

-name, --name
Requi red. Name of the agent resource

-host, --host
Requi red. Host name or | P of the agent machi ne

-port, --port
Required. SSH port (22) of the agent machi ne

-sshUser nane, --sshUsernane
Requi red. Username to use to ssh to the agent nachine

-sshPassword, --sshPassword
Optional. Password to use to ssh to the agent nachine (exclude this
flag to use Public Key Authentication instead)

-installDir, --installDir
Required. Installation directory of the agent

-j avaHonePat h, --j avaHonePat h
Required. Path to Java on the agent nachine

-tenpDirPath, --tenpDirPath
Required. Path to directory to install fromon the agent nachine

-serverHost, --serverHost
Requi red. Host name or | P of the uDeploy server or Agent Relay the
agent shoul d connect to

-serverPort, --serverPort
Requi red. Agent conmunication port of the uDeploy server (7918) or
Agent Relay (7916) the agent should connect to

- proxyHost, --proxyHost
Optional. Host nane or IP of the Agent Relay if used

225

Command Line Client
(CLI) Reference

- proxyPort, --proxyPort
Optional. HITP proxy port of the Agent Relay if used (20080)

-nut ual Auth, --nutual Auth
Optional. True if the agent should enforce certificate validation
for nutual authentication

login
Login for further requests
Format
udclient [global-args...] [global-flags...] login [args...]
Options
No options for this comand.
logout
L ogout
For mat

udclient [global-args...] [global-flags...]
| ogout [args...]

Options

No options for this comand.

removeActionFromRoleForApplications

Add action to arole for applications

Format

udclient [global-args...] [global-flags...]
renmoveAct i onFr onRol eFor Appl i cations [args...]

Options

226

Command Line Client
(CLI) Reference

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Nanme of the action

removeActionFromRoleForComponents

Add action to arole for components

Format

udclient [global-args...] [global-flags...]
renmoveAct i onFr onRol eFor Conponents [args. . .]

Options

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Nanme of the action

removeActionFromRoleForEnvironments

Add action to arole for environments

Format

udclient [global-args...] [global-flags...]
renmoveAct i onFr onRol eFor Envi ronments [args. . .]

Options

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Nanme of the action

227

Command Line Client
(CLI) Reference

removeActionFromRoleForResources

Add action to arole for resources

Format

udclient [global-args...] [global-flags...]
renmoveAct i onFr onRol eFor Resources [args. . .]

Options

-role, --role
Requi red. Nane of the role

-action, --action
Requi red. Nanme of the action

removeActionFromRoleForUI

Add action to arole for the Ul

Format

udclient [global-args...] [global-flags...]
renmoveAct i onFronRol eForUl [args. ..]

Options
-role, --role
Requi red. Nane of the role
-action, --action
Requi red. Nane of the action
removeAgentFromPool

Remove an agent from an agent pool.

Format

udclient [global-args...] [global-flags...]

228

Command Line Client
(CLI) Reference

renoveAgent FronPool [args...]
Options
- pool, --pool
Requi red. Nane or |ID of the Agent Pool

-agent, --agent
Requi red. Nane or |ID of the Agent to renove

removeGroupFromRoleForApplication

Remove a group to arole for an application

Format

udclient [global-args...] [global-flags...
renoveG oupFr onRol eFor Appl i cation [args...

Options

-group, --group
Requi red. Nane of the group

-role, --role
Requi red. Nane of the role

-application, --application
Requi red. Nanme of the application

removeGroupFromRoleForComponent

Remove a group to arole for a component

Format

udclient [global-args...] [global-flags..
renmove& oupFr onRol eFor Conponent [args. . .]

Options

-group, --group
Requi red. Nane of the group

-

229

Command Line Client
(CLI) Reference

-role, --role
Requi red. Nane of the role

- conmponent, --conponent
Requi red. Nane of the component

removeGroupFromRoleForEnvironment

Remove a group to arole for an environment

Format

udclient [global-args...] [global-flags...]
renoveG oupFr onRol eFor Envi ronment [args. . .]

Options

-group, --group
Requi red. Nane of the group

-role, --role
Requi red. Nane of the role

-application, --application
Requi red. Nane of the application

-envi ronnent, --environment
Requi red. Nanme of the environnment

removeGroupFromRoleForResource

Remove a group to arole for aresource

Format

udclient [global-args...] [global-flags...]
renoveG& oupFr onRol eFor Resource [args. . .]

Options

-group, --group
Requi red. Nane of the group

230

Command Line Client
(CLI) Reference

-role, --role
Requi red. Nane of the role

-resource, --resource
Requi red. Nanme of the resource

removeGroupFromRoleForUl

Remove a group to arole for the Ul

Format

udclient [global-args...] [global-flags...]
renmoveG oupFronRol eFor Ul [args. . .]

Options

-group, --group
Requi red. Nane of the group

-role, --role
Requi red. Nane of the role

removeMapping

Remove a mapping.

Format
udclient [global-args...] [global-flags...]

renmoveMappi ng [args. ..]

Options

-envi ronment, --environnent
Requi red. The environnment for the mapping.

- conmponent, --conponent
Requi red. The component for the mapping.

-resourceG oupPat h, --resourceG oupPath
Optional. The resource group path for the mapping, if not using a
resource.

231

Command Line Client
(CLI) Reference

-resource, --resource
Optional. The resource for the mapping, if not using a group

-application, --application

Optional. The application for the mapping. Only necesary if
speci fying env nane instead of id.

removeResourceFromGroup

Remove a resource from aresource group. Only works with static groups.

Format

udclient [global-args...] [global-flags...]
renoveResour ceFromG oup [args.. .|

Options

-resource, --resource
Requi red. Nane of the resource to renove

-group, --group
Required. Path of the resource group to renove from

removeRoleForApplications

Create arole for applications

Format

udclient [global-args...] [global-flags...]
renoveRol eFor Applications [args...]

Options

-role, --role
Requi red. Nane of the role

removeRoleForComponents

Create arole for components

232

Command Line Client
(CLI) Reference

Format

udclient [global-args...] [global-flags...

renoveRol eFor Conponents [args...]

Options

-role, --role
Requi red. Nane of the role

removeRoleForEnvironments

Create arole for environments

Format

udclient [global-args...] [global-flags...

renoveRol eFor Envi ronnents [args...]

Options

-role, --role
Requi red. Nane of the role

removeRoleForResources

Create arole for resources

Format

udclient [global-args...] [global-flags...

renoveRol eFor Resources [args. ..]

Options

-role, --role
Requi red. Nane of the role

233

Command Line Client
(CLI) Reference

removeRoleForuUl

Create arolefor the Ul

Format

udclient [global-args...] [global-flags...]
renmoveRol eFor Ul [args...]

Options

-role, --role
Requi red. Nane of the role

removeRoleFromResource

Remove arole from aresource.

Format

udclient [global-args...] [global-flags...]
renoveRol eFronResource [args. . .]

Options
-resource, --resource
Requi red. Nanme of the parent resource.
-role, --role
Requi red. Nane of the new resource.
removeUserFromGroup

Remove a user from a group

Format

udclient [global-args...] [global-flags...]
removeUser Frontroup [args...]

Options

234

Command Line Client
(CLI) Reference

-user, --user
Requi red. Nane of the user

-group, --group
Requi red. Nane of the group

removeUserFromRoleForApplication

Remove a user to arole for an application

Format

udclient [global-args...] [global-flags...]
renoveUser Fr onRol eFor Appl i cation [args...]

Options

-user, --user
Requi red. Nane of the user

-role, --role
Requi red. Nane of the role

-application, --application
Requi red. Nane of the application

removeUserFromRoleForComponent

Remove a user to arole for acomponent

Format

udclient [global-args...] [global-flags...]
renoveUser Fr onRol eFor Conponent [args...]

Options

-user, --user
Requi red. Nane of the user

235

Command Line Client
(CLI) Reference

-role, --role
Requi red. Nane of the role

- conmponent, --conponent
Requi red. Nane of the component

removeUserFromRoleForEnvironment

Remove a user to arole for an environment

Format

udclient [global-args...] [global-flags..

Options

-user, --user
Requi red. Nane of the user

-role, --role
Requi red. Nane of the role

-application, --application
Requi red. Nane of the application

-envi ronnent, --environment
Requi red. Nanme of the environnment

removeUserFromRoleForResource

Remove auser to arole for aresource

Format

udclient [global-args...] [global-flags...

renoveUser Fr onRol eFor Resource [args. . .]

Options

-user, --user
Requi red. Nane of the user

-]

r enpveUser Fr onRol eFor Envi r onnent

236

Command Line Client
(CLI) Reference

-role, --role
Requi red. Nane of the role

-resource, --resource
Requi red. Nanme of the resource

removeUserFromRoleForuUl

Remove auser to arole for the Ul
Format

udclient [global-args...] [global-flags...]
renoveUser FronRol eForUl [args...]

Options

-user, --user
Requi red. Nane of the user

-role, --role
Requi red. Nane of the role

removeVersionStatus

Remove a status from a version.

Format

udclient [global-args...] [global-flags...]
renoveVer si onStatus [args. ..]

Options

- conmponent, --conponent
Optional. Nane/1D of the conmponent (Only required if not using
version | D)

-version, --version
Requi red. Nane/ID of the version

-status, --status
Required. Name of the status to apply

237

Command Line Client
(CLI) Reference

repeatApplicationProcessRequest
Repeat an application process request.

Format

udclient [global-args...] [global-flags...]
repeat Appl i cati onProcessRequest [args...]

Options

-request, --request
Required. ID of the application process request to repeat

requestApplicationProcess

Submit an application process request to run immediately. This command takes a JSON request body. Use
the -t flag to view the template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
request ApplicationProcess [args...] [-] [filenange]

Read JSON i nput fromthe stdin. See command for requirenents.

fil enanme
Read JSON input froma file with the given filename. See conmand for

requirenents.

Options

No options for this comand.

restartAgent

Restart an agent

Format

238

Command Line Client
(CLI) Reference

udclient [global-args...] [global-flags...] restartAgent [args...]

Options

-agent, --agent
Required. Nane / |ID of the Agent to restart

setApplicationProperty
Set property on an application.
Format

udclient [global-args...] [global-flags...]
set Appl i cati onProperty [args...]

Options

-name, --nane
Requi red. Nane of the property to set

-val ue, --value
Optional. Value of the property to set

-isSecure, --isSecure
Optional. Defaults to current state of property, or false if
property is not yet defined

-application, --application
Required. Nanme of the application to | ook up

setComponentProperty

Set property on component

Format

udclient [global-args...] [global-flags...]
set Conponent Property [args...]

Options

- propNane, --propName

239

Command Line Client
(CLI) Reference

Requi red. Nane of the property to set

- propVal ue, --propVal ue
Requi red. Value of the property to set

- conmponent, --conponent
Requi red. Nanme of the component to | ook up

setComponentEnvironmentProperty

Set property on component/environment mapping

Format

udclient [global-args...] [global-flags...]
set Conponent Envi ronment Property [args. ..]

Options

-name, --name
Requi red. Nane of the property to set

-val ue, --value
Requi red. Val ue of the property to set

-conmponent, --conponent
Requi red. Nanme of the conponent to | ook up

-envi ronnment, --environnent
Required. Name or id of the environnment to | ook up

-isSecure, --isSecure
Optional. Defaults ot property state, or false if not defined

-application, --application

Optional. Nane/ID of the application (required if referencing
envi ronnent by nane)

setEnvironmentProperty

Set property on an environment

Format

udclient [global-args...] [global-flags...] setEnvironnentProperty [args...

240

Command Line Client
(CLI) Reference

Options

-name, --name
Requi red. Nane of the property to set

-val ue, --value
Optional. Value of the property to set

-envi ronment, --environnent
Requi red. Nane/ID of the environnent to [ook up

-isSecure, --isSecure

Optional. Defaults to current state of property, or false if
property is not yet defined.

-application, --application

Optional. Name/ 1D of the application (required if referencing
envi ronnent by nane)

setResourceProperty

Set a custom property on aresource

Format

udclient [global-args...] [global-flags...]
set ResourceProperty [args...]

Options
-resource, --resource
Requi red. Name of the resource to configure
-name, --nane
Requi red. Name of the property
-val ue, --value
Optional. New value for the property
setSystemProperty
Set a property on the system.

241

Command Line Client
(CLI) Reference

Format
udclient [global-args...] [global-flags...]
set SystenProperty [args...]

Options

-name, --name
Requi red. Nane of the property to set

-isSecure, --isSecure
Optional. Defaults to current state of property, or false if
property is not yet defined.

-val ue, --value
Optional. Value of the property to set

shutdownAgent

Shut down an agent.

Format

udclient [global-args...] [global-flags...]
shut downAgent [args...]

Options

-agent, --agent
Required. Name / |ID of the Agent to shut down

testAgent

Test an agent.

Format

udclient [global-args...] [global-flags...]
test Agent [args...]

Options

-agent, --agent
Required. Name / |ID of the Agent to shut down

242

Command Line Client
(CLI) Reference

updateUser

Add a new user This command takes a JSON request body. Use the -t flag to view the template for the
data required for this command.

Format

udclient [global-args...] [global-flags...]
updateUser [args...] [-] [fil enane]

Read JSON i nput fromthe stdin. See command for requirenents.

fil enane
Read JSON input froma file with the given filenane. See command for

requi renents.

Options

-user, --user
Requi red. Nane of the user

243

Glossary
A

agent

agent pools
agent relays

applications
application process

Application Security Report
artifacts

B

blackout

C

CodeStation

components
component inventory
component process

Component Security Report

An agent is a lightweight process that runs on a host and communicates with
the uDeploy server. Agents manage the resources that are the actual deployment
targets.

An agent pool helps you organize and manage agents installed in different
environments.

An agent relay isused to communi cate with remote agent. An agent relay requires
that only a single machine in the remote network contact the server.

An application is the mechanism that initiates component deployment; they
bring together components with their deployment target and orchestrates multi-
componet deployments. An Application must have one component.

An application process can run automatically, manually, or on a user-defined
schedule. An application process can orchestrate the entire process including
putting servers on-and-off line for load-balancing as required.

The application security report provides information about user roles and
privileges defined for uDeploy-managed applications.

Artifacts are files, images, databases, configuration materials, or anything else
associated with a software project.

Blackouts are set per-environment, per-application. Once set, no deployments
(nor Snapshots) can be scheduled to occur in that Environment. Any previously
scheduled deploymentsto the Environment will fail if they fall within the blackout
date you set.

CodeStation is uDeploy's artifact repository. It provides secure and tamper-proof
storage. It tracksartifact versions asthey change and maintains an archivefor each
artifact.

A component represents deployable items along with user-defined processes that
operate on it. Components are deployed to aresource by agents.

A component inventory tells you what version of the component is running on a
resource.

A component processisaseriesof user-defined stepsthat operate on acomponents
artifacts.

A component security report provides information about user roles and privileges
defined for components.

244

Glossary

component template

D

deployment

Deployment Average Duration
Report

Deployment Count Report
Deployment Detail Report
Deployment Reports
Deployment Total Duration
Report

design space

digital certificate

E

environment

environment inventory

Environment Security Report

F

full version

incremental version

Component templates enable you save and reuse component processes and
properties. Components based on templates inherit the template's properties and
process.

A deployment is the process of moving software through various preproduction
stagesto final production.

A deployment average duration report provides the average deployment time for
applications executed during a user-specified reporting period.

A deployment count report providesinformation about the number of deployments
executed during a user-specified reporting period.

The deployment detail report provides information about deployments executed
during a user-specified reporting period.

A deployment report provides information about user roles and privileges defined
with the uDeploy security system.

A deployment total duration report provides total deployment for applications
executed during a user-specified period.

The process editor's work area, where plug-in steps are configured and process
flows defined.

A digita certificate is a cryptographically signed document intended to assure
others about the identity of the certificate's owner.

An environment isauser-definded collection of one or more resourcesthat host an
application. At least one environment must be associated with the process before
the process can be executed.

An environment inventory tells you both what versions of any given component
isrunning on a particular resource.

An environment security report provides information about user roles and
privileges defined for environments.

A full version contains all component artifacts.

An incremental version contains only artifacts that have been modified since the
previous version was created.

245

Glossary

LDAP

lock

N

notifications

notification scheme

P

plug-ins

process
process editor

processing property

proxy resource

R

relay servers

remote agents
resource

resource group

Resource Security Report

role

A lightweight directory access protocol (LDAP) isawidely used protocol used to
access distributed directory information over the internet protocol (1.P) networks.

A lock isroutinely used to ensure that processes do not interfere with one another.

Notifications play arole in approving deployments: uDeploy can be configured
to send out an e-mail to either a single individual or to a group or people (based
on their security role) notifying them that they need to approve a requested
deployment.

A notification scheme enables uDeploy to send out notifications based on events.

For example, the Default Notification scheme will send out an e-mail when an
Application Deployment fails or succeeds.

A plug-in isthe integration with third-party tools.

Processes play a coordination role. They are authored using a visua drag-n-drop
editor.

A process editor isavisual drag-and-drop editor that enables you to drag process
steps onto the design space and configure them as you go.

A processing property isaway to add user-supplied information to a process.

A proxy resource is a resource effected by an agent on a host other than the one
where the resource is located.

A relay server enables network-to-network communication.

A remote agent is an agent that will communicate with the server via an agent
relay.

A resource is a user-defined construct based on uDeploy's architectural model. A
resource represents a deployment target.

A resource group is a group of resources used to help organize and manage the
agent installed in a different environment.

A resource security report provides information about user roles and privileges
defined for resources.

A role enables you to further refine how aresource is utilized, and is similar to
subresources.

246

Glossary

schema
SSL

Security Reports

snapshot
stateless
subresource

switch step

U

uncontrolled environment
user impersonation

V

version

A schemais avisual representation of the different parts of uDeploy that may be
secured. Each Schema interacts with usersindirectly, through the role.

A secure socket layer (SSL) enables clients and servers to communicate securely
by encrypting all communications.

A security report provides information about user roles and privileges.

A snapshot is a collection of specific component versions, usualy versions that
are known to work together.

Statel ess means the server retains little session information between requests, and
each request contains all information needed to handleiit.

A subresource enables you to apply logical identifiers or categories within any
given group.

A switch step enables you to create conditional processes.

A uncontrolled environment is an environment that does not contain approvals
approval gates.

uDeploy can use user impersonation when an agent must execute a command for
which it might not otherwise have permission.

A version is set each time a component changes. There are two types of versions
afull version and an incremental version.

247

creating, 97
I n d eX creating processes, 103
exporting, 98
importing, 100
Symbols manual task, 107
"I" character in step names, 170 mapping resources, 101
$ p-application/propertyName}, 181 offline agent, 104
${ p-environment/propertyName}, 102, 181 process steps, 104
${ p:propertyName}, 182 processes, 102
${ p:stepName/propName}, 173, 180 role, 103
${ p:system/propertyName}, 154, 182 Applications tab (security), 144
${ p:version.name}, 181 Approval Failed, 82, 107, 153
ApprovalCreated, 82, 107, 153
A Approve Group, 141
active inventory status, 74 approver role, 145
active status, 105, 105, 106 Authentication Realm Users pane, 143
Add Inventory Update plug-in step, 149 authentication realms, 142
Add Status dialog box, 148 authentication realms precedence, 142
addAgentToPool, 188 creating, 142
adding components to applications, 98 creating LDAP ream, 142
adding environments to applications, 100 types, 142
Admin Group, 141 Authentication Realms pane, 142
administrator role, 145 authorization realms, 140
agent, 92 internal storage, 140
agent pools, 95 Authorization Realms pane, 140
installing, 37 automatic version import check period, 154
remote agents, 93
agent default permissions, 139 B

agent pool default permissions, 140

agent pool roles (security), 136 base search directory, 141, 143

blackout, 116
agent pools, 95
agent.id, 182
agent.name, 183 C
anchor point, 55 Calendar tab (security), 144
anonymous LDAP access, 143 CLlI, 185
application default permissions, 140 CLI command format, 185
application process CodeStation, 14
manual task, 107 com.sun.jndi.ldap.L dapCtxFactory, 142
application process steps command element (plug-in), 171
Finish, 104 command lineinterface (CLI), 185
Install Component, 104 component default permissions, 140
Manual Application Task, 107 component process steps
Rollback Component, 106 Manual Task, 82
Uninstall Component, 105 component process type, 74
application properties, 181 component processes, 72
application role, 103 manual task, 82
application roles (security), 137 component role, 74, 149
application.id, 182 component roles (security), 137
application.name, 182 component template default permissions, 140
ApplicationDeploymentFailure, 82, 107, 153 component template roles (security), 137
ApplicationDeploymentSuccess, 82, 107, 153 component version
applications, 96 auto, 71
add environment, 100 creating, 70
adding components, 98 deleting, 72

248

Index

full or incremental, 70
inactivating, 72
status, 72
component.id, 182
component.name, 182
components
adding to applications, 98
manual task, 82
post-processing, 83
processtype, 73
processes, 72
role, 74
versions, 69
Components tab (security), 144
configuration engineer role, 145
Configuration Group, 141
Configuration Manager role, 145
Configuration tab (security), 144
connection tool, 79
context factory, 142

create and manage resource roles, 145

create applications (security), 145

create component templates (security), 145

create components (security), 145

Create New Authentication Realm pane, 142, 142

create subresources, 145
createAgentPool, 197
createResource, 201

creating application processes, 103

creating applications, 97
creating groups, 141

creating plug-ins, 167, 174
creating security roles, 135, 136

D

Dashboard tab (security), 144

default groups, 141

Default Permissions pane, 139

default security permissions, 139

default users, 141

deleteAgent, 206

deleteAgentPool, 206

deleteResource, 207

deleting component version, 72

Deploy Group, 141

Deployment Detail report, 118

deployment engineer role, 144

deployment reports, 117
Deployment Detail, 118

DeploymentReadied, 82, 107, 153

deployserver.out, 150

digital certificates, 22

disaster recovery, 17

E

enforce complete snapshots, 97
environment default permissions, 140
environment properties, 102, 181
environment roles (security), 138
environment.id, 182
environment.name, 182
environments, 100

adding to applications, 100

mapping resources, 101
escaped property characters, 184
execute permission, 135
exitCode, 82, 183
exporting applications, 98

F

file system basic, 164

file system versioned, 164

Finish process step (application), 104
full component version, 70

G

getAgent, 208

getAgentPool, 209

getAgentPools, 209

getAgents, 209
getApplicationProperties, 211
getApplicationProperty, 211
getComponentEnvironmentProperties, 212
getComponentEnvironmentProperty, 212
getComponentProperties, 214
getComponentProperty, 214
getEnvironmentProperties, 215
getEnvironmentProperty, 215
getEnvironmentsinApplication, 216
getGroupsForResource, 216

getM appingsForA pplicationEnvironment, 217
getM appingsForGroup, 217
getResourceProperties, 219
getResourceSecurity, 220
getRolesForResource, 222
getSystemProperties, 222
getSystemProperty, 223

global properties, 154, 182

groups, 141

H

hours to clean version, 154

I
importing applications, 100
inactivateEnvironment, 224

249

Index

inactivating component version, 72 manage licenses (security), 145
incremental component version, 70 manage plug-ins (security), 145
info.xml, 174 manage snapshots (security), 137
Install Component process step (application), 104 Manual Application Task process step (application), 107
installAgent, 225 manual task (application), 107
installation manual task (component, 82

roadmap, 24 Manual Task component process step, 82
installing agents, 37 mapping resources to an environment, 101
installing plug-ins, 146, 168 mutual authentication, 42
Internal Security authorization realm, 140 mutual key-based authentication, 21
internal storage authorization realms, 140
inventory status, 148 N
Inventory Update process step, 149 network relay, 150

notification scheme, 97

J notifications, 151
Java home path, 93
java.util.Properties, 172, 180 O

JavaScript Object Notation, 10
JMS communication, 10
JSON, 10

offline agent handling, 104
operation tools, 142

Oracle
installing, 32
K supported editions, 31
keystore, 42, 42 output log, 153
keytool, 43
P

L plug-in
LDAP command element, 171

anonymous access, 143 creating, 167

context factory, 142 example, 174

creating authorization realm, 142 info.xml, 174

group name, 141 installing, 146, 168

group search base, 141 plugin.xml, 168, 178

group search filter, 141 post-processing element, 172, 180

search connection DN, 143 step name, 170

URL, 142 step-type, 170

user DN pattern, 142 upgrading, 173

user group attribute, 141 plug-in command element, 171
LDAPfilter expression, 143 plug-in step structure, 175
LDAP URL, 142 plug-in step-type, 170
license default permissions, 140 plugin.xml, 168, 178
ucense roles (security), 138 plugins.urbancode.com, 146
licenses, 149 post-processes, 83
Lightweight Directory Access Protocol, 134 post-processing element, 172, 180
lines of interest, 82, 173, 183 post-processing properties, 173, 180
LOCAL SYST EM account, 38 post-processing scripts, 147
local user credentials, 21 precondition, 105, 106, 106
Iockg, 146 process properties, 182
log files, 150, 153 process steps (application), 104
Log4j, 150 ProcessRequestStarted, 82, 107, 153
LOl, 82, 183 properties

${ p:version.name}, 181

M escaped characters, 184
mail server, 154 format, 181

250

Index

property format, 181
proxy host, 94

Q

quick start
applications, 26
deployments, 27
installation, 24

R
read permission, 135, 136
relocating CodeStation, 15
remote agent, 93
removeAgentFromPool, 228
removeMapping, 231
removeV ersionStatus, 237
Reports tab (security), 144
required component role, 149
resource default permissions, 140
resource group default permissions, 140
resource roles (security), 138
resource.id, 182
resource.name, 182
resources
agent pools, 95
agents, 92
mapping to an environment, 101
remote agents, 93
Resources tab (security), 144
REST-based user interface, 11
roadmap, 24
role (applications), 103
role (component), 74
Rollback Component process step, 106
rollback source, 106
rolling deployment, 50, 74
run component processes (security), 137

S

scanner, 173
scanner.scan();, 173, 180
SE_ASSIGNPRIMARYTOKEN_NAME, 21
SE_INCREASE_QUOTA_NAME, 21
SE_INTERACTIVE_LOGON_NAME, 21
search base, 141, 143
secure socket layer, 41
security

agent roles, 136

application roles, 137

authentication realms, 142

component roles, 137

component template roles, 137

creating roles, 135, 136

default permissions, 139
environment roles, 138
licenseroles, 138
resource roles, 138
server roles, 145
system security, 145
Web Ul roles, 144
security (system security), 145
security areas, 134
security overview, 134
security permissions
execute, 135
read, 135, 136
security, 135, 136
write, 135, 136
security reports, 128
security role permission, 135, 136
security roles—creating, 135, 136
security token, 143
server
user account, 29
server roles (security), 145
setSystemProperty, 241
Settings tab (security), 144
shutdownAgent, 242
source configuration, 163
file system basic, 164
file system versioned, 164
SSL configuration, 41
SSL mutual key-based authentication, 21
staged inventory status, 74
staged status, 105, 105, 106
standard out, 34
statuses, 148
step name forbidden character, 170
step-type, 175
sudo, 21
System Administrator role, 145
system properties, 153
system security
create applications, 145
create component templates, 145
create components, 145
create subresources, 145
manage licenses, 145
manage plug-ins, 145
security, 145
system security area, 134
system settings, 146, 154
installing plug-ins, 146
licenses, 149
locks, 146
logging settings, 150
network relay, 150

251

Index

output log, 153
post-processing scripts, 147

T

task (application), 107

task (component), 82
TaskCreated, 82, 107, 153
Template Namefield, 82, 107
testAgent, 242

token, 143

U

udclient, 185

Ul security area, 134

Uninstall Component process step (application), 105
unique status setting, 149
upgrade.xml, 167

upgrading plug-ins, 173
UrbanCode Plug-in Page, 146
user directory entry pattern, 142
user group attribute, 141

user groups, 141

user impersonation, 20

user search base, 141, 143

\%

version (component), 69
version status, 148
version.ID, 182
version.name, 182

W

Web Ul roles (security), 144
Web Ul security
Applications tab, 144
Calendar tab, 144
Componentstab, 144
Configuration tab, 144
Dashboard tab, 144
Reportstab, 144
Resources tab, 144
Settings tab, 144
Work Itemstab, 144
Work Itemstab (security), 144
write permission, 135, 136

252

	uDeploy® User Guide
	Table of Contents
	About This Book
	How This Book is Organized
	Product Support
	Document Conventions

	Introduction
	Overview
	Components
	Component Processes
	Plug-ins
	Component Versions and the CodeStation Repository

	Applications
	Application Process
	Environments
	Snapshots

	Agents
	Resources
	Resource Groups

	Architecture
	Service Tier
	Clients

	Data Tier
	Relational Database
	File Storage—CodeStation
	Relocating Codestation

	Data Center Configuration
	Cold Standby
	Platform Considerations
	Recommended Server Installation
	Agent Minimum Requirements

	Typical Data Center Configurations
	Recovery Using a Database Back-up

	Agents
	Server-Agent Communication
	Remote Agents--Crossing Network Boundaries and Firewalls
	Agent Security
	User Impersonation
	Using su/sudo
	Impersonation on Windows Systems

	SSL Mutual Key-based Authentication

	Getting Started
	uDeploy Roadmap
	Installing and Upgrading Servers and Agents
	Installation Recommendations
	System Requirements
	Server Minimum Installation Requirements
	Recommended Server Installation
	Agent Minimum Requirements
	32- and 64-bit JVM Support
	Performance Recommendations

	Download uDeploy
	Database Installation
	Installing Oracle
	Installing MySQL
	Installing Microsoft SQL Server

	Server Installation
	Windows Server Installation
	Unix/Linux Installation

	Agent Installation
	Installing an Agent
	Connecting Agents to Agent Relays

	Installing Agent Relays
	Upgrading uDeploy
	SSL Configuration
	Configuring SSL Unauthenticated Mode for HTTP Communications
	Configuring Mutual Authentication

	Running uDeploy
	Running the Server
	Running an Agent
	Running an Agent Relay
	Accessing uDeploy

	Quick Start—helloWorld Deployment
	Creating Components
	helloWorld Deployment
	A Note Before You Begin

	helloWorld Component Version
	Component Process
	helloWorld Process Design
	helloWorld Application
	Creating an Application
	Adding the helloWorld Component to the Application
	Adding an Environment to the Application
	Adding a Process to the Application
	Designing the Process Steps
	Running the Application

	Using uDeploy
	Components
	Creating Components
	Importing/Exporting Components
	Exporting Components
	Importing Components
	To Import a Component

	Component Properties

	Component Versions
	Importing Versions Manually
	Importing Versions Automatically
	Component Version Statuses
	Deleting Component Versions

	Component Processes
	Configuring Component Processes

	Process Editor
	To Display the Process Editor
	Using the Process Editor
	Adding Process Steps
	Connecting Process Steps
	Process Properties
	Switch Steps and Conditional Processes
	Process Step Properties

	Component Manual Tasks
	Creating Component Manual Tasks
	Using Component Manual Tasks

	Post-Processes
	Component Templates
	Creating a Component Template
	Importing\Exporting Templates
	Exporting Templates
	Importing Templates

	Component Template Properties
	Using Component Templates
	Configuration Templates

	Component Change Logs
	Deleting and Deactivating Components

	Resources
	Resource Groups
	Creating a Resource Group

	Resource Roles
	Role Properties

	Agents
	Remote Agent Installation
	Managing Agents Remotely

	Agent Pools
	Creating an Agent Pool
	Managing Agent Pools

	Applications
	Creating Applications
	Adding Components to an Application
	Importing/Exporting Applications
	Exporting Applications
	Importing Applications
	To Import an Application

	Application Environments
	Creating an Environment
	Mapping Resources to an Environment
	Environment Properties

	Application Processes
	Creating Application Processes

	Application Process Steps
	Application Process Steps Details
	Finish
	Install Component
	Uninstall Component
	Rollback Component
	Manual Application Task (Utility)

	Application Manual Tasks
	Creating Application Manual Tasks
	Using Manual Tasks

	Approval Process
	Work Items

	Snapshots
	Creating Snapshots
	Snapshot Versions
	Snapshot Configuration
	Using Snapshots

	Application Gates
	Creating Gates

	Deployments
	Scheduling Deployments

	Reports
	Deployment Reports
	Deployment Detail Report
	Deployment Detail Fields
	Running the Deployment Detail Report
	Sample Reports

	Deployment Count Report
	Deployment Count Table Fields
	Running the Deployment Detail Report
	Sample Reports

	Deployment Average Duration Report
	Deployment Average Duration Fields
	Running the Deployment Average Duration Report
	Sample Reports

	Deployment Total Duration Report
	Deployment Total Duration Fields
	Running the Deployment Total Duration Report
	Sample Reports

	Security Reports
	Application Security Report
	Application Security Fields

	Component Security Report
	Component Security Fields

	Environment Security Report
	Environment Security Fields

	Resource Security Report
	Resource Security Fields

	Saving and Printing Reports
	Saving Report Data
	Saving Report Filters
	Printing Reports

	Administration
	uDeploy Security
	Roles and Permissions
	Default Roles
	Creating and Editing Roles
	Agent Roles
	Application Roles
	Component Template Roles
	Component Roles
	Environment Roles
	License Roles
	Resource Roles

	Default Permissions
	Setting Default Permissions

	Authorization Realms
	Creating an LDAP Authorization Realm
	Groups

	Authentication Realms
	Creating an Authentication Realm
	Creating an LDAP Authentication Realm

	Creating Users
	Importing LDAP Users
	To Import LDAP Users

	Tokens
	User Interface Security
	System Security

	System Settings
	Installing Plug-ins
	Locks
	Managing Locks

	Post-Processing Scripts
	Inventory and Component Statuses
	Creating Statuses
	Using Statuses

	Licenses
	Adding a License
	Adding Agents to a License
	Modifying or Deleting a License

	Log Settings
	Network Settings
	Notifications
	Output Log
	System Properties
	System Settings
	Preview Version Cleanup

	Configuration
	Application Configuration
	Adding Application Configuration Properties
	Modifying and Deleting Application Configuration Properties

	Component Configuration
	Environment Configuration

	Inventory
	Resources Inventory
	Component Inventory
	Environment Inventory

	Reference
	Component Source Configuration
	Basic Fields
	File System (Basic and Versioned)
	File System (Basic)
	File System (Versioned)

	Plug-ins
	Standard Plug-ins
	Creating Plug-ins
	The plugin.xml File
	The <header> Element

	Plug-in Steps--the <step-type> Element
	Step Properties--the <properties> Element

	The <command> Element
	The <post-processing> Element
	Upgrading Plug-ins
	The info.xml File

	Example Plug-in
	Step Properties
	Step Commands
	create_file.groovy

	The <post-processing> Element

	uDeploy Properties
	Command Line Client (CLI) Reference
	Command Format
	Commands
	addActionToRoleForApplications
	addActionToRoleForComponents
	addActionToRoleForEnvironments
	addActionToRoleForResources
	addActionToRoleForUI
	addAgentToPool
	addComponentToApplication
	addGroupToRoleForApplication
	addGroupToRoleForComponent
	addGroupToRoleForEnvironment
	addGroupToRoleForResource
	addGroupToRoleForUI
	addLicense
	addNameConditionToGroup
	addPropertyConditionToGroup
	addResourceToGroup
	addRoleToResource
	addRoleToResourceWithProperties
	addUserToGroup
	addUserToRoleForApplication
	addUserToRoleForComponent
	addUserToRoleForEnvironment
	addUserToRoleForResource
	addUserToRoleForUI
	addVersionFiles
	addVersionStatus
	createAgentPool
	createApplication
	createApplicationProcess
	createComponent
	createComponentProcess
	createDynamicResourceGroup
	createEnvironment
	createGroup
	createMapping
	createResource
	createResourceGroup
	createRoleForApplications
	createRoleForComponents
	createRoleForEnvironments
	createRoleForResources
	createRoleForUI
	createSubresource
	createUser
	createVersion
	deleteAgent
	deleteAgentPool
	deleteGroup
	deleteResource
	deleteResourceGroup
	deleteResourceProperty
	deleteUser
	exportGroup
	getAgent
	getAgentPool
	getAgentPools
	getAgents
	getApplication
	getApplicationProcess
	getApplicationProcessRequestStatus
	getApplicationProperties
	getApplicationProperty
	getApplications
	getComponent
	getComponentEnvironmentProperties
	getComponentEnvironmentProperty
	getComponentProcess
	getComponents
	getComponentsInApplication
	getComponentProperties
	getComponentProperty
	getEnvironment
	getEnvironmentProperties
	getEnvironmentProperty
	getEnvironmentsInApplication
	getGroupsForResource
	getMapping
	getMappingsForApplicationEnvironment
	getMappingsForGroup
	getResource
	getResourceGroup
	getResourceGroups
	getResourceProperties
	getResourceProperty
	getResources
	getResourcesInGroup
	getResourceSecurity
	getRoleForApplications
	getRoleForComponents
	getRoleForEnvironments
	getRoleForResources
	getRoleForUI
	getRolesForResource
	getSystemProperties
	getSystemProperty
	getUser
	importGroup
	importVersions
	inactivateEnvironment
	installAgent
	login
	logout
	removeActionFromRoleForApplications
	removeActionFromRoleForComponents
	removeActionFromRoleForEnvironments
	removeActionFromRoleForResources
	removeActionFromRoleForUI
	removeAgentFromPool
	removeGroupFromRoleForApplication
	removeGroupFromRoleForComponent
	removeGroupFromRoleForEnvironment
	removeGroupFromRoleForResource
	removeGroupFromRoleForUI
	removeMapping
	removeResourceFromGroup
	removeRoleForApplications
	removeRoleForComponents
	removeRoleForEnvironments
	removeRoleForResources
	removeRoleForUI
	removeRoleFromResource
	removeUserFromGroup
	removeUserFromRoleForApplication
	removeUserFromRoleForComponent
	removeUserFromRoleForEnvironment
	removeUserFromRoleForResource
	removeUserFromRoleForUI
	removeVersionStatus
	repeatApplicationProcessRequest
	requestApplicationProcess
	restartAgent
	setApplicationProperty
	setComponentProperty
	setComponentEnvironmentProperty
	setEnvironmentProperty
	setResourceProperty
	setSystemProperty
	shutdownAgent
	testAgent
	updateUser

	Glossary
	Index

