
uDeploy® User Guide

4.7.2

uDeploy User Guide: 4.7.2

Publication date October 2012
Copyright © 2012 UrbanCode, Inc.

UrbanCode, AnthillPro, uDeploy and any other product or service name or slogan or logo contained in this documentation are trademarks of
UrbanCode and its suppliers or licensors and may not be copied, imitated, or used, in whole or in part, without the prior written permission of
UrbanCode or the applicable trademark holder. Ownership of all such trademarks and the goodwill associated therewith remains with UrbanCode
or the applicable trademark holder.

Reference to any products, services, processes, or other information, by trade name, trademark, or otherwise does not constitute or imply
endorsement, sponsorship, or recommendation thereof by UrbanCode.

All other marks and logos found in this documentation are the property of their respective owners. For a detailed list of all third party intellectual
property mentioned in our product documentation, please visit: http://www.UrbanCode.com/html/company/legal/trademarks.html.

Document Number: 4.7.2.2

http://www.UrbanCode.com/html/company/legal/trademarks.html

iii

About This Book .. 1
How This Book is Organized ... 1
Product Support ... 1
Document Conventions .. 1

Introduction ... 3
Overview .. 4

Components ... 5
Component Processes .. 5
Plug-ins .. 7
Component Versions and the CodeStation Repository .. 7

Applications .. 8
Application Process .. 8
Environments ... 8
Snapshots .. 8

Agents .. 9
Resources .. 9

Resource Groups .. 9
Architecture ... 10

Service Tier ... 11
Clients .. 14

Data Tier ... 14
Relational Database ... 14
File Storage—CodeStation .. 14
Data Center Configuration .. 15

Agents .. 17
Server-Agent Communication ... 18
Remote Agents--Crossing Network Boundaries and Firewalls 19
Agent Security ... 20
User Impersonation ... 20
SSL Mutual Key-based Authentication ... 21

Getting Started ... 23
uDeploy Roadmap .. 24
Installing and Upgrading Servers and Agents ... 28

Installation Recommendations ... 28
System Requirements .. 29

Server Minimum Installation Requirements ... 29
Recommended Server Installation .. 29
Agent Minimum Requirements .. 30
32- and 64-bit JVM Support ... 30
Performance Recommendations ... 30

Download uDeploy ... 31
Database Installation ... 31

Installing Oracle ... 31
Installing MySQL ... 32
Installing Microsoft SQL Server .. 33

Server Installation ... 34
Windows Server Installation ... 34
Unix/Linux Installation .. 36

Agent Installation .. 37
Installing an Agent .. 37
Connecting Agents to Agent Relays ... 39

Installing Agent Relays .. 39
Upgrading uDeploy ... 41
SSL Configuration .. 41

uDeploy® User Guide

iv

Configuring SSL Unauthenticated Mode for HTTP Communications 42
Configuring Mutual Authentication .. 42

Running uDeploy .. 44
Running the Server ... 44
Running an Agent ... 44
Running an Agent Relay .. 44
Accessing uDeploy .. 44

Quick Start—helloWorld Deployment .. 45
Creating Components .. 45

helloWorld Deployment ... 46
A Note Before You Begin .. 46

helloWorld Component Version ... 46
Component Process ... 49
helloWorld Process Design ... 50
helloWorld Application .. 55

Creating an Application ... 56
Adding the helloWorld Component to the Application 56
Adding an Environment to the Application .. 56
Adding a Process to the Application ... 58
Designing the Process Steps ... 58
Running the Application .. 60

Using uDeploy ... 63
Components ... 64

Creating Components .. 64
Importing/Exporting Components .. 66
Component Properties .. 68

Component Versions ... 69
Importing Versions Manually .. 70
Importing Versions Automatically .. 71
Component Version Statuses ... 72
Deleting Component Versions ... 72

Component Processes .. 72
Configuring Component Processes ... 72

Process Editor .. 74
To Display the Process Editor ... 74
Using the Process Editor .. 75
Adding Process Steps .. 76
Connecting Process Steps ... 78
Process Properties ... 79
Switch Steps and Conditional Processes .. 80
Process Step Properties .. 81

Component Manual Tasks .. 82
Creating Component Manual Tasks .. 82
Using Component Manual Tasks ... 82

Post-Processes .. 83
Component Templates ... 83

Creating a Component Template .. 83
Importing\Exporting Templates ... 84
Component Template Properties .. 85
Using Component Templates .. 87
Configuration Templates .. 87

Component Change Logs ... 88
Deleting and Deactivating Components ... 88

Resources .. 90

uDeploy® User Guide

v

Resource Groups .. 90
Creating a Resource Group ... 90

Resource Roles ... 92
Role Properties ... 92

Agents .. 92
Remote Agent Installation .. 93
Managing Agents Remotely .. 94

Agent Pools ... 95
Creating an Agent Pool .. 95
Managing Agent Pools ... 95

Applications ... 96
Creating Applications .. 97

Adding Components to an Application .. 98
Importing/Exporting Applications .. 98

Application Environments ... 100
Creating an Environment .. 100
Mapping Resources to an Environment ... 101
Environment Properties .. 102

Application Processes .. 102
Creating Application Processes .. 103

Application Process Steps ... 104
Application Process Steps Details ... 104

Application Manual Tasks .. 107
Creating Application Manual Tasks .. 107
Using Manual Tasks .. 108

Approval Process .. 108
Work Items .. 108

Snapshots ... 109
Creating Snapshots .. 109
Snapshot Versions ... 109
Snapshot Configuration .. 110
Using Snapshots .. 110

Application Gates .. 110
Creating Gates .. 110

Deployments .. 113
Scheduling Deployments .. 116

Reports .. 117
Deployment Reports .. 117

Deployment Detail Report .. 118
Deployment Count Report .. 120
Deployment Average Duration Report ... 123
Deployment Total Duration Report ... 126

Security Reports .. 128
Application Security Report .. 128
Component Security Report .. 129
Environment Security Report ... 130
Resource Security Report ... 130

Saving and Printing Reports .. 131
Saving Report Data ... 131
Saving Report Filters ... 131
Printing Reports .. 132

Administration .. 133
uDeploy Security .. 134

Roles and Permissions ... 135

uDeploy® User Guide

vi

Default Roles ... 135
Creating and Editing Roles ... 136
Agent Roles ... 136
Application Roles .. 137
Component Template Roles .. 137
Component Roles .. 137
Environment Roles .. 138
License Roles ... 138
Resource Roles ... 138

Default Permissions ... 139
Setting Default Permissions ... 139

Authorization Realms ... 140
Creating an LDAP Authorization Realm .. 140
Groups .. 141

Authentication Realms ... 142
Creating an Authentication Realm .. 142
Creating Users .. 143
Importing LDAP Users .. 143

Tokens .. 143
User Interface Security ... 144
System Security .. 145

System Settings .. 146
Installing Plug-ins ... 146
Locks .. 146

Managing Locks ... 146
Post-Processing Scripts ... 147
Inventory and Component Statuses ... 148

Creating Statuses ... 148
Using Statuses .. 149

Licenses .. 149
Adding a License .. 149
Adding Agents to a License .. 150

Log Settings ... 150
Network Settings ... 150
Notifications ... 151
Output Log .. 153
System Properties .. 153
System Settings .. 154

Preview Version Cleanup ... 155
Configuration ... 156

Application Configuration ... 156
Adding Application Configuration Properties ... 157
Modifying and Deleting Application Configuration Properties 158

Component Configuration ... 158
Environment Configuration ... 158

Inventory ... 160
Resources Inventory .. 160
Component Inventory ... 160
Environment Inventory ... 161

Reference ... 162
Component Source Configuration ... 163

Basic Fields ... 163
File System (Basic and Versioned) ... 164

File System (Basic) ... 164

uDeploy® User Guide

vii

File System (Versioned) ... 164
Plug-ins ... 166

Standard Plug-ins .. 167
Creating Plug-ins .. 167

The plugin.xml File ... 168
Plug-in Steps--the <step-type> Element ... 170
The <command> Element .. 171
The <post-processing> Element .. 172
Upgrading Plug-ins .. 173
The info.xml File .. 174

Example Plug-in ... 174
Step Properties .. 176
Step Commands .. 178
The <post-processing> Element .. 180

uDeploy Properties .. 181
Command Line Client (CLI) Reference ... 185

Command Format ... 185
Commands ... 186

addActionToRoleForApplications ... 186
addActionToRoleForComponents ... 186
addActionToRoleForEnvironments ... 187
addActionToRoleForResources .. 187
addActionToRoleForUI .. 187
addAgentToPool ... 188
addComponentToApplication .. 188
addGroupToRoleForApplication ... 189
addGroupToRoleForComponent ... 189
addGroupToRoleForEnvironment ... 190
addGroupToRoleForResource .. 190
addGroupToRoleForUI ... 191
addLicense ... 191
addNameConditionToGroup .. 191
addPropertyConditionToGroup .. 192
addResourceToGroup ... 192
addRoleToResource ... 193
addRoleToResourceWithProperties ... 193
addUserToGroup ... 194
addUserToRoleForApplication ... 194
addUserToRoleForComponent ... 194
addUserToRoleForEnvironment ... 195
addUserToRoleForResource .. 195
addUserToRoleForUI ... 196
addVersionFiles .. 196
addVersionStatus ... 197
createAgentPool .. 197
createApplication .. 198
createApplicationProcess .. 198
createComponent ... 199
createComponentProcess ... 199
createDynamicResourceGroup ... 200
createEnvironment ... 200
createGroup .. 201
createMapping .. 201
createResource .. 201

uDeploy® User Guide

viii

createResourceGroup ... 202
createRoleForApplications .. 202
createRoleForComponents ... 203
createRoleForEnvironments ... 203
createRoleForResources .. 204
createRoleForUI .. 204
createSubresource .. 204
createUser .. 205
createVersion .. 205
deleteAgent .. 206
deleteAgentPool .. 206
deleteGroup .. 206
deleteResource .. 207
deleteResourceGroup ... 207
deleteResourceProperty .. 207
deleteUser .. 208
exportGroup ... 208
getAgent .. 208
getAgentPool .. 209
getAgentPools ... 209
getAgents ... 209
getApplication .. 210
getApplicationProcess .. 210
getApplicationProcessRequestStatus ... 210
getApplicationProperties ... 211
getApplicationProperty ... 211
getApplications ... 211
getComponent ... 212
getComponentEnvironmentProperties .. 212
getComponentEnvironmentProperty .. 212
getComponentProcess .. 213
getComponents ... 213
getComponentsInApplication ... 214
getComponentProperties ... 214
getComponentProperty ... 214
getEnvironment ... 215
getEnvironmentProperties ... 215
getEnvironmentProperty ... 215
getEnvironmentsInApplication ... 216
getGroupsForResource ... 216
getMapping .. 217
getMappingsForApplicationEnvironment ... 217
getMappingsForGroup .. 217
getResource .. 218
getResourceGroup ... 218
getResourceGroups .. 218
getResourceProperties .. 219
getResourceProperty .. 219
getResources .. 219
getResourcesInGroup ... 220
getResourceSecurity ... 220
getRoleForApplications .. 220
getRoleForComponents .. 221
getRoleForEnvironments ... 221

uDeploy® User Guide

ix

getRoleForResources .. 221
getRoleForUI .. 222
getRolesForResource .. 222
getSystemProperties ... 222
getSystemProperty ... 223
getUser .. 223
importGroup ... 223
importVersions ... 224
inactivateEnvironment .. 224
installAgent .. 225
login ... 226
logout .. 226
removeActionFromRoleForApplications .. 226
removeActionFromRoleForComponents .. 227
removeActionFromRoleForEnvironments ... 227
removeActionFromRoleForResources ... 228
removeActionFromRoleForUI .. 228
removeAgentFromPool ... 228
removeGroupFromRoleForApplication .. 229
removeGroupFromRoleForComponent .. 229
removeGroupFromRoleForEnvironment .. 230
removeGroupFromRoleForResource ... 230
removeGroupFromRoleForUI .. 231
removeMapping .. 231
removeResourceFromGroup .. 232
removeRoleForApplications .. 232
removeRoleForComponents ... 232
removeRoleForEnvironments ... 233
removeRoleForResources .. 233
removeRoleForUI .. 234
removeRoleFromResource .. 234
removeUserFromGroup .. 234
removeUserFromRoleForApplication .. 235
removeUserFromRoleForComponent .. 235
removeUserFromRoleForEnvironment ... 236
removeUserFromRoleForResource .. 236
removeUserFromRoleForUI .. 237
removeVersionStatus .. 237
repeatApplicationProcessRequest .. 238
requestApplicationProcess ... 238
restartAgent .. 238
setApplicationProperty ... 239
setComponentProperty .. 239
setComponentEnvironmentProperty .. 240
setEnvironmentProperty .. 240
setResourceProperty ... 241
setSystemProperty ... 241
shutdownAgent ... 242
testAgent ... 242
updateUser ... 243

Glossary .. 244
Index .. 248

1

About This Book
This book describes how to use UrbanCode's uDeploy product and is intended for all users.

This book is available in PDF and HTML formats at UrbanCode's Documentation portal: http://
docs.urbancode.com/. uDeploy's online Help is installed along with the product software and can be
accessed from the product's web-based user interface. A PDF version is also included with the product's
installation package.

How This Book is Organized
This book is organized into the following parts.

Table 1. Organization of the User Guide

Part Description

Introduction Provides an overview of the product's significant
features and describes its architecture.

Getting Started Provides a roadmap to uDeploy productivity,
describes how to install the product, and contains a
step-by-step introductory tutorial.

Using uDeploy Contains comprehensive chapters for uDeploy's
core features, such as components, applications,
and resources.

Administration Describes uDeploy's security system and explains
how to configure product features.

Reference Contains several reference-type chapters on
topics like: the command-line interface, product
properties, writing plug-ins, as well as others.

Glossary Contains definitions of products features and
terms.

Product Support
The UrbanCode Support portal, http://support.urbancode.com/, provides information that can address any
of your questions about the product. The portal enables you to:

• review product FAQs

• download patches

• view release notes that contain last-minute product information

• review product availability and compatibility information

• access white papers and product demonstrations

Document Conventions
This book uses the following special conventions:.

About This Book

2

• Program listings, code fragments, and literal examples are
presented in this typeface.

• Product navigation instructions are provided like this:

Home > Components > [selected component] > Versions > [selected
version] > Add a Status [button]

This example, which explains how to add a status to a component version, means: from the uDeploy
home page click the Components tab (which displays the Components pane); select a component (which
displays a pane with information for the selected component); click the Versions tab (which displays a
pane with information about the selected version); and click the Add a Status button.

• User interface objects, such as field and button names, are displayed with initial Capital Letters.

• Variable text in path names or user interface objects is displayed in italic text.

• Information you are supposed to enter is displayed in this format.

Introduction

4

Overview
At its base, software deployment is a simple concept that sometimes gets obscured by jargon. A
deployment is the process of moving software (broadly defined) through various preproduction stages
to final production. Typically, each stage represents a step of higher criticality, such as quality
assurance to production. Complexity arises from the sheer volume of things deployed, the number
and variety of deployment targets, constantly-decreasing deployment cycles, and the ever-increasing
rate of technological change. While virtualization provides some relief to the process, it also—perhaps
paradoxically—increases the challenge with its exponential growth of deployment targets.

uDeploy helps you meet the challenge by providing tools that improve deployment speeds while
simultaneously improving their reliability. uDeploy's release automation tools provide complete visibility
into n-tiered deployments, enabling you to model processes that orchestrate complex deployments across
every environment and approval gate. uDeploy's drag-and-drop design tools decrease design-time by
making it easy to visualize the end-to-end deployment process and develop the big picture—the What,
How, and Where of the deployment workflow:

• What: the deployable items—binaries, static content, middleware updates, database changes and
configurations, and anything else associated with the software—that uDeploy delivers to target
destinations.

• How: refers to combining deployable items with processes to create components, and designing
applications that coordinate and orchestrate multi-component deployments.

• Where: the target destination's hosts and environments—uDeploy can scale to any environment.

Figure 1. Deployment Process

Overview

5

In uDeploy, deployable items are combined into logical groupings called components. Components are
deployed by component processes which consist of user-configured steps, many taken from integrations
with third-party tools called plug-ins. Multi-component deployments are handled by user-assembled
applications.

uDeploy represents deployment targets by what it calls resources. Resources—databases, servers, and so
on—reside on hosts. Complex deployments can contain numerous components that target multiple hosts.
Deployments are managed by agents residing on the hosts. Components can also remain independent of one
another, which enables incremental or targeted deployments. Of course, you can model your components
as you see fit—uDeploy is flexible and works the way you work.

Server

The uDeploy server is a standalone server that provides uDeploy's core services such as the user interface,
component and application configuration tools, workflow engine, and security services, among others.
Many services are REST-based.

uDeploy supports cross-network deployments with relay servers. Relay servers enable network-to-network
communications.

Agents

An agent is a lightweight process that runs on a host and communicates with the uDeploy server. Agents
manage the resources that are the actual deployment targets. Each machine participating in a deployment
usually has an agent installed on it. When not performing deployments, agents run in the background with
minimal overhead. See the section called “Resources”.

Repository

The uDeploy-supplied artifact repository, CodeStation, provides secure and tamper-proof storage. It tracks
artifact versions as they change and maintains an archive for each artifact. Associations between repository
files and components are built-in and automatic.

Security

In uDeploy’s role-based security system, users are assigned roles, and role-permissions are assigned
to things such as projects, build configurations, and other resources. For example, a developer may be
permitted to build a project, but only view non-project related material. See uDeploy Security.

Components
Understanding how uDeploy uses the term component is critical to understanding uDeploy. Components
represent deployable items along with user-defined processes that operate on them, usually by deploying
them. Deployable items--also called artifacts--can be files, images, databases, configuration materials, or
anything else associated with a software project. Components have versions which are used to ensure that
proper component instances get deployed.

Artifacts can come from a number of sources: file systems, build servers such as AnthillPro, source
version control systems, Maven repositories, as well as many others. When you create a component, you
identify the source and define how the artifacts will be brought into uDeploy. If the source is Subversion,
for example, you specify the Subversion repository containing the artifacts. Each component represents
artifacts from a single source.

Component Processes
A component process is a series of user-defined steps that operate on a component's artifacts. Each
component has at least one process defined for it and can have several. A component process can be as

Overview

6

simple as a single step or contain numerous steps and relationships. The switch step, for instance, enables
you to create conditional processes. You might, say, take artifacts from a source like an AnthillPro project
and map the ones that get deployed to an HTTP server into one component; those that get deployed to a
J2EE container to another; and those that get deployed to a database to yet another. Or, to take another
example, a single-component deployment might consist of two processes: the first moves component files
to a server on Friday night (a lengthy operation), while the second deploys the files Saturday morning.

Figure 2. Process Editor with a Component Process Containing a Switch Step

Component processes are created with uDeploy's process editor. The process editor is visual drag-and-
drop editor that enables you to drag process steps onto the design space and configure them as you go.
As additional steps are placed, you visually define their relationships with one another. Process steps are
selected from a menu of standard steps that replace typical deployment scripts and manual processes.
uDeploy provides steps for several utility processes, such as inventory management, and workflow control.
Additional process steps are provided by plug-ins. Plug-ins provide integration with common deployment
tools and application servers, such as WebSphere, Microsoft IIS, and many others. Out-of-the-box,
uDeploy provides plug-ins for many common processes, such as downloading and uploading artifacts, and
retrieving environment information. A component process can have steps from more than one plug-in.

A component process is defined for a specific component. A component can have more than one process
defined for it, but each component requires at least one process.

For example, deploying a J2EE EAR file to WebSphere server typically consists of the following
operations:

1. transfer the EAR file to the target machine

Overview

7

2. stop the WebSphere server instance

3. invoke wsAdmin with deployment properties

4. start the WebSphere instance

5. verify that the deployment succeeded by accessing a specified URL

The WebSphere plug-in provides a configurable process step for each operation.

A frequently used component process can be saved as a template and applied later to new components.

Component processes are executed by uDeploy agents running on hosts. One instance of a component
process is invoked for each resource mapped to a component in the target environment, see the section
called “Resources”.

Plug-ins
Plug-ins provide basic processing functions as well as integration with third-party tools. uDeploy ships
with plug-ins for several common deployment processes, and others are readily available for a wide variety
of tools, such as middleware tools, databases, servers, and other deployment targets.

Third-party tools exhibit wide and varied functions, of course. Plug-in integration is achieved by breaking
down a tool's functions into simple, discrete steps that invoke a specific behavior. A plug-in step might
invoke a tool, or invoke different functions in a tool, such as extracting or inserting some type of data.

When you use plug-ins to create a component process, you can use steps from several plug-ins and
configure the steps as you go. For example, you might create a process using a plug-in for a source control
tool that deploys a component to a middleware server, and another plug-in to configure a step that removes
the component from the server.

A component process that contains a plug-in step requires an agent. Unless the agent needs to interact with
the host's file system or system processes, the agent does not have to be on the same host as the target
resource.

uDeploy enables you to download and install numerous component plug-ins. UrbanCode does not charge
any additional fees for plug-ins. The plug-in system is open and extensible--plug-ins can be written in
any language.

Component Versions and the CodeStation Repository
After defining a component's source and processes, you import its artifacts into uDeploy's artifact
repository CodeStation. Artifacts can be imported automatically or manually. By default, a complete
copy of an artifact's content is imported into CodeStation (the original artifacts are untouched). This
provides several benefits, such as tamper-proof storage, and the ability to review and validate artifacts
with uDeploy's user interface. But if you have storage concerns or use a tool like Maven, you can limit
CodeStation to using references to the artifacts instead of actually copying them.

Each time a component is imported, including the first time, it is versioned. Versions can be assigned
automatically by uDeploy, applied manually, or come from a build server. Every time a component's
artifacts are modified and reimported, a new version of the component is created. So a component might
have several versions in CodeStation and each version will be unique.

A version can be full or incremental. A full version contains all component artifacts; an incremental version
only contains artifacts modified since the previous version was created.

Overview

8

Applications
An applications is the mechanism that initiate component deployments; they bring together components
with their deployment targets, and orchestrate multi-component deployments.

Application Process
When you create an application, you identify the included components and define an application process.
Application processes, like component processes, are created with the process editor. uDeploy provides
several common process steps, otherwise application processes are assembled from processes defined for
their associated components.

Application processes can run manually, automatically on some trigger condition, or on a user-defined
schedule. When a component has several processes defined for it, the application determines which ones
are executed and in which order. For instance, an n-tiered application might have a web tier, a middleware
tier, and a database tier. And, continuing the example, the database tier must be updated before the other
two, which are then deployed concurrently. An application can orchestrate the entire process, including
putting servers on- and off-line for load-balancing as required.

When an application process executes, it interacts with a specific environment. An environment is a
collection of one or more resources. At least one environment must be associated with the application
before the process can be executed. Application processes are environment agnostic; processes can be
designed independently of any particular environment. This enables a single application to interact with
separate environments, such as QA, or production. To use the same application process with multiple
environments (a typical scenario), you associate each environment with the application and execute the
process separately for each one.

In addition to deployments, several other common processes are available, such as rolling-back
deployments. uDeploy tracks the history of each component version, which enables application processes
to restore environments to any desired point.

Environments
An environment is a user-defined collection of resources that host an application. Environments are
typically modeled on some stage of the software project life cycle, such as development, QA, or production.
A resource is a deployment target, such as a database or J2EE container. Resources are usually found on
the same host where the agent that manages them is located. A host can be a physical machine, virtual
machine, or be cloud-based.

Environments can have different topologies--for example: an environment can consist of a single machine;
be spread over several machines; or spread over clusters of machines. Environments are application scoped.
Although multi-tenant machines can be the target of multiple applications, experience has shown that most
IT organizations use application-specific environments. Additionally, approvals are generally scoped to
environments.

uDeploy maintains an inventory of every artifact deployed to each environment and tracks the differences
between them.

Snapshots
A snapshot is a collection of specific component versions, usually versions that are known to work together.
Typically, a snapshot is generated in an uncontrolled environment--meaning one without— approvals.
When a snapshot is created, a picture of the application's current state is captured. As an application moves
through different environments, snapshots can ensure that proper component versions are used.

Overview

9

Snapshots help manage complex deployments—deployments with multiple tiers and development teams.
For example, after testing and confirming that team A's component works with teams B's, a snapshot can
be taken. Then, as development progresses, additional snapshots can be taken and used to model the effort
and drive the entire deployment, coordinating versions, configurations, and processes.

Agents
An agent is a process that runs on target host and communicates with the uDeploy server. Agents are
integral to uDeploy's client/server architecture. Agents perform the actual work of deploying components
and so relieves the server from the task, making large deployments involving thousands of targets possible.

Typically, an agent runs on the same host where the resources it handles are located. A single agent can
handle all resources on its host. If a host has several resources, an agent process is invoked separately for
each resource. For example, a test environment might contain a single web server, a single middleware
server, and a single database server all running on the same host (machine). A deployment to this
environment might have one agent and three separate resources.

Depending on the number of hosts in an environment, a deployment might require a large number of
agents. Agents are unobtrusive and secure. Agent communications use SSL encryption and mutual key-
based authentication. For added security, agents do not listen to ports, but open direct connections to the
server instead.

Resources
A resource is a user-defined construct based on uDeploy's architectural model. Resources aid bookkeeping;
inventory is tracked for resources. Resources are created and managed through the user interface.

A resource represents a deployment target--a physical machine, virtual machine, database, J2EE container,
and so on. Components are deployed to resources by agents (which are physical processes). Resources
generally reside on the same host where its managing agent runs. A host can have more than one resource.
If an agent is configured to handle multiple resources, a separate agent process is invoked for each one.

A resource can represent a physical machine, which is the simplest configuration, or a specific target on
a machine, such as a database or server. So a host (machine) can have several resources represented on
it. In addition, a resource can represent a process distributed over several physical or virtual machines.
Finally, environments consist of resources.

To perform a deployment, at least one resource must be defined and (usually) at least one agent. ("Usually"
because trivial deployments can be done without an agent.) Typically, each host in a participating
environment has an agent running on it to handle the resources located there.

A proxy resource is a resource effected by an agent on a host other than the one where the resource is
located. If an agent does not require direct interaction with the file system or with process management
on the host, a proxy resource can be used. When a deployment needs to interact with a service exposed on
the network (a database or J2EE server, for instance), the interaction can happen from any machine that
has access to the networked service.

Resource Groups
A resource group is a logical collection of resources. Resource groups enable collections of resources
to be easily reused. Resource groups can manage multi-tenant scenarios, for example, in which several
machines share the same resources.

10

Architecture
uDeploy architecture consists of a service tier and a data tier. The service tier has a central server that
provides a web server front-end and core services, such as workflow, agent management, deployment,
inventory, security, as well as others. A service can be thought of as a self-contained mechanism for hosting
a piece of business logic. Services can be consumed by clients\agents or other services. Deployments are
orchestrated by the server and performed by agents distributed throughout the network. Most clients use
browsers to communicate with the web server via HTTP(S). Most server-agent communication is done
via JMS (discussed below) but HTTP(S) is also used as required.

uDeploy uses stateless communications for server-agent communications (JMS-based) as well as client-
web service communications. Stateless, as used here, means the server retains little session information
between requests and each request contains all the information required to handle it. The server sets-up
listening sockets and listens for agents, relays, and users (clients). For added security, agents do not listen
on ports. Agents send requests when they are ready to make the transition to a new state.

Server-agent communication is built around transferring—deploying—components. Components can
contain any business-meaningful content, such as environment information, configuration data, source,
static files, or anything else associated with a software project. Because JMS connections are persistent
and not based on a request-response protocol, uDeploy does not have to continually open and close ports,
which enables the server to communicate with agents at any time while remaining secure and scalable.

Many uDeploy services are REST-type (representational state transfer). REST-style services are web
services that focus on transferring resources over HTTP. A resource can be any business-meaningful piece
of data. Resources are transferred by a self-describing format such as XML or JSON (JavaScript Object
Notation). The XML and JSON representations typically model resource states at the time of agent/client
requests. REST-style services achieve statelessness by ensuring that requests include all the data needed
by the server to make a coherent response.

The data tier's relational database stores configuration and run-time data. The data tier's file store—
CodeStation—contains log files, artifacts, and other non-structured data objects. Reporting tools can
connect directly to the relational database.

Architecture

11

Figure 3. Architectural Overview

Service Tier
The uDeploy server provides a variety of services, such as: the user interface, component and application
configuration tools, workflow engine, and security services among others. The REST-based user interface
provides the web-based front-end that is used to create components and fashion workflows; request
processes, and manage security and resources, among other things.

When a workflow is requested, many services are used to fulfill the request, which are shown in the
following illustration:

Architecture

12

Figure 4. Services and Process Workflow

Architecture

13

Workflow requests are initiated with the user interface, either the web-based application or the CLI
(command line interface).

Table 2. Services

Service Description

User Interface Used to create components and fashion workflows, request processes and
manage security and resources, among other things. REST-based.

Workflow Engine Manages workflows—application and component processes. Calls the agent
responsible for performing the workflow's current plug-in step. When the
workflow is finished, alerts the notification and inventory services. Called by
the deploy service. REST-based.

Agent Tracks installed agents and routes plug-in commands to affected agents.
Commands come from plug-in steps. Invoked by the workflow service.
REST-based.

Work Item Operates in tandem with the approval service; provides approver alerts and
enables approvers to accept or reject workflows. If a scheduled workflow
remains unapproved at run-time, the job fails automatically. REST-based.

Plug-in Manager uDeploy can interact with virtually any system through its extensible plug-
in system; plug-ins provide functions by breaking-down tool features into
automated steps. Plug-ins can be configured at design- and run-time. When
a plug-in step executes, the controlling agent invokes its run-time process to
execute the step.

When a new component version is available, the agent compares the current
component version and downloads and only new or changed artifacts.

Event The event service is ubiquitous; it alerts other services as various trigger
conditions occur.

Deployment Service Manages deployments. When a deployment process is requested, invokes the
workflow engine to perform the process. Works in tandem with the security
service to ensure users have required permissions. REST-based.

Notification Manager Notifies users about the status of deployments; notifications are sent to
approvers if the system is configured with an email server and the user has an
email address. Invoked by the workflow manager. REST-based.

Inventory Manager When a workflow finishes, the inventory manager updates affected inventory
records. uDeploy maintains an inventory of every deployed artifact in every
environment, which provides complete visibility across environments.
REST-type service.

Approval Engine Enables creation of approval-requiring jobs and approver roles. Works in
tandem with the work item service to ensure required approvals are made
before scheduled jobs. REST-based.

Security Controls what users can do and see; maps to organizational structures by
teams, roles, activities, etc. REST-based.

Calendar Used to schedule processes to being at some future point; works in tandem
with the approval and work item services. REST-based.

CodeStation Handles versioning of artifacts; agents invoke it when downloading
component versions. REST-based.

Architecture

14

Clients

Web browsers are uDeploy's most common client (agents are discussed in another topic, see the section
called “Agents”) but other clients can be developed to access the web services. Clients are deployed locally
(on the same LAN as the uDeploy server) or remotely, and communicate with the server via HTTP or
HTTPS. The uDeploy browser-based GUI is a Rich Internet Application (RIA) that maintains much of its
functionality in the browser. Clients interact with RESTful (representational state transfer) services on the
server as needed. A command line client is available that provides most of features found in the browser-
based GUI. The command line client is also built on top of RESTful services.

Data Tier

Relational Database

Your relational database is a critical element for performance and disaster recovery. The provided Derby
database, while sufficient for proof-of-concept work, is generally insufficient for the enterprise. Full-
featured databases like Oracle, MS SQL Server, or MySQL are better options. Ideally, the database
—whichever is used—should be configured for high-availability, high-performance, and be backed-up
regularly.

10-20 GB of database storage should be sufficient for most environments. For Oracle, an architecture
based on Oracle RAC is recommended; for Microsoft SQL Server, a clustered configuration is preferred;
for MySQL, utilize MySQL Cluster.

File Storage—CodeStation

The data tier also provides log file and Codestation artifact storage. Artifacts represent deployable items
such as files, images, databases, configuration materials, or anything else associated with a software
project. By default, these are stored in the var subdirectory in the uDeploy server installation directory.
In an enterprise environment, the default installation might not be ideal, see the section called “Relocating
Codestation” for a discussion about enterprise options.

uDeploy's secure and tamper-proof artifact repository ensures that deployed components are identical to
those tested in preproduction environments. Without the repository, artifacts would have to be pulled from
network shares or some other system, increasing both security risks and the potential for error.

The artifact repository uses content addressable storage to maximize efficiency while minimizing disk
use. The repository tracks file versions and maintains a complete history for all components. Maximizing
efficiency is important, since the artifact repository stores files that are much larger than source files.
Association of files with Components is built into the system. Without any configuration, each Component
gets its own area of the repository for its files. There is no chance of confusion or mix-up of files to
Components. And, each Component Package is mapped to a specific set of files and versions corresponding
to the Component.

The artifact repository comes with a client application that provides remote access to the repository. Using
the client, the user can add/modify files, create Packages, retrieve files, as well as view the history of
changes. The client application provides a file transfer capability that can be used to deliver files to target
servers during deployments. This built-in transfer mechanism verifies the integrity of all transferred files
against their expected cryptographic signatures, thus guaranteeing that files have not been corrupted during
transmission or tampered with during storage. In addition to the client application, the artifact repository
exposes REST-based web services. These services are used to build integrations between build systems

Architecture

15

such as AnthillPro and uDeploy. Such integrations automatically place the artifacts produced by the build
process in the artifact repository, thus making the artifacts available for deployment.

Relocating Codestation

By default, the data tier's log files and Codestation artifacts are stored in the var subdirectory within the
uDeploy server directory. Ideally, this data should be stored on robust network storage that is regularly
synchronized with an off-site disaster recovery facility. In addition, the uDeploy server should have a fast
network connection to storage (agents do not need access to the storage location). In Unix environments,
you can use symbolic links from the var subdirectory to network storage. On Windows platforms there are
several options for redirecting logs and artifacts, including mklink (supported in Windows 7 and later).

If you want to relocate Codestation, relocate both the var directory as well as the \logs\store
directory. A good rule-of-thumb for determining Codestation storage requirements is: average
artifact size * number of versions imported per day * average number
of days before cleanup

Distributed teams should also take advantage of uDeploy location-specific Codestation proxies to improve
performance and lower WAN usage.

Data Center Configuration
This section provides several installation recommendations.

Cold Standby

uDeploy employs the cold standby HA strategy for the application tier. When the primary system fails,
the cold standby is brought online and promoted to primary server. Once online, the standby reestablishes
connections with all agents, performs recovery, and proceeds with any queued processes. Because the most
intense work is handed-off to agents, a high performance configuration should not have an agent installed
on the same hardware as the main server.

The uDeploy server aggressively utilizes threading and takes advantage of any additional CPU cores
assigned to it. A small to midrange server with 2-4 multi-core CPUs is ideal, but, because it is relatively
easy to move an existing uDeploy server installation to a new machine, starting small and scaling as needed
is a very legitimate strategy. The memory available to the application tier should also be increased from
the default 256 MB to something on the order of 1 GB.

Platform Considerations

uDeploy agents are platform agnostic, and can be installed on anything that provides a Java 1.5 JDK.
The server process is also platform agnostic. Our customer base includes large uDeploy installations on
Windows, Solaris, AIX, HP-UX, other Unix flavors and various Linux platforms, all running successfully.

We have seen somewhat better performance from Unix and Linux operating systems, but recommend
installing on the platform with which you are most familiar and comfortable.

Recommended Server Installation

• Two server-class machines

UrbanCode recommends two machines for the server: a primary machine and a standby for fail-over.
In addition, the database should be hosted on a separate machine.

Architecture

16

• Separate machine for the database

• Processor 2-4 CPUs, 2+ cores for each.

• RAM 8 GB

• Storage Individual requirements depend on usage, retention policies, and application types. In general,
the larger number of artifacts kept in uDeploy's artifact repository (CodeStation), the more storage
needed.

• Network Gigabit (1000) Ethernet with low-latency to the database.

Agent Minimum Requirements

Designed to be minimally intrusive, agents require 64-256 MB of memory and 100 MB of disk space.
Additional requirements are determined by the processes the agent will run. Agents should be installed on
separate machines. For evaluation purposes, a good option is to install an agent on a virtual machine.

Typical Data Center Configurations

Most organizations configure the data tier with network storage and a clustered database. The service tier
performs best when it's on a dedicated, stable, multi-core machine with a fast connection to the data tier.
A standby machine should be maintained and kept ready in case the primary server goes down.

The following figures illustrate typical uDeploy configurations.

Figure 5. Single Data Center Configuration

Architecture

17

There are no remote agents or agent relays in this configuration.

Figure 6. Multiple Data Centers

Recovery Using a Database Back-up

To prepare a back-up of your uDeploy installation, copy the database and server files. Back-up the server
by copying the server directory along with all subdirectories. This ensures that you can revert to a server
version that matches your configuration, while also preserving your artifact repository.

If you are not using the Derby database, copy the database too. If you are using Derby, it was copied along
with the server files.

Install the back-up using the original path, or some configuration files will need to be changed.

Agents
Agents play a central role in the uDeploy architecture. An agent is a lightweight process that runs
on a deployment-target host and communicates with the uDeploy server. Agents perform the actual
work of deployment which relieves the server from the task. All processes—packaging, configuration,
deployments, and so on—requested by the uDeploy server are executed on hardware assigned to agents.
Once an installed agent has been started, the agent opens a socket connection to the uDeploy server.
Communication between server and agents uses a JMS-based (Java Message Service) protocol and can be
secured using SSL, with optional mutual key-based authentication for each end-point. This communication
protocol is stateless and resilient to network outages (the benefits of statelessness are discussed below).

While we characterize an agent as a single process, technically an agent consists of a worker process and
a monitor process. The worker is a multi-threaded process that performs the actual deployment work after

Architecture

18

receiving commands from the server. Work commands come from plug-in steps which provide seamless
integration with many third-party tools. The monitor is a service that manages the worker process--starting
and stopping, handling restarts, upgrades, and security, for example. Agents are rarely upgraded because
their functionality is derived from plug-ins, which can be upgraded at will. Once an agent is installed, it
can be managed from the uDeploy web application.

Figure 7. Agent Processes

Agents are an important part of uDeploy's scalability. By adding more agents, the throughput and capacity
of the system increases almost exponentially and so can scale to fit even the largest enterprise.

Server-Agent Communication

Most agent communication is done with JMS, but some agent activities—posting logs, transmitting test
results, or posting files to CodeStation, for example—use the web tier via HTTP(s) as needed. The JMS
channel is uDeploy's primary control channel; it's the channel the server uses to send agent commands. By
default the server listens on only three ports: port 7918 for JMS, 8080 for HTTP, 8443 for HTTPS.

The agent monitor service uses JMS for all server communications and for sending commands, such as
"run step," to the worker process. The worker process uses JMS for system communications, and HTTP
REST services when performing plug-in steps or retrieving information from the server.

Stateless server-agent communication provides significant benefits to performance, security, availability,
and disaster recovery. Because each agent request is self-contained, a transaction consists of independent
message which can be synchronized to secondary storage as it occurs. Either endpoint--server or agent—
can be taken down and brought back up without repercussion (other than lost time). If communications fail
mid-transaction, no messages are lost. Once reconnected, the server and agent automatically determine
which messages got through and what work was successfully completed. After an outage, the system
synchronizes the endpoints and recovers affected processes. The results of any work performed by an agent
during the outage are communicated to the server.

Architecture

19

Figure 8. Stateless Communication

In Figure 8, “Stateless Communication”, the arrow represent the direction in which communications was
established, but the flow can be in both directions with JMS.

Remote Agents--Crossing Network Boundaries and
Firewalls

uDeploy supports remote agents—cross-network deployments. As long as there is at least a low bandwidth
WAN connection between the server and remote agents, the uDeploy server can send work to agents
located in other geographic locations. To aid performance and ease maintenance, uDeploy uses agent
relays to communicate with remote agents. An agent relay requires that only a single machine in the remote
network contact the server. Other remote agents communicate with the server by using the agent relay.
All agent-server communication from the remote network goes through the relay. Agent relays can be
configured as CodeStation proxies in order to optimize the transfer of large objects.

The following, a simple artifact move, illustrates the mechanics of remote communications:

1. A remote agent starts and establishes a connection to the agent relay via JMS, which, in turn, alerts the
uDeploy server via JMS that the remote agent is online.

2. The server sends, say, an artifact download command to the relay via JMS, and the relay delivers the
message to the remote agent (also via JMS).

3. The server locates the artifacts, and then:

• Uploads the artifacts to the relay over HTTP(s), which begins streaming them directly to the agent
over the server-relay HTTP(s) connection.

• Once the remote agent completes the work, it informs the server via JMS.

Architecture

20

Figure 9. Crossing Network Boundaries

By default, agent relays open the connection to the uDeploy server, but the direction can be reversed if
your firewall requires it. Remote agents open connections to the agent relay.

In configurations with relay agents, agents local to the uDeploy server continue to use direct
communications.

Agent Security
uDeploy agents employ user impersonation when required to perform tasks for which they would not
otherwise have permission. To run a database update script, for example, an agent might need to be the
"oracle" user; but to update the application, the agent might need to be the "websphere" user. By using
impersonation, the same agent can run the script and update the application, which enables you to combine
these steps into a single process. For information about user impersonation, see the section called “User
Impersonation”

User Impersonation
uDeploy can use user impersonation when an agent must execute a command for which it might not
otherwise have permission, or when a specific user must be employed for a given process. On Unix/Linux
systems the su/sudo commands are used to impersonate users; on Windows uDeploy provides a utility
program to handle impersonation. You implement impersonation when you configure a component's plug-
in process step.

Using su/sudo

The su command (as used by uDeploy) enables a user to start a shell as another user (process steps can be
considered individual shells). When you configure a process step (see the section called “Process Editor”),
you can tell uDeploy to use impersonation for the step. By default, su is used but you can use sudo
instead. To configure impersonation, you supply the user name required by the target host. When the
impersonation-configured process step runs, the su or sudo command runs the step as the impersonated
user. Each step that needs user impersonation must be configured independently.

Architecture

21

Before sudo can be used, impersonation privileges must be defined in the /etc/sudoers file. When
you configure sudoers, ensure that the impersonating user does not have to supply a password.
Typically, you would configure the /etc/sudoers file like this:

Defaults:X !requiretty

X ALL=(Y) NOPASSWD: ALL

where X and Y are user names. Configured this way, user X can run any command as user Y without
supplying a password.

su and sudo maintain a record in the system logs of all of their activity. su can be used without
configuring the sudoers file. For information about su/sudo see the Unix/Linux documentation.

Note

For Unix- or Linux-based agents the password option is ignored.

Impersonation on Windows Systems

For agents running on Windows platforms, uDeploy provides a program that handles impersonation. You
implement impersonation for Windows-based agents the same way you do for Unix- or Linux-based
agents: when you configure a process step, you specify the local user credentials—user name and password
—that will be used when the step is processed. For impersonation purposes, a local user is one whose user
name and password are stored on the target computer and who is part of the administration group and has,
at a minimum, the following privileges:

• SE_INCREASE_QUOTA_NAME (adjust memory quotas for a process)

• SE_ASSIGNPRIMARYTOKEN_NAME (replace a process-level token)

• SE_INTERACTIVE_LOGON_NAME (local logon)

You can also impersonate the Windows LocalSystem account. The LocalSystem account is installed on
every Windows machine and is the equivalent of the root user on Unix/Linux. It is guaranteed to have
the privileges listed above.

Note

For Windows-based agents the sudo option is ignored if selected.

SSL Mutual Key-based Authentication
SSL (Secure Socket Layer) technology enables clients and servers to communicate securely by
encrypting all communications. Data are encrypted before being sent and decrypted by the recipient—
communications cannot be deciphered or modified by third-parties.

SSL technology can be used in several modes. In unauthenticated mode, communication is encrypted/
decrypted but users do not have to authenticate or verify their credentials. By default uDeploy uses this
mode for its JMS-based server/agent communication. By default, JMS-based communication uses port
7918.

SSL unauthenticated mode can also be used for HTTP communication. You can implement this mode for
HTTP during server/agent installation, or activate it afterward. See the section called “SSL Configuration”.

Architecture

22

In mutual authentication mode, communications are encrypted as usual, but users are also required to
authenticate themselves by providing digital certificates. A digital certificate is a cryptographically signed
document intended to assure others as to the identity of the certificate's owner. uDeploy certificates are
self-signed.

When mutual authentication mode is active, uDeploy uses it for JMS-based server/agent communication.
In this mode, the uDeploy server provides a digital certificate to each agent, and each agent provides one to
the server. This mode can be implemented during server/agent installation, or activated afterward. See the
section called “SSL Configuration” for information about activating this mode and exchanging certificates
between the server and agents.

Unauthenticated mode for HTTP and mutual authentication mode for JMS are optional; you can implement
one without implementing the other, or implement both.

Getting Started

24

uDeploy Roadmap
This chapter provides information that will help you quickly become productive with uDeploy. First, it
describes the steps performed to install and configure uDeploy. Next, it provides the "happy path" to
productivity: it describes how to create components and define applications to deploy them, and, finally,
describes how to perform deployments. The following topics should be reviewed in order.

• Creating components
• Creating applications
• Deploying components

Other topics you might find of interest are provided in the section called “Other Topics”. This book also
provides a step-by-step tutorial on creating components and applications.

Installing uDeploy
A basic configuration consists of a server, a database, and at least one agent. In production environments,
all three should be installed on separate machines.

The following table summarizes basic installation steps. Related topics are listed below the table.

Table 3. Installation Steps

Step Description

1. Review installation recommendations Requirements and recommendations, including
performance recommendations, are provided.

2. Download uDeploy installation files Download the server, agent, agent relay, and
CLI client (command line interface) installation
packages. Installation files can be downloaded
from the UrbanCode support portal http://
support.urbancode.com. If you are installing an
evaluation version, the license is included with the
downloaded files. For evaluations, the agent relay
(used to communicate with remote networks) and
the CLI client can be skipped. At a minimum, an
installation must have the server, a database, and at
least one agent.

3. Install the database Create an empty database for uDeploy. uDeploy
supports Oracle, MySQL, and Microsoft SQL
Server. For installation information, see the
section called “Database Installation”. Note,
the installation package includes a lightweight
database—Derby—that can be used for evaluation
purposes.

4. Install the server For installation information, see the section
called “Server Installation”. You will need to
supply values for the IP address, ports for HTTP
communication (secured and unsecured), port for
agent communication, and URL. The installation
program provides default values for many
parameters. The properties set during installation

http://support.urbancode.com
http://support.urbancode.com

uDeploy Roadmap

25

Step Description

are recorded in the installed.properties
file located in the server_install/conf/
server/ directory. If you intend to turn on SSL,
see the section called “SSL Configuration”.

5. Install agents Agents are installed on target machines and
communicate with the server. When installing an
agent, you supply several values defined during
server installation. See the section called “Agent
Installation” for instructions about installing
agents. An agent requires various access privileges
for the machine where it is installed, which are
described in that section.

6. Confirm installation Start the server and agents. For information
about running the product, see the section called
“Running uDeploy”. To determine if the agent is
in communication with the server, display the web
application's Resource pane. A value of Online
in the agent's Status field means the agent is
successfully connected.

Related topics:

• How to install a remote relay
• How to configure mutual authentication
• How to upgrade the server

Create a Component
Components are the centerpiece of uDeploy's deployment engine. Components associate items that will
be deployed—artifacts—with processes that will deploy them. The following table summarizes the basic
steps performed to create components. Related topics are listed below the table.

Table 4. Component Creation Steps

Step Description

1. Define source configuration Define the source type and identify the artifacts
associated with the component. The source
type can be any or nearly any associated with a
software project. Once defined, all artifacts must
be of the defined type. See the section called
“Creating Components”.

2. Create component version Create the initial component version by
importing artifacts into the artifact repository,
CodeStation. Versions can be imported manually
or automatically. Version imports can be full
(all artifacts are imported) or incremental (only
changed artifacts are imported). uDeploy tracks
all artifact changes which enables you to rollback
components or deploy multiple versions of the
same one.

uDeploy Roadmap

26

Step Description

3. Create component process Use the process design editor to create a process
for the component. Component processes
consist of user-configured steps that operate on
the component, usually by deploying it. The
available steps are provided by installed plug-
ins. As shipped uDeploy provides plug-ins
for many common functions. Numerous other
plug-ins are available from UrbanCode—http://
plugins.urbancode.com.

Related topics:

• How to create manual tasks
• How to install plug-ins
• How to create and use templates
• How to import components

Create an Application
Applications associate components with the agents that will manage them, and define processes to perform
deployments.

The following table summarizes the steps performed to create applications.

Table 5. Application Creation Steps

Step Description

1. Create an application and identify its
components

After defining the application, identify the
components it will manage. Associating a
component makes its processes and properties
available to the application. An application can
have any number of components associated with it.

2. Create an environment Define an environment and use it to map an agent
to component(s). Mapping means assigning an
agent to manage the component. Each component
can be mapped to the same agent, a different one,
or some combination. An application can have
more than one environment defined for it.

3. Create an application process Use the process design editor to create a process.
Application processes are created with the same
editor used to create the component process, but
uses a different toolkit of process steps. Previously
defined component processes can be incorporated
into the process.

Related topics:

• Learn about uDeploy properties
• How to create snapshots
• How to import applications

http://plugins.urbancode.com
http://plugins.urbancode.com

uDeploy Roadmap

27

Deploy the Component
Components are deployed by application processes. The following table summarizes the steps performed
to run an application process.

Table 6. Deployment Steps

Step Description

1. Select environment Application processes are run at the environment
level; you run a process for a particular
environment. Selecting an environment
automatically selects its agent(s). All processes
defined for the application are available.

2. Run processs You run a process by selecting it for a given
environment and specifying certain other
parameters. Processes can also be run with the
CLI, or scheduled for a future time.

3. Check results When a process is started, the Application Process
Request pane displays information about the
application's status and provides links to logs and
the application manifest. If an approval or manual
task was used, this pane enables affected users to
respond.

Related topics:

• How to create notification schemes
• How to setup authorizations
• How to create application gates

Other Topics
The following list provides links to additional topics.

• How to setup security
• How to run reports
• How to use the command line interface
• How to create plug-ins
• How to add agents to a product license

28

Installing and Upgrading Servers and
Agents

A uDeploy installation consists of the uDeploy server (with a supporting database), and at least one
agent. Typically, the server, database, and agents are installed on separate machines, although for a simple
evaluation they can all be installed on the same machine. In addition, Java must be installed on all agent
and server machines.

Note

For evaluation purposes, the supplied Derby database should be adequate and can be
installed on the machine where the server is located. If you are installing uDeploy in a
production environment, UrbanCode recommends the use one of the supported databases--
Oracle Database (all versions), SQL Server, or MySQL.

Installation Steps

1. Review the system requirements. See the section called “System Requirements”.

2. Ensure that Java is installed on the server and agent machines (and agent relay machine if used). All
machines require Java JRE 5 or greater. Set the JAVA_HOME environment variable to point to the
directory you intend to use. A JDK can be used.

3. Download the uDeploy server and agent installation files from the UrbanCode support portal. If you
are installing an evaluation version, the license is included with the downloaded files.

4. If you are installing an agent relay, download the agent relay installation files as well.

5. If you are not installing an evaluation version, install one of the supported databases. The database
should be installed before the server and on a separate machine. See the section called “Database
Installation”

6. Complete database installation by configuring the appropriate JDBC driver (typically supplied by the
database vendor).

7. Create an empty database for uDeploy and at least one dedicated user account.

8. Install the server. See the section called “Server Installation”.

9. If you are using an agent relay, install the relay. See the section called “Installing Agent Relays”.

10.Finally, install at least one agent. See the section called “Agent Installation”.

For information about using the CLI (command line interface, see Command Line Client (CLI) Reference.

For information about running the installed items and accessing the uDeploy web application, see the
section called “Running uDeploy”.

Installation Recommendations
Because the uDeploy agent performs most of the deployment processing, agent installation is critical for
good performance. Except for evaluation purposes, an agent should never be installed on the same machine

Installing and Upgrading
Servers and Agents

29

as the server. In addition, many uDeploy users have found that by following some general guidelines they
are able to reduce the chances of performance-related issues:

• Install the server as a user account. The server should be installed as a dedicated system account
whenever possible. While not recommended, uDeploy can run as the root user (or local system user on
Windows) and running in this manner avoids all permission errors.

• Install each agent as a dedicated system account. Ideally, the account should only be used by uDeploy.
Because uDeploy agents are command execution engines, it is advisable to limit what they can do on
host machines by creating dedicated users and then granting them appropriate privileges. If you install an
agent as the root user (or local system user on Windows), ensure that agent processes cannot adversely
effect the host file system.

• Except for evaluation purposes, do not install an agent on the uDeploy server machine. Because
the agent is resource intensive, installing one on the server machine can degrade performance.

• Install a single agent per host machine. Multiple agents on the same machine can negatively
impact each other's performance. When you must install multiple agents, you might see performance
degradation when multiple agents are busy simultaneously.

System Requirements
uDeploy will run on Windows and Unix-based systems. While the minimum requirements provided below
are sufficient for an evaluation, you will want server-class machines for production deployments.

Server Minimum Installation Requirements
• Windows: Windows 2000 Server (SP4) or later.

• Processor: Single core, 1.5 GHz or better.

• Disk Space: 300 MB or more.

• Memory: 2 GB, with 256 MB available to uDeploy.

• Java version: JRE 5 or greater.

Recommended Server Installation
• Two server-class machines

UrbanCode recommends two machines for the server: a primary machine and a standby for fail-over.
In addition, the database should be hosted on a separate machine.

• Separate machine for the database

• Processor 2 CPUs, 2+ cores for each.

• RAM 8 GB

• Storage Individual requirements depend on usage, retention policies, and application types. In general,
the larger number of artifacts kept in uDeploy's artifact repository (CodeStation), the more storage
needed.

Installing and Upgrading
Servers and Agents

30

Note

CodeStation is installed when the uDeploy server is installed.

For production environments, use the following guidelines to determine storage requirements:

• 10-20 GB of database storage should be sufficient for most environments.

• To calculate CodeStation storage requirements:

average artifact size * number of versions imported per day * average
number of days before cleanup

• Approximately 1MB per deployment of database storage; varies based on local requirements.

For further assistance in determining storage requirements, contact UrbanCode support.

• Network Gigabit (1000) Ethernet with low-latency to the database.

Agent Minimum Requirements
Designed to be minimally intrusive (typically, an idle agent uses 5Mz CPU), agents require 64-256 MB
of memory and 100 MB of disk space. Additional requirements are determined by the processes the agent
will run. For a simple evaluation, the agent can be installed on the same physical machine as the server.
In production environments, agents should be installed on separate machines.

32- and 64-bit JVM Support
The uDeploy server must use the 32-bit JDK for the Windows 2003 64-bit server; the 64-bit JDK can be
used for agents. Because uDeploy does not require a multi-gigabyte heap, there is little advantage to using
a 64-bit JVM. For 64-bit Windows installations, uDeploy uses a 32-bit JVM; for other 64-bit platforms,
uDeploy uses a 64-bit JVM, as the following table illustrates:

Table 7. JVM Support

Operating System Operating System JVM 64-bit

Windows 32-bit yes NA

Windows 64-bit yes yes

Non-Windows 32-bit yes NA

Non-Windows 64-bit yes yes

Performance Recommendations
Since the uDeploy agent performs most of the processing, optimal agent configuration is important. Except
when evaluating uDeploy, an agent should not be installed on the same machine where the server is located.

By following these recommendations, you should avoid most performance-related issues:

• Install the server as a dedicated user account. The server should be installed as a dedicated system
account whenever possible. However, uDeploy runs well as a root user (or local system user on
Windows), and running this way is the easiest method to avoid permission errors.

Installing and Upgrading
Servers and Agents

31

• Install the agent as dedicated system account. Ideally, the account used should be dedicated to
uDeploy. Because uDeploy agents are remote command-execution engines, it is best to create a user
just for the agent and grant it only the appropriate privileges.

• Do not install an agent on the uDeploy server machine. Because the agent is resource intensive,
installing one on the server machine will degrade server performance whenever a large deployment runs.

• Install one agent per machine. Several agents on the same machine can result in significant
performance reduction, especially when they are running at the same time.

Download uDeploy
The installation package is available from the UrbanCode support portal--Supportal. If you are evaluating
uDeploy, the Supportal account where you download uDeploy also enables you to create support tickets.

1. Navigate to the UrbanCode Support Portal support.UrbanCode.com/tasks/login/
LoginTasks/login. If you do not have an account, please create one.

Note

You must have a license in order to download the product. For an evaluation license, go
to UrbanCode.com/html/products/deploy/default.html.

2. Click the Products tab and select the uDeploy version you want to download.

3. Select the appropriate package for your environment for the server, agent, command line client, and
agent relay. The contents of the zip and tar packages are the same.

uDeploy enables you to install agents on any supported platform, regardless of the operating system
where the server is installed.

4. Download the license. If you do not see a license, ensure that you are the Supportal account
administrator. Licenses are not available to all Supportal users.

Database Installation
Currently, uDeploy supports Derby, Oracle, SQL Server, and MySQL.

Installing Oracle
Before installing the uDeploy server, install an Oracle database. If you are evaluating uDeploy, you can
install the database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the Oracle connection information, and a user account with table
creation privileges.

uDeploy supports the following editions:

• Oracle Database Enterprise

• Oracle Database Standard

• Oracle Database Standard One

Installing and Upgrading
Servers and Agents

32

• Oracle Database Express

Version 10g or later is supported for each edition.

To install the database

1. Obtain the Oracle JDBC driver. The JDBC jar file is included among the Oracle installation files. The
driver is unique to the edition you are using.

2. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.

3. Begin server installation, see the section called “Server Installation”. When you are prompted for the
database type, enter oracle.

4. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is oracle.jdbc.driver.OracleDriver.

5. Provide the JDBC connection string. The format depends on the JDBC driver. Typically, it is similar to:

jdbc:oracle:thin:@[DB_URL]:[DB_PORT]

For example:

jdbc:oracle:thin:@localhost:1521.

6. Finish by entering the database user name and password.

Note

The schema name must be the same as the user name.

Installing MySQL

Before installing the uDeploy server, install MySQL. If you are evaluating uDeploy, you can install the
database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the MySQL connection information, and a user account with
table creation privileges.

To install the database

1. Create a database:

CREATE DATABASE uDeploy;

GRANT ALL ON uDeploy * TO 'uDeploy'@'%'

IDENTIFIED BY 'password' WITH GRANT OPTION;

2. Obtain the MySQL JDBC driver. The JDBC jar file is included among the installation files. The driver
is unique to the edition you are using.

3. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.

Installing and Upgrading
Servers and Agents

33

4. Begin server installation, see the section called “Server Installation”. When you are prompted for the
database type, enter mysql.

5. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is com.mysql.Driver.

6. Next, provide the JDBC connection string. Typically, it is similar to:

jdbc:mysql[DB_URL]:[DB_PORT]:[DB_NAME]

For example:

jdbc:mysql://localhost:3306/uDeploy.

7. Finish by entering the database user name and password.

Installing Microsoft SQL Server
Before installing the uDeploy server, install a SQL Server database. If you are evaluating uDeploy, you
can install the database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the SQL Server connection information, and a user account with
table creation privileges.

Before installing the uDeploy server, install an SQL Server database. If you are evaluating uDeploy, you
can install the database on the same machine where the uDeploy server will be installed:

CREATE DATABASE uDeploy;

USE uDeploy;

CREATE LOGIN uDeploy WITH PASSWORD = 'password';

CREATE USER uDeploy FOR LOGIN uDeploy WITH DEFAULT_SCHEMA = uDeploy;

CREATE SCHEMA uDeploy AUTHORIZATION uDeploy;

GRANT ALL TO uDeploy;

1. Obtain the SQL Server JDBC driver from the Microsoft site. The JDBC jar file is not included among
the installation files.

2. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.

3. Begin server installation, see the section called “Server Installation”. When you are prompted for the
database type, enter sqlserver.

4. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is com.microsoft.sqlserver.jdbc.SQLServerDriver.

5. Next, provide the JDBC connection string. The format depends on the JDBC driver. Typically, it is
similar to:

jdbc:sqlserver://[DB_URL]:[DB_PORT];databaseName=[DB_NAME]

Installing and Upgrading
Servers and Agents

34

For example:

jdbc:sqlserver://localhost:1433;databaseName=uDeploy.

6. Finish by entering the database user name and password.

Server Installation
The server provides services such as the user interface used to configure application deployments, the
work flow engine, the security service, and the artifact repository, among others. The properties set during
installation are recorded in the installed.properties file located in the server_install/
conf/server/ directory.

If the following steps fail, contact UrbanCode support and provide the log from standard out put.

Note

If you are installing the server in a production environment, install and configure the database
you intend to use before installing the server. See the section called “Database Installation”.

Windows Server Installation
1. Download and unpack the installation files to the installer_directory.

2. From the installer_directory, run install-server.bat.

Note

Depending on your Windows version, you might need to run the batch file as the
administrator.

The uDeploy Installer is displayed and prompts you to provide the following information:

3. Enter the directory where the uDeploy Server will be installed. Enter the directory where you want
the server located. If the directory does not exist, enter Y to instruct the Installer to create it for you.
If you enter an existing directory, the program will give you the option to upgrade the server. For
information about upgrading, see the section called “Upgrading uDeploy”.

Note

Any default values suggested by the program (displayed within brackets) can be accepted
by simply pressing Enter. If two options are given, such as Y/n, the capitalized option
is the default value.

4. Please enter the home directory of the JRE/JDK used to run the server.

If Java has been previously installed, uDeploy will suggest the Java location as the default value. To
accept the default value, press ENTER, otherwise override the default value and enter the correct path.

5. Enter the IP address on which the Web UI should listen. UrbanCode suggests accepting the default
value all available to this machine.

6. Do you want the Web UI to always use secure connections using SSL?

Installing and Upgrading
Servers and Agents

35

Default value is Y.

If you use SSL, turn it on for agents too, or the agents will not be able to connect to the server. This
also applies if using mutual authentication. If you change the port numbers for agent communication,
you need to provide the port numbers when installing the agents.

This sets the install.server.web.always.secure= property in the
installed.properties file.

7. Enter the port where uDeploy should listen for secure HTTPS requests. The default value is 8443.

This sets the install.server.web.ip= property in the installed.properties file.

8. Enter the port on which the uDeploy server should redirect unsecured HTTP requests.

The default value is 8080.

9. Enter the URL for external access to the web UI.

10.Enter the port to use for agent communication.

The default value is 7918.

11.Do you want the Server and Agent communication to require mutual authentication?

If you select Y, a manual key must be exchanged between the server and each agent. The default value
is N.

This sets the server.jms.mutualAuth= property in the installed.properties file.

12.Enter the database type uDeploy should use.

The default value is the supplied database Derby. The other supported databases are: mysql,
oracle, and sqlserver.

If you enter a value other than derby, the uDeploy Installer will prompt you for connection
information, which was defined when you installed the database. See the section called “Database
Installation”.

13.Enter the database user name.. The default value is uDeploy. Enter the user name you created
during database installation.

14.Enter the database password.. The default value is password.

15.Do you want to install the Server as Windows service?. The default value is N.

When installed as a service, uDeploy only captures the value for the PATH variable. Values captured
during installation will always be used, even if you make changes later. For recent Windows versions,
you will need to execute the command as Administrator.

Note

If you install the server as a service, the user account must have the following privileges:

• SE_INCREASE_QUOTA_NAME "Adjust memory quotas for a process"

Installing and Upgrading
Servers and Agents

36

• SE_ASSIGNPRIMARYTOKEN_NAME "Replace a process level token"

• SE_INTERACTIVE_LOGON_NAME "Logon locally"

The LOCAL SYSTEM account is on every Windows machine and automatically has these
privileges. You might want to use it as it requires minimal configuration.

Unix/Linux Installation

1. Download and unpack the installation files to the installer_directory.

Note

If you are installing uDeploy on Solaris, UrbanCode recommends the Korn shell (ksh).

2. From the installer_directory run install-server.sh. The uDeploy Installer is displayed and
prompts you to provide the following information:

3. Enter the directory where the uDeploy Server will be installed. If the directory does not exist, enter
Y to instruct the Installer to create it for you. The default value is Y.

Note

Whenever the uDeploy Installer suggests a default value, you can press ENTER to accept
the value.

4. Please enter the home directory of the JRE/JDK used to run the server.

If Java has been previously installed, uDeploy will suggest the Java location as the default value. To
accept the default value, press ENTER, otherwise override the default value and enter the correct path.

5. Enter the IP address on which the Web UI should listen. UrbanCode suggests accepting the default
value all available to this machine.

6. Do you want the Web UI to always use secure connections using SSL?

Default value is Y.

If you use SSL, turn it on for agents too, or the agents will not be able to connect to the server. This
also applies if using mutual authentication. If you change the port numbers for agent communication,
you need to provide the port numbers when installing the agents.

This sets the install.server.web.always.secure= property in the
installed.properties file.

7. Enter the port where uDeploy should listen for secure HTTPS requests. The default value is 8443.

This sets the install.server.web.ip= property in the installed.properties file.

8. Enter the port on which the uDeploy should redirect unsecured HTTP requests.

The default value is 8080.

9. Enter the URL for external access to the web UI.

Installing and Upgrading
Servers and Agents

37

10.Enter the port to use for agent communication.

The default value is 7918.

11.Do you want the Server and Agent communication to require mutual authentication?

If you select Y, a manual key must be exchanged between the server and each agent. The default value
is N.

This sets the server.jms.mutualAuth= property in the installed.properties file.

12.Enter the database type uDeploy should use.

The default value is the supplied database Derby. The other supported databases are: mysql,
oracle, and sqlserver.

If you enter a value other than derby, the uDeploy Installer will prompt you for connection
information, which was defined when you installed the database. See the section called “Database
Installation”.

13.Enter the database user name.. The default value is uDeploy. Enter the user name you created when
you installed the database.

14.Enter the database password.. The default value is password.

Agent Installation
For production environments, UrbanCode recommends creating a user account dedicated to running the
agent on the machine where the agent is installed.

For simple evaluations, the administrative user can run the agent on the machine where the server is located.
But if you plan to run deployments on several machines, a separate agent should be installed on each
machine. If, for example, your testing environment consists of three machines, install an agent on each
one. Follow the same procedure for each environment the application uses.

Each agent needs the appropriate rights to communicate with the uDeploy server (if the agent will
communicate with uDeploy via an agent relay, see the section called “Connecting Agents to Agent
Relays”).

At a minimum, each agent should have permission to:

• Create a cache. By default, the cache is located in the home directory of the user running the agent.
The cache can be moved or disabled.

• Open a TCP connection. The agent uses a TCP connection to communicate with the server's JMS port.

• Open a HTTP(S) connection. The agent must be able to connect to the uDeploy user interface in order
to download artifacts from the CodeStation repository.

• Access the file system. Many agents need read/write permissions to items on the file system.

Installing an Agent
After downloading and expanding the installation package, open the installer_directory.

Installing and Upgrading
Servers and Agents

38

From the installer_directory run install-agent.bat (Windows) or install-agent.sh (Unix-
Linux).

Note

If you install the agent as a Windows service, the user account must have the following
privileges:

• SE_INCREASE_QUOTA_NAME "Adjust memory quotas for a process"

• SE_ASSIGNPRIMARYTOKEN_NAME "Replace a process level token"

• SE_INTERACTIVE_LOGON_NAME "Logon locally"

The LOCAL SYSTEM account is on every Windows machine and automatically has these
privileges. You might want to use it as it requires minimal configuration.

The uDeploy Installer is displayed and prompts you to provide the following information. Any default
values suggested by the program (displayed within brackets) can be accepted by simply pressing Enter.
If two options are given, such as Y/n, the capitalized option is the default value.

1. Enter the directory where agent should be installed.. For example: C:\Program Files\urban-deploy
\agent (Windows) or /opt/urban-deploy/agent (Unix). If the directory does not exist, enter Y to instruct
the Installer to create it for you. If you enter an existing directory, the program will give you the option
to upgrade the agent. For information about upgrading, see the section called “Upgrading uDeploy”.

Note

Any default values suggested by the program (displayed within brackets) can be accepted
by simply pressing Enter. If two options are given, such as Y/n, the capitalized option
is the default value.

2. Please enter the home directory of the JRE/JDK used to run the agent. If Java has been previously
installed, uDeploy will suggest the Java location as the default value. To accept the default value, press
ENTER, otherwise override the default value and enter the correct path.

3. Will the agent connect to a agent relay instead of directly to the server? The default value is N. If
the agent will connect to an agent relay, see the section called “Connecting Agents to Agent Relays”.

4. Enter the host name or address of the server the agent will connect to. The default value is
localhost.

5. Enter the agent communication port for the server. The default value is 7918.

6. Does the server agent communication use mutual authentication with SSL?. Default value is Y.

If you use SSL, turn it on for server too or the agent will not be able to connect to the server. This also
applies if using mutual authentication. If you change the port numbers for agent communication, you
need to provide them when installing the agents.

7. Enter the name for this Agent. Enter a unique name; the name will be used by uDeploy to identify
this agent. Names are limited to 256 characters and cannot be changed once connected.

8. Do you want to install the Agent as Windows service? (Windows only). The default value is N. When
installed as a service, uDeploy only captures the value for the PATH variable. Values captured during

Installing and Upgrading
Servers and Agents

39

installation will always be used, even if you make changes later. For recent Windows versions, you
will need to execute the command as Administrator.

Agents that will run on Unix machines can also be installed directly from the uDeploy web application,
see the section called “Agents”

Note

If the agent is configured properly, uDeploy will recognize it automatically—you do not need
to perform further actions in order to start using it.

Connecting Agents to Agent Relays
Remote agents--agents that will communicate with the server via an agent relay--are installed in much the
same way local agents are installed (see the section called “Agent Installation”): you run the install script,
install-agent.bat, and supply agent configuration information as described above, along with the
relay-specific parameters.

When you answer Yes when asked if you want to connect the agent to a agent relay, you will be prompted
to configure the following parameters:

Table 8. Agent-Agent Relay Connection

Parameter Description

hostname or address of the agent relay the
agent will connect to

Enter the host name or IP address of the agent
relay. Supply the value you used when you
installed the agent relay.

agent communication port for the agent relay Enter the port which the agent will use for JMS-
based communications with agent relay. The
default value is 7916.

HTTP proxy port for the agent relay Enter the port on which the agent will use for
HTTP communications with the agent relay. The
default value is 20080.

Installing Agent Relays
An agent relay is a communication proxy for agents that are located behind a firewall or in another network
location. As long as there is at least a low bandwidth WAN connection between the server and remote
agents, the uDeploy server can send work to agents located in other geographic locations via the relay.
An agent relay requires that only a single machine in the remote network contact the server. Other remote
agents communicate with the server by using the agent relay. All agent-server communication from the
remote network goes through the relay.

You can download the agent relay installation package from the UrbanCode support portal--Supportal.
Before installing, ensure that:

• Java 1.5.0 or later is installed.

• The server with which the relay will connect is already installed.

• The user account and password created during server installation is available.

Installing and Upgrading
Servers and Agents

40

To install an agent relay:

1. Expand the compressed installation file.

2. From within the expanded agent-relay-install directory run the install.cmd script.

3. The installation program will prompt you for the following information. Any default values suggested
by the program (displayed within brackets) can be accepted by simply pressing Enter. If two options
are given, such as Y/n, the capitalized option is the default value.

Table 9. Agent Relay Configuration

Parameter Description

Directory where you would like to install the
agent relay

Enter the directory where you want the agent
relay installed. If you enter an existing directory,
the program will prompt you to upgrade the
relay. For information about upgrading, see the
section called “Upgrading uDeploy”.

Java home Directory where Java is installed. Ensure that the
JAVA_HOME environment variable points to
this directory.

Name of this relay Enter the name of the agent relay. Each relay
must have a unique name. The default name is
agent-relay.

IP or hostname which this agent relay should
use

Enter the IP or hostname on which the relay will
listen.

Port which this agent relay should proxy
HTTP requests on

Enter the port on which the agent relay should
listen for HTTP requests coming from agents.
The default value is 20080.

Port which this agent relay should use for
communication.

Enter the port on which the agent relay will use
for JMS-based communications with remote
agents. The default value is 7916.

Connect the agent relay to a central server? Specify whether you want the relay to connect to
the uDeploy server.

IP or hostname of your central server If you indicated that you want to connect the
relay to the server, enter the IP or host name
where the relay can contact the server.

Port which the central server uses for
communication

If you indicated that you want to connect the
relay to the server, enter the port the server uses
to communicate with agents. The default value is
7918.

Use secure communication between the agent,
relay and server?

Specify whether you want to use SSL security
for communications between server, relay, and
remote agents. The default value is Y.

Important

To use the relay, you must answer
yes. Answering yes activates SSL
security for HTTP- and JMS-
based communications. If you

Installing and Upgrading
Servers and Agents

41

Parameter Description

answer no, the relay will not be
able to communicate with the
server (which uses JMS for most
communications).

Use mutual authentication between the agent,
relay and server.

If mutual authentication is required, enter Y.
See the section called “SSL Configuration”
for information about activating mutual
authentication.

Install the Agent Relay as Windows service? If you are installing the relay on Windows, you
can install it as a Windows service. The default
value is N.

If you need to modify the relay, you can edit these properties in the agentrelay.properties file
located in the relay_installation\conf directory.

Upgrading uDeploy
You upgrade the uDeploy server, agents, and agent relays independently. Before upgrading, download
the appropriate installation package from the UrbanCode support portal (upgrades are done with the same
package used for installation), and uncompress it.

1. Run the installation script for the item you want to upgrade. To upgrade the server, for example, run
the install-server script; to upgrade an agent, run the install-agent script.

2. When prompted for the location of the installation directory, enter the path to an existing installation.
When you specify an existing installation, uDeploy will ask if you want to upgrade the installation
(instead of installing a new version). If you answer Yes, the script will lead you through the required
steps. The upgrade steps are a subset of the installation steps. If you need information about the steps,
see the section related to the item you are upgrading--server, agent, agent relay.

SSL Configuration
SSL (Secure Socket Layer) technology enables clients and servers to communicate securely by encrypting
all communications. Data are encrypted before being sent and decrypted by the recipient--communications
cannot be deciphered or modified by third-parties.

uDeploy enables the server to communicate with its agents using SSL in two modes: unauthenticated
and mutual authentication. In unauthenticated mode, communication is encrypted but users do not have
to authenticate or verify their credentials. uDeploy automatically uses this mode for JMS-based server/
agent communication (you cannot turn this off). SSL unauthenticated mode can also be used for HTTP
communication. You can implement this mode for HTTP communication during server/agent/agent relay
installation, or activate it afterward, as explained below.

Important

uDeploy automatically uses SSL in unauthenticated mode for JMS-based communications
between the server and agents (JMS is uDeploy's primary communication method). Because
agent relays do not automatically activate SSL security, you must turn it on during relay
installation or before attempting to connect to the relay. Without SSL security active, agent
relays cannot communicate with the server or remote agents.

Installing and Upgrading
Servers and Agents

42

In mutual authentication mode, the server, local agents, and agent relays each provide a digital certificate
to one another. A digital certificate is a cryptographically signed document intended to assure others about
the identity of the certificate's owner. uDeploy certificates are self-signed. When mutual authentication
mode is active, uDeploy uses it for JMS-based server, local agents, and agent relay communication.

To activate this mode, the uDeploy server provides a digital certificate to each local agent and agent relay,
and each local agent and agent relay provides one to the server. Agent relays, in addition to swapping
certificates with the server, must swap certificates with the remote agents that will use the relay. Remote
agents do not have to swap certificates with the server, just with the agent relay it will use to communicate
with the server. This mode can be implemented during installation or activated afterward, as explained
below

Note

When using mutual authentication mode, you must turn it on for the server, agents, and agent
relays, otherwise they will not be able to connect to one another--if one party uses mutual
authentication mode, they all must use it.

Configuring SSL Unauthenticated Mode for HTTP
Communications

To activate unauthenticated mode for HTTP:

1. Open the installed.properties file which is located in the server_install/conf/
server directory. The installed.properties file contains the properties that were set during
installation.

2. Ensure that the install.server.web.always.secure property is set to Y.

3. Ensure that the install.server.web.ip property is set to the port the server should use for
HTTPS requests.

4. Save the file and restart the server.

Note

To complete unauthenticated mode for HTTP, contact UrbanCode Support.

Configuring Mutual Authentication
To use mutual authentication, the server and agents must exchange keys. You export the server key (as a
certificate) and import it into the agent keystore, then reverse the process by exporting the agent key and
importing it into the server keystore. When using an agent relay, the relay must swap certificates with the
server and with the remote agents that will use the relay.

Before exchanging keys, ensure that the following properties are set:

1. The server.jms.mutualAuth property in the server's installed.properties file (located
in the server_install/conf/server directory) is set to true.

2. For each agent, the locked/agent.mutual_auth property in the agent's
installed.properties file (located in the agent_install\conf\agent directory) is set
to true.

3. For each agent relay, the agentrelay.jms_proxy.secure property in the relay's
agentrelay.properties file (located in the relay_install\conf directory) is set to true.

Installing and Upgrading
Servers and Agents

43

4. For each agent relay, the agentrelay.jms_proxy.mutualAuth property in the relay's
agentrelay.properties file is set to true.

To exchange keys:

1. Open a shell and navigate to the server installation conf directory.

2. Run:

keytool -export -keystore server.keystore -storepass changeit
 -alias server -file server.crt

3. Copy the exported file (certificate) to the local agent/agent relay installation conf directory.

4. Import the file by running from within the agent's conf directory (or agent relay's jms-relay
directory):

keytool -import -keystore ud.keystore -storepass changeit
 -alias server -file server.crt -keypass changeit -noprompt

You should see the Certificate was added to keystore message.

Note

For agent relays, replace ud.keystore with the name of the relay's keystore--
agentrelay.keystore

5. For each local agent or agent relay , export the key by running the following (change the name of the
file argument to match the agent name):

keytool -export -keystore ud.keystore -storepass changeit
 -alias ud_agent -file [agent_name].crt

You should see the Certificate stored in file (agent_name.crt) message.

Note

For agent relays, replace ud.keystore with the name of the relay's keystore--
agentrelay.keystore

6. Copy the exported file to the server's conf directory.

7. From within the server's conf directory, import each certificate by running the following command
(change the name of the file argument and alias to match the certificate's name):

keytool -import -keystore ud.keystore -storepass changeit
 -alias [agent_name] -file [agent_name].crt -keypass changeit -noprompt

You should see the Certificate was added to keystore message.

8. Restart the server and agents/agent relays.

To connect an agent relay with the remote agents that will use it, swap certificates as explained above: each
remote agent must import the certificate for the relay it will use, and the relay must import the certificate
from each remote agent that will use it. Agents using relays do not have to swap certificates with the server.

To list the certificates loaded into a keystore, run the following from within the keystore directory:

Installing and Upgrading
Servers and Agents

44

keytool -list -keystore ud.keystore -storepass changeit

Running uDeploy
Both Unix- and Windows-based installations require the uDeploy server and at lest one agent. If you are
using a Oracle or MySQL database, make sure you have installed and configured the appropriate driver,
see the section called “Database Installation”.

Running the Server
1. Navigate to the server_installation\bin directory

2. Run the run_server.cmd batch file (Windows), or start_server.cmd (Unix/Linux).

Running an Agent
After the server has successfully started:

1. Navigate to the agent_installation\bin directory

2. Run the run_udagent.cmd batch file (Windows), or start_udagent.cmd (Unix/Linux).

3. Once the agent has started, navigate to the uDeploy web application and display the Resources tab. If
installation went well, the agent should be listed with a status of Online.

Running an Agent Relay
After the server has successfully started:

1. Navigate to the agent_relay_installation\bin directory

2. Run the run_agentrelay.cmd batch file (Windows), or start_agentrelay.cmd (Unix/
Linux).

Start the agent relay before starting any agents that will communicate through it.

Accessing uDeploy
1. Open a web browser and navigate to the host name you configured during installation.

2. Log onto the server by using the default credentials.

User name: admin

Password: admin

You can change these later by using the Settings tab on the uDeploy web application, see System
Settings

3. Activate the license. A license is required in order for the agents to connect to the server. Without a
license, uDeploy will be unable to run deployments. For information about acquiring and activating a
license, see the section called “Licenses”.

45

Quick Start—helloWorld Deployment
This section gets you started by providing immediate hands-on experience using key product features. The
helloWorld walk-through demonstrates how to create a simple deployment using out-of-the-box features.

Note

This section assumes you have installed the uDeploy server and at least one agent. For the
walk-through, the agent can be installed on the same machine where the server is installed. If
the agent or server have not been installed, see Installing and Upgrading Servers and Agents
for installation information.

In outline, deployments are done by performing the following steps:

• Define Components

Components represent deployable artifacts: files, images, databases, configuration materials, or
anything else associated with a software project. Components have versions which ensure that proper
component instances are deployed. See Components for more information about creating components.

• Define Component Processes

Component processes operate on components, usually by deploying them. Each component must have
at least one component process defined for it. For helloWorld you will create a single component that
contains a number of text-type files (artifacts), and define a simple process that moves—deploys—the
artifacts.

• Define Application

An application brings together all deployment components by identifying its components and defining
a process to move them through a target environment (by running component processes, for instance).
See Applications for more information about creating applications.

• Configure Environment

An environment is a collection of resources that represent deployment targets--physical machines,
virtual machines, databases, J2EE containers, and so on. Each application must have at least one
environment defined for it.

• Identify Agent

Agents are distributed processes that communicate with the uDeploy server and perform the actual work
of deploying artifacts. Generally, an agent is installed on the host where the resources it manages reside.
Agents are associated with applications at the environment level.

Creating Components
Components contain the artifacts--files, images, databases, etc.--that you manage and deploy. When
creating a component, you:

1. Identify source type.

First, you define the artifacts' source type (all artifacts must be of the same type) and identify where
they are stored.

Quick Start—helloWorld Deployment

46

2. Import a version.

After you identify the artifacts, they are imported into the artifact repository, CodeStation. Artifacts can
be imported manually or automatically. When artifacts are imported, they are assigned a version ID,
which enables multiple versions to be kept and managed. Snapshots, for example, can employ specific
versions.

3. Define process.

The process defines how the component artifacts are deployed. A process is designed by assembling
plug-in steps. A plug-in step is a basic unit of automation. Steps replace most deployment scripts and/
or manual processes. Processes are designed using the drag-and-drop process editor.

helloWorld Deployment

The helloWorld deployment moves some files on the local file system to another location on the file system,
presumably a location used by an application server. helloWorld is a very simple deployment but it uses
many key product features—features you will use every day.

Plug-ins provide integration with many common deployment tools and application servers. In addition to
Start and Finish steps, each process has at least one step, which can be thought of as a distinct piece of
user-configurable automation. By combining steps, complex processes can be easily created. Plug-ins are
available for Subversion, Maven, Tomcat, WebSphere, and many other tools.

A Note Before You Begin

You can read the walk-through without actually performing the steps, or you can perform them as you
read along. If you want to perform the steps as we go, do the following before starting:

1. Create a directory somewhere on your system named helloWorld.

2. Within helloWorld create a sub-directory named anything you like. I named mine hello.

3. Within the subdirectory place several—say 5—files. For speed, text-type files should be used. These
files represent the artifacts that will be deployed. We will create a component that contains these files.

Reminder: If you want to perform the exercise steps, ensure that you have an active agent installed.

helloWorld Component Version
1. Display the Create New Component dialog (Home > Components > Create New Component).

Quick Start—helloWorld Deployment

47

Figure 10. Create New Component Dialog

The initially displayed fields are the same for every source type. Other fields appearing depend on the
source type and are displayed after a value is selected in the Source Config Type field.

2. Enter helloWorld in the Name field.

The name is used when assembling the application. If the component will be used by more than one
application, the name should be generic rather than project-specific. For components that are project-
specific, a name that conveys something meaningful about the project should be used.

3. Enter a description in the Description field.

The optional description can be used to convey additional information about the component. If the
component is used by more than one application, for example, entering "Used in applications A and
B" can help identify how the component is used. If you are unsure about what to enter, leave the field
blank. You can always return to the component and edit the description at any time. In an attempt to
appear hip, I entered Euro store for my component.

For this exercise, ignore the Template field. Templates provide a way to reuse commonly used
component configurations. For information about templates, see the section called “Component
Templates”.

4. Select File System (Versioned) from the Source Config Type field.

Selecting a value displays several fields required by the selected type.

Quick Start—helloWorld Deployment

48

Figure 11. Source Config Type

File System (Versioned) is one of the simplest configuration options and can be used to
quickly set-up a component for evaluation purposes, as we do here.

5. Complete this option by entering the path to the artifacts.

In our example, the artifacts are stored inside the subdirectory created earlier. File System
(Versioned) assumes that subdirectories within the base directory are distinct component versions,
which is why we placed the files (artifacts) inside a subdirectory. File System (Versioned)
can automatically import versions into CodeStation. If a new subdirectory is discovered when the base
directory is checked, its content is imported and a new version is created.

6. Check the Import Versions Automatically check box.

When this option is selected, the source location will be periodically polled for new versions. If this
option is not selected, you will have to manually import a new version every time one becomes available.
The polling interval is controlled by the Automatic Version Import Check Period (seconds) field on the
Settings pane (Home > Settings > System). The default value is 15 seconds.

7. Ensure the Copy to CodeStation check box is selected.

This option, which is recommended and selected by default, creates a tamper-proof copy of the
component's artifacts and stores them in the embedded artifact management system, CodeStation. If you
already have an artifact repository, such as AnthillPro or Maven, you might leave the box unchecked.

For this exercise, you can accept the default values for the remaining options and save your work.

8. After the interval specified by the system settings, the initial component version (the files inside
the subdirectory created earlier) should be imported into CodeStation. To ensure the artifacts were
imported, display the Versions pane (Home > Components > helloWorld > Versions >
version_name). This pane displays all versions for the selected component. If things went well, the

Quick Start—helloWorld Deployment

49

artifacts will be listed. The base path, as you will recall, is C:\helloWorld. Within helloWorld
is the single subdirectory (hello on my machine).

Figure 12. Imported Artifacts

Component Process
Once a component has been created and a version imported, a process to deploy the artifacts—called a
component process—is defined.

To Configure the helloWorld Component Process:

1. Display the Create New Process dialog for the helloWorld component (Home > Components
> helloWorld > Processes > Create New Process).

Figure 13. Create New Process

2. In the Create New Process dialog, enter a name in the Name field.

Quick Start—helloWorld Deployment

50

The name and description typically reflect the component's content and process type.

3. Enter a meaningful description in the description field.

If the process will be used by several applications, you can specify that here.

4. Accept the default values for the other fields.

You might be wondering what the Default Working Directory field does. This field points to the
working directory (for temporary files, etc.) used by the agent running the process. The default value
resolves to agent_directory\work\component_name_directory. The default properties work for most
components; you might need to change it if a component process cannot be run at the agent's location.

When you are done, save your work.

So far you have created a place-holder for the actual process you will define next. The name you gave
the process is listed on the component's Process pane. A component can have any number of processes
defined for it.

helloWorld Process Design
Now we will complete the process by defining the actual plug-in steps. In addition to the Start and Finish
steps which are part of every process, a process must have at least one additional step. The steps are defined
with the Process Design pane. You define the steps by dropping them onto the design area and arranging
them in the order they are to be executed.

To Define the helloWorld Process Steps:

1. Display the Process Design pane for the process created earlier (Home > Components >
helloWorld > process_name).

Quick Start—helloWorld Deployment

51

Figure 14. Process Design Pane

The steps are listed in the Available Plug-in Steps list-box. Take a moment to expand the listings and
review the available steps. Many commonly used plug-in steps are available out-of-the-box.

2. In the Available Plug-in Steps box, expand the uDeploy menu item (Repositories > Artifact
> uDeploy).

3. Drag the Download Artifacts step onto the design space and release it. For now, don't worry
about where the step is released—a step's position in the workflow is defined after its parameters are
configured.

Quick Start—helloWorld Deployment

52

Figure 15. Adding a Step to the Process

The Edit Properties dialog is displayed when the mouse-pointer is released over the design space.

Quick Start—helloWorld Deployment

53

Figure 16. Edit Properties Dialog

This dialog displays all configurable parameters associated with the selected step.

For this exercise, we can achieve our goal by entering data into a single field—Directory Offset.
Recall that the goal for this ambitious deployment is to move the source files in the base directory to
another location. As you might guess, several methods for accomplishing this are available. Pointing
the Directory Offset field to the target location is one of the simplest.

4. In the Directory Offset field, enter the path to the target directory. Because uDeploy can create a
directory during processing, you specify any target directory. I entered c:\hello which did not exist
on my system, and let uDeploy create it for me.

If the field is left blank, the process will use the working directory defined earlier. Entering the
path overrides the previous value and will cause the source files to be moved—deployed—to the
entered location when the process runs. The default value would move (download) the files to
agent_directory\work\component_name_directory.

After entering the target path, save your work and close the dialog box.

5. Next, the step must be positioned within the process workflow. There's no requirement that a step be
positioned immaculately after it's created; you could place several more before defining their positions,
but because this is the only step we are adding, it makes sense to define its position now.

A step's position in the workflow is defined by dragging connection arrows to/from it. The arrows define
the direction of the workflow.

Quick Start—helloWorld Deployment

54

Hover the mouse pointer over the Start step to display the connection tool, as shown in the following
illustration. Each step has a connection tool which is used to connect it to other steps.

Figure 17. Connection Tool

Grab the connection tool and drag it over the Download Artifacts step then release it. A
connection arrow connects the two steps. The arrow indicates the direction of process flow—from the
originating step to the destination step.

Figure 18. Finished Connection

6. Complete the process by connecting the Download Artifacts step to the Finish step. A step
can have more than one arrow originating from it and more than one connecting to it.

Quick Start—helloWorld Deployment

55

Figure 19. Completed Process

7. Save the component by using the Save tool on the Tools menu.

Once the process steps are defined, the final task is to define an application that uses the component—and
the component process you just created.

helloWorld Application
To deploy the helloWorld component, you must create an application. An application, as used by uDeploy,
is a mechanism that deploys components into environments using application processes—processes
similar to the component process just defined.

To create an application, you: identify the components it controls (an application can manage any number
of components); define at least one environment into which the components will be deployed; and create a
process to perform the work. An environment maps components to agents and handles inventory, among
other things.

An application process is similar to but not identical with a component process. While application
processes consists of steps configured with the process editor, like component processes, they are primarily
intended to direct underlying component processes and orchestrate multi-component deployments. The
Install Component step, which we will use shortly, enables you to select a component process from among
those defined for each component (remember that a component can have more than one process defined
for it).

You perform a deployment by running an application process for a specific environment.

You might be wondering why you need to create an application-level process when the process you
created for the component should be able to perform the deployment by itself. While individual component
processes can be run outside an application process, an environment must still be defined (environments
are defined at the application level) and an agent associated with it. For a single-component deployment
like helloWorld, an application-level process might not be required. You might also want to skip an

Quick Start—helloWorld Deployment

56

application-level process when you are testing or patching a component. But for non-trivial deployments,
and especially for deployments that have more than one component, you will want to create one or more
application-level processes.

Creating an Application

To create an application:

1. Display the Create New Application dialog (Home > Applications > Create New
Application [button]). Unlike the Create New Component dialog box where some fields vary
depending on the artifacts' source, none of the fields here are variable.

2. Enter a name and description.

I entered helloWorld_application. While there is no naming requirements, the number of associated
items—components, processes, applications, environments, etc.—can become large, so it's useful to
employ a scheme that makes it easy to identify related items.

3. Accept the default value of None from the Notification Scheme drop-down list box, and save the
application.

uDeploy integrates with LDAP and e-mail servers which enables it to send event-based notifications.
For example, the default notification scheme will send an e-mail (if an email server has been configured,
see the section called “System Settings”) when a deployment finishes. Notifications can also play a role
in deployment approvals. See uDeploy Security for information about security roles.

Adding the helloWorld Component to the Application

After the application is saved, we identify the component—helloWorld—it will manage. While we have
only one component to deploy, an application can manage any number of components.

1. Display the Add a Component dialog for the application just created, helloWorld_application in my
case (Home > Applications > helloWorld_application > Components > Add
Component [button]).

2. Select helloWorld from the Select a Component drop-down list box, then save your selection.

The simple act of selecting a component accomplishes a lot. The the component processes defined for
the component become available to the application, for example, and many application process steps
will have default values set to values defined by the helloWorld component.

Adding an Environment to the Application

Before an application can run, it must have at least one environment created for it. An environment defines
the agents used by the application, among other things.

1. Display the Create New Environment dialog (Home > Applications >
helloWorld_application > Create New Environment).

Quick Start—helloWorld Deployment

57

Figure 20. Create New Environment

2. Use the Create New Environment dialog to define the environment:

• The value in the Name field will be used in the deployment.

• If you check the Require Approvals check box, approvals will be enforced. See Deployments for
information about the approval process. This is our first deployment so an uncontrolled environment
will do fine--leave the box unchecked.

• Selecting a color provides a visual identifier for the environment in the UI. Typically, each
environment will be assigned its own color.

• Leave the Inherit Cleanup Settings check box checked. Clean-up refers to archiving component
versions. When a component is archived, its artifacts are combined into a ZIP file and saved. The
corresponding component is removed form CodeStation. When checked, settings are inherited from
the system settings, otherwise they are inherited from the application's components, see the section
called “System Settings”.

3. Next, add an agent that will execute the application's process steps. Display the Add a Resource dialog
(Applications > helloWorld_application > Environments > Environment:
name > Component Mappings > Add a Resource).

Select any of the agents that were created when uDeploy was installed.

While our example uses only a single resource, deployments can use many resources and resource
groups. Resource groups provide a way to combine resources, which can be useful when multiple
deployments use overlapping resources. See Resources for information about resource groups.

Quick Start—helloWorld Deployment

58

Figure 21. Component Mappings

Adding a Process to the Application
Now that our application has an environment, we can create an application-level process that will perform
the deployment.

1. Display the Create an Application Process dialog (Applications >
helloWorld_application > Processes > Create New Process).

2. Enter a name in the Name field.

Accept the default values for the other fields:

• The Required Application Role drop-down field is used to restrict who can run this process. The
default value, None, means anyone can run the process. The available options are derived from the
uDeploy Security System. For information about security roles, see uDeploy Security

• The Inventory Management field determines how inventory for the application's components are
handled. If you want to manually control inventory, you would select the Advanced option. See
Inventory for information about inventory management.

3. Save your work when you are finished.

Designing the Process Steps
To create an application-level process, you define the individual steps as you did earlier (see the
section called “Component Processes”) when you used the Process Design pane to create the helloWorld
component process.

Quick Start—helloWorld Deployment

59

1. Display the Process Design pane (Applications > application_name > Processes >
process_name). The out-of-box process steps are listed in the Add a Component Process list box.

2. Drag the Install Component step onto the design area and release. The Edit Properties dialog
is displayed.

Figure 22. Edit Properties Dialog

Select a component from the Component drop-down list box. If you followed the Quick Start Guide,
the helloWorld component will be listed.

If we wanted this application to install multiple components, we could add a separate Install Component
step for each one.

3. Use the Component Process list box to select the component process you created earlier. All processes
defined for the selected component are listed. If the component had another process that deployed it to a
different location, you could add another Install Component step that used that process—simultaneously
installing the component into two different locations.

Accept the default values for the other fields (see Applications for information about the other fields),
and click Save.

4. Connect the step to the Start and Finish steps.

Quick Start—helloWorld Deployment

60

Figure 23. Finished Application Process

5. Save the process by clicking the Save tool on the Tools bar.

Running the Application

Now that the component, environment, and process are complete, you are ready—finally!—to run the
application.

1. On the Application pane, click the Request Process button for the environment you created earlier.

Figure 24. Request Process

2. On the Run Process dialog:

Quick Start—helloWorld Deployment

61

• Select the process you created from the Process drop-down list box. Applications can have more than
one process defined for them..

• Select Latest Version from the Version drop-down list box. This option ensures that the latest (or
first and only) version is affected.

Figure 25. Run Process Dialog

3. Click Submit to run the application.

The Application Process pane is displayed. This pane displays the application's status.

Figure 26. Application Process Request

Quick Start—helloWorld Deployment

62

Take a few moments to examine the information on this pane; hopefully, you will see a Success
message. To see additional information (Output Log, Error Log, Application Properties), click the
Details link.

Using uDeploy

64

Components
Components represent deployable items along with user-defined processes that operate on them, usually
by deploying them. Deployable items, or artifacts, can be files, images, databases, configuration materials,
or anything else associated with a software project. Artifacts can come from a number of sources: file
systems, build servers such as AnthillPro, as well as many others. When you create a component, you
identify the source and define how the artifacts will be brought into uDeploy.

Component Versions and the CodeStation Repository

After defining a component's source and processes, you import its artifacts into uDeploy's artifact
repository CodeStation. Artifacts can be imported automatically or manually. By default, a complete copy
of an artifact's content is imported into CodeStation (the original artifacts are untouched). Each time a
component is imported, including the first time, it is versioned. Versions can be assigned automatically by
uDeploy, applied manually, or come from a build server. Every time a component's artifacts are modified
and reimported, a new version of the component is created.

Component Processes

A component process is a series of user-defined steps that operate on a component's artifacts. Each
component has at least one process defined for it and can have several. A component process can be as
simple as a single step or contain numerous relationships, branches, and process switches. Component
processes are created with uDeploy's process editor. The process editor is a visual drag-and-drop editor that
enables you to drag process steps onto the design space and configure them as you go. As additional steps
are placed, you visually define their relationships with one another. Process steps are selected from a menu
of standardized steps. uDeploy provides steps for several utility processes, such as inventory management,
and workflow control. Additional process steps are provided by plug-ins. A component process can have
steps from more than one plug-in. See Plug-ins.

Additionally, you can create processes and configure properties and save them as templates to create new
components. See the section called “Component Templates”.

Creating Components
In general, component creation is the same for all components. When creating a component, you:

1. Define source type.

You name the component and identify the artifacts' source, such as AnthillPro, a file system, or
Subversion. A component can contain any number of artifacts but they must all share the same source.

2. Assemble process(es).

A process defines what uDeploy does with the component's artifacts. A process might consist of any
number of steps, such as starting and starting servers, and moving files. In addition to deploying, other
processes can import artifacts and perform various utility tasks.

To reiterate, then, a component consists of artifacts all sharing the same source type, plus one or more
processes. In addition to hand-crafting a component, you can use a template to create one (see the
section called “Component Templates”), or you can import a component directly (see the section called
“Importing/Exporting Components”).

To create a component:

Components

65

1. Display the Create New Components dialog (Home > Components > Create New
Component). Several fields are the same for every source, while others depend on the source type
selected with the Source Config Type field.

Figure 27. Create New Component Dialog

2. Define standard parameters. The fields in the following table are available for every source type. If you
select a value in the Source Config Type field, fields specific to the selected type are also displayed.

Table 10. Fields Available for All Source Types

Field Description

Name Identifies the component; appears in many UI features. Required.

Description The optional description can be used to convey additional
information about the component. If the component is used by more
than one application, for example, entering "Used in applications A
and B" can help identify how the component is used.

Template A component template enables you to reuse component definitions;
components based on templates inherit the template's source
configuration, properties, and process. Any previously created
templates are listed. A component can have a single template
associated with it. The default value is None.

If you select a template, the Template Version field is displayed
which is used to select a template version. By controlling the
version, you can roll-out template changes as required. The
default value is Latest Version which means the component will
automatically use the newest version (by creation date). See the
section called “Component Templates”.

Note

If you select a template that has a source configured for
it, the dialog box will change to reflect values defined

Components

66

Field Description

for the template. Several fields, including the Source
Config Type field, will become populated and locked.

Source Config Type Defines the source type for the component's artifacts; all artifacts
must have the same source type. Selecting a value displays
additional fields associated with the selection. Source-dependent
fields (see Component Source Configuration) are used to identify
and configure the component's artifacts. If you selected a template,
this field is locked and its value is inherited from the template.

Import Versions
Automatically

If checked, the source location is periodically polled for new
versions; any found are automatically imported. The default polling
period is 15 seconds, which can be changed with the System Settings
pane. If left unchecked, you can manually create versions by using
the Versions pane. By default, the box is unchecked.

Copy to CodeStation This option—selected by default—creates a tamper-proof copy of
the artifacts and stores them in the embedded artifact management
system, CodeStation. If unchecked, only meta data about the
artifacts are imported. UrbanCode recommends that the box be
checked.

Default Version Type Defines how versions are imported into CodeStation. Full
means the version is comprehensive and contains all artifacts;
Incremental means the version contains a subset of the
component's artifacts. Default value is: Full. Required.

Inherit Cleanup Settings Determines how many component versions are kept in CodeStation,
and how long they are kept. If checked, the component will use
the values specified on the System Settings pane. If unchecked, the
Days to Keep Versions (initially set to -1, keep indefinitely) and
Number of Versions to Keep (initially set to -1, keep all) fields are
displayed, which enable you to define custom values. The default
value is checked.

3. If you select a source type, enter values into the source-specific field. See Component Source
Configuration for information about the source types and parameters.

4. When finished, save your work. Saved components are listed in the Component pane.

Importing/Exporting Components
Components can be imported and exported. Importing/exporting can be especially useful if you have
multiple uDeploy servers, for example, and need to quickly move or update components.

Exporting Components

Exporting a component creates a JSON file (file extension json) that contains the component's
source configuration information, properties, and processes. For information about JSON, see http://
www.json.org/.

To export a component:

On the Components pane (Home > Components), click the Export link in the Actions field. You can
load the file into a text editor, or save it. If you save it, a file is created with the same name as the selected
component, for example, helloWorld.json.

http://www.json.org/
http://www.json.org/

Components

67

Importing Components

When you import a component, you can create an entirely new component or upgrade an existing one.
Additionally, if the imported component was created from a template, you can use it or create a new one.

Note

If the imported component has the Import Versions Automatically parameter set to true, the
new component will automatically import component versions as long as the artifacts are
accessible to the importing server.

To Import a Component

1. Display the Import Component dialog (Components > Import Component [button]).

Figure 28. Import Component Dialog

2. Enter the path to the JSON file containing the component definition or use the Browse button to select
one.

3. If you want to upgrade an existing component, check the Upgrade Component check box. To create a
new component, leave the box unchecked.

If the component's name in the JSON file (not the name of the file itself) matches an existing component,
the component's parameters are updated with the new values, and new items—such as processes—are
added. If the name of the component is not found, the command has no effect.

Note

The component's name is the first parameter in the JSON file; for example,

"name": "helloWorld",

.

4. If the imported component was originally created from a template, use the Component Template
Upgrade Type drop-down box to specify how you want to use the template. For these options, the
template must be on the importing server. If the imported component was not created from a template,
these options are ignored.

• To use the imported component's template, select Use Existing Template. The new component will
be an exact copy of the imported one and contain a pointer to the imported component's template.
This option is especially useful if you are importing a lot of components based on the same template.

If you are upgrading, the component will also point to the imported template.

Components

68

• To create a new template, select Create New Template. The new component will be an exact copy of
the imported one and contain a pointer to the newly created template (which is based on the imported
component's template).

If you are upgrading a component, a new template is also created used.

• When you want to create a fresh installation and ensure a template is not on the importing server,
select Fail if Template Exists. If you are creating a component, it will create both a new component
and template unless the template already exists, in which case the component is not imported.

If you are upgrading a component, the upgrade will fail if the imported component's template already
exists.

• To ensure the template is on the importing server, select Fail if Template Does Not Exist. If you are
creating a component, it will create both a new component and template unless the template does not
exist, in which case the component is not imported.

If you are upgrading a component, the upgrade will fail if the imported component's template does
not exist on the importing server.

• To upgrade the template, select Upgrade if Exists. This option creates a new component and upgrades
the template on the importing server. If the template does not exist, a new one is created.

5. Click Submit.

Component Properties
There are three types of component properties available: custom, environment, and version (another type,
component, is defined by template and becomes part of any component created from the template, see the
section called “Component Template Properties”). Property versions (changes) are maintained and remain
available.

The three types can be defined on the component's Properties pane (Components > [selected
component] > Properties). The three types are described in the following table.

Table 11. Component Properties

Type Description

Properties Custom property; can be used in scripts and plug-
ins. Those inherited from templates cannot be
modified on the component level.

Referenced: ${p:component/
propertyName}.

Environment Available to environments that use the
component. The property will appear on
the environment's Component Mappings
pane (Applications > [selected
application] > Environments >
[selected environment] > Component
Mappings), see the section called “Application
Environments”. Each property must have a type:

• Text

Components

69

Type Description

Enables users to enter text characters.

• Text Area

Enables users to enter an arbitrary amount of
text, limited to limited to 4064 characters.

• Check Box

Displays a check box. If checked, a value of true
will be used; otherwise the property is not set.

• Select

Requires a list of one or more values which
will be displayed in a drop-down list box.
Enables a single selection. Note: not currently
implemented.

• Multi Select

Requires a list of one or more values which will
be displayed in a drop-down list box. Enables
multiple selections.

• Secure

Used for passwords. Similar to Text except
values are redacted.

A value set on component environment overrides
one with the same name set directly on an
environment property. Component environment
properties enable you to centralize properties,
tracking type and default values, for instance.
Environment properties provide ad-hoc lists of
property=value pairs.

Referenced: ${p:environment/
propertyName}.

Version Available to every component version
(Components > [selected component]
> Versions > [selected version]
> Properties). Values can be set at the
individual version level. Each property must have
a type (described above).

Referenced: ${p:version/propertyName}.

Component Versions

Components

70

Each time a component's artifacts are imported into the repository, including the first time, it is versioned.
Versions can be assigned automatically by uDeploy, applied manually, or come from a build server. Every
time a component's artifacts are modified and reimported, a new version of the component is created. So
a component might have several versions in CodeStation and each version will be unique.

A version can be full or incremental. A full version contains all component artifacts; an incremental version
only contains artifacts modified since the previous version was created.

Importing Versions Manually

1. Display the Version pane for the component you want to use (Components > [select
component] > Versions).

Figure 29. Component Version Pane

All versions; statuses come from; active/inactive Source Config Type field.

2. Enter helloWorld in the Name field.

Display the Import .

3. Enter a description in the Description field.

The optional description can be used to convey additional information about the component. If the
component is used by more than one application, for example, entering "Used in applications A and
B" can help identify how the component is used. If you are unsure about what to enter, leave the field
blank. You can always return to the component and edit the description at any time. In an attempt to
appear hip, I entered Euro store for my component.

For this exercise, ignore the Template field. Templates provide a way to reuse commonly used
component configurations. For information about templates, see the section called “Component
Templates”.

Components

71

4. Select File System (Versioned) from the Source Config Type field.

Selecting a value displays several fields required by the selected type.

Figure 30. Source Config Type

File System (Versioned) is one of the simplest configuration options and can be used to
quickly set-up a component for evaluation purposes, as we do here.

5. Complete this option by entering the path to the artifacts.

In our example, the artifacts are stored inside the subdirectory created earlier. File System
(Versioned) assumes that subdirectories within the base directory are distinct component versions,
which is why we placed the files (artifacts) inside a subdirectory. File System (Versioned)
can automatically import versions into CodeStation. If a new subdirectory is discovered when the base
directory is checked, its content is imported and a new version is created.

6. Check the Import Versions Automatically check box.

When this option is selected, the source location will be periodically polled for new versions. If this
option is not selected, you will have to manually import a new version every time one becomes available.
The polling interval is controlled by the Automatic Version Import Check Period (seconds) field on the
Settings pane (Home > Settings > System). The default value is 15 seconds.

Importing Versions Automatically

When this option is selected, the source location is periodically polled for new versions; any found are
automatically imported. The default polling period is 15 seconds, which can be changed with the System
Settings pane, see the section called “System Settings”).

Components

72

Component Version Statuses

Component version statuses are user-managed values that can be added to component versions. Once a
status is added to a version, the value can be used in component processes or application gates (see the
section called “Application Gates”).

Version statuses can be applied to a component version though the user interface (Components >
[selected component] > Versions > [selected version] > Add a Status
[button]), or by the Add Status to Version plug-in step.

uDeploy-provided statuses are defined in an XML file which you can freely edit to add your own values.

Deleting Component Versions

Component version statuses are user-managed values that can be added to component versions. Once a
status is added to a version, the value can be used in component processes or application gates (see the
section called “Application Gates”).

Version statuses can be applied to a component version though the user interface (Components >
[selected component] > Versions > [selected version] > Add a Status
[button]), or by the Add Status to Version plug-in step.

uDeploy-provided statuses are defined in an XML file which you can freely edit to add your own values.

Component Processes
A component process is a series of user-defined steps that operate on a component's artifacts. Each
component has at least one process defined for it and can have several. Component processes are created
with uDeploy's process editor. The process editor is a visual drag-and-drop editor that enables you to drag
process steps onto the design space and configure them as you go. Process steps are selected from a menu
of standard steps. See the section called “Process Editor”

uDeploy provides steps for several utility processes such as inventory management and workflow control.
Additional process steps are provided by plug-ins. Out-of-the-box, uDeploy provides plug-ins for many
common processes, such as downloading and uploading artifacts, and retrieving environment information.
See Plug-ins.

A frequently used process can be saved as a template and applied to other components. See the section
called “Component Templates”.

Configuring Component Processes

A component process is created in two steps: first, you configure basic information, such as name; second,
you use the process editor to assemble the process.

To configure a component process:

1. Display the Create New Process dialog (Home > Components > Component:
component_name > Create New Process).

Components

73

Figure 31. Create New Process Dialog

2. The dialog's fields are described in the following table.

Table 12. Create New Process Fields

Field Description

Name Identifies the process; appears in many UI elements. Required.

Description The optional description can be used to convey additional
information about the process.

Process Type Defines the process type. Available values are:

• Deployment: deploys a component version to the target resource
and updates the inventory after a successful execution.

• Configuration Deployment: configuration-only deployment with
no component version or artifacts—simply applies the
configuration (using properties, or configuration templates) to
the target agent and updates the resource configuration inventory
afterwards.

• Uninstall: standard uninstall that removes a component version
from a target resource and the resource's inventory.

• Operational (With Version): operational process which does not
add or remove any artifacts or configuration; runs arbitrary steps
given a component version. Useful when you want to start or stop
some service for a previously deployed component version.

• Operational (No Version Needed): same as the previous type, but
does not require a component version.

Required.

Components

74

Field Description

Inventory Status Status applied to component versions after being successfully
executed by this process. Active indicates the component version
is deployed to its target resource; Staged means the component
version is in a pre-deployment location. The status appears on the
Inventory panes for the component itself and environments that ran
the process. Required.

Default Working Directory Defines the location used by the agent running the process
(for temporary files, etc.). The default value resolves to
agent_directory\work\component_name_directory. The default
properties work for most components; you might need to change it if
a component process cannot be run at the agent's location. Required.

Required Component Role Restricts who can run the process. The available options are derived
from the uDeploy security system. The default value is None,
meaning anyone can run the process. For information about security
roles, see uDeploy Security.

3. Save your work when you are finished. The process is listed on the Processes pane for the associated
component.

Process Editor
After configuring a process with the Create New Process dialog, use the process editor to assemble the
process.

To Display the Process Editor

1. On the Component: name pane, click the Processes tab.

2. Click on the name of the process you want to edit.

Figure 32. Component Processes

The Process Design pane is displayed.

Components

75

Figure 33. Process Design Pane

Available steps are listed in the Available Plug-in Steps list. uDeploy provides several utility steps and
plug-ins which are highlighted in the accompanying illustration. The illustration also shows several user-
installed plug-ins.

Using the Process Editor
When the Process Design pane opens, the Design view is displayed. Processes are assembled with the
Design view. Several other views can be displayed by clicking the associated tab:

Table 13. Available Views

View Description

Edit Displays the Edit view where you can change
process parameters. See the section called
“Component Processes”.

Properties Displays the Properties view where you can
create and change process properties.

Changelog Displays the Process Changelog view. This view
provides a record for every process change--
property add or delete, and process save or delete.

In outline, processes are assembled by dragging individual steps onto the design space and configuring and
connecting them as they are placed. When a step is dragged onto the design space, a pop-up is displayed

Components

76

that is used to configure the step. Once configured and the pop-up closed, relationships between steps are
formed by dragging connection handles between associated steps.

Figure 34. Typical Process Step

Graphically, each step (except for the Start step which cannot be deleted or edited) is the same and provides:

Table 14. Anatomy of a Step

Item Description

edit tool displays the step configuration pop-up where you
can modify configuration parameters

delete tool removes the step from the design space

resize handle enables you to resize the step graphic

connection tool used to create connections between steps

Note

If you delete a step, its connections (if any) are also deleted.

Adding Process Steps

To add a step:

1. In the Available Plug-in Steps list, click and hold down the mouse on the step you want to use, and
drag it onto the design space.

The cursor changes to the step tool.

Components

77

Figure 35. Adding a Step

2. Release the step tool over the design space.

The Edit Properties pop-up is displayed. Because connections are created after configuring the step's
properties, you can place the step anywhere on the design space. Steps can be dragged and positioned
at any time. See Plug-ins for information about configuring specific steps.

Figure 36. Typical Edit Properties Pop-up

Configuration dialogs are tailored to the selected step--only parameters associated with the step type
are displayed.

3. After configuring the step's properties, save the step by clicking the Save button.

The step is in the design space and ready to be connected to other steps. If you change your mind, click
the Cancel button to remove the step from the design space. You can add connections immediately
after placing a step or place several steps before defining connections.

Components

78

Connecting Process Steps

Connections control process flow. The originating step will process before the target step. Creating a
connection between steps is a simple process: you drag a connection from the originating step to the target
step. Connections are formed one at a time between two steps, the originating step and the target step.

To create a connection:

1. Hover the cursor over the step that you want to use as the connection's origin.

The connection tool is displayed.

Figure 37. Connection Tool

2. Drag the connection tool over the target step.

The step beneath the connection tool is highlighted.

Figure 38. Dragging the Connection Over a Target Step

3. Release the connection tool over the target step to complete the connection.

Components

79

Figure 39. Completed Connection

Each connection has a connection delete tool, conditional flag, and might have others depending on the
originating step. Remove a connection by clicking on the delete tool.

Process Properties

A processing property is a way to add user-supplied information to a process. A running process can
prompt users for information and then incorporate it into the process. Properties are defined with the Edit
Property dialog.

To define a property:

1. On the Properties tab, click the Add Property button.

Figure 40. Edit Properties Dialog

2. In the Edit Properties dialog, enter a name in the Name field.

3. Optionally, enter a description in the Description field.

Components

80

4. Enter a label in the Label field.

The label will be associated with the property in the user interface.

5. If the property is required, check the Required check box.

Default value is unchecked--not required.

6. Specify the type of expected value with the Type drop-down list box.

Supported types are: text, text area, check box, select, multi select, and
secure. Default type is text.

7. In the Default Value field, enter a default value (if any).

8. To save your work, click the Save button. To discard changes, use the Cancel button.

To use a property in a process, reference it when you configure (see the section called “Component
Processes”) a step that uses it.

Switch Steps and Conditional Processes

Every connection (except connections from the Start step) has a delete tool and conditional flag. The
conditional flag enables you to set a condition on a connection. The condition refers to the processing status
of the originating step--success or failure. Possible flag conditions are: success (the process completed
successfully), fail (the process did not finish successfully), or both (accept either status). By default,
all connections have the flag set to checked (true), meaning the originating step must successfully end
processing before the target step starts processing.

To change a flag's value, cycle through possible values by clicking the flag.

Components

81

Figure 41. Process with Switch Step

A switch step is a uDeploy-supplied utility step that enables process branching based on the value of a
property set on the step. The accompanying figure illustrates a switch step. In this case, the switch property
is version.name. The connections from the switch step represent process branches dependent on the
value of version.name. In this example, regardless of which branch is taken, the process will proceed
to the Run WLDeploy step. Note that Run WLDeploy has success and fail conditions.

See Plug-ins for information about configuring specific steps.

Note

If a step has multiple connections that eventually reach the same target step, determining
whether the target will execute depends on the value of the intervening flags. If all of the
intervening connections have success flags, the target will only process if all the steps are
successful. If the intervening connections consist of an assortment of success and fail flags,
the target will process the first time one of these connections is used.

For a process to succeed, execution must reach a Finish step. If it does not end with Finish, the process
will fail every time.

Process Step Properties
All steps have the following properties: exitCode, status, lines of interest (LOI—items
the post-processing script finds in the step's output log).

Components

82

You can view the properties by using the component's Log pane to examine the step's output log
(Components > [selected component] > [View Request action] > [Input/
Output Properties action]).

Inventory and versions statuses, which are defined with the status property, can be used in application
approval gates (see the section called “Application Gates”). The other properties can be used by post-
processing scripts, see the section called “The <post-processing> Element”.

Component Manual Tasks
A component manual task is a mechanism used to interrupt a component process until some manual
intervention is performed. A task-interrupted process will remain suspended until the targeted user or users
respond. Typically, manual tasks are removed after the process has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with component-,
environment-, or resource-defined user roles. Affected users can respond—approve—by using the Work
Items pane (see the section called “Work Items”). Unlike approvals, manual tasks are incorporated within
a component process.

Creating Component Manual Tasks
To create a task:

1. Display the Create New Task Definition dialog (Components > [selected component] >
Tasks > Create New Task Definition [button]).

2. Name the task then select a template from the Template Name field.

The individual tasks map to the notification scheme used by the application(see the section called
“Notifications”). If a scheme is not specified, the default scheme is used. The available tasks are:
• ApplicationDeploymentFailure
• ApprovalCreated
• TaskCreated
• ProcessRequestStarted
• DeploymentReadied
• ApplicationDeploymentSuccess
• Approval Failed

Using Component Manual Tasks
Component manual tasks are implemented with the Manual Task component process step. Use the step to
insert a manual task trigger into a component process.

Table 15. Component Manual Task Properties

Field Description

Name Typically the name and description correspond to
the component process.

Task Definition Used to select a user-defined task, as described
above.

Component Role Select the role expected to respond. The user
mapped to this role will have to respond to the

Components

83

Field Description

generated work item before the process can
continue.

Environment Role Select the role expected to respond. The user
mapped to this role will have to respond to the
generated work item before the process can
continue.

Resource Role Select the role expected to respond. The user
mapped to this role will have to respond to the
generated work item before the process can
continue.

If multiple roles are selected, all affected users will have to respond before the process can continue. See the
section called “Notifications” for information about notification schemes; see the section called “Process
Editor” for information about creating component processes.

Post-Processes
When a plug-in step finishes processing, its default post-processing element is executed. The post-
processing element is defined in the plug-in's XML definition, see the section called “Creating Plug-ins”

You can override the default behavior by entering your own script into the step's Post Processing
Script field. A post-processing script can contain any valid JavaScript code. Although not required, it's
recommended that scripts be wrapped in a CDATA element.

See the section called “The <post-processing> Element” for more information.

Component Templates
There are two types of templates available:

• A component template enables you save and reuse component processes and properties and create new
components from them; template-based components inherit the template's properties and process.

• A configuration template is typically used to save server or property configurations.

Creating a Component Template

To create a template:

1. Display the Create New Component Template dialog (Components > Templates > Create
New Template [button]).

Components

84

Figure 42. Create New Component Template Dialog

2. Enter the template's name in the Name field.

3. Enter a description in the Description field.

The optional description can be used to convey additional information about the template.

4. Select a plug-in from the Status Plug-in field.

If you previously created any status-related plug-ins, they will be listed here. The default value is
Default, meaning that the template will have uDeploy-supplied steps available for use.

5. Select the source for the artifacts from the Source Config Type drop-down list.

Selecting a value other than the default None, displays additional fields associated with your selection.
Source-dependent fields are used to identify and configure the artifacts. If you select a source,
components based on the template will use the same source. See Component Source Configuration

Note

If you select a source, any properties you configure will be set for any components created
with the template.

6. Click the Save button to save the template.

Saved templates are listed in the Component Templates pane.

You create a process for the template in the same way processes are created for components. For
information about creating component processes, see the section called “Process Editor”.

Importing\Exporting Templates
Templates can be imported and exported.

Exporting Templates

Exporting a template creates a JSON file (file extension json) that contains the template's configuration
information, properties, and processes.

To export a template:

Components

85

On the Component Templates pane (Components > Templates), click the Export link in the
Actions field. You can load the file into a text editor, or save it. If you save it, a file is created with the
same name as the selected component, for example, helloWorldTemplate.json.

Importing Templates

When you import a template, you can create an entirely new template or upgrade an existing one.

To import a template:

1. Display the Import Template dialog (Components > Templates > Import Template
[button]).

2. Enter the path to the JSON file containing the template or use the Browse button to select one.

3. If you want to upgrade an existing template, check the Upgrade Template check box. To create a new
template, leave the box unchecked.

If the template's name in the JSON file (not the name of the file itself) matches an existing template,
the template will be upgraded. If the name is not found, the command has no effect.

Note

The template's name is the first parameter in the JSON file; for example,

"name": "helloWorldTemplate",

.

4. Click Submit.

Component Template Properties
Component template properties ensure that every component created from a template has the same
properties. The three types of available properties are described in the following table.

Table 16. Component Template Properties

Type Description

Properties Custom property. Every component will inherit
the value defined in the template (it cannot be
overridden by a component). If you change the
value, the change will be reflected in components
created from the template, including those
previously created.

Component Property Definitions Every component will have this property; it will
appear on the Create New Component dialog
for every component created from this template
(see the section called “Creating Components”)
A value defined here can be changed by created
components. Each property must have a type:

• Text

Enables users to enter text characters.

Components

86

Type Description

• Text Area

Enables users to enter an arbitrary amount of
text, limited to limited to 4064 characters.

• Check Box

Displays a check box. If checked, a value of true
will be used; otherwise the property is not set.

• Select

Requires a list of one or more values which
will be displayed in a drop-down list box.
Enables a single selection. Note: not currently
implemented.

• Multi Select

Requires a list of one or more values which will
be displayed in a drop-down list box. Enables
multiple selections.

• Secure

Used for passwords. Similar to Text except
values are redacted.

Environment Property Definitions Every environment that uses a component
created by this template will have this
property. The property will appear on
the environment's Component Mappings
pane (Applications > [selected
application] > Environments >
[selected environment] > Component
Mappings), see the section called “Application
Environments”. A value defined here can be
changed by environment. Each property must have
a type:

• Text

Enables users to enter text characters.

• Text Area

Enables users to enter an arbitrary amount of
text, limited to limited to 4064 characters.

• Check Box

Displays a check box. If checked, a value of true
will be used; otherwise the property is not set.

• Select

Components

87

Type Description

Requires a list of one or more values which
will be displayed in a drop-down list box.
Enables a single selection. Note: not currently
implemented.

• Multi Select

Requires a list of one or more values which will
be displayed in a drop-down list box. Enables
multiple selections.

• Secure

Used for passwords. Similar to Text except
values are redacted.

Using Component Templates

When you create a component based on a template, the component inherits the template's process (if
any, see the section called “Component Processes”), and properties (if any, the section called “Creating
Components”).

To create a template-based component:

1. Display the Create New Component dialog (Components > Templates > [selected
template] > Create New Component [button]).

The Create New Component dialog (the same dialog used to create non template-based components)
is used to configure component. Properties defined in the template will be predefined. If a source
was selected in the template, the source is set here and the Source Config Type field is locked. For
information about using this dialog, see the section called “Creating Components”

2. After configuring editable properties, save the component.

Templates used to create components are listed in the Templates view.

Components created from templates are listed in the Components view.

Configuration Templates

Configuration templates, as the name implies, contain configuration data. Typically, the data is for server
configurations Tomcat servers, for instance, but the data can be for any purpose.

To create a configuration template:

1. Display the Create New Configuration Template dialog (Components > [selected
component] > Templates > Create New Configuration Template [button]).

Components

88

Figure 43. Create New Configuration Template Dialog

2. Enter a meaningful name in the Name field.

3. In the Template field, enter or paste the template text. Text can be in any script—or no script at all. The
amount of text is based on the database used by uDeploy. Practically there is no limit to the amount
of text used for a configuration template.

4. Save your work when you are finished.

Configuration templates can be edited at any time by using the Edit action.

Component Change Logs
Change logs provide information about modifications to components. To see change details, display the
log for a selected component-related activity (Home > Components > Changes [selected
component] > Changes > Changes [action for selected item].). Information for
any change that triggered a Commit ID is displayed.

Deleting and Deactivating Components
Components can be deactivated and deleted. To delete or deactivate a component, use the desired action
on the Components pane for the intended component.

When a component is deactivated, it remains in the database and CodeStation and can be activated later.
To activate a component, first click the Show Inactive Components check box, then use the Activate action
for the component.

Components

89

When a component is deleted, it, along with all version, is removed from the database and CodeStation
and cannot be activated at a later time (the original artifacts are not affected—only CodeStation copies are
deleted). Components cannot be deleted if they are used by an application. To delete a component used
by an application, first remove the component from the application.

90

Resources
To run a deployment, uDeploy requires an agent (resource) or proxy agent on the target machine. Typically,
an agent is installed in every environment that an application passes through. A typical production pipeline
might be, say, SIT, UAT, PROD (the application passes through two testing environments before reaching
production). In this scenario, at least three agents need to be installed--one per environment. If different
components run on different machines within a given environment, you might want to install multiple
agents in that environment.

Whether you need one or multiple resources per environment is determined by your current infrastructure,
deployment procedures, and other requirements. Many uDeploy users have significant differences among
environments--in SIT you might need to deploy a component to one machine, while in UAT you might
need to deploy the component to multiple machines. You could, for example, configure sub-groups for
the single agent in the SIT environment and then set up individual resources for each agent in the UAT
environment.

Resource Groups
uDeploy uses the concept of resource groups to help you organize and manage the agents installed in
different environment throughout the network. You need to create at least one resource group per installed
agent, as when configuring your Processes you will need to select the appropriate Group. What groups you
create and how you organize the groups, e.g., using subgroups, depends on your existing organizational
processes and infrastructure.

Note

Before continuing, ensure that at least one agent has been installed in a target environment
(for evaluation purposes, the agent can be on the same machine as the server).

Figure 44. Groups

Creating a Resource Group
1. Go to Resources > Groups. and click on the folder icon.

Resources

91

Figure 45. Action Tool

2. For the Type, most often Static is used.

Name and description. Typically, the name will correspond to either the Environment the Resource
participates in, the Component that uses the Resource Group, or a combination of both (e.g., SIT, DB,
or SIT-DB). What description you give depends on how you intend to use the Resource that this Group
is assigned to, etc.

Figure 46. Create a Resource Group Dialog

3. Once the Resource has been created, select the pencil icon to edit the Group.

Resources

92

Figure 47. Add a Resource Dialog

4. Once you assign a Group to a Resource, you add Subresources. A subresource enables you to apply
logical identifiers, or categories, within any given Group. During deployment configuration, you can
Select a given Subresource that the Process will run on. To create a Subresource, select the New
Resource icon for the Group. Configuration is similar to Resource Group creation.

Figure 48. Sub-resources

Resource Roles
A role enables you to further refine how a resource is utilized, and is similar to sub resources. For most
deployments, you will not need to define a role. During process configuration, you select a specific role
when determining the resource. A role can be used to set up uDeploy for rolling deployments, balancing,
etc. For example, you can set up your process to only deploy to a percentage of targets first; add a manual
task in the middle of the process that requires a user to execute (e.g., after they have tested the partial
deployment); and then once the manual task has completed the rest of the process is assigned a second
role responsible for deploying to the rest of the target machines.

Role Properties
When you create a role, you can define properties for it then whenever you add the role to a resource,
you can set the values for the properties. For example, if you create a role called "WS" and define a
property call "serverURL," you can access the property like this: ${p:resource/WS/serverURL}.
For information about uDeploy properties, see uDeploy Properties

Agents
An agent is a lightweight process that runs on a target host and communicates with the uDeploy server.
Agents perform the actual work of deploying components and so relieves the server from the task, making

Resources

93

large deployments involving thousands of targets possible. Usually, an agent runs on the same host where
the resources it handles are located; a single agent can handle all the resources on its host. If a host has
several resources, an agent process is invoked separately for each one. Depending on the number of hosts
in an environment, a deployment might require a large number of agents.

Agents are installed with the batch files provided with the installation files, see the section called “Agent
Installation”. Agents that will be installed on Unix machines can also be installed remotely using uDeploy's
web application, which is described below. Agents are run using the batch files included with the
installation package.

Once an installed agent has been started, the agent opens a socket connection to the uDeploy server
(securable by configuring SSL for server-agent communication) based on the information supplied during
installation. Agents on networks other than the one where the server is located might need to open a firewall
to establish connection. Once communication is established, the agent will be visible in the uDeploy web
application where it can be configured. Active agents--regardless of OS--can be upgraded using the web
application.

Agent configuration consists of assigning an agent to at least one environment; agents can be assigned
to multiple environments. If an agent is assigned to several environments, it can perform work on behalf
of all of them.

Remote Agent Installation
You can install an agent onto a Unix machine using the web application. A remotely installed agent cannot
be installed as a service.

To install an agent:

1. Display the Install New Agent dialog by clicking the Install New Agent button on the Agents pane
(Home > Resources > Agents).

2. Enter the required information into the dialog's fields:

Table 17. Remote Agent Installation Fields

Field Description

Target Hosts* Host names or IP addresses of the machines
where the agent will be installed.

SSH Port* SSH port addresses of the machines where the
agent will be installed.

SSH Username* SSH user name used on the machines where the
agent will be installed.

Use Public Key Authentication Check this box if you want to authenticate using
public key authentication instead of a password.

SSH Password* SSH password associated with the user name
used on the machines where the agent will be
installed.

Agent Name* Name of the agent.

Agent Dir* Directory where agent should be installed.

Java Home Path* Path to Java on the machine where the agent will
be installed.

Resources

94

Field Description

Temp Dir Path* Path to the directory used to perform the
installation on the target machine.

Server Host* Host name or IP address of the uDeploy server or
agent relay to which the agent will connect.

Server Port* uDeploy server port (7918) or agent relay (7916)
to which the agent will connect.

Mutual Authentication Check this box if the agent should enforce
certificate validation for mutual authentication.

Proxy Host Host name or IP address of the agent relay if
used.

Proxy Port HTTP port of the agent relay (20080) if used.

3. Click Save when you are done.

Remotely installed agents will start running automatically. If a remotely installed agent stops running, it
must be restarted on the host machine.

Managing Agents Remotely
While we characterize an agent as a process (singular), technically an agent consists of two processes: a
worker process and a monitor process. Worker processes perform the actual work of deployment, such
as handling plug-in steps. Monitor processes manage the worker process: handling restarts, upgrades, and
tests for example. Once an agent is installed, you can manage (via the monitor process) many of it features
from the uDeploy web application. Agent properties can be changed directly by editing the agent's conf/
agent/installed.properties file and restarting the agent.

To manage an agent:

1. Display the Agents pane (Home > Resources > Agents).

2. Click an action link for the desired agent. Actions are described in the following table.

Table 18. Agent Management

Action Description

Edit This option enables you to edit the agent's
description.

Restart This option will shutdown and restart the agent.
While the agent is shutdown, its status will be
Offline.

Upgrade This option will shutdown the agent and apply
the upgrade. While the agent is shutdown, its
status will be Offline. After the upgrade
is applied, the agent will be restarted. Before
its status is Online, it might briefly be
Connected.

Test This option will perform an agent settings and
connection test. Test results are displayed in the
Connection Test dialog.

Resources

95

Action Description

Inactivate This option will deactivate the agent. Agents that
are deactivated cannot perform deployments.
To reactivate the agent, check the Show
Inactive Agents check box on the Agents
pane, then click Activate for the agent.

Delete Removes the agent.

Agent Pools
Similar to resource groups, agent pools help you organize and manage agents installed in different
environments.

Creating an Agent Pool
To create an agent pool:

1. Display the Create New Agent Pool dialog by clicking the Create New Agent Pool button on the
Agent Pools pane (Home > Resources > Agent Pools).

2. Enter the pool name in the Name field.

3. Optionally, enter a description in the Description field.

4. Click the Pool Members field to add agents to the pool. A selection-type pop-up is displayed listing
the available agents.

5. Select the agent or agents you want to add to the pool. Optionally, you can filter the listed agents by
entering search text into the text field.

6. When you are finished, click Save.

Managing Agent Pools
To manage agent pools:

1. Display the Agent Pools pane (Home > Resources > Agent Pools).

2. Click an action link for the desired pool. Actions are described in the following table.

Table 19. Agent Pool Management

Action Description

Edit This option enables you to add/remove agents
and edit the pool's name and description.

Copy Copies (creates a new pool with the same agents
as the selected pool) the pool.

Inactivate This option will deactivate the agent pool.

Delete Removes the agent pool.

96

Applications
Applications are responsible for bringing together all the components that need to be deployed together.
This is done by defining the different versions of each component as well as defining the different
environments the components must go through on the way to production. In addition, Applications also
map the constituent hosts and machines (called resources) a component needs within every environment.

Applications also implement automated deployments, rollbacks, etc. These are called Processes; however,
at the Application level Processes are only concerned with the Components and Resources necessary for
deployment, etc. -- differentiating Application-processes from those of Components (which are concerned
with running commands, etc.).

Applications also introduce Snapshots to manage the different versions of each Component. A snapshot
represents the current state of an Application in the Environment. Typically, the Snapshot is generated in
an Environment that has no Approval gates -- called an uncontrolled Environment. For most users, the
Snapshot is pushed through the pipeline.

Note

Before configuring an Application, you will need to ensure that at least one agent has been
installed in a target environment (for evaluation purposes, the agent can be on the same
machine as the server). In addition, you will also need to add at least one Resource Group
to the agent. See Resources.

Environments

An Environment is a collection of Resources that host the Application. Environments typically include
host machines and uDeploy agents. When a deployment is run, it is always done so in an Environment.
While Environments are collections of Resources, Resources can vary per Environment.

For example, Environment 1 may have a single web server, a single middleware server, and a single
database server, that must be deployed to; uDeploy represents these as three, separate Resources running in
Environment 1. Environment 2, however, may have a cluster of Resources that the same Application must
be deployed to. uDeploy compensates for these differences with Resource Groups (more at Resources by
keeping an Inventory of everything that is deployed to each Environment: uDeploy knows exactly the
Environment and Server(s) where the Application was deployed to: and tracks the differences between
the Environments.

Processes

A process plays a coordination role. They are authored using a visual drag-n-drop editor, and composed
of Steps that call the Component Processes. For example, to deploy the Application you may invoke a
Process called Deploy. This Deploy Process would in turn call out to the requisite Components and execute
the deployment.

Snapshots

Snapshots specify what combination of Component versions you deploy together. They are models you
create before deploying the Application. A Snapshot specifies the exact version for each Component in
the Application. When a Snapshot is created, uDeploy gathers together information about the Application,
including the Component versions, for a given Environment. Typically, the Snapshot is generated in
an Environment that has no Approval gates -- called an uncontrolled Environment. For most users,
the Snapshot is pushed through the pipeline. Typically, one of the Environment will always remain
uncontrolled to allow for Snapshots. When a successful deployment has been run in the uncontrolled

Applications

97

Environment, a Snapshot is created based on the Application's state within the Environment: thus capturing
the different versions of the Components at that time. As the Application moves through various testing
Environments, for example, uDeploy ensures that the exact versions (bit for bit) are used in every
Environment. Once all the appropriate stages and Approvals for a Snapshot are complete, the Snapshot
is pushed to Production.

Creating Applications
You can create an application from scratch or import an existing one. See the section called “Importing/
Exporting Applications” for information about importing applications. After creating an application, you:

• add components (the section called “Adding Components to an Application”)

• create an environment (the section called “Creating an Environment”)

• associate an agent with the environment (the section called “Mapping Resources to an Environment”)

• create an application process (the section called “Application Processes”)

Before configuring an application, ensure that at least one agent has been installed in a target environment
(for evaluation purposes, the agent can be on the same machine as the server). See Resources.

To create an application:

1. Display the Create New Application dialog Applications > Create New Application
[button], and enter the following:

Figure 49. Create New Application Dialog

• Typically the name and description correspond to the application you plan on deploying.

• Notification Scheme. uDeploy includes integrations with LDAP and e-mail servers that enable it to
send out notifications based on events. For example, the default notification scheme will send out an
e-mail when an application deployment fails or succeeds. Notifications also play a role in approving
deployments: uDeploy can be configured to send out an e-mail to either a single individual or to a
group or people (based on their security role) notifying them that they need to approve a requested
deployment. See the section called “Notifications”.

• If you want the application to require that every component is versioned, click the Enforce Complete
Snapshots check box.

Applications

98

2. Save your work when done.

Adding Components to an Application

Next, add at least one component to the application. Applications bring the different components (their
versions and processes) together so they can be deployed as a single unit.

To add components to an application:

1. Display the Add a Component dialog Applications > [select application] >
Components > Add Component [button]

Figure 50. Selecting a Component

2. Use the Select a Component list box to choose a component. Components are selected one at a time.

Importing/Exporting Applications

Applications can be imported and exported. Importing/exporting can be especially useful if you have
multiple uDeploy servers, for example, and need to quickly move or update applications.

Exporting Applications

Exporting an application creates a JSON file (file extension json) that contains the application's
properties, components (and their associated properties and processes), and processes. For information
about JSON, see http://www.json.org/.

To export an application:

On the Applications pane (Home > Applications), click the Export link in the Actions field. You
can load the file into a text editor, or save it. If you save it, a file is created with the same name as the
selected component, for example, helloWorldApplication.json.

Importing Applications

When you import an application, you can create an entirely new application or upgrade an existing
one. Components—including their properties and processes—associated with the application are also
imported (if available to the importing server). For information about templates associated with imported
components, see the section called “Importing/Exporting Components”.

http://www.json.org/

Applications

99

Note

If imported components have the Import Versions Automatically parameter set to true,
uDeploy will automatically import component versions as long as the artifacts are accessible
to the importing server.

To Import an Application

1. Display the Import Application dialog (Applications > Import Application [button]).

2. Enter the path to the JSON file containing the application definition or use the Browse button to select
one.

3. If you want to upgrade an existing application, check the Upgrade Application check box. To create a
new application, leave the box unchecked.

If the application's name in the JSON file (not the name of the file itself) matches an existing
application, the application's parameters are updated with new values, and new items—such as
processes, environments, and components—are added. If the name is not found, the command has no
effect.

Note

The application's name is the first parameter in the JSON file; for example,

"name": "helloWorldApplication",

.

4. Specify how imported components should be handled with the Component Upgrade Type drop-down
box. For these options, the components must be on the importing server.

• To use the same components used by the imported application, select Use Existing Component.
The new application will contain references to the imported applications components. This option is
especially useful if you are importing a lot of applications.

If you are upgrading, the application will use the imported components, and no longer use any not
used by the imported application.

• To create new components based on those used by the imported application, select Create New
Component. New components will be created (based on the imported application's components).

If you are upgrading, the application will use the newly created components and no longer use any
it previously used.

• When you want to create a fresh installation, select Fail if Component Exists. If you are creating
an application, it will create both a new application and component unless the component already
exists, in which case the application is not imported.

If you are upgrading, the upgrade will fail if any imported components already exist on the importing
server.

• To ensure a component is on the importing server, select Fail if Component Does Not Exist. If you
are creating an application, it will create both a new application and component unless the component
does not exist, in which case the application is not imported.

Applications

100

If you are upgrading, the upgrade will fail if an imported component does not already exist on the
importing server.

• To upgrade existing components, select Upgrade if Exists. This option creates an application and
upgrades existing components with data from the imported application.

If you are upgrading and existing components match imported ones (all must match), the components
will be upgraded. If none of the imported components match existing ones, the imported components
will be used.

5. Click Submit.

Application Environments
An environment is a user-defined collection of resources that hosts an application. An environment is
the application's mechanism for bringing together components with the agent that actually deploys them.
Environments are typically modeled on some stage of the software project life cycle, such as development,
QA, or production. A resource is a deployment target, such as a database or J2EE container. Resources
are usually found on the same host where the agent that manages them is located. A host can be a physical
machine, virtual machine, or be cloud-based.

Environments can have different topologies—for example: an environment can consist of a single machine;
be spread over several machines; or spread over clusters of machines. Environments are application scoped.
Although multi-tenant machines can be the target of multiple applications, experience has shown that most
IT organizations use application-specific environments. Additionally, approvals are generally scoped to
environments.

uDeploy maintains an inventory of every artifact deployed to each environment and tracks the differences
between them.

Creating an Environment

Before you can run a deployment, you must define at least one environment that associates components
with an agent on the target host. This initial environment is typically uncontrolled and often used to create
snapshots.

To create an environment:

1. Display the Create New Environment dialog Applications > [select application] >
Environments > Add New Environment [button] , then enter the following:

Applications

101

Figure 51. Create New Environment dialog

• Name and Description. The name is used as part of the deployment process and typically corresponds
to the target environment. For example, if you are deploying to an integration environment, "SIT"
might appropriate.

• To ensure that components cannot be deployed to the environment without first being approved,
click the Require Approvals check box. If checked, uDeploy will enforce an approval process
before the deployment can be deployed to the environment. Initial deployments are typically done in
uncontrolled environments, but once the deployment is successful, you can configure an approvals
process as the application moves along the development pipeline. If you are setting up more than one
environment, consider creating an approvals process for at least one of them.

• If the Lock Snapshots check box is selected, all snapshots used in this environment are locked to
prevent changes.

• The Color picker enables you to apply a visual identifier to the environment. The selected color will
appear in the UI.

• The Inherit Cleanup Settings check box determines how many component versions are kept in
CodeStation, and how long they are kept. If checked, the application will use the values specified
on the System Settings pane. If unchecked, the Days to Keep Versions (initially set to -1, keep
indefinitely) and Number of Versions to Keep (initially set to -1, keep all) fields are displayed, which
enable you to define custom values. The default value is checked.

2. Save your work when you are done.

Mapping Resources to an Environment

1. After you have added a component to the application, define where its artifacts should be deployed by
selecting a resource (agent) or resource group. See Resources.

1. Display the Component Mappings pane (Applications > [selected application] >
Environments > [selected environment] > Component Mappings).

Applications

102

Figure 52. Component Mapping

2. If the application has several components associated with it, select the one you want to use from the
component list. Each component associated with this application can be mapped to a different agent
(resource).

3. To associate a resource with the selected component:

• To add a resource group, click the Add a Resource Group button and select a resource group. For
information about creating resources, see the section called “Resource Groups”.

• To add a resource, click the Add a Resource button and select an resource.

After mapping components and resources, make the application deployment ready by creating an
application process, which is described in the following section.

Environment Properties
Environment properties can be created with the environment's Properties pane (Applications >
[selected application] > Environments > [selected environment] >
Properties).

A value set on component environment overrides one with the same name set directly on an environment
property. Component environment properties enable you to centralize properties, tracking type and default
values, for instance. Environment properties provide ad-hoc lists of property=value pairs.

Referenced: ${p:environment/propertyName}.

Application Processes
Application processes, like component processes, are created with the process editor. uDeploy provides
several common process steps, otherwise application processes are assembled from processes defined for
their associated components.

Application processes can run manually, automatically on some trigger condition, or on a user-defined
schedule. When a component has several processes defined for it, the application determines which ones
are executed and in which order.

An application process is always associated with a target environment. When an application process
executes, it interacts with a specific environment. At least one environment must be associated with the

Applications

103

application before the process can be executed. Application processes are environment agnostic; processes
can be designed independently of any particular environment. To use the same process with multiple
environments (a typical scenario), you associate each environment with the application and execute the
process separately for each one.

In addition to deployments, several other common processes are available, such as rolling-back
deployments. uDeploy tracks the history of each component version, which enables application processes
to restore environments to any desired point.

Creating Application Processes
1. Display the Create an Application Process dialog (Applications > [select application]
> Create New Process [button]), and enter the following information:

Name and Description. Typically the name and description correspond to the application you plan on
deploying.

Figure 53. Create New Application Dialog

Table 20. Application Process Fields

Field Description

Name/Description Typically the name and description correspond to
the application you plan on deploying.

Required Application Role Use this drop-down list box to select the role a
user must have in order to run the application.
For information about creating application roles,
see the section called “Roles and Permissions”.
The default value is None.

Inventory Management If you want to handle inventory manually,
select Advanced. To have inventory handled
automatically, leave the default value,
Automatic, selected.

Offline Agent Handling Specify how the process reacts if expected agents
are offline:

• Check Before Execution: checks to see if
expected agents are on line before running the

Applications

104

Field Description

process. If agents are off line, the process will
not run.

• Use All Available; Report Failure: process
will run as long as st least one agent defined in
the environment is on line; reports any failed
deployments due to off line agents. Useful for
rollbacks or configuration deployments.

• Always Report Success: process will run
as long as st least one agent defined in the
environment is on line; reports successful
deployments.

2. Save your work.

Application process—the steps comprising them—are configured with the process editor. For information
about using the process editor, see the section called “Process Editor”. For information about individual
process steps, see the section called “Application Process Steps”.

Application Process Steps
Application processes, like component processes, are created with the process editor. uDeploy provides
several common process steps, otherwise application processes are assembled from processes defined for
their associated components.

Application Process Steps Details
The application process steps are described in the following topics.

Finish

Ends processing. A process can have more than one Finish step.

Install Component

Installs the selected component using one of the processes defined for the component.

Table 21. Install Component Properties

Field Description

Name Can be referenced by other process steps.

Component Component used by the step; a step can affect a
single component. All components associated with
the application are available. If you want to install
another component, add another install step to the
process.

Use Versions Without Status Restricts the components that can be used by the
step—components with the selected status are

Applications

105

Field Description

ignored. Available statuses: Active means ignore
components currently deployed; Staged means
ignore components currently in pre-deployment
locations.

Component Process Select a process for the component selected above.
All processes defined for the component are
available. Only one process can be selected per
step.

Ignore Failure When selected, the step will be considered to have
run successfully.

Limit to Resource Role User-defined resource role the agent running the
step must have.

Run on First Online Resource Only Instead of being run by all agents mapped to
the application, the step will only be run by the
first online agent identified by uDeploy. The
mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition A JavaScript script that defines a condition that
must exist before the step can run. The condition
must resolve to true or false.

Uninstall Component

Uninstalls the selected component.

Table 22. Uninstall Component Properties

Field Description

Name Can be referenced by other process steps.

Component Component used by the step; a step can affect a
single component. All components associated with
the application are available. If you want to install
another component, add another install step to the
process.

Remove Versions With Status Restricts the components that are affected by the
step, only components with the selected status are
affected. Available statuses: Active means use
components currently deployed; Staged means
use components currently in pre-deployment
locations.

Component Process Select a process for the component selected above.
All processes defined for the component are
available. Only one process can be selected per
step.

Ignore Failure When selected, the step will be considered to have
run successfully.

Limit to Resource Role User-defined resource role the agent running the
step must have.

Applications

106

Field Description

Run on First Online Resource Only Instead of being run by all agents mapped to
the application, the step will only be run by the
first online agent identified by uDeploy. The
mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition A JavaScript script that defines a condition that
must exist before the step can run. The condition
must resolve to true or false.

Rollback Component

Rolls-back a component version; replaces a component version with an earlier one.

Table 23. Rollback Component Properties

Field Description

Name Can be referenced by other process steps.

Component Component used by the step; a step can affect a
single component. All components associated with
the application are available. If you want to install
another component, add another install step to the
process.

Remove Versions With Status Restricts the components that are affected by the
step, only components with the selected status are
affected. Available statuses: Active means use
components currently deployed; Staged means
use components currently in pre-deployment
locations.

Component Process Select a process for the component selected above.
All processes defined for the component are
available. Only one process can be selected per
step.

Ignore Failure When selected, the step will be considered to have
run successfully.

Limit to Resource Role User-defined resource role the agent running the
step must have.

Rollback type Determines the type of rollback. Available
statuses: Remove Undesired Incremental
Versions and Replace with Last
Deployed.

Run on First Online Resource Only Instead of being run by all agents mapped to
the application, the step will only be run by the
first online agent identified by uDeploy. The
mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition A JavaScript script that defines a condition that
must exist before the step can run. The condition
must resolve to true or false.

Applications

107

Manual Application Task (Utility)

A manual task is a mechanism used to interrupt an application process until some manual intervention
is performed. A task-interrupted process will remain suspended until the targeted user or users respond.
Typically, manual tasks are removed after the process has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with environment- or
application-defined user roles. Affected users can respond—approve—by using the Work Items pane (see
the section called “Work Items”). Unlike approvals, manual tasks can be incorporated within an application
process.

The task used to configure this step must have been previously defined with the Create New Task Definition
dialog.

Table 24. Manual Application Task Properties

Field Description

Name Typically the name and description correspond to
the application.

Task Definition Used to select a user-defined task.

Environment Role Select the role expected to respond. The user
mapped to this role will have to respond to the
generated work item before the process can
continue.

Application Role Select the role expected to respond. The user
mapped to this role will have to respond to the
generated work item before the process can
continue.

If both roles are selected, all affected users will have to respond before the process can continue. See the
section called “Notifications”.

Application Manual Tasks
A manual task is a mechanism used to interrupt an application process until some manual intervention
is performed. A task-interrupted process will remain suspended until the targeted user or users respond.
Typically, manual tasks are removed after the process has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with environment- or
application-defined user roles. Affected users can respond—approve—by using the Work Items pane (see
the section called “Work Items”). Unlike approvals, manual tasks can be incorporated within an application
process.

Creating Application Manual Tasks
To create a task:

1. Display the Create New Task Definition dialog (Applications > [selected application]
> Tasks > Create New Task Definition [button]).

2. Name the task then select a template from the Template Name field.

Applications

108

The individual tasks map to the notification scheme used by the application(see the section called
“Notifications”). If a scheme is not specified, the default scheme is used. The available tasks are:
• ApplicationDeploymentFailure
• ApprovalCreated
• TaskCreated
• ProcessRequestStarted
• DeploymentReadied
• ApplicationDeploymentSuccess
• Approval Failed

Using Manual Tasks
Manual tasks are implemented with the Manual Application Task process step. Use the step to insert a
manual task trigger into an application process.

Approval Process
An approval process enables you to define the job that needs approved and the role of the approver. An
approval process must be created if the Requires Approval check box is selected when creating/editing an
environment. If a scheduled deployment requiring approval reaches its start time without approval given,
the process will not run and act as a rejected request. To resubmit a request, you must request a new
process. If an approval-requesting process does not have a scheduled deployment time, the process will
remain idle until a response has been made.

Creating an Approval Process

To create an approval process, display the Approval Process Design Pane.

(Home>Applications>Application_Name>Environments>Environment:Environment_Name>Approval
Process)

Once the pane is displayed, select the steps that need approval from the process editor. The steps are based
on job type and the role of the approver. You have the option of selecting three job types: the Application,
Component, and/or Environment. For help using the process editor see the section called “Process Editor”.

Reviewing Status

To view the status of the request, display the Deployment Detail pane on the Reports tab. If a request
has been approved it will display as success. However, if the request was rejected it will show failed. If a
request is failed display the Application Process Request by clicking view request.

If a comment has been made regarding the process, you can view it by clicking the log button in the actions
column on the Application Process Request.

Work Items
If a job requiring approval is created, an approval process will have to be created. The job requiring
approval will display in the approvers Work Items tab. Until approved, the job will remain idle if
unscheduled. If time has elapsed on a scheduled job needing approval, the job will fail. This control allows
the approver to verify the deployment details, and choose the time it is deployed. Notifications are sent to
users who are eligible to complete an approval step if the system is configured with an email server and
the user has an email address set.

Applications

109

View Details of Process

In the Works Items tab, the approver can view the name of the process, when the request was submitted,
who requested the process, and the snapshot or version used. The approver can also view details of the
environment or resource by clicking the link in the Environment/Resource column. They can view the
details of the target by clicking the link in the target column. Or view details on the request by selecting
the View Request in the Actions column. The Actions column is also where the approver can respond to
the request.

Responding to Request

To respond to a request, display the Respond dialog box by clicking Respond in the Actions column. The
approver has the option of leaving a comment. If a request is rejected the process will not run. If approved,
the process will begin.

Snapshots
A snapshot is a collection of specific component versions and processes, usually versions that are
known to work together. Typically, a snapshot is created when a successful deployment has been run
in an uncontrolled environment. Snapshots can be created in a controlled environments as well. As the
application moves components through various environments, uDeploy ensures that the exact versions and
processes you selected are used in every environment. Snapshots help manage complex deployments--
deployments with multiple environments and development teams.

Creating Snapshots
To create a snapshot, display New Application Snapshot pane(Home > Application > Snapshots
> Create New Snapshot).

1. Enter the name of your snapshot in the Name field.

2. In the Process Version Locking field, specify how you want uDeploy to select component processes:

• Always use Latest Version Use the most recently defined component process version for each
component in the application (default).

• Lock to Current Versions Use the current component process version for each component.

3. For each component in the application, you can specify which version to use:

• Add Version Enables you to select any version in Codestation for the component.

• Copy From Environment Uses the currently deployed (in this environment) component version.

• Remove All Removes all deployed component versions from this environment.

4. Instead of specifying a version for each component, you can use the most recently deployed version
(in this environment) for each component in the application by using the Copy All From Environment
button.

If you want to discard any selected component versions, use the Clear All Components button.

Snapshot Versions
To use, the Snapshot go to:

Applications

110

Home>Application>Application_Name>Snapshots>snapshots:Snapshot_Name

On the main pane, click Request Process in the Environment of your choice.

Snapshot Configuration

To use, the Snapshot go to:

Home>Application>Application_Name>Snapshots>snapshots:Snapshot_Name

On the main pane, click Request Process in the Environment of your choice.

Using Snapshots

To use, the Snapshot go to:

Home>Application>Application_Name>Snapshots>snapshots:Snapshot_Name

On the main pane, click Request Process in the Environment of your choice.

Application Gates
Gates provide a mechanism to ensure that component versions cannot be deployed into environments
unless they have the gate-specified status. Version statuses are user-defined values that can be applied
to component versions and used in component processes or application gates. Version statuses can be
applied though the user interface (Components > [selected component] > Versions >
[selected version] > Add a Status [button]), or by the Add Status to Version plug-in
step. They are displayed in the Latest Status field on the component's Versions pane (Components >
[selected component] > Versions).

Component version statuses are defined on the Statuses tab (Settings > Statuses), see the section
called “Inventory and Component Statuses”. Component versions do not have to have gates. Gates are
defined at the environment level; an environment can have a single gate defined for it.

Creating Gates

To create a gate:

1. Display the Gates pane for the target application (Applications > [selected
application] > Gates).

Applications

111

Figure 54. Gates Pane

2. Select a value from the Add a new condition list box.

The available statuses are defined in the default.xml file (discussed below). The default statuses
—Latest, Passed Tests, Archived—are supplied as examples; it is assumed you will
supply your own values.

Selecting a value provides both And and Or selection boxes.

Figure 55. Gate Definition

Using the And box adds an additional value to the condition that must be satisfied. Using the default
values for example, defining the following gate Passed Tests And Latest means that only

Applications

112

component versions with both statuses—Passed Tests and Latest—satisfy the condition and
can be deployed into the environment. A single condition can have as many And-ed values as there are
statuses defined in the default.xml file.

Using the Or box adds an additional condition to the gate. Additional conditions are defined in the same
way as the first one. A gate with two or more conditions means the component will be deployed if it
meets any of the conditions. For example, if the following two gates are defined, Passed Tests,
and Latest, a component will pass the gate if it has either status (or both). A single gate can have
any number of conditions.

3. Save your work when finished.

See the section called “Component Version Statuses” for more information about component statuses.

113

Deployments
Deployments are done with applications (see the section called “Creating Applications” for information
about creating applications). Performing a deployment is straightforward: you run a deployment-type
process defined for an application in one of its environments. (Application processes can do things other
then deploying, such as rolling-back or uninstalling components.) An application process is run by the
Request Process command on the application's Environment pane (Application > selected_application >
Environment).

Figure 56. Request Process Actions

To run an application:

1. In the uDeploy web application, display the Application tab.

2. Click the name of the application.

3. Use the Request Process action for the environment where you want the deployment performed. The
Run Process dialog is displayed.

In the illustration above, the application has two environments defined for it; you would click the Run
Process link for the environment you want to use.

Deployments

114

Figure 57. Run Process Dialog

4. If you want to use a snapshot, select it from the Snapshot drop-down list-box. If you select a
snapshot, the deployment will automatically use the component version(s) defined for the snapshot. For
information about snapshots, see the section called “Snapshots”.

5. If you did not select a snapshot, select a component version from the Version list-box. If more than one
component is mapped to the application, each one is listed separately. Version options are described
in the following table:

Table 25. Version Options

Version Option Description

None No version for this component. Useful when
performing multi-component deployments or
testing.

Specific Version Enables you select any version already in
Codestation.

Latest Version Automatically uses the most recently imported
version.

Latest With Status All versions (creation order—oldest to newest)
with the selected status. This might effect
multiple versions, which is useful for an
incremental component. Default values are:
Latest, Passed Test, Archived.

All With Status All component versions with the selected status
will be deployed. Default values are: Latest,
Passed Test, Archived.

All in Environment Deploys all versions (in order of deployment)
with the given inventory status in the current
environment; useful if you need to run an
operational process for whatever is already in
the environment. Default values are: Active,
Staged.

Deployments

115

Version Option Description

All in Environment (Reversed) All component versions already deployed in the
environment with the selected inventory status
will be deployed in reverse order.

6. Use the Only Changed Version check box to ensure that only changed versions are deployed (it is
checked by default). If checked, no previously deployed versions will be deployed. If, for example, you
check the box and select a specific version that was already deployed, the version will not be redeployed.
Uncheck the box if you want to deploy a version regardless of whether or not it was already deployed
(if the inventory is out of date, for instance).

7. Select the process you want to run from the Process list box. All processes created for the application
are listed.

8. If you want to run the process at a later time, click the Schedule Deployment? check box (it is unchecked
by default). If checked, fields appear enabling you to specify the date and time when the process will
run. You can also make the process run on a recurring basis.

9. When finished, click Submit to start the process. An application process will start immediately unless
scheduled for a later time.

When a process starts, use the Application Process Request pane to review the deployment's status. This
pane is also used if the process requires approvals.

Figure 58. Application Process Request Pane

After a process finishes, click the Details action to display the Deployment of Component pane, which
can be used to review the deployment details.

Deployments

116

Figure 59. Deployment of Component Pane

The actions available for this pane enable you to review the deployment's output log, error log, and input/
output parameters.

Scheduling Deployments
uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-
out dates, for your Deployments. Deployments for an individual Application are scheduled on a per-
environment basis, set when you run a deployment of a Snapshot or Deployment Process. Black-out dates
are set within the individual Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling
a Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of
the type of deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, uDeploy will prompt you to give the date and time you
want the deployment to run. The Make Recurring setting will deploy the Application on a regular schedule.
For example, if you are practicing Continuous Delivery, the Daily option will deploy the Application to
the target Environment every day.

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the
Scheduled Deployment, you can edit, delete, or investigate the deployment.

Setting Blackouts

A blackout is a set per-environment, per-application. Once set, no deployments (nor snapshots) can
be scheduled to occur in that environment. Any previously scheduled deployments to the Environment
will fail if they fall within the blackout date you set. To set up a blackout, go to (Application >
Environments > Calendar > Add Blackout). If you need to set blackouts for more than one
environment, you must do this for each individual one. uDeploy will prompt you to give the dates and
times for the blackout.

117

Reports
uDeploy provides deployment- and security-type reports:

• Deployment reports contain historical information about deployments. Data can be filtered in a variety
of ways and reports can be printed and saved. In addition, you can save search criteria for later use. See
the section called “Deployment Reports”

• Security reports provide information about user roles and privileges. See the section called “Security
Reports”

For information about saving and printing reports, see the section called “Saving and Printing Reports”

The following tables summarize the out-of-the-box reports.

Table 26. Deployment Reports

Report Description

Deployment Detail Provides information about deployments executed during a user-
specified reporting period. Each report row represents a deployment
that executed during the reporting period and matched the filter
conditions. See the section called “Deployment Detail Report”.

Deployment Average Duration Average deployment times for applications executed during a user-
specified reporting period. See the section called “Deployment
Average Duration Report”.

Deployment Total Duration Total deployment times for applications executed during a user-
specified reporting period. See the section called “Deployment Total
Duration Report”.

Deployment Count Provides information about the number of deployments executed
during a user-specified reporting period. See the section called
“Deployment Count Report”.

Table 27. Security Reports

Report Description

Application Security Provides information about user roles and privileges defined for
uDeploy-managed applications. See the section called “Application
Security Report”.

Component Security Information about user roles and privileges defined for components.
See the section called “Component Security Report”.

Environment Security Information about user roles and privileges defined for environments.
See the section called “Environment Security Report”.

Resource Security Information about user roles and privileges defined for resources. See
the section called “Resource Security Report”.

Deployment Reports
Deployment Reports contain historical information about deployments, such as the total number executed
and their average duration. Data can be filtered in a variety of ways and reports can be printed and saved.
In addition, you can save search criteria for later use. See the section called “Saving and Printing Reports”

Reports

118

Deployment Detail Report
The Deployment Detail Report provides information about deployments executed during a user-specified
reporting period. Each report row represents a deployment that executed during the reporting period and
matched the filter conditions.

Reports can be filtered in a variety of ways (discussed below), and columns selectively hidden. Reports
can be saved and printed. See the section called “Saving and Printing Reports”.

When selected, the report runs automatically for the default reporting period--current month--and with all
filters set to Any. The default report represents all deployments that ran during the current month.

Deployment Detail Fields

Initially, all fields are displayed.

Table 28. Deployment Detail Fields

Field Description

Application Name of the application that executed the
deployment.

Environment Target environment of the deployment.

Date Date and time when the deployment was executed.

User Name of the user who performed the deployment.

Status Final disposition of the deployment. Possible
values are:

• Success

• Failure

• Running

• Scheduled

• Approval Rejected

• Awaiting Approval

Duration Amount of time the deployment ran. For a
successful deployment, the value represents the
amount of time taken to complete successfully.
If deployment failed to start, no value is given. If
a deployment started but failed to complete, the
value represents the amount of time it ran before it
failed or was cancelled.

Action This field provides links to additional information
about the deployment. The View Request link
displays the Application Process Request pane.
See Applications.

Running the Deployment Detail Report

To run a report:

Reports

119

1. Use the Date Range date-picker to set the report's start- and end-dates.

Table 29. Date Range

Field Description

Current, Prior Week Start day is either Sunday or Monday, depending
on what is defined in your system.

Current, Prior Month Start day is first day of the month.

Current, Prior Quarter Quarters are bound by calendar year.

Current, Prior Year Current year includes today's date.

Custom Displays the Custom pop-up which enables you
to pick an arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.

The end-time is automatically set to 24:00 for the selected date.

2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from the corresponding
property list box.

Table 30. Report Filters

Field Description

Application Only deployments executed by the selected
application appear in the report. Default value:
Any.

Environment Only deployments executed by the application
selected with the Application list box that also
used this environment appear in the report. If the
application value is Any, the available value is
Any; otherwise, environments defined for the
selected application are listed.

User Only deployments executed by the selected user
appear in the report. Default value: Any.

Status Only deployments with the selected status appear
in the report. Default value: Any.

Plugin Only deployments that used the selected plug-in
appear in the report. Default value: Any. Note:
the Any value also includes deployments that did
not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the report.

By default, the report is sorted by Application. You can sort the report on any field by clicking on
the column header.

For information about saving and printing reports, see the section called “Saving and Printing Reports”.

Reports

120

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Detail Report.

Table 31. Sample Reports

Field Description

Show me: All failed deployments that occurred on
July 4th during the previous year. • Application: Any

• Status: Failure

• Date Range: Use the Custom pop-up to set the
start- and end-dates to July 4th.

Show me: Deployments for an application that
used a specific environment.

• Application: Select the value from the drop-
down list box.

• Environment: Select the environment from the
drop-down list box.

When an application is selected, only
environments defined for it are available in the
Environment drop-down list box.

Show me: Failed deployments that used a specific
plug-in yesterday.

• Status: Failure

• Plugin : Select the value from the drop-down
list box.

• Date Range: Use the Custom pop-up to set the
start- and end-dates to the previous day.

Show me: My deployments that used a specific
application during the past month.

• Application: Select the value from the drop-
down list box.

• User: Select your user ID.

• Date Range: Select Prior Month.

Deployment Count Report
The Deployment Count Report provides information about the number of deployments executed during a
user-specified reporting period. The report provides both a tabular presentation and line graph of the data.
Each table row represents an environment used by an applications for the reporting period and interval.

The line graph elements are:

• y-axis represents the number of deployments

• x-axis represents reporting intervals

• plot lines represent environments used by applications

The units along the y-axis are scaled to the number of records reported. The units along the x-axis represent
the reporting interval, which can be: months, weeks, or days. Each color-coded plot line represents a single
environment used by the deployment during the reporting period.

Reports

121

When selected, the report runs automatically for the default reporting period (current month)and reporting
interval (days), and with all filters set to Any. The default report provides a count of all deployments that
ran during the current month.

Deployment Count Table Fields

Table 32. Deployment Count Fields

Field Description

Application Name of the application that executed the
deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the number of the
deployments for the selected reporting interval.

Running the Deployment Detail Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The selected value(s)
determines the columns in the tabular report, and the coordinate interval on the graph's x-axis. Default
value: Current Month.

Table 33. Date Range

Field Description

Current, Prior Week Start day is either Sunday or Monday, depending
on what is defined in your system. Reporting
interval is set to days.

Current, Prior Month Start day is first day of the month. Reporting
interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting
interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you
to pick an arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.

The end-time is automatically set to 24:00 for the selected date.

2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from the corresponding
property list box.

Reports

122

Table 34. Filters

Field Description

Application Only deployments executed by the selected
application(s) appear in the report. To select
applications:

a. Click the Application button.

b. To include an application in the report, click
the corresponding check box. If a large
number of applications are listed, type the first
few letters of the application's name in the text
box to scroll the list. Multiple applications can
be selected.

c. Click OK.

Status Only deployments with the selected status appear
in the report. Default value: Success or
Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in
appear in the report. Default value: Any. Note:
the Any value also includes deployments that did
not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced.

Figure 60. Deployment Count Graph

Each environment used by a reporting application is represented by an individual plot line and table row.
You can hide a plot line by clicking the corresponding item in the graph legend. To see information about
a graph coordinate, hover the mouse over the graph point.

Reports

123

You can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see the section called “Saving and Printing Reports”.

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Count Report.

Table 35. Sample Reports

Field Description

Show me: The number of successful deployments
for two specific applications during the past ten
days that used a particular plug-in.

• Application: Select both applications from the
Applications dialog.

• Status: Success

• Plugin: Select the plug-in from the drop-down
list box.

• Date Range: Use the Custom pop-up to set the
ten-day range.

Show me: The number of failed deployments for a
given application during the past month

• Application: Select the value from the
Applications dialog.

• Status: Failure

• Date Range: Select Prior Month.

Show me:The number of failed deployments that
used a specific plug-in yesterday.

• Application: Select the applications from the
Applications dialog.

• Status: Failure

• Plugin: Select the value from the drop-down list
box.

• Date Range: Use the Custom pop-up to select
the previous day.

Deployment Average Duration Report
The Deployment Average Duration Report provides average deployment times for applications executed
during a user-specified reporting period. The report provides both a tabular presentation and line graph
of the data. Each table row represents an environment used by an application for the reporting period and
interval.

The line graph elements are:

• y-axis represents deployment duration average times

• x-axis represents reporting intervals

• plot lines represent environments used by the applications

The units along the y-axis are scaled to the number of records reported. The units along the x-axis represent
the reporting interval, which can be: months, weeks, or days. Each color-coded plot line represents a single
environment used by the deployment during the reporting period.

Reports

124

When selected, the report runs automatically for the default reporting period (current month)and reporting
interval (days), and with all filters set to Any. The default report provides average deployment times for
all deployments that ran during the current month.

Deployment Average Duration Fields

Table 36. Average Duration Fields

Field Description

Application Name of the application that executed the
deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the average
deployment times for the reporting interval.

Running the Deployment Average Duration Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The selected value(s)
determines the columns in the tabular report, and the coordinate interval on the graph's x-axis. Default
value: Current Month.

Table 37. Date Range

Field Description

Current, Prior Week Start day is either Sunday or Monday, depending
on what is defined in your system. Reporting
interval is set to days.

Current, Prior Month Start day is first day of the month. Reporting
interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting
interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you
to pick an arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.

The end-time is automatically set to 24:00 for the selected date.

2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from the corresponding
property list box.

Reports

125

Table 38. Filters

Field Description

Application Only deployments executed by the selected
application(s) appear in the report. To select
applications:

a. Click the Application button.

b. To include an application in the report, click
the corresponding check box.

If a large number of applications are listed,
type the first few letters of the application's
name in the text box to scroll the list. Multiple
applications can be selected.

c. Click OK.

Status Only deployments with the selected status appear
in the report. Default value: Success or
Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in
appear in the report. Default value: Any. Note:
the Any value also includes deployments that did
not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced. Each environment used by a reporting application is
represented by an individual plot line and table row. You can hide a plot line by clicking the corresponding
item in the graph legend. To see information about a graph coordinate, hover the mouse over the graph
point.

You can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see the section called “Saving and Printing Reports”.

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Average
Duration Report.

Table 39. Sample Reports

Field Description

Show me: Average durations for two specific
applications during the past ten days that used a
particular plug-in.

• Application: Select both applications from the
Applications dialog.

• Status: Success or Failure

• Plugin: Select the plug-in from the drop-down
list box.

Reports

126

Field Description

• Date Range: Use the Custom pop-up to set the
ten-day range.

Show me: Average durations for successful
deployments for a given application during the
past six months.

• Application: Select the application from the
Applications dialog.

• Status: Success

• Date Range: Use the Custom pop-up to set the
range to the previous six months.

Deployment Total Duration Report
The Deployment Total Duration Report provides total deployment times for applications executed during
a user-specified reporting period. The report provides both a tabular presentation and line graph of the
data. Each table row represents an environment used by one of the selected applications for the reporting
period and interval.

The line graph elements are:

• y-axis represents deployment duration times

• x-axis represents reporting intervals

• plot lines represent environments used by the applications

The units along the y-axis are scaled to the number of records reported. The units along the x-axis represent
the reporting interval, which can be: months, weeks, or days. Each color-coded plot line represents a single
environment used by an application during the reporting period.

When selected, the report runs automatically for the default reporting period (current month)and reporting
interval (days), and with all filters set to Any. The default report provides total deployment times for all
deployments that ran during the current month.

Deployment Total Duration Fields

Table 40. Total Duration Fields

Field Description

Application Name of the application that executed the
deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the total
deployment times for the reporting interval.

Running the Deployment Total Duration Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The selected value(s)
determines the columns in the tabular report, and the coordinate interval on the graph's x-axis. Default
value: Current Month.

Reports

127

Table 41. Date Range

Field Description

Current, Prior Week Start day is either Sunday or Monday, depending
on what is defined in your system. Reporting
interval is set to days.

Current, Prior Month Start day is first day of the month. Reporting
interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting
interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you
to pick an arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.

The end-time is automatically set to 24:00 for the selected date.

2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from the corresponding
property list box.

Table 42. Filters

Field Description

Application Only deployments executed by the selected
application(s) appear in the report. To select
applications:

a. Click the Application button.

b. To include an application in the report, click
the corresponding check box.

If a large number of applications are listed,
type the first few letters of the application's
name in the text box to scroll the list. Multiple
applications can be selected.

c. Click OK.

Status Only deployments with the selected status appear
in the report. Default value: Success or
Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in
appear in the report. Default value: Any. Note:
the Any value also includes deployments that did
not use a plug-in.

3. Run the report.

Reports

128

Click the Run button to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced. Each environment used by a reporting application is
represented by an individual plot line and table row. You can hide a plot line by clicking the corresponding
item in the graph legend. To see information about a graph coordinate, hover the mouse over the graph
point.

You can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see the section called “Saving and Printing Reports”.

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Total
Duration Report.

Table 43. Sample

Field Description

Show me: Total duration times for two specific
applications during the past ten days that used a
particular plug-in.

• Application: Select both applications from the
Applications dialog.

• Status: Success or Failure

• Plugin: Select the plug-in from the drop-down
list box.

• Date Range: Use the Custom pop-up to set the
ten-day range.

Show me: Total duration times for successful
deployments for a given application during the
past six months.

• Application: Select the application from the
Applications dialog.

• Status: Success

• Time Unit: Months

• Date Range: Use the Custom pop-up to set the
six-month range.

Security Reports
Security Reports provide information about user roles and privileges defined with the uDeploy security
system.

Application Security Report

The Application Security Report provides information about user roles and privileges defined for uDeploy-
managed applications. Each report row represents an individual application. When selected, the report
runs automatically for all applications.

Reports

129

Application Security Fields

Table 44. Application Security Fields

Field Description

Application Name of the application.

Run Component Processes Users who have component process execution
privileges. For information about component
processes, see the section called “Creating
Components”.

Execute Users who have application execution privileges.
For information about applications, see
Applications.

Security Users who can define privileges for other users.
For information about security, see uDeploy
Security.

Read Users who can review information about the
application but not change it.

Write Users who can access and edit the application.

The report is sorted by Application. You can change the sort order by clicking on the column header.

For information about saving and printing reports, see the section called “Saving and Printing Reports”.

Component Security Report
The Component Security Report provides information about user roles and privileges defined for
components. Each report row represents an individual component. When selected, the report runs
automatically for all components.

Component Security Fields

Fields are:

Table 45. Component Security Fields

Field Description

Component Name of the component.

Execute Users who have component process execution
privileges. For information about component
processes, see the section called “Creating
Components”.

Security Users who can define privileges for other users.
For information about security, see uDeploy
Security

Read Users who can review information about the
component but not change it.

Write Users who can access and edit the component.

The report is sorted by Component. You can change the sort order by clicking on the column header.

Reports

130

For information about saving and printing reports, see the section called “Saving and Printing Reports”.

Environment Security Report
The Environment Security Report provides information about user roles and privileges defined for
environments. Each report row represents an individual environment. When selected, the report runs
automatically for all environments.

Environment Security Fields

Table 46. Environment Security Fields

Field Description

Application Name of the application.

Environment Name of the environment.

Execute Users who have execution privileges for the
environment. For information about environments,
see Applications.

Security Users who can define privileges for other users.
For information about security, see uDeploy
Security.

Read Users who can review information about the
environment (but not change it).

Write Users who can access and edit the environment.

The report can be sorted by Application or Environment. By default, it is sorted by
Application. You can change the sort order by clicking on the column header.

For information about saving and printing reports, see the section called “Saving and Printing Reports”.

Resource Security Report
The Resource Security Report provides information about user roles and privileges defined for resources.
Each report row represents an individual resource. When selected, the report runs automatically for all
resources.

Resource Security Fields

Fields are:

Table 47. Resource Security Fields

Field Description

Resource Name of the resource.

Execute Users who have execution privileges for the
resource. For information about resources, see
Resources.

Security Users who can define privileges for other users.
For information about security, see uDeploy
Security.

Reports

131

Field Description

Read Users who can review information about the
resource but not change it.

Write Users who can access and edit the resource.

The report is sorted by Resource. You can change the sort order by clicking on the column header.

For information about saving and printing reports, see the section called “Saving and Printing Reports”.

Saving and Printing Reports
You can print and save report data for all report types. In addition, you can save filter and sort order
information for deployment-type reports.

Saving Report Data
uDeploy saves report data in CSV files (comma separated value).

To save report data:

1. Set the filters (if any) an run the report.

2. Click the CSV button.

3. Use the Opening File dialog. You can save the data to file, or open the data with an application
associated with CSV-type files on your system.

Note

Sort-order and hidden/visible column information is not preserved in the CSV file.

Saving Report Filters
You can save filter and sort-order settings for deployment reports. Saved reports can be retrieved with the
My Reports menu on the Reports pane.

To save a report:

1. Set the filter conditions.

2. Define the reporting period.

3. Run the report.

4. Optionally, set the sort order. You can change the sort order for any column by clicking the column
header.

5. Optionally, change column visibility. Click the Edit button to display the Select Columns dialog. By
default, all columns are selected to appear in a report. To hide a column, click the corresponding check
box.

6. Click the Save button. The Save Current Filters dialog is displayed.

7. Enter a name for the file, and save your work.

Reports

132

To run your report, click the report name in the My Reports menu.

To delete your report, click the Delete button.

Printing Reports
To print a report:

1. Set the filter conditions.

2. Define the reporting period.

3. Run the report.

4. Optionally, set the sort order. Your changes are reflected in the printed report.

5. Optionally, change column visibility. By default, all columns are selected to appear in the printed report.
Hidden columns will not appear in the output.

6. Click the Print button to print your report.

Administration

134

uDeploy Security
uDeploy provides a flexible, role-based security model that maps to your organizational structure. Different
product areas, such as components, can be secured by roles. Each area has a set of permissions available
to it. To configure security for an area, you create roles using the available permissions—execute, read,
write, and so forth.

So, how are permissions applied to users? First, global default permissions can be granted. Default
permissions are granted by product area and apply to all users. If default permissions are granted for, say,
the agent area, a user will have those permissions even if she is also part of a group or role that does not.

Another way users can be granted permissions is by being a member of a group. Groups can have default
permissions that apply to all group members. If a user is assigned to a group with default permissions
for the agent area, as above, she will have those permissions even if she is also assigned a role that does
not have them.

Finally, users can be assigned to roles. Role members inherit a role's permissions. Except for UI and system
security, users are assigned to roles on an item by item basis. For example, a user can be assigned a role
that enables them to see only one application or only one component. Both groups and individual users
can be assigned to roles.

Roles and permissions, including default permissions, are configured on an area by area basis; granting
the execute permission to one role does not grant it to another. The default admin role has all permissions,
but you can create another user with all permissions by creating a role for each area with all permissions
granted, then assigning the user to each role. Typically, new roles are added to product areas during setup
and occasionally thereafter.

While any number of roles can be created for an area, areas themselves cannot be created, modified (the
available pool of permissions cannot be changed), or deleted.

Generally, you perform the following steps in order when setting-up security:

1. Create Roles Create roles and define permissions for the various product areas. For most evaluations,
the default roles should be adequate.

Use the UI security area to quickly assign access permissions to the different areas of uDeploy.

Use the system security area to assign usage permissions, including the ability to define security for
other users.

2. Authorization Realms. Authorization realms are used by authentication realms to associate users with
groups and to determine user access. uDeploy includes both an internal database for storing security
information as well as integration with the Lightweight Directory Access Protocol (LDAP). LDAP is
a widely-used protocol for accessing distributed directory information over IP networks. If you are
implementing a production version of uDeploy, the LDAP integration is recommended. If you are
evaluating uDeploy, it is not necessary to set up the LDAP integration—full security is configured and
enforced by the server.

3. Create Groups and Define Default Permissions. Determine default permissions by product area.
Global default permissions can be granted.

4. Create Authentication Realm. The authentication realm is used to determine a user's identity within
an authorization realm. If more than on realm has been configured, user authentication is determined

uDeploy Security

135

following the hierarchy of realms defined on the Authentication pane. When a user attempts to log in,
all realms are polled for matching credentials.

5. Add Users. Add users to an authentication realm, then assign them to groups and roles. If your are
using LDAP, you can import users and map them to the security system.

Roles and Permissions
Roles provide the building blocks for the security system. Roles have permissions that define the actions the
roles can perform with product features. Typical actions include changing or executing an item, such as an
application process, or modifying its security settings. Users or groups assigned to a role are automatically
granted the permissions configured for it. The default roles can be edited and new roles can be created.

uDeploy maps key product features or areas to security roles. Each area has several permissions defined for
it (listed below). When you create a role, you first specify the product area. Selecting a product area defines
the set of permissions available to the new role—only permissions defined for the area are available.

Generally, permissions fall into one of these groups:

Table 48. Common Permissions

Permission Description

Security Enables users to change an item's security settings.
For example, a user with this permission for agents
can determine which users can view, configure,
and set security for them.

Write Enables users to add, change, and delete items.
A user with this permission for components can
create a component.

Read Enables users to read (view) an item, but not
change it or create another of its type. A user with
this permission for agents, say, will be able to
see agents within the user interface, but will not
be able to modify them or create another unless
granted additional permissions.

Execute Enables users to run processes associated with
applications, components, environments, and
resources. Users must also have read permission
for an item before actually executing it.

Default Roles

uDeploy ships with several role types mapped to product areas. Every area or type has a set of available
permissions. The application type, for instance, has the Manage Snapshots permission in addition to the
common permissions. User-defined roles within a type can choose from among the permissions available
for that type.

Every product area has one role typically called Admin or Administrator that has all permissions
available for that area. Deleting a default Admin role for one role type does not affect the Admin role
for another type.

uDeploy Security

136

Figure 61. Application Role Permissions

You can quickly grant a role type's permissions to all users using the Default Permissions tab. Note that
default permissions cannot be granted for system and UI security.

Creating and Editing Roles
1. Display the Role Configuration pane (Settings > Security Role Configuration).

2. From the list of product areas, select the area where you want to add a role.

3. Display the Create Role dialog (Create Role [button]).

All permission available for this product area are displayed.

4. Select the permissions you want granted to this role.

All roles have the following permissions available. Other permissions—if any—are described in the
following sections.

Table 49. Permissions Available for Every Role

Permission Description

Security Manage security for the effected feature area.

Write Create, edit, or delete items for this product area.

Read Access or view items for this product area.

Agent Roles
Agent roles define the functions users can perform with agents and agent pools. Available permissions
are read, write, and security.

To add users to agent roles:

1. Display the Security tab for the target agent (Resources > Agents/Agent Pools >
[selected agent/agent pool] > Security).

All roles defined for agents and agent pools are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

uDeploy Security

137

All users are available. As shipped, uDeploy provides an Admin role with all configured permissions
granted. By default, Admin has a single user—admin.

Application Roles
Application roles define the functions users can perform with applications. In addition to the standard
permissions, others are:

Table 50. Application Roles

Permission Description

Manage Snapshots Create and edit snapshots for this application.

Run Component Processes Run associated component processes outside of the
application.

To add users to application roles:

1. Display the Security tab for the target application (Applications > [selected
application] > Security).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Admin role with all configured permissions
granted. By default, Admin has a single user—admin.

Component Template Roles
These roles define the functions users can perform with component templates. Available permissions are
read, write, and security.

To add users to component template roles:

1. Display the Security tab for the target template (Components > Templates > [selected
template] > Security).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Admin role with all configured permissions
granted. By default, Admin has a single user—admin.

Component Roles
These roles define the functions users can perform with components. In addition to the standard
permissions, others are available:

Table 51. Component Roles

Permission Description

Manage Versions Create and delete versions for this component.

uDeploy Security

138

To add users to component roles:

1. Display the Security tab for the target component (Components > [selected component]
> Security).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Admin role with all configured permissions
granted. By default, Admin has a single user—admin.

Environment Roles
These roles define the functions users can perform with environments. Available permissions are read,
write, execute, and security.

To add users to environment roles:

1. Display the Security tab for the target environment (Components > [selected component]
> Security).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Admin role with all configured permissions
granted. By default, Admin has a single user—admin.

License Roles
These roles define the functions users can perform with licenses. Available permissions are read, write,
and security.

To add users to license roles:

1. Display the Security tab for licenses (Settings > Licenses > Security).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides an Admin role with all configured permissions
granted. By default, Admin has a single user—admin.

Resource Roles
These roles define the functions users can perform with resources. Available permissions are read, write,
execute, and security.

To add users to resource roles:

1. Display the Security tab for the target resource (Resources > [selected resource] >
Security). (For resource groups: Resources > Resource Groups > [Edit Group
action] > Security).

uDeploy Security

139

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides Admin role with all configured permissions
granted. By default, Admin has a single user—admin.

Default Permissions
Default permissions can be set globally for all users for a product area, or for individual user groups within
an area. By default, a product areas' permissions are not enabled for any user or group (except for the
admin user which has all permissions for all role types granted). Use the Default Permissions tab to set
default permissions, for both the groups you create and those shipped with the product.

Users added to a group inherit the group's default permissions.

Setting Default Permissions
To set default permissions:

1. Display the Default Permissions pane (Settings > Default Permissions).

2. From the list of product areas, select the area you want to use.

Figure 62. Default Permissions for Agent Area

Selecting an area displays the permissions available for it. User-defined groups are configured
independently.

3. Check the permissions you want to grant for the selected group.

The following table lists the available permission.

Table 52. Product Area Privileges

Role Read Write Security Execute Snapshots Comp.
Procss.

Versions

Agent X X X

uDeploy Security

140

Role Read Write Security Execute Snapshots Comp.
Procss.

Versions

Agent
Pool

X X X

Application X X X X X X

Component X X X X X

Component
Template

X X X

Environment X X X X

License X X X

Resource X X X X

Resource
Group

X X X X

Authorization Realms
The Authorization Realms pane is used to create user groups and authorization realms. Authorization
realms associate users with roles and work with authentication realms to determine which users can access
uDeploy. The authorization realms available are:

• Internal Storage. Uses internal role management. The default authorization realm—Internal
Security—is of this type.

• LDAP. Uses external LDAP role management.

Creating an LDAP Authorization Realm
An LDAP authorization realm uses an external LDAP server for authorization.

To create an LDAP authorization realm:

1. Display the Create Authorization Realm dialog (Settings > Security > Authorization
> Create Authorization Realm [button]).

Figure 63. Create Authorization Realm Dialog

uDeploy Security

141

2. Ensure that LDAP is selected in the Type list box, then specify the following:.

Table 53. LDAP Authorization Realm Properties

Field Description

User Group Attribute Name of the attribute that contains role names
in the user directory entry. If user groups are
defined in LDAP as an attribute of the user, the
Group Attribute configuration must be used

Group Search Base Base directory used to execute group searches,
such as ou=employees,dc=mydomain,dc=com.

Group Search Filter LDAP filter expression used when searching
for user entries. The name will be substituted in
place of 0 in the pattern, such as uid={0}. If this
is not part of the DN pattern, wrap the value in
parenthesis, such as ud=(0).

Group Name Directory name used to bind
to LDAP for searches, such as
cn=Manager,dc=mycompany,dc=com. If not
specified, an anonymous connection will be
made. Required if the LDAP server cannot be
anonymously accessed.

Search Group Subtree Searches the subtree for the roles if checked.

Groups
Groups are logical containers that serve as a mechanism to grant permissions to multiple users; members
automatically share a group's permissions. Default permissions are granted to groups (or all users), not
individual users. Additionally, when a group is assigned a role, its members are automatically assigned
the role as well.

To create a group:

1. Display the Create Group dialog (Settings > Security > Authorization > Groups
> Create Group [button]).

2. Provide a name for the group. The name appears in the Default Permissions pane.

3. Select an authorization realm. Groups are only valid for the selected realm.

uDeploy provides several default groups and users, which are listed in the following table. The default
groups and users are part of the internal security authorization realm.

Table 54. Default Groups

Group Users

Admin Group admin

Approve Group approve

Configuration Group config

Deploy Group deploy

uDeploy Security

142

Authentication Realms
The Authentication Realms pane is used to create authentication realms and users. Authentication realms
determine a user's identity within an authorization realm. Authentication is determined following the
hierarchy of realms displayed on the Authentication Realms pane. In the example below, authentication
will first be determined in the Internal Security realm followed by the LDAP realm. A user listed in the
LDAP realm may have different authorizations from those in the other realms.

Figure 64. Authentication Realms Precedence

If you have a number of authentication realms, you can reorder them using the operation tools. Each realm
can be moved up to a higher priority, moved down, or deleted by using the operation tools.

Creating an Authentication Realm
1. Display the Create New Authentication Realm (Settings > Security > Authentication
> Create New Realm).

2. Enter a name and description and other basic parameters:

Allowed Login Attempts. Number of attempts allowed. A value of 0 means unlimited attempts.

Authorization Realm. Requires that the authorization realm was previously created.

Type. Selecting Internal Storage completes the process.

Creating an LDAP Authentication Realm

If you selected LDAP, provide information about your LDAP installation:

Table 55. LDAP Authentication Realm Properties

Field Description

Context Factory Context factory class used. This may vary
depending upon your Java implementation.
The default for Sun Java implementations:
com.sun.jndi.ldap.LdapCtxFactory.

LDAP URL URL to the LDAP server beginning with ldap:// or
ldaps://. Separate additional servers with spaces.

Use DN Pattern User directory entry pattern; the name will be
substituted in place of 0 in the pattern, such as
cn={0},ou=employees,dc=yourcompany,dc=com.

uDeploy Security

143

Field Description

User Search Base Base directory used to execute group searches,
such as ou=employees,dc=mydomain,dc=com.

User Search Filter LDAP filter expression used when searching
for user entries. The name will be substituted in
place of 0 in the pattern, such as uid={0}. If this
is not part of the DN pattern, wrap the value in
parenthesis, such as ud=(0).

Search User Subtree If the LDAP user names are case sensitive, check
the box to treat different-case names as different
users.

Search Connection DN Directory name used to bind
to LDAP for searches, such as
cn=Manager,dc=mycompany,dc=com. If not
specified, an anonymous connection will be
made. Required if the LDAP server cannot be
anonymously accessed.

Search Connection Password Password used when connecting to LDAP to
perform searches.

Name Attribute Contains the user's name, as set in LDAP.

Email Attribute Contains the user's email address, as set in LDAP.

Once configuration is complete, when a new user logs on using their LDAP credentials, they will be listed
on the Authentication Realm Users pane. It is best practice not to manage user passwords nor remove users
from the list. If an active user is removed from uDeploy, they will still be able to log onto the server as
long as their LDAP credentials are valid.

Creating Users
When adding a new user, the user name and password is what the individual will use when logging into
uDeploy. The user name will also be displayed when setting up additional security.

Once the new user has been successfully added to a group, you might need to configure additional
permissions. This can happen when the new user is mapped to a group that has limited permissions.

Importing LDAP Users
Unless using LDAP authorization realm, valid LDAP users can log on but will have no permissions. To
provide permissions, import them first and define their permissions before they log on. You can import
users from existing LDAP systems into uDeploy-managed authentication realms.

To Import LDAP Users

1. Display the Create User dialog(Settings > Security > Authentication Realms >
[select LDAP realm] > Import User [button]).

2. Enter the name of the user.

If you enter a search filter in the Username field, the filter must be enclosed in parentheses.

Tokens

uDeploy Security

144

Tokens provide authorization for agents and users. Agents use tokens when performing process steps and
communicating with the uDeploy server and external services. Users can use tokens with the CLI client,
and instead of supplying a user name and password in certain situations.

You can create tokens in addition to those shipped with the product.

To create a token:

1. Display the Create New Token dialog (Settings > Security > Tokens > Create New
Token [button]).

2. From the User drop-down list box, select the user who will use the token.

3. Specify the expiration date and time.

Tokens can be used immediately after being created.

User Interface Security
These roles determine which parts of the uDeploy web application users can access. Each tab, such as
Reports, on the web application's home page can be restricted. Available permissions are:

Table 56. Web UI Permissions

Permission Description

Resources Access the Resources tab.

Applications Access the Applications tab.

Components Access the Components tab.

Configuration Access the Configuration tab.

Reports Access the Reports tab.

Deployment Calendar Access the Calendar tab.

Work Items Access the Work Items tab.

Settings Access the Settings tab.

Dashboard Access the Dashboard tab.

To add users to Web UI roles:

1. Display the System Security tab (Settings > Security > Security). (For resource groups:
Resources > Resource Groups > [Edit Group action] > Security).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides the following roles:

Table 57. Default Web UI Roles

Role Description

Deployment Engineer Access the Reports, Calendar, Work Items, and
Dashboard tabs.

uDeploy Security

145

Role Description

Approver Access the Reports, Work Items, and Dashboard
tabs.

Administrator Access all tabs.

Configuration Engineer Access all tabs except Calendar and Work Items.

System Security
These roles define the functions users can perform with the uDeploy server (also referred to as system
security). Available permissions are:

Table 58. Server Permissions

Permission Description

Security Manage security configuration; users without this
permission cannot access or change the security
functions.

Manage Plug-ins Grants users the ability to install new plug-ins.

Create Subresources Ability to create subresources.

Create\Manage Resource Roles Create and delete resource roles.

Create Components Create components.

Create Applications Create applications.

Create Component Templates Create component templates.

Manage Licenses Add and remove licenses.

To add users to system security roles:

1. Display the System Security tab (Settings > Security > Security).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, uDeploy provides Configuration Manager and
System Administrator roles; the latter has all configured permissions granted. By default,
System Administrator role has a single group—Admin Group (with user admin), and the
Configuration Manager role also has a single group—Configuration Group (with user
config).

146

System Settings

Installing Plug-ins
Plug-ins can be installed at any time. Download plug-ins from UrbanCode's plug-in page:

http://plugins.urbancode.com

To install a plug-in:.

1. Download the plug-in from the UrbanCode plug-in page using the link supplied above. Plug-ins are
provided in compressed format (ZIP files). There is no need to decompress the file.

You can also load your own plug-ins. For information about creating plug-ins, see Plug-ins.

2. From the Automation Plug-ins pane, display the Load Plug-in dialog (Settings > Plugins >
Load Plugin [button]).

3. Enter the path to the compressed plug-in file then use the Submit button.

If the plug-in loaded successfully, it will be listed on the Automation Plug-ins pane as soon as the process
finishes. Once installed, plug-in functionality is available immediately.

Locks
Alock is a routinely used to ensure that processes do not interfere with one another. Normally, once a lock
is no longer needed it is released. Sometimes a lock will not get released and its associated process will be
unable to complete. The lock management feature enables you to quickly identify and resolve abnormal
lock conditions.

Managing Locks
A running process with a lock, like all active processes, appears on the Dashboard tab with a status of
Running. If a locked process takes longer to complete than expected, you can cancel the process from
the Dashboard, or investigate it fully with the Settings tab.

1. Display the Lock pane by clicking the Locks link on the Settings tab (Home > Settings >
Locks).

The Lock pane displays the following information:

Table 59. Lock Fields

Field Description

Name The name identifies the lock. The displayed
name is a concatenation of the component or
application name (depending on type) + process
name + resource name.

Type Indicates whether the process creating the lock
is a component- or application-type. Locks can

http://plugins.urbancode.com

System Settings

147

Field Description

only be applied to component or application
processes.

Component/Application Displays the name of the component or
application containing the lock. Clicking an item
displays (depending on the type) the Component
pane, or Application pane, where you can
investigate the lock.

Resource/Environment Displays the name of the resource or
environment containing the lock. Clicking
an item displays (depending on the type) the
Resource pane, or Environment pane.

Process Displays the name of the process containing the
lock. Clicking an item displays the process in the
process editor.

Actions Lists the available actions.

2. Resolve the lock by selecting an action:

Table 60. Lock Actions

Action Description

View Request Displays the process log for the process
containing the lock. You can use the Actions
field on the displayed pane to see the name of the
process step causing the lock.

Release Releases the lock which enables the associated
process to continue processing.

If the uDeploy server and or agents go down while a locked process is running, uDeploy will automatically
restore any interrupted processes along with any locks they might contain once service is restored.

Post-Processing Scripts
uDeploy component processes perform post-processing whenever a plug-in step finishes execution.
Typically, post-processing scripts ensure that expected results occurred. You can use your own JavaScript
script instead by instructing uDeploy to use your script when you define the step. See the section called
“Process Editor”.

When a step finishes, the agent performing the step will run your script (the script must be written in
JavaScript). When the agent runs the script, it first loads the server log file and finds the exit code property
of the target step using regular expressions defined in the script. It then applies any actions defined in the
script before processing the next step.

To create a script:

1. Display the Edit Script dialog (Settings > Post Processing Scripts).

System Settings

148

Figure 65. Edit Script Dialog

2. Enter a name for the script into the Name field. The name must match the name you specified when
you defined the process step. See the section called “Process Editor”.

3. Enter or paste the script into the Script Body field. See the roll-over help next to the field for
information about the properties and variables available for user-defined scripts.

The uDeploy server log file is normally found in the following location: uDeploy_root\var\log
\deployserver.out.

Inventory and Component Statuses
Statuses can be used to track component version and inventory states. Inventory statuses can track
component versions in environments and resources. You can create inventory statuses for any requirement
—for instance, you might copy files to an agent without running them, and apply a Staged status to them;
when you install the version, you might set the status to Active.

Version statuses are used with application gates (see the section called “Application Gates”) to ensure that
only component versions that meet certain criteria are deployed.

Creating Statuses
Component version and inventory statuses are defined with the Statuses tab (Settings > Statuses).

To create a status:

1. Use the Add Status button for the type—inventory, version—you want to create.

2. Configure the status using the Add Status dialog box:

Table 61. Status Parameters

Parameter Description

Name/Description The name identifies the status and is used in
process steps and in the UI.

Color Displayed in the UI.

Unique When checked, only one instance of the status
can be used for the component. For inventory

System Settings

149

Parameter Description

statuses, an application will remove the status
from any existing version in the environment
or resource inventory. For version statuses, the
status can only be used by one version at a given
time.

Required Component Role User role required before a user can add the
status to a component.

3. Save your work when finished.

Statuses are stored in the uDeploy database.

Using Statuses
Version statuses can be added to components on the Versions tab (Components > [selected
component] > Versions > [selected version]).

Inventory statuses can be added to a component with the Inventory Update application process step or the
Add Inventory Status plug-in step.

Licenses
The Licenses pane is where you manage user licenses--adding or deleting licenses, and assigning agents
to them. Display the Licenses pane by clicking the Licenses link on the Settings window (Home >
Settings > License). You can also access the pane through the Resources tab (Resources >
Agents > License).

Figure 66. Licenses Pane

Adding a License
To add a license:

1. Display the Add New License dialog by clicking the Add New License button.

2. Paste the license text supplied by UrbanCode into the License field.

3. Optionally, add a description.

4. Click Save when you are done.

To see information about a license, display the License Details pop-up by clicking the Details link.

System Settings

150

Adding Agents to a License
Agents can be assigned to licenses automatically or manually. This section explains how to add agents
manually. To automatically add agents, ensure that the Automatic License Management check
box on the System Settings pane is checked. See the section called “System Settings”.

To add an agent to a license manually:

1. Display the Assign Agents to License pop-up by clicking the Assign Agents link for the intended
license.

2. Select an agent by clicking the Agents field. A selection-type pop-up is displayed listing any agents
not already assigned to the selected license.

Figure 67. Assign Agents to License Pop-up

3. Select the agent or agents you want to add to the license.

4. Optionally, you can filter the listed agents by entering search text into the text field.

5. After select agents, click OK to close the selection pop-up.

6. If you want to restart the selection process, click Reset.

7. When you are finished, click Save.

Modifying or Deleting a License

To modify or update an existing license:

1. Display the Edit License dialog by clicking the Edit link for the license you want to change.

2. Edit the information shown in the License field.

3. Click Save when you are done.

To delete an existing license, click the Delete link for the selected license.

Log Settings
Logging is done with the Log4j logging framework from Apache. Log4j logging is configured
with the server_install_directory\conf\server\log4j.properties file, and can be
configured at run time.

The uDeploy server log file can be found in the following location: server_install_directory
\var\log\deployserver.out.

Network Settings

System Settings

151

Network Relay

A network relay is used in conjunction with an agent relay. The network relay reverses the direction of
communication through a firewall between the uDeploy server and agent relay. A network relay is only
used when you want the server to connect to the relay instead of the reverse (which is default). To create
a network relay an agent relay must be created. (See the section called “Installing Agent Relays” to create
an agent relay)

Creating a Network Relay

To create a network relay, display the network pane (Home>Settings>System>Create New
Network Relay).

1. Enter the name of the network relay.

2. Identify the Host and Port.

3. Indicate if the Network Relay will be Active by checking the box.

Notifications
uDeploy can send email notifications whenever user-defined trigger events occur. Notifications can be sent
when a deployment finishes or an approval is required, for example. Notification recipients are defined
with the security system's (see uDeploy Security) LDAP integration. If you have not already done so, set
up LDAP prior to configuring notifications. uDeploy relies on LDAP and an associated e-mail server to
send notifications.

Note

uDeploy requires an external SMTP mail server to send notifications. For information about
configuring a mail server, see the section called “System Settings”.

When setting up notifications, you select both the triggering events and the role, which is inherited from
the security system, to determine which users will receive notification. For example, it is common for an
administrator or environment owner to be notified when a work item (as part of the approval process) has
been generated. The default notification scheme, which sends notifications to the application and admin
default roles (see uDeploy Security), can be edited or you can create your own scheme.

To set up your own notifications, display the Notifications pane (Settings > Notifications).

Figure 68. Notification Schemes

Configure the new Scheme. Here, you will be setting up the who/when for notifications. Once configured,
you can come back add additional Entries to the Scheme or edit an existing one.

Notification Type. The process type is determined mainly by the type of recipient. For example, a
deployment engineer would be interested in being notified about a failed deployment.

System Settings

152

Figure 69. Notification Type

Notification Target. When setting the target, the application option will only send out notifications
when the event selected above corresponds to an Application. For example, the "Process Success" event,
when pared with the "Application" Target would trigger a notification when a Process (an application
deployment) is successful. Similarly, the same event type, when used with the "Environment" target would
instigate a notification when a successful deployment has been run in an Environment (e.g., SIT, PROD).

Figure 70. Notification Target

Notification Role. The Role corresponds to those set in the Security System. Any individual assigned the
Role you select will receive an e-mail.

Figure 71. Notification Role

System Settings

153

Template Name.The available templates are provided by default and should suffice for all your needs;
they format the e-mail being sent. Which template you use is based on why you want to set up a notification
and the recipients of the notification. However, if the default templates do not suit your needs, you can
create your own.

Application deployment failure/success. Sends notifications about a specific application to the specified
users, based on the role setting.

Task readied/created/completed. This template is used to report back on the state of manual tasks.

Deployment readied. A specialized e-mail template for letting people know a deployment has been
prepared.

Approval created/failed. These templates are used to notify the status of an approval.

Once you have the entry done, add others using the same process. If you want to use the new notification
scheme with existing applications, modify the application settings.

Creating Notification Templates

Notification Templates are XML files located on the server’s conf/server/notification-
template file folder. If the default notification templates do not suit your needs, you can create new ones.

To create a new Notification Template:

1. Start a new XML file.

2. Enter Script. (Notification templates only supports Velocity Reports)

3. Save file in the server's conf/server/notification-template file folder.

4. Restart the server.

Output Log
Server output is written to the server_install_directory/var/log/deployserver.out
log file. You can open the file directly or access it from the UI (Settings > System > Output
Log).

The information written to the log file is determined by the settings in the log4j.properties file
which is found at server_install_directory\conf\server\log4j.properties. You
can edit the file directly or through the UI, see the section called “Log Settings ”

System Properties
System properties are global variables. System properties are available on the Settings tab (Settings
> Properties).

System properties are referenced like this:

${p:system/propertyName}

If you create system variable SUCCESS, for example, you would reference it like this:

echo ${p:system/SUCESS}

System Settings

154

Output in this case:

SUCESS

System Settings
Table 62. System Settings Field

Field Description

External URL* URL used by agents and users to connect to the
uDeploy server.

Only Groups in Security Roles When checked, privileges are assigned to user
groups, not individual users.

Automatic Version Import Check Period
(seconds)*

The number of seconds between when uDeploy
polls components for new versions. If changed,
the server must be restarted before the change
becomes effective. UrbanCode recommends that
the value be set no lower than 15 seconds.

Mail Server Host Host name of the mail server used for
notifications. uDeploy can send notifications to
users based on user-configured trigger events
(to set up notifications, see the section called
“Notifications”). uDeploy requires an external
SMTP mail server to send messages. To disable
notifications, leave the field blank.

Mail Server Port SMTP port used by the notifications mail server.

Secure Mail Server Connection Specifies whether the SMTP connection is secure.
The default value is unchecked--not secure.

Mail Server Sender Address Sender address for email notifications.

Mail Server Username User name for sending email notifications. Some
e-mail servers and firewalls treat e-mails with
different sender and user names suspiciously--you
might want to use the same name for both fields.

Mail Server Password User password for sending email notifications.

Hour to Clean Versions* Time of day when versions are cleaned. Value
must be an integer between 0 (midnight) and 23
(11 pm).

Days to Keep Versions* Number of days component versions are kept. A
value of -1 means they are kept indefinitely.

Number of Versions to Keep* Number of component versions to keep. A value of
-1 means all are kept.

Archive Path Path where the compressed file containing
archived component versions is written. If blank,
the compressed file is not written (and no archive
kept).

Automatic License Management Determines whether new agents are assigned
to a licenses automatically. If checked, agents
are assigned to the license with the most time

System Settings

155

Field Description

remaining before it expires. The default value is
checked--assign agents automatically.

* = required

Preview Version Cleanup
To preview the component versions that will be archived the next time an archive file is created, click the
Preview Version Cleanup link. Using the link displays the Version Cleanup Preview dialog,
which lists the to-be-archived component versions.

156

Configuration
The uDeploy Configuration tool enables you to directly manage application, component, and environment
configuration data.

Configuration data is manipulated at the application, component, and environment levels:

• Component

A component refers to any file that you want to include in the build process; components are associated
with the configuration data required to deploy them.

• Application

Applications represent a group of components deployed together by component version and
environment. Applications also map the hosts and machines (called resources) components require
within every environment.

• Environment

An environment is a collection of resources that host an Urban Deploy application.

Figure 72. Configuration Tab

Access the Configuration Tool by clicking on the Configuration tab.

Application Configuration
You attach properties to an application by using the Configuration Tool's Application: Add
Property button. Typical application-level properties include items that are the same in all
environments, such as base-install paths.

Configuration

157

Figure 73. Application Properties panel

Access the Configuration Tool Application panel by clicking on an application in the Application/
Component/Environment list box.

Adding Application Configuration Properties
To add a property to the selected application:

1. Use the Add Property button.

The Edit Property pop-up is displayed.

Figure 74. Edit Property pop-up

2. Enter the property's name in the Name field.

While component fields can be of any size, configuration properties are restricted to 4,000 characters.

3. Enter a description of the property in the Description field.

4. Specify whether the property is secure by using the Secure check box.

Secure properties are stored encrypted and displayed obscured in uDeploy's user interface.

5. Enter a value for the property in the Value field.

6. Save the property by using the Save button.

Configuration

158

7. To discard your work, use the Cancel button.

Modifying and Deleting Application Configuration
Properties

Modifying Application Configuration Properties

To modify a previously created property, use the Edit link in the Action column to display the Edit
Property pop-up.

Deleting Application Configuration Properties

To delete a property, use the Delete link in the Action column.

Component Configuration
The Urban Deploy Configuration tab enables you to configure applications and their components from a
single location. Configuration data is manipulated at the application, component, and environment levels:

• component

A component refers to any file that you want to include in the build process; components are associated
with the configuration data required to deploy them.

• application

Applications represent a group of components deployed together by component version and
environment. Applications also map the hosts and machines (called resources) components require
within every environment.

• environment

An environment is a collection of resources that host an Urban Deploy application.

Access the Configuration Tool by clicking on the Configuration tab.

Environment Configuration
The Urban Deploy Configuration tab enables you to configure applications and their components from a
single location. Configuration data is manipulated at the application, component, and environment levels:

• component

A component refers to any file that you want to include in the build process; components are associated
with the configuration data required to deploy them.

• application

Applications represent a group of components deployed together by component version and
environment. Applications also map the hosts and machines (called resources) components require
within every environment.

• environment

Configuration

159

An environment is a collection of resources that host an Urban Deploy application.

Access the Configuration Tool by clicking on the Configuration tab.

160

Inventory
The Inventory shows what Applications and Components have been deployed, including the current
Versions that are running on the Resource within an Environment. The inventory provides complete
visibility into the different Versions of your Applications which can be tracked back to the original artifacts
imported into uDeploy. There different views of the current inventory, depending on where in uDeploy you
are. Inventory information is available on the individual Components, for every Application Environment,
as well as for each Resource (agent).

Resources Inventory
If you want to see what Components are sitting on the SIT Environment, go to Resources and select the
agent that is running in the Environment. From here, selecting either the Component or its Version will
take you to the Component's page if you need more information.

Figure 75. Resource inventory

Component Inventory
Unlike the Resource Inventory, the component inventory tells you what Version of the Component is
running on a Resource. For example, if the Component is currently deployed to multiple machines, they
would all be displayed. For here, you can go navigate to the Resource.

Figure 76. Component inventory

Inventory

161

Environment Inventory
For any given Application Environment, the environment inventory tells you both what version of any
given Component is running on a particular Resource. If multiple Versions are running on different
Resources, they will all be listed.

Reference

163

Component Source Configuration

Basic Fields
These fields appear for all source types; they are displayed when the Create New Component dialog opens.
Other fields, discussed below, are displayed when a source type is selected.

Table 63. Fields Available for All Source Types

Field Description

Name Identifies the component; appears in many UI features. Required.

Description The optional description can be used to convey additional information
about the component. If the component is used by more than one
application, for example, entering "Used in applications A and B" can
help identify how the component is used.

Template A component template enables you to reuse component definitions;
components based on templates inherit the template's source
configuration, properties, and process. Any previously created
templates are listed. A component can have a single template
associated with it. The default value is None.

If you select a template, the Template Version field is displayed
which is used to select a template version. By controlling the version,
you can roll-out template changes as required. The default value is
Latest Version which means the component will automatically use the
newest version (by creation date). See the section called “Component
Templates”.

Note

If you select a template that has a source configured for
it, the dialog box will change to reflect values defined for
the template. Several fields, including the Source Config
Type field, will become populated and locked.

Source Config Type Defines the source type for the component's artifacts; all artifacts
must have the same source type. Selecting a value displays additional
fields associated with the selection. Source-dependent fields (see
Component Source Configuration) are used to identify and configure
the component's artifacts. If you selected a template, this field is locked
and its value is inherited from the template.

Import Versions Automatically If checked, the source location is periodically polled for new versions;
any found are automatically imported. The default polling period is 15
seconds, which can be changed with the System Settings pane. If left
unchecked, you can manually create versions by using the Versions
pane. By default, the box is unchecked.

Copy to CodeStation This option—selected by default—creates a tamper-proof copy of
the artifacts and stores them in the embedded artifact management
system, CodeStation. If unchecked, only meta data about the artifacts
are imported. UrbanCode recommends that the box be checked.

Component Source Configuration

164

Field Description

Default Version Type Defines how versions are imported into CodeStation. Full means the
version is comprehensive and contains all artifacts; Incremental
means the version contains a subset of the component's artifacts.
Default value is: Full. Required.

Inherit Cleanup Settings Determines how many component versions are kept in CodeStation,
and how long they are kept. If checked, the component will use
the values specified on the System Settings pane. If unchecked, the
Days to Keep Versions (initially set to -1, keep indefinitely) and
Number of Versions to Keep (initially set to -1, keep all) fields are
displayed, which enable you to define custom values. The default
value is checked.

File System (Basic and Versioned)
See the section called “Basic Fields” for information about the standard fields which apply to each source
type.

File System (Basic)
Imports everything in the target directory whenever you import versions. You can set up a template to
auto-increment version numbers. Automatic import is not available for this source type.

Table 64. File System (Basic) Source Fields

Field Description

Base Path Defines how the property is presented to users in the uDeploy editor.
This element has several attributes:

Always Use Name Pattern Used to specify values for a select-box. Each value has a mandatory
label attribute which is displayed to users, and a value used by the
property when selected. Values are displayed in the order they are
defined.

Version Name Pattern Defines how the property is presented to users in the uDeploy editor.
This element has several attributes:

Next Version Number Defines how the property is presented to users in the uDeploy editor.
This element has several attributes:

Save File Execute Bits Defines how the property is presented to users in the uDeploy editor.
This element has several attributes:

File System (Versioned)
The File System (Versioned) source type interacts with file-system-based artifacts. It assumes that
subdirectories within the base directory are distinct component versions. File System (Versioned) can
automatically import versions into CodeStation.

Table 65. File System (Versioned) Source Fields

Field Description

Base Path Path to directory containing artifacts. The content of each subdirectory
within the base directory is considered a distinct component version.

Component Source Configuration

165

Field Description

The subdirectory with the most recent time-stamp is considered the
"latest version."

Save File Execute Bits Defines how the property is presented to users in the uDeploy editor.
This element has several attributes:

166

Plug-ins
uDeploy plug-ins provide tools for creating component processes. Plug-ins consist of configurable steps
which can be thought of as distinct pieces of automation. By combining steps in the uDeploy editor, you can
create fully-automated deployment processes. In addition to basic plug-ins, others integrate many third-
party tools into uDeploy, such as application servers and software configuration management products.
For example, the Tomcat and WebSphere plug-ins--to name just two--provide steps that start and stop
those servers, install and uninstall applications, as well as perform other tool-specific tasks. Finally, you
can write your own plug-in (see the section called “Creating Plug-ins”.

A plug-in consists of a number of steps, which varies from plug-in to plug-in. Each step consists of a
number of properties, a command that performs the function associated with the step, and post-processing
instructions (typically used to ensure that expected results occurred). Step properties can serve a wide
variety of purposes, from providing information required by the step's command, to supplying some or all
of the actual command itself. When you create a process, you drag steps onto the editor's design area and
define their properties as you go. Property values can be supplied when defining a component process or at
run-time. The process flow is defined by drawing connections between steps. In the following illustration,
you can see a series of plug-in steps and the connections between them. For information about creating
component processes, see the section called “Component Processes”; for information about creating your
own post-processing scripts, see the section called “Post-Processing Scripts”.

Figure 77. Example Process

Plug-ins at Run-time

Plug-ins

167

Component processes are run by agents installed in the target environment. For a process to run
successfully, the agent must have access to all resources, tools, and files required by the plug-in steps used
in the process. When installing an agent, ensure that:

• The agent running the process has the necessary user permissions to execute commands and access
any required resources. This typically entails granting permissions if an external tool is installed as a
different user; installing the agent as a service; or impersonating the appropriate user (see the section
called “User Impersonation”.

• Any external tools required by plug-in steps are installed in the target environment.

• The required minimum version of any external tool is installed.

For information about installing agents, see the section called “Agent Installation”.

Standard Plug-ins
uDeploy also includes a standard set of automation steps that can be used to add additional automation to
any process. These will typically be used for advanced processes or where there is no standard integration
step available from one of the integrations.

Shell

The Shell integration consists of a single step that you can include in any deployment process or other
process. The most common use case opening and running a shell script on the target machine. If the step
is used within a larger process, ensure that you set the order correctly. For example, if you have to run a
shell script prior to executing another process, you will need to add the Shell step above the other step.

UrbanCode Package Manager

This is for advanced usage. The steps work in conjunction with uDeploy to create and manage application
packages for deployments. These steps will not generally be used as part of a regular deployment.

uDeploy

These advanced automation steps will retrieve properties and environments from uDeploy.

Creating Plug-ins
A plug-in consists of two mandatory XML files--plugin.xml and upgrade.xml--along with any supporting
script files required by the plug-in. The plugin.xml file defines the steps comprising the plug-in; a plug-in's
functionality is defined by its steps. Each step is an independently configurable entity in the uDeploy editor.

The upgrade.xml file is used to upgrade the plug-in to a new version. Optionally, you can include an
info.xml file which contains a version ID and other information used by the UrbanCode plug-in page.
Although optional, UrbanCode recommends the use of the info.xml file.

A plug-in step is defined by a <step-type> element that contains: one <properties> element,
one <command> element, and one <post-processing> element. The <properties> element is
a container for <property> child elements, and can contain any number of <property> elements.
Property values can be supplied at design- or run-time. The <post-processing> element provides
error-handling capabilities and sets property values that can be used by other steps. The <command>
element performs the step's function. The function can be defined completely by the element, or be
constructed in part or entirely from the step's properties at design- or run-time.

In addition to a step's own properties, a command has access to properties set earlier by other steps within
the process, to properties set by the application that invoked the component process, as well as to those

Plug-ins

168

on the target environment and resource. Step property values become unavailable once the component
process ends.

Plug-in steps are performed by an agent installed in the target environment, which means that plug-ins can
be written in any scripting language as long as the agent can access the required scripting tools on the host.
Once a plug-in is created, upload it into uDeploy to make it available to users. To upload a plug-in, create
a ZIP archive that contains the XML files (plugin.xml and upgrade.xml) along with any scripts required
by the plug-in, then import the ZIP file with the Automation Plugins pane (Settings > Automation
Plugins > Load Plugin).

The plugin.xml File
A plug-in is defined with the plugin.xml file. The structure of this file consists of a header element
and one or more step-type elements. The header identifies the plug-in. Each step-type element
defines a step; steps are available to users in the uDeploy process editor and used to construct component
processes.

After the document type declaration, the plugin root element identifies the XML schema type,
PluginXMLSchema_v1.xsd, which is used by all plug-ins. The following presents the basic structure of
plugin.xml:

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://www.UrbanCode.com/PluginXMLSchema_v1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <header>
 <identifier id="plugin_id" version="version_number" name="Plug-in Name"/>
 <description/>
 <tag>Plugin_type/Plugin_subtype/Plugin_name</tag>
 </header>
 <step-type name="Step_Name">
 <description/>
 <properties>
 <property name="porperty_name" required="true">
 <property-ui type="textBox" label="Driver Jar"
 description="The full path to the jdbc driver jar to use."
 default-value="${p:resource/sqlJdbc/jdbcJar}"/>
 </property>
 </properties>
 <post-processing>
 <![CDATA[
 if (properties.get("exitCode") != 0) {
 properties.put("Status", "Failure");
 }
 else {
 properties.put("Status", "Success");
 }
]]>
 </post-processing>

 <command program="${path_to_tool">
 <arg value="parameters_passed_to_tool"/>
 <arg path="${p:jdbcJar}"/>

Plug-ins

169

 <arg file="command_to_run"/>
 <arg file="${PLUGIN_INPUT_PROPS}"/>
 <arg file="${PLUGIN_OUTPUT_PROPS}"/>
 </command>
 </step-type>
</plugin>

The <header> Element

The mandatory header element identifies the plug-in and contains three child elements:

Table 66.

<header> Child Elements Description

<identifier> This element's three attributes identify the plug-in:

• version

API version (the version number used for upgrading plug-ins is
defined in the info.xml file).

• id

Identifies the plug-in.

• name

The plug-in name appears on uDeploy's web application
Automation Plugins pane, and on the UrbanCode.com plug-in page.

All values must be enclosed within single-quotes.

<description> Describes the plug-in; appears on uDeploy's web application
Automation Plugins pane, and on the UrbanCode.com plug-in page.

<tag> Defines where the plug-in is listed within the uDeploy editor's
hierarchy of available plug-ins. The location is defined by a
string separated by slashes. For example, the Tomcat definition is:
Application Server/Java/Tomcat. The Tomcat steps will
be listed beneath the Tomcat item, which in turn is nested within the
other two.

The following is a sample header definition:

 <header>
 <identifier version="3" id="com.&company;.air.plugin.Tomcat" name="Tomcat"/>
 <description>
 The Tomcat plugin is used during deployments to execute Tomcat run-book
 automations and deploy or undeploy Tomcat applications.
 </description>
 <tag>Application Server/Java/Tomcat</tag>
 </header>

Plug-ins

170

Plug-in Steps--the <step-type> Element
Plug-in steps are defined with the step-type element; each step-type represents a single step in
the uDeploy process editor. A step-type element has a name attribute and several child elements:
description, properties, command, and post-processing.

The mandatory name attribute identifies the step. The description and name appear in uDeploy's web
application and on the UrbanCode.com plug-in page.

 <step-type name="Start">
 <description>Start Apache HTTP server</description>

Note

A step name cannot contain the "/" character.

Step Properties--the <properties> Element

The properties element is a container for properties which are defined with the property tag. Each
step has a single properties element; a properties element can contain any number of property
child elements.

A property tag has a mandatory name attribute, optional required attribute, and two child elements,
property-ui and value, which are defined in the following table.

Table 67. The <property> Element

<property> Child Elements Description

<property-ui> Defines how the property is presented to users in the uDeploy editor.
This element has several attributes:

• label

Identifies the property in the editor's Edit Properties dialog box.

• description

Text displayed to users in the associated roll-over help box.

• default-value

Property value displayed when the Edit Properties dialog box is
displayed; used if unchanged.

• type

Identifies the type of widget displayed to users. Possible values are:

• textBox

Enables users to enter an arbitrary amount of text, limited to 4064
characters.

Plug-ins

171

<property> Child Elements Description

• textAreaBox

Enables users to enter an arbitrary amount of text (larger input
area than textBox), limited to limited to 4064 characters.

• secureBox

Used for passwords. Similar to textBox except values are
redacted.

• checkBox

Displays a check box. If checked, a value of true will be used;
otherwise the property is not set.

• selectBox

Requires a list of one or more values which will be displayed in
a drop-down list box. Configuring a value is described below.

<value> Used to specify values for a selectBox. Each value has a mandatory
label attribute which is displayed to users, and a value used by the
property when selected. Values are displayed in the order they are
defined.

Here is a sample <property> definition:

<property name="onerror" required="true">
 <property-ui type="selectBox"
 default-value="abort"
 description="Action to perform when statement fails: continue, stop, abort."
 label="Error Handling"/>
 <value label="Abort">abort</value>
 <value label="Continue">continue</value>
 <value label="Stop">stop</value>
</property>

The <command> Element
Steps are executed by invoking the scripting tool or interpreter specified by the <command> element. The
<command> element's program attribute defines the location of the tool that will perform the command.
It bears repeating that the tool must be located on the host and the agent invoking the tool must have access
to it. In the following example, the location of the tool that will perform the command--the Java-based
scripting tool groovy in this instance--is defined.

 <command program='${GROOVY_HOME}/bin/groovy'>

The actual command and any parameters it requires are passed to the tool by the <command> element's
<arg> child element. Any number of <arg> elements can be used. The <arg> element has several
attributes:

Plug-ins

172

Table 68. <arg> Element Attributes

Attribute Description

<value> Specifies a parameter passed to the tool. Format is tool-specific; must
be enclosed by quotes.

<path> Path to files or classes required by the tool. Must be enclosed by
quotes.

<file> Specifies the path to any files or classes required by the tool. Format
is tool-specific; must be enclosed by quotes.

Because <arg> elements are processed in the order they are defined, ensured the order conforms to that
expected by the tool.

 <command program='${GROOVY_HOME}/bin/groovy'>
 <arg value='-cp' />
 <arg path='classes:${sdkJar}:lib/commons-codec.jar:
 lib/activation-1.1.1.jar:
 lib/commons-logging.jar:lib/httpclient-cache.jar:
 lib/httpclient.jar:lib/httpcore.jar:
 lib/httpmime.jar:lib/javamail-1.4.1.jar' />
 <arg file='registerInstancesWithLB.groovy' />
 <arg file='${PLUGIN_INPUT_PROPS}' />
 <arg file='${PLUGIN_OUTPUT_PROPS}' />
 </command>

The <arg file='${PLUGIN_INPUT_PROPS}'/> specifies the location of the tool-supplied
properties file. The <arg file='${PLUGIN_OUTPUT_PROPS}'/> specifies the location of the file
that will contain the step-generated properties.

Note: new lines are not supported by the <arg> element and are shown in this example only for
presentation.

The <post-processing> Element
When a plug-in step's <command> element finishes processing, the step's mandatory <post-
processing> element is executed. The <post-processing> element sets the step's output
properties (step name/property name, see uDeploy Properties) and provides error handling. The <post-
processing> element can contain any valid JavaScript script (unlike the <command> element,
<post-processing> scripts must be written in JavaScript). Users can also provide their own scripts
when defining the step in the uDeploy editor, see the section called “Post-Processing Scripts”. Although
not required, it's recommended that scripts be wrapped in a CDATA element.

You have access to a java.util.Properties variable called properties. The properties
variable has several special properties: exitCode contains the process exit code, and Status contains
the step's status. A Status value of Success means the step completed successfully.

Another available variable—scanner— can scan the step's output log (scanning occurs on the agent)
and take actions depending on the results. scanner has several public methods:

• register(String regex, function call) registers a function to be called when the regular
expression is matched.

Plug-ins

173

• addLOI(Integer lineNumber) adds a line to the lines of interest list, which are highlighted in
the Log Viewer; implicitly called whenever scanner matches a line.

• getLinesOfInterest() returns a java.util.List of lines of interest; can be used to remove lines.

• scan() scans the log. Use after all regular expressions are registered.

The post-processing script can examine the step's output log, and take actions based on the result. In the
following code fragment, scanner.register() registers a string with a regular expression engine,
then takes an action if the string is found. Once all strings are registered, it calls scanner.scan() on
the step's output log line by line.

 <![CDATA[
 properties.put("Status", "Success");
 if (properties.get("exitCode") != 0) {
 properties.put("Status", "Failure");
 }
 else {
 scanner.register("(?i)ERROR at line", function(lineNumber, line) {
 var errors = properties.get("Error");
 if (errors == null) {
 errors = new java.util.ArrayList();
 }
 errors.add(line);
 properties.put("Error", errors);

 properties.put("Status", "Failure");
 });
 .
 .
 .
 scanner.scan();

 var errors = properties.get("Error");
 if (errors == null) {
 errors = new java.util.ArrayList();
 }
 properties.put("Error", errors.toString());
 }
]]

You can use a post-processing scripts to set output properties that can be used in other steps in the same
process, which enables complex workflows. Reference prior step output properties this way:

${p:stepName/propName}

Upgrading Plug-ins
To create an upgrade, first, increment the number of the version attribute of the <identifier>
element in plugin.xml. Next, create a <migrate> element in upgrade.xml with a to-version attribute

Plug-ins

174

containing the new number. Finally, place the property and step-type elements that match the updated
plugin.xml file within this element, as shown in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<plugin-upgrade
 xmlns="http://www.&company;.com/UpgradeXMLSchema_v1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <migrate to-version="3">
 <migrate-command name="Run SQLPlus script">
 <migrate-properties>
 <migrate-property name="sqlFiles" old="sqlFile"/>
 </migrate-properties>
 </migrate-command>
 </migrate>
 <migrate to-version="4">
 <migrate-command name="Run SQLPlus script" />
 </migrate>
 <migrate to-version="5">
 <migrate-command name="Run SQLPlus script" />
 </migrate>
</plugin-upgrade>

Of course, you can also make a script-only upgrade, that is, an upgrade that contains changes to the step's
associated scripts and files but does not change plugin.xml. This mechanism can be useful for plug-in
development and for minor bug-fixes/updates.

The info.xml File

Use the optional info.xml file to describe the plug-in and provide release notes to users. The file's
<release-version< element can be used for version releases.

Example Plug-in
A plug-in consists of one or more steps. A step represents a unit of functionality that can be user-configured
and combined with other steps into a process. Creating a plug-in consists in defining its individual steps
and then grouping them together for presentation in uDeploy.

Plug-in steps are performed by an agent installed in the target environment. What this means is that plug-
ins can be written in any scripting language as long as the agent can access the required scripting tools
on the host.

In this section, we examine the mechanics of plug-ins by examining a plug-in step in detail. The example
plug-in we use is the UrbanCode-created plug-in FileUtils, which contains several steps related to file
manipulation. The FileUtils plug-in is shipped with uDeploy.

Each plug-in step is an individually configurable object in the editor. In the following illustration you can
see some of FileUtils' individual steps in the process editor.

Plug-ins

175

Figure 78. Plug-in Steps

We examine the Create File step in this example. Create File is straightforward and—as the name implies
—creates a file.

Each step—step-type element—has the same structure:

• properties element can contain any number of <property> child elements; property values can
be supplied at design- or run-time

• post-processing element provides error-handling and sets property values that can be used by
other steps

• command element performs the step's function; the function can be defined completely by the element,
or be constructed in part or entirely from the step's properties at design- or run-time

The following figure illustrates the structure of the Create File step.

Plug-ins

176

Figure 79. Create File Step Structure

Step Properties
In the context of our discussion, properties are values that are used by the step's command. Step properties
are defined with the property element.

As you can see in Figure 79, “Create File Step Structure”, the Create File step has three properties:

• file contains the name of the file the command will create; it is represented as a text box in the process
designer

• contents will contain the file's content; it is represented by a text-area box, which can contain a large
amount of data

• overwrite is used to specify whether the file can overwrite an existing file; it is represented by a
check box in the process designer

These properties are displayed in the dialog box that appears when the step is added to a component
process. The other properties in the dialog are displayed for every step (post-processing is discussed

Plug-ins

177

below). Property values can be entered into the dialog box by the process designer at design-time, or left
to be furnished at run-time by the user running the application.

You can configure most properties with the property-ui child element (the selectBox type requires
the value child element as well). See the section called “Step Properties--the <properties> Element”
for information about the options available for presentation in the UI. Default values can be defined when
you create the step.

In addition to a step's own properties, a command has access to properties set earlier by other steps within
the process, to properties set by the application that invoked the component process, as well as to those
on the target environment and resource.

The following illustrates the properties available to an individual step. Step property values become
unavailable once the component process ends.

Figure 80. Properties

Run-time defined properties are combined with those defined earlier and together sent to the agent. Earlier
properties—those defined outside the current process—are retrieved from the database. How properties
are processed and consumed is discussed further in the next section.

Plug-ins

178

Step Commands
The step's command element specifies the scripting tool that will perform the step and identifies the file
containing the actual script. The agent that will perform the step will download the plug-in and expect to
find the script among the downloaded files. Of course, the agent must also have access to the scripting
tool. Any other arguments required by the script/tool can also be specified with the arg file attribute.
The arg file attributes should be defined in the order compatible with the scripting tool.

The Create File command script is written in Groovy. Groovy is a Java-like scripting language.

Figure 81. create_file.groovy

This command instructs the Groovy interpreter to run create_file.groovy (more about Groovy and
the particulars of this file in the following section).

This line (which is part of every command):

 <arg file="${PLUGIN_INPUT_PROPS}"/>

sends a file containing the properties required by the step to the agent. The properties in the file are those
furnished at run-time and others defined earlier that are required by the step. See Figure 80, “Properties”.
The ${PLUGIN_INPUT_PROPS} variable resolves to the location of this uDeploy-managed properties
file.

And this line (which is also part of every command):

Plug-ins

179

 <arg file="${PLUGIN_OUTPUT_PROPS}"/>

refers to the file returned by the agent after finishing the step. The properties in this file are available to
later steps in the process. The ${PLUGIN_OUTPUT_PROPS} variable resolves to the location of this
uDeploy-managed properties file.

create_file.groovy

The create_file.groovy file contains the Groovy script that will perfrom the step's command.
Groovy is a dynamic scripting language (similar to Python, Ruby, and Perl) for the Java platform. Most
Java code is also syntactically valid Groovy, which makes Groovy popular with Java programers. Groovy
provides native support for regular expressions.

This first lines of the script create a properties object, props, then attempts to load the properties from
the file sent from the server (specified by the ${PLUGIN_OUTPUT_PROPS} variable). If it can load the
file, it populates props; otherwise, it throws an exception.

final def workDir = new File('.').canonicalFile
final def props = new Properties();
final def inputPropsFile = new File(args[0]);
try {
 inputPropsStream = new FileInputStream(inputPropsFile);
 props.load(inputPropsStream);
}
catch (IOException e) {
 throw new RuntimeException(e);
}

To perform the command—create a file—the script uses the properties defined by the step itself. The script
retrieves the three properties from props and creates corresponding local variables.

Next, the script creates a file with a name specified by fileName, and tests the overwrite boolean
variable. If a file with the same name exists and overwrite is false, the script ends (fails) with an exit
code of 1. Exit codes can be examined during post-processing.

Otherwise, the file is written with the content of contents, a message is written to the output log, and
the exit code is set to 0 (success).

final def fileName = props['file']
final def overwrite = props['overwrite']?.toBoolean()
final def contents = props['contents']?:''

try {
 def file = new File(fileName).canonicalFile
 if (file.exists() && !overwrite) {
 println "File $file already exists!"

Plug-ins

180

 System.exit 1
 }
 else {
 file.write(contents)
 println "Successfully ${overwrite?'replaced':'created'} file
 $file with contents:"
 println contents
 }
}
catch (Exception e) {
 println "Error creating file $file: ${e.message}"
 System.exit(1)
}

System.exit(0)

The <post-processing> Element
When a plug-in step's <command> element finishes processing, the step's mandatory <post-
processing> element is executed. The <post-processing> element sets the step's output
properties (step name/property name, see uDeploy Properties) and provides error handling. The <post-
processing> element can contain any valid JavaScript script (unlike the <command> element,
<post-processing> scripts must be written in JavaScript).

You have access to a java.util.Properties variable called properties. The properties
variable has several special properties: exitCode contains the process exit code, and Status contains
the step's status. A Status value of Success means the step completed successfully. The Create File
step's post-processing examines the command's exitCode then sets the Status property accordingly.

Another available variable—scanner— can scan the step's output log and take actions depending on the
results. See the section called “Post-Processing Scripts” for an example of scanner usage.

T

You can use a post-processing script to set output properties that can be used in other steps in the same
process, which enables complex workflows. Reference prior step output properties this way:

${p:stepName/propName}

The script defined in the <post-processing> element is the step's default behavior. Users can also
provide their own script—overriding the default behavior—when defining the step in the uDeploy editor,
see the section called “Post-Processing Scripts”.

181

uDeploy Properties
Properties can be set for the following items:

Also, on any process (component process or application process) you can define properties on the
Properties tab to be provided at runtime. - component/application process property

Table 69. Property Contexts

Context Description

environment Available on the the component’s or
environment’s Properties tab.

Referenced: ${p:environment/
propertyName}.

Both versions use the same syntax. A value set
on component environment overrides one with
the same name set directly on an environment
property. Component environment properties
enable you to centralize properties, tracking type
and default values, for instance. Environment
properties provide ad-hoc lists of property=value
pairs.

resource Selects all the properties with the same value in a
given environment.

resource role Selects all properties with the same value in a
given resource.

application Available on the application's Properties
tab (Application > [selected
application] > Properties).

Referenced: ${p:application/
propertyName}.

component Selects all properties with the same value in a
given system.

process Available on the application's Properties
tab (Application > [selected
application] > Properties).

Referenced: ${p:application/
propertyName}.

A process step has access to properties set earlier
by other steps within the process, to properties
set by the application that invoked the component
process as well as those on the target environment
and resource. Step property values become
unavailable once the component process ends.

uDeploy Properties

182

Context Description

Referenced: ${p:propertyName}.

system System (global) properties are available on the
Settings tab (Settings > Properties).

Referenced: ${p:system/propertyName}.

Table 70. uDeploy Properties

Property Description

version.name A user defined name to distinguish the version
from others. A version name is entered when a
new version is imported.

version.id The number assigned to the version. A version
id is created when a new version is imported in
CodeStation.

component.name A user defined name to distinguish it from other
components. A component name is entered when
creating a new component.

component.id A unique number uDeploy assigns to distinguish
the component from others. The component id is
created when a component is created in uDeploy.

resource.name A user defined name to distinguish it from other
resources. The resource name is entered when
editing or creating a new resource.

resource.id A unique number given to a resource. A resource
id is assigned when a new resource is created.

application.name A user defined name to distinguish it from others.
An application name is entered when editing or
creating a new application.

application.id A unique number given to an application. An
application id is assigned when a new application
is created in uDeploy.

environment.name A user defined name to distinguish the
environment from others. An environment
name is entered when editing or creating a new
environment.

environment.id A unique number given to an environment.
An environment id is assigned when a new
environment is created.

agent.id A unique number uDeploy gives the agent to
distinguish it from others with similar names. An
agent id is assigned when it is installed on the
system.

agent.name A user defined name to distinguish the
agent from others. The agent's name can be
entered by editing the agent's conf/agent/

uDeploy Properties

183

Property Description

installed.properties file and restarting
the agent.

stepname/propertyname All steps have the following properties:
exitCode, status, lines of
interest (LOI—items the post-processing
script finds in the step's output log).

You can view the properties by using the
component's Log pane to examine the step's
output log (Components > [selected
component] > [View Request
action] > [Input/Output Properties
action]).

Inventory and versions statuses, which are
defined with the status property, can be used in
application approval gates (see the section called
“Application Gates”). The other properties can be
used by post-processing scripts, see the section
called “The <post-processing> Element”.

You can use a post-processing scripts to set output
properties that can be used in other steps in the
same process, which enables complex workflows.
Reference prior step output properties this way:

${p:stepName/propName}

To set an environment property from a post-
processing script, for example, you set the output
property for the step in the post-processing
script then use a Set Environment Property step
afterwards that consumes the output property.

property_name Component or application process property;
defined on the process's Properties tab. Given
value by whoever runs the process.

component/property_name Component custom property; set on the
component's Properties tab.

environment/property_name Environment property. Defined on the
component's or environment's Properties tab.
While both use the same syntax, the latter is
not associated with any specific component.
Values are supplied on the associated environment
or component. A value set on component
environment overrides one with the same name set
directly on an environment property.

resource/property_name Resource properties. This can include the built-in
agent properties as well as any custom properties.
Each of these has their own tab on the resource.

uDeploy Properties

184

Property Description

resource/role name/property name Resource role properties. These are defined on
resource roles, and the values are set when you add
a role to a resource.

application/property name Application custom properties. These are set on
the application's properties tab.

system/property name Global system properties. These are set on the
System Properties tab in the Settings area.

All of the following are comma-separated series of name=value pairs, including each property on the given
object. This is useful for token replacement.

Table 71. Name/Value Pairs

Property Description

component/allProperties Selects all the properties with the same value in a
given component.

environment/allProperties Selects all the properties with the same value in a
given environment.

resource/allProperties Selects all properties with the same value in a
given resource.

system/allProperties Selects all properties with the same value in a
given system.

Using Properties

Properties are referenced with the following format: ${p:property}.

If, say, you create an environment variable UAT, you would reference it like this:

echo ${p:environment/UAT}

Output in this case:

UAT

uDeploy escapes the following characters:

\
=
,

Replace "\\" with "\"; "\=" with "="; and "\," with ",".

185

Command Line Client (CLI) Reference
CLI is a command-line interface that provides access to the uDeploy server. It can be used to find or set
properties, and perform numerous functions, described below.

To install the tool, download the udclient.zip from the uDeploy release page on Supportal (http://
support.UrbanCode.com).

Command Format
To perform a command, open a command window and invoke udclient along with the command and
parameters. Command's have the following format:

udclient [global-args...] [global-flags...] <command> [args...]

The global arguments are:

Table 72.

Argument Description

-authtoken, --authtoken Optional. Can be set via the environment variable
DS_AUTH_TOKEN. An authentication token
generated by the server. Either an authtoken or a
username and password is required.

-password, --password Optional. Can be set via the environment variable
DS_PASSWORD. A password to authenticate with
the server. Either an authtoken or a username and
password is required.

-username, --username Optional. Can be set via the environment variable
DS_USERNAME. A username to authenticate with
the server. Either an authtoken or a username and
password is required.

-weburl, --weburl Required. Can be set via the environment variable
DS_WEB_URL. The base URL of the uDeploy
server— http://ds.domain.com:8585.

The global flags are:

Table 73.

Flag Description

-t, --getTemplate Show the JSON template for the command instead
of running the command. If a file argument is
provided, the template will be output to that file.

-h, --help Print the full description and help of the given
command instead of running the command.

-v, --verbose Print extra information during execution.

Note

CLI commands and parameters are case sensitive.

Command Line Client
(CLI) Reference

186

Here is an example using the getResources command:

udclient -weburl http://localhost:8080 -username admin -password admin
getResources

Commands
Note

CLI commands do not support new lines. Entries below are broken for display purposes only.

addActionToRoleForApplications
Add action to a role for applications.

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForApplications [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForComponents
Add action to a role for components

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

Command Line Client
(CLI) Reference

187

addActionToRoleForEnvironments
Add action to a role for environments

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForEnvironments [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForResources
Add action to a role for resources

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForResources [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForUI
Add action to a role for the UI

Format

Command Line Client
(CLI) Reference

188

 udclient [global-args...] [global-flags...]
 addActionToRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addAgentToPool
CAdd an agent to an agent pool.

Format

udclient [global-args...] [global-flags...]
addAgentToPool [args...]

Options

-pool, --pool
 Required. Name or ID of the Agent Pool

-agent, --agent
 Required. Name or ID of the Agent to add

addComponentToApplication
Add a component to an Application.

Format

 udclient [global-args...] [global-flags...]
 addComponentToApplication [args...]

Options

 -component, --component
 Required. Name of the component to add

 -application, --application

Command Line Client
(CLI) Reference

189

 Required. Name of the application to add it to.

addGroupToRoleForApplication
Add a group to a role for an application

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForApplication [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

addGroupToRoleForComponent
Add a group to a role for a component

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForComponent [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

Command Line Client
(CLI) Reference

190

addGroupToRoleForEnvironment
Add a group to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForEnvironment [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

addGroupToRoleForResource
Add a group to a role for a resource

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForResource [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

Command Line Client
(CLI) Reference

191

addGroupToRoleForUI
Add a group to a role for the UI

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForUI [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

addLicense
Add a license to the server.

Format

 udclient [global-args...] [global-flags...]
 addLicense [args...]

Options

 No options for this command.

addNameConditionToGroup
Add a name condition to a resource group. Only works with dynamic groups.

Format

 udclient [global-args...] [global-flags...]
 addNameConditionToGroup [args...]

Options

Command Line Client
(CLI) Reference

192

 -comparison, --comparison
 Required. Type of the comparison

 -value, --value
 Required. Value of the comparison

 -group, --group
 Required. Path of the parent resource group

addPropertyConditionToGroup
Add a property condition to a resource group. Only works with dynamic groups.

Format

 udclient [global-args...] [global-flags...]
 addPropertyConditionToGroup [args...]

Options

 -property, --property
 Required. Name of the property

 -comparison, --comparison
 Required. Type of the comparison

 -value, --value
 Required. Value of the comparison

 -group, --group
 Required. Path of the parent resource group

addResourceToGroup
Add a resource to a resource group. Only works with static groups.

Format

 udclient [global-args...] [global-flags...]
 addResourceToGroup [args...]

Options

Command Line Client
(CLI) Reference

193

 -resource, --resource
 Required. Name of the resource to add

 -group, --group
 Required. Path of the resource group to add to

addRoleToResource
Add a role to a resource.

Format

 udclient [global-args...] [global-flags...]
 addRoleToResource [args...]

Options

 -resource, --resource
 Required. Name of the parent resource.

 -role, --role
 Required. Name of the new resource.

addRoleToResourceWithProperties
Add a role to a resource. This command takes a JSON request body. Use the -t flag to view the template
for the data required for this command.

Format

 udclient [global-args...] [global-flags...]
 addRoleToResourceWithProperties [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

Command Line Client
(CLI) Reference

194

 No options for this command.

addUserToGroup
Add a user to a group

Format

 udclient [global-args...] [global-flags...]
 addUserToGroup [args...]

Options

 -user, --user
 Required. Name of the user

 -group, --group
 Required. Name of the group

addUserToRoleForApplication
Add a user to a role for an application

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForApplication [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

addUserToRoleForComponent
Add a user to a role for a component

Command Line Client
(CLI) Reference

195

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForComponent [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

addUserToRoleForEnvironment
Add a user to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForEnvironment [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

addUserToRoleForResource
Add a user to a role for a resource

Command Line Client
(CLI) Reference

196

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForResource [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

addUserToRoleForUI
Add a user to a role for the UI

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForUI [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

addVersionFiles
Upload files to a version

Format

 udclient [global-args...] [global-flags...]
 addVersionFiles [args...]

Command Line Client
(CLI) Reference

197

Options

 -component, --component
 Optional. Name/ID of the component (Only required if not using
 version ID)

 -version, --version
 Required. Name/ID of the version

 -base, --base
 Required. Local base directory for upload. All files inside this
 will be sent.

 -offset, --offset
 Optional. Target path offset (the directory in the version files to
 which these files should be added)

addVersionStatus
Add a status to a version

Format

 udclient [global-args...] [global-flags...]
 addVersionStatus [args...]

Options

 -component, --component
 Optional. Name/ID of the component (Only required if not using
 version ID)

 -version, --version
 Required. Name/ID of the version

 -status, --status
 Required. Name of the status to apply

createAgentPool
Create an agent pool. This command takes a JSON request body. Use the -t flag to view the template for
the data required for this command.

Format

Command Line Client
(CLI) Reference

198

udclient [global-args...] [global-flags...]
createAgentPool [args...]

Options

No options for this command.

createApplication
Create a new application. This command takes a JSON request body. Use the -t flag to view the template
for the data required for this command.

Format

 udclient [global-args...] [global-flags...]
 createApplication [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

 No options for this command.

createApplicationProcess
Create a new application process. This command takes a JSON request body. Use the -t flag to view the
template for the data required for this command.

Format

 udclient [global-args...] [global-flags...]
 createApplicationProcess [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

Command Line Client
(CLI) Reference

199

 No options for this command.

createComponent
Create a new component. This command takes a JSON request body. Use the -t flag to view the template
for the data required for this command.

Format

 udclient [global-args...] [global-flags...]
 createComponent [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

 No options for this command.

createComponentProcess
Create a new component process. This command takes a JSON request body. Use the -t flag to view the
template for the data required for this command.

Format

 udclient [global-args...] [global-flags...]
 createComponentProcess [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

 No options for this command.

Command Line Client
(CLI) Reference

200

createDynamicResourceGroup
Create a new static resource group.

Format

 udclient [global-args...] [global-flags...]
 createDynamicResourceGroup [args...]

Options

 -path, --path
 Required. Path to add the resource group to (parent resource group
 path).

 -name, --name
 Required. Name of the new resource group.

createEnvironment
Create a new environment.

Format

 udclient [global-args...] [global-flags...]
 createEnvironment [args...]

Options

 -application, --application
 Required. Application to add the environment to.

 -name, --name
 Required. Name of the new environment.

 -description, --description
 Optional. Description of the new environment.

 -color, --color
 Optional. Color of the new environment.

 -requireApprovals, --requireApprovals
 Optional. Does the environment require approvals?

Command Line Client
(CLI) Reference

201

createGroup
Add a new group

Format

 udclient [global-args...] [global-flags...] createGroup [args...]

Options

 -group, --group
 Required. Name of the group

createMapping
Create a new mapping.

Format

 udclient [global-args...] [global-flags...]
 createMapping [args...]

Options

 -environment, --environment
 Required. The environment for the mapping.

 -component, --component
 Required. The component for the mapping.

 -resourceGroupPath, --resourceGroupPath
 Required. The resource group for the mapping.

 -application, --application
 Optional. The application for the mapping. Only necesary if
 specifying env name instead of id.

createResource
Create a resource.

Command Line Client
(CLI) Reference

202

Format

udclient [global-args...] [global-flags...]
createResource [args...]

Options

-parentAgent, --parentAgent
 Optional. Name or ID of the parent agent.(One of parentAgent,
 parentResource, parentAgentPool or source must be specified)

-parentResource, --parentResource
 Optional. Name or ID of the parent resource or agent.

-parentAgentPool, --parentAgentPool
 Optional. Name or ID of the parent agent pool.

-name, --name
 Required. Name of the new resource.

-description, --description
 Optional. Description of the resource.

-source, --source
 Optional. Name of a subresource to copy.

createResourceGroup
Create a new static resource group.

Format

 udclient [global-args...] [global-flags...]
 createResourceGroup [args...]

Options

 -path, --path
 Required. Path to add the resource group to (parent resource group
 path).

 -name, --name
 Required. Name of the new resource group.

createRoleForApplications
Create a role for applications

Command Line Client
(CLI) Reference

203

Format

 udclient [global-args...] [global-flags...]
 createRoleForApplications [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForComponents
Create a role for components

Format

 udclient [global-args...] [global-flags...]
 createRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForEnvironments
Create a role for environments

Format

 udclient [global-args...] [global-flags...]
 createRoleForEnvironments [args...]

Options

 -role, --role
 Required. Name of the role

Command Line Client
(CLI) Reference

204

createRoleForResources
Create a role for resources

Format

 udclient [global-args...] [global-flags...]
 createRoleForResources [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForUI
Create a role for the UI

Format

 udclient [global-args...] [global-flags...]
 createRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

createSubresource
Create a new subresource.

Format

 udclient [global-args...] [global-flags...]
 createSubresource [args...]

Options

Command Line Client
(CLI) Reference

205

 -parent, --parent
 Required. Name of the parent resource.

 -name, --name
 Required. Name of the new resource.

 -description, --description
 Optional. Description of the resource.

createUser
Add a new user This command takes a JSON request body. Use the -t flag to view the template for the
data required for this command.

Format

 udclient [global-args...] [global-flags...]
 createUser [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

 No options for this command.

createVersion
Create a new version for a component

Format

 udclient [global-args...] [global-flags...]
 createVersion [args...]

Options

 -component, --component
 Required. Name/ID of the component

Command Line Client
(CLI) Reference

206

 -name, --name
 Required. Name of the new version

deleteAgent
Remove an agent.

Format

udclient [global-args...] [global-flags...]
deleteAgent [args...]

Options

-agent, --agent
 Required. Name or ID of the agent

deleteAgentPool
Remove an agent pool.

Format

udclient [global-args...] [global-flags...]
deleteAgentPool [args...]

Options

-pool, --pool
 Required. Name or ID of the agent pool

deleteGroup
Delete a group

Format

 udclient [global-args...] [global-flags...]
 deleteGroup [args...]

Options

 -group, --group
 Required. Name of the group

Command Line Client
(CLI) Reference

207

deleteResource
Remove a resource.

Format

udclient [global-args...] [global-flags...]
deleteResource [args...]

Options

-resource, --resource
 Required. Name of the resource to configure

deleteResourceGroup
null

Format

 udclient [global-args...] [global-flags...]
 deleteResourceGroup [args...]

Options

 -group, --group
 Required. Path of the resource group to delete

deleteResourceProperty
Remove a custom property from a resource

Format

 udclient [global-args...] [global-flags...]
 deleteResourceProperty [args...]

Options

 -resource, --resource
 Required. Name of the resource to configure

Command Line Client
(CLI) Reference

208

 -name, --name
 Required. Name of the property

deleteUser
Delete a user

Format

 udclient [global-args...] [global-flags...]
 deleteUser [args...]

Options

 -user, --user
 Required. Name of the user

exportGroup
Add a new group

Format

 udclient [global-args...] [global-flags...]
 exportGroup [args...]

Options

 -group, --group
 Required. Name of the group

getAgent
Get a JSON representation of an agent.

Format

udclient [global-args...] [global-flags...]
getAgent [args...]

Command Line Client
(CLI) Reference

209

Options

-agent, --agent
 Required. Name of the Agent Pool to look up

getAgentPool
Get a JSON representation of an agent pool.

Format

udclient [global-args...] [global-flags...]
getAgentPool [args...]

Options

-pool, --pool
 Required. Name of the Agent Pool to look up

getAgentPools
Get a JSON array of all agent pools.

Format

udclient [global-args...] [global-flags...]
getAgentPools [args...]

Options

-active, --active
 Optional. List active agent pools - Default true

-inactive, --inactive
 Optional. List inactive agent pools - Default true

getAgents
Get a JSON array of all agents.

Format

udclient [global-args...] [global-flags...]
getAgents [args...]

Options

-active, --active

Command Line Client
(CLI) Reference

210

 Optional. List active agents - Default true

-inactive, --inactive
 Optional. List inactive agents - Default false

getApplication
Get a JSON representation of an application

Format

 udclient [global-args...] [global-flags...]
 getApplication [args...]

Options

 -application, --application
 Required. Name of the application to look up

getApplicationProcess
Get a JSON representation of an Application Process

Format

 udclient [global-args...] [global-flags...]
 getApplicationProcess [args...]

Options

 -application, --application
 Required. Name of the application

 -applicationProcess, --applicationProcess
 Required. Name of the process

getApplicationProcessRequestStatus
Repeat an application process request.

Format

Command Line Client
(CLI) Reference

211

 udclient [global-args...] [global-flags...]
 getApplicationProcessRequestStatus [args...]

Options

 -request, --request
 Required. ID of the application process request to view

getApplicationProperties
Get the values of custom properties for an application.

Format

udclient [global-args...] [global-flags...]
getApplicationProperties [args...]

Options

-application, --application
 Required. Name or id of the application

getApplicationProperty
Get the value of custom property for an application.

Format

udclient [global-args...] [global-flags...]
getApplicationProperty [args...]

Options

-application, --application
 Required. Name or id of the application

-name, --name
 Required. Name of the property

getApplications
Get a JSONArray representation of all applications

Format

Command Line Client
(CLI) Reference

212

 udclient [global-args...] [global-flags...]
 getApplications [args...]

Options

 No options for this command.

getComponent
Get a JSON representation of a component

Format

 udclient [global-args...] [global-flags...]
 getComponent [args...]

Options

 -component, --component
 Required. Name of the component to look up

getComponentEnvironmentProperties
Get all values of custom properties for a component.

Format

udclient [global-args...] [global-flags...]
getComponentEnvironmentProperties [args...]

Options

-component, --component
 Required. Name or id of the component

-environment, --environment
 Required. Name or id of the environment

-application, --application
 Optional. Name or id of the application

getComponentEnvironmentProperty

Command Line Client
(CLI) Reference

213

Get the value of a custom property on a component.

Format

udclient [global-args...] [global-flags...]
getComponentEnvironmentProperty [args...]

Options

-name, --name
 Required. Name of the property to look up

-component, --component
 Required. Name or id of the component

-environment, --environment
 Required. Name or id of the environment

-application, --application
 Optional. Name or id of the application

getComponentProcess
Get a JSON representation of a componentProcess

Format

 udclient [global-args...] [global-flags...]
 getComponentProcess [args...]

Options

 -component, --component
 Required. Name of the component

 -componentProcess, --componentProcess
 Required. Name of the component

getComponents
Get a JSONArray representation of all components

Format

 udclient [global-args...] [global-flags...]
 getComponents [args...]

Command Line Client
(CLI) Reference

214

Options

 No options for this command.

getComponentsInApplication
Get all components in an application

Format

 udclient [global-args...] [global-flags...]
 getComponentsInApplication [args...]

Options

 -application, --application
 Required. Name of the application to get components for

getComponentProperties
Get the values of all of a component's custom properties.

Format

udclient [global-args...] [global-flags...]
getComponentProperties [args...]

Options

-component, --component
 Required. Name of the component

getComponentProperty
Get the value of a component's custom property.

Format

udclient [global-args...] [global-flags...]
getComponentProperty [args...]

Command Line Client
(CLI) Reference

215

Options

-component, --component
 Required. Name of the component

-name, --name
 Required. Name of the property

getEnvironment
Get a JSON representation of an environment

Format

 udclient [global-args...] [global-flags...]
 getEnvironment [args...]

Options

 -environment, --environment
 Required. Name of the environment to look up

getEnvironmentProperties
Get the value of all custom properties for an environment.

Format

udclient [global-args...] [global-flags...]
getEnvironmentProperties [args...]

Options

-environment, --environment
 Required. Name or id of the environment

-application, --application
 Optional. Name or id of the application (required unless environment
 id is specified)

getEnvironmentProperty
Get the value of a component's custom propert.

Command Line Client
(CLI) Reference

216

Format

udclient [global-args...] [global-flags...]
getEnvironmentProperty [args...]

Options

-name, --name
 Required. Name of the property to look up

-environment, --environment
 Required. Name or id of the environment

-application, --application
 Optional. Name or id of the application (required unless environment
 id is specified)

getEnvironmentsInApplication
Get all environments for an application.

Format

udclient [global-args...] [global-flags...]
getEnvironmentsInApplication [args...]

Options

-application, --application
 Required. Name of the application to get environments for

-active, --active
 Optional. List active environments - Default true

-inactive, --inactive
 Optional. List inactive environments - Default false

getGroupsForResource
Get a JSON array representation of all the groups to which a resource belongs.

Format

udclient [global-args...] [global-flags...]
getGroupsForResource [args...]

Options

-resource, --resource

Command Line Client
(CLI) Reference

217

 Required. Name/id of the resource.

getMapping
Get a JSON representation of a mapping

Format

 udclient [global-args...] [global-flags...]
 getMapping [args...]

Options

 -mapping, --mapping
 Required. ID of the mapping to look up

getMappingsForApplicationEnvironment
Get the component mappings for an application environment.

Format

udclient [global-args...] [global-flags...]
getMappingsForApplicationEnvironment [args...]

Options

-environment, --environment
 Required. Name or ID of the environment to look up

-application, --application
 Optional. Name of the application - required if using environment
 name instead of ID.

getMappingsForGroup
Get the component environment mappings for a resource group.

Format

udclient [global-args...] [global-flags...]
getMappingsForGroup [args...]

Options

Command Line Client
(CLI) Reference

218

-group, --group
 Required. Path of the resource group to get mappings for

getResource
Get a JSON representation of a resource

Format

 udclient [global-args...] [global-flags...]
 getResource [args...]

Options

 -resource, --resource
 Required. Name of the resource to look up

getResourceGroup
Get a JSON representation of a resource group

Format

 udclient [global-args...] [global-flags...]
 getResourceGroup [args...]

Options

 -group, --group
 Required. Path of the resource group to show

getResourceGroups
Get a JSONArray representation of all resource groups

Format

 udclient [global-args...] [global-flags...]
 getResourceGroups [args...]

Options

Command Line Client
(CLI) Reference

219

 No options for this command.

getResourceProperties
Get all property values for a resource.

Format

udclient [global-args...] [global-flags...]
getResourceProperties [args...]

Options

-resource, --resource
 Required. Name/id of the resource

getResourceProperty
Get the value of a custom property on a resource

Format

 udclient [global-args...] [global-flags...]
 getResourceProperty [args...]

Options

 -resource, --resource
 Required. Name of the resource

 -name, --name
 Required. Name of the property

getResources
Get a JSONArray representation of all resources

Format

 udclient [global-args...] [global-flags...]
 getResources [args...]

Command Line Client
(CLI) Reference

220

Options

 No options for this command.

getResourcesInGroup
Get a JSONArray representation of all resources in a group

Format

 udclient [global-args...] [global-flags...]
 getResourcesInGroup [args...]

Options

 -group, --group
 Required. Path of the resource group

getResourceSecurity
Get a list of security roles and members for a resource.

Format

udclient [global-args...] [global-flags...]
getResourceSecurity [args...]

Options

-resource, --resource
 Required. Name/id of the resource

getRoleForApplications
Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...]
 getRoleForApplications [args...]

Options

Command Line Client
(CLI) Reference

221

 -role, --role
 Required. Name of the role

getRoleForComponents
Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...]
 getRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForEnvironments
Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...]
 getRoleForEnvironments [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForResources
Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...]

Command Line Client
(CLI) Reference

222

 getRoleForResources [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForUI
Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...]
 getRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

getRolesForResource
Get a list of roles for a resource.

Format

udclient [global-args...] [global-flags...]
getRolesForResource [args...]

Options

-resource, --resource
 Required. Name/id of the resource

getSystemProperties
Get all system property values.

Format

Command Line Client
(CLI) Reference

223

udclient [global-args...] [global-flags...]
getSystemProperties [args...]

Options

No options.

getSystemProperty
Get a system property value.

Format

udclient [global-args...] [global-flags...]
getSystemProperty [args...]

Options

-name, --name
 Required. Name of the property

getUser
Get a JSON representation of a user

Format

 udclient [global-args...] [global-flags...]
 getUser [args...]

Options

 -user, --user
 Required. Name of the user

importGroup
Add a new group This command takes a JSON request body. Use the -t flag to view the template for the
data required for this command.

Format

 udclient [global-args...] [global-flags...]
 importGroup [args...] [-] [filename]

Command Line Client
(CLI) Reference

224

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

 No options for this command.

importVersions
Run the source config integration for a component This command takes a JSON request body. Use the -t
flag to view the template for the data required for this command.

Format

 udclient [global-args...] [global-flags...]
 importVersions [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

 No options for this command.

inactivateEnvironment
Set an environment to inactive.

Format

udclient [global-args...] [global-flags...]
inactivateEnvironment [args...]

Options

-environment, --environment

Command Line Client
(CLI) Reference

225

 Required. Name or ID of the environment to look up

-application, --application
 Optional. Name of the application - required if using environment
 name instead of ID.

installAgent
Install an agent.

Format

udclient [global-args...] [global-flags...]
installAgent [args...]

Options

-name, --name
 Required. Name of the agent resource

-host, --host
 Required. Host name or IP of the agent machine

-port, --port
 Required. SSH port (22) of the agent machine

-sshUsername, --sshUsername
 Required. Username to use to ssh to the agent machine

-sshPassword, --sshPassword
 Optional. Password to use to ssh to the agent machine (exclude this
 flag to use Public Key Authentication instead)

-installDir, --installDir
 Required. Installation directory of the agent

-javaHomePath, --javaHomePath
 Required. Path to Java on the agent machine

-tempDirPath, --tempDirPath
 Required. Path to directory to install from on the agent machine

-serverHost, --serverHost
 Required. Host name or IP of the uDeploy server or Agent Relay the
 agent should connect to

-serverPort, --serverPort
 Required. Agent communication port of the uDeploy server (7918) or
 Agent Relay (7916) the agent should connect to

-proxyHost, --proxyHost
 Optional. Host name or IP of the Agent Relay if used

Command Line Client
(CLI) Reference

226

-proxyPort, --proxyPort
 Optional. HTTP proxy port of the Agent Relay if used (20080)

-mutualAuth, --mutualAuth
 Optional. True if the agent should enforce certificate validation
 for mutual authentication

login
Login for further requests

Format

 udclient [global-args...] [global-flags...] login [args...]

Options

 No options for this command.

logout
Logout

Format

 udclient [global-args...] [global-flags...]
 logout [args...]

Options

 No options for this command.

removeActionFromRoleForApplications
Add action to a role for applications

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForApplications [args...]

Options

Command Line Client
(CLI) Reference

227

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForComponents
Add action to a role for components

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForEnvironments
Add action to a role for environments

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForEnvironments [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

Command Line Client
(CLI) Reference

228

removeActionFromRoleForResources
Add action to a role for resources

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForResources [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForUI
Add action to a role for the UI

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeAgentFromPool
Remove an agent from an agent pool.

Format

udclient [global-args...] [global-flags...]

Command Line Client
(CLI) Reference

229

removeAgentFromPool [args...]

Options

-pool, --pool
 Required. Name or ID of the Agent Pool

-agent, --agent
 Required. Name or ID of the Agent to remove

removeGroupFromRoleForApplication
Remove a group to a role for an application

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForApplication [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

removeGroupFromRoleForComponent
Remove a group to a role for a component

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForComponent [args...]

Options

 -group, --group
 Required. Name of the group

Command Line Client
(CLI) Reference

230

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

removeGroupFromRoleForEnvironment
Remove a group to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForEnvironment [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

removeGroupFromRoleForResource
Remove a group to a role for a resource

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForResource [args...]

Options

 -group, --group
 Required. Name of the group

Command Line Client
(CLI) Reference

231

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

removeGroupFromRoleForUI
Remove a group to a role for the UI

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForUI [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

removeMapping
Remove a mapping.

Format

udclient [global-args...] [global-flags...]
removeMapping [args...]

Options

-environment, --environment
 Required. The environment for the mapping.

-component, --component
 Required. The component for the mapping.

-resourceGroupPath, --resourceGroupPath
 Optional. The resource group path for the mapping, if not using a
 resource.

Command Line Client
(CLI) Reference

232

-resource, --resource
 Optional. The resource for the mapping, if not using a group.

-application, --application
 Optional. The application for the mapping. Only necesary if
 specifying env name instead of id.

removeResourceFromGroup
Remove a resource from a resource group. Only works with static groups.

Format

 udclient [global-args...] [global-flags...]
 removeResourceFromGroup [args...]

Options

 -resource, --resource
 Required. Name of the resource to remove

 -group, --group
 Required. Path of the resource group to remove from

removeRoleForApplications
Create a role for applications

Format

 udclient [global-args...] [global-flags...]
 removeRoleForApplications [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForComponents
Create a role for components

Command Line Client
(CLI) Reference

233

Format

 udclient [global-args...] [global-flags...]
 removeRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForEnvironments
Create a role for environments

Format

 udclient [global-args...] [global-flags...]
 removeRoleForEnvironments [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForResources
Create a role for resources

Format

 udclient [global-args...] [global-flags...]
 removeRoleForResources [args...]

Options

 -role, --role
 Required. Name of the role

Command Line Client
(CLI) Reference

234

removeRoleForUI
Create a role for the UI

Format

 udclient [global-args...] [global-flags...]
 removeRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleFromResource
Remove a role from a resource.

Format

 udclient [global-args...] [global-flags...]
 removeRoleFromResource [args...]

Options

 -resource, --resource
 Required. Name of the parent resource.

 -role, --role
 Required. Name of the new resource.

removeUserFromGroup
Remove a user from a group

Format

 udclient [global-args...] [global-flags...]
 removeUserFromGroup [args...]

Options

Command Line Client
(CLI) Reference

235

 -user, --user
 Required. Name of the user

 -group, --group
 Required. Name of the group

removeUserFromRoleForApplication
Remove a user to a role for an application

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForApplication [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

removeUserFromRoleForComponent
Remove a user to a role for a component

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForComponent [args...]

Options

 -user, --user
 Required. Name of the user

Command Line Client
(CLI) Reference

236

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

removeUserFromRoleForEnvironment
Remove a user to a role for an environment

Format

 udclient [global-args...] [global-flags...] removeUserFromRoleForEnvironment [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

removeUserFromRoleForResource
Remove a user to a role for a resource

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForResource [args...]

Options

 -user, --user
 Required. Name of the user

Command Line Client
(CLI) Reference

237

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

removeUserFromRoleForUI
Remove a user to a role for the UI

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForUI [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

removeVersionStatus
Remove a status from a version.

Format

udclient [global-args...] [global-flags...]
removeVersionStatus [args...]

Options

-component, --component
 Optional. Name/ID of the component (Only required if not using
 version ID)

-version, --version
 Required. Name/ID of the version

-status, --status
 Required. Name of the status to apply

Command Line Client
(CLI) Reference

238

repeatApplicationProcessRequest
Repeat an application process request.

Format

 udclient [global-args...] [global-flags...]
 repeatApplicationProcessRequest [args...]

Options

 -request, --request
 Required. ID of the application process request to repeat

requestApplicationProcess
Submit an application process request to run immediately. This command takes a JSON request body. Use
the -t flag to view the template for the data required for this command.

Format

 udclient [global-args...] [global-flags...]
 requestApplicationProcess [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

 No options for this command.

restartAgent
Restart an agent

Format

Command Line Client
(CLI) Reference

239

udclient [global-args...] [global-flags...] restartAgent [args...]

Options

-agent, --agent
 Required. Name / ID of the Agent to restart

setApplicationProperty
Set property on an application.

Format

udclient [global-args...] [global-flags...]
setApplicationProperty [args...]

Options

-name, --name
 Required. Name of the property to set

-value, --value
 Optional. Value of the property to set

-isSecure, --isSecure
 Optional. Defaults to current state of property, or false if
 property is not yet defined

-application, --application
 Required. Name of the application to look up

setComponentProperty
Set property on component

Format

 udclient [global-args...] [global-flags...]
 setComponentProperty [args...]

Options

 -propName, --propName

Command Line Client
(CLI) Reference

240

 Required. Name of the property to set

 -propValue, --propValue
 Required. Value of the property to set

 -component, --component
 Required. Name of the component to look up

setComponentEnvironmentProperty
Set property on component/environment mapping

Format

udclient [global-args...] [global-flags...]
setComponentEnvironmentProperty [args...]

Options

-name, --name
 Required. Name of the property to set

-value, --value
 Required. Value of the property to set

-component, --component
 Required. Name of the component to look up

-environment, --environment
 Required. Name or id of the environment to look up

-isSecure, --isSecure
 Optional. Defaults ot property state, or false if not defined

-application, --application
 Optional. Name/ID of the application (required if referencing
 environment by name)

setEnvironmentProperty
Set property on an environment

Format

udclient [global-args...] [global-flags...] setEnvironmentProperty [args...]

Command Line Client
(CLI) Reference

241

Options

-name, --name
 Required. Name of the property to set

-value, --value
 Optional. Value of the property to set

-environment, --environment
 Required. Name/ID of the environment to look up

-isSecure, --isSecure
 Optional. Defaults to current state of property, or false if
 property is not yet defined.

-application, --application
 Optional. Name/ID of the application (required if referencing
 environment by name)

setResourceProperty
Set a custom property on a resource

Format

 udclient [global-args...] [global-flags...]
 setResourceProperty [args...]

Options

 -resource, --resource
 Required. Name of the resource to configure

 -name, --name
 Required. Name of the property

 -value, --value
 Optional. New value for the property

setSystemProperty
Set a property on the system.

Command Line Client
(CLI) Reference

242

Format

udclient [global-args...] [global-flags...]
setSystemProperty [args...]

Options

-name, --name
 Required. Name of the property to set

-isSecure, --isSecure
 Optional. Defaults to current state of property, or false if
 property is not yet defined.

-value, --value
 Optional. Value of the property to set

shutdownAgent
Shut down an agent.

Format

udclient [global-args...] [global-flags...]
shutdownAgent [args...]

Options

-agent, --agent
 Required. Name / ID of the Agent to shut down

testAgent
Test an agent.

Format

udclient [global-args...] [global-flags...]
testAgent [args...]

Options

-agent, --agent
 Required. Name / ID of the Agent to shut down

Command Line Client
(CLI) Reference

243

updateUser
Add a new user This command takes a JSON request body. Use the -t flag to view the template for the
data required for this command.

Format

 udclient [global-args...] [global-flags...]
 updateUser [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command for
 requirements.

Options

 -user, --user
 Required. Name of the user

244

Glossary
A
agent An agent is a lightweight process that runs on a host and communicates with

the uDeploy server. Agents manage the resources that are the actual deployment
targets.

agent pools An agent pool helps you organize and manage agents installed in different
environments.

agent relays An agent relay is used to communicate with remote agent. An agent relay requires
that only a single machine in the remote network contact the server.

applications An application is the mechanism that initiates component deployment; they
bring together components with their deployment target and orchestrates multi-
componet deployments. An Application must have one component.

application process An application process can run automatically, manually, or on a user-defined
schedule. An application process can orchestrate the entire process including
putting servers on-and-off line for load-balancing as required.

Application Security Report The application security report provides information about user roles and
privileges defined for uDeploy-managed applications.

artifacts Artifacts are files, images, databases, configuration materials, or anything else
associated with a software project.

B
blackout Blackouts are set per-environment, per-application. Once set, no deployments

(nor Snapshots) can be scheduled to occur in that Environment. Any previously
scheduled deployments to the Environment will fail if they fall within the blackout
date you set.

C
CodeStation CodeStation is uDeploy's artifact repository. It provides secure and tamper-proof

storage. It tracks artifact versions as they change and maintains an archive for each
artifact.

components A component represents deployable items along with user-defined processes that
operate on it. Components are deployed to a resource by agents.

component inventory A component inventory tells you what version of the component is running on a
resource.

component process A component process is a series of user-defined steps that operate on a components
artifacts.

Component Security Report A component security report provides information about user roles and privileges
defined for components.

Glossary

245

component template Component templates enable you save and reuse component processes and
properties. Components based on templates inherit the template's properties and
process.

D
deployment A deployment is the process of moving software through various preproduction

stages to final production.

Deployment Average Duration
Report

A deployment average duration report provides the average deployment time for
applications executed during a user-specified reporting period.

Deployment Count Report A deployment count report provides information about the number of deployments
executed during a user-specified reporting period.

Deployment Detail Report The deployment detail report provides information about deployments executed
during a user-specified reporting period.

Deployment Reports A deployment report provides information about user roles and privileges defined
with the uDeploy security system.

Deployment Total Duration
Report

A deployment total duration report provides total deployment for applications
executed during a user-specified period.

design space The process editor's work area, where plug-in steps are configured and process
flows defined.

digital certificate A digital certificate is a cryptographically signed document intended to assure
others about the identity of the certificate's owner.

E
environment An environment is a user-definded collection of one or more resources that host an

application. At least one environment must be associated with the process before
the process can be executed.

environment inventory An environment inventory tells you both what versions of any given component
is running on a particular resource.

Environment Security Report An environment security report provides information about user roles and
privileges defined for environments.

F
full version A full version contains all component artifacts.

I
incremental version An incremental version contains only artifacts that have been modified since the

previous version was created.

Glossary

246

L
LDAP A lightweight directory access protocol (LDAP) is a widely used protocol used to

access distributed directory information over the internet protocol (I.P) networks.

lock A lock is routinely used to ensure that processes do not interfere with one another.

N
notifications Notifications play a role in approving deployments: uDeploy can be configured

to send out an e-mail to either a single individual or to a group or people (based
on their security role) notifying them that they need to approve a requested
deployment.

notification scheme A notification scheme enables uDeploy to send out notifications based on events.
For example, the Default Notification scheme will send out an e-mail when an
Application Deployment fails or succeeds.

P
plug-ins A plug-in is the integration with third-party tools.

process Processes play a coordination role. They are authored using a visual drag-n-drop
editor.

process editor A process editor is a visual drag-and-drop editor that enables you to drag process
steps onto the design space and configure them as you go.

processing property A processing property is a way to add user-supplied information to a process.

proxy resource A proxy resource is a resource effected by an agent on a host other than the one
where the resource is located.

R
relay servers A relay server enables network-to-network communication.

remote agents A remote agent is an agent that will communicate with the server via an agent
relay.

resource A resource is a user-defined construct based on uDeploy's architectural model. A
resource represents a deployment target.

resource group A resource group is a group of resources used to help organize and manage the
agent installed in a different environment.

Resource Security Report A resource security report provides information about user roles and privileges
defined for resources.

role A role enables you to further refine how a resource is utilized, and is similar to
subresources.

Glossary

247

S
schema A schema is a visual representation of the different parts of uDeploy that may be

secured. Each Schema interacts with users indirectly, through the role.

SSL A secure socket layer (SSL) enables clients and servers to communicate securely
by encrypting all communications.

Security Reports A security report provides information about user roles and privileges.

snapshot A snapshot is a collection of specific component versions, usually versions that
are known to work together.

stateless Stateless means the server retains little session information between requests, and
each request contains all information needed to handle it.

subresource A subresource enables you to apply logical identifiers or categories within any
given group.

switch step A switch step enables you to create conditional processes.

U
uncontrolled environment A uncontrolled environment is an environment that does not contain approvals

approval gates.

user impersonation uDeploy can use user impersonation when an agent must execute a command for
which it might not otherwise have permission.

V
version A version is set each time a component changes. There are two types of versions

a full version and an incremental version.

248

Index
Symbols
"/" character in step names, 170
${p:application/propertyName}, 181
${p:environment/propertyName}, 102, 181
${p:propertyName}, 182
${p:stepName/propName}, 173, 180
${p:system/propertyName}, 154, 182
${p:version.name}, 181

A
active inventory status, 74
active status, 105, 105, 106
Add Inventory Update plug-in step, 149
Add Status dialog box, 148
addAgentToPool, 188
adding components to applications, 98
adding environments to applications, 100
Admin Group, 141
administrator role, 145
agent, 92

agent pools, 95
installing, 37
remote agents, 93

agent default permissions, 139
agent pool default permissions, 140
agent pool roles (security), 136
agent pools, 95
agent.id, 182
agent.name, 183
anchor point, 55
anonymous LDAP access, 143
application default permissions, 140
application process

manual task, 107
application process steps

Finish, 104
Install Component, 104
Manual Application Task, 107
Rollback Component, 106
Uninstall Component, 105

application properties, 181
application role, 103
application roles (security), 137
application.id, 182
application.name, 182
ApplicationDeploymentFailure, 82, 107, 153
ApplicationDeploymentSuccess, 82, 107, 153
applications, 96

add environment, 100
adding components, 98

creating, 97
creating processes, 103
exporting, 98
importing, 100
manual task, 107
mapping resources, 101
offline agent, 104
process steps, 104
processes, 102
role, 103

Applications tab (security), 144
Approval Failed, 82, 107, 153
ApprovalCreated, 82, 107, 153
Approve Group, 141
approver role, 145
Authentication Realm Users pane, 143
authentication realms, 142

authentication realms precedence, 142
creating, 142
creating LDAP realm, 142
types, 142

Authentication Realms pane, 142
authorization realms, 140

internal storage, 140
Authorization Realms pane, 140
automatic version import check period, 154

B
base search directory, 141, 143
blackout, 116

C
Calendar tab (security), 144
CLI, 185
CLI command format, 185
CodeStation, 14
com.sun.jndi.ldap.LdapCtxFactory, 142
command element (plug-in), 171
command line interface (CLI), 185
component default permissions, 140
component process steps

Manual Task, 82
component process type, 74
component processes, 72

manual task, 82
component role, 74, 149
component roles (security), 137
component template default permissions, 140
component template roles (security), 137
component version

auto, 71
creating, 70
deleting, 72

Index

249

full or incremental, 70
inactivating, 72
status, 72

component.id, 182
component.name, 182
components

adding to applications, 98
manual task, 82
post-processing, 83
process type, 73
processes, 72
role, 74
versions, 69

Components tab (security), 144
configuration engineer role, 145
Configuration Group, 141
Configuration Manager role , 145
Configuration tab (security), 144
connection tool, 79
context factory, 142
create and manage resource roles, 145
create applications (security), 145
create component templates (security), 145
create components (security), 145
Create New Authentication Realm pane, 142, 142
create subresources, 145
createAgentPool, 197
createResource, 201
creating application processes, 103
creating applications, 97
creating groups, 141
creating plug-ins, 167, 174
creating security roles, 135, 136

D
Dashboard tab (security), 144
default groups, 141
Default Permissions pane, 139
default security permissions, 139
default users, 141
deleteAgent, 206
deleteAgentPool, 206
deleteResource, 207
deleting component version, 72
Deploy Group, 141
Deployment Detail report, 118
deployment engineer role, 144
deployment reports, 117

Deployment Detail, 118
DeploymentReadied, 82, 107, 153
deployserver.out, 150
digital certificates, 22
disaster recovery, 17

E
enforce complete snapshots, 97
environment default permissions, 140
environment properties, 102, 181
environment roles (security), 138
environment.id, 182
environment.name, 182
environments, 100

adding to applications, 100
mapping resources, 101

escaped property characters, 184
execute permission, 135
exitCode, 82, 183
exporting applications, 98

F
file system basic, 164
file system versioned, 164
Finish process step (application), 104
full component version, 70

G
getAgent, 208
getAgentPool, 209
getAgentPools, 209
getAgents, 209
getApplicationProperties, 211
getApplicationProperty, 211
getComponentEnvironmentProperties, 212
getComponentEnvironmentProperty, 212
getComponentProperties, 214
getComponentProperty, 214
getEnvironmentProperties, 215
getEnvironmentProperty, 215
getEnvironmentsInApplication, 216
getGroupsForResource, 216
getMappingsForApplicationEnvironment, 217
getMappingsForGroup, 217
getResourceProperties, 219
getResourceSecurity, 220
getRolesForResource, 222
getSystemProperties, 222
getSystemProperty, 223
global properties, 154, 182
groups, 141

H
hours to clean version, 154

I
importing applications, 100
inactivateEnvironment, 224

Index

250

inactivating component version, 72
incremental component version, 70
info.xml, 174
Install Component process step (application), 104
installAgent, 225
installation

roadmap, 24
installing agents, 37
installing plug-ins, 146, 168
Internal Security authorization realm, 140
internal storage authorization realms, 140
inventory status, 148
Inventory Update process step, 149

J
Java home path, 93
java.util.Properties, 172, 180
JavaScript Object Notation, 10
JMS communication, 10
JSON, 10

K
keystore, 42, 42
keytool, 43

L
LDAP

anonymous access, 143
context factory, 142
creating authorization realm, 142
group name, 141
group search base, 141
group search filter, 141
search connection DN, 143
URL, 142
user DN pattern, 142
user group attribute, 141

LDAP filter expression, 143
LDAP URL, 142
license default permissions, 140
license roles (security), 138
licenses, 149
Lightweight Directory Access Protocol, 134
lines of interest, 82, 173, 183
LOCAL SYSTEM account, 38
local user credentials, 21
locks, 146
log files, 150, 153
Log4j, 150
LOI, 82, 183

M
mail server, 154

manage licenses (security), 145
manage plug-ins (security), 145
manage snapshots (security), 137
Manual Application Task process step (application), 107
manual task (application), 107
manual task (component, 82
Manual Task component process step, 82
mapping resources to an environment, 101
mutual authentication, 42
mutual key-based authentication, 21

N
network relay, 150
notification scheme, 97
notifications, 151

O
offline agent handling, 104
operation tools, 142
Oracle

installing, 32
supported editions, 31

output log, 153

P
plug-in

command element, 171
creating, 167
example, 174
info.xml, 174
installing, 146, 168
plugin.xml, 168, 178
post-processing element, 172, 180
step name, 170
step-type, 170
upgrading, 173

plug-in command element, 171
plug-in step structure, 175
plug-in step-type, 170
plugin.xml, 168, 178
plugins.urbancode.com, 146
post-processes, 83
post-processing element, 172, 180
post-processing properties, 173, 180
post-processing scripts, 147
precondition, 105, 106, 106
process properties, 182
process steps (application), 104
ProcessRequestStarted, 82, 107, 153
properties

${p:version.name}, 181
escaped characters, 184
format, 181

Index

251

property format, 181
proxy host, 94

Q
quick start

applications, 26
deployments, 27
installation, 24

R
read permission, 135, 136
relocating CodeStation, 15
remote agent, 93
removeAgentFromPool, 228
removeMapping, 231
removeVersionStatus, 237
Reports tab (security), 144
required component role, 149
resource default permissions, 140
resource group default permissions, 140
resource roles (security), 138
resource.id, 182
resource.name, 182
resources

agent pools, 95
agents, 92
mapping to an environment, 101
remote agents, 93

Resources tab (security), 144
REST-based user interface, 11
roadmap, 24
role (applications), 103
role (component), 74
Rollback Component process step, 106
rollback source, 106
rolling deployment, 50, 74
run component processes (security), 137

S
scanner, 173
scanner.scan();, 173, 180
SE_ASSIGNPRIMARYTOKEN_NAME, 21
SE_INCREASE_QUOTA_NAME, 21
SE_INTERACTIVE_LOGON_NAME, 21
search base, 141, 143
secure socket layer, 41
security

agent roles, 136
application roles, 137
authentication realms, 142
component roles, 137
component template roles, 137
creating roles, 135, 136

default permissions, 139
environment roles, 138
license roles, 138
resource roles, 138
server roles, 145
system security, 145
Web UI roles, 144

security (system security), 145
security areas, 134
security overview, 134
security permissions

execute, 135
read, 135, 136
security, 135, 136
write, 135, 136

security reports, 128
security role permission, 135, 136
security roles—creating, 135, 136
security token, 143
server

user account, 29
server roles (security), 145
setSystemProperty, 241
Settings tab (security), 144
shutdownAgent, 242
source configuration, 163

file system basic, 164
file system versioned, 164

SSL configuration, 41
SSL mutual key-based authentication, 21
staged inventory status, 74
staged status, 105, 105, 106
standard out, 34
statuses, 148
step name forbidden character, 170
step-type, 175
sudo, 21
System Administrator role , 145
system properties, 153
system security

create applications, 145
create component templates, 145
create components, 145
create subresources, 145
manage licenses, 145
manage plug-ins, 145
security, 145

system security area, 134
system settings, 146, 154

installing plug-ins, 146
licenses, 149
locks, 146
logging settings, 150
network relay, 150

Index

252

output log, 153
post-processing scripts, 147

T
task (application), 107
task (component), 82
TaskCreated, 82, 107, 153
Template Name field, 82, 107
testAgent, 242
token, 143

U
udclient, 185
UI security area, 134
Uninstall Component process step (application), 105
unique status setting, 149
upgrade.xml, 167
upgrading plug-ins, 173
UrbanCode Plug-in Page, 146
user directory entry pattern, 142
user group attribute, 141
user groups, 141
user impersonation, 20
user search base, 141, 143

V
version (component), 69
version status, 148
version.ID, 182
version.name, 182

W
Web UI roles (security), 144
Web UI security

Applications tab, 144
Calendar tab, 144
Components tab, 144
Configuration tab, 144
Dashboard tab, 144
Reports tab, 144
Resources tab, 144
Settings tab, 144
Work Items tab, 144

Work Items tab (security), 144
write permission, 135, 136

	uDeploy® User Guide
	Table of Contents
	About This Book
	How This Book is Organized
	Product Support
	Document Conventions

	Introduction
	Overview
	Components
	Component Processes
	Plug-ins
	Component Versions and the CodeStation Repository

	Applications
	Application Process
	Environments
	Snapshots

	Agents
	Resources
	Resource Groups

	Architecture
	Service Tier
	Clients

	Data Tier
	Relational Database
	File Storage—CodeStation
	Relocating Codestation

	Data Center Configuration
	Cold Standby
	Platform Considerations
	Recommended Server Installation
	Agent Minimum Requirements

	Typical Data Center Configurations
	Recovery Using a Database Back-up

	Agents
	Server-Agent Communication
	Remote Agents--Crossing Network Boundaries and Firewalls
	Agent Security
	User Impersonation
	Using su/sudo
	Impersonation on Windows Systems

	SSL Mutual Key-based Authentication

	Getting Started
	uDeploy Roadmap
	Installing and Upgrading Servers and Agents
	Installation Recommendations
	System Requirements
	Server Minimum Installation Requirements
	Recommended Server Installation
	Agent Minimum Requirements
	32- and 64-bit JVM Support
	Performance Recommendations

	Download uDeploy
	Database Installation
	Installing Oracle
	Installing MySQL
	Installing Microsoft SQL Server

	Server Installation
	Windows Server Installation
	Unix/Linux Installation

	Agent Installation
	Installing an Agent
	Connecting Agents to Agent Relays

	Installing Agent Relays
	Upgrading uDeploy
	SSL Configuration
	Configuring SSL Unauthenticated Mode for HTTP Communications
	Configuring Mutual Authentication

	Running uDeploy
	Running the Server
	Running an Agent
	Running an Agent Relay
	Accessing uDeploy

	Quick Start—helloWorld Deployment
	Creating Components
	helloWorld Deployment
	A Note Before You Begin

	helloWorld Component Version
	Component Process
	helloWorld Process Design
	helloWorld Application
	Creating an Application
	Adding the helloWorld Component to the Application
	Adding an Environment to the Application
	Adding a Process to the Application
	Designing the Process Steps
	Running the Application

	Using uDeploy
	Components
	Creating Components
	Importing/Exporting Components
	Exporting Components
	Importing Components
	To Import a Component

	Component Properties

	Component Versions
	Importing Versions Manually
	Importing Versions Automatically
	Component Version Statuses
	Deleting Component Versions

	Component Processes
	Configuring Component Processes

	Process Editor
	To Display the Process Editor
	Using the Process Editor
	Adding Process Steps
	Connecting Process Steps
	Process Properties
	Switch Steps and Conditional Processes
	Process Step Properties

	Component Manual Tasks
	Creating Component Manual Tasks
	Using Component Manual Tasks

	Post-Processes
	Component Templates
	Creating a Component Template
	Importing\Exporting Templates
	Exporting Templates
	Importing Templates

	Component Template Properties
	Using Component Templates
	Configuration Templates

	Component Change Logs
	Deleting and Deactivating Components

	Resources
	Resource Groups
	Creating a Resource Group

	Resource Roles
	Role Properties

	Agents
	Remote Agent Installation
	Managing Agents Remotely

	Agent Pools
	Creating an Agent Pool
	Managing Agent Pools

	Applications
	Creating Applications
	Adding Components to an Application
	Importing/Exporting Applications
	Exporting Applications
	Importing Applications
	To Import an Application

	Application Environments
	Creating an Environment
	Mapping Resources to an Environment
	Environment Properties

	Application Processes
	Creating Application Processes

	Application Process Steps
	Application Process Steps Details
	Finish
	Install Component
	Uninstall Component
	Rollback Component
	Manual Application Task (Utility)

	Application Manual Tasks
	Creating Application Manual Tasks
	Using Manual Tasks

	Approval Process
	Work Items

	Snapshots
	Creating Snapshots
	Snapshot Versions
	Snapshot Configuration
	Using Snapshots

	Application Gates
	Creating Gates

	Deployments
	Scheduling Deployments

	Reports
	Deployment Reports
	Deployment Detail Report
	Deployment Detail Fields
	Running the Deployment Detail Report
	Sample Reports

	Deployment Count Report
	Deployment Count Table Fields
	Running the Deployment Detail Report
	Sample Reports

	Deployment Average Duration Report
	Deployment Average Duration Fields
	Running the Deployment Average Duration Report
	Sample Reports

	Deployment Total Duration Report
	Deployment Total Duration Fields
	Running the Deployment Total Duration Report
	Sample Reports

	Security Reports
	Application Security Report
	Application Security Fields

	Component Security Report
	Component Security Fields

	Environment Security Report
	Environment Security Fields

	Resource Security Report
	Resource Security Fields

	Saving and Printing Reports
	Saving Report Data
	Saving Report Filters
	Printing Reports

	Administration
	uDeploy Security
	Roles and Permissions
	Default Roles
	Creating and Editing Roles
	Agent Roles
	Application Roles
	Component Template Roles
	Component Roles
	Environment Roles
	License Roles
	Resource Roles

	Default Permissions
	Setting Default Permissions

	Authorization Realms
	Creating an LDAP Authorization Realm
	Groups

	Authentication Realms
	Creating an Authentication Realm
	Creating an LDAP Authentication Realm

	Creating Users
	Importing LDAP Users
	To Import LDAP Users

	Tokens
	User Interface Security
	System Security

	System Settings
	Installing Plug-ins
	Locks
	Managing Locks

	Post-Processing Scripts
	Inventory and Component Statuses
	Creating Statuses
	Using Statuses

	Licenses
	Adding a License
	Adding Agents to a License
	Modifying or Deleting a License

	Log Settings
	Network Settings
	Notifications
	Output Log
	System Properties
	System Settings
	Preview Version Cleanup

	Configuration
	Application Configuration
	Adding Application Configuration Properties
	Modifying and Deleting Application Configuration Properties

	Component Configuration
	Environment Configuration

	Inventory
	Resources Inventory
	Component Inventory
	Environment Inventory

	Reference
	Component Source Configuration
	Basic Fields
	File System (Basic and Versioned)
	File System (Basic)
	File System (Versioned)

	Plug-ins
	Standard Plug-ins
	Creating Plug-ins
	The plugin.xml File
	The <header> Element

	Plug-in Steps--the <step-type> Element
	Step Properties--the <properties> Element

	The <command> Element
	The <post-processing> Element
	Upgrading Plug-ins
	The info.xml File

	Example Plug-in
	Step Properties
	Step Commands
	create_file.groovy

	The <post-processing> Element

	uDeploy Properties
	Command Line Client (CLI) Reference
	Command Format
	Commands
	addActionToRoleForApplications
	addActionToRoleForComponents
	addActionToRoleForEnvironments
	addActionToRoleForResources
	addActionToRoleForUI
	addAgentToPool
	addComponentToApplication
	addGroupToRoleForApplication
	addGroupToRoleForComponent
	addGroupToRoleForEnvironment
	addGroupToRoleForResource
	addGroupToRoleForUI
	addLicense
	addNameConditionToGroup
	addPropertyConditionToGroup
	addResourceToGroup
	addRoleToResource
	addRoleToResourceWithProperties
	addUserToGroup
	addUserToRoleForApplication
	addUserToRoleForComponent
	addUserToRoleForEnvironment
	addUserToRoleForResource
	addUserToRoleForUI
	addVersionFiles
	addVersionStatus
	createAgentPool
	createApplication
	createApplicationProcess
	createComponent
	createComponentProcess
	createDynamicResourceGroup
	createEnvironment
	createGroup
	createMapping
	createResource
	createResourceGroup
	createRoleForApplications
	createRoleForComponents
	createRoleForEnvironments
	createRoleForResources
	createRoleForUI
	createSubresource
	createUser
	createVersion
	deleteAgent
	deleteAgentPool
	deleteGroup
	deleteResource
	deleteResourceGroup
	deleteResourceProperty
	deleteUser
	exportGroup
	getAgent
	getAgentPool
	getAgentPools
	getAgents
	getApplication
	getApplicationProcess
	getApplicationProcessRequestStatus
	getApplicationProperties
	getApplicationProperty
	getApplications
	getComponent
	getComponentEnvironmentProperties
	getComponentEnvironmentProperty
	getComponentProcess
	getComponents
	getComponentsInApplication
	getComponentProperties
	getComponentProperty
	getEnvironment
	getEnvironmentProperties
	getEnvironmentProperty
	getEnvironmentsInApplication
	getGroupsForResource
	getMapping
	getMappingsForApplicationEnvironment
	getMappingsForGroup
	getResource
	getResourceGroup
	getResourceGroups
	getResourceProperties
	getResourceProperty
	getResources
	getResourcesInGroup
	getResourceSecurity
	getRoleForApplications
	getRoleForComponents
	getRoleForEnvironments
	getRoleForResources
	getRoleForUI
	getRolesForResource
	getSystemProperties
	getSystemProperty
	getUser
	importGroup
	importVersions
	inactivateEnvironment
	installAgent
	login
	logout
	removeActionFromRoleForApplications
	removeActionFromRoleForComponents
	removeActionFromRoleForEnvironments
	removeActionFromRoleForResources
	removeActionFromRoleForUI
	removeAgentFromPool
	removeGroupFromRoleForApplication
	removeGroupFromRoleForComponent
	removeGroupFromRoleForEnvironment
	removeGroupFromRoleForResource
	removeGroupFromRoleForUI
	removeMapping
	removeResourceFromGroup
	removeRoleForApplications
	removeRoleForComponents
	removeRoleForEnvironments
	removeRoleForResources
	removeRoleForUI
	removeRoleFromResource
	removeUserFromGroup
	removeUserFromRoleForApplication
	removeUserFromRoleForComponent
	removeUserFromRoleForEnvironment
	removeUserFromRoleForResource
	removeUserFromRoleForUI
	removeVersionStatus
	repeatApplicationProcessRequest
	requestApplicationProcess
	restartAgent
	setApplicationProperty
	setComponentProperty
	setComponentEnvironmentProperty
	setEnvironmentProperty
	setResourceProperty
	setSystemProperty
	shutdownAgent
	testAgent
	updateUser

	Glossary
	Index

