
uDeploy™ User Guide
uDeploy 4.4.0

Document Version 4.4.0.1

 | Introduction | 2

 | TOC | 3

Contents

Chapter 1: About This Guide...7

Part I: Introduction...9
Overview... 10
Important Concepts... 15
Architecture and Technology.. 19
Conventions...21

Part II: Hands-On... 23
Getting Started...24
Creating Components..24
hello_world Component Version.. 25
Hello World Component Process..29
hello_world Component Process Design.. 30
Hello World Application... 34

Part III: Using uDeploy.. 45
Components...46

Creating Components..47
Resources...49

Resource Groups... 51
Applications...52
Deployments..53

Advanced Deployments.. 53
Schedule Deployments.. 59
Work Items.. 61

Part IV: Administration... 63
Installation...64

System Requirements..64
Download UrbanDeploy..66
Database Installation... 66
Server Installation..68
Agent Installation.. 70
Running uDeploy.. 71

Security..72
Authentication... 73
Authorization...76
Default Permissions...78
Role Configuration..82
User Interface Security..85
System Security...88

Settings.. 92
Licenses... 94
Network Settings... 96

 | TOC | 4

Notification Schemes.. 98
Properties...100
System Settings... 102

Part V: Reference..105
Plug-in Integration...106

Ant Plug-in.. 107
Groovy Plug-in..107
IIS_AppCmd Plug-in...107
JBOSS Plug-in...108
SQL/JDBC Plug-in..108
SQLPLUS Plug-in...108
Tomcat Plug-in..108
WebSphere Plug-in..109
WLDeploy Plug-in.. 110
Advanced Automation Steps...110
Plug-in Automation... 110

Source Configuration Reference... 111
AntHillPro... 111
PVCS Version Manager.. 111
Perforce... 112
Luntbuild... 112
Maven..112
Jenkins...112
File System..112
Team Forge..113
Team City..113
Subversion...113
Team Foundation Server (TFS)...113

Notifacations... 113
Configuration...116

Application Configuration...117
Component Configuration...119
Environment Configuration...122

Inventory... 124
CLI Reference... 126

addActionToRoleForApplications.. 126
addActionToRoleForComponents...126
addActionToRoleForEnvironments.. 127
addActionToRoleForResources.. 127
addActionToRoleForUI...128
addComponentToApplication... 128
addGroupToRoleForApplication...128
addGroupToRoleForComponent...129
addGroupToRoleForEnvironment...129
addGroupToRoleForResource...130
addGroupToRoleForUI... 130
addLicense...130
addNameConditionToGroup...131
addPropertyConditionToGroup...131
addResourceToGroup..132
addRoleToResource.. 132
addRoleToResourceWithProperties.. 132
addUserToGroup... 133
addUserToRoleForApplication... 133

 | TOC | 5

addUserToRoleForComponent... 134
addUserToRoleForEnvironment... 134
addUserToRoleForResource... 135
addUserToRoleForUI..135
addVersionFiles...135
addVersionStatus...136
createApplication...136
createApplicationProcess.. 137
createComponent...137
createComponentProcess...138
createDynamicResourceGroup..138
createEnvironment...139
createGroup... 139
createMapping... 139
createResourceGroup.. 140
createRoleForApplications..140
createRoleForComponents.. 141
createRoleForEnvironments..141
createRoleForResources..141
createRoleForUI.. 142
createSubresource..142
createUser..142
createVersion...143
deleteGroup... 143
deleteResourceGroup.. 143
deleteResourceProperty...144
deleteUser..144
exportGroup...144
getApplication... 145
getApplicationProcess...145
getApplicationProcessRequestStatus.. 145
getApplications..146
getComponent... 146
getComponentProcess... 146
getComponents..147
getComponentsInApplication..147
getEnvironment... 147
getEnvironmentsInApplication... 148
getMapping..148
getResource... 148
getResourceGroup... 149
getResourceGroups... 149
getResourceProperty... 149
getResources..150
getResourcesInGroup.. 150
getRoleForApplications...150
getRoleForComponents...151
getRoleForEnvironments...151
getRoleForResources...151
getRoleForUI...152
getUser...152
importGroup.. 152
importVersions.. 153
login...153
logout...153
removeActionFromRoleForApplications..154

 | TOC | 6

removeActionFromRoleForComponents.. 154
removeActionFromRoleForEnvironments..154
removeActionFromRoleForResources..155
removeActionFromRoleForUI.. 155
removeGroupFromRoleForApplication.. 156
removeGroupFromRoleForComponent.. 156
removeGroupFromRoleForEnvironment.. 156
removeGroupFromRoleForResource.. 157
removeGroupFromRoleForUI...157
removeResourceFromGroup... 158
removeRoleForApplications... 158
removeRoleForComponents..158
removeRoleForEnvironments... 159
removeRoleForResources... 159
removeRoleForUI..159
removeRoleFromResource..160
removeUserFromGroup...160
removeUserFromRoleForApplication...161
removeUserFromRoleForComponent...161
removeUserFromRoleForEnvironment...161
removeUserFromRoleForResource...162
removeUserFromRoleForUI... 162
repeatApplicationProcessRequest... 163
requestApplicationProcess.. 163
setComponentEnvironmentProperty... 163
setComponentProperty.. 164
setResourceProperty..164
updateUser...165

Chapter

1
About This Guide

uDeploy™ automates software deployment. This guide describes how to
install, use, and administor uDeploy.

This guide consists of the following sections.

Introduction

• Overview
• Concepts
• Architecture and Technology
• Conventions

Hands-On

• Introduction
• Hands-on
• Using uDeploy
• Adminstration
• Reference

Using uDeploy

• Introduction

as
• Hands-on

ss
• Using uDeploy

sd
• Adminstration

sd
• Reference

sd

Adminstration

• Introduction

as
• Hands-on

ss
• Using uDeploy

 | About This Guide | 8

sd
• Adminstration

sd
• Reference

sd

Reference

• Introduction

as
• Hands-on

ss
• Using uDeploy

sd
• Adminstration

sd
• Reference

sd

Part

I
Introduction

Topics:

• Overview
• Important Concepts
• Architecture and Technology
• Conventions

 | Introduction | 10

Overview
uDeploy is an application release automation tool that enables you to dramatically reduce deployment times. With
its easy to use drag-and-drop interface, you can efficiently model N-tiered applications and create transparent
deployment processes for any environment—regardless of the build tools you use.

uDeploy helps you rapidly adapt to ever-changing market conditions by providing:

• continuous deployment using automated triggers
• scheduled deployments
• self-service deployments with per-environment access control
• automatic deployments synchronized with source control tools
• auto-trigger smoke tests
• automatic deployment roll-back
• integration with authentication systems such as LDAP
• artifact repository
• tight SCM integration
• build tool integration with such tools as Ant, and Maven

uDeploy-managed applications are usually deployed into N-tiered environments that consist of many machines,
systems, and networks. Typically, the deployable artifacts for each tier are logically combined into what UrbanCode
calls a component. Components are then combined into applications that coordinate and perform the deployment.
Complex deployments can contain numerous components. Components can also remain independent of one another,
which enables incremental or targeted deployments. uDeploy is flexible and works the way you work.

Of course, you can model your components as you see fit. uDeploy provides the tools to manage components for any
type of environment, such as:

• QA—automated test environment
• User Acceptance Testing—business requirements testing
• Stage—final testing environment
• Production—live environment with customer access
• Disaster Recovery—production clone used for application failure

uDeploy Software Elements

• Server. The server provides critical services such as the user interface, component configuration tools, work flow
engine, and security service, among others. See xxxx.

• Agent. An agent is a lightweight process that communicates with the uDeploy server. Because agents perform the
actual deployment work, each machine participating in a deployment should have its own agent installed on it.
When not performing a deployment, agents run in the background with minimal overhead. See xxxx.

• Repository. The artifact repository—CodeStation-- provides secure and tamper-proof artifact storage. The
repository uses content-addressable storage to maximize efficiency. It tracks artifact versions as they occur, and
maintains an artifact archive. See xxxx.

Important Terms

• Component. Components contain the content that gets deployed, such as: application code, file system files,
database updates, middle ware configurations, etc. The deployable artifacts are combined with processes that
define deployments, rollbacks, or run book processes. See xxxx.

• Resource. A resource represents a deployment target along with its configuration and security information.
While most resources are configured for a single machine/environment, they can be configured for multiple
environments. Resources are created and managed through the user interface. See xxxx.

• Application. An application is a user-defined model that coordinates multi-component deployments. Coordination
is achieved by defining the components, processes, and environments used by the deployment. See xxxx.

 | Introduction | 11

uDeploy Server

The uDeploy server provides critical services such as the user interface, component and application configuration
tools, work flow engine, security service, and artifact repository, among others. The server also provides tools to
determine whether a deployment succeeds or fails, as well as the information needed to correct the problem or roll it
back.

See xxxx.

 | Introduction | 12

Figure 1: uDeploy Server Services

 | Introduction | 13

Agents

An agent is a lightweight process that communicates with the uDeploy server. Each machine that participates in a
deployment usually has an agent deployed on it. Sometimes a deployment will involve a large number of agents. A
deployment requires at least one agent.

Agents are unobtrusive and secure. Agent communications use SSL encryption and mutual key-based authentication.
For added security, the agent process does not listen for connections on any ports: instead it opens a connection to the
server.

An agent has minimal impact on the performance of the host machine. When not performing a deployment, the agent
process runs in the background with almost no CPU or memory usage.

See xxxx.

Relay Servers

Many deployments involve multiple networks or data centers. uDeploy supports cross-network deployments with
relay servers. Relay servers enable network-to-network communications by using only a single hole in the firewall on
each network. Relay servers simplify setup, configuration, maintenance, and security. See xxxx.

Components

Components model the content—the artifacts--that get deployed, such as:

• application code
• static content
• database updates
• middleware configurations

A web application, for example, might consist of a web component containing static content served by the HTTP
server (perhaps a large number of files and images); a middleware component containing an EAR file that gets
deployed to a J2EE container; and a database component that contains database changes.

As a component changes, it is assigned a unique version ID. Every time a component is imported, it is assigned a new
version ID. Versions can be full or incremental. A full version contains all component files; an incremental version
only contains the files modified since the previous version.

The actual artifacts modeled by a component are stored in a repository, such as CodeStation or Maven. The
component contains references to the artifacts.

Component Processes

As used by uDeploy, a process is a series of user-configured steps that instruct uDeploy's automation (or workflow)
engine to perform some action. Processes are modeled with uDeploy’s drag-and-drop editor and can be as complex as
needed--steps can run sequentially or in parallel. Components are versioned during configuration.

Process steps are either manual or automatic. Manual steps are managed by the server's work-item list service.
Automated steps are provided by plug-ins. Plug-ins provide integration with external systems such as middleware,
databases, and other systems that receive deployments, or uDeploy interacts with in some manner. See xxxx.

For example, deploying a J2EE EAR file to WebSphere typically consists of the following automated steps: .

1. transfer the EAR file to the target machine
2. stop the WebSphere server instance
3. invoke wsAdmin with deployment properties
4. start the WebSphere instance
5. verify that the deployment succeeded by accessing a specified URL

In uDeploy, each item is an automated, transparent, and easily configurable step.

 | Introduction | 14

Repository

The uDeploy artifact repository—CodeStation-- provides secure and tamper-proof artifact storage. The repository
uses content-addressable storage to maximize efficiency. It tracks artifact versions as they change and maintains an
archive for each artifact. Associations between repository files and components is built-in and automatic.

How It Is Populated

The artifact repository can be populated in a number of ways, including but not limited to:

• middleware code taken automatically from a build tool
• database updates pulled directly from a source control tool
• front-end web content retrieved from a network drop-box

Resources

A resource represents an agent along with its configuration and security information. While most agents are
configured for a single machine/environment, agents can be configured for multiple environments. Resources are
created and managed through the user interface.

Resource Groups

A resource group is a logical collection of resources. Resource groups are used to manage agents installed in different
environments.

Proxy Resources

A proxy resource is a resource effected by an agent on a machine other than the one where the resource is located. If
a deployment does not require direct interaction with the file system or with process management on the resource's
machine, a proxy resource can be used. When a deployment needs to interact with a service exposed on the network
(a database or J2EE server, for instance), the interaction can happen from any machine that has access to the
networked service.

See xxxx.

Applications

An application is a user-defined process that coordinates multi-component deployments. Coordination is achieved by
defining the components, resources, processes, and environments used by the deployment.

Applications run deployments.

Rollbacks

Application deployments, especially production deployments, require built-in rollback support. Applications can be
configured with an automatic rollback step.

Environments

An environment is a collection of resources that host an application. Environments typically include host machines
and uDeploy agents. A deployment always runs in an environment. While environments are collections of resources,
resources can vary per environment.

Snapshots

A snapshot is a collection of specific components versions, usually versions that are known to work together. A
snapshot represents the current state of an application in the environment.

Deployments

Deployments are run by applications. Deployments can be run manually through the uDeploy user interface,
automatically by some trigger condition, or on a predetermined schedule.

Complex Deployments

 | Introduction | 15

Deployments supporting hundreds of agents without the need for high availability or load balancing can be performed
with a single server. uDeploy supports robust deployments that require both high availability and load balancing. This
requires distributing the server services onto multiple processes and machines.

Plug-in System

A plug-in provides automatic process-steps and integration with third-party applications. The plug-in system enables
you to download and install any of our numerous process and integration tools. Hundreds of out-of-the-box plug-ins
are available. See xxxx.

Plug-in Development

The plug-in system enables anyone to easily create their own plug-in. Plug-ins can be developed in a language of
choice (including scripting languages such as perl, python, and Ruby). The UrbanCode community has a Plug-in
Exchange where third-party plug-ins can be found.

Security

In uDeploy’s role-based security, users are assigned roles, and role-permissions are assigned to things such as
projects, build configurations, and other resources. For example, a developer may be permitted to build a project, but
only view non-project related material. See xxxx.

Configuration Engine

TBD See xxxx.

Package Engine

TBD See xxxx.

Important Concepts
deployment is the process of moving software from various testing and preproduction stages to final deployment

easily visual9ze and model and automate current workflow--big picture; architectural big picture planning and design

visibility into the entire release process and all environments; logical view of your applications, components, and
environments

collaboration

coordinate change tickets, approval, manual, tasks, and user-defined scripts

reporting performance metrics helps resolve conflicts

calendar

templates

developer self-service and rapid problem detection

track the configurations of QA, pre-production, and production systems in one place

tracks history too

full, end-to-end picture of application release status

coordinate the interaction of automated processes

captures, logs, and reports all activities of the release process

snapshot capture configuration state

virtulazition has exacerbated challenges due to proliferation of images across data center environment

 | Introduction | 16

troubleshooting a deployment is just as much a part of the process as any other step

deployments are dynamic with growing and unpredictable life-cycle

deployments are inherently dynamic because each environment can be different and in flux

each deployment is different and tool must be flexible

also, might develop in one environment and deploy in another

understand changes per environment

points of control with optional or manual processes

support virtual, physical, cloud-based environments

flexible extension points

Big picture

• WHAT payload, artifact, binaries, along with configuration information. Abstracted from and independent of
target multiple items delivered at the same time)

• HOW application that deploys artifacts (payload) to target and generate artifacts from the target; configure and
abstracted target model

• WHERE environment-specific target to higher-criticality environment (dev to QA to production)
• VALIDATE ensure success and compliance

modeling enables straightforward config and models but generates artifacts (payloads) from targets

deployment from development to QA to preproduction to production

at deploy time payload of binaries are XML config are feed to deploy process which on the fly translates environment
config info for the different target environments; mechanism then interrogates the target server and only makes
changes necessary to match the abstract model--any point the process can be interrupted and rolled back

quickly troubleshoot and compare from known good version

create inventory of existing configuration

service-based solution

messaging middleware, applications servers, web servers, databases, authorization services

each component must be configured to work with the current version of every other component

model-driven configuration management

role-based access

configuration data model captures a snapshot of an application's environment with its details and interdependencies

automated discovery model existing infrastructure

UrbanDeploy is a complete, extensible platform for deployment automation and management. To accomplish this,
UrbanDeploy's conceptual model allows you to easily gather, organize, and store the files that you need to deploy.
This is done using what is called a Component. In addition, the Component associates the containing files with
the configuration (such as versions and automation processes) necessary to move the files from environment to
environment.

In turn, UrbanDeploy uses what are called Applications that are used to assemble the different Components into a
group. At the Application level, UrbanDeploy allows you to map your deployments to existing environments, as well
as provides a way for you to run a deployment.

Both Components and Applications utilize Processes, which can be thought of as the basic units of automation. At
the Component level, the process is responsible for carrying out the tasks needed to move the components from one
environment. For Applications, the Process generally consists of assembling the components and performing other,
higher-level activities.

 | Introduction | 17

All deployments and rollbacks activities are carried out on agents, called Resources. Each resource is uniquely
identified based on information you give.

Components

A component represents the artifacts that uDeploy deploys. A component wraps and combines artifacts that have
some relationship to one another. For example, a component might represent all the artifacts that are deployed to a
web application.

Also processes.

Components map to the existing tiers of an Application. They contain the "content" that is to be deployed, which
can be a single file, images, a database, etc.: the contents of a Component are called artifacts. Components can
represent configurations, not just code or infrastructure. For example, a Component may hold the application-specific
configuration for WebSphere.

Components are used to import the artifacts you want to deploy. For example, an Application may consist of a WEB
component containing the static content served by the HTTP server for your application; a MID component for
your EAR file deployed to your J2EE container; and a DB component that contains database changes. In this case,
UrbanDeploy treats the contents of each Component as grouping of artifacts.

Components are the point of contact between UrbanDeploy and your build artifacts: the Component is responsible
for pulling in the artifacts that make up an Application. To keep track of changes in the artifacts, Components
are assigned a Version, based on your current versioning scheme. Components also have a second role: they are
responsible for deploying the artifacts that have been imported into UrbanDeploy. This is done via the Process.

Versions. Components change over time: as development continues on the Application, new builds are created and
made ready for deployment. When you import the Components into UrbanDeploy, a Version is created. Versions are
unique and never change. For example, Version 1.0 will include the exact same artifacts as the Component moves
through the production pipeline. Every time a new build is imported into UrbanDeploy, a new Version is created. It is
possible for the Component files to come from sources other than a build: they can come from some other system or
from a user manually uploading files into the repository. UrbanDeploy ships with its own Artifact Repository as well
as with integrations to all leading open-source and commercial repositories.

Versions come in two flavors: Full and Incremental. A Full Version contains all files for a Component, while
Incremental Components contain only the files that have been modified since the previous Version was created.

Processes. Processes are composed of a series of automated Steps that are run when deploying a Component.
Authoring of Processes is performed using a visual drag-n-drop editor, using standard Steps that implement
functionality. The Steps within the Process are designed to replace what is typically performed manually or via a
series of scripts. Deploying a J2EE EAR file to WebSphere typically consists of the following automated steps: (a.)
Transfer the EAR file to the target machine; (b.) stop the WebSphere server instance; (c.) invoke wsAdmin with the
location of the EAR file and appropriate deployment properties; (d.) start the WebSphere instance and verify that the
deployment succeeded by hitting a specified URL. This is a plain-vanilla, out-of-box deployment Process.

In addition to running deployments, Processes can also be used to rollback an Application. The system keeps track of
the history of each Versions it has deployed, so when you create a uninstall Process you typically reverse the order of
a deployment.

Applications

Applications are responsible for bringing together all the Components that need to be deployed together. This is done
by defining the different versions of each component as well as defining the different Environments the Components
must go through on the way to production. In addition, Applications also map the constituent hosts and machines
(called Resources) a Component needs within every Environment.

 | Introduction | 18

Applications also implement automated deployments, rollbacks, etc. These are called Processes; however, at the
Application level Processes are only concerned with the Components and Resources necessary for deployment, etc. --
differentiating Application-processes from those of Components (which are concerned with running commands, etc.).

Applications also introduce Snapshots to manage the different versions of each Component. A Snapshot represents
the current state of an Application in the Environment. Typically, the Snapshot is generated in an Environment that
has no Approval gates -- called an uncontrolled Environment. For most users, the Snapshot is pushed through the
pipeline.

Environments. An Environment is a collection of Resources that host the Application. Environments typically include
host machines and UrbanDeploy agents. When a deployment is run, it is always done so in an Environment. While
Environments are collections of Resources, Resources can vary per Environment.

For example, Environment 1 may have a single web server, a single middleware server, and a single database
server, that must be deployed to; UrbanDeploy represents these as three, separate Resources running in Environment
1. Environment 2, however, may have a cluster of Resources that the same Application must be deployed to.
UrbanDeploy compensates for these differences with Resource Groups (more at Resources by keeping an Inventory
of everything that is deployed to each Environment: UrbanDeploy knows exactly the Environment and Server(s)
where the Application was deployed to: and tracks the differences between the Environments.

Processes. Processes play a coordination role. They are authored using a visual drag-n-drop editor, and composed of
Steps that call the Component Processes. For example, to deploy the Application you may invoke a Process called
Deploy. This Deploy Process would in turn call out to the requisite Components and execute the deployment.

Snapshots. Snapshots specify what combination of Component versions you deploy together. They are models
you create before deploying the Application. A Snapshot specifies the exact version for each Component in the
Application. When a Snapshot is created, UrbanDeploy gathers together information about the Application, including

 | Introduction | 19

the Component versions, for a given Environment. Typically, the Snapshot is generated in an Environment that has no
Approval gates -- called an uncontrolled Environment. For most users, the Snapshot is pushed through the pipeline.
Typically, one of the Environment will always remain uncontrolled to allow for Snapshots. When a successful
deployment has been run in the uncontrolled Environment, a Snapshot is created based on the Application's state
within the Environment: thus capturing the different versions of the Components at that time. As the Application
moves through various testing Environments, for example, UrbanDeploy ensures that the exact versions (bit for
bit) are used in every Environment. Once all the appropriate stages and Approvals for a Snapshot are complete, the
Snapshot is pushed to Production.

Plugins

integrations are provided as Plugins. The Plugin framework allows custom integrations, the loading an unloading
of integrations and updates to one integration without impacting others. Unlike other vendors, UrbanCode does not
charge additional fees for each Plugin. Plugins are a technical solution to the integration problem, not a sales ploy.

Typically, an external tool exposes more than one type of behavior. For this reason, a single integration between The
DevOps Platform and an external tool is made up of one or more Step Types where each Step Type knows how to
invoke a single specific behavior in the external tool and/or extract specific data from the tool or inject specific data
into the tool. For example, an integration with source control tool Subversion would have one Step Type that can
extract source code from Subversion; a second Step Type that can apply a label to Subversion; a third Step Type that
can extract a change log from Subversion; as well as other Step Types. The The DevOps Platform integration with
Subversion is consists of all the Step Types that interact with Subversion.

Every mature process automation tool allows a user to enter the command line to execute and the expected exit code
or tokens within the output that signal success and failure. This functionality exists within The DevOps Platform as
well, but we do not consider this an integration since it does not embody any built-in relationship between the tools.

Command line integrations have a number of clear limitations. They have are restricted to command line work;
wrapper scripts must be used in cases where the integration calls a web service or COM API. Command line
integrations also typically have very limited abilities to capture data from the external tool. The automation tool may
be able to capture a report and make it available for download, but it will be unable to parse that.

a Control Integration prompts the user for information that is required in order to interact with the external tool.
Using that user supplied information, the DevOps Platform knows will how to invoke behavior in the external
tool. Knowing how to determine success or failure of the invocation of the external tool is also part of the Control
Integration and does not have to be configured by the user.

In a Data Integration, The DevOps Platform and the target application exchange data. The DevOps Platform retrieves
data from that application’s data silo, or passes information to the target application. Data integrations seem to be
relatively uncommon amongst enterprise automation tools, despite being extremely powerful.

Data integrations require a database designed to store information from extracted from the externals tool via the
integrations. The DevOps Platform includes a data warehouse where this type of data is stored. Data integrations help
the team assemble data in a single place and boost communication in the enterprise.

Source Control Tools

Most of our source control integrations leverage the existing command line clients provided by the SCM vendor.
We’ve found that the error messages from the command line are more easily understood than those from the APIs.
Easier error messages keep things easier for everyone. Some of our Source Control Integrations utilize the APIs or
direct database access for complex queries.

Creating Custom Plugins

Web Services API

Architecture and Technology
network; these are the distributed agents, or Resources. The Plug-in Integrations provide what are called Steps: which
is typically a discrete series of commands, etc., that drive functionality of a third-party tool. It is at this level that

 | Introduction | 20

UrbanDeploy replaces scripts with hard-coded steps. The artifact repository (CodeStation) guarantees that the bits
that were deployed to Production are identical to the bits that were tested and approved in a lower Environment. The
package management system simplifies the deployment process: UrbanDeploy stores and provides the knowledge
of how to perform a specific deployment, freeing up team members to perform other tasks. UrbanDeploy is
operating-system agnostic, and will run on any system that supports Java 5. The server also runs on top of a database
(MySQL or Oracle). UrbanDeploy also includes its own artifact repository, called CodeStation, to track deployable
Components across Environments. The repository provides artifact security and is the basis of the traceability across
environments.

Distributed Server and Agent Architecture. The server provides services such as the user interface to configure
application deployments; the configuration store; the work-flow engine; security service; the artifact repository; and
many other services. To run a deployment on a machine, UrbanDeploy requires an agent (also called a Resource).
The agent is a small application that runs on the machine and communicates with the server. When not performing
a deployment, the agent process runs in the background with almost no CPU or memory usage. Since an agent may
need to perform work on an external network, UrbanDeploy provides a way to perform remote deployments and other
tasks while maintaining security:

• Proxy agents. Technically, not every machine to which UrbanDeploy deploys an application or component
requires an agent. Whether a target machine requires an agent or not really depends on the type of deployments
that needs to be performed. If the deployment involves direct interaction with the file system (placing new or
modified files on the file system or moving files or deleting them) on the target machine, then an agent on the
target machine is the easiest way to accomplish this goal. Also, if the deployment involves direct interaction with
process management on the target machine (such as starting or stopping processes), then an agent on the target
machine provides the simplest path to accomplish this. If the deployment neither requires direct interaction with
the file system (or with process management on the target machine) but instead interacts with a network service,
then a proxy agent can be used. A proxy agent is located on a machine other than the target machine. When the
deployment needs to interact with a service exposed on the network (such as a database, J2EE server, or another
service with a network API), then the interaction with the networked service can happen from any machine on the
network that has access to the networked service. For this reason, the proxy agent may reside on any machine on
the network that can access the target networked service.

• Rollouts. Smaller rollouts supporting up to hundreds of agents and without the need for high availability or load
balancing can be accomplished with a single UrbanDeploy server. But, UrbanDeploy architecture also allows for
more robust rollouts that provide high availability and load balancing. Accomplishing this requires distributing the
services provided by the UrbanDeploy server into multiple processes and multiple machines.

Plug-in Integrations. Plug-in Integrations automate common tasks. Plug-ins provide deployment capabilities with
many of the common tools used for deployments, as well as application servers, etc. Each integration has at least
one "step," which can be thought of as a distinct piece of automation. By stringing these individual steps together,
you create a fully automated Process that replaces many of your existing deployment scripts and manual deployment
processes. The integration steps are added to a deploy Process at the Component level (i.e., when setting up a
Component Process). As you create a deployment, you start out with the basic deployment configuration (the
Download Artifacts By Label step first; the Add Inventory Status last) and then add the integration steps between
the steps. In the illustration, the process shows configuration for deploying an application. The Process (a.) stops a
running instance of the application; (b.) removes the application from the machine; (c.) installs the new version of the
application; and (d.) restarts the application to finish the deployment.

Artifact Repository (CodeStation). The artifact repository, called CodeStation, is an integral part of UrbanDeploy.
It is the piece that guarantees the bits that were deployed to Production are identical to the bits that were tested and
approved in a lower environment. CodeStation provides a secure and temper-proof storage for the binary artifacts that
are deployed. (UrbanDeploy can integrate with an external repository, effectively bypassing CodeStation, and pull
deployment artifact out of there; however, this reduces visibility and tracking.)

The artifact repository uses content addressable storage to minimize the amount of disk space utilized. CodeStation
tracks Versions of files as they change and also holds a full history of all file versions for each component (a
component includes the files that are deployed as well as the deployment process configuration; for more, see
Components). Maximizing efficiency is important, since the artifact repository stores files that are much larger
than source files. Association of files with Components is built into the system. Without any configuration, each
Component gets its own area of the repository for its files. There is no chance of confusion or mix-up of files to

 | Introduction | 21

Components. And, each Component is mapped to a specific set of files and versions corresponding to the Component.
The artifact repository has built-in security that limits the users that can access an area of the repository and what
actions the users can take. Areas of the repository correspond to Components and use the security settings on the
components. The artifact repository stores cryptographic hashes of all content in the repository and verifies that the
stored files have not been tampered with (by recomputing the cryptographic hashes and comparing the calculated
hash against the expected value that was stored when the file was added to the repository). The storage of the original,
or base value, cryptographic hash takes place at the time that a file is added to the repository. The verification of
the file content against the expected cryptographic hash value takes place every time the file is requested from the
repository.

Configuration Engine. The Configuration Engine allows configuration changes to be made in a declarative manner.
This means that the changes have to be described, but the logic used to apply the change is provided by the
underlying Configuration Engine. This enables you to forego deployment and other configuration scripts. Changes
are declaratively described using XML in a well-documented format defined by the Configuration Engine. Under the
covers, the Configuration Engine provides the following features:

• Deploying/applying configuration changes. A configuration can be deployed to a target server or cluster. The
deployment of a configuration change will examine the existing configuration on the target server/cluster and
make the required changes. The required changes may be deleting configuration items (such as Data Sources) that
are no longer required, creating new configuration items, or making changes to the configuration of existing items
(e.g., changing the database host name in a Data Source).

• Parameterization for different environments. Configurations can be easily parameterized so that they can be used
across multiple environments, even if the environments have different deployment topologies (some environments
may have a single server while others may contain a cluster of servers). When the configuration is deployed to an
environment, it is supplied with the parameter values that are to be used when deploying the configuration to that
environment.

Databases

uDeploy stores configuration and run-time data in a relational database. At deployment time, uDeploy interrogates the
database for changes and applies updates.

uDeploy supports the most commonly used relational databases: DB2, Oracle, SQL Server, and MySQL.

uDeploy provides the easy to use and configure database, Derby. This database is only recommended for evaluations.

Conventions
UrbanDeploy automates deployments of Applications -- most typically web applications. The server also provides
tracking and management for every deployment it runs: providing complete visibility back to the point the
Application was imported into UrbanDeploy.

To accomplish this, UrbanDeploy provides a secure, tamper-proof mechanism for fetching the different parts
of an Application and storing them. These "different parts" are called Components (you may know them as
application tiers, etc.), and represent the first point where UrbanDeploy interacts with the Applications it deploys.
Once UrbanDeploy is up and running, the first step is to create what is called a Version. To do this, UrbanDeploy
need to know where to pick up the contents of the Component (called the Artifacts). Typically, the source for a
Component is located under source control or resides on a file share, etc. The Version (sometimes called Component
Version or simply Component) is created by pointing UrbanDeploy to the base directory. When the configuration is
complete, UrbanDeploy imports the artifacts and creates the first Version. Until removed from UrbanDeploy by an
administrator, the Version never changes: the artifacts contained in the Version will be pushed, or deployed, through
the various Environments as the Version is assembled, along with other Component Versions, into an Application.

After a Version is created, an automated deployment is designed. This is called a Process. Processes are composed
of a series of automated Steps that are run when deploying a Component. Authoring of Processes is performed using
a visual drag-n-drop editor, using standard Steps that implement functionality. The Steps within the Process are
designed to replace what is typically performed manually or via a series of scripts.

 | Introduction | 22

Applications are responsible for bringing together all the Components that need to be deployed together. This is done
by defining the different versions of each component as well as defining the different Environments the Components
must go through on the way to production. In addition, Applications also map the constituent hosts and machines
(called Resources) a Component needs within every Environment. Applications also implement Processes concerned
with the Components and Resources necessary for deployment, etc. Applications also introduce Snapshots to manage
the different versions of each Component. For most users, the Snapshot is pushed through the pipeline.

These elements make up the UrbanDeploy system. The system is designed to provide pure automation for Application
deployments, as well as managing the resources they rely on. In addition, UrbanDeploy was designed with a flexible
security and approvals system that can map to your requirements and processes.

With UrbanDeploy you can:

• Deploy multi-tier and service oriented applications. Many modern applications are multi-tiered and thus require
a coordinated deployment of different components to corresponding tier servers. Service-oriented application
deployment requires the coordination of different versions of services, which are modeled as Component in
UrbanDeploy.

• Perform incremental deployments. Application deployments may be incremental, where only the changed files or
configuration changes are deployed. Supporting incremental deployments allows deployments to be performed
quickly and efficiently.

• Rollback applications. Application deployments, especially production deployments, require built-in rollback
support. Unlike lower environments that can be rebuilt and even reimaged, production environments require less
invasive and faster fixes.

• Simplify configuration changes. Application deployments typically include configuration as a significant aspect
of the deployments. Whether the configuration adds new DataSources, message queues, or just changes settings
in a flat file, these types of changes are typically part of application deployments. Built-in integrations, along
with support for declarative configurations, mean you don't have to spend time writing and maintaining complex
deployment scripts.

• Promote across multiple environments. With application deployments, multiple environments are typically
involved. When deploying application changes, it is important that exactly the same bits and configuration
changes get deployed to each environment while taking into account environment specific configurations.

Part

II
Hands-On

Topics:

• Getting Started
• Creating Components
• hello_world Component Version
• Hello World Component

Process
• hello_world Component

Process Design
• Hello World Application

 | Hands-On | 24

Getting Started
Welcome to uDeploy! This section gets you started by providing immediate hands-on experience using uDeploy.
The hello_world walk-through shows you how to create a simple deployment using out-of-the-box features. The
second walk-through, hello_worldWS, shows you how to install a freely-available plug-in (for the WebSphere
server in this instance) and create a basic deployment using it.

Note: This section assumes you have installed the uDeploy server and at least one agent. For the walk-
through, the agent can be installed on the same machine where the server is installed. If the agent or server
have not been installed, see Installation on page 64 for information about installation.

Quick Overview

Generally, the following steps are performed when creating a deployment:

1. Configure Resources

Resources are agents and agent groupings. Typically, at least one agent is installed in every environment used by
the deployment. As mentioned, Quick Start assumes that at least one agent has already been installed and so we
will not cover agent creation here. See Resources on page 49 for more information about agents.

2. Define Components

Components represent the source items that will be installed and managed by the deployment. When you create a
component, you tell uDeploy where the items are found--a file system or source code repository, for example--and
what processes should be performed on them. The source items and processes together define the component. See
Components on page 46 for more information about creating components.

3. Define Application

An application brings together all the components used by the deployment. When you create an application,
you identify the components and define the processes required to move the components through all required
environments. See Applications on page 52 for more information about creating applications.

Creating Components
Components are the artifacts--files, images, databases, etc.--that UrbanDeploy manages and deploys. When creating a
component, one good approach is:

1. Create a version.

After you identify where the component's artifacts are stored on your system, you assign a version identifier to
it. UrbanDeploy can use existing version schemes, such as the numbers assigned by your build server or artifact
management server.

2. Define processes.

The process is where you tell UrbanDeploy what to do with the component. A process is designed by assembling
basic units of automation, called steps. Steps replace most deployment scripts and/or manual processes. Processes
are designed using a drag-and-drop tool.

hello_world Deployment

The hello_world deployment moves some files on the local file system to another location on the file system,
presumably a location used by an application server. hello_world is a very simple deployment but it has several
advantages: it uses many of UrbanDeploy's key features--features you will use every day, and it does not require the
installation of additional plug-ins.

UrbanDeploy plug-ins provide integration with many common deployment tools and application servers. Each
integration has at least one step, which can be thought of as a distinct piece of automation. By stringing individual
steps together, you create a fully automated process that can replace many of your existing scripts and manual

 | Hands-On | 25

processes. Plug-ins are available for Subversion, Maven, Tomcat, WebSphere (which we demonstrate later), and
many others.

A Note Before You Begin

You can read the walk-through without actually performing the steps, or you can perform them as you read along. If
you want to actually perform the steps as we go, do the following before starting:

1. Create a directory somewhere on your system named helloWorld.
2. Within helloWorld create a sub-directory named 1.0.
3. Within 1.0 place several--say 5--files. For speed, text-type files should be used.
4. Create another directory somewhere on your file system.
5. Within the directory just created, create a sub-directory. This sub-directory will be the target for our deployment. I

created C:\UAT\appUAT on my system.

hello_world Component Version

To configure the Hello World Component Version:

1. On the Navigation bar, click the Components tab.

2. On the Components pane, click Create New Component.

Components are defined with the Create New Component dialog box. The first four and last two fields displayed
are the same for every source type; the remaining fields depend on the value selected in the Source Config Type
field.

 | Hands-On | 26

3. Enter hello_world in the Name field.

The name is used when assembling the application. If the component will be used by more than one application,
the name should be generic rather than project-specific. For components that are project-specific, a name that
conveys something meaningful about the project should be used.

4. Enter a description in the Description field.

The optional description can be used to convey additional information about the component. If the component
is used by more than one application, for example, entering "Used in applications A and B" can help identify
how the component is used. If you are unsure about what to enter, leave the field blank. You can always return to
the component and edit the description at any time. In an attempt to appear hip, I entered Euro store for my
component.

5. Accept the default value in the Status Plug-in field--Default.

Experienced users can use this field to customize plug-ins designed to monitor the component's status. See [TBD].
6. Select File System from the Source Config Type field.

 | Hands-On | 27

Selecting a value changes several fields to those required by the selected value. The type-dependent fields are used
to identify where the artifacts comprising the component are stored. See [TBD] for a description of the supported
types.

File System is used when the artifacts are on a file share or the local file system. This is the simplest
configuration option and can be used to quickly set up a component for evaluation purposes, as we do here.

7. Complete this option by entering the path to the artifacts.

In our example, the artifacts are stored in C:\helloWorld. Inside the base-directory, artifacts are stored in
numbered directories; the numbers represent distinct versions. C:\helloWorld has only one version and
so only one sub-directory--1.0. When automatically polling the base directory, or manually requesting a new
version, uDeploy will compare the current version in the base-directory with the one stored in CodeStation
(uDeploy's artifact repository). If changes are found, a new version, using the name/number found, will be created.

8. Check the Import Versions Automatically check box.

uDeploy will automatically poll the source location for new versions when this option is selected. If new material
is found, a new version will be created, based on the new version number. You can manually create versions by
using the Versions tab. If this option is not selected, you will have to manually create a new version every time
one becomes available.

9. Ensure the Copy to CodeStation check box is selected.

This option, which is recommended by UrbanCode and selected by default, creates a tamper-proof copy of the
specified component and stores it in the embedded artifact management system--CodeStation. If this option is
not selected, only meta data about the component version will be imported. The only advantage to bypassing
CodeStation is the avoidance of storing the files in two places. In most situations this advantage is far outweighed
by the reduced visibility into the artifacts.

10. Click the Save button to save the component.
11. To verify that the correct files are imported into UrbanCode, click the Versions tab.

The Versions pane displays all versions for the selected component. If all went well, the material in the specified
base-path was imported automatically.

 | Hands-On | 28

Figure 2: Version Pane

The base-path, as you will recall, is C:\helloWord. Within helloWorld is the single sub-directory, 1.0, as
shown in the following illustration.

The 1.0 directory contains the artifacts that comprise the version. To see the artifacts, click on the version name
in the Version pane.

 | Hands-On | 29

Figure 3: Component Artifacts

Hello World Component Process
Once a component has been created and a version imported, a process to deploy the artifacts--called a component
process--must be defined.

To Configure the hello_world Component Process:

1. On the Navigation bar, click the Components tab.
2. On the Components pane, click the on the name of the component--hello_world on my machine.
3. On the Component: Name_of_selected_component pane, click the Processes tab.
4. Click the Create New Process button.

 | Hands-On | 30

5. In the Create New Process dialog, enter a name in the Name field.

The name and description typically reflect the component's content and process type.
6. Enter a meaningful description in the Description field.

If the process will be used by several applications, you can specify that here.
7. Accept the default value in the Default Working Directory field.

This is the location where the process steps will be executed. The default value enables the process to work in
different environments, and for our exercise (and for most processes), the default value is fine. If you change the
default value, the process might not work in every environment visited by the component.

8. Check the Requires a Version check box.

When checked, the version will be passed to the process at run-time.
9. Accept the default value (None) in the Required Component Role field.

This option enables you to restrict who can run this process. The available options are derived from the uDeploy
Security System. For information about security roles, see Security on page 72.

10. Select Add Inventory in the Inventory Action Type field.

This field is displayed if the Requires a Version check box is selected. For information about inventory,
see Inventory on page 124.

11. Accept the default value of Active in the Inventory Status field.

This field is displayed if the Add Inventory or Remove Inventory values are selected in the Inventory
Action Type field. The Staged status is used when performing a rolling deployment.

12. Use the Save button to save your work.

hello_world Component Process Design
To complete the process, you must define its individual steps. A component process must have at least one step. The
steps are defined with the Process Design pane, see Figure 4: Process Design Pane on page 31. You define the
steps by dragging-and-dropping them onto the design area and arranging them in the order they are to be executed.

To Define the hello_world Process Steps

1. On the Component: hello_world pane, click the Processes tab.
2. Click the name of the process you created in the previous section--hello_worldInstall in my case.

 | Hands-On | 31

The Process Design pane is where the individual steps are defined.

Figure 4: Process Design Pane

The steps are listed in the Available Plug-in Steps list-box. Take a moment to expand the listings and review the
available steps. Out-of-the-box, uDeploy comes the listed plug-in steps. In the next walk-through (hello_worldWS)
you will learn how to add additional plug-ins.

 | Hands-On | 32

3. In the Available Plug-in Steps box, expand the Artifacts item.
4. Drag the Download Artifacts by Label item into the design area and release it on the anchor point as

shown in the following illustration.

Figure 5: Adding a Step to an Anchor Point

Note: Most deployments should start with this step.

Releasing the mouse-pointer on the anchor point displays the Edit Properties dialog. The fields on this dialog are
always tailored for the selected step.

 | Hands-On | 33

These fields, along with the fields for the other steps, are described in Plug-in Integration on page 106. For this
exercise, we can achieve our goal by changing one field--Working Directory.

Recall that the goal for this deployment is to move the source files in the base-directory to another location.
As you might guess, uDeploy provides several methods for accomplishing this goal; changing the Working
Directory field here is one of the simplest.

5. Enter the path to the target directory you created at the beginning of the exercise, as we discussed in Creating
Components on page 24.

If the field is left blank, the process will use the working directory defined earlier. Entering the path overrides the
previous value and causes UrbanCode to place the source files in the specified location.

6. Use the Save button to save the step and close the dialog.

We can accept the default values for the other fields. If you need to edit the step properties, click the Edit tool on
the step graphic.

 | Hands-On | 34

Figure 6: Edit tool
7. Save the component by using the Save tool on the Tools menu.

Typically, we would define additional steps by dragging them onto the design area and defining them as we did
here, but for this simple deployment the single step--Download Artifacts by Label--accomplishes the
goal.

Once the process steps are defined, the final task is to define an application that uses the component.

Hello World Application
Deployments are performed by applications. Applications bring together the component versions, environments, and
application processes required to perform the deployment.

An environment is a collection of resources that host the application. Environments typically include host machines
and uDeploy agents.

Application processes play a coordinating role in a deployment. Application processes are authored in a manner
similar to component processes (see Hello World Component Process on page 29).

After creating an application, you perform the deployment by running the application.

Creating an Application

1. On the Navigation bar, click the Applications tab.
2. On the Applications pane, click Create New Application.

Components are defined with the Create New Application dialog.

 | Hands-On | 35

3. Enter a name in the Name field.
4. Enter a description in the Description field.
5. Select the default value of None from the Notification Scheme drop-down list box.

uDeploy integrates with LDAP and e-mail servers which enables it to send event-based notifications. For
example, the default notification scheme will send an e-mail when a deployment finishes. Notifications can also
play a role in deployment approvals. See Security on page 72 for information about security roles.

6. Use the Save button when you are finished.

The Application: name pane is displayed. If you need to change your work, use the Edit tab.

Adding a Component to the Application

After the application is saved, the components it requires must be identified. We will add the hello_world component
we created earlier.

1. On the Application: name pane, click the Components tab.
2. Click the Add Component button.

An application must have at least one component.
3. If you created the hello_world component described earlier (see hello_world Component Version on page 25),

select hello_world from the Select a Component list box.

 | Hands-On | 36

Figure 7: Adding a component to an application
4. Click the Save button.

The Application: name pane is redisplayed.

Adding an Environment to the Application

1. On the Environments tab, click the Create New Environment button.

Before an application can run, it must have at least one environment created for it. An environment defines the
resources (agents and machines) used by the application.

2. Use the Create New Environment dialog to define the environment.

 | Hands-On | 37

The value in the Name field will be used in the deployment.

If you check the Require Approvals check box, uDeploy will enforce an approvals process. This is our first
deployment so an uncontrolled environment will do fine--leave the box unchecked.

Selecting a color provides a visual identifier for the environment. Typically, every environment will be assigned
its own color.

After saving your work, the Environment: name pane is displayed.
3. Click the Component Mappings tab.

The hello_world component we added earlier to the application is listed in the Component Mappings list
box.

4. Click the Add a Resource button. The Add a Resource dialog is displayed.
5. In the Add a Resource list box, select the agent that was created when uDeploy was installed on your system.

Figure 8: Adding a resource to an environment

While our example uses but a single resource, deployments can use many resources and resource groups.
Resource groups provide a way to combine resources, which can be useful when multiple deployments use
overlapping resources. See Resources on page 49 for information about resource groups.

Adding a Process to the Application

Now that our application has an environment, we are ready to create an application-level process that we can use to
perform the deployment.

1. Click the breadcrumb trail to redisplay the Application: name pane.

 | Hands-On | 38

Figure 9: Environments Tab

Note: You might be wondering why you need to create an application-level process when the process you
created for the component should be able to perform the deployment by itself. For a single-component
deployment like hello_world, an application-level process might not be required. You might also want
to skip an application-level process when you are testing or patching a component. But for non-trivial
deployments, especially deployments that have more than one component, you will want to create one or
more application-level processes. Application-level processes enable you to combine components into a
single deployment.

2. Click the Processes tab.
3. Click the Create New Process button. The Create an Application Process dialog is displayed.

Figure 10: Create an Application Process dialog
4. Enter a name in the Name field.
5. In the Required Application Role drop-down list box, accept the None default value.

This option enables you to restrict who can run this process. The available options are derived from the uDeploy
Security System. For information about security roles, see Security on page 72.

6. In the Inventory Management drop-down list box, accept the default value of Automatic.

 | Hands-On | 39

Automatic inventory management is sufficient for most applications. If you need to manually control inventory,
select the Advanced option. See Inventory on page 124 for information about inventory management.

7. Use the Save button when you are finished.

Designing the Process Steps

To create an application-level process, you define the individual steps as you did earlier (Hello World Component
Process on page 29) when you used the Process Design pane to create the hello_world component process.

1. On the Application: hello_word pane, click the Processes tab.
2. Click the name of the application you defined earlier to display the Process Design pane.

Figure 11: Process Design Pane

The out-of-box process steps are listed in the Add a Component Process list box.
3. Drag the Install Component step onto the design area and release the mouse pointer on the anchor point.

The step graphic is inserted into the design area and the Edit Properties dialog is displayed, as shown in the
following illustration.

 | Hands-On | 40

Figure 12: Edit Properties Dialog

uDeploy will walk you through the three steps required to configure Install Component: first, select the
component; second, select the version; finally, name the process. At each point, the Edit Properties dialog is
updated with the required fields.

4. Select a component from the Component drop-down list box.

If you followed the Quick Start Guide, the hello_world component will be listed.
5. Accept the default values for the other fields (see Applications on page 52 for information about the other

fields), and click Save.

The Edit Properties dialog is refreshed--the Run for Versions Without Inventory Status drop-down list box is
displayed.

Figure 13: Run for Versions Without Inventory Status field

 | Hands-On | 41

6. Accept the default value Active (see Applications on page 52 for information about the other fields), and
click Save.

Active means uDeploy will deploy any version not previously deployed and part of the inventory system. The
Staged value is used when performing a rolling deployment. See Applications on page 52 for information
about rolling deployments.

The dialog box is refreshed, as shown in the following illustration.

7. Enter a process name in the Name field.
8. Leave the Allow Failure check box unchecked. If checked, processes that perform several actions will continue

processing even if one component fails. See Applications on page 52 for information about this option.
9. Select a component process from the Component Process list box, then use the Save button to save the process

step.

Components can have several processes defined for them.

The three steps are nested in the step graphic, as you can see from the following illustration. The first step is the
outermost one. If you need to edit a step, click on the corresponding edit tool.

Figure 14: Nested parameters
10. Finally, save the process by clicking the Save tool on the Tools bar.

Running the Application

Now that the component, environment, and application are complete, you are ready to perform the deployment by
running the application.

1. On the Application pane, click the Request Process button for the environment you created earlier.

 | Hands-On | 42

The Run Process dialog is displayed.
2. Leave the Only Changed Versions check box checked. For this deployment, we only want to run the application

on changed (new) versions.

3. Select the process you created from the Process drop-down list box. Applications can have more than one process
defined for them.

Because we did not create a snapshot of the application, the Snapshot field is inactive. See Applications on page
52 for information about snapshots.

4. Select Latest Version from the Version drop-down list box. This option ensures that the latest (or first and
only) version is affected by the application.

Leave the Schedule Deployment? check box unselected. Selecting this option displays fields you can use to
schedule the deployment.

5. Click the Submit button to run the application.

The Application Process pane is displayed.

 | Hands-On | 43

Take a few moments to examine the information on this pane. Hopefully, you will see several Success
messages in the Status field. To see additional information about the process, click the Details link in the
Actions field.

 | Hands-On | 44

Part

III
Using uDeploy

Topics:

• Components
• Resources
• Applications
• Deployments
• Schedule Deployments
• Work Items

 | Using uDeploy | 46

Components
Components map to the existing tiers of an Application. They contain the "content" that is to be deployed, which can
be a single file, images, a database, etc.: the contents of a Component are called artifacts.

Note: Components can represent configurations, not just code or infrastructure. For example, a Component
may hold the application-specific configuration for WebSphere.

Components are used to import the artifacts you want to deploy. For example, an Application may consist of a WEB
component containing the static content served by the HTTP server for your application; a MID component for
your EAR file deployed to your J2EE container; and a DB component that contains database changes. In this case,
UrbanDeploy treats the contents of each Component as grouping of artifacts.

Figure 15: New Promotion Page

Processes. Processes are composed of a series of automated Steps that are run when deploying a Component.
Authoring of Processes is performed using a visual drag-n-drop editor, using standard Steps that implement
functionality. The Steps within the Process are designed to replace what is typically performed manually or via a
series of scripts.

Note: Deploying a J2EE EAR file to WebSphere typically consists of the following automated steps: (a.)
Transfer the EAR file to the target machine; (b.) stop the WebSphere server instance; (c.) invoke wsAdmin
with the location of the EAR file and appropriate deployment properties; (d.) start the WebSphere instance
and verify that the deployment succeeded by hitting a specified URL. This is a plain-vanilla, out-of-box
deployment Process.

In addition to running deployments, Processes can also be used to rollback an Application. The system keeps track of
the history of each Versions it has deployed, so when you create a uninstall Process you typically reverse the order of
a deployment.

Note: Many UrbanDeploy users have found that setting up only one component at a time is the quickest way
to success: it makes troubleshooting problems much easier when running the first deployment. For example,
configuring a component that only contains static content can be used. Once the first component has been
successfully configured and deployed, the same general workflow can be used for other, more complex
components.

 | Using uDeploy | 47

Creating Components

Components map to the existing tiers of an Application. They contain the "content" that is to be deployed, which can
be a single file, images, a database, etc.: the contents of a Component are called artifacts.

Note: Components can represent configurations, not just code or infrastructure. For example, a Component
may hold the application-specific configuration for WebSphere.

Components are used to import the artifacts you want to deploy. For example, an Application may consist of a WEB
component containing the static content served by the HTTP server for your application; a MID component for
your EAR file deployed to your J2EE container; and a DB component that contains database changes. In this case,
UrbanDeploy treats the contents of each Component as grouping of artifacts.

Figure 16: New Promotion Page

Components are the point of contact between uDeploy and your build artifacts: the component is responsible
for pulling in the artifacts that make up an Application. To keep track of changes in the artifacts, Components
are assigned a Version, based on your current versioning scheme. Components also have a second role: they are
responsible for deploying the artifacts that have been imported into UrbanDeploy. This is done via the Process.

Versions

Components change over time: as development continues on the Application, new builds are created and made ready
for deployment. When you import the Components into UrbanDeploy, a Version is created. Versions are unique and
never change. For example, Version 1.0 will include the exact same artifacts as the Component moves through the
production pipeline. Every time a new build is imported into UrbanDeploy, a new Version is created. It is possible
for the Component files to come from sources other than a build: they can come from some other system or from a
user manually uploading files into the repository. UrbanDeploy ships with its own Artifact Repository as well as with
integrations to all leading open-source and commercial repositories.

Versions come in two flavors: Full and Incremental. A Full Version contains all files for a Component, while
Incremental Components contain only the files that have been modified since the previous Version was created.

Processes

Processes are composed of a series of automated Steps that are run when deploying a Component. Authoring of
Processes is performed using a visual drag-n-drop editor, using standard Steps that implement functionality. The
Steps within the Process are designed to replace what is typically performed manually or via a series of scripts.

 | Using uDeploy | 48

Note: Deploying a J2EE EAR file to WebSphere typically consists of the following automated steps: (a.)
Transfer the EAR file to the target machine; (b.) stop the WebSphere server instance; (c.) invoke wsAdmin
with the location of the EAR file and appropriate deployment properties; (d.) start the WebSphere instance
and verify that the deployment succeeded by hitting a specified URL. This is a plain-vanilla, out-of-box
deployment Process.

In addition to running deployments, Processes can also be used to rollback an Application. The system keeps track of
the history of each Versions it has deployed, so when you create a uninstall Process you typically reverse the order of
a deployment.

Component Best Practice

1. Create a Version.

Before you can run a deployment, UrbanDeploy will need to know where the artifacts (or different tiers) are
stored on your network. Currently, UrbanDeploy includes integrations that allow you to fetch the artifacts
from a number of different sources. When determining the Component source, you also assign a version to the
component. This is accomplished in one of two ways: Either by using the "import version automatically" option or
by manually creating versions. UrbanDeploy can use existing version schemes; for example, the numbers assigned
by your build server or artifact management server. See Create Component Version for more.

2. Design Deployment.

The Process is designed by assembling basic units of automation, called Steps. These steps will typically replace
most of your deployment scripts and/or manual processes. When designing the Process, you drag-and-drop the
steps in the order that they are to be executed by UrbanDeploy. See Design Component Deployment Process.

Creating a Version

Component creation is similar for all component types. For most web application, a separate component will be
created for each tier. For example, a typical 3-tier web application will have three components: database (DB),
middleware code (MID), and a web component (WEB). In addition, a middleware configuration component can also
be configured.

Note: When configuring a new component, keep in mind that a single component can be used by multiple
projects. For example, if you have two applications that run on the same version of WebSphere, you
need only fetch the WebSphere component once. Later on, when you are setting up your applications
in UrbanDeploy, you are able to select the exact same version of WebSphere for each application. If a
component is to be shared, the name you give should reflect this.

Component configuration differs slightly, based on the source UrbanDeploy will use as the artifact source. Before
you can create a deployment process, UrbanDeploy needs to know where the artifacts (or different tiers of your
application) are stored within your network. Currently, UrbanDeploy enables you to pick up the artifacts a file share;
Maven, Subversion; or TeamCity.

To create a version:

1. Name the Component and give a description. Then name given here will be used when assembling the application.
If the component is to be used by more than one application, the name should not be project specific. For example,
the name of the component can correspond to a shared tier (WEB, etc.) that is used by different applications.
For components that are application specific, a name that conveys this information can be helpful (e.g., My
Applications DB).

2. Description. The optional description can be used to convey additional information about the component. For
example, if the same component is used by more than one application, giving something like "Used in applications
A, B, C, etc." can help others easily identify how the component is used. If you are unsure about what applications
will use this component, you can leave this field blank; you can always return to the component and edit the
description (go to Components > select component > Edit) at any time.

3. Source config type. Select the location where the artifacts are stored. UrbanDeploy will fetch the artifacts from
their location and then store them in CodeStation (the embedded artifact repository). UrbanDeploy supports
artifact fetching from a file share or local file system; Maven; Subversion; or Team City. See Plug-in Integration
on page 106 for information about configuration types (plug-ins).

 | Using uDeploy | 49

Resources
To run a deployment UrbanDeploy requires an agent, or Resource, on the target machine. Typically, at least one agent
is installed in every Environment the Application must pass through on its way to production. A typical production
pipeline may be SIT, UAT, PROD (the Application must pass through two testing Environments and then can be
pushed to Production). In this scenario, at least three agents need to be installed: one per Environment.

Note: When configuring Resources for a Production instance of UrbanDeploy, you will need to take the
Environmental differences into consideration, which may require gathering some information in order to fully
roll out UrbanDeploy. The Getting Started section includes some general guidelines for setting up and using
UrbanDeploy.

Figure 17: Resources Pane

To successfully deploy the Application to the different Environments, at least one agent needs to be installed in every
Environment; however, many users will install multiple agents per Environment: this is usually the case where the
different Components run on different machines within a given Environment.

 | Using uDeploy | 50

Figure 18: Resource Groups Pane

Whether you need one or multiple Resources per Environment is determined by your current infrastructure,
deployment procedures, and other requirements: Many UrbanDeploy users have differences among the different
Environments; e.g., in SIT they need only to deploy a Component to one machine; however, for UAT, they must
deploy the Component to multiple machines. Under this scenario, you would configure Sub-groups for the single
agent in the SIT Environment and then set up individual Resources for each agent in the UAT Environment.

Figure 19: Sub-Groups

 | Using uDeploy | 51

Resource Groups

uDeploy uses the concept of Resource Groups to help you organize and manage the agents installed in different
Environment throughout the network. You need to create at least one Resource Group per installed agent, as when
configuring your Processes you will need to select the appropriate Group. What Groups you create and how you
organize the Groups, e.g., using Subgroups, depends on your existing organizational processes and infrastructure.

Note: Before continuing, ensure that at least one agent has been installed in a target Environment (for
evaluation purposes, the agent can be on the same machine as the server).

Creating a Resource Group

1. Go to Resources > Groups. and click on the folder icon.

Figure 20: Action Tool
2. For the Type, most often Static is used.

Name and description. Typically, the name will correspond to either the Environment the Resource participates
in, the Component that uses the Resource Group, or a combination of both (e.g., SIT, DB, or SIT-DB). What
description you give depends on how you intend to use the Resource that this Group is assigned to, etc.

Figure 21: Create a Resource Group Dialog
3. Once the Resource has been created, select the pencil icon to edit the Group.

 | Using uDeploy | 52

Figure 22: Add a Resource Dialog
4. Once you assign a Group to a Resource, you add Subresources. Subresources enable you to apply logical

identifiers, or categories, within any given Group. During deployment configuration, you can Select a given
Subresource that the Process will run on. To create a Subresource, select the New Resource icon for the Group.
Configuration is similar to Resource Group creation.

Figure 23: Sub-resources

.

Setting Roles

Roles enable you to further refine how a Resource is utilized, and are similar to Subresources. For most Deployments,
you will not need to define a Role. During Process configuration, you select a specific role when determining the
resource. A role can be used to set up UrbanDeploy for rolling deployments, balancing, etc. For example, you can
set up your Process to only deploy to a percentage of targets first; add a manual task in the middle of the Process
that requires a user to execute (e.g., after they have tested the partial deployment); and then once the manual task has
completed the rest of the Process is assigned a second role responsible for deploying to the rest of the target machines.

Next Steps

With the Resources configured, it is now possible to configure a deployment. To get started, you will need to first set
up a Component Version, which corresponds to the artifacts you want to deploy. See Components for more.

Applications

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

 | Using uDeploy | 53

Gather Information

Deployments
tbd

tbd:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

tbd

Advanced Deployments

uDeploy includes integrations with the most common tools used for web applications. To go beyond a basic
deployment, you can configure UrbanDeploy to run tool-specific commands on the target machine. For example, if
you are deploying the Application tire to a web server, your Deploy Process could be designed to do the following (all
integrations include similar steps):

1. Download Artifacts By Label.
2. Stop Application. Based on the configuration, this step will stop your application prior to deploying it.
3. Undeploy Application. This step is responsible for removing the application from the target machine. This can

help ensure a clean install when one is desired.
4. Deploy Application. Sends the exact Component Version to the target server and installs the artifacts in the

appropriate location.
5. Start Application. Once the artifacts have been transferred, UrbanDeploy will automatically restate the application

server.
6. Add Inventory Status.

 | Using uDeploy | 54

Figure 24: Deploy Application

Aside from the first and last steps of the Deploy Process, UrbanDeploy allows you to introduce as much automation
as is needed for a deployment. For a discussion on the individual integrations, and what each step does, please see the
individual integrations listed in the Plugins section.

Note: You can set up UrbanDeploy to use the exact same Component Deployment Process for every
Application Environment that the Component moves through on its way to Production. For more, see
Applications.

 | Using uDeploy | 55

Figure 25: tbd

In addition to deploying content and interacting with the applications, a Deployment Process can also perform other
tasks, including running a SQL script as part of the process, for example when upgrading the database.

Execute SQL Script as Part of Database Update

UrbanDeploy includes an integration that enables you to run a database SQL script when you are deploying a
Database Component. You can either use the standard SQL step or, if you are using Oracle, you can use the tool-
specific step.

 | Using uDeploy | 56

To configure a Deployment Process:

1. Go to the Components, select the Component and then select the Processes tab.
2. Create the Deploy Process.

Name the Process and give it an optional description. The name and description will typically reflect the contents
of the Component (e.g., database, application, etc.) as well as the process type (in this case Deploy or Install).
If the Process, and the underlying Component, is to be used by numerous Applications, you can include that
information in the description.

Default working directory. This is the location that UrbanDeploy will use when executing the steps in the Deploy
Process. For most processes, accepting the default value is advisable. The default, which uses a property to
determine the directory, enables this process to work in different environments. If you change the default, and
add an absolute path, etc., you may not be able to use the same Process as the Component moves through the
production pipeline.

Requires a version. Check this box if you want the user to enter the version number when running the process. If
checked, the version will be passed to the process during runtime.

Required component role. This option enables you to restrict who can run this Component Process. The available
options are derived from the UrbanDeploy Security System. For example, if you select "Admin" from the drop-
down, only users that have been assigned that role in the Security System are able to run this Deployment Process.
This can help you enforce who can do what in UrbanDeploy.

 | Using uDeploy | 57

3. Once you save the new Process, select it from the table. This will take you to the Process design tool. To set up
your process, grab the appropriate steps on the left and drag them onto the canvas.

4. Add the Download Artifacts By Label step. This step is responsible for fetching the artifacts from the
UrbanDeploy artifact repository (CodeStation) and should always be the very first step included in a Deployment
Process.

Name. You can either accept the default name or give a new name.

Repository URL. You MUST change this value. You will need to give the URL used to access UrbanDeploy. This
value was set during installation and is the one used to log into the server. When changing the URL, ensure that
the trailing /vfs is included: this specifies the location of CodeStation, where the Artifacts are being fetched from.
For example: http://urbandeploy.yourcompany.com:8080/vfs.

Repository ID. For most configurations, you should accept the default value, which is a property automatically set
by UrbanDeploy. This property tells the system where the Component is stored in the repository.

Label. The default property set here references the Label that was applied to the artifacts when the were uploaded
into CodeStation. It is advisable to accept the default value.

Directory offset. This is directory UrbanDeploy will use when executing the command. Using the default
value (signified by the period) means use the current directory. If you would like to change the directory, for
example if a script is looking for files in a specific directory, etc. When changing, the value you give is relative
to the working directory. giving "offset/directory" (without the quotes) will switch the working directory to the
"directory" folder within the "offset" folder.

Include and Exclude. You can tell UrbanDeploy to include or exclude any files stored in CodeStation when the
fetch-artifact step is run. The following wild cards are used in addition to specifying a specific file (enter each
statement on a new line):

• ** Indicates include every directory within the base directory.
• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.
• **/* Tells UrbanDeploy to retrieve the entire file tree underneath the base directory.

Allow failure. Check the box if you would like the step to continue even if a failure is detected.

Working Directory. If using the default directory, leave this blank. Other, you will need to specify an absolute
path (e.g., C:\path\to\working\directory).

Use Impersonation. If the step must run as a different user (as the one UrbanDeploy uses) give the credentials.
5. Add Inventory Status step. This step, which should always come at the end of any Deployment Process, is

responsible for updating the Inventory. This will allow UrbanDeploy to track where and when the artifacts have
been deployed. Without this step it will be difficult to tell if what is in a desired Application Environment is what
you actually intend to be there. Selecting the hard-coded Status of Active will ensure that the Component Deploy
Process is correctly identified.

 | Using uDeploy | 58

Figure 26: Edit Properties Dialog
6. Add additional automation to your deployment by inserting the appropriate steps BETWEEN the beginning and

ending steps. Please see the Plugin section for the specific steps, if any, you can include in your Component
Deploy Process. By adding additional steps, in the order that they must be executed, you can build a fully
automated deployment.

Note: You have the option of configuring multiple Components (including versions an processes) before
assembling the application. Many users have found that configuring a single Component and then adding it
to the Application is the simplest process. This makes it easier to track down errors, etc., when testing the
Component Deployment Process. Once the initial component has been successfully deployed throughout
the application lifecycle, you can come back and configure the other components and then add them to the
application.

If you want to prove out your Deployment Process, you can now configure an Application that uses the Component
Deployment Process. Many users have found that configuring a single Component and then adding it to the
Application is the simplest process. This makes it easier to track down errors, etc., when testing the Component
Deployment Process. Once the initial component has been successfully deployed throughout the application lifecycle,
you can come back and configure the other components and then add them to the application. You can always come
back and set additional Components at a later time.

 | Using uDeploy | 59

Next Steps

Resources. Once you have configured a Component, you will need to ensure that at least one agent has been installed
in the target environment and that the agent has been associated with a Resource Group. Go to Resources > Groups.
If you do not see anything under the "All Resource Groups" folder, you will need to add at least one Resource Group
before configuring an Application. See Resources to continue. If the agent has been associated with a Resource
Group, you can configure an Application.

Add additional automation. UrbanDeploy integrates with numerous tools used for web applications. These
integrations enable you to add tool-specific automation steps to any Component Process. For example, the Plugin
system has built-in steps that enable UrbanDeploy to automatically stop, undeploy, deploy, and run servers such as
Tomcat, JBoss, and WebSphere. For more, see Plugins.

Schedule Deployments
uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-out dates,
for your Deployments. Deployments for an individual Application are scheduled on a per-environment basis, set
when you run a deployment of a Snapshot or Deployment Process. Black-out dates are set within the individual
Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling a
Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of the type of
deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, UrbanDeploy will prompt you to give the date and time you want the
deployment to run. The Make Recurring setting will deploy the Application on a regular schedule. For example, if
you are practicing Continuous Delivery, the Daily option will deploy the Application to the target Environment every
day.

Figure 27: tbd

 | Using uDeploy | 60

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the Scheduled
Deployment, you can edit, delete, or investigate the deployment.

Figure 28: tbd

Set Blackouts

Blackouts are set per-environment, per-application. Once set, no deployments (nor Snapshots) can be scheduled to
occur in that Environment. Any previously scheduled deployments to the Environment will fail if they fall within the
blackout date you set. To set up a blackout, go to Application > Environments > Calendar > Add Blackout. If you
need to set blackouts for more than one Environment, you must do this for each individual one. UrbanDeploy will
prompt you to give the dates and times for the blackout.

 | Using uDeploy | 61

Figure 29: tbd

Work Items

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

 | Using uDeploy | 62

Part

IV
Administration

Topics:

• Installation
• Security
• Settings

 | Administration | 64

Installation
An installation of uDeploy consists of the uDeploy server (with a supporting database), and at least one agent.
Typically, the server, database, and agents are installed on separate machines. For a simple evaluation they can all be
installed on the same machine. In addition, Java must be installed on all agent and server machines.

Note: For evaluation purposes, the supplied Derby database should be adequate and can be installed on the
machine where the server is located. If you are installing uDeploy in a production environment, UrbanCode
recommends the use one of the supported databases--Oracle Database (all versions), SQL Server, DB2, or
MySQL.

Installation Steps

1. Review the system requirements. See System Requirements on page 64.
2. Ensure that Java is installed on both the server and agent machines. Server and agent machines require Java JRE

5 or greater. Set the JAVA_HOME environment variable to point to the directory you intend to use. You can also
use the JDK.

3. Download both the uDeploy server and agent installation files. If you are installing an evaluation version, the
license is included with the downloaded files.

4. If you are not installing an evaluation version, install one of the supported databases. The database should be
installed before the server and on a separate machine. See Database Installation on page 66

5. Complete database installation by configuring the appropriate JDBC driver (typically supplied by the database
vendor).

6. Create an empty database for uDeploy and at least one dedicated user account.
7. Install the server. See Server Installation on page 68.
8. Finally, install at least one agent. See Agent Installation on page 70.

System Requirements

uDeploy will run on Windows and UNIX-based systems. While the minimum requirements provided below are
sufficient for an evaluation, you will want server-class machines for production deployments.

Server Minimum Installation Requirements

• Windows: Windows 2000 Server (SP4) or later.
• Processor: Single core, 1.5 GHz or better.
• Disk Space: 300 MB or more.
• Memory: 2 GB, with 256 MB available to uDeploy.
• Java version: JRE 5 or greater.

Recommended Server Installation

• Two server-class machines

UrbanCode recommends two machines for the server: a primary machine and a standby for fail-over. In addition,
the database should be hosted on a separate machine.

• Separate machine for the database
• Processor

2 CPUs, 2+ cores for each.
• RAM

8 GB
• Storage

Individual requirements depend on usage, retention policies, and application types. In general, the larger number
of artifacts kept in uDeploy's artifact repository (CodeStation), the more storage needed.

 | Administration | 65

Note: CodeStation is installed when the uDeploy server is installed.

For production environments, use the following guidelines to determine storage requirements:

• 10-20 GB of database storage should be sufficient for most environments.
• To calculate CodeStation storage requirements:

average build artifact size * number of builds per day * average number of
days before cleanup

For further assistance in determining storage requirements, contact UrbanCode support.
• Network

Gigabit (1000) Ethernet with low-latency to the database.

Agent Minimum Requirements

Designed to be minimally intrusive, agents require 64-256 MB of memory and 100 MB of disk space. Additional
requirements are determined by the processes the agent will run. For a simple evaluation, the agent can be installed
on the same physical machine as the server. In production environments, agents should be installed on separate
machines.

32- and 64-bit JVM Support

The uDeploy server must use the 32-bit JDK for the Windows 2003 64-bit server; the 64-bit JDK can be used for
agents. Because uDeploy does not require a multi-gigabyte heap, there is little advantage to using a 64-bit JVM. For
64-bit Windows installations, uDeploy uses a 32-bit JVM; for other 64-bit platforms, uDeploy uses a 64-bit JVM, as
the following table illustrates:

Operating
System

JVM 32-bit JVM 64-bit

Windows 32-bit yes NA

Windows 64-bit yes no

Non-Windows
32-bit

yes NA

Non-Windows
64-bit

yes yes

Performance Recommendations

Since the uDeploy agent performs most of the processing, optimal agent configuration is important. Except when
evaluating uDeploy, an agent should not be installed on the same machine where the server is located.

By following these recommendations, you should avoid most performance-related issues:

• Install the server as a dedicated user account. The server should be installed as a dedicated system account
whenever possible. However, uDeploy runs well as a root user (or local system user on Windows), and running
this way is the easiest method to avoid permission errors.

• Install the agent as dedicated system account. Ideally, the account used should be dedicated to uDeploy.
Because uDeploy agents are remote command-execution engines, it is best to create a user just for the agent and
grant it only the appropriate privileges.

• Do not install an agent on the uDeploy server machine. Because the agent is resource intensive, installing one
on the server machine will degrade server performance whenever a large deployment runs.

• Install one agent per machine. Several agents on the same machine can result in significant performance
reduction, especially when they are running at the same time.

 | Administration | 66

Download UrbanDeploy

The installation package is available from the UrbanCode support portal--Supportal. If you are evaluating uDeploy,
the Supportal account where you download uDeploy also enables you to create support tickets.

1. Navigate to the UrbanCode Support Portal support.urbancode.com/tasks/login/LoginTasks/
login.

If you do not have an account, please create one.

Note: You must have a license in order to downalod the product. For an evaluatin license, go to
urbancode.com/html/products/deploy/default.html.

2. Click the Products tab and select the uDeploy version you want to download.
3. Select the appropriate package for your environment for both the server and agent. The contents of the zip and tar

packages are the same.

uDeploy enables you to install agents on any supported platform, regardless of the operating system where the
server is installed.

4. Download the license. If you do not see a license, ensure that you are the Supportal account administrator.
Licenses are not available to all Supportal users.

Database Installation

Currently, uDeploy supports Derby, Oracle, SQL Server, DB2, and MySQL.

Installing Oracle

Before installing the uDeploy server, install an Oracle database. If you are evaluating uDeploy, you can install the
database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the Oracle connection information, and a user account with table creation
privileges.

uDeploy supports the following editions:

• Oracle Database Enterprise
• Oracle Database Standard
• Oracle Database Standard One
• Oracle Database Express

Version 10g or later is supported for each edition.

To install the database

1. Obtain the Oracle JDBC driver. The JDBC jar file is included among the Oracle installation files. The driver is
unique to the edition you are using.

2. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.
3. Begin server installation, see Server Installation on page 68. When you are prompted for the database type,

enter oracle.
4. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is oracle.jdbc.driver.OracleDriver.
5. Provide the JDBC connection string. The format depends on the JDBC driver.

Typically, it is similar to:

jdbc:oracle:thin:@[DB_URL]:[DB_PORT]

For example:

jdbc:oracle:thin:@localhost:1521.
6. Finish by entering the database user name and password.

 | Administration | 67

Installing MySQL

Before installing the uDeploy server, install MySQL. If you are evaluating uDeploy, you can install the database on
the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the MySQL connection information, and a user account with table creation
privileges.

To install the database

1. Create a database:

CREATE DATABASE urbandeploy;

GRANT ALL ON urbandeploy * TO 'urbandeploy'@'%'

IDENTIFIED BY 'password' WITH GRANT OPTION;

2. Obtain the MySQL JDBC driver. The JDBC jar file is included among the installation files. The driver is unique
to the edition you are using.

3. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.
4. Begin server installation, see Server Installation on page 68. When you are prompted for the database type,

enter mysql.
5. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is com.mysql.Driver.
6. Next, provide the JDBC connection string.

Typically, it is similar to:

jdbc:mysql[DB_URL]:[DB_PORT]:[DB_NAME]

For example:

jdbc:mysql://localhost:3306/urbandeploy.
7. Finish by entering the database user name and password.

Installing Microsoft SQL Server

Before installing the uDeploy server, install a SQL Server database. If you are evaluating uDeploy, you can install the
database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the SQL Server connection information, and a user account with table
creation privileges.

Before installing the uDeploy server, install an SQL Server database. If you are evaluating uDeploy, you can install
the database on the same machine where the uDeploy server will be installed:

CREATE DATABASE udeploy;

USE udeploy;

CREATE LOGIN udeploy WITH PASSWORD = 'password';

CREATE USER udeploy FOR LOGIN udeploy WITH DEFAULT_SCHEMA = udeploy;

CREATE SCHEMA udeploy AUTHORIZATION udeploy;

GRANT ALL TO udeploy;

1. Obtain the SQL Server JDBC driver. The JDBC jar file is included among the installation files.
2. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.
3. Begin server installation, see Server Installation on page 68. When you are prompted for the database type,

enter sqlserver.

 | Administration | 68

4. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is com.microsoft.sqlserver.jdbc.SQLServerDriver.
5. Next, provide the JDBC connection string. The format depends on the JDBC driver.

Typically, it is similar to:

jdbc:sqlserver://[DB_URL]:[DB_PORT];databaseName=[DB_NAME]

For example:

jdbc:sqlserver://localhost:1433;databaseName=udeploy.
6. Finish by entering the database user name and password.

Installing DB2

Before installing the uDeploy server, install a DB2 database. When you install uDeploy, you will need the DB2
connection information, and a user account with table creation privileges.

1. Obtain the DB2 JDBC driver from your vendor.
2. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.
3. Begin server installation, see Server Installation on page 68. When you are prompted for the database type,

enter db2.
4. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is com.ibm.db2.jcc.DB2Driver.
5. Next, provide the JDBC connection string. The format depends on the JDBC driver.

Typically, it is similar to:

jdbc:db2://localhost:48665/udeploy.
6. Finish by entering the database user name and password.

Server Installation

The server provides services such as the user interface used to configure application deployments, the work flow
engine, the security service, and the artifact repository, among others

Note: If you are installing the server in a production environment, install and configure the database you
intend to use before installing the server. See Database Installation on page 66.

Windows Server Installation

1. Download and unpack the installation files to the installer_directory.
2. From the installer_directory, run install-server.bat.

Note: Depending on your Windows version, you might need to run the batch file as the administrator.

The uDeploy Installer is displayed and prompts you to provide the following information:
3. Enter the directory where the uDeploy Server will be installed.

Enter the directory where you want the server located. If the directory does not exist, enter Y to instruct the
Installer to create it for you. The default value is Y.

Note: Whenever the uDeploy Installer suggests a default value, you can press ENTER to accept the value.

4. Please enter the home directory of the JRE/JDK used to run the server.

If Java has been previously installed, uDeploy will suggest the Java location as the default value. To accept the
default value, press ENTER, otherwise override the default value and enter the correct path.

 | Administration | 69

5. Enter the IP address on which the Web UI should listen. UrbanCode suggests accepting the default value all
available to this machine.

6. Do you want the Web UI to always use secure connections using SSL?

Default value is Y.

If you use SSL, turn it on for agents too, or the agents will not be able to connect to the server. This also applies
if using mutual authentication. If you change the port numbers for agent communication, you need to provide the
port numbers when installing the agents.

7. Enter the port where uDeploy should listen for secure HTTPS requests.

The default value is 8443.
8. Enter the port on which the uDeploy should redirect unsecured HTTP requests.

The default value is 8080.
9. Enter the URL for external access to the web UI.
10. Enter the port to use for agent communication.

The default value is 7918.
11. Do you want the Server and Agent communication to require mutual authentication?

If you select Y, a manual key must be exchanged between the server and each agent. The default value is N.
12. Enter the database type UrbanDeploy should use.

The default value is the supplied database Derby. The other supported databases are: mysql, oracle,
db2, and sqlserver.

If you enter a value other than derby, the uDeploy Installer will prompt you for connection information, which
was defined when you installed the database. See Database Installation on page 66.

13. Enter the database user name.. The default value is urbandeploy.

Enter the user name you created during database installation.
14. Enter the database password.. The default value is password.
15. Do you want to install the Server as Windows service?. The default value is N.

Note: When installed as a service, uDeploy only captures the value for the PATH variable. Values
captured during installation will always be used, even if you make changes later. For recent Windows
versions, you will need to execute the command as Administrator.

UNIX/LINUX Installation

1. Download and unpack the installation files to the installer_directory.

Note: If you are installing uDeploy on Solaris, UrbanCode recommends the Korn shell (ksh).

2. From the installer_directory run install-server.sh.

The uDeploy Installer is displayed and prompts you to provide the following information:
3. Enter the directory where the uDeploy Server will be installed.

If the directory does not exist, enter Y to instruct the Installer to create it for you. The default value is Y.

Note: Whenever the uDeploy Installer suggests a default value, you can press ENTER to accept the value.

4. Please enter the home directory of the JRE/JDK used to run the server.

If Java has been previously installed, uDeploy will suggest the Java location as the default value. To accept the
default value, press ENTER, otherwise override the default value and enter the correct path.

5. Enter the IP address on which the Web UI should listen. UrbanCode suggests accepting the default value all
available to this machine.

6. Do you want the Web UI to always use secure connections using SSL?

 | Administration | 70

Default value is Y.

If you use SSL, turn it on for agents too, or the agents will not be able to connect to the server. This also applies
if using mutual authentication. If you change the port numbers for agent communication, you need to provide the
port numbers when installing the agents.

7. Enter the port where uDeploy should listen for secure HTTPS requests.

The default value is 8443.
8. Enter the port on which the uDeploy should redirect unsecured HTTP requests.

The default value is 8080.
9. Enter the URL for external access to the web UI.
10. Enter the port to use for agent communication.

The default value is 7918.
11. Do you want the Server and Agent communication to require mutual authentication?

If you select Y, a manual key must be exchanged between the server and each agent. The default value is N.
12. Enter the database type UrbanDeploy should use.

The default value is the supplied database Derby. The other supported databases are: mysql, oracle,
db2, and sqlserver.

If you enter a value other than derby, the uDeploy Installer will prompt you for connection information, which
was defined when you installed the database. See Database Installation on page 66.

13. Enter the database user name.. The default value is urbandeploy.

Enter the user name you created when you installed the database.
14. Enter the database password.. The default value is password.

Agent Installation

For production environments, UrbanCode recommends creating a user account dedicated to running the agent on the
machine where the agent is installed.

For simple evaluations, the administrative user can run the agent on the machine where the server is located. But
if you plan to run deployments on several machines, a separate agent should be installed on each machine. If,
for example, your testing environment consists of three machines, install an agent on each one. Follow the same
procedure for each environment the application uses.

Each agent needs the appropriate rights to communicate with the uDeploy server.

At a minimum, each agent should have permission to:

• Create a cache. By default, the cache is located in the home directory of the user running the agent. The cache
can be moved or disabled.

• Open a TCP connection. The agent uses a TCP connection to communicate with the server's JMS port.
• Open a HTTP(S) connection. The agent must be able to connect to the uDeploy user interface in order to

download artifacts from the CodeStation repository.
• Access the file system. Many agents need read/write permissions to items on the file system.

Installing an Agent

After downloading and expanding the installation package, open the installer_directory.

From the installer_directory run install-server.bat (Windows) or install-server.sh (UNIX-
LINUX).

Note: If you are installing Windows, you might need to run the batch file as the administrator.

The uDeploy Installer is displayed and prompts you to provide the following information:

 | Administration | 71

1. Enter the directory where agent should be installed.. For example: C:\Program Files\urban-deploy\agent
(Windows) or /opt/urban-deploy/agent (UNIX).

If the directory does not exist, enter Y to instruct the Installer to create it for you. The default value is Y.

Note: Whenever the uDeploy Installer suggests a default value, you can press ENTER to accept the value.

2. Please enter the home directory of the JRE/JDK used to run the agent.

If Java has been previously installed, uDeploy will suggest the Java location as the default value. To accept the
default value, press ENTER, otherwise override the default value and enter the correct path.

3. Will the agent connect to a agent relay instead of directly to the server?

The default value is N.
4. Enter the host name or address of the server the agent will connect to. The default value is localhost.
5. Enter the agent communication port for the server.

The default value is 7918.
6. Does the server agent communication use mutual authentication with SSL?.

Default value is Y.

If you use SSL, turn it on for server too or the agent will not be able to connect to the server. This also applies if
using mutual authentication. If you change the port numbers for agent communication, you need to provide them
when installing the agents.

7. Enter the name for this Agent. Enter a unique name; the name will be used by uDeploy to identify this agent.
8. Do you want to install the Agent as Windows service? (Windows only).

The default value is N. When installed as a service, uDeploy only captures the value for the PATH variable.
Values captured during installation will always be used, even if you make changes later. For recent Windows
versions, you will need to execute the command as Administrator.

Running uDeploy

Both UNIX-based and Windows installation require the uDeploy server and at lest one agent. Before you continuing,
ensure that you have the correct JVM/JDK for the server. If you are using a Oracle or MySQL database, make sure
you have installed and configured the appropriate driver, see Database Installation on page 66.

Running the Server

1. Navigate to the server_installation_directory\bin directory
2. Run the run_server.cmd batch file (Windows), or start_server.cmd (UNIX/LINUX).

Running an Agent
After the server has successfully started:

1. Navigate to the agent_installation_directory\bin directory
2. Run the run_udagent.cmd batch file (Windows), or start_udagent.cmd (UNIX/LINUX).
3. Once the installer is done, start the agent. Go to the UrbanDeploy agent directory created during installation. For

example, C:\Program Files\urban-deploy\agent. (Windows) or /opt/urban-deploy/agent (UNIX-like system). Enter
the bin directory. Run: run_udagent.cmd (WIndows) or "udagent run" (UNIX-like systems, without the quotes).

4. When the agent has finished starting up, go to the UrbanDeploy UI and select the Resources tab. You should see
the agent in the list. If the agent is not visible, ensure that you used the correct connection ports; if using SSL,
ensure it is turned on for both the server and the agent; that there is no firewall blocking communication; and that
the license is activated. If the agent still can't establish a connection to the server, please contact support.

5. To install another agent, repeat the previous steps. Note that you can use the same agent installer for both
Windows and UNIX-like systems.

 | Administration | 72

Accessing uDeploy

1. Open a web browser and navigate to the external URL you entered during installation.
2. Log onto the server by using the default credentials.

User name: admin admin

Password: admin admin

You can change these later by using the Settings pane, see Database Installation on page 66
3. Activate license. A license is required for the agents to connect to the server. Without a license, UrbanDeploy

will be unable to run deployments, etc. If not already done so, go to Supportal and retrieve the license. Go to the
Setting tab and either upload or past the license to activate it.

4. To install an agent, see Agent Installation.

Security
In UrbanDeploy, you have detailed control over what users can see and do. The Security System maps to your
organizational structure by teams, activities, etc. For example, you can set up UrbanDeploy so that team members
only see the Applications or Components they work with; or if a manager just needs to approve a deployment, etc.,
you can set up UrbanDeploy so all they see are the assigned Work Items.

UrbanDeploy includes both an internal database to store Security information as well as an integration with
LDAP. The internal security database enables you to set up who can access a resource (Component, Application,
Environment, etc.) via the UI as well as who can approve a deployment or other Process. If you are rolling out a
production instance of UrbanDeploy, it is recommended to use the LDAP integration.

Note: If you are evaluating UrbanDeploy, it is not necessary to set up the LDAP integration: full security is
configured and enforced by the server. However, if you want to send out notifications you will need to set up
the LDAP integration.

When setting up Security in UrbanDeploy, you can either use the default configurations or create your own Security
setting (unless you are configuring the LDAP integration, both options use the internal database for storage).

Figure 30: Security Pane

For both the LDAP integration and the standard security system, Security configuration is performed on the Settings
> Security page, and consists of the following:

• Authorization. Authorization Realms are used by Authentication Realms to associate Users with Roles and to
determine user access to UrbanDeploy. There are two basic Authorization Realms in UrbanDeploy: the default
Realm and the LDAP realm. When setting up Security, the first step is to configure Authorization.

• Authentication. The Authentication Realm is used to determine a users identity within an Authorization Realm.
The User authentication is determined following the hierarchy of realms displayed on the Authentication Realms.
When a User attempts to log in, UrbanDeploy will poll all the configured Authentication Realms for matching
credentials.

• Schemas. The Security Schemas are visual representations of the different parts of UrbanDeploy that may
be secured. Each Schema interacts with Users indirectly, through the Role. To configure security for any of
the schemas, you configure what are called Roles. In UrbanDeploy, a Role is used to determine the type of
permissions a user is assigned (execute, read, security, write). For example, if a user is assigned the "admin"
Role, and the "admin" role has complete access to view, configure, and run Application Processes, that User will

 | Administration | 73

have access to that page. In addition, the Role will also need to be assigned to additional schemas so the User can
configure Applications, etc.

Typically, you will need to add new Roles to a schema on initial setup, and then occasionally as need dictates.
• Dynamic Roles. These give you a quick way to grant all users a specific set of permissions at once, regardless of

the User's assigned Group or Role, corresponding to the selected Schema. For example, creating a Dynamic Role
for Applications grants the selected permissions to every user in the system.

• UI security. Corresponding to the Roles created in the UI Security Schema, use this section to quickly assign a
user permissions to the different areas of UrbanDeploy. For those with the Security permission (i.e., they see the
Security tab in the UI) you can easily add an individual user or a Group of users to any resource. In the example
below, an "admin" user is assigning new users, based on the Group they have been assigned, to an Application.

Figure 31: Security Pane

Authentication

The LDAP integration enables you to map UrbanDeploy Groups and Roles to your existing infrastructure. Once
the integration is configured, when a user logs into UrbanDeploy using their LDAP credentials, the system will
automatically add them as a user.

You will need to first set up a dedicated Authorization Realm for LDAP. The LDAP Authorization Realm uses an
external LDAP server for authorization. If User Roles are defined in LDAP as an attribute of the User, the LDAP
Role Attribute configuration must be used. If User Roles are defined elsewhere in LDAP and reference the Users that
belong to them, a LDAP Role Search needs to be performed. Once you have the Authorization set up, configure the
Authentication Realm, which enables UrbanDeploy to determine a User's identity as defined by LDAP.

Configuring LDAP Integration

1. Go to Settings > Security > Create New Authorization Realm

 | Administration | 74

Figure 32: Create Authorization Realm
2. Now, provide UrbanDeploy with information about your LDAP set up. You can either use the User Group

Attribute, Group Search Base, or a combination of settings to import. Once configured, and you set up the
Authentication Realm (covered in the next section) UrbanDeploy will import your LDAP information.

Figure 33: Authorization Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real. M the
Authorization Realm.

Type. Select LDAP from the drop down.

User Group Attribute. Give the name of the attribute that contains role names in the user directory entry. If User
Groups are defined in LDAP as an attribute of the User, the Group Attribute configuration must be used.

Group Search Base. Give the base directory to execute Group searches in (e.g.,
ou=groups,dc=mydomain,dc=com). The will determine the Group that Urban Deploy will add any new users to.

Group Search Filter. Provide the LDAP filter expression to use when searching for user Group entries. The
user name will be put in place of {1} in the search pattern and the full user DN will be put in place of {0} (e.g.,
member={0}). The will determine the Group that Urban Deploy will add any new users to.

Group Name. Give the name of the entry that contains the user's Group names in the directory entries returned by
the Group Search. If left blank, no search will take place.

Search Group Subtree. Check the box to have UrbanDeploy search the Group Subtree for the Users. Leave blank
to not search the Subtree.

3. Next, you need to configure an Authentication Realm. The Authentication Realm is used to determine a users
identity within an Authorization Realm, based on LDAP. The User authentication is determined following the

 | Administration | 75

hierarchy of realms displayed on the Authentication Realms. When a Users attempts to log in, UrbanDeploy will
poll all the configured Authentication Realms for matching credentials.

Figure 34: Create Authentication Realm

When configuring the LDAP Authentication Realm, you need to give UrbanDeploy the location of your LDAP
server, as well as provide information similar that given for the Authentication Realm.

Figure 35: Authentication Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real.

Authorization Realm. Select the Real created in the previous step.

Type. Select LDAP from the drop down.

Context Factory. Give the context factory class used to connect. This may vary depending upon your specific Java
implementation. The default for Sun Java implementations: com.sun.jndi.ldap.LdapCtxFactory

LDAP URL. Provide the full URL to the LDAP server, beginning with ldap:// (e.g., ldap://
ldap.mydomain.com:389)

User DN Pattern. Give the user directory entry pattern. The user name will be put in place of {0} in the pattern
(e.g., cn={0},ou=employees,dc=yourcompany,dc=com).

User Search Base. Give the base directory to execute Group searches in (e.g.,
ou=enployees,dc=mydomain,dc=com).

User Search Filter. Provide the LDAP filter expression to use when searching for user entries (e.g., uid={0}).

 | Administration | 76

Search User Subtree. Check the box to have UrbanDeploy search the User Subtree for the entries. Leave blank to
not search the Subtree.

Search Connection DN. Give the directory name to use when binding to the LDAP for searches (e.g.,
cn=Manager,dc=mycompany,dc=com). If not specified, an anonymous connection will be made. Connection
Name is required if the LDAP server cannot be anonymously accessed.

Search Connection Password. Give the password UrbanDeploy should use when connecting to LDAP to perform
searches.

Name Attribute. Give the attribute that contains the user's name, as set in LDAP.

Email Attribute. Give the attribute that contains the user's email address, as set in LDAP.

Once the configuration is complete, when a new user logs into UrbanDeploy using their LDAP credentials, they
will be listed on the Authentication Realm User tab. Since UrbanDeploy relies on LDAP for authentication, it
is best practice not to manage user passwords nor remove users from the list. If an active user is removed from
UrbanDeploy, they will still be able to log onto the server as long as their LDAP credentials are valid. If this
happens, you may also need to set up UI and other permissions for the user.

4. Assign Group to Role. When a User has logged into UrbanDeploy using LDAP credentials, UrbanDeploy
automatically assigns the new User to a Group, based on the information pulled from LDAP. In the example
below, when "New LDAP User" logged on to UrbanDeploy, they were automatically added to the LDAP Default
group. If a user logs on to UrbanDeploy and they are part of a mapping that is not currently associated with a
Group, UrbanDeploy will create a new Group based on the information fetched from LDAP. Conversely, if a user
logs onto UrbanDeploy and their LDAP credentials map to an existing Group, they will be automatically added to
that Group.

Figure 36: Edit Users

Once the new user has been successfully added to a Group, you may need to configure additional permissions.
This may happen when the new User is mapped to a Group that has limited permissions (e.g., the User has UI
permissions but not access to view any Components, Applications; the user was added to a Group that can only
access the Work Items and they need to be able to deploy an application, etc.). When this is the case, you will
need to set up security for the user, as outlined in the previous section.

Figure 37: Group Dialog

Authorization

When setting up Security, there is no optimal process to follow; however using the following order presented below
can help you find your way. For most evaluations, starting out with the default Security settings should be adequate

 | Administration | 77

and require minimal configuration. What is presented below assumes you are setting up a custom Security System
from scratch. In all likelihood.

Note: If you are using the LDAP integration set that up first before continuing. See Configure LDAP
Integration.

1. Go to Settings > Security > Create New Authorization Realm. You will select this Authorization Realm in the
next step. This Realm is used to ensure people attempting to log on to the server are allowed to.

Figure 38: tbd
2. Next, configure an Authentication Realm and add Users. The Authentication Realm is used to determine a

users identity within an Authorization Realm. The User authentication is determined following the hierarchy of
realms displayed on the Authentication Realms. When a Users attempts to log in, UrbanDeploy will poll all the
configured Authentication Realms for matching credentials.

Figure 39: tbd

When adding a new user, the Username and password is what the individual will use when logging into
UrbanDeploy. The Username will also be displayed when setting up additional Security. Unless you are using the
LDAP Integration, UrbanDeploy, which does not have its own e-mail server, will not be able to send notifications
to the e-mail address.

Figure 40: tbd
3. Add new Group and assign a User (member) to the Group. A Group is a logical identifier for that similar Users are

identified with. It is at the Group level that individual Users are manually added to UrbanDeploy. Once the Group
container is created, select it from the list and then manually enter the new User.

Figure 41: tbd
4. Next, create a new Role. The purpose of the Role is to assign permission that allows Users with that Role to use

UrbanDeploy. For example, if you are setting up a new user that must access every page in UrbanDeploy, you
must add a new Role to each Schema. Most users will only be required to add Roles on initial set up, and then

 | Administration | 78

occasionally as needs arise. Since the Schemas work independently of each other, you will need to create a new
Role for each, defining the permissions that you want the role to have for the individual Schema.

Figure 42: Role Pane
5. Finally, go to the specific Applications, Components, Environments, etc., and add either individual Users or the

Group they participate in. If you have many different individuals that must access a resource, say an Application,
the most efficient way to give them access is to add the Group that they are assigned to. If this is done, when
future users are added to UrbanDeploy, you will not need to manually add them to the resources they need access
to.

Figure 43: tbd

Default Permissions

The LDAP integration enables you to map UrbanDeploy Groups and Roles to your existing infrastructure. Once
the integration is configured, when a user logs into UrbanDeploy using their LDAP credentials, the system will
automatically add them as a user.

You will need to first set up a dedicated Authorization Realm for LDAP. The LDAP Authorization Realm uses an
external LDAP server for authorization. If User Roles are defined in LDAP as an attribute of the User, the LDAP
Role Attribute configuration must be used. If User Roles are defined elsewhere in LDAP and reference the Users that
belong to them, a LDAP Role Search needs to be performed. Once you have the Authorization set up, configure the
Authentication Realm, which enables UrbanDeploy to determine a User's identity as defined by LDAP.

Configuring LDAP Integration

1. Go to Settings > Security > Create New Authorization Realm

Figure 44: Create Authorization Realm

 | Administration | 79

2. Now, provide UrbanDeploy with information about your LDAP set up. You can either use the User Group
Attribute, Group Search Base, or a combination of settings to import. Once configured, and you set up the
Authentication Realm (covered in the next section) UrbanDeploy will import your LDAP information.

Figure 45: Authorization Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real. M the
Authorization Realm.

Type. Select LDAP from the drop down.

User Group Attribute. Give the name of the attribute that contains role names in the user directory entry. If User
Groups are defined in LDAP as an attribute of the User, the Group Attribute configuration must be used.

Group Search Base. Give the base directory to execute Group searches in (e.g.,
ou=groups,dc=mydomain,dc=com). The will determine the Group that Urban Deploy will add any new users to.

Group Search Filter. Provide the LDAP filter expression to use when searching for user Group entries. The
user name will be put in place of {1} in the search pattern and the full user DN will be put in place of {0} (e.g.,
member={0}). The will determine the Group that Urban Deploy will add any new users to.

Group Name. Give the name of the entry that contains the user's Group names in the directory entries returned by
the Group Search. If left blank, no search will take place.

Search Group Subtree. Check the box to have UrbanDeploy search the Group Subtree for the Users. Leave blank
to not search the Subtree.

3. Next, you need to configure an Authentication Realm. The Authentication Realm is used to determine a users
identity within an Authorization Realm, based on LDAP. The User authentication is determined following the
hierarchy of realms displayed on the Authentication Realms. When a Users attempts to log in, UrbanDeploy will
poll all the configured Authentication Realms for matching credentials.

 | Administration | 80

Figure 46: Create Authentication Realm

When configuring the LDAP Authentication Realm, you need to give UrbanDeploy the location of your LDAP
server, as well as provide information similar that given for the Authentication Realm.

Figure 47: Authentication Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real.

Authorization Realm. Select the Real created in the previous step.

Type. Select LDAP from the drop down.

Context Factory. Give the context factory class used to connect. This may vary depending upon your specific Java
implementation. The default for Sun Java implementations: com.sun.jndi.ldap.LdapCtxFactory

LDAP URL. Provide the full URL to the LDAP server, beginning with ldap:// (e.g., ldap://
ldap.mydomain.com:389)

User DN Pattern. Give the user directory entry pattern. The user name will be put in place of {0} in the pattern
(e.g., cn={0},ou=employees,dc=yourcompany,dc=com).

User Search Base. Give the base directory to execute Group searches in (e.g.,
ou=enployees,dc=mydomain,dc=com).

User Search Filter. Provide the LDAP filter expression to use when searching for user entries (e.g., uid={0}).

 | Administration | 81

Search User Subtree. Check the box to have UrbanDeploy search the User Subtree for the entries. Leave blank to
not search the Subtree.

Search Connection DN. Give the directory name to use when binding to the LDAP for searches (e.g.,
cn=Manager,dc=mycompany,dc=com). If not specified, an anonymous connection will be made. Connection
Name is required if the LDAP server cannot be anonymously accessed.

Search Connection Password. Give the password UrbanDeploy should use when connecting to LDAP to perform
searches.

Name Attribute. Give the attribute that contains the user's name, as set in LDAP.

Email Attribute. Give the attribute that contains the user's email address, as set in LDAP.

Once the configuration is complete, when a new user logs into UrbanDeploy using their LDAP credentials, they
will be listed on the Authentication Realm User tab. Since UrbanDeploy relies on LDAP for authentication, it
is best practice not to manage user passwords nor remove users from the list. If an active user is removed from
UrbanDeploy, they will still be able to log onto the server as long as their LDAP credentials are valid. If this
happens, you may also need to set up UI and other permissions for the user.

4. Assign Group to Role. When a User has logged into UrbanDeploy using LDAP credentials, UrbanDeploy
automatically assigns the new User to a Group, based on the information pulled from LDAP. In the example
below, when "New LDAP User" logged on to UrbanDeploy, they were automatically added to the LDAP Default
group. If a user logs on to UrbanDeploy and they are part of a mapping that is not currently associated with a
Group, UrbanDeploy will create a new Group based on the information fetched from LDAP. Conversely, if a user
logs onto UrbanDeploy and their LDAP credentials map to an existing Group, they will be automatically added to
that Group.

Figure 48: Edit Users

Once the new user has been successfully added to a Group, you may need to configure additional permissions.
This may happen when the new User is mapped to a Group that has limited permissions (e.g., the User has UI
permissions but not access to view any Components, Applications; the user was added to a Group that can only
access the Work Items and they need to be able to deploy an application, etc.). When this is the case, you will
need to set up security for the user, as outlined in the previous section.

Figure 49: Group Dialog

 | Administration | 82

Role Configuration

The LDAP integration enables you to map UrbanDeploy Groups and Roles to your existing infrastructure. Once
the integration is configured, when a user logs into UrbanDeploy using their LDAP credentials, the system will
automatically add them as a user.

You will need to first set up a dedicated Authorization Realm for LDAP. The LDAP Authorization Realm uses an
external LDAP server for authorization. If User Roles are defined in LDAP as an attribute of the User, the LDAP
Role Attribute configuration must be used. If User Roles are defined elsewhere in LDAP and reference the Users that
belong to them, a LDAP Role Search needs to be performed. Once you have the Authorization set up, configure the
Authentication Realm, which enables UrbanDeploy to determine a User's identity as defined by LDAP.

Configuring LDAP Integration

1. Go to Settings > Security > Create New Authorization Realm

Figure 50: Create Authorization Realm
2. Now, provide UrbanDeploy with information about your LDAP set up. You can either use the User Group

Attribute, Group Search Base, or a combination of settings to import. Once configured, and you set up the
Authentication Realm (covered in the next section) UrbanDeploy will import your LDAP information.

Figure 51: Authorization Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real. M the
Authorization Realm.

Type. Select LDAP from the drop down.

 | Administration | 83

User Group Attribute. Give the name of the attribute that contains role names in the user directory entry. If User
Groups are defined in LDAP as an attribute of the User, the Group Attribute configuration must be used.

Group Search Base. Give the base directory to execute Group searches in (e.g.,
ou=groups,dc=mydomain,dc=com). The will determine the Group that Urban Deploy will add any new users to.

Group Search Filter. Provide the LDAP filter expression to use when searching for user Group entries. The
user name will be put in place of {1} in the search pattern and the full user DN will be put in place of {0} (e.g.,
member={0}). The will determine the Group that Urban Deploy will add any new users to.

Group Name. Give the name of the entry that contains the user's Group names in the directory entries returned by
the Group Search. If left blank, no search will take place.

Search Group Subtree. Check the box to have UrbanDeploy search the Group Subtree for the Users. Leave blank
to not search the Subtree.

3. Next, you need to configure an Authentication Realm. The Authentication Realm is used to determine a users
identity within an Authorization Realm, based on LDAP. The User authentication is determined following the
hierarchy of realms displayed on the Authentication Realms. When a Users attempts to log in, UrbanDeploy will
poll all the configured Authentication Realms for matching credentials.

Figure 52: Create Authentication Realm

When configuring the LDAP Authentication Realm, you need to give UrbanDeploy the location of your LDAP
server, as well as provide information similar that given for the Authentication Realm.

Figure 53: Authentication Realm Dialog

 | Administration | 84

Name and description. The name you give here will be used when configuring the Authentication Real.

Authorization Realm. Select the Real created in the previous step.

Type. Select LDAP from the drop down.

Context Factory. Give the context factory class used to connect. This may vary depending upon your specific Java
implementation. The default for Sun Java implementations: com.sun.jndi.ldap.LdapCtxFactory

LDAP URL. Provide the full URL to the LDAP server, beginning with ldap:// (e.g., ldap://
ldap.mydomain.com:389)

User DN Pattern. Give the user directory entry pattern. The user name will be put in place of {0} in the pattern
(e.g., cn={0},ou=employees,dc=yourcompany,dc=com).

User Search Base. Give the base directory to execute Group searches in (e.g.,
ou=enployees,dc=mydomain,dc=com).

User Search Filter. Provide the LDAP filter expression to use when searching for user entries (e.g., uid={0}).

Search User Subtree. Check the box to have UrbanDeploy search the User Subtree for the entries. Leave blank to
not search the Subtree.

Search Connection DN. Give the directory name to use when binding to the LDAP for searches (e.g.,
cn=Manager,dc=mycompany,dc=com). If not specified, an anonymous connection will be made. Connection
Name is required if the LDAP server cannot be anonymously accessed.

Search Connection Password. Give the password UrbanDeploy should use when connecting to LDAP to perform
searches.

Name Attribute. Give the attribute that contains the user's name, as set in LDAP.

Email Attribute. Give the attribute that contains the user's email address, as set in LDAP.

Once the configuration is complete, when a new user logs into UrbanDeploy using their LDAP credentials, they
will be listed on the Authentication Realm User tab. Since UrbanDeploy relies on LDAP for authentication, it
is best practice not to manage user passwords nor remove users from the list. If an active user is removed from
UrbanDeploy, they will still be able to log onto the server as long as their LDAP credentials are valid. If this
happens, you may also need to set up UI and other permissions for the user.

4. Assign Group to Role. When a User has logged into UrbanDeploy using LDAP credentials, UrbanDeploy
automatically assigns the new User to a Group, based on the information pulled from LDAP. In the example
below, when "New LDAP User" logged on to UrbanDeploy, they were automatically added to the LDAP Default
group. If a user logs on to UrbanDeploy and they are part of a mapping that is not currently associated with a
Group, UrbanDeploy will create a new Group based on the information fetched from LDAP. Conversely, if a user
logs onto UrbanDeploy and their LDAP credentials map to an existing Group, they will be automatically added to
that Group.

Figure 54: Edit Users

Once the new user has been successfully added to a Group, you may need to configure additional permissions.
This may happen when the new User is mapped to a Group that has limited permissions (e.g., the User has UI
permissions but not access to view any Components, Applications; the user was added to a Group that can only
access the Work Items and they need to be able to deploy an application, etc.). When this is the case, you will
need to set up security for the user, as outlined in the previous section.

 | Administration | 85

Figure 55: Group Dialog

User Interface Security

The LDAP integration enables you to map UrbanDeploy Groups and Roles to your existing infrastructure. Once
the integration is configured, when a user logs into UrbanDeploy using their LDAP credentials, the system will
automatically add them as a user.

You will need to first set up a dedicated Authorization Realm for LDAP. The LDAP Authorization Realm uses an
external LDAP server for authorization. If User Roles are defined in LDAP as an attribute of the User, the LDAP
Role Attribute configuration must be used. If User Roles are defined elsewhere in LDAP and reference the Users that
belong to them, a LDAP Role Search needs to be performed. Once you have the Authorization set up, configure the
Authentication Realm, which enables UrbanDeploy to determine a User's identity as defined by LDAP.

Configuring LDAP Integration

1. Go to Settings > Security > Create New Authorization Realm

Figure 56: Create Authorization Realm
2. Now, provide UrbanDeploy with information about your LDAP set up. You can either use the User Group

Attribute, Group Search Base, or a combination of settings to import. Once configured, and you set up the
Authentication Realm (covered in the next section) UrbanDeploy will import your LDAP information.

 | Administration | 86

Figure 57: Authorization Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real. M the
Authorization Realm.

Type. Select LDAP from the drop down.

User Group Attribute. Give the name of the attribute that contains role names in the user directory entry. If User
Groups are defined in LDAP as an attribute of the User, the Group Attribute configuration must be used.

Group Search Base. Give the base directory to execute Group searches in (e.g.,
ou=groups,dc=mydomain,dc=com). The will determine the Group that Urban Deploy will add any new users to.

Group Search Filter. Provide the LDAP filter expression to use when searching for user Group entries. The
user name will be put in place of {1} in the search pattern and the full user DN will be put in place of {0} (e.g.,
member={0}). The will determine the Group that Urban Deploy will add any new users to.

Group Name. Give the name of the entry that contains the user's Group names in the directory entries returned by
the Group Search. If left blank, no search will take place.

Search Group Subtree. Check the box to have UrbanDeploy search the Group Subtree for the Users. Leave blank
to not search the Subtree.

3. Next, you need to configure an Authentication Realm. The Authentication Realm is used to determine a users
identity within an Authorization Realm, based on LDAP. The User authentication is determined following the
hierarchy of realms displayed on the Authentication Realms. When a Users attempts to log in, UrbanDeploy will
poll all the configured Authentication Realms for matching credentials.

Figure 58: Create Authentication Realm

 | Administration | 87

When configuring the LDAP Authentication Realm, you need to give UrbanDeploy the location of your LDAP
server, as well as provide information similar that given for the Authentication Realm.

Figure 59: Authentication Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real.

Authorization Realm. Select the Real created in the previous step.

Type. Select LDAP from the drop down.

Context Factory. Give the context factory class used to connect. This may vary depending upon your specific Java
implementation. The default for Sun Java implementations: com.sun.jndi.ldap.LdapCtxFactory

LDAP URL. Provide the full URL to the LDAP server, beginning with ldap:// (e.g., ldap://
ldap.mydomain.com:389)

User DN Pattern. Give the user directory entry pattern. The user name will be put in place of {0} in the pattern
(e.g., cn={0},ou=employees,dc=yourcompany,dc=com).

User Search Base. Give the base directory to execute Group searches in (e.g.,
ou=enployees,dc=mydomain,dc=com).

User Search Filter. Provide the LDAP filter expression to use when searching for user entries (e.g., uid={0}).

Search User Subtree. Check the box to have UrbanDeploy search the User Subtree for the entries. Leave blank to
not search the Subtree.

Search Connection DN. Give the directory name to use when binding to the LDAP for searches (e.g.,
cn=Manager,dc=mycompany,dc=com). If not specified, an anonymous connection will be made. Connection
Name is required if the LDAP server cannot be anonymously accessed.

Search Connection Password. Give the password UrbanDeploy should use when connecting to LDAP to perform
searches.

Name Attribute. Give the attribute that contains the user's name, as set in LDAP.

Email Attribute. Give the attribute that contains the user's email address, as set in LDAP.

 | Administration | 88

Once the configuration is complete, when a new user logs into UrbanDeploy using their LDAP credentials, they
will be listed on the Authentication Realm User tab. Since UrbanDeploy relies on LDAP for authentication, it
is best practice not to manage user passwords nor remove users from the list. If an active user is removed from
UrbanDeploy, they will still be able to log onto the server as long as their LDAP credentials are valid. If this
happens, you may also need to set up UI and other permissions for the user.

4. Assign Group to Role. When a User has logged into UrbanDeploy using LDAP credentials, UrbanDeploy
automatically assigns the new User to a Group, based on the information pulled from LDAP. In the example
below, when "New LDAP User" logged on to UrbanDeploy, they were automatically added to the LDAP Default
group. If a user logs on to UrbanDeploy and they are part of a mapping that is not currently associated with a
Group, UrbanDeploy will create a new Group based on the information fetched from LDAP. Conversely, if a user
logs onto UrbanDeploy and their LDAP credentials map to an existing Group, they will be automatically added to
that Group.

Figure 60: Edit Users

Once the new user has been successfully added to a Group, you may need to configure additional permissions.
This may happen when the new User is mapped to a Group that has limited permissions (e.g., the User has UI
permissions but not access to view any Components, Applications; the user was added to a Group that can only
access the Work Items and they need to be able to deploy an application, etc.). When this is the case, you will
need to set up security for the user, as outlined in the previous section.

Figure 61: Group Dialog

System Security

The LDAP integration enables you to map UrbanDeploy Groups and Roles to your existing infrastructure. Once
the integration is configured, when a user logs into UrbanDeploy using their LDAP credentials, the system will
automatically add them as a user.

You will need to first set up a dedicated Authorization Realm for LDAP. The LDAP Authorization Realm uses an
external LDAP server for authorization. If User Roles are defined in LDAP as an attribute of the User, the LDAP
Role Attribute configuration must be used. If User Roles are defined elsewhere in LDAP and reference the Users that
belong to them, a LDAP Role Search needs to be performed. Once you have the Authorization set up, configure the
Authentication Realm, which enables UrbanDeploy to determine a User's identity as defined by LDAP.

Configuring LDAP Integration

1. Go to Settings > Security > Create New Authorization Realm

 | Administration | 89

Figure 62: Create Authorization Realm
2. Now, provide UrbanDeploy with information about your LDAP set up. You can either use the User Group

Attribute, Group Search Base, or a combination of settings to import. Once configured, and you set up the
Authentication Realm (covered in the next section) UrbanDeploy will import your LDAP information.

Figure 63: Authorization Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real. M the
Authorization Realm.

Type. Select LDAP from the drop down.

User Group Attribute. Give the name of the attribute that contains role names in the user directory entry. If User
Groups are defined in LDAP as an attribute of the User, the Group Attribute configuration must be used.

Group Search Base. Give the base directory to execute Group searches in (e.g.,
ou=groups,dc=mydomain,dc=com). The will determine the Group that Urban Deploy will add any new users to.

Group Search Filter. Provide the LDAP filter expression to use when searching for user Group entries. The
user name will be put in place of {1} in the search pattern and the full user DN will be put in place of {0} (e.g.,
member={0}). The will determine the Group that Urban Deploy will add any new users to.

Group Name. Give the name of the entry that contains the user's Group names in the directory entries returned by
the Group Search. If left blank, no search will take place.

Search Group Subtree. Check the box to have UrbanDeploy search the Group Subtree for the Users. Leave blank
to not search the Subtree.

3. Next, you need to configure an Authentication Realm. The Authentication Realm is used to determine a users
identity within an Authorization Realm, based on LDAP. The User authentication is determined following the

 | Administration | 90

hierarchy of realms displayed on the Authentication Realms. When a Users attempts to log in, UrbanDeploy will
poll all the configured Authentication Realms for matching credentials.

Figure 64: Create Authentication Realm

When configuring the LDAP Authentication Realm, you need to give UrbanDeploy the location of your LDAP
server, as well as provide information similar that given for the Authentication Realm.

Figure 65: Authentication Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real.

Authorization Realm. Select the Real created in the previous step.

Type. Select LDAP from the drop down.

Context Factory. Give the context factory class used to connect. This may vary depending upon your specific Java
implementation. The default for Sun Java implementations: com.sun.jndi.ldap.LdapCtxFactory

LDAP URL. Provide the full URL to the LDAP server, beginning with ldap:// (e.g., ldap://
ldap.mydomain.com:389)

User DN Pattern. Give the user directory entry pattern. The user name will be put in place of {0} in the pattern
(e.g., cn={0},ou=employees,dc=yourcompany,dc=com).

User Search Base. Give the base directory to execute Group searches in (e.g.,
ou=enployees,dc=mydomain,dc=com).

User Search Filter. Provide the LDAP filter expression to use when searching for user entries (e.g., uid={0}).

 | Administration | 91

Search User Subtree. Check the box to have UrbanDeploy search the User Subtree for the entries. Leave blank to
not search the Subtree.

Search Connection DN. Give the directory name to use when binding to the LDAP for searches (e.g.,
cn=Manager,dc=mycompany,dc=com). If not specified, an anonymous connection will be made. Connection
Name is required if the LDAP server cannot be anonymously accessed.

Search Connection Password. Give the password UrbanDeploy should use when connecting to LDAP to perform
searches.

Name Attribute. Give the attribute that contains the user's name, as set in LDAP.

Email Attribute. Give the attribute that contains the user's email address, as set in LDAP.

Once the configuration is complete, when a new user logs into UrbanDeploy using their LDAP credentials, they
will be listed on the Authentication Realm User tab. Since UrbanDeploy relies on LDAP for authentication, it
is best practice not to manage user passwords nor remove users from the list. If an active user is removed from
UrbanDeploy, they will still be able to log onto the server as long as their LDAP credentials are valid. If this
happens, you may also need to set up UI and other permissions for the user.

4. Assign Group to Role. When a User has logged into UrbanDeploy using LDAP credentials, UrbanDeploy
automatically assigns the new User to a Group, based on the information pulled from LDAP. In the example
below, when "New LDAP User" logged on to UrbanDeploy, they were automatically added to the LDAP Default
group. If a user logs on to UrbanDeploy and they are part of a mapping that is not currently associated with a
Group, UrbanDeploy will create a new Group based on the information fetched from LDAP. Conversely, if a user
logs onto UrbanDeploy and their LDAP credentials map to an existing Group, they will be automatically added to
that Group.

Figure 66: Edit Users

Once the new user has been successfully added to a Group, you may need to configure additional permissions.
This may happen when the new User is mapped to a Group that has limited permissions (e.g., the User has UI
permissions but not access to view any Components, Applications; the user was added to a Group that can only
access the Work Items and they need to be able to deploy an application, etc.). When this is the case, you will
need to set up security for the user, as outlined in the previous section.

Figure 67: Group Dialog

 | Administration | 92

Settings
uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-out dates,
for your Deployments. Deployments for an individual Application are scheduled on a per-environment basis, set
when you run a deployment of a Snapshot or Deployment Process. Black-out dates are set within the individual
Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling a
Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of the type of
deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, UrbanDeploy will prompt you to give the date and time you want the
deployment to run. The Make Recurring setting will deploy the Application on a regular schedule. For example, if
you are practicing Continuous Delivery, the Daily option will deploy the Application to the target Environment every
day.

Figure 68: tbd

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the Scheduled
Deployment, you can edit, delete, or investigate the deployment.

 | Administration | 93

Figure 69: tbd

Set Blackouts

Blackouts are set per-environment, per-application. Once set, no deployments (nor Snapshots) can be scheduled to
occur in that Environment. Any previously scheduled deployments to the Environment will fail if they fall within the
blackout date you set. To set up a blackout, go to Application > Environments > Calendar > Add Blackout. If you
need to set blackouts for more than one Environment, you must do this for each individual one. UrbanDeploy will
prompt you to give the dates and times for the blackout.

 | Administration | 94

Figure 70: tbd

Licenses

uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-out dates,
for your Deployments. Deployments for an individual Application are scheduled on a per-environment basis, set
when you run a deployment of a Snapshot or Deployment Process. Black-out dates are set within the individual
Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling a
Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of the type of
deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, UrbanDeploy will prompt you to give the date and time you want the
deployment to run. The Make Recurring setting will deploy the Application on a regular schedule. For example, if
you are practicing Continuous Delivery, the Daily option will deploy the Application to the target Environment every
day.

 | Administration | 95

Figure 71: tbd

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the Scheduled
Deployment, you can edit, delete, or investigate the deployment.

Figure 72: tbd

 | Administration | 96

Set Blackouts

Blackouts are set per-environment, per-application. Once set, no deployments (nor Snapshots) can be scheduled to
occur in that Environment. Any previously scheduled deployments to the Environment will fail if they fall within the
blackout date you set. To set up a blackout, go to Application > Environments > Calendar > Add Blackout. If you
need to set blackouts for more than one Environment, you must do this for each individual one. UrbanDeploy will
prompt you to give the dates and times for the blackout.

Figure 73: tbd

Network Settings

uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-out dates,
for your Deployments. Deployments for an individual Application are scheduled on a per-environment basis, set
when you run a deployment of a Snapshot or Deployment Process. Black-out dates are set within the individual
Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling a
Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of the type of
deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, UrbanDeploy will prompt you to give the date and time you want the
deployment to run. The Make Recurring setting will deploy the Application on a regular schedule. For example, if
you are practicing Continuous Delivery, the Daily option will deploy the Application to the target Environment every
day.

 | Administration | 97

Figure 74: tbd

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the Scheduled
Deployment, you can edit, delete, or investigate the deployment.

Figure 75: tbd

 | Administration | 98

Set Blackouts

Blackouts are set per-environment, per-application. Once set, no deployments (nor Snapshots) can be scheduled to
occur in that Environment. Any previously scheduled deployments to the Environment will fail if they fall within the
blackout date you set. To set up a blackout, go to Application > Environments > Calendar > Add Blackout. If you
need to set blackouts for more than one Environment, you must do this for each individual one. UrbanDeploy will
prompt you to give the dates and times for the blackout.

Figure 76: tbd

Notification Schemes

uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-out dates,
for your Deployments. Deployments for an individual Application are scheduled on a per-environment basis, set
when you run a deployment of a Snapshot or Deployment Process. Black-out dates are set within the individual
Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling a
Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of the type of
deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, UrbanDeploy will prompt you to give the date and time you want the
deployment to run. The Make Recurring setting will deploy the Application on a regular schedule. For example, if
you are practicing Continuous Delivery, the Daily option will deploy the Application to the target Environment every
day.

 | Administration | 99

Figure 77: tbd

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the Scheduled
Deployment, you can edit, delete, or investigate the deployment.

Figure 78: tbd

 | Administration | 100

Set Blackouts

Blackouts are set per-environment, per-application. Once set, no deployments (nor Snapshots) can be scheduled to
occur in that Environment. Any previously scheduled deployments to the Environment will fail if they fall within the
blackout date you set. To set up a blackout, go to Application > Environments > Calendar > Add Blackout. If you
need to set blackouts for more than one Environment, you must do this for each individual one. UrbanDeploy will
prompt you to give the dates and times for the blackout.

Figure 79: tbd

Properties

uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-out dates,
for your Deployments. Deployments for an individual Application are scheduled on a per-environment basis, set
when you run a deployment of a Snapshot or Deployment Process. Black-out dates are set within the individual
Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling a
Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of the type of
deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, UrbanDeploy will prompt you to give the date and time you want the
deployment to run. The Make Recurring setting will deploy the Application on a regular schedule. For example, if
you are practicing Continuous Delivery, the Daily option will deploy the Application to the target Environment every
day.

 | Administration | 101

Figure 80: tbd

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the Scheduled
Deployment, you can edit, delete, or investigate the deployment.

Figure 81: tbd

 | Administration | 102

Set Blackouts

Blackouts are set per-environment, per-application. Once set, no deployments (nor Snapshots) can be scheduled to
occur in that Environment. Any previously scheduled deployments to the Environment will fail if they fall within the
blackout date you set. To set up a blackout, go to Application > Environments > Calendar > Add Blackout. If you
need to set blackouts for more than one Environment, you must do this for each individual one. UrbanDeploy will
prompt you to give the dates and times for the blackout.

Figure 82: tbd

System Settings

uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-out dates,
for your Deployments. Deployments for an individual Application are scheduled on a per-environment basis, set
when you run a deployment of a Snapshot or Deployment Process. Black-out dates are set within the individual
Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling a
Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of the type of
deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, UrbanDeploy will prompt you to give the date and time you want the
deployment to run. The Make Recurring setting will deploy the Application on a regular schedule. For example, if
you are practicing Continuous Delivery, the Daily option will deploy the Application to the target Environment every
day.

 | Administration | 103

Figure 83: tbd

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the Scheduled
Deployment, you can edit, delete, or investigate the deployment.

Figure 84: tbd

 | Administration | 104

Set Blackouts

Blackouts are set per-environment, per-application. Once set, no deployments (nor Snapshots) can be scheduled to
occur in that Environment. Any previously scheduled deployments to the Environment will fail if they fall within the
blackout date you set. To set up a blackout, go to Application > Environments > Calendar > Add Blackout. If you
need to set blackouts for more than one Environment, you must do this for each individual one. UrbanDeploy will
prompt you to give the dates and times for the blackout.

Figure 85: tbd

Part

V
Reference

Topics:

• Plug-in Integration
• Source Configuration Reference
• Notifacations
• Configuration
• Inventory
• CLI Reference

 | Reference | 106

Plug-in Integration
uDeploy plugi-ns provide deployment capabilities with many of the common tools used for deployments, as well
as application servers, etc. Each integration has at least one "step," which can be thought of as a distinct piece of
automation. By stringing these individual steps together, you create a fully automated Process that replaces many
of your existing deployment scripts and manual deployment processes. For example, the integrations with Tomcat,
WebSphere, etc., are able to start and stop servers, install and uninstall applications, as well as perform other tool-
specific tasks.

Note: Before using one of the integrations, it is recommended that you understand what a Component
Process is and how a deployment is actually run in uDeploy. If not already done so, you can review the
Components section to see how a deployment is set up; then, the Applications section takes you through the
steps necessary to actually run a deployment.

The integration steps, which automate distinct deployment tasks, are added to a deploy Process at the Component
level (i.e., when setting up a Component Process). As you create a deployment, you start out with the basic
deployment configuration (the Download Artifacts By Label step first; the Add Inventory Status last) and then add the
integration steps between the steps. In the illustration, the process shows configuration for deploying an application.
The Process (a.) stops a running instance of the application; (b.) removes the application from the machine; (c.)
installs the new version of the application; and (d.) restarts the application to finish the deployment.

 | Reference | 107

Your deploy jobs will vary, depending on your existing processes. Most users can will end up with a process similar
to the one in the illustration, regardless of the integration they use. Because there is no way to predict how your
processes are set up, you may need to mix and match steps from each scenario.

uDeploy also includes a number of tools for automating other processes that don't fit neatly into the integration steps,
or when it is impossible to completely replace an existing script. For example, your deployment may require running
a Ant task, a Groovy script, or even execute SQL statements.

Plug-in Integrations at Runtime

Because the integrations drive other tools, you will need to ensure that, when you run a deployment, uDeploy is
actually able to execute the steps you configured.

Typically this will require you to install agents (Resources) on particular machines in the target Environments. Unless
otherwise stated, the following guidelines applies to all the integrations:

1. The agents (Resources) selected to run an integration step must be installed on the same physical machine as
the Application. For example, if your deploy jobs includes the step "Stop WebSphere Application," the agent
(Resource) must be on the target server to run the command.

2. The Resources running the step must be installed as a user with appropriate permissions to both execute
commands as well as access the tool. This typically entails granting permissions on the machine if the external
tool is installed as a different user; installing the agent as a service; or, in some cases, installing the agent as
ROOT (which should be avoided is possible).

3. The required minimum version of the external tool must be used. If stated, some of integrations require a
minimum version of a third-party tool (e.g., WebSphere 5.1 or above). While it may be possible to use the
integrations with older versions of the third-party tool, UrbanCode can't guarantee that it will work.

If you need to install new agents of modify Resources, or need to gather more information before using one of the
integrations, the Resources and Getting Started section may be helpful.

Ant Plug-in

The Ant integration consists of a single step that you can include in any deployment process or other process. The
most common use case is running Ant Tasks on the target machine. If the step is used within a larger process, ensure
that you set the order correctly. For example, if you have to run an Ant script prior to executing another process, you
will need to add the Ant step above the other step.

Groovy Plug-in

The Groovy integration consists of a single step that you can include in any deployment process or other process. The
most common use case is running a Groovy script on the target machine. If the step is used within a larger process,
ensure that you set the order correctly. For example, if you have to run Groovy prior to executing another process,
you will need to add the Groovy step above the other step.

IIS_AppCmd Plug-in

Use the integration to add IIS to your deploy processes and run deployments using MSDeploy. The integration
enables uDeploy to run a MSDeploy command; start, stop and recycle applications in IIS; as well delete and
synchronize IIS objects.

Please note that you will need to select the appropriate Resource: i.e., ensure that you use the agent installed on
the same machine as the application/configuration you are syncing. You will also need to provide the path to the
msdeploy.exe.

 | Reference | 108

JBOSS Plug-in

Use the integration to add JBoss to your deploy processes. The integration enables uDeploy to run commands to start,
stop, deploy and undeploy an application on JBoss. To start using the integration, you will need to configure a deploy
process that uses the JBoss steps. How you configure your deploy job will depend on your existing JBoss processes.
Generally, you will need to order the job steps to:

1. Stop the application
2. Undeploy the application
3. Deploy the application
4. Start the application

Before setting up the integration, ensure the Resource has access to the deploy directory the JBoss manages.

SQL/JDBC Plug-in

The SQL-JDBCl integration consists of a single step that you can include in any deployment process or other process.
The most common use case opening and running a SQL statement when updating a database. If the step is used within
a larger process, ensure that you set the order correctly. For example, if you have to run a SQL statement prior to
executing another process, you will need to add the step above the other step.

SQLPLUS Plug-in

The Oracle SQL-Plus integration consists of a single step that you can include in any deployment process or other
process. The most common use case opening and running a SQL statement when updating a database. If the step is
used within a larger process, ensure that you set the order correctly. For example, if you have to run a SQL statement
prior to executing another process, you will need to add the step above the other step.

Tomcat Plug-in

Use the integration to add Tomcat to your deployment processes. The integration enables uDeploy to run commands
to start, stop, deploy and undeploy an application on Tomcat. To start using the integration, you will need to configure
a deploy process that uses the Tomcat steps. How you configure your deploy process will depend on your existing
Tomcat processes. Generally, you will need to order the job steps to:

1. Stop the application

 | Reference | 109

2. Undeploy the application
3. Deploy the application
4. Start the application

When running the process, ensure that the Resource running the step has access to the Tomcat fill client jar, that
uDeploy has a user and password to log to connect with, and that the full path to the Tomcat full client jar is available.

WebSphere Plug-in

Use the integration to run commands that start and stop your WebSphere server and applications; install a new
application; update an application; as well as execute a wsadmin script. To start using the integration, in your
WebSphere properties files you need to add the user name and password uDeploy will use when connecting. Once
this is done, you can then set up your WebSphere deploy jobs. How you configure your deploy job will depend on
your existing WebSphere processes. Generally, you will need to order the job steps to:

1. Resolve artifacts
2. Stop the application/sever
3. Update/uninstall the application
4. Start the application/server

 | Reference | 110

When setting up your deployment, you select one of the pre-defined steps and add it to your process. Step
configuration is straightforward: you generally need to give connection information as well as the location to any
executables.

WLDeploy Plug-in

Use the integration to add WLDeploy to your deployment processes. The integration enables uDeploy to run
commands to start, stop, deploy and undeploy an application on Tomcat. To start using the integration, you will need
to configure a deploy process that uses the Tomcat steps. How you configure your deploy process will depend on
your existing Tomcat processes. Generally, you will need to order the job steps to:

1. Stop the application
2. Undeploy the application
3. Deploy the application
4. Start the application

When running the process, ensure that the Resource running the step has access to the Tomcat fill client jar, that
uDeploy has a user and password to log to connect with, and that the full path to the Tomcat full client jar is available.

Advanced Automation Steps

uDeploy also includes a standard set of automation steps that can be used to add additional automation to any process.
These will typically be used for advanced processes or where there is no standard integration step available from one
of the integrations.

Shell

The Shell integration consists of a single step that you can include in any deployment process or other process. The
most common use case opening and running a shell script on the target machine. If the step is used within a larger
process, ensure that you set the order correctly. For example, if you have to run a shell script prior to executing
another process, you will need to add the Shell step above the other step.

UrbanCode Package Manager

This is for advanced usage. The steps work in conjunction with uDeploy to create and manage application packages
for deployments. These steps will not generally be used as part of a regular deployment.

uDeploy

These advanced automation steps will retrieve properties and environments from uDeploy.

Plug-in Automation

Use the integration to add Tomcat to your deployment processes. The integration enables uDeploy to run commands
to start, stop, deploy and undeploy an application on Tomcat. To start using the integration, you will need to configure

 | Reference | 111

a deploy process that uses the Tomcat steps. How you configure your deploy process will depend on your existing
Tomcat processes. Generally, you will need to order the job steps to:

1. Stop the application
2. Undeploy the application
3. Deploy the application
4. Start the application

When running the process, ensure that the Resource running the step has access to the Tomcat fill client jar, that
uDeploy has a user and password to log to connect with, and that the full path to the Tomcat full client jar is available.

Source Configuration Reference

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

AntHillPro

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

PVCS Version Manager

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

 | Reference | 112

Gather Information

Perforce

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

Luntbuild

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

Maven

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

Jenkins

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

File System

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

 | Reference | 113

Gather Information

Team Forge

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

Team City

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

Subversion

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

Team Foundation Server (TFS)

Typically, you will need to perform the following, in order:

1. Gather Information
2. Configure Resources
3. Configure Components
4. Configure Applications and Snapshots

Gather Information

Notifacations
UrbanDeploy can send notifications to users based on a number of events that occur. Most commonly, UrbanDeploy
is configured to send an e-mail regarding the state of a deployment (success or failure) or when an Approval is
required. The recipient list of these notifications must be tied to the LDAP integration, etc., (see Security for more),
allowing you an easy way to integrate UrbanDeploy with your existing infrastructure. If you have not already done
so, set up UrbanDeploy with LDAP prior to configuring Notifications: UrbanDeploy relies on LDAP, and the
associated e-mail server, to send notifications. When setting up notifications, you select both the events and the Role,

 | Reference | 114

which is inherited from the Security System, to determine which users will be notified and when. For example, it
is common for an administrator or environment owner to be notified when a Work Item (as part of the Approvals
Process) has been generated. The Default Notification Scheme, which sends out notifications to the Application and
Admin default Roles (see Security for more), can edited or you can create your own Notification Scheme.

Note: Once a Notification Scheme is created, it will be used when setting up your Applications (see here for
an example).

To set up your own notifications, go to Settings > Notifications > Create New Notification Scheme page.

Figure 86: Notifacation Schemes

Configure the new Scheme. Here, you will be setting up the who/when for notifications. Once configured, you can
come back add additional Entries to the Scheme or edit existing one.

Notification Type. The process type is determined mainly by the type of recipient. For example, a deployment
engineer would be interested in being notified about a failed deployment.

Figure 87: Notifacation Type

Notification Target. When setting the target, the application option will only send out notifications when the event
selected above corresponds to an Application. For example, the "Process Success" event, when pared with the
"Application" Target would trigger a notification when a Process (an application deployment) is successful. Similarly,
the same event type, when used with the "Environment" target would instigate a notification when a successful
deployment has been run in an Environment (e.g., SIT, PROD).

 | Reference | 115

Figure 88: Notifacation Target

Notification Role. The Role corresponds to those set in the Security System. Any individual assigned the Role you
select will receive an e-mail.

Figure 89: Notifacation Role

Template Name. The available templates are provided by default and should suffice for all your needs; they format
the e-mail being sent. Which template you use is based on why you want to set up a notification and the recipients of
the notification.

Figure 90: Template

Application deployment failure / success. Sends out notifications about a specific Application deployment to the
specified users, based on the Role setting above.

Task readied / created / completed. This template is used to report back on the state of manual tasks.

Deployment readied. A specialized e-mail template for letting people know a deployment has been prepared.

Once you have the Entry done, add other Entries to the Scheme following the same process. Note that if you want to
use the new Notification Scheme with existing Applications, you will need to modify the Application settings.

 | Reference | 116

Figure 91: tbd

Configuration
The Urban Deploy Configuration tool enables you to manipulate configuration data, such as Tomcat or JBoss
property files.

Configuration data is manipulated at the application, component, and environment levels:

• Component

A component refers to any file that you want to include in the build process; components are associated with the
configuration data required to deploy them.

• Application

Applications represent a group of components deployed together by component version and environment.
Applications also map the hosts and machines (called resources) components require within every environment.

• Environment

An environment is a collection of resources that host an Urban Deploy application.

 | Reference | 117

Figure 92: Configuration Tab

Access the Configuration Tool by clicking on the Configuration tab.

Application Configuration
You attach properties to an application by using the Configuration Tool's Application: Add Property button.

Typical application-level properties include items that are the same in all environments, such as base-install paths.

 | Reference | 118

Figure 93: Application Properties panel

Access the Configuration Tool Application panel by clicking on an application in the Application/Component/
Environment list box.

Adding Application Configuration Properties

To add a property to the selected application:

1. Use the Add Property button.

The Edit Property pop-up is displayed.

 | Reference | 119

Figure 94: Edit Property pop-up
2. Enter the property's name in the Name field.

While component fields can be of any size, configuration properties are restricted to 4,000 characters.
3. Enter a description of the property in the Description field.
4. Specify whether the property is secure by using the Secure check box.

Secure properties are stored encrypted and displayed obscured in UrbanDeploy's user interface.
5. Enter a value for the property in the Value field.
6. Save the property by using the Save button.
7. To discard your work, use the Cancel button.

Modifying Application Configuration Properties

To modify a previously created property, use the Edit link in the Action column to display the Edit Property pop-up.

Deleting Application Configuration Properties

To delete a property, use the Delete link in the Action column.

Component Configuration
The Urban Deploy Configuration tab enables you to configure applications and their components from a single
location.

Configuration data is manipulated at the application, component, and environment levels:

• component

A component refers to any file that you want to include in the build process; components are associated with the
configuration data required to deploy them.

• application

Applications represent a group of components deployed together by component version and environment.
Applications also map the hosts and machines (called resources) components require within every environment.

 | Reference | 120

• environment

An environment is a collection of resources that host an Urban Deploy application.

 | Reference | 121

Figure 95: Configuration Tab

Access the Configuration Tool by clicking on the Configuration tab.

 | Reference | 122

Environment Configuration
The Urban Deploy Configuration tab enables you to configure applications and their components from a single
location.

Configuration data is manipulated at the application, component, and environment levels:

• component

A component refers to any file that you want to include in the build process; components are associated with the
configuration data required to deploy them.

• application

Applications represent a group of components deployed together by component version and environment.
Applications also map the hosts and machines (called resources) components require within every environment.

• environment

An environment is a collection of resources that host an Urban Deploy application.

 | Reference | 123

Figure 96: Configuration Tab

Access the Configuration Tool by clicking on the Configuration tab.

 | Reference | 124

Inventory
The Inventory shows what Applications and Components have been deployed, including the current Versions that
are running on the Resource within an Environment. The inventory provides complete visibility into the different
Versions of your Applications which can be tracked back to the original artifacts imported into UrbanDeploy. There
different views of the current inventory, depending on where in UrbanDeploy you are. Inventory information is
available on the individual Components, for every Application Environment, as well as for each Resource (agent).

Resources Inventory

If you want to see what Components are sitting on the SIT Environment, go to Resources and select the agent
that is running in the Environment. From here, selecting either the Component or its Version will take you to the
Component's page if you need more information.

Figure 97: Resource inventory

Component Inventory

Unlike the Resource Inventory, the Component Inventory tells you what Version of the Component is running on a
Resource. For example, if the Component is currently deployed to multiple machines, they would all be displayed.
For here, you can go navigate to the Resource.

 | Reference | 125

Figure 98: Component inventory

Environment Inventory

For any given Application Environment, the Inventory tells you both what version of any given Component is
running on a particular Resource. If multiple Versions are running on different Resources, they will all be listed.

 | Reference | 126

Figure 99: Environment Inventory

CLI Reference

addActionToRoleForApplications

Add action to a role for applications.

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForApplications [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForComponents

Add action to a role for components

 | Reference | 127

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForEnvironments

Add action to a role for environments

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForEnvironments [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForResources

Add action to a role for resources

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForResources [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action

 | Reference | 128

 Required. Name of the action

addActionToRoleForUI

Add action to a role for the UI

Format

 udclient [global-args...] [global-flags...] addActionToRoleForUI
 [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addComponentToApplication

Add a component to an Application.

Format

 udclient [global-args...] [global-flags...] addComponentToApplication
 [args...]

Options

 -component, --component
 Required. Name of the component to add

 -application, --application
 Required. Name of the application to add it to.

addGroupToRoleForApplication

Add a group to a role for an application

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForApplication [args...]

 | Reference | 129

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

addGroupToRoleForComponent

Add a group to a role for a component

Format

 udclient [global-args...] [global-flags...] addGroupToRoleForComponent
 [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

addGroupToRoleForEnvironment

Add a group to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForEnvironment [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 | Reference | 130

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

addGroupToRoleForResource

Add a group to a role for a resource

Format

 udclient [global-args...] [global-flags...] addGroupToRoleForResource
 [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

addGroupToRoleForUI

Add a group to a role for the UI

Format

 udclient [global-args...] [global-flags...] addGroupToRoleForUI
 [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

addLicense

Add a license to the server.

 | Reference | 131

Format

 udclient [global-args...] [global-flags...] addLicense [args...]

Options

 No options for this command.

addNameConditionToGroup

Add a name condition to a resource group. Only works with dynamic groups.

Format

 udclient [global-args...] [global-flags...] addNameConditionToGroup
 [args...]

Options

 -comparison, --comparison
 Required. Type of the comparison

 -value, --value
 Required. Value of the comparison

 -group, --group
 Required. Path of the parent resource group

addPropertyConditionToGroup

Add a property condition to a resource group. Only works with dynamic groups.

Format

 udclient [global-args...] [global-flags...]
 addPropertyConditionToGroup [args...]

Options

 -property, --property
 Required. Name of the property

 -comparison, --comparison
 Required. Type of the comparison

 -value, --value

 | Reference | 132

 Required. Value of the comparison

 -group, --group
 Required. Path of the parent resource group

addResourceToGroup

Add a resource to a resource group. Only works with static groups.

Format

 udclient [global-args...] [global-flags...] addResourceToGroup
 [args...]

Options

 -resource, --resource
 Required. Name of the resource to add

 -group, --group
 Required. Path of the resource group to add to

addRoleToResource

Add a role to a resource.

Format

 udclient [global-args...] [global-flags...] addRoleToResource
 [args...]

Options

 -resource, --resource
 Required. Name of the parent resource.

 -role, --role
 Required. Name of the new resource.

addRoleToResourceWithProperties

Add a role to a resource. This command takes a JSON request body. Use the -t flag to view the template for the data
required for this command.

Format

 | Reference | 133

 udclient [global-args...] [global-flags...]
 addRoleToResourceWithProperties [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

addUserToGroup

Add a user to a group

Format

 udclient [global-args...] [global-flags...] addUserToGroup [args...]

Options

 -user, --user
 Required. Name of the user

 -group, --group
 Required. Name of the group

addUserToRoleForApplication

Add a user to a role for an application

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForApplication [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 | Reference | 134

 -application, --application
 Required. Name of the application

addUserToRoleForComponent

Add a user to a role for a component

Format

 udclient [global-args...] [global-flags...] addUserToRoleForComponent
 [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

addUserToRoleForEnvironment

Add a user to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForEnvironment [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

 | Reference | 135

addUserToRoleForResource

Add a user to a role for a resource

Format

 udclient [global-args...] [global-flags...] addUserToRoleForResource
 [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

addUserToRoleForUI

Add a user to a role for the UI

Format

 udclient [global-args...] [global-flags...] addUserToRoleForUI
 [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

addVersionFiles

Upload files to a version

Format

 udclient [global-args...] [global-flags...] addVersionFiles [args...]

 | Reference | 136

Options

 -component, --component
 Optional. Name/ID of the component (Only required if not using
 version ID)

 -version, --version
 Required. Name/ID of the version

 -base, --base
 Required. Local base directory for upload. All files inside this
 will be sent.

 -offset, --offset
 Optional. Target path offset (the directory in the version files
 to
 which these files should be added)

addVersionStatus

Add a status to a version

Format

 udclient [global-args...] [global-flags...] addVersionStatus [args...]

Options

 -component, --component
 Optional. Name/ID of the component (Only required if not using
 version ID)

 -version, --version
 Required. Name/ID of the version

 -status, --status
 Required. Name of the status to apply

createApplication

Create a new application. This command takes a JSON request body. Use the -t flag to view the template for the data
required for this command.

Format

 udclient [global-args...] [global-flags...] createApplication
 [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 | Reference | 137

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

createApplicationProcess

Create a new application process. This command takes a JSON request body. Use the -t flag to view the template for
the data required for this command.

Format

 udclient [global-args...] [global-flags...] createApplicationProcess
 [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

createComponent

Create a new component. This command takes a JSON request body. Use the -t flag to view the template for the data
required for this command.

Format

 udclient [global-args...] [global-flags...] createComponent [args...]
 [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

 | Reference | 138

Options

 No options for this command.

createComponentProcess

Create a new component process. This command takes a JSON request body. Use the -t flag to view the template for
the data required for this command.

Format

 udclient [global-args...] [global-flags...] createComponentProcess
 [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

createDynamicResourceGroup

Create a new static resource group.

Format

 udclient [global-args...] [global-flags...] createDynamicResourceGroup
 [args...]

Options

 -path, --path
 Required. Path to add the resource group to (parent resource
 group
 path).

 -name, --name
 Required. Name of the new resource group.

 | Reference | 139

createEnvironment

Create a new environment.

Format

 udclient [global-args...] [global-flags...] createEnvironment
 [args...]

Options

 -application, --application
 Required. Application to add the environment to.

 -name, --name
 Required. Name of the new environment.

 -description, --description
 Optional. Description of the new environment.

 -color, --color
 Optional. Color of the new environment.

 -requireApprovals, --requireApprovals
 Optional. Does the environment require approvals?

createGroup

Add a new group

Format

 udclient [global-args...] [global-flags...] createGroup [args...]

Options

 -group, --group
 Required. Name of the group

createMapping

Create a new mapping.

Format

 udclient [global-args...] [global-flags...] createMapping [args...]

 | Reference | 140

Options

 -environment, --environment
 Required. The environment for the mapping.

 -component, --component
 Required. The component for the mapping.

 -resourceGroupPath, --resourceGroupPath
 Required. The resource group for the mapping.

 -application, --application
 Optional. The application for the mapping. Only necesary if
 specifying env name instead of id.

createResourceGroup

Create a new static resource group.

Format

 udclient [global-args...] [global-flags...] createResourceGroup
 [args...]

Options

 -path, --path
 Required. Path to add the resource group to (parent resource
 group
 path).

 -name, --name
 Required. Name of the new resource group.

createRoleForApplications

Create a role for applications

Format

 udclient [global-args...] [global-flags...] createRoleForApplications
 [args...]

Options

 -role, --role
 Required. Name of the role

 | Reference | 141

createRoleForComponents

Create a role for components

Format

 udclient [global-args...] [global-flags...] createRoleForComponents
 [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForEnvironments

Create a role for environments

Format

 udclient [global-args...] [global-flags...] createRoleForEnvironments
 [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForResources

Create a role for resources

Format

 udclient [global-args...] [global-flags...] createRoleForResources
 [args...]

Options

 -role, --role
 Required. Name of the role

 | Reference | 142

createRoleForUI

Create a role for the UI

Format

 udclient [global-args...] [global-flags...] createRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

createSubresource

Create a new subresource.

Format

 udclient [global-args...] [global-flags...] createSubresource
 [args...]

Options

 -parent, --parent
 Required. Name of the parent resource.

 -name, --name
 Required. Name of the new resource.

 -description, --description
 Optional. Description of the resource.

createUser

Add a new user This command takes a JSON request body. Use the -t flag to view the template for the data required
for this command.

Format

 udclient [global-args...] [global-flags...] createUser [args...] [-]
 [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 | Reference | 143

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

createVersion

Create a new version for a component

Format

 udclient [global-args...] [global-flags...] createVersion [args...]

Options

 -component, --component
 Required. Name/ID of the component

 -name, --name
 Required. Name of the new version

deleteGroup

Delete a group

Format

 udclient [global-args...] [global-flags...] deleteGroup [args...]

Options

 -group, --group
 Required. Name of the group

deleteResourceGroup

null

Format

 | Reference | 144

 udclient [global-args...] [global-flags...] deleteResourceGroup
 [args...]

Options

 -group, --group
 Required. Path of the resource group to delete

deleteResourceProperty

Remove a custom property from a resource

Format

 udclient [global-args...] [global-flags...] deleteResourceProperty
 [args...]

Options

 -resource, --resource
 Required. Name of the resource to configure

 -name, --name
 Required. Name of the property

deleteUser

Delete a user

Format

 udclient [global-args...] [global-flags...] deleteUser [args...]

Options

 -user, --user
 Required. Name of the user

exportGroup

Add a new group

 | Reference | 145

Format

 udclient [global-args...] [global-flags...] exportGroup [args...]

Options

 -group, --group
 Required. Name of the group

getApplication

Get a JSON representation of an application

Format

 udclient [global-args...] [global-flags...] getApplication [args...]

Options

 -application, --application
 Required. Name of the application to look up

getApplicationProcess

Get a JSON representation of an Application Process

Format

 udclient [global-args...] [global-flags...] getApplicationProcess
 [args...]

Options

 -application, --application
 Required. Name of the application

 -applicationProcess, --applicationProcess
 Required. Name of the process

getApplicationProcessRequestStatus

Repeat an application process request.

 | Reference | 146

Format

 udclient [global-args...] [global-flags...]
 getApplicationProcessRequestStatus [args...]

Options

 -request, --request
 Required. ID of the application process request to view

getApplications

Get a JSONArray representation of all applications

Format

 udclient [global-args...] [global-flags...] getApplications [args...]

Options

 No options for this command.

getComponent

Get a JSON representation of a component

Format

 udclient [global-args...] [global-flags...] getComponent [args...]

Options

 -component, --component
 Required. Name of the component to look up

getComponentProcess

Get a JSON representation of a componentProcess

Format

 | Reference | 147

 udclient [global-args...] [global-flags...] getComponentProcess
 [args...]

Options

 -component, --component
 Required. Name of the component

 -componentProcess, --componentProcess
 Required. Name of the component

getComponents

Get a JSONArray representation of all components

Format

 udclient [global-args...] [global-flags...] getComponents [args...]

Options

 No options for this command.

getComponentsInApplication

Get all components in an application

Format

 udclient [global-args...] [global-flags...] getComponentsInApplication
 [args...]

Options

 -application, --application
 Required. Name of the application to get components for

getEnvironment

Get a JSON representation of an environment

Format

 udclient [global-args...] [global-flags...] getEnvironment [args...]

 | Reference | 148

Options

 -environment, --environment
 Required. Name of the environment to look up

getEnvironmentsInApplication

Get all environments in an application

Format

 udclient [global-args...] [global-flags...]
 getEnvironmentsInApplication [args...]

Options

 -application, --application
 Required. Name of the application to get environments for

getMapping

Get a JSON representation of a mapping

Format

 udclient [global-args...] [global-flags...] getMapping [args...]

Options

 -mapping, --mapping
 Required. ID of the mapping to look up

getResource

Get a JSON representation of a resource

Format

 udclient [global-args...] [global-flags...] getResource [args...]

 | Reference | 149

Options

 -resource, --resource
 Required. Name of the resource to look up

getResourceGroup

Get a JSON representation of a resource group

Format

 udclient [global-args...] [global-flags...] getResourceGroup [args...]

Options

 -group, --group
 Required. Path of the resource group to show

getResourceGroups

Get a JSONArray representation of all resource groups

Format

 udclient [global-args...] [global-flags...] getResourceGroups
 [args...]

Options

 No options for this command.

getResourceProperty

Get the value of a custom property on a resource

Format

 udclient [global-args...] [global-flags...] getResourceProperty
 [args...]

Options

 | Reference | 150

 -resource, --resource
 Required. Name of the resource

 -name, --name
 Required. Name of the property

getResources

Get a JSONArray representation of all resources

Format

 udclient [global-args...] [global-flags...] getResources [args...]

Options

 No options for this command.

getResourcesInGroup

Get a JSONArray representation of all resources in a group

Format

 udclient [global-args...] [global-flags...] getResourcesInGroup
 [args...]

Options

 -group, --group
 Required. Path of the resource group

getRoleForApplications

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForApplications
 [args...]

Options

 | Reference | 151

 -role, --role
 Required. Name of the role

getRoleForComponents

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForComponents
 [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForEnvironments

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForEnvironments
 [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForResources

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForResources
 [args...]

Options

 -role, --role

 | Reference | 152

 Required. Name of the role

getRoleForUI

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

getUser

Get a JSON representation of a user

Format

 udclient [global-args...] [global-flags...] getUser [args...]

Options

 -user, --user
 Required. Name of the user

importGroup

Add a new group This command takes a JSON request body. Use the -t flag to view the template for the data required
for this command.

Format

 udclient [global-args...] [global-flags...] importGroup [args...] [-]
 [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

 | Reference | 153

Options

 No options for this command.

importVersions

Run the source config integration for a component This command takes a JSON request body. Use the -t flag to view
the template for the data required for this command.

Format

 udclient [global-args...] [global-flags...] importVersions [args...]
 [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

login

Login for further requests

Format

 udclient [global-args...] [global-flags...] login [args...]

Options

 No options for this command.

logout

Logout

Format

 | Reference | 154

 udclient [global-args...] [global-flags...] logout [args...]

Options

 No options for this command.

removeActionFromRoleForApplications

Add action to a role for applications

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForApplications [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForComponents

Add action to a role for components

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForEnvironments

Add action to a role for environments

 | Reference | 155

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForEnvironments [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForResources

Add action to a role for resources

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForResources [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForUI

Add action to a role for the UI

Format

 udclient [global-args...] [global-flags...] removeActionFromRoleForUI
 [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action

 | Reference | 156

 Required. Name of the action

removeGroupFromRoleForApplication

Remove a group to a role for an application

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForApplication [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

removeGroupFromRoleForComponent

Remove a group to a role for a component

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForComponent [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

removeGroupFromRoleForEnvironment

Remove a group to a role for an environment

 | Reference | 157

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForEnvironment [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

removeGroupFromRoleForResource

Remove a group to a role for a resource

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForResource [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

removeGroupFromRoleForUI

Remove a group to a role for the UI

Format

 udclient [global-args...] [global-flags...] removeGroupFromRoleForUI
 [args...]

 | Reference | 158

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

removeResourceFromGroup

Remove a resource from a resource group. Only works with static groups.

Format

 udclient [global-args...] [global-flags...] removeResourceFromGroup
 [args...]

Options

 -resource, --resource
 Required. Name of the resource to remove

 -group, --group
 Required. Path of the resource group to remove from

removeRoleForApplications

Create a role for applications

Format

 udclient [global-args...] [global-flags...] removeRoleForApplications
 [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForComponents

Create a role for components

 | Reference | 159

Format

 udclient [global-args...] [global-flags...] removeRoleForComponents
 [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForEnvironments

Create a role for environments

Format

 udclient [global-args...] [global-flags...] removeRoleForEnvironments
 [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForResources

Create a role for resources

Format

 udclient [global-args...] [global-flags...] removeRoleForResources
 [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForUI

Create a role for the UI

 | Reference | 160

Format

 udclient [global-args...] [global-flags...] removeRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleFromResource

Remove a role from a resource.

Format

 udclient [global-args...] [global-flags...] removeRoleFromResource
 [args...]

Options

 -resource, --resource
 Required. Name of the parent resource.

 -role, --role
 Required. Name of the new resource.

removeUserFromGroup

Remove a user from a group

Format

 udclient [global-args...] [global-flags...] removeUserFromGroup
 [args...]

Options

 -user, --user
 Required. Name of the user

 -group, --group
 Required. Name of the group

 | Reference | 161

removeUserFromRoleForApplication

Remove a user to a role for an application

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForApplication [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

removeUserFromRoleForComponent

Remove a user to a role for a component

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForComponent [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

removeUserFromRoleForEnvironment

Remove a user to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForEnvironment [args...]

 | Reference | 162

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

removeUserFromRoleForResource

Remove a user to a role for a resource

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForResource [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

removeUserFromRoleForUI

Remove a user to a role for the UI

Format

 udclient [global-args...] [global-flags...] removeUserFromRoleForUI
 [args...]

Options

 | Reference | 163

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

repeatApplicationProcessRequest

Repeat an application process request.

Format

 udclient [global-args...] [global-flags...]
 repeatApplicationProcessRequest [args...]

Options

 -request, --request
 Required. ID of the application process request to repeat

requestApplicationProcess

Submit an application process request to run immediately. This command takes a JSON request body. Use the -t flag
to view the template for the data required for this command.

Format

 udclient [global-args...] [global-flags...] requestApplicationProcess
 [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

setComponentEnvironmentProperty

Set property on component/environment mapping

 | Reference | 164

Format

 udclient [global-args...] [global-flags...]
 setComponentEnvironmentProperty [args...]

Options

 -propName, --propName
 Required. Name of the property to set

 -propValue, --propValue
 Required. Value of the property to set

 -component, --component
 Required. Name of the component to look up

 -environment, --environment
 Required. Name or id of the environment to look up

 -application, --application
 Optional. Name of the application to look up

setComponentProperty

Set property on component

Format

 udclient [global-args...] [global-flags...] setComponentProperty
 [args...]

Options

 -propName, --propName
 Required. Name of the property to set

 -propValue, --propValue
 Required. Value of the property to set

 -component, --component
 Required. Name of the component to look up

setResourceProperty

Set a custom property on a resource

Format

 | Reference | 165

 udclient [global-args...] [global-flags...] setResourceProperty
 [args...]

Options

 -resource, --resource
 Required. Name of the resource to configure

 -name, --name
 Required. Name of the property

 -value, --value
 Optional. New value for the property

updateUser

Add a new user This command takes a JSON request body. Use the -t flag to view the template for the data required
for this command.

Format

 udclient [global-args...] [global-flags...] updateUser [args...] [-]
 [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 -user, --user
 Required. Name of the user

 | Reference | 166

	Contents
	About This Guide
	Introduction
	Overview
	Important Concepts
	Architecture and Technology
	Conventions

	Hands-On
	Getting Started
	Creating Components
	hello_world Component Version
	Hello World Component Process
	hello_world Component Process Design
	Hello World Application

	Using uDeploy
	Components
	Creating Components

	Resources
	Resource Groups

	Applications
	Deployments
	Advanced Deployments

	Schedule Deployments
	Work Items

	Administration
	Installation
	System Requirements
	Download UrbanDeploy
	Database Installation
	Server Installation
	Agent Installation
	Running uDeploy

	Security
	Authentication
	Authorization
	Default Permissions
	Role Configuration
	User Interface Security
	System Security

	Settings
	Licenses
	Network Settings
	Notification Schemes
	Properties
	System Settings

	Reference
	Plug-in Integration
	Ant Plug-in
	Groovy Plug-in
	IIS_AppCmd Plug-in
	JBOSS Plug-in
	SQL/JDBC Plug-in
	SQLPLUS Plug-in
	Tomcat Plug-in
	WebSphere Plug-in
	WLDeploy Plug-in
	Advanced Automation Steps
	Plug-in Automation

	Source Configuration Reference
	AntHillPro
	PVCS Version Manager
	Perforce
	Luntbuild
	Maven
	Jenkins
	File System
	Team Forge
	Team City
	Subversion
	Team Foundation Server (TFS)

	Notifacations
	Configuration
	Application Configuration
	Component Configuration
	Environment Configuration

	Inventory
	CLI Reference
	addActionToRoleForApplications
	addActionToRoleForComponents
	addActionToRoleForEnvironments
	addActionToRoleForResources
	addActionToRoleForUI
	addComponentToApplication
	addGroupToRoleForApplication
	addGroupToRoleForComponent
	addGroupToRoleForEnvironment
	addGroupToRoleForResource
	addGroupToRoleForUI
	addLicense
	addNameConditionToGroup
	addPropertyConditionToGroup
	addResourceToGroup
	addRoleToResource
	addRoleToResourceWithProperties
	addUserToGroup
	addUserToRoleForApplication
	addUserToRoleForComponent
	addUserToRoleForEnvironment
	addUserToRoleForResource
	addUserToRoleForUI
	addVersionFiles
	addVersionStatus
	createApplication
	createApplicationProcess
	createComponent
	createComponentProcess
	createDynamicResourceGroup
	createEnvironment
	createGroup
	createMapping
	createResourceGroup
	createRoleForApplications
	createRoleForComponents
	createRoleForEnvironments
	createRoleForResources
	createRoleForUI
	createSubresource
	createUser
	createVersion
	deleteGroup
	deleteResourceGroup
	deleteResourceProperty
	deleteUser
	exportGroup
	getApplication
	getApplicationProcess
	getApplicationProcessRequestStatus
	getApplications
	getComponent
	getComponentProcess
	getComponents
	getComponentsInApplication
	getEnvironment
	getEnvironmentsInApplication
	getMapping
	getResource
	getResourceGroup
	getResourceGroups
	getResourceProperty
	getResources
	getResourcesInGroup
	getRoleForApplications
	getRoleForComponents
	getRoleForEnvironments
	getRoleForResources
	getRoleForUI
	getUser
	importGroup
	importVersions
	login
	logout
	removeActionFromRoleForApplications
	removeActionFromRoleForComponents
	removeActionFromRoleForEnvironments
	removeActionFromRoleForResources
	removeActionFromRoleForUI
	removeGroupFromRoleForApplication
	removeGroupFromRoleForComponent
	removeGroupFromRoleForEnvironment
	removeGroupFromRoleForResource
	removeGroupFromRoleForUI
	removeResourceFromGroup
	removeRoleForApplications
	removeRoleForComponents
	removeRoleForEnvironments
	removeRoleForResources
	removeRoleForUI
	removeRoleFromResource
	removeUserFromGroup
	removeUserFromRoleForApplication
	removeUserFromRoleForComponent
	removeUserFromRoleForEnvironment
	removeUserFromRoleForResource
	removeUserFromRoleForUI
	repeatApplicationProcessRequest
	requestApplicationProcess
	setComponentEnvironmentProperty
	setComponentProperty
	setResourceProperty
	updateUser

