

IBM Rational

System Architect USRPROPS
Extensibility Guide

Release 11.3.1

Before using this information, read the “Notices” in the Appendix, on page 5-1.

This edition applies to IBM® Rational® System Architect®, version 11.3.1 and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright IBM Corporation 1986, 2009
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Table of Contents

i

Table of Contents

Table of Contents .. i

Extending a Rational System Architect Encyclopedia's Metamodel 1-1
Extending Rational System Architect ... 1-2
Rational System Architect’s Encyclopedia Metamodel 1-3
How to Modify the Metamodel .. 1-8

Selecting the Diagram and Property Sets for an Encyclopedia 1-10

Modifying the Metamodel with USRPROPS.TXT ... 2-1
Accessing and Editing the USRPROPS.TXT File .. 2-3
Composition and Syntax .. 2-7

Grouping Commands to Create Modeling Elements 2-10
Dialog Controls ... 2-14

Ordering and Laying Out USRPROPS.TXT Changes 2-19
Example of Making Changes to USRPROPS.TXT 2-23

Defining a LIST of Values .. 2-29
Renaming Existing Diagram, Symbol, or Definition Types 2-31
Creating New Diagram, Symbol, or Definition Types 2-37

Assigning a Symbol Type to a Diagram Type 2-39
Assigning a Line Symbol Type to a Diagram Type 2-40
Limitations of Assigning a Symbol Type to a Diagram Type 2-41
Assigning a Definition Type to a Symbol Type 2-43

Depicting a Symbol with a Bitmap or Metafile .. 2-44
Specifying Depiction Files for New Encyclopedias 2-48
User-Defined Symbol Presentation Based on Property Value 2-50

Specifying Properties for Diagrams, Symbols, and Definitions 2-54
Specifying Properties for Diagram Types 2-56
Specifying Properties for Symbol Types .. 2-58
Specifying Properties for Definition Types 2-62
Property Statements ... 2-65

Using ListOf, OneOf, and ExpressionOf .. 2-69
ListOf ... 2-70
OneOf ... 2-73
ExpressionOf .. 2-74
ZOOMABLE Command .. 2-76

Modifying the Aesthetic Look of Dialogs .. 2-78
LAYOUT Command .. 2-79

Table of Conten ts

Creating Tabs with the CHAPTER Command 2-89
GROUP Command ... 2-91
Positioning Controls and Labels ... 2-94

Specifying the Display of Values on Symbols .. 2-100
Syntax of the DISPLAY Command ... 2-103

Specifying Key and Keyed By Properties ... 2-108
Examples of Key and Keyed By .. 2-115

Hiding Standard Entries in the SAPROPS.CFG File.................................. 2-124
Error Messages ... 2-126
Runtime Edits .. 2-129

USRPROPS.TXT Keywords .. 3-1
USRPROPS Keywords .. 3-2

IBM Support ... 4-1
Contacting IBM Rational Software Support.. 4-2

Appendix .. 5-1
Notices ... 5-2
Trademarks .. 5-5
Index ... iii

1-1

1

Extending a
System Architect
Encyclopedia's
Metamodel

This chapter introduces the mechanisms to extend a IBM®
Rational® System Architect® encyclopedia's metamodel
through USRPROPS.TXT.

Topics in this Chapter Page

Extending Rational System Architect 1-2

Rational System Architect’s Encyclopedia
Metamodel

1-3

How to Modify the Metamodel 1-8

Introduction

Extending a System Architect Encyclopedia's Metamodel

1-2

Extending RationalSystem
Architect

Rational System Architect can be extended and customized
in many ways. Its drawing behavior can be customized
through a variety of selections made in the tool and the
sa2001.ini file. It's toolbars may be customized, its Matrix
Editors may be customized, its reports may be customized,
and so forth. Rational System Architect also has built-in
support for Microsoft Visual Basic for Applications, which
enables the user to write native macros that can run inside
Rational System Architect to do all sorts of things, such as
adding useful utilities, or even effecting the behavior of the
tool.

In addition to all of that, one of the most powerful features of
Rational System Architect is that users may also tailor and
extend the underlying metamodel of how information is stored
in an encyclopedia. The default metamodel of a Rational
System Architect encyclopedia is specified in a file called
SAPROPS.CFG (the main System Architect properties file),
which controls things like the symbols that are on diagrams,
the relationshiip between symbols and their definitions, and
the properties of symbols, definitions, and diagrams. User
modifications to the metamodel are specified in a text file
called USRPROPS.TXT, which, when an encyclopedia is
loaded, is parsed along with SAPROPS.CFG to create a
SAPROPS.BIN file. USRPROPS.TXT overrides
SAPROPS.CFG. You may edit the USRPROPS.TXT file to
customize or extend the metamodel of an encyclopedia using
a scripting language native to Rational System Architect.

Extending the

Metamodel

through

USRPROPS.TXT

Rational System Architect’s Encyclopedia Metamodel

1-3

Rational System
Architect’s Encyclopedia
Metamodel

The metamodel is a model of the way Rational System
Architect stores the diagrams, symbols, and definitions that
you create while you're doing your work. Rational System
Architect’s metamodel includes all diagram types, symbol
types, and definition types, the properties that each of those
types contains, and various relationships between these
modeling elements.

An example of a diagram type is a Business Process
diagram; it has properties such as options whether or not to
show pools and lanes horiztonally or vertically (Vertical Pools
and Lanes), whether or not to automatically check line-
symbol connections on the diagram as you draw (Check
Connections), etc.

An example of a symbol type is a BPMN Process symbol. A
BPMN Process symbol is drawn on a Business Process
diagram – the diagram contains symbols, and symbols are
contained in a diagram – an example of two of the many
relationships in the encyclopedia metamodel. An example of

What the

Metamodel

Provides

Extending a System Architect Encyclopedia's Metamodel

1-4

a definition type is a BPMN Process definition. A BPMN
Process symbol graphically represents a BPMN Process
definition. Most definitions are represented by a symbol;
some are not – attribute or method definition types, for
example, are not represented by any symbol on any diagram.
They are both included in (another relationship) a class
definition type.

Similar to a diagram type, each definition type contains
properties. If you open a definition from Rational System
Architect’s explorer, you will see those properties in the
definition’s dialog, categorized into appropriate tabs and
groups.

Similar to a diagram type and a definition type, each symbol
type contains properties. If you open a symbol’s underlying
dialog (double click on the symbol on a diagram workspace,
or right-mouse click on it and choose Edit, or select it and
choose Edit, symbol-type), you will see the properties of the

Rational System Architect’s Encyclopedia Metamodel

1-5

underlying definition that the symbol represents (the same as
those presented if you opened the definition from the
explorer), and you will also see an additional Symbol tab.

The Symbol tab provides properties specific to the symbol.

Extending a System Architect Encyclopedia's Metamodel

1-6

Each symbol that you draw on a diagram is a separate
instance that points to the same definition. So you may draw
a Process symbol named Read Item Description on one
Business Process diagram and color it red, and draw another
Process symbol named Read Item Description on another
Business Process diagram and color it green. If you make a
change to the Read Item Description definition (add a word to
its Description property, for example), that change will be
reflected when you open the definition of either the red or the
green Read Item Description symbol. Two separate symbols
– one underlying definition.

Relationships between and amongst diagram types, symbol
types, and definition types can be complex. For instance, in
Rational System Architect, a class diagram belongs to the
package that it is created in. There is a ‘belongs to’
relationship between a class and a package. What’s more, a
class is ‘keyed to’ the package it belongs to. The ‘keyed to’
relationship provides uniqueness to a class’s namespace –

Rational System Architect’s Encyclopedia Metamodel

1-7

you can have a class Person in a Human_Resources
package that has completely different contents than a class
Person in a Hotel_Reservation package. So ‘keyed by’ is
another relationship that exists between a class and a
package. Similarly, a method belongs to a class which
belongs to a package. A method is also keyed by its class
which is keyed by its package. Moreover, the user may
create child diagrams (such as a State diagram) for class
symbols on that class diagram. In this case a State diagram
‘is child of’ a class symbol – yet another relationship.

Extending a System Architect Encyclopedia's Metamodel

1-8

How to Modify the
Metamodel

Rational System Architect has been delivered to you with a
preset metamodel of diagrams, symbols, definitions,
properties, and relationships. You may accept this
metamodel as is, or extend or tailor it to suit your modeling
needs. Tailoring includes changing what is already provided,
or adding your own new diagram types, symbol types, and
definition types.

Each Rational System Architect encyclopedia has its
metamodel specified by two files: SAPROPS.CFG (the
System Architect Property configuration file) and
USRPROPS.TXT (the User Properties file). These two files
reside in the FILES table of each encyclopedia.

The SAPROPS.CFG file contains the default metamodel
specified by IBM for each encyclopedia used with a particular
version of the product. The USRPROPS.TXT file by default is
an empty file, except for some comment (REM, or reminder)
statements. Users add code to the USRPROPS.TXT file to
modify the metamodel.

When Rational System Architect opens an encyclopedia, it
parses the SAPROPS.CFG file, and then parses the
USRPROPS.TXT file to create an SAPROPS.BIN file.
Whatever is specified in USRPROPS.TXT overrides or is
added to the SAPROPS.CFG specification in creating the
SAPROPS.BIN file. It is the SAPROPS.BIN file that is used to
present the metamodel to the user.

There are a few important items of the metamodel that you
cannot override in SAPROPS.CFG using USRPROPS.TXT:

• You cannot remove a LIST or LISTONLY
reference which has been defined in
SAPROPS. However you can modify the
text to be displayed in the list or listbox.

• You cannot remove a label which has been
defined in SAPROPS. However you can
modify the text to be displayed in the label.

Physical Makeup

of an

Encyclopedia’s

Metamodel –

SAPROPS.CFG

and

USRPROPS.TXT

How to Modify the Metamodel

1-9

In addition to residing in the FILES table of each
encyclopedia, a ‘master’ copy of the SAPROPS.CFG file and
the USRPROPS.TXT file are also provided within Rational
System Architect’s main executable directory (usually
<C>:\Program Files\IBM\Rational\System Architect
Suite\11.3.1\System Architect). When an encyclopedia is
created for the first time, the ‘master’ SAPROPS.CFG and
USRPROPS.TXT files residing in Rational System Architect’s
executable directory are automatically placed in its Files
table. Therefore, if you change the contents of the
USRPROPS.TXT file in the main Rational System Architect
directory, you will be changing the metamodel of all new
encyclopedias that you create. As a result, many people
make sure the ‘master’ USRPROPS.TXT in the main Rational
System Architect executable directory has all properties
required for their company and project standards.

Initially, the ‘master’ USRPROPS.TXT file is essentially empty
– it contains only some remarks at the head of the file,
prefaced by a REM (reminder, or comment) command.

Rational System Architect provides you with a third file, called
CONFIG.PRP, which is an exact copy of SAPROPS.CFG.
CONFIG.PRP is located in Rational System Architect’s
executable directory (usually <C>:\Program
Files\IBM\Rational\System Architect Suite\11.3.1\System
Architect). CONFIG.PRP is provided so that you can view,
cut and copy the commands and properties that are also in
SAPROPS.CFG without having to worry about accidentally
disturbing SAPROPS.CFG itself. You can cut or copy
commands from the CONFIG.PRP file and paste them into
the USRPROPS.TXT file, and then make modifications.

The ‘Master’

SAPROPS.CFG &

USRPROPS.TXT

Files

CONFIG.PRP File

Extending a System Architect Encyclopedia's Metamodel

1-10

Selecting the Diagram and

Property Sets for an

Encyclopedia

Besides modifying the metamodel via USRPROPS.TXT, you
may also select what diagram and property sets are turned
on for an encyclopedia at any given time via the Rational
System Architect Property Configuration dialog (accessed by
selecting Tools, Customize Method Support, Encyclopedia
Configuration).

You may toggle on or off diagram sets and property sets, and
click on the Advanced button in this dialog to make further
refinements of what diagram and property sets are active in
an encyclopedia.

The selections you make in the Property Configuration dialog
directly affect the contents of the SADECLAR.CFG file, which
is housed in the Files table of every encyclopedia. This file, in
turn, is referenced by #IFDEF (note: there is no space
between the ‘#’ and the ‘IF’) statements in the
SAPROPS.CFG and USRPROPS.TXT files. For example,

Figure 1-1. Project
Configuration Dialog:
choose the diagram
types, and the other
useful diagrams for
this encyclopedia.

SADECLAR.CFG

How to Modify the Metamodel

1-11

the SAPROPS.CFG file contains # IFDEF’s for UML – if the
UML modeling method is toggled on (in the above dialog and
therefore in SADECLAR.CFG), then # IFDEF’s in
SAPROPS.CFG will turn on or off appropriate properties for
UML diagrams.

As the picture below shows, selections for diagram and
property sets that you make in the Property Configuration
dialog (which toggle on or off choices in SADECLAR.CFG), in
effect, filter the SAPROPS.CFG file properties in use for the
encyclopedia. User modifications that you make to
USRPROPS.TXT are parsed on top of the filtered
SAPROPS.CFG file, to produce an SAPROPS.BIN file that
provides the metamodel for an encyclopedia as Rational
System Architect is running. Whenever you bring up a
property or definition dialog, or run a report, Rational System
Architect goes to SAPROPS.BIN to find the relevant
properties of the model element you are defining.

You may export the SADECLAR.CFG file from the Files table
of an encyclopedia, and open it using any text editor to see
the specific property sets that are available to use as
switches for # IFDEF statements in USRPROPS.TXT.

Some do not totally match the words/labels used in the
Property Configuration dialog. For example, the Enterprise
Architecture choice is actually called Business Enterprise in
SADECLAR.CFG. So a #IFDEF “Enterprise Architecture”

Figure 1-2. The
relationship between
SAPROPS.CFG,
USRPROPS.TXT,
and the user's choice
of diagrams,
properties, and
modeling technique.

Extending a System Architect Encyclopedia's Metamodel

1-12

statement in USRPROPS.TXT would be meaningless and
cause a parsing error; the correct statement should be
#IFDEF “Business Enterprise”.

Figure 1-3. Contents
of SADECLAR are
used for # IFDEF
switches in
USRPROPS.TXT.

2-1

2

Modifying the
Metamodel with
USRPROPS.TXT

This chapter describes the theory and mechanisms behind
Rational System Architect’s extensible metamodel.

Topics in this chapter Page
Accessing and Editing the USRPROPS.TXT File 2-3

Composition and Syntax 2-7

Ordering and Laying Out USPROPS.TXT Changes 2-19

Defining a LIST of Values 2-29

Renaming Diagram, Symbol, or Definition Types 2-37

Creating New Diagram, Symbol, or Definition Types 2-37

Depicting a Symbol with a Bitmap or Metafile 2-44

Specifying Properties for Diagrams, Symbols, &
Definitions

2-54

Using ListOf, one of, and ExpressionOf 2-69

Modifying the Aethetic Look of the Dialogs 2-78

Specifying the Display of Property Values on Symbols 2-101

Introduction

Modifying the Metamodel with USRPROPS.TXT

2-2

Specifying Key and Keyed By Properties 2-109

Accessing and Editing the USRPROPS.TXT File

2-3

Accessing and Editing the
USRPROPS.TXT File

The USRPROPS.TXT file can be edited in any text editor.
The one requirement is that it must be saved as a TEXT file.

As mentioned earlier in this chapter, the master
USRPROPS.TXT file is automatically placed in any new
encyclopedia you create. Many organizations modify the
master USRPROPS.TXT file so that all new encyclopedias
contain the same metamodel extensions. To edit the master
USRPROPS.TXT file:

• Select Tools, Customize User Properties, Edit
USRPROPS.TXT (Master), or

• Simply navigate to the <C>:\Program
Files\IBM\Rational\System Architect
Suite\11.3.1\System Architect directory, and open the
USRPROPS.TXT file found there.

An encyclopedia’s USRPROPS.TXT file is located in the Files
table within the encyclopedia’s SQL Server database. To edit
it, you must first export it out of the Files table of the
database. Then, after editing it, you must import it back into
the Files table of the database, and reopen your
encyclopedia (so the SAPROPS.CFG and USRPROPS.TXT
files can be parsed).

There are a number of ways to access an encyclopedia’s
USRPROPS.TXT file.

• You may use Rational System Architect’s native
USRPROPS.TXT export/import facility (select Tools,
Customize User Properties, Export USRPROPS.TXT
(Encyclopedia), or

• You may use Rational System Architect’s
Encyclopedia File Manager utility (select Tools,
Encyclopedia File Manager), or

• You may use SAEM (from outside of Rational
System Architect, select Start, Programs, IBM
Rational, IBM Rational Lifecycle Solutions Tools, IBM

Accessing the

Master

USRPROPS.TXT

File

Accessing an

Encyclopedia’s

USRPROPS.TXT

File

Modifying the Metamodel with USRPROPS.TXT

2-4

Rational System Architect 11.3.1, SAEM, and refer to
SAEM’s help).

Using Rational System Architect’s Native
USRPROPS.TXT Export/Import Facility:

To edit the USRPROPS.TXT file using Rational System
Architect’s native USRPROPS.TXT Export/Import facility,
perform the following steps:

1. Select Tools, Customize User Properties, Export
USRPROPS.TXT (Encyclopedia).

2. In the Export User Properties dialog that opens,
select a directory to export the USRPROPS.TXT file
to. Click the Save button; the USRPROPS.TXT file
will be saved to the selected directory, and open
automatically in Notepad.

3. Once you edit the file, select Tools, Customize User
Properties, Import USRPROPS.TXT (Encyclopedia)
to reimport the modified USRPROPS.TXT file into the
Files table of the encyclopedia’s database.

4. Reopen the encyclopedia for it to parse its
SAPROPS.CFG file and its modified
USRPROPS.TXT file.

Using Encyclopedia File Manager:

To edit the USRPROPS.TXT file using Encyclopedia File
Manager, perform the following steps:

1. Select Tools, Encyclopedia File Manager.

2. In the Encyclopedia File Manager dialog, make sure
that the Export choice is toggled on in the lower left-
hand corner. Select the USRPROPS.TXT file in the
Select a file to export list, and select a directory to
export the file to using the ‘…’ button of the Export
selected file to property.

3. Modify the file in a text editor, and use Encyclopedia
File Manager to import the file back into the Files
table of the encyclopedia’s database.

Accessing and Editing the USRPROPS.TXT File

2-5

4. Reopen the encyclopedia for it to parse its
SAPROPS.CFG file and its modified
USRPROPS.TXT file.

Using SAEM:

You may also access and edit an encyclopedia’s
USRPROPS.TXT file using SAEM. Refer to SAEM’s help for
instructions on how to connect to a server, select a database,
and export/import files out of/into the database.

As mentioned in the steps above, everytime you reimport a
modified USRPROPS.TXT into an encyclopedia, you need to
reopen the encyclopedia using Rational System Architect.
Reopening the encyclopedia causes the SAPROPS.CFG and
USRPROP.TXT files of the encyclopedia to be parsed,
creating an SAPROPS.BIN (binary) file, which is what is used
to present the metamodel. If error free, the changes to the
metamodel take effect immediately.

If, upon parsing the USRPROPS.TXT file, Rational System
Architect encounters errors in the USRPROPS.TXT code, it
issues either a warning or error message. Rational System
Architect will open the encyclopedia after a warning, but will
not open the encyclopedia if an error is encountered. A
message such as that shown below is displayed:

Once an error is encountered, you will not be able to access
the offending USRPROPS.TXT file using Rational System
Architect’s Native USRPROPS.TXT Export/Import Facility (if
you select Tools, Customize User Properties, the Export
USRPROPS.TXT (Encyclopedia) choice will be greyed out).

Reloading the

Properties Files

Figure 2-1. Properties
Files Error Dialog

Modifying the Metamodel with USRPROPS.TXT

2-6

To access and edit the USRPROPS.TXT file after an error
occurs, you must use Rational System Architect’s
Encyclopedia File Manager (select Tools, Encyclopedia File
Manager) or SAEM (from outside of Rational System
Architect, select Start, Programs, IBM Rational, IBM Rational
Lifecycle Solutions Tools, IBM Rational System Architect
11.3.1, SAEM, and refer to SAEM’s help).

Composition and Syntax

2-7

Composition and Syntax

Like most programming languages, the language syntax of
USRPROPS.TXT is composed of a series of strings. At least
one white space character is required to separate strings
from each other (white space includes spaces, tabs,
commas, carriage return/line feeds, and some others). When
there are several white space characters one after the other,
such as a carriage return followed by a tab, they are grouped
together and treated as one.

If a string includes one or more embedded spaces, be sure to
enclose the string within double quotes, for example, use
"Data Flow", not Data Flow.

The USRPROPS.TXT language has a certain set of
keywords. Depending on its placement, a keyword is
considered to be either a command or an argument. All
keywords allowed in USRPROPS.TXT are listed in Chapter

3, USRPROPS.TXT Keywords.

Keywords in USRPROPS.TXT are not case sensitive, and
you may use capital letters, or small letters, or mixed. In this
manual and in the sample USRPROPS.TXT file, commands
and all other keywords are all caps for readability only.
Examples of commands are:

BEGIN or Begin or BegiN
EDIT or Edit
LIST or List or LiST
LISTONLY or Listonly or ListOnly
RENAME or Rename or ReName, etc

Commands are always keywords and they always start a
new phrase. When Rational System Architect parses
USRPROPS.TXT, it knows that the first string in the file must
be a valid keyword command. Each command must be
followed by a known number of argument strings (zero or one
or more) and then another command must be found.

Strings that follow commands are arguments. Some
arguments may be keywords. Other arguments consist of
textual strings that provide the names of Diagrams, Symbols,
Definitions, Properties, List Values, Labels, Help Strings, etc,

Keywords

Case

Insensitivity of

Keywords

Commands

Arguments

Modifying the Metamodel with USRPROPS.TXT

2-8

that are found in subsequent dialogs. Here are some
examples:

• LIST "Processor Scheduling"

"Processor Scheduling" is not a keyword. It is used as an
argument in the expression above.

• DISPLAY { FORMAT KEY LEGEND "Key data" }

"KEY" is a keyword. It is used as an argument in the
expression above.

As mentioned previously, keywords are not case sensitive.
However, arguments that are text strings are case sensitive.
For example, using the LIST "Processor Scheduling"
argument above, any references to that list in either
SAPROPS.CFG or USRPROPS.TXT must be spelled exactly
the same way, with the same case sensitivity. For example, if
we specify the following list:

LIST "Processor Scheduling"
{
 VALUE "preemptive"
 VALUE "nonpreemptive"
}

Then a valid reference to that list should have the same exact
spelling.

DEFINITION "Hardware Processor"
 PROPERTY "Scheduling"
 { EDIT text LIST "Processor Scheduling" LENGTH 20
 DISPLAY { LEGEND "Sched" } }

However, the following syntax will give you an error message
stating 'List "PROCESSOR SCHEDULING" not Found.'

DEFINITION "Hardware Processor"
 PROPERTY "Scheduling"
 { EDIT text LIST "PROCESSOR SCHEDULING" LENGTH 20
 DISPLAY { LEGEND "Sched" } }

Case Sensitivity

of Arguments

that Are Text

Strings

Composition and Syntax

2-9

Similarly, any properties referenced in reports must use the
spelling and case of the entry in SAPROPS.CFG and/or
USRPROPS.TXT file.

Modifying the Metamodel with USRPROPS.TXT

2-10

Grouping Commands to Create

Modeling Elements

Opening and closing braces, { }, or, alternatively,
BEGIN...END commands, are used to group commands in
order to form modeling elements.

Rational System Architect’s repository supports three main
modeling elements – sometimes referred to as dictionary

classes – diagrams, symbols (which are drawn on
diagrams), and definitions (which may or may not be
represented by symbols). The BEGIN .. END or { } structure
is used to specify the contents of these modeling elements,
as follows:

Diagram “Name of Diagram Type”

{
[contents]
}

Symbol “Name of Symbol Type”

{
[contents]
}

Definition “Name of Definition Type”

{
[contents]
}

or

Diagram “Name of Diagram Type”

BEGIN
[contents]
END

Etc

The contents of these modeling elements consist of
properties and layout commands. The BEGIN .. END or { }
structure is used to group property commands, thusly:

Definition “Name of Definition Type”
{

Diagrams,

Symbols, and

Definitions

Properties

Composition and Syntax

2-11

PROPERTY { [specification of property] }
PROPERTY { [specification of property] }
…
}

Certain keywords that create clauses within a property also
require opening and closing braces to delineate the
command’s arguments, such as the KEYED BY command.

Definition “Name of Definition Type”
{
PROPERTY { [specification of property] KEYED BY {
[clause] } }
…
}

The LAYOUT command also requires opening and closing
braces or a BEGIN .. END statement.

Definition “Name of Definition Type”
{
LAYOUT { [specification of layout] }
PROPERTY { [specification of property] }
PROPERTY { [specification of property] }
…
}

Properties in a dialog may be further grouped into tabs and
groups. Tabs are specified by a CHAPTER command – the
CHAPTER command does not require – and in fact must not

have – opening and closing braces or BEGIN .. END
statements. It simply groups all properties below it in a
specification into a tab (within the ensuing dialog), until the
next CHAPTER command is encountered in the specification.

Definition “Name of Definition Type”
{
LAYOUT { [specification of layout] }
CHAPTER “First Tab”
PROPERTY { [specification of property] }
PROPERTY { [specification of property] }
…
CHAPTER “Second Tab”
PROPERTY { [specification of property] }
PROPERTY { [specification of property] }
…
}

Layout

Chapter

Modifying the Metamodel with USRPROPS.TXT

2-12

Unlike the CHAPTER command, GROUPS do require the
opening and closing braces or a BEGIN .. END statement.

Definition “Name of Definition Type”

{
LAYOUT { [specification of layout] }
CHAPTER “First Tab”
PROPERTY { [specification of property] }
PROPERTY { [specification of property] }
GROUP “Things That Go Together”

{
PROPERTY { [specification of property] }
PROPERTY { [specification of property] }
}
…
}

You may also specify lists in an encyclopedia – either preset
lists containing textual values or lists of definitions that you
create while modeling. Lists of definitions that you create
while modeling are built using the ONE OF, LISTOF, and
EXPRESSIONOF commands within a property statement,
and are discussed later. Textual lists are built by specifying
the values of the list in a separate list statement, with the
values enclosed within opening/closing braces or a BEGIN..
END structure. The LIST statement is normally placed near
the top of the USRPROPS.TXT file, and referenced within the
appropriate property specification of a Diagram, Symbol, or
Definition.

LIST “List of Things”
{
VALUE One
VALUE Two
VALUE “Two and a Half”
}

Groups

Lists

Composition and Syntax

2-13

Indentations and new lines are used solely to enhance
readability, and have no meaning to the USRPROPS.TXT
processor other than to act as whitespace separators
between strings. The above example could be written like
this:

LIST "List of Things" { VALUE One VALUE
Two VALUE “Two and a Half” VALUE }

While this format is perfectly acceptable to Rational
System Architect, it probably makes maintenance of
the USRPROPS.TXT file more difficult, and should
therefore be avoided.

A Note on Syntax

Modifying the Metamodel with USRPROPS.TXT

2-14

Dialog Controls

The table below describes dialog controls that can be created
via appropriate commands in USRPROPS.TXT.

Argument Type Generated Control
LIST command of less
than five values.

Group box with one radio button for
each value.

Important Note: You may force a list
of less than five values to be a drop-
down list if you use the
LISTONLYCOMBO command. More
information on this keyword is provided
in Chapter 3.

LIST command of five
or more values

Drop-down list box.

Table 2-2. Controls
Generated from
Property Expressions

Composition and Syntax

2-15

BOOLEAN Check box. A True value is
represented by a check mark, a false
value is an empty box. For example,
the property below, Virtual, is
described as a Boolean:

PROPERTY "Virtual" { EDIT
BOOLEAN LENGTH 1 DEFAULT "F" }

LISTOF “[Definition or
Diagram Type]”

Group including a drop down list box
with New, Add, Remove, D(own), and
U(p) buttons on the side, and 3
buttons: Definition, Check, and
Choices on the bottom.

ONEOF “[Definition or
Diagram Type]”

Group including a text box, and 3
buttons: Definition, Check, and
Choices.

Modifying the Metamodel with USRPROPS.TXT

2-16

ASGRID This command is used with either the
LISTOF or ONEOF commands to
provide a grid of values. For example:

PROPERTY "Use Case Steps" { EDIT
COMPLETE LISTOF "Use Case Step"
KEYED BY { "Package", "Use Case
Name":Name, Name} ASGRID
LENGTH 1200 }

EXPRESSIONOF
“[Definition or Diagram
Type]”

Not possible.

Composition and Syntax

2-17

LISTOF DATA DATA is a special word – it provides a
list of data elements and data
structures (each data structure is a
group of data elements) in the
encyclopedia. A LISTOF DATA control
is a very special control – it is a group
including a drop-down list box with
New, Add, Remove, D(own), and
U(p) buttons on the side, and 4
buttons: Elem, Struct, Check, and
Choices on the bottom.

ONEOF DATA As mentioned above, DATA is a
special word – it provides a list of data
elements and data structures in the
encyclopedia. A ONEOF DATA clause
provides a group control that has at its
core a text box within which you
specify the data element or data
structure, and four buttons: Elem,
Struct, Check, and Choices.

Modifying the Metamodel with USRPROPS.TXT

2-18

EXPRESSIONOF
DATA

As mentioned above, DATA is a
special word – it provides a list of data
elements and data structures in the
encyclopedia. EXPRESSIONOF DATA
provides a text area within which you
type in the data elements or data
structures, and four buttons – Elem,
Struct, Check, and Choices.

Ordering and Laying Out USRPROPS.TXT Changes

2-19

Ordering and Laying Out
USRPROPS.TXT Changes

The general ordering of sections of SAPROPS.CFG is as
follows:

• LIST command section
• DIAGRAM command section
• SYMBOL command section
• DEFINITION command section

 LAYOUT command subsection (default
for entire definition dialog)

 CHAPTER command subsection
 GROUP command subsection
 LAYOUT command subsection
 PROPERTY command subsection

Although all entries in USRPROPS.TXT are optional, you
should follow a similar layout as SAPROPS.CFG, adding a
RENAME command section, if used, to the top of the file. The
general ordering of sections for USRPROPS.TXT should be
as follows:

• RENAME command section (in this section
you rename USER DIAGRAMS, USER
SYMBOLS, and USER DEFINITIONS to
create your own diagram, symbol, or
definition types (see page 2-31)

• LIST command section (see page 2-29)
• DIAGRAM command section (see page 2-

56)
• SYMBOL command section (see page 2-58)
• DEFINITION command section (see page 2-

62)
CHAPTER command subsection (see
page 2-90)
GROUP command subsection (see
page 2-92)

Modifying the Metamodel with USRPROPS.TXT

2-20

LAYOUT command subsection (see
page 2-92)
PROPERTY command subsection (see
page 2-65)

.

The following rules should be kept in mind when creating
USRPROPS.TXT:

1. USRPROPS.TXT entries are additions to or
replacements for entries in SAPROPS.CFG.

2. The USRPROPS.TXT entry must begin with
the relevant LIST, RENAME, DIAGRAM,
SYMBOL or DEFINITION statement.

3. USRPROPS.TXT entries that are additions
to SAPROPS.CFG go to the end of the
relevant section. For example, a LIST block
not in SAPROPS.CFG is essentially added
after all other LIST blocks in
SAPROPS.CFG.

4. Unless the CHAPTER command is
included, USRPROPS.TXT entries go to the
end of the relevant dialog. For example, a
new property for a Class definition is added
after all other properties in the Class’s
definition dialog.

5. If a CHAPTER command already in
SAPROPS.CFG is included in
USRPROPS.TXT, the USRPROPS.TXT
entries go to the end of the existing chapter
(or tab).

6. If a GROUP command already in
SAPROPS.CFG is included in
USRPROPS.TXT, the USRPROPS.TXT
entries go to the end of the existing group.

7. The GROUP command produces a group
box, a standard Windows control, into which
all subsequent controls must be placed. If
there are too many entries, so that the size
of the group is larger than the size of the

Rules for

Modifying

USRPROPS.TXT

Ordering and Laying Out USRPROPS.TXT Changes

2-21

monitor, extraneous properties are not
included, and not displayed. A warning
message to that affect is displayed when the
encyclopedia is opened.

8. If a property is added to a group that has
PLACEMENT commands on its properties
in SAPROPS.CFG, the PLACEMENT
command must also be used for the new
property(ies) added in USRPROPS.TXT.

If you have neither a USRPROPS.TXT nor a SAPROPS.CFG
file, however, every diagram, symbol and definition still has a
name and the property description. The default values for
description are included later in this section. As mentioned
previously, the complete text of SAPROPS.CFG is included
in the file called CONFIG.PRP. This is a standard ASCII text
file; the entries can be used as models for changes and
additions to USRPROPS.TXT.

How you lay out the actual code in the USRPROPS.TXT file
itself is up to you. We recommend providing a tab structure
so that it is easier to see the beginnings of List, Diagram,
Symbol, and Definition statements. However, different text
editors may represent tabs different ways – for example, if
you use Microsoft Word as your text editor, and then open up
the USRPROPS.TXT later in a different text editor, the tabs
you set in Word may be spaced completely differently.

Layout Of

USRPROPS.TXT

Code

Modifying the Metamodel with USRPROPS.TXT

2-22

Figure 2-2. Example
Code Layout for
USRPROPS.TXT

Ordering and Laying Out USRPROPS.TXT Changes

2-23

Example of Making Changes to

USRPROPS.TXT

In this section, we will make changes to a definition that
already exists in SAPROPS.CFG. The following code can be
found in SAPROPS.CFG:

DEFINITION "Change Request"
{
 ADDRESSABLE
 LAYOUT { COLS 2 TAB ALIGN LABEL }
 PROPERTY "Impact Statement" { EDIT Text LENGTH 1000 }
 PROPERTY "Original Source" { EDIT Text LIST "Business Unit"
 LENGTH 80 LABEL "Source Dept." }
 PROPERTY "Author Name" { EDIT Text LENGTH 25 }
PROPERTY "Date Entered" { EDIT date INITIAL date READONLY
 LENGTH 10 }
 PROPERTY "Start Date" { EDIT date LENGTH 10 }
PROPERTY "Required Completion Date"
 { EDIT date LENGTH 10 LABEL "Required Completion" }

The picture below shows the Dictionary Object dialog for the
above definition block (note that we informally call this the
definition dialog throughout most of this manual).

Figure 2-3. Change
Request Definition
Dialog as Defined in
the Master
Configuration
Property Set File

Modifying the Metamodel with USRPROPS.TXT

2-24

Note that there is an Introduction tab even though our
SAPROPS.CFG has not called this out specifically with a
CHAPTER command. If no CHAPTER command is specified,
Rational System Architect automatically provides a default
Introduction tab. The Access Data tab is hard-coded in the
software and not specified in SAPROPS.CFG.

We make changes to the Change Request definition by
adding the following code to USRPROPS.TXT and reopening
the encyclopedia:

DEFINITION "Change Request"
{
 LAYOUT { COLS 2 TAB ALIGN LABEL }
 PROPERTY "Author Name" { LABEL "Client Division" }
PROPERTY "Supervising Manager" { EDIT text LENGTH 45 }
 PROPERTY "On time" { Edit Boolean Length 1 DEFAULT "T" }
}

The table explains each line of the USRPROPS.TXT code
above, and the effect it has.

USRPROPS.TXT Entry Effect
DEFINITION "Change Request"
{

Specifies a change to the
Definition “Change
Request”

 LAYOUT { COLS 2 TAB ALIGN
LABEL }

Sets up a two-column
layout for the properties
below the LAYOUT
command (until the end of
the definition is reached or
another LAYOUT command
is encountered)..

 PROPERTY "Author Name"
 { LABEL "Client Division" }

This modifies an existing
property – it changes the
label on the field from
Author Name to Client
Division

 PROPERTY "Supervising
Manager"
 { EDIT TEXT LENGTH 45 }

This adds a new property,
which is a text field,
Supervising Manager, to
the dialog box.

Making a Change

With

USRPROPS.TXT

Table 2-1. Effect of
USRPROPS.TXT
Entries

Ordering and Laying Out USRPROPS.TXT Changes

2-25

 PROPERTY "On time"
 { EDIT BOOLEAN LENGTH 1
 DEFAULT "T" }
}

This adds a new property,
which is a check box, to the
dialog box to indicate
whether the change
request is meeting the
deadline.

We import our changed USRPROPS.TXT file into our
Rational System Architect encyclopedia, and reopen the
definition of a change request, to see the changes to its
dialog – note that the information on the Introduction tab has
now spilled onto two pages.

Figure 2- 4. Change
Request Definition
Dialog as Modified by
Entries in
USRPROPS.TXT

Modifying the Metamodel with USRPROPS.TXT

2-26

The information spilled out onto two pages of the
Introduction tab because of the two new properties we
added. They get added to the end of the definition (they do
not get added to the end of the Access Data tab because
this tab doesn’t count – it is hard coded and not part of
SAPROPS.CFG).

Notice that we did not re-enter the entire PROPERTY
statement that exists in SAPROPS.CFG into our
USRPROPS.TXT file. We simply need to enter specific
statements that need to be changed, besides any new
statements that we are adding. And even for the statements
that we are changing that we are re-entering, we only need to
add the part of the statement that is changing. In our
example, the one statement from SAPROPS.CFG that we re-
entered and changed was:

 PROPERTY "Author Name” { EDIT TEXT LENGTH 25 }

In our USRPROPS.TXT file, we only wanted to change the
label on this property, so we simply entered:

Only Change

What Needs to

Be Changed

Ordering and Laying Out USRPROPS.TXT Changes

2-27

 PROPERTY "Author Name" { LABEL "Client Division" }

The length of the property and the fact that it is text (rather
than numeric or Boolean) remain unchanged; only the label
to the left of the control in the dialog has been changed.

Let’s try another change – we add the text in bold below to
our USRPROPS.TXT code:

DEFINITION "Change Request"
{
 LAYOUT { COLS 2 TAB ALIGN LABEL }
PROPERTY "Impact Statement” { EDIT text LENGTH 100 }
PROPERTY "Author Name" { LABEL "Client Division" }
PROPERTY "Supervising Manager" { EDIT text LENGTH 45 }
 PROPERTY "On time" { Edit Boolean Length 1 DEFAULT "T" }
}

The explanation of this change is explained below:

USRPROPS.TXT Entry Effect
 PROPERTY "Impact Statement"
 { EDIT TEXT LENGTH 100 }

Attempts to modify an
existing property, reducing
the space for the Impact
Statement from 1000
characters to 100.

We import this USRPROPS.TXT back into our encyclopedia,
and reopen the encyclopedia, and receive a warning
message from Rational System Architect:

Warning: In user's property file
addenda between line number 70 and line
number 72. Illegal attempt to shorten
the length of a property. Original
length retained.

Rational System Architect does not allow you to decrease the
length of a field – you can only increase it. The reason for this
is that users may have already entered information into a text
field that will be lost if you decrease the length of this field,
and thereby decrease the amount of information that the
encyclopedia can hold for this property, at a later time.

One More

Change and a

Warning

Modifying the Metamodel with USRPROPS.TXT

2-28

Rational System Architect issues the warning, ignores the
faulty code, and opens the encyclopedia. As mentioned
previously, if this had been an error message, the
encyclopedia would not open until you fixed the
USRPROPS.TXT.

If we were instead attempting to increase the length of the
Impact Statement field, Rational System Architect would
accept the change gladly.

PROPERTY "Impact Statement” { EDIT text LENGTH 1200 }

Defining a LIST of Values

2-29

Defining a LIST of Values

You may specify a list of items that is provided to the user as
a drop-down list or check-box list in dialogs. The values of the
list must be specified in a List definition. The List definition is
then referenced in the Diagram, Symbol, or Definition where
it is being used. Lists must be placed in USRPROPS.TXT
before any Diagram, Symbol, or Definition entries that
reference them.

Management of the USRPROPS.TXT file is easier if all List
definitions are at the top of the file, following any Rename
commands.

A list definition starts with the keyword LIST followed by a
string (the argument) that is the name of the list. Names with
embedded spaces must be bounded by double quotes. The
LIST definition is bracketed by opening and closing braces { }
or, alternatively, with the BEGIN...END structure. Within the
brackets you specify the values of the list, each called out by
the command keyword, VALUE. If a value has one or more
embedded spaces, it must be enclosed within double quotes.

LIST list_name
 {
 VALUE value_name_1
VALUE value_name_2

…
}

Example:

List "Method Stereotypes"

{
 VALUE Get
 VALUE Let
 VALUE Set
VALUE “Stereotype with embedded spaces”
}

DEFINITION “Method” {..PROPERTY "Stereotype" {
EDIT Text LIST "Method Stereotypes" Default ""
LENGTH 30 } …}

Syntax of the

LIST Definition

Modifying the Metamodel with USRPROPS.TXT

2-30

Indentations and new lines are used solely to enhance
readability, and have no meaning to the USRPROPS.TXT
processor other than to act as white space separators
between strings. The above example could be written like
this:

LIST "Method Stereotypes" { VALUE get VALUE let
VALUE set VALUE “Stereotype with embedded spaces”
}

While this format is perfectly acceptable to Rational System
Architect, it makes maintenance of the USRPROPS.TXT file
more difficult, and should therefore be avoided.

Rational System Architect automatically displays a list as a
list of checkbox choices if the number of values in the LIST
statement is four or less. If the number of values is five or
more, the list is automatically displayed as a drop-down list
box. Users may type in their own value in a drop-down list
box. If you wish to have a drop-down list box but only have
four or less LIST values, use the LISTONLYCOMBO
keyword.

If the list is provided as a drop-down list, then the user can
select one of the values from the list, or type in their own
value (unless the LISTONLY or LISTONLYCOMBO
command has been used – see Chapter 3, LISTONLY or
LISTONLYCOMBO command).

Check-Boxes

Versus Drop-

Down List

Entering Your

Own Values

Renaming Existing Diagram, Symbol, or Definition Types

2-31

Renaming Existing
Diagram, Symbol, or
Definition Types

Each DIAGRAM, SYMBOL, and DEFINITION statement must
refer to an object known to Rational System Architect.

However, in case any of the names in the provided
SAPROPS.CFG file are not appropriate, you have the ability
to change them to meet the requirements of your individual
project or company standards. The RENAME statements
should be entered at the top of USRPROPS.TXT, prior to all
other commands and statements. The general syntax of the
RENAME command is:

RENAME class_name from_type_name TO to_type_name

The following three statements rename a diagram, symbol,
and definition:

RENAME DIAGRAM "Data Flow Gane & Sarson"
 TO "Data Flow Chris & Trish"

RENAME SYMBOL "Data Transform" in
 "Data Flow Ward & Mellor"
 TO "Process A"

RENAME DEFINITION "Process"
 TO "Process A"

Modifying the Metamodel with USRPROPS.TXT

2-32

The RENAME SYMBOL command could be used by
designers working with Ward & Mellor DFD's who prefer the
name Process to Transform: Click on a Control Transform on
a DFD Ward & Mellor. Then double-click the symbol in the
diagram to display the Diagram <Type> <Name> dialog.
The symbol's type is Control Transform.

In order to rename the symbol, the following command must
be entered in USRPROPS.TXT:

RENAME class_name from_type_name IN
from_diagram_name TO to_type_name

For example,

Figure 2- 5. The Type
pull-down menu does
not display Data Flow

Gane & Sarson, but
Data Flow Chris &

Trish

Figure 2- 6. The
Diagram Properties
Modify Dialog also
displays in the title
DFD Chris & Trish,

not DFD Gane &

Sarson.

Renaming Existing Diagram, Symbol, or Definition Types

2-33

RENAME SYMBOL "Control Transform" IN "DFD Ward &
Mellor" TO "Process" ACCELERATOR "r"

Click on the Edit menu and select Edit <Symbol Type>
again while the Control Transform is selected. Note the title
of the Definition Modify dialog: the definition is Process, not
Control Transform. That is, the definition of the symbol
Control Transform maps to the definition Process. Let us
assume that you use DFD Ward & Mellor, rather than DFD
Gane & Sarson, and prefer that the definition name match the
symbol name.

The syntax of the RENAME command for a definition is:

RENAME class_name from_type_name TO to_type_name

RENAME DEFINITION "Process" TO "Control Transform"

Figure 2-7. Symbol
Properties Dialog
Before RENAME

Figure 2-8. Symbol
Properties Dialog
After RENAME

Modifying the Metamodel with USRPROPS.TXT

2-34

On the other hand, if you use both DFD Gane & Sarson
(whose Process symbols map to definition Process, and DFD
Ward & Mellor (whose Control Transform symbols map to
definition Process), you may wish to rename only the
definitions of the Control Transforms, not the definitions of all
processes. The following entries in USRPROPS.TXT would
perform that rename:

RENAME DEFINITION "User 2"1 to "Control Transform"

SYMBOL "Control Transform" in <diagram name>
 { DEFINED BY "Control Transform" }

If the Definition "Control Transform" does not include a set of
properties, it has only the property Description. In the
example we are working on, the following definition block,

1 There are 150 "User n" definitions available for your use, starting with User
1.

Figure 2-9. Symbol
Definition Dialog
Before RENAME

Figure 2-10. Symbol
Definition Dialog After
RENAME

Renaming Existing Diagram, Symbol, or Definition Types

2-35

identical to that of Process, was added to USRPROPS.TXT.
You could, of course, have any properties you feel
appropriate; you need not copy those of an existing definition.

DEFINITION "Control Transform"
{
 PROPERTY "Description"
 { EDIT Minispec LENGTH 750 }
 PROPERTY "Complexity"
 { EDIT numeric LENGTH 10 }
 PROPERTY "Memory Allocation (KB)"
 { EDIT numeric LENGTH 7 }
 PROPERTY "Priority"
 { EDIT numeric LENGTH 3 MINIMUM 0 MAXIMUM 999 }
 PROPERTY "Process Class"
 { EDIT text LISTONLY LIST "Process Class" LENGTH 20 }
 PROPERTY "Processing Time Allocation"
 { EDIT numeric LENGTH 3 MINIMUM 0 MAXIMUM 100 }
 PROPERTY "Purpose"
 { EDIT text LENGTH 4095 }
 PROPERTY "Transaction Rate"
 { EDIT numeric LENGTH 10 MINIMUM 1 MAXIMUM 10 }
}

The RENAME command also affects the way you write
reports. Any place where the old name was used, the new
name must be used instead. In the GUI reporting system,
you'll have to re-select the diagram, symbol, or the definition
property names after they've been changed in SAPROPS.

Before:

REPORT "List of Processes"
{
 TABULAR 1 {
 SELECT Name, "Update Date", Description
 WHERE Class = Definition
 WHERE Type = "Process"
 ORDERBY Name
 }
 }

If you look at the report using the Text Editor (Reports dialog,
EDIT command) what you'll see will be the following.

RENAME and

Reporting

Modifying the Metamodel with USRPROPS.TXT

2-36

After:

REPORT "List Of Transforms"
{
 TABULAR 1 {
 SELECT Name, "Update Date", Description
 WHERE Class = Definition
 WHERE Type = "Control Transform"
 ORDERBY Name
 }
 }

Creating New Diagram, Symbol, or Definition Types

2-37

Creating New Diagram,
Symbol, or Definition
Types

You may create new diagram, symbol, or definition types in a
Rational System Architect encyclopedia. You do this by using
the RENAME command to rename pre-existing diagram,
symbol, or definition types provided for this purpose. Again,
RENAME commands should be placed at the top of the
USRPROPS.TXT file, just below the opening REM
(Reminder, or Comment) statements.

You can create up to 50 new diagram types in a Rational
System Architect encyclopedia. To add a new diagram type,
in USRPROPS.TXT you rename one of 50 generic diagram
types available – User 1 through User 50. The syntax is as
follows:

RENAME DIAGRAM “User 1” TO My_Diagram
Note that if you wish to have embedded spaces in a new
diagram, symbol, or definition type that you are creating, you
must place the name in quotation marks. For example:

RENAME DIAGRAM “User 1” TO “My Diagram”

Once you create the new diagram type, you'll want to specify
what type of symbols can be drawn on it. You can create new
symbol types, or assign symbols that already exist on other
diagrams to the new diagram type. This is covered in the next
section, Assigning a Symbol Type to a Diagram Type.

By default, user diagrams are networks (of symbols), but you
may also specify that a user diagram is of type Hierarchical.
A Hierarchical diagram in Rational System Architect has
special drawing rules imposed on it, enabling you to connect
symbols in a hierarchy and have line symbols automatically
drawn. Other related hierarchical functionality (such as
hierarchical numbering) is supported. To specify that a
diagram is of type Hierarchical, use the HIERARCHICAL
keyword, for example:

Creating New

Diagrams

Modifying the Metamodel with USRPROPS.TXT

2-38

DIAGRAM "Zoo" {HIERARCHICAL}
You can create up to 150 new symbol types in a Rational
System Architect encyclopedia. To add a new symbol type,
you rename one of 150 generic symbol types provided – User
1 through User 150. The syntax is as follows:

RENAME SYMBOL "User 3" to "whatever"

A line symbol is a line that can be drawn between two
symbols, such as a relationship line, an inherits line, an
association, a flow line, etc. You can create a new line
symbol type in an encyclopedia. You must specify that it
looks and behaves like an existing line symbol type on
another diagram. You use the same RENAME SYMBOL
command as for a regular (‘node’) symbol, but later in the
USRPROPS.TXT, you must also specify how the line
symbol is drawn, using the DEPICT LIKE command.

RENAME SYMBOL "User 4" to "My Line Symbol"

SYMBOL "My Line Symbol"
{ DEPICT LIKE "Dependency" IN "UML Class"
ASSIGN To "Wireless Network" }

You can create up to 150 new definition types in a Rational
System Architect encyclopedia. To add a new definition type,
you rename one of 150 generic definition types provided –
User 1 through User 150. The syntax is as follows:

RENAME DEFINITION "User 3" to "whatever"
A symbol typically represents a definition type. For
information on this, see the section that follows, Assigning a
Definition Type to a Symbol Type.

Creating New

Symbols

Specifying New

Line Symbols

Creating New

Defintions

Creating New Diagram, Symbol, or Definition Types

2-39

Assigning a Symbol Type to a

Diagram Type

You may assign new symbol types or existing symbol types
(symbols that already exist in another diagram) to new or
existing diagram types. Symbol types may be added to
diagram types using the following syntax:

ASSIGN <symbol-type-name> [IN <diagram-type-name1>]
TO <diagram-type-name2>

Symbol types may also be added to diagram types within the
SYMBOL specification using the ASSIGN .. TO keyword
combination, as follows:

SYMBOL <symbol-type-name> [IN <diagram-type-name1>]
{ASSIGN TO <diagram-type-name1>}

For example, the USRPROPS.TXT below creates a new
diagram type called a Wireless Network diagram, which
provides of three new symbol types to be drawn on it – a
Satellite, a Computer, and a Server, and one existing symbol
type to be drawn on it – a state symbol from a “State
Transition Ward & Mellor” diagram (as compared to a State
symbol from a UML State diagram or an IDEF3 State
diagram, etc:

RENAME DIAGRAM "User 1" To "Wireless Network"

RENAME SYMBOL "User 1" TO "Satellite"
RENAME SYMBOL "User 2" TO "Computer"
RENAME SYMBOL "User 3" TO "Server"

ASSIGN "State" IN "State Transition Ward & Mellor" TO
“Wireless Network”

SYMBOL "Satellite" {ASSIGN TO "Wireless Network"}
SYMBOL "Computer" {ASSIGN TO "Wireless Network"}
SYMBOL "Server" {ASSIGN TO "Wireless Network"}

Note: Also see section Limitations on Assigning a Symbol
Type to a Diagram Type.

Example

Modifying the Metamodel with USRPROPS.TXT

2-40

Assigning a Line Symbol Type

to a Diagram Type

Again, as mentioned previously in this section, a line
symbol is a line that can be drawn between two symbols,
such as a relationship line, an inherits line, an
association, a flow line, etc. You can create a new line
symbol type in an encyclopedia. You must specify that it
looks and behaves like an existing line symbol type on
another diagram. You use the same RENAME SYMBOL
command as for a regular (‘node’) symbol, but later in the
USRPROPS.TXT, you must also specify how the line
symbol is drawn, using the DEPICT LIKE command.

User defined symbols (User 1 through User 150) are
provided for both regular (‘node’) symbols and line
symbols, so be careful that you don’t use the same User
number for two different symbols.

In the example below, we add a new line drawing symbol
to our USRPROPS.TXT, in bold:

RENAME DIAGRAM "User 1" To "Wireless Network"

RENAME SYMBOL "User 1" TO "Satellite"
RENAME SYMBOL "User 2" TO "Computer"
RENAME SYMBOL "User 3" TO "Server"
RENAME SYMBOL "User 4” To “Relates To”

ASSIGN "State" IN "State Transition Ward & Mellor" TO
“Wireless Network”
SYMBOL "Satellite" {ASSIGN TO "Wireless Network"}
SYMBOL "Computer" {ASSIGN TO "Wireless Network"}
SYMBOL "Server" {ASSIGN TO "Wireless Network"}

SYMBOL "Relates To"
{ DEPICT LIKE "Dependency" IN "UML Class"
ASSIGN To "Wireless Network" }

Note: Also see section Limitations on Assigning a Symbol
Type to a Diagram Type.

Example

Creating New Diagram, Symbol, or Definition Types

2-41

Limitations of Assigning a

Symbol Type to a Diagram

Type

The following limitations exist for assigning symbol types to
diagram types:

No assignment may be made to any of the following diagram
types:

• DB2 Physical
• Entity Relation
• Logical Data Model
• Logical View
• Physical Data Model

None of the following symbols may be assigned because of
special code in Rational System Architect:

• "Associative Entity" in diagram "Entity Relation"
• "Entity" in diagram "Entity Relation"
• "Identifying Relation" in diagram "Entity Relation"
• "Inconsistent Relation" in diagram "Entity Relation"
• "Nonidentifying Relation" in diagram "Entity Relation"
• "Non-specific Relation" in diagram "Entity Relation"
• "Super-sub Relation" in diagram "Entity Relation"
• "Weak Entity" in diagram "Entity Relation"
• "Association" in diagram "OMT Object Model"
• "Class" in diagram "OMT Object Model"
• "Identifying Constraint" in diagram "Physical Data

Model"
• "Nonidentifying Constraint" in diagram "Physical Data

Model"
• "Table" in diagram "Physical Data Model"
• "Class" in diagram "UML Class"
• "Interface" in diagram "UML Class"
• "Actor" in diagram "UML Use Case"
• "Boundary" in diagram "UML Use Case"
• "Case Worker" in diagram "UML Use Case"
• "Control" in diagram "UML Use Case"

Modifying the Metamodel with USRPROPS.TXT

2-42

• "Entity" in diagram "UML Use Case"
• "Worker" in diagram "UML Use Case"
• Additionally, none of the following symbols may be

assigned to another diagram because their
definitions are keyed by Model:

• "Access Path" in diagram "Entity Relation"
• "Relation" in diagram "Entity Relation"
• "Relation Diamond" in diagram "Entity Relation"
• "Individu" in diagram "Modèle Conceptuel des

Données"
• "Relation Ligne" in diagram "Modèle Conceptuel des

Données"
• "Keyed Entry Point" in diagram "SSADM Data

Structure"
• "Non-Keyed Entry Point" in diagram "SSADM Data

Structure"
• "Relation" in diagram "SSADM Data Structure"
• Additionally, the following BPMN symbols can’t be

assigned to another diagram type:
• “Pool” in diagram Business Process
• “Lane” in diagram Busines Process

Note: Some symbols both have special code and also are
keyed by Model, they are shown only in the first list of
symbols.

Many symbols can normally reside in more than one diagram
type. Only one diagram type is shown for any symbol in the
above lists.

Creating New Diagram, Symbol, or Definition Types

2-43

Assigning a Definition Type to

a Symbol Type

If you add new symbols to an encyclopedia in
USRPROPS.TXT, you must specify what definition type they
are associated with using this keyword. If a new symbol
specified in USRPROPS.TXT is missing this clause, Rational
System Architect will give a parsing warning when opening
the encyclopedia, and default to the null definition for the
symbol, which consists simply of the Description property.

SYMBOL "My Symbol"
{
 DEFINED BY " My Definition"
 ASSIGN TO "My Diagram"
}

In the example below, the symbol type “Satellite” is specified
to be defined by the definition type “Satellite” (the fact that
they happen to share the same name is not enough).

Rename Diagram "User 1" TO "Wireless Network"
Rename Symbol "User 1" TO "Satellite"
Rename Definition "User 1" TO "Satellite"

SYMBOL "Satellite"
{ DEFINED BY “Satellite” ASSIGN To "Wireless Network" }

Example

Modifying the Metamodel with USRPROPS.TXT

2-44

Depicting a Symbol with a
Bitmap or Metafile

You may depict a symbol with a bitmap (.bmp) or Windows
Metafile (.wmf) that you supply. You may specify how a
symbol is depicted on the diagram workspace and also how it
is depicted in the toolbox and Draw menu, by adding a
depictions clause to the symbol's declaration, as follows:

SYMBOL <symbol-type-name>

{ ...
DEPICTIONS { DIAGRAM <depiction-file> }
DEPICTIONS { MENU <depiction-file> }
...}

The DIAGRAM command specifies the depiction file to be
drawn on the diagram workspace. You should use a
Windows Metafile (.WMF) for the DIAGRAM command
because it is a vector image that will scale properly if you
drag on its handlebars to increase or decrease it in size.You
can also use .BMP’s for the DIAGRAM command, but they do
not scale well.

WMFs are vector files, which means that they store
mathematical formulas about how an image should be
displayed on a screen. One major benefit of this format is that
it provides scalability without the loss of image quality. WMF
files do not become jumbled or jagged as you zoom in or out
on them.

The MENU command specifies the depiction file to appear on
the toolbars, menus, and other areas. It is this graphic that
you click on to select a symbol to draw. For the toolbar, using
bitmap images is best, since there is no need for them to
scale. Usually, it is best to create a 16x16 pixel bitmap for
each symbol that you want to represent in the toolbar.

Depicting a Symbol with a Bitmap or Metafile

2-45

BMPs are raster files, which means that they store
information about each pixel on an image. Although bitmaps
can render rich, photo-quality images, they become jumbled
when you zoom in or jagged when we zoom out.

The <depiction-file> is the name and full path of a bitmap or
a metafile. You may specify a directory outside your
encyclopedia’s path, but it is advised to add the bitmaps and
metafiles directly to the Files table of an encyclopedia’s
database.

To add your own depiction files to an encyclopedia, follow
these steps:

1. Make the necessary changes to USRPROPS.TXT.
An example for such code is:
RENAME DIAGRAM “User 1” TO “Wireless Communications”
RENAME SYMBOL “User 1” TO “Satellite”
SYMBOL "Satellite"
{ASSIGN To "Wireless Network"
DEPICTIONS { DIAGRAM satellite.wmf }
DEPICTIONS { MENU satellite_toolbar.bmp }
}

2. Import your .BMP and .WMF files into the
encyclopedia’s FILES table. You may either use
Rational System Architect’s Encyclopedia File Manager
(Tools, Encyclopedia File Manager), or SAEM (Start,
Programs, IBM Rational, IBM Rational Lifecycle
Solutions Tools, IBM Rational System Architect 11.3.1,
SAEM – see its help on how to use), or Microsoft’s
Enterprise Manager to import your user-defined
graphics files into the FILES table of the encyclopedia
database. Encyclopedia File Manager can only import
one file at a time. If you have multiple graphics files, we
recommend you use SAEM to import the files into the
FILES table.

The names of the files that you import should be
consistent with your Usrprops.txt code. In the above
example, we have used a relative path by not
specifying any path at all – simply listing satellite.wmf

Modifying the Metamodel with USRPROPS.TXT

2-46

and satellite.bmp. This means that the depiction files
should be imported directly into the Files table of the
database.

Recommendation: We recommend that you follow an
established convention in Rational System Architect, and
append the name of your depiction files with ‘images/’ to
simulate that each depiction file is in an ‘images’ subdirectory
of the FILES table. If you use SAEM to import multiple files at
a time, make sure that they are in a directory that is named
‘images’, located anywhere on your computer. SAEM will
automatically append the name of all files imported from a
directory named images with ‘images/’ at the front of each
graphic’s file name. You should, likewise, specify the
‘images\’ before the name of each depiction file in your
USRPROPS.TXT, which would make the above example:
 RENAME DIAGRAM “User 1” TO “Wireless Communications”
 RENAME SYMBOL “User 1” TO “Satellite”
 SYMBOL "Satellite"
 {ASSIGN To "Wireless Network"
 DEPICTIONS { DIAGRAM images\satellite.wmf }
 DEPICTIONS { MENU images\satellite_toolbar.bmp }
 }

There are two advantages to using this strategy. First, it
provides a sort of name independence and logical grouping
strategy for user-specified images. Second, it is consistent
with the way that images are handled when new
encyclopedias are created – Rational System Architect takes
all graphics in the ..\System Architect\images directory,
places them in the FILES table of the new encyclopedia, and
gives them a name that is appended with ‘images\’.

See the figure below for a look inside the Files table of an
encyclopedia’s database, on how the ‘images\’ prefix to
depiction files provides a logical grouping of images.

Depicting a Symbol with a Bitmap or Metafile

2-47

3. Reopen the Encyclopedia for the changes
to take effect.

Figure 2-11. ‘Files’
Table of
Encyclopedia
Database.

Modifying the Metamodel with USRPROPS.TXT

2-48

Specifying Depiction Files for

New Encyclopedias

If you are creating a new encyclopedia, you have an option –
you can create the encyclopedia first and then import one or
more user-provided graphics files into it via SAEM,
Encyclopedia Manager, or SQL Server’s Enterprise Manager
as described above, or you may place your user-provided
images into Rational System Architect’s main images
directory (under the main software directory – <C>:\Program
Files\IBM\Rational\11.3.1\System Architect Suite\System
Architect\images) before creating the encyclopedia. Rational
System Architect takes all graphics in its main images
directory and places them in the Files table of all new
encyclopedias created.
If you wish the same user-specified graphics files to go into
all new encyclopedias that you or other team members
create, perform the following steps:

1. Copy and Paste Your .BMP and .WMF files into
Rational System Architect’s ‘Images’
Subdirectory. Before creating new encyclopedias,
place your .BMP and .WMF files into the Images
directory within the Rational System Architect main
program directory. All team users that will be
creating new encyclopedias at any time in the
future should do this. These files will automatically
be placed in the FILES table of the encyclopedia
that are later created. Rational System Architect
will append each file name with ‘images\’, so a
figure called Fred.bmp will be created in the new
encyclopedia’s FILES table with the name
images\Fred.bmp. This is a shortcut to creating the
encyclopedia, and then importing the user-provided
graphic files into the encyclopedia afterwards.

Depicting a Symbol with a Bitmap or Metafile

2-49

2. Make the necessary changes to

USRPROPS.TXT. You use the DEPICTIONS
command (and, optionally, the RETAIN STYLE
command). Information on how to make the
necessary code changes are provided in Rational
System Architect’s help. An example for such code
is:

Rename Symbol "User 3" To "Radar
SYMBOL "Radar"
{ASSIGN To "Wireless Network"
DEPICTIONS { DIAGRAM RETAIN STYLE "C:\Program
Files\IBM\pictures\radar.bmp" }
DEPICTIONS { MENU "C:\Program
Files\IBM\pictures\radartoolbar.bmp" }}

3. Reopen the Encyclopedia for the changes to
take effect

Modifying the Metamodel with USRPROPS.TXT

2-50

User-Defined Symbol

Presentation Based on

Property Value

You may specify how a symbol gets drawn based on the
value of a property of the symbol’s definition. In UML, this
property is generally a stereotype. However, this functionality
applies across the board to all symbol types, not just UML
symbols, and not just to the stereotype property.

To enable this function, the DEPICTIONS clause is used
directly within a LIST statement in USRPROPS.TXT.

LIST “New List Type”
{
VALUE “List Item One” DEPICTIONS {DIAGRAM
imageone.wmf MENU imageone_toolbar.bmp}
…
}

In the following example, a new list is specified for Node
Stereotypes. These stereotypes are applied to a Node
symbol on a UML deployment diagram, so that a user may
draw a node symbol using his or her own graphic files that
he/she has imported into the FILES table of the encyclopedia
database.

List "Node Stereotypes"
{
 Value "Firewall" DEPICTIONS {DIAGRAM images\firewall.wmf
MENU images\firewall.bmp}
Value "Cell_Phone" DEPICTIONS {DIAGRAM
images\cell_phone.wmf MENU images\cell_phone.bmp}
Value "Database" DEPICTIONS {DIAGRAM images\data.wmf
 MENU images\data.bmp}
Value "Hub" DEPICTIONS {DIAGRAM images\hub.wmf
MENU images\hub.bmp}
Value "Modem" DEPICTIONS {DIAGRAM images\modem.wmf
 MENU images\modem.bmp}
Value "Multiplexer" DEPICTIONS {DIAGRAM
images\multiplexer.wmf MENU images\multiplexer.bmp}
Value "PDA" DEPICTIONS {DIAGRAM images\pda.wmf MENU
images\pda.bmp}

Example

Depicting a Symbol with a Bitmap or Metafile

2-51

Value "Printer" DEPICTIONS {DIAGRAM images\printer.wmf
 MENU images\printer.bmp}
Value "Projector" DEPICTIONS {DIAGRAM
images\projector.wmf MENU images\projector.bmp}
Value "Radio Tower" DEPICTIONS { DIAGRAM
images\radio_tower.wmf MENU images\radio_tower.bmp}
Value "Router" DEPICTIONS { DIAGRAM images\router.wmf
 MENU images\router.bmp}
Value "Satellite" DEPICTIONS { DIAGRAM images\satellite.wmf
MENU images\satellite.bmp}
Value "Satellite Dish" DEPICTIONS { DIAGRAM
images\dish.wmf MENU images\dish.bmp}
Value "Scanner" DEPICTIONS { DIAGRAM
images\scanner.wmf MENU images\scanner.bmp}
Value "Server" DEPICTIONS { DIAGRAM images\server.wmf
 MENU images\server.bmp}
Value "Switch" DEPICTIONS { DIAGRAM
images\kvm_switch.wmf MENU images\kvm_switch.bmp}
Value "Tablet_PC" DEPICTIONS { DIAGRAM
images\tablet_pc.wmf MENU images\tablet_pc.bmp}
Value "Terminal" DEPICTIONS { DIAGRAM
images\terminal.wmf MENU images\terminal.bmp}
}

SYMBOL "Node" in "Deployment"
 {
 PROPERTY "Stereotype" { INVISIBLE EDIT Text ListOnly
 List "Node Stereotypes" DEFAULT "" LENGTH 32}
 }

DEFINITION "Node"
{
 PROPERTY "Stereotype"

{ EDIT Text LIST "Node Stereotypes" Default "" LENGTH 32 }
}

In the example USRPROPS.TXT above, note that the
LIST of “Node Stereotypes” is referenced in both the
SYMBOL and the DEFINITION of a node. In the
SYMBOL, the property is made INVISIBLE. The
SYMBOL maintains a reference to the stereotype that is
specified for its underlying definition.

The USRPROPS.TXT code above changes the toolbar of
a Deployment diagram, providing a drop-down list of

Modifying the Metamodel with USRPROPS.TXT

2-52

available stereotypes (and the corresponding bitmap for
each).

The user may select a stereotype and draw it on the diagram,
where it is represented by the corresponding .WMF file.

After drawing the symbol, you may right-mouse click on each
symbol and choose to:

• Display as <Node>, or
• Adorn with Stereotype (in which a thumbnail of the

metafile is placed to the right of the symbol’s name),
or

• Display According to Stereotype.

Once drawn, you may specify the colors of a metafile as you
would any other symbol in Rational System Architect, using
the Symbol Style toolbar (or by selecting the symbol and
choosing Format, Symbol Format,Symbol Style). This
includes line coloring, fill coloring, font coloring, etc.

You may specify that metafiles that you provide retain their
original graphical style and coloring when used in Rational

Figure 2-12. User-
Provided Depiction
Files.

Retain Style

Depicting a Symbol with a Bitmap or Metafile

2-53

System Architect. You use the RETAIN STYLE keyword to
specify this. For example:

LIST "Node Stereotypes"
{
VALUE "Firewall" DEPICTIONS {DIAGRAM RETAIN

STYLE images\firewall.wmf MENU images\firewall.bmp}
..
}

When drawn on the diagram, the user-provided metafile,
firewall.wmf, is drawn with exactly the same colors as it is
outside of Rational System Architect, and cannot be changed
by Rational System Architect’s color tools.

Rational System Architect enables you to specify up to 37
properties to display on a symbol using the DISPLAY
keyword. This is also true with symbols depicted by user-
provided depiction files.

Please reference the section titled Specifying the Display of
Values on Symbols, later in this chapter, for more
information, or see the DISPLAY keyword in Chapter 3.

Displayable

Properties on

Depicted

Symbols

Modifying the Metamodel with USRPROPS.TXT

2-54

Specifying Properties for
Diagrams, Symbols, and
Definitions

There are three classes in every Rational System Architect
encyclopedia: diagram, symbol and definition. Each can be
defined with its own set of properties.

The following table includes all mandatory and optional
entries found outside a Diagram, Symbol, or Definition
statement in USRPROPS.TXT.

Entry

Mandatory
Optional

Note

DIAGRAM { } or
DIAGRAM BEGIN END

or

SYMBOL { } or
SYMBOL BEGIN END

or

DEFINTION { } or
DEFINITION BEGIN END

Mandatory Begins and ends the
declaration.

CHAPTER chapter_name Optional Includes subsequent
properties in existing
chapter, or adds new
chapter

GROUP group_name
 {
 PROPERTY prop_name
 PROPERTY prop_name
 }

Optional Places all subsequent
properties within one
group for layout
control

Table 2-3. Mandatory
and Optional Entries
for a Diagram,
Symbol, or Definition
Specifications

Specifying Properties for Diagrams, Symbols, and Definitions

2-55

Entry

Mandatory
Optional

Note

LAYOUT
 { alignment_criteria
 PACK_TAB_criteria
 COLS no_of_columns
 JUSTIFY }

Optional [Align Body | Align
Label | Align Over]
[Pack | Tab]
COLS <number>

PROPERTY property_name
{
}

Mandatory You may use { or
BEGIN, and } or END

Modifying the Metamodel with USRPROPS.TXT

2-56

Specifying Properties for

Diagram Types

The default property of all diagrams is Description.
Description is defined as a text field 4074 characters.
Diagram properties are those that a user may want to set for
an entire diagram, such as whether to display swimlanes (or
pools) vertically or horizontally. A typical Diagram Properties
dialog is shown below.

To add more properties for a diagram, use the following
syntax:

DIAGRAM diagram_type
{
 PROPERTY-1 <property_name>
 { <property_value> }
 PROPERTY-2 <property_name>
 { <property_value> }
 PROPERTY-3 <property_name>
 { <property_value> }
}

Figure 2- 13.
Diagram Properties
Dialog

Specifying Properties for Diagrams, Symbols, and Definitions

2-57

For example, adding the following statements to
USRPROPS.TXT modifies the Diagram Properties dialog
box for the Business Process diagram type, as shown in the
picture that follows:

DIAGRAM "Business Process"
{
 CHAPTER “My Properties”
 PROPERTY "My Property" { EDIT Text LENGTH 1200 }
}

Figure 2-14. Revised
Diagram Properties
Dialog

Modifying the Metamodel with USRPROPS.TXT

2-58

Specifying Properties for

Symbol Types

Symbol Properties are provided in the Symbol tab of a
symbol’s definition dialog.

The default property of all symbols is Graphic Comment.
Graphic Comment is defined as a text field of 4074
characters. Anything that you enter in the Graphic Comment
field is displayed as a comment on the diagram workspace,
connected to the symbol by a line. The line is only drawn if
the graphic comment is a certain distance from the symbol.
You may adjust this distance by selecting the symbol and
choosing Format, Diagram Format, Notation and adjusting
the Line to Remote Text options.

You may also choose to have the graphic comment displayed
inside the symbol (select the symbol and choose Format,

Figure 2-15. Symbol
Properties Dialog
Where the Default
Property is Graphic

Comment

Graphic

Comment

Specifying Properties for Diagrams, Symbols, and Definitions

2-59

Symbol Format, Text Position, and toggle off the Place
Graphic Comment Outside selection). You may also turn
on/off display of the Graphic Comment completely (right-
mouse click on the symbol and choose Display Mode, then
toggle off Graphic Comment).

To add more properties for a symbol, use the following
syntax:

SYMBOL symbol_type IN diagram_type
{
 PROPERTY-1 <property_name>
 { <property_value> }
 PROPERTY-2 <property_name>
 { <property_value> }
 PROPERTY-3 <property_name>
 { <property_value> }
}

It is important that you specify the diagram type that the
symbol you are referring to is contained in. A symbol may
appear on many different diagram types.

For example, we can make the following changes to
USRPROPS.TXT:

SYMBOL "State" IN "State"
{
 PROPERTY "Short Description"
 { EDIT Text LENGTH 1500 }
 PROPERTY "Number" { EDIT Numeric LENGTH 4 }
}

These changes add Short Description and Number to the
properties of a state symbol on a UML State diagram;
Graphic Comment is always available. The modified dialog
box is shown below:

Adding More

Properties for a

Symbol

Example

Modifying the Metamodel with USRPROPS.TXT

2-60

Some symbol types occur on many different diagrams.
Continuing with the example above, there are other types of
state diagrams within Rational System Architect that have
state symbols, such as the IDEF3 Object State Transition
diagram, the OV-06b Op State Transition diagram, and the
State Transition Ward & Mellor diagram. If we want the Short
Description and Number properties to occur on these three
types, we must include the property block three times: once
for each diagram type.

SYMBOL "State" IN "IDEF3 Object State Transition"
{
 PROPERTY "Short Description"
 { EDIT Text LENGTH 1500 }
 PROPERTY "Number" { EDIT Numeric LENGTH 4 }
}

Figure 2-16. Revised
Diagram Properties
Dialog

Specifying Properties for Diagrams, Symbols, and Definitions

2-61

SYMBOL "State" IN "OV-06b Op State Transition"
{
 PROPERTY "Short Description"
 { EDIT Text LENGTH 1500 }
 PROPERTY "Number" { EDIT Numeric LENGTH 4 }
}

SYMBOL "State" IN "State Transition Ward & Mellor"
{
 PROPERTY "Short Description"
 { EDIT Text LENGTH 1500 }
 PROPERTY "Number" { EDIT Numeric LENGTH 4 }
}

Modifying the Metamodel with USRPROPS.TXT

2-62

Specifying Properties for

Definition Types

All definitions have a Name. In addition, every definition has
the default property Description, which we provide more
details on later in this section. There really is no typical
Definition dialog, since definitions tend to be unique within
methodology and type. Below is a dialog for a Class
definition.

A definition block starts with the keyword Definition followed
by a string (the argument) that is the name of the definition
type. The name must be one of those known to Rational
System Architect – either one found in SAPROPS.CFG, if

Figure 2-17. Model
Object Dialog
(Definition type
Class)

Syntax

Specifying Properties for Diagrams, Symbols, and Definitions

2-63

you are modifying or adding to an existing definition, or one
that you have created by using the RENAME “User 1”
through RENAME “User 150” commands (to create a new
definition type, you rename one of these 150 user-provided
definition types). Definition type names that have embedded
spaces must be enclosed within double quotes (so for
example, “User 1”).

The dictionary definition is bracketed by the BEGIN...END
(or open/close braces { }) keywords. Within the brackets
are a set of defining commands, each consisting of the
command keyword, PROPERTY, followed by its arguments.
When you invoke a Dictionary Object dialog, its pages are
populated by the properties named in the definition block.

Each PROPERTY entry has its own sub-set definition, again
bracketed by the {EDIT... } braces and keyword. Each
definition consists of phrases made up of keywords such as
Boolean, Date, Expression, ExpressionOf, ListOf, Minispec,
Numeric, OneOf, Text, and Time. Details of property
definitions are given later in this section.

In summary, to add more properties for a definition, use the
following syntax:

DEFINITION definition_type
{
 PROPERTY-1 <property_name> { <property_value> }
 PROPERTY-2 <property_name> { <property_value> }
 PROPERTY-3 <property_name> { <property_value> }
}

For example:
DEFINITION "Class"
{
 CHAPTER "Definition"
 GROUP "Class"
 {
 LAYOUT { COLS 2 ALIGN OVER TAB }
 PROPERTY "Description" { ZOOMABLE EDIT Text LENGTH
500 }
 PROPERTY "Class Header File" { EDIT Text LABEL "Class
Generation File" LENGTH 80 }
 PROPERTY "Stereotype" { EDIT Text LIST "Class
Stereotypes" INIT_FROM_SYMBOL Default "" LENGTH 20 }
..}

Modifying the Metamodel with USRPROPS.TXT

2-64

In the example above, the default first tab of the definition,
which unless otherwise specified is “Introduction”, has been
changed to “Definition” – that is what the CHAPTER
“Definition” command does.

As mentioned at the start of this section, every definition has
the default property Description. Unless otherwise specified
in SAPROPS.CFG, Description is defined as a text field of
4074 characters. You may increase a Description’s field size
in USRPROPS.TXT by simply respecifying the Description
property and increasing the number of characters. For
example:

DEFINITION "Class"
{
 PROPERTY "Description" { EDIT LENGTH 16000 LINES
5 }
}

The above example specifies that the Description property of
a class can hold 16,000 characters but only the first 5 lines
are displayed in the class definition’s dialog.

Important Note: There are a few definition types within
Rational System Architect that use the Description property
for special purposes. For example, the definition of an Entity
has been redefined as a LISTOF "Attribute" FROM "Data.
The Description property for Process definitions have been
redefined as Minispec, since the data contents of processes
are generally minispecs, structured English, pseudo-code,
and the like. In each of these cases, the Description property
has been relabeled as well, to Attribute or Minispec,
respectively. For example, here is the specification for a
Process definition in SAPROPS.CFG:
 DEFINITION "Process"
 {
 PROPERTY "Description"
 { EDIT Minispec LENGTH 750 LABEL "Minispec" }
 ..}
It is important to note that when writing reports, the name of
the property is Description, and must be referred to as such.

Description

Specifying Properties for Diagrams, Symbols, and Definitions

2-65

Property Statements

You specify Property statements within Diagram, Symbol, or
Definition specifications. The syntax of a Property statement
is as follows:

 PROPERTY property-name
 { EDIT edit-type
 }

The following table includes all mandatory and optional
entries for a property statement in USRPROPS.TXT.

Entry

Mandatory
Optional

Note

PROPERTY property_name
{
}

Mandatory You may use
opening/closing
braces, {..}, or BEGIN
.. END statements.

EDIT edit-type Optional [Boolean | Date |
ExpressionOf DATA |
ListOf "dictionary-
type" |
Minispec | Numeric |
OneOf "dictionary-
type" | Text | Time]

LABEL label_string Optional The name of the
control in the dialog;
replaces the property
name, which is the
default

Table 2-3. Mandatory
and Optional Entries
for a Property
Statement

Modifying the Metamodel with USRPROPS.TXT

2-66

Entry

Mandatory
Optional

Note

LENGTH length-argument Optional The maximum length
of the field in
characters
 0 < numeric < 4095

LIST list-name Optional Indicates that a list of
the list-name be
displayed when the
property is selected
for input by the user;
the user may select
from the list or type in
another value

LISTONLY LIST list-name Optional Indicates that the only
input allowed is from
an optionally
displayed list

MINIMUM numeric
MAXIMUM numeric

Optional The
minimum/maximum
numeric value the field
can have

DISPLAY { FORMAT format-
type
 LEGEND legend-name
}

Optional Defines one of 37
possible displayable
properties for symbol

DEFAULT default_string Optional If no user entry, entry
in string is used

Specifying Properties for Diagrams, Symbols, and Definitions

2-67

Entry Mandatory
Optional

Note

READONLY Optional Stops all input from
either the keyboard
or any displayed list

INVISIBLE

VISIBLE

Optional Makes the property
invisible or visible. Use
this entry to reverse the
value in SAPROPS.

CHECKOUT initial-type Optional The value which is
automatically
completed when the
dictionary entry is
checked out.

[DATE | TIME |
 AUDITID]

FREEZE initial-type Optional The value which is
automatically
completed when the
dictionary entry is
frozen

[DATE | TIME |
 AUDITID]

Table 2-3. Mandatory
and Optional Entries
for a Property
Statement
(Continued)

Modifying the Metamodel with USRPROPS.TXT

2-68

Entry Mandatory
Optional

Note

INITIAL initial-type Optional The value which is
automatically
completed the first
time the dictionary
entry is accessed and
saved

[DATE | TIME |
 AUDITID]

UPDATE update-type Optional That value which is
automatically
completed the first
and each subsequent
time the dictionary
entry is accessed and
saved

[DATE | TIME |
 AUDITID]

HELP Optional 35-40 characters
displayed in the dialog
status bar when the
control is in Focus.

Using ListOf, OneOf, and ExpressionOf

2-69

Using ListOf, OneOf, and
ExpressionOf

The ListOf, OneOf, and ExpressionOf keywords provide a
very powerful concept that is used throughout the Rational
System Architect’s metamodel. Each provides you with the
ability to say that a property of a definition references another
object type – either Diagrams, Symbols, or Definitions.

So you are enabled to say that a class contains a list of
methods (ListOf command), or a message between two
objects references a method in the calling object (OneOf
command), or that a process expresses procedures
performed on data (ExpressionOf). We will look at these
three expressions in turn in the sections to follow.

Note: As with any keyword specified in USRPROPS.TXT, the
case of the ListOf, OneOf, or ExpressionOf keywords is
unimportant. We use all capitals for all keywords throughout
this manual, except in this section, since ListOf, OneOf, or
ExpressionOf are more descriptive of these keywords than
the ‘all capitals’ versions, LISTOF, ONEOF, and
EXPRESSIONOF.

Modifying the Metamodel with USRPROPS.TXT

2-70

ListOf

The ListOf command enables you to specify that a property
contains a list of other objects – diagrams, symbols, or
definitions. For example, a Class contains a property called
Attributes, which is a list of class attributes. Class attribute is
a definition type in of itself, which has its own set of
properties. The object type referenced must have been
defined already in SAPROPS.CFG or at the top of the
USRPROPS.TXT file.

Contrast the ListOf property to simple textual list. Elements in
the ListOf list increase as users add definitions to the
repository; for a simple list the number of elements in the list
presented to the user is static (based on the LIST statement
at the head of the USRPROPS.TXT file).

The syntax for the ListOf command is as follows:

PROPERTY "Your Property" { EDIT LISTOF <”Referenced
Definition Type"> LENGTH 1200}

The list of items provided in the list for a ListOf command can
be filtered. Filter keywords are available such as OF
DEFINITION REFERENCED IN and OF DEFINITION AND
SUPERS REFERENCED IN. Please see Chapter 3 for more
information on these keywords.

Example:

The example below shows the code for an object definition,
which includes the property “Attributes”, which is a ListOf
“Class Attributes”. “Class Attributes” is another definition type,
defined in SAPROPS.CFG.

Definition “Object”
{ ..
PROPERTY "Attributes" { ZOOMABLE EDIT LISTOF "Class

Attribute" OF DEFINITION REFERENCED IN "Class"
 KEYED BY {"Package", "Class Name":"Class", Name}
LENGTH 4096 DISPLAY {FORMAT COMPONENT_SCRIPT
_FmtNewUMLObjInstAttr LEGEND "$$FORCE$$"} }
 ..}

Filtering the List

of Items

Using ListOf, OneOf, and ExpressionOf

2-71

The figure below shows the default ListOf dialog created by
the LISTOF command. It includes a Choices button, which,
when pressed, presents a list of all definitions of the
referenced type (“Class Attribute” in this example) in the
encyclopedia. The OF DEFINITION REFERENCED IN
command in the above code specifies that only those class
attributes contained in the object’s class are listed.

You may present the items in a ListOf property as a grid by
adding the ASGRID keyword.

Example:

Figure 2-18. Example
of LISTOF List.

Creating Grids

for ListOf

Modifying the Metamodel with USRPROPS.TXT

2-72

Definition "Use Case"
{
 CHAPTER "Steps"
 PROPERTY "Use Case Steps" { EDIT COMPLETE
LISTOF "Use Case Step" KEYED BY { "Package", "Use
Case Name":Name, Name} ASGRID LENGTH 1200 }

 }

A typical ListOf statement provides a list of one object type.
You may also create a list that references more than one
object type using the HETEROGENEOUSLISTOF keyword.

Example:

Definition " Procedure"
{
PROPERTY "Underlying Procedure" { EDIT
HETEROGENEOUSLISTOF " Use Case",
"Class", "Method", "Use Case Step" READONLY}
..}

In the example above, the “Underlying Procedure” property of
the “Procedure” definition can be populated with definitions of
the type Use Case, and/or Class, and/or Method, and/or Use
Case Step.

For more information on the HETEROGENEOUSLISTOF
command, see Chapter 3.

Figure 2-19. Example
of LISTOF ASGRID
List.

Heterogeneous

Lists for ListOf

Using ListOf, OneOf, and ExpressionOf

2-73

OneOf

A OneOf list box provides a list box that enables the user to
select one, and only one, of a list of objects (Diagrams,
Symbols, or Definitions) of a certain type. The object type
referenced must have been defined already in
SAPROPS.CFG or at the top of the USRPROPS.TXT file.

Example:

DEFINITION "Issue"
{
PROPERTY "Assigned To" {EDIT ONEOF "Risk" LENGTH
100 }
..}

Similar to the ListOf list, the list of items provided in the list for
a OneOf command can be filtered. Filter keywords are
available such as OF DEFINITION REFERENCED IN and
OF DEFINITION AND SUPERS REFERENCED IN. Please
see Chapter 3 for more information on these keywords.

A typical OneOf statement provides a list of one object type.
Similar to the ListOf list, you may also create a OneOf list that
references more than one object type using the
HETEROGENEOUSONEOF keyword.

See Chapter 3 for more information on the
HETEROGENEOUSONEOF command.

Figure 2-20. Example
of ONEOF Listbox.

Filtering the List

of Items

Hetereogeneous

OneOf List

Modifying the Metamodel with USRPROPS.TXT

2-74

ExpressionOf

ExpressionOf allows you to express references to objects
using complex operators and delimiters. While Rational
System Architect expects you to use ExpressionOf to refer to
data elements and data structures (DATA), it is not restricted
to that use.

References defined with ExpressionOf are entered in a dialog
box using the syntax

A + B + C

or

A +
B +
C

or

A
B
C

The elements may be written on one line or more than one
line; the division between one element and the next is
determined by white space. By convention, a + sign is used
to divide the individual data items, but it is not required.

Using ListOf, OneOf, and ExpressionOf

2-75

The following special operators and delimiters can be used in
specifying expressions:

+ And (optional)

[...|...] Either-or

{...} Iterations of

i{...}j Allow from 'i' to 'j' iterations of

(...) The enclosed component is optional

@ The component is a key field

@n The component is the nth element of the
elements making up a compound key

... The enclosed text is a comment

/.../ The enclosed text is a comment but has
significance to the Schema Generator

Sub-expressions can be nested within other expressions.
For example, ITERATIONS OF can be included within
EITHER OR brackets.

 [n1{...}n2 | n3{...}n4]

Table 2-5. Special
Operators and
Delimiters Used in
Specifying
Expressions

Figure 2-21. Example
of EXPRESSIONOF
Listbox.

Modifying the Metamodel with USRPROPS.TXT

2-76

ZOOMABLE Command

The ZOOMABLE command enables the user to temporarily
expand the size of a list box in order to more easily enter or
see large blocks of text. The most common places to add
this command would be in a process definition, where
minispecs are usually entered, or the description property of
an entity, where foreign key information tends to be fairly
long.

The command in USRPROPS.TXT is written:

DEFINITION "Process"
{
 PROPERTY "Description"
 { ZOOMABLE }
}

The ZOOMABLE command adds a small button to the right-
hand corner of the list box. The button has a plus sign in it
when the box is not zoomed, and a minus sign when it is
zoomed.

The effect of the command is demonstrated by the two
pictures in Figure 2-22. The top picture shows the minispec
area in its usual, non-expanded state; on the bottom picture,
the list box has been expanded to cover the entire dialog
page.

Using ListOf, OneOf, and ExpressionOf

2-77

Figure 2-22. A list
box in a "non-
zoomed" and
"zoomed" state.

Modifying the Metamodel with USRPROPS.TXT

2-78

Modifying the Aesthetic
Look of Dialogs

A certain amount of control can be obtained over the display
of controls and their labels within the dialogs. For example,
labels can be displayed over the control, directly next to the
control, or separated by an amount of space determined by
the longest label within a group.

It is not necessary to figure out how many controls can fit on
one dialog page. Rational System Architect automatically
computes the number of controls that fit on a dialog page
based on the amount of space available for display, and
breaks up a dialog into pages that you may flip through via a
Page arrow in the upper left of a dialog.

You may specify your own arrangement of controls in a
dialog through use of the LAYOUT command to specify
columns, positioning of control labels, and justifications, the
CHAPTER command to create tabs, and the GROUP
command to create groups of property controls. In addition,
you can specify the exact placement of each control and label
for any given page of a dialog using positioning controls (see
page 2-95, Positioning Controls and Labels, for instructions).

Modifying the Aesthetic Look of Dialogs

2-79

LAYOUT Command

The LAYOUT command enables you to specify how many
columns property controls are laid out into in a dialog, and
how the titles (or labels) of the control is positioned (to the left
of the control or over it), etc.

Using the LAYOUT command is optional. If you do not use it,
Rational System Architect deploys the default layout scheme.
The default layout scheme is to have all controls laid out in
one column, with the name (or label) of each control placed
to the left of the control (the ALIGN LABEL command).

You may specify a LAYOUT command within CHAPTERS
(which corresponds to a tab in the ensuing dialog) and
GROUPS of a Diagram, Symbol, or Definition specification.
The LAYOUT command has the following effects in a
CHAPTER and GROUP:

Within a Chapter: You may specify a unique LAYOUT
command for each Chapter of a Diagram, Symbol, or
Definition specification. All property controls, including entire
groups, are laid out according to the LAYOUT command of
the Chapter. If you specify more than one LAYOUT command
within a Chapter, all LAYOUT commands within that Chapter
are ignored and the default layout is used instead.

Within a GROUP: You may specify a LAYOUT command
within a Group, so that properties in the Group are laid out
according to the group’s LAYOUT specification.If you specify
more than one LAYOUT command within a Group, all
LAYOUT commands within that Group are ignored and the
default layout is used instead.

An example ordering of LAYOUT commands and their effects
is as follows:
DIAGRAM (or SYMBOL or DEFINITION)
 CHAPTER 1
 LAYOUT 1
 PROPERTY – laid out (in chapter) according to LAYOUT 1
 PROPERTY – laid out (in chapter) according to LAYOUT 1
 GROUP – laid out (in chapter) according to LAYOUT 1
 LAYOUT 2

Modifying the Metamodel with USRPROPS.TXT

2-80

 PROPERTY – laid out (in group) according to LAYOUT 2
 PROPERTY – laid out (in group) according to LAYOUT 2
 GROUP – laid out (in chapter) according to LAYOUT 1
 LAYOUT 3
 PROPERTY – laid out (in group) according to LAYOUT 3
 PROPERTY – laid out (in group) according to LAYOUT 3
 CHAPTER 2
 LAYOUT 4
 PROPERTY – laid out (in chapter) according to LAYOUT 4
 CHAPTER 3
 LAYOUT 5
 PROPERTY – laid out by default scheme because of 2
LAYOUT commands (5 and 6) in this Chapter
 LAYOUT 6

Note that the first Chapter of a Diagram, Symbol, or Definition
dialog, which includes the Description property, is always laid
out by the default layout scheme – which is a one-column
layout and the ‘Description’ label is to the left of the text box.

If a property control is too wide to fit within the specified
column structure of a LAYOUT command, then that control is
laid out by one column so that it fits in the dialog or Group;
the other controls that are of sufficient width to be laid out
according to the LAYOUT command are laid out accordingly.

For example, if you have specified a 4-column layout for a
Group that itself is itself located in a Chapter (tab) that has a
two-column layout specified, and one of the properties in the
group is too wide to fit in the space available but the others
are small enough to fit within a 4-column layout, the property
that is too wide is laid out by itself, and the other properties
are laid out to conform to the 4-column layout within the
Group.

Layout of the

“Introduction”

Tab

Default Layout

Behavior

Modifying the Aesthetic Look of Dialogs

2-81

In the following example, we examine the LAYOUT
command’s effect inside CHAPTER and GROUP statements
within a newly definied, user-specified definition.
RENAME DEFINITION “User 1” TO “My Definition”
DEFINITION "My Definition"
{
LAYOUT { COLS 3 ALIGN OVER TAB }
 PROPERTY "My Property 1"{ EDIT Text Length 10}
 PROPERTY "My Property 2"{ EDIT Text Length 10}
 GROUP "No Layout Specified" {
 PROPERTY "My Property 3"{ EDIT Text Length 10}
 PROPERTY "My Property 4"{ EDIT Text Length 10}
 PROPERTY "My Property 5"{ EDIT Text Length 10}
 PROPERTY "My Property 6"{ EDIT Text Length 10}
 }
 CHAPTER "4-Col Layout"
 LAYOUT { COLS 4 ALIGN OVER TAB }
 GROUP "2-Column Group" {
 LAYOUT { COLS 2 ALIGN OVER TAB }
 PROPERTY "G1"{ EDIT Boolean LENGTH 1 DEFAULT "F"}
 PROPERTY "G2"{EDIT Boolean LENGTH 1 DEFAULT "F"}
 PROPERTY "G3"{ EDIT Boolean LENGTH 1 DEFAULT "F"}
 PROPERTY "G4"{ EDIT Boolean LENGTH 1 DEFAULT "F"}
 }
 GROUP "1-Column Group" {
 LAYOUT { COLS 1 ALIGN OVER TAB }
 PROPERTY "Group Property 5"{ EDIT Text Length 10}
 PROPERTY "Group Property 6"{ EDIT Text Length 10}
 }
 PROPERTY "My Property 7"{ EDIT Text Length 5}
 PROPERTY "My Property 8"{ EDIT Text Length 5}
 PROPERTY "My Property 9"{ EDIT Text Length 5}
 PROPERTY "My Property 10"{ EDIT Text Length 5}
 PROPERTY "My Property 11"{ EDIT Text Length 1200}
 PROPERTY "My Property 12"{ EDIT Text Length 1200}

 CHAPTER "2-Column Layout"
 LAYOUT { COLS 2 ALIGN LABEL TAB }
 PROPERTY "My Property 13"{ EDIT Text Length 10}
 PROPERTY "My Property 14"{ EDIT Text Length 10}
 PROPERTY "My Property 15"{ EDIT Text Length 10}
 PROPERTY "My Property 16"{ EDIT Text Length 10}
 PROPERTY "My Property 17"{ EDIT Text Length 10}
 GROUP "3-Column Group" {
 LAYOUT { COLS 3 ALIGN OVER TAB }

Example

Modifying the Metamodel with USRPROPS.TXT

2-82

 PROPERTY "G5"{ EDIT Boolean LENGTH 1 DEFAULT "T"}

 PROPERTY "G6"{EDIT Boolean LENGTH 1 DEFAULT "T"}
 PROPERTY "G7"{ EDIT Boolean LENGTH 1 DEFAULT "T"}
 PROPERTY "G8"{ EDIT Boolean LENGTH 1 DEFAULT "T"}
 }
 CHAPTER "3-Column Layout"
 LAYOUT { COLS 3 ALIGN OVER TAB }
PROPERTY "My Property 18"{ EDIT Text Length 10}
 PROPERTY "My Property 19"{ EDIT Text Length 10}
 PROPERTY "My Property 20"{ EDIT Text Length 10}
 PROPERTY "My Property 21"{ EDIT Text Length 10}
 PROPERTY "My Property 22"{ EDIT Text Length 10}
PROPERTY "My Property 23"{ EDIT Text Length 10}
}

We examine this USRPROPS.TXT code in the figures below.
The first figure shows that the top-most layout command in
the Definition, LAYOUT { COLS 3 ALIGN OVER TAB }, is
ignored, since it is not assigned to any CHAPTER and it
cannot override the layout of the first “Introduction” tab, which
is set to default to a 1-column layout.

Figure 2-23. First
LAYOUT command is
ignored since it is not
assigned to a
CHAPTER (tab).

Modifying the Aesthetic Look of Dialogs

2-83

The second tab in the dialog is specified by the CHAPTER
“4-Col Layout” command. Its layout is specifed as being 4-
columns, with the title or label of each control placed over the
control (CHAPTER "4-Col Layout" LAYOUT { COLS 4 ALIGN
OVER TAB }.

You can see from the figure below that even entire groups (such as
“2-Column Group” and “1-Column Group” are laid out in the Chapter
within a 4-column layout, as are properties (such as “My Property 7”
through “My Property 10”. Properties that are too wide to fit within
the 4-column layout scheme are laid out by 1 column (such as “My
Property 11” and “My Property 12”, which are both Length 1200).

Figure 2-24. 4-
Column Chapter
Containing 2-Column
and 1-Column
Groups.

Modifying the Metamodel with USRPROPS.TXT

2-84

The 2-column Chapter, similarly, contains properties laid out
in 2 columns, including a Group, within which properties are
laid out in 3 columns.

Figure 2-25. 2-
Column Chapter
Containing 3-Column
Group

Modifying the Aesthetic Look of Dialogs

2-85

The final Chapter contains properties in a 3-column layout.
Note that these properties are narrow enough (Length 10) to
fit in 3 columns.

Modifying the Metamodel with USRPROPS.TXT

2-86

If any of these properties were too wide to fit in a 3-column
layout, then that property would be laid out independently of
the others, in a 1-column format. Changing “My Property 20”
from LENGTH 10 to LENGTH 100 causes its control to be
displayed as shown in the figure below. All other properties in
the dialog remain laid out in 3-columns.

Figure 2-26. 2-
Column Chapter
Containing 3-Column
Group

Figure 2-27. 2-
Column Chapter
Containing 3-Column
Group, with one wide
property.

Modifying the Aesthetic Look of Dialogs

2-87

The valid values of the sub-commands used in the LAYOUT
command are as follows:

LAYOUT { [ALIGN BODY | ALIGN LABEL | ALIGN OVER]
[PACK | TAB] COLS <number> }

The sequence of the sub-commands is not important.

Align Property Titles (or Labels) To Their Controls

Every property has a title, or name. Remember you can
relabel a property using the LABEL command. The ALIGN
command takes the title of a property, or its label if it has
been relabeled, and places it in a certain position next to the
control itself, as follows:

1. ALIGN BODY and ALIGN LABEL: all
controls are aligned one space to the right of
the widest label in that column.

(Note – ALIGN BODY used to put all controls one
space to the right of the label, but it was
subsequently changed to be the same as ALIGN
LABEL).

2. ALIGN OVER: label is over the control.

LAYOUT

Command

Arguments

Modifying the Metamodel with USRPROPS.TXT

2-88

Vertical Positioning

1. PACK: Sets of controls and labels in
multiple columns are separated from the
next set to the right by the minimum amount
of space.

2. TAB: Controls and labels in multiple

columns are separated by tabs so the
entries in each row line up directly below the
entries in the row above.

Columns

COLS <number_of_columns>: Controls the number of
columns into which the properties are divided

Justify

JUSTIFY: This command is no longer used in SAPROPS.CFG or
USRPROPS.TXT. It is ignored by the USRPROPS.TXT parser. It
used to line up all controls to the right and left margin of the dialog
page.

Modifying the Aesthetic Look of Dialogs

2-89

Modifying the Metamodel with USRPROPS.TXT

2-90

Creating Tabs with the

CHAPTER Command

The CHAPTER command can be used to control the
contents of a dialog page, and to produce a tab. If there is
more information than will display within a tab, multiple pages
within the tab are automatically created.

To create a tab, you use the CHAPTER command and
specify the name of the tab as an argument (using double
quotes around the name if there are embedded spaces). The
CHAPTER command does not require opening and closing
braces, { }, or a BEGIN .. END statement block.

CHAPTER Name_of_Tab

or

CHAPTER “Name of Tab”

All properties listed in the specification after the CHAPTER
command fall in that CHAPTER (or tab), until the next
CHAPTER command is encountered. The CHAPTER

Figure 2-28. The
Model Object dialog
showing two pages
for the Definition tab.

Syntax and

Positioning of

CHAPTER

Command

Modifying the Aesthetic Look of Dialogs

2-91

command may be placed at any point within a diagram,
symbol, or definition specification of USRPROPS.TXT,
except within a GROUP block.

Note: The word “CHAPTER” is used for this command
instead of the more obvious word “TAB” because “TAB” has
always had a different meaning in USRPROPS.TXT (it is
used in the LAYOUT command).

The following rules are in effect for the CHAPTER command:

• A property added via USRPROPS.TXT without a
CHAPTER command is placed at the end of all
definition property statements, and, therefore, on
the last page of the last 'Definition' tab making up
the definition dialog. (Please note that a definition
may contain one or more tabs of information tied
to the symbol, which come at the very end of the
definition dialog. The first of these 'symbol' tabs is
often named 'Symbol', but may be renamed to
another name. The symbol tabs only appear if you
open the definition dialog of a symbol on a
diagram; if you open a definition from the explorer,
they do not appear).

• You may add a property to an existing tab called
out in SAPROPS.CFG by respecifying the tab with
a CHAPTER command in USRPROPS.TXT.
Properties that you add are placed at the end of
that tab in the dialog.

• Tabs for new CHAPTER commands that you add
to existing Diagram, Symbol, or Definition
specifications are placed at the end of the dialog,
after all pre-existing tabs.

• If a GROUP command is desired, it must be
nested inside a CHAPTER command.

The LAYOUT command may occur anywhere under a
CHAPTER command, and it will have effect on all of the
controls for properties within the CHAPTER. If you specify
more than one LAYOUT command in a CHAPTER, the
USRPROPS.TXT parser rejects them all and provides the
default layout (COLS 1 ALIGN LABEL).

Using the

LAYOUT

Command Within

a CHAPTER

Modifying the Metamodel with USRPROPS.TXT

2-92

GROUP Command

The GROUP command is used to place a set of property
controls in a Group box.

The syntax of the command is as follows:

GROUP Name_of_Group

{ <properties to be enclosed in Group>

}

or

GROUP “Name of Group”

{ <properties to be enclosed in Group>

}

As shown above, the GROUP command requires that the
properties in the group be specified within open and closed
brackets, { }. If the name of the group contains embedded
spaces, you must enclose the name in double quotes. You
may also specify no name to the GROUP by specifying
opening and closing double quote marks with no typing within
them, for example:

GROUP ““

{ <properties to be enclosed in Group>

}

Important Note: All Group names within a Diagram, Symbol,
or Definition specification must be unique, even if they are
located in different Chapters. So, for example, if you create a
Group “x” in one Chapter of a definition, and create a second
Group “x” containing different properties, all properties of both
Group “x”’s will be contained within one Group “x” that will be
located in the first Group’s Chapter. If you wish to have two or
more Groups with similar names in the same specification,
add a blank space(s) to subsequent occurances of the
Group, for the above example, Group “x “.

Group Command

Syntax

Modifying the Aesthetic Look of Dialogs

2-93

You may specify a LAYOUT command within a GROUP. If
you do, it overrides the LAYOUT command of the definition or
CHAPTER (tab) that the Group is in, only for the properties in
the group.

The following USRPROPS.TXT code is used to create the
Groups shown in the figure below.
RENAME DEFINTION “User 4” To “My Group Definition”

DEFINITION “My Group Definition”
{
CHAPTER "4-Col Layout"
LAYOUT { COLS 4 ALIGN OVER TAB }
 GROUP "2-Column Group"
 {
 LAYOUT { COLS 2 ALIGN OVER TAB }
 PROPERTY "G1"{ EDIT Boolean LENGTH 1 DEFAULT "F"}
 PROPERTY "G2"{EDIT Boolean LENGTH 1 DEFAULT "F"}
 PROPERTY "G3"{ EDIT Boolean LENGTH 1 DEFAULT "F"}
 PROPERTY "G4"{ EDIT Boolean LENGTH 1 DEFAULT "F"}
 }
 GROUP ""
 {
 LAYOUT { COLS 1 ALIGN OVER TAB }
 PROPERTY "Group Property 5"{ EDIT Text Length 10}
 PROPERTY "Group Property 6"{ EDIT Text Length 10}
 }
}

Using the

LAYOUT

Command Within

a GROUP

Example

Modifying the Metamodel with USRPROPS.TXT

2-94

Figure 2-29. Use of
the GROUP and
LAYOUT Commands.

Modifying the Aesthetic Look of Dialogs

2-95

Positioning Controls and

Labels

The syntax for exact placement is:

PLACEMENT { PROPPOS(n,n)
 PROPSIZE(n,n) }

Example 1:

PLACEMENT { PROPPOS(4,12)

 PROPSIZE(150,40) }

Additionally, you may specify label positioning. The syntax for
exact label placement is:

PLACEMENT { LABELPOS (n,n)
 PROPPOS(n,n)
 PROPSIZE(n,n) }

Example 2:

PLACEMENT { LABELPOS (4,2)

 PROPPOS(4,12)

 PROPSIZE(150,40) }

In Example 1 above, PROPPOS (4,12) places the control 4
windows units horizontally, and 12 windows units vertically
from the upper left-hand corner of the dialog. Or, to put it
another way, 4 units to the left of the upper left-hand corner
of the dialog, and 12 units down from that corner.
PROPSIZE (150,40) makes the control 150 windows units
wide and 40 windows units long.

In Example 2 above, LABELPOS places the label for the
control 4 windows units horizontally, and 2 windows units
vertically from the upper left-hand corner of the dialog. The
label, therefore, is the same distance from the edge of the
dialog, but 10 windows units above the control.

Important Note: You should not mix PLACEMENT with
default positioning commands within a CHAPTER. Doing so
will cause odd positioning results.

A portion of the syntax from SAPROPS.CFG for the Entity

Definition dialog follows.

Modifying the Metamodel with USRPROPS.TXT

2-96

CHAPTER "SQL Server Triggers & Table Segment"
GROUP "Default Referential Integrity Triggers"
 LABEL "Default Referential Integrity" {
 LAYOUT { COLS 1 ALIGN LABEL TAB }

PROPERTY "Insert Trigger Name"
 { EDIT Text LENGTH 31
 LABEL "Insert Trigger"
 PLACEMENT {LABELPOS(4, 24)

 PROPPOS(50, 24) PROPSIZE(110, 12)} }

PROPERTY "Update Trigger Name"
 { EDIT Text LENGTH 31
 LABEL "Update Trigger"
 PLACEMENT {LABELPOS(4, 38)

 PROPPOS(50, 38) PROPSIZE(110, 12)} }

PROPERTY "Delete Trigger Name"
 { EDIT Text LENGTH 31
 LABEL "Delete Trigger"
 PLACEMENT {LABELPOS(4, 52)

 PROPPOS(50, 52) PROPSIZE(110, 12)} }
}

In most cases, you will have to make some modifications to
the length (the X coordinate) to make it fit the way you want.

1. Check boxes are PROPSIZE (30, 12)

2. OneOf properties are PROPSIZE (150, 40)

3. ListOf properties are PROPSIZE (320, 98)

4. Short text fields are approximately
PROPSIZE (<LENGTH*3>, 12), rounding off
the width (x) coordinate for cosmetics

5. Long text fields, such as LENGTH 4074, are
about PROPSIZE (150,115).

Some General

Sizing Rules

Modifying the Aesthetic Look of Dialogs

2-97

Again, you'll probably have to make some modifications once
you see the way the dialog is laid out, but these numbers
may be helpful to start.

PROPERTY Type PLACEMENT - Left-hand column
ListOf PLACEMENT

 { PROPPOS (4, 24)
 PROPSIZE (320, 98) }

OneOf PLACEMENT
 { PROPPOS (4, 24)
 PROPSIZE (150, 40) }

EDIT Text
(less than 75 characters)

PLACEMENT
 { PROPPOS (4, 24)
 PROPSIZE (LENGTH * 3, 12) }

PROPERTY Type PLACEMENT - Right-hand column
ListOf PLACEMENT

 { PROPPOS (165, 24)
 PROPSIZE (320, 98) }

OneOf PLACEMENT
 { PROPPOS (165, 24)
 PROPSIZE (150, 40) }

EDIT Text
(less than 75 characters)

PLACEMENT
 { PROPPOS (165, 24)
 PROPSIZE (LENGTH * 3, 12) }

Some General

Placement Rules

Table 2-4 Positioning
and size when the
property is in a group
and the label is over
the property.

Modifying the Metamodel with USRPROPS.TXT

2-98

PROPERTY Type PLACEMENT - Left-hand column
ListOf PLACEMENT

 { PROPPOS (4, 12)
 PROPSIZE (320, 98) }

OneOf PLACEMENT
 { PROPPOS (4, 12)
 PROPSIZE (150, 40) }

EDIT Text
(less than 75 characters)

PLACEMENT
 { PROPPOS (4, 12)
 PROPSIZE (LENGTH * 3, 12) }

PROPERTY Type PLACEMENT - Right-hand column
ListOf PLACEMENT

 { PROPPOS (165, 12)
 PROPSIZE (320, 98) }

OneOf PLACEMENT
 { PROPPOS (165, 12)
 PROPSIZE (150, 40) }

EDIT Text
(less than 75 characters)

PLACEMENT
 { PROPPOS (165, 12)
 PROPSIZE (LENGTH * 3, 12) }

PROPERTY Type PLACEMENT - Left-hand column
ListOf PLACEMENT

 { PROPPOS (4, 2)
 PROPSIZE (320, 98) }

OneOf PLACEMENT
 { PROPPOS (4, 2)
 PROPSIZE (150, 40) }

EDIT Text
(less than 75 characters)

PLACEMENT
 { PROPPOS (4, 2)
 PROPSIZE (LENGTH * 3, 12) }

PROPERTY Type PLACEMENT - Right-hand column
ListOf PLACEMENT

 { PROPPOS (165, 2)
 PROPSIZE (320, 98) }

OneOf PLACEMENT
 { PROPPOS (165, 2)
 PROPSIZE (150, 40) }

EDIT Text
(less than 75 characters)

PLACEMENT
 { PROPPOS (165, 2)
 PROPSIZE (LENGTH * 3, 12) }

Table 2-4.
Positioning and size
when the property is
in a group and the
label is not over the
property.

Table 2-4 Positioning
and size when the
property is not in a
group and the label is
not over the property.

Modifying the Aesthetic Look of Dialogs

2-99

PROPERTY Type PLACEMENT - Left-hand column
ListOf PLACEMENT

 { PROPPOS (4, 14)
 PROPSIZE (320, 98) }

OneOf PLACEMENT
 { PROPPOS (4, 14)
 PROPSIZE (150, 40) }

EDIT Text
(less than 75 characters)

PLACEMENT
 { PROPPOS (4, 14)
 PROPSIZE (LENGTH * 3, 12)
}

PROPERTY Type PLACEMENT - Right-hand column
ListOf PLACEMENT

 { PROPPOS (165, 14)
 PROPSIZE (320, 98) }

OneOf PLACEMENT
 { PROPPOS (165, 14)
 PROPSIZE (150, 40) }

EDIT Text
(less than 75 characters)

PLACEMENT
 { PROPPOS (165, 14)
 PROPSIZE (LENGTH * 3, 12)
}

PROPERTY
add to endpoint of
previous property

PLACEMENT - Left-hand column

A
+14 if label is OVER
Property B

PLACEMENT
 { PROPPOS (4, 14)
 PROPSIZE (150, 40) }

B
+ 4 if Property C is
OneOf

PROPERTY B
PLACEMENT
 { PROPPOSE (4, 68)
 PROPSIZE (150, 40) }

C PLACEMENT
 { PROPPOS (4, 112)
 PROPSIZE (150, 12) }

PROPERTY Type PLACEMENT - Right-hand column
D
+ 4 is label of Property E
is on the side

PLACEMENT
 { PROPPOS (165, 14)
 PROPSIZE (320, 98) }

Table 2-4 Positioning
and size when the
property is not in a
group and the label is
over the property.

Table 2-4 Positioning
and size when
properties are below
properties in the same
dialog.

Modifying the Metamodel with USRPROPS.TXT

2-100

E
+ 4 because a
LABELPOS is used for
Property F

PLACEMENT
 { PROPPOS (165, 116)
 PROPSIZE (150, 40) }

F PLACEMENT
 { LABELPOS (165, 160)
 PROPPOS (165, 170)
 PROPSIZE (30, 12) }

Note: LABELPOS is optional. It's used to override the
LAYOUT command for the group. The y coordinate is 10
units higher than the PROPPOS y coordinate.

Figure 2-30. The
Result of the Chapter
Commands

Specifying the Display of Values on Symbols

2-101

Specifying the Display of
Values on Symbols

A symbol represents a definition in the repository. That
definition has properties. You may specify that definition
properties and their values get displayed on a symbol. By
default, the name of a symbol (which is a property of the
symbol and its definition) is displayed. To specify that other
properties of a symbol’s definition are displayable, you use
the DISPLAY command in each property’s declaration. For
example:

Definition “My Definition”
{
Property “My Property 1” {EDIT TEXT LENGTH 20
DISPLAY { FORMAT String LEGEND "" } }
}

The example code above makes the property “My Property 1”
displayable on the symbol – any text that you type into the
property’s 20-character text box in the definition dialog is
displayed on the face of the symbol.

Once you specify certain properties of a symbol’s definition
as being displayable, those properties are provided in the
Display Mode dialog for a symbol, where they can be turned
on or off at any time. The Display Mode dialog is accessed by
selecting a symbol on a diagram, and selecting View,

Display Mode, or right-mouse-clicking on a symbol and
choosing Display Mode. The Display Mode dialog enables
you to select all displayable properties that you wish to
display for the symbol.

The figure below shows an entity symbol – the Before picture
shows it with all displayable properties turned off; the After
picture shows the Key Data and Non-Key Data turned on.

Modifying the Metamodel with USRPROPS.TXT

2-102

You may also specify displayable properties for line symbols,
as shown in the figure below.

Figure 2-31.
Rectangular Symbol
with Properties
Displayed and Not
Displayed

Figure 2-32. Example
Display Mode Dialog.

Specifying the Display of Values on Symbols

2-103

Figure 2-33. Line
Symbol with
Properties Displayed
and Not Displayed

Modifying the Metamodel with USRPROPS.TXT

2-104

Syntax of the DISPLAY

Command

There is a limit of eight display statements for one definition.
The syntax of the DISPLAY command is as follows:

DISPLAY { FORMAT [STRING | LIST | KEY | NONKEY |
COMPONENT_SCRIPT | COLUMN_SCRIPT | SCRIPT]
LEGEND " (how the block is labeled in the symbol) " }

• STRING: This is the default. It causes the

values of the property to appear on the
symbol exactly as they are typed. This
choice is a good one if you want comments
to be displayed.

• LIST: Causes items to be displayed on the
symbol in a list – each whitespace character
causes a new line, unless the whitespace
falls within double quotes.

• KEY: Use this keyword for properties
designated as keys. They are displayed in a
separate section of the symbol. See KEY
keyword in Chapter 3 for an example.

• NONKEY: You may use this keyword for
non-key properties. They will be displayed in
a separate section of the symbol. This
keyword was originally used for entities and
tables in Rational System Architect’s data
modeling support. See the NONKEY
keyword in Chapter 3 for an example.

• COMPONENT_SCRIPT: calls a script that
displays the property value on the symbol in
a special format, devised by the script. The
script itself is either hard-coded in the
product, or written by the user using
Rational System Architect Basic language.
By convention, the script itself is named with
one of the following prefixes:

Specifying the Display of Values on Symbols

2-105

• fmtxxx – The function itself exists in hard
code and cannot be modified. Most
functions in SAPROPS.CFG are this way.
Hard-coding the function is done to make
Rational System Architect’s overall
response faster.

• _fmtxxx – Exists in the fmtscript.bas file
within Rational System Architect’s main
executable directory, and is coded using SA
Basic.

The component scripts are used for ListOf and
ExpressionOf properties. The action taken by the script
works against each item in the list. For example, a
Component Script is used to look at each class attribute
in a class definition, and construct how it will be displayed
on the class symbol – providing a ‘-’ mark before the
name if the attribute’s access property is set to private, or
a ‘+’ mark if it is public, and displaying the attribute’s
return type after the attribute name, preceded by a colon.
Similarly, a Component Script constructs the way a
method is displayed, with a ‘+’ mark preceding the name
if its access is public, and a ‘-‘ mark if its access is
private, and in addition displays its parameters and their
type in parenthesis after the method’s name.

For more information, see
COMPONENT_SCRIPT and SCRIPT in
Chapter 3.

• COLUMN_SCRIPT: Works like
COMPONENT_SCRIPT, calling a script to
apply a special formatting to a property

Modifying the Metamodel with USRPROPS.TXT

2-106

value displayed on a symbol. The script is
either a hard-coded script or one written by
the user using SA Basic (and placed in the
fmtscript.bas file within Rational System
Architect’s main executable directory). The
column scripts are used for displaying
columns in table symbols in a physical data
model. The action taken by the script works
against each column in the list. See
COLUMN_SCRIPT in Chapter 3 for more
information.

• SCRIPT: Works like COLUMN_SCRIPT and
COMPONENT_SCRIPT, calling a script to
apply a special formatting to a property
value displayed on a symbol. The SCRIPT
command calls scripts used for properties
 that are neither ListOf nor ExpressionOf.
The script itself is either a hard-coded script
or one written by the user using SA Basic
(and placed in the fmtscript.bas file within
Rational System Architect’s main executable
directory). See the SCRIPT keyword in
Chapter 3 for more information.

Each property group that is displayed is separated from each
other by a dividing line. You can specify a label, or “legend” to
appear on the dividing line, using the LEGEND command. If a
LEGEND is not supplied, the property name itself is the label.
The following LEGEND commands are available:

• LEGEND “<Your Text>”: Whatever text you place in
the quotation marks will be displayed on the symbol
above the entry, only if there is a value for the entry.

• LEGEND "": Displays a straight line without any
words, only if there is a value for the entry.

• LEGEND "$$FORCE$$":Displays a horizontal line
above the entry on the symbol. This line acts as a
divider. The “$$FORCE$$” keyword is different than
simply using “ “, in that it forces display of a
horizontal line even if the property display is
suppressed through the display mode dialog.

Specifying the Display of Values on Symbols

2-107

• LEGEND “$$NONE$$”: Does not display a
horizontal line above the entry on the symbol,
whether or not there are values for the entry. This
line normally acts as a divider.

• LEGEND “$$VFORCE$$”: Enables you lay out
properties from left to right inside symbols, and draws
vertical lines between them. An example is shown
below:

See VFORCE keyword in Chapter 3 for the example
USRPROPS.TXT that creates the picture above.

• LEGEND “$$VNONE$$”: Enables you to lay out
properties from left to right, but does not provide a
dividing line. See VNONE keyword in Chapter 3 for
an example.

The typeface and font of the displayable legends are
controlled through the Diagram Format, Notation command
under the Format menu.

Example

In the following example, we specify a new diagram type,
new symbol type, and new definition type. We specify that the
new symbol type is defined by the new definition type, and
assign the new symbol type to the new diagram type. We
create a property for the definition, called “My Important
Property”. We specify that the legend “My Important Property

Modifying the Metamodel with USRPROPS.TXT

2-108

Displayed” should be displayed on the symbol on the dividing
line above the displayed value.

RENAME DIAGRAM "User 1" TO "My Diagram"
RENAME SYMBOL "User 1" TO "My Symbol 1"

SYMBOL "My Symbol 1"
{
DEFINED BY "My Definition 3"
ASSIGN TO "My Diagram"
}
DEFINITION "My Definition 3"
{
PROPERTY "My Important Property" { EDIT Text Length
20 DISPLAY { FORMAT String LEGEND "My Important

Property Displayed" }}
}

The figure below shows a subsequent symbol drawn on such a
diagram, and the displayed value typed into the property field.

Figure 2-34. Line
Symbol with
Properties Displayed
and Not Displayed

Specifying Key and Keyed By Properties

2-109

Specifying Key and Keyed
By Properties

You may specify that a particular definition is ‘keyed’ to one
or more other definitions. A key determines the name space
of a definition in the encyclopedia. For example, a class
attribute definition type is keyed by its containing class
definition, and that class’s containing package definition. So
you could have two attributes called name, one belonging to
the class Customer in the package Reservation_System, and
the other belonging to the class Product in the Order_System
package. The two attributes, although having the same
name, are distinctly different definitions.

By default, every modeling element in an encyclopedia is
already secretly keyed to three things -- its class (here class
is used in Rational System Architect terms, distinguishing
whether it is a diagram, symbol, or definition), its type
(whether it is a UML Use Case diagram, a BPMN Process
diagram, etc), and its name (for example, the
Reservation_System Use Case diagram versus the
Human_Resource_System Use Case diagram).

You may add key properties to a definition by using the KEY
command. You specify the KEY command within the property
that you want to be a key of a definition. The KEY command
may be placed almost anywhere within the description of a
property, but because of its importance, it is customary to
place it as the first item within the property’s braces – just
before the EDIT keyword.

Note: It is not possible to add a KEY EDIT ONEOF to a
diagram.

Example 1:

Definition “Use Case”
{
 PROPERTY "Package" { KEY EDIT …}
..}

Establishing

KEY Properties

Modifying the Metamodel with USRPROPS.TXT

2-110

Example 2:

Definition “Use Case Step”
{
PROPERTY "Use Case Name" { KEY EDIT … }
 PROPERTY "Package" { KEY EDIT …}

…
Note: Key properties of a definition are not shown in a grid
formed by an ASGRID command. For example, in a Use
Case definition, Use Case Steps are depicted in a grid
formed by an ASGRID command, however, the key
properties of Use Case Steps (owning package and Use
Case) are not shown in the grid of Use Case Steps.

For a property that is a key and that “points at” another
object(s) – for example, a LISTOF or ONEOF property, not a
simple TEXT or NUMERIC property – the end user must
specify the class and the class type of the referenced
object(s) when entering a value for the property while working
in Rational System Architect.

For example:

Definition “Business Process”
{
PROPERTY “System Use Case” {EDIT ONEOF “Use

Case” …}

The statement above indicates that the property “Use Case
Name” refers to a definition of type “Use Case”. Definition is
the default when no class is specified (class in the Rational
System Architect sense -- Diagram, Symbol, or Definition).)

The property value itself often contains all the necessary
remaining material needed to identify the object(s) actually
being referenced. If the referenced class/type of the property
has no key properties, the reference value will just be the
object’s Name (because the class and type are known), but if
the referenced class/type has key properties (such as “Use
Case” in the above example, which has key property
“package”), Rational System Architect must know the values
of these key properties in order to properly identify the
reference object.

Specifying Key and Keyed By Properties

2-111

Note: Heterogeneous reference properties are different in
this respect. See HETEROGENEOUS in Chapter 3.

You either code this into USRPROPS.TXT so that Rational
System Architect automatically gets the values for the end
user or you force the end user to type in the fully qualified
name, with periods separating the key parts.

• To have Rational System Architect automatically get
the value for users, you use the KEYED BY
command.

• If a KEYED BY clause is not given for the property,
Rational System Architect expects these additional
key values to be given in the reference itself – in
other words the user must type in the fully qualified
name of the reference object, with periods separating
key values (for a Use Case Step called “Specify
email” in a Use Case called Order_Product in a
package called “Order System” the user would need
to type in “Order System”.Order_Product.”Specify
email”.

Note: When a component contains a syntactically significant
character (such as a space or a period), it must be enclosed
in double quotes so that Rational System Architect can parse
the reference properly.

Here are two examples of references to a “Use Case Step”:

Order_System.Order_Product.”Specify email”

where CorrectInvoice is the name of the Use Case that
belongs to the Accounts_Payable package.

“Order System”.”Order Product”.”Specify email”

where Order Product is the name of the Use Case that
belongs to the Order System package.

Modifying the Metamodel with USRPROPS.TXT

2-112

One other use for the KEYED BY clause is that it enables you
to build a list of things that are all related. For example, all the
Use Case Steps referred to in the property “Use Case Steps”
of a Use Case definition belong to the same Use Case – as it
happens, the one containing the “Use Case Steps” property.
Where a multiple reference property (like ListOf) refers to
objects all belonging to the same parent object, it is advised
to use one or more other properties to identify the parent
object. In these situations, a KEYED BY clause is used to tell
Rational System Architect which other properties to use.

So to summarize, the KEYED BY clause is optionally used to
specify how the key components of a referenced object(s)
may be found. It provides two key benefits:

1. It eliminates the need for the end user to type in the
fully qualified name of a reference value (with periods
separating qualifiers). For example, for a property
that references a class attribute named email of the
class Customer of the package “Order System”,
instead of typing in “Order

System”.Customer.email, the end user simply
types in email.

2. It can be used to ensure that all key components of a
reference value are the same. For example, the
LISTOF “Class Attribute” property in a Class
definition contains a list of attributes that all belong to
the same class and to the same package.

A KEYED BY clause typically contains a specification of how
each of the key components of the referenced object(s) may
be found. The KEYED BY clause contains a portion for each
key component separated by a comma.

Example:

For example, the KEYED BY clause of the Class’s
“Attributes” property could be as follows:

DEFINITION "Class"
{
 …

Using KEYED BY

to Make Sure All

Members of a

Group Are Of the

Same Type

How To Use the

KEYED BY

Clause

Specifying Key and Keyed By Properties

2-113

 PROPERTY "Attributes" { … LISTOF "Class Attribute"
KEYED BY {Package:Package, "Class Name":Name,
Name:* } … }

In the example above, the three key components (separated
by commas) are Package:Package, “Class Name”:Name,
and Name:*. These components refer to the three parts
needed to identify the referenced Class Attribute definitions –
the Package name, the Class name, and the Class Attribute
name. Taking them in reverse order, it states that:

• The name of the Class Attribute will be found
in this property (* means “here”), hence:

Name:*

• The value of the key property “Class Name”
in the Class Attribute definition will be found
in this object’s name, hence:

“Class Name”:Name

• The value of the key property Package in the
Class Attribute definition will be found in this
object’s Package property, hence:

Package:Package
The following schematic diagram shows how the KEYED BY
clause is used in the example above, and may be useful in
understanding the KEYED BY clause generally.

Modifying the Metamodel with USRPROPS.TXT

2-114

The schematic shows what we have said above – in the definition of a
class, a class attribute is entered by specifying its package (stored in
the class attribute’s Package property and obtained from the Package
value of the class you are in), its class name (stored in the class
attribute’s “Class Name” property and obtained from the class’s
actual name), and name (stored in the class attribute’s “Name”
property and obtained from itself).

In summary:
1. For each key component of the reference object,

the KEYED BY clause has a component.
2. The components of the KEYED BY clause are

separated by commas.

Specifying Key and Keyed By Properties

2-115

3. Each component has two parts:
• The first part identifies the key component of the

reference object,
• The second part states where the value of that

component is to be found, and
• The two parts are separated by a colon.

However, certain default values may be assumed to simplify the
KEYED BY clause. If the two parts of the component are the same,
the second may be omitted and if the second part of the last
component is omitted, it assumed to be “here” – i.e. the asterisk.
Thus, in practice the KEYED BY clause of the Class’s “Attributes”
property is coded:

KEYED BY {Package, "Class Name":Name, Name }

Naturally, all the properties used in the KEYED BY statement must
exist. Thus, Rational System Architect checks that there is a
“Package” property and a “Class Name” property in the “Class
Attribute” definition and that they are both KEY.

Besides saving the end user all the effort of typing in common key
components in a LISTOF property like this one (for example, “Order
System”.Customer.email), employing a KEYED BY clause using other
properties to provide common values ensures the same values are

used for each reference. Thus, in the example we have been using,
all the Class Attributes referred to in the “Attributes” property of the
Class are forced to belong to the same class in the same package –
a desirable characteristic in this case.

At other times it is convenient to have the key components of the
referenced object separated for reasons of clarity and simplicity.
Under such circumstances a KEYED BY clause is used to designate
the properties supplying the separate components. Indeed, for these
reasons, when a property is KEY and refers to an object with KEY
properties, Rational System Architect requires that the components
be in separate properties.

Modifying the Metamodel with USRPROPS.TXT

2-116

Examples of Key and Keyed By

We wish to categorize automobiles by their “Brand” and
“Model”. We create a new definition called “Car Brand” (a
“Car Brand” might be Ford, Volkswagen, Toyota, etc), and
another called “Car Model” (which would include values such
as Mustang, Passat, and Corolla).

A “Car Model” must have its “Car Brand” (otherwise called its
‘Make’) specified. The “Car Brand” is a property that you can
use to uniquely identify the “Car Model”; each “Car Model”
has one and only one “Car Brand”.

We make “Make” a key property of “Car Model” – but in
actuality it is “Car Brand” that is the definition type that is filled
in for this property. We also make it REQUIRED, which
means that to create the definition, you must fill in this
property in the opening dialog to create the definition.

RENAME DEFINITION "User 1" To "Car Brand"
RENAME DEFINITION "User 2" To "Car Model"

DEFINITION "Car Brand"
{
PROPERTY "Country of Origin"
{ EDIT Text LENGTH 20 }
}

DEFINITION "Car Model"
{
Property "Make"
{KEY EDIT ONEOF "Car Brand" REQUIRED}
}

Note: We have introduced a problem in the USRPROPS.TXT
above for the purposes of discussion. We will discover it later
in this section.

Let’s take it one step further. Each “Car Model” has a version
– for instance you can buy a Mustang Coupe, a Convertible,
a GT Coupe, a GT Convertible, a Mach 1, or SVT Cobra.
This could be an ever changing list so we make it a definition
type (versus a static LIST). We call the definition type “Car
Version”. When the user creates a “Car Version”, he or she
will need to specify the “Car Brand” and “Car Model” of the

One Definition

Keyed By

Another

A Third

Definition With

Two Key

Properties

Specifying Key and Keyed By Properties

2-117

version (because there may be many “Car Model”s out there
with a GT).

RENAME DEFINITION “User 3” TO “Car Version”
Definition "Car Version"
{
Property "Car Model"
{KEY Edit ONEOF "Car Model" RELATE BY "is keyed by"}
Property "Brand"
{KEY EDIT ONEOF "Car Brand" RELATE BY "is keyed by"}
}

For every “Car Model”, we want to create a list of Car
Versions that it provides. We create a LIST OF property that
enables the user to enter Car Versions in the “Car Model”
definition. Note that Car Versions is a definition type with a
compound key – when the user types in the “Car Version”,
they must specify the “Car Version”, and the “Car Brand” and
the “Car Model” of the “Car Version”.

DEFINITION "Car Model"
{
Property "Make"
{KEY EDIT ONEOF "Car Brand" RELATE BY "is keyed by"
REQUIRED}
Property "Versions" {EDIT LISTOF "Car Version"}
}

Creating a ListOf

a Keyed

Definition

Modifying the Metamodel with USRPROPS.TXT

2-118

There is a problem with the USRPROPS.TXT above. “Car
Version” is a compound-key definition – it has its own name
as a key, and it has two other key properties, “Car Brand” and
“Car Model”. If we specify the USPROPS.TXT above, it will
be up to the user to know this. He or she will need to type in
the “Car Version”, fully qualified by its Brand and Model, with
a period separating each, such as Ford.Mustang.”GT
Convertible”.

We add the KEYED BY statement to the Property “Version”
statement to automatically spell this out.

DEFINITION "Car Model"
{
Property "Make"
{KEY EDIT ONEOF "Car Brand" RELATE BY "is keyed by"
REQUIRED}
Property "Versions" {EDIT LISTOF "Car Version" KEYED BY

{"Brand":"Make", "Car Model":Name, Name} }
}

In the first part of the KEYED BY statement above, KEYED

BY {“Brand”:”Make”, we state that the “Car Version” value
we are entering has a key property called Brand that must be
filled in. This property will be filled with a value that is
obtained from the “Make” property of the current definition
that we are in – “Car Model”. Note that the actual value is a
definition of type “Car Brand”; the KEYED BY statement lists
names of properties, not definition types.

Adding the

KEYED BY

Statement

Specifying Key and Keyed By Properties

2-119

If the referenced property (“Brand”) and referencing key
property (“Make”) above were the same, we would not need
to specify both (ie, if they were both “Brand”, we would only
need to type in KEYED BY {“Brand”, ….

In the second part of the KEYED BY statement above, “Car

Model”:Name, we state that the “Car Version” value we are
entering has a second key property called “Car Model” that
must be filled in. This property will be filled in with a value that
is obtained by the Name of the current definition that we are
in – the name of this “Car Model” definition we have open.

In the third and final part of the KEYED BY statement above,
Name, we specify that the last key of the “Car Version” value
we are entering is keyed by its own name, as any definition
is.

So if we have a “Car Model” definition open called Mustang,
which has a key property “Make” filled in with Ford, we simply
need to type in GT in the LIST OF “Car Version” property,

Modifying the Metamodel with USRPROPS.TXT

2-120

and the new definition Ford.Mustang.GT will be added to the
encyclopedia.

There is still a problem. We notice as we add new “Car
Version” definitions into the encyclopedia, “Car Model”
definitions are being input that have a null property for “Car
Brand”.

This only happens when we add a new “Car Version”
definition directly (via the New Definition command in the
explorer), not when we add one in the ListOf dialog in the
“Car Model” definition.

The reason is that the “Car Version” definition specifies that
one of its key properties is “Car Model”, but doesn’t specify
that that property has its own key property (“Car Brand”) that
needs to be filled in with a value. Every time we add a new
“Car Version” definition, we are asked to specify a “Car
Model” property. We specify that “Car Model” property, but
don’t specify where it gets its key “Car Brand” property value
from. So nothing gets filled in for it.

To fix this, we must specify in the “Car Version” definition that
its “Car Model” key property is itself keyed by properties,
which must be filled in with values. We add the clause KEYED

BY {"Make":"Brand", Name}, which means that the “Car Model”

Specifying Key and Keyed By Properties

2-121

definition has a property called “Make” that will be filled in with the
value in the current definition’s “Brand” property.

Definition "Car Version"
{
Property "Car Model"
{Key Edit oneOf "Car Model" KEYED BY

{"Make":"Brand", Name} RELATE BY "is keyed by"}
Property "Brand"
{KEY EDIT OneOf "Car Brand" RELATE BY "is keyed by"}
}

Once we make that change, when we add a new “Car
Version” to the encyclopedia, we do not get any inadvertent
null “Car Brand” definitions.

It is arguable whether or not you want users to type in new
definitions of Car Versions independently of the “Car Model”.
For example, will someone enter in Si as a “Car Version”, and
then specify that they are referring to a Honda Accord?
Probably not. It may help your users if you force them to
enter the “Car Brand” and “Car Model”, and then specify Car
Versions in the ListOf property of Car Versions in the “Car
Model” definition. What you are saying is that these “Car
Version” belong completely to the “Car Model” – to say you
have an Si doesn’t mean much by itself. We use the
COMPLETE clause to do this.

DEFINITION "Car Model"
{
Property "Make"
{KEY EDIT ONEOF "Car Brand" RELATE BY "is keyed by"
REQUIRED}
REM "also contains a list of the versions"
Property "Versions"
{EDIT COMPLETE LISTOF "Car Version" KEYED BY
{"Brand":"Make", "Car Model":Name, Name} }
}

Once you set the COMPLETE for a list, you will not see the
“Car Version” definition amongst the definition types available
when you create a new definition, nor will you be able to open
any “Car Version” definitions from the explorer. If you try to,
Rational System Architect will give you a message that says

Example of

“Complete”

Keyword

Modifying the Metamodel with USRPROPS.TXT

2-122

you can only open the definition from its containing definition,
which in this case is “Car Model”.

Now we want to add a new definition to the encyclopedia to
track Car Rentals. The new definition type Car Rental
includes a property to track the Car Type of each rental.

The problem is we do not want to keep track of the “Car
Brand” and the “Car Model” as well as the “Car Version” for a
Rental Car. We want one property, Car Type, that we can
enter a car type into and have it worry about its make and
model. So if we specify a ‘Car Type’ for a Rental Car, we do
not have a property within the Rental Car definition within
which to keep the Car’s Brand or Model. We use the
QUALIFIABLE keyword.

RENAME DEFINITION “User 5” TO “Rental Car”
Definition "Rental Car"
{
Property "Car Type"
{EDIT ONEOF "Car Version" KEYED BY { "Brand"
QUALIFIABLE, "Car Model" QUALIFIABLE, Name }
}
}

The QUALIFIABLE phrase causes the ONEOF “Car Type” property
to store the “Brand” and “Model” information. The information is

Qualifiable

Example

Specifying Key and Keyed By Properties

2-123

stored in the value itself, separated by periods. You can either drag
in values from the Select and Drag dialog that opens if you press on
the Choices button, or type in the values with appropriate periods.

We want to specify that a “Car Version” fits into a category of
automobiles – either it will be an SUV, or a sub-compact, or a
compact, or a midsize sedan, or a fullsize sedan, or a luxury
car, or a truck. Since this list is fairly stable, we don’t need to
create a new definition type for it. We create a List of “Vehicle
Types”.

LIST "Vehicle Types"
{
Value "SUV"
Value "Sub-Compact"
Value "Compact"
Value "Midsize Sedan"
Value "Fullsize Sedan"
Value "Luxury Sedan"
Value “Convertible"
Value "Truck"
}

Definition "Car Version"
{
Property "Car Model"
{Key Edit oneOf "Car Model" KEYED BY {"Make":"Brand",
Name} RELATE BY "is keyed by"}
Property "Brand"
{KEY EDIT OneOf "Car Brand" RELATE BY "is keyed by"}
Property "Vehicle Type"

{EDIT Text List "Vehicle Types" DEFAULT "Midsize

Sedan"}
}

Example of Using

the Where Clause

Modifying the Metamodel with USRPROPS.TXT

2-124

We create a new definition of type "SUV Ad
Campaign". In a property of this definition, we want
users to be able to select instances of automobiles of
a certain type. In other words, we want this property
to be filtered to contain only the instances of
definitions in the encyclopedia that satisfy the stated
condition of 'vehicle type' = 'SUV'. We use the
"Where" clause to provide this filtering.

Definition "SUV Ad Campaign"
{
 Property "SUV Type"
{ Edit OneOf "Vehicle Types" WHERE "Vehicle
Types" = "SUV" }
}

Where Clause

Continued

Hiding Standard Entries in the SAPROPS.CFG File

2-125

Hiding Standard Entries in
the SAPROPS.CFG File

You may hide or make invisible properties in
USRPROPS.TXT. The question often arises as to what
happens when you hide a property for which information has
already been entered into the encyclopedia. For example,
assume that you have been adding data elements to the
encyclopedia, and have supplied the responsible business
areas for each element in the Business Unit property. But
half way through the project, it has been decided that
Business Unit is no longer needed. All you have to do is
change the property Business Unit to an invisible, or hidden,
property, through a modification in USRPROPS.TXT; it no
longer appears in the data element definition dialog.

DEFINITION "Data Element"
{
 PROPERTY "Business Unit"
 { INVISIBLE }
}

When you were entering Business Unit values, they were
added to the encyclopedia, and were saved in the file named
ENTITY.DBT. The modification to the encyclopedia’s
metamodel (above) makes the Business Unit property
disappear from the data element definition dialog, but it does
not delete previous entries of Business Unit information –
they still exist in the .DBT file. If you remove the code above
from USRPROPS.TXT, the Business Unit property will
appear again in the data element definition dialog, and the
values previously entered will reappear in their respective
data element.

The question arises – how can you remove excess
unneeded property information from the ENTITY.DBT file? It
can be done by careful use of the Export Definitions and

Import Definitions commands under the Dictionary menu.

1. Select Dictionary, Export Definitions. Select
to export data element definitions in CSV
format to a text file.

Modifying the Metamodel with USRPROPS.TXT

2-126

2. Open that csv text file in an external editor
such as Excel, and delete the column with
the unwanted information (in the case above
it would be titled Business Unit).

3. Select Dictionary, Import Definitions. Re-
import the CSV file using the delete all fields
then add new data option.

Performing this task is optional. It is only necessary if you
wish to regain the memory space used by the excess values.

Hiding Standard Entries in the SAPROPS.CFG File

2-127

Error Messages

Whenever Rational System Architect opens an encyclopedia
and parses its SAPROPS.CFG File and USRPROPS.TXT, it
performs a syntax check on the statements in the file. Any
syntax errors are displayed in an Error dialog. This Error
dialog can contain the following error messages. The
brackets indicate points at which Rational System Architect
inserts variable information, such as a property name or line
number.

< > found on Line < > of USRPROPS.TXT
< > has been defined more than once
< > is already defined as a List
Cannot load DLL (STATBAR.DLL).
Cannot load DLL (STATBOX.DLL).
Chapter < > is already defined.
Dictionary class < > is already defined.
Description
Dictionary
Illegal argument < >
Illegal argument < > - must be quoted
Illegal default < > for Boolean edit
Illegal default < > for date edit
Illegal default < > for numeric edit
Illegal default < > for time edit
Illegal default for < > ranged numeric edit
Insufficient resources to load dialog \n%s.
Invalid Dictionary class Name: < >.
Invalid Major Type Name: < >.
Invalid Relation Name: < >.
List < > is already defined.
List-name < > not defined
Name < > already in use
Number of property edits (OneOf, ListOf, ExpressionOf)
exceeds limit with < > on
Number of properties exceeds limit with < > on < >
Number of DISPLAYed properties exceeds limit with < > on <
>
Number of lists exceeds limit with < > on < >

Error Messages

Modifying the Metamodel with USRPROPS.TXT

2-128

Number of lists exceeds limit with < > on < > (max=100)
Numeric argument < > out of range
Numeric argument expected but < > was
Out of range or invalid < > length argument
Premature end of file after < >
Previously defined list-name
Property < > is already defined
Referenced List < > is not defined.
Syntax Error in < > Line <line #>.
The < > edit type is only valid for the 'Description' property
Too many Lists.2
Too many Properties < >.3
Too many Values in List < >.4
Unable to open property file
Unbalanced begin-end or { }
Unexpected command < >
Unknown property DISPLAY type < >
Unknown dictionary name < >
Unknown edit-type < >
Unknown initial-type < >
Unknown update-type < >
Warning - RANGE found but no maximum range defined.
Warning - RANGE found but no minimum range defined.

2 Maximum number of lists is 400. This includes SAPROPS and
USRPROPS, where the number of lists actually used from the SAPROPS is
dependent on the Encyclopedia Configuration.
3 Maximum number of properties for one Diagram, Symbol or Definition is
128
4 Maximum number of VALUES in a LIST is 128.

Hiding Standard Entries in the SAPROPS.CFG File

2-129

In addition to any error message, Rational System Architect
places further information in the error dialog about the syntax
error found, as follows.

while checking a DEFINITION
command.
while checking a DISPLAY command.
while checking a LIST command.
while checking a VALUE command in a
LIST.
while checking a PROPERTY command
in a DEFINITION .
while checking for a DEFINITION or
LIST command.
Would you like to continue?

For example, the entire error message may look like this:
Unknown property DISPLAY type < > while checking a
DEFINITION command.

Modifying the Metamodel with USRPROPS.TXT

2-130

Runtime Edits

"Runtime" is that time when you are drawing diagrams, and,
in particular, when you are making encyclopedia entries. The
dialogs displayed when you add or modify the dictionary are
under control of SAPROPS.CFG and USRPROPS.TXT; the
EDIT commands act to prevent the user from making
erroneous entries. For example, assume SAPROPS.CFG
has the following entry:
PROPERTY “My Property”
 { EDIT numeric LENGTH 2 MINIMUM 1 MAXIMUM 32 }

In this example, an Invalid Value error message is displayed
if you type in "AB" or "0" in the “My Property” text field, and
click OK to close the dialog. This happens because the
property has been specified as a numeric (can’t be made up
of any letters), of minimum value 1.

Rational System Architect performs the following runtime
edits:

BOOLEAN must be T, F, TRUE or FALSE

DATE numeric, of format MM/DD/YY

Expression, ExpressionOf,
ListOf, OneOf

see the entries in the section
beginning on page 2-69.

NUMERIC must be a numeric-string

TEXT no editing

TIME numeric, of format HH:MM:SS

3-1

3

USRPROPS.TXT
Keywords

This chapter contains an alphabetical list of all the keywords
you can use to make modifications to USRPROPS.TXT.

Certain restrictions apply in the use of the following
keywords: CHAPTER, GROUP, LABEL, LIST, and
LISTONLY. Please refer to each of those keywords for an
explanation of the specific restriction that applies to the use of
the keyword.

Introduction

USRPROPS.TXT Keywords

3-2

USRPROPS Keywords

$$FORCE$$ See DISPLAY keyword.

$$NONE$$ See DISPLAY keyword.

$$VFORCE$$ See DISPLAY keyword.

$$VNONE$$ See DISPLAY keyword.

#IFDEF Enables you to switch on commands in USRPROPS.TXT based
on whether the clause in quotes after the IFDEF command has
been turned on in the Property Configuration dialog. The
Property Configuration dialog (Tools, Customize Method
Support, Encyclopedia Configuration) modifies the sadeclar.cfg
file in an encyclopedia. It is the sadeclar.cfg file that is actually
checked when the IFDEF statement is evaluated as
SAPROPS.CFG is parsed.

This command must have a matching, ending #endif statement.
Example:

#ifdef "Business Enterprise"
DEFINITION "ORGUNIT"
{
 LAYOUT { COLS 2 ALIGN OVER }
 PROPERTY "RowDefinition"
 { KEY EDIT OneOf "Organizational Unit" RELATE BY "is part of"
ReadOnly LABEL "Organizational Unit"}

 PROPERTY "ColumnDefinition"
 { KEY EDIT OneOf "Organizational Unit" RELATE BY "is part of"
ReadOnly LABEL "Organizational Unit"}

 PROPERTY "Description"
 { EDIT Text LENGTH 255 HELP "Appears in the cell of a matrix" }

 PROPERTY "Intersection?"
 { EDIT Boolean LENGTH 1 }
}
#endif

USRPROPS Keywords

3-3

#IFDEF
(continued)

In the example above, the definition type “ORGUNIT” only
contains the properties specified if Business Enterprise is
toggled on in the Property Configuration dialog (Tools,
Customize Method Support, Encyclopedia Configuration). If you
fill in values for these properties and then turn off Business
Enterprise, the values remain in the definition of “ORGUNIT” in
the repository, but they are not shown in the definition dialog
since the property set is turned off.

See also the #IFNDEF keyword.

#IFNDEF Opposite of the IFDEF command, the IFNDEF command
enables you to switch on commands in USRPROPS.TXT if the
property listed in quotes after it has not been turned on in the
Property Configuration dialog. This command must have a
matching, ending #endif statement.
Example:

#ifndef "Business Enterprise"
RENAME Symbol "Swim Lane" to "Org. Unit"
#endif

In the example above, if the “Enterprise Architecture” choice is
not toggled on in the System Architect Property Configuration
dialog (Tools, Customize Method Support, Encyclopedia
Configuration), then all ‘Swim Lane’ symbols are renamed to
“Org. Unit”. You will notice this change as you select such a
symbol on any diagram that it is used on. The “Enterprise
Architecture” choice in the configuration dialog used to be
named “Business Enterprise”, but was changed on the dialog in
V9.0. However, the underlying switch statement that it invokes
in SADECLAR.CFG is still called “Business Enterprise”.

USRPROPS.TXT Keywords

3-4

#INCLUDE
#include can be used in the USRPROPS.TXT file to break out
changes into separate, additional files. Inside each of those
files, there can be other includes, which in turn can have other
includes, etc. The level of nesting allowed by the parser is 10.
Beyond that Rational System Architect will give a warning and
ignore the subsequent levels.

Example:

For example, you could create three USRPROPS.TXT files, one
for diagrams (arbitrarily named diagrams.txt), one for definitions
(arbitrarily named definitions.txt), and one for symbols
(arbitrarily named symbols.txt). The USRPROPS.TXT file would
look like this:

**
REM "USRPROPS.TXT"
REM "Copyright IBM. All rights reserved."
REM "Instructions for modifying this file are in the on-line help."

#include “diagrams.txt”
#include “symbols.txt”
#include “definitions.txt”

Inside each of those files you could place #includes to other
files, such as a file for lists (arbitrarily named lists.txt).

This command helps enable coherent reusability of user-
defined data.

USRPROPS Keywords

3-5

ADDRESSABLE In Rational System Architect, symbols may be addressed by
one or more (addressable) definitions. Thirteen addressable
definitions are automatically supplied and they may be
addressed to any symbol: Business Objectives, Business
Process, Change Requests, Critical Success Factor, Current
Data Collection, Data Class, Deliverable, Functional
Organization, Geographic Location, Information Requirement,
Organization Goals, Requirements, and Test Plans. These
addressable definitions are available by selecting a symbol on a
diagram, and choosing Dictionary, Addresses. In addition, any
definition may be declared addressable through the syntax in
USRPROPS.TXT. Doing so makes the definition available to
address a symbol, and places it on the Dictionary, Addresses
drop-down list.

Example:

DEFINITION "xxxxxx"
 {
 ADDRESSABLE
 }

See also keyword NONADDR.

USRPROPS.TXT Keywords

3-6

ALIGN Used to specify the positioning of the name (or label) of a
property’s control (list box, text box, etc) in a dialog. Valid
options are BODY, LABEL, and OVER.

Example:

DEFINITION "Balanced Scorecard"
{..
 GROUP "Perspectives"
 {
 LAYOUT { COLS 2 TAB ALIGN OVER }
 PROPERTY "Customer" { EDIT Text LENGTH 300 }
 PROPERTY "Internal Business" { EDIT Text LENGTH 500 }
 PROPERTY "Learning" { EDIT Text LENGTH 500 LABEL “Innovation

and Learning”}
 PROPERTY "Financial" { EDIT Text LENGTH 500 }
}
In the example above, the ALIGN OVER command places the
names or labels of all properties below the LAYOUT statement
over their respective control in a Balanced Scoreboard definition
dialog.

USRPROPS Keywords

3-7

ASGRID

See also keywords BODY, LABEL, OVER, JUSTIFY, and TAB

The ASGRID command specifies that a ListOf property is
presented in a table, or grid. ASGRID must have an Edit Type
that is either ListOf or ParmListOf. Otherwise, Rational System
Architect emits a warning when you reopen the encyclopedia
and ignores the ASGRID keyword.

Example:

Definition "Use Case"
{ CHAPTER "Steps"
 PROPERTY "Use Case Steps" { EDIT COMPLETE ListOf "Use Case
Step" KEYED BY { "Package", "Use Case Name":Name, Name}
ASGRID LENGTH 1200 } }

Using ASGRID With Keyed Definitions

Key properties of a definition are not shown in a grid formed by
an ASGRID command. In the example above, each Use Case
Step’s package name or Use Case name is not shown in the
grid.

Limitation of ASGRID

You cannot use ASGRID in a LISTOF that refers to a definition
that is in a COMPLETE ListOf in another definition. So for
example, you can add a ListOf "Attribute" to a defintion but it
cannot be shown ASGRID. The maximum length of a property
that can be seen in the GRID is 400.

USRPROPS.TXT Keywords

3-8

ASGRID

(continued)
ASGRID COUNT_FIXED

The COUNT_FIXED keyword is used with the ASGRID keyword
to specify that the user cannot delete or insert rows to a grid.

See also KEY and KEYED BY and COUNT_FIXED keywords.

ASGUID

This keyword can only be used with text properties. It will
automatically populate a property with the value of “GUID”
property. This text property can then be used as a key property
instead of the actual GUID property. The ASGUID property
should be read only. When you re-open the definition the
ASGUID property will be filled in.

Example:

RENAME DEFINITION “User 1” to “MyDef”
DEFINITION “MyDef”
{
PROPERTY “MyProp”
{KEY EDIT Text LENGTH 100 ASUID READONLY}
Property “HIYA”
{EDIT Text Length 145}
}

ASPARMGRID The ASPARMGRID keyword was specifically created for use
with Rational System Architect’s data modeling, and works off of
specially created code. This keyword is found in
SAPROPS.CFG and should not be used by users in
USRPROPS.TXT.

USRPROPS Keywords

3-9

ASSIGN You may assign new symbol types or existing symbol types
(symbols that already exist in another diagram) to new or
existing diagram types. Symbol types may be added to diagram
types using the following syntax:

SYMBOL <symbol-type-name> [IN <diagram-type-name1>]
ASSIGN [TO] <diagram-type-name2>

Example:

SYMBOL “Organizatiional Unit” IN “Organization Chart”
{
ASSIGN TO “Enterprise Direction”
}

USRPROPS.TXT Keywords

3-10

AUDITID This keyword represents the characters entered in the Audit Id
dialog when the user first signs on to Rational System Architect.
AUDITID is an allowable keyword type which indicates that a
property contains the user's Audit ID. CHECKOUT AUDITID,
FREEZE AUDITID, INITIAL AUDITID, and UPDATE AUDITID
each have special meanings. Refer to each of these keywords,
listed separately in this table, for more information.

Note: Starting in Version 9.1 of Rational System Architect, the
INITIAL AUDITID (provided in a field called “Initial Audit”) and
UPDATE AUDITID (provided in a field called “Last Change
Audit”) are automatically included in the Access Data tab of
every definition.

Example:

DIAGRAM "Data Flow Gane & Sarson"
 {
 PROPERTY "Frozen by"
 { FREEZE AUDITID }

Other uses for the Audit Id might be found in any definition.

Example:

DEFINITION "X"
 {
 PROPERTY "Current Owner Name"
 { EDIT Text CHECKOUT AUDITID LENGTH 12 READONLY }
 }

USRPROPS Keywords

3-11

AUTOCREATE The AUTOCREATE command automatically creates a definition
behind the value that has been specified in a property, as soon
as you click the OK button to close the containing dialog. If you
do not use the AUTOCREATE keyword, then the value entered
into a property will remain undefined after you click the OK
button to close the containing dialog.

Example:

DEFINITION "Physical Database"
{ ..
 PROPERTY "Model"
{ KEY EDIT ONEOF "Project Data Model" AUTOCREATE RELATE BY
"is keyed by" READONLY }
..}

In the example above, the definition dialog of a Physical
Database definition contains a property called “Project Data
Model”. If you put a value in this field (for example,
“Reservations”), and then click OK to close the Physical
Database definition dialog, the “Reservations” Project Data
Model definition is automatically created in the encyclopedia.

See also INITIAL USER REQUIRED and OVERRIDABLE.

BEGIN This keyword indicates the beginning of the definition of a
property, or of the series of properties which make up the
definition of a diagram, symbol, or definition. You can also use
the following syntax: {.

See also keyword PROPERTY.

USRPROPS.TXT Keywords

3-12

BODY This is one of the arguments used in the ALIGN command. It is
used to align all controls one space to the right of the widest
label in that column. (Contrast this with the ALIGN OVER
keyword pair, which places the name over the property.)

Example:

Definition "My Definiition"
{
CHAPTER “My Chapter”
 LAYOUT { COLS 1 ALIGN BODY }
 PROPERTY "My Property 18"{ EDIT Text Length 10}
 PROPERTY "My Property 19"{ EDIT Text Length 10}
 PROPERTY "My Property 20"{ EDIT Text Length 10}
 PROPERTY "My Property 21"{ EDIT Text Length 10}
 PROPERTY "My Property 22"{ EDIT Text Length 10}
 PROPERTY "My Really Long Property 23"{ EDIT Text Length 10}
}

In the example above, the control for “My Really Long Property
23” is a text box placed one space to the right of the label. All
other text-box controls for other properties on the dialog are
lined up with this control.

Note – ALIGN BODY used to put all controls one space to the
right of the label, but it was subsequently changed to be the
same as ALIGN LABEL.

See also keywords OVER, ALIGN, TAB, LABEL, and JUSTIFY.

USRPROPS Keywords

3-13

BOOLEAN Appears in a Definition dialog as a check box. It has one of
two values: True (T) or False (F).

Example:
In the following example, the user is allowed to turn on or off the
Hierarchical Numbering features on an IDEF0 diagram by
selecting true or false.
DIAGRAM "IDEF0"
 {
 PROPERTY "Hierarchical Numbering"
 { EDIT Boolean LENGTH 1 DEFAULT "F" }
..
}

USRPROPS.TXT Keywords

3-14

BROWSER

(Explorer)

Specifes whether a property and its value shows up in the Properties
box of Rational System Architect’s Explorer (browser) when the
respective diagram, symbol, or definition is selected in the Explorer.

The following explorer control statements are permitted (the
word ‘object’ is used to mean a Diagram, Symbol, or Definition):

Within the Specification of a Property:

• BROWSER {SHOW}: Requires the explorer to display
the value of that property when displaying the object
containing that property.

Within the Specification of an Object but Not Within the
Description of a Property:

• BROWSER {OMITKEY}: Requires the explorer to not
display key properties of the object under conditions in
which it otherwise would.

• BROWSER {OMITTYPE}: Requires the explorer to not
display the type of the object under conditions in which
it otherwise would.

Not Within the Specification of an Object:

• BROWSER {OMITKEY}: Requires the explorer to not
display key properties of any object under conditions in
which it otherwise would.

• BROWSER {OMITTYPE}: Requires the explorer to not
display the type of any object under conditions in which
it otherwise would.

The term “under conditions in which it otherwise would” is used
above because the explorer often does not display some (or all)
key properties – when the object is being displayed subordinate
to one of its key objects - and often does not display the type –
when it is being displayed subordinate to a type header.

USRPROPS Keywords

3-15

BROWSER

(Explorer

continued)

 Example 1:
DEFINITION "Association End"
{
PROPERTY "Package" { KEY EDIT OneOf "Package" RELATE BY "is
keyed by" READONLY BROWSER { SHOW }}
..}

In the example above, the value of the package property is
shown in the explorer even though it is normally not shown.

Example 2:
DEFINITION "Class Attribute"
{
 BROWSER { OMITTYPE }
..}

In the example above, a class attribute is a definition of type
“Class Attribute”. By default, this would be shown in the
explorer, which would be a bit redundant and might be
considered visually annoying. Without the BROWSER
(OMITTYPE) command being used, the explorer would display
attributes shown in the diagram below.

Using the BROWSER {OMITTYPE} command makes the
explorer display an attribute as shown in the diagram below.

USRPROPS.TXT Keywords

3-16

Example 3:
DEFINITION "Association"
{
 BROWSER { OMITKEY }
 LAYOUT { COLS 1 ALIGN OVER TAB }
 CHAPTER "Roles"
 PROPERTY "Association GUID" { KEY EDIT Text LENGTH 64
INVISIBLE READONLY}
 PROPERTY "Class Roles" { EDIT COMPLETE ListOf "Association
End" KEYED BY { "Association GUID":"Association GUID",
"Association":"Name", "Package" QUALIFIABLE, "Class"
QUALIFIABLE, "Role GUID" QUALIFIABLE, "Name" }
 RELATE BY "uses" LENGTH 4096 ASGRID COUNT_FIXED
 BROWSER { SHOW } }
..
}

 In the example above, the value of the property “Class Roles” is
displayed in the explorer (since the classes that an association
attaches to is important information to know), even though it
normally is not shown.

USRPROPS Keywords

3-17

BY An often used keyword used as shown in the following
expressions: DEFINED BY, RELATED BY, RELATE BY, and
KEYED BY. For more information, refer to the specific keyword
combination.

Example:

DEFINITION "Column"
{..
 PROPERTY "Database Name"
 { KEY EDIT OneOf "Database" RELATE BY "nothing" }
 ..
}

USRPROPS.TXT Keywords

3-18

CHAPTER Creates tabs in a dialog. Each Chapter statement corresponds
to a tab. The syntax is as follows:

CHAPTER <chapter_name>

The Chapter statement does not call for opening or closing
brackets to group the items in the tab. All items that fall under a
Chapter statement are grouped in that tab. The next grouping is
created by the next Chapter statement.

Example:

CHAPTER "Screen Painter properties"

Modifying the Name of a Tab (Chapter):

To change the name of a CHAPTER via USRPROPS.TXT, you
use the LABEL command.

Example:

The SAPROPS file provides a Nested Classes tab for a Class
definition:
DEFINITION "Class"
 { CHAPTER "Nested Classes"

 …
 }

You may relabel the CHAPTER “Nested Classes” to “Fred”
using the LABEL command in USRPROPS.TXT:
DEFINITION "Class"
 { CHAPTER "Nested Classes" LABEL "Fred"
 }

USRPROPS Keywords

3-19

CHECKOUT Displays information concerning the checking out of an object,
such as the AUDIT ID of who checked it out, or the DATE or
TIME that it was checked out. The displayed fields are always
READONLY. Values are automatically kept track of by Rational
System Architect, but in order to view the values in a dialog, you
must add properties with the following respective
characteristics:

CHECKOUT Auditid
 CHECKOUT Date
 CHECKOUT Time

Example:

DIAGRAM "Data Flow Gane & Sarson"
 {
 PROPERTY "Checked out by"
 { CHECKOUT AUDITID }
 PROPERTY "CheckOut Date"
 { CHECKOUT DATE }
 PROPERTY "CheckOut Time"
 { CHECKOUT TIME }
 }

Search on Access Control in the on-line help for more
information on checking objects in and out.

See also keyword FREEZE.

COLS, COLUMNS Determines the number of columns into which a group of
properties are placed in a Diagram, Symbol, or Definition dialog.

Example:

DEFINITION "Referent"
{
LAYOUT { COLS 2 ALIGN OVER TAB }
...}

USRPROPS.TXT Keywords

3-20

COLUMN_SCRIPT COLUMN_SCRIPT calls a script written in SA Basic. The
column scripts are used for the behavior of columns in tables in
a physical data model. The action taken by the script works
against each column in the list.
By convention, the function itself is named with one of the
following prefixes:

• fmtxxx – The function itself exists in hard code and
cannot be modified. Most functions in SAPROPS.CFG
are this way. Hard-coding the function is done to make
Rational System Architect’s overall response faster.

• _fmtxxx – Exists in the fmtscript.bas file within Rational
System Architect’s main executable directory.

Creating Your Own Script

For information on how to create your own script, see the
SCRIPT keyword.

Example:

 DEFINITION "Table"
{
 PROPERTY "Description"
{
 ZOOMABLE EDIT ListOf Definition "Column" FROM "Data Element"
 KEYED BY {"Database Name","Owner Name","Table
Name":"Name","Name"} LENGTH 2000
 DISPLAY { FORMAT Key LEGEND "Key Data" }
 DISPLAY { FORMAT NonKey LEGEND "Non-Key Data" }
 DISPLAY { FORMAT COLUMN_SCRIPT FmtERAttr LEGEND
"Physical Display" }
} ..}

FmtERAttr returns values for attributes in Entities of Entity
Relation diagrams or Columns of Tables in Physical diagrams.

FmtERAttr returns ID, NAME, ADDRESS, STREET, CITY,
STATE, FIRST_5_DIGITS, ZIP CODE, and LAST_4_DIGITS.

COLUMN_SCRIPT

(continued)

USRPROPS Keywords

3-21

See also SCRIPT, COMPONENT_SCRIPT, VALUESCRIPT,
and FORMAT keywords.

COMPLETE Causes the referenced definition to belong to the referencing
definition, so the referenced definition cannot be referenced by
another definition, and can only be edited from within the
containing referencing definition.

An example is an attribute in an entity, which completely
belongs to an entity (and does not belong to another definition),
and can only be opened from within the entity definition (you
cannot open an attribute definition directly in Rational System
Architect’s explorer, for instance).

Example:

DEFINITION "Entity"
{
 PROPERTY "Attributes"
 {ZOOMABLE EDIT COMPLETE ListOf "Class Attribute" KEYED BY
{"Class Name":"Name", Name} ASGRID LENGTH 4096 DISPLAY {
FORMAT List } }
..
}

COMPONENT_

SCRIPT
Calls a function written in Basic, using function calls to Rational
System Architect that are included in what is referred to as SA
Basic. The component scripts are used for ListOf and
ExpressionOf lists. The action taken by the script works against
each item in the list. For instance, the syntax

USRPROPS.TXT Keywords

3-22

COMPONENT_SCRIPT fmtomtattr returns all attributes and
their corresponding C- storage types, separated by a colon (:).
By convention, the function itself is named with one of the
following prefixes:

• fmtxxx – The function itself exists in hard code and
cannot be modified. Most functions in SAPROPS.CFG
are this way. Hard-coding the function is done to make
Rational System Architect’s overall response faster.

• _fmtxxx – Exists in the fmtscript.bas file within Rational
System Architect’s main executable directory.

Creating Your Own Script

For information on how to create your own script, see the
SCRIPT keyword.
Explanation of Existing Scripts:

fmtUMLAttr returns all attributes and their corresponding types,
separated by a colon.
fmtOMTOperation returns all operations and their
corresponding C-storage types, enclosed within parenthesis
(type).
FmtOMTObjInstAttr returns all attributes for the class that an
object instantiates.
FmtOMTActivity returns the script do: and the name of the
activity for all activities listed in a state definition.
FmtOMTStateActions returns the name of the internal action
for all internal actions listed in a state definition.

USRPROPS Keywords

3-23

Example (using fmtomattr):

Definition “Class” {
 PROPERTY "Attributes"
 { PROPERTY "Attributes" {ZOOMABLE EDIT COMPLETE ListOf
"Class Attribute" KEYED BY {"Package", "Class Name":"Name", Name
} LENGTH 4096 ASGRID DISPLAY { FORMAT

COMPONENT_SCRIPT _FmtNewUMLAttr LEGEND "$$FORCE$$"}
LABEL "Attributes" }
 }

CONTROL The Control keyword is equivalent to the Property keyword,
when used with TESTPROC’s to set up a switch within a
definition.

There are two ways to specify that a property appears in a
definition dialog depending on the value of a switch. You may
use #ifdef’s, which act upon values that you set for the
encyclopedia in the Encyclopedia Configuration dialog (for
example, setting the language type of the encyclopedia to Java
or C++). The Encyclopedia Configuration dialog actually sets
values in the sadeclar.cfg file.

You may also specify that a PROPERTY appears in a dialog
(and what its initial value is) based on a switch that is itself a
property (TESTPROPERTY) within the definition dialog. For
example, you may specify within an entity that it’s DBMS type is
Oracle or SQL Server. Subsequent properties will appear or not
appear in the definition, and have certain default values, based
on the value that you set for DBMS type. You use the
TESTPROC keyword to specify the TESTPROPERTY switch.
You use the PROPERTY keyword the first time you specify a
particular property in the definition, and the Control keyword for
every other occurance of that property in the definition. The
REFPROP keyword is used to specify what PROPERTY each
CONTROL is referencing. For this reason, the CONTROL and
REFPROP keywords are often used in conjunction with
TESTPROC's.

To summarize, for a CONTROL to be used, there must be an
initial reference to the PROPERTY that the CONTROL
references, at the top of the definition. The REFPROP keyword
is used in conjunction with the CONTROL keyword.

USRPROPS.TXT Keywords

3-24

Example:

Definition "Index"
{
CHAPTER "Modeling Properties"
{ TESTPROC TestPropertyNotValue TESTPROPERTY "DBMS"
TESTSTRING { "ORACLE 10g" } }
PROPERTY "Primary Key" {EDIT Boolean LENGTH 1 DEFAULT "F"
READONLY }
PROPERTY “Unique” {EDIT Boolean LENGTH 1 VALUESCRIPT
ProcessIndexUnique DEFAULT "F" }
PROPERTY “Clustered” {EDIT Boolean LENGTH 1 DEFAULT "F" }
..
CHAPTER "Modeling Properties "
 { TESTPROC TestPropertyValue TESTPROPERTY "DBMS"
TESTSTRING { "ORACLE 10g" } }
CONTROL "Primary Key" { REFPROP "Primary Key" }
CONTROL “Unique” { REFPROP "Unique" }
CONTROL “Clustered” {REFPROP "Clustered"}
..
 }

In the example above, the REFPROP keyword is used in
conjunction with the CONTROL keyword to specify that the
“Primary Key”, “Unique”, and “Clustered” properties are
provided to the Index definition when Oracle 10g is selected as the
DBMS – these properties will be exactly the same as their
referenced property.

USRPROPS Keywords

3-25

COPY

PROPERTIES

FROM

This command enables you to copy properties into the current
definition type from other definition types. It enables you to
consolidate similar concepts into a single definition type. This
applies to definitions only. The syntax is as follows:

DEFINITION <object-1>
{
…
 COPY PROPERTIES FROM <object 2> {[, <object n>]}…

Example:

DEFINITION "Elephant"
{
…
 CHAPTER "Properties copied from Change Request"
 COPY PROPERTIES FROM "Change Request"
 CHAPTER "Properties copied from Dependency and Node"
 COPY PROPERTIES FROM "Dependency", "Node"
…
}

The copy is performed at that point in the input where the copy
statement is encountered. If, in the above example, properties
are added to Change Requests, Dependencies or Nodes later
in the property file(s), or existing properties are changed later in
the property file(s), the additions and changes are not copied.

USRPROPS.TXT Keywords

3-26

COPYSCRIPT This keyword is used to specify an SABasic script to be invoked
for a specific property when a copy of the definition is made.

Creating Your Own Script

For information on how to create your own script, see the
SCRIPT keyword.

Example:
DEFINITION "Entity"
{
CHAPTER "Attributes"
 PROPERTY "Description"
 { EDIT COMPLETE LISTOF "Attribute" FROM "Data" KEYED BY
{Model, "Entity Name":"Name", "Name"} RELATE BY "uses" ASGRID
 COPYSCRIPT OnCopyEntityDesc EDITCLASS
SACPropertyAttributeGrid
..}

USRPROPS Keywords

3-27

COUNT_FIXED The COUNT_FIXED keyword is used with the ASGRID keyword
to specify that the user cannot delete or insert rows to a grid.
The number of rows is fixed.

Example:

DEFINITION "Association"
{
 BROWSER { OMITKEY }
 LAYOUT { COLS 1 ALIGN OVER TAB }
 CHAPTER "Roles"
 PROPERTY "Association GUID" { KEY EDIT Text LENGTH 64
INVISIBLE READONLY}
 PROPERTY "Class Roles" { EDIT COMPLETE ListOf "Association
End" KEYED BY { "Association GUID":"Association GUID",
"Association":"Name", "Package" QUALIFIABLE, "Class"
QUALIFIABLE, "Role GUID" QUALIFIABLE, "Name" }
 RELATE BY "uses" LENGTH 4096 ASGRID COUNT_FIXED
 BROWSER { SHOW } }

In the example above, an association between classes has a
row in the grid for each class that the association attaches to
(normally two, but can be three or more if additional classes are
attached to the association line – this behavior is hard-coded in
the software). Because of the COUNT_FIXED keyword, users
cannot add to or delete rows in the grid.

Contrast this with other grids, for example the Use Case Step
grid, wherein users may add new steps or delete steps from the
grid.

DATA This is not a keyword. It is a special word used as an argument
of the ONEOF, LISTOF, and EXPRESSIONOF commands,
providing a reference to data elements and data structures,
which make up Rational System Architect’s data dictionary.

USRPROPS.TXT Keywords

3-28

DATE This keyword is an edit type whose length must be 10. The
graphic display is based on the date format set in Windows.
DATE is also an allowable field type which indicates that a
property contains a date stamp in the notation appropriate to the
time format defined to Windows.

CHECKOUT DATE, FREEZE DATE, INITIAL DATE, and
UPDATE DATE each have special meanings.

Example 1:

DIAGRAM "Data Flow Gane & Sarson"
 {
 PROPERTY "Freeze date"
 { FREEZE DATE }

Other uses for the DATE might be found in any definition.

Example 2:

DEFINITION "X"
 { PROPERTY "Creator Date"
 { EDIT Text INITIAL DATE LENGTH 12 READONLY }
 }

DEASSIGN The keyword DEASSIGN is used for removing symbols from a
diagram type.

Example:

SYMBOL "Message Flow" in "Business Process"
{
DEASSIGN from "Business Process"
}

DEFAULT The value assigned by Rational System Architect to a property
which may be overridden by the user. On the graphic screen,
the default value is initially displayed in a text box, or
determines whether a check box is initially toggled on or off.

Example:

PROPERTY "Not a table"
 { EDIT Boolean LENGTH 1 DEFAULT F }

USRPROPS Keywords

3-29

DEFINED BY This keyword associates a definition to a symbol. It also
enables you to reassociate a symbol to a different definition.

Meaning 1: If you add new symbols to an encyclopedia in
USRPROPS.TXT, you must specify what definition type they
are associated with using this keyword. If a new symbol
specified in USRPROPS.TXT is missing this clause, Rational
System Architect will give a parsing warning when opening the
encyclopedia, and default to the null definition for the symbol.

Example 1:

RENAME DIAGRAM "User 1" to "My Diagram"
RENAME SYMBOL "User 1" to "Direction"
RENAME DEFINITION "User 1" to " Direction"

SYMBOL "Direction"
{
 DEFINED BY " Direction"
 ASSIGN TO "My Diagram"
}

In the example above, a new diagram type, symbol type, and
definition type have been specified in USRPROPS.TXT. The
DEFINED BY keyword is used to specify that the symbol
“Direction” is defined by the “Direction” definition. In addition,
the symbol is assigned to the “My Diagram” diagram. (Note:
You could also specify a definition statement for the new
definition, “Direction”, but this is not mandatory. If not specified,
the new definition will simply have a default properties “Name”
and “Description”.)
Meaning 2: The DEFINED BY keyword also enables you to
define a symbol by a different definition than that specified in
SAPROPS.CFG. When using this keyword to reassociate a
symbol to a different definition, be sure to specify what diagram
the symbol you are referring to is represented in (for example,
Symbol “Class” in “Class” versus Symbol “Class” in
“Component” – in the first case we specify we are redefining

USRPROPS.TXT Keywords

3-30

 the class symbol definition in a Class diagram; in the later case,
the class symbol in a Component diagram.)

Example 2:

SYMBOL Process IN "Data Flow Gane & Sarson"
{
 DEFINED BY "Control Transform"
}

In the example above, the Process symbol in a “Data Flow
Gane & Sarson” diagram is now defined by “Control Transform”.
Normally, it is defined by “Process”.

DEFINITION This keyword is the first word in a block in which the properties
of a DEFINITION, as opposed to a DIAGRAM or a SYMBOL,
are listed.

Example:

DEFINITION "Data Element"
 {
 PROPERTY "Length"
 { EDIT number LENGTH 2 }
 .
 .
 .
 }
See also keywords DIAGRAM and SYMBOL.

DEFINITION

REFERENCED IN

See ‘OF DEFINITION REFERENCED IN’.

USRPROPS Keywords

3-31

DEPICT LIKE The DEPICT LIKE keyword combination is used to specify how
a symbol is depicted on a diagram. You may use this keyword
combination when creating a new symbol, and specifying what it
should look like on a diagram. You may specify that it looks like
a symbol on another diagram.

You may use the DEPICT LIKE keyword combination with
‘node’ symbols and with ‘line’ symbols.

Example (Node Symbol):
SYMBOL "Communications Connection"
{
 ASSIGN TO "OV-01 Highlevel Op. Concept"
 ..
 DEPICT LIKE "Event Flow" IN "Data Flow Ward & Mellor"

Example (Line Symbol):
SYMBOL "Need Line"
{
 PROPERTY "From Operational Node"
 {EDIT ONEOF "Operational Node" READONLY INVISIBLE}
 PROPERTY "To Operational Node"
 {EDIT ONEOF "Operational Node" READONLY INVISIBLE}
 DEPICT LIKE "Transition" IN "OMT State"
 DEFINED BY "Need Line"
 ASSIGN TO "OV-02 Op. Node Connectivity"
}

USRPROPS.TXT Keywords

3-32

DEPICTIONS Identifies how a symbol can be represented by an image file
that you supply. You may depict a symbol with a bitmap or
metafile. You may specify how this symbol is depicted on the
diagram workspace using the DEPICTIONS keyword combined
with the DIAGRAM keyword. You may also specify how the
symbol is depicted in the toolbox and Draw menu using the
DEPICTIONS keyword combined with the MENU keyword. The
syntax is as follows:

 SYMBOL <symbol-type-name>
{ ...
DEPICTIONS { DIAGRAM <depiction-file> }
DEPICTIONS { MENU <depiction-file> }
...}

where <depiction-file> is the name and full path of a bitmap or a
metafile.

Example:

Rename Symbol "User 3" To "Radar
SYMBOL "Radar"
{ASSIGN To "Wireless Network"
DEPICTIONS { DIAGRAM "C:\Program Files\IBM\pictures\radar.bmp" }
DEPICTIONS { MENU "C:\Program
Files\IBM\pictures\radartoolbar.bmp" }}

You may also use the DEPICTIONS keyword within a list, so that the
symbol is depicted in different ways based on the value of the list that is
selected.
Example:

List "Class Stereotypes"
{
 Value "actor" DEPICTIONS {DIAGRAM images\slctact.wmf MENU
images\slctact.bmp}
 Value "boundary" DEPICTIONS { DIAGRAM images\slctbndy.wmf
MENU images\slctbndy.bmp}
..}
 DEFINITION “Class” {
PROPERTY "Stereotype" { EDIT Text LIST "Class Stereotypes"
INIT_FROM_SYMBOL Default "" LENGTH 20 } ..}

USRPROPS Keywords

3-33

DIAGRAM The DIAGRAM command is used in two different ways.

Specifying Diagram Properties:

The DIAGRAM command is used as the first word in a block in
which the properties of a diagram, as opposed to a
DEFINITION or a SYMBOL, are listed.

Example:

DIAGRAM "Booch Class"
 { PROPERTY "DGX File Name"
 { EDIT Text LENGTH 255 }
 PROPERTY "Notes"
 { EDIT Text LENGTH 4000 }
 }

See also keywords DEFINITION and SYMBOL.

Used with DEPICTIONS Command:

References the graphic used to represent a symbol on the
diagram workspace, as compared to on the Draw toolbar or
menu.

Example:

SYMBOL "Satellite"
{ASSIGN To "Wireless Network"
DEPICTIONS { DIAGRAM "C:\Program
Files\IBM\pictures\satellite.bmp" }
DEPICTIONS { MENU "C:\Program
Files\IBM\pictures\satellitetoolbar.bmp" }}

USRPROPS.TXT Keywords

3-34

DISPLAY Causes a property and its value to be displayable on a diagram
symbol. There is a limit of 37 display statements for one
definition.
The syntax is as follows:

DISPLAY { FORMAT [STRING | LIST | KEY | NONKEY |
COMPONENT_SCRIPT | COLUMN_SCRIPT | SCRIPT]
LEGEND " (how the block is labeled in the symbol) " }
You have the option of specifying one of the following FORMAT
keywords:

STRING: Causes the values of the property to appear on the
symbol exactly the way they are typed. See the STRING
keyword for an example.

LIST: Causes items to be displayed on the symbol in a list –
each whitespace character causes a new line, unless the
whitespace falls within double quotes. See the LIST keyword for
more information.

KEY: Use this keyword for properties designated as keys. They
are displayed in a separate section of the symbol. See the KEY
keyword for an example and further information.

NONKEY: You may use this keyword for non-key properties.
They will be displayed in a separate section of the symbol. This
keyword was originally used for entities and tables in Rational
System Architect’s data modeling support. See the NONKEY
keyword for an example.

COLUMN_SCRIPT: See COLUMN_SCRIPT keyword.

COMPONENT_SCRIPT: See COMPONENT_SCRIPT keyword.

SCRIPT:. See SCRIPT keyword.

USRPROPS Keywords

3-35

DISPLAY

(continued)

Within the quotes after the LEGEND keyword, you specify how
the block is labeled in the symbol. Your choices are as follows:

LEGEND “<Your Text>”: Whatever text you place in the
quotation marks will be displayed on the symbol above the
entry, only if there is a value for the entry.

LEGEND "": Displays a straight line without any words, only if
there is a value for the entry.

LEGEND "$$FORCE$$":Displays a horizontal line above the
entry on the symbol. This line acts as a divider. The
“$$FORCE$$” keyword is different than simply using “ “, in that
it forces display of a horizontal line even if the property display
is suppressed through the display mode dialog.

LEGEND “$$NONE$$”: Does not display a horizontal line
above the entry on the symbol, whether or not there are values
for the entry. This line normally acts as a divider.

LEGEND “$$VFORCE$$”: Enables you lay out properties from
left to right inside symbols, and draws vertical lines between
them. See VFORCE keyword.

LEGEND “$$VNONE$$”: Enables you to lay out properties
from left to right, but does not provide a dividing line. See
VNONE keyword.

Example:

DEFINITION "Organizational Entity"
 { PROPERTY "Incumbent Name"
 { EDIT Text LENGTH 100 HELP "Name of person
 currently in position"
 DISPLAY { FORMAT String LEGEND "" } }

EDIT In conjunction with the keyword BEGIN (or {), indicates the
beginning of the definition of a property. The keyword EDIT
carries the meaning, "This is the beginning argument."

Example:

SYMBOL "Process" IN "Data Flow Gane & Sarson"
 { PROPERTY "Short Description"
 { EDIT Text LENGTH 1500 }
 PROPERTY "Number" { EDIT Numeric LENGTH 4 }

USRPROPS.TXT Keywords

3-36

EDIT COMPLETE See the COMPLETE keyword.

EDITCLASS
Do not use this keyword. This keyword is a special keyword
developed specifically for a certain situation in Rational System
Architect, inheritance of Data Element properties by an Attribute
in an Entity. You will see this command in SAPROPS.CFG used
for this situation. This is the only situation that this keyword can
be applied to. Use in other situations may cause errors.

EDIT URLS
You may specify that a listof property is designated as one
which can reference external documents. The command
causes buttons to be presented at the bottom of the listof
property -- an Open button, a Browse Externally button, and a
Browse Internally button. You may use these buttons to browse
and select external documents, or type in external
hyperlinks, or browse the internal Files table of the
encyclopedia's database, or open an external or internally
referenced document.

Syntax:

PROPERTY property name { EDIT URLS }

Restrictions:

SA enforces the following restrictions on URLS property -- It
may not be Key.

Example:

Definition "Use Case"
{
PROPERTY "Reference Documents" { EDIT URLS }
}

USRPROPS Keywords

3-37

END Indicates the end of the specification of a property, or of the
group of properties making up the definition of a diagram,
symbol, or definition. It is combined with the BEGIN statement
to enclose the specification. Instead of the BEGIN and END
statements, you can also use opening and closing braces, { }

Example:

PROPERTY “<property_name>”
 BEGIN EDIT <edit_type> <property_parameter>
 END

EXPRESSION Indicates that the value of the definition must be entered as a
series of strings separated by a + sign, or white space.

Example:

VendorName +
VendorCity +
VendorState

See also keyword EXPRESSIONOF which has replaced this
keyword.

USRPROPS.TXT Keywords

3-38

EXPRESSIONOF EXPRESSIONOF allows you to express references to objects
using complex operators and delimiters. EXPRESSIONOF is
normally used with the special argument DATA, which refers to
data elements and data structures – in other words,
EXPRESSIONOF DATA. This keyword combination provides a
text box within which definition values are entered as a series of
strings. The division between one definition value and the next
is determined by white space. By convention, a + sign is used
to divide the individual definition values, but it is not required.

Example:

DEFINITION "Control Flag"
{
 PROPERTY "Description"
 { EDIT EXPRESSIONOF DATA LENGTH 4074 LABEL "Data" }
}

See also keywords ONEOF and LISTOF, and refer to Chapter
2, section on ExpressionOf, for more information and a list of
operators and delimiters that can be used.

USRPROPS Keywords

3-39

fmtxxx or_fmtxxx These two name prefixes are used, by convention, at the
beginning of the name of any function called by the SCRIPT,
COLUMN_SCRIPT, or COMPONENT_SCRIPT keywords. The
function itself (for example, _fmtUMLAttr) usually provides a
special formatting display of a property value (such as an
attribute and all of its properties) on the symbol. The naming
convention is as follows:

• _fmt (for example, _fmtUMLAttr): The function itself
exists in hard code and cannot be modified. Most
functions in SAPROPS.CFG are this way. Hard-coding
the function is done to make Rational System
Architect’s overall response faster.

• fmt (for example, fmtUMLAttr): Exists in the
fmtscript.bas file within Rational System Architect’s
main executable directory.

Example:

DEFINITION “Class”
PROPERTY "Attributes" {ZOOMABLE EDIT COMPLETE ListOf "Class
Attribute" KEYED BY {"Package", "Class Name":"Name", Name }
 LENGTH 4096 ASGRID DISPLAY { FORMAT COMPONENT_SCRIPT
_FmtNewUMLAttr LEGEND "$$FORCE$$"} LABEL "Attributes" }

In the example above, a script is called that is used to display
attributes on a class diagram in a particular fashion (for
example, if an attribute’s access property is ‘public’, a ‘+’ mark
is placed before the attribute on the class symbol, etc.

Creating Your Own Functions

To create your own functions, see the SCRIPT keyword.

See also the DISPLAY, FORMAT, SCRIPT,
COLUMN_SCRIPT, COMPONENT_SCRIPT, and
VALUESCRIPT keywords.

FORCE Actually the $$FORCE$$ keyword, used with the DISPLAY
keyword.
For information, see the DISPLAY keyword.

USRPROPS.TXT Keywords

3-40

FORMAT Indicates the way data is to be presented for a specific
displayable property.
Example:

PROPERTY "Description"
 { EDIT ExpressionOf "Data"
 Display { FORMAT List LEGEND "Data" } }

Refer to DISPLAY keyword for more information.

FREEZE Displays information concerning the freezing of an object, such
as the AUDIT ID of who froze it, or the DATE or TIME of
freezing. The displayed fields are always READONLY. Values
are automatically kept track of by Rational System Architect, but
in order to view the values in a dialog, you must add properties
with the following respective characteristics:

FREEZE Auditid
 FREEZE Date
 FREEZE Time

Example:

DIAGRAM "Data Flow Gane & Sarson"
 {
 PROPERTY "Frozen by"
 { FREEZE Auditid }
 PROPERTY "Freeze Date"
 { FREEZE Date }
 PROPERTY "Freeze Time"
 { FREEZE Time }
 }

Search on Access Control in the on-line help for more
information on freezing objects.

See also keyword CHECKOUT.

USRPROPS Keywords

3-41

FROM_CHOICES_O

NLY
Restricts a user to only select a definition from a choices
list, without being able to type in a new definition. A
message box appears prompting a user to select only from
the "Choices" list. This is used with ListOf and OneOf.

For example:
DEFINITION "Product"
{
CHAPTER "Technical Reference Model"
PROPERTY "Status" {Zoomable EDIT Oneof "Product
Status"}
Group "Involvements"{
LAYOUT { COLS 2 ALIGN OVER }
PROPERTY "Lead Proponent" {Zoomable EDIT Oneof
"Organizational Unit" FROM_CHOICES_ONLY}
PROPERTY "Others Involved" {Zoomable EDIT Listof
"Organizational Unit" FROM_CHOICES_ONLY}
}
}

USRPROPS.TXT Keywords

3-42

GROUP Used to produce a group box with specific layout parameters,
such as a series of radio buttons, within which two or more
properties are located.

Example 1:

 GROUP "Referential Integrity"
 {
 LAYOUT { ALIGN OVER TAB COLS 3 }
 PROPERTY "Parent Delete"
 { EDIT Text LISTONLY LIST RDC
 LENGTH 15 }
 …
 } REM "End of Group Referential Integrity"

You cannot modify any GROUP name that is already predefined
by Rational System Architect in the SAPROPS file.

Example 2:

DEFINITION "Class Attribute"
 { CHAPTER "Class, Source Data, Desc."
 GROUP "Source Data" {
 LAYOUT { COLS 2 ALIGN OVER TAB } PROPERTY
 "Description"
 { EDIT Text LENGTH 1500 }

In the third line of the example above, if you try to change
'GROUP "Source Data"' to 'GROUP "Original Data" in the
USRPROPS.TXT file, your change will have no effect. The text
contained in the SAPROPS GROUP entry, "Source Data" will
not be overridden. It will continue to be the Class Attribute
Group display text.

USRPROPS Keywords

3-43

HELP This is the string that is displayed on the status line in the lower

left-hand corner of a Diagram or Definition dialog when a
given property is selected.

Syntax:

HELP "<text_string>"

Example:

PROPERTY Length
 { EDIT Numeric LENGTH 2 MIN 1 MAX 99
 HELP "Length of this field"
 }

USRPROPS.TXT Keywords

3-44

HETEROGENEOUS

(ONEOF, LISTOF)

Enables a single property to refer to definitions of more than
one type. (A normal list references definitions of a single type.)
The HETEROGENEOUS keyword is used to modify either the
ONEOF or the LISTOF keyword.

For example, when you click on the Choices button of a class
list, only “class” definitions are provided to choose from. If you
click on the Choices button of a heterogeneous list, you are
provided with various types of definitions that you have
specified in the Heterogeneous list clause, such as “class”,
“process”, “entity”, etc.

Syntax for ONEOF:

PROPERTY property name { EDIT HeterogeneousOneOf [
class] type-1 { [, type-n] } … .etc. }

 Syntax for LISTOF:

PROPERTY property name { EDIT HeterogeneousListOf [
class] type-1 { [, type-n] } … .etc. }

Restricitons
There are certain restrictions for a Heterogeneous list property.
It cannot also be one of the following (in other words, you
cannot use any of the following keywords along with the
HETEROGENEOUSLISTOF or HETEROGENEOUSONEOF
keyword in the same property):

• The property may not be KEY.
• It may not contain a KEYED BY clause.
• It may not be COMPLETE.
• It may not have a FROM clause.
• It may not be ASGRID.
• It may not have a DEFAULT.
• It may not be INITIAL USER REQUIRED.
• It may not have a restriction (REFERENCED IN or

WHERE) clause.
• It may not have the INIT_FROM_SYMBOL attribution.
• No type name may be listed more than once

USRPROPS Keywords

3-45

Adding New Values to the List

Although most of the time users are expected to drag in values
into a Heterogeneous list from the Select and Drag browser
provided by clicking on the Choices button, users may add new
values to the heterogeneous list. However, to add new values
into a Heterogeneous list, users must enter the new values with
their fully qualified name, in the following format:

ClassName:TypeName:FullyQualifiedName

Where:

• ClassName is the System Archtiect encyclopedia class
types – Diagram, Symbol, or Definition.

• TypeName is the specific name of the Diagram,
Symbol, or Definition type, such as Class (definition) or
Use Case Step (definition).

• Each part of the FullyQualifiedName is separated by
periods, so, for example, a Use Case Step, which is
keyed by its Use Case, which is keyed by its package,
would be entered as follows:

Definition:”Use Case Step”:”Package Name”.”Use Case
Name”.”Use Case Step Name”

Example:

 Definition " Procedure"
{
PROPERTY "Underlying Procedure" { EDIT
HETEROGENEOUSLISTOF " Use Case","Class", "Method", "Use
Case Step" READONLY}

In the example above, the “Underlying Procedure” property of
the “Procedure” definition can be populated with definitions of
the type Use Case, Class, Method, and Use Case Step.

The user interface provided by the HETEROGENEOUSONEOF
or HETEROGENEOUSLISTOF keyword displays a column that
contains the name of each definition type, and the fully qualified
name of the particular definition dragged into the list.

USRPROPS.TXT Keywords

3-46

The key properties that qualify the name of a definition are
provided in the user interface, separated from each other by
periods (.). For example a Use Case Step is keyed to its
containing Use Case, which is keyed by its containing package.
In the HETEROGENEOUSONEOF or
HETEROGENEOSLISTOF field, a Use Case Step is
represented by “Package Name”.”Use Case Name”.”Use Case
Step Name”. If there are embedded spaces in the name of any
item, that item is enclosed in quotation marks. For example, in
the picture above, the Use Case Step “Approve Credit” is in the
Use Case Reservation_System, which belongs to the package
“Reserve Room”.

USRPROPS Keywords

3-47

 When you click on the Choices button for a Heterogeneous list,
all called for diagram, symbol, or definition types are presented,
with their type listed in brackets after their name.

The Properties window also presents values of a heterogeneous list.
You may drag on the borders of the Properties rows or columns to get
a full look at the values. Each value is preceded by its class type
(diagram, symbol, or definition), type name (ie, Use Case Step
definition), and value itself.

USRPROPS.TXT Keywords

3-48

HIDE DEFINITION Removes the referenced definition type from the New

Definition and Open Definition dialogs.

Syntax:

HIDE DEFINITION <definition name>

Example:

HIDE DEFINITION "SQL Server Table"

WARNING: You should exercise care when hiding definitions,
especially if they are used by symbols that you have made active by
choices in the Property Configuration dialog (Tools, Customize Method
Support). You may find yourself in a situation where you are drawing
symbols with no underlying definitions.

HIDE DIAGRAM Removes the referenced diagram type from the Diagram New
and Diagram Open dialogs.

Syntax:

HIDE DIAGRAM <diagram name>

Example:

HIDE DIAGRAM "Booch Process"

Note: Instead of using this keyword, a less drastic change is to
simply deselect the diagram type from the Property

Configuration dialog (select Tools, Customize Method
Support, Encyclopedia Configuration, and either toggle off the
method employing the diagram type or click the Advanced
button on the Property Configuration dialog and move the
diagram type from the “Selected Diagrams” to the “Available
Diagrams” list).

USRPROPS Keywords

3-49

HIERARCHICAL By default, user diagrams are networks (of symbols), but if this
keyword is included in a diagram type’s description, the diagram
type is treated as a hierarchical diagram. This means that all
node symbols assigned to it will have the capability of being
arranged in a hierarchy and other related hierarchical
functionality (such as hierarchical numbering) is supported.

The HIERARCHICAL keyword can only be used with user-
defined diagram types – it cannot be applied to existing diagram
types. In any other context it is ignored after a warning to the
user. (For information on how to create a new user-defined
diagram type, see RENAME DIAGRAM keyword.)

Example:

RENAME DIAGRAM “User 1” to “Zoo”
RENAME SYMBOL "User 1" to "Mammals"
RENAME SYMBOL "User 2" to "Reptiles"
RENAME DEFINITION “User 1” to “Mammal”
RENAME DEFINITION “User 2” to “Reptile”

SYMBOL "Mammals"
{ DEFINED by "Mammal"
 ASSIGN TO "Zoo" }

SYMBOL "Reptiles"
{ DEFINED by "Reptile"
 ASSIGN TO "Zoo" }

DIAGRAM "Zoo"
{HIERARCHICAL
PROPERTY "Hierarchical Numbering"
{ EDIT Boolean LENGTH 1 DEFAULT "T" }
PROPERTY "First Node Number"
{ EDIT Text Length 20 DEFAULT "1" }
}
The diagram created by the USRPROPS.TXT above will be
hierarchical in nature – it will be similar to an Organizational
Chart, etc.

IFDEF See #IFDEF command.

IFNDEF See #IFNDEF command.

USRPROPS.TXT Keywords

3-50

IN Establishes the context for the RENAME command when
applied to a symbol. This may also be used for DEPICT LIKE.

Examples:

For example, in order to rename an Application symbol:

#ifdef "Business Enterprise"
RENAME SYMBOL "Application" IN "System Architecture" TO
"My Symbol"
#endif
To make a symbol look like one in another diagram:

#ifdef "Business Enterprise"
SYMBOL "System" IN "System Context"
{
DEPICT LIKE "Process" IN "Data Flow Gane & Sarson"
}
#endif

INCLUDE

See #INCLUDE.

USRPROPS Keywords

3-51

INITIAL Used to stamp any diagram, symbol, or definition with the
AUDIT ID, DATE, and TIME of its creation. The value of this
field is never changed by Rational System Architect.

Variants:

INITIAL DATE

INITIAL TIME

INTIAL AUDITID

Starting in Rational System Architect V9, INITIAL DATE,
INITIAL TIME, and INITIAL AUDITID are provided by default in
the Access Data tab of each diagram or definition dialog. This is
hard-coded in the product – in other words, you will not find the
INITIAL keyword in each definition in SAPROPS.CFG, nor do
you need to add it to USRPROPS.TXT for new diagram or
definition types that you create.

Example:

DEFINITION "X"
{ PROPERTY "Creation Auditid"
 { EDIT Text INITIAL AUDITID LENGTH 12 READONLY }
}

See also UPDATE keyword.

USRPROPS.TXT Keywords

3-52

INIT_FROM_SYMBOL The INIT_FROM_SYMBOL keyword is used within a definition that
defines a symbol. It specifies that a property in the definition initially
inherits its value from a similarly named property in the symbol. This is
used in cases where a property must exist in both symbol and
definition, and should have the same value. A case where this is
necessary is in specifying user-provided metafiles for a symbol based
on a property such as Stereotype. The stereotype must be specified for
the symbol (because this is what drives how the symbol is represented
on the diagram) and in the corresponding definition.

Example 1:

LIST "Class Stereotypes"
{
 VALUE "actor" DEPICTIONS {diagram images\slctact.wmf menu
images\slctact.bmp}
 VALUE "boundary" DEPICTIONS {diagram images\slctbndy.wmf menu
images\slctbndy.bmp}
 VALUE "case worker" DEPICTIONS {diagram images\slctcwkr.wmf
 menu images\slctcwkr.bmp}
 }

SYMBOL "Class" in "Class"
{
PROPERTY "Stereotype" { INVISIBLE EDIT Text ListOnly List "Class
Stereotypes" DEFAULT "" LENGTH 20}..}

DEFINITION “Class”
{
PROPERTY "Stereotype" { EDIT Text LIST "Class Stereotypes"
INIT_FROM_SYMBOL Default "" LENGTH 20 } ..}

In the example above, the Stereotype property is declared in
both the specification of the class symbol and the class
definition. It must have the same value. The stereotype property
in the SYMBOL causes the drop-down display of possible
stereotype values to select from in Rational System Architect’s
Draw menu (which themselves are bitmaps specified by the
DEPICTIONS clause in the LIST statement). Once you select a
stereotyped class from the list in the Draw toolbar and place it
on the diagram, the class’s definition is created and its
stereotype property is automatically filled in by the stereotype
you have chosen for the symbol. Note that if you change this
value in the definition, it will change in the symbol.

USRPROPS Keywords

3-53

INIT_FROM_SYMBOL

(continued)

Note also that you do not see this stereotype value in the
symbol tab of the class because it has been made INVISIBLE.

Example 2:
DIAGRAM “Class”
{
PROPERTY "Programming Language" { EDIT Text Listonly LIST
"Programming Languages" Default "CORBA" LENGTH 30 INITIAL

USER REQUIRED }
}

SYMBOL "Class" in "Class"
{
PROPERTY "Package" { EDIT OneOf "Package" READONLY }
PROPERTY "Stereotype" { INVISIBLE EDIT Text ListOnly List "Class
Stereotypes" DEFAULT "" LENGTH 20}
PROPERTY "Programming Language" { INVISIBLE EDIT Text ListOnly
List "Programming Languages" DEFAULT "" LENGTH 30}
}

DEFINITION “Class”
{
PROPERTY "Package" { KEY EDIT OneOf "Package" RELATE BY "is
keyed by" READONLY}
PROPERTY "Stereotype" { EDIT Text LIST "Class Stereotypes"
INIT_FROM_SYMBOL Default "" LENGTH 20 }
PROPERTY "Programming Language" { EDIT Text ListOnly LIST
"Programming Languages" INIT_FROM_SYMBOL Default "CORBA"
LENGTH 30 INITIAL USER REQUIRED READONLY }
}

In the example above, the Programming Language property exists in
the diagram, and the Class symbol inherits the value of this property
from the diagram. The Class symbol’s definition also inherits the value
of this property through the symbol, because of the
INIT_FROM_SYMBOL keyword.

If a Class definition is created via the explorer, the required property
MUST be supplied at the time of its creation because of the INITIAL
USER REQUIRED keyword in the Class definition.

USRPROPS.TXT Keywords

3-54

INITIAL USER

REQUIRED

This keyword specifies that at the creation time of the modeling
element (either diagram, symbol, or definition), a value for the
property must be supplied. If you do not supply it, and try to
close the dialog by pressing OK, Rational System Architect will
give you a message that says “The xxx property must be
supplied.” You will not be able to click OK to close the dialog
and create the diagram, symbol, or definition. You will either
need to supply a value for the property, or cancel the dialog.

Example:

DIAGRAM "Activity"
{
 PROPERTY "Package" { EDIT OneOf "Package" RELATE BY "is part
of" INITIAL USER REQUIRED OVERRIDABLE }
 PROPERTY "Activity Model" { EDIT OneOf "Activity Model" ReadOnly
INITIAL USER REQUIRED } ..}

In the example above, both properties “Package” and “Activity
Model” must be filled in before you can click the OK button in
the diagram dialog when creating an Activity diagram.

Note that in the example above, the property “Package” is also
OVERRIDABLE, while the property “Activity Model” is not. The
OVERRIDABLE keyword only has meaning to symbols drawn
on this diagram that inherit values of the property from the
diagram.

Example 2:

Diagram “XML”
{..
PROPERTY "XML Schema" { Edit OneOf "XML Schema"
AUTOCREATE Relate By "is part of" INITIAL USER REQUIRED

OVERRIDABLE READONLY } ..}

In the example above, the READONLY keyword used in
conjunction with INITIAL USER REQUIRED keyword specifies
that the dialog cannot be closed unless a value is entered for
this property by the user, and that after the initial value is
supplied, the property becomes readonly and cannot be
changed by the user. OVERRIDABLE only has meaning to the
definitions inheriting this property value from the diagram.

USRPROPS Keywords

3-55

INITIAL USER

REQUIRED

(continued)

So the INITIAL USER REQUIRED keyword mandates that a
value for the XML Schema property is be supplied upon
creation of the diagram. The AUTOCREATE keyword
automatically creates a definition for any value entered into this
property. Therefore, when the user clicks OK to close the
Diagram dialog, a defined XML Schema definition is created.

See also OVERRIDABLE, READONLY, and AUTOCREATE
keywords.

USRPROPS.TXT Keywords

3-56

INVISIBLE Renders a property nonvisible in the graphic dialog without
deleting it. Invisible properties are used in situations where a property
is needed for a definition, but is meaningless to the user.

Example:

SYMBOL "Class" in "Class"
{
PROPERTY "Package" { EDIT OneOf "Package" READONLY }
PROPERTY "Stereotype" { INVISIBLE EDIT Text ListOnly List "Class
Stereotypes" DEFAULT "" LENGTH 20}
PROPERTY "Programming Language" { INVISIBLE EDIT Text ListOnly
List "Programming Languages" DEFAULT "" LENGTH 30}
}

DEFINITION “Class”
{
PROPERTY "Package" { KEY EDIT OneOf "Package" RELATE BY "is
keyed by" READONLY}
PROPERTY "Stereotype" { EDIT Text LIST "Class Stereotypes"
INIT_FROM_SYMBOL Default "" LENGTH 20 }
PROPERTY "Programming Language" { EDIT Text ListOnly LIST
"Programming Languages" INIT_FROM_SYMBOL Default "CORBA"
LENGTH 30 INITIAL USER REQUIRED READONLY }
}

In the example above, the Stereotype property is used with both
the Symbol and the Definition of a class. It must match. Users
may choose the stereotype property in the class, and that value
is automatically given to the symbol, where it is used to
determine how the symbol is displayed. However, the user does
not need to see the Stereotype property within the Symbol tab
of the Class definition, since it is already in the Class definition
dialog. To have it in both places would only confuse the user. It
is made invisible.
See also keyword VISIBLE.

USRPROPS Keywords

3-57

JUSTIFY This command is no longer used in SAPROPS.CFG or
USRPROPS.TXT. It will not cause an error if specified in
USRPROPS.TXT, it will simply be ignored by the
USRPROPS.TXT parser. It used to be one of the arguments of
the LAYOUT command. When used, it lined up all controls to
the edge of the right and left margin of the dialog page.

See also keywords LAYOUT and ALIGN.

KEY The KEY keyword is used to establish a property as a key. Keys
are used to determine the name space of modeling elements in
the encyclopedia. The KEY keyword also has a second usage –
it is one of the allowed arguments following the FORMAT
keyword in the DISPLAY command. For that latter usage, see
KEY (Used for Display).

By default, every modeling element in an encyclopedia is
distinguished by its class (whether it is a diagram, symbol, or
definition), its type (whether it is a UML Use Case diagram, a
BPMN Process diagram, etc), and its name (for example, the
Reservation_System Use Case diagram versus the
Human_Resource_System Use Case diagram). In addition to
these built-in defaults, you may also specify additional keys for
a definition modeling element – for example, a class attribute
definition is keyed by its containing class definition, and that
class’s containing package definition.

To use the KEY command, you specify it within the property that
you want to be a key of a definition. The KEY command may be
placed almost anywhere within the description of a property, but
because of its importance, it is customary to place it as the first
item within the property’s braces – just before the EDIT
keyword.

Example:

Definition “Use Case Step”
{
PROPERTY "Use Case Name" { KEY EDIT … }
 PROPERTY "Package" { KEY EDIT …}
…

USRPROPS.TXT Keywords

3-58

KEY (continued) For a property that is a key and that “points at” another object(s)
– for example, a LISTOF or ONEOF property, not a simple
TEXT or NUMERIC property – the end user must specify the
class and the class type of the referenced object(s) when
entering a value for the property while working in Rational
System Architect.

For example:

Definition “Business Process”
{
PROPERTY “System Use Case” {EDIT ONEOF “Use Case” …}

The statement above indicates that the property “Use Case
Name” refers to a definition of type “Use Case”. Definition is the
default when no class is specified (class in the Rational System
Architect sense -- Diagram, Symbol, or Definition).)

The property value itself often will contain all the necessary
remaining material needed to identify the object(s) actually
being referenced. If the referenced class/type of the property
has no key properties, the reference value will just be the
object’s Name (because the class and type are known), but if
the referenced class/type has key properties (such as “Use
Case” in the above example, which has key property
“package”), Rational System Architect must know the values of
these key properties in order to properly identify the reference
object.

You either code this into USRPROPS.TXT so that Rational
System Architect automatically gets the values for the end user
or you force the end user to type in the fully qualified name, with
periods separating the key parts.

• To have Rational System Architect automatically get the
value for users, you use the KEYED BY command.

• If a KEYED BY clause is not given for the property,
Rational System Architect expects these additional key
values to be given in the reference itself – in other
words the user must type in the fully qualified name of
the reference object, with periods separating key values
(for a Use Case Step called “Specify email” in a Use
Case called Order_Product in a package called “Order
System” the user would need to type in “Order
System”.Order_Product.”Specify email”.

USRPROPS Keywords

3-59

KEY (continued) Note: Heterogeneous reference properties are different in this
respect. See HETEROGENEOUS.

One other use for the KEYED BY clause is that it enables you to
build a list of things that are all related. For example, all the Use
Case Steps referred to in the property “Use Case Steps” of a
Use Case definition belong to the same Use Case – as it
happens, the one containing the “Use Case Steps” property.
Where a multiple reference property (like ListOf) refers to
objects all belonging to the same parent object, it is advised to
use one or more other properties to identify the parent object. In
these situations, a KEYED BY clause is used to tell Rational
System Architect which other properties to use.

Note: Key properties of a definition are not shown in a grid
formed by an ASGRID command. For example, in a Use Case
definition, Use Case Steps are depicted in a grid formed by an
ASGRID command, however, the key properties of Use Case
Steps (owning package and Use Case) are not shown in the
grid of Use Case Steps.

Note: It is not possible to add a KEY EDIT ONEOF to a
diagram.

See also KEYED BY keyword.

USRPROPS.TXT Keywords

3-60

KEYED BY A KEYED BY clause is optionally used to specify how the key
components of a referenced object(s) may be found. The
KEYED BY clause contains a portion for each key component
separated by a comma.
The KEYED BY clause provides two benefits:

1. It eliminates the need for the end user to type in the
fully qualified name of a reference value (with periods
separating qualifiers). For example, for a property that
references a class attribute named email of the class
Customer of the package “Order System”, instead of
typing in “Order System”.Customer.email, the end
user simply types in email.

2. It can be used to ensure that all key components of a
reference value are the same. For example, the
LISTOF “Class Attribute” property in a Class definition
contains a list of attributes that all belong to the same
class and to the same package.

Example:

For example, the KEYED BY clause of the Class’s “Class
Attribute” property could be as follows:
DEFINITION "Class"
{
 …
 PROPERTY "Attributes" { … LISTOF "Class Attribute"
KEYED BY {Package:Package, "Class Name":Name, Name:* } … }

In the example above, the three key components (separated by
commas) are Package:Package, “Class Name”:Name, and
Name:*. These components refer to the three parts needed to
identify the referenced Class Attribute definitions – the Package
name, the Class name, and the Class Attribute name. Taking
them in reverse order, it states that:

• The name of the Class Attribute will be found in this
property (* means “here”), hence: Name:*

• The value of the key property “Class Name” in the
Class Attribute definition will be found in this object’s
name, hence: “Class Name”:Name

• The value of the key property Package in the Class
Attribute definition will be found in this object’s Package
property, hence: Package:Package

USRPROPS Keywords

3-61

KEYED BY

(continued)

The following schematic diagram shows how the KEYED BY
clause is used in the example above, and may be useful in
understanding the KEYED BY clause generally.

The schematic shows what we have said above – in the
definition of a class, a class attribute is entered by specifying its
package (stored in the class attribute’s Package property and
obtained from the Package value of the class you are in), its
class name (stored in the class attribute’s “Class Name”
property and obtained from the class’s actual name), and name
(stored in the class attribute’s “Name” property and obtained
from itself).

USRPROPS.TXT Keywords

3-62

KEYED BY

(continued)
In summary:

1. For each key component of the reference object, the
KEYED BY clause has a component.

2. The components of the KEYED BY clause are
separated by commas.

3. Each component has two parts:
• The first part identifies the key component of

the reference object,
• The second part states where the value of that

component is to be found, and
• The two parts are separated by a colon.

However, certain default values may be assumed to simplify the
KEYED BY clause. If the two parts of the component are the
same, the second may be omitted and if the second part of the
last component is omitted, it assumed to be “here” – i.e. the
asterisk. Thus, in practice the KEYED BY clause of the Class’s
“Attributes” property is coded:

KEYED BY {Package, "Class Name":Name, Name }

Naturally, all the properties used in the KEYED BY statement
must exist. Thus, Rational System Architect checks that there is
a “Package” property and a “Class Name” property in the “Class
Attribute” definition and that they are both KEY.

Besides saving all the effort of coding common key components
in a LISTOF property like this one, employing a KEYED BY
clause using other properties to provide common values
ensures the same values are used for each reference. Thus,
in the example we have been using, all the Class Attributes
referred to in the “Attributes” property of the Class are forced to
belong to the same class in the same package – a desirable
characteristic in this case.

At other times it is convenient to have the key components of
the referenced object separated for reasons of clarity and
simplicity. Under such circumstances a KEYED BY clause is
used to designate the properties supplying the separate
components. Indeed, for these reasons, when a property is KEY
and refers to an object with KEY properties, Rational System
Architect requires that the components be in separate
properties.

USRPROPS Keywords

3-63

KEYED BY

(continued)

Often it is desirable that some key component values besides
the names be provided in the reference itself rather than taken
from another property. This may happen when there is no
suitable property to provide a value or when it is not desirable
that the key component be the same value for all references in
the property. In this case, the keyword QUALIFIABLE is used.
For example, in the class definition there is this property:

PROPERTY "Operations" {Edit … ParmListOf "Method"
KEYED BY {"Package","Class Name":Name,"Formal Parameters"
QUALIFIABLE, Name } … }

This indicates that although the values of the “Package” and
“Class Name” key properties of the Methods referenced should
be taken from the Class’s “Package” property and Name
respectively, the values of the “Formal Parameters” property of
the Methods and their names should be taken from the Class’s“
Operations” property itself. Thus each reference will contain two
components, the value of the “Formal Parameters” property and
the value of the name separated by a period.

Note that Rational System Architect requires that KEY
properties that have a KEYED BY clause not use the
QUALIFIABLE keyword. This is for the reasons of clarity and
simplicity mentioned above.

USRPROPS.TXT Keywords

3-64

KEY (Used for

Display

KEY is also one of the allowed arguments following FORMAT in
the DISPLAY command. Properties designated as keys are
displayed in a separate section of the symbol.

Example:

DEFINITION "Entity"
{
PROPERTY "Description"
 { EDIT COMPLETE LISTOF "Attribute" FROM "Data Element"
 KEYED BY {Model, "Entity Name":"Name", "Name"} RELATE BY
"uses" ASGRID COPYSCRIPT OnCopyEntityDesc EDITCLASS
SACPropertyAttributeGrid Label "Attribute List" LENGTH 4096
 ZOOMABLE DISPLAY { FORMAT KEY LEGEND "Primary Key" }
 DISPLAY { FORMAT NONKEY LEGEND "Non-Key Attributes" }
...}

In the example above, the FORMAT KEY command places all
attributes designated by the user as primary keys under the
“Primary Key” legend on an entity symbol. The FORMAT
NONKEY command places all non-primary-key attributes under
the “Non-Key Attributes” legend on the entity symbol.

USRPROPS Keywords

3-65

LABEL The LABEL command is used for two purposes.

Purpose 1: LABEL is one of the arguments of the ALIGN
command. It is used to align all controls one space to the right
of the widest label in that column. (Contrast this with the ALIGN
OVER keyword pair, which places the name over the property.)

Example:

Definition "My Definiition"
{
CHAPTER “My Chapter”
 LAYOUT { COLS 1 ALIGN LABEL }
 PROPERTY "My Property 18"{ EDIT Text Length 10}
 PROPERTY "My Property 19"{ EDIT Text Length 10}
 PROPERTY "My Property 20"{ EDIT Text Length 10}
 PROPERTY "My Property 21"{ EDIT Text Length 10}
 PROPERTY "My Property 22"{ EDIT Text Length 10}
 PROPERTY "My Really Long Property 23"{ EDIT Text Length 10}
}

In the example above, the control for “My Really Long Property
23” is a text box placed one space to the right of the label. All
other text-box controls for other properties on the dialog are
lined up with this control.

See also keywords ALIGN, BODY, and OVER.

USRPROPS.TXT Keywords

3-66

LABEL

(continued)

Purpose 2: LABEL is used to relabel the name of tabs
(chapters), groups, or properties in a dialog. You cannot remove
a property name which has been defined in SAPROPS.
However you can modify the text that is displayed for the
property by using the LABEL command in USRPROPS.TXT.

Example 2:

DIAGRAM "Data Flow Diagram" {
 PROPERTY "Event Label Prefix"
 { EDIT Text LENGTH 10 }
 PROPERTY "Key Letters"
 { EDIT text LENGTH 10 LABEL "Process Prefix" } ..}

Adding the code above to USRPROPS.TXT (and reopening
your encyclopedia) causes the words "Processing Prefix" to be
displayed as the label of the “Key Letters” control.

Renaming a Group in a Definition
You can use the LABEL command to rename a Group. If you
specify an empty text string (“ “), no words will appear for the
Group box.
Example 2:

DEFINITION “Attribute” {
GROUP "other stuff" LABEL "" }
To rename a CHAPTER, see the CHAPTER command. See
also keywords ALIGN and BODY.

USRPROPS Keywords

3-67

LABELPOS A parameter of the PLACEMENT command that you use to
specify exact placement of a property’s name (or label) on a
DIAGRAM, SYMBOL, or DEFINITION dialog. The LABELPOS
command has two arguments – the horizontal position (from the
top of the dialog) in Windows units, and the vertical position
(from the left of the dialog) in Windows units.

Syntax:

PLACEMENT { LABELPOS(4, 52) PROPPOS (horizontal-
positioning, vertical-positioning) PROPSIZE (width, height) }

Example:

DEFINITION “My Definition”
{
PROPERTY "Table Name" { EDIT Text LENGTH 31 PLACEMENT {
LABELPOS (4, 24) PROPPOS (20, 24) PROPSIZE(150, 12)} }
}

Notice in the above example that LABELPOS and PROPPOS
have the same y coordinate (24) – this means that the tops of
their letters will both be 24 units from the top of the dialog. This
means that the label will be to the left of the control (not over it).
Notice also that the difference between the PROPPOS x
coordinate and the LABELPOS x coordinate (20 - 4 = 16)
leaves plenty of room (16 -10 = 6 units) for the 10-character
label name, which is “Table Name”, since it has to go to the left
of the starting point of the property control’s starting position.

Important: See Chapter 2 of this manual for general placement
and sizing tips.

See also PLACEMENT, PROPPOS, PROPSIZE, and FORMAT
keywords.

USRPROPS.TXT Keywords

3-68

LAYOUT This keyword specifies the layout of properties in a Diagram,
Symbol, or Definition dialog. (Note that the Symbol dialog is
included as the last tab of a Definition dialog.)

Within the LAYOUT command’s opening and closing brackets,
you use arguments to specify the layout of all properties called
out under that LAYOUT command. You may specify how many
columns the properties of the dialog should be laid out into, and
how the properties should be aligned.
You may have more than one LAYOUT command specified for
a Diagram, Symbol, or Definition dialog. You may specify a
LAYOUT command for an entire dialog, and/or override it within
each GROUP in a dialog, or within each tab (CHAPTER) in a
dialog.

Syntax:

LAYOUT { [alignment_criteria] [PACK_TAB_criteria] [Number of
Columns] [JUSTIFY] }

Or more specifically:

LAYOUT {[ALIGN BODY | ALIGN LABEL | ALIGN OVER] [
PACK | TAB] [COLS <number>] [JUSTIFY] }

Example:

SYMBOL "Object" IN "Sequence"
{
 LAYOUT { COLS 2 ALIGN OVER }
 PROPERTY "Package" { EDIT OneOf "Package" READONLY }
 PROPERTY "Class" { EDIT OneOf "Class" KEYED BY { "Package",
Name } REQUIRED READONLY }
..}

In the example above, all properties in the object’s symbol
dialog are laid out in two columns.
See also ALIGN, BODY, LABEL, OVER, PACK, TAB, COLS,
and JUSTIFY keywords.

USRPROPS Keywords

3-69

LEGEND The string of the displayable property in a rectangular symbol
which overrides the property name.

Example:

PROPERTY "Description"
 { EDIT ListOf Data
 DISPLAY { FORMAT Key LEGEND "Key data" }
 }

The syntax:

LEGEND “<Your Text>”: Whatever text you place in the
quotation marks will be displayed on the symbol above the
entry, only if there is a value for the entry.

LEGEND "": Displays a straight line without any words, only if
there is a value for the entry.

LEGEND "$$FORCE$$":Displays a horizontal line above the
entry on the symbol. This line acts as a divider. The
“$$FORCE$$” keyword is different than simply using “ “, in that
it forces display of a horizontal line even if the property display
is suppressed through the display mode dialog.

LEGEND “$$NONE$$”: Does not display a horizontal line
above the entry on the symbol, whether or not there are values
for the entry. This line normally acts as a divider.

LEGEND “$$VFORCE$$”: Enables you lay out properties from
left to right inside symbols, and draws vertical lines between
them. See VFORCE keyword.

LEGEND “$$VNONE$$”: Enables you to lay out properties
from left to right, but does not provide a dividing line. See
VNONE keyword.

See also keyword DISPLAY.

USRPROPS.TXT Keywords

3-70

LENGTH Indicates the number of characters the user may enter in the
property field.

Example:

 PROPERTY "From Entity"
 { EDIT TEXT LENGTH 80 }

In the example above, From Entity may be 80 characters long.

LINES Sets the number of lines, in depth, for a property field.

Example:

DEFINITION "Constructor"
 { CHAPTER "Desc., Formal Parm"
 GROUP "" {
 LAYOUT { COLS 2 TAB ALIGN OVER }
 PROPERTY "Formal Parameters" { KEY EDIT Text LENGTH 1020 }
 PROPERTY "Initializer List" { EDIT Text LENGTH 1000 LINES 4 }

This keyword is only useful if you want the space automatically
provided to be much bigger or smaller than the default.

See also keyword ZOOMABLE.

USRPROPS Keywords

3-71

LIST The list keyword has two purposes in USRPPROPS.TXT. The
default length is 1200.

Purpose 1: The LIST keyword establishes a list of possible text
values. It must be defined in two places – at the top of the
USRPROPS.TXT file, wherein you specify the list of possible
values, and within the property that is using the list. All List
specification statements must be at the top of the
USRPROPS.TXT file, before any DIAGRAM, DEFINITION, or
SYMBOL specification statements.

Example:

List "Method Stereotypes"

{
 VALUE "Get"
 VALUE "Let"
 VALUE "Set"
}
DEFINITION “Method” {..
PROPERTY "Stereotype" { EDIT Text LIST "Method Stereotypes"
Default "" LENGTH 30 } …}

Radio Buttons Versus Drop-Down List

Rational System Architect automatically displays a list as a list
of radio button choices if the number of values in the LIST
statement is four or less. If the number of values is five or more,
the list is automatically displayed as a drop-down list box. Users
may type in their own value in a drop-down list box. If you wish
to have a drop-down list box but only have four or less LIST
values, use the LISTONLYCOMBO keyword.

Purpose 2: The LIST keyword is also one of the allowed
arguments following FORMAT in the DISPLAY command. The
LIST keyword causes items to be displayed on the symbol in a
list – each whitespace character causes a new line, unless the
whitespace falls within double quotes bounds.

Example:

DEFINITION "Operational Node"
{ PROPERTY "Operational Activities" {EDIT LISTOF "Operational
Activity" LENGTH 2000 DISPLAY {FORMAT LIST Legend "Activities"}
..}

See also keywords LISTONLY and LISTONLYCOMBO.

USRPROPS.TXT Keywords

3-72

LISTOF One of the allowed types for a property. Is used with the EDIT
keyword to specify that the property references a list of other

definitions. For example, a Class contains a property called
Attributes, which is a list of class attributes. Class attribute is a
definition type in of itself, which has its own set of properties.
Contrast this to the property of a class called Access Type,
which is a list of simple textual choices, such as Public, Private,
Protected, etc. (The LIST command is used to define this simple
text list; see LIST.) Also contrast with ONEOF, which specifies
that a property references exactly one other definition – an
example is that a Class contains a property called Package,
which specifies the one package the class resides in; Package
is a definition in of itself.

LISTOF is used with the EDIT keyword. The syntax is as
follows:

PROPERTY "Your Property" { EDIT LISTOF "Referenced Definition
Type" } LENGTH 1200}

The ASGRID keyword is often used with LISTOF – ASGRID presents
the list of definitions in a grid; if it is not used, the definitions are listed
in a default list structure. LISTOF is sometimes used with the keyword
ZOOMABLE and also COMPLETE (described elsewhere in this
chapter). For a LISTOF property, the LENGTH keyword by default is
set to 1200. LENGTH specifies how many characters the user may
enter in the property field – in this case the total number of
characters of the names of definitions that can fit into the list.

Example:

DEFINITION "Use Case"
{
PROPERTY "Preconditions" { ZOOMABLE EDIT ListOf "Pre/Post
Condition" LENGTH 1200 }...}

See also keywords ONE OF, EXPRESSIONOF, COMPLETE,
and ZOOMABLE.

USRPROPS Keywords

3-73

LISTONLY Indicates that the values for a property must be taken from the
displayed list (created via the LIST keyword at the top of the
USRPROPS.TXT file) – the user is not allowed to type in their
own value into the list.

Example:

List "Importance"
{
Value "Mandatory"
Value "Strongly Desired"
Value "Should Have"
Value "Icing on the Cake"
Value “Not Important”
}

Definition "Use Case Step"
{
PROPERTY "Importance" { Edit Text ListOnly List "Importance"
Length 20 Default "Should Have" }
..}

In the example above, the list is provided in the Use Case Step
definition dialog as a drop-down list that you can type in your own entry
into. Note that there are five Values in the List statement. If there were
four or less, the list in the Use Case Step definition dialog would be
provided as a selection of toggle boxes. If you wished to have a drop-
down list even though you only had four or less List values, you would
use the LISTONLYCOMBO keyword.

See also keyword LIST and LISTONLYCOMBO.

USRPROPS.TXT Keywords

3-74

LISTONLYCOMBO

Provides a drop-down list no matter how many LIST values
there are. In addition, the user cannot type in their own values
to the list.
The LISTONLYCOMBO keyword provides functionality that the
LIST command doesn’t – when using the LIST command,
Rational System Architect automatically displays a list as a list
of checkbox choices if the number of values in the LIST
statement is four or less. If the number of values is five or more,
the list is automatically displayed as a drop-down list box. Users
may type in their own value in a drop-down list box. If you wish
to have a drop-down list box but only have four or less LIST
values, use the LISTONLYCOMBO keyword.

Example:
List "Importance"
{
Value "Mandatory"
Value "Strongly Desired"
Value "Should Have"
}

Definition "Use Case Step"
{
PROPERTY "Importance" { EDIT TEXT LISTONLYCOMBO LIST
"Importance" LENGTH 20 DEFAULT "Should Have" }
..}

In the example above, the list is provided in the Use Case Step
definition dialog as a drop-down list even though there are only
three values in the List statement. If you had used the simple
LIST statement, then the values would have been shown as
toggle boxes since there are less than five values.
See also LIST and LISTONLY keywords.

MAX; MAXIMUM Indicates the maximum allowed number for a property defined
as numeric. A numeric field is one in which you can only place
numbers.

Example:

PROPERTY Length
 { EDIT numeric LENGTH 2 MINIMUM 1 MAXIMUM 99 }

USRPROPS Keywords

3-75

MENU References the graphic used to represent a symbol on the Draw
menu and the Draw toolbar, as compared to the diagram
workspace.

Example:

SYMBOL "Satellite"
{ASSIGN To "Wireless Network"
DEPICTIONS { DIAGRAM "C:\Program
Files\IBM\pictures\satellite.bmp" }
DEPICTIONS { MENU "C:\Program Files\IBM
\pictures\satellitetoolbar.bmp" }}

In the example above, the satellitetoolbar.bmp picture is placed
on the Draw menu of the “Wireless Network” diagram.

See also DEPICTIONS keyword.

MIN; MINIMUM Indicates the minimum allowed number for a property defined
as numeric. A numeric field is one in which you can only place
numbers.

Example:

PROPERTY Length
 { EDIT numeric LENGTH 2 MINIMUM 1 MAXIMUM 99 }

USRPROPS.TXT Keywords

3-76

MINISPEC In Rational System Architect, a minispec is the statement that
expresses the processing logic of a process symbol. Minispecs
are written using a formal syntax often referred to as Structured
English. The MINISPEC keyword is used with the EDIT
keyword.

Example:
DEFINITION "Process"
{
 PROPERTY "Description"
 { ZOOMABLE EDIT MINISPEC LENGTH 1500 LABEL "Minispec" }
...}
Minispec is a statement that expresses the processing logic of a
process symbol – how the process transforms input data into
output data.

The following is an example of a Minispec statement:

If ISBN number brand new,
Create "ISBN MASTER LIST"
Else
Update "Borrower Request"

Rational System Architect can balance the input and output
flows of a process using the minispec words against the data
elements and data structures on data flows. The balancing
function requires that the system analyze the text word-by-word,
looking for significant words. Significant words are flagged by
delimiting them with either single or double quotes. You can
choose to have the system consider every word, or only the
significant words flagged for consideration.

By default, the system considers only the significant words
specifically flagged with quotes, for example:

Compute "extended_cost" = "unit_cost" times "quantity"

If you want the system to consider every word contained in
minispecs, and not only those delimited by double quotes, you
must set MinispecUsesQuotes to "N" in the SA2001.INI file. The
sample Minispec above could then be written:

Compute extended_cost = unit_cost times quantity

USRPROPS Keywords

3-77

NAME Used to indicate that part of the key of a definition is the name
of the object itself, and also may be the name of the parent
object.

Example:

DEFINITION "SQL Server Trigger"
{
 PROPERTY "Table Name"
 { EDIT OneOf Definition "Table" RELATE BY "is keyed by" KEYED BY
{"Database Name", "Owner Name","Table Name":Name, Name} }
...}

In the example above, the key of the property "Table Name" in
the definition of a trigger is the name of the table in which that
trigger is defined. The trigger's own name is also part of the key.

NODESC;

NODESCRIPTION

This keyword specifies that the definition does not have a
property DESCRIPTION.

Syntax:

DEFINITION <def_name>
 { NODESC
 }

Example:

DEFINITION "XML Attribute Type"
{
 NODESC
 PROPERTY "Data Type" { Edit Text LIST "XML Data Type" Length 100
}
 PROPERTY "Required" { Edit Text List "XML yesno" Length 100 }
 PROPERTY "Default" { Edit Text Length 1000 }
..}

There are a number of definition types in Rational System
Architect for which the Description field has been removed
through use of the NODESC keyword. They are definition types
where a Description is not necessary and would only get in the
user’s way. Examples are Trigger Template, Table Synonym,
Table, Stored Procedures, and Views.

USRPROPS.TXT Keywords

3-78

NONADDR,

NONADDRESSABLE

Used to remove definitions from the address list. There are 13
definition types that have been predefined as ‘Addressable’,
meaning that you can ‘address’ a symbol on a diagram with
them (select any symbol and choose Dictionary, Addresses,
and then the definition type). Definition types specified as
‘Addressable’ are generally things like requirements, rules, test
plans, etc – things that the symbol on the diagram is
‘addressing’ or satisfying. To remove any one of those
definitions from the Dictionary, Addresses drop-down menu,
modify the statement in USRPROPS.TXT.

Example:

DEFINITION "Change Request"
 {
 NONADDR
 }
See also keyword ADDRESSABLE.

NONE Actually the $$NONE$$ keyword, used with the DISPLAY
keyword. For more information, see the DISPLAY keyword.

NONKEY One of the allowed arguments following FORMAT in the
Display command. Elements that are not designated as keys
can be displayed in a separate section of the symbol.

Example:

DEFINITION "Entity"
{
PROPERTY "Description"
 { EDIT COMPLETE LISTOF "Attribute" FROM "Data Element"
 KEYED BY {Model, "Entity Name":"Name", "Name"} RELATE BY
"uses" ASGRID COPYSCRIPT OnCopyEntityDesc EDITCLASS
SACPropertyAttributeGrid Label "Attribute List" LENGTH 4096
 ZOOMABLE DISPLAY { FORMAT KEY LEGEND "Primary Key" }
 DISPLAY { FORMAT NONKEY LEGEND "Non-Key Attributes" }
...}
In the example above, the FORMAT NONKEY command places
all attributes not designated as primary keys under the “Non-
Key Attributes” legend on an entity symbol.

NOTHING Used in the RELATE BY NOTHING command.

See RELATE BY.

USRPROPS Keywords

3-79

NUMERIC This is one of the allowed types for a property. It specifies that
the property is a number – only numbers are allowed to be
entered into the field (and plus or minus marks). The LENGTH
statement determines the amount of numbers that may be
entered into the field. The user will not be able to enter decimal
points or any characters into the field; only numbers and plus or
minus marks.

Example:

SYMBOL "Process" IN "Data Flow Gane & Sarson"
 { PROPERTY "Short Description"
 { EDIT Text LENGTH 1500 }
 PROPERTY "Number" { EDIT Numeric LENGTH 4 }

USRPROPS.TXT Keywords

3-80

OF DEFINITION

REFERENCED IN

Enables you to specify a restricted list of definitions that you can
choose from when you click on the Choices button for a
property. It is used to add further refinement to an EDIT LISTOF
or EDIT ONEOF statement. You may specify that only the
definitions belonging to a particular referencing definition are
listed.

Example 1:

DEFINITION "Object"
{
 PROPERTY "Package" { KEY EDIT OneOf "Package" RELATE BY "is
 keyed by" READONLY}
 PROPERTY "Class" { KEY EDIT OneOf "Class" KEYED BY
 { "Package", Name } RELATE BY "is keyed by" READONLY }
 PROPERTY "Attributes" { ZOOMABLE EDIT LISTOF "Class
 Attribute" OF DEFINITION REFERENCED IN "Class"
 KEYED BY {"Package", "Class Name":"Class", Name} LENGTH
 4096 DISPLAY {FORMAT COMPONENT_SCRIPT
 _FmtNewUMLObjInstAttr LEGEND "$$FORCE$$"} }
..}

 In the example above, when you click on the Choices button in
an object’s Attribute grid, only the attributes of the object’s
containing class are provided. The “Class” property that OF
DEFINITION REFERENCED IN is referencing must also be
specified in the object’s definition, as is shown above. (As an
aside, also in the example above, the attribute itself is specified
to be keyed by its package, class name, and its own attribute
name via the statement KEYED BY {"Package", "Class
Name":"Class", Name.)

Example 2:
DEFINITION "Message"
{
PROPERTY "To Class" { KEY EDIT OneOf "Class" }
...
PROPERTY "Operation" { EDIT ParmOneOf "Method" OF

DEFINITION REFERENCED IN "To Class" KEYED BY { "Class
Name" : "To Class", Name, "Formal Parameters"} LENGTH 1000}
..}

In the example above, the definition of a message line is refined
so that only the methods of the class of the object that

USRPROPS Keywords

3-81

 the message line is drawn to are listed. These are methods of
the “To Class”. This is possible since the object symbol (object
lifeline) that the message line is drawn to contains properties for
its referencing class, and the message line contains that
property, “To Class”. Note that this is a definition for an OMT
Sequence diagram; the UML Sequence diagram has additional
keying (by package) than this example. See keyword OF
DEFINITION AND SUPERS REFERENCED IN for an example
of a UML message line definition.

See also keyword OF DEFINITION AND SUPERS
REFERENCED IN.

OF DEFINITION

AND SUPERS

REFERENCED IN

Enables you to specify a restricted list of definitions that you can
choose from when you click on the Choices button for a
property – this restricted list references elements of a particular
definition and elements of any other definition that it inherits
from (is attached to via an inheritance line). It is used to add
further refinement to an EDIT LISTOF or EDIT ONEOF
statement, and is used in UML modeling.

Example:
DEFINITION "Message/Stimulus"
{
PROPERTY "To Package" { KEY EDIT OneOf "Package" RELATE
 BY "is keyed by" READONLY}
 PROPERTY "To Class" { KEY EDIT OneOf "Class" KEYED BY
 { "Package":"To Package", Name } }
 PROPERTY "To Object"{ KEY EDIT OneOf "Object" KEYED BY
 { "Package":"To Package", "Class":"To Class",Name} }
 PROPERTY "Operation" { EDIT ParmOneOf "Method"
 OF DEFINITION AND SUPERS REFERENCED IN "To Class"
 KEYED BY { "Package" QUALIFIABLE,"Class Name"
 QUALIFIABLE,"Formal Parameters" QUALIFIABLE ,Name}
 LENGTH 1000 DISPLAY {FORMAT COMPONENT_SCRIPT
 _FmtNewUMLEventOperation LEGEND "$$NONE$$" } LABEL
 "Method" HELP "Choose a method from the proper class" }
 In the example above, when you click on Choices in the
message definition, you get methods of the class that the
message line is attached to (the “To Class”, not the “From
Class”), and any methods of any class that is a superclass of
that class (connected to that class via an inheritance line).

See also keyword OF DEFINITION REFERENCED IN.

USRPROPS.TXT Keywords

3-82

ONEOF One of the allowed types for a property. Is used with the EDIT
keyword to specify that the property references one of the
definitions of another definition type.

Example:
SYMBOL "Relation" IN "Entity Relation"
{
PROPERTY "From Entity" { EDIT ONEOF Entity READONLY }
 PROPERTY "To Entity" { EDIT ONEOF Entity READONLY }
}
In the example above, the Relation line between two entities
contains, on its Symbol tab, the entities that it connects – both
the entity that the line is drawn to and the entity that the line is
drawn from. In each case, one and only one entity is listed. This
information is supplied automatically (Rational System Architect
keeps track of from and to information), and therefore the
property is made READONLY.

Example 2:

Definition “Extends”
{
PROPERTY "Use Case Steps" { ZOOMABLE EDIT ONEOF "Use

Case Step" KEYED BY {"Model Name":"Model Name", "Use Case
Name":"From Use Case", Name}
}

In the example above, the definition behind the Extends line
contains a reference to the Use Case Step (in the referencing
Use Case) at which the extension (to the other Use Case that
the line connects to) takes place. When you click on Choices for
this property in the Extends definition, you get a list of all Use
Case Steps – however there is only room in the property field to
drag in one Use Case Step (contrast to LISTOF which would
allow multiple definitions to be dragged in).

See also keywords LISTOF and EXPRESSIONOF.

USRPROPS Keywords

3-83

OVER An argument of the ALIGN command; it places the name of the
property (or its label) over the property’s control (such as a text
field, drop-down list box, etc).

Example:

Definition "Use Case Step"
{
Chapter "My Properties"
LAYOUT { COLS 2 ALIGN OVER TAB }
PROPERTY "Importance" { Edit Text ListOnlycombo List "Importance"
Length 20 Default "Should Have" }
PROPERTY "Number" { EDIT Numeric LENGTH 4 LABEL “Ranking”}
}

In the example above, all properties of the tab (Chapter
keyword) are laid out so that the name or label of each property
is placed over its control. The Number property is relabeled to
be “Ranking”. Its label is placed over its control, which is a
simple Numeric field. The Importance property has its name
placed over its control, which is a drop-down list.

Contrast this keyword with the BODY keyword, which places
the name or label of the property to the left of the control.

See also keywords BODY, TAB, ALIGN, LABEL, and JUSTIFY.

USRPROPS.TXT Keywords

3-84

OVERRIDABLE This keyword enables a read-only property of a definition,
inherited from the diagram, to be changed (or written to) when
the definition is initially created, despite the fact that it is read-
only. OVERRIDABLE is only used at the diagram level to
specify that a property belonging to a definition representing a
symbol drawn on that diagram, can be changed when the
symbol is initially created, even though it is read-only.

Example:
Diagram "XML"
{
CHAPTER "Diagram"
PROPERTY "XML Schema" { EDIT ONEOF "XML Schema"
AUTOCREATE RELATE BY "is part of” INITIAL USER REQUIRED
OVERRIDABLE READONLY }
..}

DEFINITION "XML Element"
{
..
PROPERTY "XML Schema" { Key Edit ONEOF "XML Schema" Relate
By "is keyed by" Initial User Required Readonly }
..}

In the example above, the XML Element definition inherits its
value for the “XML Schema” property from the XML Element
symbol it is defining, which in turn inherits the value of its “XML
Schema” property from the diagram it is placed on. When you
initially place the XML Element symbol down on the diagram
workspace, you are enabled to change the value of the “XML
Schema” property of the XML Element definition. Once you click
OK to close the definition, then reopen it, you will notice that the
“XML Schema” property is read-only and can no longer be
changed.

Note that the keyword is used in the Diagram specification, not
the XML Element definition specification.

USRPROPS Keywords

3-85

PACK Controls vertical positioning within the LAYOUT command.
This command separates sets of controls and labels in multiple
columns from the set of controls/labels located directly to the
right by the minimum amount of space.

Example:

 GROUP "Power Builder Headings/Labels" {
 LAYOUT { COLS 2 ALIGN OVER PACK }

See also keywords LAYOUT and TAB.

PARENT In object-oriented and methodological terminology, designates
the object from which the current object inherits all key
properties. Must include RELATE BY "is keyed by" in the
statement.

Example:

DEFINITION "Use Case Step"
{
 PROPERTY "Use Case Name" { KEY EDIT OneOf "Use Case"
 PARENT RELATE BY "is keyed by" READONLY HELP "Name of
 Owning Use Case" }
...}

USRPROPS.TXT Keywords

3-86

PARMONEOF This keyword is only used in particular cases in SAPROPS.CFG
and should not be used in USRPROPS.TXT. This keyword
specifies that a reference property in Rational System Architect
syntax is displayed like a typical UML operation. In other words,
a qualified reference property is displayed using parenthesis
around the qualified part of the key, rather than double quotes
which Rational System Architect normally displays, and the
order of the keys is changed so that the name of the referenced
object appears first. For example, methods are shown as
meth(int, char) instead of “int, char”.meth.

Example:

DEFINITION "Activity Model"
{ ..
 PROPERTY "Operation" { EDIT PARMONEOF"Method" OF
DEFINITION REFERENCED IN "Active Class" KEYED BY
 { "Package" QUALIFIABLE, "Class Name":"Active Class", "Formal
Parameters" QUALIFIABLE, Name} LENGTH 1000 DISPLAY {
FORMAT STRING LEGEND "$$NONE$$" } LABEL "Method" HELP
"Specify class and then click choices button" }
 }

USRPROPS Keywords

3-87

PARMLISTOF This keyword is only used in particular cases in SAPROPS.CFG
and should not be used in USRPROPS.TXT. It is the same as
PARMONEOF but is applied to reference list of properties, such
as a grid of methods. It specifies that a reference property in
Rational System Architect syntax is displayed like a typical UML
operation. In other words, a qualified reference property is
displayed using parenthesis around the qualified part of the key,
rather than double quotes which Rational System Architect
normally displays, and the order of the keys is changed so that
the name of the referenced object appears first. For example,
methods are shown as meth(int, char) instead of “int,

char”.meth.

Example:

Definition “Class” {
CHAPTER "Methods"
 PROPERTY "Operations" { ZOOMABLE EDIT
COMPLETE_ALLOW_NEW PARMLISTOF "Method" KEYED BY {
"Package", "Class Name":Name, "Formal Parameters" QUALIFIABLE,
Name }
 LENGTH 1200 ASGRID DISPLAY { FORMAT COMPONENT_SCRIPT
_FmtNewUMLOperation LEGEND "$$FORCE$$"} LABEL "Methods" }

USRPROPS.TXT Keywords

3-88

PLACEMENT This command is used to specify exact placement of properties
on a DIAGRAM, SYMBOL, or DEFINITION dialog. The
PLACEMENT command has the following parameters:

LABELPOS (x, y) – specifies the starting point of the upper left-
hand corner of a property’s name (or label). The x specifies the
horizontal position (from the left edge of the dialog) and the y
specifies the vertical position (from the top edge of the dialog).
Both x and y are in Windows units.

PROPPOS (x, y) – specifies the starting point of the upper left-
hand corner of a property’s control on a dialog. The x specifies
the horizontal position (from the left edge of the dialog) and the
y specifies the vertical position (from the top edge of the dialog).
Both x and y are in Windows units.

PROPSIZE (x, y) – specifies the rectangular size of the control.
The x specifies the width and the y specifies the height of the
control, in Windows units.

Example:
DEFINITION “Class”
{
CHAPTER "Entity Information”
 LAYOUT { COLS 2 TAB ALIGN OVER }
 PROPERTY "Table Name" { EDIT Text LENGTH 31
 PLACEMENT {PROPPOS (4, 24) PROPSIZE(150, 12)} }
PROPERTY "Naming Prefix" { EDIT Text LENGTH 8 LABEL
 "Column Prefix" HELP "Prefix of column name"
 PLACEMENT {PROPPOS (175, 24) PROPSIZE(40, 12)} }
..
}

 In the example above, the PLACEMENT command override the
LAYOUT command for the tab (CHAPTER). The Table Name
property’s text box control is positioned on the Class definition
dialog (Entity Information tab) at a position starting 4 Windows
units from the left edge of the dialog, and 24 Windows units
down from the top edge of the dialog. The text box is 150 units
wide by 12 units deep.

Important: See Chapter 2 of this manual for general placement
and sizing tips.

See also keywords PROPPOS, PROPSIZE, and LABELPOS.

USRPROPS Keywords

3-89

PROPERTY Begins the argument that establishes a characteristic of a
diagram, symbol, or definition. You must follow the PROPERTY
keyword with the name of the property, enclosed in quotation
marks. You must then specify the characteristics of the
property, within either a pair of opening and closing braces, or
within the BEGIN and END statements.

Syntax:

PROPERTY “<property_name>”
 { EDIT <edit_type> <property_parameter> }

Or

PROPERTY “<property_name>”
 BEGIN EDIT <edit_type> <property_parameter>
 END

USRPROPS.TXT Keywords

3-90

PROPPOS,

PROPSIZE

A pair of parameters of the PLACEMENT command that you
use to specify exact placement of properties on a DIAGRAM,
SYMBOL, or DEFINITION dialog. The PROPPOS command
has two arguments – the horizontal position (from the top of the
dialog) in Windows units, and the vertical position (from the left
of the dialog) in Windows units. The PROPSIZE command also
has two arguments, x and y, which specify the width and height
of the property’s control, respectively, in Windows units.

Syntax:

PLACEMENT { PROPPOS (horizontal-positioning, vertical-

positioning) PROPSIZE (width, height) }

Example:

DEFINITION “My Definition”
{
PROPERTY "Table Name" { EDIT Text LENGTH 31
PLACEMENT {PROPPOS (4, 24) PROPSIZE(150, 12)} }
}

The example above places the beginning (upper left edge of its
text box) of the Table Name property 4 Windows units from the
left edge of the definition dialog, and 24 Windows units down
from the top edge of the definition dialog. The text box is also
150 Windows units wide and 12 Windows units long. This
statement does not specify anything about the name (or label,
which is “Table Name”) that goes along with this textbox. Since
nothing is mentioned, the label is placed to the left of the text
box, by default. You may change the positioning of the label
using the FORMAT command or the PLACEMENT
{LABELPOS} command.

Important: See Chapter 2 of this manual for general placement
and sizing tips.

See also PLACEMENT, LABELPOS, and FORMAT keywords.

USRPROPS Keywords

3-91

PUBLISHER
This keyword enables you to specify whether or not the values
of a property are published in the output of SA Information

Publisher. It has two arguments – PUBLISHER SHOW and
PUBLISHER ORDER.

Syntax:

PROPERTY "Some user property” {
PUBLISHER
{
SHOW (YES|NO) ‘ default is YES
ORDER nnnn ‘ default is zero (do not sort)}
}

PUBLISHER

ORDER

This argument of the PUBLISHER command enables you to
specify the order in which the values of the property are shown
in the published output of SA/Publisher. It is used with the
PUBLISHER SHOW argument.

Syntax:

PROPERTY "Some user property” { ... PUBLISHER {SHOW
YES|NO ORDER nnnn } ...}

 The default is zero (do not sort).

Example:

DEFINITION "Business Requirement"
{
PROPERTY "Benefit" { EDIT Text LENGTH 50 PUBLISHER

{ORDER 2 } }
PROPERTY "Status" { EDIT Text LENGTH 50 PUBLISHER

{ORDER 1 } }
PROPERTY "Difficulty" { EDIT Text LENGTH 50 PUBLISHER

{ORDER 3 } }
PROPERTY "Assigned to" { EDIT Text LENGTH 50
PUBLISHER {ORDER 4} }
}

USRPROPS.TXT Keywords

3-92

PUBLISHER SHOW
This argument of the PUBLISHER command enables you to
specify whether or not the values of a property are published in
the output of SA/Publisher. You may also use the PUBLISHER

ORDER command with this keyword.

Syntax:

PROPERTY "Some user property” {.....PUBLISHER {SHOW
YES|NO} ... }

The default is YES.

Example:

DEFINITION "Business Requirement"
{
PROPERTY "Benefit" { EDIT Text LENGTH 50 PUBLISHER
{SHOW NO} }
}

In the above example, the property Benefit will not show up in a
website generated by SA/Publisher, even if this property has
been specified to be output by a report.

USRPROPS Keywords

3-93

QUALIFIABLE
QUALIFIABLE is used in a reference property where one or
more key components of the referenced object(s) need not be
taken from other properties in the referring object, but may be
supplied in the property itself. It is used when all key data
cannot be stored within properties of a referencing definition,
but the name of the referenced definition must be qualified by
the key property.

For example, this KEYED BY clause:

KEYED BY {key_component-1: property_name_1, name}

states that the value of key_component_1 should be taken from
property_name_1 and so the reference property would contain
just the name(s) of the reference object(s). Whereas this
KEYED BY clause:

KEYED BY {key_component-1 QUALIFIABLE, name}

states that the value of key_component_1 should be taken from
this property – i.e. the one with this KEYED BY clause, and so
the reference property could contain the values of both the
name(s) and the key_component_1(s) of the reference
object(s). Under these conditions, the values of the names are
separated from the values of the key-component_1(s) by
periods.
Example:
PROPERTY "Operations”
{ ZOOMABLE EDIT ParmListOf "Method”
KEYED BY {"Class Name":Name, "Formal Parameters"
QUALIFIABLE, Name}
LENGTH 1200
ASGRID
DISPLAY { FORMAT COMPONENT_SCRIPT FmtUMLOperation
LEGEND "$$FORCE$$"}
}

USRPROPS.TXT Keywords

3-94

READONLY Designates that a property is readable but not modifiable.
READONLY is used in SAPROPS for properties whose value is
inserted by the software, but should be visible to the user. It is
always used for Initial AuditId, Date and Time, and Update
AuditId, Date and Time. Relation lines, constraints, and other
lines linking symbols, where the From and To symbols of the
line are significant, are always READONLY.

Example:

SYMBOL "Link" IN "Booch (94) Object"
REM "defined by Object Link"
{
 PROPERTY "From Class"
 { EDIT OneOf "Class" READONLY }
 PROPERTY "From Object"
 { EDIT OneOf "Object" KEYED BY {"Class":"From
Class", Name} READONLY }
 PROPERTY "To Class"
 { EDIT OneOf "Class" READONLY }
 PROPERTY "To Object"
 { EDIT OneOf "Object" KEYED BY {"Class":"To
Class", Name} READONLY }
...}

USRPROPS Keywords

3-95

REFPROP A Property can only be used once in a definition (unless it is
surrounded by #ifdef's). If the user wants to use the same
property more than once in a definition, they must use the
Control and RefProp keywords. For this reason, the Control and
RefProp keywords are often used in conjunction with
TESTPROC's.
For a Control to be used, there must be an initial reference to
the Property that the Control references, at the top of the
definition. The REFPROP keyword is used in conjunction with
the Control keyword.
Example:
Definition "Index"
{
CHAPTER "Modeling Properties"
 { TESTPROC TestPropertyNotValue TESTPROPERTY
"DBMS" TESTSTRING { "ORACLE 10g" } }
 PROPERTY "Primary Key"
 {EDIT Boolean LENGTH 1 DEFAULT "F" READONLY }
 PROPERTY Unique
 {EDIT Boolean LENGTH 1 VALUESCRIPT
ProcessIndexUnique DEFAULT "F" }
 PROPERTY Clustered
 {EDIT Boolean LENGTH 1 DEFAULT "F" }
 ...

CHAPTER "Modeling Properties "
 { TESTPROC TestPropertyValue TESTPROPERTY "DBMS"
TESTSTRING { "ORACLE 10g" } }
 Control "Primary Key"
 { REFPROP "Primary Key" }
 Control Unique
 { REFPROP "Unique" }
 Control Clustered
 {REFPROP "Clustered"}
 ...
 }

See Also CONTROL keyword.

USRPROPS.TXT Keywords

3-96

RELATE (BY),

RELATED (BY)

The default relationship type for a reference property is “uses”.
The RELATE BY keyword is used to override this default with a
different relationship (such as “keyed by”) or no relationship
(when “RELATE BY nothing” should be coded).

The following relationships may be used with the RELATE BY
keyword:

Nothing – no relationship.

Uses – the default. Means that the definition contains definition.

Explained By – Means a symbol is explained by a definition.

Defined By – Means a symbol is defined by a definition.

Is A – Means a definition "is an instance of" a definition (for
example, a column is a data element)

Identifies – Means an object identifies another object.

Comprises – Means an object comprises objects (for example,
model comprises entities, relationships, etc. Categorization
comprises Category Relations).

Originated From – Means an object originated from a
definition.

Is Based On – Means an object is based on a definition
(usually a data element).

Is Part Of – Means that a definition is part of a definition. This
is used with OneOf or ListOf.

Is Keyed by – Means that a definition is identified by a
definition.

User-Defined Relationships – There are also 20 user-defined
relationship types (USER 1 through USER 20) available if the
user creates them via a RENAME command, for example
RENAME RELATION “USER 1” to “XXXX”.

USRPROPS Keywords

3-97

 Example:

Definition “Use Case Step”
{
PROPERTY "Use Case Name" { KEY EDIT ONEOF "Use Case"
KEYED BY {"Package", Name} RELATE BY "is keyed by" READONLY
HELP "Name of Owning Use Case" }
 PROPERTY "Package" { KEY EDIT ONEOF "Package" RELATE BY
"is keyed by" READONLY}}

In the example above, the first KEY EDIT indicates that the
“Use Case Name” property is a key property of the Use Case
Step definition. That “Use Case Name” property refers to a Use
Case definition – the ONEOF “Use Case” specifies this. You
must specify the full key of that Use Case (that the step is being
keyed to); in this case you use the KEYED BY command to
specify the keys, which are the package that the Use Case is
contained in, and the Name of the Use Case itself. Finally, you
must specify that the Use Case Step is keyed by this Use Case,
which is what the RELATE BY “is keyed by” command does.
The RELATE BY clause is added because the default
relationship type for a reference property is “uses”. If a different
relationship type is wanted (such as “keyed by”), then the
default must be overridden.

The second KEY EDIT in the example above specifies that the
“Package” property is also a key of the Use Case Step definition
– specifically, the Use Case Step is keyed by a package
definition. Note, however, that a package definition is not itself
keyed by any additional properties besides its own name,
therefore the KEYED BY command is not used. The package is
related to a Use Case Step by the “is keyed by” relationship.

RELATION The relation in effect between a property and its referents.

See also keywords RELATE [BY], RELATED [BY].

USRPROPS.TXT Keywords

3-98

REM, REMARK Causes text following this command, and placed within single or
double quote marks to be ignored.

Example:

 GROUP "Connections"

 { LAYOUT { COLS 2 TAB ALIGN OVER }
 PROPERTY "From Entity"
 { KEY EDIT OneOf "Entity" RELATE BY "is keyed by"
 READONLY}
 PROPERTY "To Entity"
 { KEY EDIT OneOf "Entity" RELATE BY "is keyed by"
 READONLY}
 } REM "End of group Connections"

RENAME Enables references to an object by a name other than that
normally used by Rational System Architect.

Example:

RENAME SYMBOL "Control Transform"
 IN "Data Flow Ward & Mellor" TO "Process"
RENAME DIAGRAM "Data Flow Ward & Mellor"
 TO "Ward Mellor"

RENAME

DEFINITION

Enables the use of 150 User-provided definitions. These 150
user-provided definitions are named User 1 through User 150.
You use the RENAME DEFINITION command to rename any
number of these user-provided definitions to a new name, thus
creating in essence new definition types. RENAME
DEFINITION statements should be listed near the top of the
USRPROPS.TXT file.

Example:

Rename Definition "User 10" to "System Requirement "

USRPROPS Keywords

3-99

RENAME DIAGRAM Enables the use of 20 User-provided diagrams. These 20 user-
provided diagrams are named User 1 through User 20. You use
the RENAME DIAGRAM command to rename any number of
these user-provided diagrams to a new name, thus creating in
essence new diagram types. RENAME DIAGRAM statements
should be listed near the top of the USRPROPS.TXT file.

Example:

Rename Diagram "User 10" to "Requirements Hierarchy"

RENAME SYMBOL Enables the use of the 150 User symbols. . These 150 user-
provided symbols are named User 1 through User 150. You use
the RENAME SYMBOL command to rename any number of
these user-provided symbols to a new name, thus creating in
essence new symbol types. RENAME SYMBOL statements
should be listed near the top of the USRPROPS.TXT file.

Example:

Rename Symbol "User 10" to "System Requirement"

REQUIRED Specifies that a property must be filled in by the user to enable
the diagram or definition to be created. The property will
automatically appear in the initial Name dialog for the diagram
or definition.

Example:

This example requires that the user fills in a value for the XML
Schema property to create the XML Element Entity definition.
DEFINITION "XML Element Entity"
{
PROPERTY "XML Schema" { Key Edit ONEOF "XML Schema"
Relate By "is keyed by" Required
Readonly }
}

USRPROPS.TXT Keywords

3-100

RETAIN STYLE This keyword specifies that user-provided metafiles retain their
original graphical style and coloring when used in the tool. This
keyword is used with the DEPICTIONS clause.

When you use external, user-provided images to represent
symbols on a diagram, the default behavior is that you may
specify features of these symbols, such as the fill color and line
color, as you would with any other symbol in Rational System
Architect. If you specify the RETAIN STYLE keyword in the
DEPICTIONS clause, the colors of the user-defined symbol
remain as they are – unchangeable.

Example:

LiST "Node Stereotypes"
{
Value "Client" DEPICTIONS {diagram images\client.wmf menu
images\client.bmp}
Value "Database" DEPICTIONS {diagram images\database.wmf menu
images\database.bmp}
Value "Firewall" DEPICTIONS {diagram RETAIN STYLE
images\firewall.wmf menu images\firewall.bmp}

SYMBOL "Node" in "Deployment"
{
PROPERTY "Stereotype" { INVISIBLE EDIT Text ListOnly List "Node
Stereotypes" DEFAULT "" LENGTH 32}
}

DEFINITION "Node"
{
PROPERTY "Stereotype"
{ EDIT Text LIST "Node Stereotypes" Default "" LENGTH 32 }

In the example above, the firewall.wmf can be used to depict a
node symbol on a Deployment diagram if the node’s stereotype
is set to “Firewall”. When drawn on the diagram, the user-
provided metafile, firewall.wmf (added by the user to the FILES
table of the encyclopedia’s database), is drawn with exactly the
same colors as it is outside of Rational System Architect, and
cannot be changed by Rational System Architect’s color tools.

USRPROPS Keywords

3-101

SACPropertyOnOf

Base

Used in the command EDITCLASS SACPropertyOneOfBase.
Do not use this keyword combination. This keyword
combination was specially designed for a certain situation in
Rational System Architect, inheritance of Data Element
properties by an Attribute in an Entity. You will see this keyword
combination in SAPROPS.CFG used for this situation. This is
the only situation that this keyword combination can be applied
to. Use in other situations may cause errors.

USRPROPS.TXT Keywords

3-102

SCRIPT Calls a script written in SA Basic. The script is used for
properties that are neither ListOf nor ExpressionOf. A Script
takes the value of a property and performs an action, usually to
display a particular type of annotation on a symbol on a
diagram. The naming convention for the script itself is as
follows:

• _fmt (for example, _fmtUMLAttr): The function itself
exists in hard code and cannot be modified. Most
functions in SAPROPS.CFG are this way. Hard-coding
the function is done to make Rational System
Architect’s overall response faster.

• fmt (for example, fmtUMLAttr): Exists in the
fmtscript.bas file within Rational System Architect’s
main executable directory.

Creating Your Own Functions

You may create your own functions to display items in a
particular way on a symbol, or to compute a particular value.
Functions that you create should not be placed in
fmtscript.bas, since this file is overwritten for every new
installation or update of Rational System Architect. If you create
your own functions, you should place them in a usr_fn.bas file,
which you must create (it is not provided by default) and place
in the main Rational System Architect directory (<C>:\Program
Files\IBM\Rational\11.3.1\System Architect Suite\System
Architect). (The sarules.bas file has a #include to the
usr_fn.bas.)
Most functions called in SAPROPS.CFG (which are hard-coded
and by convention have an underscore at the start of their
name, such as _fmtUMLAttr) have an equivalent function call in
the fmtscript.bas file (without the underscore). If you wish to
create your own function, you may use the scripts in
fmtscript.bas as a guide.
Explanation of Existing Functions:

FmtOMTAbstractClass returns the script {abstract} if this
property has been set; otherwise returns nothing

FmtBOOClassConstraint returns a set of braces enclosing the
name of the constraint, i.e., {constraint name}, if one has been
set; otherwise, returns nothing

USRPROPS Keywords

3-103

SCRIPT (continued) FmtOMTObjInstClass returns a set of parenthesis enclosing the
name of the class, i.e. (class name), if one has been set;
otherwise, returns nothing

FmtEntryAction returns the script entry / and the name of the
entry action if one has been set; otherwise, returns nothing

FmtExitAction returns the script exit / and the name of the exit
action if one has been set; otherwise, returns nothing

FmtOMTTransition returns the following values, within the
following punctuation marks, if they are set in a state transition
definition: (attribute name) [condition] /action

Examples:

CHAPTER "OMT Object-oriented"
GROUP "OMT Object-oriented" {
..
 PROPERTY "Abstract"
{ EDIT Boolean LENGTH 1 DEFAULT "F" DISPLAY { FORMAT
SCRIPT FmtOMTAbstractClass LEGEND "$$FORCE$$"} }
...
 PROPERTY "Constraints" { EDIT Text LENGTH 500 DISPLAY {
FORMAT SCRIPT FmtBOOClassConstraint LEGEND "$$NONE$$"}
}
} REM "end of group OMT Object-oriented"

See also keywords FORMAT, COLUMN_SCRIPT,
COMPONENT_SCRIPT, and fmtxxx.

STRING The default argument used after the keyword FORMAT in a
Display command. Use of string causes the contents of the
dictionary entry to appear on the screen exactly the way it was
typed.

Example:

SYMBOL "Relation" IN "Shlaer Information Model"
{
 PROPERTY "Description" { EDIT Text LENGTH 100 }
PROPERTY "Reverse Phrase" { EDIT Text LENGTH 65 DISPLAY {
FORMAT STRING LEGEND "$$NONE$$" } }
..}

See also keywords FORMAT and DISPLAY.

USRPROPS.TXT Keywords

3-104

SUPERS See keyword OF DEFINITION AND SUPERS REFERENCED
IN.

SYMBOL This is the first word in the block in which the properties of a
symbol, as opposed to a DEFINITION or a DIAGRAM, are
listed.

Example:

SYMBOL "Entity" IN "Entity Relation"
{
 PROPERTY "Description" { EDIT Text LENGTH 500 }
…
}
See also keywords DIAGRAM and DEFINITION.

TAB This keyword controls vertical positioning in the LAYOUT
command by separating sets of controls and labels in multiple
columns by tabs so that the entries in each row line up directly
below the entries in the row above.

Example:

 GROUP "SQL Server Schema Check Constraint"
{
 LAYOUT { TAB ALIGN Over COLS 2 }
 PROPERTY "SQL Server Check Constraint Name"
 { EDIT Text LENGTH 30 Label "Constraint Name"}
 PROPERTY "SQL Server Check Constraint"
 { EDIT TEXT LENGTH 256 LINES 10 LABEL "Constraint Check"}
 } REM "End of Schema Check Constraint group "
See also keywords LAYOUT and PACK.

USRPROPS Keywords

3-105

TESTPROC,

TESTPROPERTY,

TESTSTRING

command group

The TESTPROC, TESTPROPERTY, and TESTSTRING
command group provides a conditional capability for properties
on a per-diagram basis. This command group provides similar
functionality to #ifdef's, except that #ifdef's provide a conditional
capability based on an encyclopedia-wide level. The
TESTPROC command group works off of a diagram property -

- a definition will contain a certain property set if a value is
selected for a "test property" within the diagram's properties.

The TESTPROC command group is especially used in logical
data models, to specify data modeling property sets depending
on the RDBMS chosen.

TESTPROC stands for Test Procedure. There are two values
that can follow a TESTPROC keyword: TestPropertyValue and
TestPropertyNotValue. If TESTPROC is followed by
TestPropertyValue, it means "test the property and if it is the
same as one of the values in the TESTSTRING specified, then
apply the properties in this TESTPROC section to the definition
in question". If TESTPROC is followed by
TestPropertyNotValue, it means "test the property and if it is
Not the same as one of the values in the TESTSTRING
specified, then apply the properties in this TESTPROC section
to the definition in question". There is case sensitivity when
using TestPropertyValue and TestPropertyNotValue, the
case must be exactly as specified. It will not work if you use all
lower case or all upper case.

TESTPROPERTY is the diagram property that will be queried.

TESTSTRING are the values that are queried. You can list one
or more values in the string.

Controls and RefProps: A Property can only be used once in a
definition (unless it is surrounded by #ifdef's). If the user wants
to use the same property more than once in a definition, he or
she must use the Control and RefProp keywords. For this
reason, the Control and RefProp keywords are often used in
conjunction with TESTPROC's. For a Control to be used, there
must be an initial reference to the Property that the Control
references, at the top of the definition.

USRPROPS.TXT Keywords

3-106

TESTPROC,

TESTPROPERTY,

TESTSTRING

command group

(continued)

Example:

Definition "Index"
{
CHAPTER "Modeling Properties"
 { TESTPROC TestPropertyNotValue TESTPROPERTY "DBMS"
TESTSTRING { "ORACLE 10g" } }
 PROPERTY "Primary Key"
 {EDIT Boolean LENGTH 1 DEFAULT "F" READONLY }
 PROPERTY Unique
 {EDIT Boolean LENGTH 1 VALUESCRIPT ProcessIndexUnique
DEFAULT "F" }
 PROPERTY Clustered
 {EDIT Boolean LENGTH 1 DEFAULT "F" }
 ...

CHAPTER "Modeling Properties "
 { TESTPROC TestPropertyValue TESTPROPERTY "DBMS"
TESTSTRING { "ORACLE 10g" } }
 Control "Primary Key"
 { REFPROP "Primary Key" }
 Control Unique
 { REFPROP "Unique" }
 Control Clustered
 {REFPROP "Clustered"}
 ...
 }

TestPropertyValue See TESTPROC, TESTPROPERTY, TESTSTRING command
group.

TestPropertyNotVal

ue

See TESTPROC, TESTPROPERTY, TESTSTRING command
group.

USRPROPS Keywords

3-107

TEXT This is an allowable field type. The definition defined as text
may come from a list, or may be any alphanumeric characters
typed by the user.

Example:

DEFINITION "Relationship"
{
CHAPTER "Relations and Connections"
GROUP "Relation"
 { LAYOUT { COLS 2 TAB ALIGN OVER }
 PROPERTY "Role" { EDIT Text LENGTH 31 }
 PROPERTY "Role Prefix" { EDIT Text LENGTH 31 }
}

TIME This is an allowable field type, indicating the property contains a
time stamp in the notation appropriate to the time format defined
to Windows. CHECKOUT TIME, FREEZE TIME, INITIAL TIME,
and UPDATE TIME each have special meanings.

Example:

DIAGRAM "Data Flow Gane & Sarson"
{
PROPERTY "Freeze time"
 { FREEZE TIME }
..
}
Other uses for the TIME might be found in any definition.

Example:

DEFINITION "X" {
 PROPERTY "Creation Time"
 { EDIT Text INITIAL TIME LENGTH 12 READONLY }
}

TO Used in the Rename command to separate the original name of
the object from the new name.

Example:

RENAME SYMBOL Class IN "Booch Class"
 TO "Booch Class"

USRPROPS.TXT Keywords

3-108

UPDATE An allowable field type which indicates that the system
automatically updates the field when the property is changed. It
is used by default for Audit ID, Update Date and Update Time.

The UPDATE keyword provides the same information that the
LAST CHANGED keyword provides. Both specify the last time
that a definition was changed – meaning that someone opened
up a definition dialog, made a modification (‘dirtied’ the definition
in some way, such as adding a space or deleting a letter in one
of the properties, or removing a letter and then adding the letter
back), and then clicked the SAVE button to save the change. If
a user opens a definition dialog and does not touch anything,
and clicks SAVE, then the definition was not changed (not
‘dirtied’), and it is not considered a change. (Note: When a
definition is opened by a user it is ‘locked’ temporarily by that
user. If he or she does not make a change and either Saves or
Cancels out of that definition, they have not changed the
definition and the LAST CHANGED or UPDATE properties will
not know about them. However, Rational System Architect
internally tracks who last ‘locked’ a definition. This Last Locked
information is not available to you via USRPROPS keywords.)

Starting in Rational System Architect V9, LAST CHANGED
AUDITID, LAST CHANGED DATE, and LAST CHANGED TIME
are provided by default in the Access Data tab of each diagram
or definition dialog. This is hard-coded in the product – in other
words, you will not find the LAST CHANGED keyword in each
definition in SAPROPS.CFG, nor do you need to add it to
USRPROPS.TXT for new diagram or definition types that you
create.

Example:

DEFINITION "X"
 { PROPERTY "Modified Time"
 { EDIT Text UPDATE TIME LENGTH 12 READONLY }
 }

See also INITIAL keyword.

USRPROPS Keywords

3-109

VALUE This keyword prefaces a value string in a LIST.

Example:

List "Importance"
{
VALUE "Mandatory"
VALUE "Strongly Desired"
VALUE "Should Have"
VALUE "Icing on the Cake"
VALUE "Not Important"
}

Definition "Use Case Step"
{
PROPERTY "Importance" {EDIT TEXT LIST "Importance" LENGTH 20
DEFAULT "Should Have" }
}

In the example above, a new list is created in USRPROPS.TXT
(at the top of the file). There are five values assigned to the list.
Later in the USRPROPS.TXT, within the definition of a Use
Case Step, this list is employed within the property
“Importance”. Note that in this type of list, the user can type in
their own value in the Importance field.

See keywords LIST, LISTONLY, and LISTONLYCOMBO.

USRPROPS.TXT Keywords

3-110

VALUESCRIPT The VALUESCRIPT calls a function written in SA Basic.
VALUESCRIPTS involve enforcing consistency checks of
property values in an open dialog. The functions generally
compute values set for properties in a dialog, and make
necessary changes, in real time, to values of other properties in
the dialog, so that certain consistency rules are enforced.

Creating Your Own Function

You may create your own functions to enforce consistency
checks of property values in an open dialog. For information on
how to create your own function, see the SCRIPT keyword.

Example:

DEFINITION "Index"
{
PROPERTY Unique
{ PLACEMENT {PROPPOS(84, 0) PROPSIZE(100, 12)} EDIT Boolean
LENGTH 1 VALUESCRIPT ProcessIndexUnique DEFAULT "F" }
.. }
In the example above, the function ProcessIndexUnique is
called. It is located in the fmtscript.bas file. This function is only
called when Oracle is the DBMS chosen. The function checks
to see if the Bitmap property for the Index is toggled on – if it is,
the ProcessIndexUnique function toggles the Index property off
if it has been set to on. The reason is that in Oracle, an Index
cannot be Unique if it has been specified as a Bitmap index.
Example:
Definition “Data Element”
{
PROPERTY "SQL Data Type"
{ EDIT text LIST "Standard Data Types" LENGTH 30 VALUESCRIPT

ProcessSQLDataType LABEL "Data Type" "Type" "DT" PLACEMENT
{PROPPOS(4, 26) PROPSIZE(80, 12)} }
..}

USRPROPS Keywords

3-111

VFORCE

In the example above, the ProcessSQLDataType checks to see
if the Data Element inherits its type from an underlying Data
Domain, and if so, automatically fills it in. If it does not inherit its
type, and the user leaves the type field empty, then the function
automatically fills in Character 10 as the default when the user
hits the Enter key or changes fields in the attribute grid.

Enables you draw vertical lines inside symbols, as opposed to
horizontal lines, which are the default. VFORCE lays out
properties from left to right, and separates them by a vertical
line. (Note: The VNONE command does the same thing but
does not show the vertical line.)

Syntax:

{FORMAT String LEGEND "$$VFORCE$$"}

Example:

DEFINITION "Elementary Business Process"
{
PROPERTY "Supporting Applications"
{ Edit Listof "Application" Label "Applications" LENGTH 2000 HELP
"Must be entered through Matrix" READONLY DISPLAY { FORMAT
String LEGEND "$$FORCE$$"} }
PROPERTY "Referenced Data"
{ EDIT ListOf "Entity" KEYED BY {Model QUALIFIABLE,
Name} LENGTH 5000 READONLY DISPLAY { FORMAT String
LEGEND "$$VFORCE$$"}}
..}
Notice that the first property listed does not have VFORCE, just
FORCE. Subsequent properties that you want to line up to the
right of the first property are given the VFORCE specification. In
the picture below, the “Sales Web”.Orders and “Sales
Web”.Customer values are listed in a box for “Referenced
Data”. The VFORCE command was used to make this box
appear to the right of the “Supporting Applications” property
box, which in the picture has the value SalesWeb listed.

USRPROPS.TXT Keywords

3-112

VFORCE

(continued)

Note also that the VFORCE command was also used to make
the boxes containing “BR 1” and “BR 2” and John Process
appear to the right of the box containing the value 1, but this is
not shown in the USRPROPS.TXT sample provided.

VISIBLE If a property is denoted as INVISIBLE in SAPROPS.CFG, using
the keyword VISIBLE will make it appear in the definition dialog.

Example (SAPROPS):

DEFINITION "Watcom Stored Procedure"
 { CHAPTER "Keys and Parameters"
 PROPERTY "Owner Name"
 { EDIT Text KEY LENGTH 31 }
 PROPERTY "Procedure Number"
 { INVISIBLE EDIT Numeric LENGTH 9 }
 PROPERTY "Description"
 { EDIT Text LENGTH 400 }

Example (USRPROPS):

DEFINITION "Watcom Stored Procedure"
 PROPERTY "Procedure Number"
 { VISIBLE }

See also keyword INVISIBLE.

USRPROPS Keywords

3-113

VNONE Actually the $$VNONE$$ keyword, used with the DISPLAY
keyword. For more information, see the DISPLAY keyword.

Enables you draw vertical lines inside symbols, as opposed to
horizontal lines, which are the default. VNONE lays out
properties from left to right, separating them but not showing
any vertical line between them. (Note: The VFORCE command
does the same thing but shows the vertical line.)

Syntax:

{FORMAT String LEGEND "$$VNONE$$"}

Example:

Notice that in the example USRPROPS.TXT snippet below, the
first property listed specifies FORCE. Subsequent properties
that you want to line up to the right of the first property (without
a dividing line) are given the VNONE specification.

Example:

DEFINITION "Elementary Business Process"
{

PROPERTY "Supporting Applications"
{ Edit Listof "Application" Label "Applications" LENGTH 2000 HELP
"Must be entered through Matrix" READONLY DISPLAY { FORMAT
String LEGEND "$$FORCE$$"} }
PROPERTY "Referenced Data"
{ EDIT ListOf "Entity" KEYED BY {Model QUALIFIABLE,
Name} LENGTH 5000 READONLY DISPLAY { FORMAT String
LEGEND "$$VNONE$$"}}

..}

USRPROPS.TXT Keywords

3-114

WHERE Displays only those definitions in the Choices dialog that
contain a fixed value in a named property of the definition.

Example:

Rename Definition "User 1" To "Aircraft Type"
Rename Definition "User 2" To "Filtered Aircraft"

List "Engine"
{
 Value "Propeller"
 Value "Jet"
 Value "Glider"
}

Definition "Aircraft Type"
{
 Property "Engine Type"
 { EDIT Text List "Engine" Length 48 }
}

Definition "Filtered Aircraft"
{
 Property "Selected Aircraft Type"
 { edit listof "Aircraft Type" WHERE "Engine Type" = "Jet"}
}

If the above USRPROPS.TXT were applied to an encyclopedia,
and the following Aircraft Type definitions were created in the
encyclopedia:

Mustang (engine = Propeller)
Spitfire (engine = Propeller)
F-16 Fighting Falcon (engine = Jet)
F-86 Sabre (engine = Jet)

then upon creating a new definition of type Filtered Aircraft
(named Current Jet Fighters, for example), clicking on the
Choices button for this definition would only reveal two choices
-- F-16 Fighting Falcon and F-86 Sabre; all definitions with
Engine Type set to Propeller will not appear in the Choices list.

USRPROPS Keywords

3-115

ZOOMABLE Places a button into a list box which enables it to expand to fill
the entire dialog page.

Example:

 PROPERTY "User Roles"
 {ZOOMABLE EDIT ListOf "User Role with Access Rights"
 LENGTH 1500 LABEL "User Role(s)"}

See also keyword LINES.

4-1

4
IBM support

There are a number of self-help information resources and tools to help
you troubleshoot problems. If there is a problem with your product,
you can:

Refer to the release information for your product for known issues,
workarounds, and troubleshooting information.

Check if a download or fix is available to resolve your problem.

Search the available knowledge bases to see if the resolution to your
problem is already documented.
If you still need help, contact IBM® Software Support and report your
problem.

Topics in this chapter Page
Contacting IBM Rational Software Support 4-2

Introduction

IBM support

4-2

Contacting IBM Rational
Software Support

If you cannot resolve a problem with the self-help resources, contact
IBM® Rational® Software Support.

Note: If you are a heritage Telelogic customer, you can find a single
reference site for all support resources at
http://www.ibm.com/software/rational/support/telelogic/

To submit a problem to IBM Rational Software Support, you must
have an active Passport Advantage® software maintenance agreement.
Passport Advantage is the IBM comprehensive software licensing and
software maintenance (product upgrades and technical support)
offering. You can enroll online in Passport Advantage at
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.ht
ml

• To learn more about Passport Advantage, visit the Passport
Advantage FAQs at
http://www.ibm.com/software/lotus/passportadvantage/brochu
res_faqs_quickguides.html.

• For further assistance, contact your IBM representative.

To submit a problem online (from the IBM Web site) to IBM Rational
Software Support:

• Register as a user on the IBM Rational Software Support Web
site. For details about registering, go to
http://www.ibm.com/software/support/.

• Be listed as an authorized caller in the service request tool.

Prerequisites

Contacting IBM Rational Software Support

4-3

Other information

For Rational software product news, events, and other information,
visit the IBM Rational Software Web site:
http://www.ibm.com/software/rational/.

To submit a problem to IBM Rational Software Support:

1. Determine the business impact of the problem. When you
report a problem to IBM, you are asked to supply a severity
level. Therefore, you need to understand and assess the
business impact of the problem.

To determine the severity level, use the following table.

Severity Description

1 The problem has a critical business impact: you
are unable to use the program, resulting in a
critical impact on operations. This condition
requires an immediate solution.

2 The problem has a significant business impact:
the program is usable, but it is severely limited.

3 The problem has some business impact: the
program is usable, but less significant features
(not critical to operations) are unavailable.

4 The problem has minimal business impact: the
problem causes little impact on operations or a
reasonable circumvention to the problem was
implemented.

2. Describe the problem and gather background information.

When you describe the problem to IBM, be as specific as
possible. Include all relevant background information so that
IBM Rational Software Support specialists can help you solve
the problem efficiently. To save time, know the answers to
these questions:

Submitting

problems

IBM support

4-4

• What software versions were you running when the
problem occurred?

• To determine the exact product name and version,

use the option applicable to you:
o Start the IBM Installation Manager and

click File > View Installed Packages.
Expand a package group and select a
package to see the package name and
version number.

o Start your product, and click Help >
About to see the offering name and
version number.

• What is your operating system and version number

(including any service packs or patches)?

• Do you have logs, traces, and messages that are
related to the problem symptoms?

• Can you recreate the problem? If so, what steps do

you perform to recreate the problem?

• Did you make any changes to the system? For
example, did you make changes to the hardware,
operating system, networking software, or other
system components?

3. Are you currently using a workaround for the problem? If so,

be prepared to describe the workaround when you report the
problem.

4. Submit the problem to IBM Rational Software Support in one

of the following ways:

• Online: Go to the IBM Rational Software Support
Web site at
https://www.ibm.com/software/rational/support/. In
the Rational support task navigator, click Open
Service Request. Select the electronic problem

Contacting IBM Rational Software Support

4-5

reporting tool, and open a Problem Management
Record (PMR) to describe the problem.

• For more information about opening a service

request, go to
http://www.ibm.com/software/support/help.html.

• You can also open an online service request by using

the IBM Support Assistant. For more information, go
to
http://www.ibm.com/software/support/isa/faq.html.

• By phone: For the phone number to call in your
country or region, visit the IBM directory of
worldwide contacts at
http://www.ibm.com/planetwide/ and click the name
of your country or geographic region.

• Through your IBM Representative: If you cannot

access IBM Rational Software Support online or by
phone, contact your IBM Representative. If
necessary, your IBM Representative can open a
service request for you. For complete contact
information for each country, visit
http://www.ibm.com/planetwide/.

5-1

5
Appendix:

This chapter contains information about the legal uses and

trademarks of IBM® Rational® System Architect®.

Topics in this chapter Page

Notices 5-2

Trademarks 5-5

Introduction

Appendix:

5-2

Notices

© Copyright IBM Corporation 1986, 2009.

This information was developed for products and services offered in

the U.S.A. IBM may not offer the products, services, or features

discussed in this document in other countries. Consult your local

IBM representative for information on the products and services

currently available in your area. Any reference to an IBM product,

program, or service is not intended to state or imply that only that

IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any

IBM intellectual property right may be used instead. However, it is

the user's responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

IBM may have patents or pending patent applications covering

subject matter described in this document. The furnishing of this

document does not grant you any license to these patents. You can

send written license inquiries to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

For license inquiries regarding double-byte character set (DBCS)

information, contact the IBM Intellectual Property Department in

your country or send written inquiries to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom

or any other country where such provisions are inconsistent

with local law: INTERNATIONAL BUSINESS MACHINES

CORPORATION PROVIDES THIS PUBLICATION “AS IS”

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or

Notices

5-3

implied warranties in certain transactions. Therefore, this statement

may not apply to you.

This information could include technical inaccuracies or

typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new

editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are

provided for convenience only and do not in any manner serve as an

endorsement of those Web sites. The materials at those Web sites

are not part of the materials for this IBM product and use of those

Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any

way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for

the purpose of enabling: (i) the exchange of information between

independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been

exchanged, should contact:

Intellectual Property Dept. for Rational Software

IBM Corporation

1 Rogers Street

Cambridge, MA 02142

U.S.A

Such information may be available, subject to appropriate terms and

conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed

material available for it are provided by IBM under terms of the

IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a

controlled environment. Therefore, the results obtained in other

operating environments may vary significantly. Some measurements

may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally

available systems. Furthermore, some measurements may have been

Appendix:

5-4

estimated through extrapolation. Actual results may vary. Users of

this document should verify the applicable data for their specific

environment.

Information concerning non-IBM products was obtained from the

suppliers of those products, their published announcements or other

publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily

business operations. To illustrate them as completely as possible,

the examples include the names of individuals, companies, brands,

and products. All of these names are fictitious and any similarity to

the names and addresses used by an actual business enterprise is

entirely coincidental.

Copyright license

This information contains sample application programs in source

language, which illustrate programming techniques on various

operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM, for the

purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for

the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

Each copy or any portion of these sample programs or any

derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived

from IBM Corp. Sample Programs. © Copyright IBM Corp. 2000

2009.

If you are viewing this information softcopy, the photographs and

color illustrations may not appear.

Trademarks

5-5

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered

trademarks of International Business Machines Corp., registered in

many jurisdictions worldwide. Other product and service names

might be trademarks of IBM or other companies. A current list of

IBM trademarks is available on the Web at “Copyright and

trademark information” at

www.ibm.com/legal/copytrade.html

Microsoft and Windows are trademarks of Microsoft Corporation in

the United States, other countries, or both.

Other company, product or service names mentioned may be

trademarks or service marks of others.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.html

Index

Index

B

Begin
Keyword

Syntax in USRPROPS.TXT, 2-52

C

Chapter
Command, 2-87
Keyword

Syntax in USRPROPS.TXT, 2-52
Cols

Keyword
Syntax in USRPROPS.TXT, 2-91
Syntax in USRPROPS.TXT, 2-53

Layout Command, 2-86
Columns

Keyword, 3-18
CONFIG.PRP, 1-9

D

Default
Keyword

Syntax in USRPROPS.TXT, 2-64
Definition

Defining in USRPROPS.TXT, 2-60
Definition Dialog, 2-76
Diagram

Defining properties in USRPROPS.TXT, 2-54
Display

Keyword
Syntax in USRPROPS.TXT, 2-64

Index

E

Edit
Keyword

Syntax in USRPROPS.TXT, 2-63
Error message

SAPROPS.CFG file, 2-123

G

Group
Keyword

Syntax in USRPROPS.TXT, 2-52

H

Hide Definition
Keyword, 3-46

Hide Diagram
Keyword, 3-46

I

Indent
Text

USRPROPS.TXT, 2-16
Invisible

Command
Syntax in USRPROPS.TXT, 2-121

J

Justify
Keyword

Syntax in USRPROPS.TXT, 2-91
Syntax in USRPROPS.TXT, 2-53

Layout Command, 2-86

Index

K

Key
Option of Display command

USRPROPS.TXT, 2-101

L

Label
Keyword

Syntax in USRPROPS.TXT, 2-63
Layout

Keyword
Syntax in USRPROPS.TXT, 2-53

Legend
Keyword

Syntax in USRPROPS.TXT, 2-64
On display mode divider lines, 2-64

Length
Keyword

Syntax in USRPROPS.TXT, 2-64
List

Keyword
Syntax in USRPROPS.TXT, 2-64

Of Values
USRPROPS.TXT, 2-27

Option of Display command
USRPROPS.TXT, 2-101

Syntax in USRPROPS.TXT, 2-27
ListOnly List

Keyword
Syntax in USRPROPS.TXT, 2-64

Index

M

Maximum
Keyword

Syntax in USRPROPS.TXT, 2-64
Meta-model

definition, 1-3
modifying, 1-3

Minimum
Keyword

Syntax in USRPROPS.TXT, 2-64

N

NonAddr
Keyword, 3-74

NonAddressable
Keyword, 3-74

NonKey
Option of Display command

USRPROPS.TXT, 2-101

P

Pack
Keyword

Syntax in USRPROPS.TXT, 2-53, 2-91
Layout Command, 2-86

Parent
Keyword, 3-81

Property
Arguments

Case sensitivity, 2-7
Dialog, 2-76
Keyword

Case sensitivity, 2-7
Syntax in USRPROPS.TXT, 2-62
Syntax in USRPROPS.TXT, 2-53, 2-63

Referenced in reports, 2-7

Index

R

REM
Keyword, 3-91

Remark
Keyword, 3-91

RENAME
Definition, 2-32
Keyword, 2-32

Rename Definition
Command

Syntax, 2-29, 2-31, 2-32
Rename Diagram

Command
Syntax, 2-29

Rename Symbol
Command

Syntax, 2-29, 2-30
Renaming Existing Diagram, Symbol, or Definition Types, 2-29
Runtime Edits

SAPROPS.CFG file, 2-126
USRPROPS.TXT, 2-126

S

SAPROPS.CFG file
Error messages, 2-123
Hiding Standard Entries, 2-121

T

Tab
Keyword

Syntax in USRPROPS.TXT, 2-53, 2-91
Layout Command, 2-86

Index

U

User Definition Type
User n, 2-32

User n
Definition type, 2-32

USRPROPS.TXT
Error message, 2-123
Hiding Standard Entries, 2-121
List

Syntax, 2-27
List of Values, 2-27
Syntax

Indenting text, 2-16

Z

Zoomable
Command, 2-74

Syntax in USRPROPS.TXT, 2-74
Keyword, 3-108

	IBM Rational System Architect Usrprops Extensibility Guide

	Table of Contents

	1. Extending a System Architect Encyclopedia's Metamodel

	Introduction

	Extending Rational System Architect

	Extending the Metamodel through USRPROPS.TXT

	Rational System Architect's Encyclopedia Metamodel

	What the Metamodel Provides

	How to Modify the Metamodel

	Physical Makeup of an Encyclopedia's Metamodel - SAPROPS.CFG and USRPROPS.TXT

	The 'Master' SAPROPS.CFG & USRPROPS.TXT Files

	CONFIG.PRP File

	Selecting the Diagram and Property Sets for an Encyclopedia

	SADECLAR.CFG

	2. Modifying the Metamodel with USRPROPS.TXT
	Introduction

	Accessing and Editing the USRPROPS.TXT File

	Accessing the Master USRPROPS.TXT Files

	Accessing an Encyclopedia's USRPROPS.TXT File

	Reloading the Properties Files

	Composition and Syntax

	Keywords

	Case Insensitivity of Keywords

	Commands

	Arguments

	Case Sensitivity of Arguments that Are Text Strings

	Grouping Commands to Create Modeling Elements

	Diagrams, Symbols, and Definitions

	Properties

	Layout

	Chapter

	Groups

	Lists

	A Note on Syntax

	Dialog Controls

	Ordering and Laying Out USRPROPS.TXT

	Rules for Modifying USRPROPS.TXT Changes

	Layout Of USRPROPS.TXT Changes

	Example of Making Changes to USRPROPS.TXT

	Making a Change With USRPROPS.TXT

	Only Change What Needs to Be Changed

	One More Change and a Warning

	Defining a LIST of Values

	Syntax of the LIST Definition

	Check-Boxes Versus Drop-Down List

	Entering Your Own Values

	Renaming Existing Diagrams, Symbol, or Definition Types

	RENAME and Reporting

	Creating New Diagram, Symbol, or Definition Types

	Creating New Diagrams

	Creating New Symbols

	Specifying New Line Symbols

	Creating New Definitions

	Assigning a Symbol Type to a Diagram Type

	Example

	Assigning a Line Symbol Type to a Diagram Type

	Example

	Limitations of Assigning a Symbol Type to a Diagram Type

	Assigning a Definition Type to a Symbol Type

	Example

	Depicting a Symbol with a Bitmap or Metafile

	Specifying Depiction Files for New Encyclopedias

	User-Defined Symbol Presentation Based on Property Value

	Example

	Retain Style

	Displayable Properties on Depicted Symbols

	Specifying Properties for Diagrams, Symbols, and Definitions

	Specifying Properties for Diagram Types

	Specifying Properties for Symbol Types

	Graphich Comment

	Adding More Properties for a Symbol

	Example

	Specifying Properties for Definition Types

	Syntax

	Description

	Property Statements

	Using ListOf, OneOf, and Expression Of

	ListOf

	Filtering the List of Items

	Creating Grids for ListOf
	Heterogeneous Lists for ListOf

	OneOf

	Filtering the List of Items

	Heterogeneous OneOf List

	ExpressionOf

	ZOOMABLE Command

	Modifying the Aesthetic Look of Dialogs

	LAYOUT Command

	Layout of the "Introduction" Tab

	Default Layout Behavior

	Example

	LAYOUT Command Arguments

	Creating Tabs with the CHAPTER Command

	Syntax and Positioning of CHAPTER Command

	Using the LAYOUT Command Within a CHAPTER

	GROUP Command

	Group Command Syntax

	Using the LAYOUT Command Within a GROUP

	Example

	Positioning Controls and Labels

	Some General Sizing Rules

	Some General Placement Rules

	Specifying the Display of Values on Symbols

	Syntax of the DISPLAY Command

	Specifying Key and Keyed By Properties

	Establishing KEY Properties

	Using KEYED BY to Make Sure All Memembers of a Group Are of the Same Stype

	How To Use the KEYED BY Clause

	Examples of Key and Keyed By

	One Definition Keyed By Another

	A Third Definition With Two Key Properties

	Creating a ListOf a Keyed Definition

	Adding the KEYED BY Statement

	Example of "Complete" Keyword

	Qualifiable Example

	Examples of Using the Where Clause

	Hiding Standard Entries in the SAPROPS.CFG File

	Error Messages

	Error Messages

	Runtime Edits

	3. USRPROPS.TXT Keywords

	Introduction

	USRPROPS Keywords

	4. IBM support

	Introduction
	Contacting IBM Rational Software Support
	Prerequisites
	Submitting problems

	5. Appendix

	Introduction
	Notices
	Trademarks

	Index

