

Telelogic

System Architect

 VBA Extensibility Guide

Release 11.2

Before using this information, be sure to read the general information under Appendix, “Notices,” on page 20-1.

This edition applies to Release 11.2, System Architect and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Copyright IBM Corporation 1986, 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Table of Contents

Table of
Contents

Table of Contents... i
Introduction ... 1-1

Automating System Architect ... 1-2
Programming System Architect with VBA... 1-3
Running a Macro... 1-4
Macro Projects .. 1-5
Accessing the VBA Editor .. 1-7
Object Browser.. 1-11

Automation and System Architect ... 2-1
Automation.. 2-2
Customizable Solutions... 2-7
Planning an Automated Solution with System Architect .. 2-9

The Application Class ... 4-1
Attributes... 4-3
Methods... 4-5

The Encyclopedia Class .. 5-1
Attributes... 5-3
Methods... 5-6
Relation Metrics .. 5-20

The Diagram Class .. 6-1
Attributes... 6-3
Methods... 6-9
Diagram Fields .. 6-20
Diagram Metrics.. 6-26

The Symbol Class .. 7-1
Attributes... 7-3
Methods... 7-14
Symbol Fields.. 7-23
Symbol Metrics ... 7-31

i

Table of Contents

The Definition Class .. 8-1
Attributes... 8-3
Methods... 8-8
Definition Fields.. 8-15
Definition Metrics ... 8-17

The MetaModel Class.. 9-1
Attributes... 9-2

The MetaClass Class ... 10-1
Attributes... 10-2

The MetaItem Class .. 11-1
Attributes... 11-2

The MetaProperty Class ... 12-1
Attributes... 12-3

The MetaKeyedBy Class ... 13-1
Attributes... 13-2

System Architect Collections .. 14-1
SAObjects Class.. 14-3
SACollection Class ... 14-6
OfCollection Class .. 14-8

System Architect Events ... 15-1
Application Events .. 15-2
Guidelines for Adding Macro Items to Menus Programmatically 15-9

System Architect Relationships.. 16-1
Relation Types .. 16-2

System Architect Field Types ... 17-1
Field Types.. 17-2

System Architect Errors ... 18-1
Handling Errors... 18-2
System Architect Errors .. 18-3

IBM Support .. 19-1
Contacting IBM Rational Software Support ... 19-2

Appendix .. 20-1
Notices... 20-2
Trademarks.. 20-5

Table of Contents

iii

1
Introduction
Introduction
This chapter covers the fundamentals of working with System Architect and Visual Basic for
Applications (VBA). You will learn about using macros, the VBA Editor, and the Object
Browser.

Topics in this chapter Page
Automating System Architect 1-2

Programming System Architect with VBA 1-3

Running a Sample macro 1-4

Macro Projects 1-5

Accessing the VBA Editor 1-7

Object Browser 1-11

1-1

Introduction

Automating System Architect
System Architect is ‘VBA enabled’ allowing the user to control the System Architect
environment programmatically, and to control other applications using OLE automation.

Microsoft VBA and its development environment are installed with System Architect. The
programming environment, debugging environment, language and help system are the
same as found in other VBA enabled applications, including Microsoft Office products.

Using automation, you can integrate other applications with System Architect in the two
ways. You can use System Architect:

• As an automation controller, and call an OLE automation object from within
a System Architect script.

• As an automation server, and call its OLE automation object from within
another OLE-compliant application.

Macros within System Architect can be used to:

• Enhance the functionality of System Architect – automating the presentation
and rules checking of diagrams.

• Create diagrams, symbols and definitions from information contained in
other applications.

Capture events that take place in System Architect and store them in a file or database.

1-2

Programming System Architect with VBA

Programming System Architect with VBA
System Architect stores the current status of its VBA project environment in the initialization
file SA2001.INI, (found in either the Windows or WinNt folder). The section entitled
Macros may contain the following:

[Macros]

PermanentAutoLoad1=SAAuto.mac

TemporaryAutoLoad1= c:\program files\telelogic
\system architect suite\system
architect\sample.mac|vxRead|vxShared|vxTransacted|b
ProjectActive

RunTemporaryAutoMacros=T

OpenReadOnly=T

The above excerpt indicates that the permanent SAAUTO.MAC project file is loaded when
System Architect starts. (It will be hidden and read-only). The temporary SAMPLE.MAC
project file is currently active and is also loaded in read-only mode. If any of the temporary
project files contain an AutoExec module, then the macros are automatically executed. The
default for opening new projects will be Read Only.

1-3

Introduction

Running a Macro

To run the macros directly from the Macros dialog:

1. From the Tools menu, select the Macros submenu.

2. Select the Run Macro… option.

Figure 2-1. The Macros dialog

A macro can also be run from a Toolbar.

To add a macro to a toolbar:

• Right click over the MenuBar or any toolbar and select the Customize…
option.

• Select the Commands tab and then the Macros option.

• Scroll through the available macros and Drag and drop the required macro
onto a toolbar.

1-4

Macro Projects

Macro Projects
Other Temporary Project files may be added to the Sample project.

To access the Macro Projects dialog:

1. Open the Tools menu

2. Select the Macros submenu

3. Select the Macro Projects… option

New project files may be added to the list of available projects or existing projects may be
removed.

The Enable automatic macros checkbox can be deselected to disable the AutoExec
macros.

Figure 2-2. The Macro Projects dialog

1-5

Introduction

Adding a New Project
Clicking on the Add command button will display the Open Macro Project dialog.

The System Architect Project Files are recognized by their .MAC extension.

It is possible to select and open an existing Project or create a new Project by entering a File
name that doesn’t appear in the list.

If changes are to be made to the Project be sure to deselect the Open as read-only
checkbox before opening the Project file.

Figure 2-3. The Open Macro Projects dialog

1-6

Accessing the VBA Editor

Accessing the VBA Editor
In order to create a macro or modify an existing macro it is necessary to open the VBA
Editor.

There are several ways to open up the VBA Editor:

• From the Tools menu, select the Macros submenu and then the VBA Editor option.

• Press Alt+F11.

• From the Macros dialog, click on the Edit command button.

• From the Macro Projects dialog, click on the Apply command button (if active) and
then on the Run Macro… command button. This will open the Macros dialog where
the Edit command button can be found.

Figure 2-4. The VBA Editor

1-7

Introduction

The Project Explorer
The VBA editor is made up of a number of windows. It is likely that the Project window will
be visible when the VBA editor is first accessed.

To display the Project window:

1. From the View menu, select the Project Explorer option

2. The Sample project contains three ‘Folder Groups’, Forms, Modules and Class
Modules.

3. Each folder may be opened to display its contents by clicking on the ‘plus’ symbol,
or by double clicking on the folder or the name of the folder.

The contents of each folder will be displayed in alphabetical order, but the folders can be
toggled off to reveal a complete alphabetical listing of all items.

Figure 2-5. The Project Window

The Properties Window
If you click on any of the Modules, the Properties window will display that module’s name.
The name can then be changed within the Properties window.

If you double click on a Module name, its code will be displayed.

1-8

Accessing the VBA Editor

If you double click on the name of a Form, the Form Object will display, while the
Properties window will display an alphabetical listing of the form’s properties.

Right clicking on the name of a Form will give the option to View the Form’s Code.

The Properties window can also display by category.

Figure 2-6. The Properties Window

Inserting Modules and Forms
Additional Modules and Forms may be added to any Project by using the Insert menu.

Selected Modules or Forms may be removed, and optionally Exported, by using the
Remove option in the File menu.

Right clicking over the Project window will also give access to the Insert and Remove
options.

1-9

Introduction

Figure 2-7. The Project Window

1-10

Object Browser

Object Browser
The Object Browser is a very useful feature of the VBA Editor, allowing the interrogation of
available Object Libraries, Type Libraries and Dynamic Link Libraries.

Referencing Library Files
To make additional libraries available to the Object Browser:

• From the Tools menu, select the References… option.

It is expected that the SA2001 library will already be included in the list of selected
references.

By scrolling down the list of Available References other references may be selected.

Figure 2-8. Selecting References

To display the Object Browser, either press the F2 function key or:

• From the View menu, select the Object Browser option

1-11

Introduction

1-12

Figure 2-9. The Object Browser

The Object Browser may be filtered on specific libraries, and as shown above, used to
search for items whose Class or Member name includes particular text.

If a project is selected in the Project Explorer window then the Object Browser will highlight
all items that are part of that project.

Classes, Constants, Enumerated Types, Events, Global Variables, Methods, Modules,
Properties, and User Defined Types will all be displayed, preceded by an appropriate icon.

Automation

2-1 1

2
Automation and

System Architect
Introduction
Automation is the capability of one application to declare and use objects that are actually
created by different applications. By using Visual Basic for Applications (VBA), code may be
written to access the objects of one or more of these application’s objects in a single
program.

The use of automation provides the potential for a fully integrated solution to be built based
around the functionality of a number of products. System Architect has VBA embedded
within it, allowing other applications to use its functionality. The following sections of the
manual explain this functionality.

This chapter will describe automation and how can it help provide a customizable solution.
Then it will cover in greater detail the way System Architect can be set up to provide the
functionality required for the solution.

Topics in this chapter Page

Automation 2-2

Customizable Solutions 2-7

Planning an Automated Solution with System Architect 2-9

Automation and System Architect

2-2 2

Automation

With automation, a programmer can incorporate objects from other applications into the
current application to provide an integrated solution. For example, System Architect might
be used to create a Corporate Data Model built by a number of users but others wish to view
the data with a specifically designed word report or excel spreadsheet. Using automation,
an integrated word or excel report may be run directly from a custom menu item from within
System Architect. Automation allows the user to use tools built for specific tasks to be
integrated.

Automation has also been called OLE Automation and sometimes ActiveX Automation in the
past.

Automation Controller and Server
Automation is the one way to control another application’s objects. Technically, one
application holds the VBA code that controls the automation and the other provides the
objects for use. The driver of this process is called the Automation Controller and the
provider is called the Automation Server

Referencing the Type Library
VBA has a mechanism for understanding which object will be available within any VBA
program. VBA will infer if you are creating the code in System Architect that its library of
automation objects is available, but it will not assume that any other type of libraries are also
available. The user must then set a reference to the libraries that are required.

The type library is a database containing information about all the objects available for
automation in any one application. This information would include details about the objects,
attributes, events and methods available in the application. It is usually a separate file
installed at the same time as the application, but in some cases may be supplied as part of
the main executable file.

To reference this type library information, the user must be inside the VBA editor. This can
be accessed from the relevant application menu or by simultaneously pressing the Alt F11
keys. Once within the VBA editor, choose Tools | References.

In this example, the only referenced objects are those standard to VBA and System
Architect. To include other applications, scroll down and select the application of choice, for
example Microsoft Excel 9.0 Object Library, which will then include all components of the
Excel type library in the current application.

Automation

2-3 3

Figure 2-1. Choosing a Type Library

Viewing Automation Objects
Once a reference has been set to another application, then a list of the objects, attributes
and methods of all the currently referenced type libraries may be viewed. The VBA editor
has its own object browser to view all of these properties.

To access the VBA Object Browser, either press F2 or go to the View | Object Browser
menu item from within the VBA Editor.

Figure 2-2. The VBA Object Browser

Automation and System Architect

2-4 4

The object browser will list all libraries that have been selected in the type library references
although an individual set of objects may be chosen. In the example, below we chose
SA2001 as the type library we wish to look at and in particular the Definition class of
automation objects.

Figure 8-3. Browsing the SA2001 Type Library

The members of the Definition class are listed and GetProperty is selected. The
parameters including type and return type are detailed in the lower browse window. By
declaring a reference to an automation object all this internal application information
becomes available to the VBA programmer for building an integrated solution.

Creating an Instance of the application
Although the required applications are referenced by VBA it is not until code is written that
the application objects can be controlled. The next section looks at how to set up a new
instance of an application to access its automated objects and how to declare it.

An instance is a session of the required application. In order to use automation objects the
application must be resident in memory (but does not have to be visible). To access

Automation

2-5 5

objects, VBA uses the Dim and Set statements to declare the instance of an automation
object just like a declaration would be made to a built in type. The only difference with
automation is that at the point the objects are to be used, a new instance of the object must
be created with the Set statement.

The following code declares the variable ExObj as an Excel Application. Note the full
server.class name of the declaration – this ensures that the application class referred to is
Excel’s. Other applications may also have classes called application.

Dim ExObj as Excel.Application

The following line creates a new instance of the Excel Application and also sets the point in
the code that the instantiation takes place.

Set ExObj = New Excel.Application

The variable ExObj can now access the Excel Automation Objects, for example displaying
the standard Open dialog box from Excel using the automation object GetOpenFilename()
filtered for text files with the following code.

fileToOpen = ExObj.GetOpenFilename("Text Files

(*.txt), *.txt")

So all of Excel’s Automation Objects are available alongside all of System Architect’s.

Releasing the Application Instance
Automation object instances are created with set, manipulated with automation function calls
and then terminated. Terminating the automation class ensures that resources are freed
from memory.

The following code should be used when the automation object is no longer used. Effectively
closing the automation server.

Set Exobj = Nothing

Automation and System Architect

2-6 6

In summary

Dim Object = Server.class

Declare Server

Set Object = New Server.class

Instantiation of Server

Automation Code

VBA code that accesses Server automation
objects

Dim Object = Nothing

Release Automation server from Memory

Customizable Solutions

2-7 7

Customizable Solutions

The previous section introduced the concepts of automation, describing how objects from
some applications can be integrated with others. Any product that supports VBA and
automation could be thought of as a customizable solution. It means that any product
bought off the shelf that supports VBA may be modified as desired. This does not, however,
refer just to integration with other applications. Much of the customization work of an
application involves changing how the product actually functions as well.

Different users of a product may think of customization in different ways – changing menu
items, integration with Office products, automating repetitive tasks – and all of these issues
may be addressed by using VBA and automation. The following table lists five potential
reasons for seeking to customize a product. Using VBA, all of them can be realized.

Category What It Means System Architect Example

Modifying application
behaviour

Modifying the way
applications work to match
a company’s business rules
and processes

On creating a symbol on a
diagram the company naming
standard rules are checked and
the user flagged if they are
broken.

Automating repetitive
tasks

Combining sets of common
manual tasks into a series
of actions that can be
executed over and over

Printing a user defined series of
diagrams.

Extending application
functionality

Adding features to an
application that are not
available out of the box

Automatic creation of a Process
Map diagram derived from a
Process Chart and its assigned
roles and their Organizational
Units.

Integrating with other
applications

Controlling another
application to exploit
functionality not normally
available

Producing an Excel Spreadsheet
of Process versus Entity CRUD
information.

Accessing corporate
data

Exchanging data with
remote databases and
applications that aren’t
normally capable of
database access

Automated import of information
from diverse sources that cannot
usually be imported directly.

Automation and System Architect

2-8 8

Combining System Architect with VBA provides the user with a standard Integrated
Development Environment (IDE) for creating these customizable solutions by incorporating
all the programming developments provided by Microsoft, including IntelliSense and
Microsoft forms.

Planning an Automated Solution with System Architect

2-9 9

Planning an Automated Solution with System
Architect

The uses for Automation are varied from reducing repetitive tasks to creating a fully
integrated application. The next section looks at some of the potential changes that can be
made to System Architect.

Control Behavior
System Architect will respond to certain events occurring during operation. These events
can trigger code that may be used to automate certain tasks.

The events supported by System Architect include Start up and Shutdown of the product,
Encyclopedia Open and Encyclopedia Close, Diagram Open, Save and Close, Audit ID
change and a number of symbol events. The symbol events include placing on a diagram,
naming, connecting and disconnecting (with a line symbol) and deleting.

This functionality allows real-time operation of System Architect to be modified using VBA.

Controlling appearance
Starting with System Architect 10.1, users may customize menus in System Architect,
adding or subtracting commands from the existing menu structure. A user can add a
command to run a macro, for example. Prior to System Architect 10.1 (ie, 10.0 and before),
the only way to add commands to menu items was through System Architect VBA. For
example, a menu containing items specific to a methodology could be updated during code
execution. Those menu items would then only be shown for a specific diagram dependent
on the methodology selected.

In either case, menu items and menu pop-ups may be added to menus and bitmaps
assigned to these items. A common use of this technique is to add a macro to a menu item
and supply a bitmap to represent it. This may also then be placed on a toolbar as well as a
menu.

Information concerning how to adjust macros built to be used with menu items in System
Architect 10.0 or before, for System Architect 10.1, are provided in the Conversion manual
(<C>:\Program Files\Telelogic\System Architect Suite\System
Architect\Manuals\Conversion.pdf).

Automate tasks
A VBA macro can be created to report on information within the repository and enforce
consistency checking. All objects and properties within the data dictionary may be created,
read, updated or deleted based upon rules set within the code. Simple repetitive tasks like
updating a value of one data dictionary object from another can therefore be automated.

Automation and System Architect

2-10 10

Enforce controls
By using the event driven members of the System Architect VBA model a predefined set of
standards can be applied to the model in real time. This may be a naming standard or the
completion of a mandatory field.

Interface between external applications
VBA can be used to import, export, read, create, modify, update, and delete model objects
based upon values in other applications. Example functions include creating diagrams,
symbols and definitions, building relationships between symbols and modifying the data
dictionary properties.

Object Model Classes

3
The System Architect
Object Model
The Objects available to VBA from System Architect can be viewed through the Object
Browser in the VBA editor. Each type of object is defined as a class, which contains a list of
the supported properties and methods.

A much easier way of viewing the whole model is by using a class diagram. The following
picture shows an extract from the System Architect object model drawn in System Architect
using the UML Class diagram notation.

Topics in this chapter Page
System Architect Object Model 3-2

Object Model classes 3-4

3-1

The System Architect Object Model

Definition

AuditId
CheckedOut
ddId
Encyclopedia
Frozen
Handle
Locked
MetaItem
Name
ReadOnly
SAClass
SAType
TypeName
UpdateDate
UpdateTime
xml

Delete ()
GetField () : String
GetMetric ()
GetProperty () : String
GetPropertyAsCollection () : SAObjects
GetRelatedObjects () : SAObjects
GetXML ()
Save ()
SetField ()
SetProperty ()

MetaProperty

AltLabelLong
AltLabelShort
Class
Default
EditFlags
EditLength
EditType
EditTypeNum
Help
HelpID
Key
KeyedBy
Label
MetaItem
Name
OfFlags
OfMajorType
OfMajorTypeName
OfMinorType
OfMinorTypeName
OfRelateType
RangeMax
RangeMin
Required
TypeNumber

SAObjects

Complete
Count
Encyclopedia
Item [vIndex as variant]

ReadAll ()
IsMoreThan ()

MetaClass

Class
ClassName
MetaItems
MetaModel
SupportedMetaItems

MetaItem

Class
MetaClass
MetaProperties
SupportedMetaItems
TypeName
TypeNumber

OfCollection

Name
Count
Item

Add ()
Clear ()
Remove ()
SetProperty ()

MetaKeyedBy

FromName
KeyedName
MetaProperty
Qualifiable

SACollection

Count
Item [Index as Variant]

MetaModel

Encyclopedia
MetaClasses

SAObjectWalkerIVariantWalker

CENumVariant

MetaItem

Diagram

MetaItem

Symbol

Definition

MetaItem

Encyclopedia

MetaItem

MetaProperties

MetaClass

MetaItems

MetaModel

MetaClasses

3

Encyclopedia

MetaModel

MetaProperty

KeyedBy

3-2

Object Model Classes

Symbol

ArrowAtEnd
ArrowAtStart
AuditId
ddId
Definition
Diagram
Encyclopedia
FillColor
FontColor
FromCardinality
Handle
LineStyle
MetaItem
Name
PenColor
PenStyle
SAClass
SAType
Selected
ToCardinality
TunnelAtEnd
TunnelAtStart
TypeName
UpdateDate
UpdateTime
XPos
XSize
YPos
YSize

ConnectFrom ()
ConnectTo ()
Delete ()
GetChildDiagrams ()
GetField () : String
GetMetric ()
GetProperty () : String
GetPropertyAsCollection () : SAObjects
GetRelatedObjects () : SAObjects
Save ()
SetField ()
SetProperty ()

Diagram

AuditId
CheckedOut
ddId
Encyclopedia
Frozen
Handle
Hidden
Lock
MetaItem
Name
Picture
ReadOnly
SAClass
SAType
TypeName
UpdateDate
UpdateTime
xml

CreateSymbol () : Symbol
Delete ()
GetAllSymbols () : SAObjects
GetField () : String
GetFilteredSymbols () : SAObjects
GetMetric ()
GetParentSymbol ()
GetProperty () : String
GetPropertyAsCollection () : SAObjects
GetRelatedObjects () : SAObjects
GetSymbolById () : Symbol
GetXML ()
Hide ()
Save ()
SetField ()
SetProperty ()
Show ()

Encyclopedia

Application
ConnectString
FullName
MetaModel
Name
OpenObjectAsReadOnly
Path
xml
xmlex

bOpenLockedReadOnly ()
CloseUnlock ()
CreateDefinition () : Definition
CreateDiagram () : Diagram
GetAllDefinitions () : SAObjects
GetAllDiagrams () : SAObjects
GetCurrentDiagram ()
GetDefinitionById () : Definition
GetDiagramById () : Diagram
GetFilteredDefinitions () : SAObjects
GetFilteredDiagrams () : SAObjects
GetRelationMetric ()
GetXML ()
OpenEncyclopedia ()
OpenLock ()
SetXML ()
SetXMLEx ()

Application

Encyclopedia
Mouse Pointer
Visible

AssignBMPtoMacroItem ()
BrowserRefresh ()
CreatePopUpMenu () : long
InsertMacroItemInMenu ()
InsertMacroItemInMenuEx ()
InsertPopupMenuItemInMenu ()
InsertPopupMenuItemInMenuEx ()
Interface ()
OpenEncyclopedia ()
RemoveItemFromMenu ()
RemovePopUpMenu ()
ResetPanelBackGround ()
SetSeparatorBefore ()
WriteStatusLine ()
WriteStatusLineEx ()

MetaItem

MetaItem

Definition

Diagram

Encyclopedia

Encyclopedia

Encyclopedia

Application

Encyclopedia

Encyclopedia

MetaModel

3-3

The System Architect Object Model

Object Model Classes
These are the System Architect Object Model classes with several example uses listed for
each one below.

Class Example Uses

Application

System Architect Events

Menu manipulation

Encyclopedia Create diagrams and definitions
objects

Retrieve diagram and definitions
objects

Diagram Create and retrieve symbols objects

Diagram property manipulation

Symbol Symbol property manipulation

Symbol connection information

Retrieve child diagram objects

Definition Definition property manipulation

Related definition manipulation

SACollection Collection of System Architect
properties

SAObjects Collection of System Architect Objects
(diagrams, symbols and definitions)

OfCollection Collection of OneOf or ListOf diagrams
or definitions.

MetaModel

MetaClass

System Architect Meta Model Objects
(Supported Diagram , Symbol and
Definition types)

3-4

Object Model Classes

3-5

MetaItem

MetaKeyedBy System Architect Meta Model Keyed
by Definitions (Keyed by definitions
and their structure)

MetaProperty System Architect Meta Model Property
Sets (Supported properties and their
structure within each definition type)

Attributes

4
The Application
Class

Topics in this chapter Page
Attributes 4-3

Methods 4-5

4-1

The Application Class

Introduction

This is the System Architect application object, through which the user interface can be
controlled. It is the highest level in the object model.

An instance of the application object is instantiated as follows.
Dim oApplication As SA2001.Application

Set oApplication = New Application

4-2

Attributes

Attributes

Encyclopedia

Purpose
This is the encyclopedia object, which facilitates access to the encyclopedia class attributes
and methods.

Parameters
Read-only

Example
Dim oEncyclopedia As Encyclopedia

Set oEncyclopedia = oApplication.Encyclopedia

MousePointer

Purpose
This allows the user to control the type of mousepointer that is visible to the user when using
the application.

Parameters
Data Type: Integer

Example
The current value of the mousepointer can be returned as follows;

Dim MouseValue as Integer

MouseValue = oApplication.Mousepointer

To set a mousepointer to the “HourGlass” type use 11 as the value to set.
oApplication.Mousepointer = 11

A complete list of permissible values can be found in the VB help files.

4-3

The Application Class

Visible

Purpose
Determines whether the application is running or not. Setting this to “False” will close the
application down.

Parameter
Data Type: Boolean

Example
oApplication.Visible = False

4-4

Methods

Methods

AssignBMPtoMacroItem

Purpose
Associates a bitmap, for example a menu icon, with a VBA macro.

Syntax
Application Object.AssignBMPtoMacroItem MacroName,

BMPFileName

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

MacroName

 Use: Required

 Data Type: String

 Any valid macro project

 Syntax: “Project Name, Module Name, Subroutine Name()”

BMPFileName

 Use: Required

 Data Type: String

 File Path & File Name of BMP (e.g. “C:\Windows\world.bmp”)

BrowserRefresh

Purpose
Refreshes the System Architect browser. This will force any items added to the
encyclopedia since the last refresh to be displayed.

4-5

The Application Class

Syntax
Application Object.BrowserRefresh

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

CreatePopUpMenu

Purpose
Creates a pop up menu for insertion into the user interface. A bitmap icon can be associated
with the pop up menu.

Syntax
Application Object.CreatePopUpMenuPopUpName[, BMPFileName]

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

PopUpName

 Use: Required

 DataType: String

 Name of created popup menu

BMPFileName

 Use: Optional

 Data Type: String

 File Path & File Name of BMP (e.g. “C:\Windows\world.bmp”)

4-6

Methods

InsertMacroItemInMenu

Purpose
Creates a menu item on the System Architect menu that refers to an existing macro
subroutine.

Syntax
Application Object.InsertMacroItemInMenu MacroName,

MacroItemCaption, InMenuTitleCaption[,
BeforeMenuItemCaption]

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

MacroName

 Use: Required

 Data Type: String

 Any valid macro project

 Syntax: “Project Name, Module Name, Subroutine Name()”

MacroItemCaption

 Use: Required

 Data Type: String

 Name of macro item that will be inserted in an SA menu

InMenuTitleCaption

 Use: Required

 Data Type: String

 Name of existing SA popup menu where macro item is being placed

BeforeMenuItemCaption

 Use: Optional

 Data Type: String

4-7

The Application Class

 Name of existing SA menu item the macro item is being placed before

 Note: If not specified, macro is placed at the bottom of the popup menu.

InsertMacroItemInMenuEx

Purpose
Creates a menu item on the System Architect menu that refers to an existing macro
subroutine. This method is an extension of the InsertMacroItemInMenu method.

Syntax
Application Object.InsertMacroItemInMenuEx MacroName,

MacroItemCaption, InMenuTitleCaption[,
BeforeMenuItemCaption[, Tag[, bAfterSepartor]]]

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

MacroName

 Use: Required

 Data Type: String

 Any valid macro project

 Syntax: “Project Name, Module Name, Subroutine Name()”

MacroItemCaption

 Use: Required

 Data Type: String

 Name of macro item that will be inserted in an SA menu

InMenuTitleCaption

 Use: Required

 Data Type: String

 Name of existing SA popup menu where macro item is being placed

4-8

Methods

BeforeMenuItemCaption

 Use: Optional

 Data Type: String

 Name of existing SA menu item the macro item is being placed before

 Note: If not specified, macro is placed at the bottom of the popup menu.

Tag

 Use: Optional

 Data Type: String

 This allows multiple menu items to have the same name and refer to the same
subroutine by giving each menu item a unique tag. When one of the menu items is
called, its tag tells the subroutine which part of its code to execute. For example, a
user can write a macro that creates different Word Reports. Instead of having to
write separate subroutines for each type of Word Report, he or she can write all the
code in one subroutine and specify different tags in each menu item that point to
different functions within the code.

bAfterSepartor

 Use: Optional

 DataType: Boolean

 Only used when the existing menu item, which the user is placing the macro item in
front of, has a separator line before it. If entered as True, then the macro item is
placed after the separator line. If entered as False or left blank, then the macro item
is automatically placed before the separator line.

InsertPopUpMenuItemInMenu

Purpose
Creates a pop up menu item into an existing System Architect menu item.

Syntax
Application Object.InsertPopupMenuItemInMenu PopUpName,

InMenuTitleCaption[, BeforeTitleCaption]

Application Object

 Use: Required

4-9

The Application Class

 Data Type: Object

 Any instantiated Application class

PopUpName

 Use: Required

 DataType: String

 Name of created popup menu

InMenuTitleCaption

 Use: Required

 Data Type: String

 Name of existing SA popup menu where new popup menu is being placed

BeforeMenuItemCaption

 Use: Optional

 Data Type: String

 Name of existing SA menu item the new popup menu is being placed before

 Note: If not specified, new popup menu is placed at the bottom of the existing
popup menu.

InsertPopUpMenuItemInMenuEx

Purpose
Creates a pop up menu item in to an existing System Architect menu item. This method is
an extension of the InsertPopUpMenuItemInMenu method.

Syntax
Application Object.InsertPopupMenuItemInMenuEx PopUpName,

InMenuTitleCaption[, BeforeTitleCaption[,
bAfterSeparator]]

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

4-10

Methods

PopUpName

 Use: Required

 DataType: String

 Name of created popup menu

InMenuTitleCaption

 Use: Required

 Data Type: String

 Name of existing SA popup menu where new popup menu is being placed

BeforeMenuItemCaption

 Use: Optional

 Data Type: String

 Name of existing SA menu item the new popup menu is being placed before

Note: If not specified, new popup menu is placed at the bottom of the existing
popup menu.

bAfterSepartor

 Use: Optional

 DataType: Boolean

 Only used when the existing menu item, which the user is placing the macro item in
front of, has a separator line before it. If entered as True, then the macro item is
placed after the separator line. If entered as False or left blank, then the macro item
is automatically placed before the separator line.

Interface

Purpose
This method is rarely used but can call an instance of an interface using a text string rather
than an explicit reference.

Example
Dim sa As Application

Set sa = New Application

4-11

The Application Class

Dim ob As Object

Set ob = sa.Interface("ISAIMF")

OpenEncyclopedia

Purpose
Opens an existing System Architect Encyclopedia.

Syntax
Application Object.OpenEncyclopedia(EncyclopediaPath)

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

EncyclopediaPath

 Use: Required

 Data Type: String

 File path of existing encyclopedia

The (EncyclopediaPath) is a udl file. The udl files are indirectly created in the following path
C:\Document and Settings\<user name>\Local Settings\Application Data\Telelogic\System
Architect\Temp UDL files. These udl files will be named something like SA_563.udl.
System Architect must be opened to view this path.

OpenEncyclopediaUsingConnectionString

Purpose
Opens an existing System Architect Encyclopedia using a connection string.

Syntax
Application Object.OpenEncyclopediaUsingConnectionsString

(strConnection)

Application Object

4-12

Methods

 Use: Required

 Data Type: Object

 Any instantiated Application class

strConnection

 Use: Required

Data Type: String

strConnection is a string that is the contents of the UDL
file.

For example:

SA2001.OpenEncyclopediaUsingConnectionString
(“Provider=SQLOLEDB.1;Integrated
Security=SSPI;InitialCatalog=DoDAFABM;Data
Source=SUZANNES\TLOGICSA106”)

OpenEncyclopediaUsingDisplayName

Purpose
Opens an existing System Architect Encyclopedia using its display name

Syntax
Application Object.OpenEncyclopediaUsingDisplayName(strDisplayName)

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

strDisplayName

 Use: Required

Data Type: String

strDisplayName is the name as it is shown on the SA caption bar i.e. connection-
name(encyc-name).

4-13

The Application Class

Example:

Sa2001.OpenEncyclopediaUsingDisplayName “Local Server SUZANNESTLOGICSA
106(Samples)”

RemoveItemFromMenu

Purpose
This method removes a menu item from a named System Architect Menu item or pop up
menu.

Syntax
Application Object.RemoveItemFromMenu ItemCaption,

FromMenuTitleCaption

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

ItemCaption

 Use: Required

 Data Type: String

 Name of menu item being removed from existing popup menu

FromMenuTitleCaption

 Use: Required

 Data Type: String

 Name of existing popup menu from which menu item is being removed

RemovePopUpMenu

Purpose
The specified pop up menu will be removed from the System Architect menu system.

4-14

Methods

Syntax
Application Object.RemovePopUpMenu(PopUpName)

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

PopUpName

 Use: Required

 DataType: String

 Name of popup menu being removed

ResetPanelBackGround

Purpose
Resets the background color of the status bar panel.

Syntax
Application Object.ResetPanelBackGround(Panel)

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

Panel

 Use: Required

 Data Type: Long

 Panels are the 'panes' or sections of the status bar - 1 on the left through to 4 on the
right (2&3 only appear when a symbol is selected).

4-15

The Application Class

SetSeparatorBefore

Purpose
Places a separator bar before a menu item in a specified menu.

Syntax
Application Object.SetSeparatorBefore ItemCaption,

FromMenuTitleCaption, bHasSeparator)

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

ItemCaption

 Use: Required

 Data Type: String

 Name of menu item the separator bar will be placed before.

FromMenuTitleCaption

 Use: Required

 Data Type: String

 Name of existing SA popup menu in which the separator is being placed.

bHasSeparator

 Use: Required

 Data Type: Boolean

 Sets a true or false value on whether the separator bar is present.

WriteStatusLine

Purpose
Allows short messages to be relayed to the user to keep them informed whilst code is being
executed on the status bar of System Architect (bar in the bottom left hand corner).

4-16

Methods

Syntax
Application Object.WriteStatusLine(TextToShow)

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

TextToShow

 Use: Required

 Data Type: String

 Text that will be shown on status bar.

WriteStatusLineEx

Purpose
Allows short messages to be relayed to the user to keep them informed whilst code is being
executed on the status bar of System Architect (bar in the bottom left hand corner). This is
an extension of the WriteStatusLine method.

Syntax
Application Object.WriteStatusLineEx(Panel, TextToShow,

BackColor, ForeColor)

Application Object

 Use: Required

 Data Type: Object

 Any instantiated Application class

Panel

 Use: Required

 Data Type: Long

 Panels are the 'panes' or sections of the status bar - 1 on the left through to 4 on the
right (2&3 only appear when a symbol is selected).

TextToShow

4-17

The Application Class

 Use: Required

 Data Type: String

 Text that will be shown on status bar.

BackColor

 Use: Required

 Data Type: Long

 Background color of the status bar

ForeColor

 Use: Required

 Data Type: Long

 Foreground color of the status bar

4-18

Attributes

5
The Encyclopedia Class

Topics in this chapter Page
Attributes 5-3

Methods 5-6

Relation Metrics 5-20

5-1

The Encyclopedia Class

Introduction

This is the encyclopedia object. This enables access to the encyclopedia’s attributes and
methods as detailed below.

Dim oApplication As SA2001.Application, oEncyclopedia
As Encyclopedia

Set oApplication = New Application

Set oEncyclopedia = oApplication.Encyclopedia

5-2

Attributes

Attributes

Application

Purpose
The application object returns the parent application object of the current encyclopedia
object.

Parameters
Read-only

ConnectString

Purpose
The information required to connect to an encyclopedia.

Parameters:
Data Type: String

Read-only

FullName

Purpose
The name of the current encyclopedia including the full path.

Parameters
Read-only

Data Type: String

MetaModel

Purpose

5-3

The Encyclopedia Class

This is the MetaModel Class. If facilitates access to all the MetaModel attributes.

Parameters
Read-only

Name

Purpose
Returns the name of the current encyclopedia.

Parameters
Read-only

Data Type: String

OpenObjectsAsReadOnly

Purpose
Sets whether all objects from the SA Object model are to be opened as Read-only.

Parameters
DataType: Boolean

Path

Purpose
This is the path of the current encyclopedia.

Parameters
Data Type: String

Read-only

5-4

Attributes

Xml

Purpose
The xml string of the encyclopedia. Manipulated by the GetXML and SetXML methods.

Parameters
Data Type: String

XmlEx

Purpose
The xml string of the encyclopedia. Manipulated by the SetXMLEx method.

Parameters
Data Type: String

5-5

The Encyclopedia Class

Methods

bOpenLockedReadOnly

Purpose
This method returns True if the OpenObjectsAsReadOnly attribute has been set to True, or
the encyclopedia was opened read-only.

CloseUnlock

See OpenLock below.

CreateDefinition

Purpose
Creates an instance of the definition class with a specified definition name and definition
type.

Syntax
Encyclopedia Object.CreateDefinition(Name, SAType)
Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

Name

 Use: Required

 Data Type: String

 Name of new definition

SAType

5-6

Methods

 Use: Required

 Data Type: Long

 Type of System Architect definition that is being created (e.g. DFXPROCESS or 3)

Note: Refer to the DEFNS.BAS file in the System Architect directory for a complete
listing of all SA definitions and their internal constant names and numbers.

Note: In order to successfully create a SA definition, you must invoke the definition’s
Save method, or else the new definition will be deleted when the encyclopedia is
closed.

CreateDiagram

Purpose
Creates an instance of the diagram class with a specified diagram name and diagram type.

Syntax
Encyclopedia Object.CreateDiagram(Name, SAType)
Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

Name

 Use: Required

 Data Type: String

 Name of new diagram

SAType

 Use: Required

 Data Type: Long

Type of System Architect diagram that is being created (e.g.
GTCATPROCESSFLOW or 89)

Note: Refer to the DIAGRAMS.BAS file in the System Architect directory for a
complete listing of all SA diagrams and their internal constant names and numbers.

5-7

The Encyclopedia Class

GetAllDefinitions

Purpose
This will return all definitions in the encyclopedia as a collection of definitions.

Rules
An SAObjects variable must be dimensioned and set as a collection of definitions.

Example
Dim oCollectionofDefinitions As SAObjects

Set oCollectionofDefinitions =
oEncyclopedia.GetAllDefinitions

Call oCollectionofDefinitions.ReadAll

The SAObjects collection will not be fully populated until the Complete flag for the
collection is true. GetAllDefinitions should be used in conjunction with either
ReadAll or IsMoreThan methods.

GetAllDiagrams

Purpose
This will return all diagrams in the encyclopedia as a collection of diagrams.

Rules
An SAObjects variable must be dimensioned and set as a collection of diagrams.

Example
Dim oCollectionofDiagrams As SAObjects

Set oCollectionofDiagrams =
oEncyclopedia.GetAllDiagrams

Call oCollectionofDiagrams.ReadAll

The SAObjects collection will not be fully populated until the Complete flag for the
collection is true. GetAllDiagrams should be used in conjunction with either ReadAll
or IsMoreThan methods.

5-8

Methods

GetCurrentDiagram

Purpose
This method returns the currently open diagram as a diagram object.

Rules
A diagram object must be dimensioned and set as the current open diagram. See example
below.

Example
Dim OCurrentDiagram As Diagram

Set OCurrentDiagram = oEncyclopedia.GetCurrentDiagram

GetDefinitionById

Purpose
This method will return a definition as a definition object from its specified identity.

Syntax
Encyclopedia Object.GetDefinitionById(Id)
Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

Id

 Use: Required

 Data Type: Long

All definitions stored in System Architect are uniquely identified internally by the use
of a data dictionary identifier.

Example
Dim oDefinition As Definition

Set oDefinition = oEncyclopedia.GetDefinitionById(12)

5-9

The Encyclopedia Class

GetDiagramById

Purpose
All diagrams stored in System Architect are uniquely identified internally by the use of a data
dictionary identifier. This method will return a diagram as a diagram object from its specified
identity.

Syntax
Encyclopedia Object.GetDiagramById(Id)
Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

Id

 Use: Required

 Data Type: Long

All diagrams stored in System Architect are uniquely identified internally by the use
of a data dictionary identifier.

Example
Dim oDiagram As Diagram

Set oDiagram = oEncyclopedia.GetDiagramById(2)

GetFilteredDefinitions

Purpose
Returns a filtered definition collection of an encyclopedia.

Parameters
Data Type: SAObjects

Syntax
Encyclopedia Object.GetFilteredDefinitions(WildCardName,

SAType)

5-10

Methods

Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

WildCardName

 Use: Required

 Data Type: String

 Filter criteria (e.g. “C*” = all definitions starting with “C”)

 Note: Wild Card Search is case sensitive.

SAType

 Use: Required

 Data Type: Long

 Type of System Architect definition that is being retrieved (e.g. DFXPROCESS or 3)

Note: Refer to the DEFNS.BAS file in the System Architect directory for a complete
listing of all SA definitions and their internal constant names and numbers

Example
The following returns all process definitions beginning with “C”.

Dim oCollectionofDefinitions As SAObjects

Set oCollectionofDefinitions =
oEncyclopedia.GetFilteredDefinitions("C*",
DFXPROCESS)

Call oCollectionofDefinitions.ReadAll

The SAObjects collection will not be fully populated until the Complete flag for the collection
is true. GetFilteredDefinitions should be used in conjunction with either ReadAll or
IsMoreThan methods.

GetFilteredDiagrams

Purpose
Returns a filtered diagram collection of an encyclopedia.

5-11

The Encyclopedia Class

Parameters
Data Type: SAObjects

Syntax
Encyclopedia Object.GetFilteredDiagrams(WildCardName,

SAType)

Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

WildCardName

 Use: Required

 Data Type: String

 Filter criteria (e.g. “C*” = all diagrams starting with “C”)

 Note: Wild Card Search is case sensitive.

SAType

 Use: Required

 Data Type: Long

Type of System Architect diagram that is being retrieved (e.g.
GTCATPROCESSFLOW or 89)

Note: Refer to the DIAGRAMS.BAS file in the System Architect directory for a
complete listing of all SA diagrams and their internal constant names and numbers.

Example
The following returns all Gane & Sarson Diagrams beginning with “Pr”

Dim oCollectionofDiagrams As SAObjects

Set oCollectionofDiagrams =
oEncyclopedia.GetFilteredDiagrams("Pr*", GTDFDGS)

Call oCollectionofDiagrams.ReadAll

The SAObjects collection will not be fully populated until the Complete flag for the collection
is true. GetFilteredDiagrams should be used in conjunction with either ReadAll or
IsMoreThan methods.

5-12

Methods

GetRelationMetric

Purpose
Gets relationship information or behavior between two System Architect objects in the
encyclopedia.

Syntax
Encyclopedia Object.GetRelationMetric SAObject1,

SAObject2, Relation, Depth, Metric, FieldType[,
NbrChars[, NbrDec]]

Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

SAObject1

 Use: Required

 Data Type: Object

One of two required System Architect objects that are needed to execute the
relation metric.

SAObject2

 Use: Required

 Data Type: Object

One of two required System Architect objects that are needed to execute the
relation metric.

Relation

 Use: Required

 Data Type: RELATETYPE

The relationship type that exists between the two parameterized SA objects above.
See Chapter 16 for a full list of all System Architect relationship types and their
descriptions.

Depth

5-13

The Encyclopedia Class

 Use: Required

 Data Type: Long

The number of relationships between the two parameterized SA objects above. For
example, if Object 1 is a Data Structure that contains Object 2, which is a Data
Element, then the ‘Depth’ between the two objects is 1.

Metric

 Use: Required

 Data Type: RELATIONMETRIC

 Relation Metric, see below for a complete list of all relation metrics.

FieldType

 Use: Required

 Data Type: FLDTYPE

 Field Type, see Chapter 17 for a complete list of System Architect field types.

NbrChars

 Use: Optional

 Data Type: Long

The number of characters that SA will return that will appear before the decimal
point.

NbrDec

 Use: Optional

 Data Type: Long

 The number of characters that SA will return that will appear after the decimal point.

GetXML

Purpose
Exports the encyclopedia’s XML string into a valid .xml file.

Syntax
Encyclopedia Object.GetXML strXML, bToFile

5-14

Methods

Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

StrXML

 Use: Required

 Data Type: String

When bToFile is set to True, then this is a valid xml file name to which SA will
export the encyclopedia’s xml. When bToFile is set to false, strXML acts as the
xml string.

bToFile

 Use: Required

 Data Type: Boolean

If True, then the method will create the file named in the strXML parameter. If
False, then the method will populate strXML with the encyclopedia xml string.

OpenLock…CloseUnlock Statement

Purpose
The OpenLock and CloseUnlock methods control the lock status of the current System
Architect encyclopedia. This determines whether the encyclopedia is locked for read-only,
read-write or update access while VBA operations are taking place.

If an OpenLock is executed in a particular mode then a CloseUnlock must be executed in
the same mode later in the code.

OpenLock and CloseUnlock methods can be operated multiple times in code if different
levels of locking are required on the encyclopedia.

If OpenLock and CloseUnlock methods are not executed in the VBA code then System
Architect will perform it’s own locking when required each time an Object Model method is
issued. This can affect the performance of the macro.

The two methods return a Boolean indicating whether the call was successful or not.

Syntax

5-15

The Encyclopedia Class

Encyclopedia Object.OpenLock(LockMode)
Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

LockMode

 Use: Required

 Data Type: EncyLockMode

 Lock status of current System Architect Encyclopedia.

EncyLockMode Meaning

NETOPENREAD Read-only

NETOPENREADWRITE Read-write

NETOPENUPDATE Update access while VBA applications are taking
place.

Example
Dim sa As Application

Set sa = New Application

sa.Encyclopedia.OpenLock NETOPENREAD
 ' execute SA Code here

sa.Encyclopedia.CloseUnLock NETOPENREAD
Set sa = Nothing

SetXML

Purpose
Imports an .xml file into the encyclopedia.

Syntax

5-16

Methods

Encyclopedia Object.SetXML(strXML, bFromFile, bValidate)
Encyclopedia Object

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

StrXML

 Use: Required

 Data Type: String

When bFromFile is set to True, then this is a valid .xml file name, from which SA is
importing the XML code. When bFromFile is set to false, then this is the
encyclopedia XML string.

bFromFile

 Use: Required

 Data Type: Boolean

If True, then the method will import XML from the file named in the strXML
parameter. If False, then the method will populate strXML with the encyclopedia
XML string.

bValidate

 Use: Required

 Data Type: Boolean

 If True then the xml string will be validated by the parser.

SetXMLEx

Purpose

Syntax
Encyclopedia Object.SetXMLEx(strXML, ICollision,

bFromFile, bValidate)

Encyclopedia Object

5-17

The Encyclopedia Class

 Use: Required

 Data Type: Object

 Any instantiated Encyclopedia class

StrXML

 Use: Required

 Data Type: String

When bFromFile is set to True, then this is a valid .xml file name, from which SA is
importing the XML code. When bFromFile is set to false, then this is the
encyclopedia XML string.

ICollision

 Use: Required

 Data Type: Long

Collision
Options

Description

0 Never overwrite an existing definition or diagram

1 If the definition exists, get all properties for it, delete it, recreate it,
repopulate the properties.

2 Update single fields when data supplied

3 Update single fields - clear field if no data

256 Always replace existing diagram

bFromFile

 Use: Required

 Data Type: Boolean

If True, then the method will import XML from the file named in the strXML
parameter. If False, then the method will populate strXML with the encyclopedia
XML string.

bValidate

 Use: Required

5-18

Methods

 Data Type: Boolean

 If True then the XML string will be validated by the parser.

5-19

The Encyclopedia Class

Relation Metrics
Relation metrics differ from diagram, symbol, and definition metrics in that they are pieces of
internal functionality that retrieve information on the relationship between two System
Architect Objects in the encyclopedia. For each relation metric, it is necessary to declare
which two objects should be examined and what relationship exists between them.
Depending on which relation metric is being utilized only certain System Architect objects
with specific relationships are valid.

To access these relation metrics, the user must invoke the GetRelationMetric method in the
Encyclopedia class. There exists a directory of all the relation metrics in the
RELATIONMETRIC enumerated list in the SA Object Browser. The following is a table of all
the available relation metrics and their descriptions and parameters.

Relation Metric Description Parameters

RELMETCRUD Returns the combination of CRUD
letters (Create, Read, Update,
Delete) appear next to the Process
name in the Data Store as a string.

SAObjects: Data Store,
Process

RELMETDEPTH Returns the number of ‘Uses’
relationships between two objects as
a numeric.

SAObjects: Must have at
least one ‘Uses’ or ‘Used By’
relationship.

RELMETICOMROLE Returns the relationship role (input,
control, output, mechanism, or
boundary) between an ICOM arrow
and its connected Function/Activity
symbol as a string.

SAObjects: ICOM Arrow,
Function/Activity

RelTypes: RELCONNSTART,
RELSTARTAT,
RELCONNEND, RELENDAT

RELMETINPUT Checks whether a flow symbol
“flows” into another symbol or
diagram. Returns Boolean field.

SAObjects: Flow symbol,
diagram or node symbol

RelType: RELCONNSTART,
RELSTARTAT,
RELCONNEND, RELENDAT,
RELDIAGRAMCON,
RELCONDIAGRAM

5-20

Relation Metrics

5-21

Relation Metric Description Parameters

RELMETOUTPUT Checks whether a flow symbol
“flows” out of another symbol or
diagram. Returns Boolean field.

SAObjects: Flow symbol,
diagram or node symbol

RelType: RELCONNSTART,
RELSTARTAT,
RELCONNEND, RELENDAT,
RELDIAGRAMCON,
RELCONDIAGRAM

RELMETSTATETABLE Checks whether the name of the
event attached to a output transition
line, which is connected to a state, is
mentioned in the state definition
dialog. If True, returns State name.

SAObjects: Shlaer State,
Shlaer Transition line

RelType: RELCONNEND,
RELCONNSTART

6
The Diagram Class

Topics in this chapter Page
Attributes 6-3

Methods 6-9

Fields 6-20

Metrics 6-26

6-1

The Diagram Class

Introduction

This is an instance of a diagram contained in
the encyclopedia.

To return the currently active diagram as an
object use:

Dim oApplication As
SA2001.Application

Dim oDiagram As Diagram

Set oApplication = New
Application

Set oDiagram =
oApplication.oEncyclopedia.
GetCurrentDiagram

6-2

Attributes

Attributes

AuditID

Purpose
All items diagrams stored in System Architect are tagged with the identity of the person who
created or last modified the diagram; the identity is tagged to the diagram as an AuditId.

Parameters
Data Type: String

Read-only

CheckedOut

Purpose
When set to True diagram becomes read-only to everyone but the AuditID that checked it
out.

Parameters
Data Type: Boolean

ddID

Purpose
All diagrams stored in System Architect are uniquely identified internally by the use of a data
dictionary identifier. This method will return the identity of a diagram.

Parameters
Data Type: Long

6-3

The Diagram Class

Encyclopedia

Purpose
Facilitates access with the parent encyclopedia’s attributes and methods.

Parameters
Read-only

Frozen

Purpose
User must have Freezing privileges in order to set this attribute. When set to True, diagram
becomes read-only to everyone, including the AuditID that froze the diagram.

Parameter
Data Type: Boolean

Handle

Purpose
This is the memory handle of the diagram only available at run-time. This handle is not
unique and is rarely the same whenever accessed.

Parameters
Data Type: Long

Read-only

Example
Dim oDiagram as Diagram, Handle As Long

Set oDiagram = oEncyclopedia.GetCurrentDiagram

Handle = oDiagram.Handle

Attributes

Hidden

Purpose
Returns a “True” or “False” to indicate whether a diagram is closed or open.

Parameters
Data Type: Boolean

Read-only

Locked

Purpose
Returns a “True” or “False” value to indicate whether a diagram is locked or not locked, i.e.,
in use by a user.

Parameters
Data Type: Boolean

Read-only

MetaItem

Purpose
Facilitates access with the MetaItem class and its attributes.

Parameters
Read-only

Name

Purpose
The name of the specified diagram object.

Parameters

6-5

The Diagram Class

Data Type: String

Read-only

Picture

Purpose
After a diagram is saved, System Architect creates a Windows metafile (.wmf) of the
diagram, which is saved in the encyclopedia directory. This attribute allows the user to
access the stdPicture attributes and methods, an OLE Automation object that holds data on
the picture’s contents.

Parameters
Data Type: stdPicture

Read-only

ReadOnly

Purpose
Returns “True” if diagram has been opened as Read-only.

Parameters
Data Type: Boolean

Read-only

SAClass

Purpose
The class type of the diagram. Also known as the Major Type Number.

Parameters
Data Type: Long

Read-only

Note: this will always return “1” for a diagram.

Attributes

SAType

Purpose
The constant integer of the diagram. All diagrams in System Architect have a unique
numerical constant identifier.

Parameters
Data Type: Long

Read-only

TypeName

Purpose
The type of the diagram as a string, e.g. “Entity Relation”.

Parameters
Data Type: String

Read-only

UpdateDate

Purpose
The date the diagram was last modified.

Parameters
Data Type: String

Read-only

UpdateTime

Purpose
The time the diagram was last modified.

6-7

The Diagram Class

Parameters
Data Type: String

Read-only

xml

Purpose
The xml string of the diagram. Manipulated by the GetXML method.

Parameters
Data Type: String

Read-only

Methods

Methods

CreateSymbol

Purpose
Creates an instance of the Symbol class with a particular name and type.

Syntax
Diagram Object.CreateSymbol(Name, SAType)
Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class, to which the symbol will be added.

Name

 Use: Required

 Data Type: String

 Name of new symbol

SAType

 Use: Required

 Data Type: Long

Type of System Architect symbol that is being created (e.g. ETCATELEMBUSPROC
or 445)

 Note: Refer to the SYMBOLS.BAS file in the System Architect directory for a
complete listing of all SA symbols and their internal constant names and numbers.

Note: In order to successfully create a SA symbol on a diagram, you must invoke
the diagram class’ Save method, or else the new symbol will be deleted from the
diagram when the encyclopedia is closed.

6-9

The Diagram Class

Delete

Purpose
Deletes a diagram specified by a diagram object.

GetAllSymbols

Purpose
This method returns all symbols contained in the specified diagram object as a SAObjects
collection. The SAObjects collection will not be fully populated until the Complete flag for
the collection is true. GetAllSymbols should be used in conjunction with either ReadAll or
IsMoreThan methods.

Rules
An SAObjects variable must be dimensioned and set as a collection of symbols. See
example below.

Example
Dim oDiagram as Diagram, oCollectionofSymbols As

SAObjects

Set oCollectionofSymbols = oDiagram.GetAllSymbols
Call oCollectionofSymbols.ReadAll

GetField

Purpose
These are characteristics of the diagram, such as “Symbol Grid Size”, “Line Grid Size”,
“Level Number” of which some can be set such as “Diagram Name” and some that cannot
such as “Diagram Type”.

Syntax
Diagram Object. GetField FieldID
Diagram Object

 Use: Required

Methods

 Data Type: Object

 Any instantiated Diagram class

FieldID

 Use: Required

 Data Type: DGMFLD

 Diagram Field, see below for a complete list of all diagram fields.

GetFilteredSymbols

Purpose
To filter the symbols contained in a diagram, specify the filter criteria as a wildcard for the
first argument and specify the type of symbol of interest as the second argument, part of
which can also be “”. This will return an SAObjects collection. The SAObjects collection will
not be fully populated until the Complete flag for the collection is true. GetFilteredSymbols
should be used in conjunction with either ReadAll or IsMoreThan methods.

Parameters
Data Type: SAObjects

Syntax
Diagram Object.GetFilteredSymbols(WildCardName, SAType)
Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class

WildCardName

 Use: Required

 Data Type: String

 Filter criteria (e.g. “C” = all symbols starting with “C”)

 Note: Wild Card Search is case sensitive.

SAType

 Use: Required

6-11

The Diagram Class

 Data Type: Long

 Type of System Architect symbol that is being created (e.g. ETCATELEMBUSPROC
or 445)

 Note: Refer to the SYMBOLS.BAS file in the System Architect directory for a
complete listing of all SA symbols and their internal constant names and numbers.

Example
This example will return all “Entity” symbols contained in the diagram starting with the letter
“P”.

Dim oDiagram as Diagram, oCollectionofSymbols As
SAObjects

Set oCollectionofSymbols =
oDiagram.GetFilteredSymbols("P", ETECACTIVITY)

Call oCollectionofSymbols.ReadAll

Get Metric

Purpose
Calls certain lists, calculations, and pieces of internal functionality pertaining to diagrams.

Syntax
Diagram Object.GetMetric Metric[, FieldType[, NbrChars[,

NbrDec]]]

Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class

Metric

 Use: Required

 Data Type: DIAGRAMMETRIC

 Diagram Metric, see below for a complete list of all diagram metrics.

FieldType

 Use: Optional

Methods

 Data Type: FLDTYPE

 Field Type, see Chapter 17 for a complete list of System Architect field types.

NbrChars

 Use: Optional

 Data Type: Long

If the Field Type has been entered, then this parameter tells SA how many
characters are to be returned before the decimal point.

NbrDec

 Use: Optional

 Data Type: Long

If the Field Type has been entered, then this parameter tells SA how many numbers
are to be returned after the decimal point.

GetParentSymbol

Purpose
A Diagram can be the child of a Parent symbol as in a Data Flow diagram. This method
returns the parent symbol object for the specified diagram object.

GetProperty

Purpose
This returns the property content for any given diagram property.

Parameters
Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in an Elementary Business Process of a Process
Chart diagram, the "Locations" property is actually a rename – the real property is
“Location Types”. You would only know this if you looked up the definition of an
Elementary Business Process in saprops.cfg and saw that the property is actually
called “Location Types” but has been ‘labeled’ “Locations”:

6-13

The Diagram Class

Property "Location Types" { Edit Listof "Location" Label "Locations" LENGTH 2000
 HELP "Supporting Location Types (Matrix)" READONLY }

Syntax
Diagram Object.GetProperty Name
Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class

Name

 Use: Required

 Data Type: String

 The Name of the property as seen in the saprops.cfg

GetPropertyAsCollection

Purpose
Some properties define relationships with other properties. For example a Process Chart
refers to a Process Thread through its “Process Thread” property. This method returns a
collection of OneOf and ListOf diagrams or definitions. See Chapter 14 for more information
on OneOf and ListOf property types.

Parameters
Data Type: OfCollection

Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in an Elementary Business Process of a Process
Chart diagram, the "Locations" property is actually a rename – the real property is
“Location Types”. You would only know this if you looked up the definition of an
Elementary Business Process in saprops.cfg and saw that the property is actually
called “Location Types” but has been ‘labeled’ “Locations”:

Property "Location Types" { Edit Listof "Location" Label "Locations" LENGTH 2000
 HELP "Supporting Location Types (Matrix)" READONLY }

Syntax
Diagram Object.GetPropertyAsCollection(PropName)

Methods

Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class

PropName

 Use: Required

 Data Type: String

 The name of the property as seen in the saprops.cfg

Example
Dim i As Long, DiagId As Long

i = 0

Do While sa.Encyclopedia.GetFilteredDiagrams("",
GTCATPROCESSFLOW).IsMoreThan(i)

 i = i + 1

 Dim ThreadColl As OfCollection

 Set SADiag =
sa.Encyclopedia.GetFilteredDiagrams("",
GTCATPROCESSFLOW).Item(i)

 Set ThreadColl =
SADiag.GetPropertyAsCollection("Process Thread")

Loop

GetRelatedObjects

Purpose
This method returns an SAObjects collection of related objects to the current diagram object.

Syntax
Diagram Object.GetRelatedObjects(RelType)
Diagram Object

 Use: Required

6-15

The Diagram Class

 Data Type: Object

 Any instantiated Diagram class

RelType

 Use: Required

 Data Type: RELATETYPE

 SA Relationship, see Chapter 16 for a complete list of all relationships.

GetSymbolById

Purpose
All diagrams stored in System Architect are uniquely identified internally by the use of a data
dictionary identifier. This method will return a symbol as an object from its identity.

Syntax
Diagram Object.GetSymbolById(Id)
Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class

Id

 Use: Required

 Data Type: Long

 All symbols stored in System Architect are uniquely identified internally by the use of
a data dictionary identifier.

Example
Dim oSymbol As Symbol

Set oSymbol = oDiagram.GetSymbolById(12)

Methods

GetXML

Purpose
Exports the Diagram’s XML string into a valid .xml file.

Syntax
Diagram Object.GetXML(strXMLTextOut)
Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class

StrXMLTextOut

 Use: required

 Data Type: String

 A valid .xml file to which SA will export the diagram’s XML string.

Hide

Purpose
Used to close an instance of a diagram that is currently open.

Syntax
Call oDiagram.Hide

Save

Purpose
Used to save an instance of a diagram.

Syntax
Call oDiagram.Save

6-17

The Diagram Class

SetField

Purpose
SetField allows a Diagram Field to be set with a specified value.

Syntax
Diagram Object.SetField FieldID, value
Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class

FieldID

 Use: Required

 Data Type: DGMFLD

 Diagram Field, see below for a complete list of all Diagram fields.

Value

 Use: Required

 Data Type: String

 Value of diagram field

SetProperty

Purpose
The setting of a diagram property value requires the name of the property as the first
argument and the value to set as the second. The property names are found in the
saprops.cfg and usrprops.txt files.

Parameters
Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in an Elementary Business Process of a Process
Chart diagram, the "Locations" property is actually a rename – the real property is

Methods

“Location Types”. You would only know this if you looked up the definition of an
Elementary Business Process in saprops.cfg and saw that the property is actually
called “Location Types” but has been ‘labeled’ “Locations”:
Property "Location Types" { Edit Listof "Location" Label "Locations" LENGTH 2000
 HELP "Supporting Location Types (Matrix)" READONLY }

Syntax
Diagram Object.SetProperty Name, value
Diagram Object

 Use: Required

 Data Type: Object

 Any instantiated Diagram class

Name

 Use: Required

 Data Type: String

 The Name of the property as seen in the saprops.cfg

Value

 Use: Required

 Data Type: String

 Value of diagram property

Show

Purpose
This method will open the diagram on a System Architect screen.

Syntax
Call oDiagram.Show

6-19

The Diagram Class

Diagram Fields
The diagram field property can contain a number of properties held about the diagram.
They typically contain information that a user cannot enter directly but is derived during
normal use. Within the Object Model there is an enumerated type called DGMFLD. This is
passed as a parameter to the operation GetField(FieldID as DGMFLD) and
SetField(FieldID as DGMFLD, Value as String). This enables the VBA programmer to both
read and update low level diagram fields.

DGMFLD constant Description Data Type

DIAGFLD_BBORDER Toggles the Report Border
check box in the Page Setup
window. This enables the
user to place a border around
the report.

“O” = unchecked

“1” = checked

DIAGFLD_BDGMBORDER Selects a border from the
diagram border drop-list in
the Page Setup window.

“0” = no form/ no border

“1” = simple border

DIAGFLD_BDGMPDEFAULT Sets the Page Setup settings
as the default settings.

“0” = Off

“1” = On

DIAGFLD_BORDEROFFSET Sets the Offset value in the
Page Setup window. This
field sets the border off from
the report text by the
specified value.

String

Numeric value in hundredths
of an inch.

DIAGFLD_BPRESENTATION
MENU

Toggles the automatic
inclusion of the Presentation
menu in the drawing toolbox.
The extra symbols included in
the Presentation menu
include a basic shape for a
computer, phone, person,
disk and printer. The
symbols are drawn on the
diagram by the same method

“0” = Off

“1” = On

Diagram Fields

DGMFLD constant Description Data Type

as any other block symbol
and may be named as
appropriate.

DIAGFLD_BREADONLY Makes the diagram object
read-only.

“0” = False

“1” = True

DIAGFLD_BSHOWGRID Toggles the automatic display
of the underlying grid.

“0” = Off

“1” = On

DIAGFLD_BSHOWLINESHAD
OW

Toggles the automatic
inclusion of a shadow around
all line symbols.

“0” = Off

“1” = On

DIAGFLD_BSHOWNODESHA
DOW

Toggles the automatic
inclusion of a shadow around
all node symbols.

“0” = Off

“1” = On

DIAGFLD_BSHOWPAGES Toggles the Pages check box
in the Diagram Display
Options window. When
checked the page print areas
will be displayed as dotted
lines so that if the diagram is
printed in Actual Size mode
then the page boundaries
may be previewed.

“O” = unchecked

“1” = checked

DIAGFLD_BSHOWRULER Toggles the display of the x
and y axis ruler markers
measured in centimeters or
inches depending upon the
local settings on the PC. The
x and y rules are saved with
the drawing when toggled on.

“0” = Off

“1” = On

DIAGFLD_BSHOWSCROLL Toggles the automatic display
of the scroll bars that allow
the user to move around a
diagram if it is larger that one

“O” = unchecked

“1” = checked

6-21

The Diagram Class

DGMFLD constant Description Data Type

screen in the current view
mode. This option defaults to
checked.

DIAGFLD_BSHOWTEXTSHA
DOW

Toggles the automatic
inclusion of a shadow around
all text symbols.

“0” = Off

“1” = On

DIAGFLD_BSNAPGRIDENT Snaps all node symbols to
the nearest grid line (normally
invisible) on the diagram,
after you have changed the
grid setting to a coarser or
finer grid setting.

“0” = Off

“1” = On

DIAGFLD_BSNAPGRIDLIN Snaps all line symbols to the
nearest grid line (normally
invisible) on the diagram,
after you have changed the
grid setting to a coarser or
finer grid setting.

“0” = Off

“1” = On

DIAGFLD_CGRAPHNAME The name of the diagram. String

DIAGFLD_CLEVELNUMBER Level number of the diagram Read-only

String

DIAGFLD_DDDIAGRAM_DDI
DENTITY

Data dictionary ID number for
the diagram

Read-only

Numeric

DIAGFLD_IDGMFORM Selects the border form from
the diagram border drop-
down list in the Page Setup
window.

“0” = no form/ no border

“1” = IDEF0 Working

“2” = IDEF0 Publication

“3” = IDEF3

“4” = IDEF3 Released

“5” = SSADM Form

Diagram Fields

DGMFLD constant Description Data Type

DIAGFLD_IGRAPHTYPE The SA Type of diagram String

Internal constant number of
diagram. A complete listing
can be found in the
diagrm.bas file in the SA
directory.

DIAGFLD_PGRIDNUMENT Node symbol Grid Points per
inch.

“[Vertical] [Horizontal]”

Note: must be used in
conjunction with
DIAGFLD_PGRIDSIZEENT

DIAGFLD_PGRIDNUMLIN Line symbol Grid Points per
inch.

“[Vertical] [Horizontal]”

Note: must be used in
conjunction with
DIAGFLD_PGRIDSIZELIN

DIAGFLD_PGRIDSIZEENT Node symbol Inches per Grid
Point

“[Vertical] [Horizontal]” in
hundredths of an inch.

Note: must be used in
conjunction with
DIAGFLD_PGRIDNUMENT

DIAGFLD_PGRIDSIZELIN Line symbol Inches per Grid
Point

“[Vertical] [Horizontal]” in
hundredths of an inch.

Note: must be used in
conjunction with
DIAGFLD_PGRIDNUMLIN

DIAGFLD_PGRIDUNIT100 Sets the distance an object
can be dragged within the
grid. Default value=“100 100”

“[Vertical] [Horizontal]” in
hundredths of an inch.

DIAGFLD_PSHADOWDELTA Sets the distance the shadow
is placed from the symbol.
Default value = “20 10”

“[Vertical] [Horizontal]” in
hundredths of an inch.

6-23

The Diagram Class

DGMFLD constant Description Data Type

DIAGFLD_RGBSHADOWCOL
OR

Sets shadow color. “[RGB Color]”

DIAGFLD_RMARGIN Sets Margins in Page Setup
window.

“[Left] [Top] [Right] [Bottom]”
in hundredths of an inch.

DIAGFLD_SAAUDITID Diagram Audit ID Read-only

String

DIAGFLD_SAIDENTITY Data dictionary ID number for
the diagram.

Read-only

Numeric

DIAGFLD_SALOCK Locks the diagram. “0” = Unlocked

“1” = Locked

DIAGFLD_SAMAJORTYPE Major Type (i.e. Diagram). Read-only

String

DIAGFLD_SAMAJORTYPEN
UMBER

Major Type Number (i.e. 1). Read-only

Numeric

DIAGFLD_SANAME Name of diagram. Read-only

String

DIAGFLD_SANUMBER Level Number of diagram
(IDEF0 only)

Read-only

Numeric

DIAGFLD_SATYPE Type of diagram (e.g.
Process Chart, Entity
Relation, etc.).

Read-only

String

DIAGFLD_SATYPENUMBER Internal constant number of
diagram.

Read-only

Numeric

DIAGFLD_SAUPDATEDATE Date of last update. Read-only

Diagram Fields

DGMFLD constant Description Data Type

Date Field

DIAGFLD_SAUPDATETIME Time of last update. Read-only

Time Field

DIAGFLD_USEDENTCOUNT Number of symbols on the
diagram.

Long (Hexadecimal)

Read-only

DIAGFLD_WBORDERPENST
YLE

Pen style of border in the
Page Setup window.

“[SymPenStyle number]”

For a complete listing of all
SA Pen styles, see chapter 7.

DIAGFLD_WORIENTATION Diagram Printing Orientation
in the Page Setup window.

“0” = Printer Default

“1” = Portrait

“2” = Landscape

“3” = Best Fit

6-25

The Diagram Class

Diagram Metrics
In the past, metrics have been used to create lists, run rules checks, and provide
calculations for various System Architect reports. Now it is possible for the user to run
individual metrics by invoking the GetMetric method in the Diagram class. There exists a
directory of all the diagram metrics in the DIAGRAMMETRIC enumerated list in the SA
Object Browser. The following is a table of all the available diagram metrics and their
descriptions.

Diagram Metric Description

DIAGMETBALANCE Compares the input and output lines of the diagram
with the input and output lines of its parent process.
Creates a list of non-matching input or output lines,
giving the name and symbol type. (See Balance
Parent Help file)

DIAGMETCHARCOUNT Returns the number of characters in the description
property of the diagram.

DIAGMETCURRENT T/F Boolean Field. Returns True if diagram is
currently displayed.

DIAGMETELELMENTLIST Creates a list of the bottom level elements for all
symbol definitions on the diagram. An element is
bottom if it has no expanding relationships.

DIAGMETINPUTLIST Creates a list of bottom level elements used as input
for all symbol definitions on the diagram. An element
is bottom if it has no expanding relationships.

DIAGMETLEVELNUMBER Returns the number describing the hierarchal
position of the diagram (i.e. 5.3, 5.3.1, etc.) as a
string.

DIAGMETLEVELNUMBERSORT Returns the number describing the hierarchal
position of the diagram as a string. Each number
contains 3 digits (i.e. 003.005.002). This allows the
user to better sort the results.

DIAGMETLINECOUNT Returns the number of lines in the description

Diagram Metrics

6-27

Diagram Metric Description

property of a diagram.

DIAGMETOUTPUTLIST Creates a list of bottom level elements used as
output for all symbol definitions on the diagram. An
element is bottom if it has no expanding
relationships.

DIAGMETREFERENCE Returns True if the diagram is referenced by any
other object.

DIAGMETRULES Runs rules check that looks for violations of standard
methodology rules for the diagram.

DIAGMETSELECTED Returns True if the diagram is currently opened and
has any selected symbols.

DIAGMETTOP Returns False if the diagram is the child of any
symbols. Returns True if the diagram does not
expand from a symbol.

DIAGMETUNMARKEDLIST Creates a list of bottom level elements used by the
definition of all line symbols on the diagram that are
not marked as either input or output (no arrow
heads). An element is bottom if it has no expanding
relationships.

DIAGMETWORDCOUNT Returns the number of words in the description
property of the diagram.

Attributes

7
The Symbol Class

Topics in this chapter Page
Attributes 7-3

Methods 7-14

Fields 7-23

Metrics 7-31

7-1

The Symbol Class

Introduction

This is the Symbol Class with its attributes
and methods pictured on the right.

7-2

Attributes

Attributes

ArrowAtEnd

Purpose
This sets the associative properties for a line symbol. It creates an arrowhead at the
terminating end of a line.

Parameters
Data Type: Boolean

Example
oSymbol.ArrowAtEnd = True

ArrowAtStart

Purpose
This sets the associative properties for a line symbol. It creates an arrowhead at the starting
end of a line.

Parameters
Data Type: Boolean

Example
oSymbol.ArrowAtStart = True

AuditId

Purpose
All items symbols stored in System Architect are tagged with the identity of the person who
created or last modified the symbol, the identity is tagged to the symbol as an AuditId.

Parameters
Data Type: String

7-3

The Symbol Class

Read-only

ddId

Purpose
All symbols stored in System Architect are uniquely identified internally by the use of a data
dictionary identifier. This method will return the identity of a symbol.

Parameters
Data Type: Long

Read-only

Definition

Purpose
Facilitates access to the definition class of the symbol.

Parameters
Read-only

Diagram

Purpose
Facilitates access to the diagram class on which the symbol has been created.

Parameters
Read-only

Encyclopedia

Purpose
Facilitates access to the encyclopedia class, to which the symbol belongs

7-4

Attributes

Parameters
Read-only

FillColor

Purpose
The fill color for a symbol can be returned with this property. The value for the color is an
OLE_COLOR value.

Parameters
An OLE_COLOR value is a BGR (Blue, Green, Red) value. To determine a BGR value,
specify blue, green and red (each of which has a value from 0 - 255) in the following
formula:

BGR value = (blue * 65536) + (green * 256) + red

FontColor

Purpose
The fill color for a symbol font can be returned with this property. The value for the color is
an OLE_COLOR value.

Parameters
An OLE_COLOR value is a BGR (Blue, Green, Red) value. To determine a BGR value,
specify blue, green and red (each of which has a value from 0 - 255) in the following
formula:

BGR value = (blue * 65536) + (green * 256) + red

FromCardinality

Purpose
For relationship lines in an Entity Relation diagram or constraints on a Physical Data Model
the cardinality at the ‘from end’ can be determined and set using this property.

The constants that are set or returned are as follows:

7-5

The Symbol Class

Constant Number Meaning

CARDINALITYZERO 0 Zero

CARDINALITYONLYONE 1 Only One

CARDINALITYZEROONE 2 Zero or One

CARDINALITYONEMULT 3 One or Many

CARDINALITYZEROONEMULT 4 Zero, One or Multiple

CARDINALITYMULT 5 Many

CARDINALITYUNKNOWN 6 Not Marked

CARDINALITYNOTUSED 7 No Cardinality

Handle

Purpose
This is the memory handle of the symbol only available at run-time. This handle is not
unique and is rarely the same whenever accessed.

Parameters
Data Type: Long

Read-only

Example
Dim Handle As Long

Handle = oSymbol.Handle

LineStyle

Purpose
Lines drawn on diagrams can have one of many styles, which can be determined and set.

7-6

Attributes

A few of the common constants that are set or returned are as follows:

Constant Number Meaning

LSARC 4 Elliptical Arc

LSAUTOSTROR 19 Automatic Straight
Orthogonal

LSTRAA 1 Straight Any Orientation

LSTROR 3 Straight Orthogonal
(Not Automatic)

MetaItem

Purpose
Facilitates access to the MetaItem’s attributes.

Parameters
Read-only

Name

Purpose
The Symbol Name.

Parameters
Data Type: String

Read-only

PenColor

Purpose

7-7

The Symbol Class

This property returns or sets the color of the symbol pen. The value for the color is an
OLE_COLOR value.

Parameters
An OLE_COLOR value is a BGR (Blue, Green, Red) value. To determine a BGR value,
specify blue, green and red (each of which has a value from 0 - 255) in the following
formula:

BGR value = (blue * 65536) + (green * 256) + red

PenStyle

Purpose
The style of the symbol pen can be returned or set with this property.

A range of constants prefixed with PEN exists. These correspond to the Format… Symbol
Style… Pen option in System Architect.

Constant Number Meaning

PENDASH 1

PENDASH2DOT 4

PENDASHDOT 3

PENDOT 2

PENNULL 5 No Pen Style

PENSOLID1 16

PENSOLID2 48

PENSOLID3 64

PENSOLID4 128

PENSOLID4A 384

7-8

Attributes

SAClass

Purpose
The class type of the symbol. Also known as the Major Type Number

Parameters
Data Type: Long

Read-only

Note: this will always be “2” for symbols.

SAType

Purpose
The numerical constant of the symbol.

Parameters
Data Type: Long

Read-only

Selected

Purpose
Whether or not the symbol is highlighted on the diagram.

Parameters
Data Type: Boolean

ToCardinality

Purpose

7-9

The Symbol Class

For relationship lines in an Entity Relation diagram or constraints on a Physical Data Model
the cardinality at the to end can be determined and set using this property.

The constants that are set or returned are as follows:

Constant Number Meaning

CARDINALITYMULT 0 Many

CARDINALITYNOTUSED 1 No Cardinality

CARDINALITYONEMULT 2 One or Many

CARDINALITYONLYONE 3 Only One

CARDINALITYUNKNOWN 4 Not Marked

CARDINALITYZERO 5 Zero

CARDINALITYZEROONE 6 Zero or One

CARDINALITYZEROONEMULT 7 Zero, One or Multiple

TunnelAtEnd

Purpose
For line symbols in IDEF0 function diagrams “Tunneling” at the end of an arrow can be
determined and set with this property.

Parameters
Data Type: Boolean

TunnelAtStart

Purpose
For line symbols in IDEF0 function diagrams “Tunneling” at the start of an arrow can be
determined and set with this property.

7-10

Attributes

Parameters
Data Type: Boolean

TypeName

Purpose
The type name of the symbol as a string, e.g. “Entity”

Parameters
Data Type: String

Read-only

UpdateDate

Purpose
The date the symbol was last modified.

Parameters
Data Type: String

Read-only

UpdateTime

Purpose
The time the symbol was last modified.

Parameters
Data Type: String

Read-only

7-11

The Symbol Class

Xpos

Purpose
The horizontal (X coordinate) of the symbol in 1/100ths of an inch.

This is for the location at the bottom right hand corner of the symbol and is taken from the
left of the diagram.

Parameters
Data Type: Long

Xsize

Purpose
The width (X - axis) of the symbol. The unit measurement is 1/100ths of an inch.

Parameters
Data Type: Long

Ypos

Purpose
The vertical (Y coordinate) of the symbol in 1/100ths of an inch.

This is for the location at the bottom right hand corner of the symbol and is taken from the
top of the diagram.

Parameters
Data Type: Long

Ysize

Purpose
The height (Y - axis) of the symbol. The unit measurement is 1/100ths of an inch.

7-12

Attributes

Parameters
Data Type: Long

7-13

The Symbol Class

Methods

ConnectFrom

Purpose
Used to connect a symbol at the “from” end of the line.

Syntax
Symbol Object.ConnectFrom Line
Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class from which the line symbol will be connected.

Line

 Use: Required

 Data Type: Symbol

Any instantiated line symbol

Example
Dim oFirstsymbol As Symbol, oSecondsymbol As Symbol,

oLine As Symbol

Set oFirstsymbol = oDiagram.CreateSymbol("Customer",
ETPROCESS)

Set oSecondsymbol = oDiagram.CreateSymbol("Order",
ETPROCESS)

Set oLine = oDiagram.CreateSymbol("places",
ETDATAFLOW)

Call oFirstsymbol.ConnectTo oLine

Call oSecondsymbol.ConnectFrom oLine

7-14

Methods

ConnectTo

Purpose
Used to connect a symbol at the “to” end of the line.

Syntax
Symbol Object.ConnectTo Line
Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class to which the line symbol will be connected.

Line

 Use: Required

 Data Type: Symbol

Any instantiated line symbol

Example
Dim oFirstsymbol As Symbol, oSecondsymbol As Symbol,

oLine As Symbol

Set oFirstsymbol = oDiagram.CreateSymbol("Customer",
ETPROCESS)

Set oSecondsymbol = oDiagram.CreateSymbol("Order",
ETPROCESS)

Set oLine = oDiagram.CreateSymbol("places",
ETDATAFLOW)

Call oFirstsymbol.ConnectTo oLine
Call oSecondsymbol.ConnectFrom oLine

Delete

Purpose

7-15

The Symbol Class

Deletes the symbol from the diagram. When a diagram is closed, all symbols on it are
automatically deleted unless the Diagram object is saved.

GetChildDiagrams

Purpose
This method retrieves an SAObjects collection of diagrams for a given symbol where a
symbol has children attached.

The SAObjects collection will not be fully populated until the Complete flag for the collection
is true. GetAllSymbols should be used in conjunction with either ReadAll or IsMoreThan
methods.

Example
Dim oSymbol as Symbol, oCollectionofSymbols As

SAObjects

Set oCollectionofSymbols = oSymbol.GetChildDiagrams
Call oCollectionofSymbols.ReadAll

GetField

Purpose
These are characteristics of the symbol, such as “Font Type”, “Font Height” of which some
can be set such as “Font Type” and some that cannot such as “AuditId”.

Syntax
Symbol Object. GetField FieldID
Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class

FieldID

 Use: Required

 Data Type: SYMBOLFIELDS

7-16

Methods

 Symbol Field, see below for a complete list of all symbol fields.

Get Metric

Purpose
Calls certain lists, calculations, and pieces of internal functionality pertaining to symbols.

Syntax
Symbol Object.GetMetric Metric[, FieldType[, NbrChars[,

NbrDec]]]

Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class

Metric

 Use: Required

 Data Type: SYMBOLMETRIC

 Symbol Metric, see below for a complete list of all symbol metrics.

FieldType

 Use: Optional

 Data Type: FLDTYPE

 Field Type, see Chapter 17 for a complete list of System Architect field types.

NbrChars

 Use: Optional

 Data Type: Long

If the Field Type has been entered, then this parameter tells SA how many
characters are to be returned before the decimal point.

NbrDec

 Use: Optional

 Data Type: Long

7-17

The Symbol Class

If the Field Type has been entered, then this parameter tells SA how many numbers
are to be returned after the decimal point.

GetProperty

Purpose
This returns the symbols property content for a given symbol property. Examine
usrprops.txt and saprops.cfg for a complete list of all property names.

Parameters
Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in a Junction of a IDEF3 Process Flow/ OV-6a
diagram, the "Logic" property is actually a rename – the real property is “Junction
Logic”. You would only know this if you looked up the definition of a Junction in
saprops.cfg and saw that the property is actually called “Junction Logic” but has
been ‘labeled’ “Logic”:
PROPERTY "Junction Logic" { EDIT Text ListOnly LIST "Junction Logic" LENGTH 3
DEFAULT "And" LABEL "Logic" }
Syntax
Symbol Object.GetProperty Name
Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class

Name

 Use: Required

 Data Type: String

 The Name of the property as seen in the saprops.cfg

7-18

Methods

GetPropertyAsCollection

Purpose
Some properties define relationships with other properties. For example an Entity may refer
to its Model through its “Model” property. This method returns a collection of OneOf and
ListOf diagrams or definitions. See Chapter 14 for more information on OneOf and ListOf
property types.

Parameters
Data Type: OfCollection

Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in a Junction of a IDEF3 Process Flow/ OV-6a
diagram, the "Logic" property is actually a rename – the real property is “Junction
Logic”. You would only know this if you looked up the definition of a Junction in
saprops.cfg and saw that the property is actually called “Junction Logic” but has
been ‘labeled’ “Logic”:
PROPERTY "Junction Logic" { EDIT Text ListOnly LIST "Junction Logic" LENGTH 3
DEFAULT "And" LABEL "Logic" }
Syntax
Symbol Object.GetPropertyAsCollection(PropName)
Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class

PropName

 Use: Required

 Data Type: String

 The name of the property as seen in the saprops.cfg

Example
Dim Models As OfCollection

 Set Models =
SASym.GetPropertyAsCollection("Model")

7-19

The Symbol Class

GetRelatedObjects

Purpose
This method returns an SAObjects collection of related objects to the current symbol object.

Syntax
Symbol Object.GetRelatedObjects(RelType)
Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class

RelType

 Use: Required

 Data Type: RELATETYPE

 SA Relationship, see Chapter 16 for a complete list of all relationships.

Example
Dim oCollectionOfRelatedItems As SAObjects

Set oCollectionOfRelatedItems =
oSymbol.GetRelatedObjects(RELCONNEND)

oCollectionOfRelatedItems.ReadAll

Save

Purpose
To save the symbol on a diagram after creation invoke the save method.

Example
oSymbol.Save

7-20

Methods

SetField

Purpose
This sets field values for a symbol, and requires two arguments, the field and its value.

Syntax
Symbol Object. SetField FieldID, value
Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class

FieldID

 Use: Required

 Data Type: SYMBOLFIELD

 Symbol Field, see below for a complete list of all Symbol fields.

value

 Use: Required

 Data Type: String

 Value of symbol field

SetProperty

Purpose
By knowing the property name and its value, you can set a property of a symbol. Examine
usrprops.txt and saprops.cfg for a complete list of all property names.

Parameters
Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in a Junction of a IDEF3 Process Flow/ OV-6a
diagram, the "Logic" property is actually a rename – the real property is “Junction
Logic”. You would only know this if you looked up the definition of a Junction in

7-21

The Symbol Class

saprops.cfg and saw that the property is actually called “Junction Logic” but has
been ‘labeled’ “Logic”:
PROPERTY "Junction Logic" { EDIT Text ListOnly LIST "Junction Logic" LENGTH 3
DEFAULT "And" LABEL "Logic" }

Syntax
Symbol Object.SetProperty Name, value
Symbol Object

 Use: Required

 Data Type: Object

 Any instantiated Symbol class

Name

 Use: Required

 Data Type: String

 The Name of the property as seen in the saprops.cfg

Value

 Use: Required

 Data Type: String

 Value of symbol property

7-22

Symbol Fields

Symbol Fields
The symbol field property can contain a number of properties held about the symbol.
Typically, contains information that a user cannot enter directly but is derived during normal
use. Examples would include Update Time, Audit, Position, Size, TypeName.

Within the Object Model there is an enumerated type called SYMBOLFIELD. This is passed
as a parameter to the operation GetField(FieldID as SYMBOLFIELD) and SetField(FieldID
as SYMBOLFIELD, Value as String). This enables the VBA programmer to both read and
update low level symbol fields.

SYMBOLFIELD constant Description Data Type

SYMFLD_AUDITID Audit Id of the Symbol String

Read-only

SYMFLD_BARRANGMENT Arrangement of symbol tree. “0” = Arrange Children
Horizontally

“1” = Arrange Children
Vertically

“2” = Arrange Children as a
Block

SYMFLD_BOTHERSYMBOL
OGY

Displays alternate form of
symbol (e.g. symbol
sterotype)

Boolean

SYMFLD_CBGCOLOR Background color of a symbol
on a Character Screen
diagram.

“0” = Black

“1” = Blue

“2” = Green

“3” = Cyan

“4” = Red

“5” = Magenta

“6” =
Brown/yellow

“7” = white

SYMFLD_CFGCOLOR Foreground color of a symbol
on a Character Screen

“0” = Black

“1” = Blue

“4” = Red

“5” = Magenta

7-23

The Symbol Class

SYMBOLFIELD constant Description Data Type

diagram. “2” = Green

“3” = Cyan

“6” =
Brown/yellow

“7” = white

SYMFLD_COCCOFFSET Determines the spacing
between each iteration of
values for some input field on
a Character Screen diagram.

Numeric

SYMFLD_COCCURS Allows multiple iteration of
values for some input field on
a Character Screen diagram.

Numeric

SYMFLD_COMMENT Sets the graphic comment
property of the symbol.

String

SYMFLD_CPROMPT Cobalt Prompt Character of
symbol on Character Screen
diagram

1-bit String

SYMFLD_CUNCLECOUNT Returns the number of
symbols that are directly
attached to the parent symbol
by flow lines.

Hexadecimal

Read-only

SYMFLD_DDCOMMENT Data dictionary ID number of
symbol’s comment symbol.

Numeric

Read-only

SYMFLD_DDIDENTITY Data dictionary Id number of
the symbol.

Numeric

Read-only

SYMFLD_DESCLOC Location of the graphic
comment of the symbol.

“XPos YPos”

Numeric

SYMFLD_DESCSIZE Size of the graphic comment
of the symbol.

“XSize YSize”

Numeric

7-24

Symbol Fields

SYMBOLFIELD constant Description Data Type

SYMFLD_DWSTYLE Reflects what the user has
selected as options for a
graphic screen symbol on a
Graphic Screen diagram.

Hexadecimal

SYMFLD_ENDLOC Location of where line symbol
ends.

“XPos YPos”

Numeric

SYMFLD_ERROR1 First error detected by
System Architect.

Error number

SYMFLD_ERROR2 Second error detected by
System Architect.

Error number

SYMFLD_FONTFLAGS Toggles Bold, Italic,
Underline, or Strikethrough
for Symbol font.

Hexadecimal

“0x0002” = Bold

“0x0005” = Italic

“0x000B” = Underline

“0x0010” = Strikethrough

SYMFLD_FONTHEIGHT Symbol font size Hexadecimal

SYMFLD_FONTNAME Symbol font name (e.g. Arial,
Times New Roman, etc.)

String

SYMFLD_FREXARCCHAR Inserts an exclusive arc at
the from end of a line symbol.

Boolean

SYMFLD_FROMCARDINALIT
Y

Returns FromCardinality
name (e.g. exactly one, one
or many, etc.) For a
complete list of
FromCardinality values see
FromCardinality attribute in
Symbol class attributes.

String

Read-only

SYMFLD_FROMCARDNUMB Returns FromCardinality
constant number. For a

Numeric

7-25

The Symbol Class

SYMBOLFIELD constant Description Data Type

ER complete list of
FromCardinality values see
FromCardinality attribute in
Symbol class attributes.

Read-only

SYMFLD_FROMCONNECTC
OMPASSPOINT

Returns N,E,S, or W for start
point of an ICOM Arrow
connected at the “from” end

String

Read-only

SYMFLD_HASFROMARROW Returns true if line has an
arrow at the “from” end

Boolean

Read-only

SYMFLD_HASFROMTUNNEL Returns true if ICOM arrow is
tunneled at the “from” end

Boolean

Read-only

SYMFLD_HASTOARROW Returns true if line has an
arrow at the “to” end

Boolean

Read-only

Returns true if ICOM arrow is
tunneled at the “to” end

Returns true if ICOM arrow is
tunneled at the “to” end

Boolean

Read-only

SYMFLD_LINESTYLE Symbol line style 4-byte hexadecimal

SYMFLD_LOC Location of symbol on the
diagram.

“XPos YPos”

Numeric

SYMFLD_NAME Symbol name String

SYMFLD_NAMECRLF Name of Symbol with
Carriage Return and Line
Feed. In the name field, it is
possible for the user to enter
up to five lines of text.

String

SYMFLD_NAMECRLF1 If the name were to appear
as string of continuous text
(e.g JimJaneTomLouRon),
the character number at

Numeric

7-26

Symbol Fields

SYMBOLFIELD constant Description Data Type

which the text starts on the
second line (i.e. 4).

SYMFLD_NAMECRLF2 If the name were to appear
as string of continuous text
(e.g JimJaneTomLouRon),
the character number at
which the text starts on the
third line (i.e. 8).

Numeric

SYMFLD_NAMECRLF3 If the name were to appear
as string of continuous text
(e.g JimJaneTomLouRon),
the character number at
which the text starts on the
fourth line (i.e. 11).

Numeric

SYMFLD_NAMECRLF4 If the name were to appear
as string of continuous text
(e.g JimJaneTomLouRon),
the character number at
which the text starts on the
fifth line (i.e. 14).

Numeric

SYMFLD_NAMELOC Location of Symbol Name
Field.

“XPos YPos”

Numeric

SYMFLD_NAMESIZE Size of Symbol Name Field “XSize YSize”

Numeric

SYMFLD_ORDER Ordering of Association End “O” = Unordered

“1” = Ordered

“2” = Sorted

SYMFLD_PENSTYLE Symbol Pen style and width 4-byte hexadecimal

SYMFLD_ROTATION Rotates Flag symbol on
Structure Chart

Numeric values of 0 to 31
rotate flag symbol clockwise,

7-27

The Symbol Class

SYMBOLFIELD constant Description Data Type

for example:

“0” = south

“8” = west

“16” = north

“24” = east

SYMFLD_SAMAJORTYPE Major Type (i.e. Symbol) String

Read-only

SYMFLD_SAMAJORTYPENU
MBER

Major Type number (i.e. 2) Numeric

Read-only

SYMFLD_SEQNUM Entity Number on entity
symbols.

Numeric

SYMFLD_SIZE Symbol size “XSize YSize”

Numeric

SYMFLD_STARTLOC Location of where line symbol
starts.

“XPos YPos”

Numeric

SYMFLD_STYLEFLAGS Enables Symbol colors Hexadecimal

“0x0001” = Pen color

“0x0002” = Fill color

“0x0004” = Font color

SYMFLD_SUPERSUB Sets Super-sub relationship
value of the symbol

“0” = neither

“1” = Super

“2” = Sub

SYMFLD_TEXTFLAGS Text Properties of symbol Hexadecimal

7-28

Symbol Fields

SYMBOLFIELD constant Description Data Type

SYMFLD_TOCARDINALITY Returns ToCardinality name
(e.g. exactly one, one or
many, etc.) For a complete
list of ToCardinality values
see ToCardinality attribute in
Symbol class attributes.

String

Read-only

SYMFLD_TOCARDNUMBER Returns ToCardinality
constant number. For a
complete list of ToCardinality
values see ToCardinality
attribute in Symbol class
attributes.

Numeric

Read-only

SYMFLD_TOCONNECTCOM
PASSPOINT

Returns N,E,S, or W for start
point of an ICOM Arrow
connected at the “to” end

String

Read-only

SYMFLD_TOEXARCCHAR Inserts an exclusive arc at
the to end of a line symbol.

Boolean

SYMFLD_TYPE Symbol SA Type Internal Constant number of
SAType.

SYMFLD_TYPENAME Symbol SA type name (e.g.
Entity, ICOM Arrow, etc.)

String

Read-only

SYMFLD_U_S1_WPICTYPE Picture Type (added graphic
file to diagram).

String

Read-only

SYMFLD_U_S1_ZPPICFILE Path name of file being used
to display picture.

String

Read-only

SYMFLD_UPDATEDATE Date of last update Date field

Read-only

SYMFLD_UPDATEDATEINTL Date of last update
(International Format)

Date Field

7-29

The Symbol Class

SYMBOLFIELD constant Description Data Type

Read-only

SYMFLD_UPDATETIMEINTL Time of last update
(International Format)

Time Field

Read-only

SYMFLD_XPENTITY Internal number given to
symbol.

Numeric

Read-only

SYMFLD_XPGROUP Internal number given to
parent of the symbol.

Numeric

Read-only

SYMFLD-XPLINK Internal number of symbol
that the selected symbol is
linked to (e.g. Referent linked
to a Unit of Behavior in an
IDEF3 Process Flow
diagram).

Numeric

Read-only

SYMFLD_XPSIBLING Internal number of next
consecutive sibling.

Numeric

Read-only

SYMFLD_XPSUBORDINATE Internal number given to first
child symbol

Numeric

Read-only

SYMFLD_ZPDESC Sets the graphic comment of
the symbol.

String

SYMFLD-ZPSSADMSTR Unknown.

7-30

Symbol Metrics

Symbol Metrics
In the past, metrics have been used to create lists, run rules checks, and provide
calculations for various System Architect reports. Now it is possible for the user to run
individual metrics by invoking the GetMetric method in the Symbol class. There exists a
directory of all the symbol metrics in the SYMBOLMETRIC enumerated list in the SA Object
Browser. The following is a table of all the available symbol metrics and their descriptions.

Symbol Metric Description

SYMMETANNOTATION Returns True if the symbol is an annotation symbol (Doc
Block, Text Box, Rectangle, Page Connector).

SYMMETBALANCE Compares the input and output lines of the symbol with
the input and output lines of its child process. Creates a
list of non-matching input or output lines, giving the
name and symbol type. (See Balance Child Help file)

If the symbol is a data store, AND connector, or XOR
connector, then it compares the defined elements and
structures of those symbols. Creates list of undefined
elements in the symbol and indicates whether the
incoming and outgoing data flows have defined
elements. (See Balance Horizontal Help file)

SYMMETBALANCEMSPEC Balances the symbol definition’s Minispec. Used for
processes on Data Flow diagrams and modules on
Structure Chart diagrams. For additional information,
reference the System Architect Help file, using keyword
“Minispec”.

SYMMETBOTTOM Bottom is a derived T/F Boolean field. The value is true
for a symbol if it does not expand to a diagram.

SYMMETCHARCOUNT Returns the number of characters in the description
property of the symbol.

SYMMETCONNECTOR Returns True if the symbol is a connector symbol (AND
connector, XOR connector, or ICOM Arrow Join)

SYMMETCURRENT T/F Boolean Field. Returns True if symbol on currently

7-31

The Symbol Class

Symbol Metric Description

displayed diagram.

SYMMETELEMENTLIST Creates a list of the bottom level elements for the
symbol definition. An element is bottom if it has no
expanding relationships.

SYMMETEXPRESSION Creates a list of erroneous expression syntax or
undefined data elements or data structures used by the
expression of the symbol definition.

SYMMETICOMDEST Returns the ICOM arrow destination role (input, control,
mechanism, or boundary) as a string.

SYMMETICOMSOURCE Returns the ICOM arrow source role (call, output, or
boundary) as a string.

SYMMETINPUTLIST Creates a list of bottom level elements used as input for
the symbol definition. An element is bottom if it has no
expanding relationships.

SYMMETISFOREIGNKEY Returns True if the symbol definition is a foreign key.

SYMMETKEYCOMPNBR Returns the component number of the primary key of a
symbol. A user can alternatively view the component
number by expanding the attribute list of the symbol
definition in the browser detail (e.g. @1, @2, etc.).

SYMMETLEVELNUMBER Returns the number describing the hierarchal position of
the symbol (i.e. 5.3, 5.3.1, etc.) as a string.

SYMMETLEVELNUMBERSORT Returns the number describing the hierarchal position of
the symbol as a string. Each number contains 3 digits
(i.e. 003.005.002). This allows the user to better sort
the results.

SYMMETLINECOUNT Returns the number of lines in the description property
of a symbol definition.

SYMMETNORMALIZE1 Runs a check to see if the symbol definition is in first
normal form. An entity is in First Normal Form if it
contains no repeating groups.

7-32

Symbol Metrics

Symbol Metric Description

SYMMETNORMALIZE23 Runs a check to see if the symbol definition is in second
and third normal form. An entity is in Second Normal
Form if it is in First Normal Form and each non-key
attribute is full functionally dependent on the primary
key. An entity is in Third Normal Form if it is in Second
Normal Form and each non-key attribute is dependent
on the primary key and only on the primary key.

SYMMETOUTPUTLIST Creates a list of bottom level elements used as output
for the symbol definition. An element is bottom if it has
no expanding relationships.

SYMMETPARENTSLASHDATA Returns the symbol definition’s foreign key slash data,
which contains information on where the attribute is
keyed from. A FK’s slash data can also be viewed by
expanding the symbol definition’s attribute list in the
browser details. The slash data will appear in the form
of the following example:

Row_Number / FKFROM
“Stock_Location.Row_Number(stores)” /

SYMMETREFERENCE Returns True if the symbol definition is referenced by
any other object.

SYMMETRULES Runs rules check that looks for violations of standard
methodology rules for the symbol.

SYMMETSELECTED Returns True if the symbol on a currently opened
diagram is highlighted.

SYMMETSEQINPARENTSLIST Checks the parent object’s property set for list of child
objects. Returns the number that the symbol definition
appears in that list.

SYMMETTOP Returns False if the diagram, which the selected symbol
is on, is the child of any other symbols. Returns True if
that diagram does not expand from any other symbol.

SYMMETUNMARKEDLIST Creates a list of bottom level elements used by the
definition of all line symbols that are not marked as
either input or output (no arrow heads). An element is

7-33

The Symbol Class

7-34

Symbol Metric Description

bottom if it has no expanding relationships.

SYMMETUPDATEUSES Updates the relation table of the data dictionary
(RELATN.DBF). Has no return value.

SYMMETWORDCOUNT Returns the number of words in the description property
of the symbol definition.

Attributes

8
The Definition
Class

Topics in this chapter Page
Attributes 8-3

Methods 8-8

Fields 8-15

Metrics 8-17

8-1

The Definition Class

Introduction

This is the Definition Class with its attributes and methods pictured below.

8-2

Attributes

Attributes

AuditID

Purpose
All items definitions stored in System Architect are tagged with the identity of the person who
created or last modified the definition; the identity is tagged to the definition as an AuditId.

Parameters
Data Type: String

Read-only

CheckedOut

Purpose
When set to True, the definition becomes read-only to everyone but the AuditID that
checked it out.

Parameters
Data Type: Boolean

ddID

Purpose
All definition stored in System Architect are uniquely identified internally by the use of a data
dictionary identifier.

Parameters
Data Type: Long

Read-only

8-3

The Definition Class

Encyclopedia

Purpose
Facilitates access to the parent encyclopedia class’ attributes and methods.

Parameters
Read-only

Frozen

Purpose
User must have Freezing privileges in order to set this attribute. When set to True, the
definition becomes read-only to everyone including the AuditID that froze the definition.

Parameter
Data Type: Boolean

Handle

Purpose
This is the memory handle of the definition only available at run-time. This handle is not
unique and is rarely the same whenever accessed.

Parameters
Data Type: Long

Read-only

Example
Dim Handle As Long

Handle = oDefinition.Handle

Locked

Purpose

8-4

Attributes

Returns a “True” or “False” value to indicate whether a definition is locked or not locked, i.e.
in use by a user. This requires a valid definition object.

Parameters
Data Type: Boolean

Read-only

MetaItem

Purpose
Facilitates access to the MetaItem’s attributes.

Parameters
Read-only

Name

Purpose
The name of the specified definition object.

Parameters
Data Type: String

Read-only

ReadOnly

Purpose
Whether or not the definition is read-only

Parameters
Data Type: Boolean

Read-only

8-5

The Definition Class

SAClass

Purpose
The class type of the definition. Also known as the Major Type Number

Parameters
Data Type: Long

Read-only

Note: this will always return “3” for a definition.

SAType

Purpose
The constant integer of the definition. All definitions in System Architect have a unique
numerical constant identifier.

Parameters
Data Type: Long

Read-only

TypeName

Purpose
The type of the definition as a string, e.g. Process

Parameters
Data Type: String

Read-only

8-6

Attributes

UpdateDate

Purpose
The date the definition was last modified.

Parameters
Data Type: String

Read-only

UpdateTime

Purpose
The time the definition was last modified.

Parameters
Data Type: String

Read-only

xml

Purpose
The XML string of the definition. Manipulated by the GetXML method.

Parameters
Data Type: String

Read-only

8-7

The Definition Class

Methods

Delete

Purpose
Deletes a definition specified by a definition object.

Example
Call oDefinition.Delete

GetField

Purpose
These are characteristics of the definition, such as “Type Number”, “Undefined Flag”, “Major
Type Name”.

Syntax
Definition Object. GetField FieldID

Definition Object

 Use: Required

 Data Type: Object

 Any instantiated Definition class

FieldID

 Use: Required

 Data Type: DEFFLD

 Definition Field, see below for a complete list of all Definition fields.

8-8

Methods

Get Metric

Purpose
Calls certain lists, calculations, and pieces of internal functionality pertaining to definitions.

Syntax
Definition Object.GetMetric Metric[, FieldType[,

NbrChars[, NbrDec]]]

Definition Object

 Use: Required

 Data Type: Object

 Any instantiated Definition class

Metric

 Use: Required

 Data Type: DEFINITIONMETRIC

 Definition Metric, see below for a complete list of all Definition metrics.

FieldType

 Use: Optional

 Data Type: FLDTYPE

 Field Type, see Chapter 17 for a complete list of System Architect field types.

NbrChars

 Use: Optional

 Data Type: Long

If the Field Type has been entered, then this parameter tells SA how many
characters are to be returned before the decimal point.

NbrDec

 Use: Optional

 Data Type: Long

If the Field Type has been entered, then this parameter tells SA how many numbers
are to be returned after the decimal point.

8-9

The Definition Class

GetProperty

Purpose
This returns the property content for any given definition property.

Parameters
Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in a Service Time Profile, the " Time Units " property is
actually a rename – the real property is "Duration Time Units". You would only know
this if you looked up the definition of a Service Time Profile in saprops.cfg and saw
that the property is actually called "Duration Time Units” but has been ‘labeled’
“Time Units”:
PROPERTY "Duration Time Units" { EDIT Text LISTONLY List "Time Units" LABEL "Time

Units" DEFAULT "Hour" LENGTH 20 READONLY }

Syntax
Definition Object.GetProperty Name

Definition Object

 Use: Required

 Data Type: Object

 Any instantiated Definition class

Name

 Use: Required

 Data Type: String

 The Name of the property as seen in the saprops.cfg

GetPropertyAsCollection

Purpose
Some properties define relationships with other properties. For example an Entity Definition
refers to Attributes through its “Description” property. This method returns a collection of

8-10

Methods

OneOf and ListOf diagrams or definitions. See Chapter 14 for more information on OneOf
and ListOf property types.

Parameters
Data Type: OfCollection

Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in a Service Time Profile, the " Time Units " property is
actually a rename – the real property is "Duration Time Units". You would only know
this if you looked up the definition of a Service Time Profile in saprops.cfg and saw
that the property is actually called "Duration Time Units” but has been ‘labeled’
“Time Units”:
PROPERTY "Duration Time Units" { EDIT Text LISTONLY List "Time Units" LABEL "Time

Units" DEFAULT "Hour" LENGTH 20 READONLY }

Syntax
Definition Object.GetPropertyAsCollection(PropName)

Definition Object

 Use: Required

 Data Type: Object

 Any instantiated Definition class

PropName

 Use: Required

 Data Type: String

 The name of the property as seen in the saprops.cfg

Example
Dim i As Long, DiagId As Long

i = 0

Do While sa.Encyclopedia.GetFilteredDefinitions("",
DFXACTIVITY).IsMoreThan(i)

 i = i + 1

 Dim AttribColl As OfCollection

 Set SADef =
sa.Encyclopedia.GetFilteredDefinitions("",
DFXACTIVITY).Item(i)

8-11

The Definition Class

 Set AttribColl =
SADef.GetPropertyAsCollection("Description")

Loop

GetRelatedObjects

Purpose
This method returns an SAObjects collection of related objects to the current definition
object.

Syntax
Definition Object.GetRelatedObjects(RelType)

Definition Object

 Use: Required

 Data Type: Object

 Any instantiated Definition class

RelType

 Use: Required

 Data Type: RELATETYPE

 SA Relationship, see Chapter 16 for a complete list of all relationships.

GetXML

Purpose
Exports the definition’s XML string into a valid .xml file name.

Syntax
Definition Object.GetXML(strXMLTextOut)

Definition Object

 Use: Required

 Data Type: Object

8-12

Methods

 Any instantiated Definition class

StrXMLTextOut

 Use: required

 Data Type: String

 A valid .xml file, to which SA will export the definition’s XML string.

Save

Purpose
Used to save an instance of a definition.

Example
Call oDefinition.Save

SetField

Purpose
SetField allows a Definition Field to be set with a specified value.

Syntax
Definition Object.SetField FieldID, value

Definition Object

 Use: Required

 Data Type: Object

 Any instantiated Definition class

FieldID

 Use: Required

 Data Type: DGMFLD

 Definition Field, see below for a complete list of all Definition fields.

Value

 Use: Required

8-13

The Definition Class

 Data Type: String

 Value of Definition field

SetProperty

Purpose
The setting of a definition property value requires the name of the property as the first
argument and the value to set as the second. The property names are found in the
saprops.cfg and usrprops.txt files.

Parameters
Oftentimes the real name of a property is not the same as what shows up on a
definition dialog; for example, in a Service Time Profile, the " Time Units " property is
actually a rename – the real property is "Duration Time Units". You would only know
this if you looked up the definition of a Service Time Profile in saprops.cfg and saw
that the property is actually called "Duration Time Units” but has been ‘labeled’
“Time Units”:
PROPERTY "Duration Time Units" { EDIT Text LISTONLY List "Time Units" LABEL "Time

Units" DEFAULT "Hour" LENGTH 20 READONLY }
Syntax
Definition Object.SetProperty Name, value

Definition Object

 Use: Required

 Data Type: Object

 Any instantiated Definition class

Name

 Use: Required

 Data Type: String

 The Name of the property as seen in the saprops.cfg

Value

 Use: Required

 Data Type: String

 Value of Definition property

8-14

Definition Fields

Definition Fields
The definition field property can contain a number of properties held about the definition.
They typically contain information that a user cannot enter directly but is derived during
normal use. Within the Object Model there is an enumerated type called DEFFLD. This is
passed as a parameter to the operation GetField(FieldID as DEFFLD) and
SetField(FieldID as DEFFLD, Value as String). This enables the VBA programmer to both
read and update low level definition fields.

DEFFLD constant Description Data Type

DEFNFLD_SAAUDITID Audit Id of the definition. Read-only

DEFNFLD_SAIDENTITY Data dictionary Id of the
definition.

Read-only

DEFNFLD_SAIDENTITY4 Data dictionary Id of the
definition.

4-byte binary number

Read-only

DEFNFLD_SAISUNDEFINED Returns “T” if definition is
undefined, “F” if definition is
defined.

Read-only

DEFNFLD_SALOCK Locks the definition. “T” = Locked

“F” = Unlocked

DEFNFLD_SAMAJORTYPE Major type (i.e. “Definition”) Read-only

DEFNFLD_SAMAJORTYPEN
UMBER

Major type number (i.e. “3”) Read-only

DEFNFLD_SANAME Name of definition. String

DEFNFLD_SATYPE SA type of definition (e.g.
UML Class, Entity, etc.)

Read-only

DEFNFLD_SATYPENUMBER Internal constant number of
the definition type. For a
complete listing, reference
the DEFNS.BAS file in the SA
directory

Read-only

8-15

The Definition Class

DEFFLD constant Description Data Type

DEFNFLD_SAUPDATEDATE Date of last update. Read-only

DEFNFLD_SAUPDATETIME Time of last update. Read-only

8-16

Definition Metrics

Definition Metrics
In the past, metrics have been used to create lists, run rules checks, and provide
calculations for various System Architect reports. Now it is possible for the user to run
individual metrics by invoking the GetMetric method in the Definition class. There exists a
directory of all the definition metrics in the DEFINITIONMETRIC enumerated list in the SA
Object Browser. The following is a table of all the available definition metrics and their
descriptions.

Definition Metric Description

DEFMETBOTTOM Bottom is a derived T/F Boolean field. The value is
true for definitions that are not expressions, and
expressions that do not contain any data elements or
data structures.

DEFMETCURRENT T/F Boolean Field. Returns True if the symbol of the
definition is on a currently displayed diagram.

DEFMETEXPRESSION Creates a list of erroneous expression syntax or
undefined data elements or data structures used by
the expression of the definition.

DEFMETISFOREIGNKEY Returns True if the definition is a foreign key.

DEFMETKEYCOMPNBR Returns the component number of the primary key of
a definition. A user can alternatively view the
component number by expanding the attribute list of
the definition in the browser detail (e.g. @1, @2,
etc.).

DEFMETNORMALIZE1 Runs a check to see if the definition is in first normal
form. An entity is in First Normal Form if it contains
no repeating groups.

DEFMETNORMALIZE23 Runs a check to see if the definition is in second and
third normal form. An entity is in Second Normal
Form if it is in First Normal Form and each non-key
attribute is full functionally dependent on the primary
key. An entity is in Third Normal Form if it is in
Second Normal Form and each non-key attribute is

8-17

The Definition Class

Definition Metric Description

dependent on the primary key and only on the
primary key.

DEFMETPARENTSLASHDATA Returns the definition’s foreign key slash data, which
contains information on where the attribute is keyed
from. A FK’s slash data can also be viewed by
expanding the definition’s attribute list in the browser
details. The slash data will appear in the form of the
following example:

Row_Number / FKFROM
“Stock_Location.Row_Number(stores)” /

DEFMETREFERENCE Returns True if the definition is referenced by any
other object.

DEFMETSELECTED Returns True if there is a selected symbol defined
by the definition.

DEFMETSEQINPARENTSLIST Checks the parent object’s property set for list of
child objects. Returns the number that the definition
appears in that list.

DEFMETSYNCHRONIZE If the user has already specified that the definition
should be synchronized with another object, then this
metric executes the synchronization.
Synchronization can be set in the SA2001.INI Editor

DEFMETUPDATEUSES Updates the relation table of the data dictionary
(RELATN.DBF). Has no return value.

DEFNMETCHARCOUNT Returns the number of characters in the description
property of the definition.

DEFNMETLINECOUNT Returns the number of lines in the description
property of a definition.

DEFNMETWORDCOUNT Returns the number of words in the description
property of the definition.

8-18

Attributes

9
The MetaModel Class
Introduction
The MetaModel Object provides access to the metaclasses objects for an encyclopedia.

Topics in this chapter Page
Attributes 9-2

9-1

The MetaModel Class

9-2

Attributes

Encyclopedia

Purpose
Refers to the parent encyclopedia object of the metamodel object.

Parameters
Read-only

MetaClasses

Purpose
Provides access to the collection of MetaClass Objects for an encyclopedia.

Parameters
Data Type: SA Collection

Read-only

Example
Dim coll As SACollection, i As Integer

Set coll = sa.Encyclopedia.metamodel.MetaClasses
For i = 1 To coll.Count

 Debug.Print coll.Item(i).Class

Next i

Attributes

10
The MetaClass Class
Introduction
The MetaClass object returns information about class level information for Objects in the
repository.

Topics in this chapter Page
Attributes 10-2

10-1

The MetaClass Class

Attributes

Class

Purpose
The class number of the object in the repository. The return values are 1 for a Diagram, 2 for
a Symbol and 3 for a Definition. Also known as the Major Type Number.

Parameters
Data Type: Long

Read-only

Example
Dim coll As SACollection, i As Integer

Set coll = sa.Encyclopedia.metamodel.MetaClasses

For i = 1 To coll.Count

 Debug.Print coll.Item(i).Class
Next i

ClassName

Purpose
The name of the class. The valid class names in an Encyclopedia are Diagrams, Symbols
and Definitions. Also known as the Major Type.

Parameters
Data Type: String

Read-only

Example
Dim coll As SACollection, i As Integer

Set coll = sa.Encyclopedia.metamodel.MetaClasses

For i = 1 To coll.Count

10-2

Attributes

 Debug.Print coll.Item(i).ClassName
Next i

MetaItems

Purpose
This property provides access to the MetaItems class for all metaitems.

Parameters
Data Type: SACollection

Read-only

Example
Dim coll As SACollection, i As Integer

Set coll = sa.Encyclopedia.metamodel.MetaClasses

For i = 1 To coll.Count

 Debug.Print coll.Item(i).MetaItems.Count

Next i

MetaModel

Purpose
This provides access to the parent MetaModel class.

Parameters
Read-only

SupportedMetaItems

Purpose
This property provides access to only the metaitems that are turned on for this encyclopedia.

Parameters
Data Type: SACollection

Read-only

10-3

The MetaClass Class

10-4

Example
Dim sa As SA2001.Application

Set sa = New SA2001.Application

Debug.Print
sa.Encyclopedia.MetaModel.MetaClasses.Item(1).Suppo
rtedMetaItems.Count

Set sa = Nothing

Attributes

11
The MetaItem Class
Introduction
This object provides information about an individual object type in the encyclopedia. It
corresponds to information in saprops.cfg and usrprops.txt for specific types of object.

Topics in this chapter Page
Attributes 11-2

11-1

The MetaItem Class

Attributes

Class

Purpose
The class of the object. The valid values are 1 for a Diagram, 2 for a symbol and 3 for a
definition. Also known as the Major Type Number.

Parameters
Data Type: Long

Read-only

Example
Dim sa As SA2001.Application

Set sa = New SA2001.Application

With
sa.Encyclopedia.MetaModel.MetaClasses.Item(1).Suppo
rtedMetaItems.Item(1)

 Debug.Print .Class
End With

MetaClass

Purpose
This property provides access to the parent MetaClass object.

Parameters
Read-only

MetaProperties

Purpose

11-2

Attributes

This property provides access to all of the properties supported by this object type as a
collection.

Parameters
Data Type: SACollection

Read-only

Example
Dim coll As SACollection, i As Integer

Set coll = Definition.MetaItem.MetaProperties

For i = 1 To coll.Count

 Debug.Print coll.Item(i).Name

Next i

SupportedMetaItems

Purpose
This property provides access to only the metaitems that are turned on for this encyclopedia.

Parameters
Data Type: SACollection

Read-only

TypeName

Purpose
The name of the type of object.

Parameters
Data Type: String

Read-only

Example
Dim sa As SA2001.Application

Set sa = New SA2001.Application

11-3

The MetaItem Class

11-4

With
sa.Encyclopedia.MetaModel.MetaClasses.Item(1).Suppo
rtedMetaItems.Item(1)

 Debug.Print .TypeName
End With

TypeNumber

Purpose
The numerical constant assigned to this object type by System Architect.

Parameters
Data Type: Long

Read-only

Example
Dim sa As SA2001.Application

Set sa = New SA2001.Application

With
sa.Encyclopedia.MetaModel.MetaClasses.Item(1).Suppo
rtedMetaItems.Item(1)

 Debug.Print .TypeNumber
End With

Attributes

12
The MetaProperty Class

Topics in this chapter Page
Attributes 12-3

Edit Types 12-7

12-1

The MetaProperty Class

Introduction

The MetaProperty object allows you to retrieve information about each property of a specific
object in the encyclopedia. This object corresponds to the Property keyword in saprops.cfg
and usrprops.txt files.

12-2

Attributes

Attributes
The following properties can all be retrieved using the following example and by replacing
name with one of the described properties below.

Dim sa As SA2001.Application

Set sa = New SA2001.Application

With
sa.Encyclopedia.MetaModel.MetaClasses.Item(1).Suppo
rtedMetaItems.Item(1).MetaProperties.Item(1)

 Debug.Print .Name
End With

Set sa = Nothing

AltLabelLong
The Alternative System Architect long label for the property.

Data Type: String

Read-only

AltLabelShort
The Alternative System Architect short label for the property.

Data Type: String

Read-only

Class
The properties’ parent object class type. Also known as the Major Type Number.

Data Type: Long

Read-only

Default
The default value set for the property on first use.

Data Type: String

Read-only

EditFlags
The number of properties that must be filled in for a property.

12-3

The MetaProperty Class

Data Type: Long

Read-only

EditLength
The edit length of the property.

Data Type: Long

Read-only

EditType
See table below for a list of SAEditTypes

Data Type: String

Read-only

EditTypeNum
See table below for a list of SAEditType numerical constants.

Data Type: Long

Read-only

Help
The help text set for this property.

Data Type: String

Read-only

HelpID
The ID number of the help text.

Data Type: Long

Read-only

Key
Whether the property is a key or not.

Data Type: Boolean

Read-only

KeyedBy
The property is keyed by another property or not.

Data Type: SACollection

Read-only

12-4

Attributes

Label
The standard System Architect label for the property.

Data Type: String

Read-only

MetaItem
Provides access to the parent MetaItem object.

Read-only

Name
The name of the property.

Data Type: String

Read-only

OfFlags
The number of flags for the property.

Data Type: Long

Read-only

OfMajorType
The numerical constant of the parent objects class.

Data Type: Long

Read-only

OfMajorTypeName
The type name of the parent objects class.

Data Type: String

Read-only

OfMinorType
The current parent objects numerical type constant.

Data Type: Long

Read-only

OfMinorTypeName
The current parent objects type name.

Data Type: String

12-5

The MetaProperty Class

Read-only

OfRelateType
The parent objects relationship number. See Chapter 15 for a complete list of all
relationship numbers.

Data Type: Long

Read-only

RangeMax
The maximum edit range value.

Data Type: Long

Read-only

RangeMin
The minimum edit range value.

Data Type: Long

Read-only

Required
The required property for the object.

Data Type: Long

Read-only

TypeNumber
The type number of the parent object.

Data Type: Long

Read-only

12-6

Attributes

EditType Number Description

Text 1 The property defined as text may be a list, or any
alphanumeric characters typed in by the user.

Date 2 The property’s length must be 10 characters and is
based on the date format set in Windows.

Numeric 3 Specifies that the property must contain values that are
numbers.

Boolean 4 The property has one of two values: True (T) or False
(F); and will appear in a definition dialog as a check
box.

Expression 5 The value of the property must be entered as a series
of strings separated by the + sign. This word has been
replaced by EXPRESSIONOF.

Minispec 6 A property whose value expresses the processing logic
of a process symbol. Minispecs are written using a
formal syntax often referred to as Structured English.

Time 7 The property will contain a time stamp, in the notation
appropriate to the time format defined to Windows.

ListOf 8 Forms a one-to-one or many relationship between the
current definition type and the definition type named
after the ListOf setting for all items in the list property.

ExpressionOf 9 Forms a one-to-one or many relationship between the
current definition type and the definition type named
after the ExpressionOf setting for all items which exist
in the property.

OneOf 10 Forms a one-to-one relationship between the current
definition type and the definition type named after the
OneOf setting for the item that exists in the property.

TemplateOf 11 Syntax of a trigger template.

12-7

The MetaProperty Class

12-8

EditType Number Description

ParmListOf 12 Forms a one-to-one or many relationship between the
current definition type and the definition type that is
specified by its name and parameters and named after
the ParmListOf setting for all items in the list property.

ParmOneOf 13 Forms a one-to-one relationship between the current
definition type and the definition type that is specified
by its name and parameters and named after the
OneOf setting for the item that exists in the property.

Attributes

13
The MetaKeyedBy Class
Introduction
This is the MetaKeyedBy class with its attributes pictured below.

Topics in this chapter Page
Attributes 13-2

13-1

The MetaKeyedBy Class

Attributes

FromName

Purpose
The From Name property for key qualification of a MetaProperty.

Parameters
Data Type: String

Read-only

KeyedName

Purpose
The Keyed Name of the MetaProperty.

Parameters
Data Type: String

Read-only

MetaProperty

Purpose
Provides access to the parent MetaProperty class.

Parameters
Read-only

13-2

Attributes

13-3

Qualifiable

Purpose
Value of whether or not the MetaProperty is qualifiable, meaning it maintains reference to its
key structure.

Parameters
Data Type: Boolean

Read-only

SAObjects Class

14
System Architect
Collections

Topics in this chapter Page
SAObjects class 14-3

SACollection class 14-6

OfCollection class 14-8

14-1

System Architect Collections

Introduction

Here is a picture of the System Architect Collection class and their attributes.

14-2

SAObjects Class

SAObjects Class
This collection class is used to manipulate a group of similar System Architect objects
(diagram, symbols, or definitions).

Complete

Purpose
Boolean value indicating true when all possible members have been read into the collection.

Parameters
Data Type: Boolean

Read-only

Example
Dim coll As SAObjects, i As long

Set coll = sa.Encyclopedia.GetAllDiagrams

i = 1

Do While coll.IsMoreThan(i)

 i = i +1

 Debug.Print coll.Item(i).Name

Loop

Debug.Print coll.Complete
Debug.Print coll.Count

Count

Purpose
The value representing the number of collection members.

Parameters
Data Type: Long

14-3

System Architect Collections

Read-only

Example
Dim coll As SAObjects, i As Integer

Set coll = sa.Encyclopedia.GetAllDiagrams

coll.ReadAll

For i = 1 To coll.Count
Debug.Print coll.Item(i).Name

Next i

Encyclopedia

Purpose
Reference back to the encyclopedia class of the current object in the collection.

Parameters
Read-only

Item(Index)

Purpose
Each member of the collection has a specific index number within the collection derived
when the collection is created. The item variable is an object based upon the index of the
collection. Its index number or name, if known, may reference this object.

Parameters
Data Type: Boolean

Read-only

Example
Dim coll As SAObjects, i As Integer

Set coll = sa.Encyclopedia.GetAllDiagrams

coll.ReadAll

For i = 1 To coll.Count

14-4

SAObjects Class

Debug.Print coll.Item(i).Name
Next i

IsMoreThan(Index)

Purpose
Returns true if there are more items in the collection than the current value of the index –
used when reading through a collection one by one.

Parameters
Data Type: Boolean

Example
Dim coll As SAObjects, i As long

Set coll = sa.Encyclopedia.GetAllDiagrams

i = 1

Do While coll.IsMoreThan(i)
 i = i +1

Loop

ReadAll

Purpose
Reads all possible occurrences of the type into the collection.

Example
Dim coll As SAObjects, i As Integer

Set coll = sa.Encyclopedia.GetAllDiagrams

coll.ReadAll
For i = 1 To coll.Count

Debug.Print coll.Item(i).Name

Next i

14-5

System Architect Collections

SACollection Class
This collection class is used to manipulate a group of similar System Architect properties.

Count

Purpose
Returns a numeric value for the number of collection members.

Parameters
Data Type: Long

Read-only

Example
Dim coll As SACollection, i As Integer

Set coll = Definition.MetaItem.MetaProperties

For i = 1 To coll.Count
 Debug.Print coll.Item(i).Name

 Next i

Item(Index)

Purpose
Each member of the collection has a specific index number within the collection derived
when the collection is created. The item variable is an object based upon the index of the
collection. Its index number or name, if known, may reference this object.

Parameters
Data Type: Boolean

Read-only

Example
Dim coll As SACollection, i As Integer

Set coll = Definition.MetaItem.MetaProperties

14-6

SACollection Class

For i = 1 To coll.Count

 Debug.Print coll.Item(i).Name
 Next i

14-7

System Architect Collections

OfCollection Class
This collection class is used to manipulate a group of diagrams or definitions that are
components of a special property type listed in the table below.

Property Type Description

ListOf Forms a one-to-one or many relationship between the current
definition type and the definition type named after the ListOf
setting for all items in the list property.

OneOf Forms a one-to-one relationship between the current definition
type and the definition type named after the OneOf setting for
the item that exists in the property.

Name

Purpose
Name of the property list.

Parameters
Data Type: String

Read-only

Example
Dim oDef as Definition, coll as OfCollection

Set coll = oDef.GetPropertyAsCollection(“Operations”)

 Debug.Print coll.Name

Count

Purpose
A numeric value representing the number of collection members.

Parameters

14-8

OfCollection Class

Data Type: Long

Read-only

Example
Dim oDef as Definition, coll as OfCollection, i as integer

Set coll = oDef.GetPropertyAsCollection(“Operations”)

 Debug.Print coll.Name

 For i = 1 to coll.Count
 Debug.Print coll.Item(i).Name

 Next i

Item

Purpose
Each member of the collection has a specific index number within the collection derived
when the collection is created. The item variable is an object based upon the index of the
collection. Its index number or name, if known, may reference this object.

Parameters
Data Type: Boolean

Read-only

Example
Dim oDef as Definition, coll as OfCollection, i as integer

Set coll = oDef.GetPropertyAsCollection(“Operations”)

 Debug.Print coll.Name

 For i = 1 to coll.Count

 Debug.Print coll.Item(i).Name
 Next i

14-9

System Architect Collections

Add

Purpose
Adds a diagram or definition object to the property list

Syntax
OfCollection Object.Add(Item[, Before[, After]]
OfCollection Object

Use: Required

 Data Type: Object

 Any instantiated OfCollection class

Item

 Use: Required

 Data Type: String

 Diagram or definition object to be added to the property list.

Before

Use: Optional (cannot be set if After parameter is already set)

 Data Type: Long

Number of diagram or definition object in collection object count after which the new
diagram or definition object will be added.

After

Use: Optional (cannot be set if Before parameter is already set)

 Data Type: Long

Number of diagram or definition object in collection object count before which the
new diagram or definition object will be added.

Example
Dim i As Integer, oDef As Definition, coll As OfCollection

Set coll = oDef.GetPropertyAsCollection("Location Types")

coll.Add Chr(34) & "Regional Office" & Chr(34)
 coll.SetProperty

14-10

OfCollection Class

 oDef.Save

Clear

Purpose
Clears the OfCollection object of all items in the collection.

Example
Dim i As Integer, oDef As Definition, coll As OfCollection

Set coll = oDef.GetPropertyAsCollection("Location Types")

coll.Clear
 oDef.Save

Remove

Purpose
Removes a diagram or definition object from the collection.

Syntax
OfCollection Object.Remove(Index)
OfCollection Object

Use: Required

 Data Type: Object

 Any instantiated OfCollection class

Index

 Use: Required

 Data Type: Long

The number of the diagram or definition item in the collection object count to
remove.

Example

14-11

System Architect Collections

14-12

Dim i As Integer, oDef As Definition, coll As OfCollection

Set coll = oDef.GetPropertyAsCollection("Location Types")

coll.Remove(2)
 coll.SetProperty

 oDef.Save

SetProperty

Purpose
Saves the property list within the OfCollection object. It is also important that the definition
object itself is saved as this contains the property list to which the collection is saved.

Example
Dim i As Integer, oDef As Definition, coll As OfCollection

Set coll = oDef.GetPropertyAsCollection("Location Types")

coll.Add Chr(34) & "Regional Office" & Chr(34)

 coll.SetProperty
 oDef.Save

15

System Architect Events
Introduction
There may be occasions when control needs to be exercised over what action a user
performs and the response of System Architect to those actions. This may be to prohibit
certain operations, provide warnings, and enforce behavior or to perform additional
operations. On those occasions, it is necessary to identify the action explicitly at the time of
its occurrence and to respond accordingly.

Actions that occur at a given point of time are referred to as “Events” and these can be
handled in System Architect as and when they occur.

System Architect recognizes a number of Events such as when an encyclopedia is opened, a
symbol is placed on a diagram, or a diagram or a a definition is saved. This chapter all the
Application Events and Symbol Events that are recognized by System Architect, with details
of variables that are passed.

Topics in this chapter Page
Creating Event Handlers 15-2

Application Events 15-4

Symbol Events 15-11

System Architect Events

Creating Event Handlers

To use the Events that System Architect exposes through Visual Basic for
Applications, you need to create Event Handlers. This section provides as an
example the procedure to create, raise, and test an Event Handler for the
‘EditDefintionPostOK’ Event. You can intercept that Event to capture the Identity,
Class, and Type of the definition and execute Visual Basic applications or macros.

You can use the same overall process below to create and raise Events listed in the
sections that follow, substituting your own code as appropriate.

To create an Event Handler, proceed as follows:

1. Launch System Architect, click Tools, Macros and select Macro Projects.
2. Click the Add Macro button.
3. In Open Macro Project dialog, enter a name for you Macro project, save it

with .mac name extension.
4. Uncheck the Open as read only checkbox and click OK. Now that you

created your macro project, you need to create a module that calls the
EditDefinitionPostOK event.

5. Click Tools, and select VBA Editor.
6. In the Projects pane, locate the project you created and click on it to select

it.
7. Add a Module and declare an Event Handler. Right-click on your project,

select Insert and click on Module. For example, enter the following code.

Dim EventHandler As Class1
Sub Main()
Set EventHandler = New Class1
End Sub

8. Add a Class Module. Right-click on your project, select Insert and click on
Class Module. For example, enter the following code.

Public WithEvents App As Application
Private Sub App_EditDefinitionPostOK(ByVal
v_lngClass As Long, ByVal v_lngType As Long,
ByVal v_lngDDID As Long)
MsgBox "My EditDefinitionPostOK Event test."
End Sub

Private Sub Class_Initialize()
Set App = Application

15-2

1BCreating Event Handlers

End Sub

9. Click Save and close the VBA Editor. Optionally, you can test your macro.
For example, continuing with the example above, proceed as follows:

Open and edit a definition in System Architect.
Make some edits and lick OK. A successful macro displays a “My
EditDefinitionPostOK Event test” in message box.

15-3

System Architect Events

Application Events

AuditIDChanged

Purpose
AuditID changes, new AuditId is passed as NewAuditID. The Audit ID can be changed from
the File, Audit ID… menu.

Syntax
AuditIDChanged(NewAuditID)

NewAuditID

Use: Required

Data Type: String

User name that the AuditID property is changing to.

Example

DiagramClose

Purpose
Diagram is closed.

Syntax
DiagramClose(hdgm)

hdgm

 Use: Required

 Data Type: Long

 Diagram handle is passed as hDgm.

Example

15-4

2BApplication Events

DiagramOpen

Purpose
Diagram is opened.

Syntax
DiagramOpen(hdgm)

hDgm

 Use: Required

 Data Type: Long

 Diagram handle is passed as hDgm.

Example

DiagramSave

Purpose
Diagram is saved.

Example

EditDefinitionPostOk

Purpose
When you edit a definition, System Architect runs an SA Edit session. After you make your
edits and click the OK button the definition's record is saved in the Entity table of the
encyclopedia's database repository. Clicking OK raises the EditDefinitionPostOK event (also
referred to as the "edit session OK" event). You can intercept that Event to capture the
Identity, Class and Type of the definition you just edited and execute Visual Basic
applications Visual Basic dor Applications macros. To intercept SA Edit Session Events you
must subscribe your VBA applications or VB macros to the EditDefinitionPostOK event.

Note: This Event can only be raised when you press the OK button in a definition edit session
(aka ‘SAEdit’). You cannot raise the Event by updating definition records through other
methods.

15-5

System Architect Events

Example
Dim EventHandler As Class1 ‘Add Module
Sub Main()
Set EventHandler = New Class1
End Sub

Public WithEvents App As Application ‘Add Class
Module

Private Sub App_EditDefinitionPostOK(ByVal v_lngClass
As Long, ByVal v_lngType As Long, ByVal v_lngDDID As
Long)

 MsgBox "EditDefinitionPostOK"

End Sub

Private Sub Class_Initialize()

 Set App = Application

End Sub

EncyClose

Purpose
Encyclopedia is closed.

Example

EncyOpen

Purpose
Encyclopedia is opened.

Example

MainMenuUpdate

Purpose
Main menu is updated. This is the File menu and other associated menu entries.

15-6

2BApplication Events

Example

MethodMenuUpdated

Purpose
Draw menu is updated. This is when a new method type forces a menu redraw and addition
of new menu items.

Example

ReportsMenuUpdate

Purpose
Reports menu is updated. This is whenever the reports menu is modified by System
Architect to reflect method specific reports or rules checks.

Example

ToolsMenuUpdate

Purpose
Tools menu is updated. This is whenever the tools menu is updated to reflect tools options
applicable to certain methods being in use.

Example

ShowNode

Purpose
Event triggered when browser VBA filter is active. Set the RetCode to show/hide this item.

Syntax
ShowNode(TabIndex, TabName, ddId, Major, Minor, Name, Memo,

LockFlags, RetCode)

15-7

System Architect Events

TabIndex

 Use: Required

 Data Type: Integer

Tab Name Tab Index number

All Methods 1

Data Modeling 2

Business Process 3

OO Legacy 4

Application 5

Structured 6

Organization 7

Technology 8

Location 9

Business Direction 10

UML 11

XML 12

TabName

 Use: Required

 Data Type: String

 See table above

ddId

 Use: Required

 Data Type: Long

Major

15-8

2BApplication Events

 Use: Required

 Data Type: Long

Minor

Use: Required

 Data Type: Long

Name

 Use: Required

 Data Type: String

Memo

Use: Required

 Data Type: String

LockFlags

 Use: Required

 Data Type: Long

RetCode

 Use: Required

 Data Type: NodeStatus

Node Status Number

StatusDONTSHOW 0

StatusSHOW 1

StatusDONTCARE 2

15-9

System Architect Events

Example

ShutDown

Purpose
System Architect is shutdown.

Example

StartUp

Purpose
System Architect is started up.

Example

SymbolEvent

Purpose
Symbol is placed on a diagram.

Syntax
SymbolEvent(hDgm, hSym, hSymOther, SymEvent, lData)
hDgm

 Use: Required

 Data Type: Long

 Handle of diagram

hSym

 Use: Required

 Data Type: Long

 Handle of symbol

hSymOther

15-10

2BApplication Events

 Use: Required

 Data Type: Long

 Handle of line symbol (to which the node symbol is being connected/disconnected).

SymEvent

 Use: Required

 Data Type: SYMEVENTS

SYMEVENTS Number Description

ADDCONN 64 Node symbol is connected with a line symbol

BREAKCONN 65 Node symbol’s connection with a line symbol is
deleted.

SYM_DESELECTED 257 Symbol is deselected.

SYM_SELECTED 256 Symbol is selected.

TRANSFORMED 66 Symbol is transformed into another symbol.
This can be done on certain symbols by right-
clicking on the selected symbol and choosing
Transform.

Ldata

 Use: Required

 Data Type: Long

15-11

System Architect Events

Guidelines for Adding Macro Items to Menus
Programmatically

As of V10.1 System Architect has almost completely released the menus and toolbars from
their previous fixed format. This means that users are now able to customize menus, and
their customizations will remain. The only exceptions to this are the Draw menu and toolbar,
where customization is only possible after the default list of drawing tool commands or
buttons.

The goal of this change is to enable tailored menu and toolbar configurations for specific user
groups via SA Catalog Manager.

In System Architect V10.0 and before, macro menu code tended to be written taking into
account the fact that System Architect would destroy certain menus, and force them to be
redrawn. This destruction meant that users who required menu items to disappear during a
session, could save themselves the need to actually remove an item from a menu
programmatically. A typical example might be when a diagram was closed – the tools menu
would be destroyed and re-created. Thus the user would only be required to re-insert the
menu item if it was required at that time. Now that System Architect does not destroy menus,
these menu items will remain visible unless the macro code is modified to remove (hide)
them. Instructions for modifying such macros built in System Architect 10.0 and before are
provided in the System Architect’s Conversion manual, located in Documentation DVD of
your installation package or in the support site—http://support.telelogic.com/systemarchitect/.

Guidelines for adding macros to menus in System Architect V10.1 and later are provided in
this section, below.

How Do I Add a Macro to a Standard System Architect Menu ?
The main SA2001.Application method to support the adding of macro items is:

InsertMacroItemInMenu(MacroName as String,
MacroItemCaption as String, InMenuTitleCaption as
String, [BeforeMenuItemCaption as string]) as long

This function adds the MacroName (which comprises - "<Project>.<Module>.<Subroutine>")
using the caption MacroItemCaption to the SA/User menu titled InMenuTitleCaption, before
the menu item titled BeforeMenuItemCaption. If no Before item is specified then the item is
added to the end of the menu. If the before item is #TOP# then the item inserted at the top of
the menu.

The function returns 0 if successful, otherwise none zero.

15-12

3BGuidelines for Adding Macro Items to Menus Programmatically

In other words:

Set App = New SA2001.Application

x =
App.InsertMacroItemInMenu("MyProject.MyModule.MySub",
"&Test Item", "&Tools","Ma&cros")

This inserts the item 'Test Item' in the Tools menu, before the Macros popup item. When the
item is clicked on, the subroutine 'MySub' is executed in the module 'MyModule' in the project
'MyProject'.

For this to succeed the subroutine specified MUST already exist. Also, the captions MUST be
specified exactly as in the menu.

For example, Tools is represented as the string &Tools

An ampersand implies an underscore under the following letter. This IS case sensitive.

The subroutine name, should NOT have ()'s following it.

The adding of BMPs to menu items is done by the AssignBMPtoMacroItem method.

AssignBMPtoMacroItem(MacroName as String, BMPFileName as String) as long

This function returns zero if successful, or none zero otherwise.

This should be done prior to adding the macro item to the menu - but need only be done
once.

For example:

Set App = New SA2001.Application

x =
App.AssignBMPtoMacroItem("MyProject.MyModule.MySub",
"C:\Piccy.BMP")

x =
App.InsertMacroItemInMenu("MyProject.MyModule.MySub",
"&Test Item", "&Tools","Ma&cros")

This will add the piccy.bmp to the MySub macro, then add it to the menus as in the previous
example. Note that the customize menus (right click on menus) option will now include the
Piccy.BMP and the caption '&Test Item', if you wished to put the menu item anywhere else in
your menus.

15-13

System Architect Events

Using the Events
The following SA2001.Application events may assist macro code when deciding when to
make menu visibility changes:

• MainMenuUpdate: When the whole menu is affected

• MethodMenuUpdate : When dictionary type menu items are updated

• ToolsMenuUpdate: When tools type menu items are updated

• ReportsMenuUpdate: When report type menu items are updated

• App_ShutDown: When SA shuts down

Events are NO LONGER required to keep user items in the menus. However if you wish to
remove items from a menu, the following sections of code provide the outline for such event
handling. (Note: The Project is called 'MyProject')

15-14

3BGuidelines for Adding Macro Items to Menus Programmatically

MODULE - AutoExec

' Main module which maintains the VBA based event handler
Dim EventHandler As EventCls
' Main Subroutine which starts the event handler
Sub Main()
 Set EventHandler = New EventCls ' Create an event handler
 Set EventHandler.App = Application ' Connect the event handler to SA
 ' Perform any additional start up work here
 ' This is a good place to add you BMPs and create your PopUp menus
 InitBMPs
 InitPopUps
End Sub

Sub InitBMPs()
 Dim x As Integer
 x = Application.AssignBMPtoMacroItem("MyProject.MyModule.PRINTDIAGRAMS",
"SAWORD.BMP")
End Sub

Sub InitPopUps()
 Dim x As Integer
 ' NB: Once a popup is created, it remains until it is removed by 'RemovePopupMenu', and
can be added/removed from menus at will.

 ' Create the popup menu with its bitmap
 x = Application.CreatePopUpMenu("Sample Macros","SAWORD.BMP")
 ' Add the item to the popup
 x = Application.InsertMacroItemInMenu("MyProject.MyModule.PRINTDIAGRAMS", "&Print a
Diagram", "Sample Macros")
End Sub

CLASS - EventCls

Public WithEvents App As Application ' The application which will raise events

Private Sub Class_Initialize()
 ' No need to do anything
End Sub

Private Sub Class_Terminate()
 ' No need to do anything
End Sub

15-15

System Architect Events

Private Sub App_ReportsMenuUpdate()
 ' Reports menu has been redrawn
 Dim x As Long
 x = App.SetSeparatorBefore("&Report Generator...", "&Reports", True)

 ' Insert a menu item in the 'Reports' menu, before the 'Report Generator...' item, called 'Print
all Diagrams' which calls PrintDiagrams2
 x = App.InsertMacroItemInMenu("MyProject.MyModule.PRINTDIAGRAMS2", "Print all
&Diagrams", "&Reports", "&Report Generator...")

 ' Insert our popup menu 'Sample Macros' in the 'Reports' menu, before the 'Print all
Diagrams' item.
 ' NB: You should not keep destroying and creating popups here, unless you have a good
reason - do this once at initialization.
 x = App.InsertPopupMenuItemInMenu("Sample Macros", "&Reports", "Print all &Diagrams")
End Sub

MODULE - MyModule

Public Sub PrintDiagrams()
 ' User Code to run
 MsgBox "Print Diagrams"
End Sub
Public Sub PrintDiagrams2()
 ' User Code to run
 MsgBox "Print Diagrams2"
End Sub

How Do I Add a Popup ?
Use the CreatePopUpMenu method with the name you wish to use for your popup. And a
BMP if desired. The popup is added to the root collection of popups in SA.

When you leave SA you no longer need your event handler class to remove any added
popups using RemovePopUpMenu

How Do I Add Macro Items to a Popup ?

In exactly the same way as you do for adding to SA menus.

15-16

3BGuidelines for Adding Macro Items to Menus Programmatically

15-17

How do I Add a Popup to an SA Menu ?
You may add a popup to a System Architect menu in exactly the same way you add a macro
item to a menu, except, use InsertPopupMenuItemInMenu and do not specify a macro name.

For example:

InsertPopupMenuItemInMenu(PopUpName as String, InMenuTitleCaption as String,
[BeforeMenuItemCaption as string]) as long

How Do I Add a Separator to a Menu Item ?
Use SetSeparatorBefore, provide the menu name and item name, then set True for a
separator and false for no separator.

How Do I Remove an Item from a Menu ?
You can remove popups or menu items using the same method: use RemoveItemFromMenu
specify the name of the menu and the name of the item.

Note: You can only remove items that you have added. For example, System Architect menu
items cannot be removed. The items are not actually removed, they are instead hidden. This
allows users to customize the items to be elsewhere in the menu system. Note you can
specify “” for the Menu name, as the Menu name is now ignored. The item will be hidden
wherever it is in the menu system.

Since all popups and tools which are added to the menu system will remain even after SA
has been restarted, it may become necessary to remove a popup menu which is no longer
required. The App.RemovePopUpMenu(<PopupName>), method will totally remove the
popup from the menu system.

If this method is used in a macro, say at SA shutdown, the popup and all its customization will
be removed everytime SA shuts down. This would have the effect, that customization of this
popup is not kept between SA sessions.

16

System Architect
Relationships
Introduction
This chapter covers all the relationships that exist between objects in the System Architect
repository. In the SA Object Browser there exists the enumerated type RELATETYPE. This
holds all the possible relationships you can use in your VBA macro.

Each of the diagram, symbol, and definition classes has the method GetRelatedObjects. In
order to execute this method, the user must specify what relationship exists from those listed
in the table below. In addition, the encyclopedia class contains the method,
GetRelationMetric. The user must specify one of relation types as a required parameter in
order to execute the relation metric.

Topics in this chapter Page
Relation Types 16-2

System Architect Relationships

Relation Types

RELATETYPE Description Number

RELNULL Null 0

RELNULL2 Null 1

RELDIAGRAMCON Diagram Contains Symbols 2

RELCONDIAGRAM Symbol contained in diagrams 3

RELSHOWTO Symbol expands to a (child) diagram 4

RELSHOWFROM A diagram expands from a (parent) symbol 5

RELCONNSTART A node symbol connects to the start of a
line symbol

6

RELSTARTAT The start of a line connects to a node
symbol

7

RELCONNEND A node symbol connects to the end of a
line

8

RELENDAT The end of a line connects to a node
symbol

9

RELFLAGSENDS A module connects to and sends data via a
flag symbol

10

RELFLAGSTR A flag symbol connects to and receives
data from a module

11

RELFLAGRECVS A module connects to and receives data
from a flag symbol

12

RELFLAGEND A flag symbol connects to and provides
data to a module

13

RELDFEELEMENT An expression uses data (elements or
structures)

14

16-2

Relation Types

RELATETYPE Description Number

RELELEMENTDFE Data (elements or structures) are used by
an expression

15

RELEXPLAINEDBY A symbol is explained by a comment 16

RELEXPLAINS A comment explains a symbol 17

RELPARTFULFILLS A symbol addresses a requirement, test
plan, etc.

18

RELPARTFULFILLEDBY A requirement, test plan, etc. is addressed
by a symbol

19

RELCOMPFULFILLS A symbol is defined by a definition 20

RELDEFINEDBY A symbol is defined by a definition 20

RELCOMPFULFILLEDBY A definition defines a symbol 21

RELDEFINES A definition defines a symbol 21

RELISQUALIFIEDBY A line or node symbol is "qualified by" a
flag symbol

22

RELQUALIFIES A flag symbol "qualifies" a line symbol (or
node symbol)

23

RELISA A definition "is an instance" of a definition 24

RELINSTBY A definition is "instantiated by" a definition 25

RELIDENTIFIES A definition "identifies" another definition 26

RELKEYEDBY A definition is identified by a definition 27

RELEMBEDS A node symbol wholly embeds a symbol 28

RELISEMBEDDEDBY A node symbol is wholly embedded by a
node symbol

29

RELISPARENTIN A definition is a parent of a definition in a
parent child relationship

30

16-3

System Architect Relationships

RELATETYPE Description Number

RELHASPARENTOF A definition has a parent definition in a
parent child relationship

31

RELISCHILDIN A definition is a child of a definition in a
parent child relationship

32

RELHASCHILDOF A definition has a child definition in a
parent child relationship

33

RELCOMPRISES Definition comprises a definition 34

RELISPARTOF A definition is part of a definition 35

RELISCATZNOF Categorization definition categorizes a
generic entity definition

36

RELHASCATZN Generic entity definition has categorization
of a categorization definition

37

RELISCATGRYIN Entity definition is a category in a
categorization

38

RELHASCATGRY0F Categorization has a category of an entity
definition

39

RELISCHILDOF Symbol is the child of another symbol on a
hierarchical diagram only

40

RELISPARENTOF Symbol is the parent of another symbol on
a hierarchical diagram only

41

RELISFIRSTCHILDOF Symbol is the first child of another symbol
(e.g., the left-most) on a hierarchical
diagram only

42

RELHASFIRSTCHILD Symbol has another symbol as its first
child on a hierarchical diagram only

43

RELISNEXTSIBLING Symbol is the next sibling of another
sibling on a hierarchical diagram only

44

16-4

Relation Types

RELATETYPE Description Number

RELISPRIORSIBLING Symbol is the prior sibling of another
symbol on a hierarchical diagram only

45

RELISINDEXOF Data Model - Access Path or Index of
Entity or Table

46

RELISINDEXEDBY A definition is indexed by another definition 47

RELORIGINATESFROM A definition originated from a definition
(e.g. graphic screen diagram)

48

RELISORIGINOF A definition is origin of a definition 49

RELISBASEDON A definition is based on a definition
(usually a data element)

50

RELISBASISFOR A definition is basis for derived definition 51

RELISLINKEDTO A symbol is linked to another symbol 52

RELISLINKEDWITH A symbol is linked with another symbol 53

RELUSER AND
RELUSERCOMPLEMENT

User and user complement 54 thru 83

RELPOPKIN AND
RELPOPKINCOMPLEMENT I

 IBM and IBM complement 84 thru
111

RELREPRESENTS Explorer diagram symbol represents an
object

112

RELISPRESENTEDBY Object is represented by an Explorer
diagram symbol

113

RELPOPKIN AND
RELPOPKINCOMPLEMENT

IBM and IBM complement 114 thru
125

RELUSER AND
RELUSERCOMPLEMENT

User and user complement 126 thru
135

RELLINKS TO Object is linked to object in DOORS 136

16-5

System Architect Relationships

RELATETYPE Description Number

RELISLINKEDFROM Object is linked from object in DOORS 137

RELISTOBESENTTO Object is to be sent to DOORS module 138

RELISTORECEIVE DOORS module is to receive object 139

RELHASBEENSENTTO Object has been sent to DOORS module 140

RELHASRECEIVED DOORS module has received object 141

16-6

17

System Architect Field
Types
Introduction
This chapter covers all the field types available to the user that are listed in the System
Architect Object Browser under the enumerated type FLDTYPE. These constants determine
the format in which data is returned. In most cases System Architect has set the Field Type
internally. This enumerated type is used as a required parameter for the GetRelationMetric
method of the Encyclopedia class. It is also an optional parameter in the GetMetric methods
of the Diagram, Symbol, and Definition classes.

The table below provides a complete listing of all the Field Types and their descriptions.

Topics in this chapter Page
Field Types 17-2

System Architect Field Types

17-2

Field Types

FLDTYPE Number Description

FLDTYPAUTO 65 This is the default field selected by System Architect
internally.

FLDTYPCHARACTER 67 Holds a string up to 256-characters

FLDTYPDATE 68 This is a date field (e.g. MM/DD/YYYY)

FLDTYPLOGICAL 76 Boolean field

FLDTYPMEMO 77 Memo fields store large blocks of text up to 4,095
characters.

FLDTYPNUMERIC 78 Specifies that the field must contain values that are
numbers.

FLDTYPTIME 84 This is a time field (e.g. hours:minutes:seconds)

18

System Architect Errors
Introduction
This chapter focuses on the errors generated by System Architect that can be trapped during
code execution. It does not look at errors within the written code (an example of which is the
Visual Basic error 91 “Object Variable or With block variable not set” where an instance of the
variable has not been created).

Topics in this chapter Page
SA Errors 18-3

System Architect Errors

Handling Errors
The properties and methods in the System Architect Object Model will execute their code in a
consistent way but unfortunately the base data may not always be as expected and errors
may occur during the natural operation of a VBA macro. A number of issues may arise
during normal operation and these need to be trapped and handled otherwise the macro will
terminate abruptly without finishing the code execution.

When an error occurs during code execution the following dialog is shown. The method
Diagram.Show has been executed to open the current diagram graphic. However, the
diagram has already been opened at some other point in the code and so an error occurs.

The user has the option of clicking on End to end the program at the current point or Debug
which opens the VBA editor interface and highlights the position at which the error occurred
in the code. The user may get further explanation by clicking the Help button.

18-2

System Architect Errors

System Architect Errors
System Architect has a number of errors that can be identified. VBA can follow these errors
when found in a macro and pass a message to the VBA error handler, which then presents
the error to the user. The different errors catch different problems. When a method is
executed, it returns a value to VBA indicating the status of the call; if an exception occurs,
then VBA reports the error. The enumerated type SA2001Errors contains a complete list of
all System Architect Errors.

Error Number Description

SAERR_BADDDID 8195

SAERR_DIAGRAMNOTOPEN 8198 Diagram is not open. Either the diagram was
never open or the .Hide method was previously
invoked

SAERR_DIAGRAMNOTSAME 8201

SAERR_DIAGRAMOPEN 8199 Diagram is already open. Either the diagram
has been previously opened or the .Show
method was previously invoked.

SAERR_ENUMVARIANTERR
OR

8193

SAERR_INVALIDCLASS 8202

SAERR_INVALIDOBJECT 8194

SAERR_INVALIDPROPERTY 8204

SAERR_INVALIDTYPE 8207

SAERR_NOTIMPLEMENTED 8196

SAERR_OBJECTDOESNOTE
XIST

8197 Either the object was never instantiated or was
previously deleted.

SAERR_OBJECTISLOCKED 8205 Either the OpenLock method was previously
invoked or the object was previously checked
out or frozen by another user.

18-3

System Architect Errors

18-4

Error Number Description

SAERR_OBJECTNOTFOUND 1025

SAERR_OPENEDASREADO
NLY

8206 The object has been opened as Read-only.

SAERR_REQUIREDPROPER
TYABSENT

8192 The referenced property is either blank or does
not exist.

SAERR_SA20001_IMF_ERR
OR

4096 An SAIMF error has occurred.

SAERR_SANOTRUNNING 1024 System Architect has either never been started
up or was previously shutdown.

SAERR_SYMBOLHASNODIA
GRAM

8200 The symbol is not referenced by any diagram.

SAERR_TOOMANYOBJECTS 8203

19
IBM Support

19-1

IBM Support 19

19-2

Contacting IBM Rational
Software Support

Support and information for Telelogic products is currently being
transitioned from the Telelogic Support site to the IBM Rational
Software Support site. During this transition phase, your product
support location depends on your customer history.

• If you are a heritage customer, meaning you were a
Telelogic customer prior to November 1, 2008, please visit
the System Architect Support Web site.

Telelogic customers will be redirected automatically to the
IBM Rational Software Support site after the product
information has been migrated.

Product support

• If you are a new Rational customer, meaning you did not
have Telelogic-licensed products prior to November 1,
2008, please visit the IBM Rational Software Support
site.

Before you contact Support, gather the background information that
you will need to describe your problem. When describing a
problem to an IBM software support specialist, be as specific as
possible and include all relevant background information so that the
specialist can help you solve the problem efficiently. To save time,
know the answers to these questions:

• What software versions were you running when the
problem occurred?

• Do you have logs, traces, or messages that are related to
the problem?

• Can you reproduce the problem? If so, what steps do you
take to reproduce it?

• Is there a workaround for the problem? If so, be prepared
to describe the workaround.

For Rational software product news, events, and other information,
visit the Rational Software Web site.

Other

information

https://support.telelogic.com/systemarchitect/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/

20
Appendix

20-1

Appendix

Notices

This information was developed for products and services offered
in the U.S.A. IBM may not offer the products, services, or features
discussed in this document in other countries. Consult your local
IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not grant you any license to these patents. You can
send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785

For license inquiries regarding double-byte character set (DBCS)
information, contact the IBM Intellectual Property Department in
your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law:
INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or

20-2

implied warranties in certain transactions. Therefore, this statement
may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as
an endorsement of those Web sites. The materials at those Web
sites are not part of the materials for this IBM product and use of
those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it
for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs
(including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation 1 Rogers Street Cambridge,
Massachusetts 02142
U.S.A

Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a
controlled environment. Therefore, the results obtained in other
operating environments may vary significantly. Some
measurements may have been made on development-level systems
and there is no guarantee that these measurements will be the same
on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may

20-3

Appendix

vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in
daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals, companies,
brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

20-4

20-5

Trademarks

IBM, the IBM logo, ibm.com, Telelogic, and Telelogic System
Architect are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other
countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the
appropriate symbol (® or ™), indicating US registered or common
law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is
available on the Web at www.ibm.com/legal/copytrade.html.

Microsoft, Windows, Windows 2000 with SP4, Windows 2003,
Windows XP, and/or other Microsoft products referenced herein
are either trademarks or registered trademarks of Microsoft
Corporation.

Other company, product or service names mentioned may be
trademarks or service marks of others.

http://www.ibm.com/legal/copytrade.html

	System Architect VBA Extensibility Guide
	Table of Contents
	1. Introduction
	Introduction
	Automating System Architect
	Programming System Architect with VBA
	Running a Macro
	Macro Projects
	
	Adding a New Project

	Accessing the VBA Editor
	
	The Project Explorer
	The Properties Window
	Inserting Modules and Forms

	Object Browser
	
	Referencing Library Files

	2. Automation and System Architect
	Introduction
	Automation
	Automation Controller and Server
	Referencing the Type Library

	Viewing Automation Objects
	Creating an Instance of the application
	Releasing the Application Instance
	In summary

	Customizable Solutions
	Planning an Automated Solution with System Architect
	Control Behavior
	Controlling appearance
	Automate tasks
	Enforce controls
	Interface between external applications

	3. The System Architect Object Model
	Object Model Classes

	4. The Application Class
	Introduction
	Attributes
	Encyclopedia
	Purpose
	Parameters
	Example

	MousePointer
	Purpose
	Parameters
	Data Type: Integer
	Example

	Visible
	Purpose
	Parameter
	Example

	Methods
	AssignBMPtoMacroItem
	Purpose
	Syntax

	BrowserRefresh
	Purpose
	Syntax

	CreatePopUpMenu
	Purpose
	Syntax

	InsertMacroItemInMenu
	Purpose
	Syntax

	InsertMacroItemInMenuEx
	Purpose
	Syntax

	InsertPopUpMenuItemInMenu
	Purpose
	Syntax

	InsertPopUpMenuItemInMenuEx
	Purpose
	Syntax

	Interface
	Purpose
	Example

	OpenEncyclopedia
	Purpose
	Syntax

	OpenEncyclopediaUsingConnectionString
	Purpose
	Syntax

	OpenEncyclopediaUsingDisplayName
	Purpose
	Syntax

	RemoveItemFromMenu
	Purpose
	Syntax

	RemovePopUpMenu
	Purpose
	Syntax

	ResetPanelBackGround
	Purpose
	Syntax

	SetSeparatorBefore
	Purpose
	Syntax

	WriteStatusLine
	Purpose
	Syntax

	WriteStatusLineEx
	Purpose
	Syntax

	5. The Encyclopedia Class
	Introduction
	Attributes
	Application
	Purpose
	Parameters
	Read-only

	ConnectString
	Purpose
	Parameters:
	Read-only

	FullName
	Purpose
	Parameters

	MetaModel
	Purpose
	Parameters
	Read-only

	Name
	Purpose
	Parameters

	OpenObjectsAsReadOnly
	Purpose
	Parameters

	Path
	Purpose
	Parameters

	Xml
	Purpose
	Parameters

	XmlEx
	Purpose
	Parameters

	Methods
	bOpenLockedReadOnly
	Purpose

	CloseUnlock
	CreateDefinition
	Purpose
	Syntax

	CreateDiagram
	Purpose
	Syntax

	GetAllDefinitions
	Purpose
	Rules

	GetAllDiagrams
	Purpose
	Rules
	Example

	GetCurrentDiagram
	Purpose
	Rules
	Example

	GetDefinitionById
	Purpose
	Syntax
	Example

	GetDiagramById
	Purpose
	Syntax
	Example

	GetFilteredDefinitions
	Purpose
	Parameters
	Syntax
	Example

	GetFilteredDiagrams
	Purpose
	Parameters
	Syntax
	Example

	GetRelationMetric
	Purpose
	Syntax

	GetXML
	Purpose
	Syntax

	OpenLock…CloseUnlock Statement
	Purpose
	Syntax
	Example

	SetXML
	Purpose
	Syntax

	SetXMLEx
	Purpose
	Syntax

	Relation Metrics

	6. The Diagram Class
	Introduction
	Attributes
	AuditID
	Purpose
	Parameters

	CheckedOut
	Purpose
	Parameters

	ddID
	Purpose
	Parameters

	Encyclopedia
	Purpose
	Parameters

	Frozen
	Purpose
	Parameter

	Handle
	Purpose
	Parameters
	Example

	Hidden
	Purpose
	Parameters

	Locked
	Purpose
	Parameters

	MetaItem
	Purpose
	Parameters

	Name
	Purpose
	Parameters

	Picture
	Purpose
	Parameters

	ReadOnly
	Purpose
	Parameters

	SAClass
	Purpose
	Parameters

	SAType
	Purpose
	Parameters

	TypeName
	Purpose
	Parameters

	UpdateDate
	Purpose
	Parameters

	UpdateTime
	Purpose
	Parameters

	xml
	Purpose
	Parameters

	Methods
	CreateSymbol
	Purpose
	Syntax

	Delete
	Purpose

	GetAllSymbols
	Purpose
	Rules
	Example

	GetField
	Purpose
	Syntax

	GetFilteredSymbols
	Purpose
	Parameters
	Syntax
	Example

	Get Metric
	Purpose
	Syntax

	GetParentSymbol
	Purpose

	GetProperty
	Purpose
	Parameters
	Syntax

	GetPropertyAsCollection
	Purpose
	Parameters
	Syntax
	Example

	GetRelatedObjects
	Purpose
	Syntax

	GetSymbolById
	Purpose
	Syntax
	Example

	GetXML
	Purpose
	Syntax

	Hide
	Purpose
	Syntax

	Save
	Purpose
	Syntax

	SetField
	Purpose
	Syntax

	SetProperty
	Purpose
	Parameters
	Syntax

	Show
	Purpose
	Syntax

	Diagram Fields
	Diagram Metrics

	7. The Symbol Class
	Introduction
	Attributes
	ArrowAtEnd
	Purpose
	Parameters
	Example

	ArrowAtStart
	Purpose
	Parameters
	Example

	AuditId
	Purpose
	Parameters

	ddId
	Purpose
	Parameters

	Definition
	Purpose
	Parameters

	Diagram
	Purpose
	Parameters

	Encyclopedia
	Purpose
	Parameters

	FillColor
	Purpose
	Parameters

	FontColor
	Purpose
	Parameters

	FromCardinality
	Purpose

	Handle
	Purpose
	Parameters
	Example

	LineStyle
	Purpose

	MetaItem
	Purpose
	Parameters

	Name
	Purpose
	Parameters

	PenColor
	Purpose
	Parameters

	PenStyle
	Purpose

	SAClass
	Purpose
	Parameters

	SAType
	Purpose
	Parameters

	Selected
	Purpose
	Parameters

	ToCardinality
	Purpose

	TunnelAtEnd
	Purpose
	Parameters

	TunnelAtStart
	Purpose
	Parameters

	TypeName
	Purpose
	Parameters

	UpdateDate
	Purpose
	Parameters

	UpdateTime
	Purpose
	Parameters

	Xpos
	Purpose
	Parameters

	Xsize
	Purpose
	Parameters

	Ypos
	Purpose
	Parameters

	Ysize
	Purpose
	Parameters

	Methods
	ConnectFrom
	Purpose
	Syntax
	Example

	ConnectTo
	Purpose
	Syntax
	Example

	Delete
	Purpose

	GetChildDiagrams
	Purpose
	Example

	GetField
	Purpose
	Syntax

	Get Metric
	Purpose
	Syntax

	GetProperty
	Purpose
	Parameters
	PROPERTY "Junction Logic" { EDIT Text ListOnly LIST "Junction Logic" LENGTH 3 DEFAULT "And" LABEL "Logic" }
	Syntax

	GetPropertyAsCollection
	Purpose
	Parameters
	PROPERTY "Junction Logic" { EDIT Text ListOnly LIST "Junction Logic" LENGTH 3 DEFAULT "And" LABEL "Logic" }
	Syntax
	Example

	GetRelatedObjects
	Purpose
	Syntax
	Example

	Save
	Purpose
	Example

	SetField
	Purpose
	Syntax

	SetProperty
	Purpose
	Parameters
	Syntax

	Symbol Fields
	Symbol Metrics

	8. The Definition Class
	Introduction
	Attributes
	AuditID
	Purpose
	Parameters

	CheckedOut
	Purpose
	Parameters

	ddID
	Purpose
	Parameters

	Encyclopedia
	Purpose
	Parameters

	Frozen
	Purpose
	Parameter

	Handle
	Purpose
	Parameters
	Example

	Locked
	Purpose
	Parameters

	MetaItem
	Purpose
	Parameters

	Name
	Purpose
	Parameters

	ReadOnly
	Purpose
	Parameters

	SAClass
	Purpose
	Parameters

	SAType
	Purpose
	Parameters

	TypeName
	Purpose
	Parameters

	UpdateDate
	Purpose
	Parameters

	UpdateTime
	Purpose
	Parameters

	xml
	Purpose
	Parameters

	Methods
	Delete
	Purpose
	Example

	GetField
	Purpose
	Syntax

	Get Metric
	Purpose
	Syntax

	GetProperty
	Purpose
	Parameters
	PROPERTY "Duration Time Units" { EDIT Text LISTONLY List "Ti
	Syntax

	GetPropertyAsCollection
	Purpose
	Parameters
	PROPERTY "Duration Time Units" { EDIT Text LISTONLY List "Ti
	Syntax
	Example

	GetRelatedObjects
	Purpose
	Syntax

	GetXML
	Purpose
	Syntax

	Save
	Purpose
	Example

	SetField
	Purpose
	Syntax

	SetProperty
	Purpose
	Parameters
	PROPERTY "Duration Time Units" { EDIT Text LISTONLY List "Ti
	Syntax

	Definition Fields
	Definition Metrics

	9. The MetaModel Class
	Introduction
	Attributes
	Encyclopedia
	Purpose
	Parameters

	MetaClasses
	Purpose
	Parameters
	Example

	10. The MetaClass Class
	Introduction
	Attributes
	Class
	Purpose
	Parameters
	Example

	ClassName
	Purpose
	Parameters
	Example

	MetaItems
	Purpose
	Parameters
	Example

	MetaModel
	Purpose
	Parameters

	SupportedMetaItems
	Purpose
	Parameters
	Example

	11. The MetaItem Class
	Introduction
	Attributes
	Class
	Purpose
	Parameters
	Example

	MetaClass
	Purpose
	Parameters

	MetaProperties
	Purpose
	Parameters
	Example

	SupportedMetaItems
	Purpose
	Parameters

	TypeName
	Purpose
	Parameters
	Example

	TypeNumber
	Purpose
	Parameters
	Example

	12. The MetaProperty Class
	Introduction
	Attributes
	
	
	AltLabelLong
	AltLabelShort
	Class
	Default
	EditFlags
	EditLength
	EditType
	EditTypeNum
	Help
	HelpID
	Key
	KeyedBy
	Label
	MetaItem
	Name
	OfFlags
	OfMajorType

	OfMajorTypeName
	OfMinorType

	OfMinorTypeName
	OfRelateType
	RangeMax
	RangeMin
	Required
	TypeNumber

	13. The MetaKeyedBy Class
	Introduction
	Attributes
	FromName
	Purpose
	Parameters

	KeyedName
	Purpose
	Parameters

	MetaProperty
	Purpose
	Parameters

	Qualifiable
	Purpose
	Parameters

	14. System Architect Collections
	Introduction
	SAObjects Class
	Complete
	Purpose
	Parameters
	Example

	Count
	Purpose
	Parameters
	Example

	Encyclopedia
	Purpose
	Parameters

	Item(Index)
	Purpose
	Parameters
	Example

	IsMoreThan(Index)
	Purpose
	Parameters
	Example

	ReadAll
	Purpose
	Example

	SACollection Class
	Count
	Purpose
	Parameters
	Example

	Item(Index)
	Purpose
	Parameters
	Example

	OfCollection Class
	Name
	Purpose
	Parameters
	Example

	Count
	Purpose
	Parameters
	Example

	Item
	Purpose
	Parameters
	Example

	Add
	Purpose
	Syntax
	Example

	Clear
	Purpose
	Example

	Remove
	Purpose
	Syntax
	Example

	SetProperty
	Purpose
	Example

	15. System Architect Events
	System Architect Events
	Creating Event Handlers
	Application Events
	AuditIDChanged
	DiagramClose
	DiagramOpen
	DiagramSave
	EditDefinitionPostOk
	EncyClose
	EncyOpen
	MainMenuUpdate
	MethodMenuUpdated
	ReportsMenuUpdate
	ToolsMenuUpdate
	ShowNode
	ShutDown
	StartUp
	SymbolEvent

	Guidelines for Adding Macro Items to Menus Programmatically

	16. System Architect Relationships
	Introduction
	Relation Types

	17. System Architect Field Types
	Introduction
	Field Types

	18. System Architect Errors
	Introduction
	Handling Errors
	System Architect Errors

	19. IBM Support
	Contacting IBM Rational Software Support

	20. Appendix
	Notices
	Trademarks

