
Copyright IBM Corporation 2014.

Rational Publishing Engine Template

Definition

Table of Contents

1 An introduction to Rational Publishing Engine Templates.. 3

1.1 Template versions ... 3

1.2 Building a template ... 3

2 Template Package ... 3

2.1 Resources .. 4

2.2 Schemas... 4

2.3 template.xml ... 6

3 Template Content.. 7

3.1 Basic structures ... 8

3.1.1 Feature .. 8

3.1.2 Property... 8

3.2 Metadata ... 9

3.3 Dataset .. 10

3.3.1 Sources .. 10

3.3.2 Source.. 10

3.3.3 Schemas... 11

3.3.4 Schema .. 11

3.3.5 Variables .. 12

3.3.6 Variable.. 12

3.4 Master pages ... 13

3.4.1 Definition... 13

3.4.2 Content.. 14

3.4.3 Header ... 14

3.4.4 Footer .. 14

3.4.5 Format ... 14

3.5 Styles ... 14

3.6 Content.. 15

3.6.1 Element.. 16

3.7 Element Formatting... 18

3.7.1 Conditional formatting .. 18

3.8 Element Data... 19

3.8.1 Queries .. 20

3.8.2 Sort .. 22

3.8.3 RPE Sort ... 22

3.8.4 Filter... 24

3.8.5 Recursive level and recursive segments.. 26

3.9 Expressions .. 26

3.9.1 Constant Expression .. 27

3.9.2 Data expression ... 27

3.9.3 Variable Expression ... 27

3.9.4 Script expression ... 27

3.9.5 Assignments .. 29

3.9.6 Conditions.. 29

4 RPETemplateElements.xsd .. 31

4.1 Property Domain ... 32

4.1.1 Enumerated Domain ... 33

4.1.2 Boolean Domain .. 34

4.1.3 Integer Domain.. 34

4.1.4 Double domain .. 34

5 RPEElementsRules.xml .. 35

5.1 Nesting rule composition .. 36

Template Definition

P a g e | 3

1 An introduction to Rational Publishing Engine Templates
A Rational Publishing Engine template describes what to render and how to render it. The templates are

built by Rational Publishing Engine Document Studio which uses information and knowledge stored in a

number of configuration files:

- TemplateXMLSchema.xsd – defines the schema of the template. Rational Publishing Engine will

reject any template that does not perfectly match the schema. This file is bundled in the RRDG

Core JAR file.

- RPEElementsDefinitions.xml –defines the formatting properties available for each Rational

Publishing Engine Template element and where applicable, the domains of the values accepted

for these properties. This file is located in %RPE_HOME%/config.

- RPEElementsRules.xml – defines the nesting rules of a template, which element can include

what other elements and so on. This file is located in %RPE_HOME%/config.

1.1 Template versions

Each new Rational Publishing Engine version makes changes to the properties supported for each

element and in some cases adds new elements. Rules might also change between Rational Publishing

Engine versions. Whenever possible these changes are implemented in a backwards compatible manner.

When that is not possible a new template language version is introduced. The template versions are

integers and each new version increments the previous version by 1.

All Rational Publishing Engine versions are able to load templates with equal or lower template language

versions but they cannot load templates with higher language version.

To date there are 2 template versions in circulation:

- version 1 – Rational Publishing Engine 1.1.2.1 and older

- version 2 – Rational Publishing Engine 1.2 and newer

1.2 Building a template

You must use Rational Publishing Engine Document Studio to build a Rational Publishing Engine

template. At this time there is no Java API that can be used for this purpose. You could build a template

manually or programmatically using the information in this document in which case you must use

extreme caution when doing it.

2 Template Package
The Rational Publishing Engine templates are packaged as zip archive files. A Rational Publishing Engine

zip contains the template itself and supporting resources (schemas, images, etc). Opening a template

reveals the following structure:

• resources

• schemas

P a g e | 4

• template.xml

2.1 Resources

This folder contains images used in the template. The images are copied as is, but they are renamed to

ensure there are no naming collisions in the template, including dynamically referenced templates. The

algorithm used by Rational Publishing Engine is to add a GUID prefix to the name of the file.

2.2 Schemas

This folder contains the schemas of all the data sources used in the template. Each data source is

contained by a subfolder typically using GUIDs for names. For each data source a separate folder exists

even if the files are identical. Rational Publishing Engine prevents naming collisions by using GUID to

name the folders.

Template Definition

P a g e | 5

Most real world schemas are composed of multiple XSD files, usually by each file defining a different

namespace. To speed up the template load process and make templates portable, Rational Publishing

Engine downloads all the components of the schema and puts them in this folder.

The XSD file refers to the other XSD files using a “live” URL like

https://server:9443/qm/service/com.ibm.rqm.integration.service.IIntegrationService/schema/qm.xsd

and these live URLs must be mapped to the files cached in the schemas folder. This mapping is done in

the __RPE_MAPPINGS__ file. The file structure is:

• Line 1: Source URL

• Line 2: Local file path

• Line 3: Source URL

• Line 4: Local file path

• …

Example:

P a g e | 6

2.3 template.xml

This is the actual template content, referred to hereafter as the 'template'. The template defines the

data it uses, the structure of the output and the detailed formatting for each element.

• The data can be either static or dynamic.

• Static information could include any hard coded text (for example standard legal disclaimers).

• Dynamic information is retrieved from data sources. A data source defines the structure of the

data and not a specific instance of the data.

• The formatting consists of a set of properties that define the various aspects of the information

in the output document.

Template Definition

P a g e | 7

3 Template Content
This section describes the semantics of the most important constructs in the template.xml file. For a

formal description of the rules and the syntax of this file please consult the attached XSD file.

The high level structure of a template is:

1. metadata

2. dataset

3. master pages

4. styles

5. content

P a g e | 8

3.1 Basic structures

Most of the constructs used in the template language are described using property elements which in

essence are name-value pairs. These properties are organized in features which are mere containers.

3.1.1 Feature

Containers used to group properties. They can contain other features.

Attribute Description Mandatory

tag the name of the feature. yes

3.1.2 Property

A name-value pair. The value can be static, defined in the “value” attribute or dynamic, calculated at

runtime.

Attribute Description Mandatory

name the name of the property yes

value The static value of the property. Is not present if the property has a dynamic

value defined by an expression. See the Expressions section.

no

Template Definition

P a g e | 9

3.2 Metadata

A set of properties for the template itself

Unlike formatting properties, the properties in the metadata section are fixed and have special meaning.

However the schema does not enforce this explicitly so any number of properties can be added. But they

will be ignored by Rational Publishing Engine and lost if Rational Publishing Engine is used to save the

template.

Property Description Mandatory

version The template language version.

Accepted values: <empty>, 1 , 2

If this property is missing the value is assumed to be 1

Yes

name An optional name given to the template by the template designer for

documenting the intended usage of this template. This name is displayed in

various places by the Rational Publishing Engine UIs

No

description An optional name given to the template by the template designer for

documenting the intended usage of this template. This name is displayed in

various places by the Rational Publishing Engine UIs

No

Query

Separator

The separation used by Rational Publishing Engine in the XPath queries. This

value is “/”

Rational Publishing Engine 1.1.1.1 and older were using “.” (dot) as the

separator which was problematic since XML element names are allowed to

contain “.”.

Yes

P a g e | 10

3.3 Dataset

Defines the data sources and variables of a template.

3.3.1 Sources

This element is used to group source elements.

3.3.2 Source

This element defines a data source. In the UI a single entity is visible for a data source but in the

template xml, 2 entities map to it: a data source and a schema. For each data source there is one and

only one schema and a schema cannot exist without a data source using it.

Template Definition

P a g e | 11

NOTE: the 2 entities exist for historical reasons and it’s possible they will be merged in future versions.

Properties:

Property Description Mandatory

name The unique identifier of the data source. This identifier is used everywhere the

data source needs to be referred. Value must be unique in the set of source ids.

Yes

schema The ID of the data source’s schema. MUST match the ID of one of the schema

elements.

Yes

3.3.3 Schemas

This element is used to group schema elements.

3.3.4 Schema

This element defines a data source schema. See the discussion on Source.

Properties:

Property Description Mandatory

id The identifier of the schema. This identifier is used by the data source

definitions. Value must be unique in the set of schemas ids.

yes

type The type of the data source. The valid values for this property come from the

list of data sources known to Rational Publishing Engine. At the time of writing

this document the list consists of:

- Generic XML

- DOORS

- REST

- REST v2

yes

URI The relative path of the root XSD file for the schema. This file is stored in the

template archive in the schemas folder.

yes

P a g e | 12

3.3.5 Variables

This is a mandatory element; contains zero or more variable elements.

3.3.6 Variable

Each variable element has exactly one “definition” feature that contains the following properties:

Property Description Mandatory

type The type of the variable. The only accepted variable at the time of writing this

document is user.

yes

name The name of the variable.

Constraint: The name must be unique in the set of variables names.

yes

default A default value that will be used if the user doesn’t provide on in the Document

Specification file.

no

type Reserved. Must be user no

access Defines if the variable is visible to the end user or not. Values: internal, external no

description An optional text provided by the template designer for documenting the

intended usage of this variable

no

central variable The URL of the central variable to which this template variable is connected no

Template Definition

P a g e | 13

3.4 Master pages

Rational Publishing Engine uses the same concept of master page as the one found in Adobe Frame

maker or Eclipse BIRT. A master page defines the layout of the output page (margins, borders,

orientation) and its header and footer.

Example:

3.4.1 Definition

A master page is defined by a single feature element with the tag “definition” and a single content

element which in turn contains exactly 1 header and 1 footer element.

Property Description Mandatory

name The unique name of the masterpage. This identifier is used everywhere the

masterpage needs to be referred. Value must be unique in the set masterpages.

yes

default If set to true this masterpage will be used everywhere a masterpage is not

explicitly specified. Only one masterpage can be set default

no

description An optional text provided by the template designer for documenting the

intended usage of this master page

P a g e | 14

3.4.2 Content

One header element and one footer element.

3.4.3 Header

Same structure as the template’s content element. The header cannot contain data source elements. See

RPEElementsRules.xml for details.

3.4.4 Footer

Same structure as the template’s content element. The footer cannot contain data source elements. See

RPEElementsRules.xml for details.

3.4.5 Format

The page’s formatting properties. Only the specific section is described here, for the other properties

that apply to master pages see RPEElementsDefinitions.xml.

Property Description Mandatory

page

orientation

The page orientation.

Possible values: landscape, portrait

no

page vertical

alignment

The alignment of content in the master page.

Top, center, bottom

no

same as

previous

If set to true this master page copies the formatting and content of the

previously used master page, if any.

<empty>, True, False

no

3.5 Styles

A style defines how a given element in the template will be rendered in the output document. Each style

is defined in a Style element and the Style elements are grouped in a Styles element.

The name of the style is a property of the “definition” feature while the actual formatting details are

stored in the “format” feature.

Template Definition

P a g e | 15

Any formatting property of the Rational Publishing Engine Template Elements can be used in styles. For a

complete list please consult RPEElementsDefinitions.xml

3.6 Content

This section drives the document generation process by defining the content of the document. The

content is a set of zero or more elements.

P a g e | 16

3.6.1 Element

This is the building block of a template. An element has only one property, the “tag”, which defines the

element’s name.

 An element has:

- [0..1] data elements

- [0..1] assignments element

- [0..N] expressions used to define its content and more

- [0..N] child elements

- [0..1] features defining the elements formatting

The list of template elements is well defined. At the time of the writing the following elements are

supported by Rational Publishing Engine.

Element Version

Added

Container Accepts

queries

Description

table 1 Yes (rows) Yes

list 1 Yes (rows) Yes

List-detail 1 Yes Yes

paragraph 1 Yes (any) Yes

container 1 Yes (any) Yes Container element with no formatting of its

own. A container is used to group other

elements.

Template Definition

P a g e | 17

Element Version

Added

Container Accepts

queries

Description

image 1 No Yes

text 1 No Yes

Styled text 1 No Yes A text element which supports a very narrow

set of formatting options: bold, italic, underline,

colors.

hyperlink 1 No Yes

row 1 Yes (cell) Yes

cell 1 Yes (any) Yes

region 1 No no An element used to gather data.

bookmark 1 No No

table of

contents

1 No No

comment 1 No No

footnote 1 No No

Data Source

Configuration

1 No No

Page Number 1 No No

Total Pages

Number

1 No No

Page Break 1 No No

Section Break 1 No No

Include File 1 No No

Table Caption 1 No No

Figure

Caption

1 No No

P a g e | 18

Element Version

Added

Container Accepts

queries

Description

Java Script 2 No No

Document

Property

2 No No

Template

Comment

2 No No A design time only artifact which is not

rendered in the output.

Iteration 2 Yes No

Included

Template

2

Each element has associated data and formatting which are described in the next sections.

3.7 Element Formatting

All the formatting properties are defined as property elements grouped in features. The simplest way to

use properties is to provide static text in the “value” attribute of the property element

Example 2: formatting property with constant expression

3.7.1 Conditional formatting

Formatting properties accept dynamic evaluation as well if the value is provided as a child expression of

the property element. In this case the “value” attribute must not be present in the “property” element.

Example 1: formatting property with script expression

Template Definition

P a g e | 19

3.8 Element Data

This Data element defines all the data related aspects for its parent template element.

The Data element contains:

- Zero or 1 query

- Zero or 1 sort

- Zero or 1 filters

- Zero or 1 limit

P a g e | 20

3.8.1 Queries

A query defines a set of homogenous elements from a single data source. A query is defined using a data

element inside a valid template element. See the element table for the list of template elements that can

host queries.

The query has the following properties that define it:

Property Description Mandatory

Source The ID of the data source the data will be pulled from. Must be one of the IDs

from the data source list

yes

handle The ID of this query. Must be unique yes

context The ID of the parent query if any. The two queries must have the same data

source.

no

A query is further defined by:

- the query path

- the sort expression (optional)

- the filter expression (optional)

- a limit expression (optional)

- recursive level

- recursive segments

3.8.1.1 Query Context

Contexts are the result of nesting elements defining data blocks. An element in a template can refer any

data defined in any direct ancestor of the current element.

It is important to note that Rational Publishing Engine does not allow working with the data as a whole.

The RPE engine, through the input loaders, performs the query and iterates the result set. At any time

only one element in the result set is available. This element and all its direct ancestors form the context.

Template Definition

P a g e | 21

3.8.1.2 Query Path

An expression that defines the location of the data in the XML. The language used by Rational Publishing

Engine is a very simplified version of XPath which only supports selection with no filtering or functions

being allowed.

If a query is defined in the context of another query it is a child query and its path is relative to the

parent query. A query that has no parent context is named “top level query”.

When resolving the data Rational Publishing Engine uses the absolute path of a query which is defined

recursively:

• If the query is a top level the absolute path is the query path

• If the query is not top level the absolute path is the parent query absolute path + the query path

Example:

Some examples of queries in the context of the above schema:

 Query Paqth Query Absolute Patj

Top level query

1

Project/Requirements/PRRequire

ment

Project/Requirements/PRRequirement

Query 2, child of

query 1

TracesFrom/Relationship/RelatedR

eq

Project/Requirements/PRRequirement/TracesFr

om/Relationship/RelatedReq

Top level query

3

Project/Requirements/PRRequire

ment/TracesFrom/Relationship/Re

Project/Requirements/PRRequirement/TracesFr

om/Relationship/RelatedReq

P a g e | 22

 Query Paqth Query Absolute Patj

latedReq

Rational Publishing Engine Document Studio will display query 2 and 3 identically as the absolute path of

all queries that are rendered in the UI.

3.8.2 Sort

Defines the sorting to be applied to the query results.

Rational Publishing Engine supports two ways of specifying the sort:

• RPE Sort Expression

• Native Sort Expression

Both type of sorts are defined as children of the <sort> element of the <data> element of the query. The

sort element exists always and if it is empty it means that the query has no sort defined.

3.8.3 RPE Sort

An RPE sort is defined by list of the clause elements.

Template Definition

P a g e | 23

Each clause defines the data property to use and the direction of the sort. When Rational Publishing

Engine compares 2 input elements to determine their relative order it will take each clause in order and

compare the values of the clause property for each object. If the 2 objects have equal values for the

current clause, the next clause is used otherwise the comparison ends there.

Property Description Mandatory

direction Must be asc or desc yes

The data property to be used is defined by a child expression element of the clause. The expression

element has 2 properties listed in the table below and the value of the expression is the name of the

data property to use.

Property Description Mandatory

type Must be data yes

context The ID of the query. Must be the a query visible in the current context yes

result Optional attribute that tells Rational Publishing Engine how to interpret the data

property. Accepted values: numeric, text

no

3.8.3.1 Native sort

The native source is expressed using the data source query language. In the template this is represented

as plain text contained in a <native> element inside the <sort> element. Rational Publishing Engine does

not attempt to interpret the sort in any way, but simply dispatches it to the data source to handle it.

P a g e | 24

NOTE: To date only the DOORS data source supports native sorts.

3.8.4 Filter

Defines the filter rules to use for selecting a subset of the data.

Rational Publishing Engine supports two ways of specifying the sort:

• Scripted Filter

• Native Filter

Both types of filters are defined as children of the <filter> element of the <data> element of the query.

The filter element exists always and if it is empty it means that the query has no filter defined.

Template Definition

P a g e | 25

3.8.4.1 Scripted Filter

A scripted filter is a normal script expression defined as a child of the filter element.

3.8.4.2 Native filter

The native source is expressed using the data source’s query language if such language exists. In the

template this is represented as plain text contained in a <native> element inside the <filter> element.

Rational Publishing Engine does not attempt to interpret the filter in any way, but simply dispatches it to

the data source to handle it.

Template variables can be used in the native filter and for Rational Publishing Engine to recognize them

they must be enclosed in ${}.

P a g e | 26

3.8.4.3 Limit

The limit element defines the maximum number of elements Rational Publishing Engine will use from

each query. The value must be a positive number. If 0 or missing this value is ignored by Rational

Publishing Engine and all query entries are used.

3.8.5 Recursive level and recursive segments

These values define the recursive properties of the query. Even though these properties define aspects

of the query they are defined on the element hosting the query. This will be corrected in the next

iteration of the template language.

NOTE: setting these values on elements that do not have an associated query has no effect

3.9 Expressions

This element is the vehicle for using data in the template.

Any data present in the template is introduced by an expression element. There following expression

types are supported in Rational Publishing Engine.

Template Definition

P a g e | 27

Type Description

constant Plain text

variable A user defined variable in the template

data A property available in the current data context

script A Java Script expression

3.9.1 Constant Expression

A constant expression is plain text.

Property Description Mandatory

tag Depends on what the expression is used for. Usually is content yes

type Must be constant yes

<value> The plain text which is the value of the expression no

3.9.2 Data expression

A data expression references one property for a query in the current context path.

Property Description Mandatory

tag Depends on what the expression is used for. Usually is content yes

type Must be data yes

context The ID of the query from which the property will be read.

<value> The name of the data property to use. The value of the property for the current

element becomes the expression’s value

no

3.9.3 Variable Expression

A variable expression references one template variable.

Property Description Mandatory

tag Depends on what the expression is used for. Usually is content yes

type Must be variable yes

<value> The name of the variable to use. The value of the variable at the time of the

evaluation becomes the expression’s value

no

3.9.4 Script expression

A script expression is defined by a Java Script code snippet along with all the variables and data

properties it references.

P a g e | 28

The expression element for a script expression has the following attributes:

Attribute Description Mandatory

tag Depends on what the expression is used for. Usually is content yes

type Must be script yes

Each data source property or variable used in the script expression must be listed using an

expression_variable element inside the expression_variables element of the expression.

Every variable of a data property defined in this section of the expression can be used in the script code

as a variable.

Attribute Description Mandatory

type Must be variable for variables and data for data properties yes

context For data properties defines the ID of the query to which the property belongs.

Not used for variables

no

<value> The name of the variable or of the data propery

The code element is plain text and contains the JavaScript code. The script must be valid JavaScript with

no syntax errors.

Template Definition

P a g e | 29

3.9.5 Assignments

Assignments are template constructs that allow you to give new values to variables.

A single element can have 0 or more assignments. Each assignment is defined by an <assignment>

element and all the <assignment> elements being grouped under an <assignments> element. If no

assignment exists for the element the <assignments> element is omitted.

Attribute Description Mandatory

Variable The name of the variable that receives the value yes

<value> An expression that gives the value. yes

3.9.6 Conditions

The conditions are defined as expression elements directly under the <element> they apply to. They are

regular script expressions for which the “tag” attribute is set to be “condition”. There can be a maximum

of 1 condition per element.

P a g e | 30

Template Definition

P a g e | 31

4 RPETemplateElements.xsd

This file describes the formatting properties available for each element.

Rules

1. The grouping in features is irrelevant and used for display purposes mainly

2. The properties must have unique names (the name attribute).

3. The same property can be used in more than 1 element but all its occurrences must be identical.

P a g e | 32

4.1 Property Domain

Each formatting property has a number of properties that define how Rational Publishing Engine

displays, edits and interprets the property. These properties are stored as child elements of the property.

Propery Description

any Through its value attribute defines if this property accepts any text as value. Used by Rational

Publishing Engine to restrict the UI editor but otherwise has no impact at runtime. If an

invalid property value is specified the result is undefined behavior

description/text Used to document the intended usage for this property. Used only for display purposes, no

impact at runtime

Description/output One per output type supported by Rational Publishing Engine. Specifies through its value if

the property is supported by the specified output. Used only for display purposes, no impact

at runtime

The domain element allows you to define more formally the values accepted by the value. The types of

domains supported by Rational Publishing Engine are listed below.

Template Definition

P a g e | 33

4.1.1 Enumerated Domain

Each accepted entry is introduced through an item element. The value is stored in the value attribute of

the item element. If a default value exists this is marked by the default attribute set on the element with

the value true.

P a g e | 34

4.1.2 Boolean Domain

An instance of enumerated domain with the type defined to boolean.

4.1.3 Integer Domain

The domain defines the range of the numeric values accepted by the property through the min and max

elements. A default value can be specified through an item element with a default attribute. The type is

integer.

4.1.4 Double domain

The domain defines the range of the numeric values accepted by the property through the min and max

elements. A default value can be specified through an item element with a default attribute. The type is

double.

Template Definition

P a g e | 35

5 RPEElementsRules.xml
The file defines the nesting rules supported by Rational Publishing Engine and enforced by Rational

Publishing Engine Document Studio.

For each element in Rational Publishing Engine an “element” entry exists in this file.

Propery Description

tag The tag of the element described by the current entry

alias (optional) for elements that are identical to Rational Publishing Engine but have to have

different nesting rules in the context this is the tag of the “base” element. Example:

containers in tables or rows versus top level container elements.

display The name used for display purposes

Each element entry defines 2 lists:

- Disallowed – the list of elements that cannot be nested in this element

- Children – the list of elements accepted as children by this element

P a g e | 36

5.1 Nesting rule composition

When interpreting the rules Rational Publishing Engine Document Studio uses the following rule to

determine if an element can be added as a children of another element:

1. If the element is not listed in the “children” list, return false.

2. If the element is listed in the disallow list, return false.

3. Recursively check if any of the parents of the current element disallow using that element.

