
Configuring

IBM

ii Configuring

Contents

Chapter 1. Configuring an instance of z
Systems Development and Test
Environment 1
Defining the device map 1
Sample program to create device map 3

Chapter 2. Starting and stopping z
Systems Development and Test
Environment 5
Starting the z Systems Development and Test
Environment 5

IPLing z Systems Development and Test
Environment from a remote emulated terminal for
the system console 7
Stopping z Systems Development and Test
Environment 7

Index 9

iii

iv Configuring

Chapter 1. Configuring an instance of z Systems Development
and Test Environment

Learn how to set up z Systems™ Development and Test Environment and
customize a z/OS® software distribution for development and test purposes.

These instructions are intended to allow a person with very little z/OS systems
programming experience to configure the z Systems Development and Test
Environment.

Defining the device map
The z Systems Development and Test Environment allows the customization of the
z Systems resources available within the virtualized environment. The resources
can be defined in a device map or devmap.

The sections and syntax of device maps are explained in detail in the "1090 Control
Files" section of the zPDT® Guide and Reference.

The system volumes that represent the z/OS distribution are defined in an awsckd
stanza, and are mounted at arbitrarily chosen addresses within the range of valid
addresses that are defined by the z/OS distribution's IODF. Historically in a z/OS
ADCD, the xxRES1 and xxSYS1 volumes are mounted at the same addresses as
those in the zPDT Guide and Reference (0A80 and 0A82), and address 0AA3 is
always reserved for volume xxDBAR.

If you must alter the default tunnel IP addresses of 10.1.1.1 and 10.1.1.2, refer to
the example of the --tunnel_ip parameter in the zPDT Guide and Reference.

The following examples, when combined, define a working device map with a
sample z/OS distribution from a z Systems Development and Test Environment
ADCD subscription. If you are using the coupling facility or Rational® Tokens, see
Enabling the coupling facility and Setting up Rational Tokens.

Note: The processors statement specifies the number of z Systems CPs that are
used in this instance. The default is one. This number must not be more than the
number available on the activated USB hardware device or more than the number
of CP activations made available through a license manager.
[system]
memory 4096m
processors 3
3270port 3270 # port number for non-SNA (coax) 3270

[manager]
name aws3274 0001 # define non-SNA (coax) 3270 terminals
device 0700 3279 3274 mstcon
device 0701 3279 3274 tso1

For the network adapter definitions, the following example was added. Your setup
might differ, and you are encouraged to consult the sections on connectivity in the
zPDT Guide and Reference.
[manager] # define network adapter (OSA) for communication with Linux
name awsosa 0024 --path=A0 --pathtype=OSD --tunnel_intf=y # QDIO mode
device 400 osa osa

1

http://www.redbooks.ibm.com/abstracts/sg248205.html?Open

device 401 osa osa
device 402 osa osa

[manager] # define network adapter (OSA) for communication with network
name awsosa 22 --path=F0 --pathtype=OSD # QDIO mode
device 404 osa osa
device 405 osa osa
device 406 osa osa

Since the volumes are in the /home/ibmsys1/z1090/disks/ directory, the DASD
definitions might look like the following example:

You can verify the device map with the awsckmap command. All of the disk volume
images that are referenced in the device map must exist before you verify the
device map. Assume that the device map file has the following name:
/home/ibmsys1/z/myDeviceMap

With the name in the preceding example, the device map can be verified with the
command:
awsckmap /home/ibmsys1/z/myDeviceMap

[manager]
name awsckd 0001
device 0A80 3390 3390 /home/ibmsys1/z1090/disks/xxRES1
device 0A81 3390 3390 /home/ibmsys1/z1090/disks/xxRES2
device 0A82 3390 3390 /home/ibmsys1/z1090/disks/xxCFG1
device 0A83 3390 3390 /home/ibmsys1/z1090/disks/xxSYS1
device 0A84 3390 3390 /home/ibmsys1/z1090/disks/xxUSS1
device 0A85 3390 3390 /home/ibmsys1/z1090/disks/xxUSS2
device 0A86 3390 3390 /home/ibmsys1/z1090/disks/xxPRD1
device 0A87 3390 3390 /home/ibmsys1/z1090/disks/xxPRD2
device 0A88 3390 3390 /home/ibmsys1/z1090/disks/xxPRD3
device 0A89 3390 3390 /home/ibmsys1/z1090/disks/xxDIS1
device 0A8A 3390 3390 /home/ibmsys1/z1090/disks/xxDIS2
device 0A8B 3390 3390 /home/ibmsys1/z1090/disks/xxPAGA
device 0A8C 3390 3390 /home/ibmsys1/z1090/disks/xxPAGB
device 0A8D 3390 3390 /home/ibmsys1/z1090/disks/xxPAGC
device 0A8E 3390 3390 /home/ibmsys1/z1090/disks/xxBLZ1
device 0A8F 3390 3390 /home/ibmsys1/z1090/disks/xxDBB1
device 0A90 3390 3390 /home/ibmsys1/z1090/disks/xxDBB2
device 0A91 3390 3390 /home/ibmsys1/z1090/disks/xxDBC1
device 0A92 3390 3390 /home/ibmsys1/z1090/disks/xxDBC2
device 0A93 3390 3390 /home/ibmsys1/z1090/disks/xxDBAR
device 0A94 3390 3390 /home/ibmsys1/z1090/disks/xxC521
device 0A95 3390 3390 /home/ibmsys1/z1090/disks/xxC531
device 0A96 3390 3390 /home/ibmsys1/z1090/disks/xxIMD1
device 0A97 3390 3390 /home/ibmsys1/z1090/disks/xxIME1
device 0A98 3390 3390 /home/ibmsys1/z1090/disks/xxINM1
device 0A99 3390 3390 /home/ibmsys1/z1090/disks/xxW851
device 0A9A 3390 3390 /home/ibmsys1/z1090/disks/xxW852
device 0A9B 3390 3390 /home/ibmsys1/z1090/disks/xxW853
device 0A9C 3390 3390 /home/ibmsys1/z1090/disks/xxW854
device 0A9D 3390 3390 /home/ibmsys1/z1090/disks/xxW855
device 0A9E 3390 3390 /home/ibmsys1/z1090/disks/xxW901
device 0A9F 3390 3390 /home/ibmsys1/z1090/disks/xxKAN1
device 0AA1 3390 3390 /home/ibmsys1/z1090/disks/xxW902
device 0AA2 3390 3390 /home/ibmsys1/z1090/disks/SARES1
device 0AA3 3390 3390 # Available for dynamic mounts
device 0AA4 3390 3390 # Available for dynamic mounts
device 0AA5 3390 3390 # Available for dynamic mounts

Figure 1. Device map example

2 Configuring

Sample program to create device map
A sample program that is called create_devmap.pl is available in the
ConfigGuideSample directory where you installed z Systems Development and Test
Environment. If Perl is installed on your Linux system, you can use the
create_devmap.pl program to generate a sample device map that is based on your
current decompressed 3390 disk images, memory configuration, and available
network parameters. Consider the output of create_devmap.pl to be a starting
point from which you can create a final device map.

The syntax for the create_devmap.pl command is shown here:
perl <pathtocommand>/create_devmap.pl pathtodisks > generateddevmap

In the preceding example, pathtocommand is the location of the create_devmap.pl
file, and pathtodisks is the location of your 3390 disk images. generateddevmap is
the name of the file to contain the new device map.

If you already have a static IP address that is assigned for your virtual z/OS
machine and a z/OS host name that can be resolved to that address by Linux, such
as through a connected Domain Name Server or static configuration, you can add
the -h <hostname> parameters after the pathtodisks parameter. Adding the
parameter causes the script to attempt to generate comments that contain more
accurate z/OS TCP/IP configuration samples based on your network.
perl <pathtocommand>/create_devmap.pl pathtodisks -h

hostname_of_zos > generateddevmap

The create_devmap.pl program creates a memory line based on existing hardware
and configuration of your Linux machine. Verify that the amount of memory that
is requested is appropriate for your situation.

The device map that is created by create_devmap.pl defines OSA devices based on
the first Tun/Tap and Wired CHPIDs found that use the find_io command, and a
set of sample z/OS TCP/IP definitions that would correspond to the OSA device
definitions in the generated device map. These TCP/IP configuration statements
can be used as a starting point for your TCP/IP configuration, but probably
requires changes to match your network. Verify that the device addresses and
device names in your final VTAM® definitions, TCP/IP profile, and device map all
correspond to the correct network adapter types.

The device map that is created by create_devmap.pl also contains 3390 device
statements for files in the pathtodisks directory that are over 800 MB, have
six-character names, and are verified to be disk images by the alcckd command.

Chapter 1. Configuring an instance of z Systems Development and Test Environment 3

4 Configuring

Chapter 2. Starting and stopping z Systems Development and
Test Environment

Learn how to start and stop z Systems Development and Test Environment.

Starting the z Systems Development and Test Environment
If you use the same directory structure that is used in these examples, and x3270 is
installed on your native Linux system, you can start your z Systems Development
and Test Environment system with a script similar to the example in this topic.

The script example that is used in this document is named: /home/ibmsys1/z/
runzpdt. After you create the script, you must ensure that it is executable by
entering this command: chmod 755 /home/ibmsys1/z/runzpdt.

This script is written to accept two command line switches. The -d switch can be
used to specify a device map and the -l switch (the lowercase letter L) can be used
to specify the load parameter. The sample runzpdt script is available in the
ConfigGuideSample directory and is shown here:

5

The ipl statement contains three pieces of information. The a80 is the device
address of the SYSRES volume, which is a bootable z/OS volume. The parameter
string 0A82xx specifies the 4-digit device address of the IODF volume (which holds

#!/bin/bash
LOADPARM=CS
DEVMAP=myDeviceMap

#cd /home/ibmsys1/z # Optional: the directory from which you want to run

while getopts "d:l:" opt ; do
case $opt in

d)
DEVMAP=$OPTARG
;;

l)
LOADPARM=$OPTARG
;;

\?)
echo "Invalid paramater:" $OPTARG
echo " runzpdt [-d devmap] [-l loadparm]"
exit 1
;;
esac

done

PORT=`egrep "^3270port" $DEVMAP | awk ’{print $2}’`

echo "Load parm: $LOADPARM, Devmap: $DEVMAP, Port: $PORT"

if [! -e $DEVMAP]; then
echo "Devmap file $DEVMAP does not exist"
exit 1
fi

echo stopping previous instance
awsstop
killall -u $(id -un) x3270
while ps -U $(id -un) |egrep "emily|aws.{3,5}" >/dev/null; do sleep 1;done

start Rational Development & Test environment. --clean is optional
echo awsstart $DEVMAP # --clean
awsstart $DEVMAP # --clean

egrep "AWS[A-Z]{3}[0-9]{3}[ES]" `ls -t1 ~/z1090/logs/log_console_* | head -n 1` 1>/dev/null
if [$? -ne 0]; then
echo
echo "Rational Development and Test Environment started."
echo
/usr/z1090/bin/token
start x3270 for the console and one local user terminal

nohup x3270 -model 4 mstcon@localhost:$PORT 1>/dev/null 2>/dev/null &
nohup x3270 -model 4 tso@localhost:$PORT 1>/dev/null 2>/dev/null &

#Perform the IPL of the system
echo ipl a80 parm 0a82$LOADPARM
ipl a80 parm 0a82$LOADPARM
else
echo
echo "No completed startup message was found."
echo ’***************************************’
echo ’*** runzpdt terminated with errors. ***’
echo ’***************************************’
fi

Figure 2. Startup example

6 Configuring

IPL configuration files) and the LOADPARM, the suffix that identifies the LOADxx
member that is used to start z/OS. In the script, the LOADPARM is a variable that
you can change by using the parameter –l xx when you start the script. (The -l is
a lowercase "L".)

The first time you start a new z/OS distribution, start z Systems Development and
Test Environment with a loadparm that does a cold start, and does not start
additional subsystems. After you verify basic z/OS capabilities, you can then
customize the system by using the instructions in Configuring a working z/OS
system and create and start different loadparms as needed. As with any z/OS
system, warm starts are less disruptive and preserve the JES job spool. Use warm
starts when possible.

IPLing z Systems Development and Test Environment from a remote
emulated terminal for the system console

If your Linux image with the installed z Systems Development and Test
Environment does not have a user interface, you cannot use an emulated terminal
product such as X3270 to run your z/OS console. Therefore, you must install the
emulated terminal software on a remote system, and you must be dialed to the
Linux system that is running z Systems Development and Test Environment before
you enter the ipl command.

If the remote emulated terminal product is a 3270 emulator, then the only
difference between remote administration and local administration of z Systems
Development and Test Environment are the commands that you enter between the
awsstart and ipl commands. For remote administration, rather than starting x3270
or another local 3270 emulator, instead, start the 3270 emulator on the remote
system and connect to the Linux IP address and zPDT 3270port (usually 3270).
From this point forward, the remote 3270 emulator becomes your system console.
Any wanted TSO sessions can be connected from remote systems as well using the
defined x3270port.

If you want to use the supplied runzpdt script to start z Systems Development and
Test Environment, you must modify it to perform remote system console
administration. Any changes to runzpdt depend on what method of starting z
Systems Development and Test Environment and automation you currently use.
You can customize these alternative modifications to fit your environment.
v Remove the final stanzas after the awsstart that start the local x3270 sessions

and perform the ipl. The ipl command can be run as a line command after the
system console is connected.

v Replace the x3270 start commands in runzpdt with some form of pause while
you start your remote system console (either manually or with automation).
These examples illustrate two pause techniques:
– A sleep statement, such as

sleep 1m

– A read statement, such as
read -p "Press [Enter] key to ipl after system console is connected."

Stopping z Systems Development and Test Environment
If possible, always shut down z/OS cleanly. Typically, shutting down cleanly
begins by starting a procedure that shuts down all active subsystems.

Chapter 2. Starting and stopping z Systems Development and Test Environment 7

Any z/OS ADCD for z Systems Development and Test Environment contains
sample shutdown scripts for the systems that are available and active in that
distribution. For an example of these shutdown scripts, see Altering system startup
and shutdown scripts. This example shows the type of commands you can use in a
shutdown script.
/*--*/
/* WARN TSO USERS TO LOGOFF */
/*--*/
F TSO,USERMAX=0 /* DON’T ALLOW ANYONE ELSE TO LOGON RIGHT NOW! */
SEND ’PLEASE LOGOFF - THE SYSTEM WILL BE IPLED IN 2 MINUTES!!’,ALL,NOW
PAUSE 10
/*--*/
/* ISSUE STOP COMMANDS FOR ALL TASKS THAT WILL TAKE THEM. FOR THOSE */
/* THAT WON’T TAKE THEM, SIMPLY ISSUE CANCEL COMMANDS. */
/*--*/
/*--*/
/* ISSUE MODIFY COMMANDS FOR THOSE TASKS THAT USE THEM INSTEAD OF STOP*/
/*--*/
/*--*/
/* TRY TO WAIT LONG ENOUGH FOR ALL TO COME COMPLETELY DOWN */
/*--*/
P TSO
C INETD4
P LLA
SETRRS SHUTDOWN
P VLF
MODIFY DLF,MODE=Q
P DLF
P HZSPROC
P TN3270
P TCPIP
P SDSF
PAUSE 20
Z NET,QUICK
PAUSE 10
F OMVS,SHUTDOWN

During shutdown, you might have to respond to z/OS console messages, such as
when IMS™, TSO, or z/OS UNIX are stopped. You can see what programs are still
running by entering the D J,L console command. Ensure VTAM and all
subsystems end.

After all systems are stopped, stop your JES system. After JES ends, z Systems
operation can be stopped. Enter a QUIESCE command from the MVS™ console to
ensure that there is no more activity to the z/OS volume image files. The zPDT
system can then be stopped with this command in the Linux window:

$ awsstop

This command produces several messages. It might be necessary to press Enter to
obtain the Linux prompt. Any 3270 windows can be closed.

8 Configuring

Index

D
device map, defining 1

E
environment, starting z Systems

Development and Test Environment 5

S
starting z Systems Development and Test

Environment environment 5

Z
z Systems Development and Test

Environment environment, starting 5

9

	Contents
	Chapter 1. Configuring an instance of z Systems Development and Test Environment
	Defining the device map
	Sample program to create device map

	Chapter 2. Starting and stopping z Systems Development and Test Environment
	Starting the z Systems Development and Test Environment
	IPLing z Systems Development and Test Environment from a remote emulated terminal for the system console
	Stopping z Systems Development and Test Environment

	Index
	D
	E
	S
	Z

