
Customizing a migrated z/OS

IBM

ii Customizing a migrated z/OS

Contents

Customizing a migrated z/OS system . . 1
A brief introduction to z/OS system configuration. . 1

The IPL process: LOADxx and IEASYSxx members 1
PROCLIB: System procedure library 2

Configuration overview. 3
Logging on to TSO 3
Creating new zFS files for /tmp and /u. 3

Creating ALIASes for the high-level qualifiers of
the zFS files 4
Creating the zFS files 4
Modifying BPXPRM00 parmlib member 5
Copying the existing /tmp and /u directories. . . 5
Creating a loadparm for customizations 6
Shutting down the system and re-IPLing 6

Setting up TCP/IP 6
Setting up Linux routing 7
Modifying TCPPARMS files 8
Modifying TCP/IP Procedures to point to
USER.TCPPARMS 9

Optional tasks 11
Logging on to TSO from emulators not native to
the host Linux 12
Creating TSO user IDs. 12
Defining a new logon procedure 12
Altering system startup and shutdown scripts . . 13
Defining JES NJE connectivity 13

Index 15

iii

iv Customizing a migrated z/OS

Customizing a migrated z/OS system

Learn how to customize a migrated z/OS® system.

A brief introduction to z/OS system configuration
In the simplest case, z/OS is configured by changing partitioned data set (PDS)
members in the data sets SYS1.PROCLIB, SYS1.PARMLIB, and a few other important
data sets including site-specific partitioned data sets.

Most configuration (parmlib) member names consist of a predefined name with a
two character suffix added. A common convention is to refer to the suffix as xx, so
you often see references to LOADxx, IEASYSxx, and so on. Configuration files refer to
other members by a keyword and suffix number. For example, a member that is
called IEASYSRC might identify the main z/OS UNIX configuration file with the
line OMVS=RC, which means that z/OS UNIX finds the member that contains its
configuration parameters by starting with a predetermined name, BPXPRM, and add
the suffix RC (resulting in member name of BPXPRMRC). The keywords in the
configuration files are not usually the same as the member name prefixes.

Data sets such as SYS1.PARMLIB and SYS1.PROCLIB are not updated directly. Some
installation-specific libraries are searched before the SYS1 data sets, leaving the SYS1
libraries with IBM® supplied defaults.

The z/OS ADCD for z Systems™ Development and Test Environment defines
several sets of alternative libraries. The configurations for the distribution itself are
stored in a set of libraries that start with the qualifiers ADCD.*. This z/OS
distribution also provides a set of libraries for you to use, which start with the
high-level qualifier USER. This z/OS distribution is already set up to read from
most of the USER libraries before the ADCD.* libraries. For more information on the
configuration of the z/OS ADCD for z Systems Development and Test
Environment, see the specific sessions Customizing the May 2017 Edition z/OS 2.2
ADCD for z Systems Development and Test Environment.

If you are migrating your own z/OS distribution, you probably defined your own
alternative libraries to contain any z/OS customizations. Your system administrator
knows the library structure that is defined for your z/OS distribution, and what
libraries to use to contain any customizations. For purposes of describing
customizations, this IBM Knowledge Center uses USER.* libraries, which tend to be
commonly available in any z/OS distribution. When you follow these instructions,
make all changes in USER.* libraries, except for adding LOADPARM members to
SYS1.IPLPARM.

Note: Subsystem configuration changes, such as CICS® definitions, also change
original libraries such as the CICS CSD.

The IPL process: LOADxx and IEASYSxx members
When z/OS is started, it looks in data set SYS1.IPLPARM for a member called
LOADxx. The xx value is specified in the IPL statement of the start script that was
created. A LOADxx member defines various settings to start the system, such as the
parmlib concatenation that indicates which data sets are to be searched for other
configuration members. The LOADxx member also defines which IEASYSxx member

1

is to be used. IEASYSxx is considered the starting point for system configuration
because it contains pointers to other parmlib members that are used during the IPL
process.

Tip: Create a loadparm that starts the system without pointing to any alternative
libraries that contain customized parmlibs, proclibs, and so on. By creating a
loadparm if you make a mistake in your customizations that causes z/OS to not
start, you can try to perform an IPL of the system with the loadparm that does not
point to the alternative libraries. This method gives you TSO access, where you can
modify the customizations to correct any mistakes.

PROCLIB: System procedure library
Parmlib members contain only configuration information. The procedures that start
the various subsystems and servers are found in a different concatenation called
PROCLIB. As an example, a z/OS ADCD for z Systems Development and Test
Environment contains SYS1.PROCLIB, ADCD.Zxxx.PROCLIB, and USER.PROCLIB in its
PROCLIB concatenation. To include any PROCLIB data set in the PROCLIB
concatenation, you must modify the MSTJCLxx member of parmlib and your JES
procedure.

For more information, see “Enabling use of USER.PROCLIB and IPLing” on page 11.

z Systems serial numbers
z Systems CECs have unique serial numbers, allowing software to identify the
machine and LPAR.

The z Systems serial number is part of its CPU ID, a concatenation of the serial
number, LPAR number, and other information. In the simple environment that is
described in this IBM Knowledge Center, which is a single USB hardware device
that is connected to a single PC hosting z Systems Development and Test
Environment, the serial number of the z Systems created by zPDT® is the serial
number of the USB hardware device. When a product license server or a license
manager is used, the serial numbers are randomly generated by the UIM server
that is running as part of the product license server, and assigned to the z Systems
Development and Test Environment instance.

Tip: From the System console or TSO SDSF, a Display M command returns all
assigned machine serial numbers. This information is also available by using the
CSRSI callable service, which is documented in MVS™ Programming: Callable
Services for High-Level Languages Version 2 Release 1, SA23-1377.

After it is assigned, whether from the local USB Hardware Device or from a license
server, the z Systems serial number remains consistent, even across upgrades to
new emulator versions, and when new license files are applied to the USB
hardware device. This assignment allows for a consistent CPU ID. That first
assigned serial number is stored locally on any z Systems Development and Test
Environment instance in /etc/z1090/uim/uimclient.db and reused, thus allowing
for this consistency even when you are switching between using a local USB
Hardware Device and a license server.

The serial number can change in a few cases. The most common case is if you
enter a uimreset -l command, which causes the serial number to be reassigned
from either the local USB hardware device or from a license server. It can also
change if you somehow delete or corrupt the uimclient.db file. For more
information about z Systems CEC serial numbers and zPDT, see paragraph 8.1
“Methodology” in the zPDT Guide and Reference.

2 Customizing a migrated z/OS

http://www.redbooks.ibm.com/abstracts/sg248205.html?Open

Tip: If consistent serial numbers or CPU IDs are a requirement, back up your
/etc/z1090/uim/uimclient.db file after your initial z Systems Development and
Test Environment activation. If the file is corrupted or changed by a uimreset -l
command, it can be restored from the backup and thus restore the original serial
number.

Configuration overview
Learn how to configure the z/OS system so that you isolate the customized data in
your z/OS distribution volumes and establish TCP/IP communications.

These configuration instructions explain how to:
v Create new z/OS UNIX file systems for /tmp and /u.
v Customize TCP/IP settings to establish network connectivity.

You might also want to make some additional changes that are commonly made.
v Create TSO user IDs.
v Customize ISPF defaults and the ISPF main panel
v Change console defaults
v Streamline startup and shutdown scripts
v Create an NJE connection to existing z/OS systems

Place these customizations on a single volume, such as ensuring your USER.*
libraries are on one volume. Placing these customizations on a single volume helps
with future migrations to new versions of z/OS distributions.

Logging on to TSO
After you IPL, you can use the x3270 emulator on the host Linux to start a TSO
session

with the following command:
x3270 -port 3270 localhost &

An alternative format of the x3270 command, which produces a larger screen size,
is
x3270 -model 4 localhost:3270 &

You can also use an emulator that is not native to the host Linux. For more
information, see “Logging on to TSO from emulators not native to the host Linux”
on page 12.

Log on to TSO with a valid user ID in your z/OS distribution. You might want to
make a few minor changes to your ISPF session before you start working. If you
are accustomed to using TSO naming conventions in ISPF, then to ensure that you
do not write out files with unexpected high-level qualifiers, enter this command:
TSO PROFILE PREFIX(tso user id)

Creating new zFS files for /tmp and /u
Management of z/OS UNIX file systems in z/OS is a complex area. This procedure
provides a simplistic design for new file systems. Considerations such as space
requirements and alternative mount points might require a more in-depth plan.

Customizing a migrated z/OS system 3

Your z/OS distribution might provide fairly small file systems for the /tmp and /u
directories. Small file systems can cause problems, particularly when you are
installing z/OS software by using SMP/E, or when programs create large memory
dumps on the z/OS UNIX file system. Allocate 100 primary cylinders and 20
secondary cylinders for these file systems. If the current file systems for /tmp and
/u are not large enough, replace them. To create new file systems for /tmp and /u,
create two new zFS files and associate these new files with the /tmp and /u
directories. Catalog these two new zFS files on the same volume as your other
customizations. By avoiding use of the master catalog during migration to a new
z/OS distribution, you must only import the user catalog and replicate the alias
definitions so that catalog entries are restored.

To create new zFS files for /tmp and /u:
v Create aliases for the high-level qualifiers of the zFS files
v Create the zFS files
v Modify the appropriate BPXPRMxx parmlib member to mount the new zFS files

with the /tmp and /u directories
v Copy the existing /tmp and /u directories to the new /tmp and /u directories that

are mounted with the new zFS files
v Optionally create a new load parm to contain these changes
v Shut down the system and re-IPL

Any z/OS ADCD for z Systems Development and Test Environment supplies
samples with more specific instructions, including sample JCL. These samples can
help you perform this step even if you are migrating your own z/OS distribution.
For more information, see Customizing the May 2017 Edition z/OS 2.2 ADCD for
z Systems Development and Test Environment.

In the examples in these topics, the two z/OS UNIX file systems are created with a
high-level qualifier of CUST on sample volume S1CUST.

Creating ALIASes for the high-level qualifiers of the zFS files
Start by creating an alias for CUST and any other qualifiers that are used to create
data sets here. Create the alias and the file systems on a volume with your other
customizations so that it is easy to migrate to a new z/OS distribution.

When you create new users, also create an alias for the user ID in the same
catalog. This sample JCL shows you how.
//Q12ALIAS JOB (ACCT),MSGCLASS=H,NOTIFY=&SYSUID.
//*---
//DEFALIAS EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE ALIAS (NAME(CUST) RELATE(USERCAT.Zxxx.USER))
/*

Creating the zFS files
Use the JCL in this topic to create two new zFS files on volume xxCFG1 named
CUST.ZFS.U and CUST.ZFS.TMP.

Adjust the space allocations as needed.
//Q13ZFS JOB ’IBMUSER’,CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H
//ZFSALLOC EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

4 Customizing a migrated z/OS

DEFINE CLUSTER(-
NAME(CUST.ZFS.TMP) -
VOLUME(xxCFG1) -
LINEAR -
CYL(100 20) -
SHAREOPTIONS(3) -

)
DEFINE CLUSTER(-

NAME(CUST.ZFS.U) -
VOLUME(xxCFG1) -
LINEAR -
CYL(100 20) -
SHAREOPTIONS(3) -

)
/*
//ZFSFORMT EXEC PGM=IOEAGFMT,REGION=0M,COND=(0,LT,ZFSALLOC),
// PARM=’-aggregate CUST.ZFS.TMP -compat’
//SYSPRINT DD SYSOUT=*
//ZFSFORMT EXEC PGM=IOEAGFMT,REGION=0M,COND=(0,LT,ZFSALLOC),
// PARM=’-aggregate CUST.ZFS.U -compat’
//SYSPRINT DD SYSOUT=*

Modifying BPXPRM00 parmlib member
After you create CUST.ZFS.TMP and CUST.ZFS.U, copy ADCD.Zxxx.PARMLIB(BPXPRM00)
into USER.PARMLIB.

Comment out the existing mount of the zFS for tmp, and replace it with a mount of
CUST.ZFS.TMP. For example,
/* MOUNT FILESYSTEM(’ZFS.&ADCDLVL..TMP’) */
/* TYPE(HFS) */
/* MODE(RDWR) NOAUTOMOVE */
/* MOUNTPOINT(’/&SYSNAME./tmp’) */

MOUNT FILESYSTEM(’CUST.ZFS.TMP’)
TYPE(ZFS)
MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/&SYSNAME./tmp’)

Make a similar change for the mount of /u:
/* MOUNT FILESYSTEM(’ZFS.&ADCDLVL..USERS’) */
/* TYPE(HFS) */
/* MODE(RDWR) NOAUTOMOVE */
/* MOUNTPOINT(’/u’) */

MOUNT FILESYSTEM(’CUST.ZFS.U’)
TYPE(ZFS)
MODE(RDWR) NOAUTOMOVE
MOUNTPOINT(’/u’)

Copying the existing /tmp and /u directories
Finally, you must copy the existing /tmp and /u directories to contain the new /tmp
and /u file system, and ensure that everyone has proper access permission to the
new file systems.

The z/OS UNIX command line can be accessed with the TSO OMVS command,
and then you can enter these commands. Be sure to verify that each command
works correctly before you proceed to the next command.
cd /
mkdir /tempmnt
/usr/sbin/mount –f cust.zfs.tmp /tempmnt
cp -r /tmp/ /tempmnt

Customizing a migrated z/OS system 5

ls /tempmnt
chmod 777 /tempmnt
/usr/sbin/unmount /tempmnt
/usr/sbin/mount -f cust.zfs.u /tempmnt
cp -r /u/ /tempmnt
ls /tempmnt # to verify that the copy worked
chmod 777 /tempmnt
/usr/sbin/unmount /tempmnt
rm -r /tempmnt

Creating a loadparm for customizations
You might want to isolate your customizations into a new loadparm. For example,
you can create an RC loadparm that uses your new zFS files for /tmp and /u.
v Instead of modifying BPXPRM00, copy it and rename it to BPXPRMRC, and modify

BPXPRMRC.
v Copy the IEASYSxx member that currently starts the subsystems you want to

start to USER.PARMLIB. Rename it to IEASYSRC to match the two character
loadparm of BPXPRMRC. Update the OMVS= parameter to replace the existing two
character loadparm with RC.

v Make a copy of the existing LOADxx member in SYS1.IPLPARM that currently
starts the subsystems you want to start. Rename it to LOADRC, and store it back
into SYS1.IPLPARM. Modify the SYSPARM value to RC.

Shutting down the system and re-IPLing
Shut down the system and perform an IPL. Use your loadparm that points to the
modified BPXPRMxx, or your newly created load parm.

When the system restarts, you can enter the z/OS UNIX command line and enter
the df -k command to ensure that your file systems are being used and mounted
correctly.

After the shutdown and re-IPL is complete, you have larger zFS files for /tmp and
/u.

Setting up TCP/IP
z/OS running on z Systems Development and Test Environment can communicate
with your network by using TCP/IP. You can use standard 3270 terminal
emulators, FTP, Developer for z Systems, and other services to move data to and
from your z/OS system.

Since mainframes are confined to data centers, TCP/IP on z/OS does not act as a
DHCP client. It does not automatically configure itself to a TCP/IP address
supplied by the network. Therefore, it is necessary to configure a few settings to
get TCP/IP to communicate with the network. Several methods of configuring
TCP/IP are described in the zPDT Guide and Reference.

The subtopics in this section of the IBM Knowledge Center show an example of
setting up the method referred to as Scenario 4 in Chapter 7, “LANs” in the zPDT
Guide and Reference. This method allows the z/OS system and the Linux system to
communicate with your network, each with their own IP address and with the
ability to share the Ethernet adapter. Because each system has its own IP address,
both systems can simultaneously use functions such as FTP with minimal
configuration change. It also eliminates the need to create firewall holes for your
z/OS ports or provide Network Address Translation functions in your firewall.

6 Customizing a migrated z/OS

http://www.redbooks.ibm.com/abstracts/sg248205.html?Open

This IBM Knowledge Center shows the changes that you must make to the TCP/IP
data sets in your z/OS distribution to gain that TCP/IP network connectivity. In
the examples, it is assumed existing TCP/IP parmlib members and procedures are
copied as new members into your USER.* data sets, and modified. By using this
method, the parmlib members and procedures of your original z/OS distribution
are unmodified. Alternatively, you can change the existing TCP/IP procedures and
parmlib members without creating new members.

TCP/IP and LAN configurations are site-dependent. The exact steps that are
outlined here might not work at your site because of local network configuration,
firewalls, Linux dependencies, or hardware restrictions. You might need the
services of a network administrator to configure z/OS within your network.

Setting up Linux routing
Before you configure TCP/IP, obtain a static IP address for z/OS. The z/OS IP
address must be within the same subnet as your Linux machine. It does not matter
if the Linux machine has a DHCP or static IP address if both the z/OS and Linux
address are in the same subnet. The z/OS environment is configured to use both
the static IP address you obtained and an address of 10.1.1.2. The address of
10.1.1.2 is used to communicate with the Linux machine and cannot be seen by
other machines on your network. The following examples show how to configure
z/OS so that the external network connects to the machine by address 9.12.200.20,
and Linux connects to z/OS by address 10.1.1.2. z/OS can connect to the Linux
machine that is using the address 10.1.1.1. The connection between z/OS and
Linux is called a tunnel.

Note: You can use the --tunnel_ip parameter in the awsosa stanza to define a
local address other than 10.1.1.1. For example, if you define the local address as
10.1.2.1, then define the z/OS environment as 10.1.2.2.

If you use the create_devmap.pl program that is described in Sample program to
create device map, and you have a z/OS host name that can be resolved to your
static z/OS IP address by Linux, such as through a connected Domain Name
Server or static configuration, you can add the -h hostname parameter to the
invocation of the program. This parameter causes create_devmap.pl to generate file
contents that are tailored to your network. It generates the TCPIP.DATA and
TCPIP.PROFILE statements by using the z/OS IP address that corresponds to the
entered hostname, and dynamically finds the name server addresses based on the
Linux ethernet adapter that is found by using find_io. It also generates sample
VTAMLST members to define two OSAs; a tunnel OSA and an OSA to be used
with one of the Linux ethernet adapters. The contents are shown as comments in
the generated device map and are examples only. Because of the variability and
complexity of network configuration, the samples that are shown in the generated
device map might need modification to work in your environment.

This example assumes that you have the following OSA definitions in your
devmap to define the tunnel OSA and one ethernet OSA to be used by TCP/IP:
[manager] # define network adapter (OSA) for communication with Linux
name awsosa 0024 --path=A0 --pathtype=OSD --tunnel_intf=y # QDIO mode
device 400 osa osa
device 401 osa osa
device 402 osa osa
[manager] # define network adapter (OSA) for communication with network
name awsosa 22 --path=F0 --pathtype=OSD # QDIO mode
device 404 osa osa
device 405 osa osa
device 406 osa osa

Customizing a migrated z/OS system 7

Modifying TCPPARMS files
Learn how to modify two TCPPARMS files to establish TCP/IP connectivity by
using an IP address that is defined for z/OS: PROFILE.TCPIP and TCPIP.DATA.

PROFILE.TCPIP
Copy your existing TCP/IP profile (TCPIP.PROFILE) to USER.TCPPARMS and
modify the DEVICE, LINK, HOME, and route definitions to use the OSAs defined
in your devmap, with the addresses and netmask information that is correct for
your network.

For example, given a z/OS IP address of 9.12.200.20, and a netmask of
255.255.255.0, a TCP/IP PROFILE member might look like the following example.

Note: Comments and other statements were removed for brevity. Also, the IP
address of the Linux system is not needed here. The gateway address usually ends
in .1 or .0, but that might be different on your network.

This example also includes the definitions for the tunnel, the 10.1.1.2 address,
which is used to communicate with z/OS from the Linux machine.
ARPAGE 5
DATASETPREFIX TCPIP
AUTOLOG 5

FTPD JOBNAME FTPD1 ; FTP Server
PORTMAP ; Portmap Server

ENDAUTOLOG
PORT

(((ports removed for brevity)))
SACONFIG DISABLED

DEVICE PORTA MPCIPA
LINK ETH1 IPAQENET PORTA
HOME 10.1.1.2 ETH1

DEVICE PORTB MPCIPA
LINK ETH2 IPAQENET PORTB
HOME 9.12.200.20 ETH2

BEGINROUTES
ROUTE 10.0.0.0 255.0.0.0 = ETH1 MTU 1492
ROUTE 9.12.200.0 255.255.255.0 = ETH2 MTU 1492
ROUTE DEFAULT 9.12.200.1 ETH2 MTU 1492
ENDROUTES
ITRACE OFF
IPCONFIG NODATAGRAMFWD
UDPCONFIG RESTRICTLOWPORTS
TCPCONFIG RESTRICTLOWPORTS
START PORTA
START PORTB

Copy ADCD.Z112S.VTAMLST(OSATRL2) to USER.VTAMLST(OSATRL2) and
remove any comments within it so that it looks like the next example.

The device name in the TCP/IP profile member must match the port names that
are specified in USER.VTAMLST(OSATRL2). In this example, these port names are
PORTA and PORTB. Also, verify that your devmap (see "Defining the device map")
correctly defines the device addresses in the READ, WRITE, and DATAPATH
statements of USER.VTAMLST(OSATRL2).
OSATRL1 VBUILD TYPE=TRL
OSATRL1E TRLE LNCTL=MPC,READ=(0400),WRITE=(0401),DATAPATH=(0402), X

PORTNAME=PORTA, X

8 Customizing a migrated z/OS

MPCLEVEL=QDIO
OSATRL2E TRLE LNCTL=MPC,READ=(0404),WRITE=(0405),DATAPATH=(0406), X

PORTNAME=PORTB, X
MPCLEVEL=QDIO

To activate this configuration, copy ADCD.Z112S.VTAMLST(ATCCON00) to
USER.VTAMLST(ATCCON00) and change the word OSATRL1 to OSATRL2.

TCPIP.DATA
Copy your existing TCPIP.DATA data set to USER.TCPPARMS and set the HOSTNAME,
DOMAINORIGIN, and NSINTERADDR values

, as in this example:
TCPIPJOBNAME TCPIP
HOSTNAME RDT900
DOMAINORIGIN RTP.IBM.COM
DATASETPREFIX TCPIP
NSINTERADDR 9.0.0.1
NSINTERADDR 9.0.0.11
RESOLVEVIA UDP
LOOKUP LOCAL DNS
RESOLVERTIMEOUT 10
RESOLVERUDPRETRIES 1
ALWAYSWTO NO

If you choose a HOSTNAME or DOMAINORIGIN arbitrarily, be sure that the
DOMAINORIGIN is not a real domain name and that the combination of the HOSTNAME
and DOMAINORIGIN does not constitute an existing DNS name. Use the Linux ping or
nslookup commands to ensure that your choice of names is not found by your DNS server.
Identifying your computer as another computer, or as a member of an existing but
incorrect domain, can cause problems that are difficult to diagnose, such as timeouts,
pauses, and connection failures in many areas, including 3270 connections and z Systems
Development and Test Environment. Some systems, including components of z Systems
Development and Test Environment, require that z/OS can locate itself by name.

Ensure that the NSINTERADDR parameter correctly identifies a DNS server. Incorrect name
server specifications can also cause long delays and errors that are difficult to diagnose. Do
not specify NSINTERADDR values for stand-alone systems.

If you cannot use a Domain Name Server (DNS) to resolve IP addresses of other systems
or of the z/OS system, you can create a local hosts file and refer to it with a
GLOBALIPNODES statement. The setup of this file is described in detail in TCP/IP
implementation volume 1: Base functions (SG24-7798).

Modifying TCP/IP Procedures to point to USER.TCPPARMS
An easy way to find Procedures that reference the TCPPARMS data sets by using
ISPF is to display a member list of each proclib dataset in your active MSTJCLxx
parmlib member (typically MSTJCL00), and then type these commands:

SRCHFOR TCPPARMS
SORT PROMPT

Copy any existing procedures that point to TCPIP.DATA data sets to USER.PROCLIB.
Procedures that typically point to TCPIP.DATA include, but are not limited to,
FTPD
PORTMAP
TCPIP
TN3270
RESOLVER

Customizing a migrated z/OS system 9

Modify each member to change references from the existing TCPPARMS data set
to USER.TCPPARMS for any members that you duplicated in USER.TCPPARMS. Do not
change the member names except in the TCP/IP procedure as noted. For example,
change the line in FTPD from //SYSTCPD DD DISP=SHR,DSN=CUST.TCPPARMS(TCPDATA)
to:
//*SYSTCPD DD DISP=SHR,DSN=CUST.TCPPARMS(TCPDATA)
//SYSTCPD DD DISP=SHR,DSN=USER.TCPPARMS(TCPDATA)

Remember a modified TCP/IP profile member name was placed in
USER.TCPPARMS, so the PROFILE DD statement is similar to this example:
//PROFILE DD DISP=SHR,DSN=USER.TCPPARMS(PROFILE)

If you prefer to set up system-wide use of a common set of TCP/IP settings, set up
the RESOLVER procedure to point to your TCP/IP definitions. Create member
USER.TCPPARMS(RESOLVER) to contain the following statements.
GLOBALTCPIPDATA(’USER.TCPPARMS(TCPDATA)’)
GLOBALIPNODES(’USER.TCPPARMS(IPNODES)’)
COMMONSEARCH

Create member USER.TCPPARMS(IPNODES) to contain the following statements
similar to the following but customized with your network names and address.
The format of each entry in the IPNODES file is IP address followed by one or
more host names. The order of the entries is not significant.
This first entry is the ip address of the z/OS host with its associated hostnames
In this example, two hostnames are configured; a shortened alias and a fully

qualified hostname.
Only one hostname is required, typically the fully qualified name
#
9.12.200.0 ZDT ZDT.IBM.COM
#
This entry is the ip address of the OSA tunnel to the Linux host.
The hostname should be the hostname of the Linux operating system.
Multiple hostnames may be configured if needed
#
10.1.1.1 LINUX
#
Typically, 127.0.0.1 is configured as hostname LOCALHOST
#
127.0.0.1 LOCALHOST

Copy your existing RESOLVER procedure to USER.PROCLIB(RESOLVER), and change
the SETUP DD statement from:
//SETUP DD DISP=SHR,DSN=CUST.TCPPARMS(yourresolverparms),FREE=CLOSE

To
//SETUP DD DISP=SHR,DSN=USER.TCPPARMS(RESOLVER),FREE=CLOSE

Add the following line to the BPXPRMxx PARMLIB members you are using with z
Systems Development and Test Environment. This line ensures the RESOLVER
procedure that you created is the one that is started.
RESOLVER_PROC(RESOLVER)

Modifying VTAMLST members
Create a VTAMLST member to define a TRL major node that matches the OSAs you
are using. Member OSATRL2 in ADCD.*.VTAMLST matches the sample devmap. If you
create a new member to match your OSAs, add that member to USER.VTAMLST. To

10 Customizing a migrated z/OS

activate this major node when VTAM® starts, add the VTAMLST member name to the
VTAM configuration list (member ATCCONxx in VTAMLST) with which you start
VTAM.
OSATRL1 VBUILD TYPE=TRL
OSATRL1E TRLE LNCTL=MPC,READ=(400),WRITE=(401),DATAPATH=(402), X

PORTNAME=PORTA,MPCLEVEL=QDIO
OSATRL2E TRLE LNCTL=MPC,READ=(404),WRITE=(405),DATAPATH=(406), X

PORTNAME=PORTB,MPCLEVEL=QDIO

Enabling use of USER.PROCLIB and IPLing
Ensure USER.PROCLIB (or whichever data set contains your customized proclibs)
is in the concatenation of the IEFPDSI DD statement in your active MSTJCLxx
parmlib member.

Copy your existing active MSTJCLxx parmlib member to USER.PARMLIB, and make
changes similar to those described in this sample:
//MSTJCL00 JOB MSGLEVEL=(1,1),TIME=1440
// EXEC PGM=IEEMB860,DPRTY=(15,15)
//STCINRDR DD SYSOUT=(A,INTRDR)
//TSOINRDR DD SYSOUT=(A,INTRDR)
//IEFPDSI DD DSN=USER.PROCLIB,DISP=SHR << MODIFIED
// DD DSN=SYS1.PROCLIB,DISP=SHR
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR

Ensure USER.PARMLIB is in the PARMLIB statement concatenation of your active
LOADxx member.

Also ensure USER.PROCLIB is in the concatenation of the proclibs in your procedure
that starts JES. For JES2, that is the PROC00 DD statement. For JES3, that is the
IATPLBST DD statement. Copy your active JES procedure into USER.PROCLIB, and
make these changes.
//JES2 PROC MEMBER=JES2PARM,ALTMEM=JES2BACK
//IEFPROC EXEC PGM=HASJES20,DPRTY=(15,15),TIME=1440,PERFORM=9
//ALTPARM DD DSN=CUST.PARMLIB(&ALTMEM),DISP=SHR
//HASPPARM DD DSN=CUST.&SYSVER..PARMLIB(&MEMBER),DISP=SHR
//PROC00 DD DSN=USER.PROCLIB,DISP=SHR << MODIFIED
// DD DSN=CEE.SCEEPROC,DISP=SHR
// DD DSN=CSQ710.SCSQPROC,DISP=SHR
// DD DSN=IOE.SIOEPROC,DISP=SHR
// DD DSN=EOY.SEOYPROC,DISP=SHR
// DD DSN=HLA.SASMSAM1,DISP=SHR
// DD DSN=CBC.SCCNPRC,DISP=SHR
// DD DSN=SYS1.PROCLIB,DISP=SHR
//HASPLIST DD DDNAME=IEFRDER

Perform an IPL of the system and use the loadparm that you want or your newly
created loadparm, whichever is appropriate, to verify that your changes are
working.

Optional tasks
Learn about optional configuration tasks for z Systems Development and Test
Environment.

Customizing a migrated z/OS system 11

Logging on to TSO from emulators not native to the host
Linux

After TCP/IP connectivity is established, you can use your favorite 3270 emulator
software, such as IBM Personal Communications Manager (PCOMM), to connect to
the non-SNA (coax) 3270 device emulator that is provided by z Systems
Development and Test Environment. When you connect from outside the Linux
system that is hosting z Systems Development and Test Environment, use the
Linux TCPIP address and 3270 as port. (The actual port number is defined in the
device map.)

Creating TSO user IDs
TSO user IDs are created through a series of commands. Typically, you want to use
user IDs that have OMVS segments and an associated z/OS UNIX user directory
when you are running Developer for z Systems.

The example commands that are shown here create a user ID in the RDZUSERS
group with an OMVS segment. Replace #userid, #name, and #password with
appropriate values, and do not remove the quotation marks in the commands.

From a CLIST, REXX exec, or TSO command line, enter the following commands.
The commands create the user ID, provide an OMVS segment, and assign an
account number, default log-on procedure, and region size. They also protect data
sets with a high-level qualifier that belongs to the user from being accessed by
other users. Finally, the commands create an alias in the master catalog to indicate
that the users data sets are cataloged in the user catalog on volume S1CUST. Be
sure that the substitution in the HOME() and PROGRAM() parameters are in
lowercase.
ADDGROUP RDZUSERS OMVS(AUTOGID)
ADDUSER #userid DFLTGRP(RDZUSERS) NAME(’#name’) PASSWORD(#password)
ALTUSER #userid OMVS(HOME(/u/#userid) PROGRAM(/bin/sh) AUTOUID)
ALTUSER #userid TSO(ACCTNUM(ACCT#) PROC(TSOLOGON) SIZE(4096) COMMAND(’ISPF’))
ADDSD ’#userid.*’ UACC(NONE)
PERMIT ACCT# CLASS(ACCTNUM) ID(#userid) ACCESS(READ)
DEFINE ALIAS (NAME(’#userid’) RELATE(’USERCAT.S1CUST’))

The new user's z/OS UNIX directory must be created. From a z/OS UNIX
command line, type the following commands. You can access z/OS UNIX by
typing TSO OMVS on the command line of any ISPF screen. You exit z/OS UNIX
with the exit command. Again, replace #userid with the name of the new user ID
in lowercase.
mkdir /u/#userid
chown #userid:RDZUSERS /u/#userid

Defining a new logon procedure
A common customization in z/OS systems is to alter the logon procedure that TSO
users use. Do not alter the ISPFPROC logon procedure because errors might
prevent you from being able to fix problems later on.

Create USER.PROCLIB(TSOLOGON) based on ISPFPROC, and make your modifications
to TSOLOGON instead of ISPFPROC. Be sure to change the identifier on the EXEC
from ISPFPROC to TSOLOGON and to override the default VOLSER used by the
ISPFCL CLIST.
//TSOLOGON EXEC PGM=IKJEFT01,REGION=0M,DYNAMNBR=175,
// PARM=’%ISPFCL VOL(S1CFG1)’

12 Customizing a migrated z/OS

To allow all users to use the TSOLOGON procedure, enter the following TSO
commands.
RDEFINE TSOPROC TSOLOGON UACC(READ)
SETROPTS RACLIST(TSOPROC) REFRESH

Altering system startup and shutdown scripts
Most z/OS distributions have a shutdown script that contains a series of
commands to shut down all active subsystems. Your system administrator knows
the name and location of these scripts.

You might want to make these changes to these scripts.

The shutdown scripts stop OMVS automatically. Explicitly stopping ZFS can
expedite the shutdown process, but requires a response to a prompt on the
operator console. If you want to stop ZFS before you shut down OMVS, add

F OMVS,STOPPFS=ZFS

Before
F OMVS,SHUTDOWN

Some startup and shutdown scripts have PAUSE commands that you might find are
too long or too short for your system. Many can be safely changed to pause for a
shorter amount of time.

You can change startup scripts the same way. Other changes might include not
starting particular subsystems, changing pause times, and so forth.

Defining JES NJE connectivity
Your z/OS distribution can be a stand-alone system with no connection to other
z/OS systems. However, you might want to connect it to one or more of your
z/OS systems to transfer data to customize and use the z Systems Development
and Test Environment system.

Since z/OS 1.7, JES supports NJE over TCP/IP, which makes setting up a
connection between two systems an easy task. The following operator commands,
which are run on the z Systems Development and Test Environment system, name
the local system RUT0 and define a connection to M168.
$TNODE(Z21S),NAME=RUT0
$TLINE1,UNIT=TCP
$SLINE1
$ADDNETSRV1,SOCKET=LOCAL
$SNETSERV1
$TNODE2,NAME=M168
$ADDSOCKET(REMOTE),NETSRV=1,LINE=1,NODE=2,IPADDR=M168.RTP.IBM.COM
$SN,SOCKET=REMOTE

Give similar operator commands on the M168 system to complete the setup. Since
this system is an existing system, the command to define the local node name was
skipped. The following commands also assume that M168 does not have spare line
or node definitions, so new ones (line 5 and node 20) are created.
$ADDLINE5,UNIT=TCP
$SLINE5
$ADDNETSRV1,SOCKET=LOCAL
$SNETSERV1

Customizing a migrated z/OS system 13

$TNJEDEF,NODENUM=20
$TNODE20,NAME=RUT0
$ADDSOCKET(REMOTE),NETSRV=1,LINE=5,NODE=20,IPADDR=RDz8500.RTP.IBM.COM
$SN,SOCKET=REMOTE

The z Systems Development and Test Environment system can use the existing
NJE definitions on the M168 system to connect to other NJE nodes in your
network. Enter the following operator commands on the z Systems Development
and Test Environment system to connect to the IPO1 system (node 3) through the
previously defined M168 system (node 2).
$TNODE3,NAME=IPO1
$ADDCONNECT,NODEA=2,NODEB=3

14 Customizing a migrated z/OS

Index

Special characters
/tmp and/u, create new zFS files for 4

A
ADCD.Z111S.PROCLIB 2

C
Configuration overview 3

E
emulators not native to the Linux 12

I
IEASYSxx 2
IPL process 2

J
JES NJE connectivity, defining 13

L
Linux routing, setting up 7
LOADxx 2
log on, z/OS 3

logon procedure, defining a new 12
Logon to TSO 12

M
migrating a working z/OS system 1
MSTJCLxx 2

N
new logon procedure, defining 12
non-native Linux emulators 12

O
optional tasks 12

P
PROFILE.TCPIP, modifying 8

R
routing, Linux, setting up 7

S
SYS1.PROCLIB 2
system configuration, introduction 1

system procedure library 2
system shutdown script, altering 13
system startup script, altering 13

T
TCP/IP, setting up 6
TCPIP.DATA, modifying 9
TCPPARMS files, modifying 8
TSO logon 12
TSO user IDs, creating 12

U
USER.PROCLIB 2
USER.TCPPARMS, modify TCP/IP

procedures to point to 9

W
working z/OS system, migrating 1

Z
z/OS system configuration, introduction

to 1
z/OS, logging on 3
zFS file creation, /tmp and /u 4

15

	Contents
	Customizing a migrated z/OS system
	A brief introduction to z/OS system configuration
	The IPL process: LOADxx and IEASYSxx members
	PROCLIB: System procedure library
	z Systems serial numbers

	Configuration overview
	Logging on to TSO
	Creating new zFS files for /tmp and /u
	Creating ALIASes for the high-level qualifiers of the zFS files
	Creating the zFS files
	Modifying BPXPRM00 parmlib member
	Copying the existing /tmp and /u directories
	Creating a loadparm for customizations
	Shutting down the system and re-IPLing

	Setting up TCP/IP
	Setting up Linux routing
	Modifying TCPPARMS files
	PROFILE.TCPIP
	TCPIP.DATA

	Modifying TCP/IP Procedures to point to USER.TCPPARMS
	Modifying VTAMLST members
	Enabling use of USER.PROCLIB and IPLing

	Optional tasks
	Logging on to TSO from emulators not native to the host Linux
	Creating TSO user IDs
	Defining a new logon procedure
	Altering system startup and shutdown scripts
	Defining JES NJE connectivity

	Index
	Special characters
	A
	C
	E
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

