

IBM Rational Logiscope

RuleChecker & QualityChecker C Reference Manual

Before using this information, be sure to read the general information under “Notices” section, on
page 151.

This edition applies to VERSION 6.6, IBM Rational LOGISCOPE (product number 5724V81) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1985, 2009
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.
ii IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

About This Manual

Audience
This manual is intended for IBM® Rational® Logiscope™ RuleChecker & Quality-
Checker users for C source code verification.

Related Documents
Reading first the following manuals is highly recommended:

• IBM Rational Logiscope - Basic Concepts.

• IBM Rational Logiscope - RuleChecker & QualityChecker - Getting Started.

Additional information on how to write new C rule verification scripts can be found in:

• IBM Rational Logiscope - Writing C rule using RuleChecker Tcl Verifier.

Overview
C Project Settings

Chapter 1 presents basic concepts of Logiscope RuleChecker & QualityChecker C, its
input and output data, its prerequisites and its limitations.

C Parsing Options

Chapter 2 describes the way to adapt Logiscope RuleChecker & QualityChecker C to the
application. It also specifies the specifics of the C dialects supported by Logiscope
RuleChecker & QualityChecker C.

Command Line Mode

Chapter 3 specifies how to run Logiscope RuleChecker & QualityChecker C using a
command line interface.
 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual iii

Standard Metrics

Chapter 4 specifies the metrics computed by Logiscope QualityChecker C.

Standard Programming Rules

Chapter 5 specifies the programming rules checked by Logiscope RuleChecker C.

Customizing Standard Rules

Chapter 6 describes the way to modify standard predefined rules and to create new ones
with Logiscope RuleChecker C.

Developing New Rule Scripts

Chapter 7 provides some basics to write new rule verification scripts to be run by Logis-
cope RuleChecker C.

Logiscope C Data Model

Chapter 8 specifies the C Data Model used by Logiscope Logiscope RuleChecker C to
locate and report programming rules violations in the source code under analysis.

Conventions
The following typographical conventions are used:

bold literals such as tool names (studio)
and file extensions (*.c),

bold italics literals such as type names (integer),

italics
names that are user-defined such as directory names
(log_installation_dir),
notes and documentation titles,

typewriter file printouts.
iv IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

Contacting IBM Rational Software Support
If the self-help resources have not provided a resolution to your problem, you can contact
IBM® Rational® Software Support for assistance in resolving product issues.

Note If you are a heritage Telelogic customer, you can go to
http://support.telelogic.com/toolbar and download the IBM Rational Telelogic
Software Support browser toolbar. This toolbar helps simplify the transition to the
IBM Rational Telelogic product online resources. Also, a single reference site for
all IBM Rational Telelogic support resources is located at
http://www.ibm.com/software/rational/support/telelogic/

Prerequisites
To submit your problem to IBM Rational Software Support, you must have an active
Passport Advantage® software maintenance agreement. Passport Advantage is the IBM
comprehensive software licensing and software maintenance (product upgrades and
technical support) offering. You can enroll online in Passport Advantage from
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html

• To learn more about Passport Advantage, visit the Passport Advantage FAQs at
http://www.ibm.com/software/lotus/passportadvantage/ brochures_faqs
_quickguides. html.

• For further assisance, contact your IBM representative

To submit your problem online (from the IBM Web site) to IBM Rational Software Sup-
port, you must additionally:
• Be a registered user on the IBM Rational Software Support Web site. For details about

registering, go to http://www-01.ibm.com/software/support/..
• Be listed as an authorized caller in the service request tool

Submitting problems
To submit your problem to IBM Rational Software Support:
1. Determine the business impact of your problem. When you report a problem to

IBM, you are asked to supply a severity level. Therefore, you need to understand
and assess the business impact of the problem that you are reporting.
 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual v

http://support.telelogic.com/toolbar
http://support.telelogic.com/toolbar
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/

Use the following table to determine the severity level.

2. Describe your problem and gather background information, When
describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Rational Software Support specialists
can help you solve the problem efficiently. To save time, know the answers
to these questions:

• What software versions were you running when the problem occurred?
To determine the exact product name and version, use the option
applicable to you:
• Start the IBM Installation Manager and select File > View Installed

Packages. Expand a package group and select a package to see the
package name and version number.

• Start your product, and click Help > About to see the offering name and
version number.

• What is your operating system and version number (including any
service packs or patches)?

• Do you have logs, traces, and messages that are related to the problem
symptoms?

• Can you recreate the problem? If so, what steps do you perform to
recreate the problem?

• Did you make any changes to the system? For example, did you make
changes to the hardware, operating system, networking software, or
other system components?

• Are you currently using a workaround for the problem? If so, be
prepared to describe the workaround when you report the problem.

Severity Description

1
The problem has a critical business impact. You are unable to
use the program, resulting in a critical impact on operation.
This condition requires an immediate solution.

2 The problem has a significantl business impact. The program
is usable, but it is severely limited.

3
The problem has a some business impact.The program is
usable, but less significant features (not critical to operation)
are unavailable.

4
The problem has a minimal business impact.The problem
causes little impact on operations or a reasonnable circumven-
tion to the problem was implemented.
vi IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

3. Submit your problem to IBM Rational Software Support. You can submit
your problem to IBM Rational Software Support in the following ways:
• Online: Go to the IBM Rational Software Support Web site at

https://www.ibm.com/software/rational/support/ and in the Rational
support task navigator, click Open Service Request. Select the
electronic problem reporting tool, and open a Problem Management
Record (PMR), describing the problem accurately in your own words.
For more information about opening a service request, go to
http://www.ibm.com/software/support/help.html
You can also open an online service request using the IBM Support
Assistant. For more information, go to http://www-01.ibm.com/
software/support/isa/faq.html.

• By phone: For the phone number to call in your country or region, go
to the IBM directory of worldwide contacts at
http://www.ibm.com/planetwide/ and click the name of your country
or geographic region.

• Through your IBM Representative: If you cannot access IBM
Rational Software Support online or by phone, contact your IBM
Representative. If necessary, your IBM Representative can open a
service request for you. You can find complete contact information for
each country at http://www.ibm.com/planetwide/.

If the problem you submit is for a software defect or for missing or inaccurate documen-
tation, IBM Rational Software Support creates an Authorized Program Analysis Report
(APAR). The APAR describes the problem in detail. Whenever possible, IBM Rational
Software Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Rational
Software Support Web site daily, so that other users who experience the same problem
can benefit from the same resolution.
 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual vii

https://www.ibm.com/software/rational/support/
https://www.ibm.com/software/rational/support/
http://www.ibm.com/software/support/help.html
http://www.ibm.com/software/support/help.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

viii IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

Table of Contents

Chapter 1 C Project Settings
1.1 Starting a Logiscope Studio Session..1
1.2 Creating a Logiscope Project...2
1.3 Relaxation Mechanism ... 12

Chapter 2 C Parsing Options
2.1 Dialects ... 15
2.2 Definition File... 16
2.3 Ignore File..18
2.4 Supported C Dialects Specification .. 19

2.4.1 ANSI 89 / ISO 90 ...19
2.4.2 ANSI / ISO 99 ..20
2.4.3 DIAB C ..20
2.4.4 GNU C..21
2.4.5 GNU C D950..21
2.4.6 GNU C Red Hat Linux 3..22
2.4.7 GNU C Red Hat Linux 4..23
2.4.8 GNU C Red Hat Linux 5..23
2.4.9 HP C ...24
2.4.10 IAR C ..24
2.4.11 Kernighan and Ritchie 78..25
2.4.12 Microsoft C 1.5 ..26
2.4.13 Microsoft Developer / Visual Studio ...27
2.4.14 Microtec Research C ..29
2.4.15 SUN C ..30

Chapter 3 Command Line Mode
3.1 Logiscope create ... 31

3.1.1 Command Line Mode..31
3.1.2 Makefile mode...32
3.1.3 Options ...33

3.2 Logiscope batch .. 35
3.2.1 Options ...35
3.2.2 Examples of Use ...36
April 2009 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual ix

Chapter 4 Standard Metrics
4.1 Function Scope... 38

4.1.1 Line Counting .. 38
4.1.2 Data Flow .. 42
4.1.3 Halstead Metrics .. 43
4.1.4 Keywords... 46
4.1.5 Structured Programming.. 48
4.1.6 Control Graph .. 49
4.1.7 Relative Call Graph ... 50

4.2 Module Scope... 52
4.2.1 Line Counting .. 52

4.3 Application Scope ... 53
4.3.1 Line Counting .. 53
4.3.2 Application Aggregates ... 54
4.3.3 Application Call Graph.. 54

Chapter 5 Standard Programming Rules
5.1 Standard Programming Rules .. 57

5.1.1 Presentation of rules .. 58
5.1.2 Rule Sets .. 58

5.2 MISRA Programming Rules ... 73
5.2.1 Presentation of the rules .. 73
5.2.2 MISRA-C:1998 Rule Package... 74
5.2.3 MISRA-C:2004 Rule Package... 89

Chapter 6 Customizing Standard Rules
6.1 Modifying the Rule Set File... 105
6.2 Modifying Standard Rules ... 106

6.2.1 Rule File Location ... 106
6.2.2 Rule File Syntax .. 106
6.2.3 Creating a New Rule from a Standard Rule .. 107
6.2.4 Renaming Rules... 108
6.2.5 Changing Rule Classification .. 109
6.2.6 Changing Rule Severity... 109

Chapter 7 Developing New Rule Scripts
7.1 Introduction .. 111
7.2 Using the Perl Verifier ... 112
7.3 Using the Tcl Verifier .. 114

7.3.1 Access commands.. 115
7.3.2 Report commands .. 116
7.3.3 Debugging aid commands ... 117

7.4 Using RuleChecker Libraries ... 117
x IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual April 2009

Chapter 8 Logiscope C Data Model
8.1 Introduction... 119
8.2 Concepts and Symbolism.. 120

8.2.1 Class ...120
8.2.2 Attribute ...120
8.2.3 Operation ..120
8.2.4 Link and association...121
8.2.5 Multiplicity...121
8.2.6 Role ..122
8.2.7 Inheritance ..122
8.2.8 Abstract class..123

8.3 The data model...124
8.3.1 Graphic Representation ..124
8.3.2 Text presentation ..132

Chapter 9 Notices
April 2009 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual xi

xii IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual April 2009

IBM Rational Logiscope
 Chapter 1

C Project Settings
 A Logiscope project mainly consists in:

• the list of source files to be analysed,

• applicable source code parsing options according to the compilation environment,

• the verification modules to be activated on the source code files and the associated
controls (e.g. metrics to be computed, rules to be checked).

A source file is a file containing C source code. This file is not necessarily compilable. It
only has to conform to the C syntax.

Logiscope C projects can be created using:

• Logiscope Studio: a graphical interface requiring a user interaction, as described in
the following sub-sections introducing the Logiscope C project settings,

• Logiscope create: a tool to be used from a standalone command line or within
makefiles, please refer to Chapter Command Line Mode to learn how to create a
Logiscope project using Logiscope create.

1.1 Starting a Logiscope Studio Session
To begin a Logiscope Studio session:

• On UNIX (i.e. Solaris or Linux):
- launch the vcs binary .

• On Windows:
- click the Start button and select the IBM Rational Logiscope <version> item in
the IBM Rational Programs Group.
C Project Settings 1

IBM Rational Logiscope
1.2 Creating a Logiscope Project
Once the Logiscope Studio main window is displayed, select the New... command in the
File menu or click on the icon, you get the following dialog box:

The Project name: pane allows to enter the name for the new Logiscope project to be
created.

Location: allows to specify the directory where the Logiscope project and the associated
Logiscope repository will be created. For more details, see the next section.

By default, the project name is automatically added to the specified location. This
implies that a subdirectory named <ProjectName> is automatically created.
2 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Defining the type of the Logiscope project
The Logiscope Project Definition dialog box allows to specify the type of Logiscope
projects to be created.

The Project Language: is the programming language in which are written the source
code files to be analysed. Of course, select C.

Note: Only one language can be selected. If your application contains source code files
written in several languages e.g. C and C++ source files, you should create several
distinct Logiscope projects: one for each language.

The Project Modules: lists the verification modules to be activated on the source code
files of the project .
For instance, you can select both RuleChecker and QualityChecker.

Notes: At least one module should be selected. The TestChecker module cannot be
selected with an other module.

For more details on TestChecker module, please refer to IBM Rational Logiscope -
TestChecker - Getting Started.
For more details on CodeReducer module, please refer to IBM Rational Logiscope -
CodeReducer - Getting Started.
C Project Settings 3

IBM Rational Logiscope
 Specifying the source files to be analysed
The Project Source Files dialog box allows to specify what source files are to be
analysed and where they are located.

Source files root directory: shall specify the directory including all the source files to
be analyzed.

If necessary, use the Directories choices to select the list of subdirectories covering the
application source files.
- Include all subdirectories means that selected files will be searched for in every sub-

directory of the source files root directory.
- Do not include subdirectories means that only files included in the application

directory will be selected.
- Customize subdirectories to include allows the user to select the list of directories

that include application files through a new page.

Suffixes choices allow to specify applicable source file extensions needed in the above
selected directories. Extensions shall be separated with a semi-colon.
4 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Setting Parsing Options
The C Language Settings dialog box allows to set up C source code parsing options:

C Dialect:

A dialect is used to specify some default specifics of the C development environment
(e.g. compilers, IDE) in use for the project under analysis:

• access paths to standard inclusion directories,

• predefined macro definitions.

• inclusion directories where rule violations shall not be reported.

In case the proposed C dialects do not match the specifics of the project C development
environment, the user can provide a dedicated Definition file specifying preprocessor
macro definitions and include files paths applicable to the project.

The source code files composing a Logiscope project may contain portions of code that
are not written in C (SQL commands, assembler language etc.). To avoid parsing errors
or inappropriate counting, the user can provide a dedicated Ignore file specifying the
syntax of the portions of code to be ignored when parsing the source files.

Please refer to the next chapter C Parsing Options for more details on the supported C
dialects and the associated Definition file and Ignore file.
C Project Settings 5

IBM Rational Logiscope
Preprocessor

In addition to the predefined preprocessing information associated to the selected C
dialect, the user can use the Preprocessor pane to provide complementary preprocessing
and compilation options:

• access paths to project specific inclusion directories,

• project macro definitions.

The syntax is as for a C compiler:

[-Idirectory]*

[-Dname_of_macro1_with_no_argument [=definition]]*

[-Uname_of_macro2_with_no_argument [=definition]]*

The number of occurrences of options -I, -D, -U is unlimited.

A “-I” option defines directory as access paths to inclusion directories.

A “-D” option defines name_of_macro1_with_no_argument as if it were in a #define
directive.

A “-U” option considers name_of_macro2_with_no_argument as undefined as if it were
part of an #undef directive.

In the example below:

-I./include -DUNIX -DDEBUG -USUPER_DEBUG

• Logiscope C parser will search for include files in the sub directory ./include;

• the UNIX and DEBUG option are defined, so the corresponding conditional code will
be parsed;

• the SUPER_DEBUG option is considered as undefined so the corresponding
conditional options will not be parsed.

Note: The option -nowarning allows to turn off Logiscope warning messages when
parsing C files.

Expanding or not expanding macros

By default, macros are expanded by the Logiscope C parser unless other macro
processing modes are specified (non expansion, expansion of a subset of macros).

Macro expansion makes it possible to take into account the control structure and the
textual elements of a macro. In this way, the constitutive elements of the macro will
appear on the control graphs displayed by Logiscope Viewer.
6 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Once the macros are expanded, the code is syntactically correct and thus analyzable.
This is not guaranteed with no expansion or partial expansion.

If the expansion is partial or absent, the Logiscope C parser will consider:

• non-expanded macros with arguments as functions,

• those with no arguments as identifiers.

Those which are considered as functions will appear on the control graph displayed by
Logiscope Viewer.

The reason for not expanding macros is to avoid result overload.

It is possible to invert the macro processing mode for the macros listed in the file
specified in the last pane of the C Language Settings dialog box. For example, if the
macro expansion is requested, the macros in the specified file will not be expanded and
others will be. The file should contain a list of macro names (one per line).
C Project Settings 7

IBM Rational Logiscope
Setting QualityChecker Parameters
The QualityChecker Settings dialog box allows to specify the applicable Project
quality model: how the QualityChecker module evaluates software quality
characteristics (e.g. Maintainability) based on a standard factors / criteria / metrics
approach.

Note: Quality models are textual files (also called Reference files). Default quality
models are provided with the standard Logiscope installation. They should be
customized to take into account the verification objectives and contexts applicable to the
project.

For more information, see the IBM Rational Logiscope Basic Concepts manual.

For your project verification, you should define and select your own applicable quality
model.
8 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Setting RuleChecker Parameters
The RuleChecker Settings dialog box allows to specify the applicable Project rule
sets: i.e. the rules / coding standards the Logiscope RuleChecker module shall verify on
the project source files.

At least one rule set should be selected for the Logiscope RuleChecker projects.

Several rule sets can be selected. If so, Logiscope RuleChecker will check the union of
the rules specified in all selected rule sets.

For more details on available rules and rule sets, please refer to the chapter Standard
Programming Rules.
C Project Settings 9

IBM Rational Logiscope
The next RuleChecker Settings dialog box allows to fine tune the list of Project rules.
It is possible to select or unselect some of the rules available.

The rules that are selected are those listed in the Project rule sets selected in the previous
RuleChecker Settings dialog box

You can check / uncheck the rules.The description of the selected rule and the rule
severity are displayed in the bottom pane
10 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
The last RuleChecker Settings dialog box allows to use some advanced features of the
Logiscope RuleChecker module.

Advanced Settings:

Allow violation relaxation mechanism: when the box is checked, rule violations
can be relaxed using special comments in the code. For more details, please refer to
IBM Rational Logiscope - Basic Concepts document..

Activate external violation import mechanism: when the box is checked, the
files in the specified project folder can be used to import violations generated by an
external tool.
For more details, please refer to the IBM Rational Logiscope - RuleChecker &
QualityChecker - Getting Started document.

Generate flat rule set file (no include): when the box is checked, the project rule
set file (i.e. with a “.rst”) extension) that is generated for the project doesn’t contain
any includes of other rule set files. It will contain an expanded copy of the contents
of any rule sets that were used for the project.
For more details, please refer to the Chapter Customizing Rules and Rule Sets.

Generated Source Code:

Source Code generated by: when the box is checked, allows to specify the tool
(e.g. Rhapsody) used to generate the code under analysis. Thus, Logiscope
RuleChecker will not considered the violations found in the generated code.

Show violations in generated code as relaxations: when the box is checked, the
violations found in generated code are reported as “relaxations”. For more details,
please refer to the next section.
C Project Settings 11

IBM Rational Logiscope
1.3 Relaxation Mechanism
When the Relaxation mechanism is activated for a Logiscope RuleChecker project, rule
violations that have been checked and that you have decided are acceptable exceptions to
the rule, can be relaxed for future builds: they will no longer appear in the list of rule
violations. This can be very useful when checking violations in a context where multiple
reviews are performed.

The violations that have been relaxed will remain accessible for future reference in the
Relaxed Violations folder.

The relaxation mechanism is based on comments inserted into the code where the
tolerated violations are. There are two ways to do this, depending on whether there is a
single rule violation to relax on the line, or multiple ones to relax on the given line.

Relaxing a single rule violation
If there is a single violation to relax, it can be done as a comment on the same line as the
code, using the following syntax:

 some code /* %RELAX<rule_mnemonic> justification */

where:

• rule_mnemonic: is the mnemonic of the rule that you want to ignore violations of
on the current line.

• justification: is free text, allowing to justify the relaxation of the rule violation.

If justification carries over several lines, they will not be included as part of the
justification of the relaxation. In order for the justification to be written on several lines,
the second syntax which is presented in the next section should be used.

Relaxing several violations and/or adding a longer justification
If there are several violations to relax for a same line (several violations occurring in
different places in the code at the same time cannot be relaxed), or if the justification of
the violation should have several lines, the following syntax should be used.
 /* >RELAX<rule_mnemonic> justification */

followed by any number of empty lines, comment lines, or relaxations of other rules
relating to the same code line, then by the code line of the violation.
12 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Relaxing all violations in pieces of code
If all the violations of one or more rules are to be relaxed in a given piece of code (e.g.
reused code included in a newly developed file), the piece of code should be surrounded
by:
 /* {{RELAX<list_of_rule_mnemonics> justification */

the piece of code

 /* }}RELAX<list of rule mnemonics> */

where:

• list_of_rule_mnemonics: is the list of all mnemonics of the rules that you want
to ignore violations of on the piece of code.
The rule mnemonics shall be separated by a comma.
C Project Settings 13

IBM Rational Logiscope
14 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
 Chapter 2

C Parsing Options

2.1 Dialects
Logiscope uses source code parsers to extract all necessary information from the source
code files specified in the project under analysis.

In order to extract accurate information from the source code under analysis, the
Logiscope C parser behaves as a C compiler. Therefore, all information requested for
correct preprocessor operation shall be provided to the Logiscope C parser to correctly
translate all C units available in the code.

For instance, expanding a macro definition involves during the code analysis,
substitution of each macro occurrence by its definition.

The C unit translation is impacted by:

• some default specifics of the C development environments (e.g. compilers, IDE) in
use for the project under analysis :

• access paths to standard inclusion directories,
• predefined macro definitions,

• project specific preprocessor macro definitions and include file paths.

Once the macro definitions are expanded, the code is syntactically correct and thus
analyzable. This is not guaranteed with no expansion or partial expansion.

To consider those specifics when parsing the source code and thus avoid parsing errors
and warnings, the user shall select the appropriate C dialect when setting up the
Logiscope project (see previous chapter).

The C dialects supported by Logiscope C are listed in section 2.4.

In fact, each C dialect is associated to predefined configuration files for parsing:

• the Definition file : that specifies access paths to standard inclusion directories and
predefined macro definitions,

• the Ignore File that allows to ignore non C code ((e.g; SQL commands, assembler
language) during parsing.

These two types of configuration file are respectively detailed in section 2.2 and 2.3.
C Parsing Options 15

IBM Rational Logiscope
These files can be modified to match the specifics of the C development environments
(e.g. compilers, IDE) in use for the project under analysis.

In case of a C dialect not supported by Logiscope, the user can define dedicated
Definition files and, if applicable, Ignore files. The syntax of these user specified parsing
configuration files shall follow the same syntax of the dialect file specified in the next
sections.

2.2 Definition File
For correct and accurate preprocessing operation, the Definition file shall contain:

• the access paths to inclusion directories,

• the list of the predefined macro definitions.

The list of predefined macro definitions for a given compiler is usually provided in the
reference manual of the compiler. Compiling code using the “-v” option may also be
used to know it.

Since these items are machine/environment configuration dependent (e.g. access path to
the system include files), it may be necessary to adapt the Definition file associated to a
given dialect or to create a new Definition file.

In case of a user specified Definition file, it shall be provided to Logiscope C:

• using the Project - Settings ... command of Logiscope Studio once the Logiscope
project has been created,

• using the “-ddef” option of the Logiscope Create tool.

Syntax: The Definition file syntax is as follows:

[I<directory>]*

[D<macro_with_no_argument> [=definition]]*

[U<macro_with_no_argument> [=definition]]*

[E<directory>]*

A “I” option defines directory as access paths to inclusion directories.

A “D” option defines macro1_with_no_argument as if it were in a #define directive.

A “U” option considers macro2_with_no_argument as undefined as if it were part of an
#undef directive.

A “E” option allows to hide the rules violations in source files located in directory.
16 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Example:

On Windows, to analyze Microsoft Visual Studio .NET 2003 C code, Logiscope will
read the information predefined in the msc70.def Definition file.

The content of this file located by default in the <log_install_dir>/util directory is listed
below:

I.
IC:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\INCLUDE

IC:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\atlmfc\INCLUDE

D_M_IX86=600

D_MSC_VER=1310

D_WIN32

D__STDC__

D_INTEGRAL_MAX_BITS=64

In this example, “C:\Program Files\Microsoft Visual Studio .NET 2003\
Vc7\INCLUDE“ corresponds to the name of the standard include directory and _M_IX86
is the name of a compiler predefined macro.

Note:

If Microsoft Visual Studio is installed on another drive than C:, change access paths in
the Definition file.

The Definition file will be sought in the following sequence:

1 from the access file indicated in the LOG_CC_DEF environment variable,

2 from the Logiscope startup directory,

3 from the directory indicated in the LOG_UTIL environment variable.
C Parsing Options 17

IBM Rational Logiscope
2.3 Ignore File
The source code files composing a Logiscope project may contain portions of code that
are not written in C (e.g. SQL commands, assembler language).

To ignore these portions of code during C source code parsing, just define the sequences
of code that delimit the portions of code to be ignored and place them in a text file
(suggested extension .ign).

Examples of such a file are provided in the <log_install_dir>/util directory.

The syntax of the Ignore file defining the code to be ignored is as follows:

• To ignore a portion of code between two keyword sequences:
word1 word2 ... wordn --> word1’ word2’ ... wordm’
Example:
SQL BEGIN --> SQL END
Code between SQL BEGIN and SQL END is ignored.

• To ignore a portion of code between a keyword sequence and the end of the line:
word1 word2 ... wordn --> $
Examples:
_asm --> $
The portion of code between _asm and the end of the line is ignored.
pragma --> # pragma end
(Please note the spaces between # and pragma)
The portion of code between #pragma and #pragma end is ignored.

• To ignore a keyword sequence:
word1 word2 ... wordn - ->
Example:
user input -->
The keyword sequence user input is ignored.

Note:

A portion of code starting with the same keyword as another portion of code and whose
left sequence is a subsequence of the portion is prohibited.

Example:
m1 m2 m3 m4 --> x y z
m1 m2 --> $
18 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
2.4 Supported C Dialects Specification
The current list of available C dialects is the following:

• ANSI 89 / ISO 90

• ANSI / ISO 99

• DIAB C

• GNU C

• GNU C D950

• GNU C Red Hat Linux 3

• GNU C Red Hat Linux 4

• GNU C Red Hat Linux 5

• HP C

• IAR C

• Kernighan and Ritchie 78

• Microsoft C 1.5

• Microsoft Developer Studio 4

• Microsoft Developer Studio 5

• Microsoft Visual Studio 6 -VC98-

• Microsoft Visual Studio .NET 2003 -VC7-

• Microtec Reseach C

• Microtec Reseach C ANSI

• SUN C

The specifics of each dialect are specified in the following subsections.

2.4.1 ANSI 89 / ISO 90

Definition Files
 ansi.def file on Windows

.log_cc_sun4os5_ansi.def on UNIX

.log_cc_linux_ansi.def on Linux
C Parsing Options 19

IBM Rational Logiscope
Reference Documentation
ISO / IEC 9899
Programming languages - C
ISO / IEC 9899 : 1990 (E)

2.4.2 ANSI / ISO 99

Definition Files
 iso99.def file on Windows

.log_cc_sun4os5_iso99.def on UNIX

.log_cc_linux_iso99.def on Linux

Reference Documentation
ISO / IEC 9899
Programming languages - C
ISO / IEC 9899 : 1999 (E)

2.4.3 DIAB C

Definition Files
diab.def file on Windows

.log_cc_sun4os5_diab.def on UNIX

.log_cc_linux_diab.def on Linux

Ignore File
• diab.ign

The __asm { text } and __asm text_until_end_of_line instructions are ignored.

Reference Documentation
D-CCTM & D-C++TM Compiler Suites
NEC V800 Series Family User's Guide and Getting Started Version 4.4

Language Specifics
The macros PPC and __DIAB are recognized.
20 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
2.4.4 GNU C

Definition Files
gnu.def file on Windows

.log_cc_sun4os5_gnu.def on UNIX

.log_cc_linux_gnu.def on Linux

Reference Documentation
GNU C Compiler - ST9 Family - User Manual
SGS-THOMSON Microelectronics
Release 3.0
May 1993

Preprocessor Specifics
The #pragma directives are not interpreted by the analyzer.

Language Specifics
The following keywords are recognized:
• asm, __asm__
• typeof, __typeof__
• inline, __inline__
• __alignof__
• __signed__
• __const__
• __volatile__

2.4.5 GNU C D950

Definition Files
gnu_d950.def file on Windows

.log_cc_sun4os5_gnu_d950.def on UNIX

.log_cc_linux_gnu_d950.def on Linux
C Parsing Options 21

IBM Rational Logiscope
Ignore File
• gnu_D950.ign

Reference Documentation
GNU C Compiler - D950 Family of DSP Processors
SGS-THOMSON Microelectronics
Release 1.1
January 1995

Preprocessor Specifics
The #pragma directives are not interpreted by the analyzer.

Language Specifics
The following keywords are recognized:
• asm, __asm__
• typeof, __typeof__
• inline, __inline__
• __alignof__
• __signed__
• __const__
• __volatile__
• __space__

2.4.6 GNU C Red Hat Linux 3

Definition Files
gnu_rhel_3.def file on Windows

.log_cc_sun4os5_gnu_rhel_3.def on UNIX

.log_cc_linux_gnu_rhel_3.def on Linux

Ignore Files
Gnu_Rhel_3.ign file on Windows

.log_cc_sun4os5_gnu_rhel_3.ign on UNIX

.log_cc_linux_gnu_rhel_3.ign on Linux
22 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Reference Documentation
GNU C 3.2.3 Manual

2.4.7 GNU C Red Hat Linux 4

Definition Files
gnu_rhel_4.def file on Windows

.log_cc_sun4os5_gnu_rhel_4.def on UNIX

.log_cc_linux_gnu_rhel_4.def on Linux

Ignore Files
Gnu_Rhel_4.ign file on Windows

.log_cc_sun4os5_gnu_rhel_4.ign on UNIX

.log_cc_linux_gnu_rhel_4.ign on Linux

Reference Documentation
GNU C 3.4.4 Manual

2.4.8 GNU C Red Hat Linux 5

Definition Files
gnu_rhel_5.def file on Windows

.log_cc_sun4os5_gnu_rhel_5.def on UNIX

.log_cc_linux_gnu_rhel_5.def on Linux

Ignore Files
Gnu_Rhel_5.ign file on Windows

.log_cc_sun4os5_gnu_rhel_5.ign on UNIX

.log_cc_linux_gnu_rhel_5.ign on Linux

Reference Documentation
GNU C 4.1 Manual
C Parsing Options 23

IBM Rational Logiscope
2.4.9 HP C

Definition Files
hp.def file on Windows

.log_cc_sun4os5_hp.def on UNIX

.log_cc_linux_hp.def on Linux

Reference Documentation
HP C / HP-UX Reference Manual (Hp 9000 Series 800 Computers)
Hewlett Packard
First Edition
August 1989

The list of predefined macro definitions can be obtained by compiling a file with the -v
option of the HP C compiler.

2.4.10 IAR C

Definition Files
iar.def file on Windows

.log_cc_sun4os5_iar.def on UNIX

.log_cc_linux_iar.def on Linux

Reference Documentation
IAR C COMPILER FOR THE H8/300 SERIES

Fourth Edition: January 1995

Part Number: ICCH83-4

Language Specifics
The following keywords are recognized:
24 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
• ANSI_main,
• banked_func, non_banked, banked
• C_task
• far, far_func
• huge
• near, near_func
• no_init
• tiny, tiny_func
• version_2
• zpage
• monitor
• interrupt
• ccr_mask
• bit
• sfr, sfrp

The following macros are recognized:
• __STDC__ 0
• __IAR_SYSTEMS_ICC__
• __ON_SIZEOF_NOT_SUPPORTED__ 4
• _argt$(a) 1
• _arg$ "1"
• __TID__ 1

2.4.11 Kernighan and Ritchie 78

Definition Files
kr78.def file on Windows

.log_cc_sun4os5_kr78.def on UNIX

.log_cc_linux_kr78.def on Linux

Reference Documentation
The C Programming Language
Kernighan and Ritchie
Prentice Hall Software Series 78
C Parsing Options 25

IBM Rational Logiscope
2.4.12Microsoft C 1.5

Definition Files
msc15.def on Windows

.log_cc_sun4os5_microsoft_15.def on UNIX.

.log_cc_linux_microsoft_15.def on UNIX.

Ignore File
• msc15.ign

Reference Documentation
Extract related to C MICROSOFT 1.5 language of the CD-ROM
Microsoft Visual C++
Development System and Tools for Windows

Language Specifics
The following keywords are recognized, ignored and copied in the instrumented source
code:
• __based, _based
• __cdecl, _cdecl, cdecl
• __export, _export
• __far, _far, far
• __fastcall, _fastcall
• __fortran, _fortran
• __huge, _huge, huge
• __inline, _inline
• __interrupt, _interrupt
• __loadds, _loadds
• __near, _near, near
• __pascal, _pascal
• __saveregs, _saveregs
• __segment, _segment
• __segname, _segname

The __asm (or _asm) instruction is recognized in different forms but not in cases listed
with the following limitations header.
26 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Limitations
• The __asm { text } instruction is recognized if character ”}” does not appear in text

(nor in comments).
• The #@ (Charizing Operator) preprocessor operator is not accepted.
• The (:>) base operator is not recognized.

2.4.13Microsoft Developer / Visual Studio

Definition Files
On Windows:
• msc40.def for Microsoft Developer Studio 4.X,
• msc50.def for Microsoft Developer Studio 5.0,
• msc60.def for Microsoft Visual Studio 6.0 -VC98,
• msc70.def for Microsoft Visual Studio .NET 2003 -VC7-,

On UNIX:
• .log_cc_sun4os5_microsoft_20.def for Microsoft Developer Studio 4.X,
• .log_cc_sun4os5_microsoft_50.def for Microsoft Developer Studio 5.0,
• .log_cc_sun4os5_microsoft_60.def for Microsoft Visual Studio 6.0 -VC98,
• .log_cc_sun4os5_microsoft_70.def for Microsoft Visual Studio .NET 2003 -VC7-,

On Linux:
• .log_cc_linux_microsoft_20.def for Microsoft Developer Studio 4.X,
• .log_cc_linux_microsoft_50.def for Microsoft Developer Studio 5.0,
• .log_cc_linux_microsoft_60.def for Microsoft Visual Studio 6.0 -VC98,
• .log_cc_linux_microsoft_70.def for Microsoft Visual Studio .NET 2003 -VC7-,

Ignore Files
• msc40.ign for Microsoft Developer Studio 4.X,
• msc50.ign for Microsoft Developer Studio 5.0,
• msc60.ign for Microsoft Visual Studio 6.0 -VC98,
• msc70.ign for Microsoft Visual Studio .NET 2003 -VC7-,

Reference Documentation
Extract on the CD-ROM C MICROSOFT 2.0 language
Microsoft Visual C++
Development System and Tools for Windows
C Parsing Options 27

IBM Rational Logiscope
Language Specifics
The following keywords are recognized but ignored:
• __based, _based
• __cdecl, _cdecl, cdecl
• __declspec, _declspec
• __except
• __fastcall, _fastcall
• __finally
• __inline, _inline
• __int8, _int8
• __int16, _int16
• __int32, _int32
• __int64, _int64
• __leave
• __stdcall, _stdcall
• __try

The __asm (or _asm) instruction is recognized in different forms but not in cases listed
with the following limitations header.

Limitations
• The __asm { text } instruction is recognized if character ”}” does not appear in text

(nor in comments).
• The #@ (Charizing Operator) preprocessor operator is not accepted.
28 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
2.4.14Microtec Research C

Definition Files for Standard Mode
mcc_std.def file on Windows

.log_cc_sun4os5_mcc_std.def on UNIX

.log_cc_linux_mcc_std.def on Linux

Definition Files for ANSI Mode
mcc.def file on Windows

.log_cc_sun4os5_mcc.def on UNIX

.log_cc_linux_mcc.def on Linux

Reference Documentation
MCC68K C Compiler
Microtec Research Inc.
Version 4.4 - December 1993

The list of compiler specifics can be obtained by compiling a file containing the #pragma
macro directive.

Language Specifics (Standard and ANSI Modes)
The following keywords are recognized but ignored:
• interrupt
• packed
• unpacked
• typeof

The asm pseudo function is recognized.

Preprocessor Specifics (Standard and ANSI Modes)
The following directives are recognized but ignored:
• #info, #inform, #informing
• #pragma eject, #pragma error, #pragma info, #pragma list, #pragma macro, #pragma

option, #pragma warn
• #warn, #warning

The following directives are recognized and the portions of code found between the two
directives are ignored:

#pragma asm, #pragma endasm
C Parsing Options 29

IBM Rational Logiscope
2.4.15SUN C

Definition Files
sun.def file on Windows

.log_cc_sun4os5_sun.def on UNIX

.log_cc_linux_sun.def on Linux

Reference Documentation
The C Programming Language - Kernighan and Ritchie
Prentice Hall Software Series 78

Language Specifics
The $ character is authorized in identifiers.
30 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
 Chapter 3

Command Line Mode

3.1 Logiscope create
Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described
in chapter Project Settings or in the Logiscope RuleChecker & QualityChecker Getting
Started documentation.

The logiscope create tool builds Logiscope projects from a standalone command line or
within makefiles (replacing the compiler command) .

3.1.1 Command Line Mode
When started from a standard command line, The create tool creates a new project file
with the information provided on the command line.

For a complete description of the command line options, please refer to the Command
Line Options paragraph.

When used in this mode, there are two different ways for providing the files to be
included into the project:

Automatic search
This is the default mode where the tool automatically searches the files in the directories.
Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source
files. This option is not mandatory, and if omitted the default is to start the search in the
current directory.

-recurse : if present indicates to the tool that the search for source files has to be
recursive, meaning that the tool will also search the subdirectories of the root directory.

File list
In this mode, the tool will look for the –list option which has to be followed by a file
name. This provided file contains a list of files to be included into the project. The file
shall contain one filename per line.
Command Line Mode 31

IBM Rational Logiscope
Example: Assuming a file named filelist.lst containing the 3 following lines:
/users/logiscope/samples/C/mstrmind/master.c

/users/logiscope/samples/C/mstrmind/player.c

/users/logiscope/samples/C/mstrmind/machine.c

Using the command line:
create aProject.ttp –audit -rule –lang c –list filelist.lst

will create a new Logiscope C project file named aProject.ttp containing 3 files: master.c,
player.c and machine.c on which RuleChecker and QualityChecker verification modules
will be activated.

3.1.2 Makefile mode
When launched from makefiles, create is designed to intercept the command line usually
passed to the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be modified in order to launch create instead of the compiler.
In this mode, the name of the project file (“.ttp” file) has to be an absolute path,
otherwise the process will stop.

When used inside a Makefile, create uses the same options as in command line mode,
except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

The following lines can be introduced in a Makefile to build a Logiscope project file :
CREATE=create /users/projects/myProject.ttp –audit -rule –lang c

CC=$(CREATE) -- gcc

CPP=$(CC) -E

...

In this mode, the project file building process is as follows:

1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate
preprocessor options if any, then Create starts the normal compilation command which
will ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used
either using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full
rebuild and to ensure that the create will catch all files.
32 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
3.1.3 Options
The create options are the following:

create -lang c

<ttp_file> name of a Logiscope project to be created
(with the .ttp extension).
Path has to be absolute if the option -- is used.

[-root <directory>] where <directory> is the starting point of the
source search. Default is the current directory.
This option is exclusive with -list option.

[-recurse] if present the source file search is done recur-
sively in subfolders.

[-list <list_file>] where <list_file> is the name of a file contain-
ing the list of filenames to add to the project
(one file per line).
This option is exclusive with -root option.

[-repository <directory>] where <directory> is the name of the direc-
tory where Logiscope internal files will be
stored.

[-no_compilation] avoid compiling the files if the -- option is
used

[--] when used in a makefile, introduces the com-
pilation command with its arguments.

[-audit] to activate the QualityChecker verification
module

[-ref <Quality_model>] where <Quality_model> is the name of the
Quality Model file (“.ref”) to add to the
project.
Default is <install_dir>/Ref/Logiscope.ref

[-rule] to select the RuleChecker verification module
[-rules <rules_file>] where <rule_file> is the name of the rule set

file (.rst) to be included into the project.
Default is the RuleChecker.rst file located in
the /Ref/RuleSets/C/ will be used.

[-relax] to activate the violation relaxation mechanism
for the project.

[-import <folder_name>] where <folder_name> is the name of the
project folder which will contain the external
violation files to be imported.
When this option is used the external viola-
tion importation mechanism is activated.
Command Line Mode 33

IBM Rational Logiscope
[-external <file_name>]* where <file_name> is the name of a file to be
added into the import project folder.
This option can be repeated as many times as
needed.
Only applicable if the -import option is acti-
vated.

[-source <suffixes>] where <suffixes> is the list of accepted suf-
fixes for the source files. Default is "*.c;*.C".

[-dial <dialect_name>] where <dialect_name> is one of the available
C dialects.

[-def <definition_file>] where <definition_file> is a definition file
(.def) containing include paths and macro def-
initions.

[-ign <ignore_file>] where <ignore_file> is an ignore file (.ign)
specifying code to be ignored during parsing.

[-I<include_path>]* same syntax as a preprocessor.
Only if option -- is not used.

[-D<macro_name>]* same syntax as a preprocessor.
Only if option -- is not used.

[-U<macro_name>]* same syntax as a preprocessor.
Only if option -- is not used.

[-mode=exp|noexp] to specify the mode of preprocessing of the
macros statements.
Default is exp: macros are expanded.

[-mac <macro_file>] where <macro_file> is a text file specifying a
list of macros statements to be or not to be
expanded according to the value of the -mode
option.
34 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
3.2 Logiscope batch
Logiscope batch is a tool designed to work with Logiscope in command line to:
• parse the source code files specified in a Logiscope project: i.e. “.ttp” file,
• generate reports in HTML and/or CSV format automatically.

Note that before using batch, a Logiscope project shall have been created:
• using Logiscope Studio, refer refer to Section 1 or to IBM Rational Logiscope

RuleChecker & QualityChecker Getting Started documentation,
• or using Logiscope create, refer to the previous section.

Once the Logiscope project is created, batch is ready to use.

3.2.1 Options
The batch command line options are the following:

batch

<ttp_file> name of a Logiscope project.
[-tcl <tcl_file>] name of a Tcl script to be used to generate the

reports instead of the default Tcl scripts.
[-o <output_directory>] directory where the all reports are generated.
[-external
<violation_file>]*

name of the file to be added into the import
project folder. This option can be repeated as
many times as needed.
This option is only significant for RuleCh-
ecker module for which the external violation
importation mechanism is activated

[-nobuild] generate reports without rebuilding the
project. The project must have been built at
least once previously.

[-clean] before starting the build, the Logiscope build
mechanism removes all intermediate files and
empties the import project folder when the
external violation importation mechanism is
activated.

[-addin <addin> options] where addin nis the name of the addin to be
activated and options the associated options
generating the reports.
Command Line Mode 35

IBM Rational Logiscope
3.2.2 Examples of Use
Considering a previously created Logiscope project named MyProject.ttp where:
• RuleChecker and QualityChecker verification modules have been activated,
• the Logiscope Repository is located in the folder MyProject/Logiscope,

(Refer to the previous section or to the RuleChecker & QualityChecker Getting Started
documentation to learn how creating a Logiscope project).

Executing the command on a command line or in a script:
batch MyProject.ttp

will:
• perform the parsing of all source files specified in the Logiscope project

MyProject.ttp,
• run the standard TCL script QualityReport.tcl located in <log_install_dir>/Scripts

to generate the standard QualityChecker HTML report named
MyProjectquality.html in the default MyProject/Logiscope/reports.dir folder.

• run the standard TCL script RuleReport.tcl located in <log_install_dir>/Scripts to
generate the standard RuleChecker HTML report named MyProjectrule.html in the
default MyProject/Logiscope/reports.dir folder.

[-table] generate tables in predefined html reports
instead of slices or charts. By default, slices or
charts are generated (depending on the project
type).
This option is available only on Windows as
on Unix there are no slices or charts, only
tables are generated.

[-noframe] generate reports with no left frame.
[-v] display the version of the batch tool.
[-h] display help and options for batch.
[-err <log_err_folder>] directory where troubleshooting files

batch.err and batch.out should be put. By
default, messages are directed to standard out-
put and error.
36 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
 Chapter 4

Standard Metrics
Logiscope QualityChecker C proposes a set of standard source code metrics. Source
code metrics are static measurements (i.e. obtained without executing the program) to be
used to assess attributes (e.g. complexity, self-descriptiveness) or characteristics (e.g.
Maintainability, Reliability) of the C source code under evaluation.

The metrics can be combined to define new metrics more closely adapted to the quality
evaluation of the source code. For example, the “Comments Frequency” metric, well
suited to evaluate quality criteria such as self-descriptiviness or analyzability, can be
defined by combining two standard metrics: “Number of Comments” and “Number of
Statements”.

The user can associate threshold values with each of the quality model metrics,
indicating minimum and maximum reference values accepted for the metric.

Source code metrics apply to different domains (e.g. line counting, control flow, data
flow, calling relationship) and the range of their scope varies.

The scope of a metric designates the element of the source code the metric will apply to.
The following scopes are available for Logiscope QualityChecker C.

• The Function scope: the metrics are available for each C functions defined in the
source files specified in the Logiscope Project under analysis.

• The Module scope: the metrics are available for each C source files specified in the
Logiscope Project under analysis; header files (i.e. suffixed by “.h” and referenced in
#include preprocessor directives) are not considered.

• The Application scope: the metrics are available for the set of C source files specified
in the Logiscope Project .
Standard Metrics 37

IBM Rational Logiscope
4.1 Function Scope

4.1.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• IBM Rational Logiscope - Basic Concepts.

lc_cline Total number of lines

lc_cloc Number of lines of code

lc_cblank Number of empty lines

lc_comm Number of lines of comments and header

lc_ccomm Number of lines of comments

lc_csbra Number of lines with lone braces

Definition Total number of lines within the function.

Definition Total number of lines containing executable code within the function.

Definition Number of lines containing only non printable characters within the func-
tion.

Definition Number of lines of comment s
- between the function header and the closing curly bracket of the previ-
ous function) and,
- within the function.

Alias LCOM

Definition Number of lines of comments within the function.

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in
the function.
38 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
lc_ccpp Number of preprocessor statements

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef)
in the function.
Standard Metrics 39

IBM Rational Logiscope
lc_stat Number of statements

lc_bcob Number of comments blocks before

Definition Number of executable statements in the function.
The following are statements:

IF
[ELSE]
SWITCH
WHILE
DO
FOR
GOTO
BREAK
CONTINUE
RETURN
THROW
TRY
ASM
; (empty statement)
 expression; (simple statement)

Statements located in external declarations are not taken into account.

Alias STMT

Definition 1 if at least a comment is located between the function header and the
closing curly bracket of the previous function or between the function
header and the beginning of the file.
0 if not.

Example /* this comment is not counted */
 /* as a comment before the function */
 int i;
 /* this one is counted
 as a comment */
 /* before the function */
 funct() ;
 {
 printf ("----------------------") ;
 printf ("----------------------") ;
 }

lc_bcob = 1
Alias BCOB
40 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
lc_bcom Number of comments blocks

CCOM Number of characters in the comments

CCOB Number of characters in the comments before

 LCOB Number of lines of comments before

Definition Number of comment blocks used between the function header and the
closing curly bracket (Blocks of COMments).
Several consecutive comments are counted as a single comment block.

Example funct() ;
 {
 /* this is a comment */
 printf ("----------------------") ;
 /* this is a second */
 /* comment */
 printf ("----------------------") ;
 /* this is a third
 comment */
 }

lc_bcom value = 3
Alias BCOM

Definition Number of alphanumeric characters in comments located between the
function header and the closing curly bracket.

Definition Number of alphanumeric characters in comments located between the
function’s header and the closing curly bracket of the previous function or
between the function’s header and the beginning of the file

Definition Number of comments lines located between the function header and the
closing curly bracket of the previous function or between the function
header and the beginning of the file.
Standard Metrics 41

IBM Rational Logiscope
4.1.2 Data Flow

dc_lvars Number of local variables

ic_param Number of parameters

UPRO Number of functions used but not yet defined

MACC Number of macros used as constants

MACP Number of macros with parameters

Definition Number of local variables declared in the function.
Alias LVAR

Definition Number of formal parameters of the function.
Alias PARA

Definition Number of functions with an unknown prototype used in the function.

Definition Number of macro-instructions used as constants in the function.

Definition Number of macro-instructions with parameters used in the function.
42 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
4.1.3 Halstead Metrics
For more details on Halstead Metrics, please refer to:

• IBM Rational Logiscope - Basic Concepts.

 n1 Number of distinct operators

The following are C operators:
• Expressions:

n Unary operators:

n Binary Operators:

n Ternary conditional operator: ?:
n Assignment operators: = *= /= %= += -= >>= <<= &= ^= |=
n Other operators:

Definition Number of different operators between the function’s header and its clos-
ing curly bracket.

Alias ha_dopt

+ - unary plus or minus
++ -- pre-/post- increment or decrement
! negation
~ complement of 1
* indirection
& address
sizeof sizeof
. dot
-> arrow
() expression in parenthesis

+ - * / % arithmetic operators
<< >> & | ^ bitwise operators
> < <= >= == != comparison operators
&& || logical operators
->* .* pointer to member operators

(...) cast (ex: (float)1)
dynamic_cast cast (ex: dynamic_cast<T>(v))
static_cast cast (ex: static_cast<T>(v))
reinterpret_cast cast (ex: reinterpret_cast<T>(v))
Standard Metrics 43

IBM Rational Logiscope
• Statements:

• Declarations:

• Declarators:

const_cast cast (ex: const_cast<T>(v))
[] subscripting (ex: a[i])
...() function call (ex: func(1))
(.., .., ..) expressions list (ex: func(1,2,3))

IF ELSE WHILE() DO WHILE()
RETURN FOR(;;) SWITCH BREAK
CONTINUE GOTO label CASE DEFAULT
LABEL
{ } (compound)
; (empty statement)

ASM (ex: asm("foo"))
EXTERN (ex: extern "C" { ... })
; (empty declaration)
(member) declaration (ex: int i; int i = 1;)
type specifier (ex: int)
storage class (ex: auto, register, static, extern, mutable)
enumerator specifier (ex: enum X { ... };)
enumerator-list (ex: enum X {a, b, c};)
enumerator-definition (ex: enum X {a=1, b=2};)
typename (ex: typedef typename X::a b;)

function declarator (ex: int func();)
[] array declarator (ex: int tab[5];)
* pointer declarator (ex: int *i;)
& reference declarator (ex: int& i;)
(.., .., ..) parameter-declaration-list (ex: int func(int i, char *j);)
{.., .., ..} initializer-list (ex: int tab[] = {1, 3, 5};)

type qualifier (ex: const, volatile)
type identifier (ex: sizeof(int), new (int))
44 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
N1 Total number of operators

n2 Number of distinct operands

The following are operands:
• Literals:

n Decimal literals (ex: 45, 45u, 45U, 45l, 45L, 45uL)
n Octal literals (ex: 0177, 0177u, 0177l)
n Hexadecimal literals (ex: 0x5f, 0X5f, Ox5fu, 0x5fl)
n Floating literals (ex: 1.2e-3, 1e+4f, 3.4l)
n Character literals (ex: ’c’, L’c’, ’cd’, ’\a’, ’\177’, ’\x5f’)
n String literals (ex: "hello", L" world\n")
n Boolean literals (true or false)

• Identifiers: variable names, type names, function names, etc.)
• File names in #include clauses (ex: #include <stdlib.h>, #include "foo.h")
• Operator names:

 N2 Total number of operands

Definition Total number of operators between the function’s header and its closing
curly bracket.

Alias ha_topt

Definition Number of different operands between the function’s header and its clos-
ing curly bracket.

Alias ha_dopd

new delete new[] delete[] **
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() [] and or xor mod rem abs not

Definition Total number of operands between the function’s header and its closing
curly bracket.

Alias ha_topd
Standard Metrics 45

IBM Rational Logiscope
4.1.4 Keywords

ct_andthen Number of “and_then” operators

ct_break_inloop Number of break in loop

ct_break_inswitch Number of break in switch

ct_case Number of case labels

ct_casepath Number of case block statements

Definition Number of occurrences of the logical operator “&& ” in the function.

Definition Number of break statements used to exit from embedding loop struc-
tures in the function.

Definition Number of break statements used to exit from embedding switch state-
ments in the function.

Definition Total number of case and default labels in the function.
Example switch(var) ;

 {
 case A:
 case B: ;
 case C:
 /* A first block of statements */
 i = j + 1;
 break;
 case D:
 case E:
 /* A second block of statements */
 i = k + 1;
 break;
 default:
 /* A third block of statements */
 break;
 }

ct_case = 6

Definition Total number of blocks of statements in switch statements in the func-
tion.
Sequential case labels are counted for one block of statements.
46 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
ct_continue Number of continue statements

ct_dowhile Number of do while statements

ct_for Number of for statements

ct_if Number of if statements

ct_orelse Number of “or_else” operators

ct_ternary Number of ternary operators

ct_return Number of return statements

Example switch(var) ;
 {
 case A:
 case B: ;
 case C:
 /* A first block of statements */
 i = j + 1;
 break;
 case D:
 case E:
 /* A second block of statements */
 i = k + 1;
 break;
 default:
 /* A third block of statements */
 break;
 }

ct_casepath = 3

Definition Number of continue statements in the function.

Definition Number of do ... while statements in the function.

Definition Number of for statements in the function.

Definition Number of if statements in the function.

Definition Number of occurrences of the logical operator “||” in the function.

Definition Number of occurrences of the ternary operator “?:” in the function.

Definition Number of return statements in the function plus one if the last state-
ment of the function is not a return.

Alias RETU
Standard Metrics 47

IBM Rational Logiscope
ct_switch Number of switch statements

ct_while Number of while statements

4.1.5 Structured Programming
In structured programming:

• a function shall have a single entry point and a single exit point,
• each iterative of selective structures shall have a single exit point: i.e. no goto,

break,continue or return statement in the structure.

Structured programming improves source code maintainability.

ct_bran Number of destructuring statements

ct_break Number of break and continue branchings

ct_exit Number of out statements

ct_goto Number of gotos

Definition Number of switch statements in the function.

Definition Number of while statements in the function.

Definition Number of destructuring statements in a function (break and continue
in loops, and goto statements).
ct_bran = ct_break_inloop + ct_continue + ct_goto
For structured programming, ct_bran shall be equal to 0.

Definition Number of break or continue statements used to exit from loop struc-
tures in the function.
break statements in switch structures are not counted (cf.
ct_breakinswitch).
ct_break = ct_break_inloop + ct_continue
For structured programming, ct_break shall be equal to 0.

Alias COND_STRUCT

Definition Number of nodes associated with an explicit exit from a function
(return, exit).
For structured programming, ct_exit shall be equal to 1.

Alias N_OUT

Definition Number of goto statements in the function.
48 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
ESS_CPX Essentiel complexity

4.1.6 Control Graph
For more details on Control Graph Metrics, please refer to:

• IBM Rational Logiscope - Basic Concepts.

ct_decis Number of decisions

ct_loop Number of loops

ct_nest Maximum nesting level

ct_path Number of paths

ct_vg Cyclomatic number (VG)

For structured programming, ct_goto shall be equal to 0.
Alias GOTO

Definition Cyclomatic number of the “reduced” control graph of the function.
The “reduced” control graph is obtained by removing all structured con-
structs from the control graph of the function.
A structured contruct is a selective or iterative structure that does not con-
tains auxiliary exit statements: goto, break, continue or return.

Justification When the Essentiel complexity is equal to 1, the function complies with
the structured programming rules.
Note that the ct_exit and ct_bran metrics already provide such an infor-
mation on the structuring of the function with more details.

Definition Number of selective statements in a function : if,switch
Alias N_STRUCT

Definition Number of iterative statements in a function (pre- and post- tested loops):
for, while, do while

Definition Maximum nesting level of control structures in a function.
Also available: LEVL = ct_nest + 1

Definition Number of non-cyclic execution paths of the control graph of the function.
Alias PATH

Definition Cyclomatic number of the control graph of the function.
Alias VG, ct_cyclo
Standard Metrics 49

IBM Rational Logiscope
DES_CPX Design complexity

4.1.7 Relative Call Graph
For more details on Call Graph Metrics, please refer to:

• IBM Rational Logiscope - Basic Concepts.

CALL Number of calls

cg_entropy Relative call graph entropy

cg_ hiercpx Relative call graph hierarchical complexity

cg_levels Relative call graph levels

cg_strucpx Relative call graph structural complexity

cg_testab Relative call graph testability

Definition Cyclomatic number of the “design” control graph of the function.
The “design” control graph is obtained by removing all constructs that do
not contain calls from the control graph of the function.

Definition Number of calls in the function.
Each call to the same function counts for one.

Definition SCHUTT entropy of the relative call graph of the function.
Alias ENTROPY

Definition Average number of components per level(i.e. number of components
divided by number of levels) of the relative call graph of the function..

Alias HIER_CPX

Definition Depth of the relative call graph of the function.
Alias LEVELS

Definition Average number of calls per component: i.e. number of calling relations
between components divided by the number of components of the relative
call graph of the function..

Alias STRU_CPX

Definition Mohanty system testability of the relative call graph of the function.
Alias TESTBTY
50 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
dc_calls Number of direct calls

dc_calling Number of callers

IND_CALLS Relative call graph call-paths

Definition Number of direct calls in the function.
Different calls to the same function count for one call.

Alias DRCT_CALLS

Definition Number of functions calling the designated function.
Alias NBCALLING

Definition Number of call paths in the relative call graph of the function.
Standard Metrics 51

IBM Rational Logiscope
4.2 Module Scope

4.2.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• IBM Rational Logiscope - Basic Concepts.

md_blank Number of empty lines

md_comm Number of lines of comments

md_cpp Number of preprocessor statements

md_line Total number of lines

md_loc Number of lines of code

md_sbra Number of lines with lone braces

md_stat Number of statements

Definition Number of lines containing only non printable characters in the module.

Definition Number of lines of comments in the module.
Alias LCOM

Definition Number of statements computed by the preprocessor (e.g. #include,
#define, #ifdef) in the module.

Definition Total number of lines in the module.

Definition Total number of lines containing executable code in the module.

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in
the module.

Definition Total number of executable statements in the functions defined in the
module.
52 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
4.3 Application Scope
Metrics presented in this section are based on the set of C source files specified in
Logiscope C Project under analysis. It is therefore recommended to use these metrics
values exclusively for a complete application or for a coherent subsystem.

4.3.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• IBM Rational Logiscope - Basic Concepts.

Note that the line counting only considers the C source files specified in the Logiscope
project: i.e. usually files suffixed by “.c”. Header files are not taken into account in line
counting for the application.

ap_sline Total number of lines

ap_sloc Number of lines of code

ap_sblank Number of empty lines

ap_scomm Total number of lines of comments

ap_scpp Number of preprocessor statements

ap_ssbra Number of lines with lone braces

Definition Total number of lines in the application source files.

Definition Total number of lines containing executable in the application source files.

Definition Total number of lines containing only non printable characters in the
application source files.

Definition Number of lines of comments in the application source files.

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef).
in the application source files.

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in
the application source files.
Standard Metrics 53

IBM Rational Logiscope
4.3.2 Application Aggregates

ap_func Number of application functions

ap_stat Number of statements

ap_vg Sum of cyclomatic numbers

4.3.3 Application Call Graph
For more details on Call Graph Metrics, please refer to:

• IBM Rational Logiscope - Basic Concepts.

ap_cg_cycle Call graph recursions

ap_cg_edge Call graph edges

ap_cg_leaf Call graph leaves

ap_cg_levl Call graph depth

Definition Number of functions defined in the application.
Alias LMA

Definition Sum of numbers of statements (i.e. lc_stat) of all the functions defined in
the application source files.

Definition Sum of cyclomatic numbers (i.e. ct_vg) of all the functions defined in the
application source files.

Alias VGA, ap_cyclo

Definition Number of recursive paths in the call graph for the application’s functions.
A recursive path can be for one or more functions.

Alias GA_CYCLE

Definition Number of edges in the call graph of application functions.
Alias GA_EDGE

Definition Number of functions executing no call.
In other words, number of leaves nodes in the application call graph.

Alias GA_NSS

Definition Depth of the Call Graph: number of call graph levels.
Alias GA_LEVL
54 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
ap_cg_maxdeg Maximum callers/called

ap_cg_maxin Maximum callers

 ap_cg_maxout Maximum called

ap_cg_node Call graph nodes

ap_cg_root Call graph roots

Definition Maximum number of calling/called for nodes in the call graph of applica-
tion functions.

Alias GA_MAXDEG

Definition Maximum number of “callings” for nodes in the call graph of Application
functions.

Alias GA_MAX_IN

Definition Maximum number of called functions for nodes in the call graph of Appli-
cation functions.

Alias GA_MAX_OUT

Definition Number of nodes in the call graph of Application functions. This metric
cumulates Application’s member and non-member functions as well as
called but not analyzed functions.

Alias GA_NODE

Definition Number of roots functions in the application call graph.
Alias GA_NSP
Standard Metrics 55

IBM Rational Logiscope
56 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
 Chapter 5

Standard Programming Rules

5.1 Standard Programming Rules
 Logiscope RuleChecker C comes with programming rules based on:

• Industrial C language programming standards,

• IBM Rational experience in Software Product Evaluation.

Different industrial programming standards sometimes contain contradictory rules. For
example, the character ‘_’ is sometimes authorized under certain conditions (not at the
beginning or at the end of a key, or no consecutive ‘_’ characters), and sometimes
prohibited altogether.

Therefore some of the rules resulting from these standards may be contradictory.
However, they are made available to the user for selecting the appropriate sub-set of
applicable rules in his/her context.

Rules are organized in Rule Sets according to their type. Logiscope RuleChecker C
comes with several default Rule Sets:

- Code Presentation,

- Complexity,

- Control Flow,

- Naming,

- Portability,

- Resource.
Standard Programming Rules 57

IBM Rational Logiscope
5.1.1 Presentation of rules
Each rule is described as follows:.

The complete name of the rule file is <log_install_dir>/Ref/Rules/C/builtin/Key.rl
where <log_install_dir> is the Logiscope installation directory.

5.1.2 Rule Sets

Code Presentation

Code Presentation rules are rules restricting how code is presented, in order to improve
code analysability and prevent maintenance problems, etc.

CodePres_1_DeclarationPerLine: One declaration per line

CodePres_2_NumberStatements: limited number of statements

CodePres_3_FileLength: Length of files

CodePres_4_StatementSwitch: Number of first level statements per switch branch

Key: Summary the Key of the rule file as specified in the .KEY field; the Key is
made of :

- a prefix related to the rule set the rule belongs to: e.g.
CodePres_, ControlFlow_, Complexity_, Naming_,
Portability_ or Resource_;

- an ordering number;
- a nmenomic;

a summary of the rule as specified in the .NAME field of the rule
file.

Description the description of the programming rule as provided in the
description and/or role options of the .TITLE field of the corre-
sponding rule file.

Role the software characteristic(s) enforced by the rule.

Definition Each line must contain no more than one declaration.
Role Maintainability.

Definition The number of statements shall not exceed 100 in a function and 1000
in a module.

Role Maintainability, Reliability

Definition A file shall not exceed 2000 lines.
Role Maintainability.

Definition The number of first level statements in each clause of a switch state-
ment shall not exceed 10.
58 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
CodePres_5_StatementSwitch: Limited total number of statements per switch
branch

CodePres_6_CommentStatementLine: No comment and statement on the same line

CodePres_7_ExtensionHeader: Included files have the extension .h

CodePres_8_EnumBoolean: Enum boolean type

CodePres_9_ParamFunction: Maximum number of parameters

CodePres_10_StatementPerLine: One statement per line

CodePres_11_ControlStructure: Control structure on a new line

Role Maintainability.

Definition The total number of statements in each clause of a switch statement
shall not exceed 25 (all levels included).

Role Maintainability.

Definition A comment must be on a line without any statement. The exception
concerns a comment written on a single line after a statement.
Example: while ((a>0) || (b>0) || (c>0)) { /* Comment
 * on several lines
 * and barely readable
 */
}
while (a>0) { /* Accepted comment */

Role Maintainability.

Definition Included files have the extension .h. If those files contain data defini-
tion or code, the user can define another extension (.db for example for
tables of a database.)

Role Maintainability..

Definition Systematically define a Boolean enumerated type containing two values
: true and false.

Role Maintainability.

Definition The number of parameters of a function is limited to 7.
This number may be customized.

Role Maintainability.

Definition No more than one basic statement per line.
Role Maintainability.

Definition A control structure (do, while, for, if, else, switch, return, break, con-
tinue) shall start on a new line.

Role Maintainability.
Standard Programming Rules 59

IBM Rational Logiscope
CodePres_12_BlankLine: Blank line after definitions

CodePres_13_Brace: Braces alone on a line

CodePres_14_CommentDeclaration: Comment for declaration

CodePres_15_PointerDeclaration: Pointer declaration

CodePres_16_SpacingRef: No space before and after ‘.’ and ‘-> ’

CodePres_17_SpacingOperator: No space between operators and operands

Definition Function definition/declaration and function body must be separated by
a blank line.

Role Maintainability.

Definition Each brace (opening and closing) must be placed alone on a line.
Role Maintainability.
Parameter If the value of the variable “exceptionAllowed” is set to 1, then some

exceptions are allowed:
- the block only includes one instruction:
- the braces and the instruction are placed on a single line.
- Inside a block, the instructions are indented by 2 spaces with respect
to the braces.
Note: avoid using tabulations for indentations, the way they are inter-
preted depends on the editor used (portability). No automatic alignment
check

Definition Declarations must be commented:
Each declaration (type, variable, enumeration item, structure field) is
commented.
The directives to the pre-processor are commented with the name of the
associated variable.

Role Maintainability.

Definition In the declaration of a pointer to a data type, the * character shall be
stuck to the pointer’s identifier.

Role Maintainability.

Definition There shall be no blank before or after the . and -> operators.
Role Maintainability

Definition Operators ++, -, & (functionAddress), * (functionRef) shall be stuck to
their operand.

Role Maintainability.
60 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
CodePres_18_SpacingParameter: Function parameters spacing

CodePres_19_LineLength: Length of lines

CodePres_21U_InclusionLevel: Number of inclusion levels

CodePres_22U_CommentPrepro: Comment directivess

CodePres_23U_Antislash: Use of \ s

CodePres_24U_Indent: Indentations

CodePres_25_SingleLineComment: Use of comments

CodePres_26_CommentDefinition: Definition comments

Definition Do not insert a blank after the opening parenthesis or before the closing
one.
Insert a blank before the opening parenthesis of a function or macro
call.

Role Maintainability.

Definition A line in a source file shall not exceed 80 characters.
Role Maintainability, Portability.

Definition The inclusion relation graph of a file shall not have more than 2 levels.
Role Portability.
Note Only available on Unix platforms.

Definition The directives #else and #elif shall have a comment.
Role Portability.
Note Only available on Unix platforms.

Definition Declarations using ”\” shall not be used.
Role Portability.
Note Only available on Unix platforms.

Definition Statements, comments, { and } shall be indented.
Role Maintainability.
Note Only available on Unix platforms.

Definition Comments shall be one line long.
Role Maintainability.

Definition All the definitions got a comment.
Role Maintainability.
Standard Programming Rules 61

IBM Rational Logiscope
CodePres_28_Definitions: Definitions

CodePres_29_SpacingUnaryOperator: No space after unary operators

CodePres_30_Define: Define altogether after include

Complexity

Complexity rules concern operators, statements and language traps in order to improve
code reliability and maintainability.

Complexity_1_MultipleAssignment: No multiple assignments

Complexity_2_NoTernaryOp: No ternary operator

Complexity_3_NoUnary+: No unary + operator

Complexity_4_NoAssignmentOp: Assignment operators not recommended

Definition A module’s “.c” body file must contain the “in public” definitions of
the exported functions, and the “in public” definitions of the exported
variables.

Role Maintainability.

Definition Unary operators ! and ~ must be stuck to their operand to avoid confu-
sion with binary operators.

Role Maintainability.

Definition The #define preprocessing directives shall be grouped altogether.
This group shall follow the #include directives.

Role Maintainability.

Definition Multiple assignments shall not be used.
Example x = y = z ;
Role Maintainability.

Definition The ternary operator (?:) shall not be used.
Example z = (a>b) ? a : b
Role Maintainability.

Definition The unary + operator shall not be used
Example x = +10;
Role Maintainability.

Definition Assignment operators other than = (e.g. *=, /=, %=, &=) shall not be
used.

Role Maintainability.
62 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Complexity_5_CallResult: Use of the result of the function calls

Complexity_6_++--Operators: Use of ++ and --

Complexity_7_NoCast: No explicit casting

Complexity_8_NoMultipleInit: Initialisations in multiple declarations

Complexity_9_Macro: One statement by macro

Complexity_10_FieldAddressing: No (*ptr). field

Complexity_11_NoCommaAndTernary: ?: and , operators

Definition A function call must never appear as an independent statement.
A function shall never be used for its side-effects

Role Reliability.

Definition The use of ++ and -- shall be limited to simple cases. They shall not be
used in statements where other operators occur.
The prefix use is always forbidden.

Role Maintainability.

Definition Cast functions shall not be used..
Role Maintainability, Portability.

Definition Initialisations in multiple declarations are forbidden
Initialisations only occur on single expressions and are done, when pos-
sible, through symbolic constants.

Role Maintainability.

Definition A macro shall not contain several statements.
Multi-line macros shall not be used.

Role Maintainability.

Definition To address a structure field via a pointer to the structure, the notation
ptr>Field shall be used.
Example: struct foo {
 int a;
 int b;
 } ;
struct foo *p_foo ;
p_foo->a ; /* Correct */
(*p_foo).a ; /* Rejected */

Role Maintainability.

Definition ?: and , shall not be used
Role Maintainability.
Standard Programming Rules 63

IBM Rational Logiscope
Complexity_12_OperatorInCondition: Operator in conditions

Complexity_13_SimpleTest: No simple statements

Complexity_14_InclusionLevel: Only one inclusion level

Complexity_15_Sizeof: Parentheses for sizeofl

 Control Flow

These rules deal with the control flow of the program in order to improve its
maintainability and reliability.

ControlFlow_1_NoDeadCode: No inaccessible code

ControlFlow_2_FunctionReturn: Use of return

ControlFlow_3_NoGoto: No goto

ControlFlow_4_ThenElse: Then and else parts of if instructions

Definition A condition with more than 4 operators shall not contain several dis-
tinct operators.

Role Maintainability.

Definition Statements like x == y ; or x != y ; shall not be used..
Role Reliability.

Definition File inclusion shall not exceed one level. Include are therefore forbid-
den in header files.

Role Maintainability.

Definition Always uses parentheses to isolate the sizeof operand.
Role Maintainability.

Description There shall be no dead code, especially after goto and return state-
ments.

Role Maintainability.

Description One return statement per function. It shall be the last statement of the
function.

Role Maintainability.

Description Goto statement, especially local goto statement, shall not be used.
Role Maintainability.

Description The then and else parts of if statements shall not be void.
Role Maintainability.
64 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
ControlFlow_5_NoBreakContinue: Use of break and continue

ControlFlow_6_DefaultInSwitch: Default in switch

ControlFlow_7_BreakInSwitch: Break in case clauses

ControlFlow_8_BreakPathInSwitch: Break in paths of switch branch

ControlFlow_9_ControlStructureNesting: Control structure nesting limited

ControlFlow_10_SwitchBetterThanIf: Switch and several if

ControlFlow_11_OneBreakContinue: One break or continue

Naming

Naming rules define the way the different entities of the application can be named.
They improve maintainability of the code.

Description Break and continue shall not be used in loops (for, do, while)
Role Maintainability.

Description The default clause is mandatory in a switch statement.
Role Reliability.

Description Break is mandatory for case clauses containing statements and shall
be the last statement of the clause.

Role Reliability.

Description Break is mandatory for case clauses containing statements. If break is
not the last instruction of a switch branch, one break shall be added
for each path.

Role Reliability.

Description Control structure nesting is limited to 6 levels
Role Understandability, Maintainability.

Description It is better to use a switch than several if statements.
Example if ()

else if ()
[else if ()]*
else
will provoke violations (only 3 nested if statements).

Role Maintainability.

Description Only one continue or break statement is authorized in the body of for,
do or while loops.

Role Maintainability.
Standard Programming Rules 65

IBM Rational Logiscope
Naming_1_MinLength: Minimum length of identifiers

Naming_2_Underscore: ‘_’ at the beginning or at the end of an identifier

Naming_3_DoubleUnderscore: No double underscore

Naming_4_NoUnderscore: Underscore in identifiers

Naming_5_GlobalVariable: Global variable naming

Naming_6_LocalVariable: Local variable naming

Naming_7_Function: Function naming

Naming_8_Constant: Constant naming

Naming_9_Macro: Macro naming

Description Identifiers shall be at least X+1 characters long.
X may be customized.

Role Maintainability.

Description Identifiers shall not start or finish with the character underscore ‘_’
Example It is difficult to distinguish _name, name and name_.
Role Maintainability.

Description Identifiers shall not contain two underscore ‘_’ characters consecu-
tively.

Example It is difficult to distinguish _name and __name.
Role Maintainability.

Description The underscore character ‘_’ shall not be used.
Role Maintainability.

Description The first character of a global variable identifier is upper-case. The
others are lower-case letters, numbers or the underscore character.

Role Maintainability.

Description The first character of a local variable identifier is lower-case. The
others are lower-case letters, numbers or the underscore character.

Role Maintainability.

Description The first character of a function identifier is lower-case. The others
are lower-case letters, numbers or the underscore character.

Role Maintainability.

Description The first character of a constant identifier is upper-case. The others
are upper-case letters, numbers or the underscore character.

Role Maintainability.

Description The first character of a macro identifier is upper-case. The others are
upper-case letters, numbers or the underscore character.
66 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Naming_10_Type: Type naming

Naming_11_StructField: Structure type fields naming

Naming_12_MainParam: Parameters of main:

Naming_13_EnumConstant: Enum constant naming

Naming_14U_Module: Module naming

Naming_15_Prefix: Name prefix

Naming_16_SymbolNaming: Symbol naming

Role Maintainability.

Description The first character of a type identifier is upper-case. The others are
upper-case letters, numbers or the underscore character.

Role Maintainability.

Description The first character of a structured type component identifier is upper-
case. The others are lower-case letters, numbers or the underscore
character.

Role Maintainability.

Description Parameters of main shall be named:
- argc: integer representing the command parameter number
- argv: array of strings of length of argc

Role Maintainability.

Description Enum constants shall be written with upper-case letters.
Role Maintainability.

Description All C modules consist of a body file and an interface file.
These two files have the same root which is the module name.

Role Maintainability.
Note Not available on Windows platforms.

Description This concerns module level entities (internal and external). Choosing
a module name as prefix guarantees that all prefixes are distinct.

Role Maintainability.

Description This rule concerns all symbols of an application:
- Language keyword: Lower-case letters,
- [macro-]function: First letter upper-case and the others lower-case,
- [macro-]constant: Upper-case letters,
- Type: First letter upper-case, the others lower-case,
- Structure Field: Lower-case letters,
- Enumeration items: Lower-case letters,
- Variable: Lower-case letters,
- Parameters: Lower-case letters.
Standard Programming Rules 67

IBM Rational Logiscope
Portability

This set of rules concern characters, keywords and C Standard. They improve portability
of the program.

Portability_1_C++Keywords: C++ keywords use

Portability_2_NoDollar: No ‘$’ in identifier

Portability_4_CharIdentifier: Authorized characters

Portability_5_NoSignedRightShift: Use of >>

Portability_6_MainNaming: Exit from main

Portability_7_NoRecursiveHeader: No recursive inclusion

Portability_8U_ConditionalCompilation: Conditional compilation

Role Maintainability.

Description Keywords from C++ language (class, new, friend...) shall not be
used.

Role Portability.

Description The ‘$’ character shall not be used in an identifier.
Restriction imposed by the C ANSI standard.

Role Portability.

Description The only authorized characters in identifiers shall be:
- letters (upper- and lower-case),
- numbers,
- underscore character ‘_’ ;

Role Portability.

Description The right shift operator >> shall not be used on signed integer.
Role Portability.

Description Only the exit function shall be used to go out from main.
Role Portability.

Description Header files shall not include themselves recursively.
Role Portability.

Description Header files shall have the following structure :
#ifndef ModuleName_h_
#define ModuleName_h_
....
#endif

Role Portability.
68 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Portability_9U_AbsolutePathInclude: #include

Portability_10U_DirectiveFirstColumn: Compilation directive

Portability_11U_NoAsmDirective: #asm

Portability_12U_FilenameLength: File naming

Portability_13_NoTab: Use of tabulations

Resource

Resource rules are rules restricting how resources in the application are used, in order to
improve code maintainability, efficiency and reliability.

Resource_1_AccessArray: Access to an array

Resource_2_ForCounter: Counter in for statements

Note Not available on Windows platforms.

Description File names in #include directives must be in the same case than the
file name and shall not contain any absolute path.

Role Portability.
Note Not available on Windows platforms.

Description The character # of compilation directives shall be on the first column.
Role Portability.
Note Not available on Windows platforms.

Description #asm directive shall not be used.
Role Portability.
Note Not available on Windows platforms.

Description File names shall be lower-case and shall not exceed 8 characters for
the name and 3 characters for the extension.

Role Portability.
Note Not available on Windows platforms.

Description Tabulations shall not be used in source files.
Role Portability.

Description A pointer shall be used to run through successive elements of an
array rather than an index.

Role Efficiency.

Description The counter in a for statement shall not be modified inside the loop
and shall be a local variable.

Role Reliability.
Standard Programming Rules 69

IBM Rational Logiscope
Resource_3_DeclarationInitSeparate: Declaration and initialisation separate

Resource_4_DeclarationInitCombine: Declaration and initialisation combined

Resource_5_LocalDeclaration: Local variable declaration

Resource_6_GlobalDeclaration: Global variable declaration

Resource_7_VariableUse: Use of variables

Resource_8_FunctionUse: Use of functions

Resource_9_ParameterUse: Use of parameters

Resource_10_NoGlobalParameter: Global variable as a parameter

Resource_11_InputParameter: Entry parameter

Resource_12_NoExternBody: No extern in body file

Description Declaration and initialisation of a variable shall be separate.
Role Maintainability.

Description Declaration and initialisation of a variable shall be done at the same
time, if possible.

Role Reliability.

Description Declaration of local variables in an instruction block shall not be
used.

Role Maintainability.

Description Global objects shall be declared in an inclusion file.
Role Maintainability

Description Declared variables shall be used.
Role Maintainability.

Description Declared functions shall be used.
Role Maintainability.

Description Function parameters shall be used.
Role Maintainability.

Description A global variable shall not be used as a parameter.
Role Maintainability.

Description A function’s input parameter shall be either a pointer to const, or
passed by value.

Role Reliability.

Description The keyword extern shall not be used in a.c file.
Role Maintainability.
70 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Resource_13_NoStaticInFunc: Static in functions

Resource_14_ExternHeader: Variable in header files

Resource_15_NoFunctionHeader: Definition of functions

Resource_16_FileExtension: File extension

Resource_18_NoBodyInclusion: Body inclusion

Resource_19_NoBitfield: No bitfields

Resource_20_NoAuto: Auto attribute

Resource_21_ArrayInit: Array initialization

Resource_22_PointerInit: Pointer initialization

Description The keyword static shall not be used in the body of a function.
Role Reliability.

Description Declarations of variables in an header file shall be preceded by
extern.

Role Reliability.

Description Functions (other than macros) shall not be defined in an header file.
Role Maintainability.

Description The header file shall have the extension .h and the body file the
extension .c.

Role Maintainability.

Description A .c file shall not be included in another file, it shall be compiled to
give an object module.

Role Maintainability.

Description Bitfields shall not be used.
Role Reliability.

Description Declaration of variables local to a function shall never be made with
.

Role Reliability.

Description Initialization of an array shall conform to its structure.
Role Readability.

Description A pointer shall always be initialized. If it points to no known vari-
able, it shall be initialized to NULL.

Role Reliability.
Standard Programming Rules 71

IBM Rational Logiscope
Resource_23_WhileInit: Initialization of while statement variables

Resource_24_ConstVolatileInit: Initialization of const and volatile variables

Resource_26_TypedefUnionStruct: Typedef for unions and structures

Resource_30_EnumInit: Initialization of enumerations

Resource_31_StructUnion: Union and structure

Resource_32_ForSpecification: Specification of for

Description The initial value of a parameter of a while loop shall be known before
entering the loop.
If not, there shall be a comment explaining the initial state of the
parameter, the comment shall be situated at MaxLine of the while
statement. MaxLine may be customized.

Role Reliability.

Description Only const and volatile variables to a function shall be initialized
when they are defined.

Role Reliability.

Description A typedef shall not be used to mask structures or unions.
Role Maintainability.

Description The initialization of enumeration fields shall not be explicit.
Role Reliability.

Description Using the union type shall be limited to declaring partially variable
types.

Role Maintainability.

Description All parts a for statement shall be filled.
Role Reliability.
72 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
5.2 MISRA Programming Rules
The Motor Industry Software Reliability Association has published guidelines
containing list of rules for the use of the C programming language for embedded
systems, especially for embedded automotive systems:

• Guidelines For The Use Of The C Language In Vehicle Based Software - April 1998
[MISRA-C:1998],

• MISRA-C:2004 Guidelines for the use of the C language critial systems - October
2004 [MISRA-C:2004].

Apart from standard programming rules, MISRA programming rules packages are
available. These packages are not shipped with Logiscope RuleChecker C and have to be
purchased in addition to the product. Compressed and encrypted files are available in the
<log_install_dir> directory.

Rules are organized in rule sets according to their classification i.e. Required or
Advisory in the corresponding MISRA Guidelines:

• the MISRA Required rule set,

• the MISRA Advisory rule set,

• the MISRA “All” rule set containing all of the rule sets presented above.

When using the MISRA packages, please rename the rulesets.lst.MISRA file to
rulesets.lst in the directory where the packages have been extracted.

5.2.1 Presentation of the rules
Each rule is described as follows:.

The complete name of the rule file is <log_install_dir>/Ref/Rules/C/Key.rl where
<log_install_dir> is the Logiscope installation directory. The syntax of this file is
described in the reference part in the “File - programming rules” field.

Key: Summary the Key of the rule file as specified in the .KEY field; the Key is
made of the MISRA_ prefix followed by the rule identifier in the
corresponding MISRA Guidelines.
a summary of the rule as specified in the .NAME field of the rule
file.

Description the description of the programming rule as provided in the
description and/or role options of the .TITLE field of the corre-
sponding rule file.

Role the software characteristic(s) enforced by the rule.
Classification the classification of the rule as specified in the corresponding

MISRA Guidelines: i.e. Required or Advisory
Standard Programming Rules 73

IBM Rational Logiscope
5.2.2 MISRA-C:1998 Rule Package
83 of the 93 “Required” rules specified in the MISRA-C:1998 document can be checked
using the Logiscope RuleChecker C MISRA 1998 programming rule package as well as
23 of the 34 “Advisory” rules.

MISRA_Rule5: ISO C standard Characters only

MISRA_Rule7: Trigraphs

MISRA_Rule8: Multibyte characters

MISRA_Rule9: Nested comments

MISRA_Rule11: Length of identifiers

MISRA_Rule12: Name of identifiers

MISRA_Rule13: Basic types

Description Only those characters and escape sequences which are defined in the
ISO C standard shall be used.

Role Maintainability.
Classification Required.

Description Trigraphs shall not be used.
Role Maintainability.
Classification Required.

Description Multibyte characters and wide string literals shall not be used.
Role Reliability.
Classification Required.

Description Comments shall not be nested.
Role Portability.
Classification Required.

Description Identifiers shall not exceed 31 characters.
Restriction imposed by the C ANSI standard.

Role Portability.
Classification Required.

Description No identifier in one name space shall have the same spelling as an
identifier in another name space.

Role Reliability.
Classification Advisory.

Description The basic types of char, int, short, long, float and double should not
be used, but specific-length equivalents should be typedef’d for the
specific compiler.
74 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_Rule14: Type char

MISRA_Rule16: Underlying representation of floating point numbers

MISRA_Rule17: Typedef names

MISRA_Rule18: Numeric constants and suffixes

MISRA_Rule19: Octal constants

MISRA_Rule20: Declaration before use

MISRA_Rule21: Hidden identifiers linkage of identifiers

Role Reliability.
Classification Advisory.

Description The type char shall always be declared as unsigned char or signed
char.

Role Portability.
Classification Required.

Description The underlying bit representation of floating point numbers shall not
be used in any way by the programmer.

Role Reliability.
Classification Required.

Description Typedef names shall not be reused.
Role Reliability.
Classification Required.

Description Numeric constants should be suffixed to indicate type, where an
appropriate suffix is available.

Role Reliability.
Classification Advisory.

Description Octal constants other than zero shall not be used.
Role Maintainability.
Classification Required.

Description All objects and functions identifiers shall be declared before use.
Role Reliability.
Classification Required.

Description Identifiers in an inner scope shall not use the same name as an identi-
fier in an outer scope, and therefore hide that identifier.
Identifiers shall not simultaneously have both internal and external
linkage in the same translation unit.
Rule 24 violations will be caught by this rule and flagged as rule 21
violations.
Standard Programming Rules 75

IBM Rational Logiscope
MISRA_Rule22: Object declarations

MISRA_Rule23i: Functions declaration

MISRA_Rule25: External definition

MISRA_Rule26: Declarations of functions must be compatible

MISRA_Rule27: External declarations

MISRA_Rule28: Use of register

MISRA_Rule29:Use of tags

Role Reliability.
Classification Required.

Description Declarations of objects should be at function scope unless a wider
scope is necessary.

Role Reliability.
Classification Advisory.

Description A declaration of function at file scope should be static where possi-
ble.

Role Maintainability, Reliability
Classification Advisory.

Description An identifier with external linkage shall have exactly one external
definition.

Role Reliability.
Classification Required.

Description If objects or functions are declared more than once their types shall
be compatible.

Role Reliability, Portability.
Classification Required.

Description External objects should not be declared in more than one file.
Role Reliability.
Classification Advisory.

Description The register storage class specifier shall not be used.
Role Portability.
Classification Advisory.

Description Use of tags shall agree with its declaration.
Role Reliability.
Classification Required.
76 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_Rule30: Assignment

MISRA_Rule31: Structured initialisation

MISRA_Rule32: Enumeration initialization

MISRA_Rule33: Side effects

MISRA_Rule34: Logical operand

MISRA_Rule35: Test and assignment result

Description All automatic variables must have been assigned a value before being
used.

Role Reliability.
Classification Required.

Description Braces shall be used to indicate and match the structure in the non-
zero initialisation of arrays and structures.

Role Reliability.
Classification Required.

Description In an enumerator list, the ‘=’ construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized.

Role Reliability.
Classification Required.

Description The right hand operand of a && or || operator shall not contain side
effects.

Role Reliability, Portability.
Classification Required.

Description Operands of a logical && and || shall be primary expressions.
Role Reliability.
Classification Required.

Description Assignment operators shall not be used in expressions which returns
Boolean values.
Example:
if (x = y) { /* Violation */ }

if ((x = y) != 0) { /* Violation */ }

x = y ;
if (x != 0) { /* Correct */ }

Role Reliability.
Classification Required.
Standard Programming Rules 77

IBM Rational Logiscope
MISRA_Rule37: Bitwise operations

MISRA_Rule38: Shift operator and right hand operand

MISRA_Rule39: Unary minus operator

MISRA_Rule40: Operator sizeof

MISRA_Rule42: Comma operator

MISRA_Rule43: Conversions

MISRA_Rule44: Redundant casts

MISRA_Rule45: Cast and pointers

Description Bitwise operations (~, <<, >>, &, ^ and |) shall not be performed
on signed integer types.

Role Reliability.
Classification Required.

Description The right hand operand of a shift operator shall lie between zero and
one less than the width in bits of the left hand operand (inclusive).

Role Reliability.
Classification Required.

Description The unary minus operator shall not be applied to an unsigned expres-
sion.

Role Reliability.
Classification Required.

Description The sizeof operator should not be used on expressions that contain
side effects.

Role Reliability.
Classification Advisory.

Description The comma operator shall not be used, except in the control expres-
sion of a for loop.

Role Reliability.
Classification Required.

Description Implicit conversions which may result in a loss of information shall
not be used.

Role Reliability.
Classification Required.

Description Redundant explicit casts should not be used.
Role Reliability
Classification Advisory.

Description Type casting from any type to or from pointers shall not be used.
78 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_Rule46: Evaluation order

MISRA_Rule48: Mixed precision arithmetic and cast

MISRA_Rule50: Test between floats

MISRA_Rule52: Unreachable code

MISRA_Rule53: Non-null statements

MISRA_Rule54: Location of null statements

MISRA_Rule55: No labels

Role Reliability.
Classification Required.

Description The value of an expression shall be the same under any order of eval-
uation that standard permits.

Role Reliability
Classification Required.

Description Mixed precision arithmetic should use explicit casting to generate the
desired result.

Role Reliability
Classification Advisory.

Description Floating point variables shall not be tested for exact equality or ine-
quality.

Role Reliability.
Classification Required.

Description There shall be no unreachable code.
Role Reliability.
Classification Required.

Description Non-null statements shall have a side-effect.
Role Reliability.
Classification Required.

Description A null statement shall occur on a line by itself, and shall not have any
other text on the same line.

Role Reliability.
Classification Required.

Description Labels should not be used, except in switch statements.
Role Understandability
Classification Advisory.
Standard Programming Rules 79

IBM Rational Logiscope
MISRA_Rule56: Goto

MISRA_Rules5758: Break and continue

MISRA_Rule59: Use of braces

MISRA_Rule60: Then and else

MISRA_Rule61: Break in switch

MISRA_Rule62: Default in switch

MISRA_Rule63: Switch and boolean

MISRA_Rule64: Switch without case

Description The goto statement shall not be used.
Role Maintainability.
Classification Required.

Description The continue statement shall not be used.
The break statement shall not be used (except to terminate the cases
of a switch statement).

Role Maintainability.
Classification Required.

Description Statements forming the body of an if, else if, else, while, do ... while
or for statement shall always be in brackets.

Role Maintainability.
Classification Required.

Description All if, else if constructs should contain a final else clause.
Role Reliability, Understandability
Classification Advisory.

Description Every non-empty case clause in a switch statement shall be termi-
nated with a break statement.

Role Reliability.
Classification Required.

Description All switch statements should contain a final default clause.
Role Reliability.
Classification Required.

Description A switch expression should not represent a Boolean value.
Role Maintainability.
Classification Advisory.

Description Every switch statement shall have at least one case.
Role Maintainability.
80 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_Rule65: Loop counter

MISRA_Rule66: Loop control

MISRA_Rule67: Counter in for statements

MISRA_Rule68: Scope of functions

MISRA_Rule69: Variable number of arguments

MISRA_Rule70: Recursion

MISRA_Rule71: Prototyping

Classification Required.

Description Floating point variables shall not be used as loop counters.
Role Reliability.
Classification Required.

Description Only expressions concerned with loop control should appear within a
for statement.

Role Reliability.
Classification Advisory.

Description Numeric variables being used within a for loop for iteration counting
should not be modified in the body of the loop.

Role Reliability.

Description Functions shall always be declared at file scope.
Role Maintainability.
Classification Required.

Description Functions with variable numbers of arguments shall not be used.
Role Reliability, Maintainability
Classification Required.

Description Functions shall not call themselves, either directly or indirectly.
Role Reliability, Maintainability.
Classifica-
tion

Required.

Description Functions shall always have prototype declarations and the prototype
shall be visible at both the function declaration and call.

Role Reliability, Maintainability.
Classification Required.
Standard Programming Rules 81

IBM Rational Logiscope
MISRA_Rule7576: Void type and functions

MISRA_Rule78: Parameters

MISRA_Rule79: Values of void functions

MISRA_Rule80: Void expressions and function parameters

MISRA_Rule81: Function parameters and const

MISRA_Rule82: Use of return

MISRA_Rule83i: Functions with non-void return types

Description Every function shall have an explicit return type.
Functions with no parameters shall be declared with parameter type
void.

Role Reliability, Maintainability.
Classification Required.

Description A parameter number passed to a function shall match the function
prototype.

Role Reliability, Maintainability.
Classification Required.

Description Values returned by void functions shall not be used.
Role Reliability.
Classification Required.

Description Void expressions shall not be passed as function parameters.
Role Reliability.
Classification Required.

Description Const qualification should be used on function parameters which are
passed by reference, where it is intended that the function will not
modify the parameter.

Role Reliability.
Classification Advisory.

Description A function should have a single point of exit.
Role Maintainability.
Classification Advisory.

Description For functions with non-void return type, there shall be one return
statement for every exit branch.

Role Reliability.
Classification Required.
82 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_Rule83ii: Functions with non-void return types

MISRA_Rule83iii: Functions with non-void return types

MISRA_Rule84: Void functions

MISRA_Rule85: Function with no parameters

MISRA_Rule87: Code structure

MISRA_Rules8889: #include syntax

MISRA_Rule91: Define and undefine in a block

Description For functions with non-void return type, each return shall have an
expression.

Role Reliability.
Classification Required.

Description For functions with non-void return type, the return expression shall
match the declared return type.

Role Reliability.
Classification Required.

Description For functions with void return type, return statements shall not have
an expression.

Role Reliability.
Classification Required.

Description Functions called with no parameters should have empty parentheses.
Role Reliability.
Classification Advisory.

Description #include statements in a file shall only be preceded by other prepro-
cessor directives or comments.

Role Reliability.
Classification Required.

Description Non-standard characters shall not occur in header file names in
#include directive.
The #include directive shall be followed by either a <filename> or
“filename” sequence.

Role Reliability.
Classification Required.

Description Macros shall not be #define'd and #undef'd within a block.
Role Reliability.
Classification Required.
Standard Programming Rules 83

IBM Rational Logiscope
MISRA_Rule92: Use of #undef

MISRA_Rule93: Functions and macros

MISRA_Rule94: Function-like macro call

MISRA_Rule95: Arguments to function-like macros

MISRA_Rule96i: Parentheses for macro occurences

MISRA_Rule96ii: Parentheses for macro occurences

MISRA_Rule97: Identifiers in pre-processor directives

M ISRA_Rule98: # and ## in macros

Description #undef should not be used.
Role Reliability.
Classification Advisory.

Description A function should be used in preference to a function-like macro.
Role Reliability.
Classification Advisory.

Description A function-like macro shall not be called without all of its arguments.
Role Reliability.
Classification Required.

Description Arguments to a function-like macro shall not contain tokens that look
like pre-processing directives.

Role Reliability.
Classification Required.

Description In a definition of a function-like macro, each instance of a parameter
shall be enclosed in parentheses.

Role Reliability.
Classification Required.

Description In a definition of a function-like macro, the whole definition shall be
enclosed in parentheses.

Role Reliability.
Classification Required.

Description Identifiers in pre-processor directives should be defined before use.
Role Reliability.
Classification Advisory.

Description There shall be at most one occurence of the # or ## pre-processor
operators in a single macro definition.

Role Reliability.
84 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
M ISRA_Rule99: All uses of the #pragma directive shall be documented and
explained

MISRA_Rule100:Operator defined

MISRA_Rule101: Pointer arithmetic

MISRA_Rule102: Reference complexity

MISRA_Rule103: Pointers and operators

MISRA_Rule104: Pointers to functions

MISRA_Rule105: Pointers to functions

Classification Required.

Description The line beofre the #pragma directive shall containa comment.
Role Maintainability.
Classification Required.

Description The defined pre-processor operator shall only be used in one of the
two standard forms.

Role Reliability.
Classification Required.

Description Pointer arithmetic should not be used.
Role Reliability.
Classification Advisory.

Description No more than 2 levels of pointer indirection should be used.
Role Maintainability.
Classification Advisory.

Description Relational operators shall not be applied to pointer types except
where both operands are of the same type and point to the same array,
structure or union.

Role Reliability.
Classification Required.

Description Non-constant pointers to functions shall not be used.
Role Reliability.
Classification Required.

Description All the functions pointed to by a single pointer to function shall be
identical in the number and type of parameters and the return type.

Role Reliability.
Classification Required.
Standard Programming Rules 85

IBM Rational Logiscope
MISRA_Rule106: Address assignment

MISRA_Rule107: Null pointer

MISRA_Rule108: Members of structures and unions

MISRA_Rule109: Variable storage

MISRA_Rule110: Unions access

MISRA_Rule111: Type of bitfields

MISRA_Rule112: Two bits long bit fields

MISRA_Rule113: Structure fields

Description The address of an object with automatic storage shall not be assigned
to an object which may persist after the object has ceased to exit.

Role Reliability.
Classification Required.

Description The null pointer shall not be de-referenced.
Role Reliability.
Classification Required.

Description In the specification of a structure or union type, all members of the
structure or union shall be fully specified.

Role Reliability.
Classification Required.

Description Overlapping variable storage shall not be used.
Role Reliability.
Classification Required.

Description Unions shall not be used to access sub-parts of larger data types.
Role Reliability.
Classification Required.

Description Bit fields shall only be defined to be of type unsigned int or signed
int.

Role Reliability.
Classification Required.

Description Bit fields of type signed inst shall be at least two bits long.
Role Reliability.
Classification Required.

Description All members of a structure (or union) shall be named and shall only
be accessed via their name.

Role Reliability, Maintainability.
86 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_Rule114: Define and undef

MISRA_Rule115: Redefinition of standard library function names

MISRA_Rule118: Dynamic heap memory

MISRA_Rule119: Errno

MISRA_Rule120: Offsetof

MISRA_Rule121Fct: <locale.h>

MISRA_Rule122: Setjmp and longjmp

MISRA_Rule123: signal.h

Classification Required.

Description Reserved words and standard library function names shall be not
redefined or undefined.

Role Reliability, Maintainability.
Classification Required.
Note Implemented using 2 complementary rule scripts.

Description Standard library function names shall not be reused.
Role Maintainability.
Classification Required.

Description Dynamic heap memory allocation shall not be used.
Role Reliability, Maintainability.
Classification Required.

Description The error indicator errno shall not be used.
Role Reliability.
Classification Required.

Description The macro offsetof, in library <stddef.h> shall not be used.
Role Reliability.
Classification Required.

Description <locale.h> and the setlocale function shall not be used.
Role Reliability.
Classification Required.

Description The setjmp macro and the longjmp function shall not be used.
Role Reliability.
Classification Required.

Description Signal handling facilities of <signal.h> shall not be used.
Role Reliability.
Standard Programming Rules 87

IBM Rational Logiscope
MISRA_Rule124Fct: stdio.h

MISRA_Rules121124Include: <locale.h> and <stdio.h>

MISRA_Rule125: atof, atoi and atol

MISRA_Rule126: abort, exit, getenv and system

MISRA_Rule127: time.h

Classification Required.

Description The input/ouput library <stdio.h> shall not be used in production
code.

Role Reliability.
Classification Required.

Description <locale.h> and <stdio.h> shall not be used.
Role Reliability.
Classification Required.

Description Library functions atof, atoi and atol from library <stdlib.h> shall not
be used.

Role Reliability.
Classification Required.

Description Library functions abort, exit, getenv and system from library
<stdlib.h> shall not be used.

Role Reliability.
Classification Required.

Description Time handling functions of library <time.h> shall not be used.
Role Reliability.
Classification Required.
88 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
5.2.3 MISRA-C:2004 Rule Package
95 of the 121 “Required” rules specified in the MISRA-C:2004 document can be
checked using the Logiscope RuleChecker C MISRA 2004 programming rule package
as well as 14 of the 20 “Advisory” rules.

MISRA_2_2: No // Comment

MISRA_2_3: No nested comments

MISRA_3_4: Use of the #pragma directive

MISRA_4_1: Escape sequences

MISRA_4_2: Trigraphs

MISRA_5_1: Length of identifiers

MISRA_5_2: Identifiers linkage and scope

Description Source code shall only use / * ... */ style comments.
Role Portability.
Classification Required.

Description The character sequence /* shall not be used within a comment.
Role Portability.
Classification Required.

Description All uses of the #pragma directive shall be documented and explained.
Role Reliability.
Classification Required.

Description Only those escape sequences which are defined in the ISO C standard
shall be used.

Role Maintainability.
Classification Required.

Description Trigraphs shall not be used.
Role Maintainability.
Classification Required.

Description Identifiers (internal and external) shall not rely on the significance of
more than 31 characters.
Restriction imposed by the C ANSI standard.

Role Portability.
Classification Required.

Description Identifiers in an inner scope shall not use the same name as an identi-
fier in an outer scope, and therefore hide that identifier.

Role Reliability.
Standard Programming Rules 89

IBM Rational Logiscope
MISRA_5_3: Typedef names

MISRA_5_4:Use of tags

MISRA_5_5: Do not reuse name of static objects

MISRA_5_6: Name of identifiers

MISRA_5_7: No reused identifiers

MISRA_6_1: Plain char type usage

MISRA_6_2: signed/unsigned char type usage

Classification Required.

Description A typedef name shall be a unique identifier.
Role Reliability.
Classification Required.

Description A tag name shall be a unique identifier.
Role Reliability.
Classification Required.

Description No object or function identifier with static storage duration should be
reused.

Role Reliability.
Classification Advisory.

Description No identifier in one name space should have the same spelling as an
identifier in another name space, with the exception of structure and
union member names.

Role Reliability.
Classification Advisory.

Description No identifier name should be reused.
Role Reliability.
Classification Advisory.

Description The plain char type shall be used only for storage and use of character
values.

Role Reliability.
Classification Required.

Description signed and unsigned char type shall be used only for the storage and
use of numeric values.

Role Reliability.
Classification Required.
90 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_6_3: Basic types

MISRA_6_4: Type of bitfields

MISRA_6_5: Two bits long bit fields

MISRA_7_1: Octal constants

MISRA_8_1: Prototyping

MISRA_8_2: Use explicit types

MISRA_8_4: Declarations of functions must be compatible

MISRA_8_5:No definition in header

Description Typedefs that indicate size and signedness should be used in place of
the basic types.

Role Reliability.
Classification Advisory.

Description Bit fields shall only be defined to be of type unsigned int or signed
int.

Role Reliability.
Classification Required.

Description Bit fields of type signed inst shall be at least two bits long.
Role Reliability.
Classification Required.

Description Octal constants other than zero shall not be used.
Role Maintainability.
Classification Required.

Description Functions shall always have prototype declarations and the prototype
shall be visible at both the function declaration and call.

Role Reliability, Maintainability.
Classification Required.

Description Whenever an object or function is declared or defined, its type shall
be explicitly stated.

Role Reliability, Portability.
Classification Required.

Description If objects or functions are declared more than once their types shall
be compatible.

Role Reliability, Portability.
Classification Required.

Description There shall be no definitions of objects or functions in a header file.
Standard Programming Rules 91

IBM Rational Logiscope
MISRA_8_6: Scope of functions

MISRA_8_7: Object declarations

MISRA_8_8: External declarations

MISRA_8_9: External definition of identifiers

MISRA_8_10: File scope declarations

MISRA_9_1: Assignment

MISRA_9_2: Structured initialisation

Role Reliability, Portability.
Classification Required.

Description Functions shall be declared at file scope.
Role Maintainability.
Classification Required.

Description Objects shall be defined at block scope if they are only accessed from
within a single function.

Role Reliability.
Classification Advisory.

Description An external object or function shall be declared in one and only one
file.

Role Reliability.
Classification Required.

Description An identifier with external linkage shall have exactly one external
definition.

Role Reliability.
Classification Required.

Description All declarations and definitions of objects or functions at file scope
shall have internal linkage unless external linkage is required.

Role Maintainability, Reliability
Classification Required

Description All automatic variables must have been assigned a value before being
used.

Role Reliability.
Classification Required.

Description Braces shall be used to indicate and match the structure in the non-
zero initialisation of arrays and structures.

Role Reliability.
Classification Required.
92 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_9_3: Enumeration initialization

MISRA_10_1: Integer type conversions

MISRA_10_2: Floating type conversion

MISRA_10_3: Integer type casting

MISRA_10_4: Floating type casting

Description In an enumerator list, the ‘=’ construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized.

Role Reliability.
Classification Required.

Description The value of an expression of integer type shall not be implicitly con-
verted to a different underlying type if:
 a) it is not a conversion to a wider integer type of the same signed-
ness, or
 b) the expression is complex, or
 c) the expression is not constant and is a function argument, or
 d) the expression is not constant and is a return expression.

Role Reliability.
Classification Required.

Description The value of an expression of floating type shall not be implicitly
converted to a different type, if :
 a) it is not a conversion to a wider floating type, or
 b) the expression is complex, or
 c) the expression is a function argument, or
 d) the expression is a return expression.

Role Reliability.
Classification Required.

Description The value of a complex expression of integer type may only be cast
to a type that is narrower and of the same signedness as the underly-
ing type of the expression..

Role Reliability.
Classification Required.

Description The value of a complex expression of floating type may only be cast
to a narrower floating type.

Role Reliability, Portability.
Classification Required.
Standard Programming Rules 93

IBM Rational Logiscope
MISRA_10_5: Unsigned casting

MISRA_10_6:U suffixing

MISRA_11_3: Pointer / integral type cast

MISRA_11_4: Cast between pointers to different object type

MISRA_12_1: Operator precedence

MISRA_12_2: Evaluation order

MISRA_12_3: Operator sizeof

Description If the bitwise operators ~ and << are applied to an operand of under-
lying type unsigned char or unsigned short, the result shall be imme-
diately cast to the underlying type of the operand..

Role Reliability.
Classification Required.

Description A «U» suffix shall be applied to all constants of unsigned type..
Role Reliability.
Classification Required.

Description A cast should not be performed between a pointer type and an inte-
gral type.

Role Reliability.
Classification Advisory.

Description A cast should not be performed between a pointer to object type and
a different pointer to object type.

Role Reliability.
Classification Advisory.

Description Limited dependence should be placed on C's operator precedence
rule in expression .

Role Reliability
Classification Advisory.

Description The value of an expression shall be the same under any order of eval-
uation that standard permits.

Role Reliability
Classification Required.

Description The sizeof operator should not be used on expressions that contain
side effects.

Role Reliability.
Classification Required.
94 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_12_4: Side effects

MISRA_12_5: Logical operand

MISRA_12_7: Bitwise operations

MISRA_12_8: Shift operator and right hand operand

MISRA_12_9: Unary minus operator

MISRA_12_10: Comma operator

MISRA_12_12: Underlying representation of floating point numbers

Description The right hand operand of a && or || operator shall not contain side
effects.

Role Reliability, Portability.
Classification Required.

Description Operands of a logical && and || shall be primary expressions.
Role Reliability.
Classification Required.

Description Bitwise operations (~, <<, >>, &, ^ and |) shall not be appliedto
operands whose underlying type is signed.

Role Reliability.
Classification Required.

Description The right hand operand of a shift operator shall lie between zero and
one less than the width in bits of the underlying type of the left-hand
operand.

Role Reliability.
Classification Required.

Description The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

Role Reliability.
Classification Required.

Description The comma operator shall not be used.
Role Reliability.
Classification Required.

Description The underlying bit representation of floating point numbers shall not
be used.

Role Reliability, Portability.
Classification Required.
Standard Programming Rules 95

IBM Rational Logiscope
MISRA_12_13: Do not mix increment and decrement with other operators

MISRA_13_1: Test and assignment result

MISRA_13_3: Test between floats

MISRA_13_4: Loop counter

MISRA_13_5: Loop control

MISRA_13_6: Counter in for statements

Description The increment (++) and decrement (--) operators should not be mixed
with other operators in an expression.

Role Reliability.
Classification Advisory.

Description Assignment operators shall not be used in expressions that yield a
Boolean value.
Example:
if (x = y) { /* Violation */ }

if ((x = y) != 0) { /* Violation */ }

x = y ;
if (x != 0) { /* Correct */ }

Role Reliability.
Classification Required.

Description Floating point variables shall not be tested for exact equality or ine-
quality.

Role Reliability.
Classification Required.

Description The controlling expression of a for statement shall not contain any
objects of floating type.

Role Reliability.
Classification Required.

Description The three expressions of a for statement shall be concerned only with
loop control.

Role Reliability.
Classification Required.

Description Numeric variables being used within a for loop for iteration counting
should not be modified in the body of the loop.

Role Reliability.
96 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_14_1: Unreachable code

MISRA_14_2: Non-null statements

MISRA_14_3: Location of null statements

MISRA_14_4: No goto statement

MISRA_14_5: No continue statement

MISRA_14_6: Break in loop

MISRA_14_7: Use of return

MISRA_14_8: Use of braces

Description There shall be no unreachable code.
Role Reliability.
Classification Required.

Description Non-null statements shall have a side-effect.
Role Reliability.
Classification Required.

Description Before preprocessing, a null statement shall only occur on a line by
itself.

Role Reliability.
Classification Required.

Description The goto statement shall not be used.
Role Maintainability.
Classification Required.

Description The continue statement shall not be used.
Role Maintainability.
Classification Required.

Description For any iteration statement there shall be at most one break statement
used for loop termination.

Role Maintainability.
Classification Required.

Description A function shall have a single point of exit at the end of the function
Role Maintainability.
Classification Required.

Description The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement

Role Maintainability.
Classification Required.
Standard Programming Rules 97

IBM Rational Logiscope
MISRA_14_9: If statement

MISRA_14_10: Then and else

MISRA_15_1: Use of switch labels

MISRA_15_2: Break in switch

MISRA_15_3: Default in switch

MISRA_15_4: Switch and boolean

MISRA_15_5: Switch without case

MISRA_16_1: No function with variable number of arguments

Description An if (expression) construct shall be followed by a compound state-
ment. The else keyword shall be followed by either a compound
statement, or another if statement

Role Maintainability.
Classification Required.

Description All if, else if constructs shall be terminated with an else clause.
Role Reliability.
Classification Required.

Description A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

Role Maintainability.
Classification Required.

Description An unconditional break statement shall terminate every non-empty
switch clause.

Role Reliability.
Classification Required.

Description The final clause of a switch statement shall be the default clause.
Role Reliability.
Classification Required.

Description A switch expression shall not represent a value that is effectively
Boolean.

Role Maintainability.
Classification Required.

Description Every switch statement shall have at least one case clause.
Role Maintainability.
Classification Required.

Description Functions shall not be defined with variable numbers of arguments.
98 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_16_2: Recursion

MISRA_16_5: Functions with no parameters use explicit void

MISRA_16_6: Parameters

MISRA_16_7: Function parameters and const

MISRA_16_8: Functions with non-void return types

MISRA_16_9: Use of function identiers

Role Reliability, Maintainability
Classification Required.
Note Implemented using 2 complementary rule scripts.

Description Functions shall not call themselves, either directly or indirectly.
Role Reliability, Maintainability
Classification Required.

Description Functions with no parameters shall be declared with parameter type
void.

Role Reliability, Maintainability.
Classification Required.

Description The number of arguments passed to a function shall match the num-
ber of parameters.

Role Reliability, Maintainability.
Classification Required.

Description A pointer parameter in a function prototype should be declared as
pointer to const if the pointer is not used to modify the addressed
object.

Role Reliability.
Classification Advisory.

Description All exit paths from a function with non-void return type shall have an
explicit return statement with an expression.

Role Reliability.
Classification Required.
Note Implemented using 3 complementary rule scripts.

Description Afunction identifier shall only be used with either a preceding &, or
with a parenthesised parameter list, which may be empty.

Role Reliability.
Classification Required.
Standard Programming Rules 99

IBM Rational Logiscope
MISRA_17_3: Relational operators

MISRA_17_4: Pointer arithmetic only with array indexing

MISRA_17_5: Reference complexity

MISRA_17_6: Address assignment

MISRA_18_1: Members of structures and unions

MISRA_18_2: Variable storage

MISRA_18_4: Unions access

MISRA_19_1: Code structure

Description Relational operators shall not be applied to pointer types except
where they point to the same array.

Role Reliability.
Classification Required.

Description Array indexing shall be the only allowed form of pointer arithmetic.
Role Reliability.
Classification Required.

Description The declaration of objects should contain nom ore than 2 levels of
pointer indirection.

Role Maintainability.
Classification Advisory.

Description The address of an object with automatic storage shall not be assigned
to an object which may persist after the object has ceased to exit.

Role Reliability.
Classification Required.

Description All structure or union types shall be complete at the end of a transla-
tion unit.

Role Reliability.
Classification Required.

Description An object shall not be assigned to an overlapping object.
Role Reliability.
Classification Required.

Description Unions shall not be used.
Role Reliability.
Classification Required.

Description #include statements in a file should only be preceded by other prepro-
cessor directives or comments.
100 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_19_2: Non-standard characters

MISRA_19_3: #include syntax

MISRA_19_5: Define and undefine in a block

MISRA_19_6: Use of #undef

MISRA_19_7: Functions and macros

MISRA_19_8: Function-like macro call

MISRA_19_9: Arguments to function-like macros

Role Reliability.
Classification Advisory.

Description Non-standard characters shall not occur in header file names in
#include directive.

Role Reliability.
Classification Advisory.

Description The #include directive shall be followed by either a <filename> or
“filename” sequence.

Role Reliability.
Classification Required.

Description Macros shall not be #define'd and #undef'd within a block.
Role Reliability.
Classification Required.

Description #undef should not be used.
Role Reliability.
Classification Required.

Description A function should be used in preference to a function-like macro.
Role Reliability.
Classification Advisory.

Description A function-like macro shall not be invoked without all of its argu-
ments.

Role Reliability.
Classification Required.

Description Arguments to a function-like macro shall not contain tokens that look
like pre-processing directives.

Role Reliability.
Classification Required.
Standard Programming Rules 101

IBM Rational Logiscope
MISRA_19_10: Parentheses for macro occurences

MISRA_19_11: Identifiers in pre-processor directives

M ISRA_19_12: Occurences of # and ## in macros

MISRA_19_13: # and ## preprocessor operators

MISRA_19_14: Two forms for defined pre-processor operator

MISRA_19_15: Header inclusion

MISRA_19_17: Pre-processor directives

Description In the definition of a function-like macro each instance of a parame-
ter shall be enclosed in parentheses unless it is used as the operand of
or ##.

Role Reliability.
Classification Required.
Note Implemented using 2 complementary rule scripts.

Description All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives and
the defined() operator.

Role Reliability.
Classification Required.

Description There shall be at most one occurence of the # or ## pre-processor
operators in a single macro definition.

Role Reliability.
Classification Required.

Description The # and ## preprocessor operators should not be used.
Role Reliability.
Classification Advisory.

Description The defined preprocessor operator shall only be used in one of the
two standard forms.

Role Reliability.
Classification Required.

Description Precautions shall be taken in order to prevent the contents of a header
file being included twice.

Role Reliability, Portability.
Classification Required.

Description All #else, #elif and #endif preprocessor directives shall reside in the
same file as the #if or #ifdef directive to which they are related..

Role Reliability.
Classification Required.
102 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
MISRA_20_1: Define and undef standard names

MISRA_20_2: Redefinition of standard library function names

MISRA_20_4: Dynamic heap memory

MISRA_20_5: Errno

MISRA_20_6: Offsetof

MISRA_20_7: Setjmp and longjmp

MISRA_20_8: signal.h

MISRA_20_9: No <stdio.h> functions

Description Reserved identifiers, macros and functions in the standard library,
shall not be defined, redefined or undefined.

Role Reliability, Maintainability.
Classification Required.
Note Implemented using 2 complementary rule scripts.

Description The names of standard library macros, objects and functions shall not
be reused.

Role Maintainability.
Classification Required.

Description Dynamic heap memory allocation shall not be used.
Role Reliability, Maintainability.
Classification Required.

Description The error indicator errno shall not be used.
Role Reliability.
Classification Required.

Description The macro offsetof, in library <stddef.h> shall not be used.
Role Reliability.
Classification Required.

Description The setjmp macro and the longjmp function shall not be used.
Role Reliability.
Classification Required.

Description Signal handling facilities of <signal.h> shall not be used.
Role Reliability.
Classification Required.

Description The input/ouput library <stdio.h> shall not be used in production
code.

Role Reliability.
Standard Programming Rules 103

IBM Rational Logiscope
MISRA_20_10: atof, atoi and atol

MISRA_20_11: abort, exit, getenv and system

MISRA_20_12: time.h

Classification Required.

Description Library functions atof, atoi and atol from library <stdlib.h> shall not
be used.

Role Reliability.
Classification Required.

Description Library functions abort, exit, getenv and system from library
<stdlib.h> shall not be used.

Role Reliability.
Classification Required.

Description Time handling functions of library <time.h> shall not be used.
Classification Required.
104 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
 Chapter 6

Customizing Standard Rules
Logiscope RuleChecker C is an open-ended tool for which it is possible to customize
standard rule checking or even write new personal rule checking scripts to better fit to
your verification process.

This chapter presents how to customise Rule Sets and modify standard rules scripts to
adapt them to specifics of user coding standards / verification requirements.

To develop a new rule script, please refer to the next chapter.

6.1 Modifying the Rule Set File
A Rule Set file, with extension “.rst”, specifies the set of programming rules to be
checked.

More information on how rule sets are used in Logiscope projects can be found in the
Logiscope RuleChecker & QualityChecker - Getting Started manual.

The detailed syntax of the rule set file can be found in the Logiscope RuleChecker &
QualityChecker Basic Concepts manual.

The Rule Set files should be in the following directories:
1. in <log_installation_dir>/Ref/RuleSets/C/ where <log_installation_dir> is the

Logiscope installation directory where default Rule Set files are available ,
2. in one of the directories in the environment variable LOG_RULE_ENV. The syntax

of LOG_RULE_ENV is dir1;dir2;…;dirn (directory names separated by semi-colons)
on Windows and dir1:dir2:…:dirn (directory names separated by colons) on Unix and
Linux.
Directories in LOG_RULE_ENV should contain the subdirectory "RuleSets/C".

To change the default behavior of a rule set, it is highly recommended to first make your
own rule set, for example from a copy of default Rule Set files provided with Logiscope
C.
Customizing Standard Rules 105

IBM Rational Logiscope
6.2 Modifying Standard Rules

6.2.1 Rule File Location
Each rule must be stored in a Rule file (extension “.std”).

The rule file should be placed in one of the following places:
1. in log_installation_dir/Ref/Rules/C/ where log_installation_dir is the Logiscope

installation directory
2. in one of the directories in the environment variable LOG_RULE_ENV (see Sec-

tion 1.3 - Environment Variables. Directories in LOG_RULE_ENV should con-
tain the subdiretory "Rules/C".

6.2.2 Rule File Syntax
A rule file is organized into fields following the syntax described below.

[.COMMENT comment]*

.DOMAIN [File | Application]

.KEY key_of_rule

.NAME name_of_rule

.SEVERITY severity_of_rule

.TITLE title

free_text]+

.COMMAND [log_rchk_cc | r_perl_checker]

.CODE
code_of_rule

where:
comment is a one-line character string,
key_of_rule is a printable character string, including no spaces, which identifies the rule,
name_of_rule is a one-line definition of the rule,
severity_of_rule is an string defining the level of severity of the rule,
title is a character string followed by a carriage return (,
free_text is plain text, which can be written over more than one line, provides a description

of the rule,
log_rchk_cc: to activate the Logiscope Tcl Verifier if the rule Code is written in Tcl,
r_perl_checker: to activate the Perl Verifier if the rule Code is written in Perl,
code_of_rule is the code of the rule written in Tcl or Perl according to the Logiscope

Verifier specified in the .COMMAND section.
106 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Refer to the next chapter to more details on the Logiscope Tcl and Perl Verifiers.

Note1: name_of_rule, severity_of_rule, title, free_text fieds are not significant for
Logiscope RuleChecker C on Windows.

Note2: .DOMAIN is no longer used by the checking mechanism which is now always
performed on the full project.

Example of a Standard Rule
The Rule “Identifiers must not start or end with the character “_”,” looks like this:

.COMMENT Naming_2_Underscore.rl

.DOMAIN File

.KEY Naming_2_Underscore

.SEVERITY 3

.NAME It is illegal to use ’_’ character at the beginning or at
the end of an identifier

.TITLE Description
Identifiers must not start or end with the character ’_’

.TITLE Role
Makes code easier to read. For example, the 3 identifiers name,
name and name could easily be confused.

.COMMAND log_rchk_cc

.CODE
proc noBeginOrEndUnderscore {identObj} {

 global thisRule
 set name [Get $identObj name]
 if { [string match _* $name] || [string match *_ $name] }
{
 Violation $identObj $thisRule \
 ”$name starts or finishes with character ’_’.”
 }
 return 1
}
Running noBeginOrEndUnderscore on Symbol
Maprole application symbol noBeginOrEndUnderscore

6.2.3 Creating a New Rule from a Standard Rule
For example, if the rule to be checked is
“It is illegal to use ’%’ character at the beginning or at the
Customizing Standard Rules 107

IBM Rational Logiscope
end of an identifier”,

it can be written by changing the rule
“It is illegal to use ’_’ character at the beginning or at the
end of an identifier”.

To do this change:
1. Duplicate the .std file containing the standard rule to be modified.
2. Use a text editor to edit this file.
3. Modify the .NAME field and write It is illegal to use ’%’ character at

the beginning or at the end of an identifier.

4. Modify the relevant text fields.
5. Modify the .CODE field lines, replacing three ’_’ character occurrences by ’%’ char-

acter.
6. To improve the analysability of the rule, enter relevant information in the .KEY and

.TITLE field lines.
7. Save the file.
8. Add description of the modified rule to the .rst file(s) the modified rule will belong to.
9. The new rule can now be loaded and be part of the rule list.

6.2.4 Renaming Rules
It is possible to rename standard rules to have as many versions of them as needed. The
renamed rules have their own definition. Creating rules in this way enables adapting the
names of the rules that are provided to your naming standard and their definitions to the
description you are used to seeing.

The rule used to create a new one can be a built-in rule, a user rule or even an already
renamed rule.

The rule file format
A rule file containing a renamed rule description should be created. It should be nammed
rule_name.std, where rule_name is the name of the rule being created. The contents of
the file should follow the following format:

.NAME long_name

.DESCRIPTION user_description

.COMMAND rename mnemonic_of_the_renamed_rule

where

long_name is free text, that can include spaces. It’s a more detailed title of the rule. It
will appear as an explanation of the rule name in Logiscope.

user_description is the description of the rule, that will be available in Logiscope.

rename is the type of command used for this rule, and should not be changed.
108 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
mnemonic_of_the_renamed_rule is the name of the standard rule that the new rule is
based upon

Example of a renamed rule (rename of the Portability_1_C++Keywords rule):
.NAME No C++ keywords

.DESCRIPTION

In our standard no C++ keywords should be used.

.COMMAND rename Portability_1_C++Keywords

Activating the new rule
The new rule must be added to the Rule Set file (.rst) using the following syntax:

STANDARD new_std RENAMING old_std ON END STANDARD

 where

new_std is the name of the rule being created.

old_std is the name of the existing rule.

Example:
STANDARD noC++ RENAMING Portability_1_CKeywords ON END STANDARD

6.2.5 Changing Rule Classification
It is possible to rename standard rules to have as many versions of them as needed. The
renamed rules have their own definition. Creating rules in this way enables adapting the
names of the rules that are provided to your naming standard and their definitions to the
description you are used to seeing.

The rule used to create a new one can be a built-in rule, a user rule or even an already
renamed rule.

6.2.6 Changing Rule Severity
It is possible to rename standard rules to have as many versions of them as needed. The
renamed rules have their own definition. Creating rules in this way enables adapting the
names of the rules that are provided to your naming standard and their definitions to the
description you are used to seeing.

The rule used to create a new one can be a built-in rule, a user rule or even an already
renamed rule.
Customizing Standard Rules 109

IBM Rational Logiscope
110 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
 Chapter 7

Developing New Rule Scripts

7.1 Introduction
Two verifiers are available in Logiscope RuleChecker C:

• the Tcl verifier: log_rchk_cc

• the Perl verifier: r_perl_checker

Apart from the different scripting languages used by these two verifiers, their purpose
and inner working are very different: the Tcl verifier is based on a semantic data model
that is akin to an abstract syntax tree that closely follows the C ISO standard. On the
other hand, the Perl verifier is aimed to permit the lexical verification of the source
code.

When using the Tcl verifier, macros are expanded and #if constructs taken into
account.

When using the Perl verifier, macros are not expanded and #if constructs not taken
into account.

Choosing the Right Verifier

Given the above characteristics, you will want to use the Tcl verifier when you need
semantic and syntactical information to detect bad constructs, and the Perl verifier when
you need the exact layout of the file content or that macros not be expanded.

This, of course, is a simplification, since you may as well open and scan the files directly
from a Tcl verifier rule, and you can do the parsing from a Perl verifier rule. Thus the
domains of application of these two verifiers indeed overlap; in these cases, the choice
depends on which scripting language you feel the most comfortable with.

Examples:

Rule1: the goto instruction goto is forbidden.

There are two easy ways to check this rule:

• With the Tcl verifier, search for InstructionGoto objects.

• With the Perl verifier, search for the \bgoto\b pattern.

The results may be different: the Tcl verifier way will flag goto usage induced by
Developing New Rule Scripts 111

IBM Rational Logiscope
macro (macros defined in system include files included) expansion at the point of expan-
sion of the macro, and #ifdef'ed out code will not be flagged; on the other hand, the
Perl verifier will flag goto usage at the point the goto instruction appears in the code
(for gotos in macros, at the point of definition).

Depending on the exact specification, and the compromises that are considered accept-
able, one or the other solution may be choosen.

Rule2: goto labels begin at the start of a line.

Here we have a condition on the physical layout of a construct. The easiest way is to go
with the Perl verifier, and check for the pattern ^(\s+)\w+\s*:; if $1 does not have
zero length, this is a violation.

Rule3: only tabs may be used for indentation.

A code layout question: the Perl verifier is thus the best fit: search for the pattern
^\s*[].

Rule4: structure field identifiers are all lowercase.

A semantic question. The Tcl verifier is thus the best fit: search for SymbolField
objects and check the conformance of their name attributes.

7.2 Using the Perl Verifier
The main support subroutines and variables used by the Perl verifier are the following:

@cList

The global array @cList contains the path names of all the files contained in the appli-
cation: C files and header files found in #include directives, provided these paths do
not match the NoReportList found in the file procedures.tcl.

This array may be used whenever it is useful to inspect the raw content of the files.

Example:
for my $pathName (@cList) {

open(C, “<$pathName”) || warn “$pathName: cannot read: $!\n”;

Do something with the content of the file.

close(F);

%TabPreprocessFile

The global hash %TabPreprocessFile is indexed by the path names of the files of
the application. The values are the contents of the files with backslash-newline
sequences and comments removed, and string and character literals contents removed.
112 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Line numbers are preserved.

These values are useful for searching for a pattern in the code without fearing that

the pattern may appear in a comment or a string literal.

Beware that this is not preprocessing in the C sense.

Example:
search for gotos

my $lineNumber = 1;

for my $pathName (keys %TabPreprocessFile) {

 my $content = $TabPreprocessFile{$pathName};

 while ($content =~ m{\bgoto\b}g) {

 # Do something.

 }

}

If the content of the source file is:
#include "a.h"

C90comment1 /*

 C90 comment

*/ C90comment2

C99comment1

// C99 comment

C99comment2

string1 "string" string2

char1 'char' char2

 # include <b.h>

then the content of the corresponding value of %TabPreprocessFile is:
#include ""

C90comment1 C90comment2

C99comment1

C99comment2

string1 "" string2
Developing New Rule Scripts 113

IBM Rational Logiscope
char1 '' char2

 # include <b.h>

Violation

The Violation subroutine emits a violation notice. It takes three parameters:

• the path name of the file for which a violation was detected,

• the line number of the file of the occurrence of the violation (use 0 to designate the
whole file),

• a message string that is to be associated with this instance of violation (without new-
lines)

The Violation subroutine takes care of adding the rule .KEY to the violation report.

Preprocessor

The PreProcessor subroutine processes a string in the manner of the values of the
hash TabPreprocessFile. Use it to get the same result as a value of %TabPre-
processFile for a file that is not in the application.

Example:
my $prepro = &PreProcessor($rawText);

7.3 Using the Tcl Verifier
Commands described below will let define personal programming rules.

There are three types of TCL Verifier commands:

• Access commands to data about elements in the application code (its internal repre-
sentation is produced as per the data model described in Chapter 2).

• Commands to check progress reports.

• Debugging aid commands.

Tcl language [TCL94] typographical conventions are used for command syntax.

Examples below show how the data model is used by checker commands.

Naming and identifying
Any data model object is identifiable.

Any objects that can be designated by a key in the source code can be named. The abso-
lute name can be broken down as per its access path:

Example:
114 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
• void f()

• {
n int i;
n i = 2;

• }

The instruction i=2 cannot be named, but it can be identified. The variable path f/i,
can be named and identified.

The application pseudo-object
All data model abstract classes can be scanned from the application pseudo-object.

7.3.1 Access commands

Access to the class attribute

Classobject

Returns the name of the class of object. An error is reported if object is not a valid key.

Access to other attributes

Get object attribute

Returns the value of attributes of object designated by attribute. An error is reported if
attribute does not designate an attribute of object or if object is not a valid key.

Access to a single cardinality role

GetRole source_object target_role

Applies to associations whose target class has cardinality 0 or 1().

Returns the key of the object which has the target_role in one of the associations of
source_object, or an empty string if there are no such associations. An error is reported if
source_object has no association with target_role as a role.

Access to a multiple cardinality role

MapRole source_object target_role -filter fscript script

Applies to associations whose cardinality is greater than or equal to 0().

fscript and script represent a sequence of commands.
Developing New Rule Scripts 115

IBM Rational Logiscope
It scans objects associated with the source_object which have target_role as a role.

For each object which is the target_role in one of the associations of source_object, the
fscript command sequence is evaluated:

• if fscript returns a value greater than 0, the script sequence is evaluated,

• if fscript returns a value equal to 0, the script sequence is not evaluated.

If fscript is not present, script is always evaluated.

If script returns a value equal to 0, the MapRole command stops immediately.

At each evaluation, fscript and script receive as a parameter the identifier of the object to
process.

The MapRole command returns the number of times script has been evaluated. This
number represents the overall number of objects which have target_role as a role in one
of the associations of source_object or, if a filter is specified, it represents the number of
objects that match the filtering condition. An error is reported:

• if source_object has no association with, as a role, a target object: target_role,

• if fscript and script end with an uncontrolled value.

7.3.2 Report commands

Internal error display
• Internal Error message

Errors detected during checking are reported. The message entered as a parameter is sent
as the error message.

Rule violation display
• Violation object rule message

Reports a rule violation identified by rule and located by object. The optional message
parameter lets add specific information about the violation.

If a rule violation cannot be located (for example, if a limited number of files is exceeded
in an application), the value of object is application.

message is a character string between quotes (“”).

message is a character string between quotes (“”).
116 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
7.3.3 Debugging aid commands

Roles of a class
• Roles Of object

Returns the role list for the class of which object is an instance.

Attributes of a class
• Attributes Of object

Returns the attribute list for the class of which object is an instance.

7.4 Using RuleChecker Libraries
Tcl Rules

Some functions used more than once in the code of rules can be stored in a specific file
called procedures.tcl. This file is loaded at the beginning of a Logiscope RuleChecker C
session. The user can write and add personal global functions to this file.

This file is searched in the following locations and in the following order:
1. in the RuleChecker startup directory,
2. in the <log_install_dir>/util directory.

Perl rules

Some functions used more than once in the code of rules are stored in a specific file
called r_perl_checker.perl. This file is used to check Perl rules. The user can write and
add personalized global functions to this file.

This file is sought in the <log_install_dir>/util directory.
Developing New Rule Scripts 117

IBM Rational Logiscope
118 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
 Chapter 8

Logiscope C Data Model

8.1 Introduction
The Logiscope C data model is the result of C language modelization in a class diagram.
Each time a Logiscope C project is analyzed, Logiscope RuleChecker C instantiates this
data model with information found in C source files of the project.

The Logiscope C data model is then questionned by the Logiscope Tcl Verifier to locate
and report all violations of the programming rules selected in the Rules Set files based on
the Tcl code specified in each of the corresponding Rule files.

For more details on how to use the Logiscope C data model and the RuleChecker Tcl
Verifier, please refer to the IBM Rational Logiscope - Writing C Rules Using
RuleChecker Tcl Verifier advanced guide.

The next section explains symbols used in the data model representation. Then, the data
model itself is specified, first in its graphic form, then in text format.
Logiscope C Data Model 119

IBM Rational Logiscope
8.2 Concepts and Symbolism
The data model is represented as a class diagram.

Here is the definition and representation of object-oriented concepts appearing in the
graphic form of the data model.

8.2.1 Class
A class is a set of objects with similar properties (attributes), common behaviors
(operations) and share relations with other objects.

8.2.2 Attribute
An attribute is a data item specific to objects of a given class. Each attribute name is
unique in its class. Each attribute has a value of the specified type (string, integer, etc.)
for every object instance.

8.2.3 Operation
An operation is a function or transformation that can be applied to objects of a class or
carried out by them. All of the objects in a given class share the same operations. The
type associated with an operation indicates the type of value returned by the operation.
120 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
8.2.4 Link and association

A link is a physical or conceptual connection between two instances of an object:

• A-to-B link and B-to-A link:

• A-to-B link only (the origin side of the link is indicated by the exclamation point!):

An association describes a set of links, just as a class describes a set of objects.

8.2.5 Multiplicity
The multiplicity specifies how many instances of a class are related to an instance of the
associated class. Multiplicity (or cardinality) can be a range of values, a set of values or a
specific number.

• 1 instance of A is linked to 0 or 1 instance of B:

• 1 instance of A is linked to 0 or more instances of B:

• 1 instance of A is linked to at least n instances of B (n > 0):

• 1 instance of A is linked to a number of instances of B between m and n inclusive:
Logiscope C Data Model 121

IBM Rational Logiscope
8.2.6 Role
A role is one end of an association. A binary association has two roles, each with its own
name. The name of a role is a name which clearly identifies one end of an association.
Roles make possible to consider a binary association as the link of one object to an
associated set of objects. Each role in a binary association identifies an object or set of
objects associated with an object at the other end.

The name of a role is a derivative attribute whose value is a set of associated objects.
There are two cases for which roles must absolutely be named:

• recursive associations,

• several associations involving the same classes.

If roles are not named, the class name is taken as the role name, with the first letter
changed to lower-case.

8.2.7 Inheritance
The “is a”, “kind of” relation allows classes to share similarities and retain their
differences.
122 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
8.2.8 Abstract class

An abstract class is a class with no instantiated objects. Attributes and operations it
describes are inherited by its sub-classes.
Logiscope C Data Model 123

IBM Rational Logiscope
8.3 The data model

8.3.1 Graphic Representation

FileInclusion

Comment
lineCount : integ..

Variable

Function

Application

Instruction

Expression

File
pathname : string

Scope

Symbol

Type

Label

Origin
line : UShort

*

*

1 included

*
!

*

*

1 !

*

1 !

*

1 !

*

1 !

*

1 !

*

1 !

*

1 !
*

1 !

*

1 *
!

1 !1 !

1 !

1 !

InstructionSymbol

Variable

Function

Application

Symbol

ScopeTranslationUnitScopeStructureScopeGlobalScopeFunctionScopeBlock

Scope

*
functionDef

*
variableDef

*
instructionDef

1

*
symbolDef

* subScope

1

1
definedIn

0..1
superScope

scopeKind
124 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
SymbolObjectInstructionSymbol

InstructionBlock

InstructionTentativeDefiniti..

Label

LabelIdent

Expression

expressionKind : ExpressionKi..

InstructionWhile

InstructionSwitch

InstructionReturn

InstructionIf

InstructionGoto

InstructionFor

InstructionExpression

InstructionDoWhile

InstructionDefinition

InstructionDeclaration

InstructionContinue

InstructionBreak

Instruction

instructionKind : InstructionKi..

1 ! * sameInstruction

0..1
initialization

1
body

1
ifTrue

0..1
ifFalse

1
body

1
body

*

sequence

1
body

1
symbol

*
instruction

* tag

*
tentativeDefinition

1 !

0..1
definition

1 !

*

declaration

1 !

0..1
increment

0..1
initialization

1

condition

1
condition

0..1

1

condition

0..1

condition

0..1

1

condition

*
!

1
target

0..1
!

0..1
!

0..1
!

0..1
!

0..1
!

0..1
!

0..1

!

0..1
!

1

0..1

!

0..1
!

0..1
!

0..1

!

0..1

!

0..1

!

0..1

!

instructionKind

instructionKind
Logiscope C Data Model 125

IBM Rational Logiscope

126
TypeTypeof TypeVararg

TypeUnsignedCh..

TypeSignedChar

TypeChar

TypeLongDouble

TypeFloat

TypeUnsignedLo..

TypeLong

TypeUnsignedSh..

TypeShort

TypeUnsignedInt

TypeVoid

TypeFunction
arity : integer

TypeDouble

TypeInt

EnumValue

TypeMeta

TypeBitField

TypeUnion TypeStruct

QualifierVolatileQualifierConst

Qualifier

TypeTagged

Expression

TypeEnum

TypeSymbolTypePointer

TypeField

TypeArray TypeBuiltIn

TypeStructured

Type
typeKind : TypeKi..
isOpaque() : boole..

1

1..*

1

1..*

1 0..1
size

* !

*
*parameter

* !

0..1

0..1 length

0..1 value

0..1 !

1

* !

1
expansion

* !

1
ancestor

* !

0-2

* !

1

* !

1

0..1 !

1

0..1 ! 0..1 !

0..1 !

0..1 !

typeKind

eFieldKind

typeKind

qualifierKind

typeKind

typeKind
 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Instruction
1

LabelDefault

SymbolLabelExpression

LabelIdentLabelCase

Label
labelKind : LabelKind

1 target

*

tag

0..1

1 symbol

0..1 !

labelKind
Logiscope C Data Model 127

IBM Rational Logiscope
SymbolMacro

SymbolField

TypeTagged

TypeSymbol

TypeField

EnumValue

InstructionSymbol

SymbolType

SymbolVariable

SymbolFunction

SymbolObject
LabelIdent

SymbolTag

SymbolLabel

SymbolEnum

Function

Variable

Symbol
...

0..11
symbol

11
symbol

1*
symbol

0..1*
symbol

10..1
tag

*1
symbol

0..11
symbol1

symbol

* instruction

symbolKind

symbolKind

symbolKind
128 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
In
st

ru
ct

io
nB

lo
ck

Ex
pr

es
si

on
In

st
ru

ct
io

n

Fu
nc

tio
nA

lig
no

f

Fu
nc

tio
nC

om
po

un
dI

ni
t

Ty
pe

Fu
nc

tio
n

Fu
nc

tio
nS

eq
ue

nc
e

S
ym

bo
l

E
xp

re
ss

io
nS

ym
bo

l

Fu
nc

tio
nP

oi
nt

er
S

el
ec

t

Fu
nc

tio
nS

el
ec

t

Fu
nc

tio
nC

al
l

Fu
nc

tio
nI

nd
ex

Fu
nc

tio
nT

er
na

ry

Fu
nc

tio
nS

ub
A

ss
ig

n

Fu
nc

tio
nS

ub

Fu
nc

tio
nS

iz
eo

f

Fu
nc

tio
nR

sh
A

ss
ig

n

Fu
nc

tio
nR

sh

Fu
nc

tio
nR

ef

Fu
nc

tio
nP

re
In

c

Fu
nc

tio
nP

re
D

ec

Fu
nc

tio
nP

os
tIn

c

Fu
nc

tio
nP

os
tD

ec

Fu
nc

tio
nP

lu
s

Fu
nc

tio
nO

r

Fu
nc

tio
nN

ot

Fu
nc

tio
nN

e

Fu
nc

tio
nM

ul
A

ss
ig

n

Fu
nc

tio
nM

ul

Fu
nc

tio
nM

od
A

ss
ig

n
Fu

nc
tio

nM
od

Fu
nc

tio
nM

in
us

Fu
nc

tio
nL

t
Fu

nc
tio

nL
sh

As
si

gn
Fu

nc
tio

nL
sh

Fu
nc

tio
nL

e

Fu
nc

tio
nG

t

Fu
nc

tio
nG

e

Fu
nc

tio
nE

q

Fu
nc

tio
nD

iv
As

si
gn

Fu
nc

tio
nD

iv

Fu
nc

tio
nC

as
t

Fu
nc

tio
nB

xo
rA

ss
ig

n

Fu
nc

tio
nB

xo
r

Fu
nc

tio
nB

or
As

si
gn

Fu
nc

tio
nB

or

Fu
nc

tio
nB

no
t

Fu
nc

tio
nB

an
dA

ss
ig

n

Fu
nc

tio
nB

an
d

Fu
nc

tio
nA

ss
ig

n
Fu

nc
tio

nA
nd

Fu
nc

tio
nA

dd
re

ss

Fu
nc

tio
nA

dd
As

si
gn

Va
ria

bl
e

pe
rs

is
te

nt
 :

bo
ol

ea
n

E
xp

re
ss

io
nC

on
st

an
t

Fu
nc

tio
nA

dd

Fu
nc

tio
nB

ui
lto

ut

Ty
pe

Fu
nc

tio
nB

ui
lti

n

Fu
nc

tio
n

fu
nc

tio
nK

in
d

: F
un

ct
io

nK
in

d

E
xp

re
ss

io
nS

im
pl

e
E

xp
re

ss
io

nC
om

pl
ex

Ex
pr

es
si

on
Ty

pe

Fu
nc

tio
nM

ac
ro

Ex
pr

es
si

on
ex

pr
es

si
on

Ki
nd

 :
E

xp
re

ss
io

nK
in

d
1

in
st

ru
ct

io
n

0.
.1

!

1

*
!

1

0.
.1

*

* !
1

*
!

0.
.1

0.
.1

!

1

0.
.1

* !

1.
.*

op
er

an
d

0.
.1

!
1

!

ex
pr

es
si

on
Ki

nd

fu
nc

tio
nK

in
d

fu
nc

tio
nK

in
d

ex
pr

es
si

on
K

in
d

Logiscope C Data Model 129

IBM Rational Logiscope
TypeStructured

Variable

Function

ScopeStructure

ScopeFunction

ScopeBlock InstructionBlock

0..1

*

1 1

0..1 1

0..1 1

Instruction

Expression

Symbol

Scope

1 !

*

1 !

* allExpression

1 ! * subExpression

1 ! * subInstruction1 !

* allInstruction

1 !

* allScope
130 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
VariableFunction
functionKind : FunctionKind

Xiident
Logiscope C Data Model 131

IBM Rational Logiscope
8.3.2 Text presentation
The data model is presented class by class. Classes appear in alphabetical order.

For each class, existing associations and attributes are listed in the following
format:

class_name class
Associations with:

target_class_nametarget_role number_instances_target_class

Attributes:
attribute_name

Application class
Associations with:

Comment comment n
Expression expression n
File file n
FileInclusion fileInclusion n
Function function n
Instruction instruction n
Label label n
Scope scope n
ScopeGlobal scopeGlobal 1
Symbol symbol n
Type type n
Variable variable n

 Comment class
Associations with:

File file 1

Attributes:
line
lineCount

EnumValue class
Associations with:

Expression value 1
SymbolEnum symbol 1
TypeEnum typeEnum 1

Expression class
Associations with:
132 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Expression allExpression n
Expression subExpression n
File file 1

Attributes:
line

ExpressionComplex class
Associations with:

Expression allExpression n
Expression operand n
Expression subExpression n
File file 1
Function function 1

Attributes:
line

ExpressionConstant class
Associations with:

Expression allExpression n
Expression subExpression n
File file 1
Type type 1

Attributes:
line
value

ExpressionInstruction class
Associations with:

Expression allExpression n
Expression subExpression n
File file 1
InstructionBlock instruction 1

Attributes:
line

ExpressionSimple class
Associations with:

Expression allExpression n
Expression subExpression n
File file 1

Attributes:
line
Logiscope C Data Model 133

IBM Rational Logiscope
ExpressionSymbol class
Associations with:

Expression allExpression n
Expression SubExpression n
File file 1
Symbol symbol 1

Attributes:
line

ExpressionType class
Associations with:

Expression allExpression n
Expression subExpression n
File file 1
Type type 1

Attributes:
line

File class
Associations with:

Comment comment n

Attributes:
pathname

FileInclusion class
Associations with:

File file 1
File included 1

Attributes:
line

Function class
Associations with:

Scope definedIn 1
ScopeFunction scopeFunction 1
SymbolFunction symbol n
TypeFunction typeFunction 1
Variable variable n

The list of roles of the abstract class Functions applies for all its sub-classes:
FunctionAdd, FunctionAddAssign, FunctionAddress,
134 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
FunctionAlignof, FunctionAnd, FunctionAssign,
FunctionBand, FunctionBandAssign, FunctionBnot,
FunctionBor, FunctionBorAssign, FunctionBuiltin,
FunctionBuiltout, FunctionBxor, FunctionBxorAssign,
FunctionCall, FunctionCast, FunctionCompoundInit,
FunctionDiv, FunctionDivAssign, FunctionEq, FunctionGe,
FunctionGt, FunctionIndex, FunctionLe, FunctionLsh,
FunctionLshAssign, FunctionLt, FunctionMacro,
FunctionMinus, FunctionMod, FunctionModAssign,
FunctionMul, FunctionMulAssign, FunctionNe, FunctionNot,
FunctionOr, FunctionPlus, FunctionPointerSelect,
FunctionPostDec, FunctionPostInc, FunctionPreDec,
FunctionPreInc, FunctionRef, FunctionRsh,
FunctionRshAssign, FunctionSelect, FunctionSequence,
FunctionSizeof, FunctionSub, FunctionSubAssign,
FunctionTernary.

Instruction class
Associations with:

Expression expression n
File file 1
Instruction allInstruction n
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionBlock class
Associations with:

Expression expression n
File file 1
Instruction allInstruction n
ScopeBlock scopeBlock 1
Instruction sequence n
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionBreak class
Associations with:

Expression expression n
File file 1
Instruction allInstruction n
Logiscope C Data Model 135

IBM Rational Logiscope
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionContinue class
Associations with:

Expression expression n
File file 1
Instruction allInstruction n
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionDeclaration class
Associations with:

Expression expression n
File file 1
Instruction allInstruction n
Instruction subInstruction n
Label tag n
Scope definedIn 1
SymbolObject symbol 1

Attributes:
line

InstructionDefinition class
Associations with:

Expression expression n
Expression initialization 1
File file 1
Instruction allInstruction n
Instruction subInstruction n
Label tag n
Scope definedIn 1
SymbolObject symbol 1

Attributes:
line

InstructionDoWhile class
Associations with:
136 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Expression condition 1
Expression expression n
File file 1
Instruction allInstruction n
Instruction body 1
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionExpression class
Associations with:

Expression expression n
Expression expression 1
File file 1
Instruction allInstruction n
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionFor class
Associations with:

Expression condition 1
Expression expression n
Expression increment 1
Expression initialization 1
File file 1
Instruction allInstruction n
Instruction body 1
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionGoto class
Associations with:

Expression expression n
File file 1
Instruction allInstruction n
Instruction subInstruction n
LabelIdent target 1
Label tag n

Attributes:
Logiscope C Data Model 137

IBM Rational Logiscope
line

InstructionIf class
Associations with:

Expression condition 1
Expression expression n
File file 1
Instruction allInstruction n
Instruction ifFalse 1
Instruction ifTrue 1
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionReturn class
Associations with:

Expression expression n
Expression expression 1
File file 1
Instruction allInstruction n
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionSwitch class
Associations with:

Expression condition 1
Expression expression n
File file 1
Instruction allInstruction n
Instruction body 1
Instruction subInstruction n
Label tag n

Attributes:
line

InstructionSymbol class
Associations with:

Expression expression n
File file 1
Instruction allInstruction n
138 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Instruction subInstruction n
Label tag n
Scope definedIn 1
SymbolObject symbol 1

Attributes:
line

InstructionTentativeDefinition class
Associations with:

Expression expression n
File file 1
Instruction allInstruction n
Instruction subInstruction n
Label tag n
Scope definedIn 1
SymbolObject symbol 1

Attributes:
line

InstructionWhile class
Associations with:

Expression condition 1
Expression expression n
File file 1
Instruction allInstruction n
Instruction body 1
Instruction subInstruction n
Label tag n

Attributes:
line

Label class
Associations with:

File file 1
Instruction instruction 1

Attributes:
line

LabelCase class
Associations with:

Expression target 1
File file 1
Instruction instruction 1
Logiscope C Data Model 139

IBM Rational Logiscope
Attributes:
line

LabelDefault class
Associations with:

File file 1
Instruction instruction 1

Attributes:
line

LabelIdent class
Associations with:

File file 1
Instruction instruction 1
SymbolLabel symbol 1

Attributes:
line

Origin class
Associations with:

File file 1

Attributes:
line

Scope class
Associations with:

File file 1
Function functionDef n
InstructionSymbol instructionDef n
Scope allScope n
Scope subScope n
Scope superScope 1
Symbol symbolDef n
Type typeDef n
Variable variableDef n

Attributes:
line

ScopeBlock class
Associations with:
140 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
File file 1
Function functionDef n
InstructionBlock instructionBlock 1
InstructionSymbol instructionDef n
Scope allScope n
Scope subScope n
Scope superScope 1
Symbol symbolDef n
Type typeDef n
Variable variableDef n

Attributes:
line

ScopeFunction class
Associations with:

File file 1
Function function 1
Function functionDef n
InstructionSymbol instructionDef n
Scope allScope n
Scope subScope n
Scope superScope 1
Symbol symbolDef n
Variable variableDef n

Attributes:
line

ScopeGlobal class
Associations with:

Application application 1
File file 1
Function functionDef n
InstructionSymbol instructionDef n
Scope allScope n
Scope subScope n
Scope superScope 1
Symbol symbolDef n
Variable variableDef n

Attributes:
line

ScopeStructure class
Associations with:

File file 1
Function functionDef n
Logiscope C Data Model 141

IBM Rational Logiscope
InstructionSymbol instructionDef n
Scope allScope n
Scope subScope n
Scope superScope 1
Symbol symbolDef n
TypeStructured typeStructured 1
Variable variableDef n

Attributes:
line

ScopeTranslation class
Associations with:

File file 1
Function functionDef n
InstructionSymbol instructionDef n
Scope allScope n
Scope subScope n
Scope superScope 1
Symbol symbolDef n
Variable variableDef n

Attributes:
line

Symbol class
Associations with:

File file 1
Scope definedIn 1

Attributes:
line
name

SymbolEnum class
Associations with:

EnumValue enumValue 1
File file 1
Scope definedIn 1

Attributes:
line
name

SymbolField class
Associations with:
142 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
File file 1
Scope definedIn 1
TypeField typeField 1

Attributes:
line
name

SymbolFunction class
Associations with:

File file 1
Function function 1
InstructionDeclaration declaration n
InstructionDefinition definition 1
InstructionSymbol instruction n
InstructionTentativeDefinition tentativeDefinition n
Scope definedIn 1

Attributes:
line
name

SymbolLabel class
Associations with:

File file 1
LabelIdent labelIdent 1
Scope definedIn 1

Attributes:
line
name

SymbolMacro class
Associations with:

File file 1
Function function 1
InstructionDeclaration declaration n
InstructionDefinition definition 1
InstructionSymbol instruction n
InstructionTentativeDefinition tentativeDefinition n
Scope definedIn 1

Attributes:
line
name
Logiscope C Data Model 143

IBM Rational Logiscope
SymbolObject class
Associations with:

Definition Scope definedIn 1
File file 1
Function function 1
InstructionDeclaration declaration n
InstructionDefinition definition 1
InstructionSymbol instruction n
InstructionTentativeDefinition tentative

Attributes:
line
name

SymbolTag class
Associations with:

File file 1
Scope definedIn 1
TypeTagged typeTagged 1

Attributes:
line
name

SymbolType class
Associations with:

File file 1
Scope definedIn 1
TypeSymbol typeSymbol 1

Attributes:
line
name

SymbolVariable class
Associations with:

File file 1
InstructionDeclaration declaration n
InstructionDefinition definition 1
InstructionSymbol instruction n
InstructionTentativeDefinition tentativeDefinition n
Scope definedIn 1
Variable variable 1

Attributes:
line
name
144 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Type class
Associations with:

File file 1
Qualifier qualifier n

Attributes:
line

TypeArray class
Associations with:

Expression size 1
File file 1
Qualifier qualifier n
Type type 1

Attributes:
line

TypeBitField class
Associations with:

Expression length 1
SymbolField symbol 1
Type type 1
TypeStructured typeStructured 1

TypeBuiltIn class
Associations with:

File file 1
Qualifier qualifier n

Attributes:
line

The lists of roles and attributes of the abstract class TypeBuiltIn apply to all its
sub-classes:

TypeChar, TypeDouble, TypeFloat, TypeInt,
TypeLong, TypeLongDouble, TypeShort,
TypeSignedChar, TypeUnsignedChar,
TypeUnsignedInt, TypeUnsignedLong,
TypeUnsignedShort, TypeVararg, TypeVoid.

TypeEnum class
Associations with:

EnumValue enumValue n
File file 1
Logiscope C Data Model 145

IBM Rational Logiscope
Qualifier qualifier n
SymbolTag tag 1

Attributes:
line

TypeField class
Associations with:

SymbolField symbol 1
Type type 1
TypeStructured typeStructured 1

TypeFunction class
Associations with:

File file 1
Qualifier qualifier n
Type parameter n
Type type 1

Attributes:
arity
line

TypeMeta class
Associations with:

File file 1
Qualifier qualifier n
Type type 1

Attributes:
line

TypeOf class
Associations with:

Expression expression 1
File file 1
Qualifier qualifier n
Type type 1

Attributes:
line

TypePointer class
Associations with:
146 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
File file 1
Qualifier qualifier n
Scope definedIn 1
Type type 1

Attributes:
line

TypeStructured class
Associations with:

File file 1
Qualifier qualifier n
ScopeStructure scopeStructure 1
SymbolTag tag 1
TypeField typeField n

Attributes:
line

The lists of roles and attributes of the abstract class TypeStructured apply for
all its sub-classes: TypeStruct, TypeUnion.

TypeSymbol class
Associations with:

File file 1
Qualifier qualifier n
SymbolType symbol 1
Type ancestor 1
Type expansion 1

Attributes:
line

TypeTagged class
Associations with:

File file 1
Qualifier qualifier n
SymbolTag tag 1

Attributes:
line

TypeVararg class
Associations with:

File file 1
Qualifier qualifier n
Scope definedIn1
Logiscope C Data Model 147

IBM Rational Logiscope
Attributes:
line

Variable class
Associations with:

Function function 1
Scope definedIn 1
SymbolVariable symbol n
Type type 1
148 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Logiscope C Data Model 149

IBM Rational Logiscope
150 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
Notices
© Copyright 1985, 2009

U.S. Government Users Restricted Rights - Use, duplication, or disclosure restricted by
GSA ADP Schedule Contract with IBM corp.

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not grant you any license to these
patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact
the IBM Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you.
Notices 151

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for
it are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance, compatibility
or any other claims related to non-IBM products. Questions on the capabilities of non-
IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.
152 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

IBM Rational Logiscope
If you are viewing this information softcopy, the photographs and color illustrations may
not appear.

Trademarks
IBM, the IBM logo, ibm.com are trademarks or registered trademarks of International
Business Machine Corp., registered in many jurisdictions worldwide. Other product and
services names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at:

 www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademarks, and a registered community trademark of the Office of
Government Commerce, and is registered in the U.S Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.
Notices 153

154 IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual

	C Project Settings
	1.1 Starting a Logiscope Studio Session
	1.2 Creating a Logiscope Project
	1.3 Relaxation Mechanism

	C Parsing Options
	2.1 Dialects
	2.2 Definition File
	2.3 Ignore File
	2.4 Supported C Dialects Specification
	2.4.1 ANSI 89 / ISO 90
	2.4.2 ANSI / ISO 99
	2.4.3 DIAB C
	2.4.4 GNU C
	2.4.5 GNU C D950
	2.4.6 GNU C Red Hat Linux 3
	2.4.7 GNU C Red Hat Linux 4
	2.4.8 GNU C Red Hat Linux 5
	2.4.9 HP C
	2.4.10 IAR C
	2.4.11 Kernighan and Ritchie 78
	2.4.12 Microsoft C 1.5
	2.4.13 Microsoft Developer / Visual Studio
	2.4.14 Microtec Research C
	2.4.15 SUN C

	Command Line Mode
	3.1 Logiscope create
	3.1.1 Command Line Mode
	3.1.2 Makefile mode
	3.1.3 Options

	3.2 Logiscope batch
	3.2.1 Options
	3.2.2 Examples of Use

	Standard Metrics
	4.1 Function Scope
	4.1.1 Line Counting
	4.1.2 Data Flow
	4.1.3 Halstead Metrics
	4.1.4 Keywords
	4.1.5 Structured Programming
	4.1.6 Control Graph
	4.1.7 Relative Call Graph

	4.2 Module Scope
	4.2.1 Line Counting

	4.3 Application Scope
	4.3.1 Line Counting
	4.3.2 Application Aggregates
	4.3.3 Application Call Graph

	Standard Programming Rules
	5.1 Standard Programming Rules
	5.1.1 Presentation of rules
	5.1.2 Rule Sets

	5.2 MISRA Programming Rules
	5.2.1 Presentation of the rules
	5.2.2 MISRA-C:1998 Rule Package
	5.2.3 MISRA-C:2004 Rule Package

	Customizing Standard Rules
	6.1 Modifying the Rule Set File
	6.2 Modifying Standard Rules
	6.2.1 Rule File Location
	6.2.2 Rule File Syntax
	6.2.3 Creating a New Rule from a Standard Rule
	6.2.4 Renaming Rules
	6.2.5 Changing Rule Classification
	6.2.6 Changing Rule Severity

	Developing New Rule Scripts
	7.1 Introduction
	7.2 Using the Perl Verifier
	7.3 Using the Tcl Verifier
	7.3.1 Access commands
	7.3.2 Report commands
	7.3.3 Debugging aid commands

	7.4 Using RuleChecker Libraries

	Logiscope C Data Model
	8.1 Introduction
	8.2 Concepts and Symbolism
	8.2.1 Class
	8.2.2 Attribute
	8.2.3 Operation
	8.2.4 Link and association
	8.2.5 Multiplicity
	8.2.6 Role
	8.2.7 Inheritance
	8.2.8 Abstract class

	8.3 The data model
	8.3.1 Graphic Representation
	8.3.2 Text presentation

	Notices

