

Before using this information, be sure to read the general information under “Notices” section, on
page 43.

This edition applies to VERSION 6.6, IBM Rational LOGISCOPE (product number 5724V81) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 2008, 2009
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

IBM Rational Logiscope CodeReducer – Identifying Code Similarities ii

Table of Contents
1. Basic concepts...5

1.1. CodeReducer typical Use Cases..5
1.2. Differences vs. similarities..7
1.3. Search Engine..9

2. Getting started with CodeReducer..11
2.1. Use Case 1: Reducing code redundancies within a project...11
2.2. Use Case 2: Searching a Reference Code..24
2.3. Use Case 3: Tracking changes between two variants of a project...26
2.4. Use Case 4: Excluding code from similarities search...32

3. Command Line Mode..35
3.1. Logiscope create..35
3.2. Logiscope batch...37

4. Reference Guide..40
4.1. General settings...40
4.2. Advanced settings..42
4.3. Relaxation mechanism...43
4.4. Programming Rules for Logiscope RuleChecker..44
4.5. Source Code Metrics for Logiscope QualityChecker..45

IBM Rational Logiscope CodeReducer – Identifying Code Similarities iii

IBM Rational Logiscope CodeReducer – Identifying Code Similarities iv

IBM Rational Logiscope

About this manual

Audience
This reference manual in intended for IBM® Rational® Logiscope™ CodeReducer
users such as software developers, project managers or quality engineers who want to
identify source code similarities in order to factorize them.

Overview
Chapter 1 explains the basic concepts of code similarities, and presents several
situations where it enhances control over the source code.

Chapter 2 focuses on several real life use cases, detailing how the projects are created,
and the results are analyzed.

Chapter 3 details each parameter and its impact on the results.

Contacting IBM Rational Software Support
If the self-help resources have not provided a resolution to your problem,
you can contact IBM® Rational® Software Support for assistance in
resolving product issues.

Note. If you are a heritage IBM Rational customer, you can go to
http://support.IBM Rational.com/toolbar and download the IBM
Rational IBM Rational Software Support browser toolbar. This
toolbar helps simplify the transition to the IBM Rational IBM
Rational product online resources. Also, a single reference site for all
IBM Rational IBM Rational support resources is located at:
http://www.ibm.com/software/rational/support/IBM Rational/

Prequisites
To submit your problem to IBM Rational Software Support, you must have
an active Passport Advantage® software maintenance agreement. Passport
Advantage is the IBM comprehensive software licensing and software
maintenance (product upgrades and technical support) offering. You can
enroll online in Passport Advantage from
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html .

• To learn more about Passport Advantage, visit the Passport
Advantage FAQs at
http://www.ibm.com/software/lotus/passportadvantage/brochures_fa
qs _quickguides.html .

• For further assistance, contact your IBM representative

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 1

http://support.telelogic.com/toolbar
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs%20_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs%20_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/rational/support/telelogic/

IBM Rational Logiscope

To submit your problem online (from the IBM Web site) to IBM Rational
Software Support, you must additionally:

• Be a registered user on the IBM Rational Software Support Web site.
For details about registering, go to
http://www-01.ibm.com/software/support/ .

• Be listed as an authorized caller in the service request tool.

Submitting problems
To submit your problem to IBM Rational Software Support:

1) Determine the business impact of your problem. When you report a
problem to IBM, you are asked to supply a severity level. Therefore, you
need to understand and assess the business impact of the problem that
you are reporting.

Use the following table to determine the severity level.

Severity Description
1 The problem has a critical business impact. You are

unable to use the program, resulting in a critical impact on
operation. This condition requires an immediate solution.

2 The problem has a significant business impact.
The program is usable, but it is severely limited

3 The problem has a some business impact.
The program is usable, but less significant features
(not critical to operation) are unavailable.

4 The problem has a minimal business impact.
The problem causes little impact on operations or a
reasonable circumvention to the problem was implemented.

2) Describe your problem and gather background information, When
describing a problem to IBM, be as specific as possible. Include all
relevant background information so that IBM Rational Software Support
specialists can help you solve the problem efficiently. To save time,
know the answers to these questions:

• What software versions were you running when the problem
occurred?

To determine the exact product name and version, use the option
applicable to you:

● Start the IBM Installation Manager and select File > View
Installed Packages. Expand a package group and select a
package to see the package name and version number.

● Start your product, and click Help > About to see the offering
name and version number.

2 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

http://www-01.ibm.com/software/support/

IBM Rational Logiscope

• What is your operating system and version number (including any
service packs or patches)?

• Do you have logs, traces, and messages that are related to the
problem symptoms?

• Can you recreate the problem? If so, what steps do you perform to
recreate the problem?

• Did you make any changes to the system? For example, did you
make changes to the hardware, operating system, networking
software, or other system components?

• Are you currently using a workaround for the problem? If so, be
prepared to describe the workaround when you report the
problem.

3) Submit your problem to IBM Rational Software Support. You can submit
your problem to IBM Rational Software Support in the following ways:

• Online: Go to the IBM Rational Software Support Web site at
https://www.ibm.com/software/rational/support/ and in the
Rational support task navigator, click Open Service Request. Select
the electronic problem reporting tool, and open a Problem
Management Record (PMR), describing the problem accurately in
your own words.

For more information about opening a service request, go to http://
www.ibm.com/software/support/help.html .

You can also open an online service request using the IBM Support
Assistant. For more information, go to:
http://www-01.ibm.com/ software/support/isa/faq.html

• By phone: For the phone number to call in your country or region,
go to the IBM directory of worldwide contacts at
http://www.ibm.com/planetwide/ and click the name of your
country or geographic region.

• Through your IBM Representative: If you cannot access IBM
Rational Software Support online or by phone, contact your IBM
Representative. If necessary, your IBM Representative can open a
service request for you. You can find complete contact information
for each country at http://www.ibm.com/planetwide/ .

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Rational Software Support creates an Authorized Program
Analysis Report (APAR). The APAR describes the problem in detail. Whenever
possible, IBM Rational Software Support provides a workaround that you can
implement until the APAR is resolved and a fix is delivered. IBM publishes
resolved APARs on the IBM Rational Software Support Web site daily, so that
other users who experience the same problem can benefit from the same
resolutions.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 3

http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/software/support/help.html
http://www.ibm.com/software/support/help.html
https://www.ibm.com/software/rational/support/

IBM Rational Logiscope

4 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

1. Basic concepts

1.1. CodeReducer typical Use Cases

Real-life examples ... from software life-cycle

When managing projects involving abundant source code, there are many situations where an
advanced comparison tool is required:

– A new version for your software has been developed, based on the previous version.

What proportion of older code has been reused as-is, which one has been modified, and to what
extent?

– Your development team has to follow coding rules, but also use certain preferred algorithms,
and avoid others considered non-optimal or unsafe.

How can you ensure that the preferred algorithms have been used (and where), and the
forbidden ones have not been used?

– A subcontractor just delivered the latest version of a development package.

How can you verify what changes were made since the last version, excluding indentation,
commentaries, identifiers names and functions order?
How can you detect if some functions have the exact same algorithm as old ones, you already
paid for?

– A critical defect in a big project has been discovered, and the faulty code is being fixed.

How can you verify if the faulty code appears somewhere else in the project's thousands of files,
in the same form or a similar one? Unless you fix the problem thoroughly, it is bound to appear
again and generate another critical defect.

– A project was branched into two entities some years ago, and has now to be merged into a single
project again.

How can you evaluate the overlapping of the two projects, and plan the merging, factorization
and modularization?

All these situations can be addressed by Logiscope CodeReducer.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 5

IBM Rational Logiscope

Logiscope CodeReducer's rationale
CodeReducer is a code similarity search tool, that can satisfy different needs:

– Search for all similar pieces of code in a given set of files,

– Search for code similar to a reference code in a given set of files,

– Comparison of source code files,

– Search for differences between two versions of a set of source code files.

In all these situations, CodeReducer identifies similar constructions, and provides you with
information that can help you factorize and reduce your source code size.

Immediate benefits of this factorization are:

– Reduction of maintenance effort and cost on a smaller source code,

– Reduction of bugs possibilities,

– Improvement of code understandability when similar parts have been factorized,

– Ease of implantation of factorized code in other developments.

In addition, similarities searching allow powerful control on the source code:

– Find what the real modifications are between two versions,

– Look for already developed and tested code, saving effort and money.

6 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

1.2. Differences vs. similarities

Difference tools
Average difference tools are used to list what was removed, added, or left unchanged between two
files.

This simple function can be useful when comparing two relatively close versions of a source file,
but it quickly fails to give useful information on drastically different files, or even files where
simple structural modifications were performed.

File Header

Block 1

Instruction 1

Block 2

File Header

Block 1

Instruction 3

Block 2
Source file, version 1 Source file, version 2

For example, when comparing version 1 and version 2 of this file, a difference tool will provide the
following results:

– Both files are identical until the end of Block 1

– Instruction 1 was removed

– Instruction 3 was added

– Block 2 section is unchanged

File Header

Block 1

Instruction 3

Block 2

File Header

Comments

Block 1

Rewritten Instruction 3

Block 2
Source file, version 2 Source file, version 5

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 7

IBM Rational Logiscope

Now suppose that in version 5 of the file from previous example, several modifications were made:

– comments have been added throughout the source code,

– several variables have been renamed,

– “Instruction 3” has been reformatted to improve its readability.

In this situation, a difference tool will list all those modifications, and declare version 2 and version
5 as different, whereas the code is functionally the same.

Difference tools work well as long as the files are not too different.

CodeReducer and similarities
Logiscope CodeReducer is able to compare source code basing its search on similarities, meaning
code “with the same basis”, but not necessarily identical.

Consider the following source codes:

// Here is a comment
for (i=0;i<5;++i) {

j = j+1;
}

for (j=5;
j<10;
++j) {
// Here is another kind of comment

k = k+1;
}

A source code extract A similar source code extract

Similarity comparison is not based on variable names, comments, indentation or code presentation,
which means that:

– A classical difference tool will find that all lines are different between those two code snippets

– CodeReducer will find that they are fully similar

Logiscope CodeReducer does not look for identical, but similar code.

8 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

1.3. Search Engine
CodeReducer uses a search engine based on an internal list of lexical items or “tokens” of the
supported programming language.

These tokens are not only the elementary elements, but also the way to manage the search precision.

Language Tokens
A token is a structural element of the programming language: e.g. control structure, structure and
instructions delimiters, assignments, operators.

Important note:

Since CodeReducer is a similarity search tool, and not a difference tool,
operands, identifiers (variable, function names, etc.) are not considered as tokens

to evaluate code similarity.

For all languages, tokens are broken down into categories associating tokens to degrees of
similarity. The higher the degree, the more tokens will be considered when looking for similarities.
A given similarity degree considers all tokens for this degree and lower ones.

Three degrees are made available to the user:

– “Minimum” degree :
The following types of tokens are considered :
 - component delimiters: functions, classes, packages, ...
 - control structures : if, else, loops, switch, ...,

 - blocks delimiters: begin, end, {, },
 - assignments.

The “Minimum” degree allows the detection of similar code structure with same number of
variables assignments in code blocks but the associated expressions can differ.

– “Medium” Degree :
In addition to the tokens of the “Minimum” degree, the operators: e.g.: +, -, *, ..., are considered.

The “Medium” degree adds the detection of similar expressions.
But other instructions (e.g.: function call) can appear in the similar code.

– “Maximum” Degree :
In addition to the tokens of the “Medium” degree, the parenthesis and instructions terminators
are considered.
The “Maximum” degree adds the detection of same number of instructions with similar contents.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 9

IBM Rational Logiscope

Important note:

Always remember that increasing the similarity degree can reveal similarities that
were not visible with a lower degree, because the set of tokens associated to

different similarity degrees are not subsets one of another.

CodeReducer limitations:
CodeReducer's engine searches for executable code, looking for programming structural elements.
If a code contains no such elements, no similarities can be found.
For example, similar C++ class search only works if classes contain inline methods, and will
produce incorrect results if some classes don't contain executable code (i.e containing language
tokens).

10 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

2. Getting started with CodeReducer
The situations described in this section refer to real-life problems to which Logiscope CodeReducer
provides a solution. For each problem, a step-by-step explanation will detail how to setup and use
Logiscope CodeReducer, and how to analyze its results.

Before you start
In this session, you will use examples of source code files provided in the samples folder of the
standard Logiscope installation directory.

As a precaution to keep original files safe, it is recommended to copy the samples subdirectory into
a working directory of your own.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of files
containing internal data used by Logiscope. It is recommended to a create a dedicated directory to
store these data: e.g. a folder named: LogiscopeProjects.

The examples provided are considered to be on a Windows platform, but they can easily be adapted
to a UNIX (Solaris or Linux) one.

2.1. Use Case 1: Reducing code redundancies within a project
The project development team has been renewed, and some critical knowledge about the source
code has been lost in the process.

To avoid starting from scratch, and avoid unnecessary rework, the first task is to identify the
project's redundancies, and factorize them when possible.

In this example, you will use the C language “Mastermind” sample provided with the Logiscope
standard distribution, and go through all the steps necessary to detect code redundancies. The source
files for this Use Case are located in the samples\C\Mastermind folder of your Logiscope
installation directory.

Step 1: Starting a Logiscope Studio Session
To begin a Logiscope Studio session:

On UNIX (i.e. Solaris or Linux):

➢ launch the vcs binary .

On Windows:

➢ click the Start button and select the IBM Rational Logiscope 6.6 item in the IBM
Rational Programs Group.

The Rational Logiscope splash screen is first displayed and then the Logiscope Studio main
window appears.

For more details on Logiscope Studio, please refer to IBM Rational Logiscope Studio Reference
Manual.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 11

IBM Rational Logiscope

Step 2: Creating a new Logiscope project
First of all, you shall create a Logiscope project which mainly consists in the list of source files to
be analyzed.

➢ In the File menu, select the New... command.

The project creation wizard is invoked, and guides you through the process of creating a new
Logiscope project.

The first dialog box prompts you to define the project name and location.

➢ In the Project name: pane, enter the name for the new Logiscope project to be created. In
the context of the guided tour, type “MastermindReducer”.

➢ Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp” file) and
the associated Logiscope repository will be created; the Logiscope repository is a folder in
which Logiscope internal analysis result files are generated.
You can either keep the proposed default location or enter a the directory you may have
prepared as recommended in the Before You Start section: LogiscopeProjects

Note: By default, the project name is automatically added to the specified location. This
implies that a subdirectory named <ProjectName> is automatically created.

➢ Validate the project name and location by pressing “OK”.

The next screen lets you select the programming language of the source files and the Logiscope
verification modules associated to the project.

12 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

➢ Select the Project Language: i.e. the programming language in which are written the
source code files to be analysed.
For the Mastermind project, select C.

➢ Select the Project Modules: i.e. the verification modules to be activated on the source files
of the project .
For the guided tour, select only CodeReducer

Notes: At least one module should be selected. The TestChecker module cannot be selected
with another module.

➢ Validate the project type definition by pressing “Next >”.

• For more details on the QualityChecker and RuleChecker modules, please refer to IBM
Rational Logiscope RuleChecker and QualityChecker Getting Started.

•
For more details on the TestChecker module, please refer to IBM Rational Logiscope -
TestChecker Getting Started.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 13

IBM Rational Logiscope

The Project Source Files dialog box allows to specify what source files are to be analysed and
where they are located.

➢ Source files root directory: Browse to select the directory where the “Mastermind” source
files are located: i.e. in the samples\C\Mastermind folder in the standard Logiscope
installation directory: e.g. C:\Program Files\IBM\Rational\Logiscope\6.6\

➢ The Directories choice allows to select the list of repertories covering the application source
files.

- Include all subdirectories means that selected files will be searched for in every sub-
directory of the source file root directory.

- Do not include subdirectories means that only files included in the application
directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories
that include application files through a new page.

Keep the default setting.

➢ Suffixes choices allow to specify applicable source, header and inline file extensions needed
in the above selected directories. Extensions shall be separated with a semi-colon.
Keep the default values.

➢ Validate the project name and location by pressing “Next >”.

14 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

The following dialog box allows you to select some key settings of CodeReducer.

These settings significantly impact the nature and number of the similarities found.

➢ Search configuration: Several type of scenarios are proposed according to the type of
language. Keep the default choice: i.e. C similar functions

➢ Search options: This section allows to specify the similarity degree: i.e. the set of tokens
that will be considered for identifying similarities in the code (cf. §1.3).

➢ For this first use case, keep all default settings. Just click “Next >”.

The final screen summarizes the project main attributes.

➢ Expand the “Source Files” folder .

➢ Click on “Finish” to achieve the Logiscope project creation process.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 15

IBM Rational Logiscope

Step 3: “Building” the Logiscope project
Now that the project is fully defined, it can be “built”: i.e. parsing the project source files and
extract all necessary information to identify code similarities.

➢ To build the project, simply use the appropriate menu item: “Project – Build” or click on
the corresponding icon.

In case a message window is displayed related to changing the workspace ...

select “Yes”

A new Build tab is added in the Output Window next to Messages. Several messages are
displayed while parsing the source files and then loading the data showing that the build process is
in progress.

As soon as the Project [...] loaded. message is displayed in the Messages tab, the project
is built i.e. all the source files have been analyzed and associated results generated and loaded.

Step 4: Analyse the code similarities found
After the build is completed, you are ready to analyse and state on the similarities found by
CodeReducer for this scenario i.e. the search configuration and the similarity degree.

CodeReducer results icons are now available :

➢ Click on the “Displays CodeReducer Similarities Tree” icon, or choose the “Browse –
Reducer – Similarities Tree” menu item.

The results are displayed as a dynamic tree, which nodes are associated to all similarities found in
the project for this given scenario : i.e. FUNC: “C similar functions” configuration and MIN:
“Minimum” similarity degree.

For this scenario, 3 similarities have been found, hence producing one node per similarity in the tree
under the corresponding scenario node.

16 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

By default, the similarities found are sorted according to the descending total number of lines of
code found in the occurrences of similar code. The sort criterion can be changed using the Project
Settings command.

➢ Expand the node “Similarity-1” .

Each similarity node contains leaves associated to the location of the occurrences of similarities.
The “similarity-1” :

– is 31 lines long (this is an average value, as the occurrences may not have the exact same
number of lines),

– is 24 tokens long,

– has 2 occurrences, located in

– the file machine.c from line 284 to line 312, and

– the file player.c from line 63 to line 95.

➢ In the Similarity Tree tab, double-click on the “Similarity-1” node.

A new window is displayed “full-screen” showing the two files where similar occurrences of code
were found in two distinct panes, one for each occurrence involved. The similar code is highlighted
in blue.

Here two observations can be done:

– The two similar codes have different comments and line count. This is normal, since similarities
are not based on presentation attributes.

– Apart from the presentation attributes, the code is very similar, meaning a factorization is
possible.
Factorizing the code between these two functions means twice as few possible defects and
maintenance effort.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 17

IBM Rational Logiscope

➢ Click on the <ESC> key to close the window and be back to Logiscope Studio.

This simple example shows how CodeReducer make easy and fast looking for similarities in
a source code in order to find factorizable code, and improve the maintainability of the
project source files.

Step 5: Changing the CodeReducer Settings

The previous results have been obtained with the default settings of CodeReducer. They have been
tuned to provide quick results. However, the most impressive results on this application are
obtained with an other search configuration and a different similarity degree.

➢ Click on the “Project – Settings... ” menu item.

The Logiscope Settings dialog box is open.

➢ Select the “CodeReducer ”tab

18 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

You can now change the similarities search configuration to find different types of similar code in
the application.

➢ In the “Search configuration” sections, select the item “C similarities everywhere”,

➢ In the “Search options” section, select the similarity degree: “Maximum” to get very
similar code.

➢ Select now the “CodeReducer Advanced” tab.

The following dialog box completes the CodeReducer module settings by defining how the
similarities results should be filtered and displayed.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 19

IBM Rational Logiscope

➢ The Sort criteria section allows selecting the way the similarities are sorted when displayed.
4 choices are available. They are detailed in section 4.2.

➢ In the Result filters:

○ In order to limit this first investigation to the most significant similarities found, put 10
in area associated to the already checked filter “Show only the top x similarities”.

○ Check “Highlight tokens” to easily identifier similar tokens in various occurrences of
code when displaying the similarities.

➢ click on the “OK” button to save the new CodeReducer settings.

As the project settings have been changed, the project shall be (re-)built to take into account this
new configuration.

➢ Simply use the appropriate menu item: “Project – Build” or click on the corresponding
icon.

Caution: Do not click on “Project – Rebuild All”, you would loose the results from your
previous configuration.

➢ As soon as the build process is finished, refresh the “Similarities” tab by clicking on the
“Display Code Similarities Tree” icon or activate the “Browse – Reducer - Similarities
Tree” menu item.

According to the filters set previously, the list of the Top 10 most significant similarities found in
the overall project source code is displayed. Some are much more impressive than those found for
the “C similar functions” configuration in the previous step.

20 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Indeed, the Similarity-1 corresponds to a section of 64 similar lines containing a sequence of 176
identical tokens that occurs 2 times in the overall Mastermind application. Factorizing this section
of code would significantly improve the level of maintainability of the source code.

➢ Expand the Similarity-1 node to locate these 2 occurrences.

The similarities are all located in the machine.c file and correspond to pieces of code of about 60
lines of code.

➢ Double click on the node Similarity-1 to display the corresponding source code.

First of all, note that all similar tokens are now highlighted in yellow. You can also use the scrolling
of the first window to make all three source code windows scroll synchronously.

This section of code shows that such a similarity may come from a large “Copy-Paste” action ...
Which is definitively a poor coding practice regarding software maintainability requirements.

CodeReducer helps you find the duplicated code in just a few seconds. However, note that this
search configuration may require a significant time to complete the analysis for a very large volume
of code.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 21

IBM Rational Logiscope

Step 6: Quantifying the Similar Code: the Compression Ratio

You may have noticed that the similarity tree contains nodes with some figures. Indeed, each
CodeReducer “Build” node reminds the corresponding scenario: Search Configuration and
Similarity Degree but also indicates the Compression Ratio estimated by CodeReducer.

The Compression Ratio is the percentage of code that would be removed from the project source
files by factorizing the similarities found for the given scenario. It is the ratio between the estimated
gain of the similarities found and the total number of lines in the project source files where the
estimated gain is the number of lines of code belonging to all occurrences but one (the first) of all
the similarities displayed.
When factorizing the code, you will keep one instance / occurrence of the code, and remove the
others.

In the example above, CodeReducer estimates that 211 lines can be removed from the 1814 lines
code in the project source files; producing a compression ratio of 11% for that given scenario.

For “Similarity-1”, the code of the second and third occurrences could be factorized with the code
of the first occurrence. So, instead of having 2 times 64 lines, you should “compress” / factorize the
code to only 1 time 64 lines. Thus, the Estimated Gain for just “Similarity-1” would be of 64 lines.

Finally, note that the Compression Ratio only takes into account similarities that are displayed in the
corresponding tree. So the value depends on the results filters that may have been set. This is the
case for our example ... meaning that, the Compression Ration would have been greater if not
limited to only the “Top 10” similarities.

For more details on source code metrics provided by CodeReducer, please refer to §4.4 “Source
code metrics for QualityChecker”.

22 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Step 7: Generating assessment report

➢ Click on the “Displays CodeReducer Similarities HTML Report” icon, or choose the
“Browse – Reducer – Similarities Report” menu item.

An HTML format report is automatically generated, displayed and saved in the reports.dir
folder in the Logiscope project Repository. You can browse within to get access to all results.

➢ click on the first configuration to access to the corresponding similarities via the
Compression ratio summary pie.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 23

IBM Rational Logiscope

2.2. Use Case 2: Searching a Reference Code
A particular algorithm used in your product has been rewritten.

You would like to check if other parts of the product are using the same old algorithm, and replace
them by the new version.

Looking for a reference source code is fairly easy. Suppose you have to modify the code in file
player.c, starting at line 35: the 2 nested for loops.

➢ Double click on the file in the File View tree

➢ Simply select the reference code in file “player.c”, from line 35 to 43.

➢ Click on the “Searching code similar to selected one” icon, or choose the “Browse –
Reducer – Searching Code” menu item.

In our example, three similar pieces of code have been found based on the scenario
“[FUNC-MIN] C similar functions - Minimum”, hence producing three nodes in the
associated subtree.

➢ Expand the node on the “Similar pieces of code: 3”

24 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

➢ In the Tree tab, double-click on the “Similar pieces of code” node to display an overview of
the similarity occurrences.

To access to each one of the similar code portions, just click on its associated node in the result tree.

This example shows how one can pinpoint code similar to a given reference in two easy steps,
allowing effortless propagation of an algorithm modification.

Now that all source code similar to the reference have been found, you can modify them as needed.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 25

IBM Rational Logiscope

2.3. Use Case 3: Tracking changes between two variants of a project
A variant of the project has been released for a second customer. A third one is now also asking for
the development of its own special version. This is a start for a product line...

However, it is no more time to have a project based development policy but a product. So, to start
this third version, you shall take the best of the two previous variants expecting they are not as
different as both development teams say.

In this Use Case, you will use both the “Mastermind” and “Mastermind_Bis” C samples
provided with the standard Logiscope distribution, and compare these two projects using
CodeReducer.

The Mastermind_Bis sample is a copy of the Mastermind project, where some modifications
have been applied by the new development team:

– The file machine.c has been renamed mymachine.c. And the first function has been moved
to the end of the file.

– In file master.c, a bug has been fixed removing the useless statement val= x-1; and the
preceding comment.

– The function help() in the file player.c has been moved in a newly dedicated file help.c.
– In most of the files, some special comments have been added in function headers to ensure

traceability between requirements and source code.

– Only the file base.c has not been changed at all.

Step 1: Creating a new Logiscope project in an existing Workspace.
When creating a project, Logiscope always associates it to a workspace, with the same name.
So, the previous Use Case led to the creation of the MastermindReducer workspace: i.e. a file
with an extension “.ttw”, which contains / refers to the MastermindReducer project: i.e. a file
with an extension “.ttp”.

If you have closed the Logiscope Studio session started in the previous use case.

➢ Start a new session as in the Step 1 of the previous section.

➢ Open the MastermindReducer workspace created while performing the Use Case 1 by
using either the “File > Open ...” command or the “File > Recent Workspaces ...”
command.

Once the workspace is open:

➢ In the File menu, select the New... command.

The Logiscope project creation wizard starts as already seen in the previous Use Case (see §2.1).

The first dialog box prompts you to define the Project name and location.

➢ In the Project name: type MastermindReducer_Bis.
➢ Then, select its Location: e.g. C:\LogiscopeProjects

26 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

➢ But, in this context, select the Add to current workspace option.

Indeed, to allow comparing two projects, they shall be in the same Logiscope workspace.

➢ Validate the project name and location by pressing “OK”.

As explained in section 2.1:

➢ In the Logiscope Project Definition dialog box, select C as the Project Language and
CodeReducer as the project Module.

➢ Validate the project definition by pressing “Next >”.

➢ In the Project Source Files dialog box, browse to select the Source files root directory:
i.e. the directory where the version Bis of the “Mastermind” source files are located: i.e. the
\samples\C\Mastermind_Bis folder in the standard Logiscope installation directory.

➢ Validate with “Next >”.

In the CodeReducer Settings dialog box:

➢ Search configuration: Select “C similarities everywhere” as you will search for similarities
every where in the code ... not only similar functions as seen when starting the first Use
Case;

➢ Search options: keep all default options but check the box Compute data for project
comparison as you definitively want to compare the two projects.

➢ Select the Similarity Degree: Maximum.
➢ Change the value associated to the % of similarities at least between files option from 80

to 50.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 27

IBM Rational Logiscope

➢ Validate by pressing “Next >”.

➢ In the Logiscope Project Summary screen, just click on “Finish” to finalize the creation
process.

Note: You can also add a previously created project into the current workspace by selecting
it and using the contextual menu command “Insert Project ... “.

Step 2: “Building” the project
As done in the Use Case 1, you shall now extract the information from the source code files of the
active project: i.e. the project in bold in the workspace.

➢ Activate the command “Project – Build”.

28 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Step 3: Comparing the project variants
After the build is completed, the projects comparison results can be displayed and interpreted.

➢ Click on the “Displays CodeReducer Project Comparison Tree” icon, or choose the
“Browse – Reducer – Projects Comparison” menu item.

Results are displayed as a dynamic tree, project comparison creates two kinds of nodes:

– Homonyms: these nodes are associated to files having the same name in both projects. They are
broken down into three categories:

– Strictly identical files,

– Files only different because of additional comments or spaces,

– Similar files, within a given similarity ratio,

– Others: these are files that do not have the same name, but contain similar code.

➢ Expand first the Homonyms subtree :

As shown in the above result window:

– the two instances of the file base.c are identical in both project,

– the files write.c, util.c, and score.c only differ by comments and/or indentation;
the code is identical.

– the two instances of the file master.c are very close, the instance in Mastermind_Bis
is fully included (100%) in the instance in Mastermind whereas 99% of the latter is
included in the former, meaning it contains additional code.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 29

IBM Rational Logiscope

– the two instances of the files player.c are much different, the instance in
Mastermind_Bis is again fully included (100%) in the instance in Mastermind whereas
78% of the latter is included in the former. Indeed, it contains an additional function.

➢ Now expand the Others subtree:

As shown in the above result window:

– the files machine.c and mymachine.c contains nearly fully similar functional code,

– the code of the file help.c in Mastermind_Bis is almost fully included in the
player.c in Mastermind.

Even if a “difference tool” would have found that most of the files in pairs are different,
CodeReducer helped you reach the conclusion that they contains similar functional code.

Note: In the Tree tab, double-clicking on any Similarity node will display an overview of the
similarity occurrences, as shown in Use Case 1.

Step 5: Generating a report

➢ Click on the “Displays CodeReducer Projects Comparison HTML Report” icon, or choose
the “Browse – Reducer – Projects Comparison Report” menu item.

The result is displayed in HTML format, and the project comparison summary is presented in
tabular form.

30 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

 ...

➢ On the left frame, click on “More than 50% similar” menu item.

The list of corresponding files is now displayed with the location of the differences found:

This example shows the capabilities of Logiscope CodeReducer when looking for functional
differences between two versions / variants of the same project.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 31

IBM Rational Logiscope

2.4. Use Case 4: Excluding code from similarities search
An older project has been analyzed with CodeReducer, which detected that several similarities
within the source code could be eliminated by factorization.

However, some of the source code detected as similar is part of a legacy code you don't want to
modify.
You need to notify CodeReducer that this particular source code shouldn't be part of any similarity.

In this Use Case, you will use the “MastermindReducer” workspace created in Use Case 1 and
modified in the following Use Cases.

Step 1: Opening an existing Logiscope Workspace.
If you have closed the Logiscope Studio session started in the previous use case.

➢ Start a new session as in the Step 1 of the previous section.

➢ Open the MastermindReducer workspace by using either the “File > Open ...” command
or the “File > Recent Workspaces ...” command.

In the Project Settings dialog box, open the « CodeReducer Advanced » tab:

➢ Check the Hide relaxed similarities option.

32 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Step 2: Relaxing a portion of code.
Before deciding what code to relax, click on the « Displays CodeReducer Similarities Tree » icon.

The list of similarities is displayed as a tree. Locate the « [CODE-MAX] C similarities
everywhere » for the MastermindReducer_bis project. Expand the first similarity, as shown
below.

You will notice that this similarity contains three occurrences, all in the mymachine.c file.
The average size of this similarity is 59 lines.

Suppose the first portion of the code belongs to a legacy function that has to be ignored in the
factorization process.

All you have to do is open the mymachine.c file, and surround the code to relax with the
appropriate relaxation comments, as shown below.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 33

IBM Rational Logiscope

Step 3: Relaxed similarities results.
Once the project has been rebuilt, click on the « Displays CodeReducer Similarities Tree » icon.

Locate the « [CODE-MAX] C similarities everywhere » for the MastermindReducer_bis
project, and expand its first similarity.

Several things can be noticed:

➢ The similarity now only contains two occurrences. The one associated to the relaxed code
does not belong to this similarity anymore.
In fact, the relaxed code is now absent from all similarities.

➢ The two remaining occurrences now span more source code than before the legacy code was
relaxed.
This is due to the fact that CodeReducer found that the remaining occurrences were
obviously still similar, but that some additional tokens (that did not appear in the now
relaxed legacy code) could be added to the similarity, producing a bigger similarity with an
average size of 64 lines (as opposed to 59 lines before relaxation of the legacy code).

You can now factorize the code based on CodeReducer results, knowing that your legacy code will
not be impacted by this operation.

34 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

3. Command Line Mode

3.1. Logiscope create
Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described in the
previous chapter.

The logiscope create tool builds Logiscope projects from a standalone command line or within
makefiles (replacing the compiler command) .

From the Command Line
When started from a standard command line, the create tool creates a new project file with the
information provided on the command line. See the Options paragraph

When used in this mode, there are two different ways for providing the files to be included into the
project:

Automatic search
This is the default mode where the tool automatically searches the files in the directories.

Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source files. This
option is not mandatory, and if omitted the default is to start the search in the current directory.

-recurse : if present indicates to the tool that the search for source files has to be recursive,
meaning that the tool will also search the subdirectories of the root directory.

File list
In this mode, the tool will look for the –list option which has to be followed by a file name. This
provided file contains a list of files to be included into the project. The file shall contain one
filename per line.

Example: Assuming a file named filelist.lst containing the 3 following lines:
/users/logiscope/samples/C/mstrmind/master.c
/users/logiscope/samples/C/mstrmind/player.c
/users/logiscope/samples/C/mstrmind/machine.c

Using the command line:
create aProject.ttp -reducer –lang c –list filelist.lst
will create a new Logiscope C project file named aProject.ttp containing 3 files: master.c, player.c
and machine.c on which CodeReducer verification module will be activated.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 35

IBM Rational Logiscope

Within a Makefile
When launched from makefiles, create is designed to intercept the command line usually passed to
the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be modified in order to launch create instead of the compiler. In this
mode, the name of the project file (“.ttp” file) has to be an absolute path, otherwise the process will
stop.

When used inside a Makefile, create uses the same options as in command line mode, except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

The following lines can be introduced in a Makefile to build a Logiscope project file :
CREATE=create /users/projects/myProject.ttp -rule -reducer –lang c
CC=$(CREATE) -- gcc
CPP=$(CC) -E
...

In this mode, the project file building process is as follows:

1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate
preprocessor options if any, then Create starts the normal compilation command which will
ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used either
using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full
rebuild and to ensure that the create will catch all files.

Options
The Logiscope create options are the following:

create -reducer

<ttp_file> name of the Logiscope project to be created (with the “.ttp”
extension).
Path has to be absolute if the option -- is used.

[-lang Ada|C|C++|Java|] the language of the source files to be analysed.

[-root <directory>] where <directory> is the starting point of the source search.
Default is the current directory.
This option is exclusive with -list option.

[-recurse] if present the source file search is done recursively in sub-folders.

36 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

[-list <list_file>] where <list_file> is the name of a file containing the list
of filenames to add to the project (one file per line).
This option is exclusive with -root option.

[-repository <directory>] where <directory> is the name of the directory where
Logiscope internal files will be stored.

[-source <suffixes>] where <suffixes> is the list of accepted suffixes for
source file to be placed in project folder "Source Files"

[-no_compilation] avoid compiling the files if the -- option is used

[--] when used in a makefile, introduces the compilation
command with its arguments.

[-similarity_degree <value>] where <value> is the desired similarity degree for
similarities search. Accepted value are MIN, MED, MAX.

[-percent <value>] where <value> is the desired percentage of similarities to
retain files.
Accepted value is an integer between 0 and 100.

[-multi] if present, project comparison will be activated when the
current project is part of a workspace containing two
projects.

[-config <config-id>] where <config-id> is the identifier of one of the search
configuration available for the current language.
Possible values are:
- C: (c-function | c-everywhere)
- C++: (cpp-class | cpp-function | cpp-everywhere)
- Java: (java-class | java-package | java-function |
java-everywhere)
- Ada: (ada-package | ada-function | ada-everywhere)

[-sort <sort-id>] where <sort-id> is the identifier of one of the sort
algorithm available. Possible values are (nb-occur | length).

[-filter <filter-id>]* where <filter-id> is the identifier of one of the filter
algorithm available.
Possible values are (top-x | nb-lines | relax | same-file).

[-top-x <filter-value>] where <filter-value> is the integer value for the
'top-x' filter.

[-nb-lines <filter-value>] where <filter-value> is the integer value for the
'nb-lines' filter.

3.2. Logiscope batch

Logiscope batch is a tool designed to work with Logiscope in command line to:

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 37

IBM Rational Logiscope

● parse the source code files specified in a Logiscope project: i.e. “.ttp” file,

● generate reports in HTML and/or CSV format automatically.

Note that before using batch, a Logiscope project shall have been created using :

● either Logiscope Studio, refer to Section 1,

● or Logiscope create, refer to the previous section.

Once the Logiscope project is created, Logiscope batch is ready to use.

Options
The Logiscope batch command line options are the following:

batch

<ttp_file> name of a Logiscope project.

[-tcl <tcl_file>] name of a Tcl script to be used to generate the
reports instead of the default Tcl scripts.

[-o <output_directory>] directory where the all reports are generated.

[-nobuild] generate reports without rebuilding the project.
The project must have been built at least once previously.

[-clean] before starting the build, the Logiscope build mechanism
removes all intermediate files and empties the import project
folder when the external violation importation mechanism is
activated.

[-addin <addin> options] where addin is the name of the addin to be activated and
options the associated options generating the reports.

[-table] generate tables in predefined html reports instead of slices or
charts. By default, slices or charts are generated (depending
on the project type).
This option is available only on Windows as on Unix there
are no slices or charts, only tables are generated.

[-noframe] generate reports with no left frame.

[-v] display the version of the batch tool.

[-h] display help and options for batch.

[-err <log_err_folder>] directory where troubleshooting files batch.err and
batch.out should be put. By default, messages are directed
to standard output and error.

38 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Examples of use
Considering the previously created Logiscope project named aProject.ttp where:

● the CodeReducer verification module has been activated,

● the Logiscope Repository is located in the folder MyProject/aProject,
(Refer to the previous section to learn how creating a Logiscope project).

Executing the command on a command line or in a script:
batch aProject.ttp

will:

● perform the parsing of all source files specified in the Logiscope project: aProject.ttp,

● run the standard TCL script Reducer_report.tcl located in Scripts folder of the Logiscope
standard installation directory to generate the standard CodeReducer HTML reports named
testfilescomparison.html and testsimilarities.html in the default
aProject/Logiscope/reports.dir folder.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 39

IBM Rational Logiscope

4. Reference Guide
This section lists all Logiscope CodeReducer settings, with their values and effects.

Important notes:

Whenever a parameter is changed,
the project must be rebuilt to take it into account.

This means that if you change a parameter, and don't rebuild the project, the displayed results will
be those of the previous parameters values.

Do not use the Project > Rebuild All command
if you want to keep results from previous scenarios.

In this chapter, <Language> designates either Ada, C, C++, or Java.

4.1. General settings
The following settings are accessible from Logiscope Studio using the Project > Settings...
command and selecting the “CodeReducer” tab.

Search configuration
All project configurations are based on the same assumption:
To be even considered by the search engine, a code portion must contains at least three tokens from
the “Minimum Degree”, and additional tokens depending on the Similarity Degree.

40 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Search configuration
<Language> similar functions Scopes are associated to each function source code.

<Language>: Ada | C | C++ | Java
<Language> similar procedures Scopes are associated to each procedure source code.

<Language>: Ada
<Language> similar packages Scopes are associated to each package source code.

<Language>: Ada | Java
<Language> similar classes Scopes are associated to each class source code.

<Language>: C++ | Java

Search options

Similarity Degree
Minimum |
Medium |
Maximum

The similarity degree determines which kind of tokens the search
engine must consider when looking for similarities.

Choosing a lower or higher degree will produce a coarse-grained
or fine-grained result, respectively.

Computes data for projects comparison
Checked or unchecked (default) If checked, data necessary for project comparison will be

produced when building the project.

To activate the projects comparison feature, the workspace must
contain two projects exactly (cf. Use Case 3 in previous chapter).

You should check this parameter for one of the projects only, or
the search will be performed twice.

% of similarities at least between files
Between 0 and 100

(default is 80)

This threshold is the percentage of similarities two files must
reach to be considered similar.

This parameter only has effect on the file and project comparison
features, not on the “Display similarities” feature.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 41

IBM Rational Logiscope

4.2. Advanced settings
The following settings are accessible from Logiscope Studio using the Project > Settings...
command and selecting the “CodeReducer Advanced” tab.

Sort criteria
by max number of similar lines orders the similarities by the maximum number of similar

lines of code found in each occurrence involved in the
similarity.

by number of similar occurrences orders the similarities by the number of occurrences found.
by number of similar tokens orders the similarities by the total number of similar token

found in the occurrences.
by total number of similar lines orders the similarities by the total number of similar lines of

code found in the occurrences.
Result filters
Shows only the top x similarities Restricts the number of similarities displayed to the X most

relevant ones.
Checked by default with value of 50.

Hide similarities with less than x
similar lines

Similarity occurrences must be at least X lines long to be
displayed.

The higher this threshold is, the fewer similarities will be
found. Default value is 10.

Hide relaxed similarities Similarity occurrences where a relaxation comment has been
found are not displayed

For more details see Section “Relaxation Mechanism”

42 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Result filters
Hide similarities when limited to
only one file

Discard similarities that were found within the same file.

Highlight Tokens
Checked or unchecked (default) If checked, similar tokens are highlighted -in yellow- when

displaying similarities occurrences source code.

Note: Tokens are not highlighted when displaying results of
projects or files comparison.
The reason being that the comparison algorithm can detect
similar portions of code even if they are not in the same order. In
this situation, highlighting tokens would not be relevant.

Opens similarities occurrences in full screen
Checked (default) or unchecked If checked, similarities occurrences source code is displayed in

full screen.

Use the <ESC> key to escape full screen mode.
The number of occurrences open simultaneously is limited to 5.

4.3. Relaxation mechanism
As Logiscope RuleChecker relaxing acceptable exceptions to violations of programming rules,
CodeReducer also integrates a mechanism to discard some occurrences of similarities if they are not
so accurate or of prior interest for improving maintainability. This can be very useful when
analysing similarities in a context where multiple code reviews are performed at various stages of
the project.

The CodeReducer relaxation mechanism is also based on comments inserted into the code where
the tolerated occurrences are. When pieces of code contain such a special comment, they will no
longer appear in the list of similarities occurrences when the filter “Hide relaxed similarities” is set
in the CodeReducer Advanced settings (see previous section “Advanced Settings”).

The similarities occurrences that have been relaxed will remain accessible for future reference.

Comment Relaxation format
The comments to be used to discard pieces of code from similarities occurrences is the following
(applicable to C++ or Java):
 // {{RELAX<CODEREDUCER> justification

the piece of code
 // }}RELAX<CODEREDUCER>

where: - justification: is free text, allowing to justify the relaxation of the occurrence

Note: The combination of characters introducing / closing a comment shall be adapted according to

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 43

IBM Rational Logiscope

the syntax applicable to the programming language of the project, e.g.:

- -- ... : for Ada.

– /* ... */ : for C

4.4. Programming Rules for Logiscope RuleChecker

When a Logiscope project is created with both Logiscope CodeReducer and Logiscope
RuleChecker verification modules, the user can benefit from additional programming rules for
checking software quality and identifies complex, error-prone components.

Logiscope CodeReducer provides Logiscope RuleChecker with the following programming rules.

NoSimilarCode The code shall not contain similar pieces of code.

All occurrences of found similarities are considered as violations
NoSimilarFiles The code shall not contain similar files.

All occurrences of found similarities using the file comparison are
considered as violations.

The rules have 2 parameters that allow to specify the applicable scenario based on:

● <CONF>: the search configuration:
● CODE: for the “<Language> similarities everywhere”,

● PKG: for the “<Language> similar packages” (Ada and Java only),

● CLASS: for the “<Language> similar classes” (C++ and Java only),

● FUNC: for the “<Language> similar functions” (C, C++ and Java only),

● PROC: for the “<Language> similar procedures” (Ada only)

● <DEG>: the similarity degree :
● MIN: Minimum similarity degree,

● MED: Medium similarity degree ,

● MAX: Maximum similarity degree.

Using jointly parameters and rule renaming facilities of Logiscope RuleChecker allows to raise
violations from several scenarios simultaneously.

Examples are provided in the Rule Set CodeReducer.rst in the standard Logiscope Reference
of the Logiscope standard distribution.

For instance, the Rule Set in RuleSets/C/CodeReducer.rst for C source code proposes 4
rules derived from the 2 standard rules with different parameters:

STANDARD NoDuplicatedFiles RENAMING nosimilarfiles ON CODE MAX END STANDARD

44 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

STANDARD NoDuplicatedCode RENAMING nosimilarcode ON CODE MAX END STANDARD
STANDARD NoDuplicatedFunctions RENAMING nosimilarcode ON FUNC MAX END STANDARD
STANDARD NoSimilarFunctions RENAMING nosimilarcode ON FUNC MIN END STANDARD

4.5. Source Code Metrics for Logiscope QualityChecker

When a Logiscope project is created with both Logiscope CodeReducer and Logiscope
QualityChecker verification modules, the user can benefit from additional source code metrics for
assessing software quality and identifies complex, error-prone components.

Indeed, a software component containing many similar pieces of code may have a limited level of
maintainability.

Logiscope CodeReducer provides Logiscope QualityChecker with the metrics specified below.

In the following specification:

● <CONF>: designates the search configuration and can be instantiated with the following
values:

● CODE : for the “<Language> similarities everywhere”,

● PKG: for the “<Language> similar packages” (Ada and Java only),

● CLASS: for the “<Language> similar classes” (C++ and Java only),

● FUNC: for the “<Language> similar functions” (C, C++ and Java only),

● PROC: for the “<Language> similar procedures” (Ada only)

● <DEG>: designates the similarity degree and can be instantiated with the following values:
● MIN: Minimum similarity degree,

● MED: Medium similarity degree ,

● MAX: Maximum similarity degree.

● A local similarity is a similarity where all occurrences of similar code are in the same file.

● Value of metrics depends of the activated results filters (cf. §4.2)

Examples are provided in the Quality Model file QualityModelWithReducer.ref in the
standard Logiscope Reference of the Logiscope standard distribution.

Application Scope
ap_cr_comp_<CONF>_<DEG> Compression ratio for the application regarding the corresponding

search configuration <CONF> and similarity degree <DEG>.

The compression ratio is the ratio between the estimated gain and

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 45

IBM Rational Logiscope

the total number of lines of the application that may be removed
from the source code by factorizing all found similarities.

ap_cr_gain_<CONF>_<DEG> Estimated gain for the application regarding the corresponding
search configuration <CONF> and similarity degree <DEG>.

The estimated gain is the estimated number of lines that may be
removed from the source code by factorizing all found
similarities.

ap_cr_sim_<CONF>_<DEG> Number of similarities found in the application regarding the
corresponding search configuration <CONF> and similarity degree
<DEG>.

ap_cr_sline_<CONF>_<DEG> Total number of lines of occurrences of found similarities in
the application regarding the corresponding search configuration
<CONF> and similarity degree <DEG>.

Module Scope
md_cr_lline_<CONF>_<DEG> Number of lines of code in occurrences of local similarities found in

the file regarding the corresponding search configuration <CONF>
and similarity degree <DEG>.

md_cr_locc_<CONF>_<DEG> Number of occurrences of local similarities found in the file
regarding the corresponding search configuration <CONF> and
similarity degree <DEG>.

md_cr_lsim_<CONF>_<DEG> Number of local similarities found in the file regarding the
corresponding search configuration <CONF> and similarity degree
<DEG>.

md_cr_occ_<CONF>_<DEG> Number of the occurrences of similarities found in the file
regarding the corresponding search configuration <CONF> and
similarity degree <DEG>.

md_cr_sim_<CONF>_<DEG> Number of distinct similarities where at least a piece of the code file
is involved in regarding the corresponding search configuration
<CONF> and similarity degree <DEG>.

md_cr_sline_<CONF>_<DEG> Total number of lines of code found in occurrences of
similarities found in the files.

46 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Notices

© Copyright 2008, 2009
US Government Users Restricted Rights—Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 47

IBM Rational Logiscope

described in this publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.
Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.
Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.
If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

48 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

IBM Rational Logiscope

Copyright license
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:
© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Trademarks

IBM, the IBM logo, ibm.com are trademarks or registered trademarks of International
Business Machine Corp., registered in many jurisdictions worldwide. Other product and
services names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at:

 www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

 IBM Rational Logiscope CodeReducer – Identifying Code Similarities 49

http://www.ibm.com/legal/copytrade.html

IBM Rational Logiscope

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademark, and a registered community trademark of the Office of
Government Commerce, and is registered in the U.S Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.

50 IBM Rational Logiscope CodeReducer – Identifying Code Similarities

	1. Basic concepts
	1.1. CodeReducer typical Use Cases
	1.2. Differences vs. similarities
	1.3. Search Engine

	2. Getting started with CodeReducer
	2.1. Use Case 1: Reducing code redundancies within a project
	2.2. Use Case 2: Searching a Reference Code
	2.3. Use Case 3: Tracking changes between two variants of a project
	2.4. Use Case 4: Excluding code from similarities search

	3. Command Line Mode
	3.1. Logiscope create
	3.2. Logiscope batch

	4. Reference Guide
	4.1. General settings
	4.2. Advanced settings
	4.3. Relaxation mechanism
	4.4. Programming Rules for Logiscope RuleChecker
	4.5. Source Code Metrics for Logiscope QualityChecker

